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ABSTRACT 

 
Title:     Development of a small-scale electrochlorination system for rural water supplies 

Author:   JDV Key 

Degree:   MSc – thesis 

Department:   Chemistry 

Institution:   University of the Western Cape 

 

To address the urgent need for safe potable water in South Africa’s rural areas, 
sustainable systems for water disinfection at the village-scale of operation are required. 
In this thesis, the development of a small-scale water chlorination system that runs on 
salt and solar panels is described. The system combines a membrane-based hypochlorite 
generator, or “membrane electrolyser”, with an automated hypochlorite dosing system. 
 
The system was designed to (i) coordinate hypochlorite production and dosing 
automatically in a flow-through system, and (ii) fit inline with low pressure pipelines 
from overhead storage tanks or raised water sources. Low cost materials were used for 
construction, and water-powered mechanisms were devised to control both brine supply 
to the electrolyser and regulation of water flow. The capacity of the system was based 
on the maximum daily output of the electrolyser at ~20 g of sodium hypochlorite. This 
was sufficient chlorinate up to 10 kL of water per day using less than 80 g of salt and 
less than 0.1 kW.h of electricity. The cost of the system was estimated at ~R10 000 and 
therefore potentially affordable for communities up to 100 people, e.g. small farms and 
villages.  
 
Testing of the system was carried out at a farm site in Worcester (Western Cape) using 
remote monitoring of current levels in the electrolyser. Operation of the system over a 
two month test period, dosing at ~4 mg/L, produced consistent chlorination measured as 
(FAC). Community participation in maintenance of the brine supply was managed and 
chlorinated water was made available to the community after a brief social survey was 
conducted. Community awareness of chlorination was minimal. No significant history 
of diarrhoea was reported. However, the community regularly boiled their tap water in 
response to turbidity increase in summer.  
 
The system was affected by turbidity increase in the local water, which caused a drop in 
electrolyser current and chlorine production due to particle blockage of the membrane in 
the electrolyser. However, turbidity at acceptable levels for chlorination was found to 
have no detrimental effect on the system’s performance. The system showed promise 
for rural implementation providing low turbidity was maintained. Therefore, 
groundwater sites, and surface waters with appropriate clarification systems are 
recommended for the system’s installation. Further testing of the system will be 
required to establish its long term viability in the hands of a rural community.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 A RURAL WATER PROBLEM  

An estimated five million people rely on untreated drinking water in South Africa’s 

rural areas (DEAT, 2008). A large portion of this figure is represented by villages, small 

farms and informal settlements that are widely distributed within the country. The 

communities are often small (less than 100 people) and use water from “informal” 

sources (e.g. streams, rivers, small dams and boreholes), and in many cases have long 

managed to safely use such water without the need for water treatment.  

 

However, within the past ten years, a visible presence of waterborne disease in rural 

areas has emerged, with recent outbreaks of cholera in Limpopo and Kwa-Zulu Natal 

making headline news (Mail and Guardian, 2007-2008). The outbreaks stem from 

sewage contamination of rural watersheds and the direct use of untreated contaminated 

water for drinking (Said, 2006).  

 

To address this problem, there is concerted effort by government to build more water 

treatment plants and improve sanitation management in rural areas (DWAF, 2003). 

However, since rural communities are numerous and widely distributed, pipeline supply 

from centralized water treatment plants is a slow and expensive process, especially 

where pipelines need to cover large distances to reach small isolated communities. In 

the absence of pipe lines, interim measures are urgently needed to provide small rural 

communities with safe potable water. 

 

1.2 HYPOCHLORITE: AN APPROPRIATE DISINFECTANT  

One solution to the above problem is for small communities to manage the treatment of 

their local water supplies. This requires an effective water disinfection method that is 

both affordable and manageable on a village-scale. 
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Dosing water with hypochlorite (either as liquid sodium hypochlorite, “bleach”, or as 

solid calcium hypochlorite e.g. “HTH”: high test hypochlorite) offers such a method, 

and is successful in a wide variety of rural water disinfection schemes.  

 

Village-scale schemes, range from short term emergency applications, which are 

manual in operation (e.g. dosing of water by hand at the household level) to more 

sustainable dosing regimes that employ affordable mechanisms to dose hypochlorite 

automatically into a shared water supply (Skinner, 2001). Clearly the latter application 

is favourable because: (i) it is less labour intensive, and (ii) it ensures that all members 

of the community receive disinfected water.  

 

However, hypochlorite is often not available in rural areas and it can be costly to import 

(Skinner, 2001). Furthermore, it can degrade in storage over a matter of months (Burch 

and Thomas, 1998 and Gordon et al., 1997) therefore unless there is a fresh regular 

supply hypochlorite dosing is not an option. 

 

1.3 ELECTROCHLORINATION: MAKING HYPOCHLORITE AVAILABLE   

The use of an onsite hypochlorite generator can provide a regular supply of fresh 

sodium hypochlorite. The process is known as OSEC (onsite electrochlorination) and 

generates sodium hypochlorite through the electrolysis of brine. Hypochlorite 

generators require the inputs of electricity and common salt, and when using solar 

panels become highly cost effective and sustainable (Pearson, 2000 and Skinner, 2001). 

This is because salt is commonly available, cheap, and stores indefinitely.  

 

The generators produce a hypochlorite solution close to 10 g/L or 1% chlorine, which is 

ideal for water chlorination and stores longer than higher concentration commercially-

produced bleach (Gordon et al., 1997). Furthermore, hypochlorite generators for 

village-scale operation are affordable and have been successfully implemented in 

developing countries for emergency water disinfection programs (e.g. CDC-safe-water, 

UNICEF-WASH, and Safe Water International). 
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1.4 A SUSTAINABLE VILLAGE-SCALE WATER DISINFECTION SYSTEM 

Hypochlorite generators appear an excellent means for facilitating the use of 

hypochlorite in rural areas. Therefore, if used in combination with an affordable 

automated hypochlorite dosing system, a sustainable village-scale water disinfection 

system could be formed. Such systems are well represented at a larger scale in small 

water treatment plants, but examples at the village-scale of operation are seemingly rare. 

Nevertheless, since both components of the system have been successfully managed 

separately on a village-scale, there appears to be no obvious reason for not 

implementing them together. 

 

1.5 FOCUS OF THE THESIS 

In this thesis the above possibility is addressed, and a system combining a small-scale 

hypochlorite generator and an automated dosing system is developed. The hypochlorite 

generator was previously developed by Linkov (2002) and Siguba (2004), and includes 

a membrane that allows energy efficient production of sodium hypochlorite. The 

implementation of this “membrane electrolyser” represents the central research question 

of the thesis, which is:  

 

• Can the electrolyser in combination with an affordable automated dosing method 

provide a viable, village-scale, water disinfection system? 

 

And, more specifically: 

 

• Can the membrane electrolyser produce a consistent concentration of sodium 

hypochlorite for dosing on a sustainable basis? 

• Can a system be developed to control the electrolyser and dosing that is affordable, 

manageable and reliable? 

• Can such a system be maintained and managed by a small rural community? 

• What kinds of water sources and communities are most appropriate for its 

implementation? 
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CHAPTER 2 

LITERATURE REVIEW 

 

The following literature review gives an overview of onsite hypochlorite production 

(section 2.1) followed by a review on hypochlorite generators (section 2.2) and their 

feasibility in rural areas (section 2.3). This is followed by a description of the membrane 

electrolyser (section 2.4) and considerations for its use at rural water sources (section 

2.5-2.6).    

 

2.1 ONSITE ELECTROCHLORINATION 

Onsite electrochlorination (OSEC) produces chlorine onsite using brine electrolysis. 

Brine electrolysis requires two inputs: brine (NaCl + water) and electricity. The process 

is carried out in an electrolytic cell (or electrolyser) in which DC-powered electrodes 

(usually 2-4 V) drive the conversion of brine to chlorine (see below).  

 
    Electricity (DC)  

2NaCl + 2H2O → 2NaOH + H2 + Cl2      (1) 

 

  2NaOH + Cl2 → NaCl + NaOCl + H2O      (2)

   

       

Depending on the design, they can produce chlorine either as a gas, or in the hydrolyzed 

form of hypochlorite (OCl-): forming sodium hypochlorite (NaOCl) otherwise known as 

bleach. Cell designs that produce chlorine gas, owing to the dangers, are mostly 

restricted to large centralized operations e.g. chlor-alkali plants. On the other hand, cells 

that produce hypochlorite can be much smaller and safer, requiring minimal expertise 

and basic safety precautions (White, 1999:183), and are therefore also suited to much 

smaller on-site operations.  
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2.1.1 Hypochlorite generators 

Hypochlorite generators are electrolytic cells that produce sodium hypochlorite. 

Hypochlorite is formed because the products of electrolysis formed at the anode and 

cathode (i.e. molecular chlorine and the hydroxide ion (OH-) respectively) are free to 

mix and form hypochlorite (OCl-) (reaction 2). However, inherent limitations in the 

process (section 2.4) limit production concentrations to no higher than ~10 g/L or ~1% 

chlorine (Wallace & Tiernan OSEC® 2002). This is in contrast to the higher 

concentrations found in household and industrial-strength bleach (e.g. ~30 and 150 g/L 

respectively) that are produced by mixing chlorine gas and caustic soda (NaOH) that are 

formed separately in chlor-alkali cells.  

 

2.1.2 Hypochlorite generators and water chlorination 

The ~1% chlorine concentration of sodium hypochlorite produced by hypochlorite 

generators is ideal for water chlorination. Higher concentrations of hypochlorite in 

commercial bleach decompose to chlorate, a toxic by-product (Gordon et al., 1997). 

However, even at ~1% chlorine, sodium hypochlorite solutions should be adjusted to 

pH 11-13 with NaOH, and not stored longer than a month. Therefore, water chlorination 

sites that use sodium hypochlorite have the following options: 

 

(i) To regularly buy high-strength sodium hypochlorite and use it immediately 

(ii) To periodically buy high-strength sodium hypochlorite and dilute it for on-site 

 storage 

(iii)  To buy low-strength sodium hypochlorite, or… 

(iv) To produce low-strength sodium hypochlorite onsite using a hypochlorite 

 generator 
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The most suitable option for a given site is a question of cost and availability. The 

choice of onsite hypochlorite generation would be suited to the following conditions: 

 

• Where sodium hypochlorite is expensive to buy or obtain. 

• Where sodium hypochlorite cannot be obtained regularly or easily. 

• Where dilute sodium hypochlorite cannot be suitably stored (e.g. limited storage 

space, unsuitable storage conditions, and safety reasons). 

• Where electricity is inexpensive (e.g. existing solar powered installations). 

• Where a regular and dedicated operator is available. 

 

2.1.3 Onsite electrochlorination running costs vs. purchased hypochlorite  

The running costs of hypochlorite generation are considerably cheaper than buying 

commercially produced bleach (see below). However, these must be weighed against 

capital cost of equipment (section 2.2) and maintenance of the technology (sections 2.3 

and 2.6). 

 

Hypochlorite dosing 

Cost of sodium hypochlorite (~100 g/L chlorine): R4.68/L*:  R46.8 /kg Cl2 

Cost of calcium hypochlorite (68% Cl2): R16/kg*:    R23.53 /kg Cl2 
 

* As delivered inc. VAT, (sourced from Momba et al,, 2008) 

 

Hypochlorite production 

Cost of coarse salt: R2 /kg*:  4 kg (NaCl) / kg Cl2 :    R8 /kg Cl2 

Electricity: ~4 kWh/kg Cl2: Mains:  ~30 c / kWh*:    R1.20 /kg Cl2 

          Total: R 9.20 /kg Cl2 
 

* Cost of salt R/kg variable according to bulk (coarse salt cheapest, but must be minimum 95% NaCl) 

* ESKOM. Tariff restructuring plan 2008/9 (http://www.eskom.co.za/tariffs.) 
 

 

 

 

 

 



 7

2.2 REVIEW OF HYPOCHLORITE GENERATORS 

Hypochlorite generators range from small handheld units for hikers (e.g. the MSR 

MIOX® Purifier Pen) to large fully automated systems used in water treatment plants 

(e.g. Wallace & Tiernan OSEC® systems). The cost of hypochlorite generators is 

determined by their size, type of anode material used, and by their level of electrical 

automation. Often patented or proprietary, dimensionally stable anodes (DSAs) are 

made of titanium metal with expensive platinum and catalytic oxide coatings that aid 

chlorine production and prevent anode corrosion (Pletcher, 1982; White, 1999). 

 

2.2.1 Manual operation of “dip-type” hypochlorite generators 

Manually operated hypochlorite generators are simple and inexpensive. The process 

requires a container with a fixed volume of brine of known concentration (usually ~30 

g/L of NaCl) into which the electrodes of the generator are immersed and left for 

electrolysis to run over a fixed time and voltage (usually 2-4 V DC). The resultant 

hypochlorite (max. 10 g/L Cl2) can then be safely stored in containers and later used for 

dosing water.  

 

The power source, if using mains electricity, requires a rectifier for DC output. The 

main equipment costs of manual systems are therefore determined by the size of the 

hypochlorite generator, rectifier, or, solar power equipment.  

 

In South Africa, a locally manufactured model, the *Envir-O-Cell 2.75®, includes a 

timer, display panel and a rectifier, distributed by GR Solutions (Fig. 2.1). The stated 

hypochlorite output of the system is 2.75 kg Cl2 /day (enough to chlorinate 2.75 ML of 

water/day at 1 mg/L Cl2) and the input 15 kWh/day and ~15 kg of salt. The cost of the 

Envir-O-Cell 2.75® unit is approximately ~R50 000 (personal communication with GR 

solutions, 2009).  

 
*Envir-O-Cell 2.75® (http://www.grsolutions.co.za/sodium_hypochlorite_generator.htm). 
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Fig. 2.1 Envir-O-Cell 2.75®. Timer controlled hypochlorite generator manufactured in 
South Africa: A. The hypochlorite generator and rectifier, B. Schematic. Images 
reproduced with permission from GR solutions® (http://www.grsolutions.co.za) 

 

Smaller manual models are available internationally that produce less than 50 g of Cl2 

per day (for water volumes under 50 kL) from companies such as *Aquachlor® and 

*WatAyls®. The operating principle is essentially the same for these cells as the Envir-

O-Cell 2.75®, and owing to their smaller size they are often marketed as a package 

including small solar panels, ideal for emergency water treatment in poverty stricken 

rural areas (also see: CDC (2008).  
 

*Aquachlor® : (http://www.equipmentandsystems.com/),  

*WatAyls® : (www.bulane.com) 

 

• The advantages of manual systems are: (i) they are relatively cheap and (ii) require 

electricity only for brine electrolysis (not electrical pumps and controls). 

• The disadvantages of manual systems are: (i) they are fairly labor intensive 

(compared to automated systems) and (ii) require a regular and dedicated operator. 
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2.2.2 Saturated salt hypochlorite generators 

A South African company, Biochlor®, manufacture hypochlorite generators that use a 

novel non-electrical saturated brine supply system. Here, instead of having to mix brine 

to a standard concentration, the operator tops up a dry salt level in a saturation tank, 

which pools saturated brine at its base. The saturated brine is gravity fed into water to 

provide a concentration of ~30 g/L, which collects in the hypochlorite generator (Fig. 

2.2).  

 

Fig. 2.2 Biochlor saturated brine-fed hypochlorite generator. Image reproduced with 

permission from Biochlor® (http://www.biochlor.co.za/) 
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The automated brine supply system, being non-electrical, is ideal for rural usage since 

solar panel size can be limited to powering just the hypochlorite generator. The 

components shown in Fig. 2.2 depict the hypochlorite generator running on mains 

electricity via a rectifier for DC output. The hypochlorite generator has an adjustable 

chlorine output of 0.2-5.0 kg Cl2/day, sufficient to dose 0.2-5 ML of water per day at 1 

mg/L of chlorine, and has a power consumption of ~3.8 kWh/kg of Cl2 produced. The 

unit can produce hypochlorite continuously, which accumulates in a dose feeding tank. 

The use of two such Biochlor® units at small water treatment sites in South Africa is 

reviewed by Pearson, (2000). 

 

The depicted system (Fig. 2.2) costs ~R20 000 (communication with Biochlor® in 

2009) depending on the degree of additional equipment required at a particular site e.g. 

dosing equipment etc. The units are also modular and when assembled as such can 

collectively produce up to 200 kg of chlorine per day.  

 

Biochlor® also produces smaller hypochlorite generators for chlorinating less than 

15 kL of water per day, and these units can be powered by alternative energy sources 

such as solar power and small wind powered turbines. However, such units have only 

been implemented for manual operation (Personal communication with Biochlor® in 

2009).  

 

2.2.3 Concentrated brine circulating generators 

Another South African company, Aquarius chlorinators®, produces hypochlorite 

generators that run on a circulating brine supply. The company makes a broad size 

range of generators (producing 0.16-32.0 L/h of 0.8% HOCl solution) that operate via a 

continuously pumped re-circulating brine supply through the cell. Once the maximum 

0.8% chlorine concentration is reached (based on a timer mechanism) the hypochlorite 

is fed to a storage tank for dosing water. In general, the company focuses on larger scale 

potable water treatment operations exceeding 1 ML of water treatment per day, and 

based on the generator’s requirement for circulation, i.e. electrical pumps, the system’s 

retail within a similar price range as the above mentioned Biochlor® units. Successful 
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rural operation of the generators in water treatment has also been reviewed in the WRC 

report by Pearson (2000). 

 

2.2.4 MIOX® 

MIOX® is a USA-based company that produce a variety of water disinfection systems 

based on the electrolysis of brine. Some of these systems are highly automated 

comprising: electrical pumps; liquid level sensors in tanks to determine when brine 

should be pumped to the hypochlorite generator and when to power up the hypochlorite 

generator. An example of such a system is the HYPO-10, which is stated to produce 

about 4.5 kg of Cl2 /day, enough to dose 4.5 ML of water at 1 mg/L Cl2 (Fig. 2.3). At 

present MIOX® systems are not readily available in South Africa and due to their high 

degree of automation are more expensive than locally made systems, and models such 

as the HYPO-10 retail at well over R50 000.  

