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ABSTRACT 
 
 

Preferential flow modelling in a vadose zone using 
MACRO 5.0 – Cape Flats porous sands and 

Mpumalanga Highveld clays case studies 
 

 

K. A. Majola 
 

 

MSc. thesis, Applied Geology, Department of Earth Sciences, University of the Western 
Cape, South Africa. 
 

 

Understanding fluid flow and solute transport within the vadose (unsaturated) 

zone is an essential prerequisite for protection of groundwater from contaminant 

sources occurring overland. Preferential flow paths in the vadose zone pose a 

significant problem because they are potential avenues for rapid transport of 

chemicals from contamination sources to the water table. The objectives of this 

study were: 

i) To review and understand flow and transport processes in unsaturated 

zones. In this study, particular emphasis is placed on understanding 

mechanisms that cause non-uniform (preferential) flow for two case 

studies, namely the Cape Flats sandy environment and the 

Mpumalanga Highveld fractured rock environment. 

ii) To evaluate the adequacy of models, in particular MACRO 5.0, in 

simulating flow and transport in the vadose zone, by making use of two 

case study sites (Cape Flats and Mpumalanga Highveld). Of particular 

importance is the evaluation of transfer coefficients to represent fluid 

and solute exchange between macropores and matrix. 

iii) To run a sensitivity analysis with MACRO 5.0 in order determine which 

input model parameters are the most relevant in describing the effects 

of preferential flow in water and solute transport. 
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Two case studies were investigated, the first at a landfill site overlying sandy 

unconfined aquifer (Coastal Park, Cape Town), and the second at an industrial 

site overlying cracking clayey soil and fractured rocks (Mpumalanga Highveld - 

Secunda, Mpumalanga Province). For the Coastal Park site, simulations of soil 

water content and leaching of a generic mobile contaminant were compared to 

monitored soil water contents and chloride concentrations in groundwater. For 

the Mpumalanga Highveld site, simulations of soil water content and 

concentrations of boron and fluoride originating from effluent irrigation were 

compared to soil profile measurements. In both cases, the MACRO 5.0 model 

predictions agreed with measurements well, provided appropriate input 

calibration data were used. The sensitivity analysis indicated that soil water 

properties related to preferential flow (hydraulic conductivity at the boundary 

between macropores and matrix, soil water content and tension, and diffusion) 

have influence on simulation results. Similarly, the solute balance is mostly 

influenced by degradation rate coefficients (both in solid and liquid phases), 

sorption distribution coefficients and solute concentrations. 
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PREFERENTIAL FLOW MODELLING IN A VADOSE ZONE USING MACRO 

5.0 

----------- 

CAPE FLATS POROUS SANDS AND MPUMALANGA HIGHVELD CLAYS 

CASE STUDIES 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background to the study 

 

Fluid flow and solute transport within the vadose zone (the unsaturated zone between the 

land surface and the water table) is the cause of expanded plumes arising from localized 

contaminant sources. Therefore, an understanding of vadose zone processes is an 

essential prerequisite for cost-effective contaminant remediation efforts. Contamination 

of the vadose zone can result from many causes, including chemical spills, leaky 

underground storage tanks, leachates from waste disposal sites and mine tailings, and 

application of agricultural chemicals. Another major environmental concern is the 

potential for long-term migration of radionuclides from low-level and high-level nuclear 

waste disposal facilities (U. S. National Committee for Rock Mechanics, 2001). The main 

requirement for designing remediation and long-term strategies is the development of 

flow and transport models for the vadose zone. The presence of fractures and other 

channel-like openings in the vadose zone poses a significant problem, because they are 

potential avenues for rapid transport of chemicals from contamination sources to the 

water table (U. S. National Committee for Rock Mechanics, 2001). 

According to the U.S. National Committee for Rock Mechanics (2001), structured soils 

and fractured rocks exhibit many similarities in flow and transport processes. Macropores 
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and aggregates in structured soils are respectively analogous to fractures and matrix 

blocks in rock, and therefore communication between researchers in both soil science and 

fractured rock fields will be mutually beneficial. The interaction between fracture and 

matrix exerts a strong control on fluid and solute movement. Solute transport in the 

fractured vadose zone can exhibit complex behavior due to the large variations in fluid 

velocity and the interplay of advective and diffusive transport between fractures and 

matrix. Solute transport models are more complex than flow models, and can involve 

multiple regions to represent the diversity of macropore and micropore sizes.  

 

1.2 Research Problem/ Hypothesis 

The unsaturated zone is regarded as a line of defense to prevent contaminants from 

reaching the aquifer (saturated zone). However, if preferential flow mechanism/system 

within a vadose zone is not understood, it becomes difficult to understand the transport 

process of contaminants since they use water as transport mode. Preferential flow in the 

macropore is coupled with the flow in the soil matrix. Flow in the soil matrix is simulated 

by the Richards equation. Modelling would help in simulating preferential flow in the 

vadose zone and thus assist in an attempt to manage contaminants before they reach the 

aquifer. Various modelling softwares are used to model such conditions. In this study we 

investigate the capability of MACRO 5.0 to modelling preferential flow in unsaturated 

zones. Hence, we ask the following question: How is the preferential flow mechanism in 

the unsaturated zones (vadose zones) of the Cape Flats and Mpumalanga Highveld study 

areas. Moreover, how is MACRO 5.0 handling such simulations? 

The hypothesis of this study was that a dedicated soil water balance model like MACRO 

5.0 would be able to reasonably predict preferential flow and the contamination of 

groundwater from sources occurring at the surface at two sites that have fundamentally 

different environmental conditions such as climate, soil and geological properties. 
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1.3 Aims and Objectives 

Normally it is either impossible or very costly to decontaminate an already contaminated 

aquifer. It is therefore crucial to come up with preventative measures that will guide 

against potential polluting factors in order to ensure the sustainability of usable 

groundwater resources. This could be achieved by assessing, continuously monitoring 

and properly managing these available resources. Thus, a complete understanding of 

hydraulic properties of a given groundwater resource is inevitable for effective protection 

of such resources as aquifers. As a central aim, this project is trying to understand the 

preferential flow mechanism of water (and therefore contaminants) in unsaturated zones 

of the Cape Flats and Mpumalanga Highveld using a relevant modelling method. 

The main objectives are: 

• To review and understand flow and transport processes in unsaturated zones. 

Particular emphasis is placed on understanding mechanisms that cause non-

uniform (preferential) flow for two case studies, namely the Cape Flats sandy 

environment and the Mpumalanga Highveld fractured rock environment. 

• To evaluate the adequacy of models, in particular MACRO 5.0, in simulating 

flow and transport in the vadose zone, by making use of two case study sites 

(Cape Flats and Mpumalanga Highveld). Of particular importance is the 

evaluation of transfer coefficients that will represent fluid and solute exchange 

between macropores and matrix. 

• To run a sensitivity analysis with MACRO 5.0 in order to determine which input 

model parameters are the most relevant in describing the effects of preferential 

flow in water and solute transport. 
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------------------------------------------------------------------------------------------------------------ 

CHAPTER 2 

LITERATURE REVIEW (PREVIOUS WORK) 

This chapter aims to review the previous work on preferential flow in the vadose zone, 

including the modelling methods available. In this case, only two possible modelling 

methods that have been used worldwide are briefly reviewed. They are MACRO 5.0 and 

SWAP. Thereafter, one of them will be selected for use based on the objectives of this 

project and its applicability regarding various conditions of the case study areas, that is, 

porous sands of the Cape Flats and the clays of Secunda. 

 

2.1 Preferential Flow in a Vadose Zone 

Preferential flow is generally described as the flow of fluids within fractures and joints or 

other existing channels, and in the case of a vadose zone, water and solutes by-pass large 

portions of soil matrix. This is a crucial phenomenon since there is a great prevalence of 

preferential flow channels in the shallow subsurface (Jarvis, 2002). Larsbo et al (2005) 

describe preferential flow as the generic term for non-uniform infiltration and recharge 

processes characterized by flow convergence and an increase in the effective velocity of 

water flow through a small fraction of the vadose zone. Micropore and macropore fluxes, 

including preferential flow, make it difficult to estimate travel times of contaminants 

through the vadose zone due to their complex nature. That way it becomes even more 

difficult to assess the vulnerability of groundwater to various impacts such as 

contaminants. A study done in Mpumalanga Highveld by Campbell (2000) indicated that 

the contaminant transport in the vadose zone depends on both the properties of the 

medium and the pollutant. Macropores represent microsites in the soil with larger clay 

and organic carbon contents, better nutrient supply and oxygen status, and larger 

microbiological activity (Jarvis, 2002). These factors generally contribute to a larger 

sorption and degradation capacity per unit mass of soil. 
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The vadose zone of South Africa varies in depth and composition. In many cases, the 

extent of preferential flow may diminish with depth since structural development 

generally becomes weaker in the absence of biotic macropores and physical processes, 

which generate structure, such as wetting and drying or freezing and thawing. However, 

in other widespread hydrogeological formations, such as glacial clayey tills, fracture flow 

has been demonstrated to be continuous to great depth during periods of seasonal 

saturation and is the dominant mechanism of contaminant transport towards underlying 

aquifers. Therefore, it is vital to understand what chemical and hydrologic processes 

occur at a given location in order to correctly predict the behaviour and impacts a 

contaminant may have on the environment. In some places soil cover forms the 

unsaturated zone due to either a result of in-situ weathering or the deposition of 

transported material whilst, in others, there is negligible soil cover whereby the vadose 

zone is mainly composed of fractured or intact bedrock with primary porosity. Geological 

setting of a vadose zone could be very complex and rarely homogeneous because this 

zone is subjected to weathering, erosion, pedogenic and other processes since it 

represents the top portion of the geological profile. Preferential flow can also occur in 

matrix of unstructured sandy soils. 

The vadose zone is divided into three subzones, namely the capillary fringe - 

immediately above the groundwater surface, the capillary zone - with larger pores filled 

with air and smaller pores filled with water, and the discontinuous zone – where water is 

only retained as adsorbed water (Martin and Koerner, 1984). However, areas above the 

capillary fringe may be temporarily saturated due to surface ponding of water or because 

of the development of perched water tables above relatively low permeability soil layers. 

According to Fetter (1999), there are three types of preferential flow in the vadose zone, 

namely: short circuiting, fingering, and tunneling. They take place due to various 

conditions of the media through which water and solute move as they percolate 

downwards (vertically or horizontally). Here is their brief description: 

Short-circuiting (or macropore channeling) occurs when water and solute move through 

macropores (like plant roots, shrinkage cracks and animal burrows) at faster rate than 
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they would in normal soil matrix hydraulic conductivity conditions. See Figure 2.1 

below. 

Figure 2.1: Preferential water movement in the vadose zone due to short circuiting 

(Fetter, 1999). 

 

Fingering is caused by variations in pore-scale permeability. Here, a uniform solute front 

is split in a finger-like manner moving downwards. See Figure 2.2 below. 

Figure 2.2: Preferential water movement in the vadose zone due to fingering (Fetter, 

1999). 

Funneling is governed by sloping beds or layers (normally stratified soils and sediment 

profiles) that are impermeable or with low permeability. The sloping layer collects water 
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from the sides to the end of the layer where it can infiltrate vertically again in a 

concentrated volume. See Figure 2.3 below. 

Figure 2.3: Preferential water movement in the vadose zone due to funneling (Fetter, 

1999). 

Climate also plays a role in the macropore flow system. Macropore flow is generated 

frequently in wet climates, whereas in dry climates it is better developed with shrinkage 

cracks contributing proportionally more to the flow. In Jarvis’ (2002) view, the extent of 

leaching in the presence of macropore flow does not only depend on total rainfall, but 

perhaps more importantly on rainfall distribution and intensity. Experiments have shown 

that the higher rainfall intensity usually leads to greater bypass flow in macropores and 

enhanced leaching of tracers and agrochemicals (Jarvis, 2002). 

 

2.2 Preferential Flow Modelling  

There are many studies done on the subject of preferential flow modelling in the 

unsaturated zone. For instance, Ruan and Illangasekare (unknown date) in their study to 

model colloid (fine grained material with an electrostatic surface charge) transport in 

macroporous vadose zone, assumed that the colloid flux from the macropore is controlled 

mainly by the combination of five factors, namely; 
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i) Lateral infiltration rate through the macropore wall.  

ii) The ratio of the pore size in the soil matrix to the colloid size. A small ratio 

will cause the colloid coagulation in the soil matrix near the macropore and 

decrease the further transport of colloids and the lateral infiltration rate.  

iii) Degree of saturation of the soil matrix around the macropore. Water moves in 

larger pores when water content is higher.  

iv) The flow velocity in the macropore. Higher velocity moves more colloids into 

a deeper part of the macropore.  

v) The cumulative amount of colloids generated through a unit length of the 

macropore wall.  

 

The U.S. National Committee for Rock Mechanics (2001) deems the following questions 

necessary for the development of appropriate conceptual models of fluid infiltration in 

fractured media:  

1) Does the conceptual model provide an adequate characterization of the system?  

2) How well does the model perform in comparison with competing models?  

3) Is the data base adequate to estimate model parameters with sufficient reliability that 

the associated prediction uncertainties are acceptable in light of the intended application 

of the model?  

4) What are the opportunities for field testing and verification of the model? 

Model results, however, are always subject to some degree of uncertainty due to 

limitations in field data and incomplete knowledge of natural processes. A key 

consideration in any modelling process is whether the model has undergone sufficient 

development and testing to address the problem being analyzed in a sufficiently 

meaningful manner. Although model calibration does provide a certain level of model 

testing, a good fit to the calibration data does not necessarily prove that the model is 

adequate to address the issues in question. 
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Beven and Germann (1981) suggested that any model of a combined matrix/macropore 

system should be reduced to a Darcy type model in a soil containing no macropores, and 

they even introduced the domain concept in modelling where the matrix domain 

conforms to Darcian principles.   However, that does not address the macropore flow 

phenomenon. 

Vanderborght et al (2005) concluded that the differences among water flow simulations 

by different models can be attributed to the implementation of the soil surface boundary 

conditions in the models. Also, both the spatial discretization of pressure head profile 

close to the soil surface and the methods of averaging the hydraulic conductivities in the 

first grid layer influence the numerical solutions. An overestimation of solute dispersion 

would lead to an overestimation of leaching, especially when substance decay is 

considered, hence the importance of a correct simulation of solute dispersion.  

 Below is the review of two process models that have been used widely, evaluated and 

compared with other macropore soil models and studies.    

 

2.2.1 A General Review of some Vulnerability Assessment Process Modelling 

Methods in Relation to Preferential Flow in the Vadose Zone. 

This section takes a general look at two possible models, namely MACRO 5.0 and 

SWAP that can be used to simulate dual porosity and preferential flow. In the end one of 

them is selected (with the reasons for such selection) for use in this project. Detailed 

description of the selected model is given in Chapter 3. 
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2.2.1.1 MACRO 5.0 

MACRO is a one-dimensional, dual-permeability model that considers transient fluxes of 

water, heat and solute in the vadose zone. The total porosity is partitioned into two 

separate flow regions (matrix and macropores), each with its own degree of saturation, 

conductivity, water flow rate, solute concentration, and solute flux density. The primary 

objectives of developing this model were to: 

� Synthesize current  understanding of flow and transport processes in structured 

soils, and 

� To develop an easy to use physically based simulation model, which could be 

used as a management tool to evaluate the likely impacts of macropore flow on 

water flow and solute transport to surface and groundwaters. (Larsbo and Jarvis, 

2003). 

Convective–dispersive transport is calculated for solutes undergoing “two-site” (kinetic 

and instantaneous) sorption, passive plant uptake, and first-order degradation controlled 

by soil moisture and temperature. 

MACRO employs Richards’ equation to calculate vertical water fluxes in the matrix. In 

macroporous soils, hydraulic conductivity increases very rapidly across a small pressure 

head range as saturation is approached (Clothier and Smettem, 1990; Jarvis and Messing, 

1995), thus a “cut and join” approach is used to define the matrix–macropore hydraulic 

functions (Jarvis et al., 1991). Soil water retention in the matrix is calculated using a 

modified form of van Genuchten’s (1980) equation (Vogel et al., 2001). Richard’s 

equation and van Genuchten’s equation are described in detail in Chapter 3. 

 

 

2.2.1.2 SWAP 

 

SWAP is the successor of the agrohydrological model SWATR (Feddes et al, 1978) and 

some of its numerous derivatives. According to Kroes (2003), the core of the model 
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exists for implementations of mathematical descriptions of soil water flow, solute 

transport and soil temperatures, with special emphasis on soil heterogeneity. SWAP 

focuses on the transport of salts, pesticides and other solutes that can be described with 

relatively simple kinetics and thus the following processes are not considered in SWAP 

(Kroes and van Dam, 2003): 

� volatilization and gas transport, 

� transport of Non-Aqueous Phase Liquids (NAPLs),  

� chemical equilibrium of various solutes (e.g. between Na
+
, Ca

2+
, Mg

2+
), 

� chemical and biological chain reactions (e.g. mineralization, nitrification). 

The description of SWAP given in this section is mostly abstracted from the Reference 

Manual by Kroes and van Dam (2003). SWAP 2.0 was developed for calculations with 

daily meteorological input data. In general, model results should be analysed on a daily 

base. SWAP also uses Richard’s equation to describe water flow in variably saturated 

soils at a scale where soil can be considered to be a continuum of soil, air and water. 

Hydraulic functions θ(h) and K(θ) as analytical expressions have to be specified for each 

distinct soil layer. Among other advantages of using analytical functions, one is that they 

allow for calibration and estimation of soil hydraulic functions by inverse modelling. In 

situations of total saturation and ponding on soil surface, SWAP can adjust the following 

calculations: 

� Richard’s equation is solved for the soil profile, with prescribed head, h = hpond at  

 the soil surface; 

� then the next ponding depth hpond is updated from the water balance of the total 

soil profile, including surface runoff.  

 

To avoid instability of simulated surface water and groundwater levels, SWAP warns the 

user if large oscillations of surface or groundwater levels occur. Thence, reducing the 

time step is the solution. Transition takes place in the bottom boundary of the one-

dimensional SWAP, which is either in the upper part of the saturated zone or in the 

unsaturated zone. Lower boundary condition can be prescribed for input and there are 

eight options to consider (see Table 2.1).  
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Table 2.1: Eight options for the lower boundary condition in SWAP (Kroes and van Dam, 

2003). 

Lower 

boundary 

condition 

Description Type of 

condition 

Typical scale 

of 

application 

1 Prescribe groundwater level Dirichlet Field 

2 Prescribe bottom flux Neumann Region 

3 Calculate bottom flux from 

hydraulic head of deep aquifer 

Cauchy Region 

4 Calculate bottom flux as a 

function of  groundwater level 

Cauchy Region 

5 Prescribe soil water pressure head 

of bottom compartment 

Cauchy Field 

6 Bottom flux equals zero Neumann Field 

7 Free drainage of soil profile Neumann Field 

8 Free outflow at soil-air interface Neumann Field 

 

Assuming a steady state situation and equal distances between soil layers, the 

displacement of non-reactive solute through this system may be described by a set of 

linear differential equations (van Dam et al, 2003). 

Transportation of solutes in the unsaturated zone is predominantly vertical. The residence 

time there is important because many activities, like decomposition of organic 

compounds, water and nutrients extraction by plants, and more others, take place in the 

unsaturated zone. Diffusion, convection and dispersion are the main solute transport 

mechanisms in soil water. 

 

For simulation in SWAP, basic daily meteorological data are used to calculate daily 

potential evaporation but if basic meteorological data are not available, potential 

evaporation or reference evaporation can be inputs. Kroes and van Dam (2003) believe 

that the detailed simulation of physical transport processes in macropores is not feasible 

due to the fact that a dynamic morphology of each location would require a huge amount 
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of data. They then suggest a search for a systematic behaviour on a larger scale. 

Shrinkage cracks are the sole macropores considered for a simple macropore flow model, 

whilst water flow and solute transport are described with basic physics using normal 

numerical procedures (van Dam, 2000). According to Bronswijk (1988), this shrinkage 

characteristic enables the calculation of the crack volume and depth, and it also describes 

the relation between the amount of pores (void ratio) and the amount of water (moisture 

ratio), 

Stroosnijder (1976) and Bronswijk (1988) distinguished four stages of shrinkage, and 

they are outlined below: 

 

� Structural shrinkage – saturated soils dry up and water filled pores may be 

emptied, thus the volume changes are negligible. 

� Normal shrinkage – Volume decrease of clay aggregates is equal to moisture loss, 

and thus the aggregate remains fully saturated 

� Residual shrinkage – Air enters the aggregate pores since the moisture loss is 

greater than the volume decrease upon drying of aggregates. In this stage, SWAP 

employs exponential relationship, vee sh

v

sh
sh

γα
β

+=
−

, in order to facilitate input 

and data analysis (Kim, 1992). αsh, βsh, and γsh are dimensionless empirical 

parameters which are generated by SWAP from the user input values of eo (the 

void ratio at zero water content), v1 (the moisture ratio at transition of residual to 

normal shrinkage), and vs (the structural shrinkage). Then the e(v) relationship is 

described. 

� Zero shrinkage – Moisture loss is equal to air volume increase of the aggregates. 

Rigid soils, like sands, only show this stage.  

Assumptions 

There are limitations in the usage of SWAP due to many assumptions and 

schematizations of the flow pattern, therefore, van Dam et al (2003) alert the user of the 

following: 

� assumption of steady state during the time increment; 
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� constant depth of the drainage base; 

� assumption of perfect drains; 

� uniform thickness of the hydrological profile 

 

2.3 Case Study Sites Review 

Study areas for this project are the Cape Flats and the Mpumalanga Highveld. This 

chapter investigates the geological, geochemical and geohydrological characteristics of 

the selected areas with emphasis on the vadose zone.  

 

2.3.1 CAPE FLATS 

 

2.3.1.1 Description 

 

The choice of the Coastal Park Landfill site on the Cape Flats as one of the study areas, 

was based on the conditions suitable for the application of the selected modelling 

software and the availability of required data for a modelling process. The site is also 

prone to pollution due to the existence of various sources like landfill and waste water 

treatment sites, and more others. Most of these are close to residential areas and could 

pose a threat to the Cape Flats Aquifer.  

 

The Cape Flats falls within a Mediterranean climate where rain falls mainly during winter 

between May and October. Its annual rainfall averages around 600 mm. It also 

experiences somewhat hot and dry summers, for which the temperature fluctuates 

between an average monthly minimum of 8°C and an average monthly maximum of 

28°C.  

 

The Cape Flats area falls in relatively low-lying planes. These are coastal planes of up to 

300 m above mean sea level along the west coast covering about 600 km
2 

in area. It is 

bounded by latitudes 33°45' E to 34°05' E and longitudes 18°20' S to 18°50' S. It is 
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Figure 2.4: The Coastal Park Landfill site (Saayman et al., 2007).  

covered by urban development and most of Cape Metropolitan population lives within 

the area.  

 

The case study site, Coastal Park, has a landfill site located on the northern coast of False 

Bay. The shallow Cape Flats Aquifer (CFA) supplies fresh water and its flow directions 

are southwards towards False Bay and southeast towards the Zeekoevlei outlet. Figure 

2.4 shows the Coastal Park landfill site in the Cape Flats area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Usher et al. (2004), volatile organic compounds, pesticides, insecticides and 

herbicides are possible contaminants from a typical landfill site. From fertilizers applied 

in peri-urban areas, contaminants such as ammonia, sulphur, chloride, nitrates, potassium, 

phosphates, lead and arsenic are to be expected. Bacterial pathogens and organic nitrate 

in animal farms and abattoirs are common contaminants for that environment. Table 2.2 

outlines some of the pollution sources and their resulting contaminants, especially in the 

Cape Flats area. 
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Table 2.2: Other contaminants reported in Cape Town – the urban catchment (extracted 

from Usher et al, 2004). 

Source Type Expected contaminants 

On site sanitation Nitrate, potassium, chloride, COD, faecal 

pathogens, phosphate, boron 

Cemeteries Ammonium, potassium, microbial pathogens 

Wood processing and preserving Ammonia, arsenic, chromium, copper, creosote, 

dioxins, polyaromatic hydrocarbons, 

pentachlorophenol, phenol, tri-n-butyltin oxide, 

PCB, PAHs, beryllium 

Mechanical and electrical workshops Polyaromatic hydrocarbons, diesel, benzene, 

alkanes, acids, aluminium, arsenic, beryllium, 

cadmium, lead, mercury, nickel, chlorinated 

solvents. 

Automotive refinishing and repair Paint, scrap metals, waste oils, toluene, acetone, 

perchloroethylene, xylene, gasoline and diesel fuel, 

carbon tetrachloride, hydrochloric and phosphoric 

acid. 

Petrol service stations (Underground storage tanks) Benzene, toluene, xylenes (BTEX), oxygenates 

(alcohol, MTBE), metals (lead, nickel), sulphur, 

alkanes, TPH, PAH. 

Rubber and plastics 

Textile manufacture 

Acrylonitrile, antimony, benzene, butadiene, 

cadmium, chloroform, chromium dichloroethylene, 

lead, phenols, phthalates, styrene, sulphur, nynil 

chloride, toluene, heptane, formaldehyde, 

ammonium, arsenic, nickel, hexane 

Hazardous waste sites Ammonium salinity, DOC, heavy metals, methane 

Incinerators Dioxin, various municipal and industrial waste. 

Transport 

Research and educational institutions 

Printing industry 

Food and beverage manufacturing 

Benzene, toluene, xylenes (BTEX), oxygenates 

(alcohol, MTBE), metals (lead, nickel), sulphur, 

alkanes, TPH, PAH, inorganic acids, organic 

solvents,  metals and metal dust, photographic 

waste, waste oils, paint, heavy metal, pesticides, 

silver, Methyl-Ethyl Ketone (MEK), TCE, chlorine, 

chlorine dioxide, nitrate/nitrite, biogenic amines, 

methane, dioxins, bacteria 
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Source Type Expected contaminants 

Railroad yards 

Adhesives and sealants 

Pharmaceuticals and cosmetic manufacturing 

Paint/ink manufacturing and coatings 

Petroleum hydrocarbons, VOC, BTEX, solvents, 

fuels, oil and grease, lead, PCB, benzenes, toluene, 

MEK, alcohols, benzoates, bismuth, dyes, glycols, 

mercury, mineral spirits, sulphur, methylene 

chloride, nitrate, acetates, acrylates, aluminium, 

cadmium, chromium, cyanides, glycol ethers, 

nickel, phthalates, styrene, terpenes, 1,4-dioxane, 

ammonia, anthraquinones, arsenic, benzidine, ethyl 

acetates, hexane, oxalic acid, phenol. 

