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                                  Abstract  

Aspects of the interrelation between hypertension and 

insulin resistance: A preliminary study. 

 

Background: It is well known that some genetic factors and dietary factors, such as 

excessive salt intake and excessive caloric intake (resulting in obesity) are risk factors for 

hypertension. Fifty percent of all hypertensive patients are also insulin resistant. Both 

hypertension and insulin resistance are again risk factors for other cardiovascular diseases 

such as atherosclerosis and heart failure. The nature of the association between 

hypertension and insulin resistance has not been clearly elucidated. Spontaneously 

hypertensive rats are the ideal models to study the aspects of the relationships between 

hypertension and insulin resistance. Models of high-fat feeding induce obesity, 

hypertension and insulin resistance and are thus used extensively to study hypertension 

because these models closely mimic some of the renal and cardiovascular changes found 

in human hypertensive patients.  The present study was initiated to evaluate if insulin 

resistance will develop within 6 weeks in a model of high-fat diet induced hypertension 

and if so, to determine whether captopril will affect the presence of insulin resistance. 

This model should in future be used to study vascular reactivity to phenylephrine (PHE), 

acetylcholine (ACH) and sodium nitroprusside (SNP) in hypertensive animals in the 

absence or presence of insulin resistance and in normotensive insulin resistant animals.  
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Methods: In a series of experiments, rats were divided into four groups that received 

different treatments: (i) laboratory pellets, (ii) high-fat diet, (iii) high-fat diet plus 

captopril and (iv) high-fat diet plus vehicle. Body weight was measured weekly for 6 

weeks. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured 

every week during the 6-weeks feeding period by the tail cuff method using a two 

channel computerized non-invasive system from Kent Scientific Corporation, USA. 

Intraperitonealy glucose tolerance tests (IPGTTs) were performed at week 3 and week 6. 

After 6 weeks, and after an overnight fast, the plasma lipid profile was determined using 

a portable CardiochekTM blood test system. Fasting plasma insulin was determined using 

an immunoenzymatic assay for the in vitro quantitative measurement of rat insulin (INS) 

in serum and plasma. Insulin sensitivity was estimated by the quantitative insulin 

sensitivity check index (QUICKI) using the fasting plasma insulin and fasting glucose 

levels.  After week 6 on the high-fat diet, thoracic aortae from the control and high-fat fed 

(HFD) animals were excised and vascular response to PHE, ACH and SNP were assessed 

in intact and denuded endothelium.  

 

Result:  High-fat feeding did not cause a significant increase in body weight. High-fat 

feeding significantly increased systolic blood pressure from 125±2.1 mmHg in control 

animals to 155±5.9 mmHg in the HFD group (P < 0.05) and 158±5.6 mmHg in the 

HFDV group (P < 0.05). Diastolic blood pressure was increased from 86±2.8 mmHg in 

the control group to 117±2.5 mmHg in the HFD group (P < 0.05) and 113±3.4 mmHg in 

the HFDV group (P < 0.05). Visceral fat was increased from 0.8±0.1g in the control 

group to 3.1±0.6 g in the HFD group and 3.8±0.6 g in the HFDV group. IPGTTs 
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performed at weeks 3 and 6 respectively did not differ significantly from the control 

group as evidenced from the AUC’s at weeks 3 and 6 respectively. High-fat feeding had 

no significant effects on blood cholesterol, triglyceride, high-density lipoprotein 

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) values or and fasting 

plasma insulin levels. The KCl induced contraction in both aortic rings with intact and 

denuded endothelium did not differ significantly between the control and HFD groups (P 

= 0.4 and 0.8) respectively. The contraction mediated by KCl in aortic rings with intact 

and denuded endothelium from the control or HFD groups also did not differ significantly 

(control: intact vs denuded, P = 0.2; HFD: intact vs denuded, P = 1). Dose response-

curves (1-10 μM) to PHE indicated slightly stronger contractions in the high-fat fed 

animals at submaximal doses tested. The maximum contraction achieved was however 

the same (94±19% and 99±2.6% relative to KCl induced contraction, in the control and 

HFD group respectively, P<0.05). Relaxation responses to ACH and SNP represent 

preliminary data.  

 

Conclusion: These data suggest that 6 weeks of high-fat feeding induces hypertension 

but does not produce obesity, dyslipidemia and insulin resistance. However, this model 

may be useful in studying vascular reactivity in hypertension in the absence of insulin 

resistance.     
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                             CHAPTER ONE 

                             INTRODUCTION 

  

  The incidence of cardiovascular diseases has been increasing globally for the past few 

decades.  The incidence of hypertension amongst South African blacks has been on the 

increase as well. Some sub-Saharan African countries still show clear urban/rural 

differences in the prevalence of hypertension, but this difference no longer exist in the 

South African context (Steyn, 2005). The prevalence rates in the rural areas have 

increased to the levels found in the cities (Mollentze et al., 1995).  Connor et al., (2005) 

in their survey reported the prevalence of hypertension at 59% among the black South 

Africans.  In addition, the Demographic and Health Survey (SADHS) projected that more 

South Africans will die from heart-related conditions than from Aids by the year 2010 

(Department of Health, 2002).  

 

Hypertension is a risk factor for heart attacks, stroke, left ventricular hypertrophy, renal 

disease, and blindness (Steyn, 2005). This necessitates stringent measures in order to 

control this disease. The presence of uncontrolled hypertension together with additional 

risk factors of other lifestyle diseases may result in complications, leading to damage of 

different organs in all population groups in South Africa. 

 

 Hypertension correlates with age, waist:hip ratio and smoking (Steyn, 2005).  Van 

Rooyen et al., (2000) also reported an association between hypertension and malnutrition 
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in terms of high intakes of saturated fat, animal protein, sodium and vitamins A and B6. 

While nutrition and lack of physical activity may be the driving factors, genetic 

predisposition contributes to the etiology of hypertension among black South Africans. 

Seedat, (1996) reported that black people have an abnormal transport mechanism of 

sodium and a low renin activity.  

 

Fifty percent of all hypertensive patients have been reported to be insulin resistant 

(Ginsberg, 2000). In addition, hypertension and insulin resistance have been observed in 

metabolic syndrome, obesity, pregnancy, infections or severe illness, stress and in the 

excessive use of steroids (http://www.medicinenet.com/insulin_resistance/article.htm 

10/10/2008). Factors that predispose to one also contribute to the other. These two 

conditions are disease states that can be provoked by genetic factors (Rotimi et al., 1999) 

and/or life style. It is reported that a western lifestyle contributes to the pathogenesis of 

hypertension and insulin resistance across Africa (Basciano et al., 2005).  

   

Previous studies where hypertension and insulin resistance were observed after high-fat 

feeding focused on obesity (Dobrian et al., 2000) and type II diabetes (Srinivasan et al., 

2005). From the polygenic perspective, it is clear that the monogenic models of 

hypertension and insulin resistance cannot represent the human disease overtly (Buettner 

et al., 2006). Furthermore, models of these disorders generated by pharmacologic 

measures, such as the dexamethasone mouse model of hypertension (Carlos et al., 2003), 

alloxan and streptozotocin rat models of insulin resistance and diabetes (Lenzen, 2008; 

Shafrir et al., 2003) are unphysiologic in many respects (Buettner et al., 2006).  
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There is sufficient evidence that endothelial dysfunction is implicated in the development 

of hypertension and insulin resistance. Recent studies have shown increased vascular 

responses to vasoconstrictor agents (Katakam et al., 2000; Ghatta and Ramarao, 2004) in 

insulin resistance rodents. It has also been shown that hypertension is associated with 

increased contractility to potassium chloride (Viswanad et al., 2006), angiotensin II 

(Ghatta and Ramarao, 2004; Viswanad et al., 2006) and phenylephrine (Ghatta et al., 

2005). Furthermore, relaxation due to acetylcholine (Ghatta and Ramarao, 2004; 

Viswanad et al., 2006) and sodium nitroprusside (Viswanad et al., 2006) are attenuated. 

It is however not clear whether the vascular dysfunction exists in insulin resistant 

individuals in the absence of hypertension and vice verse 

 
1.1 The purpose of the study 

Understanding the link between insulin resistance and hypertension may reveal a novel 

strategy for the management of cardiovascular diseases. The aim of this project was to set 

up a model to elucidate the interrelations between hypertension and insulin resistance. 

The objectives included: 

• To develop a model for hypertension by high-fat feeding. 

• To determine whether the animals fed the high-fat diet will become insulin 

resistant after six week. 

• To set up an experimental system to evaluate vascular responses in a model of 

diet induced hypertension. This model should in future be used to study vascular 

reactivity in hypertensive animals in the absence or presence of insulin resistance 

and in normotensive insulin resistant animals.  
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                                 CHAPTER TWO 

                             LITERATURE REVIEW 

2.1 Hypertension 

Hypertension is a sustained increase in arterial blood pressure that is usually indicated by 

a systolic and diastolic blood pressure of 140 mmHg and 90 mmHg respectively, or 

above in human. Hypertension is classified as either primary (essential) or secondary 

hypertension. Primary hypertension is a hypertensive state in which no particular medical 

cause is established. Secondary hypertension, on the other hand, is a hypertensive state 

caused by an underlying disease condition such as kidney disease, pheochromocytoma, 

paraganglioma or genetic mutation. The rest of this discussion will focus on primary 

hypertension. Hypertension in humans is a well known major risk factor for 

cardiovascular diseases. High blood pressure is known as a silent killer because the 

condition may be life threatening by the time the symptoms appear. 

   

 It is estimated that a quarter of the world’s adult population is hypertensive, and this 

number is projected to increase to about 30% by 2025 (Kearney et al., 2005). More than 6 

million South Africans suffer from high blood pressure.  Obesity is considered a serious 

health problem because it is an important factor that triggers essential hypertension (Hall, 

2003). The Framingham Heart Study suggests that hypertension can be attributed to 

obesity in 78% of men and 65% in women hypertensive patients (Kannel, 2000). Hall et 

al., (2002) reported that approximately 97 million people in the United States are obese.  
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Ridgway et al., (2004) reported that about $122.9 billion is spent annually in the United 

States on hypertension and other obesity-related health issues, such as heart disease, type 

II diabetes, and stroke.  

 

2.1.1 Risk factors that can induce hypertension. 

There is no specific medically known cause of essential hypertension. There are however, 

quite a number of risk factors that can predispose an individual to hypertension. They are 

intake of diets high in fats, carbohydrates, salt and low intake of calcium, potassium and 

magnesium. Smoking, little or no exercise, stress, insulin resistance, age and a hereditary 

component are also risk factors.  

 

2.1.2    Causes of hypertension 

It has been postulated that obesity can cause abnormalities in renal function such as 

increased renal sodium reabsorption and an impaired pressure natriuresis relation which 

results in hypertension (Hall, 2003). On the contrary, leptin deficiency as in the ob/ob 

mouse, leads to decreased arterial pressure, despite severe obesity (Mark et al., 1999). 

This suggests that increased leptin levels may be a potential cause of blood pressure 

elevation. However, the mechanisms that link obesity with high blood pressure and 

altered renal function have not been fully elucidated. For example, Zucker rats have 

decreased plasma renin activity (PRA) as opposed to the high plasma renin activity 

observed in humans (Tuck et al., 1981). It has been suggested by previous studies that the 

diet-induced obese animal models appear to be the most relevant with regard to human 

obesity. Models of obese rat (Carroll et al., 2006) fed a high-fat diet, are used extensively 
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to study obesity related hypertension because they closely mimic some of the cardio-renal 

changes found in obese humans.  

 

Studies suggest that obesity impairs renal-pressure natriuresis as the result of increased 

tubular sodium reabsorption (Hall, 2003; Strazzullo et al., 2003). These abnormalities of 

renal function may be partly dependent on the activation of the renin-angiotensin-

aldosterone system (RAAS). Some of the major characteristics associated with obesity 

related hypertension in humans are the activation of the RAAS, (Hall, 1994) high levels 

of circulating leptin, (Hirose et al., 1998) reduced growth hormone (GH) concentration, 

(Kopelman et al., 1985) and an activation of the sympathetic nervous system (Tuck, 

1992). High Angiotensin II levels due to the conversion of angiotensin I to Angiotensin II 

by angiotensin converting enzymes (ACE) from pulmonary and renal endothelium 

surfaces, has been shown to interfere with phosphoinositide 3-kinase (PI3K) activation in 

vascular smooth muscle cells (Folli et al., 1997). Angiotensin II is part of the RAAS and 

causes constriction of blood vessels with the concomitant rise in blood pressure. It 

stimulates the release of aldosterone from the adrenal cortex, which subsequently cause 

sodium retention in the distal nephron with resultant increase in blood pressure. Figure 

2.1 shows the possible mechanisms by which angiotensin in its active form, angiotensin, 

II can cause an increase in blood pressure.     

 

 Studies on regulatory factors that participate in the pathogenesis of hypertension in 

spontaneously hypertensive rats (SHR) have shown that in  the presence of normal 

plasma renin activity (PRA), angiotensin II (Ang II) plays a key role in the pathogenesis 
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of the increased blood pressure (Reckelholf and Romero, 2003; Reckelholf et al., 2000). 

Angiotensin II specifically induces an increase in blood pressure via oxidative stress and 

endothelin I. Obesity related hypertension is further often associated with dyslipidaemia, 

indicating low levels of HDL-C-cholesterol (Glueck et al., 1980) and higher levels of 

triglycerides (Van Itallie et al., 1985). In addition, hyperlipidaemia associated with 

hypertension may induce glomerulosclerosis in the kidney and eventually alter kidney 

function (Grone et al., 1993). 

