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ABSTRACT 
 

Polyamic acid-polypyrrole (PAA/PPy) composite films were prepared and characterised for 

the use as conducting platforms in the design of biosensor systems. The thin films were 

synthesised by electrochemical method from a solution containing controlled molar ratio of 

chemically synthesised polyamic acid (PAA) and pyrrole monomer. Homogenous films were 

obtained incorporating PAA into electropolymerised polypyrrole (PPy) thin film. The 

concentration of PAA (1.37 × 10
-6

 M) was kept fixed throughout the composite ratio analysis, 

whilst the concentration of PPy was varied from 1.9 × 10
-3

 M to 9.9 × 10
-3

 M. The PAA/PPy 

thin films were electrodeposited at a glassy carbon electrode (GCE) and characterised using 

Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, Atomic Force 

microscopy (AFM), Scanning electron microscopy (SEM) and electrochemical (CV, SWV) 

techniques. The composition that best represented the homogenous incorporation of PAA into 

PPy matrix was observed at a PAA/PPy ratio of 1: 4.13 × 10
-3

. This composite was observed 

to have two sets of coupled peaks with formal potential 99 mV and 567 mV respectively. The 

De determined from cyclic voltammetry using the anodic peak currents were found to be 

twice as high (5.82 × 10
-4

 cm
2
/s) as the De calculated using the cathodic peak currents (2.60 × 

10
-4

 cm
2
/s), indicating that the composite favours anodic electron mobility. Surface 

morphology and spectroscopy data support the formation of a homogenous polymer blend at 

the synthesis ratio represented by composite 3. For the construction of a biosensor the 

spectroscopic and electrochemical properties of the enzyme, luciferase and the analytes i.e 

naphthalene and fluoranthene were evaluated. Fluorescence spectroscopy studies were carried 

out to characterize the enzyme’s bioluminescence response in PBS at pH 7. Luciferase 

showed an absorption peak at 340 nm. The bioluminescence properties of the enzyme with 

the analytes were explored by fluorescence spectroscopy. The emmision peak at 340 nm 
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gradually decreased as the concentration of each analyte was increased respectively. 

Electrochemical characterization and immobilisation of the enzyme; Photobacterium Vibrio 

fisheri luciferase, and its application as a biosensor for selected polycyclic aromatic 

hydrocarbons was investigated. The enzyme was electroactive in PBS (pH 7) with two 

reversible redox couples at E°′ = +110 mV and E°′ = +730 mV and was observed to have a 

diffusion coefficient of 1.1 × 10 
-12

 cm
2
/s. The surface coverage was calculated to be 1.50×10

-

13
 moles/cm

2
 based on Brown-Anson model. The mass changes due to the addition of each 

analyte were measured by Electrochemical Quartz microbalance (EQCM). % Inhibition was 

calculated as an indicator of analyte interaction with the immobilised enzyme, in order to 

evaluate the sensitivity of the enzyme binding. Electrochemical impedance spectroscopy 

studies were done at a fixed potential of -730 mV over the frequency range 100 mHz to 1 

kHz. The Rct values increased for each analyte, naphthalene and fluoranthene as the 

concentrations of each analyte was increased. The system thus became less conductive as the 

amount of PAHs was introduced to the PAA/PPy/LUC biosensor. Rct was identified as the 

parameter to most appropriately model the binding event between luciferase and the two 

analytes. 
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Chapter 1 
 

General Introduction 
 

 

This chapter gives a brief background on conducting polymers, polycyclic hydrocarbons, 

biosensors, luciferase, problem statement, project’s rationale and motivation, aim and 

specific objectives and also the thesis outline. 

 

1.1 Background  

 

Intrinsically conducting polymers (ICPs) belongs to a class of organic materials with unique 

electronic properties i.e. electric conductivity up to 10
4
 S/cm for doped polyacetylene (H. 

Shirakava et. al.; 1977), electrochromism, and electroactivity. Conjugated π electrons in the 

backbone of their macromolecules are responsible for these properties. The most studied 

conducting polymers are polypyrrole (PPy), polythiophene, polyfuran and other heterocyclic 

ICPs, polyaniline (PANI) and polyacetylene. Because of their high electrical properties, ICPs 

are investigated for application in electronics, microelectronics, optoelectronics (T.A. 

Scotheim et. al., 1998). Corrosion protection (J.O. Iroh et. al.; 1999), solid-state charge 

storage devices (T.F. Otero et. al.; 1999), electromagnetic screens (A. Kaynak et. al.; 1996) 

and antistatic coatings (R.S. Kohlman et. al.; 1998), gas separation coatings (A.G. Kozlov et. 

al.; 1998) are among the most promising applications of the ICPs. Poor mechanical 

properties, environmental sensitivity, moderate stability of electrical properties with 

temperature considerably limit the industrial pertinence of ICPs. Heterocyclic ICPs which can 
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be prepared either chemically or electrochemically, have high environmental stability and a 

high electric conductivity (up to 400 – 1000 S/cm). Most commercially produced composites 

use a polymer matrix material often called a resin solution. There are many different 

polymers available depending upon the starting raw ingredients. The most common are 

known as polyester, vinyl ester, epoxy, phenolic, polyimide, polyamide, polypropylene, 

polyether ether ketone, to name a few.  

 

Composites can be defined as materials that consist of two or more chemically and physically 

different phases separated by a distinct interface. The different systems are combined to 

achieve a system with more useful structural or functional properties which cannot be 

attained by any of the constituent alone. The difference between blends and composites is 

that the two main constituents in the composites remain identifiable while these may not be 

recognizable in blends. Composites are combinations of materials differing in composition, 

where the individual constituents retain their separate identities. These separate constituents 

act together to give the necessary mechanical strength or stiffness to the composite (Josmin P. 

Jose et al.; 2012). Composites in structural applications have the following characteristics; 

they consist of two or more physically distinct and mechanically separable materials, they are 

made by mixing the separate materials in such a way as to achieve controlled and uniform 

dispersion of the constituents, they have superior mechanical properties and in some cases 

uniquely different from the properties of their constituents (Mayer C. et al., 1998). 

 

Polycyclic aromatic hydrocarbons (PAHs) belong to a group of organic compounds 

containing two or more fused benzene rings. PAHs may exhibit mutagenic and carcinogenic 

effects and is becoming an environmental concern. They tend to be found in soils, aerosols, 

water, animals and plants (Henner et al., 1996). They get released into the environment 
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through the disposal of coal tar and other coal processing wastes, petroleum sludge, asphalt, 

creosote, and other wood preservative wastes, chemical waste and soot (Laha et al., 1991). 