 

MIOX® also makes systems that produce a dilute chlorine-based “mixed oxidant” 

disinfectant used in much the same way as hypochlorite. The essential difference is that 

a much more dilute brine solution is used at higher electrolysis voltages and the product 

although containing less free available chlorine (FAC) has been reported to have 

comparable disinfectant strength to that of higher chlorine concentration solutions. One 

of their smallest “mixed oxidant” units, the SAL-40, produces 1.8 kg of Cl2/day, enough 

to disinfect, as stated 1.8 ML/day (at 1 mg/L Cl2), but presumably with greater 

disinfecting power than just the stated chlorine content. 

 

2.2.4 Package OSEC and hypochlorite dosing systems for smaller water supplies 

The combination of a hypochlorite generator plus automatic dosing system to supply 

communities of 100-200 people is rare. This seems to indicate that the costs for 

automatic dosing at small water systems are inhibitive. However, IEC Fabchem Ltd., 

based in India, advertises a package system to this scale.  

 

The model, Steriflo® OHT (overhead tank) - 3L, produces 30 g of Cl2/day and doses 

the hypochlorite to the outlet pipe from of an overhead tank using a Venturi eductor and 
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small booster pump (Fig. 2.4). The operation of the hypochlorite generator is manual in 

the sense that: (i) brine is mixed by hand in a separate vessel and poured into the 

generator and (ii) that the generator is switched on and off manually after 22 h of 

electrolysis time. The system is stated to chlorinate 15 kL of water/day. The entire 

system is neatly and safely packaged in a small weatherproof housing.   

 

 

 
 

Fig. 2.4 Over-head tank with OSEC and dosing system by Steriflo® model OHT-3L 

(schematic adapted from: http://www.iecfabchem.in) 
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The above system, particularly if adapted to run on solar panels, would be ideal for rural 

areas in South Africa that have supply tanks fed by small water treatment plants because 

the water in such tanks often looses its chlorine residual (Momba et al., 2008).   

 

2.3  HYPOCHLORITE PRODUCTION IN RURAL AREAS   

Hypochlorite generators are ideal for small-water treatment plants in rural areas because 

transportation of commercially produced sodium hypochlorite can become costly, 

inconvenient, and sometimes hazardous. Therefore, the use of salt (being cheap and 

indefinitely storable) and mains electricity (or solar panels) becomes a sustainable 

option. Once running, and beyond the returns from the initial investment (solar 

equipment, hypochlorite generator etc.), such plants can operate sustainably at very low 

running costs (e.g. the cost of salt, maintenance and labor) and can become the cheapest 

of all to operate (Solsona and Pearson, 1995; Pearson, 2000).  

 

2.3.1 Can OSEC be micromanaged by small communities? 

Small communities of less than 200 people are common in South Africa’s rural areas. 

Hypochlorination at such sites might need to cater for up to 30 kL of water/day, which 

depending on the dosing requirements (i.e. the chlorine demand of the water) could 

range from 30-200 g of Cl2/day. If the community is to manage its own water 

chlorination the following questions might be asked: 

 

(i) Does the community have access to fresh commercially produced hypochlorite at 

least once a month? 

(ii) Can the community afford to buy commercially produced hypochlorite at least 

once a month?  

E.g. for 200 people using 30 kL/day of water at 150 L/person in 2009:Bleach costs 

R46/kg Cl2 so at 200 g/day: 46 × 200 g /1,000 × 30 days = ~R270 / month  

or R1.35 /person/month or 66 c/person/month if using HTH (see 2.14) 

Total: 60 L of bleach per month or 9 kg of HTH per month 

(iii) Can the community provide reliable operators for the chlorination system? 

(iv) Can the community/municipality afford the chlorination system? 
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When the answer to all the above questions is yes, then a hypochlorite dosing system 

should be installed using commercially produced hypochlorite. This is because the use 

of commercial hypochlorite is easier to manage than including a hypochlorite 

production step. The system would require a dosing method for sodium hypochlorite 

(section 2.5), or an appropriate method for calcium hypochlorite dosing (Henderson et 

al., 2005). 

 

When the answer to questions (i) and (ii) is no, and (iii) and (iv) is yes, then a small-

scale OSEC system becomes an appropriate possibility. Where this is the case, the 

following questions might be asked:  

 

(v) Can the community afford to buy salt? 
 

 E.g. for 200 people using 30 kL/day of water at 150 L/person in 2009: 

 Chlorine from salt is ~5× cheaper than bleach:  ~R54 / month  

 or 27c / person /month (section 2.14) 

 Total amount of salt: 24 kg/month  
  

 

Note: this calculation considers using mains electricity. If using solar, multiply the values by 0.8 to 

remove the running cost of electricity (section 2.1.3) 

 

(vi) Will the community use mains electricity or solar panels provided with the 

system? 

 

E.g. for 200 people using 30 kL/day of water at 150 L/person in 2009: 

Communities using mains electricity will pay R7.2/month collectively (section 2.1.4)  

 

If the community cannot afford to buy the salt, then deliveries from the municipality 

might be required: at no great cost (e.g. R54/month). If the community uses mains 

electricity but cannot afford the electricity cost (R7.2/month) something may be amiss. 

Questions (iii) and (iv) above are interrelated. Clearly manually operated OSEC systems 

are cheaper than automated ones (section 2.2), but require more maintenance and 
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community involvement. Therefore, the chosen OSEC system must meet both 

requirements.  

 

2.3.1.2 Advantages and disadvantage of OSEC 

Advantages: 

• Onsite electrochlorination is ~3-5 × cheaper to run than buying hypochlorite (not 

considering labor). 

• Salt stores easily and indefinitely (can be delivered annually). 

• Salt is not hazardous to transport. 

• Salt weighs ~2 × less than commercial bleach (for the same amount of chlorine), and 

is cheaper to transport. 

• Onsite electrochlorination has a smaller carbon footprint than using commercial 

bleach (considering transportation costs).  

• Solar powered OSEC has a smaller carbon footprint than using any commercial 

hypochlorite.  

 

Disadvantages: 

• Equipment costs are much higher than would be required for commercial 

hypochlorite dosing. 

• More complex maintenance tasks are required than using commercial hypochlorite. 

• The production process can go wrong (i.e. lower yields of chlorine result in poor 

disinfection) if poorly maintained. 

• Equipment breakage, repairs and replacement could be costly. 

• Security risk of theft e.g. solar panel equipment or rectifier unit etc. (items that are 

not necessarily required in commercial hypochlorite dosing).  

 

2.3.2 Conclusions concerning OSEC at small rural sites 

Onsite electrochlorination has potential benefit to small rural communities, especially 

regarding running costs. However, equipment costs and management capacity are 

determining factors. Therefore, existing systems can be summarized as follows: 
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(i) Existing systems that are low maintenance (i.e. automated) are high in cost.  

(ii) Existing systems that are low in cost are high maintenance (i.e. manually 

 operated). 

 

Consequently, neither option is particularly appealing for small community 

management, especially when compared to dosing systems that use commercial 

hypochlorite (if and when possible). Existing OSEC systems, due to capital costs of 

equipment, appear to best suited for larger scale operations serving communities of 

1,000 people or more. Therefore, a niche clearly exists for a cheaper small-scale 

OSEC/dosing system if one can be developed. 

 

 

2.4 THE MEMBRANE ELECTROLYSER 

The membrane electrolyser, is a small-scale device that can produce up to ~20 g of 

chlorine per day as either hypochlorous acid, or sodium hypochlorite (section 2.4.1 

below). Its defining feature is a ceramic membrane (separating the anode and cathode), 

which improves the performance of the electrolyser over undivided hypochlorite 

generators (Linkov et al., 2002). Based on its chlorine output capacity, the electrolyser 

could serve to chlorinate water volumes between 2-20 kL/day (depending on dose 

concentration) for ~100-200 people (section 2.5.2). 

 

2.4.1 How it works 

The main difference between the membrane electrolyser and standard hypochlorite 

generators is that it produces hypochlorous acid during electrolysis rather than 

hypochlorite (reactions 3-6 overleaf). This is achieved by a pH-limiting membrane 

made of aluminium-zirconium oxide that separates the brine-containing anode 

compartment from the water-containing cathode compartment (Fig. 2.5). Therefore, the 

electrolyser represents a hybrid between two forms of brine electrolysis. These are: (i) 

sodium hypochlorite generation in undivided electrolysis cells (i.e. hypochlorite 

generators) and (ii) chlorine gas generation in divided cells used in the chlor-alkali 

industry. These processes are discussed below in sections 2.4.2-2.4.4. 
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  Anodic reaction:  

2Cl– (chloride) → Cl2 (chlorine) + 2 e –       (3)

   

 

Cathodic reaction:  

H2O + 2 e – → H2 (hydrogen gas) + 2OH – (hydroxide ion)    (4)

   

 

Hypochlorous acid formation: 

Cl2 + H2O ⇌ HOCl (hypochlorous acid) + HCl (hydrochloric acid)  (5)

   

And: Cl2 + OH – ⇌ HOCl + Cl – 

 

Hypochlorite formation: 

HOCl + OH – ⇌ OCl – (hypochlorite) + H2O      (6)
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Fig. 2.5 The membrane electrolyser as developed by Linkov (2002). Longitudinal cross 

section schematic (above). Photograph (below) 
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2.4.2 Limiting factors of standard hypochlorite generators 

The formation of hypochlorite (OCl-) during electrolysis (reaction 6) in standard 

hypochlorite generators has a number of limiting effects on both electrolysis efficiency. 

The major limiting factor is the reduction of OCl- back to chloride (Cl-) at the cathode 

(Wallace and Tiernan OSEC®, 2002):  

 

Reduction of OCl- at the cathode: 

OCl-
 + H2O + 2e- → Cl-

 + 2OH-         (7)

   

 

Hypochlorite is also oxidised at the anode to produce chlorate and Cl-, particularly at 

high temperatures and OCl- concentrations (Krstajic et al., 1991). The production of 

toxic chlorate is particularly unwanted and is restricted to 0.7 mg/L in drinking water 

(WHO GDWQ, 2005).  

 

Oxidation of OCl- at the anode: 

12OCl- + 6H2O → 4ClO3- (chlorate) + 12H+
 + 8Cl-

 + 3O2 + 12e-   (8)

   

The net effect of these reactions during electrolysis results in: 

 

(i) Loss of current efficiency (i.e. energy is wasted).  

(ii) Loss of salt efficiency (i.e. salt is wasted). 

(iii) Toxic by-product formation (i.e. chlorate). 

 

An ideal, 100%, conversion of NaCl to chlorine = 1.68 kg NaCl/kg Cl2. In the 

undivided cell this is considerably lower, at 3-4 kg NaCl/kg Cl2, and current 

efficiencies are 50-60% (i.e. 40-50% of the current does not yield chlorine). These 

losses can be accounted for by the above reactions (Pletcher, 1982 and Wallace and 

Tiernan OSEC®, 2002). 
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2.4.3 Chlor-alkali cells (Divided electrolysis cells) 

By separating the anode and cathode reaction products by nafion (perfluro-sulphonic 

acid resin: a cation selective membrane) the divided cell design is extremely efficient at 

producing chlorine gas (Fig. 2.6 B) yielding current and salt efficiencies close to 100% 

(Pletcher, 1982; White, 1999). The membrane prevents hydroxide ions formed at the 

cathode reacting with chlorine formed at the anode. This limits hydrolysis of chlorine 

gas into hypochlorous acid (HOCl) (reaction 5). This reaction occurs initially with 

water, but quickly reaches saturation point by the resultant decrease in pH as 

hydrochloric acid accumulates. The equilibrium at low pH forces any further chlorine 

produced at the anode to leave the solution as a gas, which is subsequently collected. 

The purpose of the membrane is twofold:  

 

(i) To prevent hydroxide ions formed at the cathode (reaction 4) raising the anolyte 

pH, which would allow more hypochlorous acid to form (reaction 5). 

(ii) To allow sodium ions to migrate to the cathode chamber in order to balance the 

loss of chloride at the anode. 

 

2.4.4 The pH limiting effect of the membrane electrolyser  

The membrane electrolyser employs a ceramic (aluminium – zirconium oxide based) 

tubular membrane (Bashtan et al., 1999) that limits the mixing of anodic and cathodic 

reaction products (Fig. 2.6 C). It differs from chlor-alkali cells in that it limits but does 

not completely exclude the migration of hydroxide ions. The membrane is not ion-

selective as in the case of chlor-alkali cells, but rather, retards total ion movement, 

which allows a balance between chloride conversion to chlorine and its hydration via 

hydroxide ions to establish. The limitation allows enough hydroxide ions to hydrolyse 

chlorine to hypochlorous acid (reaction 5), but not enough to form hypochlorite 

(reaction 6), i.e. the membrane limits pH increase to below pH 5 (Fig. 2.7). Thus, the 

prevention of hypochlorite formation in the cell allows higher chlorine yields than 

undivided cells owing to preventing the limiting factors discussed in section 2.4.2. The 

membrane electrolyser has salt and current efficiencies of 2-2.5 kg NaCl/kg Cl2 and 

77% respectively (Linkov, 2002; Bashtan et al., 1999). 
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Fig. 2.6 Schematic of brine electrolysis cells. A. Hypochlorite production in a 

hypochlorite generator (undivided cell), B. Chorine gas production in a divided cell, and 

C. Hypochlorous acid production in the membrane electrolyser. 

 

 
Fig. 2.7 Effect of pH on chlorine species in water 
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2.4.5 Comparison to MOGGOD (“Mixed Oxidant Gasses Generated On-site for 

Disinfection”) 

Mixed Oxidant Gasses Generated On-site for Disinfection (MOGGOD) is a closely 

related technology of the chlor-alkali divided cell. In essence its function is the same as 

the chlor alkali cell (section 2.4.3), except that it is stated to produce a mixture of gasses 

(including chlorine and ozone) that are injected into water much the same as chlorine 

gas would be. The cell (OXI-0.1 and 0.5 models) is a small compact cylindrical unit that 

can be used safely on-site (Solsona and Pearson, 1995; Pearson, 2000). It comprises an 

anode compartment fed with brine and a cathode compartment fed with water separated 

by an ion selective membrane. The major difference between it and the membrane 

electrolyser is that it produces gases and not hydrolysed chlorine (hypochlorous acid). 

The stated lifespan of the membrane and anode are stated at 6 and 30 months, 

respectively (this is no doubt variable according to the quality of the water where they 

operate). 

 

On the basis of data presented by Solsona and Pearson (1995), the energy efficiency of 

MOGGOD might be slightly less than that of the membrane electrolyser i.e. 4.5 kWh/kg 

Cl2-equivalent compared to 3.1 kWh/kg Cl2 (Bashtan et al., 1999), and its salt efficiency 

1.7 kg NaCl/ kg Cl2-equivalent is better than the membrane electrolyser at 2-2.5 (section 

2.4.4). One drawback however, is that the cell produces concentrated sodium hydroxide 

which needs to be collected and disposed of. In 1995, when compared to UV radiation 

and hypochlorite generators its total cost (cell + equipment + operation) fell evenly 

beneath that of UV and above that of the hypochlorite generator.  

 

2.4.6 Cost comparisons and efficiencies 

The figures presented in Table 2.1 provide a rough guide to the running costs of the 

respective cells. They do not include the energy costs of peripheral operational 

equipment e.g. brine pumps etc. The results do show however, that all else being equal, 

the membrane electrolyser could be ~35% cheaper to run than hypochlorite generators.  
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TABLE 2.1 SALT AND ENERGY EFFICIENCIES COMPARED 
 Energy consumption 

 
Salt consumption Total 

 
 kWh/kg Cl2 R/ kg Cl2 NaCl/ kg Cl2 R/kg Cl2 R/kg Cl2 
Mem. electrolyser ~3 0.90 ~2.5 5 5.90 
MOGGOD ~4.5 1.35 ~2 4 5.35 
Hypo. generators ~4 1.20 ~4 8 9.20 
1 kWh = 30 c (ESKOM. Tariff restructuring plan 2008/9 (http://www.eskom.co.za/tariffs.) 
1 kg NaCl = R2 (variable according to bulk) 

 
The capital cost of the membrane electrolyser is, pending commercialisation and 

possible modifications, predicted to be ~R2 000-R2 500. The cost is primarily 

determined by the membrane material and DSAs (~R500 each per electrolyser in 2009).  

 

2.4.7 Membranes in brine electrolysis  

Any membrane-based technology must resign to the fact that the membrane has a 

definite life span. The pores of membranes are eventually blocked with time and their 

function (whether driven by pressure or electrical charge) will be reduced to a point 

where they need replacing.  

 

Membrane blockage in brine electrolysis occurs primarily from salt precipitation of 

contaminant ions such as calcium and magnesium (Pletcher, 1982, and Kraft et al., 

1999), which form insoluble carbonates, particularly in the presence of heat and 

consequent loss of carbon dioxide from the solution (Pauling, 1970). Therefore, water 

hardness is a primary hindrance to membrane-based brine electrolysis, and more 

expensive operations (e.g. the chlor-alkali industry) often include water softeners to 

prevent the scaling phenomena. The pores of membranes can also block through 

aggregation and adsorption of colloidal particles, which maybe organic or inorganic in 

nature. In brine electrolysis, biofilm (i.e. from living microorganisms) blockage of the 

membrane is unlikely to occur due to the harsh conditions of chlorine and sodium 

hydroxide production. 
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The membrane of the membrane electrolyser is made from an alumina-zirconium oxide-

based ceramic. It is thus hard and brittle in nature and requires careful handling on 

assembling and disassembling the electrolyser. The cost of the membrane, ~R500, must 

therefore be considered in terms of its life span, which in the intended application for 

this project was to be investigated. This must be weighed against the advantages of 

including it in the electrolyser (section 2.4.8, below) and thus its application must suit 

these advantages e.g. where rapid production of small quantities of chlorine would be 

required.  

 

2.4.8 Advantages and disadvantages of the membrane electrolyser 

Advantages: 

• ~40% more salt efficient than hypochlorite generators. 

