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Abstract

We present various methods of pricing Asian options. The methods include Monte Carlo

simulations designed using control and antithetic variates, numerical solution of partial

differential equation and using lower bounds.

The price of the Asian option is known to be a certain risk-neutral expectation. Using

the Feynman-Kac theorem, we deduce that the problem of determining the expectation

implies solving a linear parabolic partial differential equation. This partial differential

equation does not admit explicit solutions due to the fact that the distribution of a sum

of lognormal variables is not explicit. We then solve the partial differential equation

numerically using finite difference and Monte Carlo methods.

Our Monte Carlo approach is based on the pseudo random numbers and not deterministic

sequence of numbers on which Quasi-Monte Carlo methods are designed. To make the

Monte Carlo method more effective, two variance reduction techniques are discussed.

Under the finite difference method, we consider explicit and the Crank-Nicholson’s schemes.

We demonstrate that the explicit method gives rise to extraneous solutions because the

stability conditions are difficult to satisfy. On the other hand, the Crank-Nicholson

method is unconditionally stable and provides correct solutions.

Finally, we apply the pricing methods to a similar problem of determining the price of

a European-style arithmetic basket option under the Black-Scholes framework. We find

the optimal lower bound, calculate it numerically and compare this with those obtained

by the Monte Carlo and Moment Matching methods.

Our presentation here includes some of the most recent advances on Asian options, and

we contribute in particular by adding detail to the proofs and explanations. We also

contribute some novel numerical methods. Most significantly, we include an original
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contribution on the use of very sharp lower bounds towards pricing European basket

options.
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Introduction

Among the most commonly traded exotic derivatives on today’s foreign exchange, interest

rate and commodity markets are the Asian options (see, e.g., Carr [14]). Asian options

are options whose payoff depends on the average of the underlying asset price for part or

all the duration of the contract (see Alziary et al. [1], Briys et al. [12], Joshi [35], Musiela

et al. [46]). These options have been traded since the late 1980’s when the employees of

the Bankers Trust in Asia, priced the option in connection with average price of crude

oil. These workers then coined the name as Asian options ([14]). Since their inception,

Asian options have attracted interest from practitioners and scholars alike [12].

There are reasons for this surge in popularity of Asian option on the markets. Asian

options are generally cheaper than plain vanilla European options. We will confirm this

observation later in the thesis. A possible explanation is that the volatility of the aver-

age value of the underlying tends to be lower than that of the individual assets. Asian

options are also less prone to price manipulation near the date of maturity as compared

to European options. Manipulating the average price of the underlying is clearly difficult

but if only the price at maturity was considered then this would be possible.

Usually, two ways of taking the average are considered (see [1], [12] and Kemna et al.

[36]). We can have a geometric average or arithmetic average. Thus we have the two

payoffs

(
1

N

N∑

i=1

Sti −K
)+

and



(

N∏

i=1

Sti

) 1
N

−K




+

where Sti is the price of the underlying asset at time ti, K is the strike price, N is the

total number of trading days and x+ = max{x, 0}.

The geometric average gives an explicit formula for the price of the geometric option

[6, 36]. The reason being that the product of lognormal variables is also lognormal. On
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3

the other hand, there is no explicit formulae for the price of the arithmetic option because

the distribution of the sum of lognormal variables is not explicit [1, 14]. The inclusion of

the geometric average in the study of the arithmetic average option is twofold. Firstly, it

gives insight into pricing the arithmetic average option [19] and secondly, it can be used

as a control variate in the design of Monte Carlo simulations [36].

Our focus will be on pricing arithmetic Asian options. The average will be in the contin-

uous sense, i.e, the payoff structure takes the form
(

1

T

∫ T

0

Su du−K
)+

where T denotes the exercise time, St is the price of the underlying asset and K is the

strike price.

Although in practise the asset prices are taken at discrete times [14], ti, such that 0 <

t1 < t2 . . . < tN = T , the continuous average enables us to characterize the price of the

option as a solution of a partial differential equation. This partial differential equation is

similar to the classical Black-Scholes partial differential equation (see Hull [32] and [60]

for details).

The literature shows various attempts to price arithmetic Asian options analytically using

closed form solutions. Kemna and Vorst [36] priced the geometric Asian option. Turnbull

and Wakeman [57] used the idea that the arithmetic average is approximately lognormal.

Levy [41] also worked along the same line of thought, and managed to improve the re-

sults of Turnbull and Wakeman. He confirmed his claims using Monte Carlo procedures.

Henderson and Wojakowski [28] showed that there is a symmetry between the price of a

fixed strike and a floating strike Asian option.

The other analytical solution approaches were based on the idea of conditioning. Rogers

and Shi [52] introduced the conditioning in their method and since then, it has gained

popularity [21, 56]. In their paper, they proposed a general conditioning variable, although

it turned out that the normally distributed one is the best. Curran [18, 19] used the

 

 

 

 



4

geometric average as the conditioning variable. The work of Kuan [15] and Thompson [56]

is very similar and is an extension of Rogers and Shi’s ideas. The method of conditioning

is usually followed to get bounds.

On the numerical side, a very popular method that has been used for Asian options and

option valuations in general is the Monte Carlo method [36]. It has gained considerable

attention since its introduction to option pricing by Boyle [10]. For example, not only

are pseudo random numbers used, it can also accommodate deterministic sequences (see,

e.g., Corwin [17] and Lamiex [40] for further discussion). The only problem of the Monte

Carlo approach is that of the propagation of error. Although the error incurred in this

process is inversely proportional to the number of Monte Carlo loops, it is known that the

approach becomes progressively impractical in view of the computational complexities,

in particular, the CPU time. As a remedy to this problem, researchers tried to improve

its efficiency, for example, the variance reduction procedures given in Higham [31] and

[36, 40]. Some of these techniques, the antithetic and the control variate methods, will

also be used in this thesis. The strength of the control variate method lies in the ability

to identify the right candidate for the control variate.

The price of an Asian option can be determined as a solution of a partial differential

equation (PDE). Various authors have used this method, see for instance, [1], Benhamou

[8], Ingerson [34], Rogers and Shi [52], and [58]. Barraquand [4] and Ingerson [34] showed

that the price of an Asian option satisfies the two state PDEs:

Ct + rSCs +
1

2
σ2S2Css +

1

t
(S − A)CA − rC = 0,

Vt + rSVs +
1

2
σ2S2Vss + SVI − rV = 0,

respectively, where I(T ) =
∫ T
0
S(τ) dτ and A(T ) = I(T )/T and the states are the variables

s, A, I. Ingerson [34] and Alziary et al. [1] showed that the two state PDEs can be reduced

to one state PDEs by using a homogeneity argument [35]. The homogeneity property holds

for a collective class of models known as the log-type. An example is the Black-Scholes

 

 

 

 



5

model. Benhamou [8] also applied the same idea.

The other approaches include finite difference, finite element and finite volume methods.

While we will consider the finite difference methods in this thesis, it is worth mentioning

here that Foufas et al. [24] priced Asian options by a finite element method whereas

Zvan et al. [62] used the finite volume method (initially developed to model fluid flow in

computational fluid dynamics). Of all the PDE methods, the Vecer’s method [58] is the

easiest one to implement even for low volatilities. We will not follow Vecer line of thought

as the underlying theory of stochastic control is rather out of context in this work.

We will firstly apply the explicit finite difference methods which gives us the oscillatory

solutions. This is largely due to the fact that for the volatility values of interest the

diffusion term in the PDE is very small and hence the PDE tends to be convection

dominant, causing the PDE to be predominantly hyperbolic. Rogers and Shi [52] proposed

a brute force method to overcome this problem. This has resulted in the authors preference

for the Crank-Nicholson’s method over the classical explicit method(s) [8].

Furthermore, we have extended some of our proposed methods to price a European-style

basket option. This we do in the Black-Scholes framework. It is to be noted that the

basket options are similar to Asian options and it is not a surprise that the methods used

to price these derivatives overlap [20, 50]. In both cases their payoffs involve taking sum

of lognormal variables. It cannot be overemphasized that the lack of explicit formulae for

the distribution of this sum, just as for Asian options, has hampered the derivation of

closed form expressions for the price of the basket options. The difference between the

two options is that an Asian option is path dependent whereas a European-style basket

option is path-independent [21]. For this reason, the Monte Carlo method for basket

options should be less complex. We will show how we can adapt Monte Carlo methods

for Asian options to basket options. We assume that the prices of the assets in the

basket are correlated. Of course, it makes the implementation of Monte Carlo a bit more

 

 

 

 



6

difficult but following [27] we find a way to generate these correlated prices. We will do

so by making effective use of some techniques from linear algebra.

We also derive an optimal lower bound for the price. The determination of this Lower

bound is our original work being submitted for a publication [45]. In fact, for a particular

set of lower bounds of the Asian option price, we find the maximum. The lower bound

turns out to be an excellent approximation and so can be taken as the real price. We

suitably determine a random variable then use the method of conditioning [19, 52]. By

assuming that the basket of lognormally distributed asset is also lognormal, we investigate

a moment matching procedure. We accordingly determine the parameters of the lognormal

distribution. In other words, we assume the basket to be a synthetic asset which follows

a geometric Brownian motion. The results of the optimal lower bound and the moment

matching procedure are benchmarked using the Monte Carlo simulations.

The rest of the thesis is organised as follows. The chapters are grouped into three parts.

Part I is devoted to the underlying theory of Asian options. We also study qualitative

aspects of Asian options. Based on the stochastic calculus, we determine the associated

PDEs. Some lower bounds are also derived. In Part II, we infer the price of the option

by numeric means. Lastly in Part III, we apply our methods to basket options.

 

 

 

 



Part I

Theoretical considerations
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1. Preliminaries and Important

Concepts

In this chapter, we lay the foundation for all the work that will follow. We will give brief

discussions of some of the relevant facts, details of which can be found in standard texts,

for example, Doob [22], Nielsen [47], Øksendal [48], etc.

Definition 1.1. A stochastic process {Wt}t≥0 is called a Wiener process if

(i) W0 = 0

(ii) Wt is continuous

(iii) for 0 = t0 ≤ t1 ≤ · · · ≤ tn, W1,W2−W1,W3−W2, · · · ,Wn−Wn−1 are independent

(iv) for 0 ≤ s ≤ t, Wt −Ws ∼ N(0, t− s).

A Brownian motion is a stochastic process of the form Bt = a+ σWt for constants a and

σ, a Wiener process Wt. Figure 1.1 shows some simulated Wiener process paths. In the

first part (a), we have a single path and in (b) there are 100 paths.

1.1 Conditional Expectation

Definition 1.2. Consider a probability space (Ω, P,F) on a set Ω. Let G be a sub-sigma

field of F , and let X be a random variable. A G-measurable random variable E(X|G) is

called the conditional expectation of X relative to the subfield G if

∫

G

E(X|G)dP =

∫

G

XdP, ∀G ∈ G.

8

 

 

 

 



Section 1.1. Conditional Expectation 9

0.0 0.2 0.4 0.6 0.8 1.0
−20−10010
20

30

40

50

(a) Single Wiener process path

0.0 0.2 0.4 0.6 0.8 1.0
−100−50

0

50

100

(b) 100 Wiener process paths

Figure 1.1: Wiener process path Simulations

We write EG(X) to mean E(X|G). The following are some properties of the conditional

expectation (see, e.g., Capinski et al. [13], [22], Shreve [53] for detailed discussion), for

subfields G and H of F and random variables X and Y :

(i) E(EG(X)) = E(X),

(ii) if X is G-measurable, then EG(X) = X,

(iii) if X is independent of G, then EG(X) = E(X),

(iv) the tower property or law of iterating expectations: if H ⊂ G then EH(EG(X)) =

EH(X), (generalising (i) above)

(v) linearity: EG(aX + bY ) = aEG(X) + bEG(Y ), for any a, b ∈ R.

The conditional expectation is an important concept in mathematical finance. It enables

us to study derivatives by taking into account the flow of information, which we express

in terms of subfields Ft ([13]). We are usually interested in knowing the behaviour of

a random variable X and how the information at time t can help us study the random

variable X. Thus the problem would be to find the best estimate of the random variable

given the information we have. This random variable is E(X|Ft).

 

 

 

 



Section 1.2. Moment Generating Function 10

Suppose we have a probability space (Ω, P,F). Then we can define a new measure Q

through the Radon-Nikodym derivative ([13])

dQ

dP
:= Z.

The following result shows that if the Radon-Nikodym derivative is restricted to a subfield

G, then E
Q(Z|G) denoted by

(
dQ

dP

)
|G can be expressed as the restriction of the measures

P and Q on G denoted by dP|G and dQ|G respectively.

Proposition 1.3. Let two subfields G and F be such that G ⊆ F , then

dQ|G
dP|G

=

(
dQ

dP

)

|G
.

We omit the proof of the very straightforward result. The Bayes theorem is handy when

we change from one measure to the other.

Theorem 1.4. Bayes Theorem: For any random variable X, if G ⊆ F then

E(Z|G)EQ(X|G) = E(ZX|G).

Proof. The proof can be found in [47].

1.2 Moment Generating Function

Definition 1.5. The moment generating function (mgf) of a random variable X is defined

as

MX(θ) = E(eθX), for θ ∈ Z
+,

where Z
+ is the set of positive integers.

Example 1.6. If X follows a normal distribution (we write X ∼ N(µ, σ)), then

MX(θ) = E(eθX)

=

∫ ∞

−∞
eθx

1

σ
√

2π
e−

(x−µ)2

2σ2 dx,

 

 

 

 



Section 1.3. Itô Lemma 11

which will be simplified further. Note the factor exp(ω) in the integrand, where

ω = θx− (x− µ)2

2σ2
.

Completing the square we get

ω = µθ +
(σθ)2

2
− u2

2
,

with u = x−(µ+σ2θ)
σ

, and consequently du = 1
σ
dx. Therefore

MX(θ) = eµθ+
(σθ)2

2

∫ ∞

−∞

1√
2πσ2

e−
(x−(µ+σ2θ))2

2σ2 dx

= eµθ+
(σθ)2

2

∫ ∞

−∞

1√
2π
e−

u2

2 du

= eµθ+
(σθ)2

2 ,

where
∫ −∞
∞

1√
2π
e−

u2

2 du = 1.

Now let us consider an example of where the mgf is important.

Example 1.7. Suppose the random variable ST is such that

ST = Ste
(µ− 1

2
σ2)(T−t)+σWT−t ,

where Wt ∼ N(0, t). The stochastic process {Wt}t≥0 is called a Wiener process. The

expectation of ST is

E(ST ) = Ste
(µ− 1

2
σ2)(T−t)

E(eσWT−t)

= Ste
(µ− 1

2
σ2)(T−t)e

1
2
σ2(T−t)

= Ste
µ(T−t).

1.3 Itô Lemma

When dealing with stochastic integrals, i.e, integrals w.r.t. a Wiener process, it is worth

mentioning that it will be the Itô integral. For further discussion on the Itô integral, we

refer to Øksendal [48].

 

 

 

 



Section 1.3. Itô Lemma 12

Lemma 1.8. Suppose f(t, x) is twice continuously differentiable and ∂f

∂x
(t,Wt) is Ft mea-

surable ∀ 0 ≤ t ≤ T . Then

f(t,Wt)− f(0,W0) =

∫ t

0

∂

∂s
f(s,Ws)ds+

∫ t

0

∂

∂x
f(s,Ws)dWs +

1

2

∫ t

0

∂2

∂x2
f(s,Ws)ds.

For the proof see any standard text, for example [48]. We usually want to write the above

in a convenient way as

df(t,Wt) = ḟ(t,Wt)dt+ f ′(t,Wt)dWt +
1

2
f ′′(t,Wt)dt,

where ḟ(t,Wt) denotes differentiating w.r.t. time and f ′(t,Wt) denotes differentiating

w.r.t. Wt. In the literature the phrases Itô Theorem, Itô formula and Itô Lemma are used

to mean the same thing; we are not going to be exceptional. Among other uses, we can

solve some stochastic differential equations using Itô Theorem [23].

Example 1.9. Suppose the price St of an asset follows a geometric Browian Motion, i.e.,

a process satisfying the Stochastic differential equation, (SDE, for brevity)

dSt = µStdt+ σStdWt,

where µ is the drift and σ is the volatility. We can also regard µ as being the average

returns and σ is the standard deviation of returns. We first write these dynamics as

dSt
St

= µdt+ σdWt.

Now let us write f(t,Wt) = log St. Then

ḟ(t,Wt) = 0, f ′(t,Wt) =
1

St
and f ′′(t,Wt) = − 1

S2
t

.

By Itô Lemma, we can find the differential of f(t,Wt):

d (log St) =
1

St
dSt +

1

2

(
− 1

S2
t

)
(dSt)

2

= µdt+ σdWt +
1

2

(
− 1

S2
t

)
σ2S2

t dt

=

(
µ− 1

2
σ2

)
dt+ σdWt.

 

 

 

 



Section 1.4. Lognormal Distribution 13

Integrating both sides of the equation we have

log ST − log St =

∫ T

t

(
µ− 1

2
σ2

)
ds+

∫ T

t

σdWs.

Finally

ST = Ste
(µ− 1

2
σ2)(T−t)+σ(WT−Wt). �

1

We may consider the Itô lemma for the multidimensional case [47]. Suppose now

Xt = (X1, X2, · · · , Xn)

and consider a function f(t,Xt) then

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

n∑

i=1

∂f

∂xi
(t,Xt)dX

i
t +

n∑

i,j=1

∂2f

∂xixj
(t,Xt) dX

i
tdX

j
t .

If the coordinates (X1, X2, · · · , Xn) are independent Brownian motions, then the last

term simplifies according to

dX i
tdX

j
t =





dt, if i = j

0, if i 6= j,

and dtdX i
t = dtdXj

t = dtdt = 0. If there is correlation between them, we have dX i
tdX

j
t =

σijdt, where σij is the correlation between Xi and Xj.

1.4 Lognormal Distribution

The lognormal distribution [6, 37] is important for price determination in the Black-

Scholes economy. In this economy, we assume that the price of an asset follows a geometric

Brownian motion. We have already shown that by application of the Itô Lemma we are

1This indicates the end of the example

 

 

 

 



Section 1.4. Lognormal Distribution 14

able to see that the price follows a log-normal distribution. At this stage it is important

to describe the lognormal distribution.

A random variableX is said to follow a log-normal distribution, writtenX ∼ LogN(µx, σ
2
x)

if its probability density function g(x) is given by

g(x) =
1

xσx
√

2π
e−

1
2
( ln x−µx

σx
)2 .

There is also an equivalence between normal variates and log-normal variates. If Y is a

normal variate, Y ∼ N(µy, σ
2
y), then eY ∼ LogN(µy, σ

2
y), that is

Y ∼ N(µy, σ
2
y)⇔ eY ∼ LogN(µy, σ

2
y).

In the Moment matching method, which we will use in connection with pricing basket

options, the moments of the Log-normal distribution form the core of the concept [20] and

[11]. Therefore an understanding of them turns out to be invaluable. The first moment of

a random variable X is the mean and the second moment is the expectation of X2. Now

we want to characterise these moments. For the random variable X ∼ LogN(µx, σ
2
x), we

have

elnX = X ∼ LogN(µx, σ
2
x)⇔ lnX ∼ N(µx, σ

2
x).