When the PAHs and their degradation products get into the soil it not only pollutes the soil 

but it endangers human health as well as aquatic ecosystems by directly affecting soil biota or 

after runoff or percolation, water or groundwater biota (Gu M. et al., 2001). The detection of 

PAHs toxicity in the environment is restricted due to its low solubility and sorption to solid 

surfaces and its hydrophobic nature results in the portioning onto soil matrix, limiting their 

bioavailability. In-situ detection of the toxicity of PAHs in contaminated soil has not been 

successfully conducted because of the absence of appropriate biosensing cells as well as tools 

and techniques. Zang et al reported on the fact that surfactants can enhance the rate of mass 

transfer from solid and sorbed phases by increasing the rate of dissolution and desorption of 

PAHs. Microbially produced surfactants or biosurfactants offer the advantage of being less 

toxic and more biodegradable. These surfactants have drawbacks such as time and space 

consumption and high costs.  

 

Biosensors have major advantages over chemical or physical analyses with regard to 

specificity, sensitivity, and portability. A biosensor is an analytical device that combines a 

biological sensing element with a transducer to produce a signal which is proportional to the 

analyte concentration. Biosensors are used in clinical, food and environmental areas due to 

the advantage of fast detection speed, high selectivity and sensitivity. Enzymes were 

historically the first biological recognition elements included in biosensors and continue to be 

the basis for major number of publications reported for biosensors in general as well as 

biosensors for environmental applications. The advantages of enzyme biosensors include a 

stable source of material, the ability to modify the catalytic properties of substrate specificity 

by means of genetic engineering, and the catalytic amplification of the biosensor response by 
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modulation of the enzyme activity with respect to the target analyte. Recombinant 

bioluminescent bacterial strains that use specific promoters fused to the bioluminescence 

genes have recently been applied in environmental monitoring (Heitzer et al., 1994). The 

advantages of using these recombinant bioluminescence bacteria as biosensing cells include 

rapid responses, low cost, and improved reproducibility. Mytilus galloprovincialis may be 

used as PAHs pollution bioindicator due to its ability to filter the water and accumulate these 

toxicants (Frenzilli G. et al., 2004). Bioluminescent organisms comprise a diverse set of 

species that are widely distributed, inhabiting terrestrial, freshwater and marine ecosystems. 

Bioluminescent bacteria as bio-indicators have been used since the 1950s. There are varieties 

of applications range using bioluminescent bacteria for the assessment of environmental toxic 

compounds (Steinberg et al., 1995). They are promising tools for the detection of bioavailable 

heavy metals as the bioluminescence bacteria can be specifically modified to respond to toxic 

concentrations of heavy metals such as Cd, As, Sb, Cr, Cu, Hg, Zn and Pb (Kahru et al., 

2008). Scheerer et al., has demonstrated the conditions for bioluminescence of Vibrio fisheri. 

Bacterial bioluminescence (BL) measures cellular metabolism and is a reliable sensor for 

measuring the presence of toxic chemicals in aquatic samples (Leitgib et al., 2007). For the 

presence of carcinogens, drugs, mutagenic, pollutant with binding affinities for DNA, DNA 

electrochemical biosensors can be used (Lucarelli F et al., 2002).  

 

Bacterial luciferase is an enzyme that catalyses light emission of bacterial bioluminescence. 

The DNA sequences coding the proteins in the luminescent system are termed the lux genes. 

Bacterial luciferase is a heterodimer, composed of two different polypeptides, designated 

alpha and beta (of molecular mass 40 kDa and 37 kDa, respectively, and encoded by the luxA 

and luxB genes, respectively. The active site is located within the subunit (Figure 1). 
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Figure 1 Bacterial luciferase. 

 

This research work focuses on advances, directions and strategies in the development of a 

simple, cheap and sensitive electrochemical nanobiosensor for the determination of the 

polycyclic aromatic hydrocarbons, naphthalene and fluoranthene. It entails the use of 

electrochemical methods such as cyclic voltammetry (CV), Square wave voltammetry (SWV) 

and Electrochemical quartz microbalance (EQCM); spectroscopic methods such as Fourier 

transform infrared (FTIR), Raman and fluorescence spectroscopy as well as the 

morphological techniques such as scanning electron microscopy (SEM) and Atomic force 

microscopy (AFM). The electrochemical techniques are important for the characterization of 

the electroactive species, the study of the electrochemical reactions and direct electron 

transfer of enzymes at the electrode surfaces as well as in the detection of analytes by 

incorporation of biological recognition elements such as enzymes. Spectroscopic techniques 

are highly valuable for the determination of the conducting states of the polymers by 
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monitoring the changes in their absorption bands. The morphological techniques are highly 

applicable for the characterization of materials and for the estimation of their sizes. Special 

attention has been given to the synthesis of nanostructured PAA/PPy composites by the 

electrochemical method (using polyamic acid and polypyrrole) to be used as mediators in the 

luciferase biosensor; the development of luciferase biosensor and its application for binding 

determination of the polycyclic aromatic hydrocarbons. Luciferase was the desirable model 

molecule for this study because of its commercial availability, moderate cost; it’s known 

documented structure and its direct electron transfer when in solution and when immobilized 

on electrode surfaces. The detection principle used was based on the inhibition of the activity 

of the enzyme luciferase by the polycyclic hydrocarbons. 

 

 

1.2 Problem statement  

 

The occurrence of phenols as industrial pollutants in surface waters is quite common due 

to the release of by-products in the petrochemical industry, production of plastics and 

dyes and pulp industry. These anthropogenic pathways far outweighs the natural 

formation pathways i.e. biodegradation of various sources of organic waste. Phenolic 

derivatives are toxic for living organisms because they penetrate through natural 

membranes causing a broad spectrum of toxic effects. Among the compounds of interest 

are polycyclic aromatic hydrocarbons e.g. naphthalene and fluoranthene. Presently 

instrumental methods of analysis involving chromatographic (TLC, GC, HPLC), 

spectroscopic (UV-Vis, IR, MS) or coupled techniques (GC-MS) are heavily relied upon 

for environmental analysis. These instrumental techniques are usually expensive, not 

easily amenable to on site applications, require extensive pre-treatment stages before 
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analyte quantification and they fail to indicate whether the compounds are accessible for 

assimilation by living organisms. There is a need to monitor different types of PAHs and 

their levels (compositional proportion) in the environment. Certain world organizations 

concerning the pollutants found in water and soil such as PAHs has set guidelines. In 

drinking water, the world health organization (WHO) has recommended concentration of 

lower than 15 ng/L for each PAH and 700 ng/L for benzo(a)pyrene (WHO, Guidelines of 

drinking-water Quality Geneva, 1998. vol. 1, 2nd edition) . It has been recommended that 

drinking water samples can contain around 8 PAHs; the concentration level should be 

under 200 ng/L (Kabzinski et al., 2002). According to Kabzinski et al. the concentration 

of PAHs in surface water range from 0.1 – 830 ng/L and should not exceed that limit. 