• ~25% more energy efficient than hypochlorite generators. 

• Produces no toxic by-products (chlorate). 

 

Disadvantages: 

• The cell design makes electrodes more difficult to access for cleaning purposes. 

• Membrane may be prone to blockage resulting in reduced chlorine yield. 

• Flow through design limits its range of applications. 

• Only applicable to small-scale applications (unless a multi cell-type is developed). 

 

2.4.9 Conclusions concerning the membrane electrolyser 

The membrane electrolyser offers cost saving features suitable for small-scale 

hypochlorination systems, if its viability can be proven. Its efficiency advantages over 

hypochlorite generators indicate that it will cost less to run, i.e. reducing costs in salt 

purchase, electricity usage and solar panel size requirements. Challenges facing the 

electrolyser, concern the practicality of the membrane and how easily the electrolyser 

can be incorporated into a water disinfection system. Moreover, its application must be 

carefully chosen to best suit what it can do (i.e. make small volumes of hypochlorite 

rapidly and cheaply). 
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2.5 APPLICATIONS OF THE MEMBRANE ELECTROLYSER 

The chlorination capacity of the electrolyser determines the volume range of water it 

can chlorinate and therefore the size range of the community it can serve. These are 

ranges rather than precise values due to variable factors such as the chlorine demand of 

the water and the average consumption volume of water per person within the 

community (section 2.5.1). 

 

2.5.1 Chlorination capacity of the membrane electrolyser based on a dosing range 

The electrolyser can produce between 11-22 g of chlorine per day (24 h) depending on 

the level of production efficiency required (i.e. current and salt efficiency) (Linkov, 

2002). Table 2.2 shows the possible daily volumes of water that could be chlorinated for 

potable use with this quantity of chlorine considering different dosing concentrations. 

 
TABLE 2.2. CHLORINATION CAPACITY OF THE MEMBRANE ELECTROLYSER 

Cl2 / day Chlorine (mg/L) dose and water volumes (kL) / day (below)  
1 2 3 4 5 6 7 8 9 10 

11 g 1.1 5.5 3.7 2.8 2.2 1.8 1.6 1.4 1.2 1.1 
22 g 22 11 7.3 5.5 4.4 3.7 3.2 2.8 2.4 2.2 
15 g 
Average 

15 7.5 5 3.8 3.0 2.5 2.1 1.9 1.7 1.5 

 
 
The required chlorine dose of a water source depends on four main factors: 

 

(i) The chlorine demand of the water and system including storage tanks and 

reticulation (Momba and Brouckaert, 2005). 

(ii) Retention time required in storage tanks and reticulation systems (Hydes, 1999). 

(iii) The pH of the water i.e. this determines the oxidative strength of dissolved 

chlorine (White, 1999:217). 

(iv) Nitrogenous compounds in the water that render chlorine in various less reactive 

forms such as chloramines (White, 1999:223). 
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In a recent survey of 181 small water treatment plants (SWTPs) in South Africa 

(Momba et al., 2008), of capacities between 0.3-120 ML of water per day, ~15% of 

those examined used sodium hypochlorite for chlorination, and a 7 mg/L chlorine dose 

concentration was reported as a typical value. In smaller systems, treating between 120-

150 kL/day, a chlorine dosing range of 3-6 mg/L has been reported (Pearson, 2000). 

The effectiveness of these dose concentrations at their particular sites is discussed in 

their above mentioned references. These doses provide an indication of typical chlorine 

demands at working SWTP’s in South Africa. 

 

As can be read from Table 2.2 above, a dose range of 3-7 mg/L of chlorine correlates to 

a water chlorination volume range of ~2-5 kL/day for the daily chlorine output (mean 

15 g) from one electrolyser. However, it is highly probable that smaller water 

disinfection systems, i.e. appropriate to the electrolyser, might require smaller doses, 

considering that retention time in very long pipelines will not be a factor. Therefore a 

dose range of 1-3 mg/L can also be considered, especially if the electrolyser is to be 

used specifically for chlorine residual boosting (section 2.5.3). This range corresponds 

to a larger water volume of 5-15 kL/day (Table 2.2).  

 

 

2.5.2 Servable population size of the electrolyser 

In 2002, the South African government stipulated a minimum of 25 L of potable water 

per person per day as a service provision goal (DWAF, 2002) while the Strategic 

Framework for Water Services recognized that where possible this should be increased 

to 50 L per person per day (DWAF, 2003).  

 

• Therefore, if a 3-7 mg/L dose is required, 2-5 kL shared as either 25-50 L/ person 

gives a population range of 40-100 people.  

• And, if a 1-3 mg/L dose is required, 5-15 kL shared as either 25-50 L/ person gives a 

population range of 100-600 people. 
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However, in practice water consumption is determined by many factors. Table 2.3 

shows the effect of accessibility to the water source. Table 2.4 shows how the water 

volumes chlorinated by the electrolyser relate to these factors. 

 
TABLE 2.3.THIRD WORLD DOMESTIC WATER CONSUMPTION AND ACCESSIBILITY 

(Sourced from Heber, 1985, compiled by IRC/WHO, 1981). 

Type of Water Supply 
Average Consumption 

(L/person/day) 
Range 

(L/person/day) 
Communal water source: 
Distance > 1 km 7 5-10 
Distance 0.5-1.0 km 12 10-15 
Village well: 
Distance > 250 m 20 15-25 
Public Standpipe: 
Distance > 250 m 30 20-50 
Courtyard connection 40 20-80 
House connection: 
One tap 50 30-60 
Several taps 150 70-250 
30% should be allowed for (unaccounted for) losses. 
 
 

TABLE 2.4.EFFECT OF WATER ACCESSIBILITY ON CONSUMPTION, AND SERVABLE 
POPULATION OF THE ELECTROLYSER 

(Adapted from Table 2.3 above) 
 Community size 

(No. of people) 

Type of Water Supply 
Average Consumption 

(L/ person/day) 

3-7 mg/L 
dose 

(2-5 kL) 

1-3 mg/L 
Dose 

(5-15 kL) 
Communal water source: 
Distance > 1 km 7 285-714 714-2142 
Distance 0.5-1.0 km 12 166-416 416-1248 
Village well: 
Distance > 250 m 20 100-250 250-750 
Public Stand post: 
Distance > 250 m 30 66-166 166-498 
Courtyard connection 40 50-125 125-375 
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2.5.3 Potential applications for the membrane electrolyser based on chlorination 

capacity 

The chlorination capacity of the membrane electrolyser indicates it has two potential 

uses in drinking water chlorination:  

 

(i) Small-scale water disinfection (2-5 kL of water per day, with a 3-7 mg/L dose). 

(ii) Small-scale chlorine residual boosting (5-15 kL of water per day, with a 1-3 mg/L 

dose). 

 

2.5.4 Small-scale water disinfection (potential sites and considerations)     

The use of the electrolyser to fully disinfect water might require the high dosing 

concentration range of 3-7 mg/L. This equates to 2-5 kL of water per day to serve 40-

100 people 50 L each. This number of people might be found at small rural farms, 

villages, schools, and clinics.    

 

2.5.4.1 Target rural water sources 

For drinking water purposes, chlorination must only be used on waters that have 

turbidity of < 5 NTU (SANS 241, 2005). Higher NTU values have high and 

uncontrollable chlorine demands (Obi, et al., 2008) and increase the risk of toxic 

trihalomethanes (THMs) forming in the water (Carlsson, 2003). Therefore, unless 

turbidity is < 5 NTU chlorination is not a safe option and pre-treatment clarification 

methods will be required. Table 2.5 shows the typical type of pre-treatment required at 

surface waters of different turbidities. The use of the membrane electrolyser at surface 

water therefore requires suitable small-scale pre-treatment options. However, the 

electrolyser does have more immediate site options where turbidity is not an issue. 

Examples of these are: 

 

• Ground water sources (e.g. boreholes, wells and springs protected by a spring box). 

House connection: 
One tap 50 40-100 100-300 
Several taps 150 13-66 33-100 
30% should be allowed for (unaccounted for) losses. 
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• Roof-top rain harvesting tanks. 

• Sites where turbidity is moderate and simple sand filtration is sufficient (Table 2.5). 

• Sites where some form of pretreatment system already exists. 

TABLE 2.5. GUIDELINES FOR THE SELECTION OF A WATER TREATMENT SYSTEM 
FOR SURFACE WATERS IN RURAL AREAS (from Swartz, 2000)  

Average raw water 
quality 

Water 
demand 
(kL/d) 

Treatment suggested Skills needed Capital + 
Operating costs 

Turbidity < 5 NTU 
Faecal coliform 0 
CFU/100 mL 
Bilharzia not 
endemic 

up to 2000 

No treatment 
(filtration and disinfection 

recommended for surface water 
treatment) 

nil 
(low – med) 

nil 
(low – med) 

Turbidity < 10 NTU 
Faecal coliform 0 
CFU/100 mL 
Bilharzia endemic 

up to 5000 

1. Rapid sand filtration 
 
2. Slow sand filtration 

med 
 

low 

med + low 
 

med + low 
 

Turbidity 20-50 
NTU 
Faecal coliform 1 - 
500 CFU per 100 
mL 
 

up to 5000 

1. Rapid sand filtration + disinfection 
(Cl2) 
 
2. Slow sand filtration + disinfection 
(Cl2) if possible 

med 
 

low 

med + med 
 

med + low 
 

Turbidity < 50-150 
NTU 
Faecal coliform 1- 
500 CFU per 100 
mL 
 

up to 5000 

1. Sedimentation + rapid sand 
filtration + disinfection (Cl2) 
 
2. Sedimentation + slow sand 
filtration + disinfection (Cl2) if 
possible 

med 
 

med 

high + med 
 

high + low 

Turbidity < 50 - 150 
NTU 
Faecal coliform 
> 500 CFU per 100 
mL 
 

up to 5000 

 
Pre-treatment (coag, floc & 
sedimentation) 
+ filtration (rapid or slow sand + 
disinfection 

 
high 

v. high 
+ 

high 

Turbidity > 150 
NTU 

Detailed investigation and possible pilot study work may be required 

 
 

2.5.5 Small-scale chlorine residual boosting  

A second application option for the membrane electrolyser is to boost chlorine residual 

in water supplied from SWTPs. Maintaining the correct chlorine residual (0.1-0.5 mg/l) 
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in water after it has been chlorinated, piped, stored, piped again and reaches the point of 

use (POU), (e.g. a tap), is an important but often difficult task to achieve. Loss of 

residual at taps appears to be a fairly common problem for SWTPs (Momba et al., 2008; 

Pearson, 2000). Here, the losses occur for a variety of reasons including, under dosing 

of chlorine, interruptions in pipe flow, prolonged stagnation in storage tanks, increases 

in turbidity and other changes in the pretreated water quality. 

 
Chlorine boosting near the POU with doses of 1-3 mg/l (depending on the point of 

application) provides the chlorine residual required in water. In terms of the daily 

chlorine output (15 g) from the membrane electrolyser, a corresponding maximum of 15 

kL of water could be residual boosted at 1 mg/l or 5 kL at 3 mg/l (Table 2.4). These 

volumes might represent one small reservoir (or many smaller tanks) supplying up to 

300 people (depending on the chlorine demand) assuming a consumption of 50 L for 

each person per day. The numbers can be simply divided by the appropriate factor for 

greater levels of personal consumption. 

 

2.6 IMPLEMENTING THE MEMBRANE ELECTROLYSER  

The question of how to implement the electrolyser requires consideration of the cost of 

equipment required to run it and the number of people that it can serve. The electrolyser 

due its design and small size makes this a difficult task (see below) 

 

(i) The constant flow-through design of the electrolyser is not suited to manual 

operation and thus requires some level of automation 

(ii) The small size and capacity of the electrolyser does not justify the costs of 

standard electrical automation control equipment, particularly for poor rural areas 

 

To achieve affordable automation electrical components must be small, low power, and 

kept to a minimum, and where possible alternative control mechanisms should to be 

used. 
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2.6.1 Basic components a complete disinfection system 

The basic components of equipment required to form a disinfection system 

incorporating the membrane electrolyser are: 

 

• Water delivery infrastructure (including abstraction, possible pre-treatment, storage 

and distribution). 

• Electrical power source (mains or solar power). 

• Control of hypochlorite production (see below). 

• Control of hypochlorite dosing (see below). 

 
Hypochlorite production and hypochlorite dosing form the two main control points for 

consideration. Their respective components are: 

 

2.6.1.1 Control of hypochlorite production: 

• Control of power to the electrolyser 

• Control of brine flow-through supply to the anode chamber 

• Control of water flow-through supply to the cathode chamber 

 

2.6.1.2 Control of hypochlorite dosing: 

• Control of dosing rate (see 2.6.3) 

 

2.6.2 Minimum electrical power requirements and solar panels  

The use of solar panels to power the electrolyser may be a necessity in some rural areas. 

While high in capital cost, solar panels can provide a sustainable source of power for 

over 20 years (a commonly stated estimate for their predicted life-span). Based on 

previous reports (Linkov, 2002; Bashtan et al., 1999) it can be calculated that the 

electrolyser if run continuously over 24 h would require 62 Wh/day: (i.e. at 1.3 kWh/kg 

Cl2 and 20 g/day = 20 /1000 × 3.1  = 62 Wh/day). Therefore, for a 6-hour strong 

daylight period, a 30 W PV solar panel would provide 30 × 6 = 180 Wh/day or nearly 

double the draw from the electrolyser. The cost of such a panel (~R1 200) including 12 

 

 

 

 



 32

V battery and regulator (controller) comes to ~R2 500 (2009 prices, source: Sunpower® 

http://sunpower.co.za/). Each additional electrical control component added to the 

system increases the cost dramatically in terms of solar panel requirements. For 

example inclusion of one of the smallest available types of dosing pumps the “Min-E-

Wash” model (Manufacturer: HydroNovaEurope®) requires 30 W (section 2.6.) and if 

run for more than two hours per day requires another 30 W solar panel in addition to its 

own capital cost of over R1 000. Therefore, this illustrates the need to keep electrical 

components to a minimum. 

 

2.6.3 Sodium hypochlorite dosing methods: costs and considerations  

Dosing of sodium hypochlorite to water can be carried out in a variety of ways ranging 

from manual to highly automated. Dosing equipment can therefore be another major 

component of capital cost in hypochlorination treatment. Above all, dosing must be 

consistent and reliable, ensuring that chlorine is evenly distributed in the water and 

given enough time to disinfect the water (Carlsson, 2003). Below are some of the 

options: 

 

2.6.3.1 Manual dosing 

This is usually carried out as a batch dosing procedure at various levels of scale. It is by 

far the simplest form of dosing, where a volume of sodium hypochlorite is simply hand-

poured into a corresponding volume of water whether it is a bucket or a 2.5 kL tank. 

Thorough mixing and sufficient chlorine contact time (at least 30 minutes) are required 

for reliable disinfection (White, 1999:333). The method is labour intensive, but 

certainly has its place in emergency treatment of drinking water 

(http://www.cdc.gov/safewater/publications).  

 

2.6.3.2 Non-electrical dosing mechanisms 

Two categories of non-electrical mechanisms exist for dosing sodium hypochlorite (or 

dissolved calcium hypochlorite): (i) gravity powered chlorinators and (ii) water-

powered chlorinators. Both have their pros and cons, and are an affordable option when 

and where they can be used, since they generally do not require expensive parts or a 

 

 

 

 



 33

supply of electricity. Such systems can cost less than a few hundred Rand to purchase or 

build, and are long lived, and in general do not require complex parts so they can be 

easily repaired on-site. 

 

Gravity driven chlorinators – In the main, these systems provide an adjustable drip feed 

of sodium hypochlorite into flowing water. They require an open head of water at 

atmospheric pressure and cannot be used on pressurised pipe lines. They do not self-

adjust to variable flow rates of water and must therefore be adjusted manually. However 

they are an affordable option that can be constructed and maintained cheaply without 

the need for highly specialised equipment. 

 

Examples include: 

(i) the Mariotte jar,  

(ii) Inverted bottle with floating valve, 

(iii) Constant head tank, 

(iv) Floating draw-off pipe, and  

(v) the Vandos feeder.  

 

A review of these systems is given by Skinner (2001). The Mariotte jar (Fig. 2.8), also 

known as a ‘constant-head aspirator’, is perhaps the one exception among the above that 

can be arranged to have a degree of self-regulation. It is a sealed, rigid bottle that 

provides a constant drip of sodium hypochlorite via the drip’s replacement by a bubble 

of air from a submerged pipe in the bottle. It can be arranged in such a way that the drip 

stops when the water flow stops (i.e. when the water demand stops). This is achieved by 

positioning the outside end of the air pipe at a fixed level in a water flow-through tank, 

that when full, rises to a level that submerges the pipe and cuts off the air to the 

Mariotte jar (WRC UK, 1984). 
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Fig. 2.8 Drip dosing of hypochlorite: Mariotte jar with shut off mechanism. 

 

 

Water-powered chlorinators – Here, moving water powers a mechanical device, or 

produces a reduced pressure, which is used to dose the chlorine solution into the water 

(Skinner, 2001). Unlike the above mentioned drip based systems, most water powered 

systems self adjust their dose rate to the flow rate of water being dosed.  

 

The mechanical category includes:  

(i) Wheel feeder dosers (hollow-spoke wheel feeder Fig. 2.9, overleaf), 

(ii) Float-powered chemical doser and  

(iv) Hydraulic motor/piston driven dosers (Skinner, 2001).  

 

The mechanical systems, with the exception of (iv) only work at atmospheric pressure.  
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Fig. 2.9 Water-driven hypochlorite dosing: Hollow-spoke wheel feeder.  

(adapted from Skinner, 2001) 

 

 

The pressure driven category includes:  

(i) Venturi-powered dosers (Fig. 2.10),  

(ii) Direct suction dosers, and  

(iii) Displacement-bag doser. 