Hospitals and Health Care Formaldehyde, radionuclides, photographic 

chemicals, solvents, mercury, ethylene oxide, 

chemotherapy chemicals 

General and domestic waste sites Ammonium, salinity (sodium, chloride, sulphate), 

DOC, methane, lead, mercury 

Photographic manufacturing and uses Silver bromide, methylene chloride, solvents, 

photographic products 

Chlorinated solvents 

Non-chlorinated solvents 

Munitions manufacturing 

Carbon tetrachloride, chlorofluoroethanes, 

dichloroethylene, methylene chloride PCE, TCE, 

vinyl chloride, 1,1,1-trichloethane, acetates, 

alcohols, benzene, ethylbenzene, ketones, toluene, 

xylene, nitrate, sulphate, chromium, copper, boron, 

lead, antimony and phosphate. 

Leather manufacturing Toluene, benzene, arsenic, chromium, cadmium, 

sulphate 

Marine maintenance industry Solvents, paints, cyanide, acids, VOC emissions, 

heavy metal sludge, degreasers 

Electricity generation Radioactive waste, salinity, PCBs 

 

The landfill site is underlain by aeolian dune sands that are calcareous at depth. Seawater 

intrusion has been detected, especially in the deep Varswater Formation, the main water 

bearing formation (Traut and Stow, 1999). The Coastal Park site is receiving hazardous 

waste from domestic sources and small business, despite not being lined nor permitted to 

receive such waste. This landfill is only separated from groundwater by a 2 m unsaturated 

zone comprising Cape Flats sands, and it is believed that any pollution would be 
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attenuated  and migrate towards the sea. However, the monitoring process has detected 

leachate generation and pollution plume, and hence groundwater pollution (Ball and 

Novella, 2003). Leachate migration rate from the landfill is 6 to 7 m per year (Ball and 

Stow, 2000).  

 

 

2.3.1.2 Soil characteristics 

 

This section focuses in particular on soil hydraulic properties, which are the most 

important soil characteristics in the context of preferential flow. Due to lack of data on 

hydraulic properties of the soil in Coastal Park, data from iThemba Labs (Samuels, 2007) 

were used for modelling considering that they are exposed to similar environmental 

conditions. 

 

The vadose zone of the Cape Flats Aquifer (CFA) occurs above the unconfined aquifer. 

Its thickness is a function of topography of the land surface and underlying bedrock, the 

seasonal water level, and the degree of interconnectivity with the underlying fractured 

rock aquifer. For unconsolidated material overlying an unconfined aquifer, the thickness 

of the vadose zone is defined as the distance from the surface to the water table (Adams 

and Jovanovic, 2005). Hence the thickness of the vadose zone of the CFA is averaged at 

3 m (within a range of 1 – 5 m). Calcrete and clay layers tend to create perched aquifers 

within the system. The sand is generally well sorted with minor amounts of granules, and 

low silt and clay content. Grain sizes range from 0.75 to 3.25 phi (Adams, unpublished 

data). Freeze and Cherry (1979) estimated hydraulic conductivities for various aquifer 

material. They estimated hydraulic conductivities for both clean and silty sands within 

ranges of 10
-4

 to 1cm/s and 10
-5

 to 10
-1

 cm/s, respectively. 

 

Figure 2.5 together with the soil profile logs of Figure 2.6 give clear description of the 

soil types found on the Cape Flats area, specifically at iThemba Labs . Topsoil comprises 

fine to medium loose sands up to shallow depths. With depth comes sandy clay loam and 

beyond 4 m, clay. Water retention capacities for these various soil types are different. 
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Sandy loam and sandy clay have higher water retention capacities whereas the opposite is 

true for loose sandy soils. 

 

Since the Cape Flats Aquifer is very shallow the soils are well drained. Therefore the 

chemical properties of groundwater as explained in section 2.3.1.4 below also apply to 

the soils of this study site. 
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Figure 2.5: Generalised soil description for the Cape Flats where the Coastal Park 

Landfill site lies (source: Department of Environmental Affairs and Tourism). 
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Figure 2.6: Borehole soil logs from iThemba Labs site (modified from Samuels, 2007). 

 

 

2.3.1.3 Geology 

 

Cape Flats is an area with low topography, which was created by the removal of Table 

Mountain Group between False Bay and Table Bay during Post-Palaeozoic erosion (See 

Figure 2.7).  
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Figure 2.7: Geology of the Cape Flats showing the Coastal 
Park landfill site (source: Geological Map Series of the 
Geological Survey, 1990) 
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The oldest geological rock formation is the Malmesbury Group which is intruded by 

granite batholiths resulting in the deformation and metamorphism of the shales. The Cape 

Granite and the Malmesbury shales are in turn unconformably overlain by the sandstones 

of the Table Mountain Group as shown in Figure 2.7 above. 

 

 

2.3.1.4 Groundwater Quality/Chemistry 

 

The sandy substrate of the Cape Flats and Atlantis areas has a low filtering efficiency 

and, as groundwater is recharged by slow seepage from the surface, this water resource is 

particularly vulnerable to pollution from human activities. The Cape Flats aquifer is of 

variable water quality. Variable amounts of water are abstracted on an ad hoc basis. 

Illegal dumping of waste at industrial and building sites throughout the Cape Flats poses 

a threat to this aquifer. 

 

Groundwater tends to be of sodium-chloride-calcium-alkaline nature (see Piper plot, 

Figure 2.8). Salinity values are high as a result of evaporation due to shallow water 

tables, vlei or marine deposits, agricultural practices, rapid urbanization, industrialization 

and many other potential pollution sources in the CFA (Fraser and Weaver, 2000). There 

are three natural environments according to Fraser and Weaver (2000): aquatic 

ecosystem, terrestrial ecosystem and the marine environment. These environments can be 

impacted if there is large-scale abstraction from the CFA. The CFA is extensively used 

for small-scale farming in the Philippi area and for water supply to the town of Atlantis. 

 

Piper plot (Majola, 2006) in Figure 2.8 shows the abundance of sodium and chloride. 

This is to be expected from a coastal aquifer. This could also be explained as old 

groundwater with persistent chloride. It has been said that sulphate pollution occurs in 

some parts of the area, especially Philippi where agriculture is practiced. The Piper plot 

however indicates that the Cape Flats groundwater is of (Na, K)-Ca-Cl type. But the two 

groupings of points on the plot could indicate two water types which imply two different 

groundwater sources. Probable sources are seepage of sea water and groundwater that has 
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reacted with calcrete which is perching the sands in the aquifer. The maximum 

recommended limits for salt concentration (TDS) and Electrical Conductivity (EC) in 

water fit for human consumption are abstracted from Meyer (2001) as 1200 mg/l and 70 

mS/m, respectively. However, it was observed that some boreholes record excessively 

high TDS concentrations, and whilst EC is mostly beyond the recommended limit, it is 

within the maximum allowable limit of 300 mS/m. This proves high salinity of 

groundwater in the Cape Flats area. 
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Figure 2.8: Piper diagram for the Cape Flats Aquifer (Majola, 2006). 

 

 

2.3.1.5 Geohydrology Characteristics 

 

The Cape Flats Aquifer (CFA) consists predominantly of Tertiary to Recent 

unconsolidated sand deposits. These sedimentary strata were deposited partly under 

fluvio-marine conditions and partly under aeolian conditions (Gerber, 1976). Its thickness 

ranges from 20 m to 30 m.  
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i) Primary Aquifer 

 

The primary aquifer system is known as the Sandveld Group and various formations were 

deposited under shallow marine, lacustrine and aeolian conditions. The sands of the 

Witzand and Springfontyn Formations constitute the major groundwater target, with 

hydraulic conductivities ranging between 30 – 40 m/d in the central area and 15 – 50 m/d 

in the eastern portion (Vandoolaeghe, 1989). These are fine to coarse, generally well 

sorted and well rounded sands. There is, however, an occurrence of sandy clay and 

clayey sandy lenses due to grain size variation with depth and width. Therefore, 

heterogeneity is caused. In some parts, the underlying white clay layer of thickness 

ranging from 40 m to 60 m is a result of weathering of underlying Malmesbury Group 

rocks that consist mainly of shale.  

 

ii) Secondary Aquifer 

 

The Malmesbury metasediments are extensively weathered and pelitic, hence they are 

considered impervious. However, high yields were observed in the arenaceous brittle 

sandstones along the west coast. In the eastern Cape Flats, boreholes were seen by 

Wessels and Greeff (1980) to be yielding good quality water. Also, Philippi agriculture 

abstracts some of its water from the Malmesbury aquifer. This is a transmissive aquifer, 

characterized by brecciated zones associated with faults. The groundwater is generally of 

sodium-chloride-alkaline nature (Meyer, 2001). 

 

iii) Impermeable Layers 

 

These are Langebaan and Varswater Formations. The calcareous clay and calcrete layers 

of the Langebaan Formation act as an impermeable barrier and hinder the free flow of 

groundwater and hence are regarded as aquitard layers when present. The Varswater 

Formation has shelly gravel and calcareous sands. It is regarded as an aquitard as well 

when the Springfontyn and Witzand Formations are present. Hydraulic conductivity here 

ranges from 1 to 23 m/d. (Vandoolaeghe, 1989). 
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iv) Regional Flow System 

 

The CFA is an unconfined aquifer, not linked hydrogeologically to any other aquifer and 

with no lateral hydraulic or geological boundaries internally. It pinches out against 

impermeable boundaries in the east, west and north, whilst it is defined by the coastline 

extending along False Bay in the south (Wright & Conrad, 1995). Groundwater flow is 

either west to Table Bay or south to False Bay, that is, flow directions in the main part of 

the aquifer are either westerly or southerly. Water levels indicate a lower hydraulic 

conductivity along the coast compared to that inland. The groundwater levels of the 

Zeekoevlei shallow pond are partly maintained by groundwater seepage, with possible 

exceptions of short periods after heavy rains.  

 

According to studies done by Henzen (1973) and Gerber (1976), transmissivity values 

ranged from 50 to 650 m
2
/d with effective porosity in the order of 0.10 to 0.12 although 

values of 0.25 were found in other areas. Storage coefficients, according to van Tonder 

and Botha (1985), range from 0.002 to 0.35. 

 

 

2.3.2 MPUMALANGA HIGHVELD 

 

2.3.2.1 Description 

 

This choice of Mpumalanga Highveld as the second study area was based on the 

conditions suitable for the application of the selected modelling software and the 

availability of required data for a modelling process, more than other possible study 

areas. Sasol operates a large petrochemical facility at Secunda (Mpumalanga Highveld). 

Some surplus ammonia rich process effluent containing elevated concentrations of 

fluoride and boron have been disposed of by permitted irrigation, exploiting evaporation 

to get rid of the excess water. This was the method approved by the Department of Water 

Affairs and Forestry. Effluent has been irrigated onto land from 1991 to 2000 at the 

Goedehoop site. Moreover, it has been observed that the clays in some areas are cracked 
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to great depths. This fractured environment makes Mpumalanga Highveld distinct from 

the Cape Flats thus allowing the run of the model for two different environments. 

Continuous soil and groundwater monitoring in the area has been conducted by Sasol. 

Such monitoring of soil properties and groundwater quality implies therefore that most of 

the required data for this study are available. 

 

Mpumalanga Highveld falls within the temperate climate, therefore it experiences warm 

summers and cold winters with sharp frosts. Mean daily temperatures show a minimum 

range of 13.2 °C in January to 0.2 °C in July (but extremes can occur from time to time), 

whilst the maximum range is from 25.8 °C in January to 17.1 °C in July, even though it 

could rise up to 34.7 °C at times. Mean Annual Precipitation (MAP) for Mpumalanga 

Highveld is about 700 mm falling mainly in summer months, from October to April in 

the form of showers and thunderstorms. Wind speed is normally above 10 km/h (typical 

range: 10 – 30 km/h).  

 

The Highveld is a gently undulating area, largely sloping northwards with altitude 

ranging between 1590 m and 1610 m (amsl), and covering about 600 km
2
 area. The slope 

ranges from 1% to 5%. It is bounded by latitudes 26°30' S to 26°45' S and longitudes 

29°00' E to 29°15' E. The area is drained by the Klipspruit River and its tributaries. 

However, Klipspruit is also a tributary to Waterval River in the Vaal Catchment.  

The design of irrigation systems theoretically was such that irrigation volumes should not 

exceed Mean Annual Rainfall Deficit (MARD) which is estimated at 737 mm per annum. 

 

Soil water quality following irrigation was observed to be constantly changing in 

character and concentration because of non-uniform disposal of sludge water, attenuation 

capacity of soils, and chemical processes occurring under aerobic/anaerobic conditions in 

the soil. High variability in laboratory results led to the conclusion that there is no 

definite trend in about 50% boreholes analyzed. Infiltration of irrigation water occurs into 

the underlying Shallow Weathered Zone Aquifer. Figure 2.9 shows the location of the 

study site. 
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Figure 2.9: The Goedehoop irrigation site with the Sasol Synfuels complex in the 
background. 

 

2.3.2.2 Soil characteristics 

 

The average thickness of the vadose zone is about 7 m (mostly within 1 – 13 m range). It 

is characterized by the Rensburg (black clay turf) and the Swartland (acid sandy clay 

loam) Forms of soil that experience high cation exchange capacity due to high clay 

content. Rensburg has strong expansive properties like wide cracking. It is mainly found 

in low-lying positions associated with dolerite sills (Soil Classification Working Group, 

1991). Its clay content does not increase with depth. Swartland Form on the other hand is 

characterized by increased clay content down the profile. Here, the B horizon is located 

within 300 mm of the surface with clay content of about 50 %. Also, very dark sandy 

loam (about 100 mm thick) overlies clay loam within 400 mm of the surface.  
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Figure 2.10: Generalised soil description for Mpumalanga province showing the position 

of Secunda where the Goedehoop study site lies (source: Department of Environmental 

Affairs and Tourism). 

 

The topsoil in the area remains wet for long periods after heavy rainfall and, additionally, 

water logging is common due to slow infiltration.  Figure 2.11 shows soil sampling site 

positions and Table 2.3 gives descriptions to some of the soil profiles from the 

Goedehoop irrigation site. It is clear from Table 2.3 that the clay content increases with 

depth promoting cracking due to shrinking and swelling. That results in preferential flow 

and pollutant flux. The S-value and pH do not give thorough conclusions as to their effect 

on sorption (Saayman, 2007). However, the study observed that some strong sorption 

rates occur in highly weathered soils.  

Secunda 
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Figure 2.11: Map showing position of sampling sites on the Goedehoop irrigation lands 

(Saayman et. al., 2007). 
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Table 2.3: Analysis of some of the soil profiles from the Goedehoop irrigation site (Extracted from Saayman et al., 2007). 
 

Soils Profiles Average compositions 

  
Saturated 

water extract 

Hot water 

Clay 
  

Sand 
  

Silt 
  Average F Average B 

Field 

Location 

Soil 

Form 

Sample depth 

(cm) 

% Std Dev % Std Dev % 
Std 
Dev (mg/kg) (mg/kg) 

Comments 

  
  

EJ57 Rg2000 1000 38.8 7.56 42.5 7.51 18.7 0.65 0.67 0.19 No cracks at surface but full of slickensides 

EJ92 Rg2000 1000 45.6 7.92 20.7 3.99 33.7 4.01 0.79 0.23 Cracks at surface 

EJ82 Rg2006 1000 37.2 6.42 39.88 2.22 22.92 4.25 0.13 0.59 No comment 

EJ84 Rg2006 1000 46 9.06 27.96 7.22 26.04 2.57 2.16 0.23 No comment 

EJ75 Rg1000 1000 43.6 6.69 32.24 5.16 24.16 2.04 0.95 0.15 Surface heavily cracked 

EJ62 Rg2000 1000 42.4 10.43 36.42 8.53 21.18 2.09 0.76 0.13 
Surface cracked - next to abandoned 
weather station 

EJ38 Rg2000 1000 36 6.78 41.3 6.37 22.7 0.85 4.11 0.37 Surface cracked  

EJ29 Va1122 800 39 8.86 39.3 8.84 21.7 0.61 0.89 0.02 No comment 

EJ19 Va1122 1000 42.4 8.17 35.72 8.42 63.02 1.06 0.4 0.11 No comment 

EJ41 Va1122 1000 46 9.27 34.9 6.35 19.1 3.1 1.44 0.17 No comment 

EJ54 Va1121 1000 42.4 6.54 35.88 3.34 21.72 3.51 0.18 0.22 No comment 

EJ32 Va1121 1000 44 6.32 34.76 5.67 21.24 1.59 0.69 0.24 No comment 

 *Effective depth on all profiles is 200 cm
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2.3.2.3 Geology 

 

The geology of the Mpumalanga Highveld comprises of sandstones, shales, sub-ordinate 

gravels and mudrocks of the Vryheid Formation of the Ecca Group of the Karoo 

Supergroup. The dominant clay in the sandstones is kaolinite with lesser amounts of 

illite. Dolerite sills and dykes also form part of the geology and they mostly intrude 

horizontally. However, others do intrude gently and are unevenly inclined (Brink, 1983). 

The Karoo Supergroup is about 200 m thick (including about 9 m thick Dwyka 

Formation at its base), and it directly overlies Archean granite. Table 2.4 below briefly 

outlines the lithostratigraphy of the Highveld as per the 2628 East Rand Geological Map 

Series of 1986. 

 

Table 2.4: Lithostratigraphy of Mpumalanga Highveld (created from Geological Map 

Series of the Geological Survey, 1986). 

 

PERIOD 

 

 

SUPERGROUP 

 

GROUP 

 

LITHOLOGY 

 

QUATERNARY/TERTIARY 

 

 

____ 

 

Kalahari 

 

Alluvium 

 

JURASSIC 

 

 

Karoo 

 

Karoo Dolerites 

 

Dolerite intrusions 

 

PERMIAN 

 

Karoo 

 

Ecca 

 

Sandstone, shale, coalbeds. 
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LITHOLOGY 
Qw – Aeolian sand 

   N     Jd – Dolerite 

                  Pvo – Shale, subordinate sandstone 
 Pv – Sandstone, shale, coal beds 
 C-Pd – Diamictite, shale 

 
Figure 2.12: Geological description of Secunda showing the 
geology of the Goedehoop study site (source: Geological Map  
Series of the Geological Survey, 1986). 

 

 

 

 

Goedehoop 
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2.3.2.4 Groundwater Quality/Chemistry 

 

An ongoing programme of soil and groundwater monitoring began in 1991 (Ginster, 

2002). Figure 2.13 shows monitoring borehole positions and Table 2.5 shows the average 

borehole water quality for the Goedehoop irrigation site for the period 1991 to 2002. 

 

 

Figure 2.13: Aerial photograph showing monitoring borehole positions in the Goedehoop 

irrigation site (Ginster, 2002). 
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Table 2.5: Average borehole water quality for the Goedehoop irrigation site (Ginster, 

2002). 

 Borehole Number/Identity 

Ions (units) REGM-27 REGM-28 REGM-29 REGM-111 REGM-30 REGM-110 

pH 7.7 7.6 7.8 7.9 7.6 7.6 

EC (µS/cm) 804 1522 950 717 1377 1097 

TDS (mg/l) 528 897 613 353 963 684 

Ca (mg/l) 72 85 68 49 150 63 

Mg (mg/l) 35 48 43 29 44 34 

Na (mg/l) 87 174 62 67 67 121 

K (mg/l) 3 3 7 6 2 2 

Si (mg/l) 21 21 33 20 32 12 

Cl (mg/l) 26 294 25 16 286 75 

SO4 (mg/l) 14 29 63 34 40 62 

NO3 (mg/l) 1.7 5.1 9.2 6.1 5.7 4.5 

F (mg/l) 0.8 1.7 0.7 0.7 0.8 0.8 

CO3 (mg/l) 1.9 1.4 1.5 - 1.0 - 

HCO3 (mg/l) 189 188 170 - 365 - 

Al (mg/l) 0.1 0.1 - 0.1 0.1 0.1 

Fe (mg/l) 2.4 3.1 4.2 0.1 3.8 6.9 

Mn (mg/l) 0.1 0.1 0.1 0.0 0.1 0.1 

NH4 (mg/l) 0.7 2.2 1.0 0.2 0.9 0.2 

PO4 (mg/l) 0.3 0.3 0.2 0.2 0.3 0.2 

B (mg/l) 0.6 0.6 0.8 0.0 0.4 0.0 

 

It is observed from the table above (Table 2.5) that there is relatively high concentration 

of dissolved salts; hence electrical conductivity is very high. More so, on boreholes such 

as REGM-28 and REGM-30 that additionally show a significant amount of Chloride (Cl) 

and fluoride (F). This could be attributed to the positioning of the borehole relative to the 

gradient. The groundwater level in borehole REGM-28 is much deeper than for the other 

observation holes. The groundwater quality in upstream borehole REGM-30 may be 

influenced by a nearby depression in the topography (subsidence above high extraction 

mining panel). However, when compared to the South African drinking water standards, 

these elements are mostly within the recommended limits. These concentrations are 

presented on stiff diagrams in Figure 2.14. 
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Figure 2.14: Stiff Diagrams for Borehole Samples from Goedehoop Irrigation Site 
(Campbell et al, 2005). 

 
 
Azzie (2002) found that the cation exchange capacity (CEC) of the Vryheid Formation 

sediments is between 60 and 320 meq/kg. At a porosity of 20%, this is equivalent to 

between 300 and 1600 meq/litre of groundwater. 

 

 

2.3.2.5 Geohydrology Characteristics 

 

Mpumalanga Highveld has three superimposed groundwater systems. These are the 

Shallow Weathered Zone Aquifer, the Deep Fractured Aquifer, and the Deep Non-

Fractured Aquifer. 
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i) The Shallow Weathered Zone Aquifer 

This is the upper, unconfined and typically perched aquifer associated with weathered 

zone for which the water is often found within a few metres below surface. The Ecca 

sediments are weathered to depths between 5 and 12 m below surface throughout the 

area. According to Kirchner et al. (1991) and Bredenkamp (1978), recharge is mainly by 

rainfall and is estimated in the order of 1 - 3% of the annual rainfall. However, due to 

variations in the composition of the weathered sediments (which range from coarse-

grained sand to fine clays), highly variable recharge values can be found from one area to 

the next and such isolated occurrences as high as 15% of the annual rainfall have been 

observed. This aquifer is generally low yielding (range 100 - 2000 litres/hour), because of 

its insignificant thickness. Few farmers therefore tap this aquifer by borehole. 

The north-western portion of the coal-field is characterized by coarser grained sandstone 

and therefore higher recharge values are expected there, whilst dolerite sills often occur at 

surface further south where rain water recharges with ease since they are weathered or 

fractured. The movement of groundwater is lateral and in the direction of the surface 

slope. 

ii) The Deep Fractured Aquifer 

All groundwater movement here is along secondary structures, such as fractures, cracks 

and joints because the pores within the sediments are well cemented. These structures are 

better developed in competent rocks such as sandstone and this implies better water-

yielding properties. However, not all secondary structures are water yielding. It has been 

observed that the chances of intersecting a water bearing fracture by drilling generally 

decrease rapidly with depth although some open cast coal mines were producing 

significant yields at depths greater than 30 m. 

Underlying the coal is the impermeable Dwyka tillite, forming a hydraulic barrier 

between the Non-Fractured Aquifer and those high up in the succession due to its 

massive nature and fine matrix. In terms of water quality, the fractured aquifer always 
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contains higher salt loads than the upper weathered aquifer. This is ascribed to the longer 

residence time of the water in the fractured aquifer. 

iii) Deep Non-Fractured Aquifer 

This is a low yielding aquifer at great depth. Its water quality is poor because of high 

fluoride levels associated with granitic rocks. It experiences low recharge due to the 

overlying impermeable tillite. Hence, drilling has intersected basement rocks underneath 

the Karoo Supergroup in very few instances.  

In the southern portion of the catchment, dewatering of this aquifer has occurred, to some 

extent, because of the pumping during mining activities. However, the fractured aquifer 

was not impacted on due to the presence of the Dwyka tillite. 
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------------------------------------------------------------------------------------------------------------ 

CHAPTER 3 

 

DETAILED DESCRIPTION OF MACRO 5.0 

 

As the modelling method of choice, MACRO 5.0 is described in detail here. The chapter 

looks at how the model deals with different processes involved in the preferential flow 

mechanism in a vadose zone. These would include, among others, macropore-micropore 

water and solute exchange, hydraulic properties, drainage, evapotranspiration, 

precipitation, soil water content and solute transport in the vadose zone. In the equations 

used in this chapter, some parameters are regarded as constants and others as variables. 

Table 3.1 below lists those parameters accordingly. 

 
Table 3.1: Parameters considered in the MACRO program.  
Constant parameters Variable parameters 

Ks   –   total saturated hydraulic conductivity 

θs      –     saturated water content 

θb    –   boundary water content 

θr    –   residual water content 
N    –   van Genuchten’s n value 

α    -    mobile/immobile transfer rate exchange 
l     –    tortuosity factor 
n

*
   -    kinematic exponent reflecting       

macropore size distribution. 
G   –   geometry factor (set to 3 for rectangular 
slab) 
D    –   dispersion coefficient 
K

*
s  –   fictitious saturated hydraulic conductivity 

ψ    -    pressure head 

β    -    geometry coefficient (= 3 for parallel 
fractures) 
D

*
m  –   effective diffusion coefficient in 

micropore region 
s     –   sorption coefficient 
De   –   effective diffusion coefficient 

z   –   depth 
t    –    time 
d    –   effective diffusion pathlength 
Si   –   source-sink term 
S    –   effective water content 

θmi     –    micropore water content 

θma  –   macropore water content 

Mvg, nvg, αvg  – pore shape parameters 
Kb      –   boundary hydraulic conductivity 
Kma  –   hydraulic conductivity function in 
macropores 
Kmi   –   hydraulic conductivity function in 
micropores 
Dw    –   effective water diffusivity 

Dθmi  –   water diffusivity at the current matrix 
water content 
Ue    –     source-sink term for solute mass 
transfer between micro-/macropores 
Sma  –    macropore degree of saturation 
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3.1 Model Description 

MACRO is a one-dimensional, dual-permeability model that considers transient fluxes of 

water, heat and solute in the variably saturated layered soil profile. The total porosity is 

partitioned into two separate flow regions (matrix and macropores), each with its own 

degree of saturation, conductivity, water flow rate, solute concentration, and solute flux 

density.  