Therefore, the moments of X, generalised as expectation of Xθ for θ ∈ Z
+ are given by

E(Xθ) = E(eθ lnX) = eθµx+ 1
2
θ2σ2

x ,

since lnX ∼ N(µx, σ
2
x). Usually, the first and second moments are important. These are

E(X) = eµx+
1
2
σ2
x and E(X2) = e2(µx+σ2

x). (1.1)

Consequently, the variance is

Var(X) = E(X2)− (E(X))2 = e2µx+σ2
x(eσ

2
x − 1). (1.2)

 

 

 

 



Section 1.5. The Bivariate Normal Distribution 15

1.5 The Bivariate Normal Distribution

The material presented here can be found in Renyi [51] or other books on Probability

Theory. Suppose that two random variables X and Y are normally distributed with

means µx and µy and variances σ2
x and σ2

y . Suppose further that the correlation between

these random variables is ρ. Then the pair (X, Y ) is said to be a bivariate normal random

variable, and we write (X, Y ) ∼ BiN(µx, µy, σ
2
x, σ

2
y , ρ). The probability density function

is given by

f(x, y) =
1

2πσxσy
√

1− ρ2
exp

{
− 1

2(1− ρ2)

((
x− µx
σx

)2

−

2ρ
x− µx
σx

y − µy
σy

+

(
y − µy
σy

)2
)}

,

(1.3)

provided that neither σx nor σy is zero. If we define the marginal density of X to be

f(x) =

∞∫

−∞

f(x, y) dy,

then it is easy to show that

f(x) =
1

σx
√

2π
e−

1
2
(x−µx
σx

)2 . (1.4)

Likewise the marginal density function for Y is given by

f(y) =

∞∫

−∞

f(x, y) dx

which entails

f(y) =
1

σy
√

2π
exp(−1

2
(
y − µy
σy

)2).

So, to say that two random variables follow a bivariate normal distribution implies that

both of these random variables are normally distributed. The Figure 1.2 further clarifies

this. Whichever section we look at the diagram, we see the bell shape of the normal
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Figure 1.2: Bivariate Normal density function

density function. We would also want to determine the conditional density function. We

define the conditional density function of X on Y to be

f(x|y) :=
f(x, y)

f(y)
,

provided that f(y) 6= 0. Using (1.3) and (1.4) we get

f(x|y) =
1

2πσxσy
√

1− ρ2
exp

{
− 1

2(1− ρ2)

((
x− µx
σx

)2

−

2ρ
x− µx
σx

y − µy
σy

+ ρ2

(
y − µy
σy

)2
)}

,

There is a nice result about bivariate normal variables. Their conditional distributions

are also normal.

Proposition 1.10. Suppose X and Y are bivariate normally distributed, i.e., X, Y ∼
BiN(µx, µy, σ

2
x, σ

2
y , ρ) then the conditional density of X given Y is normal; specifically

X|Y = y ∼ N

(
µx + ρσx

(
y − µy
σy

)
, σ2

x(1− ρ2)

)
.

 

 

 

 



Section 1.5. The Bivariate Normal Distribution 17

Proof. We are going to use the moment generating function (mgf) for the normal distri-

bution. We know that the mgf of a random variable uniquely identifies the distribution.

Before we proceed further, let us simplify our notation by making the following substitu-

tions u = x−µx
σx

and v = y−µy
σy

. We can write the following immediately

E(eθX |Y = y) =

∞∫

−∞

eθxf(x|y) dx

=
1

σx
√

2π
√

1− ρ2

∞∫

−∞

eθ(σxu+µx)e
− 1

2(1−ρ2)
(u2+ρ2v2−2ρvu)

σxdu

=
1√

2π
√

1− ρ2
eθµxe

− ρ2v2

2(1−ρ2)

∞∫

−∞

e
− 1

2(1−ρ2)
(u2−2(ρv+(1−ρ2)θσx)u)

du.

Completing the square in the exponent of the integrand results in the expectation being

written as

=
1√

2π
√

1− ρ2
exp

{
θµx −

ρ2v2

2(1− ρ2)
+

(ρv + (1− ρ2)θσx)
2

2(1− ρ2)

}
×

∞∫

−∞

exp

{
−(u− (ρv + (1− ρ2)θσx))

2

2(1− ρ2)

}
du

The final step is then to normalize the normal density; that is make it be N(0, 1). To do

this, we let z = u−(ρv+(1−ρ2)θσx)√
1−ρ2

. Consequently

E(eθX |Y = y) =
1√

2π
√

1− ρ2
exp

{
θµx −

ρ2v2

2(1− ρ2)
+

(ρv + (1− ρ2)θσx)
2

2(1− ρ2)

}
×

∞∫

−∞

e−
z2

2

√
1− ρ2dz

= exp

{
θµx −

ρ2v2

2(1− ρ2)
+

(ρv + (1− ρ2)θσx)
2

2(1− ρ2)

}

= eθ(µx+σxρv)+
1
2
θ2(1−ρ2)σ2

x .

But this is the mgf of a normal variable with mean being the coefficient of θ and variance
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is the multiplicand of 1
2
θ2. Therefore

(X|Y = y) ∼ N

(
µx + ρσx

(
y − µy
σy

)
, σ2

x(1− ρ2)

)
.

1.6 Feynman-Kac Theorem

The Feynman-Kac Theorem is used to represent certain types of partial differential equa-

tions as an expectation of a functional of a given diffusion process (see [23, 39, 53]).

Theorem 1.11. (Feynman-Kac). If V (x, t) solves the partial differential equation

∂V

∂t
(x, t) + µ(x, t)

∂V

∂x
(x, t) +

1

2
σ(x, t)2∂

2V

∂x2
(x, t) = 0,

subject to: V (x, T ) = G(x),

(1.5)

and Xt is defined by the stochastic differential equation

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt,

where Wt is a Wiener process. Furthermore we assume that G(x) is a continuous function

which is either non-negative or satisfies the condition (see e.g. [39]):

|G(x)| ≤ L(1 + |x|λ), L > 0, λ ≥ 1.

Then

V (x, t) = E
P (G(XT )|Xt = x).

Actually, we must say that Xt’s dynamics are so under some probability measure, in this

case P . Then Wt is a P -Wiener process. We may also write

V (x, t) = E
P (G(XT )|Ft)

 

 

 

 



Section 1.7. Girsanov Theorem 19

There is also a technical requirement that

∫ T

0

E

[(
σ(Xt, t)

∂V

∂x
(Xt, t)

)2
]
dt <∞,

for the theorem to hold.

Example 1.12. The following problem is exercise 18 of Chapter 4 from Etheridge [23].

Suppose we want to find f(x, t) which satisfies the partial differential equation:

∂f

∂t
(x, t) +

1

2
σ2∂

2f

∂x2
(x, t) = 0,

subject to: f(x, T ) = x2,

We note that Xt follows the sde:

dXt = σdWt.

Then applying the Feynman-Kac theorem we have

f(x, t) = E(X2
T |Xt = x)

=

∫ ∞

−∞
x2 1√

2πσ2t
e−

x2

2σ2t dx.

1.7 Girsanov Theorem

This theorem helps us identify a Brownian Motion if we appropriately change measures

(see, e.g., [39, 53]). Typically, we are interested in finding the corresponding Brownian

Motion under an equivalent measure to the real world probability.

Theorem 1.13. (Girsanov Theorem). Let Wt is a P -Brownian Motion and consider an

Ft measurable function λ(t). For 0 ≤ t ≤ T , define

W̃t :=

∫ t

0

λ(s) ds+Wt

and

Zt := e−
1
2

R t
0 λ

2(s) ds−
R t
0 λ(s) dWs

 

 

 

 



Section 1.7. Girsanov Theorem 20

also define a measure P̃ by
dP̃

dP
= Zt,

the Radon-Nikodym derivative, then under P̃ , W̃t is a Brownian Motion for 0 ≤ t ≤ T .

Remark 1.14. We note that λ(t) can be constant. In that case,

Zt := e−
1
2
λ2t−λWt .

Suppose θ = −λ, then Zt = e−
1
2
θ2t+θWt and W̃t = Wt− θt is a Brownian Motion under P̃ .

This is a variant of the Girsanov theorem [33].

 

 

 

 



2. The basics of Asian Options

In this chapter, we present a detailed discussion about Asian options (see also Alziary [1],

Carr [14], Chacko, [6], Higham [31]). In particular, we discuss the terminology associated

with these options as well as their characteristics. We also establish some properties,

for example parity between Asian calls and puts, the concept of martingales in option

valuation. We close the chapter by deriving the price of a geometric Asian option which

we will use later in the study of numerical solutions for arithmetic Asian options. We

motivate the presentation here by discussing first the European options.

A European Call Option is a financial contract that gives its holder the right to buy

an asset for a prescribed price at a prescribed future date [31, 60]. On the contrary, a

European Put Option gives the holder the right to sell the asset for a prescribed price at

a prescribed future date. When an option is being traded, it involves two parties, namely

the writer and the holder. The writer of a call option must sell the asset if the holder

chooses to exercise the option. Similarly, the writer of the put option is obliged to buy

the asset if the holder of the put chooses to exercise the right to sell the asset.

If the prescribed time for the European call option is T , the prescribed price is K and

the price of the asset is ST , then the holder will buy the asset if ST > K otherwise they

do not exercise the option. The holder realises a profit of ST −K by buying the asset for

K and selling it on the market for ST . Therefore the holder’s profit or payoff is

max{ST −K, 0}.

On the other hand if K > ST , the holder of the put gains a profit of K − ST by buying

the asset for ST on the market and exercising the right of selling the asset for K. The

payoff in that case is

max{K − ST , 0}.

Unlike the case of European Options where the payoff depends only on the price of the

21
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underlying at the last day of holding the option, an Asian Option is an option for which

the payoff depends on the average of the price of the underlying asset, over some period

of holding the option (for more examples see also Carr [14], Joshi [35],Rogers and Shi [52],

Shreve [53], Wilmot [60], etc).

Now there are different ways of taking the average, resulting in different kinds of payoff

structures and hence different types of options (see also Fusai[26], Higham [31]). We can

have an Asian option written on a stock with price St at time t which can be exercised

at time T with strike price K by taking the arithmetic average [1] for the period [t0, T ].

In such a case we can define a fixed strike Asian call option payoff [60] as

(a) (
1

T − t0

∫ T

t0

Su du−K
)+

.

The fixed strike put payoff is therefore

(
K − 1

T − t0

∫ T

t0

Su du

)+

.

A floating strike Asian call option has the following payoff

(b) (
ST −

1

T − t0

∫ T

t0

Su du

)+

.

Specifically, these are St-values continuously averaged. We can also consider the contin-

uous geometric average [6] where the payoff is

(c) (
exp

(
1

T − t0

∫ T

t0

logSu du

)
−K

)+

.

We may replace continuous average by discrete sampling and have payoffs, in the case of

a fixed strike K, taking the form
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(d) (
1

N

N∑

i=1

Sti −K
)+

,

and

(e) 

(

N∏

i=1

Sti

) 1
N

−K




+

,

where 0 < t1 < t2 . . . < tN = T . The put payoffs for (b),(c),(d) and (e) can be easily

written from the call payoffs.

In practise discrete sampling ([8]) is common but in this work we are going to consider

continuously averaged options. In fact our solution to the pricing problem might then be

considered an approximation to the discrete sampled one [14]. There are of course explicit

pricing formulae for some options, for example, (c) (see Chacko [6] for derivation) and

(e) (Higham [31]). In section 2.4, we shall derive a closed formula for the prices in these

cases.

2.1 Mathematical Setting

Before we into detail, we need to specify the modelling assumptions. This involves under-

standing the price dynamics. We will assume the standard settings as in the Black-Scholes

model. In this model, the market has two assets, a bond with price Bt and a risky asset

with price St. There is a riskless interest rate r, so that if B0 is put into a bank account

then at time t it is worth B0e
rt. The expected return on the risky asset µ (also called

drift) and the volatility σ (standard deviation) are constant, i.e.,

E
P

(
dSt
St

)
= µdt and Var

(
dSt
St

)
= σ2t.
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The real world measure is denoted by P . The stochastic differential equation which

governs the price of the risky asset is

dSt = µStdt+ σStdW
P
t ,

where W P
t is a P -Brownian motion. By applying the Fundamental theorem of asset pric-

ing ([5]): To ensure that there are no arbitrage opportunities, we must find an equivalent

martingale measure (EEM) Q (ie P (A) = 0⇔ Q(A) = 0), where P is the real world prob-

ability. The measure Q is called the risk neutral measure [23]. Under Q, the discounted

price of the stock e−r(T−t)ST , is a Q-martingale. We can define the measure Q equivalent

to P through the the Radon-Nikodym derivative of the Girsanov theorem [5], i.e,

dQ

dP
= e−

1
2
λ2t−λWt .

We will now determine the risk neutral dynamics of St. We split the drift µ into two

components, a risky part µ− r and riskless part r [32] and write

dSt
St

= rdt+ µdt− rdt+ σdW P
t ,

= rdt+ σ

(
µ− r
σ

dt+ dW P
t

)
. (2.1)

By the Girsanov theorem [33]

WQ
t := λt+W P

t , where λ =
µ− r
σ

is a Q-Brownian motion. The variable λ is called the market price of risk [5]. Consequently

(2.1) becomes

dSt
St

= rdt+ σdWQ
t . (2.2)

Proposition 2.1. Under Q, the discounted price of the asset e−rtSt is a martingale.

Proof. We will prove the martingale property by showing that the stochastic differential

equation which describes the process e−rtSt has no drift term. Let S̃t = e−rtSt. Then by
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Itô’s lemma

dS̃t = −re−rtStdt+ e−rtdSt

= −re−rtStdt+ re−rtStdt+ σe−rtStdW
Q
t

= σe−rtStdW
Q
t

= σS̃tdW
Q
t .

We can apply the Itô lemma to find St. Thus

ST = Ste
(r− 1

2
σ2)(T−t)+σ

√
T−tZ ,

where Z is a standard normal variable, that is Zt ∼ N(0, 1).

2.2 Characteristics of the Prices

We have already found the measure Q, by the Fundamental theorem of Asset Pricing [5].

So the price of the option is found by taking the conditional expectation under Q. For

the asset with payoff (a) the price for the fixed strike call option is given by

Ca,t = E
Q

[
e−r(T−t)

(
1

T − t0

∫ T

t0

Su du−K
)+
∣∣∣∣∣Ft
]
. (2.3)

On the other hand, the price of the fixed strike put option is

Pa,t = E
Q

[
e−r(T−t)

(
K − 1

T − t0

∫ T

t0

Su du

)+
∣∣∣∣∣Ft
]
. (2.4)

Similarly, the floating strike call and put prices are

Cb,t = E
Q

[
e−r(T−t)

(
ST −

1

T − t0

∫ T

t0

Su du

)+
∣∣∣∣∣Ft
]
,

Pb,t = E
Q

[
e−r(T−t)

(
1

T − t0

∫ T

t0

Su du− ST
)+
∣∣∣∣∣Ft
]
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respectively. For simplicity, we shall take t0 to be 0.

Likewise, we can characterize the price for any payoff structure as we have done for (a)

and (b). The following result [8] is important as it ensures that the price is fair. We shall

also make use of it in the derivation of the PDE whose solution is the price of the Asian

option.

Lemma 2.2. The processes er(T−t)Ca,t and er(T−t)Cb,t are Q-martingales [8].

Proof. Let ZT := er(T−t)Ca,t. Consider times t, s such that 0 < s < t < T . Then

E
Q [Zt|Fs] = E

Q

[
er(T−t)EQ

((
e−r(T−t)

1

T

∫ T

0

Su du−K
)+
∣∣∣∣∣Ft
)∣∣∣∣∣Fs

]

= E
Q

[
E
Q

((
1

T

∫ T

0

Su du−K
)+
∣∣∣∣∣Ft
)∣∣∣∣∣Fs

]

= E
Q

[(
1

T

∫ T

0

Su du−K
)+
∣∣∣∣∣Fs

]
by tower property

= er(T−s)EQ

[(
e−r(T−s)

1

T

∫ T

0

Su du−K
)+
∣∣∣∣∣Fs

]

= er(T−s)Ca,s

= Zs.

This proves the martingale property in the first case. The second part of the proof follows

similarly as the foregoing by substituting the appropriate payoff.

From now onwards we shall write E
Q
t (.) for E

Q(.|Ft).

2.3 Put-Call Parity

As the expression would suggest, the put-call parity gives a relationship between the value

of the call and the put. The put-call parity helps us to determine the prices of the Asian
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options. If we know the value of the call, say, then immediately we can find that of the

put. Since our task is to find the price of an Asian call option, knowing that the buyer

of the option exercises their right to buy, then in this case the put value is zero. This

implies that from the expression of the put-call parity, we have the price of the call. The

following result shall be important in establishing the parity:

Lemma 2.3.

E
Q
t




T∫

t

Su du


 =

St
r

(er(T−t) − 1).

Proof.

E
Q
t




T∫

t

Su du


 = E

Q
t




T∫

t

er(u−t)(e−r(u−t)Su) du




=

T∫

t

er(u−t)EQ
t (e−r(u−t)Su) du, by Fubini Theorem [33]

=

T∫

t

er(u−t)St du, since ST is a martingale,

= St

T∫

t

er(u−t) du

=
St
r

(er(T−t) − 1).

The result serves the purpose of finding the mean of the integral of Su. It confirms that

the conditional expectation and integration can be interchanged.

Proposition 2.4. (Put-Call Parity). Let Ca,t and Pa,t denote the price of the fixed strike

Asian call and put options, respectively. Also let Cb,t and Pb,t denote the price of the

floating strike Asian call and put options, respectively. Then

(i) Pa,t = Ca,t −
St
Tr

(1− e−r(T−t)) + e−r(T−t)
(
K − 1

T

∫ t

0

Su du

)
,
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(ii) Pb,t = Cb,t − St(1−
1

Tr
(1− e−r(T−t))) + e−r(T−t)

1

T

∫ t

0

Su du.

Proof. (i) Let χ(.) be the characteristic function and define the sets:

A =

{
w ∈ Ω :

1

T

∫ T

0

Su(w) du < K

}
and B =

{
w ∈ Ω :

1

T

∫ T

0

Su(w) du ≥ K

}
.

Then we can write the difference between the put (2.3) and the call (2.4) values as

Pa,t − Ca,t = E
Q
t

[
e−r(T−t)

(
K − 1

T

∫ T

0

Su du

)+
]
− E

Q
t

[
e−r(T−t)

(
1

T

∫ T

0

Su du−K
)+
]

= e−r(T−t)EQ
t

[(
K − 1

T

∫ T

0

Su du

)
χA −

(
1

T

∫ T

0

Su du−K
)
χB

]
,

Therefore the above expression becomes

= e−r(T−t)EQ
t

[(
K − 1

T

∫ T

0

Su du

)
(χA + χB)

]
,

= e−r(T−t)EQ
t

(
K − 1

T

∫ T

0

Su du

)

= e−r(T−t)EQ
t

(
K − 1

T

∫ t

0

Su du−
1

T

∫ T

t

Su du

)

= e−r(T−t)
(
K − 1

T

∫ t

0

Su du

)
− 1

T
E
Q
t

(∫ T

t

Su du

)
.

Here we have used the fact that we can take out the Ft measurable part outside the

expectation. Finally, by using Lemma 2.3, in the last expression in the above, we get

Pa,t = Ca,t −
St
Tr

(1− e−r(T−t)) + e−r(T−t)
(
K − 1

T

∫ t

0

Su du

)
.

(ii) We can mimic the above argument to deduce the second parity.

Similarly defining the sets A and B we have

Pa,t − Ca,t = e−r(T−t)EQ
t

[(
1

T

∫ T

0

Su du− ST
)+
]
− e−r(T−t)EQ

t

[(
ST −

1

T

∫ T

0

Su du

)+
]

= e−r(T−t)EQ
t

[(
1

T

∫ T

0

Su du− ST
)
χA −

(
ST −

1

T

∫ T

0

Su du

)
χB

]

= e−r(T−t)EQ
t

(
1

T

∫ T

0

Su du− ST
)
.
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We can as well split the integral to get

= e−r(T−t)
1

T

∫ t

0

Su du+ e−r(T−t)
1

T
E
Q
t

(∫ T

t

Su du

)
− E

Q
t (e−r(T−t)ST )

= e−r(T−t)
1

T

∫ t

0

Su du+
e−r(T−t)

T

St
r

(er(T−t) − 1)− St

by Lemma 2.3 and since ST is a Q martingale ie E
Q
t (e−r(T−t)ST ) = St. Finally, we have

Pb,t = Cb,t − St(1−
1

Tr
(1− e−r(T−t))) + e−r(T−t)

1

T

∫ t

0

Su du.

