
Mathematical modelling of the HIV/AIDS epidemic

and the effect of public health education.

Sibaliwe Maku Vyambwera

Supervisor: Prof P.J. Witbooi

A thesis submitted in partial fulfilment of the requirements

for a Master of Science in Mathematics,

University of the Western Cape,

Department of Mathematics and Applied Mathematics,

South Africa.

February 27, 2014

 

 

 

 



Keywords

disease-free equilibrium

endemic equilibrium

basic reproduction number

local and global stability

sensitivity

optimal control

stochastic model

almost sure exponential stability

i

 

 

 

 



Abstract

Mathematical modelling of the HIV/AIDS epidemic and the ef-

fect of public health education

Maku Vyambwera

MSc Dissertation, Department of Mathematics and Applied Mathematics, University of

the Western Cape.

HIV/AIDS is nowadays considered as the greatest public health disaster of modern time.

Its progression has challenged the global population for decades. Through mathematical

modelling, researchers have studied different interventions on the HIV pandemic, such as

treatment, education, condom use, etc. Our research focuses on different compartmen-

tal models with emphasis on the effect of public health education. From the point of

view of statistics, it is well known how the public health educational programs contribute

towards the reduction of the spread of HIV/AIDS epidemic. Many models have been

studied towards understanding the dynamics of the HIV/AIDS epidemic. The impact

of ARV treatment have been observed and analysed by many researchers. Our research

studies and investigates a compartmental model of HIV with treatment and education

campaign. We study the existence of equilibrium points and their stability. Original con-

tributions of this dissertation are the modifications on the model of Cai et al. [1], which

enables us to use optimal control theory to identify optimal roll-out of strategies to con-

trol the HIV/AIDS. Furthermore, we introduce randomness into the model and we study
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the almost sure exponential stability of the disease free equilibrium. The randomness

is regarded as environmental perturbations in the system. Another contribution is the

global stability analysis on the model of Nyabadza et al. in [3]. The stability thresholds

are compared for the HIV/AIDS in the absence of any intervention to assess the possible

community benefit of public health educational campaigns. We illustrate the results by

way simulation
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Chapter 1

General Introduction

1.1 Intoduction to HIV/AIDS

Acquired immune deficiency syndrome or acquired immunodeficiency syndrome (AIDS) is

a disease of the human immune system caused by human immunodeficiency virus (HIV).

For more information refer to Sepkowitz [46]. AIDS has developed into a global pan-

demic (which is an epidemic of infectious disease that spreads through human population

across a large region, continent or worldwide) since the first patients were identified in

1982. However, the early history of HIV in South Africa was contained, like in the early

phase of the epidemic elsewhere, among gay men. In 1982, two homosexual men were

diagnosed with HIV. Out of 250 blood specimen taken from homosexual men in Johan-

nesburg, South Africa’s largest city, 32 were infected. Half the sample had more than

20 different sexual partners in 12 months. The initial concentration of HIV within the

gay community led to the belief that AIDS was a homosexual disease, with the wider

population largely ignoring the risk, and the apartheid government excusing itself from

acting. It is currently reported that 34 million people currently living with with HIV, 2.5

million are being newly infected and 1.7 million AIDS death occurred in 2011, [57]. It

was reported that South Africa’s national AIDS plan was to focus on the rapid scale-up

of HIV treatment and almost 2 million people are now on ARV as compared to fewer than
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1 million in 2009, [57].

1.1.1 HIV Transmission

Many people still misunderstand the process of transmission of HIV from one person to

another, see [56] of Kim for instance. Knowing the basics helps you avoid getting the

virus if you are HIV-negative, and avoid giving it to someone else if you are HIV-positive.

HIV is transmitted through direct contact of a mucous membrane or the bloodstream

with a bodily fluid containing HIV such as blood, semen, vaginal fluid and breast milk.

The disease can be passed during unprotected sex with an HIV-infected person. HIV is

not spread through body fluids such as sweat, tears or saliva (spit). The spread of HIV

can be prevented. There are ways to avoid, or at least reduce, contact with body fluids

that spread HIV.

1.1.2 Methods of Transmission

In the past, HIV was spread accidentally by transfusion with blood products, such as

whole blood or the factor used by hemophiliacs. Many people were infected this way.

The blood supply is now much more strictly tested and controlled. The odds of being

infected from receiving blood or blood factor in SA are very low. One cannot get HIV

from donating blood if a new sterile (clean) needle is used for each donation, see [56].

An HIV-infected mother can transmit HIV to her infant during pregnancy, delivery or

while breastfeeding. Medical care and HIV drugs given during pregnancy can almost

eliminate the risk of a baby getting HIV from its mother. HIV-positive mothers should

not breastfeed their babies. People can also become infected with HIV when using in-

jection drugs through sharing needles and other equipment. This risk may be reduced

by cleaning needles with a bleach solution before re-using them. However, some experts

question how effective this method really is in reducing transmission. It is best to use
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fresh needles each time to eliminate any risk of infection. Many cities offer free needle

exchange programs. Tattoos or body piercings should always be done by a licensed pro-

fessional whose equipment is autoclaved, not just sterilized with alcohol.

Every sexual act (oral, anal, or vaginal) that involves sexual fluids of some kind has at

least some risk. Barriers, such as condoms (male and female), dental dams (thin squares of

latex), and latex gloves help reduce risk substantially. Unsafe sex (sex without condoms or

barriers) puts you and your partner at risk for HIV or other sexually transmitted diseases

(STDs). Safer sex (sex using condoms or other barriers correctly and consistently) protects

you and your partner.

1.1.3 How HIV is not Transmitted

HIV cannot be transmitted except when certain body fluids are exchanged. One can

greatly reduce the risk of transmission by:

• Avoiding contact with sexual fluids by always practicing safer sex.

• Abstaining from sex unless you and your partner are both HIV-negative and in a

long-term, monogamous relationship.

• Not injecting drugs, or if you do, always using new or clean needles.

• Finding out your HIV status if you are planning to get pregnant and working with

a knowledgeable health care provider and obstetrician if you are HIV-positive.

If you protect yourself in these ways, you do not need to be afraid of getting or passing

HIV by casual contact. HIV is not transmitted by hugs, dancing, sharing food or drinks,

using a shower, bath, or bed used by an HIV-positive person, kissing (between people

with no significant dental problems), sharing exercise equipment, bug bites, see [56].
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Over time, infection with HIV can weaken the immune system to the point that the

system has difficulty fighting off certain infections. These types of infections are known

as opportunistic infections. These infections are usually controlled by a healthy immune

system, but they can cause problems or even be life-threatening in someone with AIDS.

The immune system of a person with AIDS has weakened to the point that medical

intervention may be necessary to prevent or treat serious illness.

1.2 Immunology of HIV/AIDS

The Human immunodeficiency virus, HIV, infects cells in the immune system and the

central nervous system. The T-helper lymphocytes are the main types of cell that HIV

infects. The role of these cells in the immune system is to coordinate the actions of other

immune system cells. A large reduction in the number of these cells results in weakening

the immune system. HIV infects the T-helper cells because it has the protein called CD4+

on its surface, which HIV uses to attach itself to the cells before entering to them. For

more information see the book of Ronald [45] and Brauer [9]. That is why the T-helper cell

is referred to as CD4+T lymphocyte. Once it attaches itself into a cell, HIV produces new

copies which are capable of infecting other cells. When the age of infection increases, HIV

infection leads to a severe reduction in the number of T-helper cells which are responsible

to help fight diseases.

1.2.1 Stages of HIV/AIDS

The evolution of the virus in the human body, and the response of the body typically

takes several years. According to WHO (World Health Organization) clinical staging of

HIV/AIDS, HIV infection has four distinct stages: primary infection stage, asymptomatic

stage, symptomatic stage, and advanced AIDS stage, we refer the reader to [44]. Know-

ing what stage of HIV infection an individual is in can help physicians design treatment

plans. In order to diagnose an individual as being in a specific stage of HIV, the World

Health Organization (WHO) developed a set of criteria that can be used worldwide. The
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criteria rely on symptoms, instead of CD4 and viral load test, since many developing coun-

tries do not have the facilities to perform these complicated tests. This staging system

helps clinicians to decide whether the patient is eligible for treatment or not, especially in

resource-constrained setting where CD4+ count measurement or other diagnostic methods

are not yet developed.

Stage 1: Primary HIV infection

The first stage of HIV infection is called primary infection. Primary infection begins

shortly after an individual first becomes infected with HIV. This stage lasts for a few

weeks. During this period, individuals experience symptoms similar to the flu. Very few

individuals seek treatment during this time, and those who do are usually misdiagnosed

with a viral infection. Often, if an HIV test is performed, it will come back negative, since

antibodies are not yet being produced by the individual’s immune system. Since antibod-

ies have not yet developed, HIV continues to replicate and results in very high levels of

the virus, see Ejigu [18]. In the first few weeks after being infected, infected individuals

are highly infectious. At this stage there is a large amount of HIV in the peripheral blood

(the blood in the circulating system not in the lymphatic system, bone marrow, liver or

speen), around 106 copies of virus per µl of blood. Antibodies and cytotoxic lymphocytes

start being produced as a response to the virus which is known as sero-conversion. At

this stage about 20 percent of people who are HIV positive show symptoms which are not

mild. However, the diagnosis of HIV infection is missed at this stage. Those who believe

they have been exposed to HIV should repeat the test after six months.

Stage 2: Asymptomatic HIV

In the second stage, individuals are free from any symptoms of HIV although there may

be swollen glands. Levels of HIV in the blood are very low, but are detectable. If an HIV

test is performed, it will come back positive. While the individual is asymptomatic, the

HIV in their blood is reproducing constantly. This stage lasts about ten years, but can

be much longer or shorter depending on the individual and is characterized by a CD4+
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count around 500 cells per µl.

Stage 3: Symptomatic HIV

In the third stage, the immune system has become so damaged by HIV that symptoms

begin to appear. As a results, it leads to greater CD4+ cell destruction and the immune

system is not able to keep up with replacing the CD4+ cells that are lost. As the im-

mune system fails, symptoms start to develop, the reader is referred to Robertson [44].

Symptoms are typically mild at first, and then slowly become more severe. Opportunis-

tic infections, infections that take advantage of the immune system’s vulnerable state,

begin to occur. These infections affect almost all the systems of the body and include

both infections and cancers. Some common opportunistic infections include tuberculosis,

cytomegalovirus, and shingles. In this stage HIV infection is often characterized by by

multi-system disease and infections in almost all body systems. Treatment for a specific

infection or cancer is often carried out, however the main cause is the action of HIV as it

attacks the immune system. Unless HIV itself can be reduced, immune suppression will

continue to be weaker.

Stage 4: Acquired Immune Deficiency Syndrome

In the fourth and final stage, a person is diagnosed as having AIDS. The progression to

AIDS can be characterized by having a CD4+ count of 200 per ml or below, while the

normal situation is around 1000 per ml. At this stage, the infected individual is likely

to develop opportunistic infections in their respiratory system, gastro-intestinal system,

central nervous system and on the skin as well. Once a person is diagnosed with AIDS,

the AIDS status is permanent. For more information we refer you to Robertson [44].

A blood test can determine if a person is infected with HIV, but if a person tests positive

for HIV, it does not necessarily mean that the person has AIDS. A diagnosis of AIDS

is made by a physician according to the CDC AIDS Case Definition. A person infected

with HIV may receive an AIDS diagnosis after developing one of the CDC-defined AIDS
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indicator illnesses. A person with HIV can also receive an AIDS diagnosis on the basis of

certain blood tests (CD4 counts) and may not have experienced any serious illnesses.

1.3 Treatment.

There is currently no publicly available vaccine or cure for HIV or AIDS. However, a

vaccine that is a combination of two previously unsuccessful vaccine candidates was re-

ported in September 2009 to have resulted in a 30 percent reduction in infections in a

trial conducted in Thailand, [56], [44], [57]. Additionally, a course of antiretroviral treat-

ment administered immediately after exposure, referred to as post-exposure prophylaxis,

is believed to reduce the risk of infection if begun as quickly as possible. In July 2010,

a vaginal gel containing tenofovir, a reverse trancriptase inhabitor, was shown to reduce

HIV infection rates by 39 percent in a trial conducted in South Africa.

However, due to the incomplete protection provided by the vaccine and/or post-exposure

prophylaxis, the avoidance of exposure to the virus is expected to remain the only re-

liable way to escape infection for some time yet. Current treatment for HIV infection

consists of highly active antiretroviral therapy or HAART. This has been highly benefi-

cial to many HIV-infected individuals since its introduction in 1996, when the protease

inhibitor-based HAART initially became available. Current HAART options are combi-

nations (or cocktails) consisting of at least three drugs belonging to at least two types,

or classes, of antiretroviral agents. Typically, these classes are two nucleoside analogue

reverse trancriptase inhibitors (NARTIs or NRTIs) plus either a protease inhibitor or a

non-nucleoside reverse transcriptase inhibitor (NNRTI) [56].

There is no empirical evidence for withholding treatment at any stage of HIV infection,

and death rates are almost twice as high when therapy is deferred (until the CD4 count

falls below 500) compared to starting therapy when the CD4 count is above 500. How-
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ever, the timing for starting HIV treatment is still subject to debate. The United States

Panel on Antiretroviral Guidelines for Adults and Adolescents in 2009 recommended that

antiretroviral therapy should be initiated in all patients with a CD4 count less than 350,

with treatment also recommended for patients with CD4 counts between 350 and 500.

However for patients with CD4 counts over 500, the expert Panel was evenly divided,

with 50 percent in favor of starting antiretroviral therapy at this stage of HIV disease,

and 50 percent viewing initiating therapy at this stage as optional. They noted that,

patients initiating antiretroviral therapy should be willing and able to commit to lifelong

treatment and should understand the benefits and risks of therapy and the importance of

adherence [21].

New classes of drugs such as entry inhibitor provide treatment options for patients who

are infected with viruses already resistant to common therapies, although they are not

widely available and not typically accessible in resource-limited settings. Because AIDS

progression in children is more rapid and less predictable than in adults, particularly in

young infants, more aggressive treatment is recommended for children than adults. In

developed countries where HAART is available, doctors assess their patients thoroughly:

measuring the viral load, how fast CD4 declines, and patient readiness. They then decide

when to recommend starting treatment [55], [57].

HAART neither cures the patient nor does it uniformly remove all symptoms. High

levels of HIV-1, often HAART resistant, return if treatment is stopped. Moreover, it

would take more than a lifetime for HIV infection to be cleared using HAART. Despite

this, many HIV-infected individuals have experienced remarkable improvements in their

general health and quality of life, which has led to a large reduction in HIV-associated

morbidity and mortality in the developed world. One study suggests the average life ex-

pectancy of an HIV infected individual is 32 years from the time of infection if treatment

is started when the CD4 count is 350/µL [56]. Life expectancy is further enhanced if

antiretroviral therapy is initiated before the CD4 count falls below 500/µL.
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In the absence of HAART, progression from HIV infection to AIDS has been observed

to occur at a median of between nine to ten years and the median survival time after

developing AIDS is only 9.2 months. However, HAART sometimes achieves far less than

optimal results, in some circumstances being effective in less than fifty percent of patients.