 

Figure 2.1: The renin-angiotensin system (RAS) or the renin-angiotensin-aldosterone system 
(RAAS) is a hormone system that regulates blood pressure and water balance. When blood 
pressure is low, the kidneys secrete renin. Renin stimulates the production of angiotensin. 
Angiotensin II causes blood vessels to constrict resulting in increased blood pressure. Angiotensin 
I is converted to angiotensin II by the enzyme angiotensin –converting enzyme (ACE). ACE is 
the target for inactivation by angiotensin –converting enzyme inhibitor drugs; which reduces the 
production of angiotensin II. Angiotensin II causes increase in blood pressure by stimulating 
sympathetic activity, tubular sodium retension, and absorbtion, water retention, potassium 
excretion, aldosterone secretions antidiuretic hormone secretion and arteriolar vasoconstriction. 
http://en.wikipedia.org/wiki/Renin-angiotensin-aldosterone_system. 12/02/09.  
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Oxidative stress has been implicated in the pathophysiology of hypercholesterolemia, 

diabetes, and hypertension (Steinberg et al., 2002; Cai et al., 2000).  Involvement of 

oxidation has been reported in animal models of spontaneous hypertension (Wu and 

Jourlink, 2002), renovascular hypertension (Lerman et al., 2001), the deoxycorticosterone 

acetate-salt model (Trolliet et al., 2001), and obesity-related hypertension (Dobrian et al., 

2001). There is evidence that high doses (Laursen et al., 1997) or subpressor doses 

(Reckelhoff et al., 2000) of angiotensin II induce oxidative stress. There are also data that 

indicate increased oxidative stress in human essential hypertension (Sagar et al., 1992; 

Russo et al., 1998) as well as in obese hypertensive patients, (Van Gaal et al., 1995) 

which may contribute to the development of atherosclerosis or other cardiovascular 

diseases. Data from obesity prone rats shows a 2 fold increase in plasma renin activity, 

which indirectly suggests high circulating levels of angiotensin II in obese hypertensive 

animals (Dobrian et al., 2001). Oxidative stress has been postulated to be a common link 

that underlies both obesity and hypertension.  Increased levels of circulating renin, and 

possibly angiotensin II, have been suggested to be associated with oxidative stress.  It is 

not clear whether oxidative stress is a consequence of obesity induced hypertension, but 

the possibility that it mediates the effect of angiotensin II on blood pressure has been 

reported (Dobrian et al., 2001). 

 

Several Quantitative trait loci (QTLs) for hypertension have been mapped (Hilbert et al., 

1991; Jacob et al., 1991; Pravenec et al., 1995) in spontaneous hypertensive rats (SHR) 

and stroke-prone SHR, but the identity of the underlying genes remains unknown 

(Aitman et al., 1999). QTLs linkage for hypertension, hypertriglyceridaemia, reduced 
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high density lipoprotein (HDL) phospholipids and the metabolic defects in adipocytes 

map to a single region close to the telomere of chromosome 4 (Aitman et al., 1997; 

Pravenec et al., 1995; Bottger et al., 1996; Kovacs, 1996).  

 

Based on recent progress of research on adipocytes, visceral obesity plays a critical role 

in the development of insulin resistance. It is suggested that angiotensinogen, one of the 

adipokines such as TNF- α and nonesterified fatty acid (NEFA), produced by visceral fat, 

might contributed to the development of insulin resistance, in the muscle and adipose 

tissues (Rahmoni et al., 2004). While adipocytes produce adipokines such as 

angiotensinogen, TNF-α, NEFA, resistin and leptin that have the potential to decrease 

insulin sensitivitity (Houstis et al., 2006; Lee et al., 2009; fig.2.2), it also secrete 

adiponectin and adrenomedullin (AM) which increase insulin sensitivity (Fujita, 2007). It 

is plausible that imbalance in the production of these adipokines may lead to insulin 

resistance.  
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Figure 2.2: The inflammatory hypothesis that under obese state, fat may induce insulin 
resistance. Some of the molecules secreted by adipose tissue are pro-inflammatory 
cytokines. The most important adipocytokines is adiponectin which is involved in 
systemic signaling (Lee et al., 2009)  
 

 

There are several evidence that cardiovascular disease states such as hypertension, 

coronary artery disease, and myocardial infarction are strongly associated with 

endothelial nitric oxide synthase (eNOS) gene polymorphism (Miyamoto et al., 1998; 

Hingorani et al., 1999; Shimasaki et al., 1998; Cai et al., 1999; Wang et al., 1996; Shoji 

et al., 2000) and impaired nitric oxide (NO) synthesis (Cai et al., 1999; Wang et al., 

1996). Furthermore, the impaired NO synthesis, under some conditions is directly related 

to the polymorphism (Ohtoshi et al., 2002; Philip et al., 1999) which could predispose to 

insulin resistance (Sartori et al., 1999; Scherrer et al., 1999). There is also evidence that 

partial deletion of the eNOS gene does not primarily alter insulin sensitivity or blood 

pressure in mice. Cook et al., (2004) in a recent study suggested, that partial eNOS 
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deficiency facilitates the development of insulin resistance and arterial hypertension 

when challenged with nutritional stress, providing further evidence for the importance of 

this gene in linking metabolic and cardiovascular disease. In humans, fat intake may 

induce endothelial dysfunction (Steinberg et al., 1997) due to the impairment of vascular 

nitric oxide synthesis. A  NO production defect was associated with the development of 

arterial hypertension (Cook et al., 2004). One of the pioneering studies shows that the 

inhibition of NO synthesis induced by administering of Nω-monomethyl-L-arginine of 

NĢ–nitro-L-arginine methyl ester (L-NAME) produced a notable vasoconstriction 

(Baylis et al., 1990; Romero et al., 1992; Vallance et al., 1989), sodium retension (Lahera 

et al., 1990; Lehera et al., 1991) with concomitantly sustained increased mean arterial 

pressure (MAP) (Baylis et al., 1990; Lahera et al., 1990; Romero et al., 1992; Vallance et 

al., 1989). In summary, a decrease in NO with concomitant elevation of blood pressure 

due to pathological conditions in human was assumed to be linked to endothelial 

dysfunction (Lehera et al., 1991). The specific metabolic alterations involved in this 

process are poorly understood (Reckelhoff, 2003).   

 

In the mid-1960s, Welborn and co-workers (1966) observed that hypertension was 

commonly associated with hyperinsulinaemia. It is known that hyperinsulinaemia can 

result in increased reabsorption of sodium and water by kidney tubular cells due to 

insulin action   and increased sympathetic activity (Defronzo et al., 1991; Williams 1994; 

Hall, 1994). This can be associated with a volume-dependent hypertension (Ginsberg, 

2000). However, it is still not clear how often volume-dependent hypertension is present 

in insulin resistant individuals and patients with type II diabetes (Ginsberg, 2000). This 
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was the basis for the speculation that increased insulin may contribute to the elevated 

blood pressure (Christlieb et al., 1985; Tuck, 1992). This speculation has been 

substantiated by additional evidence correlating hyperinsulinaemia with hypertension 

(Hwang et al., 1987; Sowers et al., 1991). Acute infusion studies suggested that insulin 

might elevate blood pressure through renal, neural, and/or secondary humoral 

mechanisms (DeFronzo, 1981; Kirchner, 1988; Morgan et al., 1993). It has also been 

reported that insulin levels predicted blood pressure elevation in healthy children 

(Taittonen et al., 1996). 

 

Another cause for hypertension in the insulin resistant patient is over activity of the 

sympathetic nervous system (Landsberg, 1999). Much evidence suggests that the 

sympathetic system is over reactive in obese and insulin resistant individuals, but it has 

not been shown that this is a primary defect in these individuals (Ginsberg, 2000). It has 

been reported that insulin, in association with increased sympathetic activity, can trigger 

renal sodium re-absorption (DeFronzo et al., 1991; Williams et al., 1994; Hall, 1994) 

leading to volume expansion. Thus, it is somewhat difficult to account for insulin 

resistance in obese patients with overreactive sympathetic nervous system without 

hypertension (Ginsberg, 2000). An alternative hypothesis to explain the pathogenesis of 

obesity induced hypertension is that chronic central nervous system–induced sympathetic 

activation links insulin resistance and hypertension (Rocchini et al., 2004). The 

sympathetic nervous system function is strongly influenced by dietary intake, which may 

be associated with high intakes of fat, salt and fructose. Fasting or caloric deprivation 

reduces sympathetic activity whereas overfeeding stimulates sympathetic activity (Young 
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et al., 1982).  Leptin, a hormone that is secreted from adipocytes in response to food 

intake, is also known to activate the sympathetic nervous system (Kuo et al., 2003). 

Leptin, acts at the level of the hypothalamus to increase blood pressure via its central 

sympatho-excitatory effects (Grassi, 2004; Rahmouni et al., 2005). 

 

Data from human and experimental animal models of hypertension provide evidence that 

alterations in the sympathetic control of heart rate, cardiac output, peripheral vascular 

resistance and renal sodium handling may integrally or independently, promote the 

development and progression of the hypertensive state (Amerena et al., 1998). However, 

there are studies that oppose the relevance of sympathetic overdrive in hypertension. For 

instance, microneurographic studies show that sympathetic overdrive is observed in 

patients without high blood pressure (Grassi et al., 2005), which suggests independence 

of hypertension.  It is important to note that adrenergic overdrive is not reported in 

secondary forms of hypertension like renovascular hypertension or in hyperaldosteronism 

(Grassi et al., 1998). The magnitude of the sympathetic activation is reported to be 

intensified when the hypertensive state is complicated by cardiac hypertrophy 

(Greenwood et al., 2001; Schlaich et al., 1992). Futhermore, obesity in the absence of 

blood pressure elevation, shows features of adrenergic activation, like increased resting 

heart rate values and elevated plasma norepinephrine values (Young et al., 1982). 

 

There is consistent evidence that microalbuminuria, is an aspect of metabolic syndrome 

implicated in hypertension (Ferrannini et al., 1987; Chen et al., 1998). Indeed prospective 

studies stated that elevated systolic blood pressure is a significant determinant of 
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microalbuminuria development (Metcalf et al., 1997). People with microalbuminuria that 

have not developed diabetes manifested multiple cardiovascular disease risk factors, like 

hypertension, dyslipidaemia (characterized by low HDL-C and elevated triglyceride) and 

high plasma levels of insulin (Mykkanen et al., 1994), suggesting that microalbuminuria 

is an important component of the cardiovascular metabolic syndrome.  

 

There is a correlation between hypertension and impaired glucose tolerance (IGT) in 

diabetic patients (Reaven et al., 1990; Haffner et al., 1992).  Systolic blood pressure has 

shown a strong correlation with both fasting plasma glucose (FPG) and glucose levels 

measured 2 hours post an oral glucose ingestion (Reaven et al., 1990). The risk of 

hypertension is higher in lean men with impaired fasting glucose compared to those with 

normal fasting glucose (Suematsu et al., 1999). The reason for the association between 

hypertension and hyperglycaemia is still controversial because, it is not clear whether the 

high levels of blood glucose alone is responsible for the progressive development of 

hypertension or whether additional factors such as insulin resistance, dyslipidemia and 

obesity  are involved (Invitti, 2003). 

 

2.1.3    Treatment of hypertension 

(a) Lifestyle modification (nonpharmacologic treatment)  

The immediate treatment of mild to moderate hypertension starts with a change of 

lifestyle, weight reduction and regular aerobic exercise. Exercise improves blood flow, 

enhances reduction of resting heart rate and blood pressure. Nonpharmacological 

treatment includes a decrease in dietary sugar and salt intakes, and discontinuation of 
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tobacco use and alcohol consumption. An increase in calcium and potassium intakes, and 

DASH (dietary approaches to stop hypertension), a diet which is rich in fruits and 

vegetables and low fat or fat-free dairy foods are beneficial in managing hypertension. 

The supplementation of antioxidants, particularly in the form of fresh fruit and 

vegetables, reduces blood pressure (Ceriello, 2008). In most cases lifestyle modification 

takes precedence over medication unless hypertension is severe. However lifestyle 

changes are still recommended even   concomitantly with drug therapy.  

 

(b) Pharmacologic treatment 

There are five main classes of antihypertensives for treating hypertension. Each of these 

classes has its own merits, disadvantages and salient properties that influence the choice 

for a particular patient. They act via different or related mechanisms to lower blood 

pressure.  

These classes are:  

• Diuretics  

• Beta-blockers 

• Calcium channel blockers  

• Angiotensin converting enzyme inhibitors (ACEI)  

• Alpha1-blockers 

The goal of treating hypertension is to reduce the incidence of hypertensive 

complications such as coronary heart disease and stroke. An ideal drug should achieve 

these ends, as well as simply lowering blood pressure.  
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2.1.4   Vascular reactivity in hypertension 

An increase in peripheral resistance has been postulated to be due to an increase in alpha-

adrenergic mediated vasoconstriction, a decrease in beta-adrenergic vasodepressor 

activities or both (Field and Soltis 1985). These changes have been suggested to be due to 

the inability of the vascular smooth muscle cell to handle calcium. In addition, it has been 

reported that changes in vascular adrenergic responsiveness as well as maximal 

potassium chloride induced contraction in the SHR are due to increases in blood pressure 

(Field & Soltis 1985). They also suggested that the decrease in beta-adrenergic 

responsiveness may be a specific defect in the beta-adrenergic system rather than the 

defect in vascular smooth muscle cells to sequester calcium. 

   

Several factors have been hypothesised to be responsible for the increase in peripheral 

vascular resistance in spontaneously hypertensive rats. These include an increase in 

sympathetic nervous system activities (Nilsson & Folkozo, 1982), alteration in blood 

vessel structures (Folkow et al., 1973), and an increase in vascular smooth muscle 

reactivity (Field et al., 1972; Bohr, 1974). There is evidence that the increase in 

responsiveness of vascular smooth muscle of SHR to norepinephrine is due to an increase 

in the permeability of calcium in the cell membrane (Noon et al., 1978). A recent report 

attributes altered vascular reactivity in the thoracic aorta of rats fed dietary fat to 

oxidative stress (Viswanad et al., 2006). It has been hypothesized that the altered vascular 

reactivity in SHR is an intrinsic defect of the vascular smooth muscle cells independent 

of blood pressure. In addition, prehypertensive SHR treated with reserpine to prevent the 
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increase in blood pressure exhibited altered vascular reactivity (Cheng and Shibata, 

1981).  

 

There is sufficient evidence of increased vascular responses to vasoconstrictor agents in 

insulin resistance rodents. An increase in blood pressure has been associated with 

increased contractility to phenylephrine (Smith et al., 2006) as well as attenuated 

relaxation induced by acetylcholine and isoproterenol (Paula et al., 2006). In addition, 

vascular studies have suggested that hypertension developed in high-fat diet fed rats may 

be linked to enhanced vasoreactivity to various spasmogenic and antispasmogenic agents 

(Ghatta et al., 2005).  