Remark 2.5. If at time t we know that the known part of the average 1
T

∫ t
0
Su du, is

greater than K, then the option will surely be exercised at time T . In this case the put

option is worthless and the price of the call option is

Ca,t =
St
Tr

(1− e−r(T−t))− e−r(T−t)
(
K − 1

T

∫ t

0

Su du

)
, (2.5)

and

Cb,t = St(1−
1

Tr
(1− e−r(T−t)))− e−r(T−t) 1

T

∫ t

0

Su du. (2.6)

The last result can be found in Wilmot [60] where it was derived in a different way. In that

method, the result is obtained from the PDE whose solution is the price of the option.

2.4 The Discrete Geometric Averaged Asian Option

In this section we are going to determine the explicit formula for the case of the discretely

sampled geometric averaged Asian option. It turns out that the expression is like the

Black-Scholes formula. One reason for finding this formula is to use it as a control variate

in the Monte Carlo method. We shall expand on this later. We give an alternative

derivation to the one given by Kemna [36]. To this end, we can immediately write down

the expression for the price of this option as

Ce,t = E
Q
t


e−r(T−t)



(

N∏

i=1

S(ti)

) 1
N

−K




+

 . (2.7)
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Proposition 2.6. (Closed form pricing formula for geometric Asian option) The price

of the geometric Asian option Ce,t satisfies

Ce,0 = S0e
(r̃−r)TΦ(d̃1)−Ke−rTΦ(d̃2), (2.8)

where Φ(.) is the cumulative normal distribution function and

d̃1 =
log S0

K
+
(
r̃ + σ̃2

2

)
T

σ̃
√
T

,

d̃2 = d̃1 − σ̃
√
T

σ̃2 = σ2 (N + 1)(2N + 1)

6N2

r̃ =
1

2
σ̃2 +

(
r − 1

2
σ2

)
N + 1

2N
.

Proof. As is pointed out by Higham ([31] exercise 19.6) the product can be split as

N∏

i=1

S(ti) =
S(tN)

S(tN−1)

(
S(tN−1)

S(tN−2)

)2(
S(tN−2)

S(tN−3)

)3

. . .

(
S(t3)

S(t2)

)N−2

·
(
S(t2)

S(t1)

)N−1(
S(t1)

S(t0)

)N
SN(t0).

Therefore

log




(∏N
i=1 S(ti)

) 1
N

S0


 =

1

N

[
log

(
S(tN)

S(tN−1)

)
+ 2 log

(
S(tN−1)

S(tN−2)

)
+ 3 log

(
S(tN−2)

S(tN−3)

)

+ . . .+ (N − 2) log

(
S(t3)

S(t2)

)
+ (N − 1) log

(
S(t2)

S(t1)

)

+N log

(
S(t1)

S(t0)

)]
.

Now

S(tN) = S(tN−1)e
(r− 1

2
σ2)∆t+σW∆t ,
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where ∆t = T/N and W∆t ∼ N(0,∆t). Assuming uniform spacing on the interval [0, T ],

we have

log

(
S(tN )

S(tN−1)

)
D
= log

(
S(tN−1)

S(tN−2)

)
D
= log

(
S(tN−2)

S(tN−3)

)
D
= · · ·

D
= log

(
S(t2)

S(t1)

)
D
= log

(
S(t1)

S(t0)

)
,

where
D
= means having the same distribution and

log

(
S(tN)

S(tN−1)

)
∼ N

((
r − 1

2
σ2

)
∆t, σ2∆t

)
.

Define

Z := log




(∏N
i=1 S(ti)

) 1
N

S0


 .

We can find the expectation and variance of Z:

E(Z) =
1

N

(
(r − 1

2
σ2)∆t+ 2(r − 1

2
σ2)∆t+ 3(r − 1

2
σ2)∆t+ · · ·+N(r − 1

2
σ2)∆t

)

=
1

N
(r − 1

2
σ2)∆t

N∑

i=1

i

=
1

2

(
r − 1

2
σ2

)
N + 1

N
T.

Likewise, the variance is

Var(Z) =
1

N2

(
σ2∆t+ 4σ2∆t+ 9σ2∆t+ · · ·+N2σ2∆t

)

=
1

N2
σ2∆t

N∑

i=1

i2

= σ2 (N + 1)(2N + 1)

6N2
T.

We can now write down the distribution of the geometric sum. This is the key issue in

describing the price of the option. If we can find the distribution of the sum then we can

find the price by integrating a suitable function using the distribution function. This is
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difficult for some payoffs like (a) or (b) because we cannot characterise the distribution

function. In such cases we have to turn to other means of determining the price. We

observe that

log



(

N∏

i=1

S(ti)

) 1
N


 ∼ N

(
logS0 +

(
r − 1

2
σ2

)
N + 1

2N
T, σ2 (N + 1)(2N + 1)

6N2
T

)
.

We need to compare this random variable with the corresponding expression for the

European call option, so that we can determine the new parameters σ̃2 and r̃. For the

European case we use

log ST ∼ N

(
log S0 +

(
r − 1

2
σ2

)
T, σ2T

)
.

This implies

σ̃2 := σ2 (N + 1)(2N + 1)

6N2

and

r̃ − 1

2
σ̃2 =

(
r − 1

2
σ2

)
N + 1

2N
⇒ r̃ =

1

2
σ̃2 +

(
r − 1

2
σ2

)
N + 1

2N
.

Writing

Y =

(
N∏

i=1

S(ti)

) 1
N

,

we see that

Y ∼ N

(
logS0 +

(
r̃ − 1

2
σ̃2

)
T, σ̃2T

)
.

From (2.7), the price of the option at time t = 0 becomes

Ce,0 = e−rTE
Q



(

N∏

i=1

S(ti)

) 1
N

−K




+

= e−rTE
Q
(
elog Y −K

)+
.

= e−rT
∫ ∞

logK

(
elog Y −K

) 1√
2πσ̃2T

e
−(log Y−log S0−(r̃− 1

2 σ̃
2)T)

2

2σ̃2T d log Y.
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Letting X = log Y
S0
, then Ce,0 becomes

Ce,0 = e−rT
∫ ∞

log K
S0

S0e
X 1√

2πσ̃2T
e

−(X−(r̃− 1
2 σ̃

2)T)
2

2σ̃2T dX

−Ke−rT
∫ ∞

log K
S0

S0
1√

2πσ̃2T
e

−(X−(r̃− 1
2 σ̃

2)T)
2

2σ̃2T dX.

Completing the square in the first integral, we obtain

Ce,0 = S0e
r̃ T e−rT

∫ ∞

log K
S0

1√
2πσ̃2T

e
−

„

X−

„

r̃+ σ̃2

2

«

T

«2

2σ̃2T dX

− S0Ke
−rT

∫ ∞

log K
S0

1√
2πσ̃2T

e
−(X−(r̃− 1

2 σ̃
2)T)

2

2σ̃2T dX.

We make two more substitutions (to standardise the normal distribution, that is make it

a N(0,1) realisation)

U :=
X −

(
r̃ + σ̃2

2

)
T

σ̃
√
T

and V :=
X −

(
r̃ − σ̃2

2

)
T

σ̃
√
T

.

Simplifying further

Ce,0 = S0e
r̃ T e−rT

∫ ∞

− log
S0
K

− (r̃+σ̃2/2)T
σ̃
√
T

1√
2π
e

−U2

2 dU

− S0Ke
−rT

∫ ∞

− log
S0
K

− (r̃−σ̃2/2)T
σ̃
√
T

1√
2π
e

−V 2

2 dV.

Finally, we can write down the price of the option as

Ce,0 = S0e
(r̃−r)TΦ(d̃1)−Ke−rTΦ(d̃2), (2.9)

where Φ(.) is the cumulative normal distribution function and

d̃1 =
log S0

K
+
(
r̃ + σ̃2

2

)
T

σ̃
√
T

,

d̃2 = d̃1 − σ̃
√
T .
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Figure 2.1: Prices of Geometric averaged Asian option using (2.9) for different volatilities

After what appears to be a plethora of processes, we have been able to characterise the

price. The key was making use of the normal distribution. Figure 2.1 shows the price (at

t = 0) of the Geometric averaged Asian option. It is a result of using Ce,0 for different

values of K. Later in Part II of the thesis, we will explain in detail why it takes this

particular shape and how it can be used to find the value of the arithmetic averaged

Asian option.

 

 

 

 



3. Some Analytical results for Asian

Options

In this chapter, we focus on how the price of the Asian option varies with the strike or

the price of the underlying asset. Our intuition is that the price of a call option should

decrease with strike since the right to exercise for low strikes should be surely more costly

than for higher strikes. We also expect the price of the call to increase with the price of

the underlying. We also investigate how the option price varies with duration-the time

the option is held. The effect of volatility on the price of the option also needs to be

addressed (see also Carr [14]).

3.1 The Effect of the Strike price

As usual, we assume a filtered probability space (Ω, P,F), St being the price of the

underlying asset, for fixed T > 0. Define the random variable

φT (ω) =
K − 1

T

∫ T
0
Su(ω) du

ST
,

where ω ∈ Ω.

Proposition 3.1. Consider the set D = {ω ∈ Ω : φT (ω) < 0}, and let Q (D) denote the

probability that φT < 0. Then the price of an Asian call Ca,t is a decreasing function of

the time zero-price of the underlying and

∂Ca,t
∂K

= −e−r(T−t)Q(D). (3.1)

35
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Proof. Recall that

Ca,t = E
Q
t

[
e−r(T−t)

(
1

T

∫ T

0

Su du−K
)+
]

= E
Q
t

[
e−r(T−t)

(
1

T

∫ T

0

Su du−K
)
1D

]
,

where 1(.) is the indicator function. We differentiate Ca,t to get

∂Ca,t
∂K

= −e−r(T−t)EQ
t (1D)

= −e−r(T−t)Q (D) .

Lemma 3.2. The price of the call Ca,t can be written as

Ca,t =
St
Tr

(1− e−r(T−t))Q̃(D)

− e−r(T−t)
(
K − 1

T

∫ t

0

Su du

)
Q(D),

(3.2)

where Q̃ is defined by Q̃(A) =
∫
A
Z̃t dQ, for A ∈ FT and Z̃t is the Radon-Nikodym

derivative [1]

Z̃t =

∫ T
t
Su du

EQ

(∫ T
t
Su du

) .

Proof. We recall that Ca,t = E
Q
t

(
e−r(T−t)

(
1
T

∫ T
0
Su du−K

)+
)

. We can split the integral

to have

Ca,t = E
Q
t

[
e−r(T−t)

(
1

T

∫ t

0

Su du+
1

T

∫ T

t

Su du−K
)+
]

= E
Q
t

[
e−r(T−t)

(
1

T

∫ t

0

Su du+
1

T

∫ T

t

Su du−K
)
1D}

]

= e−r(T−t)
(

1

T

∫ t

0

Su du−K
)

E
Q
t (1D)

+
1

T
e−r(T−t)EQ

t

(∫ T

t

Su du · 1D
)
.

(3.3)
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The latter simplification is valid since the first integral and the constant K are Ft measur-

able (property (ii) of the conditional expectation in Chapter 1), and since the conditional

expectation distributes over addition. At this stage we can make a change of measures in

the second expectation by defining a new measure Q̃. Let

Z̃t =
dQ̃

dQ
=

∫ T
t
Su du

EQ

(∫ T
t
Su du

) .

We observe that

E
Q
t




∫ T
t
Su du

EQ

(∫ T
t
Su du

)


 =

E
Q
t

(∫ T
t
Su du

)

E
Q
t

(
EQ

(∫ T
t
Su du

)) , by Proposition (1.3)

=
E
Q
t

(∫ T
t
Su du

)

E
Q
t

(∫ T
t
Su du

) , by tower property of E
Q
t (.)

= 1. (3.4)

Using Bayes theorem, we can write

E
Q
t




∫ T
t
Su du

EQ

(∫ T
t
Su du

)1D


 = E

Q
t




∫ T
t
Su du

EQ

(∫ T
t
Su du

)


E

Q̃
t (1D)

= E
Q̃
t (1D) , by (3.4)

= Q̃(D). (3.5)

Therefore

E
Q
t

(∫ T

t

Su du · 1D
)

= E
Q

(∫ T

t

Su du

)
E
Q
t




∫ T
t
Su du

EQ

(∫ T
t
Su du

)1D




= E
Q

(∫ T

t

Su du

)
Q̃(D), by (3.5)

=
St
r

(er(T−t) − 1)Q̃(D), by Lemma (2.3).
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Finally (3.3) becomes

Ca,t =
St
Tr

(1− er(T−t))Q̃(D)

− e−r(T−t)
(
K − 1

T

∫ t

0

Su du

)
Q(D)

(3.6)

and this completes the proof.

3.2 The Effect of the price of the underlying asset

Proposition 3.3. The price of an Asian call Ca,t, is an increasing function of the price

of the underlying asset and

∂Ca,t
∂St

=
1

Tr
(1− e−r(T−t))Q̃(D) (3.7)

Proof. The result follows at once by differentiating (3.6) w.r.t. St.

A study of the effect of the volatility on the price of the Asian option can be found in

Carr [14]. The argument is based on the Maximum principle for parabolic PDEs ( see,

e.g., Williams [59]). As Carr [14] points out, it is in a Black-Scholes market setting where

the price of the option increases as the volatility increases. In a Binomial model this is

not true.

 

 

 

 



4. Bounds of Asian option values

We explore another method which is both easy to use as well as to derive. It is much

more appealing to practitioners who would want to price the derivatives in the shortest

possible times (for more detail, see Chen et al. [15], Deelstra et al. [21]). The method

is to take bounds of the value of the option. The bound is found analytically. At face

value it would appear as if this was not a very good idea but as we see from the results

of calculations, the bounds are staggeringly accurate, quoting Rogers et al. [52].

We will now derive the bounds for both the fixed and floating strike.

4.1 A Lower Bound for a fixed strike price Asian op-

tion

From Chapter 2, we know that

Ca,t = E
Q
t

[
e−r(T−t)

(
1

T

∫ T

0

Su du−K
)+
]
.

We define A :=
{
w ∈ Ω : 1

T

∫ T
0
Su(w) du > K

}
and let 1A be the indicator function. The

value of the option becomes

Ca,0 = E
Q

[
e−rT

(
1

T

∫ T

0

Su du−K
)
1A

]
,

= e−rTE
Q

(
1

T

∫ T

0

(Su −K)1A du

)
,

=
e−rT

T

∫ T

0

E
Q[(Su −K)1A] du.

Define a new set

A :=

{
w ∈ Ω :

1

T

∫ T

0

Wu(w) du > γ

}
.
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From the properties of integration, we know that if two sets are such that X ⊂ Y , then
∫
X
f ≤

∫
Y
f . Therefore Ca,0 becomes

e−rT

T

∫ T

0

E
Q[(Su −K)1A] du ≥ e−rT

T

∫ T

0

E
Q[(Su −K)1A] du.

The lower bound Ča,0(γ, St, K) of the option value is defined as

Ča,0 =
e−rT

T

∫ T

0

E
Q[(Su −K)1A] du (4.1)

=
e−rT

T

∫ T

0

E
Q

(
Su −K,

1

T

∫ T

0

Wu(w) du > γ

)
du.

We shall optimally find γ, that is the gamma must be one which maximises the lower

bound Ča,0(γ, St, K). To do this we differentiate Ča,0(γ, St, K) with respect to γ and

equate that to zero. So we have to solve the following equation:

∂

∂γ

∫ T

0

E
Q

(
Su −K,

1

T

∫ T

0

Wu(w) du > γ

)
du = 0. (4.2)

We now appeal to Theorem 6 in [15].

Theorem 4.1. Suppose the random variables St and U are jointly distributed with density

function f(St, U), so that U has marginal density function fU(u). Then

∂

∂γ

∫ T

0

E
Q (Su −K,U > γ) du = −

∫ T

0

E
Q (Su −K|U = γ) fU (γ) du.

We omit this proof and only remark that it is a straight forward one. It is based on the

Leibnitz’s rule; a theorem which enables one to take derivatives of integrals.

Let U = 1
T

∫ T
0
Wu(w) du. Then 4.2 becomes

∂

∂γ

∫ T

0

E
Q (Su −K,U > γ) du = −

∫ T

0

E
Q (Su −K|U = γ) fU(γ) du

= −fU (γ)

∫ T

0

(
E
Q (Su|U = γ)−K

)
du

= −fU (γ)

∫ T

0

E
Q (Su|U = γ) du+ fU(γ)TK.
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Equating the above expression to zero and substituting γ by γ∗ (an indication that this

is optimal), we have
1

T

∫ T

0

E
Q (Su|U = γ∗) du = K. (4.3)

In order to simplify (4.3), we infer the conditional distribution of Wt on 1
T

∫ T
0
Wu(w) du.

From now onwards we will drop the explicit dependence of Wt on ω. Let us denote

min{a, b} by a ∧ b. First we find the covariance

Cov

(
Wt,

1

T

∫ T

0

Wu du

)
= E

Q

(
Wt

1

T

∫ T

0

Wu du

)
− E

Q(Wt)E
Q

(
1

T

∫ T

0

Wu du

)

=
1

T
E
Q

(
Wt

∫ T

0

Wu du

)
, since E

Q(Wt) = 0

=
1

T

∫ T

0

E
Q(WtWu) du

=
1

T

∫ t

0

u ∧ t du+
1

T

∫ T

t

u ∧ t du

=
1

T

∫ t

0

u du+
1

T

∫ T

t

t du

= t

(
1− t

2T

)
. (4.4)

From the definition of Brownian motion, Var(Wt) = t. We now change the integral to be

with respect to Wu by making use of a result in [23] (page 96):

∫ T

0

Wu du =

∫ T

0

(T − u) dWu. (4.5)
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Consequently, the variance of 1
T

∫ T
0
Wu du becomes

Var

(
1

T

∫ T

0

Wu du

)
=

1

T 2
E
Q

{(∫ T

0

Wu du

)2
}

− 1

T 2
E
Q

(∫ T

0

Wu du

)
E
Q

(∫ T

0

Wu du

)

=
1

T 2
E
Q

{(∫ T

0

Wu du

)2
}
, since E

Q(Wt) = 0

=
1

T 2
E
Q

{(∫ T

0

(T − u) dWu

)2
}
, by (4.5)

=
1

T 2

∫ T

0

(T − u)2 du, by Itô Isometry [48]

=
T

3
. (4.6)

See [52] for the case where T = 1.

From Proposition 1.10 we have

E
Q

(
Wt

∣∣∣∣
1

T

∫ T

0

Wu du = y

)
=

3t

T 2

(
T − t

2

)
y

Var

(
Wt

∣∣∣∣
1

T

∫ T

0

Wu du = y

)
= t− 3t2

T 3

(
T − t

2

)2

.