This is due to a variety of reasons such as medication intolerance or side effects, prior

ineffective antiretroviral therapy and infection with a drug-resistant strain of HIV. How-

ever, non-adherence and non-persistence with antiretroviral therapy is the major reason

most individuals fail to benefit from HAART.

The reasons for non-adherence and non-persistence with HAART are varied and overlap-

ping. Major psychosocial issues, such as poor access to medical care, inadequate social

supports, psychiatric disease and drug abuse contribute to non-adherence. The com-

plexity of these HAART regimens, whether due to pill number, dosing frequency, meal

restrictions or other issues along with side effects that create intentional non-adherence

also contribute to this problem. The side effects include lipodystrophy, dyslipidemia, in-

sulin resistance, an increase in cardiovascular risks, and birth defects.

Anti-retroviral drugs are expensive, and the majority of the world’s infected individuals do

not have access to medications and treatments for HIV and AIDS. Unfortunately, for now

the vaccine is considered to be able to halt the pandemic [56]. This is because a vaccine

would cost less, thus being affordable for developing countries, and would not require

daily treatment. However, after over 20 years of research, HIV-1 remains a difficult target

for a vaccine For more information we refer the reader to [44], [46], [57], [55].

1.4 HIV and AIDS public health education programs

The expansion and improvement of HIV and AIDS education around the world is critical

to preventing the spread of HIV. Effective HIV and AIDS education can help prevent new
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infections by providing people with information about HIV and how it is passed on, and

in doing so equip individuals with the knowledge to protect themselves from becoming

infected with the virus. HIV and AIDS education can take place in many different envi-

ronments, from classes at school to families and friends sharing knowledge at home. It is

important that this education is provided in a variety of settings to ensure that the most

vulnerable and marginalized groups in society are reached, and that accurate information

about HIV and AIDS is reinforced from different sources.

The most common place for people to learn about HIV and AIDS is at school. Due to

their capacity and universality, schools are a crucial setting for educating young people

about AIDS. As young people are at a high risk of becoming infected with HIV, it is vital

that they are educated about HIV transmission before they are exposed to situations that

put them at risk of HIV infection (for example, before they are sexually active). Schools

play a major role in shaping the attitudes, opinions and behavior of young people and so

are ideal environments for teaching the social as well as the biological aspects of HIV and

AIDS. Members of the wider community can also increase their knowledge about HIV and

AIDS through the school environment. Teachers who expand their understanding of the

subject while planning lessons and receiving teacher training can pass this information

on to adults as well as pupils, and the same can be said for children themselves; once

informed about AIDS, they can tell their parents or their friends what they have learned.

Educating people at work is an important way of providing people with vital prevention

information, and can reach people who have previously missed out on HIV and AIDS

education. Furthermore, it is estimated that nine out of ten people living with HIV are

working [44]. Providing education in the workplace is important for protecting those at

work living with HIV, and for helping them to live healthily and stay in work [55].

There are a great variety of methods and materials that can be used to educate people

about HIV and AIDS, including radio and television, booklets, billboards, comic strips,
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street theatre, AIDS fundraising events and many more. The form in which HIV and

AIDS education should be delivered depends on those who are being educated. In order

to reach the target group, it needs to be considered which environments they will be

most receptive in, and what media is most relevant to them. How HIV and AIDS educa-

tion should be delivered also depends on the principal aims of the education programme.

Sometimes education on HIV and AIDS is about giving people information which they

will remember on a long term basis, about how to protect themselves, the difference be-

tween HIV and AIDS, and helping to reduce discrimination. Other education strategies

are intended to have more immediate effects, and may target people when they are most

likely to take part in risky behavior i.e. in nightclubs or holiday resorts.

Mathematical models have become important tools in analyzing the spread and control

of infections diseases. For more details see Hethcote [22]. The model formulation process

clarifies assumptions, variables, and parameters. Moreover models provide conceptual

results such as thresholds, basic reproduction numbers, contact numbers and replacement

numbers. Understanding the transmission characteristics of infections diseases in commu-

nities, regions and countries can lead to better approaches to decreasing the transmission

of these diseases. Mathematical models are used in comparing, planning, implementing,

evaluating and optimizing various detection, prevention, therapy and control programs

[22].

The purpose of the dissertation is to find ways to stabilize HIV/AIDS. We have read that

the model of Cai et al. [12] allows some infected individuals to move from the symptomatic

phase to the asymptomatic phase by all sorts of treatment methods. In Chapter 3, we

reviewed a model taken from Nyabadza et al. [38]. The model of HIV/AIDS inspects the

decline in infection by supporting sexual behaviour change through public health informa-

tion campaigns and also by withdrawal of individual with AIDS from sexual behaviour.

We have investigated the basic reproduction number R0 (using the next generation ma-

trix) as a threshold parameter that determines whether a disease can invade a population

11

 

 

 

 



and the equilibrium solution(i.e. the disease free equilibrium and the endemic equilib-

rium). We further introduce the global stability of a disease free equilibrium, followed by

simulations.

In chapter 4, we introduce a model taken from Bhunu et al. [7]. We formulate the basic

reproduction number, followed by some simulations. We examine how counseling and

testing coupled with a decrease in sexual activities could affect the HIV epidemic in re-

source limited communities. In chapter 5 we introduce our main model with the basic

reproduction number. We present the global stability of a disease free equilibrium and

the local stability of the endemic equilibrium. We further present the sensitivity analysis

of R0 and simulation. The optimal control has been formulated in Chapter 6 with simu-

lations. We finally introduce the stochastic HIV model using the paper of Cai et al. [12],

followed with simulations.

In these three models, we will investigate the role of public health campaigns by looking

at different behavior of the population. We use these three different approaches so that we

can see which model is more useful in regards to the stability of HIV/AIDS. In chapter

3 we will look at HIV/AIDS with education, followed by chapter 4, where we look at

the different sexual behavior of individuals with HIV/AIDS with education. Finally,

In chapter 5 we will look at the behavior of HIV/AIDS with treatment and education

included.
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1.5 Literature Review

During the development of epidemiology modeling in the population, deterministic (com-

partmental) models played a central role. These are the papers where the deterministic

model has been used [12], [34], [38], [24], [39], [40], [8], [54] and so on. Such models

divide the population into homogeneous sub-populations. The models that are labeled by

SI, SIS, SEIS, and SEIR are mostly used where the sub-populations are Susceptible,

Exposed, Infected and Recovered or Removed.

In [38], Nyabadza et al. looked at a model of HIV/AIDS that examine the diminution

in infection by promoting a change in sexual behavior through public health information

campaigns and individuals with AIDS to abstain from sexual activities. Both the endemic

and disease free equilibrium have been investigated. Numerical simulations are presented

using the fourth order of Runge-Kutta. The results from their research have shown that

media campaigns had led to a reduction in the prevalence of the disease but may not

be the only ultimate strategy in the fight against HIV/AIDS. It has also shown that an

increase in the distribution of public health information campaigns has lead to a decrease

in occurrence of a disease. In the case of the individual with AIDS abstaining from sexual

activities has also reduced the effect of the disease.

The impact of educational campaigns as a control measure for the spread of HIV/AIDS

has been investigated by Mukandavire et al. in [34]. The authors present a sexual trans-

mission model with explicit incubation period. Their results suggested that educating

sexually immature and sexually mature individuals concurrently is more effective in slow-

ing down HIV/AIDS than concentrating on cohort public health educational campaign of

sexually immature or sexually mature individuals only. It is shown that in their study, in

situations where education is effective and with with reasonable average number of HIV

infected partners, public health campaigns can slow down the epidemic.
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An epidemic HIV/AIDS model with treatment has been investigated in the paper by Cai

et al, see [12]. The model allows some infected individuals to move from symptomatic

phase to the asymptomatic phase by all kinds of treatments. The authors introduced the

time delay to the model in order to investigate the effect of the time delay on the stability

of the endemically infected equilibrium. This discrete time delay has also been used to

the model to describe the time from the start of the treatment in the symptomatic stage

until the treatment effects becomes clear. It was found that treatment can be used to

make the disease free equilibrium (E0) stable when it would be unstable in the absence of

treatment. On the other hand using the time delay can induce oscillation in the system.

Biologically, this means that there is a critical value for the treatment-induced delay which

determines the stability of the infected equilibrium E∗. That is, the infected equilibrium

E∗ is asymptotically stable when antiretroviral drugs on average show positive effects in

patients within less than time delay.

The HIV/AIDS epidemic in resource limited communities has been studied by Bhunu et

al. in [7]. The authors suggested in their research that effective conselling and testing

will be able to control the HIV/AIDS epidemic. Therefore, it was investigated that the

continuing increase of the HIV/AIDS in resource poor settings may be an indication of

poor counseling. The results show that educational programs regarding HIV/AIDS have

a positive impact in controlling the disease. They also suggested that giving free an-

tiretroviral drugs to HIV positive individuals who change their sexual behavior and have

withdrawn from sexual contacts may be an effective tool to control the epidemic.

A continuous model for HIV/AIDS disease progression has been formulated and physio-

logical interpretations were provided by Ida et al. in [24]. The abstract theory was then

applied to show existence of unique solutions to the continuous model describing the be-

havior of the HIV virus in the human body and its reaction to treatment by antiretroviral

therapy. The product formula has suggested appropriate discrete models describing the

dynamics of host pathogen interactions with HIV1 and is applied to perform numerical
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simulations based on the model of the HIV infection process and disease progression. Fi-

nally, the results of the numerical simulations are visualized and it was observed that the

results of Ida et al. [24] agreed with medical and physiological aspects.

A simple deterministic HIV/AIDS model incorporating condom use, sexual partner acqui-

sition, behavior change and treatment as HIV/AIDS control strategies has been formu-

lated by Nyabadza et al. in [39] using a system of ordinary differential equations with the

object of applying it to the current South African situation. The authors fit the model to

a data from UNAIDS/WHO on HIV/AIDS in South Africa and the epidemiological facts

sheets shows the current prevalence scenario. The results compare very well with other

research outcomes on the HIV/AIDS epidemic in South Africa. Projections were made

to track the changes in the number of individuals who were able to be under treatment,

an important group as far as public health planning is concerned.

Nyabadza and Mukandavire [40] formulated a deterministic HIV/AIDS model that in-

corporates condom use, screening through HIV counseling and testing(HCT). A regular

testing and treatment as control strategies has been proposed with the objective of quanti-

fying the effectiveness of HCT in preventing new infections and predicting the long-term

dynamics of the epidemic. The authors fit the model to a current prevalence data in

South Africa from UNAIDS/WHO reports and epidemiological fact sheet. They looked

at a recently launched HTC campaign to model its possible impact on the dynamics of

the disease. The model shows that HTC its self has a very little impact in reducing the

prevalence of HIV unless the ability of the campaign exceed an evaluated threshold in the

absence of bifurcation. The results has shown that force of infection can only be reduced

through behavior change, condom use and reduction in the number of sexual partners

and these form the pillars of prevention of new infection. The results has show that the

presence of bifurcation has an important implications in the control of HIV/AIDS. The

model in [40] has shown that it cannot be eliminated by simply reducing the value of

reproduction number R0 to below unity.
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In this paper Bhunu et al. [8] has considered a more robust systematic and complete

qualitative analysis of a two strain HIV/AIDS model with treatment of AIDS patients.

The treatment with amelioration results in an increase in number of HIV patient and

a decrease in Aids patients. Bhunu et al has advised that treatment with amelioration

should always be accompanied by public health education. The authors investigated that

if the drugs used for therapy are 100 percent effective and a positive change in the sexual

behavior of treated individuals is achieved, treatment with amelioration will not increase

the development of HIV/AIDS in societies but will help communities by lengthening the

lives of the infected, thus, reducing morbidity/mortality and socio-economic costs. Fur-

ther the analysis of the reproduction numbers show that the use of antiretroviral therapy

to improve the quality of life of AIDS patients with antiretroviral sensitive, HIV results in

an increase of antiretroviral resistant HIV cases supporting the argument that antiretro-

viral resistance develops as result of selective pressure on non-resistant strains due to

antiretroviral use.

A non-linear mathematical model has been propose and analyzed to study the spread

of HIV/AIDS with direct inflow of infective in a population with inconsistent volume

structure in [41]. Naresh et al [41] has looked at a model without inflow of HIV infec-

tive including interaction with pre-AIDS individuals and Model without inflow of HIV

infective and no interaction with pre-AIDS individuals. It was found that if the direct

inflow of the infective has been allowed in the community the disease always persist. The

endemicity is extensively reduced if direct inflow of infective is restricted and pre-Aids

individuals do not take place in sexual activities. Naresh et al suggested sexual partners

should be restricted and unsafe sexual iteration should be avoided with an infective in

order to reduce the spread of the disease. Thus the spread of infection can be slowed

down if direct inflow of infectives is restricted into the population. It was also noted that

the increase in the number of sexual partners further reduces the total population by way

of spreading the disease. Thus in order to reduce the spread of the disease, the number
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of sexual partners should be restricted and unsafe sexual interaction should be avoided

with an infective.

In the paper [54], Zurakowskia and Teel has proposed the interaction of the immune

system and human immunodeficiency virus where we will introduce the possibility of

using highly active anti-retroviral therapy (HAART) to stimulate the vaccine. They fur-

ther present a model predictive control (MPC) based method for determining optimal

treatment. Finally they analyze the simulations by using algorithms where they apply

robustness measurement noise, robustness modeling error, robustness combined errors,

and varying the cost function.

An SIR model with six compartments where there is an interaction between HIV and

TB epidemics has been investigated in [6]. They further look at sensitivity of the steady

states with respect to changes in parameter values. The authors examine that most of

the control measures studied have an obvious positive impact in controlling the HIV or

TB epidemics, this is the case for condom use, increased TB detection and preventive

treatment. The situation for ART is more complicated. However, although the future for

the prevalence of HIV is uncertain, it seems that a generalized access to ART would lead

to a significant decrease of the TB notification rate. They further concluded that it is

difficult to guess if the observations drawn from the model with parameters adapted to

the particular South African township are still valid for less crowded areas with high HIV

prevalence. finally reliable data on both HIV and TB are still rare.

In [35], Mukandavire and Garira formulated and analyzed a sex-structured model for het-

erosexual transmission of HIV/AIDS. The model has been further divided into two classes,

consisting of individuals involved in high-risk sexual activities and individuals involved in

low-risk sexual activities. The model is described as the movement of individuals from

high to low sexual activity group as a result of public health education campaigns. The

threshold parameter which is the basic reproduction number has been obtained and their
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stability (local and global) of the disease free equilibrium. The model has been extended

to incorporate sex workers, and their role in the spread of HIV/AIDS in settings with het-

erosexual transmission was explored. In order to assess the possible community benefits

of public health educational campaigns in controlling HIV/AIDS comprehensive analytic

and numerical techniques were employed. Mukandavire and Garira [35] concluded that

the presence of sex workers enlarges the epidemic threshold R0, thus fuels the epidemic

among the heterosexuals, and that public health educational campaigns among the high-

risk heterosexual population reduces R0, thus can help slow or eradicate the epidemic.