Several methods for the analysis and determination of PAHs have been reported. These 

methods include immunoassay (Woodward K.L.A, 1984), gas chromatography (Colmsjo 

A., A.H.N, 1998) and high performance liquid chromatography (HPLC) using UV-vis 

absorbance (Ferrer R. et al., 1997; Andrade E. et al., 2000) and capillary electrophoresis 

(CE) equipped with laser-induced fluorescence (Szolar, O.H.J. et al., 1996). These 

methods are known to manifest underlying disadvantages such as complicated pre-

treatment, high costs, and time consuming processes. 

 

1.3 Rationale and motivation 
 

It has been shown that electrochemical methods are inexpensive, simple, and effective, 

and are less time consuming (Geffard, O., et. al., 2003; Cai, Z.-Q., et. al., 2008). Thus, the 

fabrication of a biosensor sensor based on PAA/PPy and luciferase presents a novel, 

simple, and cheap, less time consuming, electrode fouling free and environmentally 

friendly method of detecting the highly carcinogenic PAHs.  However to optimise the 
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enzyme kinetics for analyte molecules that are not their natural substrate, we need to 

ensure efficient electrocatalysis by improving the electron shuttling capacity of the 

platform. An approach that augers well for this purpose is the combination of different 

polymer systems in order to harness their individual catalytic advantages to produce novel 

materials with superior performance, chemical stability and response times.  We have 

explored the feasibility of combining polyamic acid electrochemistry typified by COOH 

and NH3 electrochemistry in a one pot synthesis approach with polypyrrole to incorporate 

its chemical stability into the overall performance of the composite polymer matrices, 

thus produced.  The success of the novel polymer complexes as transducer platforms has 

been demonstrated using luciferase as the biosensing element in the analytical 

determination of naphthalene and flouranthene. 

 

1.4 Aim 

 

The project will investigate the electrocatalytic behaviour of the PAA/PPy composites 

and the interaction between luciferase from Vibrio Fisheri and PAHs i.e. naphthalene and 

fluoranthene. 
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1.5 Objectives 

 

i. To synthesize nanostructured PAA/PPy polymer composites in-situ 

ii. To characterize the synthesized nanostructured PAA/PPy films by Cyclic 

voltammetry (CV), Scanning electron microscopy (SEM), Atomic force 

microscopy (AFM), Fourier transform infrared (FTIR) and Raman Spectroscopy; 

iii. Evaluate the interaction between the luciferase and the analytes; naphthalene and 

fluoranthene by Cyclic Voltammetry, Fluorescence Spectroscopy and 

Electrochemical quartz microbalance;  

iv. To develop an electrochemical biosensor by immobilising the enzyme; luciferase 

onto the surface of glassy carbon electrode (GCE) modified with nanostructured 

PAA/PPy film; 

v. To characterize the developed luciferase/PAA/PPy biosensor by Electrochemical 

impedance spectroscopy and to optimize the biosensor parameters such as 

sensitivity, stability and limit of detection; 
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1.6 Thesis layout 

 

Chapter 2 presents reviews the recent developments in the use of conducting polymers and 

nanostructured conducting polymers as materials for biosensor construction, as well as the 

features and applications of biosensors. Various synthetic routes for nanostructured 

polyaniline materials and their improved features over the conventional polyaniline are 

discussed. The chapter also highlights the enzyme kinetics in relation to their inhibition 

principles and on the health effects and environmental occurrence of naphthalene and 

fluoranthene as well as the analytical techniques used for their detection. 

 

Chapter 3 describes the various analytical techniques employed, detailed research 

methodology and general experimental procedures for the electrochemical synthesis of 

nanostructured conducting polymer composites, biosensor construction, characterization and 

application of the developed biosensor for the determination of PAHs. 

 

Chapter 4 presents the results for the synthesis and characterization of the PAA/PPy 

electrochemically synthesized composites. The results for the electrochemical 

characterization of the PAA/PPy film are presented. The structural characterizations of 

PAA/PPy films were investigated by Fourier transform infrared (FTIR) and Raman 

spectroscopy and the results are presented in this chapter. In addition, the results obtained 

from the morphological characterization of PAA/PPy by scanning electron microscopy 

(SEM) and Atomic force microscopy to estimate their sizes and line roughness are presented. 

The features of the nanostructured materials were investigated in relation to their application 

as biosensor materials. 
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Chapter 5 presents the results for the characterization of the electrochemical and 

spectroscopic evaluation of the enzyme (luciferase) and analytes (naphthalene and 

fluoranthene). The inhibition/binding of luciferase and analytes were investigated by cyclic 

voltammetry and fluorescence spectroscopy as well as with electrochemical quartz 

microbalance and the results discussed in this chapter. In addition the results obtained for the 

luciferase biosensor as well as those for its optimization for the detection of PAHs. The direct 

electron transfer of luciferase immobilized on nanostructured PAA/PPy film as well as the 

biosensor parameters was characterized by electrochemical impedance spectroscopic 

technique.  

 

Chapter 6 summarizes the major findings of this study and the conclusions drawn from the 

results of the research. The conclusions drawn have been used to formulate the 

recommendations for further studies. 
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Chapter 2 
 

Literature Review 
 

 

The main focus of this chapter is a review of conducting polymers (CP) i.e polyaniline, 

polypyrrole, polyamic acid, polyimide, etc., synthesis of CP, a review on biosensors and the 

occurrence and method of detection of PAHs i.e. naphthalene and fluoranthene and lastly a 

review on bacterial luciferase. 

 

2.1 Introduction 
 

Polymers form an integral part of our being. Polyacetylene, polypyrrole, polythiophene, 

polyaniline etc, with their conjugate structures have been investigated and reviewed in view 

of various applications. These applications include batteries, electrochromic devices, 

corrosion protection and microelectronic devices. The chemical behaviour of the conducting 

polymers is due to their intrinsic redox properties and high electronic conductivity. 

Conducting polymers are also studied for their catalytic behaviour towards electrochemical 

reactions (K.R. Prasad et al., 2002). Features like poor mechanical properties, environmental 

sensitivity, and moderate stability of electrical properties with temperature (Table 1) 

significantly limit the industrial applicability of ICPs. Research interest in electroactive 

polymers started in 1977, when Heeger, MacDiarmid, Shirakawa and their co-workers 

demonstrated that the conductivity of polyacetylene (PAc) can be increased by several orders 

of magnitude by treatment with appropriate oxidizing or reducing agents, the so-called 
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‘dopants’ (Shirakawa et al., 1977). These scientists were awarded the Nobel Prize in 

chemistry in 2000 for the discovery and development of the so-called ‘conducting polymers’ 

(http://nobelprize.org/chemistry/laureates/2000). This has generated renewed interest of the 

scientific community towards the study and discovery of new conducting polymeric systems. 

Since the mid-1970s, research into conducting polymers has supported the industrial 

development of conducting polymer products and provided the fundamental understanding of 

the chemistry, physics and material science of these polymers (Wallace et al., 2009). 