We can now write this as

(
Wt

∣∣∣∣
1

T

∫ T

0

Wu du = y

)
∼ N

(
3t

T 2

(
T − t

2

)
y, t− 3t2

T 3

(
T − t

2

)2
)
. (4.7)

Condition (4.3) involves finding the conditional distribution of Su = S0e
(r−σ2

2
)u+σWu on
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1
T

∫ T
0
Wu du. Letting U = 1

T

∫ T
0
Wu du and using the mgf of N(., .), we get

E
Q(Su|U = y) = E

Q(S0e
(r−σ2

2
)u+σWu|U = y)

= S0e
(r−σ2

2
)u

E
Q(eσWu |U = y)

= S0e
(r−σ2

2
)u exp

{
σE

Q(Wu|U = y) +
σ2

2
Var(Wu|U = y)

}

= S0e
(r−σ2

2
)u exp

{
σ

3u

T 2

(
T − u

2

)
y +

σ2

2

(
t− 3u2

T 3

(
T − u

2

)2
)}

= S0 exp

{
ru+

3σu

T 2

(
T − u

2

)
y − 3σ2u

2T 3

(
T − u

2

)2
}
.

Finally, equation (4.3) simplifies to

S0

T

∫ T

0

exp

{
ru+

3σu

T 2

(
T − u

2

)
γ∗ − 3σ2u

2T 3

(
T − u

2

)2
}
du = K. (4.8)

Before we can derive the lower bound, we need to make use of yet another result in [15]:

Proposition 4.2. If X ∼ N(µx, σ
2
x) and Y ∼ N(µy, σ

2
y) and c=Cov(X, Y ) then

E
Q(eX1{Y >0}) = eµx+

σ2
x
2 Φ

(
µy + c

σy

)
.

We are now in a position to compute the bound Ča,0. Proposition 4.2 implies

Ča,0 =
e−rT

T

∫ T

0

E
Q[(Su −K)1A] du.

=
e−rT

T

∫ T

0

E
Q(elnSu1A − elnK1A) du

=
e−rT

T

∫ T

0

{
elnS0+(r−σ2

2
)u+σ2u

2 Φ

(
−γ∗ + σu

(
1− u

2T

)
√
T/3

)
− elnKΦ

(
−γ∗√
T/3

)}
du

=
e−rT

T

∫ T

0

{
S0e

ruΦ

(
−γ∗ + σu

(
1− u

2T

)
√
T/3

)
−KΦ

(
−γ∗√
T/3

)}
du. (4.9)

The same ideas can be used to derive the bound for the floating strike Asian option.
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4.2 A lower bound for a floating strike Asian option

We will now derive the lower bound for the floating strike option. The ideas from the

case of the fixed strike are largely unchanged. Let us recall from Chapter 2 that

Cb,t = E
Q
t

[
e−r(T−t)

(
ST −

1

T

∫ T

0

Su du

)+
]
.

Define B :=
{
w ∈ Ω : 1

T

∫ T
0
Su(w) du < ST

}
and 1B to be the indicator function. The

value of the option becomes

Cb,0 = E
Q

[
e−rT

(
ST −

1

T

∫ T

0

Su du

)
1B

]
,

= e−rTE
Q

(
1

T

∫ T

0

(ST − Su)1B du
)
,

=
e−rT

T

∫ T

0

E
Q[(ST − Su)1B] du.

Let us define a new set B :=
{
w ∈ Ω : 1

T

∫ T
0
Wu(w) du−WT < γ

}
.

Since X ⊂ Y implies
∫
X
f ≤

∫
Y
f , therefore

e−rT

T

∫ T

0

E
Q[(ST − Su)1B] du ≥ e−rT

T

∫ T

0

E
Q[(ST − Su)1B] du.

The lower bound of the option value Čb,0(γ, St, K) is

Čb,0 =
e−rT

T

∫ T

0

E
Q[(ST − Su)1B] du (4.10)

=
e−rT

T

∫ T

0

E
Q

(
ST − Su,

1

T

∫ T

0

Wu(w) du− ST < γ

)
du.

As before, γ will be determined optimally. To do that, we solve the following equation

∂

∂γ

∫ T

0

E
Q

(
ST − Su,

1

T

∫ T

0

Wu(w) du−WT < γ

)
du = 0. (4.11)

Proposition 4.3. Suppose the random variables St and U are jointly distributed with

density function f(St, U), so that U has marginal density function fU(u). Then

∂

∂γ

∫ T

0

E
Q (ST − Su, U < γ) du =

∫ T

0

E
Q (ST − Su|U = γ) fU(γ) du.
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Due to the slight change to the proof found in [15], we will prove this proposition. By

and large the arguments are unchanged, but our proof is more in detail.

Proof. By the definition of expectation,

E
Q (ST − Su, U < γ) =

∫ ∞

−∞

∫ γ

−∞
(ST − Su) dU dBu. (4.12)

The Leibnitz rule implies

∂

∂γ

∫ γ

−∞
(ST − Su) dU = (ST − Su)fBu,U(Bu, γ). (4.13)

We now interchange differentiation and integration and use (4.12) together with (4.13) to

get

∂

∂γ

∫ T

0

E
Q (ST − Su, U < γ) du =

∂

∂γ

∫ T

0

∫ ∞

−∞

∫ γ

−∞
(ST − Su) dU dBt dt

=

∫ T

0

∫ ∞

−∞

∂

∂γ

∫ γ

−∞
(ST − Su) dU dBu du

=

∫ T

0

∫ ∞

−∞
(ST − Su)fBu,U(Bu, γ) dBu du

=

∫ T

0

∫ ∞

−∞
(ST − Su)fBu,U(Bu, γ)

fU(γ)

fU(γ)
dBu du

=

∫ T

0

∫ ∞

−∞
(ST − Su)fBu,U(Bu|γ)fU(γ) dBu du

=

∫ T

0

E
Q(ST − Su|U = γ)fU(γ) du.

Therefore if we let

U =
1

T

∫ T

0

Wu(w) du−WT

and apply Proposition 4.3 to (4.11), it becomes

E
Q(ST |U = γ∗) =

1

T

∫ T

0

E
Q(Su|U = γ∗) du. (4.14)
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Note:

Cov

(
Wt,

1

T

∫ T

0

Wu du−WT

)
= E

Q

(
Wt

1

T

∫ T

0

Wu du−WtWT

)

=
1

T
E
Q

(
Wt

∫ T

0

Wu du

)
− E

Q(WtWT )

= t

(
1− t

2T

)
− t ∧ T

= t

(
1− t

2T

)
− t

= − t2

2T
(4.15)

and

Var

(
1

T

∫ T

0

Wu du−WT

)
= Var

(
1

T

∫ T

0

Wu du

)
+ Var(WT )

− 2Cov

(
WT ,

1

T

∫ T

0

Wu du,

)

=
T

3
+ T − 2T

(
1− T

2T

)
, from (4.4) and (4.6)

=
T

3
.

Again evoking Proposition 1.10, we can write

E
Q

(
Wt

∣∣∣∣
1

T

∫ T

0

Wu du−WT = z

)
= − 3t2

2T 2
z.

Var

(
Wt

∣∣∣∣
1

T

∫ T

0

Wu du−WT = z

)
= t− 3t4

4T 3
.

Using the mgf of a normal random variable, the conditional distribution of the price Su
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takes the form

E
Q(Su|U = y) = E

Q(S0e
(r−σ2

2
)u+σWu|U = y)

= S0e
(r−σ2

2
)u

E
Q(eσWu |U = y)

= S0e
(r−σ2

2
)u exp

{
σE

Q(Wu|U = z) +
σ2

2
Var(Wu|U = z)

}

= S0e
(r−σ2

2
)u exp

{
−σ 3u2

2T 2
z +

σ2

2

(
u− 3u4

4T 3

)}

= S0 exp

{
ru− σ 3u2

2T 2
z − σ2 3u4

8T 3

}
.

The equation (4.14) is now written as

S0 exp

{
rT − 3

2
σγ∗ − 3

8
σ2T

}
=

1

T

∫ T

0

S0 exp

{
ru− σ 3u2

2T 2
γ∗ − σ2 3u4

8T 3

}
du. (4.16)

To derive the lower bound, we make use of the following result:

Proposition 4.4. If X ∼ N(µx, σ
2
x) and Y ∼ N(µy, σ

2
y) and c=Cov(X, Y ) then

E
Q(eX1{Y <0}) = eµx+

σ2
x
2 Φ

(
−µy + c

σy

)
.

We omit the proof which we get by mimicking the steps of the proof in [15]. Finally we

determine Čb,0. Applying Proposition 4.4 we get

Čb,0 =
e−rT

T

∫ T

0

E
Q[(ST − Su)1B] du.

=
e−rT

T

∫ T

0

E
Q(elnST1B − elnSu1B) du

=
e−rT

T

∫ T

0

{
S0e

rTΦ

(
γ∗ + σ T

2√
T/3

)
− S0e

ruΦ

(
γ∗ + σ u2

2T√
T/3

)}
du

=
S0

T

∫ T

0

{
Φ

(
γ∗ + σ T

2√
T/3

)
− e−r(T−u)Φ

(
γ∗ + σ u2

2T√
T/3

)}
du. (4.17)
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4.3 Computational aspects

The worrisome thing about our formulas (4.8) and (4.9) is that since Φ(.) is the standard

normal distribution function, an integral itself, we are essentially in a scenario where we

have to do some double integration in both (4.8) and (4.9). In most computing software,

there are predefined functions to perform such tasks. They are based on quadrature

methods (Atkinson [3]). These can be used to perform definite integrals. The problem

that arises when we try these built-in functions is that in (4.9) the argument of Φ(.) is a

variable. Had it been a constant then we would use these built-in functions.

The workaround for this problem is to do numerical integration. We can do this by any

suitable numerical integration techniques (Kincaid [16]). We have used the trapezoidal

rule in our case. To get the optimal γ∗, we ‘shoot’ to get K. This is done by taking guesses

of γ∗ or more efficiently by taking a list of them then doing the numerical integration.

After that we plot the list of γ∗s against the corresponding values of the integral, i.e.,

left-handside of (4.8). From that graph we find the γ∗ that corresponds to K.

Once we have this γ∗ we need to define a new function phi to implement the integration

Φ(.) again by the trapezoidal rule. Then we define one more function Intphi, where phi

will be called. The new function Intphi will do the Trapezoidal rule over [0, T ]. Note

that from the definition of Φ(x), the integration is from −∞ to x. In the computations,

we have used −5 as being sufficient to serve as −∞.

 

 

 

 



5. Partial Differential Equation

Approach

The partial differential approach is one of the commonly used methods to price Asian

options. It has been used by Alziary et al. [1], Benhamou [8], Ingerson [34], Vecer [58]

and Zvan et al. [62], Foufas and Larson [24], to mention but a few.

We have seen how in some cases we are able to explicitly describe the price of an Asian

option by making use of the distribution function. In this section, we focus on other

payoff structures. The determination of an explicit formula for the price of this option is

not easy. The reason is that the distribution function of a sum of lognormal variables is

not explicit (see Rogers and Shi [52]), it is a mixture of lognormal distributions [1]. Let

us consider

Ca,t = E
Q
t

[
e−r(T−t)

(
1

T

∫ T

0

Su du−K
)+
]

and

Cb,t = E
Q
t

[
e−r(T−t)

(
ST −

1

T

∫ T

0

Su du

)+
]
.

From the price dynamics, we know that St is lognormally distributed (since log St is

normally distributed). Hence it is clear from the above expressions that we have an

integral of the lognormally distributed random variables which poses a problem. The

distribution of this integral is not explicit (see also Stuart [57] for explanation). Thus we

have to turn to other methods to find the price and the one that can resolve this problem

(among the numerous methods) is the PDE approach.

49
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5.1 Change of the Numeraire

We are going to find the price relative to the price of the underlying asset. To do this

we must change our numeraire (see, e.g., [5] for more examples). At the same time we

introduce a new measure, equivalent to Q. Now

Ca,t = e−r(T−t)EQ
t

[
ST

(
K − 1

T

∫ T
0
Su du

ST

)−]
,

since (−x)− = max{x, 0} = x+. Let

φT =
K − 1

T

∫ T
0
Su du

ST
, (5.1)

and define the new measure Q∗ through it’s Radon-Nikodym derivative as

dQ∗

dQ
=
e−rTST
S0

.

Then our price can be expressed equivalently as

Ca,t = e−r(T−t)
S0

e−rT
E
Q
t

(
e−rT

S0

STφ
−
T

)
.

Alziary et al. [1] use the Radon Nikodym derivative

dQ∗

dQ
=

ST
EQ(ST )

.

This is the same as our measure above since E
Q(ST ) = S0e

rT .

Proposition 5.1. Under the new measure Q∗, the price of the option is

Ca,t = St E
Q∗

t (φ−
T ).

Proof. We apply the conditional Bayes Theorem (Theorem 3.5):

E
Q(Z|G)EQ∗

(X|G) = E
Q(ZX|G),
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where G ⊆ FT and Z is the Radon Nikodym derivative, together with Proposition 1.3:

E
Q(Z|Ft) :=

(
dQ∗

dQ

)

|Ft
=

(dQ∗)|Ft
(dQ)|Ft

.

Then the expression for Ca,t becomes

Ca,t = e−r(T−t)
S0

e−rT
E
Q
t

(
e−rT

S0
STφ

−
T

)

= e−r(T−t)
S0

e−rT
E
Q
t (e−rTST )

E
Q
t (S0)

E
Q∗

t (φ−
T )

= e−rT
S0

e−rT
E
Q
t

(
e−r(T−t)ST

)

S0
E
Q∗

t (φ−
T ), butST is aQ-martingale.

= St E
Q∗

t (φ−
T ).

Remark 5.2. If we define C̃a,t := Ca,t/St, then the relative price of the option to the

price of the asset is

C̃a,t = E
Q∗

t (φ−
T ). (5.2)

By similarly defining

ϕT =
ST − 1

T

∫ T
0
Su du

ST
(5.3)

and repeating the same process, the relative price for the floating strike option is found

to be

C̃b,t = E
Q∗

t (ϕ+
T ). (5.4)

Now the change of measure is justified; through it we are able to find the prices relative

to St.

The two state PDE

We are going to determine a two state PDE whose solution is the value of the Asian

option [53]. The method of PDE has been used in option valuation, see, e.g., [14, 60].
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Now let yt be such that dyt = St dt so

yT =

∫ t

0

Su du+

∫ T

t

Su du⇒ yT = yt +

∫ T

t

Su du.

If we generalise our payoff to be a function h(yT ), the value v(t, x, y) of the option is

v(t, xt, yt) = E
Q
t

(
e−r(T−t)h

(∫ T

0

Su du

))
. (5.5)

Typically, h(yT ) = (yT −K)+, for a constant K. As we have already seen that

ST = xte
(r− 1

2
σ2)(T−t)+σ

√
T−tZt ,

where xt = St. Without loss of generality, we may drop the subscripts while keeping in

mind that both x and y depend on t. Let us write down the undiscounted price

u(t, x, y) = E
Q
t h(yT ),

so that v(t, x, y) = e−r(T−t)u(t, x, y). The time t is such that 0 ≤ t ≤ T , y ∈ R and x ≥ 0.

Immediately we see that u is a Q-martingale: let 0 ≤ s ≤ t ≤ T , then

E
Q
s (u(t, x, y)) = E

Q
s (EQ

t h(yT )) = E
Q
s h(yT ) = u(s, x, y),

The implication of this is that the dt terms in the differential form of u must be zero.

Applying Itô’s lemma to u we get

du(t, x, y) = utdt+ uxdSt + uydyt +
1

2
uxx(dSt)

2 +
1

2
uyy(dyt)

2

= utdt+ ux(rStdt+ σStdWt) + uySt dt+
1

2
uxxσ

2S2
t dt+ uyy(St dt)

2

= (ut + rxux + xuy +
1

2
σ2x2uxx)dt+ σxuxdWt.

Equating the coefficient of dt to zero, we have

ut + rxux +
1

2
σ2x2uxx + xuy = 0,

subject to: u(T, x, y) = h(y), x ≥ 0, y ∈ R,

u(t, 0, y) = h(y), 0 ≤ t ≤ T, y ∈ R.

(5.6)
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Noting that v(t, x, y) = e−r(T−t)u(t, x, y), we can transcribe the PDE (5.6) using:

ut = −re−r(T−t)v + e−r(T−t)vt

ux = e−r(T−t)vx, uxx = e−r(T−t)vxx

uy = e−r(T−t)vy.

Finally, (5.6) becomes

−rv + vt + rxvx +
1

2
σ2x2vxx + xvy = 0,

subject to: v(T, x, y) = h(y), x ≥ 0, y ∈ R,

v(t, 0, y) = e−r(T−t)h(y), 0 ≤ t ≤ T, y ∈ R.

(5.7)

5.2 Reduction to a PDE with one state variable

The Black-Scholes model falls into a broad family of models called Log-type models [35].

Under the Black-Scholes model the difference of the log of the final price ST and log

of St does not depend on either St or ST . Following [35], we write the distribution as

Θ(ST
St

)d logST = Θ(ST
St

)dST
ST

, to show that the distribution is with respect to log ST .

Suppose C(St,
1
T

∫ t
0
Su du−K, t) is the price of an Asian option. Then in the Black-Scholes

price C(St,
1
T

∫ t
0
Su du − K, t) is homogenous in St and 1

T

∫ t
0
Su du − K. For this reason,

the PDE which we have found can be reduced Alziary [1], Wilmot [60], Zvan [62] to a

one state PDE which is much easier to implement. This reduction can be generalised for

a (n + 1) state PDE to a PDE with n state variables [8].

The processes φT and ϕT , defined by (5.1) and (5.3), should take the following forms for

T = t [1, 62]:

φt =
K − 1

T

∫ t
0
Su du

St
and ϕt =

ST − 1
T

∫ t
0
Su du

St
. (5.8)
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Lemma 5.3. Under Q∗ the dynamics of φt and ϕt are governed by the stochastic differ-

ential equations (SDEs)

dφt =

(
− 1

T
− rφt

)
dt− σφtdW̃t, φ0 = φ, (5.9)

dϕt =

(
− 1

T
− r(ϕt − 1)

)
dt− σ(ϕt − 1)dW̃t, ϕ0 = ϕ, (5.10)

respectively.

Proof. (i) Applying Itô’s Lemma (Integration by parts [23]) to φt, we obtain

d φt =
1

St
d

(
K − 1

T

∫ t

0

Su du

)
+

(
K − 1

T

∫ t

0

Su du

)
d

(
1

St

)

+ d

(
K − 1

T

∫ t

0

Su du

)
d

(
1

St

)

= − 1

St

1

T
St dt+

(
K − 1

T

∫ t

0

Su du

)
d

(
1

St

)
+

(
− 1

T
Stdt

)
d

(
1

St

)
. (5.11)

But by Itô’s lemma

d

(
1

St

)
= − 1

S2
t

dSt +
1

2

2

S3
t

(dSt)
2

= − 1

S2
t

(rStdt+ σStdWt) +
1

S3
t

σ2S2
t dt

=
1

St

(
(σ2 − r)dt− σdWt

)
.