 

2.2    Insulin resistance 

Insulin resistance, in classic terms is the inability of insulin to stimulate glucose uptake in 

insulin sensitive peripheral tissues. The gold standard for assessment of insulin resistance 

in medical research is the hyperinsulinemic euglycemic clamp which measures the 

amount of glucose necessary to compensate for an increased insulin level without causing 

hypoglycemia. This technique is rarely used in clinics because it is cumbersome. 

Alternative techniques for determining insulin sensitivity which correlate very well with 

the hyperinsulinemic euglycemic clamp have evolved. The first was the Homeostatic 

Model Assessment (HOMA). The most recent method is the quantitative insulin 

sensitivity check index (QUICKI). These techniques apply both fasting insulin and 

glucose levels to calculate insulin resistance.  According to the WHO guidelines, after 2 

hours of a glucose tolerance test a glycaemic level  less than 7.8 mmol/l is considered 

 

 

 

 



 xxxv

normal, a glycaemia of between 7.8 mmol/l to 11.0 mmol/l is considered as Impaired 

Glucose Tolerance (IGT) and a glycaemia of greater than or equal to 11.1 mmol/l  is 

considered Diabetes Mellitus. 

 

 The definition in the previous paragraph is different from the clinical syndrome known 

as the insulin resistance syndrome which integrates the additional factors such as insulin, 

lipid, protein metabolism, endothelial function and gene expression (Deedwania, 1998; 

Opara and Levine, 1997). The clinical and laboratory abnormalities that represent this 

syndrome consist of Type II diabetes mellitus, central obesity, dyslipidaemia (increased 

triglycerides, decreased HDL, and increased small dense LDL), hypertension, increased 

prothrombotic and antifibrinolytic factors (i.e. hypercoagulatability) and a predilectation 

for heart disease (Cefalu, 2001). Insulin resistance as a fundamental aspect of the etiology 

of type II diabetes was first suggested by Prof. Wilhelm Falta and was published in 

Vienna in 1931(Falta and Boller, 1931). This suggestion was confirmed in 1936 by Sir 

Harold Percival Himsworth of the University Collage hospital Medical Center in London 

(Himsworth, 1936). Insulin resistance implicating a wide array of other pathophysiologic 

sequel including hypertension, hyperlipidaemia, atherosclerosis (i.e., the metabolic 

syndrome, or syndrome X), and polycystic ovarian disease was introduced by Reaven 

(Reaven, 1988).   

 

 Succinctly, insulin resistance is a clinical state in which a normal or elevated insulin 

level produces an impaired biological response. In addition, there are a number of other 

conditions associated with insulin resistance which present specific clinical 
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manifestations such as polycystic ovarian syndrome, pregnancy or glucocorticoids 

therapy (Hunter et al., 1998), haemochromatosis, hypercortisolism and a sedentary 

lifestyle which can lead to obesity.  These conditions may include some or none of the 

features of the insulin resistance syndrome (Hunter et al., 1998). In summary, insulin 

resistance can be generally viewed as a molecular and genetic abnormality involving 

defective insulin signaling and glucose transport into cells (Ginsberg, 2000). 

 

2.2.1   Causes of insulin resistance 

In most cases of insulin resistance, the causes are not known. However, there is strong 

evidence of inherited traits based on the rates of insulin resistance and type II diabetes 

among the close relatives of type II diabetic patients. Substantial evidence exists that 

insulin resistance is related to intake of a high carbohydrate diet (Parillo et al., 1992, 

Grundy and Unger, 1992). In addition, a recent study shows that glucosamine may cause 

insulin resistance (Jenkins et al., 2007). Glucosamine has been reported to increase flux 

through the hexosamine pathway, causing insulin resistance and disturbances similar to 

diabetic glucose toxicity (Bailey and Turner, 2004). In addition, insulin resistance 

induced by glucosamine could not be reversed by three agents (metformin, 

peroxovanadium and d-pinnitol) known to enhance or partially mimic the effects of 

insulin (Bailey and Turner, 2004). Oral glucosamine is used in the treatment of 

osteoarthritis.  

 

 Based on recent research on adipocytes, visceral obesity also plays a critical role in the 

development of insulin resistance (Fujita, 2007). At the molecular level, causes of insulin 
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resistance have been identified as an excessive phosphorylation of serine residues of the 

insulin receptor, mutations in the insulin receptor gene or insulin receptor substrate-1 

(IRS-1), a cellular adenosine depletion, a deficiency in peroxisome proliferator-activated 

receptor gamma (PPAR-gamma) and a defect at the glucose transport level (Dunaif et al., 

1997). It has been postulated, based on the evidence from previous studies that the insulin 

resistance syndrome is caused by excessive accumulation of fat in intra-abdominal 

adipocytes (Bjorntorp, 1990; Després et al., 1989; Kissebah, 1991). Some other studies 

reported that muscle triglyceride content is increased in insulin resistant humans and rats; 

this observation precipitated the alternative hypothesis that increased muscle triglyceride 

content is responsible for the insulin resistance (Jacob et al., 1999; Koyama et al., 1997). 

It is documented in humans, that the triglyceride content of muscle correlates directly 

with insulin resistance, and the fatty acid composition of muscle phospholipids influences 

insulin insensitivity (Borkman et al., 1993).  

  

Insulin resistance in obesity and type II diabetes is manifested by decreased insulin-

stimulated glucose transport and metabolism in adipocytes and skeletal muscle and by 

impaired suppression of hepatic glucose output (Reaven, 1995). The initial molecular 

signal for insulin action shown in figure 2.2, involves activation of the insulin receptor 

tyrosine kinase, which results in phosphorylation of insulin receptor substrates (IRSs) on 

multiple tyrosine residues (Kahn and Flier, 2000). These phosphotyrosine residues act as 

docking sites for many SH2 domain–containing proteins, including the p85 regulatory 

subunit of phosphoinositide 3' kinase (PI3K) (Kahn, and Flier, 2000). It is suggested that 

the binding of the p110 catalytic subunit of PI3K to p85 activates the lipid kinase that 
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promotes glucose transport (White, 1998). The serine phosphorylation cascade initiated 

by PI3-kinase involves activation of PI3K-dependent serine/threonine kinases (PDK), 

and, in turn, Akt and results in the translocation of intracellular GLUT4 to the cell 

surface. It is the increased amount of GLUT4 on the cell plasma membrane that results in 

an increased rate of glucose transport into the cell.  

 

Figure 2.3: Insulin signaling pathways involved in stimulating glucose transport. Insulin 
binding to the IR results in phosphorylation of tyrosine residue on the receptor and 
substrates such as IRS-1. Docking of the regulatory subunit of PI3-kinase to 
phosphostyrosine residue of IR-1 activates its serine/threonine kinaseactivity and the 
phosphorylation cascade involving PDKs and Akt. These steps are necessary for the 
recruitment of intracellular pools of insulin-responsive glucose transport to the plasma 
membrane. www.endotext.org/.../diabetes  14/diabetes 14.html 7/1/09. 
 

The glucose transporter (GLUT4) is down regulated in the adipocytes of all forms of 

obesity and diabetes, thus it is the main factor contributing to the impaired insulin action. 

On the contrary, in the skeletal muscle of obese and diabetic humans, GLUT4 expression 

is normal (reviewed in Shepherd et al., 1999) and defective glucose transport appears to 

be due to impaired translocation, docking, or fusion of GLUT4-containing vesicles with 
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the plasma membrane (Zierath et al., 1997; Hansen et al., 1998). It is further suggested 

that the insulin action defect in muscle may involve impaired activation of PI3K, possibly 

due to elevations in protein kinase C theta (PKC ) (Griffin et al.,1999), or acquired loss 

of PI3K activation in muscle as a result of a high-fat diet (Zierath et al., 1997). PKC theta 

inhibits insulin receptor substrate (IRS) activation and thus prevents glucose uptake in 

response to insulin action.  

 

The spontaneously hypertensive rat (SHR) has been proposed as a model of the insulin 

resistance syndromes because it develops insulin resistance, hypertriglyceridaemia, 

abdominal obesity and hypertension (Iritani et al., 1977; Rao et al., 1993; Aitman et al., 

1997). In SHR adipose tissue, defective insulin action is accompanied by a defect in 

catecholamine-mediated lipolysis (Reaven et al., 1989), an additional feature of insulin 

resistance syndromes in humans (Reynisdottir et al., 1994; Reynisdottir et al., 1995;  

Bougneres et al., 1997). It is suggested that the mechanism for defective insulin action in 

SHR is in part attributable to QTLs on other chromosomes apart from chromosome-4 

(Aitman et al., 1997). However, chromosome 4-encoded insulin resistance might be due 

to either primary effects through the peroxisome proliferator-activated receptor-gamma 

(PPARγ) pathway, or secondary to the disturbance in cellular fatty acid metabolism 

(Aitman et al., 1999). 

 

There is evidence that TNF-α signaling impairs insulin signaling, in part through serine 

phosphorylation of IRS-1 (Peraldi et al., 1999; Hotamisligil, 1999), and can thus reduce 
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GLUT4 gene expression, so a plausible cellular basis for TNF-α as a mediator of insulin 

resistance has been established (Kahn and Flier, 2000).  

 

 Hyperinsulinaemia per se can cause insulin resistance by down regulating insulin 

receptors and desensitizing post receptor pathways, as was confirmed by overexpression 

of insulin in livers of otherwise normal transgenic mice (Patti et al., 1996). It is reported 

that exposure of cells to insulin decreases GLUT4 receptors on cell membranes (Flore-

Riveros, 1993). This leads to a greater need for insulin leading to fewer glucose receptors. 

This condition can be reversed in muscle tissues by exercise (MacLean, 2002), but can 

transpire to insulin resistance if neglected. Current evidence suggests that insulin 

resistance is associated with deficiency of leptin. Severe insulin resistance is a well 

known feature of deficiency of leptin or its receptor in the diabetic or obese mouse 

strains, and these models were among the first to be investigated for the pathogenesis of 

insulin resistance in the early 1970s (Kahn and Flier, 2000).   

 

It has also been hypothesized that the sympathetic overactivity occurring in metabolic 

syndrome is dependent on the hyperinsulinaemia and the related insulin resistance state 

characterizing the disease (Landsberg, 1996). This hypothesis is on the basis that the 

acute systemic administration of insulin provokes sympathetic stimulation without 

affecting glucose levels in experimental animals as well as in humans (Landsberg, 1996; 

Egan, 2003; Scherrer et al., 1997). It was reported that hyperinsulinaemia act centrally to 

enhance the activity of the sympathetic nervous system (Reaven et al., 1996; Moan et al., 

1995). However, there are reports that the sympathetic-insulin crosstalks are not straight 
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forward. Thus, whether the sympathetic activation induces the insulin resistance state or 

poses as an epiphenomenon of the metabolic alteration is still unknown (Landsberg, 

1996; Egan, 2003; Jamerson et al., 1993). 

 

2.2.2   Treatment of insulin resistance 

The treatment of insulin resistance invariably, as in the case of hypertension, involves 

both pharmacological and non-pharmacological interventions. The primary treatments for 

insulin resistance are non-pharmacological interventions in the form of exercise and 

weight loss. Switching to a low–glycemic or low carbohydrate diet may attenuate insulin 

resistance in some individuals (Sebely et al., 2008). Some polyunsaturated fatty acids 

such as omega-3 may promote or enhance insulin sensitivity (Gadja et al., 2007).  

   

There are three main classes of antihyperglycemic drugs for treating insulin resistance. 

They act via different or related mechanisms to lower blood glucose levels. These classes 

are:  

• Biguanides-primarily suppress hepatic glucose production and intestinal glucose 

absorption; activates AMP-activated protein kinase (AMPK), a liver enzyme that 

is vital in insulin signalling, eg. metformin. 

• Thiazolidinediones-decrease insulin resistance by activating peroxisome 

proliferator-activated receptors gamma (PPARγ). Examples are rosiglitazone, 

pioglitazone and troglitazone 

• Sulfonylureas-act by increasing insulin release from the beta cells in the 

pancreas. Examples are acetohexamide, tolbutamide and chlorpropamide. 
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The drugs used for the treatment of insulin resistance presently are those approved for 

type II diabetes such as metformin, glyburide and thiazolidinediones. Although 

metformin is commonly prescribed, the Diabetes Prevention Program shows that exercise 

and diet were approximately twice as effective as metformin in reducing the risk of type 

II diabetes development (Knowler et al., 2002).   

 

2.2.3 Hypertension and insulin resistance 

Hypertension and insulin resistance have been documented as two main phenomena 

occurring in parallel in both human (Reaven, 1991) and in rodents (Bhanot and McNeil, 

1996). It is reported that among patients with hypertension, insulin resistance is present in 

all of those who are obese and in about one half who are not obese (Kaplan, 2000). 

Although hypertension and insulin resistance may probably share some features, the 

relationship between hypertension and insulin resistance are better discussed separately. 

Epidemiological studies indicate that insulin resistance and arterial hypertension are 

related (Lucas et al., 1985), suggesting the possibility of a common underlying 

mechanism. From the clinical point of view, and experimental observations, it was 

suggested that insulin resistance in association with metabolic impairments are directly 

related to the development of hypertension (Reaven, 1991; Reaven et al., 1996). 

Although high blood pressure and high insulin levels have been shown to be associated, 

independently of weight or body mass index, the link between obesity and both insulin 

resistance and hypertension further complicates the relationship between insulin 

resistance and hypertension (Ginsberg, 2000).  Higher fasting and postprandial insulin 

levels have been observed in untreated essential hypertensive patients than normotensive 
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subjects irrespective of body mass; indicating a direct correlation between plasma insulin 

concentrations and blood pressure levels exists (Ferrannini et al., 1987; Shen et al., 

1988). Also, in genetic models of hypertension such as the Dahl salt sensitive 

hypertensive rat (Kotchen et al., 1991), the spontaneously hypertensive rat (Reaven et al., 

1991), and the Zucker obese hypertensive rat strain (Standley et al., 1993), insulin 

resistance and hyperinsulinaemia exist. 