 

The Venturi (or eductor) requires a minimum pipe flow rate to work reliably, and it and 

(ii) require a constant head tank feeder (provided by a cistern with a float valve). The 

Venturi and Displacement-bag doser both require pipe pressure to operate. 
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Fig. 2.10 Pressure-driven hypochlorite dosing: Venturi doser (adapted from Skinner, 

2001). 

 

2.6.3.3 Hypochlorite dosing Pumps 

Hypochlorite dosing pumps provide a versatile but generally expensive option. They 

can be either electrical or non-electrical. Non-electrical pumps (e.g. hydraulic 

motor/piston driven dosers made by Dosatron®) require a minimum pressure to operate 

and are therefore only suitable for systems with a regular high flow rate. Electrical 

pumps are available in many designs and sizes and can cater for a wide range of dosing 

rates and pipe pressures. However, for small systems in rural areas the cost of the pump 

and the corresponding solar panel requirements might exceed the cost of the 

hypochlorite generator and solar panels required for OSEC. Furthermore, in a small 

OSEC system, the energy required to run the pump on a continuous basis might exceed 

that of the energy required to power OSEC. 

 

The use of electrical pumps must be carefully considered in terms of the nature of the 

application. Where possible the pump should be positioned in the system so that it 

operates for minimum periods of time rather than continuously. Examples include: (i) 

pumping the produced hypochlorite as a batch to fill a small tank that feeds a Venturi 

eductor (Fig. 2.6) and (ii) pumping a batch volume of hypochlorite into a batch volume 

of water. The system could be regulated by a small level switch located in the tank that 

turns the pump on and off accordingly. Used correctly, pumps can have long life spans 
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but should be restricted to use in situations where they can be repaired or replaced with 

minimum interruption and delay to the site’s operation. Table 2.6 gives details of a 

small electric peristaltic dosing pump:  

 

TABLE 2.6. A TYPICAL SMALL PERISTALTIC DOSING PUMP 
(E.g. “Min-E-Wash”. Manufacturer: HydroNovaEurope®, distributor in S.A.: fildos, Cape Town.) 

Capacity Pump rate = 110 mL / min; Max vol. in 24 h = 158.4 
L/day 

Electrical Voltage = AC or DC; Power = 30 W 
Maintenance Replacement of tubing 
Price Between R1 000-R2 000 
 
 
2.6.4  Maintenance and safety 

The running of OSEC, whether using manually operated hypochlorite generators or 

automated, requires diligent maintenance and safety precautions. Listed below are some 

of the routine procedures that must be implemented: 

 

2.6.4.1 Maintenance: 

• Brine replenishment (either via salt addition or brine preparation): This requires a 

regular operator. 

• Cleaning of electrodes: In areas that have hard alkaline water, lime-scale deposits 

quickly accumulate on the cathode electrode of the hypochlorite generator. In such 

cases, routine washing of the electrode either in vinegar or dilute hydrochloric acid 

must be carried out. The accumulation causes current loss between the electrodes, 

resulting lower concentration yields of chlorine. This is why some automated 

systems have water softeners included. 

• Overall system checks: Operator awareness to appropriate current readings on 

display panels is advisable. Low current readings are a definite indicator of reduced 

production efficiency. Checking for pipe tears and leakage at peristaltic pumps (if 

present). 
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2.6.4.2 Safety:  

• Ventilation of hydrogen emissions from the cathodic reaction: a well ventilated 

room sufficiently removes these, but for large plants extraction and capturing 

devices may be required. (No smoking signs should be present in the housing). 

• Rubber gloves and goggles should be available if needed, but routine operations 

should not necessarily require them. 

• Housing kept below 40°C to prevent excessive chlorine emissions and hypochlorite 

decomposition (toxic by-product formation), (Gordon et al., 1997).  

• An effective emergency response protocol for malfunction or breakdown of 

hypochlorite production and dosing equipment. 
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CHAPTER 3 

AIMS AND OBJECTIVES 

 

The thesis had two main objectives: (1) to develop a water disinfection system in which 

the electrolyser can operate automatically, and (2) to establish and test the disinfection 

system at a typical water source used by a rural community and determine its viability.  

 

The specific aims of the project were as follows:  

  

(i) To establish the most suitable electrolyser design, construction materials and 

 operational parameters to provide a device that is reliable, affordable, energy 

 efficient and durable.  

(ii) To develop a disinfection system that incorporates the electrolyser, and accurately 

 doses water in a manner that is automatic, low maintenance, solar powered, low 

 cost and sustainable. 

(iii) To establish and operate the disinfection system at a rural water site following the 

 necessary laboratory testing, authorization from the relevant water authority, and 

 the rural community’s  consent.  

(iv) To determine the viability of the system and its acceptance among the rural 

 community with  regard to its operational performance and intended maintenance 

 by the community. 

. 
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CHAPTER 4 

RESEARCH METHODS 

 

4.1 OPERATION OF THE ELECTROLYSER 

4.1.1 Electrolyte supply  

4.1.1.1 Electrolyte flow rates and brine concentration 

Plug flow rates (established by Siguba, 2004) and brine supply concentration was as 

follows: 

 

• Brine: 50 ml/h 

• Water: 140 ml/h 

• Brine concentration: NaCl 25 g/L in tap water 

 

4.1.1.2 Electrolyte supply methods 

Three methods of electrolyte supply were investigated (Fig. 4.1: overleaf), each method 

providing a fixed head of electrolyte to maintain a constant flow supply to the 

electrolyser.  

 

• Method ‘A” was used by Siguba (2004) in the laboratory, and uses a peristaltic 

pump to provide constant circulation to two head tanks.  

• Method ‘B’ was investigated in the present thesis as an intended low cost system 

and uses the Marriote jar principle to maintain a constant flow. The method required 

airtight jars that were rigid in construction. 

• Method ‘C’ was the second method explored in this thesis and employs two float 

valves to maintain a fixed head of electrolyte. 
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Fig. 4.1 Plug flow electrolyte supply methods 
 
 

4.1.2 Power supply and current readings in the laboratory 

The DC power supply for the electrolyser experiments in the laboratory was a TTi  

(Thurlby Thandar instuments) model: EX18R power supply (Max. 18 V and 10 A).  

 

 

4.2 ANALYTICAL METHODS 

4.2.1 Chlorine (FAC) measurement   

Measurement of FAC (free available chlorine) in both laboratory tests and in the field 

was carried out using a portable “Free and total chlorine and pH meter” MI411 

(Martini® instruments) according to the manufactures instructions. 

 

 

 

 



 42

4.2.2 pH measurement   

pH was measured in the field with the above chlorine “Free and total chlorine and pH 

meter”. 

 

4.2.3 Turbidity measurement   

Turbidity was measured in FNU using a portable “Turbidity meter” MI415 (Martini® 

instruments) according to the manufactures instructions.  

 

 

4.3 CALCULATION OF FIGURES OF MERIT  

The efficiency of chlorine production was evaluated in terms of (i) electrical energy 

expended to produce chlorine and (ii) the amount of salt used to produce chlorine. 

These terms were calculated by recording the voltage, current, electrolysis time and salt 

consumption used to produce a specific quantity of chlorine (see below).  

 

4.3.1 Electrical energy   

The amount of electrical energy expended to produce a given amount of chlorine 

reveals the electrical efficiency of the cell and can be expressed in the following two 

ways:  

 

4.3.1.1 Power efficiency (kWh / kg Cl2) 

The simplest and most practical expression of energy expenditure is power efficiency in 

kWh / kg Cl2. This can be calculated from: voltage (V), current (I), time (h) and 

chlorine yield (see below): 

 

E.g. If a cell ran at 4 V and 0.5 A for 24 h produced 10 g Cl2 (measured analytically) 

the power efficiency is calculated as follows: 

 

Electrical power (P) = IV = 2 W  

And: Wh / 10 g Cl2 = 2 W × 24 = 48 Wh 
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Therefore:  

Wh / 1000 g Cl2 = 48 × 1000/10 = 4,800 Wh or 4.8 kWh/ kg Cl2. 

 

4.3.1.2 Current efficiency (%) 

Current efficiency is the percentage of current passed in the cell that yielded chlorine, 

and requires the measurement of current, time and chlorine yield (see below): 

 

E.g. If a cell ran at 0.5 A for 24 h produced 10 g Cl2 (measured analytically) the current 

efficiency is calculated as follows: 

 

Q = mnF 

Q = electrical charge in Coulombs (C) 

m = product formed in Moles 

n = number of electrons required to convert reactant to product 

F = Faraday’s constant (96484 C/ mole of electrons) 

 

Therefore in 2Cl– → Cl2 + 2e –, one molecule of chlorine requires 2 electrons. And the 

electrical charge required to generate one mole of molecular chlorine (71 g) is: 

 

Q for 1 mole of molecular chlorine = 1 × 2 × 96484 = 192968 C 

Therefore Q for 10 g chlorine (10/71 = 0.1408 moles) = 192968 × 0.1408 = 27178.59 C 

1 Ampere = 1 C / sec 

Q = It 

Therefore Q for 0.5 A for 24 h = 0.5 × 3600 × 24 = 43200 C 

 

Current efficiency = charge consumed for chlorine production × 100 

     Total charge passed 

    

   = (27178.59 / 43200) × 100 = 62.91%  
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4.3.2 Salt consumption   

The efficiency of chloride conversion to chlorine can be expressed in terms of NaCl kg 

used / Cl2 kg produced or as a percentage in material yield. These calculations require 

knowing the amount of salt used and the amount of chlorine produced:  

 

4.3.2.1 Salt efficiency (mass ratio: NaCl kg / kg Cl2) 

Two moles of NaCl (2 × 58.5 g) are required to produce one mole of molecular Cl2 

(71 g), i.e. 2NaCl + 2H2O → 2NaOH + H2 + Cl2 

 

Therefore: 2 × 58.5 g = 119 g NaCl 

And: 119/71 = 1.68 kg NaCl / kg chlorine 

 

E.g. If a 1 L  cell of brine contained 25 g NaCl and produced 10 g Cl2 the salt efficiency 

in mass ratio is as follows: 

 

Mass ratio = 25/10 = 2.5 kg NaCl / kg Cl2 

 

4.3.2.2 Material yield (% salt efficiency)) 

Since two moles NaCl gives one mole Cl2, a 2:1 mole ratio of NaCl to Cl2 = 100% 

efficiency or maximum possible yield or 1.68 kg NaCl: 1 kg Cl2 = 100% salt efficiency. 

 

% salt efficiency = 100 × 2 × moles of Cl2 / moles of NaCl 

 

E.g. If a 1 L  cell contained 25 g NaCl and produced 10 g Cl2 the percentage material 

yield is as follows: 

 

25 g NaCl = 25/58.5 = 0.427 moles NaCl 

10 g Cl2 = 10/71 = 0.141 moles Cl2 

(0.141/0.427) × 2 × 100 = 66.04%  
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4.3.3 Calculating Figures of merit in a batch reactor 

In a batch reactor the calculations concerning electrical efficiency require measurement 

of current over the duration of the electrolysis period. This produces a plot curve that 

can be used to calculate both power and current efficiency by integration.  

 

• In the case of current efficiency, integration of the graph of current (I) and time (T), 

i.e. IT, gives the charge in coulombs (C) passed over the period of electrolysis. The 

total charge value is then applied to the formula in section 4.3.1.2 above. 

 

• In the case of power efficiency, integration of the graph of power and time, i.e. 

power × time, gives the electrical energy in Watt hours (W.h) consumed over the 

period of electrolysis. The Watt hour value is then applied to the formula in secion 

4.3.1.1 above 

 

Integration of the above graphs was carried out using Microsoft Origin® software. 
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CHAPTER 5 

OPERATION AND TESTING OF THE MEMBRANE 
ELECTROLYSER 

 

This chapter presents the groundwork for developing electrolyser’s operating system. 

The chapter includes: modifications to electrolyser design (section 5.1); developing an 

electrolyte supply system (section 5.2); evaluation of membrane function (section 5.3) 

and effect of turbidity on membrane function (section 5.4). 

 

5.1 MODIFICATIONS TO ELECTROLYSER DESIGN 

Initial testing of the electrolyser under the conditions previously used by Siguba (2004), 

(see Chapter 4, section 4.1.1) in the laboratory revealed that various modifications were 

required to improve its function (see below).  

 

5.1.1 Redesign of top and base caps 

5.1.1.1 Construction Material 

Long-term exposure of the nylon top cap to the highly oxidative conditions of chlorine 

production had resulted in corrosion blockage of the cap’s lumen and interruption of 

electrolyte flow. Therefore, the cap was reconstructed from PVC, which is more 

resistant to chlorine attack (White, 1999: 146-147), see Fig. 5.1. The PVC caps suffered 

negligible corrosion through the subsequent two-year duration of the project. 

 

5.1.1.2 Wider outlet nozzles  

The narrow outlets nozzles for the anolyte and catholyte chambers gave rise to airlocks 

resulting in erratic outlet drip rates. Therefore, the nozzles (Fig. 5.1) were made wider 

(from 3 mm to 6 mm internal diameter) to allow gases evolved during electrolysis to 

escape without interrupting the flow of electrolytes. The new design gave considerably 

less airlocks.  
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Fig. 5.1 The membrane electrolyser. Top: schematic of horizontal cross section. Left: schematic of 
longitudinal cross section. Right: photograph showing pipe connections. 
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5.1.1.3 Safer membrane attachment 

In the previous design, the ceramic membrane was sandwiched at either end by two 

silicone ring washers on the top and base caps, which served to seal off the anolyte and 

catholyte chambers (Chapter 2 Section 2.4.1, Fig. 2.5). This required sufficient pressure 

when tightening the caps, and would often result in membrane breakage upon 

assembling and disassembling the electrolyser. Therefore, the caps were redesigned to 

attach the membrane via silicone rubber tubes (Fig. 5.1). This method of assembly 

required the inclusion of a threaded sleeve under top cap, which when rotated upwards 

served to firmly secure the top cap assembly.  

 

5.2 DEVELOPING AN ELECTROLYTE SUPPLY SYSTEM 

5.2.1 Problems concerning electrolyte supply  

Two problems were immediately apparent with the previously established “plug flow” 

mode of operation: 

 

(i) The slow continuous rate of brine supply (at 50 mL/h) formed a drip rate of < 1 

 drop every 2 seconds, which proved difficult to maintain without continual 

 correction of the inline tap on the brine supply pipe.  

 

(ii) When the electrolyser was not in operation, the catholyte and anolyte mix by 

 diffusion across the membrane. This results in  initial low yields of chlorine (data 

 not shown) and inconsistency of the electrolyser’s product. 

 

Both problems presented major obstacles to operating the electrolyser in a manner that 

was consistent and low maintenance. Various attempts were made to establish a 

constant drip rate and even a medical drip was investigated. However, in all cases the 

slow speed of the drip was prone to stoppage or change and generally proved 

impossible to maintain. Therefore, a radical change in electrolyser’s mode of operation 

needed to be considered (see below). 
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5.2.2 A batch supply system  

In considering the above problems, a new operating system was devised that could also 

form the basis for hypochlorite dosing. Here, the electrolyser changes from a plug flow 

reactor to a batch reactor, i.e. through supplying the electrolyser with a batch of brine in 

place of a drip. The problem of membrane diffusion could be solved by flushing the 

electrolyser with water after a set electrolysis period, thus leaving only water in the 

chambers during periods of no operation. Furthermore, the flushing of the electrolyser 

would provide the method of dosing a batch of water with a batch of hypochlorite. The 

sequence for this system is given below: 

 

• Stage 1: the electrolyser contains water in both the anolyte and catholyte chambers 

• Stage 2: the electrolyser is supplied with a batch of brine that displaces the water in 

the anolyte chamber 

• Stage 3: electrolysis starts due to the presence of brine in the anolyte chamber and 

continues for a fixed period of residence time 

• Stage 4: the electrolyser is flushed with water and the hypochlorite is carried to a 

dosing tank containing a fixed volume of water. 

 

The above suggested batch supply system did however create two new requirements: (i) 

a means of controlling batch supply and (ii) determination of how the electrolyser 

would function as a batch reactor. The latter requirement was explored first to establish 

the viability of batch supply (see below).    

 

5.2.3 Operation of the electrolyser as a batch reactor  

Under the previous plug flow conditions, the concentration of reactants and products 

remained constant in both the catholyte and anolyte. Here, flow rate determined the 

figures of merit for chlorine production. In contrast, under batch reactor conditions, 

electrolysis starts with water as the catholyte and brine as the anolyte. Here, as 

electrolysis commences, the concentration of electrolysis products accumulates and a 

period of optimal electrolysis time will be reached. This period, or batch residence 
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period, needed to be determined experimentally by measuring chlorine production over 

a range of batch residence times (see below). 

 

5.2.3.1 Evaluation of a range of batch residence times 

Method: 

Chlorine yield and current were evaluated over 5, 10, 15, 20 and 25 min batch residence 

times using the following protocol. The electrolyser was set up with a 4 V supply (see 

Chapter 4, section 4.1.2). Both chambers of the electrolyser were first filled with tap 

water. To start electrolysis, a 15 ml batch of brine (NaCl at 25 g/L) was poured into the 

anolyte chamber. This displaced the resident water in the anolyte chamber and initiated 

electrolysis. After the chosen period of residence time was complete, the anolyte and 

catholyte chamber were flushed by 200 ml of water into the same beaker for chlorine 

measurement. The resultant 400 ml was diluted with water to 1 L as a stock solution for 

chlorine measurement. FAC (free available chlorine) was measured using the Martini 

instrument test kit (Chapter 4, section 4.2.1), using appropriate dilution to measure 

chlorine in the range of 1-10 mg/L. For each batch residence period, an average from 

three recorded batches was used for evaluation. The Current readings were recorded at 5 

min intervals during the batch residence periods. Figures of merit for electrolysis were 

calculated (Chapter 4, section 4.3.3) from the data.  

 

Results and discussion: 

Fig 5.2 (overleaf) shows the plotted chlorine yields from the five residence times. The 

points produced a curve with the highest yield averaging at ~5.6 g/L, at a 10 min 

residence time. The curve indicates that chlorine concentration is still increasing at 5 

min and at 25 min it is decreasing. The effect of residence time on current in the 

electrolyser followed a similar pattern, where a maximum current of 0.58 A was 

reached after a 5 min residence period and gradually declined to 0.23 A after 25 min.   