Clearly,

(
− 1

T
Stdt

)
d

(
1

St

)
=

(
− 1

T
Stdt

)(
1

St

(
(σ2 − r)dt− σdWt

))
= 0,

since dtdWt = 0, dtdt = 0, (for derivation see, e.g., Etheridge [23]). Then (5.11) becomes

dφt = − 1

T
dt+

(
K − 1

T

∫ t

0

Su du

)(
1

St

(
(σ2 − r)dt− σdWt

))

= − 1

T
dt+ φt

(
(σ2 − r)dt− σdWt

)

=

(
− 1

T
− rφt

)
dt− σφt(dWt − σdt). (5.12)
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Now we see why particularly we chose our Radon Nikodym derivative to be dQ∗

dQ
= e−rTST

S0

and not any other. This is because e−rTST
S0

can be written as

e−rT
S0

S0
e(r−

σ2

2
)T+σWT = e−

σ2

2
T+σWT ,

and then

Q∗(A) =

∫

A

e−
σ2

2
T+σWT dQ, for A ∈ FT .

The Girsanov Theorem [23, 33] ensures that under Q∗, W̃t = Wt − σt is a Brownian

Motion. The equation (5.12) becomes

dφt =

(
− 1

T
− rφt

)
dt− σφtdW̃t. (5.13)

(ii) We proceed in a similar manner.

dϕt =
1

St
d

(
St −

1

T

∫ t

0

Su du

)
+

(
St −

1

T

∫ t

0

Su du

)
d

(
1

St

)

+ d

(
St −

1

T

∫ t

0

Su du

)
d

(
1

St

)

=
1

St

(
dSt −

1

T
St dt

)
+

(
St −

1

T

∫ t

0

Su du

)(
1

St

(
(σ2 − r)dt− σdWt

))

+

(
dSt −

1

T
Stdt

)(
1

St

(
(σ2 − r)dt− σdWt

))

=
1

St

(
rStdt+ σStdWt −

1

T
St dt

)
+ ϕt

(
(σ2 − r)dt− σdWt

)

+

(
rStdt+ σStdWt −

1

T
Stdt

)(
1

St

(
(σ2 − r)dt− σdWt

))

= (r − 1

T
)dt+ σdWt + ϕt

(
(σ2 − r)dt− σdWt

)
− σ2dt

= (− 1

T
− r(ϕt − 1))dt− σϕt(dWt − σdt) + σ(dWt − σdt)

= (− 1

T
− r(ϕt − 1))dt− σ(ϕt − 1)dW̃t.

This completes the proof.
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5.3 Analytical solution of SDEs

We would like to solve the SDEs (5.9) and (5.10). We will use the Itô Lemma ([47]) to

confirm the analytic solution of (5.9). Sometimes it is easy to realise the analytic solution

of an SDE by relating it to known ones [6, 38]. We apply that technique here to get the

solution of (5.9).

Proposition 5.4. The solution of (5.9) is given by

φt = φ0e
−(σ

2

2
+r)t−σWt − 1

T

∫ t

0

e(−
σ2

2
−r)(t−s)−σ(Wt−Ws)ds. (5.14)

Proof. If we split the integrand of φt (taking out what is s-independent) and find the

differential of φt, then

dφt = φ0d
(
e−(σ

2

2
+r)t−σWt

)
− 1

T
d

(
e−(σ

2

2
+r)t−σWt

∫ t

0

e(
σ2

2
+r)s+σWsds

)
. (5.15)

Now by Itô’s Lemma

d
(
e−(σ

2

2
+r)t−σWt

)
= −σe−(σ

2

2
+r)t−σWtdWt −

(
σ2

2
+ r

)
e−(σ

2

2
+r)t−σWtdt

+
σ2

2
e−(σ

2

2
+r)t−σWt(dWt)

2

= e−(σ
2

2
+r)t−σWt

(
−σdWt −

(
σ2

2
+ r

)
dt+

σ2

2
dt

)

= e−(σ
2

2
+r)t−σWt (−rdt− σdWt) . (5.16)

We are going to make use of the Itô product rule [48] (Integration by parts):

d(YtZt) = Yt dZt + Zt dYt + dYt dZt.

Therefore

d

(
e−(σ

2

2
+r)t−σWt

∫ t

0

e(
σ2

2
+r)s+σWsds

)
= d

(
e−(σ

2

2
+r)t−σWt

)∫ t

0

e(
σ2

2
+r)s+σWsds

+ e−(σ
2

2
+r)t−σWtd

(∫ t

0

e(
σ2

2
+r)s+σWsds

)

+d
(
e−(σ

2

2
+r)t−σWt

)
d

(∫ t

0

e(
σ2

2
+r)s+σWsds

)
. (5.17)
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Clearly, using (5.16)

d
(
e−(σ

2

2
+r)t−σWt

)
d

(∫ t

0

e(
σ2

2
+r)s+σWsds

)
= −e−(σ

2

2
+r)t−σWt (rdt+ σdWt) ·

e(
σ2

2
+r)t+σWtdt

= 0,

since (dt)2 = 0 and dtdWt = 0. Consequently, (5.17) becomes,

d

(
e−(σ

2

2
+r)t−σWt

∫ t

0

e(
σ2

2
+r)s+σWsds

)
= e−(σ

2

2
+r)t−σWt (−rdt− σdWt) ·

∫ t

0

e(
σ2

2
+r)s+σWsds+ e−(σ

2

2
+r)t−σWt·

e(
σ2

2
+r)t+σWtdt

= (−rdt− σdWt)

∫ t

0

e(−
σ2

2
−r)(t−s)−σ(Wt−Ws)ds

+ dt. (5.18)

Finally combining (5.18) and (5.16) in (5.15), we get

dφt = φ0

(
e−(σ

2

2
+r)t−σWt(−rdt− σdWt)

)

− 1

T
(−rdt− σdWt)

∫ t

0

e(−
σ2

2
−r)(t−s)−σ(Wt−Ws)ds− dt

T

= (−rdt− σdWt)

(
φ0e

−(σ
2

2
+r)t−σWt − 1

T

∫ t

0

e(−
σ2

2
−r)(t−s)−σ(Wt−Ws)ds

)
− dt

T

= (−rdt− σdWt)φt −
dt

T

=

(
− 1

T
− rφt

)
dt− σφtdWt.

We will visualize this analytical solution at a later stage in the thesis.
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5.4 Numerical Solutions of SDEs

Even if we had an analytic solution of (5.9), at a glance it does not seem very revealing. We

need to see its path to realise its significance. More often than not, we get SDEs that do

not have analytic solutions. In these scenarios we use numerical methods to approximate

the solutions (see, e.g., Higham [30] for more cases). For the sake of simplicity, we will

explore a simple method, the Euler method (Kloeden [38]). Other methods can be used

for example, Milstein’s method, Euler-Maruyama’s method, etc. [30, 38].

Suppose we have an SDE

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt,

where as usual Wt is a Brownian motion. To begin with, we partition the interval [0, T ]

into n equal parts. Let h = T/n so that tj = jh for j = 0, 1, · · · , n. The discretization of

the SDE by the Euler method then reads as

Xjh = X(j−1)h + µ(X(j−1)h, (j − 1)h ) h+ σ(X(j−1)h, (j − 1)h )
√
hZ,

where Z ∼ N(0, 1). Consequently (5.9) and (5.10), respectively, take the forms:

φjh = φ(j−1)h +

(
− 1

T
− rφ(j−1)h

)
h− σφ(j−1)h

√
hZ, (5.19)

ϕjh = ϕ(j−1)h +

(
− 1

T
− r(ϕ(j−1)h − 1)

)
h− σ(ϕ(j−1)h − 1)

√
hZ, (5.20)

The pseudo code can be written as

Algorithm 5.4.1: Euler Scheme(n)

φ← φ0

for j from 1 to n

do





generate Z ∼ N(0, 1)

φ← φ+
(
− 1
T
− rφ

)
h− σφ

√
hZ.
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The scheme for ϕt can also be written immediately.

The variables φt and ϕt indicate whether the call option is in the money, at the money

or out of the money. When the call is in the money then the strike price is less than the

price of the underlying asset and it is at the money if the strike price equals the price of

the underlying asset. If the strike is more than the price of the underlying then the call

is said to be out of the money.

In the case of Asian options the price at time t is the sum of prices up to time t. If we

were considering an American Asian option, in the money entails that the option would

be exercised as one would not wait for the maturity to exercise. If at time t, φ ≤ 0 then

the option is in the money, when φ = 0 the option is at the money and when φ ≥ 0 it is

out of the money. We will consider these two cases. We will simulate the paths for φt by

the Euler method.

The Figure 5.1 shows 100 simulated paths for φt. Subfigure 5.1(a) shows that if we start

at the money then the option will surely be exercised at time T . Again, if the option is

in the money then in its future it can never be out of the money or at the money.

For floating strikes (shown by the paths of ϕ), we cannot make these conclusions as in

the case of fixed strike (shown by the paths of φ). Figure 5.2 shows we can start at the

money and end in the money or at the money or out of the money.

Theorem 5.5. C̃a,t and C̃b,t are solutions of the following partial differential equations:

∂C̃a,t
∂t

+

(
− 1

T
− rφt

)
∂C̃a,t
∂φt

+
1

2
σ2φ2

t

∂2C̃a,t
∂φ2

t

= 0,

subject to

C̃a,T = φ−
T .

(5.21)
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Figure 5.1: The φ paths using Euler scheme
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Figure 5.2: The ϕ paths using Euler scheme

∂C̃b,t
∂t

+

(
− 1

T
− r(ϕt − 1)

)
∂C̃b,t
∂ϕt

+
1

2
σ2(ϕt − 1)2∂

2C̃b,t
∂ϕ2

t

= 0,

subject to

C̃b,T = ϕ+
T .

(5.22)

Proof. From Lemma 5.3, we have the dynamics of φt and ϕt. The proof follows from the

Feynman-Kac Theorem, which implies

C̃a,t = E
Q∗

t (φ−
T ).
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The second result follows similarly.

5.5 Comparisons with European Options

We are interested in how our change of numeraire in Section 5.1 and our partial differential

equation can be used to find the prices of European options. Although the Black-Scholes

PDE [32] already exists, we would want to check if our change of measure is consistent.

Our motivation is that there is already a formula to characterise the value of a European

Option [35]. We derive the analogy of the partial differential equations which we found

in Theorem 5.5, but for European options.

We show how Ce,t can be written as an expectation with respect to the measure Q∗, which

is defined as

Q∗(A) =

∫

A

e−
1
2
σ2T+σWT dQ, forA ∈ FT ,

as before. The value of a European Call is given by

Ce,t = E
Q
t

(
e−r(T−t)(ST −K)+

)

= e−r(T−t)EQ
t

(
ST

(
1− K

ST

)+
)

= e−r(T−t)
S0

e−rT
E
Q
t

(
e−rTST
S0

(1− ψT )+

)
, by definition of ψt

= e−r(T−t)
S0

e−rT
E
Q
t

(
e−rTST
S0

)
E
Q∗

t

(
(1− ψT )+

)
, by Bayes Theorem

= e−rT
S0

e−rT
E
Q
t

(
e−r(T−t)ST

S0

)
E
Q∗

t

(
(1− ψT )+

)

= S0
E
Q
t (e−r(T−t)ST )

E
Q
t (S0)

E
Q∗

t

(
(1− ψT )+

)
, by Proposition 1.3

= S0
St
S0

E
Q∗

t

(
(1− ψT )+

)
, since ST is Q-martingale

= St E
Q∗

t

(
(1− ψT )+

)
. (5.23)
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Under the new measure Q∗, W̃t = Wt − σt is a Brownian Motion by Girsanov Theorem.

We can write (5.23) as

C̃e,t =
Ce,t
St

= E
Q∗

t

(
(1− ψT )+

)
.

The dynamics of ψt are given by

dψt = Kd

(
1

St

)

=
K

St

(
(σ2 − r)dt− σdWt

)
, from proof of Lemma 5.3

= −rψt dt− σψt(dWt − σdt), definition of ψt

= −rψt dt− σψt dW̃t. (5.24)

Proposition 5.6. Denote the value of the European call by Ce,t and let us write

C̃e,t =
Ce,t(ψ, t)

St
,

where ψt = K
St

. Then C̃e,t satisfies

∂C̃e,t
∂t
− rψ∂C̃e,t

∂ψ
+

1

2
σ2ψ2∂

2C̃e,t
∂ψ2

= 0,

subject to: C̃e,T = (1− ψT )+.

(5.25)

Proof. The direct application of the Feynman-Kac Theorem implies

C̃e,t = E
Q∗

t

(
(1− ψT )+

)
.

Just as we did in Chapter 2 we can evaluate this expectation. It is important to note that

unlike the SDEs of φt and ϕt, the dynamics of ψt is clearly geometric Brownian motion,

very much like the dynamics of St.

Proposition 5.7. The solution of (5.25) is given by

C̃e,t(ψt, t) = N(d1)− ψte−r(T−t)N(d1 − σ
√
T − t), (5.26)

where

d1 =
log 1

ψt
+ (r + σ2

2
)(T − t)

σ
√
T − t

.
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Proof. Applying the Itô Lemma to (5.24) we get

ψT = ψte
−(r+ 1

2
σ2)(T−t)−σW̃T−t .

This implies

logψT ∼ N

(
logψt − (r +

1

2
σ2)(T − t), σ2(T − t)

)
.

Now

C̃e,0 = E
Q∗(

(1− ψT )+
)

=

∫ 0

−∞
(1− elogψT )

1√
2πσ2(T − t)

e
− (logψT−logψt+(r+1

2σ
2(T−t))2

2σ2(T−t) d logψT

=

∫ 0

−∞

1√
2πσ2(T − t)

e
− (logψT−logψt+(r+1

2σ
2(T−t))2

2σ2(T−t) d logψT

−
∫ 0

−∞
elogψT

1√
2πσ2(T − t)

e
− (logψT−logψt+(r+1

2σ
2(T−t))2

2σ2(T−t) d logψT .

Now let

x = log
ψT
ψt
.

Then dx = d logψT and our calculation becomes

C̃e,0 =

∫ − logψt

−∞

1√
2πσ2(T − t)

e
− (x+(r+1

2σ
2)(T−t))2

2σ2(T−t) dx

−
∫ − logψt

−∞
ψte

x 1√
2πσ2(T − t)

e
− (x+(r+1

2σ
2)(T−t))2

2σ2(T−t) dx

=

∫ − logψt

−∞

1√
2πσ2(T − t)

e
− (x+(r+1

2σ
2)(T−t))2

2σ2(T−t) dx

− ψte−r(T−t)
∫ − logψt

−∞

1√
2πσ2(T − t)

e
− (x+(r−1

2σ
2)(T−t))2

2σ2(T−t) dx

= N(d1)− ψte−r(T−t)N(d2), (5.27)

where

d1 =
− logψt + (r + 1

2
σ2)(T − t)

σ
√
T − t
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and

d2 =
− logψt + (r − 1

2
σ2)(T − t)

σ
√
T − t

=
− logψt + (r + 1

2
σ2 − σ2)(T − t)

σ
√
T − t

= d1 − σ
√
T − t.

Finally we have

C̃e,t(ψt, t) = N(d1)− ψte−r(T−t)N(d1 − σ
√
T − t).

Remark 5.8. C̃e,t is the Black-Scholes formula [9]. Our derivation is consistent with the

formula due to Black and Scholes.
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6. Monte Carlo Method

The Monte Carlo method is a traditional method of pricing options Boyle [10], et al. [17]

etc. It is based on simulating many paths according to the underlying assumptions either

deterministically (Corwin et al. [17], Lamieux and L’Ecuyer [40]) or by pseudo-random

numbers [10]. In this thesis, only the use of the pseudo-random numbers is considered.

We assume that the price of the underlying follows the geometric Brownian motion. In

order to get the price of the option we simply generate many paths and take an average

of them.

6.1 The General Monte Carlo Method

Consider the problem of evaluating

Ca,t = e−r(T−t)EQ
t

[(
1

T

∫ T

0

Su du−K
)+
]
.

Let us estimate Ca,t by Ĉa,t. To determine Ĉa,t, we simulate m paths of Su where Su =

S0e
(r− 1

2
σ2)u+σ

√
uZ , for which Z ∼ N(0, 1). It is assumed that the price of the underlying

follows a geometric Brownian motion. We partition [0, T ] into n equal parts so that

ti = i∆t for i = 0, 1, 2, · · · , n. Consequently ∆t = T/n. Also, we approximate the

integral by its Riemann sum that is

∫ T

0

Su du ≈ ∆t

n∑

i=1

Sti .

Consequently,
1

T

∫ T

0

Su du ≈
1

n

n∑

i=1

Sti ,

where

Sti = S0e
(r− 1

2
σ2)i∆t+σ

√
∆tZ .
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The following algorithm [31] can be used to calculate Ĉa,t

Algorithm 6.1.1: General Monte Carlo(m,n)

∆t← T/n

for j from 1 to m

do





for i from 1 to n

do





generate Z ∼ N(0, 1)

Sti ← S0e
(r− 1

2
σ2)i∆t+σ

√
∆tZ

ωj ←
1

n

n∑

i=1

Sti

Cj ← e−rTmax (ωj −K, 0)

Ĉa,t ←
1

m

m∑

j=1

Cj

To implement the algorithm, we generate m paths. From the algorithm we estimate Ca,t

by Ĉa,t which is the mean:

Ĉa,t =
1

m

m∑

j=1

Cj .

Clearly E(Ĉa,t) = Ca,t. Such estimates are called unbiased estimates. Also the variance

of Ĉa,t is Var(Ĉa,t) = σ2/n, where σ is the variance of Ca,t. Since σ is not known, we

approximate it by σ̂ given by

σ̂2 =
1

m− 1

m∑

j=1

(Cj − Ĉa,t)2.

Again it can be shown that σ̂ is an unbiased estimate of σ. The central limit theorem

tells us that

Ĉa,t − Ca,t√
σ̂2

m

−→ N(0, 1). (6.1)
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The difference Ĉa,t − Ca,t is the Monte Carlo error. We denote the absolute value of this

error, i.e., Emc := |Ĉa,t − Ca,t| by Emc. We see immediately from (6.1) that the Monte

Carlo error is proportional to σ̂√
m

, that is

Emc ∝
σ̂√
m
.

This means we need 100 paths to reduce the error by 10. We could decrease the error by

having many paths but this would then require more computational time and computer

memory. However, by reducing σ̂ we can minimise Emc. This introduces the variance

reduction methods [10, 50], two of which are described below.

6.2 Variance reduction using antithetic variates

The antithetic method uses the idea that if Zi ∼ N(0, 1), then −Zi ∼ N(0, 1). This

method works by introducing negative correlation to counter the error introduced by

using only Zi in the calculation. In this method we simulate new paths using −Zi for the

price process S̄ti given by

S̄ti = S0e
(r− 1

2
σ2)i∆t−σ

√
∆tZ .

We then apply Monte Carlo method to the average of

Cj = e−rTmax

(
1

n

n∑

i=1

Sti −K, 0
)

and

C̄j = e−rTmax

(
1

n

n∑

i=1

S̄ti −K, 0
)

which is

C∗
j =

1

2
(Cj + C̄j).

Then we estimate Ca,t by Ča,t, that is

Ča,t =
1

m

m∑

j=1

C∗
j .
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The Algorithm 6.1.1 can accordingly be improved to the following algorithm

Algorithm 6.2.1: Antithetic Monte Carlo(m,n)

∆t← T/n

for j from 1 to m

do





for i from 1 to n

do





generate Z ∼ N(0, 1)

Sti ← S0e
(r− 1

2
σ2)i∆t+σ

√
∆tZ

S̄ti ← S0e
(r− 1

2
σ2)i∆t−σ

√
∆tZ

ωj ←
1

n

n∑

i=1

Sti

ω̄j ←
1

n

n∑

i=1

S̄ti

Cj ← e−rTmax (ωj −K, 0)

C̄j ← e−rTmax (ω̄j −K, 0)

C∗
j ←

1

2
(Cj + C̄j)

Ča,t ←
1

m

m∑

j=1

C∗
j

The variance of C∗
j is given by

Var(C∗
j ) =

1

4

(
Var(Cj) + Var(C̄j) + 2Cov(Cj, C̄j)

)

=
1

2

(
Var(Cj) + 2Cov(Cj, C̄j)

)
, since Cj

D
= C̄j

<
1

2
Var(Cj)

if Cov(Cj, C̄j) < 0. We have Cov(Cj , C̄j) < 0 if Cj is monotonic increasing (consequently,

C̄j is monotonic decreasing).
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6.3 Variance reduction using control variates

We can also reduce the variance by introducing a second random variable. Suppose we

wanted to estimate the mean of the random variableX and that there was another random

variable Y which mimics X or is close to X. This closeness means that when X is small

then Y is also small. Suppose we also knew the mean of Y . Let Z be such that

Z := X + E(Y )− Y. (6.2)

Notice that E(Z) = E(X). So we could use Z to estimate the mean of X. We call Y the

control variate.