  

Studies have suggested a link between hyperinsulinaemia, increased sympathetic nervous 

system activity, and obesity-related hypertension (Rocchini et al., 1999; Kriger et al., 

1988). Insulin resistance, i.e., resistance to insulin’s ability to stimulate glucose uptake, 

has been speculated to be the common metabolic abnormality shared by these three 

conditions. This hypothesis is supported by reports that document a relation between 

insulin resistance and hypertension (Pollare et al., 1990; Shen et al., 1988) in the absence 

of obesity and/or of diabetes mellitus (Ferrannini, 1987; Capaldo et al., 1991).  

 

Studies (Pasquali et al., 2002; Chang et al., 1983) demonstrated that hyperinsulinaemia 

and insulin resistance are common features of a large number of patients affected by 

polycystic ovary syndrome (PCOS). In addition to hyperinsulinaemia and insulin 

resistance, altered first-phase insulin secretion, impaired glucose tolerance, 

dyslipidaemia, hypertension and impaired fibrinolysis have also been described in PCOS 

(Talbott et al., 1995; Dunaif et al., 1997). The origin of insulin resistance in PCOS, which 

in recent years has become established as a feature of this syndrome, is still a matter of 

debate.  
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Mechanisms for the development of hypertension in insulin resistance cum 

hyperinsulinaemia include activation of the sympathetic nervous system, renal sodium 

retention, altered transmembrane cation transport, growth-promoting effects of vascular 

smooth muscle cells, and vascular hyperreactivity (Hunter et al., 1998; Reaven et al., 

1996). Keen et al., (1996) reported that insulin-induced hypertension in rats requires a 

normal ability of the rat to synthesize thromboxane. It has been hypothesized that 

hyperinsulinaemia/insulin resistance may cause an increase in blood pressure stimulating 

increase in the activity of endothelium-derived vasoconstrictors, such as thromboxane 

(TXA2) (Galipeau et al., 2001). Further evidence suggested that vascular smooth muscle 

cell [Ca2+]/[Mg2+] ratio is increased in insulin resistance states, and this promotes  

insulin resistance and hypertension (McFarlane et al.,2001).  

 

Despite the myriads evidence showing a correlation between insulin resistance and 

hypertension, a number of experimental observations suggest that the relation between 

insulin resistance and obesity induced hypertension is not so straightforward (Ferrannini 

et al., 1990; Hall et al., 1990). Some epidemiologic studies do not portray a correlation 

between plasma insulin levels and systolic blood pressure (Muller et al., 1993). High 

insulin levels alone seam insufficient to substantially raise blood pressure. For instance, 

chronic hyperinsulinaemia (by infusion) does not induce hypertension in dogs, even in 

the presence of a high salt intake, obesity, or reduced renal mass (Hall, 1994; Hall et al., 

1995). Invariably, humans with insulinoma do not become hypertensive and their blood 

presssure does not fall after successful surgery (O’Brien et al., 1993). Two weeks 
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administering of insulin to obese hypertensive subjects who were insulin resistant had a 

small blood pressure lowering effect (Heise et al., 1998). 

 

It is further suggested that if hyperinsulinaemia goes hand in hand with insulin resistance, 

and insulin resistance is linked to hypertension, it is expected that hypertensives would 

have higher insulin levels than normotensives (Cubeddu, and Hoffmann, 2002). 

Therefore, insulin concentrations may be correlated with blood pressure (BP) levels 

(Cubeddu, and Hoffmann, 2002). However the results are inconsistent. Rocchini et al., 

(2004) concluded in their study that obesity induced hypertension and obesity induced 

insulin resistance are not directly related. In addition, insulin resistance is mediated 

through the central and or peripheral alpha-2-adrenoceptors, whereas hypertension is 

mediated through α-1- and or ß-adrenoceptors (Rocchini et. al., 2004). These 

contradictory findings suggest that, if insulin is important in the pathogenesis of 

hypertension, then inter-patient variability coupled with additional factors may be playing 

significant roles (Moan et al., 1995).  

 

The relationship between insulin and hypertension seen in essential hypertension does not 

occur with secondary hypertension (Reaven et al., 1991; Sech et al., 1992). Accordingly, 

insulin resistance and hyperinsulinaemia are not consequences of hypertension, but, 

instead, a genetic predistribution may contribute to both disorders (McFarlane et al., 

2001). It is therefore a possibility that there could be a genetic susceptibility to the 

development of hypertension or to the effects of insulin on blood pressure (Kaplan, 

2000). 
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In summary, the relationship between hypertension and insulin resistance is well 

documented. However, the correlation between blood pressure and plasma insulin levels 

has been demonstrated to be inconsistent and apparently weak (Cefalu, 2007). There is 

little evidence that chronic hyperinsulinemia causes blood pressure elevations in humans 

(Cefalu, 2007; Hall et al., 1999). It has been shown in animal and human studies that both 

acute and chronic hyperinsulinemia lasting for several weeks did not cause a hypertensive 

shift of pressure natriuesis or increased arterial pressure ( Hall et al., 1995; Hall,1993). 

Furthermore, insulin does not potentiate the blood pressure or kidney effects of 

norepinephrine or angiotensin II (Hall, 1993 and Hall et al., 1995). Available studies do 

not suggest that chronic elevated insulin levels in obesity can account for induced 

increases in blood pressure (Cefalu, 2007). Evidence show that most work on insulin 

resistance did focus on its role in the pathophysiology of type II diabetes mellitus. 

Unfortunately, the type of detailed mechanistic information describing the link between 

insulin resistance and dyslipidaemia is not available for the link between hypertension 

and insulin resistance (Ginsberg, 2000).  

 

The findings in gene-modified mouse models were paralleled by the observation that a 

strain of the spontaneously hypertensive rat (SHR) had mutations in CD36 (also known 

as FAT, as it encodes fatty acid translocase), that appeared to be associated with insulin 

resistance (Aitman et al., 1999). However, Gotoda et al., (1999) reported that the original 

SHR line, which is insulin resistant, has no defects in its CD36 gene. This is an 

irrefutable appeal for further developments in this area of investigation. Insulin sensitivity 

varies largely between normotensive and hypertensive patients; some hypertensives and 
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normotensives have a similar degree of insulin resistance and not all hypertensives are 

insulin resistant (Cubeddu, and Hoffmann, 2002). Insulin resistant hypertensives had BP 

levels comparable to that of non-insulin resistant hypertensives; suggesting that insulin 

resistance may not contribute to the BP levels of the hypertensive population.  

 

The link between endothelial dysfunction and the hypertension of the insulin resistance 

syndrome is enticing because of the possibility that defective vasodilatation actually 

produces insulin resistance (Ginsberg, 2000). Abnormalities in vasodilatation and blood 

flow have been suggested to provide a link between hypertension and insulin resistance 

(Ginsberg, 2000). Understanding the link between insulin resistance and hypertension 

may reveal a novel strategy for the management of cardiovascular diseases. It is 

important to reiterate, however, that the association between insulin resistance and 

hypertension is not as strong as between insulin resistance and dyslipidaemia; only about 

50% of hypertensive subjects are insulin resistant (Ginsberg, 2000). 

 

 

2.3    Roles of the diet in hypertension and insulin resistance 

Nutrition is a lifestyle element that can be regimented, and that can directly influence 

health; therefore, preventative nutrition and weight control should become the prime 

focus of consumers and prepared-food providers (Cummings et al., 1988). The 

westernization of diets, with an increase in availability of high calorie foods certainly 

contributes to the epidemic of metabolic syndrome (Basciano et al., 2005).  
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Every component in the dietary regimen has its own benefits and demerits. In most cases 

the metabolic abnormalities may be triggered by either the genetic predisposition or 

overindulgence.  The components of a constituted diet can pose diverse effects which 

may be beneficial or detrimental to health. For instance, Fields and Lewis, (1999) 

reported that a combination of high-fat diets with fructose resulted in increased 

circulating triacylglycerol, while fructose with copper deficiency resulted in a significant 

increase in blood cholesterol. However, hyperlipidaemia did not occur when starch was 

combined with fructose (Fields and Lewis, 1999).   

   

 2.3.1 High-fat diet 

In 1959, Masek & Fabry gave the nutritional description of a high-fat diet that would 

induce obesity. Dietary fat and its relation to obesity has been a controversial issue for 

several years because in the United States, the intake of fat appears to be declining, 

whereas the prevalence of obesity rises (Heini et al., 1997). There is no hard and fast rule 

to define the term high-fat diet. Conventionally, low-fat diets (LFD) have about 10% of 

the calories coming from fat, high-fat diets (HFD) have about 30-50% of calories coming 

from fat and very high-fat diets (VHFD) contain greater than 50% fat (Gadja et al., 

2007).  

 

Several studies have indicated that a high-fat diet increases body fat, with a substantial 

increase in serum leptin levels (Ahren et al., 1997; Bahcece et al., 1999). This increase in 

leptin could be one of the mechanisms by which dietary fat induces high blood pressure. 
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Some studies suggest that rats and mice fed a high-fat diet have increased visceral fat 

accumulation, whole body and muscle insulin resistance, and hyperinsulinaemia within 

4 weeks (Grundleger et al., 1982; Zierath et al., 1997). On the contrary, Kim et al., 

(2000) did not observe either significant effect on weight gain or fasting plasma glucose 

concentration after 4 weeks on a high-fat diet. Previous studies suggest that high-fat diets 

cannot cause hyperinsulinaemia, but most definitely will decrease glucose metabolism in 

peripheral tissues (Kraegen et al., 1986). There is evidence that a high-fat diet does not 

cause muscle insulin resistance unless energy intake is sufficiently high to result in 

increased visceral fat accumulation (Kim et al., 2000). Evidence exists that high-fat diets 

increase the hepatic triglyceride concentration with concomitant reduction of very low 

density lipoprotein (VLDL) secretion by 50% (Kalopissis et al., 1979). In addition, 

excess triglyceride due to decreased synthesis of VLDL in hepatic cells by high-fat diet 

intervention is suggested to form ketone bodies and carbon dioxide via an oxidative 

pathway (Mooney et al., 1981). Ordinarily, high-fat diet induced increase in muscle 

triglyceride content plays a less important role in causing muscle insulin resistance than 

does the increase in visceral fat (Kim et al., 2000). The degree of insulin resistance in 

insulin-sensitive tissues is at least in part dependent upon how much fat is deposited in 

these tissues (Hannele, 2003). While there is disparity as to whether an increase in 

visceral fat or muscle triglyceride causes muscle insulin resistance, there is interesting 

evidence that muscle insulin resistance induced by a high-fat diet is mediated by the diet 

per se rather than by visceral fat accumulation (Barnard et al., 1998).  
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There are a number of the mechanisms by which high-fat diet induce insulin resistance. 

High-fat diet reduces the number of insulin receptors and decreases the activity of the 

glucose transport system and the intercellular metabolism of glucose (Olefsky and 

Saekow, 1978). Further evidence shows that a high-fat diet decreases the activity of the 

intracellular enzymes implicated in fatty acid synthesis and suppresses their intracellular 

capacity to utilize glucose, which results in a blunted glucose response to insulin action 

(Lavau et al., 1979). A high-fat diet has been reported to decrease GLUT2 and 

glucokinase mRNA concentration in pancreatic β-cells, thus reducing the rate of glucose 

entering pancreatic cells and invariably poor insulin secretion (Kim et al., 1995).  

 

There is evidence that mice fed high-fat diets have shown reduced insulin-mediated 

glucose metabolism in muscle and adipose tissues (Han et al., 1997; Hansen et al., 1998; 

Tremblay et al., 2001). It is of major importance that chronic high-fat feeding trigged a 

substantial reduction in GLUT4 expression in both adipose and skeletal muscles (Sevilla 

et al., 1997; Kahn, 1994). High-fats diet increases the levels of malondialdehyde (MDA) 

in serum, liver, aorta and kidney of Sprague Dawley rats (Dobrian et al., 2001). In mice a 

high-fat diet provoked increased thiobarbituric acid-reactive species in cerebral, renal and 

hepatic tissues as well as elevated serum glucose level, suggesting oxidative stress in 

various tissues (Vanderlei et al., 2003).  

 

There is evidence that visceral obesity is a strong risk factor for the co-mobidity of 

insulin resistance/hyperinsulinaemia, dyslipidaemia, type II diabetes, hypertension, 

coagulation abnormalities and premature cardiovascular diseases (Tchernof et.al., 1996; 
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Banerji et al., 1997). Although most rodents tend to become obese on high-fat diets and 

very high-fat diets, there can be variable responses in glucose tolerance, insulin resistance 

(IR), triglycerides and other parameters depending on the strain and gender (Levin et al., 

1997, Rossmeisl et al., 2003). It has been suggested that among various animal models, 

Sprague–Dawley (SD) rats  reveal accurately the mechanisms that are applicable to 

polygenic animal obesity, as one-half of SD rats seam to develop obesity when fed diets 

moderately high in energy and fat (Lauterio et al., 1994). A number of mechanisms have 

been postulated for the differences in response to dietary fat, which include differential 

sensitivities to neurotransmitters, to the intestinal peptides, enterostatin, and to individual 

fatty acids (Bray et al., 2002).  

 

There is evidence that the duration of feeding the animals with a high-fat diet correlates 

with the reversibility of obesity. When animals gain weight by feeding on a high-fat diet 

up to 18 weeks, their body weight will return to the control level on switching to low-fat 

diet (Hill et al., 1992). When the feeding interval on high-fat diet exceeds 30 weeks, body 

weights do not return to control levels despite reduction in dietary fat (Bray et al., 2002). 

Jang et al., (2003) suggests that the discrepancy between dietary fat type and body-fat 

accumulation in many studies may be partly due to the genetic background of 

experimental animals. 

 

There is evidence that the sympathetic overdrive plays some role in human obesity which 

somehow depend on the specific pattern of fat distribution. For instance, 

microneurographic study result shows that the degree of sympathetic activation and the 
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magnitude of the insulin resistance are much greater in patients with visceral body fat 

deposits than in those with peripheral distribution of the adipose tissue (Graasi et al., 

2004). 