Full water balance is simulated taking into consideration occurrences such as 

precipitation, evapotranspiration, root water uptake, deep seepage and horizontal fluxes 

to tile drains. Convective–dispersive transport is calculated for solutes undergoing “two-

site” (kinetic and instantaneous) sorption, passive plant uptake, and first-order 

degradation controlled by soil moisture and temperature. Table 3.2 below outlines the 

treatment of flow and transport processes in the MACRO model. 
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Table 3.2: Treatment of flow and transport processes in the MACRO model (Larsbo & 

Jarvis, 2003). 

 

 

 

3.2 Soil Water Flow  

 

Richards’ equation (equation 3.1) is used to calculate vertical water fluxes in the matrix: 
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where C = ∂θ/∂ψ (m
-1

) is the differential water capacity,  θ (m
3
 m

-3
) is the volumetric 

water content,  ψ (m) is the soil water pressure head, t (s) is time, z (m) is depth, K 

(m s
-1

) is the unsaturated hydraulic conductivity, and Si (s
-1

) are source–sink terms 

accounting for water exchange with macropores, drainage, and root water uptake. 

 

The use of Eq. [3.1] to calculate water flows in the macropore domain is problematic; a 

major reason for this is the lack of information concerning ψ(θ) close to saturation. 

Therefore capillarity is assumed to be negligible in the macropores, thus water flow is 

driven by gravity only (i.e., ∂ψ/∂z = 0). The governing equation for water flow in 

macropores is the kinematic wave equation (Germann, 1985): 
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where θma (m
3
 m

-3
) and Kma(m s

-1
) are the macropore water content and hydraulic 

conductivity, respectively. 

 

 

3.3 Hydraulic Properties 

 

In macroporous soils, hydraulic conductivity increases very rapidly across a small 

pressure head range as saturation is approached (Clothier and Smettem, 1990; Jarvis and 

Messing, 1995). In MACRO, a “cut and join” approach is used to define the matrix–

macropore hydraulic functions (Jarvis et al., 1991). Thus, a user-defined pressure head, 

ψb (m), partitions the total porosity into matrix pores and macropores, while a 

corresponding water content, θb (m
3
 m

-3
), and hydraulic conductivity, Kb  (m s

-1
), 

represent the saturated state of the soil matrix. 

Soil water retention in the matrix is calculated using a modified form of van Genuchten’s 

(1980) equation (Vogel et al., 2001): 
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where S is an effective water content; mvg, nvg, and αvg (m 
-1

) are shape parameters 

(where mvg is set equal to 1-1/nvg); θmi (m
3
 m

-3
) is the micropore water content; θr (m

3
  

m
-3

) is the residual water content; and θs* (m
3
 m

-3
) is a “fictitious” saturated water 

content, obtained by extrapolating the fitted water retention function to zero pressure 

head. Parameter θs* does not represent the actual saturated water content in the model, 

which is separately defined by the user to reflect macroporosity. It is only used internally 

in the program to extend the retention curve to pressure head values larger than ψb to 

allow for temporary over-saturation in the micropores when solving Richard’s equation. 

 

The van Genuchten–Mualem model in the form given by Luckner et al. (1989) is used to 

describe the unsaturated hydraulic conductivity function in the matrix, using Kb as the 

‘matching point’ hydraulic conductivity: 
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where l is the tortuosity factor, and Smi is the effective water content at micropore 

saturation given by replacing ψ with ψb in Eq. [3.3]. 

The hydraulic conductivity function in the macropores is given as a simple power law of 

the macropore degree of saturation, Sma: 
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where Ks(ma) (m s
-1

) is the saturated hydraulic conductivity of the macropores, Ks (m s
-1

) is 

the total saturated hydraulic conductivity, and n* is a “kinematic” exponent reflecting 
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macropore size distribution and tortuosity. The macropore degree of saturation is 

expressed as: 

 

ma

ma

ma
e

S
θ

=           [3.6] 

where ema is the macroporosity equivalent to the total saturated water content θs minus θb.  

Since macroporosity and macropore hydraulic conductivity keep varying due to 

shrinkage and swelling, Messing and Jarvis (1990) came up with the relationships as 

follows: 
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where, p is the slope of the shrinkage characteristic, es is the minimum value of 

macroporosity given by θs - θb, Ks(min) is the minimum saturated hydraulic conductivity of 

a swelling soil attained when ema = es, and m
*
 is an empirical exponent. 

 

3.4 Macropore – Micropore Water Exchange 

 

In the absence of gravity, Richards’ equation can be recast as a diffusion equation, with 

gradients in water content as the driving force. In MACRO, imbibition of water from 

macropores into an unsaturated matrix is treated as a first-order approximation to this 

water diffusion equation, assuming rectangular-slab geometry for the aggregates (van 

Genuchten and Dalton, 1986; Booltink et al., 1993): 
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where d (m) is an effective diffusion pathlength calculated from d = A/2L (Assuming 

parallel fractures in a unit area A, and L is the fracture length for each subclass). Gerke 

and van Genuchten (1993) also used the following relationship to calculate d: 

 

 αβθ /
*

mmi Dd =          [3.10] 

 

where, β is a geometry coefficient (equals 3 for parallel fractures); θmi is the micropore 

water content; 
*

mD  is an effective diffusion coefficient for the micropore region; and α is 

the mobile/immobile transfer rate exchange. The diffusion pathlength, d, is related to 

aggregate size and the influence of coatings on macropore and aggregate surfaces. In 

equation 3.9, Dw (m
2
 s

-1
) is an effective water diffusivity, G is a geometry factor (set 

internally to 3 for a rectangular slab geometry; Gerke and van Genuchten, 1996), and γw 

is a scaling factor introduced to match the approximate and exact solutions to the 

diffusion problem (Gerke and van Genuchten, 1993). The scaling factor γw varies with 

the initial water content and hydraulic properties, but not strongly, so for simplicity γw is 

set within the program to an average value (Gerke and van Genuchten, 1993; Jarvis, 

1994) The effective water diffusivity is given by  
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where Dθb (m
2 

s
-1

) and Dθmi (m
2
 s

-1
) are the water diffusivities at the saturated matrix 

water content and the current matrix water content, respectively, and where Sma is 

introduced to account for incomplete wetted contact area between the two pore domains. 

In the Mualem–van Genuchten model, Dθmi is given by (van Genuchten, 1980) 
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where Ks* (m s
-1

) is a “fictitious” saturated hydraulic conductivity obtained by 

extrapolating the matrix conductivity function to zero pressure head. Dθb is given by 

setting S in Eq. [3.12] to Smi(θb). It should be noted that the true saturated hydraulic 

conductivity of the soil (see Eq. [3.5]) will usually be larger than Ks* as a result of the 

effects of macropores.  

 

Equation [3.9] is treated as a source term to Eq. [3.1] and a sink term to Eq. [3.2]. Water 

transfer in the reverse direction (from the matrix to macropores) occurs instantaneously 

when the pressure head in the matrix exceeds ψb following the fundamental physical 

principle governing the filling of pores when the water-entry pressure is exceeded.  

 

In MACRO, flow to drains occurs if the macropores are saturated irrespective of the 

degree of saturation of micropores. Drainage is considered for lateral flow to seepage 

surfaces, that is, a source sink term in Richard’s Equation (equation 3.1). Drainage 

scenarios could be flow to field drains (i.e. ditches or drains with highly permeable 

backfill) or groundwater seepage to a secondary drainage system (streams, canals, or 

perimeter field ditches). Assumptions are that the drains are overlain by fully penetrable 

seepage surfaces. 

 

 

3.5 Solute Transport 

 

Solute transport is calculated using the convection–dispersion equation with source–sink 

terms, Ui (kgm
-3

 s
-1

), to represent a wide range of processes, including mass exchange 

between flow domains, kinetic sorption, solute uptake by plants, biodegradation, and 

lateral leaching losses to drains and/or regional groundwater: 
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where s (kg kg
-1

) is the sorbed concentration in the equilibrium pool, c (kg m
-3

) is the 

concentration in solution, f is the mass fraction of the solid material in contact with water 

in the macropore domain, fne is the fraction of the solid material providing 

nonequilibrium (i.e., kinetic) sorption sites, θmi(m) (m
3
 m

-3
) is the accessible water content 

accounting for anion exclusion, q (m s
-1

) is the water flow rate, and D (m
2
 s

-1
) is the 

dispersion coefficient calculated as the sum of an effective diffusion coefficient and a 

dispersion term. In the macropores, an equivalent approach is used to calculate transport, 

except that dispersion is assumed to be zero and only equilibrium sorption is considered. 

Equilibrium sorption partitioning is calculated using the Freundlich isotherm: 

 

 
m

f cks =           [3.14] 

 

where, kf is the sorption coefficient and m is the Freundlich exponent. 

 

 

3.6 Solute Uptake by the Matrix 

 

The source–sink term for mass transfer of solute between matrix and macropores, Ue 

(kgm
-3

 s
-1

), is given by a combination of a diffusion component and a mass flow 

component: 
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where the prime notation indicates either the solute concentration in macropores or in 

“accessible water” in the matrix, depending on the direction of water flow, Sw, and De (m
2
 

s
-1

) is an effective diffusion coefficient. 
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 3.7 Macropore Flow in MACRO 5.0 

 

A pressure head, ψb, and the corresponding water content, θb defines the division 

between flow domains (Refer to figure 3.1 below). 

 

 
Figure 3.1: Example of the modified van Genuchten soil water retention function used in 

MACRO for a fictitious soil (αvg = 0.03 cm-1, nvg = 1.5, θr = 0, θb = 0.5 m3 m-3) (Larsbo et 
al, 2005) 

 

 

If the water content in the matrix exceeds θb, the excess water will drain into the 

macropores. However, the macropores only have a finite storage capacity for water, Cma 

(m
3
 m

-3
), equal to:  

 

 

( )( )bsmama SC θθ −−= 1         [3.16] 

 

 

Therefore, an additional point on the modified van Genuchten retention curve (θmax [m
3
 

m
-3

], ψmax [m]) defines the maximum amount of water allowed in the matrix at each 

timestep (θmax = θb + Cma). When solving Richards’ equation, the pressure heads are 

allowed to increase above ψmax only if the macropores are also saturated. In this situation, 

the differential water capacity in the matrix is set to zero for pressures above ψmax. For 

pressure heads above ψb, the hydraulic conductivity is set to Kb. Once Richards’ equation 
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has been solved, all water exceeding θb is instantly removed from the matrix and added to 

the macropores.  

 

The local water balance in the macropores is solved implicitly for Sma using a bisection 

method (“interval halving”) for each layer, in turn, from the soil surface downward. If the 

flow capacity of both matrix and macropores is exceeded in any layer, then the local 

water balance cannot be solved (oversaturation develops in the macropores). In this case, 

the excess water is added to the macropore storage in the layer(s) above, and the water 

fluxes between layers are corrected accordingly. 

 

 

3.8 Root Water Uptake 

 

This phenomenon is calculated from evaporative demand, root distribution and soil water 

content (Jarvis, 1989). The ratio between the actual and potential root water uptake 

(Ea/Er) is assumed to vary as a function of a dimensionless water index, and in addition to 

that, a threshold function is assumed before transpiration is reduced. The dimensionless 

water stress index is denoted as ω
*
 and the threshold function as ω

*
c. Feddes et al (1976) 

again assumes a threshold type of response for the reduction factor,ω, accounting for soil 

conditions that are either too wet or too dry. These threshold relations are displayed on 

figures 3.2 and 3.3 respectively.  

 

Root water uptake is assumed to be reduced to zero both at the saturated water content θs 

and also at the extractable water content (wilting point) θw. Thus the calculated uptake is 

preferentially extracted from water in the macropores and then any excess demand is 

taken from water stored in the micropores. 
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Figure 3.2: Ratio of actual to potential transpiration as a function of the stress index ω*. 

 

 

 

Figure 3.3: Soil water stress function for reduction of transpiration 
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3.9 Simulation output reading  

 

After the simulation is complete, two files are created as resulting outputs; a binary 

(*.bin) file and a (*.sum) file. There are three different ways of reading and using them 

for further analysis. In this study, the (*.bin) file was used for further analysis. The first 

way to read a (*.bin) file is to convert it into ASCII from the program and create a text 

file which can then be imported into any graphics program like EXCEL. The second way 

would be to read the (*.bin) file directly using the auxiliary program PG supplied with 

MACRO. The output variables are limited to 400 in this case. The third way is to use 

built-in tools and functions to compare simulated with measured data by calculating goal 

functions, or by plotting such comparisons. Although all three ways were tested, only the 

first one was applied in this study. The process followed is covered in Chapter 5. 

 

3.10 Motivation for selecting MACRO 5.0 

For the purpose of this study, the software model MACRO 5.0 was selected among 

several other models that were reviewed. This Section outlines the reasons for this 

selection. 

The main selection criterion was that MACRO can simulate in the unsaturated zone and it 

takes preferential (macropore) flow into account. Different types of contaminants are 

accommodated for simulation. It also takes into consideration the interaction of water and 

solutes with the solid phase. 

MACRO is capable of simulating conditions encountered at the site. This is a one-

dimensional model and therefore it could be used where field data show that vadose zone 

flow or ground water flow and transport processes are relatively simple. Also, it should 

be used primarily for sites where the degree of heterogeneity or anisotropy is low, known 

to be isotropic, or sites where a potential receptor is immediately down-gradient from 

contaminant source. 
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Shortage of data is to some extent accommodated in MACRO. For example, if minimum 

and maximum temperatures are not available, the daily mean temperature can be 

substituted for both variables. MACRO requires two data files to run a simulation. Those 

are precipitation data and meteorological data to calculate potential evaporation. 

However, temperatures and pre-calculated potential evaporation data can be used if 

meteorological data are not available or not adequate. In South Africa, not all the required 

data is readily available, so the flexibility of this model to allow the usage of alternative 

data files helps with simulations based on the representative enough data that could be 

acquired.  

 

A model calibration consists of changing values of model input parameters in an attempt 

to match field conditions within some acceptable criteria. MACRO is capable of 

comparing model-simulated conditions and field conditions. These comparisons are 

presentable in tables and/or graphs. Generally, there are no universally accepted 

"goodness-of-fit" criteria that apply in all cases. However, it is important that the 

modeller makes every attempt to minimize the difference between model-simulated and 

field conditions. MACRO has been extensively used and hence tested in the field in 

different areas with research studies such as Lodgson (2002); Selim and Ma (1998); and 

Alaoui et al. (2003). 
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------------------------------------------------------------------------------------------------------------ 

CHAPTER 4 

 

MODELLING PROCESS DATA AND SET-UP FOR CASE STUDY SITES 

 

This chapter describes how the simulation data were obtained for both areas. Moreover, it 

gives insight to the simulation set-up process that was followed in this study. 

 

The climate data (i.e. temperature, relative humidity and rainfall) required for MACRO 

obtained from the South African Weather Bureau, also known as Weather SA. These data 

are vital as they are inputs in the modelling process. Soil data were obtained from various 

organizations like the Institute for Soil, Climate and Water (ARC - ISCW) and the 

Engineering Geology Unit of the Council for Geoscience (CGS). This information 

assisted in the description of soil properties/characteristics where needed in the model. 

Groundwater data, including chemistry data, were obtained from the National 

Groundwater Database (NGDB) administered by the Department of Water Affairs and 

Forestry (DWAF). Such data were used as input to eventually understand the extent of 

groundwater pollution in the study areas and to determine the depth of their vadose 

zones. Some land use information was abstracted from various reports in order to know 

the locations of different possible pollution sources and their expected contaminants.  The 

Cape Flats aquifer with its vadose zone information was obtained from the Campus Test 

Site of the University of the Western Cape. That contributed to the understanding of the 

Cape Flats vadose zone. For the case study, soil hydraulic properties collected from 

iThemba Labs were used in the simulation process (Samuels, 2007). Monitoring data 

from Jarrod Ball and Associates assisted with the amounts of contaminants in the Coastal 

Park area covering the simulation period (Jarrod Ball & Associates, 2003). In addition to 

the other data sources for Mpumalanga Highveld, some data were acquired from SASOL 

and their previous reports. The website http://fred.csir.co.za/extra/project/avap/ is also 

referred to. 
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4.1 Climate data formatting for input process 

 

In the case of MACRO, climate data such as relative humidity, and maximum and 

minimum temperatures were used to estimate reference evapotranspiration for the period 

1993 to 2005. In order to achieve this, the ETo calculator software (developed by the 

University of Pretoria and NB Systems cc) was used (Annandale et al., 1999). The ETo 

calculator calculates reference evapotranspiration according to the procedure of Allen et 

al. (1998). Figure 4.1 displays the behavioural pattern of reference evapotranspiration 

over the period 1993 to 2005 for the Cape Flats and an example of the data used is 

attached in Appendix A. In the case of Mpumalanga Highveld, such data are available in 

Appendix B. 

 

 

Figure 4.1: Evapotranspiration pattern for Cape Flats over a period from 1993 to 2005. 

 

In the absence of measured data for the Cape Flats, the ETo calculator was used to 

calculate reference evapotranspiration from estimated solar radiation (Rs) and wind speed 

(U). For Mpumalanga Highveld, the measured relative humidity was not available and 

therefore the estimated vapour pressure (VP) was included in the calculation. The 

estimated reference evapotranspiration data, together with temperature data, were then 

converted from text format to binary format in order to be uploaded into the MACRO 

program under the Simulation Set – Up tab as explained in detail below.. The same 
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procedure was followed for rainfall data. Examples of uploaded driving data for both 

Cape Flats (in 2004) and Secunda (in 2002) areas are attached in Appendices A and B, 

respectively. Weather SA provided rainfall and temperature data. 

 

 

4.2 Input of data 

 

MACRO 5.0 includes five tabs, namely Properties, Options, Parameters, Outputs, and 

Simulation Setup. Any input and data upload changes done prior the simulation should be 

saved otherwise they will not be detected and thus not included in the simulation process. 

That implies incorrect simulation results. The tabs are discussed below. 

 

PROPERTIES – This is where various properties of a given soil profile are described, 

including the number of horizons and the numerical layers assigned for the simulation 

(between 60 and 200 numerical layers). In the simulations for this study, 60 numerical 

layers were used. The properties of the soil profiles used in the simulations are shown in 

Table 4.1.  

 

Table 4.1: Properties of soil profiles used for the Cape Flats (Adams - unpublished data 

and Samuels, 2007) and the Mpumalanga Highveld (Saayman et. al., 2007) areas. 

Cape Flats 

 

Horizon 

 

Clay 

% 

  

 Silt  

  % 

 

Sand 

% 

 

pH 

Bulk 

Density 

(g/m
3
) 

 

Organic 

C % 

 

Thickness 

(cm) 

 

Texture 

 

Shape 

Ap 0 0 100 7.00 1.30 2.00 50 Sand Granular 

B 1 5 94 7.00 1.10 1.00 250 Sand Granular 

Mpumalanga Highveld 

Ap 26 22 52 4.20 1.20 1.28 200 Sandy 

clay loam 

Granular 

B 42 22 36 5.20 1.40 1.14 200 Clay Granular 

C 46 22 32 7.00 1.40 0.46 400 Clay Granular 
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OPTIONS – This tab has four subdivisions, namely; Boundary conditions, Site 

Management, Crop and Solute. Here, the lower boundary conditions and initial 

conditions are defined, for instance one can use water table in the soil profile as the lower 

boundary condition.  Site management option covers the tillage, irrigation and drainage 

conditions of the given area. The type of solute to simulate (including mass units), 

together with the sorption type are covered under the Solute option, whilst the crop type 

is defined under the Crop option. The program does not require characteristics of a given 

specific solute, but rather it requires the user to select a group type under which the solute 

falls. For example, one of the solute options is pesticide and not the name and specific 

characteristics of that pesticide the user is trying to simulate. However, the user is able to 

adjust some parameters in the program to suit solutes other than pesticides, for example 

in the case of boron, degradation rates can be set to zero since they are not applicable. 

The solute properties are selected in the PARAMETERS tab. 

 

For the Cape Flats, water table at the bottom of the soil profile was selected as the lower 

boundary condition. Chloride (in mg/m
3
), under the group type tritium (more comparable 

to chloride which does not sorb and degrade), was used as the solute to simulate because 

its concentrations in groundwater have been monitored in Coastal Park for a period 

within which the simulation period for this study lies. Under site management, tillage and 

irrigation were not considered since they are not applicable in the case of Coastal Park. 

According to Blight et al. (2005), chloride in groundwater was measured to be 4000 mg/l 

in 1999 and by 2004 it had increased to approximately 4500 mg/l since lithium and 

sodium chloride had been injected as tracers. Therefore 4000 mg/l was used as an initial 

concentration in the boundary since the boundary is set as the bottom of the soil profile, 

the water table depth. Field drains option was selected to simulate lateral flow. The Cape 

Flats area simulations resulted in rapid build-up of the water table when field drains were 

not selected. Crop type is perennial since there is no annual cultivation taking place but 

shrubs and grass are thriving.  

 

In the case of Mpumalanga Highveld, pesticide (parent compound) was selected with 

degradation coefficients adjusted to zero to simulate boron and fluoride.  Irrigation was 
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also considered due to effluent application on the site for a period of more than ten years. 

According to the Sasol reports, the recommended amount of irrigation effluent was such 

that it is equal to net water deficit which was estimated at approximately 737 mm/annum 

for the area. However, the actual irrigation rate was lower. Bi-weekly amounts, based on 

the data given by Ginster (2002) as plots, were used and these data are attached in 

Appendix E for Indaba irrigation site and Appendix F for Goedehoop irrigation site. Data 

from the Indaba site had to be used for calibration since the solute concentration with 

respect to depth data were not available from the Goedehoop site. However, these two 

sites have similar environmental conditions. 

  

PARAMETERS and OUTPUTS – These Input and Output parameters are selected 

according to what one wants to simulate, and not necessarily all of them at the same time. 

For instance, one could be interested in the response of water content output when 

hydraulic conductivity as an input is varied, hence only water content related parameters 

can be selected for the output file. The outputs to select at a given simulation time are 

limited in order to get readable output files. The program is not able to handle large 

chunks of data with regard to the output files. It can be mentioned, without disregarding 

other parameters, that the Physical Parameters and Solute sections are very crucial as 

inputs for the determination of preferential flow and the sensitivity analysis to changing 

input conditions. Input parameters used in this study are shown in Tables 4.2 and 4.3 for 

both case study areas, and Table 4.4 shows the list of outputs.  
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Table 4.2: Simulation input parameters for the Cape Flats area. 

SUBDIVISION PARAMETER VALUE (units) 

Root distribution  - RPIN 

Fraction of available water exhausted before reduction in 

transpiration occurred  - FAWC 

Critical soil air content for root water uptake  - CRITAIR 

Root adaptability factor  - BETA 

Canopy interception capacity -  CANCAP 

 

 

 

CROP 

Correction factor for wet canopy evaporation  - ZALP 

 

 

 

Program default values applied 

Solute concentration at bottom boundary  - CONCIN 4000 (mg/l) for Chloride 

(Blight et al., 2005) 

Drainage basin area - AREA 1 (ha) 

Empirical parameter controlling percolation out of the 

bottom of the profile - BGRAD 

0.00001 (h
-1

) 

 

Initial soil temperature - TEMPINI 10 (°C) 

 

 

INITIAL/BOU-

NDARY 

CONDITIONS 

Initial solute concentration in soil water - SOLINIT 1 (mg/m
3
) 

IRRIGATION Not applicable Not applicable 

Tortuosity/Pore size distribution factor in macropores - 

ZN 

Default 

Tortuosity factor in micropores - ZM Default 

Trapped air content - TRAP_AIR Default 

Slope of shrinkage characteristic - ZP 0 

Exponent in the power function relating macropore 

hydraulic conductivity to macroporosity - ZA 

0 

Bulk density - GAMMA 1.3 (g/cm
3
) in A- horizon and 

1.1 (g/cm
3
) in B - horizon. 

(Samuels, 2007) 

Saturated water content - TPORV A: 38 %, B: 28 % (Samuels, 

2007) 

Boundary water content - XMPOR A: 30 %, B: 20 % 

Boundary soil water tension - CTEN Default 

Residual water content - RESID A: 0.0006 %, B: 0.0362 % 

(Samuels, 2007) 

van Genuchten’s n value - N A: 1.68, B: 1.59 (Samuels, 

2007) 

van Genuchten’s alpha - ALPHA A: 0.011(cm
-1

), B: 0.33 (cm
-1

) 

(Samuels, 2007) 

Saturated hydraulic conductivity - KSATMIN 300 (mm/h) (Samuels, 2007) 

Boundary hydraulic conductivity  - KSM 0.1 (mm/h) by 
+
Pedotransfer 

function 

 

 

 

 

 

 

 

PHYSICAL 

PARAMETERS 

 

 

 

 

 

 

 

 

Effective diffusion pathlength - ASCALE A: 3 mm, B: 6 mm by 
+
Pedotransfer function 

Average annual temperature at the site - ANNTAV 18 (°C) 

Average annual amplitude in temperature - ANNAMP 10 (°C) 

Rainfall correction factor - RAINCO 1 

Snowfall correction factor - SNOWCO 1 

Snowmelt factor - SNOWMF 0 (mm/°C/day) 

Site latitude - PHI 34° 

Average rainfall intensity at the site - RINTEN Default 

Ditch/Drainage depth for secondary drainage system - 

LAYERD 

3 m 

Residence time for regional groundwater flow rate -  

RGWFLOW 

1 day 

 

 

 

 

 

 

SITE 

Drain depth (primary drainage system) - DRAINDEP 3 m 
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Drain spacing - SPACE 10 m 

Excluded volumetric water content - AEXC Default  

Sorption distribution coefficient - ZKD Default 

Degradation rate coefficient, micropores, liquid phase - 

DEGMIL 

Default, when applicable 

Degradation rate coefficient, macropores, liquid phase - 

DEGMAL 

Default, when applicable 

Degradation rate coefficient, micropores, solid phase - 

DEGMIS 

Default, when applicable 

Degradation rate coefficient, macropores, solid phase - 

DEGMAS 

Default, when applicable 

Freundlich exponent - FREUND Default (0 < FREUND <1) 

 

 

 

 

 

SOLUTE 

Other parameters Default values applied 

NUMERICAL 

LAYERS 

Horizons thickness A: 50 cm, B: 250 cm 

+
Pedotransfer on the table is an inbuilt default function used to estimate some parameters based on the 

available input parameters. 

 

 

Table 4.3: Simulation input parameters for Mpumalanga Highveld area. 