Research on polypyrrole dates back to the 1960s, but little was understood then about the 

polymer at the time and this discovery was essentially lost (Gerhard M et al., 2002). 

Polyacetylene was the first inherently conductive polymer to be recognized. Even though it is 

a non-cyclic polyene, polyacetylene is still one of the most studied polymers in this field; it 

has significant limitations, such as, difficulty with processing and high instability in air. 

Unlike polyacetylene, polyphenylenes, cyclic polyenes, are known to be thermally stable as a 

result of their aromaticity. These polymers are conducting due to an extended conjugation 

along the polymer backbone (Guimard M. et al., 2007, Harsanyi G et al., 1996). Their 

structure contains a one-dimensional organic backbone based on the alternation of single and 

double bonded sp
2
 hybridized atoms which give the polymer with metal like semi-conductive 

properties. These enable π-molecular orbitals to be formed for electronic conduction. In the 

neutral (undoped) state these polymers can only be semiconducting. The neutral polymer is 

converted into an ionic complex consisting of a polymeric cation or anion and a counter-ion 

which is the reduced form of the oxidizing agent or the oxidized form of the reducing agent, 

respectively (Bredas N. et al. 2007). The oxidation or reduction of π-electronic systems in 

conducting polymers is referred to as p- or n-type doping. This doping can be effected 

chemically or electrochemically. In order to maintain electro-neutrality, doping requires 

incorporation of a counter-ion. The doped and undoped states have different electronic, 
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optical, physical, chemical and electrochemical aspects. Therefore, reversible interchange 

between the redox states in conducting polymers gives rise to the changes in its properties 

including polymer conformation, doping level, conductivity and colour. Electrons of π-

character can be easily removed or added to form a polymeric ion without much disruption of 

the sigma-bonds which are primarily responsible for holding the polymer together. 

Unsaturated π-bonded polymers also have small ionization potentials and large electron 

affinities. The electronic conductivity, a measure of electrical conduction and thus a measure 

of the ability of a material to pass a current, appears when the material is doped. A variety of 

factors including polaron length, the conjugation length and overall chain length and by the 

charge transfer to adjacent molecules affects the conductivity in conducting polymers. 

Studies have demonstrated that planar conformation of the alternating double-bond system, 

which maximizes sideways overlap between the molecular orbitals, is critical for conductivity 

(Guimard, N. et al., 2007). This π-bonded system is further described in terms of electronic 

wave-functions that are delocalized over the entire chain. This delocalization allows charge 

mobility along the polymer backbone and between adjacent chains, but delocalization is 

limited by both disorder and Coulombic interactions between electrons and holes. Generally, 

materials with conductivities less than 10
-8

 S/cm are considered insulators, while those 

between 10
-8

 and 10
3
 S/cm are semiconductors and those with conductivities greater than 10

3
 

S/cm are considered conductors. The mechanism of conduction in conducting polymers is 

very complex because such materials exhibit conductivity across a range of about fifteen 

orders of magnitude and many involve different mechanisms within different regimes 

(Gerard M et al., 2002). Conducting polymers show enhanced electrical conductivity by 

several orders of magnitude of doping. The concept of polarons and bipolarons has been used 

to explain the electronic phenomena in these systems (Bredas J. et al. 1985). 
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Table 1 Electrical and mechanical properties of polypyrrole, polyaninline and polyacetylene. 

Conducting 

Polymer 

Maximum 

Electrical 

conductivity, 

S/cm 

Thermal 

stability of 

films, K 

Mechanical 

properties: 

Polypyrrole 10
-5

 -1000 

(A.F. Diaz et 

al.,1979, S. Rane et 

al., 1999) 

523 (S. Rane et al., 

1999) 

Breaking stress 

(films), 

4.1-12.1 MPa 

(P. Murray et al., 

1997) 

Polyaniline 10
-8

-400 (T.A. 

Scotheim et al., 1998) 

453 in air, 673 

in N2 (S.S. Hardaker, 

et al., 1999) 

Tensile strength, 

MPa, 

0.5-3.3 (G.R. 

Valenciano et al., 

2000) 

reported for 

PANI/Poly(ethylene) 

composed films 

Polyacetylene 10
-9

-10
4
 (H. 

Shirakava et al., 

1977) 

693 in N2 (S. Wang et 

al., 1999) 

Tensile strength (in 

bulk), 

MPa 100 (E.T. Kang 

et al., 1997) 
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Conductive filler materials such as carbon black, graphite fibres, or metal particles were used 

for preparation of composite materials. Scientists from many disciplines are now combining 

expertise to study organic solids that exhibit remarkable conducting properties. Organic 

compounds which effectively transport charge are divided into three groups; organometallic 

species (Debuigne A et al. 2009, Gligorich, K. et al. 2009, Moreda-Piñeiro, J et al. 2009, 

Nakai, H. et al. 2010), charge transfer complexes (ion radical salts) (Casar, Z. et al. 2009, 

Kobayashi, Y et al. 2010, Demolliens, A. et al. 2010) and conjugated organic polymers 

(Gerard M et al., 2002, Snook, G. et al 2011, Adhikari, B. et al. 2004, Kumar D. 1998). 

Polymers as electric insulators are being discarded as they are now taking charge as 

conductors with a range of novel applications. They have a wide range of potential 

applications in areas such as rechargeable batteries, light emitting diodes (LED), 

electrochromic display devices, gas separation membranes, electromagnetic interference 

(EMI) shielding, sensors and molecular electronic devices (Kumar, D. et al., 1998). 

 

2.2 Synthesis of conducting polymers 

 

Two different techniques are mainly used in preparation of conducting polymers: chemical 

synthesis and electrochemical synthesis. Chemical polymerization is carried out in either 

aqueous solution or vapour phase by the presence of an oxidant. PPy in powder form 

precipitates either in solution or onto surfaces in contact with vapour media. PPy obtained by 

chemical method is usually non-soluble (T.A. Scotheim et al., 1998) and cannot be used for 

preparation of nanocomposites. Chemical synthesis is known to permit the scale-up of the 

polymers, which is not possible with electrochemical synthesis. Electrochemical 

polymerization is the preferred general method for preparing CPs because of its relatively 

straightforward synthetic procedure, simplicity and reproducibility. Generally, 
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electrochemical polymerization can be carried out galvanostatically (a constant current 

applied), potentiostatically (a constant potential applied) or by potential cycling or sweeping 

methods. The thickness of the film can be controlled by varying either the potential or current 

with time. Potentiodynamic techniques are preferred because of the homogenous film 

produced and strong adherence of the film to the electrode surface (Trivedi, D. C., 1996). The 

mechanism of electrochemical polymerization of CPs, using PANI as an example is shown in 

Figure 2. Formation of the radical cation of aniline by oxidation on the electrode surface is 

considered to be the rate determining step. This is followed by coupling of radicals, mainly 

N- and para-forms, and elimination of two protons. The dimer (oligomer) formed undergoes 

oxidation on the electrode surface along with aniline. The radical cation of the oligomer 

couples with an aniline radical cation, resulting in propagation of the chain. The formed 

polymer is doped by the acid (HA) present in solution (Wallace et al., 2003).  
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Figure 2 Electropolymerization of aniline. 
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Electrochemical oxidative polymerization of PPy was primarily carried out by Diaz et al. 