In the problem that we must solve, the random variable X is the arithmetic average payoff

and Y is the geometric average payoff, that is

X =

(
1

N

N∑

i=1

Sti −K
)+

(6.3)

and

Y =



(

N∏

i=1

Sti

) 1
N

−K




+

.

As we already know the expectation of X is not known but we have an explicit formula

for the expectation of Y . From Chapter 2 Section 2.4,

E(Y ) = E
Q(elnY )

= S0e
(r̃−r)TΦ(d̃1)−Ke−rTΦ(d̃2),

where Φ(.) is the cumulative normal distribution function and

d̃1 =
log S0

K
+
(
r̃ + σ̃2

2

)
T

σ̃
√
T

,

d̃2 = d̃1 − σ̃
√
T ,
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where

σ̃2 := σ2 (N + 1)(2N + 1)

6N2
,

r̃ =
1

2
σ̃2 +

(
r − 1

2
σ2

)
N + 1

2N
.

The improved Monte Carlo algorithm in this case would then be as shown in Algorithm

6.3.1

Algorithm 6.3.1: Control Variate Monte Carlo(m,n)

∆t← T/n

for j from 1 to m

do





for i from 1 to n

do





generate Z ∼ N(0, 1)

Sti ← S0e
(r− 1

2
σ2)i∆t+σ

√
∆tZ

ωj ←
1

n

n∑

i=1

Sti

ω̄j ← exp

(
1

n

n∑

i=1

lnSti

)

Cj ← e−rTmax (ωj −K, 0)

C̄j ← e−rTmax (ω̄j −K, 0)

Ĉa,t ←
1

m

m∑

j=1

Cj + S0e
(r̃−r)TΦ(d̃1)−Ke−rTΦ(d̃2)−

1

m

m∑

j=1

C̄j

Now the variance of Z is given by

Var(Z) = Var(X − Y ) = Var(X) + Var(Y )− Cov(X, Y )

< Var(X),

if 1
2
Var(Y ) < Cov(X, Y ). This condition can be controlled during a Monte Carlo simula-

tion.
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Figure 6.1 shows the comparison of these two variance reduction methods. We observe

that the control variate method performs better than the antithetic technique to price

Asian options. The price via antithetic approach keeps oscillating around the price ob-

tained by the control variate technique.
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Figure 6.1: Comparison of the control and antithetic methods

Although the basic Monte Carlo method and its improved versions seem easy to imple-

ment, computationally they are very expensive and time consuming. One typically needs

a large number of paths to come up with a reasonable solution. To overcome this, in the

next chapter we propose the finite difference methods.

 

 

 

 



7. Finite Difference Methods

We have been able to deduce the partial differential equations whose solutions are the

prices of the options. At this stage, we will solve these PDEs using the finite difference

methods, decribed in Ames [2], Fox [25], Morton [44], Zvan et al [62] etc. These are also

some of the traditional methods for the numerical solution of PDEs [31, 32, 43].

We know that (5.21) and (5.22) do not admit explicit solutions. In this case, we should

approximate the solutions. As we shall see shortly (and generally in option pricing see,

e.g., Korn [39], Vecer [58], Wilmot [60] etc), the PDEs that mainly arise in mathematical

finance are of the parabolic type (see Smith [54], Strauss [55], Williams [59] etc for details).

An example of a parabolic PDE is the heat equation, ut = kuxx.

7.1 Boundary Conditions

Numerical simulation via finite difference methods requires the discretization of a finite

domain. So the first thing that we have to do is have a bounded region on which we will

design a suitable grid (Morton [44]). One approach, as in Higham [31] is to impose a large

value L, say for φ in the φ, t plane. This is because we are solving the pde for φ in the

interval [0,∞). Instead of this approach, we use the transformation x = e−φt [1], which

maps [0,∞) to (0, 1]. At this stage let us drop a and t in the subscripts and keep in mind

that we are referring to (5.21). The transformation implies

C̃φ = −xC̃x,

C̃φφ = x2C̃xx + xC̃x.

73
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We can write (5.21) as

∂C̃

∂t
+

[(
1

T
− r ln x

)
x+

σ2

2
x(ln x)2

]
∂C̃

∂x
+

1

2
σ2x2(ln x)2∂

2C̃

∂x2
= 0,

subject to: C̃(x, T ) = 0.

(7.1)

The boundary condition is so because C̃(x, T ) = x− = (e−φt)− = 0.

From the remark of the put-call parity if the known part of the average is greater than

the strike, equivalently φt ≤ 0 then

Ca,t =
St
Tr

(1− e−r(T−t))− e−r(T−t)
(
K − 1

T

∫ t

0

Su du

)
.

So

C̃a,t =
1

Tr
(1− e−r(T−t))− e−r(T−t)φt.

We are going to use this as the boundary condition at φt = 0 (which implies x = 1),

therefore

C̃(1, t) =
1

Tr
(1− e−r(T−t)).

The other boundary at infinity comes naturally from the definition of the call; if the

strike becomes very large then the call is useless. Since the price of the call is a decreasing

function of the strike, Proposition 3.1, then if the strike becomes too large then the call

price is 0. Thus

lim
φ→∞

C̃(φ, t) = 0.

Finally (7.1) becomes the boundary value problem

C̃t +

[(
1

T
− r ln x

)
x+

σ2

2
x(ln x)2

]
C̃x +

1

2
σ2x2(ln x)2C̃xx = 0,

subject to: C̃(x, T ) = 0

C̃(1, t) =
1

Tr
(1− e−r(T−t))

C̃(0, t) = 0.

(7.2)
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Remark 7.1. (i) The partial differential equation (7.2) is not directly an initial bound-

ary value problem (IBVP) in the strict sense of the phrase (Chacko [6]). We need to

transform it into an IBVP by making use of the time to maturity τ given by τ = T − t.
Consequently,

C̃t = −C̃τ .

Therefore the PDE (7.2) becomes

C̃τ =
1

2
σ2x2(ln x)2C̃xx+

[(
1

T
− r ln x

)
x+

σ2

2
x(ln x)2

]
C̃x,

subject to: C̃(x, 0) = 0

C̃(1, τ) =
1

Tr
(1− e−rτ )

C̃(0, τ) = 0

(7.3)

(ii)The PDE (7.3) is parabolic and linear [7, 54, 55].

In some cases, for example the Black-Scholes PDE we can transform the PDE to a simple

one, like the heat equation as in Wilmot [60]. The literature (Hull [32], Higham [31], Zvan

et al.[62] etc) suggests a logarithmic transformation. The Asian option PDEs cannot be

tranformed to the heat equation, as is shown in Mahomed [42]. Nevertheless, we will go

ahead with discretisation.

7.2 Discretisation

The domain (0, 1]× [0, T ] is partitioned as follows: We define ∆τ = T
Nτ

, where Nτ is the

number of points in [0, T ] and ∆x = 1
Nx

, where Nx is the number of points in the interval

[0, 1]. A typical grid point is then denoted by (xj , τi) where xj = j∆x and τi = i∆τ ,

where i = 0, 1, · · · , Nτ and j = 0, 1, · · · , Nx. We shall approximate C̃(xj , τi) by Ci
j
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7.3 Explicit Method

This method will be applied to the problem (7.3). We will approximate the partial

derivative Cy by a forward difference, Cyy by central difference and Ct by a forward

difference [1] as follows

(C̃x)
i
j ≈

Ci
j+1 − Ci

j

∆x
,

(C̃xx)
i
j ≈

Ci
j+1 − 2Ci

j + Ci
j−1

(∆x)2
,

(C̃t)
i
j ≈

Ci+1
j − Ci

j

∆τ
.

(7.4)

Substituting these approximations in (7.3) we have the finite difference scheme

Ci+1
j = λjC

i
j−1 + (1− 2λj − µj)Ci

j + (λj + µj)C
i
j+1 (7.5)

C0
j = 0 ∀ 0 ≤ j ≤ Nx

Ci−1
Nx

=
1

Tr
(1− e−ri∆τ )

Ci−1
0 = 0,

where

λj =
∆τ

(∆x)2

σ2

2
x2
j (ln xj)

2 =
σ2

2
j2∆τ(ln xj)

2,

µj =

[(
1

T
− r ln x

)
xj +

σ2

2
xj(ln xj)

2

]
∆τ

∆x

=

(
1

T
− r ln x+

σ2

2
(ln xj)

2

)
j∆τ.

From equation (7.5) and Figure 8.1 we see how Ci
j−1, C

i
j and Ci

j+1 (indicated by shaded

circles) are used to get Ci+1
j (indicated by unshaded circle). We then iterate for i =

1, 2, · · · , Nτ − 1, in (7.5) to get the price of the option.
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0

0

Ci
j−1 Ci

j
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j+1

Ci+1

j

j

i

i + 1

Nt

Nxj+1j-1

Figure 7.1: A typical grid on which the PDE is discretised

7.4 Convergence analysis of the explicit method

In this section, we discuss the consistency and the stability of the explicit method to

analyse the error which we make by the approximations to (7.3). The truncation error

[2] is the error incurred when we substitute C̃(x, τ) by Ci
j. It is the difference between

the two sides of (7.3) [44] when we have replaced the derivatives by the approximations

(7.4). We define the truncation error T (x, τ) as

T (x, τ) :=
∆+τ C̃(x, τ)

∆τ
− b(x)δ

2
xC̃(x, τ)

(∆x)2
− a(x)∆+xC̃(x, τ)

∆x
, (7.6)
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where b(x) = σ2

2
x2(ln x)2, a(x) =

((
1
T
− r ln x

)
x+ σ2

2
x(ln x)2

)
and the difference opera-

tors [44] ∆+τ , ∆+x and δ2
x are defined as

∆+τ C̃(x, τ) = C̃(x, τ + ∆τ)− C̃(x, τ)

∆+xC̃(x, τ) = C̃(x+ ∆x, τ)− C̃(x, τ)

δ2
xC̃(x, τ) = C̃(x+ ∆x, τ)− 2C̃(x, τ) + C̃(x−∆x, τ).

We now expand the operators using Taylor series expansion about the point (x, τ) so that

(7.6) becomes

T (x, τ) =
1

∆τ

(
C̃ + ∆τC̃τ +

(∆τ)2

2
C̃ττ +

(∆τ)3

6
C̃(iv)
τ (x, τ ∗)− C̃

)
−

b(x)

(∆x)2

(
C̃ + ∆xC̃x +

(∆x)2

2
C̃xx +

(∆x)3

6
C̃xxx +

(∆x)4

24
C̃(iv)
x (x∗, τ)− 2C̃

+ C̃ −∆xC̃x +
(∆x)2

2
C̃xx −

(∆x)3

6
C̃xxx +

(∆x)4

24
C̃(iv)
x (x∗, τ)

)

− a(x)

∆x

(
C̃ + ∆xC̃x +

(∆x)2

2
C̃xx +

(∆x)3

6
C̃xxx +

(∆x)4

24
C̃(iv)
x (x∗, τ)− C̃

)
,

where τ ∗ ∈ [τ, τ + ∆τ ] and x∗ ∈ [x, x+ ∆x]. This simplifies to

(C̃τ − b(x)C̃xx − a(x)C̃x) +
∆τ

2
C̃ττ +

(∆τ)2

6
C̃(iv)
τ (x, τ ∗)− a(x)

2
∆xC̃xx

−a(x)
6

(∆x)2C̃xxx −
a(x)

24
(∆x)3C̃(iv)

x (x∗, τ)− b(x)

12
(∆x)2C̃(iv)

x (x∗, τ).

We can simplify further by noting that C̃ satisfies the PDE (7.3). This implies the first

bracketed term above is zero. Finally the truncation error can be expressed as

T (x, τ) =
∆τ

2
C̃ττ −

∆x

2
a(x)C̃xx +O((∆τ)2) +O((∆x)2). (7.7)

Thus

T (x, τ)→ 0 as ∆τ → 0 and ∆x→ 0, (7.8)

which implies that the explicit method is indeed consistent.
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Let us define the error at each point by eij = Ci
j − C̃(xj , ti). Then substituting eij into

(7.5) we have

ei+1
j = λje

i
j−1 + (1− 2λj − µj)eij + (λj + µj)e

i
j+1

− (Ci+1
j − Ci

j) + λj(C
i
j+1 − 2Ci

j + Ci
j−1) + µj(C

i
j+1 − Ci

j)

= λje
i
j−1 + (1− 2λj − µj)eij + (λj + µj)e

i
j+1 −∆τT ij (7.9)

Define the error at each time step as

Ei := max
0≤j≤Nx

|eij|.

Assume that the truncation error is bounded by |T |, then (7.9) becomes Ei+1 ≤ Ei +

∆τ |T |. Since E0 = 0 from the initial condition, and using as inductive argument we have

Ei ≤ i∆τ |T |.

This shows that, the truncation error approaches zero as the time step-size becomes

smaller. However, we need to investigate the stability as well to determine convergence

because it is possible for a scheme to have its truncation error approaching zero, but

converging to a wrong solution [54]. To this end, we will use the Fourier method [25].

The Fourier method assumes that the PDE solution has a fourier representation. In other

words the solution of the PDE can be written in form of sines and cosines. We then

investigate the growth of the error made a each time node by considering the function

e∆τ . We are interested in finding out whether or not rounding errors made at each time

step blow or at least stays the same. For the finite difference scheme to be stable, e∆τ

should be bounded by one [2]. Let

Ci
j = eαi∆τe

√
−1βj∆x, (7.10)

where α, β ∈ R
+.

We substitute (7.10) into (7.5) and obtain

eα∆τ = 1− 2λj sin2(
β∆x

2
) + µj(e

√
−1β∆x − 1). (7.11)
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From our stability criterion, |eα∆τ | ≤ 1, (7.11) suggests that the explicit method is un-

stable. Since stability is a necessary condition for convergence, by the Lax equivalence

theorem [54], we cannot say whether the explicit scheme will converge to the real solu-

tion of the PDE. As an alternative, we therefore design the following implicit method,

namely, the Crank-Nicholson method. Due to the deficiencies of the explicit method, we

will tabulate results found using the Crank-Nicholson’s method.

7.5 Implicit Method: Crank-Nicholson’s scheme

As we see from the previous section, the explicit method is conditionally stable. On the

other hand, the Crank-Nicholson Method [2, 8, 44, 60] is implicit and unconditionally

stable. We shall demonstrate this by the Von Neumann method (Fourier method) [54].

Using the same uniform grid as above, we approximate C̃x by a an average of centered

difference, C̃xx, by an average of centered second difference and C̃t by a forward difference

[8]. We could also use the average of an fully-implicit and explicit scheme to the get the

Crank-Nicholson method [31, 60]. Thus

(C̃x)
i
j ≈

1

2

(
Ci+1
j+1 − Ci+1

j−1

2∆x
+
Ci
j+1 − Ci

j−1

2∆x

)
,

(C̃xx)
i
j ≈

1

2

(
Ci+1
j+1 − 2Ci+1

j + Ci+1
j−1

(∆x)2
+
Ci
j+1 − 2Ci

j + Ci
j−1

(∆x)2

)
,

(C̃t)
i
j ≈

Ci+1
j − Ci

j

∆τ
.

Similarly substituting these expressions into (7.3), we get the following finite difference
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equation

−(λj − µj)Ci+1
j−1+(1 + 2λj)C

i+1
j − (λj + µj)C

i+1
j+1 = (λj − µj)Ci

j−1

+ (1− 2λj)C
i
j + (λj + µj)C

i
j+1

(7.12)

C0
j = 0. ∀ 0 ≤ j ≤ Nx

Ci+1
Nx

=
1

Tr
(1− e−ri∆τ))

Ci+1
0 = 0,

where

λj =
σ2

2
x2
j (ln xj)

2 ∆τ

2(∆x)2

=
σ2

4
j2∆τ(ln xj)

2,

µj =

((
1

T
− r ln x

)
xj +

σ2

2
xj(ln xj)

2

)
∆τ

4∆x

=
j∆τ

4

(
1

T
− r ln xj +

σ2

2
(ln xj)

2

)
.

Letting

α+
j = −(λj − µj) α−

j = λj − µj

β+
j = 1 + 2λj β−

j = 1− 2λj

γ+
j = −(λj + µj) γ−j = λj + µj.

The equation (7.12) can now be written as

α+
j C

i+1
j−1 + β+

j C
i+1
j + γ+

j C
i+1
j+1 = α−

j C
i
j−1 + β−

j C
i
j + γ−j C

i
j+1. (7.13)

Figure 7.2 shows why the Crank-Nicholson is an implicit scheme. To get Ci+1
j not only

do we require Ci
j−1, C

i
j and Ci

j+1 but also Ci+1
j−1 and Ci+1

j+1. This method requires to solve

a system of linear equations at each time step. We can represent the difference equation

by matrices. The equation (7.13) can be represented as

ACi+1 = BCi + qi − pi−1, (7.14)

 

 

 

 



Section 7.5. Implicit Method: Crank-Nicholson’s scheme 82
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j
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Figure 7.2: Typical grid for the Crank-Nicholson discretisation.

where A is the (Nx − 1)× (Nx − 1) matrix

A =




β+
1 γ+

1 0

α+
2 β+

2 γ+
2

α+
3 β+

3 ·
· · γ+

Nx−2

0 α+
Nx−1 β+

Nx−1




and B is the (Nx − 1)× (Nx − 1) matrix

B =




β−
1 γ−1 0

α−
2 β−

2 γ−2

α−
3 β−

3 ·
· · γ−Nx−2

0 α−
Nx−1 β−

Nx−1




.
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The rest of the terms are the following vectors:

Ci+1 = [Ci+1
1 , Ci+1

2 , · · · , Ci+1
Nx−1 ]T ,

Ci = [Ci
1, C

i
2, · · · , Ci

Nx−1 ]T ,

pi+1 = [α+
1 C

i+1
0 , 0, · · · , 0, α+

Nx−1C
i+1
Nx

]T ,

qi = [α−
1 C

i
0, 0, · · · , 0, α−

Nx−1C
i
Nx

]T .

We simplify qi and pi+1 at i = 0 by the initial condition and then at all points i =

1, 2, · · · , Nτ − 1 using the boundary conditions. To solve (7.14), we iterate for all i =

1, 2, · · · , Nτ −1. To get Ci+1, we solve an (Nx−1)× (Nx−1) system of equations at each

time step. The two matrices on both sides of the system are tridiagonal which reduces

the calculations significantly since algorithms adapted to tridiagonal systems [16, 44] can

be used. For completeness we describe the algorithm.

Solving the system of equations

Let d+
j be the right handside of (7.14). The for j = 2, 3, · · · , Nx − 1 we change

βj = β+
j −

α+
j

β+
j−1

γ+
j−1,

dj = d+
j −

α+
j

β+
j−1

d+
j−1,

This makes the matrix A to be upper diagonal. To find Ci+1
Nx−1, C

i+1
Nx−2, · · · , Ci+1

1 , we

perform a backward substitution as follows

Ci+1
Nx−1 =

dNx−1

βNx−1
.

The the rest are found by

Ci+1
j =

dj − γ+
j C

i+1
j+1

βj−1
,

for j = Nx−2, Nx−3, · · · , 1. We can now summarize the above in the following algorithm:
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Algorithm 7.5.1: Tridiagonal Solver(α+
j , β

+
j , γ

+
j , d

+
j , Nx − 1)

for j from 2 to Nx − 1

do





β+
j ← β+

j −
α+
j

β+
j−1

γ+
j−1

d+
j ← d+

j −
α+
j

β+
j−1

d+
j−1

Ci+1
Nx−1 ←

dj−1

βj−1

for j from Nx − 2 to 1

do

{
Ci+1
j ← d+j −γ

+
j C

i+1
j+1

β+
j−1

The solution of PDE will now be found by implementing the algorithm above at each time

node i. Figure 7.3 shows the surface generated by solving (7.12) by the Crank-Nicholson’s

method.