SUBDIVISION PARAMETER VALUE (units) 

Root distribution  - RPIN 

Fraction of available water exhausted before reduction 

in transpiration occurred  - FAWC 

Critical soil air content for root water uptake  - 

CRITAIR 

Root adaptability factor  - BETA 

Canopy interception capacity -  CANCAP 

 

 

 

CROP 

Correction factor for wet canopy evaporation  - ZALP 

 

 

 

Program default values 

applied 

Solute concentration at bottom boundary  - CONCIN B - 41.535,  F - 1360 mg/m
3
 

(Saayman et al, 2007) 

Drainage basin area - AREA 205 ha, [96 ha - Goedehoop]. 

(Ginster, 2002) 

Empirical parameter controlling percolation out of the 

bottom of the profile - BGRAD 

0.00001 (h
-1

) 

 

Initial soil temperature - TEMPINI 10 (°C) 

 

 

INITIAL/BOU-

NDARY 

CONDITIONS 

Initial solute concentration in soil water – SOLINIT
#
 1 (mg/m

3
) initially

#
 

Tortuosity/Pore size distribution factor in macropores - 

ZN 

Default 

Tortuosity factor in micropores - ZM Default 

Trapped air content - TRAP_AIR Default 

Slope of shrinkage characteristic - ZP Default 

Exponent in the power function relating macropore 

hydraulic conductivity to macroporosity - ZA 

Default 

Bulk density - GAMMA 1.2 (g/cm
3
) in A, 1.4 (g/cm

3
) 

in B & C horizons (Saayman 

et al, 2007) 

Saturated water content - TPORV Default 

Boundary water content - XMPOR Default 

Boundary soil water tension - CTEN Default 

Residual water content - RESID Default 

van Genuchten’s n value - N Default 

van Genuchten’s alpha - ALPHA Default 

 

 

 

 

 

 

 

PHYSICAL 

PARAMETERS 

 

 

 

 

 

 

 

 
Saturated hydraulic conductivity - KSATMIN Default 
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Boundary hydraulic conductivity  - KSM 0.1 (mm/h) by 
+
Pedotransfer 

function 

 

Effective diffusion pathlength - ASCALE 20 (mm) by 
+
Pedotransfer 

function 

Average annual temperature at the site - ANNTAV 19 (°C) 

Average annual amplitude in temperature - ANNAMP 7 (°C) 

Rainfall correction factor - RAINCO 1 

Snowfall correction factor - SNOWCO 1 

Snowmelt factor - SNOWMF 0 (mm/°C/day) 

Site latitude - PHI 26° 

Average rainfall intensity at the site - RINTEN 2 (mm/h) 

Ditch/Drainage depth for secondary drainage system - 

LAYERD 

7 m 

Residence time for regional groundwater flow rate -  

RGWFLOW 

1 day 

Drain depth (primary drainage system) - DRAINDEP 7 m 

 

 

 

 

 

 

SITE 

Drain spacing - SPACE 10 m 

Solute concentration in irrigation water - CONCI 47 mg/l for Fluoride and 10 

mg/l for Boron (SASOL, 

2002) 

Day of irrigation - IRRDAY 1 – 1461 days (approx. four 

years) 

Irrigation amount - AMIR Bi-weekly amounts varying 

each year  (see Appendix F) 

Start time of irrigation - IRRSTART 8 am 

End time of irrigation - IRREND 16 pm 

 

 

 

IRRIGATION 

 

 

 

 

 

 Fraction of irrigation intercepted by crop canopy - 

ZFINT 

Default 

Excluded volumetric water content - AEXC Default  

Sorption distribution coefficient - ZKD Default 

Degradation rate coefficient, micropores, liquid phase - 

DEGMIL 

0 

Degradation rate coefficient, macropores, liquid phase - 

DEGMAL 

0 

Degradation rate coefficient, micropores, solid phase - 

DEGMIS 

0 

Degradation rate coefficient, macropores, solid phase - 

DEGMAS 

0 

Freundlich exponent - FREUND Default (0 < FREUND <1) 

 

 

 

 

SOLUTE 

Other parameters Default values applied 

NUMERICAL 

LAYERS 

Horizons thickness A: 200 cm, B: 200 cm, C: 

400 cm (Saayman et al, 

2007) 
+
Pedotransfer on the table is an inbuilt default function used to estimate some parameters based on the 

available input parameters. 
#
SOLINIT values were determined from 4-year interval simulations (see paragraph below). 

 

Small initial concentration (1 mg/m
3
) was applied for the time of the beginning of 

effluent irrigation. Since MACRO cannot take more than 100 irrigation records, 4 – year 

interval simulation runs to estimate such solute concentrations in soil during irrigation 

period where effluent was applied twice every month were performed. 
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Table 4.4: Output parameters considered for both case study areas. 

SELECTED OUTPUT PARAMETERS 

 

MACRO 5.0 

SYMBOL 

Water content, micropores THETA 

Water content, macropores THETI 

Total water content THETT 

Water tension CPSI 

Water exchange rate (positive from macropores) EXCHANGE 

Degree of saturation in macropores THETAMA 

Root water uptake ZUPTAKE 

Accumulated precipitation TTPRECIP 

Net rainfall RAIN 

Accumulated net rainfall RRNRAIN 

Total accumulated tile drainage TSEEP 

Accumulated water flow to secondary flow drainage system GSTOT 

Actual evapotranspiration rate CETA 

Potential evapotranspiration rate EPOT 

Accumulated potential evapotranspiration rate CCEPOT 

Accumulated potential soil evaporation CPSOIL 

Potential soil evaporation rate PSOIL 

Accumulated potential transpiration CUPT 

Accumulated percolation TFLOWOUT 

Accumulated infiltration CINFIL 

Water storage (canopy) CRES 

Solute concentration in soil solution (micropores) SOLMIC 

Solute concentration in soil solution (macropore) SOLMAC 

Solute exchange rate, each layer (positive from macropores) CEXCH 

Total accumulated solute leaching TSOUT 

Accumulated amount of solute lost to regional groundwater GSINK 

Accumulated amount of solute lost to tile drains DRAINLOS 

Total solute flow to tile drains DSOLTOS 

Accumulated amount of solute degraded in soil TDEG 

Accumulated uptake of solute by crop TUPT 

Solute concentration in tile drainage water DRAINCON 

Solute concentration in groundwater flow GRCON 

 

A summary of baseline parameters, changed/varied parameters and output parameters 

that were looked at in these simulations are also listed in Table 5.1 of Chapter 5. 

 

 SIMULATION SETUP – This section allows for uploading of rainfall data, and 

evapotranspiration and temperature data. The period to simulate over is set here and it 

can be changed after a complete run. The simulation period from 1999 to 2004 was 

chosen for the Cape Flats and from 1998 to 2002 for Mpumalanga Highveld. The year 

2006 was also simulated for the Cape Flats area in order to compare measured 2006 data 

with simulated data. The reason for selecting these periods is that the available measured 

data, especially for solute concentrations, fall within them. That is useful when 
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comparing simulated data and measured data. Shorter periods also help in the detection of 

slight changes within the profile, for example hydraulic conductivity break-ups between 

soil layers of different properties. In this tab, the user also defines the folder into which 

the output results are to be stored. 
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------------------------------------------------------------------------------------------------------------ 

CHAPTER 5 

 

MODEL SIMULATIONS 

 

Two sections are dealt with in this Chapter. Firstly, the MACRO 5.0 model is calibrated 

by comparing measured data and simulated data from both case study areas, with the aim 

of gaining confidence with the predictions of the model. This comparison is presented 

graphically and described in Section 5.1. Secondly, sensitivity analyses of model output 

are carried out for some inputs particularly relevant to preferential flow. The aim was to 

assess the effects of inputs relevant to preferential flow on the results of the model, in 

particular soil water and solute balance. The results of the sensitivity analyses were then 

plotted and described as seen in graphs of Section 5.2 for both case study areas areas.  

 

The input and output parameters used for simulation and analysis are tabulated (see Table 

5.1) and those parameters concerning irrigation are only applicable to the Mpumalanga 

Highveld. Additionally, the MACRO 5.0 symbols described in Table 5.1 for different 

parameters will be used in the legends of output plots/graphs in this Chapter. Thus, their 

descriptions as in the table will apply. 
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Table 5.1: Input and Output Parameters used for Simulation and Analyses. 

BASELINE INPUT DATA MACRO 5.0 

SYMBOL 

CHANGED INPUT DATA MACRO 5.0 

SYMBOL 

SELECTED OUTPUT 

PARAMETERS 

 

MACRO 5.0 

SYMBOL 

pH pH Clay, Silt, Sand  percentages  Water content, micropores THETA 

Root distribution RPIN Bulk density GAMMA Water content, macropores THETI 

Fraction of available water 

exhausted before reduction in 

transpiration occurred 

FAWC Saturated water content TPORV Total water content THETT 

Critical soil air content for root 

water uptake 

CRITAIR Boundary water content XMPOR Water tension CPSI 

Root adaptability factor BETA Boundary soil water tension CTEN Water exchange rate (positive 

from macropores) 

EXCHANGE 

Canopy interception capacity CANCAP Residual water content RESID Degree of saturation in 

macropores 

THETAMA 

Correction factor for wet canopy 

evaporation 

ZALP van Genuchten’s n value N Root water uptake ZUPTAKE 

Solute concentration at bottom 

boundary 

CONCIN van Genuchten’s alpha ALPHA Accumulated precipitation TTPRECIP 

Drainage basin area AREA Saturated hydraulic conductivity KSATMIN Net rainfall RAIN 

Empirical parameter controlling 

percolation out of the bottom of 

the profile 

BGRAD Boundary hydraulic conductivity KSM Accumulated net rainfall RRNRAIN 

Initial soil temperature TEMPINI Slope of shrinkage characteristic ZP Total accumulated tile drainage TSEEP 

Initial solute concentration in soil 

water 

SOLINIT Exponent in the power function 

relating macropore hydraulic 

conductivity to macroporosity. 

ZA Accumulated water flow to 

secondary flow drainage system 

GSTOT 

Tortuosity/Pore size distribution 

factor in macropores 

ZN Effective diffusion pathlength ASCALE Actual evapotranspiration rate CETA 

Tortuosity factor in micropores ZM Excluded volumetric water 

content 

AEXC Potential evapotranspiration rate EPOT 

Trapped air content TRAP_AIR Sorption distribution coefficient ZKD Accumulated potential 

evapotranspiration rate 

CCEPOT 

Average annual temperature at the 

site 

ANNTAV Degradation rate coefficient, 

micropores, liquid phase 

DEGMIL Accumulated potential soil 

evaporation 

CPSOIL 
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BASELINE INPUT DATA MACRO 5.0 

SYMBOL 

CHANGED INPUT DATA MACRO 5.0  

SYMBOL 

SELECTED OUTPUT 

PARAMETERS 

 

MACRO 5.0 

SYMBOL 

Average annual amplitude in 

temperature 

ANNAMP Degradation rate coefficient, 

macropores, liquid phase 

DEGMAL Potential soil evaporation rate PSOIL 

Rainfall correction factor RAINCO Degradation rate coefficient, 

micropores, solid phase 

DEGMIS Accumulated potential 

transpiration 

CUPT 

Snowfall correction factor SNOWCO Degradation rate coefficient, 

macropores, solid phase 

DEGMAS Accumulated percolation TFLOWOUT 

Snowmelt factor SNOWMF   Accumulated infiltration CINFIL 

Site latitude PHI   Water storage (canopy) CRES 

Average rainfall intensity at the 

site 

RINTEN   Solute concentration in soil 

solution (micropores) 

SOLMIC 

Ditch/Drainage depth for 

secondary drainage system 

LAYERD   Solute concentration in soil 

solution (macropore) 

SOLMAC 

Residence time for regional 

groundwater flow rate 

RGWFLOW   Solute exchange rate, each layer 

(positive from macropores) 

CEXCH 

Drain depth (primary drainage 

system) 

DRAINDEP   Total accumulated solute leaching TSOUT 

Drain spacing SPACE   Accumulated amount of solute 

lost to regional groundwater 

GSINK 

Freundlich exponent FREUND   Accumulated amount of solute 

lost to tile drains 

DRAINLOS 

Solute concentration in irrigation 

water 

CONCI   Total solute flow to tile drains DSOLTOS 

Day of irrigation IRRDAY   Accumulated amount of solute 

degraded in soil 

TDEG 

Irrigation amount AMIR   Accumulated uptake of solute by 

crop 

TUPT 

Start time of irrigation IRRSTART   Solute concentration in tile 

drainage water 

DRAINCON 

End time of irrigation IRREND   Solute concentration in 

groundwater flow 

GRCON 

Fraction of irrigation intercepted 

by crop canopy 

ZFINT     

Horizons thickness      
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5.1 MACRO 5.0 simulations for the case studies 

 

5.1.1 Simulations for the Cape Flats area 

 

Tables 5.2, 5.3 and 5.4 show the comparison between measurements and simulations. 

Concentration data are taken over a period from 1999 to 2004 whilst water content data is 

for July 2006. This is because measured data were available within this period for the 

Coastal Park area. In Table 5.2, measured data are presented in seasons as weighted 

averages for which their plots are available from Ball & Novella (2003) report. These are 

averages of records from a line of mini-wells and boreholes drilled in 1987 in the Coastal 

Park for experimental purposes. The dates from the simulation outputs were selected with 

the assumption that they correspond with the mentioned seasons of measured data. 

 

 

Table 5.2: Measured and simulated chloride concentration data for Cape Flats area. 

Season Date Measured average 

borehole concentration 

(mg/l) 

Simulated concentration at 

300 cm depth (mg/l) 

1999 Wet 1999/06/05 649 37 

1999 Dry 1999/12/15 642 34 

2000 Wet 2000/06/05 274 113 

2000 Dry 2000/12/15 370 27 

2001 Wet 2001/06/05 317 57 

2001 Dry 2001/12/15 573 750 

2002 Wet 2002/06/05 904 1098 

2002 Dry 2002/12/15 830 728 

2003 Wet 2003/06/05 814 1110 

2003 Dry 2003/12/15 555 761 

2004 Wet 2004/06/05 737 1144 

2004 Dry 2004/12/15 554 765 

 

Ball & Novella (2003) report the existence of seawater intrusion in boreholes, which 

causes an increase in chloride concentration. According to Blight et al. (2005), during the 

period 1998/1999 the landfill height was raised by about 5 m and lithium and sodium 

chloride were injected as tracers. That also contributed to an increase in chloride 

concentration. Further, raising of the landfill height followed during the 1999/2000 

period, and a lot of obstructions to the process were reportedly experienced. That could 

have resulted in distorted records. Again, the fact that the soil profiles used for simulation 

were not from the chloride sampling site could be the cause of visible differences 

 

 

 

 



 67 

between some measured and simulated data displayed in Table 5.2. These data are 

presented graphically in Figure 5.1, where definite trends are consistent for measured and 

simulated data. 

 

The graphical trends of data in Tables 5.3 and 5.4 are displayed in Figure 5.2. 

 

Table 5.3: Simulated water content (m3/m3) data for Cape Flats area. 

Depth (cm) 
 

2006/06/28 

 

2006/07/06 

 

2006/07/18 

 

2006/07/20 

 

2006/07/25 

 

2006/07/27 

 

2006/07/29 

0 0.278 0.261 0.260 0.294 0.277 0.277 0.267 

50 0.298 0.295 0.291 0.311 0.299 0.297 0.294 

100 0.189 0.177 0.165 0.163 0.163 0.179 0.194 

150 0.199 0.190 0.178 0.176 0.172 0.171 0.170 

250 0.153 0.172 0.194 0.193 0.189 0.188 0.186 

300 0.280 0.280 0.280 0.280 0.280 0.280 0.280 

 
 
Table 5.4: Measured water content (m3/m3) data for Cape Flats area. 

 

Depth (cm) 

 

2006/06/28 

 

2006/07/06 

 

2006/07/18 

 

2006/07/20 

 

2006/07/25 

 

2006/07/27 

 

2006/07/29 

0 0.383 0.380 0.354 0.349 0.254 0.217 0.207 

50 0.381 0.377 0.348 0.343 0.200 0.157 0.140 

100 0.210 0.201 0.165 0.160 0.177 0.136 0.134 

150 0.282 0.281 0.244 0.236 0.239 0.220 0.214 

250 0.301 0.250 0.155 0.141 0.132 0.125 0.113 

300 0.357 0.333 0.295 0.269 0.167 0.148 0.136 

 

Graphical trends are comparable. However, it is noted that the water content is higher in 

the topsoil than in deeper layers. This could imply probable heavy rainfall around the 

early days of the month of July since the data show a decreasing pattern as the month 

nears its end. With simulated data, water content is also higher at 300 cm depth. This 

depth is set as a water table level for the simulation process, so the aquifer could be 

acting as a source of additional water to the infiltration from the surface. Another 

noticeable difference is that the measured water content is higher at 150 cm depth 

compared to simulated data. This could be attributed to differences in soil properties of 

locations from which data were acquired. 
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The following figures (5.1 and 5.2) show the comparison of measured and simulated data 

in graphical format. 
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Figure 5.1: Measured (yellow line) and simulated (purple line) chloride concentration 
trends as a function of time at water level depth for the Cape Flats area. Simulated data 
run from 1999 to 2004. 
 

Measured data in Figure 5.1 are from Coastal Park boreholes that have been monitored 

since 1986. For the simulated plot, chloride concentrations used are from Coastal Park 

(Ball and Novella, 2003) but the soil profile hydraulic data are from iThemba Labs 

(Samuels, 2007) due to the shortage of available data from Coastal Park. These sites have 

similar geohydrological characteristics since they both fall within the Cape Flats 

environment.  

 

Looking at Figure 5.1, it is seen that simulation trends are fitting measurements well, 

considering such a long period over which they are compared, even though the simulation 

is over-estimating in the high range of concentrations. The plots in Figure 5.2 indicate 

good correspondence between measurements and simulations. Minor differences could be 

attributed to the difference in soil properties of sampling locations. 
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Figure 5.2: Measured and simulated soil water content graphs as a function of profile 
depth on selected days in July 2006 in the Cape Flats area. 
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5.1.2 Simulations for the Mpumalanga Highveld area 

 

Calibration plots of solute (boron and fluoride) concentration for the Indaba irrigation site 

are presented in Figures 5.3 and 5.4. Three 4-year interval simulations were run. The first 

simulation was from 1991 to 1994, the second one from 1995 to 1998 and the third one 

from 1999 to 2002. These simulations were run separately because MACRO can only 

take up to 100 irrigation records. Hence, for bi-monthly applications (as was the case), 

more than 100 records had to be loaded. For estimation of the initial solute concentrations 

in the profile (SOLINIT) during effluent application period, the concentration output 

from the last day of each simulation was used as input to the next simulation. Appendices 

E and F show measured irrigation rates (applied every two weeks) for Indaba and 

Goedehoop irrigation sites from 1991 to 2001, respectively. These were calculated from 

monthly irrigation volumes as plotted and reported by Ginster (2002). Simulated boron 

and fluoride concentration output data for August 1991 and December 2002 are presented 

in Appendices D1 and D2, respectively. It proved very difficult to obtain raw measured 

data for solute concentrations in the soils of the Highveld area; instead the blue graphs 

(see Figure 5.3 and Figure 5.4) from Pit 3 and Pit 4 of the Indaba irrigation site were 

transferred from already plotted data from the Secunda reports by Ginster (2002) to this 

one. The reason for using data from the Indaba irrigation site was the fact that there were 

no soil depth profile data available for the Goedehoop irrigation site.    

 

Both Figure 5.3 and Figure 5.4 show similar trends in measured data from the Indaba 

irrigation site and simulated data for the years 1991 and 2002. The slight differences 

between measurements and simulations could be due to the fact that the average 

concentration values were input for simulations, whilst the measured concentrations 

distribution was highly variable (i.e. at some instances or time frames there would be 

more data collected and at others, sparse data. Moreover, the differences between low and 

high concentration values were occasionally large) from 1991 to 2002. 
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Figure 5.3: Boron concentration measured (two top blue graphs) and simulated data 
(bottom graph) for the years 1991 and 2002 as a function of depth for Indaba irrigation 
site of Mpumalanga Highveld. 
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Figure 5.4: Fluoride concentration measured (two top blue graphs) and simulated data 
(bottom graph) for the years 1991 and 2002 as a function of depth for Indaba irrigation 
site of Mpumalanga Highveld area. 
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Only boundary initial concentrations and concentrations in irrigation water in this case 

differentiate boron from fluoride. Such data as the solute concentration factor (FSTAR) 

and diffusion coefficient in free water (DIFF) could also assist in differentiating among 

solutes in the simulation set-up. However, these parameters were not determined for this 

study and hence default values were applied. Fluoride boundary initial concentration was 

1.36 mg/l (= 1360 mg/m
3
) and its concentration in irrigation water was 47 mg/l. For 

boron, boundary initial concentration was 0.42 mg/l and its concentration in irrigation 

effluent was 10 mg/l.  

 

Mpumalanga Highveld simulation data used for calibration of soil water content in 

October 1993 are presented in Appendix C. There were no measured depth profile data 

for soil water contents except for 1993, hence only this period is shown in the water 

content comparison plots of Figure 5.5. It represents average water content for the month 

of October in 1993. 
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Figure 5.5: Measured and simulated (see legend) water contents as a function of depth 
simulated for October 1993 for the Mpumalanga Highveld area, with different boundary 
hydraulic conductivity (KSM) values.  
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Figure 5.5 shows a good correlation between the simulated and measured data, even with 

different boundary hydraulic conductivities. These simulations represent average water 

content for October 1993 after heavy rainfall at specific given depths. Figure 5.5 shows 

lower water content deeper in the profile whilst the topsoil contains more water. This is 

attributed to the fact that the topsoil becomes saturated for long periods, with high clay 

content forming an effective seal causing surface runoff, and slow migration and 

leaching.  

 

 

5.2 Sensitivity Analyses 

 

Given the generally positive response of the MACRO model in terms of comparisons 

between measurements and simulation outputs, it was decided to run sensitivity analyses 

of model outputs to inputs related to preferential flow for different scenarios both for the 

Cape Flats and the Mpumalanga Highveld environments. The aim was to identify 

important inputs related to preferential flow that cause large variations in output results. 

Baseline parameters, varied input parameters, and output parameters will be discussed for 

each graph in this Chapter. Section 5.2.1 concentrates on the Cape Flats area scenarios 

and 5.2.2 deals with the Mpumalanga Highveld.  

 

For all graphs in this Chapter, the criteria used in selecting parameters to vary, were trial 

and error. Various input values were substituted in order to see which one resulted in the 

visible effect on the pattern or trend of plots. The ones that show conspicuous or 

meaningful effects were then selected for plots to include in this document. Some 

parameters showed subtle or no difference, no matter how much the input values were 

varied. At least three values of each parameter were plotted in order to obtain reliable,  

adequate and comprehensible comparison.
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5.2.1 Cape Flats 

 

Diffusion pathlength is the half-width between two assumed parallel fractures. It is the 

parameter varied in Figure 5.6 in order to assess its effect on total water content as an 

output. From Figures 5.6 (a) and (b) it is clear that the soil water content mostly decreases 

as the diffusion pathlength increases, signifying physical non-equilibrium and thus 

preferential flow. Fluctuations decrease and water content evens out after 2002 as is 

evident on the graphs. This could be attributed to rainfall distribution around that time, 

that is, there was frequent but low rainfall during this period compared to the years prior.  
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                              (b) 

Figure 5.6: Simulated soil water contents as a function of the effective diffusion 

pathlength, d (mm) at (a): 0 – 1 cm, (b): 128 – 133 cm profile depths – Cape Flats area.  

 

Although not shown here, it was also observed that the decrease in alpha (van 

Genuchten’s alpha which determines the shape of the water retention function and related 

to a characteristic pore size distribution in the soil) causes an increase in water content. 

This is expected because capillary fringe thickness increases with decreasing alpha, thus 

slowing the gravity drainage, and therefore storing more water in the unsaturated zone 

due to capillary forces (Prasad et al, 2001). 

 

For Figure 5.7, hydraulic conductivity at the boundary between micropores and 

macropores was varied and the total water content output was analysed. As this hydraulic 

conductivity increases, water exchange rate between these domains also increases, and 

thus soil water content decreases as depicted in Figures 5.7 (a) and (b). This is probably 

because water drains faster due to high hydraulic conductivity in the macropores. At 

shallow depths the variation in water content peaks evens out, whilst they show an even 

but gradual increase with time deeper in the profile. 
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                      (b) 

Figure 5.7: Simulated soil water contents as a function of boundary hydraulic 

conductivity, Kb at (a): 0 – 1 cm, (b): 128 – 133 cm profile depths – Cape Flats area. 
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As expected, Figure 5.8 shows an increase in soil water tension as water contents in 

Figures 5.7 and 5.6 above decrease. Additionally, the sharp peaks and leveling out are 

evident in the water tension plots too. 
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Figure 5.8: Sensitivity of simulated soil water tension to different values of the boundary 

soil water tension at depths 0 -1 cm and 128 – 133 cm, respectively – Cape Flats area. 
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For Figure 5.9, the varied input was n (van Genuchten’s n value which defines the shape 

of the water release characteristic in the micropore domain) with the water exchange rate 

as output. From these plots, it is unclear whether a change in n has a significant effect on 

the water exchange rate between micropores and macropores. In the middle of the graph 

(Figure 5.9 a), the exchange from macro- to micropores (positive values) is dominant 

over the exchange rate from micro- to macropores (negative values). In contrast, the 

reverse is true at water table level (Figure 5.9 b), irrespective of n values. The sharp 

increases of the water exchange rates signify the existence of preferential flow and/or a 

source of water (heavy rainfall period or vicinity of the water table).  
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294 - 300 cm depth
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      (b) 

Figure 5.9: Simulated water exchange rates as a function of van Genuchten’s n value at 

depths (a) 128 – 133 cm and (b) 294 – 300 cm – Cape Flats area. 

 

 

Diffusion pathlength and boundary hydraulic conductivity were the respective parameters 

selected to vary in order to determine their effect on solute concentration. In this case, 

chloride is represented under the group type tritium in the MACRO simulation set-up. 

This is shown in Figures 5.10 to 5.12. 