 

The results suggest that a maximum chlorine concentration was most likely to exist 

between 5 and 15 min of batch residence in the electrolyser. The lower chlorine 
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concentration produced after 15 min residence time shows that chlorine was lost to 

some process occurring in the electrolyser between these times. The loss appears 

analogous to the effect of using the membrane electrolyser with slow catholyte flows 

(Bashtan et al., 1999); here sufficient hydroxide ions pass though the membrane to 

convert hypochlorous acid in the anolyte chamber to hypochlorite, which undergoes 

numerous reactions at the electrodes resulting in loss of chlorine (Chapter 2, section 

2.4.2). 
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 Chlorine concentration (g/L) 
 5 min 10 min 15 min 20 min 25 min 

Batch 1 2.93 5.7 5.58 4.61 4.49 
Batch 2 2.82 5.56 5.26 4.5 4.39 
Batch 3 2.83 5.61 5.39 4.58 4.4 

Ave. 2.86 5.62 5.41 4.56 4.43 
 

Fig. 5.2 Chlorine production vs. batch residence time 
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Current (A) 

average 
0.05 0.5 0.58 0.55 0.44 0.31 0.23 

 
Fig. 5.3 Current vs. batch residence time 

 

The drop in electrolyser current (Fig. 5.3) between 5 and 25 min also revealed changing 

conditions in the electrolyser over time. The main factors contributing to this process 

would be loss of chloride concentration via its conversion to chlorine, as well as loss of 

chloride through its dilution and diffusion of chloride through the membrane.  

 

Figs. 5.4-5.6 (overleaf) show the figures of merit for the different batch residence times. 

As might be expected, salt efficiency peaks with chlorine yield at 10 min with a highest 

efficiency of 4.5 kg NaCl/ kg Cl2 and 37% material yield (Fig. 5.4). Therefore, 63% of 

the salt contained within the batch did not yield chlorine that could be collected i.e. this 

figure reflects the sum of the salt that did not react at the electrodes plus that which 

yielded chlorine that was lost. Also as expected, power and current efficiency (Figs. 5.5-

5.6) were highest at 5 min at ~4 W.h/ kg Cl2 and ~76% current efficiency: i.e. due the 

higher chloride concentration and lower accumulation of hydroxide ions at this period.  
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Salt consumption 
 5 min 10 min 15 min 20 min 25 min 

NaCl kg/kg Cl2 8.75 4.45 4.62 5.48 5.64 
Material yield (%) 18.85 37.02 35.65 30.06 29.2 
 

 

Fig. 5.4 Salt consumption (above) and material yield (below) vs. batch residence time 
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Power (W) 0.2 2 2.32 2.2 1.76 1.24 0.92 
Energy Wh - 0.0458 0.1352 0.3228 0.4891 0.6136 0.7065 

 

Fig. 5.5 Integral calculation of energy consumption from electrical power vs. batch 
residence time (using MS-Origin® software). 
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Power and current efficiency 

 5 min 10 min 15 min 20 min 25 min 
Power 

kWh/kg Cl2 
3.994 4.265 6.463 9.496 11.129 

Current 
 (%) 75.62 70.8 46.72 31.8 27.14 

 

Fig. 5.6 Power and current efficiency vs. batch residence time 
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Conclusions: 

Peak chlorine yields occurred between 5 and 15 min of batch residence time in the 

electrolyser. Continued electrolysis after 15 minutes was clearly wasteful in energy and 

resulted in loss of chlorine and wastage of salt. Further analysis could determine exactly 

where between 5 and 15 minutes the peak chlorine yield occurred (see below). 

 

5.2.3.2 An optimal batch residence time between 5 and 15 min 

To establish where between 5 and 15 min a peak chlorine yield is produced, batch 

residence periods of 6, 8, 10, 12 and 14 min where evaluated (see below) for chlorine 

yield and current using the previous protocol (section 5.2.3.1). 

 

Results and discussion: 

Fig 5.7 and Table 5.1 (overleaf) show that within the 6-14 min time range, an 8 min 

batch residence time produced the highest chlorine yield averaging at ~5.7 g/L. This 

period also produced an exceptionally high current efficiency of ~88%: higher than the 

previously measured efficiency at 5 min of 75%. If the 8 min value is placed on the 

previous 5-25 min current efficiency graph (Fig. 5.6), it jumps sharply upwards from 

the dropping trend line, and therefore does not appear to fit. This probably represents 

variations between the experimental conditions, and the degree of error in the 

experimental measurements.  

 

Conclusions: 

Given that a degree of error and experimental variation may be present in these results a 

safe conclusion would be that a maximum chlorine yield between 5.6-5.8 g/L occurred 

between 8 and 12 minutes with the corresponding figures of merit (Figs. 5.4 and 5.6).    
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Chlorine concentration (g/L) 
 6 min 8 min 10 min 12 min 14 min 

Batch 1 4.56 5.75 5.61 5.5 5.51 
Batch 2 4.49 5.81 5.63 5.46 5.44 
Batch 3 4.59 5.57 5.55 5.6 5.37 

Average. 4.55 5.71 5.6 5.52 5.44 
Current (A) average 
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0.05 0.5 0.61 0.6 0.58 0.48 0.44 0.37 

 
Fig. 5.7 Chlorine production (above) and current (below) vs. batch residence time 
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TABLE 5.1 FIGURES OF MERIT FOR THE 8 min CHLORINE YIELD  
Cl2 (g/L) Salt efficiency 

 NaCl kg/kg Cl2 
Material yield 

(%) 
Power efficiency 

kWh/kg Cl2 
Current 

efficiency 
 (%) 

5.71 4.39 38.26 3.427 88.14 
 

 
 
5.2.4 Comparison of batch and plug flow supply methods  

Comparison of chlorine production under batch reactor and plug flow conditions reveals 

some interesting findings. Optimal chlorine production efficiency for plug flow 

operation of the electrolyser under ~4 V supply (Siguba, 2004), gave an average 

chlorine yield of ~6.3 g/L. While this is a higher concentration than 5.7 g/L obtained 

from the batch method (Fig. 5.7), the overall amount of chlorine produced by the batch 

method over the same time period (8 min) is more than double that of the plug flow 

method (see Table 5.2). Furthermore, while the salt efficiency of the batch supply was 

less than that of continuous flow (by 7%) the energy consumption of the batch supply 

system was almost half that of the continuous supply method.  

 

TABLE 5.2 BATCH SUPPLY VS. CONTINUOUS SUPPLY 

 
[Cl2] 
at 8 
min. 
(g/L) 

Volume 
at 8 
min. 
(mL) 

Cl2 at 
8 

min. 
(g) 

Cl2 
(g/day)

Voltage
(V) Wh/day   

Salt 
efficiency
(kg NaCl 
/ kg Cl2) 

Energy  
(kWh/ 
kg Cl2) 

Batch 
15 mL/  
8 min. 

5.71 15 0.085 15.4 4 48.2  4.39 3.4 

Continuous 
flow 50 
mL/h 

6.3 6.7 0.042 7.5 4.2 50.4 4.1 6.7 

 
 

5.2.5 Conclusions  

Batch operation of the electrolyser proved a superior method over plug flow concerning 

both chlorine production and energy consumption. The main reason for this is because 

in batch flow operation, the entire chlorine content of the electrolyser is extracted at the 

point it reaches a peak concentration. In contrast the plug flow method can reach a 
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higher concentration but at the expense of production rate and energy consumption. 

Therefore, the trade off in favour of batch conditions is a slight loss in salt efficiency for 

considerable (double) gains in chlorine production rate and energy efficiency. 

Furthermore, providing that a system for its control could be devised (see Chapter 6, 

section 6.2.1), the batch supply system solved the problem of controlling slow flow 

rates and mixing of catholyte and anolyte on standing (section 5.2.1). 

 

 

5.3 EVALUATION OF MEMBRANE FUNCTION  

The function of the membrane was previously shown to improve the efficiency of brine 

electrolysis over that of undivided cells (Linkov, 2002; Bashtan, et al., 1999). However, 

membranes are prone to blockage by particulate matter and scale deposits, which 

diminish their function. Therefore, in the event that this became a problem, it was 

important to determine whether an undivided cell of comparable size to the membrane 

electrolyser could provide a viable substitute. The benefits of constructing such a cell 

were twofold: it allowed (i) the function of the membrane to be evaluated more 

accurately, and (ii) a possible alternative electrolyser if membrane blockage became a 

problem. 

 

5.3.1 Construction of an undivided electrolyser 

For an accurate evaluation of membrane function, the proposed undivided electrolyser 

needed to maintain as many of the original dimensions of the membrane electrolyser as 

possible. Simply removing the membrane would create a large single chamber of 

~100 mL, which would dramatically change the dynamics of the cell. Therefore, to 

maintain the 15 mL volume of the original anolyte chamber, the spiral cathode was 

substituted for a stainless steel pipe cathode with similar dimensions to the membrane. 

The anode was placed inside the cathode and secured with pipe adaptors at the top and 

bottom. The pipe thus became the cathode and casing of the electrolyser (Fig. 5.8). The 

electrolyser was run in a side by side experiment with the membrane electrolyser and 

evaluated for chlorine production (see below). 
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Fig. 5.8 The undivided electrolyser: developed as a possible alternative to the 

membrane electrolyser. 
 
 

5.3.1.1 Comparison of electrolyser function 

 

A comparison of the two electrolysers was made using the 8 min batch supply 

conditions previously established (section 5.2.3.1). Operation of the undivided 

electrolyser required a lower voltage due to the absence of the membrane. Here, a 

voltage yielding a peak current matching that of membrane electrolyser (between ~0.5-

0.6 A) was selected to allow an accurate comparison of the two electrolysers (see 

below).   

 

Results and discussion: 

Table 5.3 (overleaf) shows that the undivided electrolyser required only 3 V to maintain 

a 0.5 A current between the electrodes. At 4 V the undivided electrolyser became very 

hot and produced current values above 1 A (data not shown). Chlorine production under 
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these conditions was not investigated because heat favours chlorate production and 

results in loss of chlorine (see Chapter 2, section 2.4.2).   

The chlorine yields from operation at 0.5 A show that chlorine was produced ~2 × faster 

by the membrane electrolyser consuming ~2 × less salt and energy. In addition, the 

undivided cell was found to produce a maximum chlorine concentration of 6 g/L after 

15 min running and less than 2 g/L at 5 min running time (data not shown). Therefore, 

chlorine concentration peaked later in the undivided cell than in the membrane cell. 

However, neither of these values came close to matching either the salt or power 

efficiency of the membrane electrolyser. 

 

TABLE 5.3 COMPARING MEMBRANE AND UNDIVIDED ELECTROLYSERS 

Cell type Voltage 
(V) 

Cl2 
conc.
(g/L)

Cl2/ 
batch
(mg) 

Cl2 
(g/day) W.h/day 

 
Salt 

efficiency 
kg NaCl/kg 

Cl2 
 

Energy 
consumption 
(kWh/kg Cl2) 

Membrane 
electrolyser 4.1 5.68 85.5 15.4 49.2 3.5 3.1 

Undivided 
electrolyser 3.0 2.6 38.3 7.0 36.0 7.81 5.2 

Fixed conditions: Electrolysis period = 8 minutes; Brine concentration = 25 g/L; Brine 
volume = 15 mL; Current: 0.5 A.  
n = 2 (n = no. of chlorine readings in g/L for each average shown above) 
 
 

It should be noted that the undivided cell did not have the same spiral wire cathode as 

the membrane electrolyser, and did in fact have a larger cathodic surface area for back 

reactions to occur. Concerning its operation, a further point of interest is whether the 

steel cathode would corrode in the environment of brine and hypochlorite. However, 

while acting as a cathode during electrolysis the steel would be far less susceptible to 

oxidation and following this it would be safe after the electrolyser was flushed with 

water. Therefore, in combination, cathodic protection and water flushing may prevent 

the steel pipe cathode from corrosion.  
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5.3.2 Conclusions  

The inclusion of the membrane in the electrolyser operating under batch conditions 

provides a faster more efficient means of producing chlorine. The undivided cell was ~2 

× slower and ~2 × less energy and salt efficient at producing chlorine, most likely 

reflecting a high degree of back reaction of chlorine product on the electrodes. Further 

experiments could determine whether the membrane’s effects might be supported by the 

spiral cathode. However, for practical purposes the pipe cathode provides a possible 

alternative electrolyser that is cheap to construct, easy to assemble, and of potential use 

if and when membrane blockage becomes a problem. 

 
 
5.4 THE EFFECTS OF MEMBRANE BLOCKAGE  

Due to the variable quality of rural water sources, possible blockage (fouling) of the 

membrane was of major concern to the project. Membrane blockage increases the 

electrical resistance across the cell and results in lower chlorine yields. High levels of 

turbidity, organic matter, and water hardness were all considered potential causes of 

membrane blockage (Chapter 2, section 2.4.7).  

 

5.4.1 The membrane and turbidity 

Turbidity was a prime suspect in loss of electrolyser function during the later testing of 

the disinfection system at a rural site (Chapter 7 section 7.7). Here, turbidity 

dramatically increased in summer and autumn, from < 5 FNU to 120 FNU. This 

coincided with a 0.1-0.3 A drop of current within the electrolyser, which due to the 

design of the dosing system could have been caused by water that flushes through the 

electrolyser (Chapter 6, section 6.2.2.1). Therefore, to determine whether turbidity had 

affected membrane function the following experiment was carried out. 

 

5.4.1.1 Effect of turbidity on membrane function  

An exact simulation of the pilot site’s batch dosing system would have proved difficult 

and time consuming to obtain results. Therefore, a continuous flow supply was chosen, 

wherein turbidity could be introduced at controlled levels to both the brine and water 
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supply to the electrolyser. A range of turbidity could then be tested over different 

periods of electrolysis time against a control with low turbidity, and its effects on 

current and chlorine production be evaluated.  

 

Method: 

Turbidity in the pilot site’s water was used for the experiment and could be concentrated 

or diluted drawing from stock samples of water where the turbidity had precipitated. 

Turbidity was measured in FNU using a portable turbidity test kit (Chapter 4, section 

4.2.3). Flow rates of brine and water to the electrolyser were maintained at 50 mL/h and 

140 mL/h respectively (Chapter 4, section 4.1). Voltage was set at 4 V over the one-

week continuous running period. 

 

Results and discussion: 

Table 4.6 shows that turbidity at ~120 FNU dramatically reduced chlorine yields. On 

the other hand the current was far less affected at ~120 FNU, and after 24 h remained on 

par with that of the low FNU experiment. However, after one week of continuous 

running at ~120 FNU the current dropped to 0.33 A, (a 35% current reduction).  

 
The reduction in chlorine yields was most likely caused by the chlorine demand of the 

turbidity itself and possible additional reactions taking place at the electrodes from the 

reaction products with turbidity. The loss of current after one week indicated that there 

had been a cumulative effect on the membrane or even the electrodes. 

 

5.4.2 Recovery of the membrane 

In order to test whether the membrane used at 120 FNU for one week had been 

permanently blocked by the turbidity, it was removed from the electrolyser and 

thoroughly washed with tap water. No permanent staining had occurred. It was then 

installed in an electrolyser with a clean water supply and brine supply of < 1 FNU and 

run under the same electrolysis conditions as were used in the turbidity experiment.  
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TABLE 5.4 EFFECT OF TURBIDITY ON THE MEMBRANE ELECTROLYSER 
 10 min 1 h 24 h 1 week 

~120 FNU Current (A) 0.51 0.56 0.6 0.33 
Chlorine (g/L) 1.2 0.8 1.0 0.2 

~10 FNU Current (A) 0.48 0.56 0.41 0.51 
Chlorine (g/L) 5.9 5.2 5.0 5.3 

<1 FNU Current (A) 0.62 0.58 0.52 0.6 
Chlorine (g/L) 7.4 6.2 5.9 6.1 

Fixed conditions: Catholyte feed 140 mL/h; Anolyte feed 50 mL/h; Voltage 4 V.   
n = 2 (n = no. of chlorine readings in g/L for each average shown above) 

 
 
 

Fig. 5.9 Turbid water from the site. Left: 
After 5 days standing (~10 FNU). Right: fresh 

from the tap (~120 FNU). 
 

Fig. 5.10 Membrane discoloration: Left: a 
new membrane as bought from the supplier. 
Right: a membrane cut to fit the electrolyser, 

showing staining after six months of use. 
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A current of ~0.5 A and a chlorine yield of 6.1 mg/L were obtained from the first run of 

this experiment. Therefore, the effects of 1-week’s running with turbidity at 120 FNU 

was reversible by washing of the membrane. This suggests that the blockage was 

colloidal in nature and did not form a tightly bound deposit (i.e. as might be expected 

from lime scale). However, it is possible that running the membrane for even longer 

periods at high FNU values could more permanently block its pores. 

 

5.4.4 Conclusions   

The high level of turbidity used in the experiment reduced current by 35% after 1 week 

running. This effect would no doubt worsen over a longer running period. However, at 

low turbidity of < 5 FNU (suitable for chlorine dosing), the effect was not observed and 

would probably take much longer to block the membrane than at higher turbidity. This 

correlates with the successful operation of the electrolyser at the site during periods of 

low turbidity (Chapter 7). It was also noticed that during the operation of the 

electrolyser at the site (during a two-month winter period of low turbidity, see Chapter 

7) the membrane had become stained by orange coloured deposits (most likely iron) but 

these had had no notably affect on the current of the electrolyser. The discolouration can 

be seen in Fig. 5.10 as a banding pattern on the membrane. No such bands developed on 

the new membrane used in the turbidity experiments. Therefore, the two phenomena are 

probably unrelated, and the effect observed in the turbidity experiment is likely due to a 

reversible colloidal adsorption of suspended particles. 
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5.5 CONCLUSIONS TO CHAPTER 5 

 
• A short (eight minute) batch supply of fresh brine and water to the electrolyser 

proved to be a ~2 ×  more energy efficient and rapid means of chlorine production 

than a slow continuous brine feed.  