 

The age of the rodents also contribute to the induction of metabolic abnormalities 

following the diet intervention. The mode of high-fat diet induced metabolic syndrome 

may take different dimensions with respect to age. In the studies of high-fat diets by 

Dobrian et al., (2000) and Smith et al., (2006), using adult and young male Sprague-

Dawley rats respectively, hypertension and insulin resistance were induced in the animal 

models of both studies. The interesting thing in the above studies using adult and young 

rats is the rate at which hypertension occurs in the rats fed the high-fat diets. In the adult 

rats 50% became hypertensive (Dobrian et al., 2000), whereas only three out of thirty-

eight young rats did not develop hypertension (Smith et al., 2006). This difference in the 

rates in which hypertension develops suggests that a physiological change occurs before 

the rats reach adulthood, which either predisposes or protects them from obesity (Smith et 

al., 2006), or hypertension. Another interesting observation from the above-mentioned 

models of high-fat diets is the response of the renin-angiotensin-aldosterone system 

(RAAS). In the adult rats, the RAAS was activated whereas in the young rats it was not. 

The absence of elevated plasma renin and aldosterone suggest that the sympathetic 

nervous system may not be activated in young rats (Smith et al., 2006). In the young rats, 

the high-fat diet induced an increase in reactivity to phenylephrine, blood pressure, blood, 

glucose levels, plasma insulin, visceral fat, heart size, and oxidative stress at an early age 

without the activation of the RAAS (Smith et al., 2006). Zhou et al., (2005) have shown 
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that young female rats fed a high-fat diet do not develop hypertension; however, when 

treated with 5α-dihydrotestosterone and the high-fat diet, the mean arterial pressure is 

increased. However, there are reports that female and male rats raised on a high-fat, 

refined-carbohydrate (HFS) diet developed hypertension and endothelial dysfunction 

(Barnard et al., 1998; Reil et al., 1999). The above studies suggest that high-fat diet 

intervention at early age could lead to the development of a series of metabolic 

abnormalities. 

 

It has been reported that high-fat diets cause the down regulation of cytochrome P450 

CYP4A and CYP2C23 in renal tubules. These proteins are responsible for the formation 

of renal eicosanoids; hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic 

acids (EETs). Evidence shows that the biological actions of these metabolites are 

associated with the regulation of renal function and blood pressure in many animal 

models of hypertension (McGiff et al., 1999; Imig, 2000; Roman, 2002). It is suggested 

that the change in tubular 20-HETE synthesis is responsible for resetting renal function 

and the regulation of blood pressure in hypertensive animal models and in human 

hypertension (Laffer et al., 2003). In the renal vasculature, 20-HETE causes 

vasoconstriction, whereas EETs cause vasodilatation of renal arterioles (Hardwick, 1991; 

Omata et al., 1992; Ma et al., 1993).  Wang et al., (2003) reported decreased expression 

levels of CYP4A and CYP2C23 in the renal microsomes of rats fed high-fat diets.  

 

It has been shown that arachidonic acid metabolites play an important role in the 

inhibition of ion transport along the nephron (McGiff et al., 1999; Roman, 2002). The 
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down regulation of the synthesis of these metabolites in the tubular sites due to a high-fat 

diet may produce an increase of sodium reabsorption and sodium retention because 20-

HETE and EET are well known to inhibit sodium transport from the lumen of the 

proximal tubule, the thick ascending limb of the loop of Henle (TALH) and from the 

collecting duct into peritubular fluid (Schwartzman et al., 1985; Wang et al., 1995; 

Sakairi et al., 1995). This down regulation of the synthesis of these metabolites causing 

the augmentation of ion reabsorption in the kidneys may result in the elevation of blood 

pressure in rats on a high-fat diet (Wang et al., 2003). It is noteworthy that not all the rats 

on a high-fat diet for 10 weeks became hypertensive (Wang et al., 2003), suggesting 

resistance to the down regulation of CYP4A and CYP2C23 in renal tubules by high-fat 

diet. 

 

There are substantial evidence that suggests that the intake of saturated fats are implicated 

in the development of obesity and insulin resistance, whereas polyunsaturated fats 

(PUFAS) are not (Pan et al., 1994, Storlien et al., 2000). This is most likely because of 

the difficulty in mobilising saturated fats by lipolytic stimuli (Mougios et al., 1995, 

Raclot et al., 1997). On the other hand PUFAs are easily used for energy production after 

ingestion (Leyton et al., 1987). Furthermore,  saturated fats reduces metabolic rates and 

decreases beta-adrenoreceptor binding when integrated into cell membranes (Matsuo and 

Suzuki, 1997) whereas n-6 PUFAs presence in diets increases beta-adrenoreceptor 

affinity (Nicolas et al., 1991). Some studies have shown inconsistent detrimental effects 

of high-fat diets on insulin sensitivity over a broad range of dietary fat content, including 

several randomised studies using the hyperinsulinaemic glucose clamp technique or 
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frequently sampled intravenous glucose tolerance test (fsIVGTT) to quantify insulin 

sensitivity (Borkman et al., 1991; Garg et al., 1992).  

It has been shown that high-fat diets cause enhanced vasoconstriction to Ang II (Ghatta 

and Ramarao, 2004), phenylephrine (Ghatta et al., 2005) and impaired acetylcholine 

mediated vasodilatation (Viswanad et al., 2006). Arterial vascular abnormalities have 

also been reported in animal models of obesity (Dobrian et al, 2000) and in the 

prediabetic insulin resistance state (Viswanad et al., 2006) due to defects in arterial 

contractility mediated by the endothelium. Obesity induced by long–term dietary fat is 

known to be associated with endothelial dysfunction. The Possible causes of endothelial 

dysfunction in obesity may in parts depend on increased levels of nonesterified fatty acids 

(NEFA), total cholesterol and triglycerides. There are reports that short-term feeding of 

fatty diets induces endothelium–dependent and independent arterial dysfunction 

(Naderali and Williams, 2001), suggesting independence of obesity.  Human and animals 

fed with diets high in fat and cholesterol for over 16 weeks develop endothelial-

dependent and independent vascular dysfunction (Dobrian et al, 2000). Vascular 

dysfunction has been reported in human and animal hypertension, insulin resistance, 

raised triglycerides and NEFA levels (Lewis et al., 1999; Steinberg et al., 1997). 

 

2.3.2   Fructose 

Diets high in fructose contribute to the metabolic disturbance in animal models resulting 

in weight gain, hyperlipidaemia (Kasim-Karakas et al., 1996), and hypertension (Hwang 

et al., 1987). Studies involving commonly consumed fruit juices showed that natural 

fructose  can alter lipid and protein oxidation biomarkers in the blood, and mediate 
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oxidative stress responses in vivo (Breinholt et al., 2003). The long-term negative effects 

can include changes in digestion, absorption, plasma hormone levels, appetite, and 

hepatic metabolism, leading to development of insulin resistance, diabetes, obesity, and 

inevitably cardiovascular disease (Basciano et al., 2005). It is conceivable that 

hyperinsulinaemia or insulin resistance may underlie development of hypertension in the 

fructose-fed animal models. 

 

Evidence has been gathered that cardiovascular interactions of altered sex hormone 

profiles and high levels of insulin may aggravate hypertension with a concomitant 

increased risk of cardiovascular mortality in both men and women (McFarlane et al., 

2001). Furthermore, studies using 24-hour ambulatory BP monitoring have shown higher 

BP in men than in women at similar ages (Wiinberg et al., 1995).  Sex hormones play a 

vital role in high fructose diet induced hyperinsulinaemia/insulin resistance and 

hypertension. Estrogen suppresses high fructose diet induced insulin resistance and high 

blood pressure in female mice. On the other hand, androgens are necessary for the 

development of hypertension in animals fed a high fructose diet (Dongzhe Song et al., 

2004). Several investigations have demonstrated that male rats have higher BP than 

females of the same age group. This has been shown in SHR (Chen et al., 1991; 

Reckelhoff et al., 1999) Dahl salt-sensitive rats, (Rowland et al., 1992) 

deoxycorticosterone-salt hypertensive rats, (Ouchi et al., 1987) and in New Zealand 

genetically hypertensive rats (Ashton et al., 1991). In fructose fed hypertensive rats 

(FHR), male rats had significant hypertension and hyperinsulinaemia after 9 weeks of a 

high-fructose diet whereas female rats did not (Galipeau et al., 2002). Dongzhe Song et 
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al., (2004) concluded that these findings strongly suggest that androgens may also play a 

key role in the development of fructose-induced hypertension. 

 

Some other studies reported that hyperinsulinaemia is associated with fructose induced 

hypertension in rats in the same manner as in humans (Lucas et al., 1985; Modan et al., 

1985). Some studies did not report changes in blood pressure of rats fed high fructose but 

rather insulin resistance (Kotchen et al., 1997; Johnson et al., 1993). Bezerra et al., 

(2001) reported that there was no significant difference in blood pressure levels between 

the high-fructose and control groups, indicating that the ingestion of fructose alone was 

not sufficient to cause an increase in arterial blood pressure in this model. They envisaged 

that insulin resistance is a risk factor for the development of hypertension in this model 

rather than hyperinsulinaemia, because there were no changes in the serum insulin 

concentration. Furthermore, a high-fructose diet alone does not induce hyperinsulinaemia 

and hypertension when the sodium/potassium ratio is normal (Bezerra et al., 2000). 

D’Angelo et al., (2005) in their studies, while endorsing the previous reports 

documenting the metabolic abnormalities produced by fructose feeding, insinuated that a 

high-fructose diet does not elevate blood pressure in a common strain of normotensive 

rats. They did not rule out the possibility that insulin resistance does not cause or 

contribute to hypertension in all conditions, but rather suggested that the degree of the 

metabolic dysfunction in rats fed a high fructose diet is not sufficient to produce an effect 

on blood pressure.   

There is emerging evidence that fructose induction of hypertension also depends on the 

integrity of the renin angiotensin system. There is evidence implicating Ang II 
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dependence for the increases in BP, (Navarro-Cid et al., 1995) left ventricular weight, 

(Kobayashi et al., 1993) and plasma insulin, (Navarro-Cid et al., 1995) in rats fed diets 

high in simple sugar content. The work of Verma et al., (1994) in metformin treated, 

fructose-fed rats provides additional support for the hypothesis that fructose-induced 

hypertension is insulin mediated. It is important to reiterate that high sugar diets also have 

been reported to raise BP without changing insulin, (Preuss et al., 1992; Johnson et al., 

1993; Hulman et al., 1994) to raise insulin without changing BP (Kobayashi et al., 1993) 

and to have no effect on either variable, when arterial pressure was measured 24 hours 

daily throughout the study (Brands et al., 1994) or after 23 weeks of feeding (Van der 

Schaaf et al., 1995).  Further evidence for differences in fructose feeding versus insulin-

induced hypertension is that fructose feeding was reported to raise plasma Ang II levels 

in a study in which insulin levels increased but BP did not. (Kobayashi et al., 1993). For 

instance, the AT1 receptor antagonist losartan and an angiotensin-converting enzyme 

inhibitor attenuated the magnitude of the blood pressure elevation and improved insulin 

sensitivity in fructose-fed rats (Navarro-Cid  et al., 1995; Kobayashi et al., 1993). 

 

 

 

The role of sodium/potassium balance or lard is very crucial for understanding fructose 

induced hypertension. For instance, a previous study reported an increase in blood 

pressure only in the changed sodium/potassium ratio diet groups (Bezerra et al., 2000). A 

high fructose diet suppressed potassium channel function (Erdös et al., 2004). Matsui et 

al., (1997) observed significant higher systolic blood pressure in the high fructose lard 
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group compared to the high fructose and control groups. There are suggestions that other 

factors such as strain, sex, age at the start of the diet, and additions to the fructose diet 

regimen such as salt, fat, or trace elements may render animals more susceptible to 

developing fructose-induced hypertension (D’Angelo et al., 2005). 

 

It is well documented that fructose ingestion in humans result in observable increased 

rates of de novo lipogenesis (Schwarz et al., 1995) whereas eucaloric glucose ingestion 

does not increase de novo lipogenesis (Hellerstein et al., 1996). Fructose being more 

lipogenic than glucose, the intake can worsen health conditions with preexisting 

hyperlipidaemia, insulin resistance or type II diabetes. It is noteworthy that Hellerstein et 

al., (1996) observed a little de novo lipogenesis from glucose under eucaloric conditions 

in humans. However, 3-5 fold increases in fractional de novo lipogenesis from fructose 

above fasting conditions have been documented (Schwarz et al., 1995) in both lean and 

obese individuals. In addition, nearly 30% of circulating triacylglycerol palmitate 

originated from de novo lipogenesis due to fructose ingestion (Schwarz et al., 1995). It is 

however documented that substituting fructose or xylitol for sucrose did not influence 

plasma cholesterol or triacylglycerol concentrations in a study carried out on 127 healthy 

individual for 2 years (Huttunen et al., 1976). Importantly, fructose does not provoke the 

production of insulin and leptin, the two hormones involved in the long term regulation of 

energy homeostasis. Thus, the decrease in insulin response to meals and leptin production 

associated with chronic consumption of diets high in fructose may have deleterious long 

term effects on the regulation of energy intake and body adiposity (Elliot et al., 2002). 

Apart from the known effects of dietary fat, dietary fructose has been shown to produce 
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weight gain and induce insulin resistance, hyperlipidaemia and hypertension in 

experimental animals. It is conceivable that increased consumption of fructose could 

contribute to weight gain and its associated metabolic disturbances in human (Elliot et al., 

2002).  

 

2.3.3 Cholesterol 

It has  been hypothesized that abnormally high cholesterol levels (hypercholesterolemia), 

or higher concentrations of LDL-C and lower concentrations of functional HDL-C are 

strongly associated with cardiovascular disease because these promote atheroma 

development in arteries (atherosclerosis) (http://en.wikipedia.org/wiki/cholesterol 

9/10/08). This disease process culminates in myocardial infarction (heart attack), stroke 

and peripheral vascular disease. An increase in dietary fat, dietary cholesterol and blood 

cholesterol levels have been reported to be  linked with an increased risk of cancers of the 

colon, pancreas and prostate (Byers et al., 2002).  