  

Compared to the concentration values of Figures 5.13 to 5.15 further down, the 

concentration values in Figures 5.10 to 5.12 are higher. This is to be expected because 

chloride does not sorb and degrade and hence it leaches rapidly, whilst generic pesticides 

undergo sorption and degradation during infiltration. Selaolo (1998) suggested that 

tritium is transported in both liquid and vapour phases (in the model tritium is set to be 

lost as water evaporates from the soil surface), whilst other solutes are transported in 

liquid phase only. That could explain higher concentration for tritium group type solutes. 
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11 - 15 cm depth
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Figure 5.10: Simulated solute concentration with respect to the diffusion pathlength at 11 

to 15 cm depth over a period 1999 to 2004 – Cape Flats area. 
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Figure 5.11: Simulated solute concentration with respect to the diffusion pathlength at 

294 – 300 cm depth over a period 1999 to 2004 – Cape Flats area. 
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Figure 5.12: Simulated solute concentration with respect to boundary hydraulic 

conductivity (KSM) at 294 – 300 cm depth over a period 1999 to 2004 – Cape Flats 

area. 

 

Scenario simulations were run for a generic pesticide in order to test model output to 

variations in sorption distribution coefficient, degradation rate coefficient in macropore 

solid phase and excluded volumetric water content. These plots are displayed in Figures 

5.13, 5.14 and 5.15, respectively. In MACRO, there is an input parameter option for the 

initial solute concentration in soil water (SOLINIT) and in this case 1 mg/m
3
 was the 

selected input. The input solute concentration at the lower boundary level (CONCIN - 

which in this case is the water table level at 300 cm depth) was 4000 mg/l.  
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Figure 5.13: Simulated solute concentration with respect to sorption distribution 

coefficient at 11 – 15 cm depth over 1999 to 2004 period – Cape Flats area. 
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Figure 5.14: Simulated solute concentrations as a function of degradation rate coefficient 
in macropores solid phase at 294 – 300 cm depth over a period from 1999 to 2004 – 
Cape Flats area. 
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294 - 300 cm depth
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Figure 5.15: Simulated solute concentration as a function of excluded volumetric water 
content at 294 – 300 cm depth over a period from 1999 to 2004. 

 

Figures 5.13 to 5.15 show that there is a higher solute concentration in macropores than 

in micropores over long simulation times and nearly equal over short time irrespective of 

any variable parameter. Although not shown here, similar patterns were observed with 

parameters like degradation rate coefficient in micropores (both liquid and solid phases) 

and macropores liquid phase. It is also noted that there is a sudden increase in solute 

concentration in 2001 for profile depth 294 – 300 cm. This could imply that the water 

table started to act as the source of the solute for layer 294-300 mm since this depth is set 

at water table level (lower boundary conditions). The simulation set-up is such that water 

table fluctuations are accommodated. Besides the bottom boundary being set at 300 cm 

depth, the Field drainage option was included to cater for a rising water table. Another 

explanation could be that the solute was transported rapidly through macropores after it 

took some time to leach. This could be promoted by heavy rain in the area. Furthermore, 

it could also be influenced by differences in soil properties of different soil horizons (B 

Horizon in this case).  
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The big difference between solute concentrations in soil water (SOLINIT) and at the 

lower boundary (CONCIN) results in output differences that are visible such as Figure 

5.13 (the near surface plot) compared to Figures 5.14 and 5.15 plotted for depths 294 to 

300 cm. 

 

To see their effect on solute leaching, the diffusion pathlength (Figure 5.16a) and the 

boundary hydraulic conductivity (Figure 5.16b) parameters were varied. Figure 5.16 (a) 

represents the generic pesticide leaching scenario, whilst Figure 5.16 (b) represents the 

tritium type (chloride) leaching simulation results. Breakthrough in solute leaching is 

seen at the time around 2001 of simulation (see figure 5.16 (a)). Figure 5.17 suggests that 

this could be due to the increasing amount of percolation generated around this time. 

Again the theory by Selaolo (1998) of tritium being transported in both liquid and vapour 

phases, whilst other solutes are transported in liquid phase only, could explain the higher 

leaching in Figure 5.16(b) when compared to Figure 5.16 (a) since in the model, it is set 

to be lost as water evaporates from the soil surface . It could also be the fact that chloride 

does not sorb and degrade compared to pesticides. 
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Figure 5.16: Simulated solute leaching in response to different values of (a) diffusion 

pathlength and (b) boundary hydraulic conductivity – Cape Flats area. 
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Figure 5.17: Simulated percolation in response to changing boundary hydraulic 

conductivity – Cape Flats area.  
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It is noted that percolation is low in the Cape Flats area (see Figure 5.17). Blight et al. 

(2005) observed reduced water content in Coastal Park which might be due to reduced 

rainfall. They concluded that the rain water was absorbed and mostly held by the 

landfilled general wastes, subsequently being drawn back to surface by capillary action, 

where it evaporated during the course of each year. However, the model was not set to do 

that, but it simulated reduced percolation in drier years. Vandoolaeghe (1989) found that 

the net groundwater recharge through Cape Flats sandy soils varies between 15% and 

37% of annual precipitation which ranges between 300 mm and 500 mm, depending on 

climatological factors and soil conditions. On top of that, the losses through 

evapotranspiration are extremely high and exceed 80% of annual precipitation. Adams 

(unpublished data) estimated between 10% and 13% of annual precipitation recharge for 

the Campus Test site at the University of the Western Cape. Also, Henzen (1973) and 

Gerber (1976) concluded that vertical permeability in the Cape Flats is smaller than the 

horizontal permeability, and this plays a role in the amount of vertical recharge 

(percolation). Cape Flats is also a very shallow aquifer with less preferential flow paths 

and no irrigation taking place at Coastal Park.  
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5.2.2 Mpumalanga Highveld 

 

In the Mpumalanga Highveld, solutes considered were fluoride and boron. The boundary 

initial concentration for fluoride and boron was 1.36 mg/l (= 1360 mg/m
3
) and 0.42 mg/l, 

respectively. The concentration values in irrigation water were 47 mg/l for fluoride and 

10 mg/l for boron. Irrigation was applied twice in a month for a simulation and the data 

used are attached in Appendices E and F. These data are for Indaba and Goedehoop 

irrigation sites, respectively for the period 1991 to 2001.  

               

In order to determine their effect on the soil water content diffusion pathlength and 

boundary hydraulic conductivity are respective inputs that were varied. This is shown in 

Figures 5.18 and 5.19. Figures 5.18 (a) and (c) are for non-irrigated conditions, whilst 

Figures 5.18 (b) and (d) represent irrigated conditions. The same applies for Figure 5.19. 

These graphs indicate that the soil water content decreases with the widening of the 

diffusion pathlength and with an increase in boundary hydraulic conductivity. Sharp 

peaks on all the plots, especially in the year 2001, are a proof of existence of preferential 

flow. There is not much difference in water content between the simulation plots of 

Figures 5.18 and 5.19. Soil water content remains at approximately the same levels even 

in dry periods due to effluent irrigation applied. Boundary hydraulic conductivity and 

diffusion pathlength have the same effect for both irrigated and non-irrigated cases. 
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400 - 413 cm depth
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      (d) 

Figure 5.18: Simulated water content as a function of diffusion pathlength at depths 2 – 

20 cm for (a) non-irrigated, (b) irrigated; and 400 – 413 cm for (c) non-irrigated,  

(d) irrigated case in Mpumalanga Highveld. 
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      (d) 

Figure 5.19: Simulated soil water content as a function of boundary hydraulic 

conductivity Kb at 2 - 20 cm for (a) non-irrigated, (b) irrigated; and 400 – 413 cm for (c) 

non-irrigated, (d) irrigated case in Mpumalanga Highveld. 
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Soil water tension at the boundary between macropores and micropores is an input varied 

in order to determine its effect on the total soil water tension (Figure 5.20). Soil water 

tension in Figure 5.20 (b) corresponds inversely to the water content graph of Figure 5.19 

(b) in the sense that it decreases with an increase in water content and vice versa. 

Additionally, it is observed that tension at the boundary is relatively proportional to the 

total soil water tension, in other words it increases with an increase in total soil water 

tension. Again, differences in changing boundary tension as a function of time are 

prominent both at depth and near the surface in the profile (see Figures 5.20 (a) and (b)). 
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      (b) 

Figure 5.20: Sensitivity of simulated soil water tension to different values of the boundary 

soil water tension at (a) 2 – 20 cm and (b) 400 - 413 cm profile depth over a period from 

1998 to 2002 – Mpumalanga Highveld area. 

 

For Figures 5.21 (a) and (b), n (van Genuchten’s value) is an input that was varied in 

order to determine its effect on water exchange rate output. Figure 5.21 represents non-

irrigated conditions. At low rates, a higher n value results in a higher water exchange rate, 

but when one looks at the simulation period between 2000 and 2002 in Figure 5.21, the 

smaller n value renders the highest rate. The effect of the n value on the water exchange 

rate can therefore not be concluded with certainty in this case. 
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      (b) 

Figure 5.21: Simulated water exchange rate as a function of the van Genuchten n value 

at (a) 2 – 20 cm and (b) 787 – 800 cm depths. 
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Figures 5.22 (a to f) show how variation in the input parameters of the sorption 

distribution coefficient (ZKD), the excluded volumetric water content (AEXC), and the 

degradation rate coefficient (DEGMAS) affect the solute concentration at different 

depths. These are non-irrigated cases. In this case, we looked at the behaviour of generic 

chemicals at different depths that are prone to sorption and degradation, where the initial 

soil concentration inputs used in the simulation set-up were the same as for boron and 

fluoride. Therefore, the y-axes on the graphs are labeled accordingly. Concentration 

peaks are visible in all these graphs, particularly in macropores. This suggests the 

existence of preferential flow and possible flushing following heavy rainfalls. 
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       (f) 
Figure 5.22: Simulated fluoride and boron concentrations as functions of sorption 
distribution coefficient (ZKD), excluded volumetric water content (AEXC) and 
degradation rate coefficient (DEGMAS) over a period 1998 to 2002 – Mpumalanga 
Highveld area. 
 
 

The graphs in Figure 5.22 show similar concentration patterns as other parameters such 

as solute concentration in soil water and solute concentration in irrigation water, when 

plotted. Concentration in bottom boundary when exposed to different distribution 

coefficient values follow the same trend (these graphs are not included here). It can be 

mentioned that soil properties like structure and shape did not affect the infiltration 

pattern.  

 

Irrigated cases are now considered in Figures 5.23 (a) and (b). These graphs are used to 

determine the trends of fluoride concentration at certain depths in the profile with time. 

Also they compare the concentrations between micropores and macropores. Fluoride 

concentration is higher near surface whilst it is low at depth. Different rainfall events 

cause flushing and migration of solutes, after persisting on surface due to lack of 

mobilizing water, and that is observed in Figure 5.23. The solute concentration in 
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irrigation water that fills the topsoil acts as the source to deeper layers during leaching 

over time. That is observed when comparing the graphs in Figure 5.23 (a) and (b).  

It is also visible from the graph in Figure 5.23 (a) that the concentration of fluoride in 

macropores is similar to the concentration in irrigation water (47 mg/l) immediately after 

an irrigation event. Due to exchange in the bimodal flow system, the fluoride diffuses 

into micropores thereafter. Therefore, the concentration of fluoride in micropores 

increases during irrigation season, whilst it tends to decrease during the rainfall season 

due to flushing by rainfall. 
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      (b) 

Figure 5.23: Simulated fluoride concentration as a function of time on an irrigated site, 

Goedehoop for the period 1998 to 2002 at depths (a) 2 – 20 cm and (b) 787 – 800 cm. 

 

Irrigation in the Mpumalanga Highveld was applied mainly during dry conditions. Thus, 

leaching continues to occur during this period mainly due to infiltrating irrigation effluent 

other than rainwater. A breakthrough of fluoride into the 787 – 800 cm layer of the soil 

appears in the year 2001 (Figure 5.23 (b)). 

  

Figures 5.24, 5.25, and 5.26 represent simulated accumulated solute leaching and 

percolation for a non-irrigated case. There is a gradual increasing trend in boron and 

fluoride cumulative leaching (see Figure 5.24 and 5.25), which is due to an increase in 

cumulative percolation as seen on Figure 5.26. The wider the diffusion pathlength, the 

lesser the percolation.  
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Figure 5.24: Simulated boron leaching with changing diffusion pathlength for a non-
irrigated site. 
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Figure 5.25: Simulated fluoride leaching with changing diffusion pathlength for a non-

irrigated site. 
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Figure 5.26: Simulated accumulated percolation with changing diffusion pathlength (blue 

line embedded in the purple line) for a non-irrigated site. 

 

Figures 5.27 and 5.28 represent the irrigated case of the Goedehoop irrigation site. These 

two graphs display similar trends as those of non-irrigated conditions (Figures 5.25 and 

5.26) in relation to the diffusion pathlength. However, it is not completely conclusive to 

say that leaching increases or decreases with increasing diffusion pathlength because 

leaching plots, especially for fluoride, display inter-crossing graphs for different diffusion 

pathlengths.  Figures 5.27 and 5.28 show higher quantities of both leaching and 

percolation due to effluent irrigation applied. Furthermore, the percolation graph (Figure 

5.28) indicates a proportional relationship with leaching and similar response to varying 

diffusion pathlength. 
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Figure 5.27: Simulated fluoride leaching with changing diffusion pathlength for irrigated 

site, Goedehoop. 
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Figure 5.28: Simulated accumulated percolation with changing diffusion pathlength (blue 

line embedded in the purple line) for irrigated site, Goedehoop. 
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Percolation is higher in the Highveld than in the Cape Flats area (see Figures 5.26 and 

5.28). Mpumalanga Highveld is a fractured environment, characterized by cracked clays, 

weathering and a thicker vadose zone of about 7 m. Irrigation was applied for which the 

rates were about 500 mm/annum in addition to annual precipitation of approximately 700 

mm/annum. Some parts in the area are characterized by coarser grained sandstone and 

therefore higher recharge values are expected there, whilst dolerite sills often occur at 

surface where rain water recharges with ease since they are weathered or fractured. Table 

4.5 also shows the shape, texture and composition of the soil profile as set up in MACRO 

for simulation process. Parameters ZP (slope of shrinkage characteristics) and ZA 

(shrinkage exponent) were set to zero for the Cape Flats area, whilst default values were 

used as input in the case of Mpumalanga Highveld. These properties promote preferential 

flow. Thus, higher percolation as seen in Figure 5.26 and 5.28 compared to Figure 5.17 is 

not unexpected. Climatic conditions of the area also favour the process since water 

logging is a common phenomenon causing soils to remain wet for longer periods. 
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------------------------------------------------------------------------------------------------------------ 

CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

The MACRO 5.0 model was tested for preferential flow in the unsaturated zone of two 

different environments, namely the Cape Flats and the Mpumalanga Highveld. The Cape 

Flats are characterized by sandy soils and Mediterranean climate with winter rainfall, 

whilst the Highveld site is characterized by heavily cracked clay soils and summer 

rainfall in the form of thundershowers. 

 

From the calibration process performed for the Cape Flats, it was evident that the 

MACRO 5.0 model predicted solute concentrations well. This indicated that the model is 

suitable to predict micropore flow, which is the dominant flow type in the unsaturated 

zone of the Cape Flats. The model was also able to predict macropore flow, which is 

dominant in Mpumalanga Highveld. Discrepancies between model predictions and 

measurements were however observed for some simulations. Environmental properties 

and the availability and adequacy of data, or lack thereof used in the simulation process 

for both case study sites could have had an influence on the results. It was therefore 

decided to run a sensitivity analysis of model output in order to indicate which input 

parameters are the most important to measure or accurately estimate. 

 

Climate plays a role in solute transport since macropore flow is frequent in wet climates, 

whereas it occurs when shrinkage cracks are present in dry climates. Moreover, Jarvis 

(2002) realized that the extent of leaching in the presence of macropore flow does not 

only depend on total rainfall, but perhaps more importantly on rainfall distribution and 

intensity. Water content and concentration graphs for the Cape Flats area support that 

observation. Contaminant transport in the vadose zone depends on both the properties of 

the medium and the properties of the pollutant (Jarvis, 2002). Solute concentration graphs 

confirm this notion (see Figures 5.22 and 5.23). When it comes to the properties of the 

pollutant, the differences are clear when graphs of solutes set under tritium type in 
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simulation set-up (Figures 5.10 to 5.12) are compared to generic solutes graphs (Figures 

5.13 to 5.15) in the Cape Flats scenario. The same applies to Mpumalanga Highveld. 

 

The unsaturated zone of the Cape Flats is not affected by preferential flow in the same 

way as the Mpumalanga Highveld. That is evident in the water content and solute 

concentration graph patterns. The concentration versus depth plots for Mpumalanga 

Highveld show sudden decreases in both micropore and macropore concentration with 

depth at certain points. This indicates the existence of significant preferential flow for the 

area. Nonetheless, these observations are expected since we are dealing with different 

environments. Unconsolidated porous sands of the Cape Flats, with some isolated 

calcrete, allow the flow to be mainly through matrix. Conversely, Highveld clays are 

susceptible to cracking especially due to climate. Weathering also plays a role at depth 

since the Ecca sediments are weathered to depths of between 5 - 12 m below surface 

throughout the area. 

 

In relation to other soil hydraulic property parameters, the boundary hydraulic 

conductivity, the boundary water content, boundary soil water tension and the diffusion 

pathlength have significant influence on simulation results of the water balance. Other 

tested parameters that show subtle influence or had no significance, are: saturated water 

content, residual water content, excluded volumetric water content, bulk density, 

tortuosity or pore size distribution factors. Some parameters are only applicable if 

shrinkage is modelled, for example ZP (slope of shrinkage characteristics) and ZA 

(shrinkage exponent), which in this study is not applicable to the Cape Flats area 

conditions. The graphical representations of parameters, for which their outputs showed 

low sensitivity, were not included here. 

 

The solute balance is mostly influenced by sorption distribution coefficients, initial solute 

concentration in soil water, solute concentration in bottom boundary, solute concentration 

in irrigation water, degradation rate coefficients (both in solid and liquid phases), and 

other specific chemical properties.  
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Clearly, further studies from different parts of the country are needed to build a database 

of soil hydraulic properties, with specific emphasis on the vadose zone. Such data is 

currently almost non-existent in South Africa. 

As a modelling program, MACRO 5.0 is able to yield reliable results and the user is able 

to make various changes and perform numerous runs. Simulation runs may be too long at 

times, especially when the model is run over a long period and/or the number of 

numerical layers is high. 

The program interface requires further development, especially when it comes to output 

files. In its current form, it allows the user to input all parameters and select all output 

parameters that need to be simulated. Unfortunately, sometimes the user cannot read all 

output results unless time consuming methods that are not part of the program are 

employed.  
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CHAPTER 8 

 

APPENDICES 

 

 

The Units of parameters given in Appendix A and Appendix B are as follows: 

Maximum and Minimum Temperatures - °C 

Potential Evapotranspiration – mm 

Rainfall – mm 
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APPENDIX A: 

 

 

Example of Potential Evapotranspiration, Temperatures, and 

Rainfall uploaded driving data of the Cape Flats area for 2004 
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Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall

20040101 4.62 24.3 16.3 0 20040202 5.75 29.4 16.2 0 20040305 3.76 20.7 13.3 0

20040102 4.33 24.1 17.6 0 20040203 4.4 25.8 16.9 0.2 20040306 5.78 29.9 10.7 0

20040103 8.06 36.2 17.9 0 20040204 4.27 24.4 15 0 20040307 6.62 34.5 12.8 0

20040104 7.31 34.8 19.1 0 20040205 5.62 28.1 12.3 0 20040308 3.63 24.7 16.8 0.4

20040105 4.17 24.5 18 4.4 20040206 5.76 30.4 16.9 0 20040309 3.21 21 15.5 0

20040106 3.62 24.1 17.5 0 20040207 6.16 32.2 18 0 20040310 3.03 21.4 14.7 0

20040107 5.67 28.2 17 0 20040208 6.41 33.8 18.9 0 20040311 3.47 22.6 13.1 0

20040108 5.31 28.5 17.6 0 20040209 6.62 34.3 18.7 0 20040312 5.15 29 13.5 0

20040109 4.18 24.6 16.7 0 20040210 5.63 32.4 16.7 0 20040313 5.25 30.7 14.5 0

20040110 4.45 23.4 16.5 0 20040211 4.03 26.1 17.8 0 20040314 5.49 31.4 15.2 0

20040111 6.67 31.7 15.3 0 20040212 4.62 27.4 17.5 0 20040315 5.66 31.8 14.4 0

20040112 4.32 26.4 16.8 0 20040213 4.13 26.3 16.4 0 20040316 3.72 24.6 15.5 0

20040113 5.04 28.3 17.9 0 20040214 3.18 24.6 18 0 20040317 3.52 24.6 12.5 0

20040114 4.07 24.5 17 0 20040215 4.29 24.6 14.5 0 20040318 2.93 21.9 13.9 0

20040115 4.29 23.4 17.1 0 20040216 4.27 25.4 15.8 0 20040319 2.92 21.7 13.1 0

20040116 5.13 26.3 16.4 0 20040217 3.74 23.8 17.7 0 20040320 3.3 22.7 13.8 0

20040117 5.47 28 16.8 0 20040218 4.8 27.9 17.8 0 20040321 3.19 22.8 12.2 0

20040118 5.54 28.5 16.5 0 20040219 5.11 29.3 18.3 0 20040322 3.31 23.2 9.6 0

20040119 5.06 27.3 15.8 0 20040220 4.87 29.5 17.6 0 20040323 3.84 26.7 16.2 0

20040120 6.29 31.8 17.8 0 20040221 3.69 26 17.1 0 20040324 4.51 28.3 10.2 0

20040121 6.84 34.1 18.5 0 20040222 3.84 24.7 17.6 0 20040325 2.98 23.5 16 0

20040122 5.42 30.5 17.7 0 20040223 4.66 28 17.5 0 20040326 2.41 21.4 14.8 0

20040123 6.33 33.3 18.8 0 20040224 3.15 23.2 16 0 20040327 3.13 22.5 12.4 0

20040124 4.71 27.4 16.4 0 20040225 4.09 24.9 15.6 0 20040328 3.26 23.5 10.3 0

20040125 4.11 25.6 17 0 20040226 4.08 26.5 15.3 0 20040329 3.18 20.3 13.1 0

20040126 4.72 26 17.1 0 20040227 3.91 26.8 17.6 0 20040330 2.94 20.3 10.3 0

20040127 4.55 24.8 16.5 1.4 20040228 3.89 26 17 0 20040331 4.45 28 13 1

20040128 4.34 22.7 16.3 0 20040229 4.26 24.9 14.7 0 20040401 4.92 32 13.3 0

20040129 4.84 24.3 15.9 0 20040301 3.77 23.2 12.9 6.8 20040402 3.68 27.7 15.7 0

20040130 6.42 30.4 14.3 0 20040302 3.56 20 12.7 0 20040403 2.4 22.5 15.6 1

20040131 4.33 27.2 18.1 0 20040303 3.9 22 11 0 20040404 2.33 21.7 15.6 9.1

20040201 4.23 25.2 18.1 0 20040304 3.04 20.1 10.8 1 20040405 2.07 19.6 13.8 0.4
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Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall

20040406 2.91 23.1 9.2 0 20040508 2.63 25.6 10.7 0 20040609 1.39 17.6 7.1 0

20040407 5.08 33.6 11.5 0 20040509 1.63 24.2 14.5 0 20040610 1.94 20.4 5 0

20040408 2.35 21.8 14 3.7 20040510 1.86 20.6 13.4 0 20040611 2.64 23.4 3.9 0

20040409 2 19.2 13.6 2.8 20040511 1.28 17.8 13.3 0 20040612 1.29 17.9 7.2 2.4

20040410 1.39 18.4 13 3.2 20040512 1.05 17.5 13.6 1.8 20040613 0.87 16.1 13.4 13.7

20040411 2.46 21.9 12.6 0 20040513 1.87 20 9.6 0 20040614 1.34 19.1 12.5 14

20040412 2.87 24.7 14.9 0 20040514 1.98 20.9 5.9 0 20040615 0.93 17.1 13.4 1.8

20040413 4.67 31.3 13.1 0 20040515 1.65 21.5 9.8 0 20040616 1.36 19.6 12.2 0

20040414 2.12 21.6 14.3 0.2 20040516 2.42 23 8 0 20040617 1.62 22.7 6.8 0

20040415 1.81 20 14.4 18.6 20040517 1.14 16.9 13 0 20040618 1.28 18.8 11.2 9.5

20040416 1.48 16.9 12.7 11 20040518 1.4 19 9 0 20040619 1.24 17.6 8.1 0

20040417 2.24 18.9 9.2 0 20040519 1.15 19.7 14.5 0 20040620 1.6 19.4 5.4 0

20040418 2.21 20.6 12.2 0.5 20040520 1.55 21.5 10.3 0 20040621 1.85 21.5 7.4 0

20040419 2.24 18.3 11.3 0 20040521 1.58 21.1 11.7 0 20040622 1.9 21.1 9.2 6

20040420 2.14 18.6 6.8 8.2 20040522 1.68 21.6 9.7 0 20040623 0.9 16.8 11.5 0

20040421 1.85 19.2 12.2 3 20040523 1.43 18.8 13.3 0 20040624 1.41 18.4 6.7 0

20040422 2.14 19.8 13.3 0 20040524 1.67 21.6 10.4 0 20040625 1.07 16.9 4.5 1.4

20040423 2.86 24.7 9.9 0 20040525 1.73 22.1 11 0 20040626 0.93 14.9 7.2 10.4

20040424 1.72 20.5 13.2 1.4 20040526 2.11 23.6 7.5 0 20040627 1.28 14.4 3.5 0

20040425 2.14 17.8 10.4 0 20040527 1.96 20.4 11.4 0 20040628 1.89 17.2 1.4 0

20040426 3.16 23.2 11.1 0 20040528 1.54 17.2 13 1.6 20040629 1.07 14.5 2.8 0

20040427 2.54 23.5 8.1 0 20040529 1.57 17.8 9.5 0 20040630 1.5 17.2 4.7 0

20040428 3.7 29 10.6 0 20040530 2.16 20.4 3.1 0 20040701 1.45 16.2 5.8 0

20040429 3.44 28.9 10.4 0 20040531 2.43 21.3 4.7 0 20040702 0.96 15 8.3 7.2

20040430 2.86 24.7 13.7 0 20040601 3.19 27.8 3.6 0 20040703 0.99 16.6 9.1 1

20040501 1.67 19.9 15.6 0.4 20040602 3.61 29.5 10.9 0 20040704 1.1 15.3 6.7 0

20040502 2.75 24 13.5 0 20040603 3.55 30.1 12.6 0 20040705 1.56 16.5 1.8 0

20040503 2.93 25.4 10.3 0 20040604 1.48 20 13.4 19.2 20040706 1.87 19.8 2.6 0

20040504 2.48 24.1 7.1 0 20040605 1.19 16.4 12.1 8.4 20040707 1.92 20.6 3.2 0

20040505 2.58 25.4 10.4 0 20040606 1.18 15.7 10.3 0.9 20040708 2.39 23.5 3.3 0

20040506 2.1 26.5 11.2 0 20040607 1.54 15.9 10.2 3.2 20040709 2.79 24.7 5.8 0

20040507 1.77 21.1 11.5 0 20040608 1.23 16.6 8.8 0.2 20040710 1.68 18.8 9.8 0
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Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall

20040711 2.01 20.8 4.4 0 20040812 1.61 17.4 5.6 0 20040913 2.65 20.7 8.6 0

20040712 1.34 17.1 11.5 0 20040813 1.62 16.2 5.4 2 20040914 2.6 20.6 10.1 0

20040713 2.25 18.4 8.3 0 20040814 1.2 16.3 8.9 6.3 20040915 2.3 19.5 13.7 0

20040714 2.59 21.2 2.2 0 20040815 1.65 15.5 7.3 7.6 20040916 2.79 19.9 12.5 0

20040715 2.02 20.8 2 0 20040816 1.19 15.5 10.7 3.4 20040917 2.65 18.8 11.4 10.7

20040716 2.78 22.9 5.7 0 20040817 1.56 17.2 8.5 0.3 20040918 2.05 16.6 10 3.3

20040717 2.65 24.1 4.4 0 20040818 1.76 18 6.8 0 20040919 2.44 17.3 8.4 0

20040718 1.53 20.4 3.4 0 20040819 1.56 17.6 7.4 0 20040920 3.73 22.5 6.6 0

20040719 3.13 26.3 7.2 0 20040820 1.79 19.1 11.3 0 20040921 5.29 29.8 7.4 0

20040720 1.62 18.9 7.4 0 20040821 1.66 17.3 12.3 0 20040922 2.64 20.1 11.9 0

20040721 1.3 18.4 7.5 0 20040822 1.73 17.7 7.5 0 20040923 2.89 18.9 10.6 2

20040722 1.36 17.9 11.2 4.2 20040823 2.09 17.1 8.7 0 20040924 2.2 16.5 11 0

20040723 0.88 16 9.7 20.6 20040824 2.02 18 8.9 0 20040925 2.74 18.1 7.9 0

20040724 1.28 16.2 8.6 9 20040825 2.03 17.1 10.6 0 20040926 3.09 19.6 10.6 0

20040725 1.35 14.5 5.8 0.6 20040826 2.14 18.2 7 0 20040927 4.18 25 6.9 0

20040726 1.54 15.5 5.7 0 20040827 2.72 22.2 8.1 0 20040928 2.95 20.9 14.2 0

20040727 1.56 16.3 4.8 0 20040828 3.16 24.3 7.7 0 20040929 5.15 28.4 7.9 0

20040728 2.49 20.5 3.7 0 20040829 1.88 20.3 12.8 0 20040930 3.06 22.9 14.6 0

20040729 1.6 17.1 4.4 18.4 20040830 1.59 18.8 12.4 0 20041001 4.71 28.5 11.2 0

20040730 1.67 13.5 7.2 2.3 20040831 2.06 19.8 12.3 0 20041002 2.71 20.1 13.1 0

20040731 1.26 14.5 6.9 1.4 20040901 1.69 17.8 12 2.5 20041003 3.9 24.9 14.5 0

20040801 1.29 16.3 9.8 0 20040902 2.36 20.1 10 0 20041004 2.85 21.6 14.4 0

20040802 2.27 19.4 3.4 0 20040903 3.28 23.9 6.9 0 20041005 2.9 21 14.5 0

20040803 1.42 15.9 5.9 0 20040904 2.3 18.7 8.7 6.2 20041006 2.79 20.2 11.7 49

20040804 1.78 15.8 10.8 15.4 20040905 2.02 15.5 8 0.4 20041007 3.26 16.7 8.3 0.2

20040805 0.77 12 9.7 56 20040906 3.07 19.6 6.4 0 20041008 3.22 17.6 4.9 5

20040806 1.35 15 7.1 3.3 20040907 2.55 17.7 3.6 0 20041009 2.76 15.4 9 0.2

20040807 1.04 13.9 9.5 52.9 20040908 3 19.7 7.6 0 20041010 3.11 17.5 7.7 0

20040808 1.25 16.9 11.6 6.8 20040909 3.73 23 5.7 0 20041011 4.07 22.4 11.7 0

20040809 1.49 16.9 8 15.7 20040910 4.59 26.9 5.5 0 20041012 4.61 25.8 13.3 0

20040810 1.96 18.3 5.5 0 20040911 2.64 19.8 7.6 0 20041013 4.5 25.6 10.7 0

20040811 3.15 24.3 3.8 0 20040912 3.03 22.4 13 0 20041014 3.51 21.3 9.9 0
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Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall

20041015 3.13 20.7 13 0 20041116 5.4 28.8 17.2 0 20041218 4.66 24.1 17.4 0

20041016 3.4 20.4 13.7 1.3 20041117 3.84 25.8 17.3 0.2 20041219 4.95 25.7 17.3 0

20041017 3.43 20.5 13 0 20041118 4.4 25.7 15.1 0 20041220 6.02 28.6 15.6 0

20041018 5.64 27.3 6.9 0 20041119 5.33 29.1 16.6 0 20041221 3.94 24.9 19 0

20041019 4.58 25.4 13.9 0.2 20041120 5.16 26 14.5 0 20041222 5.01 27.1 19 0

20041020 1.8 17.2 14 39 20041121 4.19 22.6 14.5 0.2 20041223 6.03 30.8 19.5 0

20041021 2.72 19.1 13.4 1 20041122 4.42 20.4 13.6 0 20041224 6.63 32.4 18.6 0

20041022 3.44 20.4 11 0 20041123 4.33 21.5 12.6 0 20041225 4.92 27.1 16.1 0

20041023 4.08 24.6 14 0 20041124 4.85 22.8 9.8 3 20041226 4.5 26 18.3 0

20041024 3.05 21.2 14.9 0 20041125 4.02 23.9 15.1 0 20041227 4.72 25.3 15.7 0

20041025 3.47 21 13.1 0 20041126 5.08 23.3 11.7 0 20041228 5.05 27.5 18.8 0

20041026 3.71 19.7 13.2 0 20041127 4.32 23 16.1 0 20041229 4.86 26.7 17.3 1

20041027 3.7 19.3 11.8 0 20041128 4.96 24.2 14.7 0 20041230 2.87 21 16 7

20041028 4.33 21.4 7.8 0 20041129 4.8 25.2 15.6 0 20041231 4.36 22.7 13.1 0

20041029 3.42 19.6 13.7 3 20041130 4.84 25.9 14.5 0

20041030 5.67 26.4 8 0 20041201 4.89 24.5 13.3 1

20041031 3.55 21.1 12 0 20041202 4.98 26.3 16.2 0

20041101 5.21 27 14.3 0 20041203 7.21 31.2 12.8 0

20041102 3.71 22.3 16.8 0 20041204 5.23 28.2 19.1 0

20041103 5.51 27.6 12.9 0 20041205 5.01 27.2 18 0

20041104 3.8 23.7 16.6 0 20041206 4.42 23.4 15.6 0

20041105 4.11 21.8 14.5 0 20041207 4.78 23.8 14.1 0

20041106 4.41 23 11.1 0 20041208 4.73 24.2 15.8 0

20041107 4.57 25.3 15 0 20041209 6.37 30.3 15.3 0

20041108 4.86 24.8 14 0 20041210 5.51 28.7 19.4 0

20041109 4.54 24.9 14.8 0 20041211 6.53 31 14.4 0

20041110 3.68 23 17 0 20041212 5.07 27.4 14.9 0

20041111 3.67 23.8 17.3 0 20041213 5.17 26.2 14.4 0

20041112 4.65 26 16.5 0 20041214 4.94 23.2 14.1 0

20041113 4.58 26.9 18 0 20041215 4.9 24.5 16.4 0

20041114 4.22 25.8 17.2 0 20041216 6.12 28.4 12.7 0

20041115 3.97 23.6 17 0 20041217 4.56 24.4 17.7 0.2  
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APPENDIX B: 

 

 

Example of Potential Evapotranspiration, Temperatures, and 

Rainfall uploaded driving data of Mpumalanga Highveld area for 

2002 
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Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall

20020101 6.55 30.5 12.8 0 20020202 5 26.7 14.5 0 20020306 4.42 26.2 14.2 0

20020102 5.37 28.7 17 1 20020203 5.08 27.3 15 0 20020307 3.66 24.5 16 9

20020103 4.78 25.7 15.2 1.5 20020204 5.48 29.3 16 0 20020308 3.11 20 12.3 0

20020104 4.63 25.7 16 20 20020205 6 30.8 15.3 0 20020309 4.3 25 12.5 0

20020105 5.56 26.6 12 0 20020206 6.32 32.1 15.5 1.5 20020310 4.89 26.5 10.5 0

20020106 5.37 27.3 14.5 0 20020207 2.51 19.3 15.5 25.5 20020311 4.07 24.5 13 0

20020107 6.15 30 14.5 0 20020208 4.25 22.4 11.4 14 20020312 3.94 25 14.6 3.5

20020108 4.3 25.5 17.2 3 20020209 4.64 22.4 8.5 0 20020313 3.71 23.8 14 0.1

20020109 5.65 27.5 13 0 20020210 5.34 25.3 8.6 0 20020314 4.61 25.7 10.5 0

20020110 5.64 28.5 14.9 0 20020211 5.73 28.3 11.6 0 20020315 4.42 25.5 11.5 0

20020111 5.9 29.3 14.7 0 20020212 5.96 30.5 14.2 1.5 20020316 4.6 26.5 11.8 0

20020112 5.3 28 16 0 20020213 2.49 20.6 17 1 20020317 4.84 27.5 11.5 0

20020113 5.79 28.5 13.8 0 20020214 1.73 17.7 15.9 13 20020318 4.99 28.5 12 0

20020114 5.33 27 14 4.5 20020215 3.82 23.1 14.6 0 20020319 4.81 28.2 12.8 0

20020115 5.95 28.7 13 8.5 20020216 4.53 26 15.1 0.7 20020320 4.93 28.8 12.7 0

20020116 5.73 29 15 0 20020217 3.55 22.2 14.5 1 20020321 4.94 29 12.8 0

20020117 5.83 29.9 16 0 20020218 3.41 22.1 15 23.5 20020322 5.03 29.3 12.4 0

20020118 5.61 29.3 16.2 0 20020219 4.12 22.8 12 0 20020323 4.21 26.5 13.6 0

20020119 5.12 27.3 15.6 3.5 20020220 4.81 25.5 12 0 20020324 4.03 25.5 13 0

20020120 5.44 27.8 14.5 0 20020221 4.9 27 14 0.4 20020325 4.31 26.8 13 0

20020121 6.2 31 15.5 0 20020222 4.35 24.3 12.8 0 20020326 4.34 26 11 0

20020122 5.77 29.3 15 3.5 20020223 4.88 26 12 0 20020327 4.48 27 11.5 0

20020123 5.4 29.2 17 0.5 20020224 5.12 27 12 0 20020328 4.15 26.7 13.5 0

20020124 4.56 26 16.3 8.5 20020225 5.8 30 12.5 17 20020329 4.83 26.8 6.8 0

20020125 4.73 24.9 13.5 0.2 20020226 4.28 25 14 0 20020330 3.96 25 11.5 0

20020126 4.24 22.9 13 0 20020227 4.37 26 15 0 20020331 4.59 27.3 10 0

20020127 4.14 23.5 14.5 0 20020228 4.78 28 15.7 1.5 20020401 4.45 26.8 10.1 0

20020128 5.06 27 15 2.5 20020301 4.55 28 17 10 20020402 4.64 28 10.5 0

20020129 5.64 28.8 14.5 6.5 20020302 4.29 27 16.8 5 20020403 4.77 28 8.8 0

20020130 4.86 27 16 1 20020303 4.1 26.5 17 9.5 20020404 4.68 27.6 8.5 0

20020131 4.59 26.1 16 0.2 20020304 3.15 21.8 15 12 20020405 4.48 27.4 10 0

20020201 4.96 27.1 15.5 6 20020305 4.38 25 12.5 0 20020406 4.31 27.2 11 0
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Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall

20020407 3.99 26.3 12 0 20020509 3.01 19.5 0.5 0 20020610 2.51 19 1.5 0

20020408 4.01 26 11 14 20020510 3.01 20 1.5 0 20020611 2.61 20 2 0

20020409 3.83 25.5 11.5 0 20020511 3.05 21 3 0 20020612 2.21 17 2 0

20020410 3.32 24 13 0 20020512 3.09 21.5 3.2 0 20020613 2.22 19 6 0

20020411 3.69 25.6 12.5 0.3 20020513 3.28 22.5 2.5 0 20020614 1.36 11 3.5 0

20020412 3.44 24.5 12.5 7.6 20020514 3.08 22 4 0 20020615 1.73 14 3.5 0

20020413 1.93 18 13.3 0 20020515 2.66 21 7.5 0 20020616 2.21 18 4 0

20020414 3.11 22 10.6 0 20020516 2.68 20.5 6 0 20020617 2.27 18.5 4 0

20020415 3.17 22.5 10.8 0 20020517 2.97 22 5 0 20020618 2.28 19 4.8 0

20020416 3.52 23.7 9.4 0 20020518 3.07 23 5.5 0 20020619 2.52 19.5 2 0

20020417 3.79 24.8 8.5 0 20020519 2.99 22 4.3 0 20020620 1.93 17 6 0

20020418 3.9 26.2 10 0 20020520 2.82 20 2 0 20020621 1.74 15.3 5.5 0

20020419 3.3 23.3 10.2 0 20020521 2.54 19.5 5 0 20020622 1.62 14 4.9 0

20020420 3.15 23 10.9 0 20020522 2.64 21.5 7.5 0 20020623 1.75 16.5 7.5 0

20020421 3.39 24 10.2 0 20020523 1.97 16.5 6.5 0 20020624 1.49 13 5 0

20020422 3.72 25.6 9.6 0 20020524 2.53 18.5 2.5 0 20020625 2.22 15.5 -2 0

20020423 3.59 25 9.6 0 20020525 2.79 21.5 4.9 0 20020626 2.1 16 1.5 0

20020424 3.45 23.6 8 0 20020526 2.8 21.5 4.5 0 20020627 2.32 17.5 1 0

20020425 3.67 25.5 9.2 0 20020527 2.62 21 6 0 20020628 2.27 18.5 4 0

20020426 3.47 26.2 12.5 0 20020528 2.68 22 7 0 20020629 2.44 19.5 3.5 0

20020427 3.6 26 10.5 0 20020529 3.08 24 5.5 0 20020630 2.13 15.5 0 0

20020428 3.7 26 9 0 20020530 2.78 23 7.5 0 20020701 2.08 15.5 1 0

20020429 3.62 26.5 10.8 0 20020531 1.27 14.4 10 0 20020702 2.17 16 0.5 0

20020430 3.21 25 12 0 20020601 1.35 13 7.2 0 20020703 2.36 17 -0.5 0

20020501 2.98 23.5 11.3 0 20020602 1.02 9 5 0 20020704 2.24 16 -0.5 0

20020502 3.35 25 10 0 20020603 1.75 14.1 4 0 20020705 2.18 15.5 -0.5 0

20020503 3.46 26 10.5 0 20020604 2.34 17 0.5 0 20020706 2.26 15.9 -1 0

20020504 3.08 24 10.6 0 20020605 2.33 17 0.5 0 20020707 2.29 16.5 0 0

20020505 3.25 24.8 10 0 20020606 2.02 15.5 2.5 0 20020708 2.49 18 0 0

20020506 2.33 19.5 10 0 20020607 2.2 16.5 1.5 0 20020709 2.63 20 2.5 0

20020507 2.09 12 -1.5 0 20020608 2.2 17.5 3.5 0 20020710 1.84 13 0.5 0

20020508 2.67 16.5 -0.9 0 20020609 2.32 18 2.6 0 20020711 2.37 15.5 -3.5 0
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Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall

20020712 2.31 16 -1 0 20020813 3.33 24 8.5 0 20020914 3.72 20 3.5 0

20020713 2.39 16.5 -1 0 20020814 3.47 24 7 0 20020915 4.27 22.5 3 0

20020714 2.63 19.5 2 0 20020815 3.02 22.5 9.5 0 20020916 4.47 24 4.5 0

20020715 2.65 20 3 0 20020816 3.61 25 8 0 20020917 4.53 25 6.5 0

20020716 1.82 12.5 0.5 0 20020817 1.71 16 11 0 20020918 4.68 26 7.5 0

20020717 1.84 11.5 -1.9 0 20020818 2.07 16.5 9 0 20020919 4.88 26 5.5 0

20020718 2.04 13.5 -1 0 20020819 2.8 20 8 0 20020920 5.01 26.5 5.5 0

20020719 1.72 11.5 0.5 0 20020820 3.17 21.5 7 0 20020921 4.77 25.5 6.2 0

20020720 1.54 10 0.5 0 20020821 3.23 22.5 8.5 0 20020922 4.86 27 9 0

20020721 1.05 6.5 1.5 0 20020822 3.69 24 6.5 0 20020923 4.9 27 8.8 0

20020722 2.5 17.5 1 0 20020823 3.5 23.5 8 0 20020924 5.12 29 11.3 0

20020723 2.94 22 4.5 0 20020824 3.47 24 9.6 0 20020925 5.02 29 12.5 0

20020724 3.51 24.5 1.6 0 20020825 3.42 24 10.4 0 20020926 5.2 28.5 10 0

20020725 2.68 17.7 -1.2 0 20020826 3.62 24.5 9.5 0 20020927 3.34 22 13 0

20020726 2.84 21 4.4 0 20020827 2.89 20.5 9.5 0 20020928 4.68 26 10 0

20020727 3.46 25 4.6 0 20020828 3.15 21.5 9 0 20020929 4.76 28 13.5 0

20020728 3.43 25 5.3 0 20020829 2.91 21 10.5 0 20020930 4.38 24.5 10 0

20020729 3.34 26 9 0 20020830 3 20.5 9 0 20021001 4.28 25 12 0

20020730 3.1 23 6 0 20020831 3.59 22.5 7 0 20021002 3.91 22 9.5 0

20020731 1.65 11.5 3 0 20020901 3.47 21.5 6.5 0 20021003 4.68 22.5 3 0

20020801 2.15 15.5 3.9 0 20020902 3.49 22.5 8.5 0 20021004 3.7 20.4 8.5 0

20020802 3.36 23 2.8 0 20020903 3.81 24 8.5 0 20021005 4.81 25.2 8.5 0

20020803 2.96 21 4.4 0 20020904 4.03 25 8.5 0 20021006 5.04 27 10.5 0

20020804 1.74 14 6.5 0 20020905 2.31 17 9.9 2 20021007 5.46 27 6.5 0

20020805 2.71 20 6.1 0 20020906 2.37 16 8 2.5 20021008 2.43 16 10.5 0

20020806 3.14 22 4.9 0 20020907 2.78 18 8 6 20021009 3.71 19.5 7.5 0

20020807 3.21 21.5 3 0 20020908 3.33 21 8.5 0 20021010 3.8 21.5 10.5 0

20020808 3.18 21 2.5 0 20020909 3.9 24.5 10 0 20021011 4.78 25 9.5 0

20020809 3.32 22 3 0 20020910 2.42 12.5 2 0.7 20021012 5.6 29 11 0

20020810 3.41 22 2 0 20020911 3.31 17 0.8 0 20021013 6.14 29.5 7 0

20020811 2.91 18.5 1.5 0 20020912 3.99 20.5 0.5 0 20021014 5.32 27 9.5 0

20020812 3.04 20.5 4.5 0 20020913 3.82 21.5 5.5 0 20021015 5.9 29.5 10 0
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Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall Date Pot. Evapotrans Max Temp Min Temp Rainfall

20021016 6.31 31.5 11 0 20021117 5.87 29 13.5 0 20021219 5.14 24.5 11 9

20021017 5.92 32 15.5 0 20021118 6.2 29 11 0 20021220 5.48 26.5 12.5 0

20021018 6.07 32 14.5 0 20021119 6.65 31.5 13 0 20021221 5.1 26 14 0

20021019 6.17 33 16 0 20021120 6.03 30 14.5 0 20021222 6.01 29 13.7 0

20021020 5.01 26 11 0 20021121 5.46 27 12.7 0 20021223 5.75 28.5 14.5 0

20021021 6.25 31 11.4 0 20021122 6.47 31 13.5 0 20021224 6.11 30 15 0

20021022 5.74 30.5 14.6 0 20021123 6.13 30 14 0 20021225 5.83 28 13 0

20021023 5.3 29 15 0 20021124 5.71 28.5 14 0 20021226 5.69 27 12 12.5

20021024 5.72 29 12 0 20021125 6.04 26 6 0 20021227 5.4 26.5 13 82.5

20021025 6.1 29.5 10 0 20021126 5.7 25.5 8 0 20021228 4.17 23.5 15 0

20021026 5.95 29.5 11.5 0 20021127 6.5 28.5 8 0 20021229 4.21 25 17 0

20021027 4.57 27 16.5 0 20021128 6.38 30 12.5 1.4 20021230 5.82 29 14.9 0

20021028 5.46 29 14.5 0 20021129 6.04 29 13 5.5 20021231 5.64 29 16 0

20021029 4.73 26 14 0 20021130 5.76 27.5 12 0

20021030 1.93 14 11 0 20021201 6.76 31 11.8 0

20021031 4.49 21.5 7.5 0 20021202 6.55 32 15.5 0

20021101 4.5 23 10.5 0 20021203 6.07 30.6 16 0.2

20021102 3.89 21.5 12 0 20021204 3.71 22.5 15.5 9.5

20021103 5.22 27 13 0 20021205 3.02 18.5 13 10

20021104 5.27 28.5 15.5 0 20021206 3.99 23 15 5

20021105 4.74 22.5 8 0 20021207 3.02 20 15 0.4

20021106 3.19 15 6 0 20021208 2.85 19.5 15 13.5

20021107 5.09 22.5 5 1.6 20021209 4.41 22.5 12 0

20021108 5.65 26 8 2.5 20021210 4.04 21.5 12.5 0

20021109 5.84 29 13 4 20021211 5.13 24.5 11 0

20021110 4.02 22 12.5 0 20021212 4.76 24 12.5 0

20021111 4.49 22 9.5 0 20021213 5.39 26.5 13 0

20021112 5.2 24.5 9 0 20021214 5.55 29 16.5 0

20021113 5.62 28 13 0 20021215 6.39 31 15 0

20021114 5.62 28.5 14 0 20021216 6.16 31 16.5 0

20021115 5.17 25.5 11.5 0 20021217 4.73 26 16 0

20021116 6.06 30 14 0 20021218 5.96 29.5 15 9.5  
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APPENDIX C: Simulation data of water content used for calibration plots for Secunda 

Date  20 cm depth 40 cm depth 60 cm depth 80 cm depth 100 cm depth 

1993/01/02 0.4565914 0.4576901 0.4584783 0.4591222 0.4596765 

1993/01/03 0.4443051 0.4521911 0.4542354 0.4550185 0.4555284 

1993/01/04 0.4333515 0.4449503 0.4515546 0.4535039 0.4541982 

1993/01/05 0.4240276 0.4386414 0.4465788 0.4515436 0.4532119 

1993/01/06 0.4154525 0.4333905 0.4421511 0.4477782 0.4517596 

1993/01/07 0.4061916 0.4284461 0.4385357 0.4441948 0.4487913 

1993/01/08 0.3969036 0.4237785 0.4353164 0.4413407 0.4456242 

1993/01/09 0.3924832 0.4200228 0.4324449 0.4388649 0.4431569 

1993/01/10 0.3893736 0.4169911 0.4299155 0.4366629 0.4410737 

1993/01/11 0.3851574 0.4141143 0.4276491 0.4346828 0.4392296 

1993/01/12 0.3792045 0.4110977 0.4255584 0.432879 0.4375639 

1993/01/13 0.3715944 0.4077901 0.4235603 0.4312097 0.4360375 

1993/01/14 0.3623622 0.4040187 0.4215893 0.4296391 0.4346217 

1993/01/15 0.3508275 0.3994531 0.4195804 0.4281365 0.4332935 

1993/01/16 0.3361273 0.3937018 0.4174557 0.4266728 0.4320338 

1993/01/17 0.3172271 0.3862469 0.4151139 0.4252186 0.4308255 

1993/01/18 0.300926 0.3779618 0.4124792 0.4237431 0.4296528 

1993/01/19 0.2929518 0.3717291 0.4097424 0.4222358 0.4285021 

1993/01/20 0.2827536 0.3643649 0.4068989 0.4207114 0.4273669 

1993/01/21 0.2753334 0.3577494 0.403984 0.4191721 0.4262441 

1993/01/22 0.3457092 0.3582623 0.4014585 0.4176419 0.4251338 

1993/01/23 0.4237292 0.369148 0.3999501 0.4161986 0.4240427 

1993/01/24 0.4171895 0.3775981 0.3994502 0.41493 0.4229883 

1993/01/25 0.4098337 0.3815224 0.3992652 0.4138421 0.4219872 

1993/01/26 0.4072986 0.3843822 0.3991943 0.4129042 0.4210472 

1993/01/27 0.4029058 0.3859895 0.3991767 0.4120883 0.4201692 

1993/01/28 0.3970166 0.3865982 0.3991564 0.4113699 0.4193511 

1993/01/29 0.4081457 0.3880188 0.3991331 0.4107287 0.4185886 

1993/01/30 0.4377206 0.4006763 0.399459 0.4101607 0.4178772 

1993/01/31 0.4329054 0.4087304 0.4005882 0.4097101 0.4172164 

1993/02/01 0.4249834 0.4114246 0.4020782 0.409407 0.4166105 

1993/02/02 0.4168119 0.4114639 0.4034796 0.4092398 0.4160641 

1993/02/03 0.4093173 0.4103946 0.4045874 0.4091735 0.4155778 

1993/02/04 0.4015047 0.4086227 0.4053551 0.4091694 0.4151485 

1993/02/05 0.4006049 0.4073524 0.4058409 0.409193 0.4147703 

1993/02/06 0.3972099 0.4057285 0.406105 0.409222 0.4144359 

1993/02/07 0.3944248 0.404414 0.4061956 0.4092394 0.4141376 

1993/02/08 0.3891667 0.4026084 0.4061286 0.4092348 0.4138679 

1993/02/09 0.3868305 0.4014454 0.4059466 0.4091999 0.41362 

1993/02/10 0.3836014 0.4001187 0.4056881 0.4091332 0.4133877 

1993/02/11 0.3782035 0.3983271 0.40534 0.4090338 0.413166 

1993/02/12 0.3875452 0.3976594 0.4049414 0.4089004 0.4129505 

1993/02/13 0.3918737 0.3969751 0.4045504 0.4087389 0.4127377 

1993/02/14 0.4513093 0.4131222 0.404635 0.4085638 0.4125256 

1993/02/15 0.4394609 0.4236081 0.4069828 0.4085231 0.4123202 

1993/02/16 0.4316615 0.425226 0.4099759 0.4087605 0.4121446 
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Date  20 cm depth 40 cm depth 60 cm depth 80 cm depth 100 cm depth 