• The batch brine supply method produced a chlorine yield of 15.6 g/day using 

~50 W.h, which could be supplied by a 10 W solar panel system.   

• An undivided electrolyser (based on a stainless steel pipe cathode and COTA 

anode) provides a slower, less efficient (in both salt and energy consumption) but 

potentially viable alternative to the membrane electrolyser, which could be used if 

membrane fouling becomes a problem. 

• The membrane can be blocked by turbidity of ~120 FNU within its supply feed 

after one week of running, and to the extent studied here the blockage is reversible 

by washing the membrane in clean water. 
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CHAPTER 6  

DEVELOPMENT OF THE ELECTROCHLORINATION SYSTEM 

 

This chapter presents the laboratory development and testing of the disinfection system 

in the following sections: development of a batch dosing system (section 6.1); operation 

of the batch dosing system (section 6.2) and considerations for rural use (section 6.3).  

 

6.1 DEVELOPMENT OF A BATCH DOSING SYSTEM   

6.1.1 A water-powered brine batch 

A water-powered means of batch dosing brine to the electrolyser was devised (Fig. 6.1). 

Here, the brine batch supply system is powered by the filling of the water tank beneath 

it. As the tank fills, the volume of brine in tube 3 is forced into tube 4 by air pressure 

generated in the inverted tube 5. The brine dose falls into tube 4 and displaces the 

contents of the electrolyser. When the water tank empties, brine in the constant head 

tank 2 feeds into tube 3 and the system is re-set. 

 

  
 

Fig. 6.1 A water-powered brine batch supply system. Left: photograph showing tube 3. 
Right: schematic diagram of the entire unit. 
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The wash pipe (Fig. 6.1) forms part of the electrolyser’s flush system, which flushes 

both the cathode chamber and the anode chamber. These components can be understood 

in context of the complete water dosing system described below.  

 

6.2.2 A complete batch dosing system 

The system shown below (Fig. 6.2) was developed to continuously dose 30 L batches of 

water. It comprises a mixture of electrical and water-powered control. The electrical 

components consist of two small solenoid valves V1 and V2, a timer, three float 

switches (S1-3) and a circuit box. Valves V1 and V2 control the release of air from the 

bells above the U-bend siphons, which causes them to flush water into the tank below. 

The system chlorinates water through the following sequence: 

 

1. When tank 1 is full (detected by S1) and tank 3 is empty (detected by S3), V2 is 

opened and tank 2 flushes into tank 3.  

2. The filling of tank 3 forces a fixed volume of brine into the electrolyser and starts 

an 8-min electrolysis period of brine residence in the electrolyser 

3. The 8 min period is timed by the “delay on” timer activated by S2 when tank 2 is 

empty 

4. After 8 min of electrolysis, the timer opens V1 and flushes tank 1 into tank 2 

(note: some water is diverted to flush out the electrolyser and displace 

hypochlorite into tank 2) 

5. Once tank 2 is full it will only flush again if tank 1 is refilled and tank 3 has 

emptied  

 

Note: the valves automatically close after flushing due to circuit breaking by the float 

switches. 
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Fig. 6.2 A three-tank batch dosing system. 
 
 

6.2.2.1 Control of brine electrolysis and hypochlorite dosing  

The batch dosing system initiates electrolysis by supplying the electrolyser with brine 

(Fig. 6.1 above), and stops electrolysis by flushing it with water (Fig. 6.3 below). Due to 

the low conductivity of water, electrolysis is effectively stopped and the electrolyser 

remains inactive until another batch of brine is delivered. The system therefore controls 

both hypochlorite production and dosing by the availability of water in tank 1 and the 

requirement for water in tank 3. The concentration of hypochlorite (i.e. the combined 

anolyte and catholyte) is controlled at three levels: (i) the electrolysis period; (ii) the 

voltage on the electrodes and; (iii) the volume of brine delivered to the electrolyser. All 

three parameters can be adjusted independently.  
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Fig. 6.3 The electrolyser’s flush system. 1. Prior to flush. 2. Flushing. 
 
 

6.2.2.2 Control of water flow rate   

The movement of water through the system is controlled by the float switch / timer / 

solenoid valve circuit. The system responds to the availability of water in tank 1 and the 

requirement for water in tank 3 which connects to the chlorinated water storage tank via 

a float valve (Fig. 6.2 above). Tank 3 thus allows the level of water in the storage tank 

to be detected.  

 

Tank 1 contains a float valve to control incoming water. The valve arm rests on a 

detached float that moves up and down in a pipe (Fig. 6.4). The pipe has a small hole at 

its base that allows water to escape at a slower rate than the flush of the tank. This 

arrangement serves to delay the opening of the float valve until the tank has completely 

flushed. The delay is important because it allows the flush siphon to properly break, and 

it also ensures that a fixed volume of water (30 L) passes through the system on each 

cycle. 
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Fig. 6.4 Float valve delay mechanism.  

 
6.2.2.3 Chlorine contact time  

Chlorine contact time occurs between the dosing tank and the storage tank. Here, the 

minimum time period for water to travel between the two tanks must be 20 minutes. 

This allows sufficient chlorine contact time (CCT) (Carlsson, 2003) before the water 

reaches a storage tank, where dilution may occur particularly if the water is not being 

used. The easiest way for this to be achieved is by choosing an appropriate pipe length 

between the dosing tank and the storage tank (Chapter 7, section 7.2.3).  

 

6.2.3 Solenoid valve specifications 

The solenoid valves (Fig. 6.5) were purchased from Hydralectric© (UK) and have the 

model specification name of “Hot water dispense valves”. The model was 

recommended by the supplier because of its durability, which was preferable for 

prolonged usage. The valve seat is made of silicone rubber and heat resistant ceramic 

material. The valves operate on 24 V DC at 10 W and are opened on activation and 

closed on deactivation (standing). 
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A B C 
Fig. 6.5. Tank flushing mechanism: A. solenoid valve V1. B. Air bell of a U-bend flush. 

C. U-bend flush in action. 
 

 

6.2.4 Conclusions 

The batch dosing system presented above uses minimal electrical power and was 

constructed from commonly available materials, thus fulfilling the aims of minimising 

construction and running costs. The novel components of the system are: the U-bend 

flush control mechanism; the brine supply system; and the concept of continuous small 

batch supply for flow-through hypochlorite dosing and electrolyser flushing. The 

system therefore required a thorough testing period in the laboratory to determine the 

reliability of its components and its ability to provide a reliable hypochlorite dose to 

water (see below 6.3). 

 

 

6.3 TESTING THE BATCH DOSING SYSTEM  

6.3.1 Control of water 

In order to test the reliability of the system’s water control, it was connected to the 

mains water in the laboratory via the top tank’s float valve. Simulation of water use 

from a storage tank was achieved by placing a tap on the outlet of the bottom tank (tank 

3) and setting it to slowly drain. This way the system could be left running over night in 

the laboratory and stopped and started by opening and closing the tap. The system was 
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left “on” in this manner for more than 6 months, proving that it could control water 

reliably on demand. 

 

6.3.2 Electrical current readings 

Current readings came as spikes corresponding to the presence of brine in the 

electrolyser and consequent electrolysis. On receiving brine the electrolyser’s current 

quickly spiked to a mean reading of ~0.5-0.6 A. Following the flushing of the 

electrolyser with water after 8 min, the current sharply dropped to an average resting 

state of 0.005-0.01 A, reflecting the poor conductivity of water.  

 
6.3.3 Chlorine dosing 

The chlorine (FAC) concentration of the dosed water was measured from samples taken 

from the dosing tank (tank 2). Because the water already had a chlorine residual of 0.1 

mg/L from the tap, its demand was very low. Each dose of chlorine gave an immediate 

reading of between ~3.5-4.0 mg/L upon mixing with the 30 L batch of water. Given that 

tap water has a very low chlorine demand, the concentration of the chlorine from the 

electrolyser was calculated to be ~6-7.0 g/L.  

 

Different dosing concentrations of chlorine could be achieved by changing the setting of 

the timer. E.g., using a 5 min time setting in place of 8 min, the electrolyser produced 

chlorine at ~2.0-4.0 g/L giving a ~1.0-2.0 mg/L after dosing to the 30 L batch of water. 

This however, was wasteful regarding salt efficiency i.e. unconverted brine was wasted. 

Therefore, to improve salt efficiency for low chlorine dosing concentrations, the volume 

of brine entering the electrolyser was reduced and electrolysis time maintained at 8 min. 

This was achieved by slightly raising tube 4 (Fig. 6.1) so that it delivered less brine to 

the electrolyser. 

 

6.3.4 Electrical energy consumption 

The two components in the system that consumed the most energy were the electrolyser 

and the solenoid valves. With a constant demand for water and constant water 

availability, the system consumed ~50 Wh of energy over 24 h (Table 6.1). Therefore, a 
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20 W solar panel producing 120 Wh /6 h could easily power the entire system run at 

maximum demand. 

 
TABLE 6.1. ELECTRICAL ENERGY CONSUMPTION OF THE BATCH DOSING SYSTEM 

(DOSING AT ~4 mg/L, RUN CONTINUOUSLY) 

Component 
Time ON 

 
Current 

(A) 
Volts 
(V) 

Power 
(W) 

Energy 
(Wh) 

Electrolyser 8 min 0.5 4 2 0.267 
Solenoid valve V1 5 sec 0.42 24 10 0.014 
Solenoid valve V2 5 sec 0.42 24 10 0.014 

Total energy/batch (1 × batch = 30 L of water) 0.291 
Total energy/h (7.5 × batches = 225 L of water) 2.183 

Total energy/day (180 × batches = 5400 L of water) 52.38 
 

6.3.5 Inputs and outputs 

Continuous operation of the system at a ~4 mg/L chlorine dose on an eight minute batch 

cycle with a maximum rate of water use (e.g. with the outlet tap left open), had the 

following inputs and outputs (Table 6.2). 

 
TABLE 6.2. INPUTS AND OUTPUTS OF THE BATCH DOSING SYSTEM 

Inputs 
 8 min 1 h 24 h 1 week 1 month 

Brine (L) 0.02 0.11 2.70 18.90 75.60 
Salt (g) 0.38 2.81 67.44 472.08 1,888.32 

Electrical energy (Wh) 0.3 2.3 54 378 1,512 
Outputs 

 8 min 1 h 24 h 1 week 1 month 
Water (L) 30 225 5,400 37,800 151,200 

Anolyte (L) 0.02 0.11 2.70 18.90 75.60 
Chlorine (g) 0.15 0.79 16.53 115.80 463.05 
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6.3.6 Conclusions 

The disinfection system reliably responded to demand and availability of water, and 

provided a reliable hypochlorite dose that was both reproducible and adjustable. 

Importantly, the electrolyser had maintained its ability to produce hypochlorite 

consistently over the test period indicating that the anodic material was stable under the 

conditions of batch dosing. The tests were however conducted with mains water and 

therefore the real test of the electrolyser’s reliability would be its operation at a rural 

water source of predictably poorer quality.  

 

6.4 CONSIDERATIONS FOR RURAL USE: SCOPE AND LIMITATIONS 

The main aim behind the design of the disinfection system was to achieve automation 

on a small affordable scale for both the brine supply to the electrolyser and control of 

chlorine dosing to water. The scope and limitations of the final design are discussed 

below regarding both its mechanical operation and potential for community 

management: 

 

6.4.1 Water pressure limitations 

The system operates at “open pressure” i.e. where chlorine is dosed to an open head of 

water at atmospheric pressure. While this facilitated designing water-powered 

mechanisms, it also removes the potential energy (in the form of pressure) from the 

water that could be needed for supply purposes.  

 

The limitation is that the water level in the storage tank at ground level must be higher 

than the level of the taps it supplies. Therefore, the installation site of the disinfection 

system should either be on ground located higher than that of the taps it supplies, or, 

where this cannot be achieved (e.g. on flat ground), a raised horizontal-style storage 

tank could be used at a position between the level of the dosing tank and the taps. 

Alternatively, on flat ground, the disinfection system and supply tank could be 

artificially raised (using blocks, low wooden platforms or a mound of earth) to achieve 

the necessary elevation above the taps. 
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The operation of the disinfection system also requires sufficient water pressure to reach 

the inlet pipe of the batch dosing system (at a height of 1.90 m above floor level). How 

this is achieved at a rural site will depend on the nature of the water supply and its 

abstraction method, i.e. either by gravity from water sources at higher levels, or by 

externally supplied energy (e.g. pumping mechanisms). 

 

6.4.2 Chlorination level and dosing rate 

The dosing of freshly produced hypochlorous acid with no storage period is a unique 

feature of the system. This has advantages over stored hypochlorite, but also has a 

limiting effect on the dosing rate of the system. This is because chlorine production 

determines the rate at which water can be dosed, i.e. a higher chlorine dose will require 

more electrolysis time and a longer retention time for each batch of water through the 

system. If a very high chlorine dose (e.g. > 7 mg/L Cl2) is required at a site, this could 

be achieved by an increase in voltage and a higher concentration of brine; both 

adjustments would serve to maintain a reasonable dosing rate but at a loss of salt and 

current efficiency.  

 

6.4.3 Potential for community operation 

The disinfection system is automated in chlorine production and dosing, but still 

requires diligent maintenance and an effective emergency protocol for if and when it 

breaks down or ceases to function properly. The ability of the community to manage 

these aspects of the disinfection system’s operation is vital (see below).  

 

6.4.3.1 Maintenance 

An operator is required to prepare brine and top up the brine supply tank. The task can 

be standardised (e.g. using a bucket of water and a measuring cup of salt) and placed in 

a general weekly checklist for the system’s operation, which would also include 

checking the current reading of the electrolyser and cathode de-scaling if necessary (i.e. 

cathode cleaning in vinegar to remove scale). A detailed user’s manual with operation, 

maintenance and emergency protocol guidelines would be needed, including contact 

numbers for further advice and help. The means of purchasing salt would need to be 
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determined by the community. Determination of changes in chlorine demand of the 

water and dosing adjustment is potentially a task manageable by the community, but it 

would require training and a chlorine measurement kit (these tasks are therefore perhaps 

best suited to a local water authority). The local authority might also need to facilitate 

the purchase of spare and replacement parts for the disinfection system. Finally a log 

book for recording system operation and purchasing would also be advisable. 

 

6.4.3.2 Emergency protocol 

An effective protocol for responding to system malfunction is a vital. System 

malfunction could expose the community to waterborne disease, and therefore should 

be dealt with in a swift and efficient manner. The first step in the procedure would be to 

close both the inlet and outlet taps of the disinfection system. The user’s manual would 

then assist in problem identification and response. A local authority (e.g. a plumber with 

knowledge of the system) might need to facilitate fixing the problem but it would also 

be of benefit if the community owned an appropriate tool kit and set of spare parts for 

fixing basic problems.  
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6.5 CONCLUSIONS TO CHAPTER 6 

• The disinfection system operates automatically in response to water demand (i.e. 

consumption) and water availability. 

• The disinfection system has water-powered components and is designed for chlorine 

dosing to water at atmospheric pressure. 

• The chlorine dose constitutes freshly produced hypochlorous acid of negligible 

chlorate content. 

• Chlorine dosing can be controlled at three levels: (i) adjustment of electrolysis time 

(ii) adjustment of brine supply volume and (iii) adjustment of current supply. 

• Both the brine supply to the electrolyser and chlorine dose to the water are powered 

by water moving through the system. 

• Timing of brine electrolysis and water flushing control are powered electrically by 

components that use ~1/10th of the power required by the electrolyser. This reduces 

the solar panel requirements that otherwise would considerably raise the capital cost 

if electric pumps where to be included. 

• A 10-20 W solar panel system is sufficient to supply the entire system’s electrical 

energy requirements. 

• Community maintenance and emergency response protocols are required. 
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CHAPTER 7 

RURAL OPERATION OF THE SYSTEM  

 

This chapter presents the pilot study of the installation and testing of the disinfection 

system at a rural site in the Western Cape. An overview of the project site and test 

period is given below (Table 7.1). 

 
TABLE 7.1. OVERVIEW OF PROJECT SITE & PROJECT PERIOD 

Rural site 
Location: Worcester, Western Cape 
Location’s name: Oude Wagon Drift farm 
Location’s type: Fruit and dairy farm  
Community occupation:  Farm workers 
Community size:  18 households (~110 people) 

Pre-existing water supply 
Reticulation:  Household taps 
Storage: 3 × 2,000 L raised storage tanks 
Supply to tanks: Farm irrigation pipeline (at 3-bar pressure)  
Pre-treatment: Pressurized disc filtration   
Water origin:  Breede River 
Water catchment area: Breede River Valley 
Local water authority: WEWUSA 

Project period 
Initiation: January 2008 
Installation period: 4 months 
Test period:  13 months (May 2008 – June 2009) 
Total running period estimated:  7 months   
Longest uninterrupted running period: 2 months (July – August 2008) 
Stoppage time: 6 months  
 
7.1 SITE SELECTION 

The Western Cape, particularly within a day’s drive from Cape Town, has relatively 

few communities dependent on untreated water. However, an appropriate site was 

eventually found by contacting the Worcester East Water Users Association 

(WEWUSA) manager, Mr Frikkie Joubert. The WEWUSA pump water from the 
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Breede River for farm irrigation. This water is also used by the communities of farm 

workers for all domestic purposes including drinking. With the help of Mr Joubert a 

farm was selected on which a community of approximately 20 families lives.  

 

To reach the farm (a fruit and livestock enterprise owned by the Naude family, headed 

by Mr Willie Naude) one travels 6 km from Worcester (two hours’ drive from Cape 

Town) on the N15 (R60) to Robertson turning left at Over Hex crossing for a further 3 

km (Fig. 7.1). This farm was therefore chosen as the site for the project as it satisfied 

the requirements for testing the disinfection system in a rural situation. 