 

Cholesterol is required to build and maintain cell membranes. Some research indicates 

that cholesterol may act as an antioxidant (Smith, 1991). It is not known if exogenous 

cholesterol affects these conditions separately or via a common link. However, studies 

suggest that high and low levels of HDL-C and LDL-C respectively have 

cardioprotective effects (Smith, 1991). These conditions are associated with low plasma 

insulin levels (Smith, 1991) which may enhance glucose uptake and improve plasma 

lipids and lipoproteins profile. Evidently, enhanced insulin sensitivity is associated with 

higher HDL cholesterol and lower triglyceride concentrations. 
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The rat is an atherosclerosis-resistant species. Unlike humans and similar to mice, rats do 

not have plasma cholesteryl ester transfer protein (CETP), and high density lipoprotein 

(HDL) is the major carrier of plasma cholesterol (Moghadasian, 2002). Rats are generally 

hypo-responsive to dietary cholesterol; thus, hyperlipidemia and atherogenesis may only 

be induced in rats by high cholesterol/high-fat diets containing cholic acid and thiouracil 

(Joris et al., 1983). The mechanism of action of cholic acid is two fold: an increase in 

cholesterol absorption and a concomitant suppression of cholesterol -7- α-hydroxlyase 

activity that results in decreased cholesterol excretion (Moghadasian, 2002). Thiouracil 

induces clinical hypothyroidism with a consequent decreased low density lipoprotein 

(LDL)-receptor activity and hypercholesterolemia. Several strains of rats with heritable 

hyperlipidemia, some of these associated with atherogenesis, have been described 

(Russell et al., 1993).  

 

2.3.4 Protein 

There are recent reports that the source of protein contributes to the insulin resistance 

state in rats fed high-fat diets. It has been shown that high-fat diets prepared with protein 

derived from cod, as compared to soy protein or casein, do not lead to insulin resistance 

(Lavigne et al., 1999; Storlien et al., 2000). Further mechanistic investigations showed 

that the cod protein improves GLUT4 translocation to skeletal muscle T-tubules, but not 

to the plasma membrane (Tremblay et al., 2001). The T-tubule GLUT4 protein correlates 

with insulin stimulated glucose transport, and is most interesting in terms of the 

possibility that a specific protein might be critical in skeletal muscle insulin-stimulated 
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glucose transport. The effect might be due to a specific protein which has a gene-specific 

effect at the intestinal level, a protein which escapes full digestion, a molecule which is 

co-extracted with protein, or indeed a particular amino acid pattern unique to cod. In this 

regard, the observation that L-glutamine supplementation of a high-fat diet has beneficial 

effects on glycaemia and insulinaemia in mice may be relevant (Opara et al., 1996).  

 

2.3.5 Salt sensitive hypertension and insulin resistance 

The arterial pressure of some human hypertensive patients is very sensitive to changes in 

sodium intake, and they have been classified as "salt-sensitive", but the cause of the salt-

sensitivity is not known. It is generally accepted that high salt intake is one of the major 

causes of human hypertension and cardiovascular damage. Animal studies have reported 

ROS overproduction in salt-sensitive hypertension (Ono et al., 1997; Huang and Leenen 

1998; Huang et al., 2001; Miyajima and Bunag, 1987). Salt loading increases production 

of reactive oxygen species (ROS) in a salt-sensitive hypertension animal model (Fujita et 

al., 2005). ROS overproduction has several harmful effects, such as insulin resistance, 

peripheral and central sympathetic over-activity, an enhanced oxidized low-density 

lipoprotein (LDL) receptor-1and lectin-like oxidized LDL receptor (LOX-1) expression. 

(Ando and Fujita, 2004). Another study connects salt intake with oxidative stress and 

nephrosclerosis in Dahl-sensitive hypertensive rats (Trolliet et al., 2001). There are 

convincing evidence that an intimate relationship exists between salt sensitive 

hypertension and insulin resistance in obese hypertensive patients (Suzuki et al., 2000; 

Sharma et al., 1993; Galleti et al., 1997).   
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 Augmentations of sympathetic nerve activity (SNA) in the loading of Dahl-salt sensitive 

rats but not Dahl salt resistance has been reported (Huang and Leenen, 1998). It has also 

been reported that salt loading induced augumentation of NADPH oxidase activity in the 

cardiac tissue of Dahl-salt sensitive rats (Matsui et al., 2006). Recently it was reported 

that, in DSS rats, salt-induced hypertension may result from central sympathetic 

activation because of NADPH oxidase–induced ROS production in the brain (Fujita et 

al., 2007). Several factors in the brain have been demonstrated to play important roles in 

the sympathetic activation in salt-induced arterial pressure elevation (Fujita et al., 2007). 

The central renin-angiotensin system might stimulate SNA and mediate salt-induced 

hypertension (Huang and Leenen, 1998; Kim-Mitsuyama et al., 2005; Ito et al., 2003). It 

has been shown that while insulin resistance is observed in the muscle and adipose 

tissues, it is not seen in the kidney or the sympathetic nervous system. Insulin can 

increase sodium reabsorption in the proximal tubules and stimulate sympathetic tone. 

Hyperinsulinaemia increases blood pressure by inducing salt retention and central 

sympathetic overactivity (Fujita, 2007).  

 

 One important contributor to hypertension in salt-sensitive animal models and humans 

seems to be endothelial dysfunction, in particular the altered vascular reactivity due to 

impairment in nitric oxide (NO) production (Luscher et al., 1987; Nishida et al., 1998).  

Recent studies have indicated that nitric oxide (NO) production in salt-sensitive essential 

hypertensives is decreased. However, little is known about the importance of NO in salt-

sensitive hypertension and specifically the relative importance of the various isoforms of 

nitric oxide synthase (NOS) in the kidney in causing salt-sensitivity.   
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There are several evidence that salt-dependent hypertension is linked with increase 

production of vascular endothelin (ET-1) in most animal studies (Schiffrin, 1999). 

Furthermore, preclinical data suggested that the ET-1 system is primarily activated in 

severe BP elevation of deoxycorticosterone acetate-salt, Dahl salt sensitive and stroke 

prone spontaneously hypertensive rats (Neeraj et al., 2008). In addition, pharmacological 

or genetic inhibition of Endothelin-B Receptor (ETBR) activity results in a severe form 

of hypertension that depends on salt intake (Gariepy et al., 2000; Pollock and Pollock, 

2001).   

 

2.4 Scope of the study 

 In my study, I will set up a model of hypertension by high-fat feeding and determine 

whether these animals fed the high-fat diet will become insulin resistant after six weeks. 

An experimental system will also be set up to evaluate vascular responses in a model of 

diet induced hypertension. This model could in future be used to study vascular reactivity 

in hypertensive animals in the absence or presence of insulin resistance and in 

normotensive insulin resistant animals.  
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3.1 MATERIALS 

3.1.1 Chemicals and Drugs 

All the chemicals used in the study were of standard grade. Fructose, potassium chloride, 

sodium bicarbonate, calcium chloride, di-hydrogen potassium phosphate, magnesium 

sulphate, and glucose were obtained from Kimix Laboratories, South Africa. Casein, 

cholesterol, phenylephrine and acetylcholine were obtained from Sigma-Aldrich, 

Germany. Captopril (Novartis, Sandoz (PTY) LTD) and sodium pentobarbitone (Kyron 

Laboratories (PTY) LTD) were obtained from a local pharmacy. Strawberry jelly 

(Pioneer foods (PTY) LTD), Gelatin (Davis gelatin Industries (PTY) LTD), and Cooking 

fat (HUDSON & KNIGHT) were obtained in a local supermarket. Carbogen (95% 

Oxygen, 5% Carbon dioxide) were obtained from Afrox (Pty Ltd).  

 

3.1.2 Instruments and Equipment 

Multi-Channel, Computerized, Non-Invasive Blood Pressure System for rat version 6.v25 

(Kent scientific corporation) 

CardiochekTM (Polymer Technology system, Inc.Indianapolis, USA) 

Lipid panels (Polymer Technology system) 

Glucose meter (Ascensia) 

Glucose strip (Bayer health care) 

Tissue baths 

Heater with circulator pump (Haake)  

Isometric force transducer (Harvard apparatus)  
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Powerlab 4/25T (AD instruments) 

Chart 6.0 software (AD instruments)  

 

3.2 ANIMAL PREPARATION 

Male Sprague Dawley rats were obtained from the University of Kwazulu Natal South 

Africa, and were housed in the Medical Bioscience Department, University of the 

Western Cape, in a temperature controlled room (23±1˚C) with a 12-hour light and dark 

cycle. Light hours were from 07h00 to 19h00 and hours of darkness from 19h00 to 

07h00. Animals received food and water ad libitum during a 2 week acclimatization 

period.  In addition, rats were adapted to the procedure of blood pressure measurement 

during the 2 weeks of acclimatization.  

 

3.3    EXPERIMENTAL PROTOCOL  

3.3.1 High-fat Diet Model  

After a 2 week acclimatization period, forty male Sprague Dawley rats of approximately 

equal weights (163–169g) were randomly placed into 4 groups for 6 weeks. The control 

group was fed normal laboratory pellets. The high-fat diet (HFD) group was given a high-

fat diet prepared in-house. The captopril (HFDC) group was given captopril (12.5mg/day) 

through a vehicle (gelatine) and the high-fat diet. A fourth group which served as the 

captopril control received the high-fat diet and the vehicle (HFDV). The composition of 

the diet is shown in table 3.1.  Body weight and blood pressure were measured weekly for 

6 weeks. An intraperitoneal glucose tolerance test (IPGTT) was performed at the end of 
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week 3 and week 6. After 6 weeks on the high fat diet, the animals were fasted overnight. 

The next day, the animals were anesthetized, the lipid profile was determined, plasma 

was collected for insulin determination and the heart and visceral fat were excised and 

weighed. Four animals from the control and the HFD groups were anesthetized with 

sodium pentobarbitone (60 mg/kg) and the thoracic aorta was dissected for the vascular 

reactivity experiment. 

 

  

3.3.2 Vascular response protocols 

The thoracic aorta was cut into rings 3 mm in length. The aortic ring was mounted 

between a pair of stainless steel hooks in a water-jacketed organ bath containing 10 ml of 

Krebs–Henseleit solution (KHS) saturated with 95% O2 and 5% CO2 and maintained at 

37±1°C with a heater pump (Haake) and reservoir system (figure 3.1). The muscle was 

stretched to a resting tension of 1g and allowed to equilibrate for 30 minutes. The KHS 

was changed every 15 minutes.  

After a 30 minutes equilibration period, the resting tension was reset to 1 g, if necesary. 

Aortic rings were initially exposed to 80 mM KCl to obtain the maximal KCl-induced 

response using an isometric force transducer (Harvard apparatus) connected to a data 

Table 3.1. The compositions of the diet prepared in-house are

Content Quantity (g)
Cooking fat 400
Fructose 100
Casein 100
Cholesterol 10
Rat pellets (Chow) 390
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acquisition system (Powerlab 4/25T, Australia). After a washout, the aortic rings were 

precontracted with 10 μM PHE. The ACH relaxation response (3 μM–1000 μM) in aortic 

rings previously contracted with PHE (10 μM) was assessed.  After a washout, increasing 

concentrations of PHE (1 μM –10 μM) was applied, and dose responses to this contractile 

agent were obtained. In other aortic rings, the endothelium was mechanically removed by 

rubbing the aorta over a thin wire. The absence of endothelium was confirmed by the 

inability of 200 μM acetylcholine to produce relaxation in the PHE precontracted tissue.  

Concentration dependent relaxation responses to sodium nitroprusside (3 μM -1000 μM) 

were obtained for the denuded aortic rings. After a washout period, increasing 

concentrations of PHE (1 μM –10 μM) were applied to the denuded aortic rings and the 

dose responses to this contractile agent were obtained. All aortic rings were exposed to 80 

mM KCl at the end of the experiment to confirm that the rings were able to maintain the 

initial KCl response.  
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Figure 3.1: Experimental set up used to measure vascular responses 
 
 
3.4 PARAMETERS MEASURED   

3.4.1 Blood pressure determination  

The blood pressure was measured by the tail cuff method using a two channel 

computerized non-invasive system from Kent Scientific Corporation, USA. This system 

(figure 3.2) uses a volume pressure method to determine blood pressure. Animals were 

allowed to walk into the rodent holder, which was placed on a heating pad while 

maintaining the ambient temperature at 30˚C. Animals were allowed to settle for 15 

minutes. The nose cone was adjusted to limit the animal’s movement. The occlusion cuff 

was placed proximally on the tail of the animal and allowed to fit loosely for free 

 

 

 

 



 lxx

movement of the tail. A VPR cuff was placed distally behind the occlusion cuff. After 15 

minutes, the averages of 5 pressure readings were recorded for each measurement.  

 

Figure 3.2: Non-Invasive Blood Pressure system showing the rats in rodent holders on a 

heating stage to increase blood flow to the tail.  

 

 3.4.2 Intraperitoneal glucose tolerance test (IPGTT) 

At the end of weeks 3 and 6 of treatment, intraperitoneal glucose tolerance tests were 

performed on all the rats using a hand-held Ascentia ELITE blood glucose meter.  

After an overnight fast, animals were anaesthetized with sodium pentobarbital (50 mg/kg 

i.p) and the fasting blood glucose level was determined (at time zero) from a small drop 

of blood collected by snipping the tail. Rats were then injected with 2 g/kg glucose. The 

blood glucose levels were monitored at 5, 10, 15, 20, 30, 45, 60, 90 and 120 minutes post 

injection.   
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3.4.3 Lipid profile 

The following lipid parameters were measured after week 6: total cholesterol, high-

density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) 

and triglyceride (TG) in the whole blood. The lipid profile was assessed using a portable 

CardiochekTM blood test system. The animals fasted overnight and were anaesthetized 

with sodium pentobarbital (50 mg/kg i.p). The tails were snipped and 40 µl of blood was 

collected in a capillary tube and deposited immediate on the lipid panel sensor that was 

fitted in the CardiochekTM.  