The models mentioned so far are deterministic and they do not consider the stochastic

disturbance of environment which exists in fact. When the environmental noise is not

taken into account, an ordinary differential equation is used for AIDS transmission for

instance. The introduction of stochastic modeling has provided new insights into the

population dynamics of the disease. We can refer to [17, 25, 29, 32, 52, 47]. In particular,

stochastic modeling of HIV/AIDS can be found by Ding et al. and Jiang et al. in [17, 25].

In the paper of Lahrouz et al. [29] they have formulated an SIRS epidemic model with

saturated incidence rate and disease-inflicted mortality. In the same paper, the authors

have further looked at the stochastic version. The global existence and positivity of the

solution of the stochastic system has been established. Under suitable conditions on

the intensity of the white noise perturbation, the global stability in probability and pth

moment of the system has been proved. In this regard, this dissertation refers mainly to

the papers [29, 50].
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Chapter 2

Mathematical tools

Epidemiology is the study of the distribution and determinants of diseases, for both

infectious and non-infectious diseases. Originally the term was used to refer only to the

study of epidemic infection diseases, but it is now applied more broadly to other diseases

as well. Mathematical models have become important tools in analyzing the spread

and control of infections diseases. The review paper [22] of Hethcote expands on this

point. The model formulation clarifies assumptions, variables, and parameters. Moreover

models provide conceptual results such as thresholds, basic reproduction numbers, contact

numbers and replacement numbers. Understanding the transmission characteristics of

infectious diseases in communities, regions and countries can lead to better approaches

to decreasing the transmission of these diseases. As explained in [22], mathematical

models are used in comparing, planning, implementing, evaluating and optimizing various

detection, prevention, therapy and control programs [22]. We introduce the following

definitions and theorems necessary to model the population dynamics of HIV/AIDS.

2.1 Epidemiological terminology

The prevalence of a disease is defined as the percentage of a particular population that

is infected with a disease. The incidence of a disease is the rate at which new infections

occur. Hence if the number of people infected with a particular disease at the start of
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a particular year is d, out of a population of size N , and n new infections occur over

the course of the year, then the prevalence rate at the start of the year is d
N

and the

annual incidence rate is n
N−d

. When the disease is introduced into a population, it usually

expands rapidly at first, with prevalence rate rising. In some cases the prevalence drops

to zero, but in many cases, prevalence stabilizes at a non-zero level that is referred to as

endemic prevalence.

2.2 Basic Linear Equation

The general first-order differential equation for the function y = y(x) is written as

.
y= f(x, y),

where f(x, y) can be any function of the independent variable x and dependent variable

y. For more information, the reader may consult the book [13] of Chasnov.

2.3 Invariant Region

A set M is an invariant set with respect to a system of ordinary differential equations
.
x= f(x) if

x(0) ∈M ⇒ x(t) ∈M, for all t ∈ R.

A set M is a positively invariant set with respect to
.
x= f(x) if

x(0) ∈M ⇒ x(t) ∈M, for all t ≥ 0.

2.4 Equilibrium

Definition 2.1.1 Given a system of differential equations
.
x= f(t), an equilibrium x∗ of

this system is a point in the state space for which X(t) = x∗ is a solution for f(t) = 0,

20

 

 

 

 



for all t. For more detail see Allen [31].

Definition 2.1.2. [31].

(a) An equilibrium solution x of
.

X= F (X) is said to be locally stable if for each ǫ > 0

there exist a δ > 0 with the property that every solution X(t) of
.

X= F (X) with

initial condition X(t0) = X0 and

‖X0 − x‖ 2 < δ,

satisfies the condition that

‖Xt − x‖2 < ǫ

for all t ≥ t0. If the equilibrium is not locally stable it is said to be unstable.

(b) An equilibrium solution x is said to be locally asymptotically stable if it is locally

stable and if there exist γ > 0 such that

‖X0 − x‖2 < γ implies limt→∞ ‖X(t)− x‖2 = 0.

2.5 Routh-Hurwitz criteria

Consider the characteristic equation

Ωn + a1Ω
n−1 + a2Ω

n−2 + ...+ an−1Ω + an = 0

determining the n eigenvalues, Ω, of a real n× n square matrix A. Then the eigenvalues

Ω all have negative real parts if

H1 > 0, H2 > 0, H3 > 0, ...Hn > 0

where
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Hn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 1 · · · 0

a3 a2
... 0

...
...

...
...

0 0 0 an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The steady state is stable (that is, Re Ω < 0) for all λ if and only if Hj ≥ 0 for all

j = 1, 2, 3, ..., n, see Allen [31].

2.6 Linearization

Let (U∗, V ∗) be a steady state of

.

U= f(U, V ),
.

V= g(U, V ), (2.1)

so that f(U∗, V ∗) = g(U∗, V ∗) = 0. Let u = U − U∗ and v = V − V ∗. We assume that

we may neglect higher order terms if u and v are sufficiently small, and we obtain the

approximate (linearized) equations

.
u= fu(U

∗, V ∗)u+ fv(U
∗, V ∗)v, (2.2)

.
v= gu(U

∗, V ∗)u+ gv(U
∗, V ∗)v, (2.3)

or, defining the Jacobian matrix J(U, V ) in the usual way,

.
w= J∗w, (2.4)

where w is the column vector (u, v), and a star denotes the evaluation at the steady

state. The behavior of the system near (U∗, V ∗) depends on the eigenvalues of the matrix

J∗ = J(U∗, V ∗). It can be shown that the neglect of higher order terms is valid, and the

non-linear system behaves like a linear system near the steady state, as long as neither of

the eigenvalues of J∗ has zero real part.

Making the definitions β = trJ∗, γ = detJ∗, δ = discJ∗, the eigenvalue equation is

λ2 − βλ+ γ = 0, and we may determine the character of the steady state from the signs
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of these, see Britton[10]. We quote the theorem.

Theorem 2.4.1 (Steady states and eigenvalues) [10],

• If γ < 0, the (trivial) steady state of the second order system is at (2.4) is a saddle

point. Both eigenvalues are real one positive and one negative.

• If γ > 0, δ > 0, β < 0, it is a stable node. Both eigenvalues are real and negative.

• If γ > 0, δ > 0, β > 0, it is an unstable node. Both eigenvalues are real and positive.

• If γ > 0, δ < 0, β < 0, it is a stable focus. The eigenvalues are complex conjugate,

with negative real part.

• If γ > 0, δ < 0, β > 0, it is an unstable focus. The eigenvalues are complex

conjugates, with positive real part.

• If γ > 0, δ < 0, β = 0, it is a center. The eigenvalues are complex conjugates, and

purely imaginary.

Theorem 2.4.2 Linearization Theorem [10]. Let us suppose that the non-linear system

.
y= Y (y) (2.5)

have a simple fixed point at y = 0. Then, in a neighborhood of the origin, the phase

portraits of the system and its linearization are qualitatively equivalent provided the lin-

earized system is not at center [10].

Lemma 2.4.3 [48]. Suppose that x0 is a disease free equilibrium of a system

.
xi= fi(x) = Fi(x)− Vi(x), i = 1, . . . , n and fi(x)

satisfy the condition that if x ≥ 0, then

Fi, V
+
i , V

−
i ≥ 0 for i = 1, . . . , n.
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Through the condition that if F (x0) is set to zero, then all eigenvalues of Df(x0) have

negative real parts then derivatives DF (x0) and DV (x0) are partitioned as

DF (x0) =











F 0

0 0











, DV (x0) =











V 0

J3 J4











,

where F and V are the m×m matrix defined by

F =
(

∂Fi

∂xj
(x0)

)

, and V =
(

∂Vi
∂xj

(x0)
)

with 1 ≤ i, j ≤ m.

Further, F is nonnegative, then V is a nonsingular M-matrix and all eigenvalues of J4

have positive real part.

2.7 Liapunov stability

An important technique in stability theory for differential equations is one known as the

direct method of Liapunov. A Liapunov function is constructed to prove stability or

asymptotic stability of an equilibrium in a given region.

Definition 2.2.1. A positive-definite function V in an open neighborhood of the ori-

gin is said to be a Liapunov function for the autonomous differential system,
.
x= f(x, y),

.
y= g(x, y), if

.

V (x, y) ≤ 0 for all (x, y) ∈ U−(0, 0). If
.

V (x, y) < 0 for all (x, y) ∈ U−(0, 0),

the function V is called a strict Liapunov function.

Theorem 2.2.2 (Liapunov’s Stability Theorem [31].) Let (0,0) be an equilibrium of

the autonomous system
.
x= f(x, y) and let V be a positive definite C1 function in a

neighbourhood U of the origin.

1. If
.

V (x, y) ≤ 0 for all (x, y) ∈ U − (0, 0), then (0, 0) is stable.
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2. If
.

V (x, y) < 0 for all (x, y) ∈ U − (0, 0), then (0, 0) is asymptotically stable.

3. If
.

V (x, y) > 0 for some (x, y) ∈ U − (0, 0), then (0, 0) is unstable.

We note that in case 1 the function V is a Liapunov function and in case (2) V is a strict

Liapunov function.

2.8 Compound matrix

Let B be an n × n matrix. For more information we refer to Wang and Song [49]. The

second additive compound matrix of B, denoted by B[2], is an





n

2



 ×





n

2



 matrix.

For instance, if B = (bij) is a 3× 3 matrix, then

B[2] =























b11 + b22 b23 −b13

b32 b11 + b33 b12

−b31 b21 b22 + b33























.

2.9 Compartmental modelling

We explain the idea of a compartmental model by the way of a simple example. The

approach for modelling the transmission of infection disease in human populations is usu-

ally to subdivide the population under consideration into subpopulations or a number

of epidemiological classes called compartments and the resulting model is called a com-

partmental model. These compartments are defined with respect to disease status of an

individual. We can consider a standard model where the population is divided into three

classes such as Susceptible individuals, Infected individuals and a class of AIDS progressed

individuals. The population number in each class is represented as a function of time, by

S(t), I(t) and A(t) respectively.
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• Susceptible: Individuals who are not infected. They are able to catch the disease

and once they have contracted it they move to the infected compartment.

• Infected: Individuals who are are infected. It is assumed that they can spread the

disease to susceptible individuals.

• AIDS class: Individuals who are infected and show AIDS related symptoms.

The number of susceptible individuals can increase due to newly recruited individuals,

while the number can decrease due to new infections as a results of interaction with in-

fected individuals in class I(t) and also due to natural death. Infected individuals who

joined the class I(t) can progress to A(t) or may die due to natural death. After progres-

sion to A(t), individuals are removed from this class due to natural or disease induced

death.

The total sexually mature population at a given time is the sum of individuals in all

classes, and is given by

P (t) = S(t) + I(t) + A(t).

We describe the parameters as follows, The term µN is the recruitment rate per unit

time into the susceptible class and µ is the average death rate by natural causes. The

parameter c represents the rate of sexual contacts of an infected individual with susceptible

individuals per unit time. The parameter β is the probability of infecting per effective

contact and α is the rate of progression of infected individuals to AIDS class per unit

of time. The term ν is the disease induced death rate of individuals in AIDS class per

unit of time. The following model has been taken from the paper of Ejigu [18]. Similar

models can be found in papers of [53], [27], [23], [31]. We will have the following system

of equations:

dS(t)

dt
= µN − cβS(t)I(t)

N(t)
− µS(t),

dI(t)

dt
=

cβS(t)I(t)

N(t)
− (µ+ α)I(t), (2.1)
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dA(t)

dt
= αI(t)− (µ+ ν)A(t).

Depending on the disease or the level of sophistication we want to reach, more classes

may be introduced.

2.10 The basic reproduction number

The basic reproduction number is sometimes referred to as a ratio. It is one of the most

useful threshold parameters or invariants, which characterize mathematical properties

concerning infectious disease models [12], [22], and [43]. It is widely used in mathemat-

ical epidemiology models. The analysis of the model includes finding equilibrium points

(steady states) of the model, finding the basic reproduction number R0 and investigating

the stability of the equilibrium points (disease-free and endemic equilibrium) which will

be characterized using the invariant R0.

Definition 2.2.1 The Basic Reproduction Number or Basic Reproduction Ratio is de-

fined as the average number of secondary infections that are produced when one infected

individual is introduced into a group of susceptible individuals. For more information see

Allen [31], Van den Driessche and Watmough [48].

It is implicitly assumed that the infected outsider is in the host population for the en-

tire infectious period and mixes with the host population in exactly the same way that

a population native would mix. The basic reproduction number R0 turns out to be the

threshold quantity that determines whether a disease can invade a population. If R0 < 1,

then on average an infected individual produces less than one new infected individual over

the course of its infectious period, and the infection cannot grow. Conversely, if R0 > 1

then each infected individual produces, on average, more than one new infection, and the

disease can invade the population [43].
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We obtain the equilibria of the system (2.1) by setting the time derivatives in the equations

to be equal to zero. The equilibrium point at Se = N and Ie = Ae = 0 represents a disease

free equilibrium. The endemic equilibrium is as follows

Se = (µ+ α)
N

β
,

Ie =
µN

β
[R0 − 1].

We notice that since the model has one infected compartment, then we can obtain R0 by

following the definition, the rate of transmission multiply by the infection period. The

parameter β is the rate of transmission and the infectious period is

1

µ+ α
.

Thus

R0 = β
1

µ+ α
=

β

µ+ α
.

However, for more complicated models with several infected compartments the definition

of R0 is not sufficient to calculate R0. The basic reproduction number R0 can be deter-

mined using the method of next-generation matrix as presented in Van den Driessche and

Watmough [48]. When we have more than one infected compartment we will use the next

generation matrix to find the basic reproduction number.

2.11 The next generation matrix

The next generation method introduced by Van den Driessche and Watmough [48], is a

general method of findingR0 in a case where we have more than one infected compartment.

Suppose we have n disease compartments and m non-disease compartments, and let x ∈
R
n and y ∈ R

m be subpopulations in each of these compartments. We denote the rate of

secondary infection increase of the ith disease compartment by Fi and Vi the rate disease
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progression, death and recovery decrease the ith compartment. Thus we have the following

compartmental model:

dxi
dt

= Fi(x, y)− Vi(x, y), i = 1, ..., n,

dyi
dt

= gj(x, y), j = 1, ...,m,

The calculation of the basic reproduction number is based on linearization of the ordinary

differential equation (ODE) model about a disease free equilibrium, while the following

assumption ensure the existence of the equilibrium and well-posedness of the model.

• Assume Fi(0, y) = 0 and Vi(0, y) = 0 for all y ≥ 0 and i = 1, ..., n. All new

infections are secondary infections arising from infected host, there is no immigration

of individuals into the disease compartments.

• Assume Fi(0, y) ≥ 0 for all non-negative x and y and i = 1, ..., n. The function F

represents new infections and can not be negative.

• Assume Vi(0, y) ≤ 0 whenever xi = 0, i = 1, ..., n. Each component, Vi represents a

net outflow from compartment i and must be negative (inflow only) whenever the

compartment is empty.