(A.F. Diaz et al., 1971) in aqueous solution of pyrrole using sulfuric acid as an electrolyte. 

Diaz et al. have obtained PPy in an insoluble powder form. Tourillon et al. in (T.A. Scotheim, 

1983) studied the electrochemical polymerization of heterocyclic ICPs. Electrochemical 

polymerization of pyrrole (Figure 3) involves the formation of radical cation followed by the 

formation of dimer and deprotonation followed by formation of trimer and the next radical-

cation, etc. As the result of this process, a coating consisting of ICP as a freestanding flexible 

film is formed on a surface of a working electrode. The electrochemical method described by 

Tourillon et al. has some disadvantages. Two mechanisms are mostly responsible for the 

imperfections of resulting polymer molecules: formation of side chains and termination by 

oxidation of dissolved oxygen. The electrochemical method has the advantage of that the 

doping of the polymer occurs simultaneously with the film formation. Doping is the 

formation of a complex between the polymer and the counterion where both components are 

connected electrostatically. During doping, cation-radicals (polarons) and dications 

(bipolarons) are formed in ICP backbone. The electrical conductivity of doped PPy is due to 

polarons and bipolarons. Important variables to be considered during electrochemical 

polymerization are deposition time and temperature, nature of solvent, pH of solvent, 

electrolyte, electrode materials, and deposition charge. Each of these parameters has an effect 

on film morphology the thickness and topography, mechanics, and conductivity, which are 

properties that directly impact the effectiveness of the material for biosensor applications. All 

CPs can be synthesized chemically, but electrochemical synthesis is limited to those systems 

in which the monomer can be oxidized in the presence of a potential to form reactive radical 

ion intermediates for polymerization. Polypyrrole, polythiophene and polyaninline are of the 

conducting polymers that can be synthesized both chemically and electrochemically. Several 

novel conducting polymers with modified monomers are only open to chemical 
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polymerization. Electrochemical synthesis has been used to prepare homogeneous and self-

doped films (Guimard et al., 2007). 

 

 

Figure 3 Electropolymerization of conducting polymers X=NH, S, O. 

 

 

2.3 Conducting Polymers 
 

 

Polyaniline (PANI) has been known for over one hundred years in its 'aniline black' form, 

and undesirable black deposit formed on the anode during electrolysis involving aniline. Due 

to its simple synthesis it is the most promising polymer with controllable electrical 
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conductivity, and good environmental stability. PANI is a phenylene-base polymer having a 

chemically flexible –NH– group in the polymer chain edged on either side by a phenylene 

ring. The protonation and deprotonation and various other physico-chemical properties of 

PANI can be traced to the presence of the –NH– group. There are three different oxidation 

states of PANI, namely leucoemeraldine, emeraldine, and pernigraniline; in which only 

polyemeraldine is electrically conductive. 

 

 

 

Figure 4 Polyaniline base. 

 

The terms “leucoemeraldine”, “emeraldine” and “pernigraniline” refer to the different 

oxidation states of the polyaniline. The base form of polyaniline consists of alternating 

reduced and oxidized repeated units. The presence of both the reduced and oxidised form is 

referred to as the emeraldine base. The leucoemeraldine is the reduced state and the 

pernigraniline is the oxidised state of polyaniline.  
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Figure 5 (a) The reduced (leucoemeraldine) and the (b) oxidised pernigraniline forms of the 

emeraldine base. 

 

 

Polyaniline can be prepared by either chemical or electrochemical oxidation of aniline under 

acidic conditions. The electrochemical method of polymerization is preferred because of its 

better-ordered polymers and thin films. In electrochemical techniques the best films are 

reported to be produced that employ the three electrode system in a cell, that is, working, 

counter and reference electrodes. The imine nitrogen atoms can be protonated in whole or in 

part to give the corresponding salts. The degree of protonation of the polymeric base will 

depend on its oxidation state and on the pH of the aqueous acid. This protonated form of 

polyaniline is electronically conducting and the magnitude of increase in its conductivity is a 

function of the level of protonation. Conducting polyaniline polymers, for example poly (2,5 

dimethoxyaniline) (PDMA) and poly (ortho-methoxyaniline) (POMA), are capable of 

incorporating different functionalities in their matrix during or after polymerisation. These 
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                      (b) 
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conducting polymers have conjugated π-electron backbones, which display unusual 

properties such as low-energy optical transitions, low ionisation potentials and high electron 

affinities. Therefore these polymers can be oxidised or reduced more readily and more 

reversibly than conventional polymers. A lot of interest has been focused on enhancing the 

properties of these materials by changing their surface properties. The change in surface 

properties is commonly achieved by surrounding a conductive polymer by another material, 

usually a bulky dopant. This forces the polymer backbone to the inside of the molecule 

forming different nanostructures including nanotubes and nanomicelles. M.J. Klink et al. 

incorporated phenanthrene sulfonic acid (PSA) and anthracene sulfonic acid (ASA) into the 

polyaniline (PANI), poly (2,5 dimethoxyaniline) [PDMA] and poly (ortho-methoxyaniline) 

[POMA] backbones (Klink et al., 2012). An amperometric biosensor has been developed, 

incorporating the electroactive polymer, polyaniline (PANI), which undergoes redox cycling, 

and can couple electrons directly from the enzyme active site, to the electrode surface 

(Killard et al., 1999). The determination of H2O2 and other organic peroxides is of practical 

importance in clinical, environmental, industrial and many other fields. The current H2O2 

assay techniques based on volumetric, colorimetric and chemiluminescence analysis are 

complex, time consuming, and are prone to interferences. Polyaniline based peroxide sensors 

are easily fabricated and combine the exquisite selectivity of horseradish peroxidase (HRP) 

with the excellent PANI stability to produce sensors with high sensitivity. Also the 

simultaneous electrodeposition of the polymer together with the biomolecule incorporation 

allows for the control of the spatial distribution of the immobilized protein, control of film 

thickness and enzyme activity and can be manipulated to produce sensors with excellent 

performance (Mathebe N, et al. 1995).  Anthracene sulfonic acid doped polyaniline 

nanomaterials has been prepared through the chemical oxidative polymerisation process. 