7.6 Convergence analysis of the Crank-Nicholson’s

method

Following the similar procedure as we had for the explicit method, we can show that the

Crank-Nicholson’s method is consistent. In fact, the truncation error in this case is

T c(x, τ) = O((∆τ)2) +O((∆x)2).

This implies that

T c(x, τ)→ 0 as ∆τ → 0 and ∆x→ 0.

To discuss its stability, we substitute Ci
j into (7.12) and obtain

eα∆τ =
1 + 2µj sin(β∆x)− 4λj sin

2(β∆x
2

)

1− 2µj sin(β∆x) + 4λj sin
2(β∆x

2
)
. (7.15)
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The stability criterion |eα∆τ | ≤ 1 implies two cases eα∆τ ≤ 1 and eα∆τ ≥ −1. If eα∆τ ≤ 1,

then

1 + 2µj sin(β∆x)− 4λj sin2(
β∆x

2
) ≤ 1− 2µj sin(β∆x) + 4λj sin2(

β∆x

2
).

This implies λj sin(β∆x
2

) ≥ µj cos(β∆x
2

)⇒ λj ≥ µj. For values of interest: T = 1, r = 0.09,

σ = 0.05 and ∆x = ∆τ = 0.005, λj is always greater that µj.

If eα∆τ ≥ −1, then

1 + 2µj sin(β∆x)− 4λj sin
2(
β∆x

2
) ≥ −1 + 2µj sin(β∆x)− 4λj sin2(

β∆x

2
)

⇔ 1 ≥ −1.

From above discussion, it is clear that both of the above inequalities are satisfied without

any restrictions on the step-sizes and hence this method is unconditionally stable.

Combining the two aspects (consistency and stability) above, by the Lax equivalence

theorem [2], the Crank-Nicholson’s method is convergent.
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Figure 7.3: The Call option surface obtained by the Crank-Nicholson’s method

 

 

 

 



8. Numerical Results

In this chapter, we provide various results obtained by the methods described in the

preceding chapters. Some of our numerical results will be confirmed by the analytical

results. We tabulate the results for evaluating the Asian call option prices by the Crank-

Nicholson’s method, the improved Monte Carlo method and compare them with the lower

bound of the price obtained using the formula derived in chapter 4. Furthermore, as we

explain below, our numerical results confirm theoretical investigations done by many other

researchers.

Figure 8.1 is obtained by the Crank-Nicholson’s method. The parameters used for the

simulation are as follows ([1, 15]): σ for both the European Call option and the Asian

option takes the values 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5; the interest rate is r = 0.09 and

the time t = 0. Each curve respresents the price of either a European call or Asian call

at time t = 0 for varying strike price K in the interval [50, 150].

Figure 8.1 confirms what we have indicated in the introduction of this thesis about the

important feature of an Asian option that it is cheaper than a European option for any

value of strike price K. The figure confirms the result that the Asian option price is

decreasing function of the strike price. The prices of the European call option can be

easily found by the Black-Scholes formula [9, 31, 35]. In this case, the price of a European

call option Ce,t is given by

Ce,t(St, K, t) = StΦ(d1)−Ke−r(T−t)Φ(d2),

where

d1 =
log St

K
+ (r + 1

2
σ2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

Figure 8.1 also shows that the price of the Asian option is a increasing function of the
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volatility σ. This has been proved analytically by Carr [14] using arguments based on

the maximum principle of the parabolic PDEs. Carr also demonstrates that the result

holds in the Black-Scholes model and not in a general model like for instance the binomial

model. From Figure 8.1 , we see that due to the averaging nature of the Asian options,

they are less sensitive to volatility as compared to their European counterparts [1]. Small

changes in volatility will not change Asian option price as they would do if they were

European options.
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Figure 8.1: Comparison of European and Asian option prices obtained by the Black-

Scholes formula and the Crank-Nicholson’s method, respectively.

In figure 8.2, we set our parameters as follows: σ takes values in the list [0.05, 0.1, 0.2].
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The strike price K is varied in the interval [50, 150], while the time t is kept constant at

0. Each curve represents the price of either an arithmetic Asian call or a geometric Asian

call.

We see why we said the price of the geometric Asian option is used as a control variate

of the arithmetic Asian option. In our motivation of the control variate Monte Carlo

method, we said that the geometric Asian option was close to or resembles the arithmetic

Asian option. However, the diagram shows that we cannot differentiate between these

prices which demonstrate the effectiveness of the Crank-Nicholson’s method.

Table 8.1 shows the results of calculations based on the three methods Monte Carlo

method, Crank-Nicholson’s method and the evaluation of the lower bound (4.9). The

tabular results show that the error incurred from the Crank-Nicholson’s method is ap-

proximately 0.0005. The lower bound is also very accurate. We also tabulate the times of

computation (CPU). As we can see, the Monte Carlo takes the largest time. The Crank-

Nicholson is faster than the Monte Carlo method. For low volatilities, e.g., σ = 0.05 the

Crank-Nicholson’s method takes very long time but since in those cases, the PDE is con-

vection dominant and hence it is acceptable as we still achieve a high degree of accuracy.

It should be noted that we have added the CPU times for evaluating the lower bound also

because we do use some numerical integration techniques there but as such it is merely

for the comparison purpose as this is more an analytical formula.
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Figure 8.2: Comparison of Geometric and Arithmetic option prices obtained by using

(2.9) and the Crank-Nicholson’s method, respectively.
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Table 8.1: Comparison of the Finite difference and Monte Carlo method with the lower bound obtained by (4.9)

σ K Finite Difference method Monte Carlo method Lower Bound

Crank-Nicholson CPU Control variate CPU Equation (4.9) CPU

0.05

95 8.8088 2747.1 8.8092 9713.4 8.8088 1.4966

100 4.3081 4671.5 4.3086 9710.4 4.3081 1.4846

110 0.0524 2644.8 0.0522 9629.0 0.0521 1.4505

0.1

95 8.9115 76.607 8.9119 9708.3 8.9115 1.5440

100 4.9146 77.876 4.9155 9981.61 4.9145 1.6814

110 0.6307 79.640 0.6304 9999.79 0.6299 1.9514

0.3

95 11.6558 121.26 11.6560 9656.4 11.6530 1.5960

100 8.8287 122.52 8.8289 9673.2 8.8259 1.3244

110 4.6967 121.72 4.6968 9668.5 4.6938 1.1737

0.5

95 15.4427 75.029 15.4427 10968.9 15.4342 1.1317

100 13.0282 74.547 13.0279 10344.7 13.0200 1.5438

110 9.1243 75.075 9.1242 10023.0 9.1157 1.2696

 

 

 

 



Part III

Application to European basket

options

92

 

 

 

 



9. Extension of pricing approaches

of Asian options to pricing a

European basket option (EBO)

Most of the methods which we have used in previous chapters can be extended to deter-

mining the price of European basket options. The structure and problems faced in finding

the price of EBO and an Asian option are largely similar.

The European basket option (EBO) is a popularly traded option (see Briys et al. [12],

Deelstra et al. [21]). It is an option which depends on the value of a portfolio (or basket)

of assets. We will consider a basket option written on n assets which are all drawn from

the same economy. More precisely, we form a basket consisting of ai units of ith asset,

for i ∈ {1, 2, · · · , n}. Let Q be an equivalent martingale measure (EMM), then the price

of an EBO is

C(K, T ) = e−rTE
Q

[(
n∑

i=1

aiSi(T )−K
)+]

,

where Si(T ) is the price of asset i and K is the strike price.

Writing a basket on n assets is comparable to having n European options, but there are

advantages of buying a basket option. The EBO takes the correlation of the assets into

account. basket options are cost-effective. There is an obvious advantage of reduction of

transactional costs in buying a EBO rather than buying several European options [21].

basket options are usually cheaper than the corresponding European options [12].

The basket option is similar to the Asian options which we analysed in the preceding

chapters. It takes the sum of the assets prices. The difference is that whereas the Asian

option is path-dependent the basket option is not. We recall that the Asian option takes
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the sum of the asset price over some period of its existence and compares this with the

strike price K. The EBO only considers the prices of the assets at maturity and compares

this with the strike price K.

Under these circumstances it is not a surprise that the problems that we face in pricing

Asian options are again encountered in pricing the European basket options. As in the

Asian option scenario, the distribution of the sum of lognormally distributed random

variables is not explicit or tractable. This is the major drawback in formulating a closed

form expression for the price of the EBO. We again restrict ourselves to the Black-Scholes

market where the price processes follow lognormal distributions.

9.1 Setting

We consider a basket option written on n assets with prices Si(t). More precisely, we form

a basket consisting of ai units of i th asset, for i ∈ {1, 2, · · · , n}. We assume a Black-

Scholes economy, the return for each asset is µi and volatility σi, both being constant.

There is also a riskless interest rate r such that if an investment of B0 is put in a bank

account then after time t its value is B0e
rt. The dynamics of the prices of the assets are

dSi(t) = µiSi(t)dt+ σiSi(t)dW̃i(t),

where {W̃i(t), t > 0} are Brownian motions under the real world probability ( see, e.g.,

Baxter [5], Shreve [53]). As we have shown in Chapter 2, under a risk neutral measure Q

the dynamics of the price process are

dSi(t) = rSi(t)dt+ σiSi(t)dWi(t),

where {Wi(t), t > 0} are Q-Brownian motions. We know that the explicit formulae of the

price processes are given by

Si(T ) = Si(0)e

„

r−σ2
i
2

«

T+σWi(T )
.
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At each time t, the Brownian motions are assumed to be constantly correlated, i.e.,

CovQ(dWi(t), dWj(t)) = ρij dt.

The strike price for the basket option is K. The payoff structure for the arithmetic basket

option (so named because of the summation involved) is given by

(
n∑

i=1

aiSi(T )−K
)+

,

where ai are the weights for each asset. Just as we priced the Asian options, the price at

time T of a basket call option is given by the expectation of the discounted payoff under

the risk neutral measure Q. Therefore

C(K, T ) = e−rTE
Q

[(
n∑

i=1

aiSi(T )−K
)+]

.

As has been highlighted before the problem in getting a closed form expression for C(K, T )

is that the distribution for
∑n

i=1 aiSi(T ) is not known. The basket put option P (K, T )

can likewise be given by

P (K, T ) = e−rTE
Q

[(
K −

n∑

i=1

aiSi(T )

)+]
.

9.2 A call-put parity

A parity also exists between the basket call and the basket put. Since we consider the

option to be of European nature, in which case it is exercised on maturity, the derivation

is not so difficult.

Proposition 9.1. The basket call option and basket put option written on n assets whose

prices are Si(t) with maturity T with strike price K satisfies

C(K, T ) +Ke−rT = P (K, T ) +

n∑

i=1

aiSi(0).
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Proof. Let us define the sets X := {ω ∈ Ω :
∑n

i=1 aiSi(ω, T ) > K} and

Y := {ω ∈ Ω :
∑n

i=1 aiSi(ω, T ) ≤ K}. Then subtracting the put from the call we get

C(K, T )− P (K, T ) = e−rTE
Q

[(
n∑

i=1

aiSi(T )−K
)+]

− e−rTE
Q

[(
K −

n∑

i=1

aiSi(T )

)+]

= e−rTE
Q

{(
n∑

i=1

aiSi(T )−K
)

(1X + 1Y )

}

= e−rTE
Q

(
n∑

i=1

aiSi(T )−K
)

=

n∑

i=1

aiE
Q
(
e−rTSi(T )

)
−Ke−rT

=

n∑

i=1

aiSi(0)−Ke−rT .

9.3 A lower bound by Conditioning

We are going to derive a lower bound for the basket option in a similar way that we used

to get bounds for the Asian options. Our motivation for these bounds is that they are

easy to deduce, and when implemented, they are computionally less expensive (also noted

by Chen et al. [15], Rogers and Shi [52], Thompson [56], etc). First let us define the sets

D and E = E(γ) below, where γ is any real number, i.e,

D : =

{
ω ∈ Ω :

n∑

i=1

aiSi(ω, T ) > K

}

E(γ) : =

{
ω ∈ Ω :

n∑

i=1

aiσiSi(0)e(r−
1
2
σ2
i )TWi(ω, T ) > γ

}
.

The variable γ can be any number but for the bound which we will determine, it must be

the one that optimises the bound. From now onwards we drop the explicit dependency

of Wi(ω, T ) and Si(ω, T ) on ω.
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Proposition 9.2. For any γ ∈ R, the following inequality holds.

C(K, T ) ≥ e−rTE
Q

[(
n∑

i=1

aiSi(T )−K
)
1E

]
.

Proof. Let us write E = E1 ∪E2 where E1 = E ∩D and E2 = E \E1. Then E1 ⊆ D and

for ω ∈ E1 we have (
∑n

i=1 aiSi(T )−K) > 0. Therefore

E
Q

[(
n∑

i=1

aiSi(T )−K
)
1E1

]
≤ E

Q

[(
n∑

i=1

aiSi(T )−K
)
1D

]
.

On the other hand, for ω ∈ E2 we have (
∑n

i=1 aiSi(T )−K) ≤ 0 and therefore

E
Q

[(
n∑

i=1

aiSi(T )−K
)
1E2

]
≤ 0.

Therefore,

C(K, T ) = e−rTE
Q

[(
n∑

i=1

aiSi(T )−K
)
1D

]

≥ e−rTE
Q

[(
n∑

i=1

aiSi(T )−K
)
1E1

]

≥ e−rTE
Q

[(
n∑

i=1

aiSi(T )−K
)
1E1

]
+ e−rTE

Q

[(
n∑

i=1

aiSi(T )−K
)
1E2

]

= e−rTE
Q

[(
n∑

i=1

aiSi(T )−K
)
1E

]
.

We are going to optimally get γ. We want a γ∗ that maximises the bound. To this end

we have to solve the problem

∂

∂γ

n∑

i=1

E
Q

(
aiSi(T )− K

n
,

n∑

i=1

aiσiSi(0)e(r−
1
2
σ2
i )TWi(T ) > γ

)
= 0. (9.1)

Proposition 9.3. Let U and Wt be jointly distributed with density function f(Wt, U).

Suppose U has marginal density function fU (u) and let vi := g(Wt) be a function of Wt.

Then

∂

∂γ
E
Q (vi, U > γ) = −fU(γ)EQ (vi|U = γ) .
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Proof. By the Leibnitz rule

∂

∂γ

∞∫

γ

vifWt,U(Wt, U) dU = −vifWt,U(Wt, γ). (9.2)

Applying (9.2) together with the definition of expectation, we can write

∂

∂γ
E
Q (vi, U > γ) =

∂

∂γ

∞∫

−∞

∞∫

γ

vifWt,U(Wt, U) dU dWt

=

∞∫

−∞


 ∂

∂γ

∞∫

γ

vifWt,U(Wt, U) dU


 dWt

=

∞∫

−∞

−vifWt,U(Wt, γ)dWt

=

∞∫

−∞

−vifWt,U(Wt|U = γ)fU(γ)dWt

= −fU(γ)EQ (vi|U = γ) .

Our evaluation involve summations. To incorporate this we also have the following result.

Corollary 9.4.

∂

∂γ

n∑

i=1

E
Q (vi, U > γ) = −fU(γ)

n∑

i=1

E
Q (vi|U = γ) .

The proof of the above is omitted since it is immediate. We now evoke Corollary 9.4 so

that (9.1) becomes

n∑

i=1

E
Q

(
aiSi(T )− K

n

∣∣∣∣U = γ

)
= 0, (9.3)

with U =
∑n

i=1 aiσiSi(0)e(r−
1
2
σ2
i )TWi(T ). Then (9.3) can be written equivalently as

n∑

i=1

E
Q(aiSi(T )|U = γ∗) = K. (9.4)
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So the γ that maximises the bound is uniquely determined by (9.4). To be able to find

the distribution of Si(T )|U , we need to find that of Wi(T )|U . To this end we first find

the covariance of Wi(T ) and U :

CovQ

(
Wi(T ),

n∑

j=1

ajσjSj(0)e(r−
1
2
σ2
j )TWj(T )

)
=

n∑

j=1

ajσjSj(0)e(r−
1
2
σ2
j )T ·

CovQ(Wi(T ),Wj(T ))

=

n∑

j=1

ajσjSj(0)e(r−
1
2
σ2
j )TρijT.

We also need the variance σ2
U of U :

VarQ

(
n∑

i=1

aiσiSi(0)e(r−
1
2
σ2
i )TWi(T )

)
= CovQ

(
n∑

i=1

aiσiSi(0)e(r−
1
2
σ2
i )TWi(T ),

n∑

j=1

ajσjSj(0)e(r−
1
2
σ2
j )TWj(T )

)

=
n∑

i=1

n∑

j=1

aiajσiσjSi(0)Sj(0)e(r−
1
2
σ2
i )T e(r−

1
2
σ2
j )T .

CovQ(Wi(T ),Wj(T ))

=

n∑

i=1

n∑

j=1

aiajσiσjSi(0)Sj(0)e(2r−
1
2
(σ2
i+σ

2
j ))TρijT.

The correlation ρWi,U of Wi(T ) and U is

ρWi,U =
CovQ(Wi(T ), U)

σW (T )σU
=

∑n

j=1 ajσjSj(0)e(r−
1
2
σ2
j )TρijT

√
T
√∑n

i=1

∑n
j=1 aiajσiσjSi(0)Sj(0)e(2r−

1
2
(σ2
i+σ

2
j ))TρijT

=

∑n
j=1 ajσjSj(0)e(r−

1
2
σ2
j )Tρij√∑n

i=1

∑n

j=1 aiajσiσjSi(0)Sj(0)e(2r−
1
2
(σ2
i+σ

2
j ))Tρij

.

Clearly Wi(T ) and U are normally distributed random variables (U is a sum of nor-

mal variables and so is normal [51]). The pair (Wi(T ), U) is bivariate normal, we write

(Wi(T ), U) ∼ BiN(µWi(T ), µu, σ
2
Wi(T ), σ

2
u, ρWi,U), where µWi(T ) and µu are the means and
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σ2
Wi(T ), σ

2
u are variances. Then Wi(T )|U is normally distributed with expectation and the

variance being

E
Q(Wi(T )|U = γ) = µWi(T ) +

ρWi,UσWi(T )

σu
(γ − µWi(T ))

= γ

∑n

j=1 ajσjSj(0)e(r−
1
2
σ2
j )Tρij

∑n

i=1

∑n

j=1 aiajσiσjSi(0)Sj(0)e(2r−
1
2
(σ2
i+σ

2
j ))Tρij

VarQ(Wi(T )|U = γ) = σ2
Wi(T )(1− ρ2

Wi,U
)

= T


1−

(∑n

j=1 ajσjSj(0)e(r−
1
2
σ2
j )Tρij

)2

∑n
i=1

∑n
j=1 aiajσiσjSi(0)Sj(0)e(2r−

1
2
(σ2
i+σ

2
j ))Tρij




respectively. Now we will determine the expectation of akSk(T ) conditional on U = γ:

E
Q(akSk(T )|U = γ) = akSk(0)e(r−

σ2
k
2

)T
E
Q(eσkWk(T )|U = γ)

= akSk(0)e(r−
σ2
k
2

)T exp

{
σkE

Q(Wk(T )|U = γ) +
σ2
k

2
VarQ(Wk(T )|U = γ)

}

= akSk(0) exp

(
rT +

σkγ
∑n

j=1 ajσjSj(0)e(r−
1
2
σ2
j )Tρkj

∑n

i=1

∑n

j=1 aiajσiσjSi(0)Sj(0)e(2r−
1
2
(σ2
i+σ

2
j ))Tρij

−
T
(∑n

j=1 ajσjSj(0)e(r−
1
2
σ2
j )Tρkj

)2

2
∑n

i=1

∑n
j=1 aiajσiσjSi(0)Sj(0)e(2r−

1
2
(σ2
i+σ

2
j ))Tρij


 .