• Assume
∑n

i=1 Vi(x, y) ≥ 0 for all non-negative x and y. This sum represent the total

outflow from all infected compartments. Terms in the model leading to increase in
∑n

i=1 xi are assumed to represent secondary infections and therefore belong in F.

• Assume the disease free system dy

dt
= g(0, y) has a unique equilibrium that is asymp-

totically stable. That is, all solution with initial conditions of the form (0, y) ap-

proach a point (0, y0) as t → ∞. This point is referred to as the disease free equi-

librium.

Now assuming that Fi and Vi meet the above conditions, we can form the next generation

matrix FV −1 from matrices of partial derivatives of Fi and Vi. Now we have

F =
[∂Fi(x0)

∂xj

]

29

 

 

 

 



and

V =
[∂Vi(x0)

∂xj

]

,

where i, j = 1, ...,m and where x0 is the disease free equilibrium. The entries of FV −1

give the rate at which infected individuals in xj produce new infections in xi, times the

average length of time an individual spends in a single visit to compartment j. R0 is given

by the spectral radius (dominant eigenvalue) of the matrix FV −1.

If the basic reproduction number is less than unity i.e., R0 < 1 then the disease-free

equilibrium is locally asymptotically stable, which implies that the disease will die out in

the population. On the other hand, if the reproduction number is greater than unity, then

the endemic equilibrium is locally asymptotically stable. The technique used to determine

the stability of the equilibrium points for complex models will be shown in the following

Chapters.

2.12 Staged Progression of HIV model

The staged progression model has a single uninfected compartment and infected individ-

uals progress through several stages of the disease with changing infectivity. This model

is applicable to many diseases, mainly HIV/AIDS, where transmission probabilities vary

as the viral load in an infected individual changes. For more information see [48], and it

has been applied in [18], [38]. Thus we have the following model:

I
′

1 =
m−1
∑

k=1

βkSIk
N

− (ν1 + d1)I1,

I
′

i = νi−1Ii−1 − (ν1 + d1)Ii, i = 2, ...,m− 1,

I
′

m = νm−1Im−1 − dmIm,

S
′

= b− bS −
m−1
∑

k=1

βkSIk
N

. (2.6)
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The model assumes standard incidence, death rate di > 0 in each infectious stage, and the

final stage has a zero infectivity due to morbidity. Infected individuals spend on average,

1
vi

time units in stage i.

Thus we have the following basic reproduction number from the model (2.6):

R0 =
β1

ν1 + d1
+

β2ν1
(ν1 + d1)(ν2 + d2)

+
β3ν1ν2

(ν1 + d1)(ν2 + d2)(ν3 + d3)

+ ...+
βm−1ν1...νm−2

(ν1 + d1)...(νm−1 + dm−1)
.

The i′th term in R0 represents the number of new infections produced by a typical indi-

vidual during the time it spends in the i′th infectious stage. More specifically, νi−1

(νi−1+di−1)

is the fraction of individuals reaching stage i − 1 that progress to stage i, and 1
νi+di

is

the average time an individual entering stage i spends in stage i. Hence, the i′th term

in R0 is the product of the infectivity of individuals in stage i, the fraction of initially

infected individuals surviving at least to stage i, and the average infectious period of and

individual in stage i.

2.13 Optimal control method

Optimal control theory has been used as a very powerful mathematical tool to make

decisions involving complex biological situations and it has been derived from the calculus

of variations. Optimal control techniques are of great use in developing optimal strategies

to control various kinds of diseases. For more information, consult the book of Lenhart and

Workman [30]. It has been used, for instance, in finding the percentage of the population

that should be vaccinated as time evolves in a given epidemic model to minimize the

number of infected and the cost of implementing the vaccination strategy.

The behavior of a dynamic system is described by the state variable(s). We assume that

there is a way to control the state variable(s) x, by acting upon it with a suitable control.

We noticed that the dynamic system (state x) depends on the control u. The goal is

to adjust the control u in order to minimize or maximize a given objective functional,

J(u(t), x(t), t), that attains the desired goal, and the required costs to achieving it. The
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optimal control is obtained when the desired goal is achieved with the least cost. The

functional depends on the control and the state variables. There are a number of different

methods for calculating the optimal control for a specific model. Pontryagin Maximum

Principle for example allows the calculation of the optimal control for an ordinary dif-

ferential equations model system with given constraints. See the book of Lenhart and

Workman [30].

The following are characteristics that an optimal control problem may exhibit

• Controllability: ability to use controls to steer a system from one position to another.

• Observability: deducing system information from control input and observe output.

• Stabilization: implementing controls to force stability.

The principal technique for the optimal control problem is to solve a set of necessary

conditions, that an optimal control and corresponding state must satisfy. It is important

to understand the logical difference between necessary conditions and the sufficient con-

ditions of solution sets.

Let us considering the optimal control problem of the form below.

Determine

min
u

{

φ(tf , x(tf )) +

∫ tf

0

g0(t, x(t), u(t))dt

}

where

f(x(t)) = [x1(t), x2(t), ..., xns
(t)]T ∈ R

n

is the state vector and

u(t) = [u1(t), u2(t), u3(t), ..., unc
(t)]T ∈ R

m
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is the control vector.

The state and the control variables are governed by the dynamics described by a set of

first order differential equations:

dx

dt
= f(t, x(t), u(t)) x0 = x(0), 0 ≤ t ≤ tf (2.3)

The functions:

f(h0) : T × R
n × R

m → R
n

f(g0) : T × R
n × R

m → R
n

are continuously differentiable with respect to each component of x and u, and piecewise

continuous with respect to t.

2.14 Pontryagin’s Maximum Principle

The Pontryagin’s Maximum Principle converts the maximization or minimization of the

objective functional J , coupled with the state variable into pointwise maximizing or min-

imizing of the Hamiltonian with respect to the control. The Hamiltonian H(t, x, u, λ) is

a function of four variables. Time t is the underlying variable for each of x, u and λ is a

function of t, called the adjoint variable.

Theorem 2.2.3. [30] If u∗(t) and x∗(t) are optimal for problem (2.3), then there exists

a piecewise differential adjoint variable λ(t) such that

H(t, x∗(t), u(t), λ(t))≤H(t, x∗(t), u∗(t), λ(t))

for all controls u at each time t, where the Hamiltonian H is

H = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t))
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and

λ(t)

dt
= −∂H(t, x∗(t), u∗(t), λ(t))

∂x
,

λ(tf ) = 0.

Necessary conditions: If u∗(t) and x∗(t) are optimal, then the following conditions

hold:

λ(t)

dt
= −∂H(t, x∗(t), u∗(t), λ(t))

∂x
,

λ(tf ) = 0,

∂H(t, x∗(t), u∗(t), λ(t))

∂u
= 0.

Sufficient conditions: If u∗(t), x∗(t) and λ(tf ) satisfy the following conditions

λ(t)

dt
= −∂H(t, x∗(t), u∗(t), λ(t))

∂x
,

λ(tf ) = 0,

∂H(t, x∗(t), u∗(t), λ(t))

∂u
= 0,

then u∗(t) and x∗(t) are optimal.

2.15 Sensitivity analysis

Sensitivity analysis is used to determine the relative importance of model parameters to

disease transmission. We perform the analysis by calculating the sensitivity indices of

the basic reproduction number, R0, because it determines whether or not the infectious

disease will spread in the population. Sensitivity analysis is commonly used to determine

the robustness of model predictions to parameter values, since there usually errors in data
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collection and pre-assumed values. It also allows for the measurement of relevant changes

in a state variable when a parameter changes.

In performing the sensitivity analysis, we apply the method called normalized forward

sensitivity index of a variable that has been used quite commonly, and it is defined as

the ratio of relative change in the variable to the relative change in the parameter. The

sensitivity may also be defined using partial derivatives when the variable is a differentiable

function of the parameter.

Definition: The normalized forward sensitivity index of an invariant, J , that depends

on a parameter, k, is defined as :

rJ0k :=
∂J0
∂k

× k

J0
.

2.16 Brownian Motion

Brownian motion refers to the ceaseless, irregular random motion of small particles im-

mersed in a liquid or gas, as observed by R. Brown in 1827. The phenomenon can be

explained by the perpetual collisions of the particles with the molecules of the surround-

ing medium. The stochastic process associated with the Brownian motion is called the

Brownian process or the Wiener process. The concept has found application in a wide

range of fields. So for instance, Brownian motion has become one of the fundamental

building blocks of modern quantitative finance. Indeed, the basic continuous time model

for financial asset prices assumes that the log-return of a given financial asset follow a

Brownian motion with drift. There are also interesting applications of Brownian motion

to epidemiology. For more information the reader may consult Mao, [33].

Definition: Let (Ω,F , P ) be a probability space with filtration {Ft}t≥t0 . A one dimen-

sional Brownian motion is a real valued continuous {Ft} adapted process {Bt}t≥t0 with

the following properties:
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(i) B0 = 0 almost surely;

(ii) for 0 ≤ s < t < ∞, the increment Bt − Bs is normally distributed with mean zero

and variance t− s;

(iii) for 0 ≤ s < t <∞, the increment Bt −Bs is independent of {Fs} ;

(vi) Bt is continuous in t ≥ 0.

We refer the reader to the book of Mao, [33].

2.17 The multi-dimensional Itô’s formula

Let x(t) be a d-dimensional Itô’s process on t ≥ 0 with the stochastic differential [33], i.e.,

a stochastic process of the form

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+;R
d) and g ∈ L2(R+;R

d×m). Then any V (x(t), t) is again an Ito’s process

with the stochastic differential given by

dV (x(t), t) =

[

Vt(x(t), t) + Vx(x(t), t)f(t) +
1

2
trace(gT (t)Vxx(x(t), t)g(t))

]

+ Vx(x(t), t)g(t)dB(t). a.s.

Note that

dtdt = 0, dB(ti)dt = 0, dBidBi = dt, dBidBj = 0 if i 6= j. (2.7)

2.18 Stability in probability theory

Consider the general n-dimensional stochastic system

dx(t) = f(t, x(t))dt+ g(t, x(t))dB(t) (2.8)

on t ≥ 0 with initial value x(0) = x0. The solution is denoted by x(t, x0). Assume that

f(t, 0) = g(t, 0) = 0 for all t ≥ 0, so the origin point is an equilibrium of (2.8) The

equilibrium x = 0 of the system (2.8) is said to be:
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(i) Stable in probability if for all ǫ > 0,

lim
x0→0

P

(

sup
t≥0

|x(t, x0)| ≥ ǫ

)

= 0;

(iv) Almost surely exponentially stable if for all x0 ∈ R
n

lim
x0→0

sup
1

t
ln |x(t, x0)| < 0 a.s.;

We refer the reader to a paper of Lahrouz et al., [29].

2.19 Differential Operator

We define the differential operator L associated with the following equation:

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) t ≥ t0,

by

L =
∂f(x(t), t)

∂t
+

d
∑

i=1

f(x, t)
∂

∂xi
+

1

2

d
∑

i,j=1

[

g(x, t)gT (x, t)
]

i,j

∂2

∂xi∂xj
.

If L acts on a function of V ∈ C2,1(Sh × R+;R+), then

LV = Vt(x, t) + Vx(x, t) +
1

2
trace

[

gT (x, t)Vxx(x, t)g(x, t)
]

,

where Vt =
∂V
∂t
, Vx =

(

∂V
∂x1
, ..., ∂V

∂xd

)

, Vxx =
(

∂2V
∂xi∂xj

)

d×d
. For more information the reader

may consult the book of Mao, [33].
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Chapter 3

A 4-compartment model of HIV

with Education

Public health information campaigns and withdrawal of individuals with AIDS from sex-

ual activities has been investigated in Nyabadza et al. [38]. The model for HIV/AIDS

incorporates HIV prevention using mass media campaigns and withdrawal of individuals

with AIDS. The model was revisited in [1]. In the paper of [1], the focus was on control

and sensitivity of an HIV model with public health education. In this Chapter we offer

a discussion of the work in [38]. In particular we use a Lyapunov function to prove the

global stability, an original contribution, now included in [1]. We also contributed in this

model by running some simulation.

All parameters of the model are assumed to be positive. Using the model of Nyabadza

[38], the recruitment rate of susceptible individuals is given by µK and µ is the per capita

natural death rate of individuals in all classes. The transfer rate from the asymptomatic

compartment to the symptomatic compartment is given by σ. The parameter ρ is the pro-

gression rate of infected individuals from I2 to A and δ represent the per capita disease

induced death per unit time. The parameter c is the contact rate of susceptible individ-

uals with infected individuals and β is the probability of infection. The effectiveness of
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information as it spreads in preventing HIV transmission in an environment with public

health HIV/AIDS information campaigns is quantified by parameter α. Susceptible are in-

fected with HIV following unprotected sexual contact with an infected individual at a rate

λ(I, A). The proposed contact rate is set to depend on the number of infected individuals

in the population, which is of the form cβg(I,A)
ψ(I,A)

, where g(I, A) = I1(t)+η1I2(t)+η2(1−q)A
and ψ(I, A) = 1 + αg(I, A). We thus have the following system of equations:

S
′

(t) = µK − µS − λ(I, A)S,

I
′

1(t) = λ(I, A)S − (µ+ σ)I1,

I
′

2(t) = σI1 − (µ+ ρ)I2,

A
′

(t) = ρI2 − (µ+ δ)A, (3.1)

where

λ(I, A) =
cβ(I1 + η1I2 + η2(1− q)A)

1 + α(I1 + η1I2 + η2(1− q)A)
,

η1 and η2 measure the relative infectivity of I2 and A, when compared to I1 and I =

(I1 + I2). We assume that all parameters are positive and the initial conditions of the

model system (1) are as follows:

S(0) = S0 > 0, I1(0) = I10 > 0, I2(0) = I20 > 0, and A(0) = A0 > 0.

3.1 Invariant region

The system in model (3.1) describes a human population, and hence we need to be sure

that the solution S(t), I1(t), I2(t) and A(t) of the model (3.1) remain non-negative all

the time. In other words, solutions of model (3.1) with given non-negative initial data re-

main positive all the time and bounded in a region G. Thus we have the following Lemma.

Lemma 3.1. [38] The region G defined by

G =
{

(S(t), I1(t), I2(t), A(t)) ∈ R
4
+ : N ≤ K

}

,

is positively invariant and attracting with respect to model system (3.1).
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3.2 Disease free equilibrium

Now, we study equlibria of the model. We have found the disease free equilibrium S =

K, I1 = 0, I2 = 0 and A = 0, by equating the time derivative on the LHS in system (3.1)

to be equal to zero, simplifying and solving the equations simultaneously. Thus we have

the following theorem.

Theorem 3.2. The model given by the system (3.1) has a unique feasible disease free

equilibrium given by

E0 = (S0, I1, I2, A0) = (K, 0, 0, 0).

It can be checked easily by using system (3.1).