Ammonium peroxydisulfate (APS) was employed as an oxidant. The polyaniline (PANi) 
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materials exhibited nanofibrillar morphology with diameter sizes less than 300 nm. The 

nanofibrillar PANI was used as amperometric biosensors for H2O2 and erythromycin 

(Michira I, et al. 2007). Uniform composite films of nanostructured polyaniline (PANI) (e.g. 

nanotubes or nanorods with 60–80 nm in diameter) were successfully fabricated by blending 

with water-soluble poly(vinyl alcohol) (PVA) as a matrix. The PANI nanostructures were 

synthesized by a template-free method in the presence of b-naphthalene sulfonic acid (b-

NSA) as a dopant (Zhang Z, et al., 2002). 

  

Pyrrole is a heterocyclic aromatic organic compound, a five-membered ring with the formula 

C4H4NH. Polypyrrole (PPy) can be prepared by oxidizing pyrrole using different techniques, 

electrochemical polymerization and chemical polymerization. Electrochemical 

polymerization makes it easier to determine the polymer structure and components in a 

controllable manner for diverse purposes. Advantages of PPy include environmental stability, 

good redox properties and the ability to give high electrical conductivities. Polypyrrole (PPy) 

is frequently used in electrocatalytic and affinity sensors and biosensors based on its unique 

electrical, optical, and thermal properties. As a result of its good intrinsic properties, 

polypyrrole has proven promising for several applications including batteries, 

supercapacitors, electrochemical biosensors, conductive textiles and fabrics, mechanical 

actuators, electromagnetic interference shielding, anti-static coatings and drug delivery 

systems. The intrinsic properties of polypyrrole are highly dependent on 

electropolymerization conditions. In order to further enlarge the application of PPy in 

sensors, much effort has been carried out in recent years to fabricate functionalized PPy 

derivatives through either modification of the pyrrole monomer’s structure or the preparation 

of block and graft copolymers. Hua Dong et al. prepared a carboxyl-functionalized PPy 

derivative film, poly(pyrrole-N-propanoic acid), by electrochemical polymerization. 
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Polypyrrole offers tremendous technological potential such as fabrication of molecular 

electronic devices, electrodes for solid-state batteries, solid electrolytes for capacitors, 

electromagnetic interference shielding materials, and sensors. Electrochemical 

polymerization on a metal electrode or ITO glass results in good quality film, while chemical 

polymerization yields fine conducting powders. Polypyrrole polymerized either 

electrochemically or chemically is known to be insoluble and infusible due to the strong 

inter- and intra-molecular interactions and crosslinking’s. The poor processibility of 

polypyrrole has limited its applications (Lee J et al., 1995). By employing chemical synthesis 

routes the polypyrrole is mainly produced in the bulk solution and the transfer of the 

polypyrrole to a suitable electrode surface is limited. Polypyrrole is insoluble in most 

common solvents and adherence of polypyrrole to the electrode surface during sensor 

preparation, is also problematic in the absence of suitable dopants that improves its 

properties. These disadvantages however may be avoided, if electrochemical polymerization 

is applied. Thickness and morphology of the film are easily controlled by type of solvent, 

electrolyte concentration and type of electrode material, current density, applied potential, 

polymerization time and temperature. The optimization of these parameters in order to obtain 

nanostructured and reasonably stable PPy in air and in aqueous media opens the way for 

entrapment and/or doping of polypyrrole by various biomaterials such as small organic 

molecules, DNA, proteins and even living cells. PPy may also be synthesized in the 

overoxidized state and entrapped molecules may be removed to produce molecularly 

imprinted polymer electrodes. Electropolymerization also allows the deposition of films 

independent of the electrochemical cell geometry and this is particularly useful in the design 

of micro fluidic systems. Surfactants are used as polymer additives in order to control the 

morphology and when implicitly incorporated into the conducting polymer backbone, it 

serves to improve the conductivity, stability, solubility in organic solvents and processability. 
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Surfactants affect the preparation of conducting polymers in three ways, i.e., (i) the micelles 

control the distribution of reactants between the micellar and the aqueous phase and thus 

exerts some control over the polymerization pathway (ii) anionic surfactants may act as 

counter ions for the polymer polycations and (iii) the hydrophobic tail of the surfactant may 

adsorb on the polymer formed at the electrode surface and thus becomes part of the resulting 

material, influencing its chemical properties. on a platinum disk electrode to form stable thin 

films with good electrochemical activity, improved conductivity and visibly different colors 

on the oxidized state as opposed to the neutral state 1, 2-naphthaquinone sulfonic acid doped 

polypyrrole (PPyNQSA) through potentiodynamic electropolymerization from aqueous 

solution, at low pH was prepared (Akinyeye R et al., 2007).  

 

Addition of a dianhydride to a diamine in a dipolar aprotic solvent such as DMAc or 1-

methyl-2-pyrrolidone (NMP) at ambient temperatures leads to the formation of the 

intermediate polyamic acid due to the nucleophilic attack of the amino group on the carbonyl 

carbon of the anhydride group. Polar aprotic solvents form strongly hydrogen bonded 

complexes with the free carboxyl at ambient conditions. If the polymerization reaction is 

carried out in ether or hydrocarbon solvents, considerable differences in equilibrium constant 

are observed depending upon the amine’s basicity and the dianhydride’s electrophilicity. 

Polyamic acid formation is exothermic and the equilibrium is favoured at lower temperatures. 

The equilibrium however is shifted so far to the right at ambient that further lowering of the 

temperature usually does not show any detectable effect on the reaction. The monomer 

concentration is another important factor affecting the reaction equilibrium. As the forward 

reaction is bimolecular and the reverse reaction is unimolecular, increasing the monomer 

concentration favours high molecular weight products. For very dilute solutions this feature 
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becomes especially important and leads to decreased molecular weight of the polyamic acid 

(Chapter 1 POLYIMIDES: chemistry & structure-property relationships). 

 

Figure 6 Reaction scheme for the preparation of polyamic acid. 

 

The mechanism of polyamic acid formation involves a nucleophilic substitution reaction at 

the carbonyl carbon atom of the dianhydride with a diamine. The reaction is expected to 

depend upon the electrophilicity of the carbonyl groups of the dianhydride and the 

nucleophilicity of the amino nitrogen atom of the diamine. Electrophilicity of the dianhydride 
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is usually gauged in terms of electron affinity (Ea) of the molecule measured by 

polarographic measurement techniques. PMDA that has the highest Ea, of the common 

aromatic diamines also usually demonstrates the highest reactivity when reacted with 

different diamines. For dianhydrides with bridged bisphthalic anhydride structure, 

electrophilicity is strongly influenced by the bridging group. In comparison to BPDA, which 

lacks a bridging group, the electron-withdrawing groups such as SO2 and C=O increases the 

Ea value substantially whereas electron donating groups such as ethers decrease the Ea value. 

Due to this difference in reactivity, while ether-containing dianhydrides are not readily 

affected by atmospheric moisture, PMDA and BTDA have to be handled in strictly moisture 

free environments at all times. Attempts at correlating the reactivity of the aromatic diamines 

with their nucleophilicity have been less successful. However, the reaction rates of the 

diamines with a given dianhydride usually increase with increasing ionization potential. Also, 

considerable success has been achieved in quantitatively correlating the diamine basicity with 

reactivity, with the rate constants increasing with increasing value of pKa. 
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Table 2 Electron affinity of common aromatic dianhydrides. 