 

 
Fig. 7.1 Satellite image (~20.3 km altitude) showing the WEWUSA water supply 

system and project site. 
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7.1.1 The existing water source 

The water source at Oude Wagon Drift farm supplies a farm worker community of ~100 

people. The water is pumped directly from the Breede River and on the farm it passes 

through a series of high pressure ~200 micron disc filters (Fig. 7.2). This supplies 3 × 

2,000 L tanks that are elevated above the community houses. The tanks are fed at ~3 bar 

pressure and each supplies six households (Fig. 7.3) with water for domestic use.  

 

 
Fig. 7.2 Existing disc filtration system on the farm. 

 
 

 
Fig. 7.3 Community households on the farm. 
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The water is pumped from the Breede River at a site 2 km downstream from an inlet of 

the Brandvlei dam (Fig. 7.1). The inlet is 2.2 km downstream from a seepage area that 

receives treated effluent from the Worcester sewage works. Although there was 

continuous monitoring of the water quality in the river by the Winelands District 

Municipality, the Worcester East Water Users Association (WEWUSA) had obvious 

concerns as to the quality of water being supplied to the farm workers. The water is 

pumped from the river and supplies many farms in that part of the Breede River valley. 

The pump house is about 15 km from Oude Wagon Drift farm.  

 

During the winter rains and in spring time, there was adequate water in the Breede River 

to allow pumping for irrigation, however, in summer and early autumn water was added 

to the river from the Brandvlei dam (Fig.7.1). In those periods the water was much 

darker in appearance due to suspended solids and it also has an unpleasant odour. This 

was due to the presence of disturbed sediments from the dam. Clearly there was a need 

for filtration and disinfection for the water supply to be used as drinking water. 

 

 

7.2 INSTALLATION OF THE DISINFECTION SYSTEM 

For the purpose of the pilot study the disinfection system was intended to operate 

adjacently to the community’s existing water supply. The water from the disinfection 

system was not intended as a substitute for their existing water, but once established and 

proven reliable and safe it could offer a source of chlorinated drinking water on the site.  

 

7.2.1 The Installation site 

A site was allocated next to an existing water tank positioned on top of a 3 m hill 45 m 

away from the community housing (Fig 7.4 A and B). 
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Fig. 7.4 Schematic plan views of site. A. Eye level view. B. Overhead view showing 
existing pipelines and those of the disinfection system with two taps. 

 

7.2.2 Housing  

Construction of the disinfection system began with the installation of a wooden shed 

with a 4 m2 floor space, 2 m wall-height, and corrugated metal roof (Fig. 7.5 A, 

overleaf). The shed provided sufficient floor space and height to house the batch dosing 

system, sand filter (Fig. 7.6 A, overleaf) and a security cage for the electrical 

equipment. The sloping roof of the shed faced due north at an angle of 30°, appropriate 

for positioning solar panels (Fig. 7.5 A). 

 

7.2.3 Water supply and chlorine contact time (CCT) system 

The existing water supply was connected to the disinfection system via a T junction on 

the inlet pipe of the community water tank (Fig. 7.7, overleaf). This arrangement 
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allowed the inlet pipe to supply both the existing water tank and the disinfection system 

simultaneously leaving the existing supply to the households unaffected.  

 

The output pipe from the disinfection system was joined to 60 m of 4 cm diameter pipe 

with a total volume of ~75 L that was coiled around a 1,000 L plastic “JoJo” tank 

positioned outside the shed behind the community tank (Fig. 7.5 A and B). The coil 

provided a 20 minute chlorine contact time (CCT) for each batch of water before it 

reaches the storage tank. The necessary volume and length of the pipe coil where 

calculated as follows: 

 

• Flow rate of chlorinated water from dosing tank = 30 L/8 min batch (or 3.75 L/min) 

• Pipe volume required for a 20 min retention time = 3.75 × 20 = 75 L  

• Volume of 1 m of a 4 cm diameter pipe (π × r ² × 100/1000) = 1.257 L 

• Therefore, pipe length containing 75 L = 75 L/1.257 L = ~60 m  

 

The outlet of the tank was joined to a 2 cm diameter pipe which led down the hill 

toward the housing and split 36 m from the shed to feed two taps: one positioned by the 

orchard (for use by the fruit pickers in autumn) and one next to the road ~10 m from 

nearest house (Fig. 7.4). The taps remained locked during the initial testing period of the 

disinfection system. 

 

7.2.3 Batch dosing system and brine supply 

The batch dosing system was set up as shown Fig 7.6 B and Fig. 7.7. The brine supply 

tank was filled with a 25 g/L table salt solution mixed onsite in a 30 L bucket using a 

750 g measuring cup. The brine tank is a 40 L semi transparent plastic tank to allow 

observation of the brine level inside (Fig. 7.6 B).  
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A B 
Fig. 7.5 Outside the shed. A: Housing of the disinfection system and existing community water 

tank. B: Chlorine contact time coil (75 L) and the chlorinated water storage tank (1000 L). 
 
 
 

  
A B 

Fig. 7.6 Inside the shed. A: Sand filter. B: Dosing system (left: showing tanks 1 and 2) and brine 
supply and electrolyser (right). 
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Fig. 7.7 Schematic layout of the disinfection system 
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7.2.4 Power supply  

Three 55 W solar panels were fixed to the roof of the shed to power the disinfection 

system and the remote monitoring equipment. The panels were linked to a regulator 

(load max. 10 A) and a 12 V deep cycle battery, which fed a 300 W inverter with a 220 

V AC output. The battery, regulator and inverter were housed inside a lockable security 

cage inside the shed. 

 

7.2.5 Electrical equipment and remote monitoring 

The electrical equipment housed in the shed, in addition to the power supply, included 

the circuit box, SSE® remote monitoring box (for current monitoring of the 

electrolyser), and a 3-6 V AC to DC adjustable power supply for the electrolyser (Fig. 

7.8). 

 

 

A B 
Fig. 7.8. Electrical equipment. A: SSE® remote monitoring box. B: Schematic of components 
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7.3 CONSIDERATION OF THE EXISTING WATER QUALITY 

At the beginning of May 2008 the water from the irrigation pipeline had low turbidity of 

less than ~5 FNU, and was low pH (pH 6-6.5), which was a promising prospect for both 

chlorination and brine electrolysis. WEWUSA also kindly provided a printout of water 

analysis conducted at the irrigation pump station inlet on the Breede River. The data 

covered the months of February and March that same year (Table 7.2).  
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The turbidity of the water at the site, < 5 FNU (on May 2008), was considerably less 

than that of the water described in Table 5.2, 20.3 NTU (or FNU), that had been tested 

two months earlier. This suggested that either the water quality in the river had 

dramatically improved over two months and/or that the high pressure sand filters in the 

irrigation system network and the pre-existing disc filters on the farm had collectively 

removed at least 90% of the turbidity.   

 

7.4 ESTABLISHING THE DISINFECTION SYSTEM AND REMOTE 

MONITORING 

7.4.1 Determination of chlorine demand and filling the storage tank  

The chlorine demand of the water needed to be determined before the system could be 

operated. This was done by letting water into the system and allowing the electrolyser to 

run and dose the water on a 4 V, eight-min batch cycle (as established in Chapter 5). 

The chlorine (FAC) concentration of the water was measured immediately after the dose 

and then again after a 30 min standing period to determine the chlorine demand.  

 

Using a 2.0-2.5 mg/L dose, the chlorine demand was found to be ~0.5-1.0 mg/L after 30 

min to obtain a residual of 1.0-1.5 mg/L. The water was ~pH 5.5-6 (acidic) and ~4.5 

FNU (low turbidity). To achieve the above dose, the electrolyser’s brine supply needed 

adjusting to deliver ~10 mL of brine at 25 g/L.   

 

After establishing the chlorine dose requirement, the disinfection system was allowed to 

fill up the 1,000 L storage tank. Owing to the position of the storage tank and the 

inclusion of the float valve, the maximum water volume in the tank was only 850 L. 

The filling of the tank from empty took ~5 hrs. Once full, the chlorine residual in the 

tank water was measured and found to be ~0.1 mg/L. The loss of residual in the tank 

probably did not result from malfunction of the electrolyser, owing to the maintenance 

of stable current readings (~0.3-0.45 A) throughout the procedure. The loss probably 

reflects the demand of the tank itself and the dilution effect of mixing incoming water 
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with standing water over the 5 h period. Regardless of the cause it was reasoned that 

this problem could be overcome by increasing the chlorine dose accordingly.  

 

7.4.2 Maintaining an acceptable chlorine residual in the storage tank 

This procedure was more difficult than expected. The initial goal was to ensure that a 

residual between 0.2 and 0.5 mg/L could be maintained at the tap. However, this would 

be highly dependent on the level of consumption at the tap. For example, a starting 

residual of 0.2 mg/L in the tank was completely depleted at both the tap and the tank 

after 48 h of no water consumption.  

 

Considering that as an optional water source the consumption levels could be highly 

variable from day to day and thus input of volumes of chlorinated water to the tank 

would vary accordingly, this was a difficult problem to solve. It was decided that the 

tank should receive much higher doses of chlorine to ensure the water leaving the 

system was disinfected prior to its dilution in the larger volume of the tank. Therefore, 

unless consumption was very high, an overdose of chlorine in the tank was not possible. 

At the time of this decision the chlorine dose was increased to ~4.5 mg/L to ensure its 

disinfection prior to dilution. This corresponded to a 15 mL brine dose to the 

electrolyser ran at 4 V for 15 min. The outcome of this method was that an increase in 

consumption would be accompanied by an increase in chlorine residual. 

 

7.4.3 Current monitoring 

Having established the disinfection system with a dosing regime, a system for managing 

remote monitoring was developed. In order to simulate water use, an arrangement with 

a community member was made to run water from the road tap on a daily basis during 

the farm’s lunch period. The water was fed via a pipe into the vegetable garden (Fig. 7.7 

B) and the tap was closed when the community member heard the flushing of the dosing 

system inside the shed. This allowed the response of the disinfection system to water 

demand to be monitored remotely from the UWC laboratory, by recording the 

electrolyser’s activity as a current reading. Table 7.3 shows the current readings 

obtained for a two-week operation of this procedure. 
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TABLE 7.3. CURRENT MONITORING OVER A TWO WEEK TEST PERIOD 

Day 1 2 3 4 5 6 7 8 9 10 11 12 
Current 
peak 

0.48 0.51 0.55 0.46 - 0.58 0.6 0.55 - - 0.61 0.52 0.58 - 

Current 
resting 

0.03 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.0 0.01 0.01 0.03 0.0 0.0 

Days 3 and 5 the system flushed two batches (i.e. 60 L).  
Days 4, 7, 8 and 12 the operator was unavailable. 

 
 

Table 7.3 above shows that the system reliably responded to the level drop of water in 

the storage tank. Current peaks caused by electrolyser activity corresponded to times of 

water consumption and maintained a reliable level over the two-week period. The 

resting current corresponding to the presence of water in the electrolyser remained low 

in periods no activity. It was concluded that the system had worked successfully and its 

activity could be monitored remotely.      

 

7.5 CONSIDERATION OF THE COMMUNITY 

Community participation and acceptance of the study was essential for it to commence. 

In order to learn about the community and understand their feelings toward their 

existing water supply and their feelings toward the project, a baseline household survey 

was designed to gather the following information: 

 

• Average household population and age distribution of the community. 

• Nature of the existing household water supply system and the community’s feelings 

toward it. 

• Recent health history (incidence of diarrhoea). 

• Community knowledge and understanding of water chlorination. 

• Community feelings towards the project and willingness to participate and use the 

chlorinated water from the disinfection system. 
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7.5.1 Approach 

One adult member from each household was interviewed using the baseline survey 

questionnaire (see Appendix 1) and was explained the purpose and intensions of the 

study. The survey was conducted on Saturday 12.07.2008 between 12:00 and 14:00. 

This date and time was determined as most suitable, since most community members 

would be present (the survey coincided with a televised Springbok Rugby match). The 

survey included the presentation of a glass of water from the disinfection system, and a 

demonstration that the chlorinated water was safe to drink. 

 

7.5.2 Summary of findings from questionnaire 

• Average household population: 

3 Adults 

3 Children 

Total community population = ~110 people  

 

• Average household access to water: 

4 taps  

1 toilet  

1 shower  

1 kitchen sink  

1 bathroom sink 

 

• Pre-existing water source:  

3 overhead asbestos (2,000 L) tanks shared between the 18 households, 6 

households per tank on average. 

 

• Feelings towards the pre-existing water quantity and quality: 

Quantity:  

All interviewed were happy with the quantity. 
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Quality: 

Observations of abnormality were described by 3 households. These participants 

mentioned that in summer and autumn the water appearance was brown or murky; 

tastes muddy even brackish; and has a slight musty smell.  In winter, the water was 

reported as being clear and colourless but with frequent mud specks; tastes sweet; 

and has no smell. The participants were concerned about the summer quality of the 

water and mentioned that they boiled their water during this period. 

 

• Recent health history (incidence of diarrhoea): 

Two households reported single incidences of diarrhoea (one adult woman and one 

5 year old boy) both within the last two years, but did not suspect the water and 

attributed the cause to something they may have eaten. 

 

• Knowledge of water chlorination:  

More than 50% of the participants were not aware that municipal water contains 

chlorine and smells slightly of “Jik”. The role of chlorination in water disinfection 

was also largely unknown by the participants.  

 

• Willingness to drink the chlorinated water: 

All participants were prepared to taste the chlorinated water and most could detect 

the smell of “Jik” when asked. Some participants detected that the water had a 

different taste. One participant mentioned that the addition of chlorine to the water 

seemed strange owing to their familiarity with bleach (Jik®) as a cleaning product. 

 

• Willingness to use the communal chlorinated water tap: 

The majority of participants said they would be prepared to try using the water from 

the roadside tap. Some participants mentioned that the tap was too far from their 

houses, but might try it if they were thirsty walking by. 
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• Opinion of the disinfection system: 

No participants raised objections, and all those interviewed understood that the 

disinfection system represented an optional source of drinking water. Some 

considered the system interesting but were not sure whether it was a necessity. In 

general more concern was expressed about the muddy state of the water in summer 

and one participant asked if the system would fix the problem. 

 

7.5.3 Discussion and major conclusions from the baseline survey 

Information gathered from the baseline survey and site assessment resulted in the 

following major conclusions concerning the project’s commencement: 

 

• The disinfection system should supply an optional drinking water source: 

Owing to the well established household plumbing (toilets, taps, sinks etc.) at the 

site, the water consumption rate by the community (estimated at a minimum of 10 

kL/day), would exceed that of the disinfection system’s output, which as a prototype 

was established to provide a maximum of ~5 kL/day. Therefore, it was concluded 

that for the scope of this study, the disinfection system would best serve as an 

optional source of chlorinated water that could be used for drinking, food 

preparation and limited bathroom use (e.g. brushing teeth). 

    

• The water at the site requires both chlorination and pre-treatment: 

The mention of changes in the existing water quality (discoloration, smell, taste etc.) 

during summer indicates that water disinfection is required at the site, and that 

ideally the entire water supply to the households should be chlorinated and undergo 

a more efficient pretreatment stage. The appropriate level and method of pre-

treatment would be determined during the course of the project. Case history of 

diarrhoea was minimal suggesting that even if there was microbial contamination of 

the water it had not seriously affected the community. However, the continual 

expansion of Worcester’s lower income housing settlements upstream of the 

WEWUSA pump station may cause the water quality to deteriorate in the near 

future. 
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• Boiling of drinking water reveals community concern 

The fact that the community boils their drinking water in summer shows awareness 

of the threat of potential illness from water.  

 

• A community operator for the disinfection system was available and willing to 

participate:  

During the installation of the disinfection system various members of the 

community had voluntarily helped in its construction and testing during the lunch 

periods on the farm. One member of the community showed particular interest and 

participated in the remote monitoring of current experiments (section 7.4.3 and 7.6). 

During this period, this member became the elected community operator for the 

disinfection system and gained a good understanding of how it worked and needed 

to be maintained. The location of the system (being on a daily used route (near the 

road) and within 100 m of the elected operator’s house) also made it readily 

accessible to the operator.   

 

• Households furthest from the tap might not use the roadside tap: 

The distance of the roadside tap from the furthest houses in the community was 

more than 100 m. Such households were unlikely to readily carry water over this 

distance given that they already have taps in their houses. Therefore, if the 

disinfection system was to prove successful more taps and increased pipeline length 

might be required to make the water more accessible. 

 

• Community response permitted commencement of the study: 

No objections towards the disinfection system were raised by the interviewed 

participants, and all interviewed proved willing to drink the chlorinated water. 

Therefore, it was concluded that the system could be made accessible for use by the 

community. 
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7.6 CONTINUOUS OPERATION OF THE DISINFECTION SYSTEM 

Having established the disinfection system and potential support of the community to 

use the water, the disinfection system could be left to run at the site under the 

supervision of the community operator. During a continuous, uninterrupted, two-month 

period from the start of July to the end of August 2008, the disinfection system was 

monitored remotely and checked on weekly visits by the project team.  

 

The following parameters were monitored: 

 

• Electrolyser current (daily remote monitoring from UWC). 

• Water use (via indication of electrolyser current activity). 

• Chlorine (FAC) concentration, turbidity and pH (during weekly visits).  

 

On each weekly visit an additional test batch was run, and chlorine concentration, 

turbidity and pH were measured directly from the freshly dosed batch in the dosing 

tank. Chlorine concentration was also measured in the storage tank and at the road side 

tap on each weekly visit (results are presented in section 7.6.2 below).  

 

7.6.1 Role of the community operator 

During the two month period the community operator was accessible by cell phone 

communication and had access to the disinfection system for checking the brine supply. 

The operator was also given instructions for how to shut down the disinfection system if 

a problem was detected via remote monitoring at UWC. This was achievable by the 

operator simply closing the inlet tap to the disinfection system (Fig. 7.7).  

 

7.6.2 Results of continuous operation 

The results obtained from both remote monitoring of current (RM current readings from 

batches) and weekly visits to the site are presented in Table 7.4. The batch number 

represents the number of times the electrolyser was activated by community use of the 
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tap, and indicates the point at which more than 30 L had been drawn from the storage 

tank.  