3.3 Basic reproduction number

The analysis of the model includes finding equilibrium points of the model, finding the

threshold value, basic reproduction number R0 and investigate the stability of the equi-

librium points (disease-free and endemic which will be characterized using the threshold

value R0). The basic reproduction number has already been calculated in [38], and we

will just supply some details here. We will use the method used of Van den Driessche and

Watmough [48], to find the basic reproduction number of the model. The basic reproduc-

tion number is defined in Chapter 2. It is important to note that R0 is a dimensionless

number and not a rate, which would have units of time−1. Since we have more than one

infected compartment, we will use the next generation matrix method.

Thus we have

F=























cβK cβη1K cβη2K(1− q)

0 0 0

0 0 0






















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and

V=























µ+ σ 0 0

−σ µ+ ρ 0

0 −ρ (µ+ σ)(µ+ ρ)























.

By using the adjoint method we have the following inverse:

V −1 = 1
(µ+σ)(µ+ρ)(µ+σ)























(µ+ ρ)(µ+ σ) 0 0

σ(µ+ δ) (µ+ σ)(µ+ δ) 0

σρ 0 (µ+ σ)(µ+ ρ)























.

The reproduction number is given by the spectral radius (dominant eigenvalue) of the

matrix FV −1, denoted by ρ(FV −1). Thus,

ρ(FV −1) =
cβK

µ+ σ

[

1 +
η1σ

µ+ ρ
+

η2σρ(1− q)

(µ+ ρ)(µ+ δ)

]

,

where

R1 =
cβK

µ+ σ
,R2 =

cβη1K

(µ+ ρ)(µ+ σ)

and

R3 =
cβη2K

(µ+ δ)(µ+ ρ)(µ+ σ)
,

represents the contribution of the asymptomatic, symptomatic and AIDS individuals to

the overall model reproduction number R0 respectively.
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3.4 Endemic equilibrium

Theorem 3.4. [38] If R0 > 1, the model given in (3.1) has a unique endemic equilibrium

point given by

E∗ = (S∗, I∗1 , I
∗
2 , A

∗),

given by the following:

S∗ =
(σ + µ)(αµ+ βcΓ + αµ(R0 − 1))

βcΓ(αµ+ βcΓ)
,

I∗1 =
µ(R0 − 1)

αµ+ βcΓ
,

I∗2 =
σµ(R0 − 1)

(ρ+ µ)(αµ+ βcΓ)
,

A∗ =
ρσµ(R0 − 1)

(ρ+ µ)(δ + µ)(αµ+ βcΓ)
. (3.1)

3.5 Global stability of E0

We now establish the global stability of the disease free equilibrium. The following result

forms part of the paper [1].

Theorem 3.6. The disease-free equilibrium E0 of the model (3.1) is globally asymptoti-

cally stable in G if R0 < 1.

Proof. Let us first fix the following constants a1, a2, a3 and ξ, a1 = (mu + ρ)(µ + δ),

a2 = Kcβ[η1(µ+ δ)] + ρξ], a3 = ξKcβ(µ+ ρ), where ξ = η2(1− q).

Now we define the following function V = V (I1(t), I2(t), A(t)), which we shall prove to be

a Lyapunov function at the point (I1, I2, A) = (0, 0, 0).

V = a1I1 + a2I2 + a3A.

Then

V
′

= a1I
′

1 + a2I
′

2 + a3A
′

.
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Now noting that S(t) < K for all t and λ < cβ(I1 + η1I2 + ξA),

it follows that we can write:

.

V < Q1I1 +Q2I2 +Q3A,

where the coefficients Qi have the following values:

Q1 = a1[cKβ − (µ+ σ)] + a2σ,

Q2 = a1η1cKβ − a2(µ+ ρ) + a3ρ,

Q3 = a1ξcKβ − a3(µ+ δ).

Now we notice that when substituting the values of a1, a2, a3 and ξ, we obtain the follow-

ing:

Q2 = a1η1cKβ − cKβ[η1(µ+ δ) + ξρ](µ+ ρ) + a3ρ

= a1η1cKβ − a1η1cKβ − cKβρξ(µρ) + cKβξ(µ+ ρ)ρ

= 0

Likewise, for Q3 we find:

Q3 = ξcKβ(mu+ ρ)(µ+ δ)− ξcKβ(mu+ ρ)(µ+ δ)

= 0.

Finally we turn to Q1.

Q1 = a1cKβ + a2σ − a1(µ+ σ)

= (µ+ σ)

[

cKβ

(µ+ σ)
+

a2σ

a1(µ+ σ)
− 1

]

= (µ+ σ)

[

cKβ

(µ+ σ)
+
cKβ[η1(µ+ δ) + ρξ]σ

(µ+ ρ)(µ+ δ)(µ+ σ)
− 1

]

= a1(µ+ σ)

[

cKβ

µ+ σ

{

1 +
η1σ

µ+ ρ
+

ρξσ

(µ+ rho)(µ+ δ)

}

− 1

]

= (µ+ ρ)(µ+ δ)(µ+ σ)[R0 − 1]

≤ 0,

since R0 ≤ 1. It follows that V is a Lyapunov function as asserted.

This completes the proof. �
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Figure 3.1: Variation of the HIV/AIDS population of the model system 3.1.

3.6 Numerical Simulation

To study the behavior of system (3.1) numerically, a forth order Runge-Kutta scheme is

used. We consider a hypothetical population of one million sexually active individuals

at time t = 0. An annual increase of 49,300 individuals was assumed in the paper of

Nyabandza et al. [37].We consider the numerical simulations that illustrates the theorem

on the stability of disease free and endemic equilibrium. In Figure 3.1(a) the simulation

illustrates the variation of S, I1, I2, and A with time whenever R0 < 1. For the case of

R0 > 1 it is shown in figure 3.1(b). In Cai et al. [12] symptomatic individuals are assumed

to have a lower rate of infection when compared to the asymptomatic individuals. In this

model we however assume that symptomatic individuals have a higher viral load and are

thus more infectious, since viral load affects infection rate. The higher the viral load the

higher the likelihood of infection. The probability of β may vary considerably. We thus

consider 1 ≤ η1, η2 ≤ 2 in our simulations. The death rate due to the disease is chosen

to be 0.33 per year. The parameter values have been taken form Nyabadza et al. [38].

Table 3.1 summarizes all the parameters used in the simulations.
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Table 3.1: Model parameters and their interpretations

Parameter description Parameter Estimated value

Recruitment rate µK 0.05

Proportion of withdrawals by AIDS cases q 0.5

Rate of becoming symptomatic σ 0.18

Natural death rate µ 0.02 ≥ µ ≥ 0.03

Exposure rate to media campaigns α 1

Rate of developing AIDS ρ 0.06

Probability of transmission β 0.02

Partner acquisition rate c 1.5

Enhancement factors η1 1.6

Enhancement factors η2 1.8

Disease-induced death rate σ 0.18
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Figure 3.2: Deterministic trajectories of the HIV/AIDS population dynamics of the model

system 3.1
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Figure 3.3: Variation of the HIV/AIDS population dynamics of the model system 3.1

when: R0 = 0.4 in (g) and (i) and R0 = 1.5 in (h) and (j).
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Chapter 4

A 6-compartmental model of HIV

model with education

The paper of Bhunu et. al. [7] presents a model of HIV/AIDS in which the classes are

separated according to their HIV status and sexual activity levels, and which accommo-

dates the effect of HIV/AIDS education programs. The entire population is divided into

the following compartments:

• S : the susceptibles.

• I1 : the individuals who are HIV positive and do not know their status.

• I2 : the individuals who are HIV positive and know their status and reduce their

risky sexual behavior as a result of knowing their status.

• I3 : the individuals who are HIV positive and know their status and have increase

in risky sexual behavior as a result of knowing their status.

• I4 : HIV positive individuals who are sexually inactive.

• A : AIDS patients.

It is assumed that sexually inactive HIV positive individuals are no longer contributing

new infections. Their total abstinence from sexual activities may be due to some of the fol-
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lowing: effective public health education and HIV/AIDS information campaigns, a variety

of sexual abstinence education programs, sexual isolation of individuals by some sexual

means, individuals moral and religious reasons such as church, culture. We contributed

in this model by means of simulations.

Thus the population size N(t) is given by:

N(t) = S(t) + I1(t) + I2(t) + I3(t) + I4(t) + A(t).

Based on the fact that the infectious period is very long (≥ 10 years), we cannot regard

the population size as staying constant. The model is described by the following system

of equations:

S
′

(t) = Λ− (λ+ µ)S,

I
′

1(t) = λS − (µ+ ρ+ δ)I1,

I
′

2(t) = fδI1 − (µ+ θ + ρ)I2,

I
′

3(t) = (1− f)δI1 − (µ+ θ + ρ)I3,

I
′

4(t) = θ(I2 + I3)− (µ+ ρ)I4,

A
′

(t) = θ(I1 + I2 + I3 + I4)− (µ+ ν)A. (4.1)

Here λ is the rate at which susceptible individuals get infected with HIV, and

λ =
βc(I1(t) + φ1I2(t) + φ2I3(t))

N
.

Thus, β is the probability of getting infected per sexual contact, the parameter c is

the effective contact rate. The parameter φ1 ∈ (0, 1) models of the effect of a positive

behavioral change as a result of knowing one’s HIV positive status while φ2 > 1 accounts

for increase in risky behavior as a result of knowing one’s HIV positive status. After

infection with HIV, susceptible individuals infected with HIV will move into the class

of HIV infected people not knowing their status (I1). Individuals in the class (I1) will

know their HIV status through testing at a rate δ and counseling. A proportion f of HIV

positive people knowing their status will move into the class I2 and the complementary
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(1− f) will move onto the class I3, respectively. HIV positive individuals who know their

status will move into the sexually inactive class I4 at a rate θ. For simplicity, we assume

the same θ value in both I2 and I3 classes. HIV positive people in classes I1, I2, I3 and I4

progress to the AIDS class (A) at a rate ρ. In all classes individuals experience natural

death at a constant rate µ which is proportional to the number in each class. Individuals

in the AIDS class have an additional disease-induced death rate ν.

4.1 Disease-free equilibrium

The definition of a disease-free equilibrium has been stated in Chapter 2, so it follows

that the model has the following disease-free equilibrium, E0,

E0 = (
Λ

µ
, 0, 0, 0, 0, 0).

4.2 Basic reproduction number

By the method used in the previous section, due to Van den Driessche and Walmough

[48], the basic reproduction number of the model (4.1) is calculated in [7] and is given by

R0 = R1 +R2 +R3, (4.2)

where

R1 =
cβ

µ+ ρ+ δ
, R2 =

cβfφ1δ

(µ+ θ + ρ)(µ+ ρ+ δ)

and

R3 =
cβδφ2(1− f)

(µ+ θ + ρ)(µ+ ρ+ δ)
.

The numbers R1, R2 and R3 can be considered to represent the average number of infected

individuals as a contribution of each class I1, I2 and I3 respectively.

The term cβ

µ+ρ+δ
represents the new infections caused by infected individuals in the first

stage I1, where
1

µ+ρ+δ
is the average time that infected individuals spend in the first stage
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before progressing to the second stage or before dying due to natural causes.

The second term of R0,
fφ1

µ+ρ+δ
represents the fraction of individuals who progressed from

stage one and are aware of their status (with presumed change of risky sexual behavior

through abstinence or otherwise). The term, cβ

µ+θ+ρ
represents the new infections caused

by the infected individuals in the second stage.

The last term, cβ

µ+θ+ρ
, represents the number of new infections from infected individuals

at the third stage, (1−f)φ2
(µ+θ+ρ)

is the proportion of individuals progress to the third stage

who adopt risky sexual behavior and δ
µ+ρ+δ

represents a proportion of those who receive

education, its effect is to reduce R0. The term, 1
µ+θ+ρ

signifies the average time an infected

individual will stay in the third stage.

Thus we have

R0 =
cβ(µ+ ρ+ θ + (fφ1 + (1− f)φ2)δ)

(µ+ ρ+ θ)(µ+ δ + ρ)
.

4.3 Endemic equilibrium

Theorem 3.5. If R0 > 1, the model given in (4.1) has a unique endemic equilibrium

point given by

E∗ = (S∗, I∗1 , I
∗
2 , I

∗
3 , I

∗
4A

∗),

given by the following:

S∗ =
Λ

µ
− (µ+ ρ+ δ)Λ(R0 − 1)(µ+ ν)(µ+ ρ)

µ(µ++θ + ρ)((µ+ ρ+ δ)[(µ+ ρ)(µ+ ν)R0 − ρν])
,

I∗1 =
Λ(R0 − 1)(µ+ ν)(µ+ ρ)

(µ+ ρ+ δ)[(µ+ ρ)(µ+ ν)R0 − ρν]
,

I∗2 =
fδΛ(R0 − 1)(µ+ ν)(µ+ ρ)

(µ+ θ + δ)((µ+ ρ+ δ)[(µ+ ρ)(µ+ ν)R0 − ρν])
,

I∗3 =
(1− f)δΛ(R0 − 1)(µ+ ν)(µ+ ρ)

(µ+ θ + δ)((µ+ ρ+ δ)[(µ+ ρ)(µ+ ν)R0 − ρν])
,

I∗4 =
θδΛ(R0 − 1)(µ+ ν)(µ+ ρ)

(µ+ θ + δ)((µ+ ρ+ δ)[(µ+ ρ)(µ+ ν)R0 − ρν])
,

A∗ =
ρΛ(R0 − 1)

(µ+ ρ)(µ+ ν)R0 − ρν
.
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4.4 Numerical Simulations

In this chapter, we will look at how can we numerically solve the system (4.1) using the

fourth order of scheme Runge-Kutta. We will use the parameters in table 4.1 to numeri-

cally examine the effect of varying abstinence rate for the model in system (4.0.1). Figure

4.1(a) shows the effect of counseling and testing alone as an intervention approach as well

as the combination of abstinence on HIV/AIDS disease. In figure 4.1(b), the graph illus-

trates what happens when there is a disease free equilibrium. It shows that the population

growth is not affected by the disease as there will be in infection in the population. In

figure 4.1(c), the graph denotes when HIV/AIDS exist in the population where counseling

coupled with abstinence exist. In figure 4.1(d) and (e) shows when HIV/AIDS exist in

the population where counseling and testing is the only strategy, as these simulations

suggest that counseling and testing alone is not enough in the fight against the epidemic.

In figure 4.1(f) shows a situation where HIV/AIDS exist in the abstinence of any public

health campaign.