Name Electron Affinity (eV) 

Pyromellitic 

dianhydride (PMDA) 

1.90 

3,3'4,4'-Diphenylsulfone tetracarboxylic 

dianhydride 

(DSDA) 

1.57 

3,3'4,4'-Benzophenonetetracarboxylic 

dianhydride 

(BTDA) 

1.55 

Biphenyl-tetracarboxylic acid dianhydride 

(BPDA) 

1.38 

4,4' oxydiphthalic anhydride (ODPA) 1.30 

Hydroquinone diphthalic anhydride (HQDA) 1.19 

4,4'-Bisphenol A dianhydride (BPADA) 1.12 

 

 

Polyimides (PI’s) are usually synthesized in two steps. The final product is often prepared by 

thermal solid-state imidization of a two- or one-dimensional shape of the polyimide precursor 

polyamic acid (PAA). Synthesis of PI involves reacting a dianhydride and a diamine at 

ambient conditions in a dipolar aprotic solvent such as N,N-dimethylacetamide (DMAc) or N 

methylpyrrolidinone (NMP) to yield the corresponding polyamic acid, which is then cyclized 

into the final polyimide. This process was pioneered by workers at Dupont in 1950’s, 

involving a soluble polymer precursor and is it continues to be the primary route by which 
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most polyimides are made today (Takekoshi, T., 1996). Poly-(4,4’-oxydiphenylene) 

pyromellite imide (PI) is one of the suitable materials. It is commercially available, and 

manufactured for various applications because of its high thermal stability and chemical 

durability. However, this polymer is not processable. Therefore, the products, including 

membranes, can be molded only from its prepolymer - polyamic acid (PAA), which is then 

transformed into insoluble polyimide by thermal dehydration at 300 – 400° C. This thermal 

treatment has its disadvantages, especially in the case of porous membranes because the pores 

trend to collapse at high temperatures. To avoid this problem, soluble polyimides are 

frequently used, although insoluble polyimides are much more promising in view of chemical 

durability (Bessonov, M.I. et. al., 1987). Synthesis of Kapton™ polyimide, utilizes the 

monomer pyromellitic dianhydride (PMDA) and 4,4`-oxydianiline (ODA). This process 

involves several elementary reactions and the course of these reactions can be immensely 

affected by a large number of factors that include reaction conditions and even the mode of 

monomer addition. The success of the overall reaction to yield high molecular weight 

polymers is critically dependent on seemingly refined details (Chapter 1 POLYIMIDES: 

chemistry & structure-property relationships –literature review). 

PAA is usually prepared from organic precursors such as described by Daniel Andreescu et 

al. It is synthesized in organic medium from 4,4'-oxydianiline (ODA) and 1,2,4,5-

benzenetetracarboxylic acid (PMDA) precursors. Since the type of solvent used for the 

preparation and deposition of the PAA film plays a critical role in obtaining homogeneous 

surface coverage and controlling polymer thickness and polymerization degree, they 

Andreescu et al. studied several solvents for the synthesis and characterization of the PAA. 

PAA can be prepared as a viscous liquid or a powder, depending on the solvent used, and the 

resulting polymers were soluble either in aqueous or in organic solvent medium. When THF 

was used as solvent, the resulting PAA was a viscous liquid. When acetronitrile (ACN) was 
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used as solvent, another PAA derivative was obtained in a powdered form from the same 

ODA and PMDA (Andreescu D et al. 2005). Electrochemical synthesis of PAA films can be 

carried out under galvanostatic conditions. The amount of polymer film electrodeposited onto 

an electrode surface is dependent on the composition of the growth medium (solvent, 

supporting electrolyte, surfactant) and other deposition conditions such as the deposition time 

and current density (Chen, Y. et al., 1999). By varying these parameters it is possible to 

control the deposition process. Daniel Andreescu et al. studied the effect of these parameters 

on PAA film formation by performing electrochemical synthesis in both aqueous and organic 

solvent at different current densities and deposition times.  They electrodeposited PAA 

(powder) film from organic medium, N,N-dimethylacetamide( DMAc), onto a RVC electrode 

at a current density of 1.0 mA/cm
2
. The chronopotentiometric responses indicated the 

occurrence of a steady-state electrodeposition process. The process was slightly affected 

when the PAA (liquid) film was prepared from an aqueous solution, PBS. For the same 

current density, for example, 1.0 mA/cm
2
, the electrodeposition equilibrium potential was 

0.92 V in PBS compared to 1.4 V when DMAc was used as solvent. It was concluded that the 

organic solvents stabilize the cations. The electrode potential increases with increasing 

applied current. This behaviour suggested that the process obeyed Faraday’s law of 

electrolysis. Silver (Ag) and gold (Au) nanoparticles was then also incorporated into 

polyamic acid (PAA) film. This method utilized the unique reactivity of PAA by preventing 

the cyclization of the reactive soluble intermediate into polyimides at low temperature to 

design polymer-assisted nanostructured materials (Andreescu D et al., 2005). Polyamic acids 

(PAAs) containing benzothiazole (BT) and benzoxazole (BO) pendent groups (PAA-BT and 

PAA-BO, respectively) possesses electroactivity. The addition of H2O2 chemically oxidized 

the intrinsic carboxylic acid groups of PAA to form peroxy acid groups, and the peroxy acid 

further oxidized the electroactive sites of BT and BO to form N-oxides. The N-oxides could 
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be reverted to their original form by electrochemical reduction, thus increasing the 

electrochemical reductive current. Based on this mechanism, enzyme-free hydrogen peroxide 

(H2O2) biosensors were prepared by modifying gold electrodes with the PAA derivatives 

(PAA-BT/Au and PAA-BO/Au, respectively) (Hua M et al., 2011). By manipulating the 

delocalized π electron system of PAA, a conducting polymer, it can be used for chemical and 

electrocatalytic applications. PAA provides a means of generating nano-composites 

containing monodispersed metal particles while retaining its physical and chemical 

properties. It is versatile in both organic and inorganic solvents because of its chemical 

resistance. The carbonyl and amide functionalities in polyamic acids act as anchors resulting 

in the fabrication of flexible nanostructured polyamic acid-silica (PSG) films. The reduction 

of Cr (VI) to Cr (III) using PAA was carried out in both the solution phase and at solid gold 

electrodes (Omole M. et al. 2011). Electrically conducting polymers and their composites 

attract a lot of attention because of their high charge storage ability. The composite of 

polypyrrole (PPy) and polyimide (PI) possesses better charge storage properties then pure 

PPy. The electrochemical properties of a polypyrrole–polyimide composite makes it a 

prospective material in polymer based charge storage devices, that is, rechargeable batteries 

and supercapacitors (Levin K et al., 2011). If we can keep PAA from converting to the imide 

form then we have a stable polymeric matrix. This is what we hope to achieve by 

encapsulating the PAA into another semiconducting polymer network without PAA 

converting to PI.  
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2.4 Biosensors 

 

The recognition abilities of biological organisms for foreign substances are unparalleled. 