 
TABLE 7.4 RESULTS OF CONTINUOUS OPERATION 

 July 2008 
Total amount of water drawn from tank ~60 L (or 2 
batches) 

 Week 1 Week 2 Week 3 
 

Week 4 
 

No. of batches 1 1 0 0 
RM Current reading     
Batch 1 0.48 A 0.51 A   
Weekly visit     
Chlorine residual in tank 0.1 mg/L 0.0 mg/L 0.0 mg/L 0.0 mg/L 
Chlorine residual at the 
road tap 

0.1 mg/L 0.0 mg/L 0.0 mg/L 0.0 mg/L 

Chlorine conc. test of 
dose 

4.6 mg/L 3.8 mg/L 4.2 mg/L 4.3 mg/L 

Turbidity 3.5 FNU 5.6 FNU 4.9 FNU 5.2 FNU 
pH 6.3 6.7 6.3 6.1 

 
 
 

TABLE 7.4 RESULTS OF CONTINUOUS OPERATION (continued) 
 August 2008 

Total amount of water drawn from tank ~90 L (or 3 
batches) 

 Week 3 
 

Week 4 
 

Week 3 
 

Week 4 
 

No. of batches 1 0 1 1 
RM Current reading     
Batch 1 0.54 A  0.51 A 0.56 A 
Weekly visit  No visit  No visit 
Chlorine residual in tank 0.0 mg/L  0.0 mg/L  
Chlorine residual at the 
road tap 

0.0 mg/L  0.0 mg/L  

Chlorine conc. test of 
dose 

4.7 mg/L  4.9 mg/L  

Turbidity 4.7 FNU  4.9 FNU  
pH 6.5  6.1  
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Total amount drawn from July and August > 150 L  
 
7.6.3 Discussion and conclusions from the continuous running period  

• The disinfection system proved reliable:    

The results from the continuous running period (Table 7.4) show that the system 

operated in a reliable manner owing to consistent current yields from the 

electrolyser and consistent chlorine doses at the dosing tank. During this period the 

inlet water had minimal fluctuation in turbidity and pH.  

 

• Limited use of water and loss of chlorine residual in the storage tank: 

The total use of water over the two month period amounted to less than one batch 

(30 L) per week, or 150 L in total over two months. Consequently, the 

corresponding rate of incoming chlorinated water to the storage tank was 

insufficient to maintain a desired chlorine residual of 0.1-0.5 mg/L of water. The 

water entering the storage tank did however receive sufficient chlorine contact time 

(20 minutes at ~4-5 mg/L) for disinfection to occur prior to its dilution in the 1000 L 

tank (see section 5.4 concerning chlorine demand). 

 

• Probable factors behind the limited use of the water:   

Two factors probably account for the limited use of the water by the community. 

Firstly, the water supply to the household taps during the test period (i.e. winter) 

was of low turbidity and perceivably good quality. Secondly, the distance and 

inconvenience of having to collect water from the roadside tap was likely weighed 

against the first factor by the community.  

 

• More taps could help maintain a higher chlorine residual in the storage tank: 

Given that prolonged standing time of water in the storage tank reduced its chlorine 

residual, easier access to the water (which might result in higher consumption) could 

increase the chlorine residual in the storage tank. Therefore, installation of taps in 

the yards of the community households could provide a future answer to this 

problem (see section 7.8.2). 
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7.7 PROBLEMS ARISING FROM INCREASED TURBIDITY  

Fluctuations in the turbidity of the water supply began in September 2008. The water 

became increasingly more turbid through spring, and by late summer (February to the 

end of April 2009) it had risen to 120 FNU. Communication with WEWUSA revealed 

that the phenomenon was caused by the release of water from the Brandvlei Dam into 

the Breede River, which is done to increase the water level in the river to maintain 

pumping of irrigation water to the farm network.  

 

7.7.1 Adjustments to the filtration system 

The sand filter (Fig. 7.6 A) installed in the shed failed to remove the increased turbidity 

of the water. There was also concern that the intermittent nature of the water flow (i.e. 

as 30 L batches) through the filter disturbed its optimal function. Furthermore, the filter 

proved difficult to clean because of insufficient backpressure for backwashing the sand 

(thorough washing of the sand by hand would have proved extremely inconvenient on a 

regular basis). Therefore, the sand filter was replaced by an easily cleanable disc filter 

(the ANJET F50) with a 115 micron filtration pore size (Fig. 7.9 and Fig. 7.7). The filter 

canister provided a convenient housing to include granular carbon in the form of 

graphite or charcoal chips for removing odours and unwanted chemical contaminants in 

the water. The filter could be easily dismantled in-situ via a spring clip mechanism and 

the discs loosened for cleaning.  
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Fig. 7.9 The ANJET F50 disc filter that replaced the sand filter. 

 
Fig. 7.9 shows the dissembled filter in two parts: the left hand side part contains the disc 

stack which fits into the casing on its right hand side. Water enters the casing from the 

right hand side pipe and then passes through the channels in the disc to leave via the left 

hand side pipe. 

 

7.7.2 Effects of turbidity increase on the operation of the disinfection system 

While the disc filter had made filter cleaning easier it did not improve the removal of 

the turbidity from the water. Consequently, the high turbidity of the water made 

chlorination unsuitable due to following reasons:  

 

(i) The masking effect of high turbidity (i.e. > 10 FNU) on disinfection.  

(ii) The increased risk of toxic THM formation from the organic content of the 

 turbidity.  

(iii) Turbidity at 120 FNU also directly affected the function of the electrolyser, 

 causing current to drop by ~0.1 A through blockage of the ceramic membrane. 

 The effect was detected via the remote monitoring system, and the 

 disinfection system was subsequently shut down by the community operator 

 following a phone call from the project team at UWC. The effect of high 
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 turbidity on the electrolyser was confirmed by tests conducted at the UWC 

 laboratory  (Chapter 4). The tests also found that membrane function  could be 

 restored by washing in clean water. 

 

Owing to the above reasons, the disinfection system had to be shut down during the 

summer and autumn periods of high turbidity. 

 

7.7.3 Impact of the summer and autumn shutdown of the disinfection system 

The shutdown was particularly unfortunate because during this period the community 

was likely to drink more water due to the heat and be inconvenienced by having to boil 

their household water. Collection of water from the disinfection system would have 

offered an easier alternative. Furthermore, this period contains the autumn fruit harvest 

on the farm where an additional 100 part-time workers are employed: hence the 

inclusion of the orchard tap by the project team (Fig. 7.4 B). The community operator 

conveyed that the community had voiced their disappointed that the system had been 

shut down, and that he had explained to them that turbidity had caused the problem.  

 

In conclusion, there was a clear need for a more effective form of pre-treatment at the 

site, which would permit chlorination and provide drinking water when it is most 

needed. This was beyond the means and scope of the pilot study but has been listed as a 

recommendation point for future action. This in itself represents a much needed future 

project, i.e. a small-scale water clarification system that could operate inline with the 

disinfection system for surface water treatment (see section 7.8.2). 

 

 

7.8 FUTURE OF THE DISINFECTION SYSTEM AND THE PILOT SITE 

Considering a successful operation period had been achieved, and that the site proved 

ideal (regarding its locality, potential for community involvement, and requirement for 

water treatment), both the site and the disinfection system had potential for further use 

and development. In particular, the following areas of development needed to be carried 

out to establish the viability of the disinfection system: 
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7.8.1 Facilitating future community management of the disinfection system 

For the system’s future viability it must be manageable purely by the community. 

Furthermore, the high cost of remote monitoring equipment was only appropriate for 

experimental work and tests. Therefore, the following adaptations were considered for 

future community management: 

 

• Inclusion of a small voltage control box with current and voltage displays. This 

would allow the performance of the electrolyser to be viewed on site. 

• A detailed user’s manual for maintenance and emergency protocol should be 

compiled.   

• Inclusion of an inexpensive chlorine measurement kit that could be used by the 

community or by an appropriate local authority. 

• A contactable local authority that also has knowledge of the system in case the 

designated community operator is unavailable. WEWUSA are ideal candidates and 

have a constant presence in the farmland community. 

• Ability to acquire spare parts and replacement components.  

• A method and schedule for cleaning the cathode. The need for cleaning the cathode 

did not arise at the site during the pilot study but might in time, and certainly could 

at sites that have hard water. 

 

7.8.2 Required modifications at the site  

Upon the completion of this report the pilot site needed two urgent modifications for 

optimal use and operation of the disinfection system. These were: 

 

• The installation of an appropriate pre-treatment method for removing turbidity to 

permit disinfection in summer and autumn.   

• Extension of the existing chlorinated water pipe to reach the individual yards of the 

households. This would facilitate access to water and potentially increase the 

chlorine residual (i.e. by reducing the water’s retention time in the tank). 
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7.9 CONCLUSIONS TO THE PILOT STUDY 

The system proved mechanically viable under the test conditions and period of 

operation. A longer test period was needed (owing to the delays caused by turbidity) to 

fully establish the system’s mechanical durability. This would be possible if turbidity 

removal and an increase in community water use can be achieved at the site (section 

7.8.2).  

 

Potential for the community’s acceptance of the system is gleaned from the baseline 

survey and from the interest and participation of the community operator. The 

community showed interest in the system and were aware that the water quality in 

summer posed a health threat and thus boiled their water. Consequently, disappointment 

was expressed at the summer shutdown of the system. Various adaptations (section 

7.8.1) will be required to establish whether the system is viable for community 

management.   
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

 
8.1 Capacity and cost of the disinfection system 

The capacity and costs of the disinfection system are summarised below in Table 8.1. 

The costs cited are those applicable to the prototype disinfection system and do not 

include the remote monitoring system or the various additional components that might 

be required at different sites (e.g. housing, storage tanks, pipeline supply, pre-treatment 

equipment, etc.). 

 
TABLE 8.1 CAPACITY AND OPERATING CHARACTERISTICS  

OF THE DISINFECTION SYSTEM 

M
em

br
an

e 
el

ec
tro

ly
se

r Chlorine production: Maximum: ~20 g/day (24 h)   
Salt consumption: Maximum: ~70 g/day  
Brine feed concentration:  25 g/L (table salt in water) 
Brine feed rate:  Adjustable 5-15 ml brine batch and adjustable 

retention time in the electrolyser 
Operating power:  Ave. ~2 W (using 4 V DC) 

D
is

in
fe

ct
io

n 
sy

st
em

 

Water chlorination 
capacity: 

< 10 kL/day  

Batch disinfection rate:  30 L of water per 5-20 min cycle 
Chlorine dose range: 1-7 mg/L  
Population served: 100-200 people (no less than 25 L/person/day) 
Energy consumption per 
day:  

Maximum: ~55 Wh (electrolyser + batch dosing) 

Maintenance: < 30 min /week 

C
ap

ita
l 

co
st

s 

Electrolyser:  ~R 2 000 
10 W Solar power system: ~R 4 000  
Batch dosing system: ~R 3 000  
Total:  ~R 9 000 

R
un

ni
ng

 
co

st
s 

Salt (< 2 kg/month): ~R 15/month 
*Operator (2 h/month): ~R 100/month 
Total:   ~R 15-115/month 
*Alternatively, maintenance could be managed for free within the community. 
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8.2 Cost saving features of the disinfection system 

(i)  Exclusion of electrical pumps:  

The control system for the batch dosing system cost ~R1 500 to construct and used ~5 

Wh/day; this could be supplied, including the electrolyser, by a 10 W solar panel. In 

contrast, one small peristaltic pump at ~R1 500 operating at 30 W would run for only 10 

min/day at ~5 Wh/day, and would require additional components for its control, i.e. 

requiring more solar panels at greater expense.   

 

(ii)  Role of the membrane: 

An equivalent sized electrolyser lacking a membrane was found to be ~2 × less energy 

efficient and ~2 × slower at producing chlorine. Therefore, the membrane saves expense 

on solar panel requirements i.e. reduces the capital cost of the system. However, the 

viability of the system does critically depend on the longevity of the membrane and 

sites that have hard water may not be suitable for its use (see below: section 8.4).    

 
8.3 Basic installation and operating requirements  

Installation site requirements: 

• Sufficient pipe pressure to supply the inlet pipe of the batch dosing system (at 1.9 m 

from floor level). 

• Water quality of turbidity < 10 FNU. 

• Ground level either level with, or higher than, that of the community taps (unless an 

additional form of pump is used to supply the taps or water is fetched by hand). 

• Housing that is weather proof and securely lockable. A minimum 2 m ceiling height 

is also required and if solar panels are used a position receiving at least 6 h/day of 

full sun exposure is required. 

• Water storage tank(s) (at least 1× 1000 L), and reticulation (pipes and taps). 
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Operation requirements: 

• A designated maintenance operator to carry out brine preparation, filling of the brine 

tank and daily system checking. 

• Ability to respond to system failure, i.e. to turn the system off and either instigate a 

repair protocol or contact a relevant body to do so. 

• Ability to purchase salt (the system requires a maximum of ~2 kg/month, see above: 

Table 8.1, “Running costs”). 

 

8.4. Scope and limitations of the disinfection system 

An open pressure system: 

The disinfection system doses at atmospheric pressure system and can only produce an 

open flow of chlorinated water from its outlet at ~1 m above ground level. Therefore, it 

must be located appropriately for it to supply taps.     

 

Hard water: 

It is highly likely that the membrane of the electrolyser will become blocked if used in 

locations that have extremely hard water. At such sites, the membrane electrolyser could 

be substituted for an undivided electrolyser (see below). 

 

An undivided electrolyser option    

The undivided electrolyser, while less energy efficient than the membrane electrolyser, 

cost < R1,000 to construct (i.e. at least half the price of the membrane electrolyser) and 

it is both easier to service and usable at sites with hard water if a regular electrode 

cleaning protocol is established. However, the chlorination capacity of the system 

would be approximately halved. 
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8.5 Conclusions from rural site operation: 

• Despite the difficulties experienced with turbidity (section 7.7), the system reliably 

produced a consistent quantity of chlorine in water during periods of acceptable 

turbidity of < 10 FNU. 

• Community involvement shows promise for future micromanagement of the system. 

• The remote monitoring of current proved a reliable system for recording electrolyser 

activity. 

 

8.6 Overall conclusions and recommendations:  

The initial pilot-scale testing of the brine electrolyser and disinfection system appears 

both cost effective and reliable. However, in view of the problems encountered from 

turbidity, the recommended future installation sites for the system are presented below: 

 

Recommended water sources: 

• Groundwater sources (boreholes and protected well points). 

• Clarified surface waters (recommended partnership). 

• Treated water requiring chlorine residual boosting. 

 

Recommended future installation sites: 

• Farms, 

• Schools, 

• Clinics and  

• Villages. 

 

Recommended operational procedure: 

The above sites must be no further than 50 km distance of a trained technician with 

knowledge of the system. The technician should make monthly visits to the site and 

 

 

 

 



 108

ideally be contactable for problem solving and site management. Therefore very remote 

rural areas are not suitable unless the above can be satisfied. 

 

Future of the pilot plant in Worcester: 

Running of the existing system was limited to winter periods of low turbidity. 

Therefore, the need for water clarification provides an opportunity for projects in this 

field, and it is recommended (upon the community’s consent) that the pilot plant 

remains as a venue for continued studies on small-scale water treatment.   

 

Commercialisation 

The results suggest that both the electrolyser and dosing system could be suitable 

candidates for commercialisation either separately or in a combined package. An 

uninterrupted running time of at least 6 months is needed to fully confirm the 

consistency of the system and allow the identification of potential any future running 

problems (see below). 

 

8.7 Recommendations for future research 

• The disinfection system should receive at least six months of further testing prior to 

commercialisation, either at the existing pilot plant (if clarification measures are 

installed) or at any of the above-mentioned recommended installation sites. 

• Collaborative research with an equivalent low cost, low tech, rural water 

clarification project would form an ideal partnership, which would address the larger 

problem of surface water treatment. The clarification project could be installed with 

immediate effect at the existing pilot plant, which would also benefit the 

community. 

• Continued running of the system at the existing site will allow further experience to 

be gained in community management issues, such as the drafting of running 

instructions, routines, maintenance and emergency procedures. 
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APPENDIX 1: QUESTIONNAIRE 
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APPENDIX 2: HYPOCHLORITE AND CHLORINE 

 

Relationship between the oxidation strength of chlorine and sodium hypochlorite 

To calculate how much sodium hypochlorite (NaOCl) is required to replace the 

oxidising power of chlorine gas (Cl2), the reaction of these species with potassium 

iodide (KI) in a solution of acetic acid (HAc) reveals the following: 

 

NaOCl + 2KI + 2HAc → I2 + NaCl + 2KAc + H2O  

And… 

Cl2 + 2KI → I2 + 2KCl  

 

Therefore, one molecule of NaOCl will oxidise the same amount of iodide as one 

molecule of Cl2.  

 

Trade terms used to define hypochlorite strength 

Grams per litre of available chlorine – This measurement must be determined using an 

analytical method (e.g. see Appendix 2) and represents the mass of Cl2 of equivalent 

oxidising strength (see above). 

 

Grams per litre of sodium hypochlorite – I.e. the mass of NaOCl in one litre. It is 

calculated from the measurement of available chlorine multiplied by the ratio of their 

respective molecular masses (NaOCl = 74 g and Cl2 = 71 g). E.g. 1 g/L Cl2 × 74/71 = 

1.05 g/L NaOCl 

 

Percentage of available chlorine – This is equal to the mass of available chlorine in 100 

ml.  

E.g. 1 g/L Cl2 = 0.1% Cl2 and 0.105% NaOCl.  
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Weight percent of available chlorine – This is equal to the chlorine concentration (g/L) 

divided by the specific gravity (actual weight) of one litre multiplied by ten: Cl2 g/L / 

(specific gravity × 10). 

 

Weight percent of sodium hypochlorite – This is equal to the weight percentage of 

chlorine multiplied by 1.05. 

 

(For additional information on hypochlorite handling see: http://www.powellfab.com/) 
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