In these graphs, we note that in countries where the resources are limited when more

people getting to know their status they increase the risky sexual behavior as a results

of knowing their status. This tends to suggest that the epidermic is being influenced

by people who know their status and have a negative change. We therefore suggest

that public health health campaign programs are very important in reducing the effect of

HIV/AIDS. We also suggest that counseling and testing with abstinence must also include

the treatment in order to bring down the viral load of HIV/AIDS. The parameter have

been taken from Bhunu et al. [7].
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Table 4.1: Model parameters and their interpretations

Parameter description Parameter Estimated value

Recruitment rate Λ 0.029

Natural mortality rate µ 0.02

Rate of knowing one’s HIV status σ 0.1

through counseling and testing

Natural rate rate of progression to AIDS ρ 0.1

Modification parameter φ1 0.25

Modification parameter φ2 1.01

Proportion reducing risky sexual behavior f 0.85

as a result of knowing their HIV status

AIDS related death rate ν 0.333− 0.4

Product of effective contact rate for βc 0.011− 0.95

HIV infection and probability of HIV

transmission per contact

Abstinence rate θ 0.2
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Figure 4.1: Variation of the HIV/AIDS population dynamics of the model system 4.1

when R0 = 0.15.
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Figure 4.2: Variation of the HIV/AIDS population dynamics of the model system 4.1

when R0 = 0.025 in (g) and R0 = 1.5 in (h), (i), (j), (k) and (l).
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Figure 4.3: Variation of the HIV/AIDS population dynamics of the model system 4.1

when R0 = 1.5 in (m) and (n).
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Chapter 5

An HIV model with treatment and

education

Based on the model of Cai et al. [12], which already includes treatment, we develop a

model of HIV/AIDS that takes into account the effect of public health education. Our

model is of the compartmental type and the population is divided into the four compart-

ments which are the susceptible class (S), infectious classes that is for the asymptomatic

phase (I), the symptomatic phase (J) and the AIDS patients class (A). Thus the total

population is given by

N(t) = S(t) + I(t) + J(t) + A(t). (5.1)

When susceptible individuals make sufficient contact with individuals in one of the other

stages, new infections will result. All the newly infected individuals will join the asymp-

tomatic stage. The individuals will stay in the asymptomatic phase or will progress to

J-class if the symptoms are showing. They may die due to natural causes at each stage

at a rate µ. They will then move to A class and this means full-blown AIDS with disease

induced mortality.

The parameters used in this model are: µK the recruitment rate of sexually matured indi-

viduals into a susceptible class, c the contact rate of susceptible individuals with infected
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individuals, µ the per-capita natural death rate of individuals in all classes, irrespective

of being susceptible or infected. The factor β is the probability of disease transmission

per contact by an infective in the first stage. The factor bβ is the probability of disease

transmission per contact by an infective in the second stage. Furthermore, k1 and k2 are

the transfer rate constants from the asymptomatic stage I to the symptomatic stage J

and from the symptomatic stage to the AIDS cases, respectively. The factor α is the

transfer rate rate from the symptomatic stage J to the asymptomatic stage I and δ is the

disease related death rate of the AIDS cases. Suppose that public health information and

education programs result in reduction of the coefficients c, k1, and k2 by the amounts

ǫ0, ǫ1, ǫ2, respectively. Thus the term u denotes the education campaign effort. We assume

maximum values: ǫ0u ≤ c, ǫ1u ≤ k1, ǫ2u ≤ k2.

The resulting system of equations is given by:

dS

dt
= µK − βS(I + bJ)(c− ǫ0u)− µS,

dI

dt
= βS(I + bJ)(c− ǫ0u)− (µ+ k1 − ǫ1u)I + αJ,

dJ

dt
= (k1 − ǫ1u)I − (µ+ k2 − ǫ2u+ α)J,

dA

dt
= (k2 − ǫ2u)J − (µ+ δ)A. (5.2)

5.1 Basic reproduction number

The basic reproduction number of our model (5.2) can be deduced from that of the model

of Cai et al. [12]. Nevertheless we give the complete calculation. Since we have more

than one infected compartment we will use the next generation matrix to find the basic

reproduction number.

To calculate R0 we first arrange the system (5.2) as follows,

dI

dt
= βS(I + bJ)(c− ǫ0u)− (µ+ k1 − ǫ1u)I + αJ,
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dJ

dt
= (k1 − ǫ1u)I − (µ+ k2 − ǫ2u+ α)J,

dS

dt
= µK − βS(I + bJ)(c− ǫ0u)− µS.

The system (5.2) can be written as

x
′

= F (x)− V (x)

which implies that

x
′

i = Fi − Vi, x
′

i = Fi − (V −
i − V +

i ).

Thus F and V are the m×n matrix given by

F =
(

∂Fi(x0)
∂xj

)

, V=
(

∂Vi(x0)
∂xj

)

where Fi= the rate of appearance of new infections in compartment i,

V −
i = the rate of transfer of individuals out of compartment i,

V +
i = the rate of transfer of individuals out of compartment i.

From the system (5.2), Fi = βS(I + bJ)(c− ǫ0u),

F=











∂Fi

∂I
∂Fi

∂J

0 0











=





βS(c− ǫ0u) βbS(c− ǫ0u)

0 0





and

V=











∂V
∂I

∂V
∂J

∂V
∂I

∂V
∂J











=











V1 −α

−k1 − ǫ1u V2 + α











where, for i ∈ {1, 2} , Vi = µ+ ki − ǫiu.

Thus we have F and V at the disease-free equilibrium E0 respectively.
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From the system (5.2), we have

F=











βK(c− ǫ0u) βbK(c− ǫ0u)

0 0











and

V=











V1 −α

−(k1 − ǫ1u) V2 + α











at the disease-free equilibrium E0.

Therefore FV −1 is the next generation of matrix of system (5.2), where

V −1 = (k1−ǫ1u)
(µ+k1−ǫ1u)(µ+k2−ǫ2u+α)−α











V2 + α α

(k1 − ǫ1u) V1











Thus

FV −1=











βK(c− ǫ0u) βbK(c− ǫ0u)

0 0





















(V2+α
P

α
P

(k1−ǫ1u)
P

V1
P











where P = V1(V2 + α)− α(k1 − ǫ1u).

Thus FV −1 is the next generation of system (5.1). It follows that the spectral radius of

matrix FV −1 is given by

ρ(FV −1) =
βK(c− ǫ0u)(V2 + α + b(k1 − ǫ1u))

V1V2 + µα
.

Therefore R0 = ρ(FV −1) is the threshold quantity, called the basic reproduction number

for the system (5.2) and is also called the spectral radius of the matrix FV −1.
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5.2 The disease free equilibrium

IfR0 < 1, the model given by the system (5.2) has a unique feasible disease free equilibrium

given by,

E0 = (K, 0, 0, 0). (5.3)

5.3 The endemic equilibrium

In addition to the disease-free equilibrium the model given (5.2) has a unique endemic

equilibrium point given by

E∗ = (S∗, I∗, J∗, A∗), (5.4)

which we calculate as follows

βS(c− ǫ0u)[(
µ+ (k2 − ǫ2u) + α

(k1 − ǫ1u)
)J + bJ ]

−(µ+ (k1 − ǫ1u))(µ+ (k2 − ǫ2u) + α)

(k1 − ǫ1u)
J + αJ = 0

⇒ βSJ(c− ǫ0u)

(k1 − ǫ1u)
[(µ+ (k2 − ǫ2u) + α) + b(k1 − ǫ1u)]

=
J

(k1 − ǫ1u)
(µ+ (k1 − ǫ1u))(µ+ (k2 − ǫ2u) + α)− α(k1 − ǫ1u) = 0

βS(c− ǫ0u) =
(µ+ (k1 − ǫ1u))(µ+ (k2 − ǫ2u) + α)− α(k1 − ǫ1u)

µ+ (k2 − ǫ2u) + α + b(k1 − ǫ1u)

S∗ =
(µ+ (k1 − ǫ1u))(µ+ (k2 − ǫ2u) + α)− α(k1 − ǫ1u)

β(c− ǫ0u)(µ+ (k2 − ǫ2u) + α + b(k1 − ǫ1u))

S∗ =
(µ+ (k1 − ǫ1u))(µ+ (k2 − ǫ2u) + µα)

β(c− ǫ0u)(µ+ (k2 − ǫ2u) + α + b(k1 − ǫ1u))
.

From the first equation of (5.2) we have the following solution:

I∗ =
(µ+ (k2 − ǫ2u) + α)µK

(µ+ (k1 − ǫ1u))(µ+ (k2 + αµ))
(1− 1

R0

).
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The third equation of the system (5.2) gives

J∗ =
(k1 − ǫ1u)

(µ+ k2 − ǫ2 + α)
I∗.

By solving the forth equation of (5.2) we have the following:

A∗ =
(k2 − ǫ2u)

µ+ δ
J∗.

The endemic equilibrium is given by E∗ = (S∗, I∗, J∗, A∗). �

5.4 Stability of disease free equilibrium

5.4.1 Global stability of E0

In this section, we will now look at the global stability of the disease free equilibrium. We

will use the Lyapunov function to prove the global stability of the disease free equilibrium.

Theorem 5.1.1 If R0 ≤ 1, then the disease free equilibrium of the model given in (5.2)

is globally asymptotically stable in the feasible domain.

Proof. We define the Lyapunov function

L =
1

2
[(K − S) + I + J + A]2 + [µ+ (k2 − ǫ2u) + α

+ b(k1 − ǫ1u)]I + b[µ+ (k1 − ǫ1u) + α]J.

We obtain the following derivative of L

L
′

= [(K − S) + I + J + A]
d

dt
[−S + I + J + A]

+ [(µ+ (k2 − ǫ2u) + α + b(k1 − ǫ1u))cβS

− ((µ+ (k1 − ǫ1u))(µ+ (k2 − ǫ2u) + αµ))](I + bJ)

= [(K − S) + I + J + A]
[

2βS(I + bJ)(c− ǫ0u)− µK + µS − µI

− µJ − δA− µA
]

+
[

(µ+ (k2 − ǫ2u) + α + b(k1 − ǫ1u))cβS

− ((µ+ (k1 − ǫ1u))(µ+ k2 − ǫ2u) + αµ))
]

(I + bJ)
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L
′

= [(K − S) + I + J + A]
[

2βS(I + bJ)(c− ǫ0u)− µ[(K − S)

+ I + J + A]− δA
]

+
[

(µ+ (k2 − ǫ2u) + α + b(k1 − ǫ1u))cβS

− ((µ+ (k1 − ǫ1u))(µ+ k2 − ǫ2u) + αµ))
]

(I + bJ).

By writing L
′

in terms of basic reproduction number, we have

L
′

= −[(K − S) + I + J + A]δA−
[

(K − S)

+ I + J + A
][

[µ((K − S) + I + J + A)]− 2βS(I + bJ)(c− ǫ0u)]

+ [(µ+ (k1 − ǫ1u)(µ+ (k2 − ǫ2u)) + αµ)
]

(R0 − 1)(I + bJ)

If R0 ≤ 1, then L
′ ≤ 0. We note that, L

′

= 0 if and only if S = K, I = J = A = 0 and

this completes the proof. �

5.4.2 Local Stability of E∗

Lemma 5.1.2 Let M be a 3 × 3 real matrix. If both tr(M) and det(M[2]) are negative,

then all the eigenvalues of M have negative real parts.

Theorem 5.1.3 The positive equilibrium E∗ of system (5.2) is locally asymptotically

stable if R0 > 1. [12]

Proof. By evaluating the Jacobian of the system (5.2) at the endemic equilibrium, we

get

∂f

∂x
(E∗) =























(wv+αµ)I∗

(v+α)S∗
− µ −βS∗(c− ǫ0u) −bβS∗(c− ǫ0u)

(wv+αµ)I∗

(v+α)S∗
βS∗(c− ǫ0u)− w bβS∗(c− ǫ0u) + α

0 k1 − ǫ1u −(v + α)























(5.1)

where w = µ+ k1 − ǫ1u, v = µ+ k2 − ǫ2u and

β(I∗ + bJ∗)(c− ǫ0u) =
(wv+αµ)I∗

(v+α)S∗
.
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Thus, we have the second additive compound of (5.1) as follows

∂f [2]

∂x
(E∗) =























−µ− (wv+αµ)I∗

(v+α)S∗
+ S∗l − w bS∗l + α bS∗l

k1 − ǫ1u −µ− (wv+αµ)I∗

(v+α)S∗
− v − α S∗l

0 (wv+αµ)I∗

(v+α)S∗
S∗l − w − v − α























By Lemma 5.1.2 above it is sufficient to prove that tr(∂f
∂x
E∗), det(∂f

∂x
E∗), and det(∂f

2

∂x
E∗)

are negative.

It follows from w > βS∗(c− ǫ0u) that

tr(
∂f

∂x
)(E∗) = −µ− (wv + αµ)I∗

(v + α)S∗
+ βS∗(c− ǫ0u)− w − v − α < 0.

Computing for the determinant of the system (5.2) we obtain the following

det(
∂f

∂x
(E∗)) = −(wv + αµ)I∗

(v + α)S∗
(v + α + k1 − ǫ1ub)βS

∗(c− ǫ0u).

Also, the determinant of ∂f [2]

∂x
(E∗) is as follows

det
∂f [2]

∂x
(E∗) = −(v + α + w − βS∗(c− ǫ0u))

[

(µ+
(wv + αµ)I∗

(v + α)S∗
)2

+(µ+ (wv + αµ)I∗(v + α)S∗)(w − βS∗(c− ǫ0u))
]

− (v + α)2[µ+
(wv + αµ)I∗

(v + α)S∗
]− µ[w − βS∗(c− ǫ0u)](v + α)

− [
(wv + αµ)I∗

(v + α)S∗
]×

[

βS∗(c− ǫ0u)((µ+
(wv + αµ)I∗

(v + α)S∗
))

+ w − βS∗(c− ǫ0u)
]

− [α(k1 − ǫ1u)
(wv + αµ)I∗

(v + α)S∗
] < 0.

We note that if R0 > 0, then w − βS∗(c− ǫ0u) > 0. Thus det ∂f
[2]

∂x
(E∗) < 0.

This completes the proof of Lemma 3.4.3. �
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Figure 5.1: Deterministic trajectories of the HIV/AIDS population dynamics of the model

system (5.2).

5.5 Numerical Simulation

In this section we present some numerical simulations for the system in (5.2) using the

fourth order Runge-Kutta. We numerically analyze the effect of public health campaign

for the model (5.2) using parameters described in Table (5.1). To illustrate the various

theoretical results presented in system (5.2), various values of β are used. In Figure 5.1(a),

5.2(c), (e) and 5.3(g), (e), illustrates the dynamic behavior of the SIJA model described

by the deterministic system (5.2) when R0 < 1. In Fig 5.1(b), 5.2(d), (f), and 5.3 (h),

(j), illustrates the dynamic behavior of the SIJA model described by the deterministic

system (5.2) when R0 > 1.

5.6 Sensitivity Analysis of R0

The basic reproduction number is pivotal in determining the stability of the disease free

equilibrium. It is thus important for us to understand the behavior of R0 with respect

to the different parameters it depends on. Sensitivity indeces allow us to measure the

relative change in a state when a parameter changes. The normalized forward sensitivity

index of a variable to a parameter is the ratio of the relative change in the variable to

the relative change in the parameter. When the variable is a differentiable function of the
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Figure 5.2: Deterministic trajectories of the HIV/AIDS population dynamics of the model

system (5.2) when R0 = 0.67 in (c) and (e) and when R0 = 1.3 in (d) and (f).
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Figure 5.3: Deterministic trajectories of the HIV/AIDS population dynamics of the model

system (5.2) when R0 = 0.67 in (g) and (i) and when R0 = 1.3 in (h) and (j).
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Table 5.1: Model Parameters and their interpretations

Parameter Parameter description Estimated value

µ Natural death 0.02

rate of individuals

k2 Transfer rate constant 0.02

k1 Transfer rate constant 0.01

c Contact rate of 3

susceptible individuals

β Probability of 0.0005

disease transmission

K Recruitment rate 120

u Educational campaign effort 0.008

b Probability of 0.3

disease transmission

ǫ1 Reduced Coefficient 0.008

ǫ2 Reduced Coefficient 0.009

α Treatment rate 0.01

ǫ0 Reduced Coefficient 0.3
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parameter, the sensitivity index may be alternatively defined using partial derivatives.