1993/02/18 0.4315419 0.4251677 0.4144021 0.4099331 0.4119724 

1993/02/19 0.4275452 0.4248746 0.4160162 0.4107341 0.411998 

1993/02/20 0.4233648 0.4240207 0.4171891 0.4115981 0.4121014 

1993/02/21 0.4165872 0.4220137 0.4178437 0.4124523 0.412277 

1993/02/22 0.4095628 0.4195194 0.4179785 0.4132168 0.4125108 

1993/02/23 0.4025768 0.4168085 0.4176999 0.4138348 0.4127822 

1993/02/24 0.4003722 0.4148359 0.4171764 0.4142828 0.4130673 

1993/02/25 0.3987592 0.4131061 0.4165443 0.4145715 0.4133447 

1993/02/26 0.3950832 0.4110895 0.4158275 0.4147217 0.4135976 

1993/02/27 0.3900771 0.4088666 0.4150186 0.4147494 0.4138147 

1993/02/28 0.3846447 0.4065963 0.4141313 0.4146688 0.4139878 

1993/03/01 0.3815235 0.4048427 0.4132151 0.4144953 0.4141125 

1993/03/02 0.3827831 0.4036961 0.4123205 0.4142482 0.4141873 

1993/03/03 0.4064649 0.4034016 0.411505 0.413949 0.4142135 

1993/03/04 0.4114436 0.4042614 0.4108651 0.4136229 0.4141955 

1993/03/05 0.4212446 0.4061451 0.4104402 0.4132964 0.4141401 

1993/03/06 0.4183598 0.4076271 0.4102516 0.4129951 0.414056 

1993/03/07 0.4128809 0.4080075 0.4101684 0.4127314 0.4139522 

1993/03/08 0.4068751 0.4075409 0.4100739 0.4125012 0.4138366 

1993/03/09 0.4005319 0.4064773 0.4099011 0.4122918 0.4137141 

1993/03/10 0.3938678 0.4049917 0.409619 0.4120878 0.413587 

1993/03/11 0.3876322 0.4033579 0.4092258 0.4118756 0.4134553 

1993/03/12 0.3807248 0.4014125 0.4087275 0.4116454 0.4133179 

1993/03/13 0.3748196 0.3995351 0.4081432 0.4113901 0.4131729 

1993/03/14 0.3667673 0.3970335 0.4074621 0.4111059 0.4130182 

1993/03/15 0.3588044 0.394336 0.4066802 0.410788 0.4128517 

1993/03/16 0.3546633 0.3923253 0.4058434 0.4104351 0.4126715 

1993/03/17 0.3490137 0.3898972 0.4049641 0.4100503 0.4124762 

1993/03/18 0.3414497 0.3869199 0.4040252 0.4096356 0.4122651 

1993/03/19 0.331542 0.3832062 0.4029983 0.4091902 0.4120377 

1993/03/20 0.3285735 0.3809419 0.4019287 0.4087134 0.4117936 

1993/03/21 0.3201903 0.3774467 0.4008215 0.4082101 0.4115328 

1993/03/22 0.3078817 0.3724488 0.3996026 0.4076796 0.4112555 

1993/03/23 0.3053574 0.3697817 0.3983235 0.4071187 0.4109618 

1993/03/24 0.3041446 0.3677373 0.3970786 0.4065341 0.4106518 

1993/03/25 0.2963957 0.3636861 0.3958073 0.4059325 0.4103267 

1993/03/26 0.2883443 0.3590389 0.3944356 0.4053119 0.4099875 

1993/03/27 0.2817755 0.354501 0.3929596 0.4046691 0.4096349 

1993/03/28 0.2761564 0.3500193 0.3913963 0.4040025 0.409269 

1993/03/29 0.2767988 0.3491215 0.3899029 0.403315 0.4088904 

1993/03/30 0.2766858 0.3479333 0.3885572 0.40262 0.4085001 

1993/03/31 0.273917 0.3452356 0.3872737 0.4019264 0.4081001 

1993/04/01 0.2702745 0.3418099 0.3859588 0.4012344 0.4076923 

1993/04/02 0.267118 0.3384679 0.3845992 0.4005414 0.4072782 

1993/04/03 0.2645899 0.33541 0.3832137 0.3998459 0.4068588 

1993/04/04 0.2628314 0.3329456 0.3818369 0.399148 0.4064348 

1993/04/05 0.2633885 0.3331018 0.380588 0.3984516 0.4060071 
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Date  20 cm depth 40 cm depth 60 cm depth 80 cm depth 100 cm depth 

1993/04/06 0.263538 0.3327256 0.3794928 0.3977658 0.4055767 

1993/04/08 0.2609273 0.3284614 0.3774444 0.3964397 0.4047143 

1993/04/09 0.2593894 0.3258336 0.3763598 0.3957941 0.4042845 

1993/04/10 0.2579672 0.3231306 0.3752377 0.3951551 0.4038564 

1993/04/11 0.2566824 0.32044 0.3740806 0.3945202 0.4034302 

1993/04/12 0.2575904 0.3215625 0.3730282 0.3938898 0.4030059 

1993/04/13 0.2582893 0.321998 0.3721468 0.3932716 0.4025839 

1993/04/14 0.2586578 0.3221712 0.3713746 0.3926706 0.4021649 

1993/04/15 0.2585401 0.3216614 0.3706656 0.3920885 0.4017498 

1993/04/16 0.258039 0.3205571 0.3699763 0.3915246 0.4013393 

1993/04/17 0.2570338 0.3184984 0.3692612 0.3909764 0.4009338 

1993/04/18 0.256172 0.316639 0.3685044 0.3904401 0.4005335 

1993/04/19 0.2554038 0.3148699 0.3677211 0.389913 0.4001384 

1993/04/20 0.254683 0.3130693 0.3669165 0.3893929 0.3997484 

1993/04/21 0.2541329 0.311595 0.3661023 0.3888786 0.3993632 

1993/04/22 0.2536228 0.3100923 0.3652881 0.3883695 0.3989827 

1993/04/23 0.2531668 0.308612 0.3644736 0.3878652 0.3986064 

1993/04/24 0.2527966 0.3073022 0.3636648 0.3873653 0.3982344 

1993/04/25 0.252501 0.3061669 0.3628705 0.3868699 0.3978663 

1993/04/26 0.252236 0.3050399 0.3620937 0.3863795 0.397502 

1993/04/27 0.2519709 0.3037693 0.361328 0.3858942 0.3971416 

1993/04/28 0.2520476 0.3043216 0.3606268 0.3854146 0.3967848 

1993/04/29 0.2518692 0.3033386 0.3599707 0.3849433 0.3964317 

1993/04/30 0.2518014 0.302961 0.3593377 0.3844802 0.3960824 

1993/05/01 0.2516576 0.302055 0.3587257 0.3840256 0.395737 

1993/05/02 0.2515355 0.3012371 0.3581216 0.383579 0.3953954 

1993/05/03 0.2514406 0.3005601 0.3575304 0.3831401 0.3950578 

1993/05/04 0.2513284 0.2997047 0.3569496 0.3827086 0.3947242 

1993/05/05 0.2512075 0.2987193 0.3563706 0.382284 0.3943945 

1993/05/06 0.2510931 0.2977182 0.3557899 0.3818658 0.3940686 

1993/05/07 0.2509922 0.2967687 0.3552089 0.3814532 0.3937466 

1993/05/08 0.250923 0.2960714 0.3546357 0.381046 0.3934282 

1993/05/09 0.2508599 0.2953869 0.3540756 0.3806441 0.3931135 

1993/05/10 0.2509221 0.2960217 0.3535641 0.380248 0.3928024 

1993/05/11 0.2508726 0.2954085 0.3530855 0.3798591 0.3924948 

1993/05/12 0.2508254 0.294801 0.3526128 0.3794773 0.3921909 

1993/05/13 0.2507749 0.294133 0.3521443 0.3791019 0.3918905 

1993/05/14 0.2507189 0.2933692 0.3516763 0.3787327 0.3915936 

1993/05/15 0.25071 0.2931789 0.3512229 0.3783692 0.3913002 

1993/05/16 0.2506894 0.2928262 0.3507853 0.3780116 0.3910103 

1993/05/17 0.2506728 0.292512 0.3503623 0.37766 0.3907239 

1993/05/18 0.2506405 0.2919756 0.3499481 0.3773142 0.3904409 

1993/05/19 0.2506051 0.2913812 0.3495362 0.3769739 0.3901611 

1993/05/20 0.2505713 0.290792 0.3491256 0.3766388 0.3898847 

1993/05/21 0.2505403 0.2902282 0.348717 0.3763086 0.3896116 

1993/05/22 0.2505104 0.2896625 0.3483109 0.3759828 0.3893416 

1993/05/23 0.2504834 0.2891253 0.3479078 0.3756614 0.3890748 
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Date  20 cm depth 40 cm depth 60 cm depth 80 cm depth 100 cm depth 

1993/05/24 0.2504625 0.2886769 0.3475099 0.3753441 0.388811 

1993/05/26 0.2504235 0.2877861 0.3467343 0.3747216 0.3882922 

1993/05/27 0.2504099 0.2874344 0.3463569 0.3744163 0.3880371 

1993/05/28 0.250399 0.2871261 0.3459893 0.3741148 0.3877848 

1993/05/29 0.2503959 0.2869645 0.345634 0.3738174 0.3875353 

1993/05/30 0.2503893 0.2867263 0.3452914 0.3735241 0.3872885 

1993/05/31 0.250378 0.2863915 0.3449567 0.373235 0.3870443 

1993/06/01 0.25037 0.2861187 0.3446288 0.3729499 0.3868027 

1993/06/02 0.250358 0.2857593 0.3443065 0.3726688 0.3865637 

1993/06/03 0.2503477 0.2854328 0.3439886 0.3723916 0.3863274 

1993/06/04 0.2503446 0.2852604 0.3436781 0.3721181 0.3860935 

1993/06/05 0.2503439 0.2851378 0.3433782 0.3718484 0.3858621 

1993/06/06 0.2503411 0.2849653 0.3430879 0.3715826 0.3856331 

1993/06/07 0.2503361 0.2847473 0.3428046 0.3713205 0.3854066 

1993/06/08 0.2503268 0.2844315 0.3425252 0.3710622 0.3851825 

1993/06/09 0.2503173 0.2841127 0.3422479 0.3708075 0.3849608 

1993/06/10 0.2503082 0.2837997 0.3419726 0.3705562 0.3847413 

1993/06/11 0.250303 0.2835768 0.3417009 0.3703082 0.3845242 

1993/06/12 0.2503023 0.2834581 0.341436 0.3700633 0.3843094 

1993/06/13 0.2503068 0.2834619 0.3411811 0.3698217 0.3840967 

1993/06/14 0.2503068 0.2833583 0.3409356 0.3695834 0.3838862 

1993/06/15 0.2503045 0.2832011 0.3406959 0.3693484 0.3836779 

1993/06/16 0.2503001 0.2829987 0.3404602 0.3691167 0.3834718 

1993/06/17 0.2502943 0.2827631 0.3402269 0.3688882 0.3832677 

1993/06/18 0.2502861 0.2824723 0.3399945 0.3686626 0.3830657 

1993/06/19 0.2502766 0.2821475 0.3397616 0.3684399 0.3828658 

1993/06/20 0.2502702 0.281896 0.3395291 0.3682198 0.3826679 

1993/06/21 0.250265 0.281676 0.3392987 0.3680023 0.3824719 

1993/06/22 0.2502567 0.2813744 0.3390695 0.3677872 0.3822779 

1993/06/23 0.2502468 0.2810256 0.3388394 0.3675745 0.3820858 

1993/06/24 0.2502393 0.2807384 0.338609 0.367364 0.3818955 

1993/06/25 0.2502325 0.2804655 0.3383794 0.3671556 0.3817071 

1993/06/26 0.2502345 0.2804353 0.3381548 0.3669492 0.3815204 

1993/06/27 0.2502353 0.280372 0.3379379 0.366745 0.3813355 

1993/06/28 0.2502367 0.280324 0.3377278 0.366543 0.3811523 

1993/06/29 0.2502337 0.2801573 0.3375224 0.3663432 0.3809707 

1993/06/30 0.2502332 0.2800584 0.3373207 0.3661457 0.3807909 

1993/07/01 0.2502347 0.2800155 0.3371242 0.3659503 0.3806127 

1993/07/02 0.2502322 0.2798631 0.3369319 0.3657573 0.3804361 

1993/07/03 0.2502293 0.2797025 0.3367417 0.3655664 0.380261 

1993/07/04 0.250229 0.2796129 0.3365544 0.3653776 0.3800876 

1993/07/05 0.2502272 0.2794818 0.3363703 0.365191 0.3799157 

1993/07/06 0.2502225 0.2792751 0.3361877 0.3650064 0.3797453 

1993/07/07 0.250223 0.2792118 0.3360073 0.3648238 0.3795764 

1993/07/08 0.2502163 0.2789449 0.3358283 0.3646431 0.3794091 

1993/07/09 0.2502103 0.2786966 0.335648 0.3644643 0.3792432 

1993/07/10 0.250202 0.2783791 0.3354659 0.3642873 0.3790787 
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Date  20 cm depth 40 cm depth 60 cm depth 80 cm depth 100 cm depth 

1993/07/11 0.2501947 0.2780836 0.3352816 0.3641118 0.3789156 

1993/07/13 0.2501795 0.2774569 0.3349049 0.3637651 0.3785936 

1993/07/14 0.25017 0.2770653 0.3347139 0.3635938 0.3784346 

1993/07/15 0.2501583 0.2765831 0.3345179 0.3634235 0.3782769 

1993/07/16 0.250149 0.2761718 0.3343171 0.3632543 0.3781205 

1993/07/17 0.250147 0.2760182 0.3341163 0.3630859 0.3779653 

1993/07/18 0.2501433 0.2758022 0.3339185 0.3629185 0.3778113 

1993/07/19 0.2501412 0.275642 0.3337232 0.3627521 0.3776584 

1993/07/20 0.2501414 0.2755726 0.3335322 0.3625866 0.3775067 

1993/07/21 0.2501389 0.2754016 0.3333453 0.3624223 0.3773561 

1993/07/22 0.25014 0.2753664 0.3331625 0.362259 0.3772065 

1993/07/23 0.2501362 0.2751429 0.3329828 0.362097 0.3770581 

1993/07/24 0.250133 0.2749406 0.3328039 0.3619361 0.3769107 

1993/07/25 0.2501315 0.2748082 0.3326269 0.3617763 0.3767644 

1993/07/26 0.250131 0.2747128 0.3324531 0.3616177 0.3766191 

1993/07/27 0.2501304 0.2746119 0.3322828 0.3614604 0.3764748 

1993/07/28 0.2501272 0.2744131 0.3321143 0.3613042 0.3763315 

1993/07/29 0.2501218 0.2741147 0.331945 0.3611491 0.3761892 

1993/07/30 0.2501169 0.2738278 0.3317739 0.3609952 0.3760479 

1993/07/31 0.2501118 0.2735308 0.3316012 0.3608423 0.3759076 

1993/08/01 0.2501058 0.2731778 0.3314261 0.3606902 0.3757682 

1993/08/02 0.2501 0.2728206 0.331248 0.3605391 0.3756297 

1993/08/03 0.2500941 0.2724487 0.331067 0.3603887 0.3754921 

1993/08/04 0.2500907 0.2721896 0.3308845 0.360239 0.3753555 

1993/08/05 0.2500882 0.27197 0.3307027 0.3600899 0.3752197 

1993/08/06 0.2500854 0.2717398 0.3305218 0.3599415 0.3750847 

1993/08/07 0.2500876 0.271773 0.3303463 0.3597939 0.3749506 

1993/08/08 0.2500961 0.2721345 0.3301822 0.359647 0.3748173 

1993/08/09 0.2500962 0.2720712 0.3300262 0.3595013 0.3746849 

1993/08/10 0.2500961 0.272002 0.3298735 0.3593567 0.3745532 

1993/08/11 0.2500924 0.2717505 0.3297216 0.3592132 0.3744224 

1993/08/12 0.2500952 0.2718214 0.3295734 0.3590707 0.3742923 

1993/08/13 0.2500947 0.2717303 0.3294282 0.3589295 0.3741631 

1993/08/14 0.2500943 0.2716492 0.3292852 0.3587894 0.3740346 

1993/08/15 0.2500897 0.2713573 0.3291418 0.3586504 0.373907 

1993/08/16 0.2500835 0.2709691 0.3289945 0.3585124 0.3737801 

1993/08/17 0.2500776 0.2705677 0.3288422 0.3583753 0.373654 

1993/08/18 0.2500734 0.2702521 0.3286861 0.358239 0.3735287 

1993/08/19 0.250069 0.2699035 0.3285272 0.3581034 0.3734041 

1993/08/20 0.2500647 0.2695504 0.328365 0.3579684 0.3732803 

1993/08/21 0.2500615 0.2692545 0.3282006 0.3578339 0.3731571 

1993/08/22 0.2500602 0.2690754 0.3280361 0.3576999 0.3730347 

1993/08/23 0.2500624 0.2691388 0.3278761 0.3575664 0.372913 

1993/08/24 0.2500613 0.2689897 0.3277205 0.3574336 0.372792 

1993/08/25 0.2500599 0.2688171 0.3275662 0.3573014 0.3726716 

1993/08/26 0.2500582 0.2686209 0.3274126 0.3571698 0.3725519 

1993/08/27 0.2500559 0.2683868 0.3272589 0.357039 0.3724329 
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Date  20 cm depth 40 cm depth 60 cm depth 80 cm depth 100 cm depth 

1993/08/28 0.2500535 0.2681321 0.3271046 0.3569087 0.3723145 

1993/08/30 0.250051 0.2677841 0.3267947 0.3566498 0.3720796 

1993/08/31 0.2500508 0.2676873 0.3266435 0.3565213 0.3719631 

1993/09/01 0.2500494 0.2675105 0.3264939 0.3563934 0.3718472 

1993/09/02 0.2500469 0.2672409 0.326344 0.3562661 0.3717319 

1993/09/03 0.2500538 0.2675406 0.3262003 0.3561394 0.3716173 

1993/09/04 0.2500515 0.2672376 0.32606 0.3560135 0.3715031 

1993/09/05 0.2500479 0.2668907 0.3259165 0.3558882 0.3713896 

1993/09/06 0.2500444 0.2665555 0.3257697 0.3557636 0.3712767 

1993/09/07 0.2500427 0.2663547 0.3256213 0.3556395 0.3711643 

1993/09/08 0.2500399 0.2660499 0.325472 0.355516 0.3710525 

1993/09/09 0.2500372 0.265742 0.3253205 0.3553929 0.3709413 

1993/09/10 0.2500342 0.2653833 0.3251662 0.3552702 0.3708306 

1993/09/11 0.2500319 0.2650663 0.3250094 0.3551479 0.3707204 

1993/09/12 0.2500299 0.2647605 0.3248507 0.3550259 0.3706108 

1993/09/13 0.2500283 0.2644855 0.3246909 0.3549041 0.3705017 

1993/09/14 0.2500264 0.2641703 0.3245297 0.3547826 0.3703931 

1993/09/15 0.2500248 0.2638624 0.324367 0.3546614 0.370285 

1993/09/16 0.2500233 0.2635753 0.3242031 0.3545403 0.3701774 

1993/09/17 0.2500218 0.2632654 0.3240382 0.3544195 0.3700702 

1993/09/18 0.2500204 0.262956 0.3238719 0.3542988 0.3699635 

1993/09/19 0.2500198 0.2627597 0.3237059 0.3541783 0.3698573 

1993/09/20 0.2500191 0.2625409 0.323541 0.354058 0.3697515 

1993/09/21 0.2500182 0.2622966 0.3233766 0.3539378 0.3696461 

1993/09/22 0.2500175 0.2620804 0.3232128 0.3538179 0.3695412 

1993/09/23 0.2500169 0.2618789 0.3230501 0.3536982 0.3694367 

1993/09/24 0.2500168 0.2617704 0.3228896 0.3535788 0.3693326 

1993/09/25 0.2500188 0.2619761 0.3227369 0.3534597 0.3692289 

1993/09/26 0.2500191 0.2619599 0.3225912 0.353341 0.3691257 

1993/09/27 0.2500179 0.2617313 0.3224467 0.3532229 0.3690228 

1993/09/28 0.2500183 0.2617205 0.3223046 0.3531053 0.3689203 

1993/09/29 0.2500173 0.26151 0.3221641 0.3529883 0.3688182 

1993/09/30 0.2988075 0.2620368 0.3220314 0.3528719 0.3687166 

1993/10/01 0.3333713 0.2632132 0.3219194 0.3527563 0.3686153 

1993/10/02 0.3549989 0.2665407 0.3218508 0.3526421 0.3685145 

1993/10/03 0.353976 0.2707652 0.3218564 0.3525302 0.368414 

1993/10/04 0.3496789 0.2737058 0.3219124 0.3524216 0.3683141 

1993/10/05 0.347603 0.2759516 0.3219966 0.3523168 0.3682148 

1993/10/06 0.4291406 0.3142032 0.3221523 0.3522162 0.368116 

1993/10/07 0.4393079 0.3853482 0.3240275 0.3521293 0.3680179 

1993/10/08 0.4341377 0.3950809 0.3294399 0.3521033 0.3679212 

1993/10/09 0.4267539 0.3969168 0.3354998 0.3521561 0.3678274 

1993/10/10 0.4184763 0.3958004 0.3405359 0.3522715 0.3677377 

1993/10/11 0.409996 0.3936542 0.3443892 0.3524312 0.3676528 

1993/10/12 0.4538143 0.4112228 0.3487887 0.3526254 0.3675732 

1993/10/13 0.4416039 0.4178567 0.3592054 0.3529175 0.3674998 

1993/10/14 0.4348219 0.4172035 0.3677412 0.3533825 0.367435 
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Date  20 cm depth 40 cm depth 60 cm depth 80 cm depth 100 cm depth 

1993/10/15 0.4539304 0.4408858 0.3869508 0.3542709 0.3673828 

1993/10/17 0.4322156 0.4322972 0.4055545 0.3608588 0.3674088 

1993/10/18 0.4269988 0.4288881 0.4075331 0.3651111 0.3675339 

1993/10/19 0.4578586 0.4588645 0.4561656 0.3877114 0.3678229 

1993/10/20 0.4492805 0.4535381 0.4484369 0.4142497 0.3710746 

1993/10/21 0.438223 0.4478325 0.4455364 0.4229699 0.3780387 

1993/10/22 0.4303178 0.4414758 0.4428118 0.4262971 0.3859176 

1993/10/23 0.4221958 0.4360599 0.4396453 0.4273729 0.3928515 

1993/10/24 0.4150039 0.4314048 0.4365591 0.4274585 0.3983568 

1993/10/25 0.4080465 0.4271905 0.4336812 0.4270554 0.40252 

1993/10/26 0.4151469 0.4247899 0.4311423 0.4263819 0.4055753 

1993/10/27 0.4325 0.4258716 0.4293324 0.4256259 0.4077799 

1993/10/28 0.4293253 0.4269336 0.428387 0.4249746 0.4093834 

1993/10/29 0.4225983 0.4260457 0.4276915 0.4244719 0.4105912 

1993/10/30 0.4149714 0.4239192 0.4268418 0.4240377 0.4115358 

1993/10/31 0.4071039 0.421166 0.4257375 0.4235818 0.412287 

1993/11/01 0.398771 0.4180267 0.4244073 0.4230507 0.4128776 

1993/11/02 0.3906133 0.4147819 0.4229151 0.4224249 0.4133241 

1993/11/03 0.3856082 0.4121507 0.4213757 0.421712 0.4136376 

1993/11/04 0.3782627 0.409007 0.4198108 0.4209352 0.4138309 

1993/11/05 0.3820643 0.4072671 0.4182875 0.4201104 0.413917 

1993/11/06 0.3863592 0.4059939 0.4169104 0.4192693 0.4139114 

1993/11/07 0.3863606 0.4047025 0.4156565 0.4184354 0.41383 

1993/11/08 0.383707 0.4031962 0.414482 0.4176196 0.4136879 

1993/11/09 0.3802904 0.4016316 0.4133547 0.4168238 0.4134975 

1993/11/10 0.3758276 0.3998613 0.4122535 0.4160472 0.4132687 

1993/11/11 0.3728592 0.398426 0.4111854 0.4152876 0.4130089 

1993/11/12 0.3731527 0.3976412 0.4101768 0.4145459 0.4127242 

1993/11/13 0.3727638 0.3967341 0.4092431 0.4138267 0.4124199 

1993/11/14 0.3693569 0.3952224 0.4083363 0.4131305 0.412101 

1993/11/15 0.3654105 0.3936085 0.4074286 0.412453 0.4117709 

1993/11/16 0.3604156 0.3917713 0.4065113 0.4117899 0.4114323 

1993/11/17 0.3533185 0.3894342 0.4055637 0.4111367 0.4110868 

1993/11/18 0.3458319 0.386885 0.4045697 0.4104879 0.4107352 

1993/11/19 0.4352336 0.3877199 0.4035947 0.4098406 0.410378 

1993/11/20 0.4419011 0.4126103 0.4040259 0.4092481 0.4100174 

1993/11/21 0.4313024 0.4175908 0.4057372 0.4088485 0.4096671 

1993/11/22 0.4222468 0.4177924 0.4074803 0.4086661 0.4093471 

1993/11/23 0.4566528 0.4563242 0.4217333 0.4089515 0.4090751 

1993/11/24 0.4513821 0.4535926 0.4390085 0.4145064 0.4091502 

1993/11/25 0.441986 0.4492525 0.4425341 0.4224748 0.4102845 

1993/11/26 0.4412838 0.4452368 0.4431071 0.4288128 0.4127625 

1993/11/27 0.4340812 0.4413158 0.4421412 0.4326783 0.4162 

1993/11/28 0.4268209 0.4371142 0.4402469 0.4344843 0.419766 

1993/11/29 0.4194139 0.4329177 0.4379433 0.4349322 0.4227804 

1993/11/30 0.4123249 0.4289348 0.4355223 0.4345669 0.4249814 

1993/12/01 0.404271 0.4248962 0.4331016 0.433734 0.426405 
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Date  20 cm depth 40 cm depth 60 cm depth 80 cm depth 100 cm depth 

1993/12/02 0.3957162 0.4208623 0.4307088 0.4326304 0.4271998 

1993/12/04 0.4003658 0.4154136 0.4263327 0.43007 0.4275051 

1993/12/05 0.4072636 0.4146317 0.4246205 0.4287903 0.4272552 

1993/12/06 0.4041978 0.4134701 0.4231792 0.427591 0.4268567 

1993/12/07 0.3997244 0.4120959 0.4218752 0.4264744 0.4263691 

1993/12/08 0.3962306 0.41074 0.4206633 0.4254289 0.4258296 

1993/12/09 0.3916802 0.4090714 0.419492 0.4244419 0.4252615 

1993/12/10 0.3866572 0.4072385 0.4183322 0.4234985 0.4246781 

1993/12/11 0.3895455 0.4062729 0.4172234 0.4225889 0.4240867 

1993/12/12 0.3903898 0.4052225 0.4162016 0.4217168 0.4234934 

1993/12/13 0.3872478 0.4038219 0.4152158 0.420881 0.4229026 

1993/12/14 0.3828019 0.402237 0.4142379 0.4200746 0.4223173 

1993/12/15 0.3776393 0.4004745 0.4132522 0.4192908 0.4217388 

1993/12/16 0.3731452 0.3988255 0.4122612 0.4185234 0.4211672 

1993/12/17 0.3720339 0.3977412 0.4113014 0.4177709 0.4206022 

1993/12/18 0.3680328 0.3960464 0.4103594 0.4170351 0.420044 

1993/12/19 0.363162 0.3941761 0.4094053 0.4163125 0.4194927 

1993/12/20 0.3573245 0.3920836 0.4084295 0.4155992 0.418948 

1993/12/21 0.3500768 0.3896055 0.4074165 0.4148912 0.418409 

1993/12/22 0.3421465 0.3868166 0.4063515 0.4141838 0.4178748 

1993/12/23 0.3396891 0.3851081 0.4052792 0.4134741 0.4173442 

1993/12/24 0.3334968 0.3825561 0.4042035 0.4127651 0.4168164 

1993/12/25 0.321873 0.3785918 0.4030544 0.4120545 0.4162911 

1993/12/26 0.3118399 0.3744692 0.401803 0.4113349 0.4157672 

1993/12/27 0.309844 0.3721124 0.4005062 0.410602 0.4152435 

1993/12/28 0.3072158 0.3697877 0.3992428 0.4098612 0.4147189 

1993/12/29 0.4674833 0.4674568 0.4656745 0.4431783 0.4164249 

1993/12/30 0.4514061 0.454507 0.4555507 0.456223 0.456743 

1993/12/31 0.4407032 0.4496648 0.4532765 0.454247 0.4547711 
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APPENDIX D1: Simulated boron concentration data for December 1991 and August 2002 used for calibration plots for Secunda. 