 

3.4.4 Determination of insulin 

Insulin was measured in the plasma using a commercially available (DRG Diagnostics, 

Germany) immunoenzymatic assay for the in vitro quantitative measurement of rat 

insulin (INS) in serum and plasma. At the end of week 6, the animals fasted overnight 

and were anaesthetized with sodium pentobarbital (50 mg/kg i.p). The trunk blood was 

collected immediately and put into eppendoff tubes and kept on ice, before being 

centrifuged for 10 minutes, (5000 rpm). Plasma was stored at -20˚C for the insulin 

determination using a Rat Insulin Elisa, according to the manufacturer’s instructions.  

The required volume of the Enzyme Conjugate was prepared by mixing 50 μl Enzyme 

Conjugate (11X dilution) with 500 μl Enzyme Conjugate buffer (1:10) for each strip. 

The Wash Buffer (21X dilution) was diluted in redistilled water (1:20) and mixed 

properly. The standards, unknowns and the Enzyme Conjugate were added to anti-insulin 

wells and incubated on a shaker for 2 hours at room temperature. The reaction volume 

was aspirated and 350 μl wash buffer was added to each well and aspirated 5 times. The 
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plate was inverted and tapped firmly against absorbent paper. The substrate, 200 μl TMB, 

was added to the standards and the unknown and incubated. After 15 minutes incubation, 

50 μl of the STOP solution was added to each of the standards and the unknowns. The 

plate was then placed on the shaker for 5 seconds to ensure mixing of substrate and STOP 

solution. The absorbance was read at 450 nm. Insulin (pmol/l) = (OD + 0.049)/0.474). 

Insulin sensitivity was estimated by a quantitative insulin sensitivity check index 

(QUICKI) using the fasting plasma insulin and fasting glucose as 1/ [log (fasting insulin 

(mU/l)) + log (fasting glucose (mmol))] (Wallace et al., 2004).  

 

3.5 DATA ANALYSIS 

All data are reported as means and SEM or median and interquatile range (IQR). 

Statistical differences among groups were analyzed by analyses of variance (ANOVA) or 

the Kruskal-Wallis test followed by Newman-Keul multiple comparison test or Dunn’s 

multiple comparison test respectively. P< 0.05 was considered significantly different. The 

Mann Whitney test was used to assess the differences in vascular responses between the 

control and HFD group. Data analysis was done using GraphPad Prism version 3.1 for 

Windows (GraphPad Software, San Diego, CA, USA). 

 

3.6 ETHICAL CONSIDERATIONS 

All experimental procedures were conducted after ethical clearance was obtained from 

the University of the Western Cape Senate Research Committee. 
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                           CHAPTER FOUR   

                               RESULTS 

 

4.1 Effect of high-fat feeding on body mass, heart: body weight ratio 

        and visceral fat weights. 

The initial mean body weights of the five groups were approximately the same before the 

dietary intervention as shown in table 4.1. The increase in BW amongst the groups did 

not differ over the 6 weeks period (P = 0.09) (figure 4.1; table 4.1). The HFD and HFDV 

groups however, have more visceral fat compared to the control group (P < 0.05 and 0.01 

respectively). There were no differences in the heart weight:body weight (HW:BW) ratio 

(P > 0.05).  

Fig.4.1: Effect of high fat diet on body weight. 
Values are expressed as the mean ± SE.  N = 10 rats
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Table 4.1 Effect of high-fat feeding on  body weight, visceral fat and 
heart weight:body weight ratio.

CONTROL HFD HFDC HFDV

Initial BW (g) 166.9±7.2 163.9±3.9 169.2±4.1 167.2±4.8

N 10 10 10 10

P (Comparison to Control) > 0.05 > 0.05 > 0.05

Final BW (g) 281.2±6.9 289±11.4 262.2±7.2 299.1±13.1

N 10 10 9 10

P (Comparison to Control) > 0.05 > 0.05 > 0.05

Visceral fat (g) 0.8±0.1 3.1±0.6* 2.2±0.4 3.8±0.6*

N 6 7 5 7

P (Comparison to Control) < 0.05 > 0.05 < 0.01

(HW:BW) *100 0.32±0.03 0.34±0.02 0.33±0.02 0.34±0.01

N 6 7 5 7

P (Comparison to Control) > 0.05 > 0.05 > 0.05

Values are expressed as the mean ± SE. 
*P < 0.05 compared with control. N = number of rats  

     

4.2   Effect of high-fat feeding on SBP, DBP and HR. 

The initial baseline of SBP and DBP of the four groups were within the normal range. 

Figure 4.2 shows that the high-fat diet increased the SBP of the HFD and HFDV groups 

significantly compared to the control group (P < 0.05 and < 0.01 respectively). The  DBP 

of the HFD and HFDV groups were significantly increased compared to the control group 

(P < 0.05 and < 0.05 respectively, figure 4.3).  Analysis of variance shows that the SBP 

and DBP of HFD and HFDV groups were significantly increased compared to the control 

groups from week 3 to week 6. The SBP and DBP of the HFDC group did not differ from 

that of the control group. However, the SBP and DBP of the HFDC group were 
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significantly lower compared to the HFD group from week 2 onwards. This shows that 

captopril completely prevented the increase in SBP and DBP induced by high-fat feeding. 

The heart rate (table 4.2) did not differ significantly amongst the groups (P = 0.25).  

       Fig.4.2: Effect of high fat feeding on SBP. 
        Values are expressed as the mean ± SE.
        *P < 0.05 compared with control; N = 5-10 rats
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      Fig.4.3: Effect of high fat feeding on DBP. 
       Values are expressed as the mean ± SE.
       *P < 0.05 compared with control; N = 5-10 rats
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Table 4.2: Effect of high- fat feeding on SBP, DBP and HR

variables CONTROL HFD HFDC HFDV

Initial SBP  (mmHg) 113.5±7.2 111.2±5.7 114.6±4.7 109.6±2.7

N 10 10 10 10

P (comparison to control) > 0.05 > 0.05 > 0.05

Final SBP  (mmHg) 125.5±2.1 155.2±5.9* 122.6±5.3 158.6±5.6*

N 6 7 5 7

P (comparison to control) < 0.05 > 0.05 < 0.01

Initial DBP  (mmHg) 81.8±4.4 80.2±3.2 82.6±1.7 81.1±4.3

N 10 10 10 10

P (comparison to control) > 0.05 > 0.05 > 0.05

Final DBP  (mmHg) 86.5±2.8 117.1±2.5* 75±2.2 113.9±3.4*

N 6 7 5 7

P =(comparison to control) < 0.05 > 0.05 < 0.05

Initial HR (bpm) 490±2.1 503±12.6 478±8.6 497±1.3

N 10 10 10 10

P (comparison to control) > 0.05 > 0.05 > 0.05

 

Final HR (bpm) 512.5±14.8 492.2±10.5 494±22.4 554.7±18.5

N 6 7 5 7

P (comparison to control) > 0.05 > 0.05 > 0.05

Values are expressed as the mean ± SE. *P < 0.05 compared with control; N =  number of rats  
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4.3   Effect of high-fat feeding on IPGTT. 

Intraperitoneal glucose tolerance tests (IPGTT) performed at week 3 is shown in figure 

4.4. The glucose tolerance at week 3 did not show a significant difference in the high-fat 

fed groups compared with the control group (P = 0.2). The fasting blood glucose of the 

HFDC group (4.3±0.1 mmol/l) was statistically higher than the control (3.5±0.2 mmol/l) 

at time zero (P < 0.05). The HFD group had seemingly high glucose levels at 30, 45 and 

60 minutes post glucose administration. Analysis of variance however indicates that the 

values are not significantly different between the groups (P = 0.3, 0.1, and 0.3 at 30, 45 

and 60 minutes respectively). The area under the curves (AUC) of IPGTT’s at week 3 

(table 4.3) do not differ amongst groups (P = 0.47). IPGTT’s performed after week 6, 

also did not differ amongst the groups (figure 4.5) (P-value = 0.4).  Despite the higher 

glucose levels at some points, the dynamics were similar across the groups in both week 

3 and week 6.  Comparison of the AUC between week 3 and week 6 for the 

corresponding groups did not differ significantly (table 4.3).  

           Fig. 4.4: Effect of high fat feeding on  IPGTT at week 3. 
           Values are expressed as the mean ± SE. N = 10 rats
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          Fig. 4.5: Effect of high fat feeding on  IPGTT at  week 6.
          Values are expressed as the mean ± SE. N = 5-10 rats
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Table 4.3 Area under the curve of the IPGTT and comparison between week 3  and week 6

CONTROL HFD HFDC HFDV

3 weeks 296.1±59 350.9±68 232.5±37 341.0±30

N 10 10 10 10

P (Comparison vs Control) > 0.05 > 0.05 > 0.05

6 weeks 274.8±36 166.6±79 160.6±27 249.3±66

N 7 7 5 7

P (Comparison vs Control) > 0.05 > 0.05 > 0.05

P (3 week vs 6 week) 0.7 0.1 0.1 0.1

Values are expressed as the mean ± SE. N = number of rats  

 

4.4   Effect of high-fat feeding on biochemical parameters. 

The effect of the high-fat diet on the fasting lipid profile, blood glucose and plasma 

insulin are shown in (table 4.4). The whole blood cholesterol, blood triglyceride, HDL-C 
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and LDL-C levels did not differ amongst the groups (P = 0.54, 0.12, 0.1 and 0.28 

respectively). The fasting plasma insulin was not significantly different amongst groups 

(control 128.8±28 vs HFD 146.1±12, HFDC 82.6±29, HFDV 177±37pmol/l., P > 0.05). 

Despite the higher blood glucose levels in the high-fat fed animals (P<0.002) the 

QUICKI index did not show significant differences amongst groups (P > 0.05).    
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Table 4.4: Effect of high- fat feeding on biochemical  parameters.

CONTROL HFD HFDC HFDV

Cholesterol (mmol/l) 2.59±0.0 2.59±0.0 2.68±0.09 2.60±0.01

N 6 6 5 6 
P (Comparison to Control) > 0.05 > 0.05 > 0.05

Triglyceride (mmol/l) 0.67±0.07 0.59±0.01 0.74±0.06 0.57±0

N 6 6 5 6 
P (Comparison vs Control) > 0.05 > 0.05 > 0.05

HDL-C(mmol/l) 0.71±0.11 0.57±0.04 0.77±0.08 0.65±0.09

N 6 6 5 6 
P (Comparison to Control) > 0.05 > 0.05 > 0.05

LDL-C        (mmol/l) 1.75±0.11 1.90±0.04 1.76±0.04 1.82±0.09

N 6 6 5 6 
P (Comparison to Control) > 0.05 > 0.05 > 0.05

3wk Fasting Glucose (mmol/l) 3.5±0.1 3.8±0.3 4.3±0.5 3.5±0.5

N 10 10 10 10

P (Comparison to Control) > 0.05 < 0.05 > 0.05

6wk Fasting Glucose (mmol/l) 3.18±0.1 4.57±0.3* 4.86±0.3* 4.74±0.3*

N 6 6 5 6 
P (Comparison to Control) < 0.001 < 0.001 < 0.001

Insulin (pmol/l) 128.6±28 146.1±12 82.6±29 177±37

N 6 6 5 6 
P (Comparison to Control) > 0.05 > 0.05 > 0.05

QUICKI (insulinogenic index) 0.58±0.03 0.51±0.01 0.59±0.03 0.49±0.02

N 6 6 5 6 
P (Comparison to Control) > 0.05 > 0.05 > 0.05

Values are expressed as the mean ± SE. *P < 0.05 compared with control; N = number of rats 
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4.5   Vascular reactivity 

4.5.1 KCl induced contraction 

KCl induced aortic ring contraction is shown in table 4.5. The contraction mediated in 

aortic rings with intact or denuded endothelium did not differ significantly between the 

control and HFD groups (P = 0.4 and 0.8) respectively. The contraction mediated by KCl 

in aortic ring with intact and denuded endothelium from the control or HFD groups also 

did not differ significantly (control: intact vs denuded, P = 0.2; HFD: intact vs denuded, P 

= 1).  

Table 4.5: Contraction  induced by  80 mM KCl in intact and denuded endothelium aortic rings.
CONTROL HFD

Tension developed in  intact aorta ring (g) 1.1±0.3 0.7±0.3
N 3 4
P  (control vs  HFD) > 0.05

Tension developed in denuded aorta ring (g) 0.49±0.1 0.47±0.1
N 3 4
P  (control vs  HFD) > 0.05
Values are expressed as the mean ± SE.  N = number of rats  

4.5.2 Phenylephrine induced contraction 

The cumulative dose-response curve to phenylephrine (1 μM-10 μM) in KCl 

precontracted aortic rings with intact endothelium and denuded endothelium are shown in 

figures 4.6 and 4.7. Contraction increased with increasing doses of PHE. Maximal 

contraction (Emax) induced in aorta intact with endothelium was not significantly higher 

compared with the corresponding denuded aorta (control Intact endothelium 94±19% 
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versus denuded endothelium 100±25%; P = 0.8); (HFD Intact endothelium 99±14% 

versus denuded endothelium 80±13%; P = 0.1). 

  

Fig. 4.6: Cumulative dose-response curve to phenylephrine  in aortic rings with an intact endothelium.
Responses are expressed as a percentage of the response to 80 mM KCl.
Values are expressed as the median ± IQR for 4 rats.
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           Fig. 4.7: Cumulative dose-response curve to phenylephrine in aortic rings in which the endothelium were denuded.

Concentration  responses are  expressed as a percentage of the response to 80 mM KCl.
        Values are expressed as the median ± IQR for 4 rats 
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4.5.3 Acetylcholine and sodium nitroprusside-induced relaxation 

A cumulative dose-response curve to acetylcholine (3 μM-1000 μM) is shown in figure 

4.8. The endothelium dependent relaxation response of aortic rings precontracted with 

PHE did not differ between the control and the HFD groups. The maximum relaxation 
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response for the control and HFD groups were 78±15% and 109±13% (P=0.6) 

respectively. The EC50 values for the control and HFD groups were 2.9±2.7 x 10-4 M and 

HFD 5.8 ±7.9 x 10-4 M respectively. Considering the fact that the graphs seem to diverge 

after the dose 143 μM of acetylcholine and the high spread of the data particularly in this 

region we treat the data with caution and consider it as preliminary data. The cumulative 

dose-response curves to sodium nitroprusside (3 μM-1000 μM) are shown in figure 4.9. 