We now derive the sensitivity of R0 to each of the twelve different parameters described

in Table 4.1

Let v = µ + (k1 − ǫ1u), w = µ + (k2 − ǫ2u), a = βK(c − ǫ0u) and b1 = µ + α + b(k1 −
ǫ1u) + (k2 − ǫ2u)

∂R0

∂µ
× µ

R0

=
µ[(vw + µα)− (2µ+ α + (k1 − ǫ1u) + k2 − ǫ2u)]

b1(vw + µα)

∂R0

∂c
× c

R0

=
c

c− ǫ0u
∂R0

∂b
× b

R0

=
b(k1 − ǫ1u)

µ+ α + (k2 − ǫ2u) + b(k1 − ǫ1u)

∂R0

∂ǫ0
× ǫ0
R0

= − ǫ0u

c− ǫ0u
∂R0

∂β
× β

R0

= 1

∂R0

∂K
× K

R0

= 1

∂R0

∂ǫ1
× ǫ1
R0

= −ǫ1[bu(vw + µα) + b1(µu+ ǫ1k2)]

b1(vw + µα)

∂R0

∂ǫ2
× ǫ2
R0

= −ǫ2u[(vw + µα) + b1(ǫ1u− µ− k1)]

b1(vw + µα)

∂R0

∂α
× α

R0

=
α(vw + µα)− µαb1

b1(vw + µα)

∂R0

∂k1
× k1
R0

=
k1[b(vw + µα)− (µ+ (k2 − ǫ2u))]

b1(vw + µα)

∂R0

∂k2
× k2
R0

=
k2[(vw + µα)− (µ+ (k1 − ǫ1u))]

b1(vw + µα)

∂R0

∂u
× u

R0

=
−bKuǫ0

a
− u(ǫ2 + bǫ1)

b1
+
u(µ+ k1ǫ2 + ǫ1µ+ k2ǫ1 − 2ǫ1ǫ2u)

vw + µα

The parameters shown in Table 5.2 are arranged from the most sensitive to the least from

the given base of the parameters as in the list. The most sensitive parameter is the contact

rate, c, the probability of disease transmission, β and the recruitment rate, K. The other

important parameter include probability of disease transmission, b, reduced coefficient ǫ1

and the treatment rate α. The least sensitive parameter is the natural death of individuals,

69

 

 

 

 



Table 5.2: Sensitivity indices of R0

Parameter Parameter description Estimated value Sensitivity index

c Contact rate of 3 +1.000800641

susceptible individuals

β Probability of 0.0005 +1

disease transmission

K Recruitment rate 120 +1

b Probability of 0.3 +0.056338454

disease transmission

ǫ1 Reduced Coefficient 0.008 +0.00219750

α Treatment rate 0.01 +0.000456769

ǫ0 Reduced Coefficient 0.3 −0.000800641

ǫ2 Reduced Coefficient 0.009 −0.000183805

u Educational campaign effort 0.008 −0.366116685

k1 Transfer rate constant 0.01 −5.351471481

k2 Transfer rate constant 0.02 −7.732353411

µ Natural death 0.02 −21.25684921

rate of individuals

70

 

 

 

 



µ. The sensitive index of R0 with respect to the probability of disease transmission β is

+1, implying that decreasing (or increasing) the β by 10 percent decreases (or increases)

R0 by 10 percent. Similarly increasing (or decreasing) the natural death rate of individuals

µ by 10 percent, increases (or decreases) the R0 by 212.57 percent.
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Chapter 6

Optimal public education campaign

We now search for optimal rollout of the public education campaign, in terms of how

much effort (or funding) to apply as a function of time. Thus in our model (5.2) we will

consider u to be time dependent. i.e., u = a(t). We want to see the classes I and J being

as small as possible, and we want to balance that with the public education campaign

effort. Thus we may want to consider a quantity of the form

u2(t) +m1I(t) +m2J(t)

to be somehow kept as small as possible, for some balancing weight constants m1 and m2.

Taking u in squared form is to ensure convexity of the problem. For more information

see the book of Lenhart and Workman [30]. Let us consider a time horizon [0, T ],

let

V (u(t)) =

∫ T

0

u2(t) +m1I(t) +m2J(t)dt. (6.1)

Thus we shall seek to solve the following optimal control problem,

Problem (6.1.1.):

Minimize V (u(t)) subject to the conditions (5.2), and the initial conditions

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, J(0) = J0 ≥ 0, A(0) = A0 ≥ 0, (6.2)

72

 

 

 

 



and terminal conditions

S(T ), I(T ), J(T ) and A(T ) (6.3)

are free, while the control variables is assumed to be bounded above,

0 ≤ u(t) ≤ α ≤ 1. (6.4)

The Hamiltonian for this problem is given by

H(t, S, I, J, A, λ1, λ2, λ3, λ4) = u2 +m1I +m2J + λ1
.

S +λ2
.

I +λ3
.

J +λ4
.

A

H(t, S, I, J, A, λ1, λ2, λ3, λ4) = u2 +m1I +m2J

+ λ1(µK − βS(I + bJ)(c− ǫ0u)− µS)

+ λ2(βS(I + bJ)(c− ǫ0u)

− (µ+ k1 − ǫ1u)I + αJ)

+ λ3((k1 − ǫ1u)I − (µ+ k2 − ǫ2u+ α)J)

+ λ4((k2 − ǫ2u)J − (µ+ d)A)

Theorem 2.1.3 Let S∗, I∗, J∗, A∗ and u∗ be optimal solutions for the optimal control

problem (6.1), (6.2), (6.3) and (6.4). Then the costate variables satisfy the following

differential equations:

dλ1(t)

dt
= λ1β(I + bJ)(c− ǫ0u) + µλ1 − λ2β(I + bJ)(c− ǫ0u)

dλ2(t)

dt
= −m1 + λ1βS(c− ǫ0u)− λ2βS(c− ǫ0u) + (µ+ k1 − ǫ1u)

− λ3(k1 − ǫ1u)

dλ3(t)

dt
= −m2 + λ1βbS(c− ǫ0u)− λ2βbS(c− ǫ0u) + λ2α + λ3(µ+ k2 − ǫ2u)

−λ4(k2 − ǫ2u)

dλ4(t)

dt
= λ4(µ+ d) (6.5)
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with transversality conditions

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0 and λ4(T ) = 0.

and the optimal control takes the form

u∗(t) = min

[

max

(

βSǫ0(I + bJ)(λ2 − λ1) + ǫ1I(λ2 + λ3) + ǫ2J(λ4 − λ3)

2
, 0

)

, α

]

. (6.6)

Proof. We will use the Pontryagin maximum principle. For more information see Lenhart

and Workman [30]. We calculate partial derivatives of the Hamiltonian with respect to

the different state variables in order to obtain the time derivative λi of costate variables.

Since S(T ), I(T ), J(T ) and A(T ) are free, the following terminal conditions hold:

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0 and λ4(T ) = 0.

We start by examining,

dλ4(t)

dt
= −∂H

∂A
= (µ+ d)λ4,

integrating both sides we get,

λ4 =Me(µ+d)t,

for some constantM . The terminal condition λ(T ) = 0, forcesM to disappear. Therefore

λ4 is equal to zero i.e., λ4 ≡ 0. We now calculate the following:

dλ1(t)

dt
= −∂H

∂S
,
dλ2(t)

dt
= −∂H

∂I
,
dλ3(t)

dt
= −∂H

∂J
,

and obtain the equations stated in the theorem.

The function u∗ must optimize H.

Thus we have,

∂H

∂u
= 2u+ λ1βS(I + bJ)ǫ0 − λ2(βS(I + bJ)ǫ0 + ǫ1I) + λ3(ǫ2J − ǫ1I)− λ4(ǫ2J).
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Now if

2u+ λ1βS(I + bJ)ǫ0 − λ2(βS(I + bJ)ǫ0 + ǫ1I) + λ3(ǫ2J − ǫ1I)− λ4(ǫ2J) = 0

for some values of [0, α] then the given value of u is optimal.

If for every value of u ∈ [0, α] we have

2u+ λ1βS(I + bJ)ǫ0 − λ2(βS(I + bJ)ǫ0 + ǫ1I) + λ3(ǫ2J − ǫ1I)− λ4(ǫ2J) ≥ 0,

2u+ λ1βS(I + bJ)ǫ0 − λ2(βS(I + bJ)ǫ0 + ǫ1I) + λ3(ǫ2J − ǫ1I)− λ4(ǫ2J) ≤ 0)

then we must choose u = 0 (respectively, u = α).

Thus we must have

u∗(t) = min

[

max

(

βSǫ0(I + bJ)(λ2 − λ1) + ǫ1I(λ2 + λ3) + ǫ2J(λ4 − λ3)

2
, 0

)

, α

]

.

The function u∗1(t) also must optimize H, and by a similar argument we obtain the definite

expression for u∗1(t). This completes the proof. �

6.1 Numerical simulation for the Optimal Control

The optimality system is solved using an iterative method of Runge-Kutta forth order

scheme. We note that in fig 6.1(a) the numerical results show that the number of suscep-

tible individuals increase after the optimal control treatment and public health education

campaign, leading to a smaller number of infected individuals. Fig 6.1(b), represents the

population of infected individuals without optimal control treatment and public health

educational programs, we observe that that the population is sharply increasing than the

individuals with control. This shows that we need treatment and public health educa-

tional campaign to control the infected individuals. In fig 6.1(c), we note that the infected

individual are decreasing due to optimal control treatment and public health educational

campaigns. Fig 6.1(d) shows that there is a decrease of AIDS individuals due to the

optimal control treatment and education that was implemented. The of the numerical
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Figure 6.1: Plot of the HIV/AIDS population dynamics of the model (5.1) using optimal

control strategies.

simulation shows that there is a small number of infected than before the optimal con-

trol. Thus we conclude that the rate of infected individuals decreases after the control

treatment and public health education campaign.

76

 

 

 

 



Chapter 7

A stochastic HIV model

In this Chapter we study a Stochastic Differential Equation model of the HIV epidemic.

The main results, Theorem 7.3, is on almost sure exponential stability and is included in

the manuscript [1].

7.1 Types of models

The presence of stochastic perturbation in nature makes it desirable at times to introduce

random variables into the modeling. Stochastic models assume that the response vari-

ables are a family of random variables indexed by time so that the epidemic is basically a

stochastic process. Stochastic epidemic models are useful for small populations, possibly

of isolated communities, in which the known heterogeneity inherent in the population

is of importance. There are three different methods for formulating stochastic epidemic

models that relate directly to their deterministic counterparts. The three popular types of

stochastic modeling processes are described: discrete time Markov chain (DTMC) model,

Continuous time Markov chain (CTMC) model and stochastic differential equation (SDE)

model. These stochastic methods differ in the underlying assumptions regarding the time

and the state variables. For more information the reader may consult Allen [4]

In a DTMCmodel, the time and the state variables are discrete. For example, let S(t), I(t)
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and R(t) denote discrete time stochastic process for the number of susceptible, infected

and immune at time t, respectively. In a DTMC epidemic model, t ∈ 0,∆t, 2∆t, . . . and

the discrete random variable satisfy

S(t), I(t), R(t) ∈ {0, 1, 2, . . . , N} .

In a CTMC model, time is continuous, but the state variable is discrete. For example

given t ∈ [0,∞), and the state S(t), I(t) and R(t) are discrete random variable, i.e.,

S(t), I(t), R(t) ∈ {0, 1, 2, . . . , N} .

Finally, the SDE model is based on a diffusion process, where both the time and the

state variables are continuous. In our model we will use the SDE approach. It has been

applied in various papers, such as [29] by Lahrouz et al., [15] by Dalal et al., [17] by

Ding et al. and [51] by Yang et al. The paper [26] of Jovanović and Krstić presents a

stochastic model of vector-borne diseases. We have also looked at some of the models in

which a stochastic perturbation has been inserted to each of the differential equations in

the system and these models are [32] by Lu, [52], [25] and [26]. We also have found that

there are instances where stochastic perturbation are introduced in such a way that the

total population size is still a deterministic function of time and such models are found

in [20] by Gray et al., [29] by Lahrouz et al. and [47] by Tornatore et al. We note that

for systems of stochastic differential equations, different versions of stability are defined

and studied in the literature. We refer to the book [33] of Mao and several papers, for

instance, [17], [52], [25], [20], [29] and [47].

One of the most important differences between the deterministic and stochastic epidemic

models is their asymptotic dynamics. It may happen that eventually stochastic solutions

(sample paths) converge to the disease-free state even though the corresponding determin-

istic solution converges to an endemic equilibrium. For stochastic differential equations in

general, this phenomenon is discussed in Mao’s book [33] for instance. Other properties

that are unique to the stochastic epidemic models include the probability of an outbreak,
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the quasistationary probability distribution, the final size distribution of an epidemic and

the expected duration of an epidemic.

7.2 A Stochastic differential equation model

Let us consider the model of Cai et al. [12] modified. Let us assume (Ω,F , {Ft}t≥t0 , P )
be a complete probability space which is right continuous with a filtration {Ft}t≥t0 . Let
B(t) be a one-dimensional Wiener process defined on this probability space. Let g(S, I, J)

be some function to be specified at a later stage. There are different ways of introducing

randomnes into epidemic models, see the paper of [11] for a survey. For example, a discrete

stochastic epidemic model is proposed in the paper [2] of Andersson and Lindenstrand

to study the probability of outbreaks. An approximation of the discrete model by a

system of stochastic differential equations is utilized to study the time to extinction of

the disease. In this paper we study an epidemiological population model which can be

described by a system of stochastic differential equations. For now let us refer to this form

of randomness as stochastic perturbation with independent processes. In other cases, a

stochastic perturbation is introduced in such a way that the total perturbation on the

system is zero see the paper of Lahrouz et al. [29]. This type will be said to have stochastic

perturbation with complementary processes. Thus we have the following complementary

model:

dS = [µK − cβ(I + bJ)S − µS] dt− σg(S, I, J)dB(t),

dI = [cβ(I + bJ)S − (µ+ k1)I + αJ ] dt+ σg(S, I, J)dB(t),

dJ = [k1I − (µ+ k2 + α)J ] dt,

dA = [k2J − (µ+ δ)A] dt. (7.1)

We describe the parameters. The term µK is the recruitment rate of the population and

µ is the average death rate by natural causes, c is the average number of contacts of an

individual per unit time, see Cai [12]. The term β is the probability of disease trans-

mission per contact by an infective in the first stage. The term bβ is the probability of
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disease transmission per contact by an infective in the second stage. By k1 and k2 we

denote the transfer rates from the asymptomatic phase I to the symptomatic phase J

and from the symptomatic phase to the AIDS cases, respectively. α is regarded as the

treatment rate from symptomatic phase J to the asymptomatic phase I. The constant δ

is the disease-related death rate of the AIDS cases. The parameter σ is referred to as the

perturbation parameter.