Date Boron concentration (mg/m
3
)                       

  0 cm 0.5 cm 1 cm 2 cm 11 cm 29 cm 47 cm 65 cm 83 cm 101 cm 119 cm 137 cm 155 cm 173 cm 191 cm 

1991/01/01 9205 9140 8952 8635 3962 2751 1577 761 259 65 13 3 1 1 1 

1991/01/02 9188 9127 8946 8635 3963 2752 1579 763 260 66 13 3 1 1 1 

1991/01/03 9172 9114 8941 8634 3964 2753 1581 764 261 66 14 3 1 1 1 

1991/01/04 9265 9139 8951 8659 3981 2754 1582 766 263 67 14 3 1 1 1 

1991/01/05 9225 9130 8946 8654 3982 2755 1583 767 264 67 14 3 1 1 1 

1991/01/06 9201 9121 8941 8652 3983 2756 1585 768 265 68 14 3 1 1 1 

1991/01/07 9182 9111 8937 8650 3984 2757 1586 770 266 68 14 3 1 1 1 

1991/01/08 9164 9100 8932 8647 3985 2758 1587 771 267 69 14 3 1 1 1 

1991/01/09 9148 9089 8927 8645 3986 2759 1589 772 268 69 15 3 1 1 1 

1991/01/10 9134 9079 8922 8642 3987 2759 1590 773 269 70 15 3 1 1 1 

1991/01/11 9120 9068 8916 8639 3987 2760 1591 774 269 70 15 3 1 1 1 

1991/01/12 9107 9057 8911 8636 3988 2761 1592 775 270 71 15 3 1 1 1 

1991/01/13 9095 9047 8905 8633 3989 2761 1593 776 271 71 15 3 1 1 1 

1991/01/14 9083 9037 8898 8630 3990 2762 1594 777 272 71 15 3 1 1 1 

1991/01/15 9072 9028 8892 8627 3991 2762 1595 778 273 72 15 3 1 1 1 

1991/01/16 9061 9018 8886 8623 3991 2763 1596 779 273 72 15 3 1 1 1 

1991/01/17 9050 9009 8880 8619 3992 2763 1596 780 274 72 16 3 1 1 1 

1991/01/18 9170 9045 8886 8635 4008 2764 1597 781 275 73 16 3 1 1 1 

1991/01/19 9129 9038 8882 8629 4010 2765 1598 781 275 73 16 3 1 1 1 

1991/01/20 9108 9032 8878 8625 4011 2765 1599 782 276 73 16 3 1 1 1 

1991/01/21 9090 9025 8874 8621 4012 2766 1600 783 277 74 16 3 1 1 1 

1991/01/22 9075 9017 8870 8617 4012 2767 1601 784 277 74 16 3 1 1 1 

1991/01/23 9061 9008 8865 8613 4013 2767 1602 784 278 74 16 3 1 1 1 

1991/01/24 9049 8999 8860 8609 4014 2768 1602 785 278 75 16 3 1 1 1 

1991/01/25 9037 8990 8855 8605 4015 2768 1603 786 279 75 16 3 1 1 1 

1991/01/26 9026 8981 8850 8601 4016 2769 1604 787 279 75 17 3 1 1 1 

1991/01/27 9015 8972 8845 8596 4016 2769 1605 787 280 75 17 3 1 1 1 

1991/01/28 9005 8964 8839 8592 4017 2770 1605 788 281 76 17 3 1 1 1 

1991/01/29 8995 8955 8833 8588 4018 2770 1606 789 281 76 17 3 1 1 1 

1991/01/30 8985 8947 8827 8584 4018 2770 1607 789 282 76 17 4 1 1 1 

1991/01/31 8976 8939 8821 8580 4019 2771 1607 790 282 76 17 4 1 1 1 
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Date Boron concentration (mg/m
3
)                       

  0 cm 0.5 cm 1 cm 2 cm 11 cm 29 cm 47 cm 65 cm 83 cm 101 cm 119 cm 137 cm 155 cm 173 cm 191 cm 

2002/08/01 17651 17481 18489 19690 28988 40500 28731 11622 5914 3176 1765 1005 609 351 205 

2002/08/02 18005 17734 18745 19969 29016 40559 28754 11622 5913 3176 1765 1005 609 351 205 

2002/08/03 18097 17821 18851 20094 29038 40639 28791 11622 5913 3176 1765 1005 609 351 205 

2002/08/04 18168 17843 18860 20107 29046 40692 28819 11621 5913 3175 1765 1005 609 351 205 

2002/08/05 18228 17874 18857 20104 29049 40717 28832 11621 5913 3175 1765 1005 609 351 205 

2002/08/06 18279 17905 18856 20101 29052 40758 28858 11620 5913 3175 1765 1005 609 351 205 

2002/08/07 18324 17936 18856 20096 29053 40796 28887 11620 5912 3175 1765 1005 609 351 205 

2002/08/08 18364 17966 18857 20091 29054 40828 28914 11620 5912 3175 1765 1005 609 351 205 

2002/08/09 18401 17995 18858 20086 29055 40853 28940 11619 5912 3175 1765 1005 609 351 205 

2002/08/10 18435 18023 18859 20081 29055 40876 28966 11619 5912 3175 1765 1005 609 351 205 

2002/08/11 18466 18051 18860 20076 29055 40895 28992 11619 5911 3175 1765 1005 609 351 205 

2002/08/12 18496 18078 18862 20071 29055 40907 29012 11618 5911 3175 1765 1005 609 351 205 

2002/08/13 18523 18104 18865 20066 29055 40919 29032 11618 5911 3175 1765 1005 609 351 205 

2002/08/14 15929 16806 18464 19981 28991 40929 29053 11618 5911 3175 1765 1005 609 351 205 

2002/08/15 17761 17804 19403 20910 29138 40938 29073 11617 5911 3175 1765 1005 609 351 205 

2002/08/16 17821 17889 19500 21035 29187 40944 29091 11617 5911 3175 1765 1005 609 351 205 

2002/08/17 17904 17918 19521 21066 29217 40951 29113 11616 5910 3175 1765 1005 609 351 205 

2002/08/18 17976 17949 19514 21060 29222 40953 29118 11616 5910 3175 1765 1005 609 351 205 

2002/08/19 18039 17982 19508 21055 29228 40956 29128 11616 5910 3175 1765 1005 609 351 205 

2002/08/20 18096 18015 19503 21047 29233 40959 29143 11615 5910 3175 1765 1005 609 351 205 

2002/08/21 18147 18048 19499 21039 29235 40963 29160 11615 5910 3175 1765 1005 609 351 205 

2002/08/22 18194 18080 19496 21031 29236 40966 29176 11615 5909 3174 1765 1005 609 351 205 

2002/08/23 18238 18112 19493 21023 29237 40968 29194 11614 5909 3174 1765 1005 609 351 205 

2002/08/24 18279 18143 19491 21015 29237 40970 29210 11614 5909 3174 1765 1005 609 351 205 

2002/08/25 18318 18173 19489 21007 29237 40972 29226 11614 5909 3174 1765 1005 609 351 205 

2002/08/26 18355 18203 19488 20999 29237 40973 29240 11613 5909 3174 1765 1005 609 351 205 

2002/08/27 18390 18232 19487 20992 29237 40974 29255 11613 5908 3174 1765 1005 609 351 205 

2002/08/28 15794 16841 18741 20540 29170 40975 29264 11613 5908 3174 1765 1005 609 351 205 

2002/08/29 17681 17829 19690 21493 29319 40975 29274 11612 5908 3174 1765 1005 609 351 205 

2002/08/30 17771 17946 19822 21657 29379 40976 29284 11612 5908 3174 1765 1005 609 351 205 

2002/08/31 17859 17981 19847 21692 29410 40976 29294 11612 5908 3174 1765 1005 609 351 205 
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APPENDIX D2: Simulated fluoride concentration data for December 1991 and August 2002 used for calibration plots for Secunda. 

Date Fluoride concentration (mg/m
3
)                       

  0 cm 0.5 cm 1 cm 2 cm 11 cm 29 cm 47 cm 65 cm 83 cm 101 cm 119 cm 137 cm 155 cm 173 cm 191 cm 

1991/12/01 43263 42959 42074 40587 18619 12930 7412 3575 1214 304 60 10 2 1 1 

1991/12/02 43185 42896 42048 40583 18624 12934 7420 3582 1221 307 61 10 2 1 1 

1991/12/03 43110 42836 42020 40578 18628 12937 7427 3590 1227 310 62 11 2 1 1 

1991/12/04 43547 42954 42070 40695 18709 12942 7433 3596 1232 313 63 11 2 1 1 

1991/12/05 43355 42910 42044 40675 18714 12948 7440 3603 1237 315 64 11 2 1 1 

1991/12/06 43246 42868 42025 40665 18718 12953 7446 3609 1242 317 64 11 2 1 1 

1991/12/07 43154 42821 42004 40654 18723 12957 7453 3615 1247 320 65 11 2 1 1 

1991/12/08 43072 42771 41982 40642 18727 12961 7459 3620 1251 322 66 11 2 1 1 

1991/12/09 42997 42720 41958 40630 18731 12965 7464 3626 1256 324 66 12 2 1 1 

1991/12/10 42928 42669 41933 40618 18735 12968 7470 3631 1260 326 67 12 2 1 1 

1991/12/11 42864 42619 41906 40604 18740 12971 7475 3636 1264 328 68 12 2 1 1 

1991/12/12 42803 42570 41879 40590 18743 12973 7480 3641 1268 330 68 12 2 1 1 

1991/12/13 42745 42522 41851 40576 18747 12976 7485 3645 1272 331 69 12 2 1 1 

1991/12/14 42690 42475 41823 40561 18751 12978 7489 3650 1275 333 69 12 2 1 1 

1991/12/15 42637 42429 41794 40545 18755 12981 7493 3654 1279 335 70 13 2 1 1 

1991/12/16 42585 42385 41764 40528 18759 12983 7498 3658 1282 337 71 13 2 1 1 

1991/12/17 42536 42341 41734 40511 18762 12985 7502 3662 1285 338 71 13 2 1 1 

1991/12/18 43099 42510 41765 40583 18838 12988 7505 3666 1289 340 72 13 2 1 1 

1991/12/19 42905 42479 41743 40556 18845 12992 7509 3670 1292 341 72 13 2 1 1 

1991/12/20 42807 42451 41726 40536 18849 12996 7513 3674 1295 343 73 13 2 1 1 

1991/12/21 42725 42417 41707 40517 18853 12999 7517 3677 1298 344 73 13 2 1 1 

1991/12/22 42653 42378 41688 40498 18857 13002 7521 3681 1300 346 74 13 3 1 1 

1991/12/23 42588 42336 41666 40479 18861 13005 7525 3684 1303 347 74 14 3 1 1 

1991/12/24 42528 42295 41644 40460 18865 13007 7529 3688 1306 348 74 14 3 1 1 

1991/12/25 42472 42253 41620 40441 18868 13009 7533 3691 1309 350 75 14 3 1 1 

1991/12/26 42420 42211 41595 40422 18872 13011 7536 3695 1311 351 75 14 3 1 1 

1991/12/27 42370 42170 41569 40403 18875 13013 7539 3698 1314 352 76 14 3 1 1 

1991/12/28 42322 42129 41543 40383 18879 13015 7543 3701 1316 353 76 14 3 1 1 

1991/12/29 42276 42089 41516 40364 18882 13017 7546 3704 1319 355 77 14 3 1 1 

1991/12/30 42231 42050 41489 40344 18886 13019 7549 3707 1321 356 77 14 3 1 1 

1991/12/31 42188 42012 41461 40323 18889 13021 7552 3710 1323 357 77 14 3 1 1 
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Date Fluoride concentration (mg/m
3
)                       

  0 cm 0.5 cm 1 cm 2 cm 11 cm 29 cm 47 cm 65 cm 83 cm 101 cm 119 cm 137 cm 155 cm 173 cm 191 cm 

2002/08/01 82857 82039 86728 92290 135222 187430 132175 53324 27048 14444 8023 4461 2625 1484 876 

2002/08/02 84518 83226 87930 93598 135349 187704 132282 53322 27047 14444 8023 4461 2625 1484 876 

2002/08/03 84947 83635 88426 94186 135454 188075 132451 53320 27046 14444 8023 4461 2625 1484 876 

2002/08/04 85283 83740 88468 94246 135492 188323 132581 53319 27045 14444 8023 4461 2625 1484 876 

2002/08/05 85561 83884 88456 94234 135503 188436 132643 53317 27044 14443 8023 4461 2625 1484 876 

2002/08/06 85800 84029 88451 94220 135518 188624 132763 53315 27043 14443 8023 4461 2625 1484 876 

2002/08/07 86009 84172 88450 94194 135526 188801 132894 53313 27042 14443 8023 4461 2625 1484 877 

2002/08/08 86198 84312 88452 94170 135530 188948 133020 53311 27041 14443 8023 4461 2625 1484 877 

2002/08/09 86369 84448 88456 94147 135531 189068 133139 53310 27041 14442 8023 4461 2625 1484 877 

2002/08/10 86528 84581 88461 94124 135532 189171 133259 53308 27040 14442 8023 4461 2625 1484 877 

2002/08/11 86676 84710 88469 94101 135532 189258 133377 53306 27039 14442 8023 4461 2625 1484 877 

2002/08/12 86815 84836 88478 94078 135532 189318 133467 53305 27038 14442 8023 4461 2625 1484 877 

2002/08/13 86941 84958 88488 94057 135532 189372 133562 53303 27037 14441 8023 4461 2625 1484 877 

2002/08/14 74788 78884 86628 93688 135241 189418 133656 53302 27036 14441 8023 4461 2625 1484 877 

2002/08/15 83382 83569 91033 98040 135923 189458 133750 53300 27035 14441 8023 4461 2625 1484 877 

2002/08/16 83663 83966 91487 98624 136156 189488 133831 53298 27034 14441 8023 4461 2625 1484 877 

2002/08/17 84050 84101 91587 98773 136293 189519 133931 53297 27033 14440 8023 4461 2626 1485 877 

2002/08/18 84392 84246 91551 98742 136316 189528 133957 53295 27032 14440 8023 4462 2626 1485 877 

2002/08/19 84687 84401 91523 98718 136344 189542 134003 53294 27032 14440 8023 4462 2626 1485 877 

2002/08/20 84951 84557 91501 98680 136367 189558 134072 53292 27031 14440 8023 4462 2626 1485 877 

2002/08/21 85190 84711 91482 98642 136379 189574 134149 53290 27030 14439 8023 4462 2626 1485 877 

2002/08/22 85411 84862 91466 98605 136384 189586 134223 53289 27029 14439 8023 4462 2626 1485 877 

2002/08/23 85616 85010 91453 98568 136387 189599 134308 53287 27028 14439 8023 4462 2626 1485 877 

2002/08/24 85809 85155 91443 98531 136388 189608 134381 53286 27027 14439 8023 4462 2626 1485 877 

2002/08/25 85991 85297 91434 98495 136388 189615 134451 53284 27026 14438 8023 4462 2626 1485 877 

2002/08/26 86165 85435 91428 98459 136388 189621 134517 53282 27025 14438 8023 4462 2626 1485 877 

2002/08/27 86330 85570 91424 98424 136388 189627 134587 53281 27025 14438 8022 4462 2626 1485 877 

2002/08/28 74163 79056 87941 96331 136079 189629 134628 53279 27024 14438 8022 4462 2626 1485 877 

2002/08/29 83015 83695 92391 100798 136776 189632 134675 53277 27023 14437 8022 4462 2626 1485 877 

2002/08/30 83437 84241 93010 101567 137054 189634 134721 53276 27022 14437 8022 4462 2626 1485 877 

2002/08/31 83852 84408 93130 101732 137199 189636 134768 53274 27021 14437 8022 4462 2626 1485 878 
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APPENDIX E: Indaba irrigation data for a period from 1991 to 2001 used in the 

simulation process for solute calibration plots, estimated from the plots in a report by 

Ginster (2002). Indaba irrigation site area is 40 ha.  

Year Irrigation 

rates 

(m
3
/month) 

 

Irrigation 

rates 

(mm/month) 

Irrigation 

rates (mm/two 

weeks) 

Total 

irrigation in a 

year (mm/a) 

2000 5 3 

1000 3 3 

1000 3 2 

7500 19 10 

15000 38 19 

20000 50 25 

14000 35 18 

15000 38 19 

15000 38 19 

10000 25 13 

10000 25 13 

 

 

 

 

 

1991 

11000 28 14 

 

 

 

 

 

 

305 

1000 3 1 

1000 3 1 

10000 25 13 

4000 10 5 

5000 13 6 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

 

 

 

 

 

 

1992 

1000 3 1 

 

 

 

 

 

 

75 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

 

 

 

 

 

 

1993 

1000 3 1 

 

 

 

 

 

 

36 

1000 3 1 

7500 19 9 

14000 35 18 

23000 58 29 

35000 88 44 

36000 90 45 

25000 63 31 

29000 73 36 

32000 80 40 

7000 18 9 

7000 18 9 

 

 

 

 

 

 

1994 

1000 3 1 

 

 

 

 

 

 

548 
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Year Irrigation 

rates 

(m
3
/month) 

 

Irrigation 

rates 

(mm/month) 

Irrigation 

rates (mm/two 

weeks) 

Total 

irrigation in a 

year (mm/a) 

1000 3 1 

1000 3 1 

24000 60 30 

1000 3 1 

11000 28 14 

30000 75 38 

36000 90 45 

38000 95 48 

29500 74 37 

23000 58 29 

21000 53 26 

 

 

 

 

 

 

1995 

1000 3 1 

 

 

 

 

 

 

545 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

9000 23 11 

33000 83 41 

20000 50 25 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

 

 

 

 

 

 

1996 

0 0 0 

 

 

 

 

 

 

168 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

14500 36 18 

7500 19 9 

8000 20 10 

 

 

 

 

 

 

1997 

1000 3 1 

 

 

 

 

 

 

78 
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Year Irrigation 

rates 

(m
3
/month) 

 

Irrigation 

rates 

(mm/month) 

Irrigation 

rates (mm/two 

weeks) 

Total 

irrigation in a 

year (mm/a) 

1000 3 1 

10000 25 13 

17000 43 21 

30000 75 38 

32000 80 40 

36000 90 45 

40000 100 50 

30000 75 38 

7500 19 10 

1000 3 1 

1000 3 1 

 

 

 

 

 

 

1998 

1000 3 1 

 

 

 

 

 

 

519 

1000 3 1 

1000 3 1 

7500 19 10 

28000 70 35 

25000 63 31 

30000 75 38 

30000 75 38 

3000 8 4 

5000 13 6 

10000 25 13 

8000 20 10 

 

 

 

 

 

 

1999 

1000 3 1 

 

 

 

 

 

 

377 

1000 3 1 

1000 3 1 

1000 3 1 

1000 3 1 

8000 20 10 

17000 40 20 

28000 70 35 

28000 70 35 

15000 38 19 

9000 23 11 

1000 3 1 

 

 

 

 

 

 

2000 

1000 3 1 

 

 

 

 

 

 

279 

1000 3 1 

10000 25 13 

15000 38 19 

14800 37 19 

15200 38 18 

14900 37 19 

15000 38 19 

26000 65 33 

29000 73 36 

30000 75 38 

22000 55 28 

 

 

 

 

 

 

2001 

21000 53 26 

 

 

 

 

 

 

537 
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APPENDIX F: Goedehoop irrigation data for a period 1991 to 2001 used for the 

sensitivity analyses of the Mpumalanga Highveld estimated from the plots in a report by 

Ginster (2002). Goedehoop irrigation site area is 96 ha.  

Year Irrigation 

rates 

(m
3
/month) 

 

Irrigation 

rates 

(mm/month) 

Irrigation 

rates (mm/two 

weeks) 

Total 

irrigation in a 

year (mm/a) 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

17000 18 9 

38000 40 20 

32000 33 17 

20000 21 10 

35000 15 8 

 

 

 

 

 

1991 

14000 36 18 

 

 

 

 

 

 

163 

29000 30 15 

41000 43 21 

39000 41 20 

29000 30 15 

44000 46 23 

38000 40 20 

38000 40 20 

32000 33 16 

38000 40 20 

37000 39 19 

8000 8 4 

 

 

 

 

 

 

1992 

2000 2 1 

 

 

 

 

 

 

392 

1000 1 1 

1000 1 1 

100 1 1 

2000 2 1 

20000 21 10 

15000 16 8 

29000 30 15 

28000 29 15 

8000 8 4 

1000 1 1 

1000 1 1 

 

 

 

 

 

 

1993 

1000 1 1 

 

 

 

 

 

 

112 

1000 1 1 

1000 1 1 

1000 1 1 

7500 8 4 

36000 38 19 

44000 46 23 

43000 45 22 

60000 63 31 

51000 53 27 

43000 45 22 

4000 4 2 

 

 

 

 

 

 

1994 

2000 2 1 

 

 

 

 

 

 

307 
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Year Irrigation 

rates 

(m
3
/month) 

 

Irrigation 

rates 

(mm/month) 

Irrigation 

rates (mm/two 

weeks) 

Total 

irrigation in a 

year (mm/a) 

1000 1 1 

14000 15 7 

31000 32 16 

1000 1 1 

22000 23 11 

40000 42 21 

41000 43 21 

45000 47 23 

35000 37 18 

26000 27 14 

13000 14 7 

 

 

 

 

 

1995 

1000 1 1 

 

 

 

 

 

 

283 

1000 1 1 

1000 1 1 

1000 1 1 

1000 1 1 

10000 10 5 

60000 63 31 

59000 62 31 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

 

 

 

 

 

 

1996 

0 0 0 

 

 

 

 

 

 

139 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

29500 31 15 

24000 25 13 

 

 

 

 

 

 

1997 

18000 19 9 

 

 

 

 

 

 

75 
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Year Irrigation 

rates 

(m
3
/month) 

 

Irrigation 

rates 

(mm/month) 

Irrigation 

rates (mm/two 

weeks) 

Total 

irrigation in a 

year (mm/a) 

1000 1 0.5 

28000 29 15 

30000 31 16 

60000 63 31 

85000 89 44 

95000 99 48 

82500 86 43 

82500 86 43 

65000 68 34 

37500 39 20 

1000 39 0.5 

 

 

 

 

 

 

1998 

1000 1 0.5 

 

 

 

 

 

 

632 

1000 1 0.5 

1000 1 0.5 

45000 47 24 

65000 68 34 

58000 60 30 

80000 83 42 

85000 89 44 

80000 83 42 

80500 84 42 

72000 75 38 

25000 26 13 

 

 

 

 

 

 

1999 

1000 1 0.5 

 

 

 

 

 

 

618 

1000 1 0.5 

75000 78 39 

1000 1 0.5 

1000 1 0.5 

15000 16 8 

40000 42 21 

35000 37 18 

60000 63 31 

25000 26 13 

15000 16 8 

1000 1 0.5 

 

 

 

 

 

 

2000 

1000 1 0.5 

 

 

 

 

 

 

283 

1000 1 0.5 

11000 12 6 

30000 31 16 

27000 28 14 

35000 37 18 

17000 18 9 

59500 62 31 

70000 73 37 

71000 74 37 

48000 50 25 

45000 47 24 

 

 

 

 

 

 

2001 

1000 1 0.5 

 

 

 

 

 

 

434 
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