Maximum endothelium-independent relaxation response of aortic rings did not differ 

significantly between the control and HFD groups (Control 159±37% vs HFD 126±14%, 

P = 0.9).  Interestingly SNP caused almost complete relaxation at the lowest dose in some 

of the rings in the HFD group. The responses of the rings isolated from the control 

animals follow a dose-dependent response.    

  

         
Fig. 4.8: Cumulative dose-response curve to acetylcholine induced relaxation
Relaxation responses are expressed as a percentage of precontraction induced by PHE (10µM). 
Values are expressed as the median ± IQR for 4 rats. 
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Fig. 4.9: Cumulative dose-response curve to sodium nitroprusside induced relaxation
Relaxation responses are expressed as a percentage of precontraction induced by PHE (10µM). 
Values are expressed as the median ± IQR for 4 rats. 
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                              CHAPTER FIVE 

                           DISCUSSION 

  
 

 Hypertension and insulin resistance are important independent risk factors for 

cardiovascular disease. However, 50% of all hypertensive patients are also insulin 

resistant. Hypertension and insulin resistance, or even diabetes, can be induced 

experimentally by feeding animals a diet high in fat (40% fat) content (Straznicky et al., 

1999) or by adding sucrose to the diet (Asghar et al., 2006) or drinking water (Cao et al., 

2007; Ribeiro et al., 2005). We set up a model of dietary induced hypertension by feeding 

rats a high (40%) fat diet containing 10% fructose and cholesterol. The intention is to use 

the model in the future to study vascular reactivity in hypertensive and normotensive 

animals in the presence or absence of insulin resistance, and to explore some of the 

mechanisms which may link hypertension and insulin resistance. This study provides 

baseline data of certain biochemical, metabolic and vascular properties after six weeks of 

high-fat feeding. 

 

5.1 High-fat feeding and hypertension 

After six weeks of high-fat feeding the rats were hypertensive and the visceral fat mass 

was increased. The blood lipid profile was not altered, blood glucose was within normal 

levels and insulin resistance was absent. Interestingly, both hypertension and visceral fat 

gain occurred in the absence of a significant increase in body weight (table 4.1). This is in 
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sharp contrast with studies that have shown significant weight gain in rats on a fed high-

fat diet for four weeks (Zierath et al., 1997) or 8 weeks (Han et al., 1997; Yoshioka et al., 

2000). The lack of significant increased body weight under conditions of high-fat feeding 

for 6 weeks could be due to enhanced activity of the sympathetic nervous system (Reaven 

et al., 1996; Moan et al., 1995). The hyperadrenergic state triggers thermogenesis which 

prevents further weight gain, leading to a sympathetic-induced rise in the systemic blood 

pressure (Kaplan, 2000). The heart rate of our animals fed with the high-fat diet did not 

differ from that of control rats (table 4.1). It is thus unlikely that increased sympathetic 

activity is responsible for the hypertensive state of our HFD group.  We can however not 

exclude the possibility completely. 

 

The results of this study is in agreement with previous studies which show that high-fat 

feeding results in increased adipose mass (Yoshioka et al., 2000; Dobrian et al., 2000; 

Huang et al., 2004). As will be discussed, when adipose mass is increased, secretions 

from adipose tissue such as IL-6, angiotensin II and fatty acids (Lee et al., 2009) can 

cause both hypertension and insulin resistance. It has been previously reported that 

various components of the renin-angiotensin system (RAS) are expressed in adipose 

tissue (Engeli et al., 2000), thus suggesting a possible link between adipose tissue mass 

and hypertension. In addition, the overexpression of angiotensinogen (AGT) in adipose 

tissue has been reported to be associated with a higher blood pressure and increased fat 

mass (Massiera et al., 2001). It therefore follows that the production and secretion of 

vasoactive precursors, such as angiotensin II, by adipose tissue could be one of the 

mechanisms by which a high-fat diet increases blood pressure. Furthermore, it has 
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recently been shown that angiotensin II causes a greater contractile response in thoracic 

aorta isolated from rats fed a high-fat diet than in aorta from the control animals (Ghatta 

and Ramarao, 2004; Viswanad et al., 2006). Thus, not only is the vasoconstrictor 

angiotensin II released by adipose tissue but the vasculature is also more responsive to 

angiotensin II. Our own results, but not that of Bourgoin et al., (2008), show a similar 

increased responsiveness to PHE at the submaximal doses tested. Denuding the aorta 

resulted in weaker PHE responses in the HFD group particularly at doses between 3 mM 

and 8 mM PHE. This is similar to results obtained by Viswanand et al., (2006) and 

Ghatta and Ramaro (2004) who showed that the Emax induced by angiotensin II was 

significantly influenced by denudation in control animals but not in animals fed the HFD. 

Increased contraction to vasoconstrictors in aorta with intact endothelium is due to 

formation of free radicals and can be reversed by antioxidants (Viswanand et al., 2006). It 

must however be considered that the highest dose used in their study was 1 mM. 

 

Blood pressure may be increased not only by the production of the vasoconstrictor 

angiotensin II in adipose tissue and by the possible increased responsiveness to the 

angiotensin II, but it may also be due to impaired relaxation of the vasculature. Our 

results show that the EC50 (the concentration required to cause half maximal relaxation), 

of the aorta isolated from animals on the HFD is twofold higher than that of the control 

animals, indicating impaired relaxation. Because of the scatter of our data and the small 

sample size we consider this data as preliminary and are cautious not to make a firm 

conclusion. Endothelial dependent relaxation, stimulated by acetylcholine (Viswanad et 

al., 2006) or carbachol (Bourgoin, et al., 2008) were found to be incomplete in aorta 
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isolated from rats fed the high-fat diet while the aorta isolated from the control animals 

relaxed completely (100%) in response to acetylcholine or carbacol. Impaired relaxation 

in animals fed a high-fat diet has been shown to be due to increased endothelin-1 protein 

content (Bourgoin, et al., 2008), and decreased formation of nitric oxide (Bourgoin et al., 

2008, Roberts et al., 2000, Lee et al., 2009) associated with a decrease in the expression 

of endothelial nitric oxide (eNOS) synthase (Bourgoin et al., 2009). This would be in line 

with a decreased EC50 for acetylcholine rather than a decrease in maximal relaxation. 

One can then argue that higher doses of acetylcholine may be needed to induce complete 

relaxation in the HF fed animals. The argument is further supported by the fact that 

endothelium-independent relaxation is complete as illustrated by denuded aorta (fig. 4.9) 

and results of others (Viswanad, et al., 2006) and the fact that addition of L-NAME 

restores complete endothelium dependent relaxation (Bourgoin et al., 2008).  

 

The vasoconstrictory function of angiotensin II is mediated by activation of the 

angiotensin II receptor 1. Activation of this receptor at the adrenal gland may also cause 

release of aldosterone which further contributes to a hypertensive state, especially in the 

presence of increased visceral fat (Roberge, et al., 2007).  

 

Another factor that may have contributed to the increased BP is the pressor effect of the 

dietary fat. A previous study has reported that even in isocaloric feeding, dietary fat 

increase blood pressure (Yoshioka et al 2000), which suggests that the hypertension 

occurred independent of overfeeding. 
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5.2 High-fat feeding and insulin resistance 

A second objective of this study was to determine whether feeding rats our high-fat diet 

for six weeks will result in the development of insulin resistance. Analysis of the AUC’s 

of IPGTT’s and QUICKI showed no difference between groups, indicating that the 

animals did not become insulin resistant. The HFD also did not induce any change in the 

lipid profile of the rat. Because the animals did not become insulin resistant we could not 

determine whether the intervention to prevent hypertension by administration of captopril 

would also affect the IR status of the animals. 

 

The fact that the animals did not become IR was unexpected. Several studies indicate that 

feeding rats a diet in which 40% of the calories is derived from lard causes IR together 

with changes in the plasma lipid profile after 4 weeks (Grundleger et al., 1982; Han et al., 

1994; Zierath et al., 1997). Furthermore, feeding rats a normal laboratory chow diet and 

supplementing the drinking water with 10% fructose (Liang et al., 2007) or combinations 

of high-fat/high sucrose diets (Bourgoin et al 2008) also resulted in IR. Our result is 

particularly surprising in view of the increased adipose tissue mass observed (table 4.1). 

White adipose tissue releases inflammatory cytokines, such as TNF-α and IL-6, together 

with other adipokine secretions such as leptin, retinol-binding protein 4 and resistin; all of 

which act in an autocrine and paracrine fashion to play a role in the pathogenesis of IR by 

modifying key steps in the insulin signaling pathway (Bastard, et al., 2006; Lee et al., 

2009; van Gaal et al., 2006). Fatty acids and cytokines released from adipose tissue 

inhibit PI3K (Lee et al., 2009). This results in decreased recruitment of GLUT4 receptors 
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to the cell membrane (fig 2.2) causing impaired glucose translocation and insulin 

resistance.   

 

The result of this study is in agreement with that of Buettner et al., (2006) who also did 

not observe differences in glycemic level of rats fed a high-fat diet (compared to the 

control group), but is in conflict with a report that high-fat diet induced hyperglycemia 

(Ghatta and Ramarao, 2004). The discrepancies in the present study and the ones in 

which IR was present could also be as a result of differences in the type of fat used, eg. 

Ghatta and Ramarao (2004) used lard while the present used cooking fat (palm oil). The 

ratio of unsaturated fatty acid to saturated fatty acids in lard is 1.3 in comparison with the 

ratio of 1.0 in palm oil (Ong and Goh, 2002).  Saturated fats cause obesity and insulin 

resistance, whereas unsaturated fatty acids do not (Pan et al., 1994, Stolien et al., 2000). 

Furthermore, high intake of coconut fat does not lead to insulin resistance (Schwab et al., 

1995) and chronic consumption of coconut fat does not predispose to obesity (Taylor et 

al., 1983). This might suggests that IR may not be associated with fats from plant origin. 

Palm oil also contains tocotrienols (Johannesen, 2005) which has antioxidant properties 

and which, amongst other, lower serum cholesterol levels and decrease platelet 

aggregation (Johannesen, 2005). It is possible that the strong antioxidant effects of 

tocotrienols in palm oil masked the ability to induce IR.  

 

β-cell dysfunction is a primary defect in high-fat feeding (Huang et al., 2004). At three 

weeks the IPGTT curve of our HFD group is elevated between 25 and 60 minutes (fig 

4.4) suggesting that the normalization of the blood glucose level after a glucose load lags 
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behind that of the other groups. At 6 weeks the glucose handling of the HFD group has 

apparently improved and the IPGTT curve of this group matched that of the control group 

more closely. Insulin resistance is accompanied by β-cell adaptation resulting in an 

increase in β-cell mass and increased insulin secretion (Park et al., 2007) in the wake of 

simultaneous β-cell apoptosis. Progression to the diabetic state is accompanied by 

accelerated apoptosis which exceed β-cell proliferation. One is thus tempted to speculate 

that the improved glucose handling after six weeks indicates a very early stage of β-cell 

adaptation preventing IR. 

 

IR is associated with an abnormal lipid profile. In the IR state the body uses stored fat as 

metabolic substrate in preference to glucose, resulting in dyslipidemia. Enhanced lipid 

breakdown causes an increase in the plasma free fatty acid levels with subsequent 

changes in lipoprotein composition (van Gaal et al., 2006). Elevated levels of cholesterol 

(Kushwaha et al., 1991), LDL (Dobrian et al., 2000) and triglyceride (Mooney et al., 

1981) have been reported in high-fat feeding. Rats, however, are generally hypo-

responsive to dietary cholesterol thus it has been suggested that hyperlipidemia may only 

be induced in rats by high cholesterol/high-fat diets containing cholic acid and thiouracil 

(Joris et al., 1983). The normal lipid profile observed in our high-fat fed animals may 

thus be indicative of the absence of IR or the lack of cholic acid and thiouracil in our diet. 

 

In recent experiments in the laboratory, rats were fed the high-fat diet or normal 

laboratory pellets for 12 weeks. At the end of the 12 week period the QUICKI between 

the groups were found to be significant (0.4414 ± 0.02415 and 0.5509 ± 0.02415 
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respectively, P = 0.0166), indicating that the high-fat fed group were IR. Our six week 

experimental period was thus too short to induce IR, but prolonging the high-fat feeding 

period causes IR.   

 

From the literature it is unclear whether hypertension develops prior to IR or vise verse. 

Studies reported on earlier in this thesis (Randle et al., 1963; Kim et al., 1996; Ghatta and 

Ramarao, 2004) do not give clarity on this issue since the IR status is reported at one time 

point only, when the animals are both hypertensive and IR. After six weeks on the high-

fat diet our rats were hypertensive but not insulin resistant. One can thus conclude that, 

under our experimental conditions and dietary intervention, hypertension developed prior 

to IR.  

  

5.3 Conclusions 

After 6 weeks of high-fat (40% fat) feeding our rats were hypertensive and visceral fat 

mass was increased. Dyslipidemia and insulin resistance were absent. Extending the 

study period to 12 weeks resulted in development of insulin resistance. We do not make 

firm conclusion regarding the effect of high-fat feeding on vascular responsiveness 

because of the small number of animals used in the vascular reactivity experiments. 

Preliminary results however, indicate possible increase in EC50.  

 

5.4 Future perspectives 

It is clear from our laboratory that insulin resistance occurred after 12 weeks on the high-

fat diet without cholic acid or thiouracil. However, addition of cholic acid or thiouracil in 
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the diet should be considered if subsequent studies will last for a shorter period. In further 

studies on the model secretions from adipose tissue such as angiotensin II, TNF and IL-6 

should be measured since they seem to mediate the link between hypertension and IR.  In 

order to know when insulin resistance occurred, insulin levels must be determined on a 

weekly basis in the same manner as blood pressure. This model should in future be used 

to study vascular reactivity in hypertensive animals in the absence or presence of insulin 

resistance and in normotensive insulin resistant animals.   
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