The basic reproduction number for the deterministic model (σ = 0) has already been

computed in the paper of Cai et. al [12], thus we have

R0 =
cβK(µ+ k2 + α + bk1)

(µ+ k1)(µ+ k2) + µα
. (7.2)

7.3 Stability of Solutions

Like with any ordinary and partial differential equations in a deterministic setting (ODE’s

and PDE’s), the two most basic questions on an SDE system are those of existence and

uniqueness of solutions. To obtain existence and uniqueness results, one has to impose

reasonable regularity conditions on the coefficients occurring in the differential equation.

Naturally stochastic differential equations (SDE’s) contain all the complications of their

non-stochastic counterparts and more.

Existence and positivity of global solutions are sometimes hard to prove. In special cases,

those with independent perturbation, there is a method that works well. In other cases,

mostly where the interest is in endemic equilibria, it is difficult to prove the positivity by

similar methods. We shall avoid it here. Our aim is to study stability, assuming that we

have positive global solutions.

The following lemma is useful in studying exponential stability. We quote it from [50].

Lemma 7.1. For k ∈ N , let X(t) = (X1(t), X2(t), ..., Xk(t)) be a bounded R
k-valued

function and let (t0,n) be any increasing unbounded sequence of positive real numbers.

Then there is a family of sequences (tl,n) such that for each l ∈ {1, 2, ..., k}, (tl,n) is a
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subsequence of (tl−1,n) and the sequence Xl(tl,n) converges to the largest limit point of

the sequence Xl(tl−1,n).

The following numbers will play a key role in the main theorem. Let ξ0, ξ1, ξ2, ξ3 and ξ4

be positive numbers, chosen as follows:

ξ1 = µ+ k2 + α + bk1,

ξ2 = α + bµ+ bk1,

ξ4 = (µ+ k1)(µ+ k2) + µα.

The numbers ξ0 and ξ3 will be chosen later. For now we just bear in mind that they are

both positive. Let m = ξ2ξ
−1
1 . In the sequel we shall consider only the case

g(S, I, J) =
√
2(I +mJ) (7.3)

of the model above. Now for any y ≥ 0, we define the number:

P (y) = cβK(1− yσ2)
ξ1
ξ4
.

The following number, which we shall denote by Rσ, will describe the almost sure expo-

nential stability of model (7.1):

Rσ = max {P (1), P (m)} .

We further expand Rσ to be:

Rσ = R0(1− σ2min(1, ξ2ξ
−1
1 )).

We continue by preparing notation and concepts for our main theorem, which is the the-

orem on almost sure exponential stability.

Suppose we have a positive solution (S(t), I(t), J(t), A(t)).

Let

Z(t) = ξ0(K − S(t)) + ξ1I(t) + ξ2J(t) + ξ3A(t)
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and let

V (t) = lnZ(t),

Thus we have the following

V (t) = ln
(

ξ0(K − S(t)) + ξ1I(t) + ξ2J(t) + ξ3A(t)
)

.

We now calculate LV , given by the formula.

LV =
∂V

∂t
+ f trp∂V

∂x
+

1

2
Trc

[

gtrp
∂2V

∂x2
g

]

,

where Trc means trace and trp denotes the transpose of a matrix.

LV = − 1

Z
ξ0 [µq − cβ(I + bJ)S − µS]− 1

2

[

ξ20σ
2g2

Z2

]

+
ξ1
Z

[cβ(I + bJ)S − (µ+ k1)I + αJ ]− 1

2

[

ξ21σ
2g2

Z2

]

+
ξ0
Z

[k1I − (µ+ k2 + α)J ] +
ξ3
Z

[k2J − (µ+ δ)A]

−
[

ξ0ξ1σ
2g2

Z2

]

Now we define the following limits:

s = lim
n→∞

S(tn), i = lim
n→∞

I(tn)

Z(tn)
, j = lim

n→∞

J(tn)

Z(tn)
, a = lim

n→∞

A(tn)

Z(tn)
,

and

q = lim
n→∞

K − S(tn)

Z(tn)
.

These limits exist due to Theorem 7.1.

In particular we note that ξ0q + ξ1i+ ξ2j + ξ3a = 1 and ξ0q, ξ1i, ξ2j, ξ3a ∈ [0,1].

Then we define F (ξ) as:

F (ξ0, ξ1, ξ2, ξ3) = lim sup
t→∞

LV (t).
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Therefore F (ξ) takes the form:

F (ξ) = ξ0 [−µq + cβ(i+ bj)s] + ξ1 [cβ(i+ bj)s− (µ+ k1)i+ αj]

+ ξ2 [k1i− (µ+ k2 + α)j] + ξ3 [k2j − (µ+ d)a]

− 1

2

[

(ξ0 + ξ1)
√
2σ(i+mj)

]2

.

7.4 The main theorem

Theorem 7.2. The disease free equilibrium of the system (7.1) is almost surely expo-

nentially stable if

lim sup
t→∞

LV (X(t)) < 0 (a.s.).

Proof. We start off by noting that

V (X(t)) = V (X(0)) +

∫ t

0

LV (X(u))du+ (ξ1 − ξ0)σ

∫ t

0

g(S(u), I(u), J(u))

Z(X(u))
dW (u).

Note that the quadratic variation of the stochastic integral
∫ t

0

g(S(u), I(u), J(u))

Z(u)
dW (u)

is
∫ t

0

(g(S(u), I(u), J(u))

z(X(u))

)2

du

In view of the condition on g in (7.3), it follows that

|g|
z

≤
3

∑

i=0

|gi+1|
ξi

≤
3

∑

i=0

Ci+1

ξ
= C,

and C is a uniform (finite) upper bound.

Consequently
∫ t

0

( g

z(X(u))

)2

du ≤ Ct.
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The strong law of large numbers for local martingales, see [33] for instance, implies that

lim
t→∞

1

t

∫ t

0

g(S(u), I(u), J(u))

z(X(u))
dW (u) = 0 (a.s.)

Also, we observe that

lim
t→∞

1

t
V (X(0)) = 0.

Therefore

lim sup
t→∞

1

t
V (X(t)) = lim sup

t→∞

1

t

∫ t

0

LV (X(u))du (a.s.)

This completes the proof. �

Theorem 7.3 If Rσ < 1, then restricted to the subset Ω1, the infection-free equilibrium

E0 is almost surely exponentially stable, where

Ω1 = {w ∈ Ω | (S(t, w(t))), I(t, w(t)), J(t, (w(t))), A(t, w(t)) ∈ ∆ for t ≥ 0}

.

Proof. Let us assume that Rσ < 1. It suffices to prove that Z(t) a.s. converges expo-

nentially to 0 since all the numbers ξi are positive. By definition (7.1) it suffices to prove

that F (ξ) <. The idea is now to find values of ξ0 and ξ3, if possible, such that

F (ξ) < 0.

The number ξ0 is chosen sufficiently small such that the following two inequalities hold:

ξ0(cβK + σ2) + [(µ+ k1)(µ+ k2) + µα] (P (1)− 1) < 0.

ξ0(bcβK +mσ2) + b [(µ+ k1)(µ+ k2) + µα] [P (m)− 1] < 0.

Having chosen ξ0, the number ξ3 is chosen sufficiently small such that the following in-

equality holds:

ξ0(bcβK +mσ2) + b [(µ+ k1)(µ+ k2) + µα] [P (m)− 1] + k2ξ3 < 0.
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Noting that s < K, and rearranging the terms, we obtain the following inequality:

F (ξ) ≤ q(−µξ0) + i [cβK(ξ0 + ξ1)− (µ+ k1)ξ1 + k1ξ2]

+ j [cβK(ξ0 + ξ1)b+ αξ1 − (µ+ k2 + α)ξ2 + k2ξ3]

+ a(−(µ+ α)ξ3)− [(ξ0 + ξ1)σ(i+mj)]2 .

Now we simplify the term in the F -inequality that comes from the diffusion part. We

denote it by D.

D = −σ2(ξ0 + ξ1)
2(i+mj)2

≤ −σ2ξ21 [i+mj]2

= −σ2(ξ1i+ ξ2j)
2.

Since ξ1i+ ξ2j = 1− ξ0q − ξ3a we get:

D ≤ −σ2(ξ1i+ ξ2j)(1− ξ0q − ξ3a)

= −σ2(ξ1i+ ξ2j) + σ2(ξ1i+ ξ2j)(ξ0q − ξ3a)

≤ −σ2(ξ1i+ ξ2j) + σ2(ξ0q − ξ3a),

The latter inequality follows because ξ1i+ ξ2j ≤ 1. Therefore we can express F (ξ) in an

inequality as follows:

F (ξ) = C0q + C1i+ C2j + C3a,

where

C0 = ξ0(−µ+ σ2),

C3 = ξ3(−µ+ α + σ2),

C1 = ξ0(cβK + σ2) + cβKξ1 − (µ+ k1)ξ1 + k1ξ2 − ξ1σ
2,

C2 = ξ0(cβKb+mσ2) + cβKbξ1 + αξ1 − (µ+ k2 + α)ξ2 + ξ3k2 − ξ2σ
2 .

By the assumptions we have C0 < 0 and C3 < 0. Regarding C1, we note that

−(µ+ k1)ξ1 + k1ξ2 = −(µ+ k1)(µ+ k2)− µα = −ξ4,
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and therefore

C1 = ξ0(cβK + σ2) + [(µ+ k1)(µ+ k2) + µα]
(

P (1)− 1
)

< 0.

Also note that

αξ1 − (µ+ k2 + α)ξ2 = −b [(µ+ k1)(µ+ k2) + µα] ,

and thus

C2 = ξ0(bcβK +mσ2) + bcβKξ1 − b [(µ+ k1)(µ+ k2) + µα] + ξ3k2 − ξ2σ
2

= ξ0(bcβK +mσ2) + b [(µ+ k1)(µ+ k2) + µα] [P (m)− 1] + k2ξ3 < 0.

This implies that also C2 < 0. Note that the limits q, i, j, a cannot all be zero. So F < 0

and this completes the proof. �

7.5 Numerical Simulation

In this section we simulate the model (7.1) at different set of parameters. The fig.(7.1)

and (7.2) show the variation of S(t), I(t), J(t), A(t) within time that is the disease free

equilibrium and the endemic equilibrium. In the figures in (7.2)-(7.5), we use them to

verify the greatness of a noise in cases where R0 < 1 and R0 > 1. The figures (7.4) and

(7.5) shows that whenever R0 < 1, then (S(t), I(t), J(t), A(t)) converge almost surely to

E0. In fig.(7.3) the endemic equilibrium becomes more unstable due to the noise and the

solution of the model system (7.1) converges to almost surely to E0 when R0 > 1.
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Figure 7.1: Stochastic trajectories epidemic model (7.1) for the parameters values: K =

120, δ = 0.2, α = 0.2, β = 0.0099, b = 0.07, µ = 0.098, c = 0.059, k1 = 0.05, k2 = 0.04,

σ = 0.
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Figure 7.2: Stochastic trajectories of epidemic model (7.1) for the parameters values:

K = 120, δ = 0.2, α = 0.2, β = 0.02, b = 0.07, µ = 0.098, c = 0.059, k1 = 0.05, k2 = 0.04,

σ = 0.
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Figure 7.3: Stochastic trajectories of epidemic model (7.1) for the parameters values:

K = 120, δ = 0.2, α = 0.2, β = 0.02, b = 0.07, µ = 0.099, c = 0.059, k1 = 0.05, k2 = 0.04,

σ = 0.079.
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Figure 7.4: Stochastic trajectories of epidemic model (7.1) for the parameters values:

K = 120, δ = 0.2, α = 0.2, β = 0.01013, b = 0.85, µ = 0.02, c = 0.03, k1 = 0.08,

k2 = 0.09, σ = 0.060.
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Figure 7.5: Stochastic trajectories of epidemic model (7.1) for the parameters values:

K = 120, δ = 0.2, α = 0.2, β = 0.01013, b = 0.85, µ = 0.02, c = 0.03, k1 = 0.08,

k2 = 0.09, σ = 0.080.
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Chapter 8

Conclusion

In this dissertation we have been dealing with HIV/AIDS treatment model with pub-

lic health education. How can we find ways to stabilize the HIV/AIDS? We have seen

throughout the paper that we were using R0 as a threshold quantity that determines

whether a disease can invade a population. In Chapter 3 we specifically considered global

stability of the disease free equilibrium and simulations. By using all treatment methods,

individuals with the symptomatic phases can be recovered back into the asymptomatic

class. The dynamics behavior of the ordinary differential equation treatment model (5.2)

can be determined by its basic reproduction number R0, for example if R0 ≤ 1, the

disease-free equilibrium is globally stable. If R0 > 1, the disease persists and the unique

endemic equilibrium is globally asymptotically stable. We use the optimal control theory

to identify optimal roll-out of strategies to control the HIV/AIDS.

We looked also on the stochastic model describing the population dynamics of an HIV/AIDS

epidemic. We proved the almost sure exponential stability of the system (7.1) under suit-

able conditions. We have proved in particular that the stochastic perturbation does not

destabilize the disease free equilibrium, i.e., whenever R0 < 1, then the disease free equi-

librium is almost surely exponentially stable.

Instead of waiting for disease-related symptoms, creating awareness in the population
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through campaigns about the disease is necessary for individuals to get tested early and

know their HIV status. Depending on how much effort is invested and how the popula-

tion responds to the information, campaigns help early testing. Once knowing their HIV

status, the starting time of the treatment is decided by the countries policy on treatment.

In our theoretical strategy, every HIV positive individual is eligible for treatment irrespec-

tive of the age of infection, in other words irrespective of the CD4+ count. Introducing

treatment at different ages of infection before developing AIDS-related diseases affects the

dynamics to reduce the effective reproduction number even though it is greater than one

and the disease remains endemic in the population.

In all the Models above public health Campaign plays a very important role in decreasing

the spread of HIV/AIDS. In all the three model we have seen that total withdrawal

from sexual activities of some HIV positive individuals has a great potential to tame the

HIV/AIDS epidemic. Educating those infected with HIV/AIDS and those around them

on the effects of the disease, how it is transmitted, safe sex practices may cause behavioral

changes that can reduce HIV/AIDS infections. We have also noted that by giving free

antiretroviral drug to HIV positive individuals in countries where the resources are limited

can reduce HIV/AIDS. In Bhunu et al. [7], individual who are getting tested and changing

the sexual behavior would mean being put to antiretroviral drug and having one’s health

improved. In all the three model education is the key to reduce the effect of HIV/AIDS,

as individual turn to withdraw or decrease in sexual behavior.
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