Consequently, (9.4) becomes

n∑

k=1

akSk(0) exp

(
rT +

σkγ
∑n

j=1 ajσjSj(0)e(r−
1
2
σ2
j )Tρkj

∑n
i=1

∑n
j=1 aiajσiσjSi(0)Sj(0)e(2r−

1
2
(σ2
i+σ

2
j ))Tρij

−
T
(∑n

j=1 ajσjSj(0)e(r−
1
2
σ2
j )Tρkj

)2

2
∑n

i=1

∑n

j=1 aiajσiσjSi(0)Sj(0)e(2r−
1
2
(σ2
i+σ

2
j ))Tρij


 = K.

(9.5)

 

 

 

 



Section 9.3. A lower bound by Conditioning 101

Theorem 9.5. Let γ satisfy (9.5), then the optimal lower bound for a EBO is given by

Č(K, T ) =
n∑

k=1



akSk(0)Φ


 −γ∗ + Tσk

∑n
j=1 ajσjSj(0)e(r−

1
2
σ2
j )Tρkj√

T
∑n

i=1

∑n
j=1 aiajσiσjSi(0)Sj(0)e(2r−

1
2
(σ2
i+σ

2
j ))Tρij




− K

n
e−rTΦ


 −γ∗√

T
∑n

i=1

∑n

j=1 aiajσiσjSi(0)Sj(0)e(2r−
1
2
(σ2
i+σ

2
j ))Tρij





 ,

(9.6)

where Φ(.) is the cumulative normal distribution function.

Proof. Denoting the lower bound by Č(K, T ), from Proposition 9.2 we have:

Č(K, T ) = e−rT
n∑

i=1

[
E
Q

(
aiSi(T )− K

n

)
1E

]

= e−rT
n∑

i=1

E
Q

(
eln(aiSi(T ))

1E −
K

n
1E

)
.

From Chapter 4, Proposition (4.2): If X ∼ N(µx, σ
2
x) and Y ∼ N(µy, σ

2
y) then

E
Q(eX1{Y >0}) = eµx+

σ2
x
2 Φ

(
µy + c

σy

)
,

where c is the covariance between X and Y . We can easily determine this value as

c = CovQ

(
ln aiSi(T ),

n∑

j=1

ajσjSj(0)e(r−
1
2
σ2
j )TWj(T )− γ

)

= CovQ

(
ln aiSi(0) +

(
r − σ2

i

2

)
T + σiWi(T ),

n∑

j=1

ajσjSj(0)e(r−
1
2
σ2
j )TWj(T )− γ

)

= σiCovQ

(
Wi(T ),

n∑

j=1

ajσjSj(0)e(r−
1
2
σ2
j )TWj(T )

)

= Tσi

n∑

j=1

ajσjSj(0)e(r−
1
2
σ2
j )Tρij .
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Therefore

E
Q(eln akSk(T )

1E) = exp

{
ln akSk(0) +

(
r − σ2

k

2

)
T +

σ2
k

2
T

}
·

Φ


 −γ + Tσk

∑n
j=1 ajσjSj(0)e(r−

1
2
σ2
j )Tρkj√

T
∑n

i=1

∑n
j=1 aiajσiσjSi(0)Sj(0)e(2r−

1
2
(σ2
i+σ

2
j ))Tρij




= akSk(0)erTΦ


 −γ + Tσk

∑n
j=1 ajσjSj(0)e(r−

1
2
σ2
j )Tρkj√

T
∑n

i=1

∑n
j=1 aiajσiσjSi(0)Sj(0)e(2r−

1
2
(σ2
i+σ

2
j ))Tρij




and

E
Q(1E) = Φ


 −γ√

T
∑n

i=1

∑n

j=1 aiajσiσjSi(0)Sj(0)e(2r−
1
2
(σ2
i+σ

2
j ))Tρij


 .

Consequently the bound becomes

Č(K, T ) =

n∑

k=1



akSk(0)Φ


 −γ∗ + Tσk

∑n

j=1 ajσjSj(0)e(r−
1
2
σ2
j )Tρkj√

T
∑n

i=1

∑n

j=1 aiajσiσjSi(0)Sj(0)e(2r−
1
2
(σ2
i+σ

2
j ))Tρij




− K

n
e−rTΦ


 −γ∗√

T
∑n

i=1

∑n

j=1 aiajσiσjSi(0)Sj(0)e(2r−
1
2
(σ2
i+σ

2
j ))Tρij





 .

This completes the proof.

9.4 Moment Matching Method

The moment matching method is used when the distribution of a random variable is not

known (Joshi [35], Brigo et al. [11], Deelstra et al. [20]). In this method, we assume a

particular distribution based on some assumption or observations of the random variable.

When we have settled for the distribution, we then calibrate it. The analytical pricing

of European basket options rests entirely on discovering the distribution for the sum of

lognormal variables. In order to use the moment matching technique, we approximate
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the sum of the lognormal variables by a lognormal variable [11]. This is intuitive and

the success of the method depends to some extent on how we calibrate the lognormal

distribution, i.e, determine the mean and the variance of the lognormal distribution.

For convenience, let us define

ST =

n∑

i=1

aiSi(T )

and

Yi(T ) = (r − 1

2
σ2
i )T + σiWi(T ).

The variable Yi(T ) is normally distributed with mean (r− 1
2
σ2
i )T and variance σ2

i T . The

mean of ST is given by

E(ST ) =
n∑

i=1

aiSi(0)E(eYi(T ))

=

n∑

i=1

aiSi(0)erT . (9.7)

The random variable eYi(T ) follows a lognormal distribution. We write

eYi(T ) ∼ LogN((r − 1

2
σ2
i )T, σ

2
i T ).

We have assumed that the underlying Brownian motions are correlated. Of interest is the

variable Yi(T )+Yj(T ). The mean is directly found to be (2r− 1
2
(σ2

i +σ2
j ))T . We proceed

to determine the variance as

Var(Yi(T ) + Yj(T )) = Var(Yi(T )) + Var(Yj(T )) + 2Cov(Yi(T ), Yj(T ))

= σ2
i T + σ2

jT + 2Cov(σiWi(T ), σjWj(T ))

= (σ2
i + σ2

j + 2σiσjρij)T.

Therefore

eYi(T )+Yj(T ) ∼ LogN((2r − 1

2
(σ2

i + σ2
j ))T, (σ

2
i + σ2

j + 2σiσjρij)T ).
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Since we have already found the first moment (mean) of ST , we now determine its second

moment.

E(S2
T ) =

n∑

i=1

n∑

j=1

aiajSi(0)Sj(0)E(eYi(T )+Yj (T ))

=
n∑

i=1

n∑

j=1

aiajSi(0)Sj(0)e(2r−
1
2
(σ2
i+σ

2
j ))T+ 1

2
(σ2
i+σ

2
j+2σiσjρij)T )

=

n∑

i=1

n∑

j=1

aiajSi(0)Sj(0)e(2r+σiσjρij)T . (9.8)

Let us now assume that ST ∼ LogN(µ, σ). In that case the first and second moments are

given by

E(ST ) = eµ+σ2

2

and

E(S2
T ) = e2(µ+σ2)

respectively. For further clarifications, readers are referred to the discussion on the log-

normal distribution in Chapter 1. The mean µ and variance σ2 are given by

σ2 = ln E(S2
T )− 2 ln E(ST )

µ = ln E(ST )− σ2

2
.

The explicit expressions for E(ST ) and E(S2
T ) are given by (9.7) and (9.8) respectively.

The problem of finding the price of a basket option has now been reduced to that of a

European option. We just need to modify the Black-Scholes formula. This is due to the

fact that in the European option case the price of the underlying asset at maturity is

lognormally distributed hence the availability of the explicit formula. Let us write the

price of a basket option as

C(n,K, T ) = e−rTE(ST −K)+.
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Therefore

C(n,K, T ) = e−rT (eµ+ 1
2
σ2

Φ(d1)−KΦ(d2)),

where

d1 =
µ+ σ2 − lnK

σ
,

d2 = d1 − σ.

The above expressions are derived in a similar manner as those for the geometric Asian

options in Chapter 2 Section 2.4. The details are therefore omitted.

9.5 Monte Carlo method for pricing European basket

options

The Monte Carlo method will be used again as another pricing method (see, e.g., Deelstra

et al. [21], Glasserman [27]) for European basket options. As we saw in Chapter 6, the

Monte Carlo is easy to use. The problem with it is that it takes much computer resources,

that is, it needs lots of computer memory. Consequently, the use of variance reduction

techniques to improve the Monte Carlo simulations cannot be over-emphasised.

The second idea which needs to be addressed is generating correlated prices for each asset

in the basket option (see Glasserman [27] for more). We assumed that the returns of the

assets are correlated, with correlation ρij for pairs of assets. We will use the following

idea of Cholesky decomposition from linear algebra to simulate correlated prices.

Let C and Z be n × 1 vectors, that is C = (c1, c2, · · · , cn)T , Z = (z1, z2, · · · , zn)T , where

zi ∼ N(0, 1). We know that

c1z1 + c2z2 + · · ·+ cnzn ∼ N(0, c21 + c22 + · · ·+ c2n). (9.9)
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We note that c21 + c22 + · · · + c2n = CTC. In general C can be n ×m. In this case, the

matrix CTC is referred to as the covariance matrix. It is usually denoted by Σ. The ij

element of the covariance matrix Σij gives the covariance of random variables Xi and Xj ,

i.e, Σij =Cov(Xi, Xj). The above equation (9.9) may be written as

CTZ ∼ N(0,Σ),

where N(, ) indicates that its multidimensional.

Suppose a vector of random variables is such that U ∼ N(0,Σ). Then we can write U

as U = CTZ. To simulate correlated observations of U, the problem reduces to finding

C such that CTC = Σ. Some of the properties of the covariance matrix Σ are

(i) positive semidefinite

(ii) Σii ≥ 0.

The diagonal entries give the variance of each of the vectors since Σii =Cov(Xi, Xi) =Var(Xi).

The positive semidefiniteness of Σ ensures that it can be factorised by the Cholesky de-

composition.

We will now demonstrate how to generate correlated prices for a basket option with two

assets. The process can easily be generalised for a basket of n assets. We know that

S1(T ) = S1(0)e(r−
1
2
σ2
1)T+σ1W1(T )

S2(T ) = S2(0)e(r−
1
2
σ2
2)T+σ2W2(T ).

Let Xi = σiWi(T ), for i = 1, 2. We can write

Cov(Xi, Xi) = Var(Xi) = σ2
i T

Cov(Xi, Xj) = σiσjρijT.
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Consequently, the covariance matrix for X = (X1, X2)
T is

Σ =


 σ2

1T σ1σ2ρ12T

σ1σ2ρ12T σ2
2T


 .

As we have explained, by using Cholesky decomposition, we can find a matrix C such

that CTC = Σ. The correlated X denoted by Xc, is then found by Xc = CTZ.

The last considerations pertain to the choice of the variance reduction technique. If the

results of Chapter 6 are anything to go by, then we would prefer a control variate method.

An example of a control variate is the geometric basket option [21]

CG(n,K, T ) = e−rTE

(
n∏

i=1

Si(T )ai −K
)+

.

The prices we obtained by using this control variate procedure, show that this is not a

good procedure. However, the antithetic method gave satisfactory results. The values

obtained were essentially the ones obtained by [21]. Our tabulated results are a product

of the antithetic method. Here is the algorithm that we will use for our Monte Carlo

method for the two assets:
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Algorithm 9.5.1: Antithetic Monte Carlo(m)

C← Cholesky decomposition of Σ

for j from 1 to m

do





generate Z = (z1, z2)
T ∼ N(0, 1)

X← CTZ

S1(T )← S1(0)e(r−
1
2
σ2
1)T+X1

S∗
1(T )← S1(0)e(r−

1
2
σ2
1)T−X1 (antithetic price)

S2(T )← S2(0)e(r−
1
2
σ2
2)T+X2

S∗
2(T )← S2(0)e(r−

1
2
σ2
2)T−X2 (antithetic price)

Cj ← e−rTmax (a1S1(T ) + a2S2(T )−K, 0)

C∗
j ← e−rTmax (a1S

∗
1(T ) + a2S

∗
2(T )−K, 0)

C̄j = 1
2
(Cj + C∗

j )

Ĉ ← 1

m

m∑

j=1

C̄j

Algorithm 9.5.1 shows that the Monte Carlo method for European basket options is less

complicated than the Asian option Monte Carlo method. The reason is that the basket

option which we are considering is a vanilla type; the price of the asset at maturity is

what matters to us. One may recall that the Asian options are path-dependent.

9.6 European basket option results

In this section we perform calculations with the three methods; Optimal lower bound,

Monte Carlo and Moment Matching.
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In Table 9.1 we have used equally weighted, i.e, a1 = a2 = 0.5, the volatilities of the

two assets σ1 and σ2 are equal and take the values 0.1 or 0.2. Spot prices are equal, i.e,

S1(0) = S2(0) = 100. The correlation between the two asset return is 0.2 or 0.8. The time

of holding the option is T with take either 1 or 3 and r = 0.05. We see that our lower

bound is very close to the Monte Carlo price. The maximum error incurred is 0.08 and

the least is 0.0002. The moment matching method is even more accurate. The maximum

error incurred is 0.004 and the least is 0.0006.

In Table 9.2 we consider unequally weighted assets in the basket, i.e, a1 6= a2. We take

two asset n = 2, with different spot prices S1(0)=130, S2(0) = 70. The parameters T ,

r = 0.05 and σ2 are taken analogous to the previous case. The lower bound is also very

close to the Monte Carlo values. The maximum error incurred is 0.07 and the least is

0.0006. The Moment Matching method is more accurate than the lower bound. The

maximum error incurred is 0.008 and the least is 0.0006.

Table 9.3 shows the results of taking unequally weighted assets in the basket, i.e, a1 6= a2

unequal spot prices S1(0) 6= S2(0). This time the volatilities σ1 and σ2 are unequal. The

time T is 5 years and r = 0.09 and there are 2 assets in the basket. Moreover, the strike

price is 35. The lower bound generally performs better the Moment matching method.

In particular, for low volatilities. The lower bound incurs a maximum error of 0.05 and

the least error of 0.0001. On the other hand the Moment matching method incurs an

maximum error of 0.16 and a least error of 0.0009. The Moment matching method does

not perform well for high volatilities where the error can be as big as 0.16. We conclude

that the Moment matching method does not always give better results.
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Table 9.1: Comparison of Lower bound obtained by using (9.6), Monte Carlo simulations

and Moment Matching for n = 2, r = 0.05, a1 = a2 = 0.5, S1(0) = S2(0) = 100.

K T Correlation Volatility Monte Carlo Lower bound Moment Match

ρ σ1 = σ2

117 1 0.2 0.1 0.31216 0.31195 0.31279

0.2 2.37865 2.36810 2.38175

0.8 0.1 0.65066 0.64921 0.64927

0.2 3.57133 3.56994 3.57069

123 3 0.2 0.1 3.07084 3.06057 3.07060

0.2 8.38480 8.29776 8.38278

0.8 0.1 4.20915 4.20713 4.20766

0.2 10.70939 10.70096 10.70533
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Table 9.2: Comparison of Lower bound obtained by using (9.6), Monte Carlo simulations

and Moment Matching for n = 2, r = 0.05, a1 = 0.3, a2 = 0.7, S1(0) = 130, S2(0) = 70.

K T Correlation Volatility Monte Carlo Lower bound Moment Match

ρ σ1 = σ2

97 1 0.2 0.1 1.16689 1.16500 1.16625

0.2 2.72347 2.71138 3.72491

0.8 0.1 1.69408 1.69373 1.69381

0.2 4.89570 4.89311 4.89382

108 3 0.2 0.1 2.78607 2.77739 2.78616

0.2 7.48480 7.41850 7.49250

0.8 0.1 3.77637 3.77579 3.77624

0.2 9.51068 9.50135 9.50519
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Table 9.3: Comparison of Lower bound obtained by using (9.6), Monte Carlo simulations

and Moment Matching for n = 2, r = 0.09, a1 = 0.52, a2 = 0.48, S1(0) = 29, S2(0) = 43.

K T Correlation Volatility Monte Carlo Lower bound Moment Match

ρ σ1 σ2 ρ

35 5 0.2 0.05 0.1 13.40373 13.40327 13.40377

0.6 13.40468 13.40454 13.40553

0.9 13.40679 13.40664 13.40793

0.2 0.1 0.2 13.53949 13.53021 13.60738

0.6 13.65207 13.64820 13.71300

0.9 13.74663 13.74547 13.80073

0.2 0.2 0.3 14.38692 14.33540 14.55644

0.6 14.79805 14.78219 14.91392

0.9 15.10367 15.10240 15.19208

 

 

 

 



Conclusion

In this thesis, we have discussed how one can price arithmetic Asian options numerically.

Firstly, we considered a Monte Carlo procedure where two variants where explored to make

the process more efficient and feasible. The control variate method turned out to be more

accurate as compared to the antithetic variates method. Even with variance reduction, the

Monte Carlo method was time consuming and uneconomic as far as computer resources

are concerned.

The price of the Asian option was characteristed by a linear parabolic partial differential

equation which was solved by finite difference schemes, namely, the explicit method and

the implicit (Crank-Nicholson’s) method. Of the two, the Crank-Nicholson method was

found to be unconditionally stable and converged to the true solution. There was a trade-

off between speed and accuracy with regards to the Crank-Nicholson and the Monte Carlo

methods. Though the Monte Carlo method was more accurate it was slow whereas the

Crank-Nicholson method was less accurate but faster. The worst case scenario was when

the volatility of the underlying asset was very low (0.05). Currently we are investigating

possible improvements in our methods.

As far as the analytical approximations for the price of the Asian option are concerned, a

lower bound was explored. The lower bound was very close to the Monte Carlo price, that

we could literally take it to be the price of the Asian option. Our results also confirm some

other facts about Asian options studied from different pespectives by various researchers,

e.g. we found that the Asian option is cost-effective, i.e., cheaper than plain vanilla

European options. Also due to its averaging nature, an arithmetic Asian option is less

sensitive to changes of volatility of the underlying asset.

We extended our methods to price a European basket option (EBO). We have derived

an optimal lower bound for this option and evaluated it. Then we compare the results
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with other two methods, namely, the Monte Carlo method and the Moment matching

method. With the exception of generating correlated prices, the Monte Carlo method

was less complicated and hence faster than the corresponding Monte Carlo method for

Asian options. Structural differences accounted for this observation. The EBO is path

independent whereas the Asian option is path dependent. We were also successfully able

to adapt variance reduction techniques for Asian options to the EBO.

We then derived a lower bound based on the conditioning method. Various calculations

confirmed that the bound was indeed optimal. We also approximated the basket, i.e.,

sum of lognormal variables by a lognormal distribution and got reasonable accuracy.

There are possible extensions to the thesis that can be considered. As a starting point, the

assumptions of the Black-Scholes model could be relaxed. The volatility of the underlying

asset could be taken as a function of time or it could be driven by a stochastic differential

equation. This gives rise to stochastic volatility models an example being the Heston

model ([29]). There is a lot of empirical evidence from actual market data to suggest

that the log of returns on assets is not logonormally distributed as in the Black-Scholes

model. We could model the prices of assets with general stochastic processes like the

Lévy processes which take the possibility of jumps in price processes into account (see

e.g., [49]).

We could also improve the numerical solutions. The low volatility problem where the

PDE approach suffered most could be looked from a perturbation theory perspective and

asymptotic solutions could be explored (see [61]).
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