Scientists have developed new chemical analysis tools known as biosensors. They are defined 

as analytical devices incorporating a biological recognition element (enzyme, antibody, 

whole-cell, DNA, receptor or microorganisms) (Sadik and Wallace, 1993), which is 

integrated within a physicochemical signal transducer or transducing micro system. The 

signal transducing element (electrode, optical detector, piezo crystal etc.) converts the 

biochemical response into electric and optic signals which are amplified, measured and 

decoded by an appropriate electronic unit. A biosensor can produce either individual or 

successive digital electronic signals that are equivalent to the concentration of a single 

analyte or a group of analytes being monitored. Many parameters have been used to 

characterize a biosensor. Some are commonly used to evaluate the functional properties and 

quality of the sensor, such as sensitivity, stability and response time; while other parameters 

are related to the application rather than to the sensor functional properties. Piezoelectric 

biosensors and optical biosensors based on the phenomenon of surface plasmon resonance are 

both evanescent wave techniques. This utilises a property shown of gold and other materials; 

specifically that a thin layer of gold on a high refractive index glass surface can absorb laser 

light, producing electron waves (surface plasmons) on the gold surface. This occurs only at a 

specific angle and wavelength of incident light and is highly dependent on the surface of the 

gold, such that binding of a target analyte to a receptor on the gold surface produces a 

measurable signal. Other optical biosensors are mainly based on changes in absorbance or 

fluorescence of an appropriate indicator compound. Piezoelectric sensors utilise crystals 

which undergo a phase transformation when an electrical current is applied to them. An 

alternating current (A.C.) produces a standing wave in the crystal at a characteristic 
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frequency. This frequency is highly dependent on the surface properties of the crystal, such 

that if a crystal is coated with a biological recognition element the binding of a (large) target 

analyte to a receptor will produce a change in the resonant frequency, which gives a binding 

signal. Electrochemical biosensors are normally based on enzymatic catalysis of a reaction 

that produces ions. The sensor substrate contains three electrodes, a reference electrode, an 

active electrode and a sink electrode. A counter electrode may also be present as an ion 

source. The target analyte is involved in the reaction that takes place on the active electrode 

surface, and the ions produced create a potential which is subtracted from that of the 

reference electrode to give a signal. 

Polymeric structures have been developed for biochemical sensing, environmental 

monitoring, and microelectronic applications. Omowunmi A. Sadik et al. has explored the 

feasibility of designing advanced conducting polymeric materials for sensing and remediation 

applications. These include the synthesis of (i) polyamic acid–silver nanoparticle composite 

membranes, (ii) polyoxydianiline films, and (iii) electrochemical deposition of gold 

nanoparticle films onto functionalized conducting polymer substrate. One of their approaches 

utilizes the unique reactivity of polyamic acid (PAA) by preventing the cyclization of the 

reactive soluble intermediate into polyimides at low temperature to design polymer-assisted 

nanostructured materials. The ability to prevent the cyclization process has enabled them to 

design of a new class of electrode materials (Sadik O et al., 2010). Novel materials are 

needed to improve the mechanical and biochemical stability of the sensor while improving 

the immobilization scheme to achieve bio-stability and spatial control of biomolecules. An 

ideal electrode material for the construction of biosensors must possess the following 

characteristics i.e (i) biocompatibility with the biological element, (ii) absence of diffusion 

barriers, (iii) stability with changes in temperature, pH, ionic strength, and/or macro-

environment, (iv) sufficient sensitivity and selectivity for the analyte of interest, and (v) ease 
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of mass production. Moreover, the ideal material either should possess the necessary 

functional groups needed for the attachment of biomolecules or can be easily functionalized. 

In addition, an ideal electrode material must be characterized by good conductivity to ensure 

rapid electron transfer. A biosensor platform based on polyamic acid (PAA) has been 

reported for oriented immobilization of biomolecules. PAA, a functionalized conducting 

polymer substrate that provides electrochemical detection and control of biospecific binding, 

was used to covalently attach biomolecules, resulting in a significant improvement in the 

detection sensitivity. The biosensor sensing elements comprised of a layer of PAA antibody 

(or antigen) composite self-assembled onto gold (Au) electrode via N-hydroxysuccinimide 

(NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) linking (Noah N et al., 

2012). From literature, it is evident that PAA is a promising polymer matrix for various 

sensor applications. The carboxyl and amine functionalities have been employed in the 

design and fabrication of derivatised polymer platforms for applications. The challenge of 

course is to prevent imidization since this restricts the functionality of the carboxyl and amine 

moieties. A second challenge is to improve the chemical stability of the PAA, usually 

achieved by blending with other polymers such as polypyrrole on conductive matrices with 

graphene. The aim of this work is to produce stable PAA/Ppy composites and construct 

feasible biosensors for the detection of polycyclic hydrocarbons.   
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2.5 Naphthalene 

 

Naphthalene is a toxic air pollutant generally found in ambient and indoor air due to 

emissions from the chemical and primary metals industries, biomass burning, gasoline and oil 

combustion, tobacco smoking, the use of mothballs, fumigants and deodorizers, and many 

other sources. Naphthalene is commonly used as an intermediate in the production of phthalic 

anhydride (66,000 metric tons in the U.S. in 2000), surfactants (27,000 tons) and pesticides 

(14,000 tons) (Preuss, R. et al., 2003). It is also found in many other environments, e.g., 40% 

of National Priority List (Superfund) sites contain naphthalene in soils. Naphthalene is also 

named tar camphor, naphthene, naphthalin, naphthaline, mothballs, mothflakes and white tar; 

trade names include albocarbon, dezodorator, mighty 150, and mighty RD1. Naphthalene is a 

special compound in terms of its properties and chemical structure. Naphthalene is a 

flammable white solid with the formula C10H8 and the structure of two fused benzene rings, 

with melting and boiling points of 80.5 and 218 °C, respectively. Its odour is distinctive but 

not unpleasant, and its odour threshold is about 440 μg m
-3

. Due to its vapour pressure of 

0.087 mmHg at 25 °C it is classified as a semi-volatile organic compound (SVOC), which is 

just below the 0.1 mmHg cut-off often used to define volatile organic compounds (VOCs). At 

room temperatures naphthalene sublimes rapidly. Naphthalene due to its bicyclic aromatic 

structure is also a polycyclic aromatic hydrocarbon (PAH), and it is the most volatile member 

of this group. In environmental studies examining VOCs, SVOCs and PAHs; naphthalene has 

been a target compound. While known as a common and widespread air contaminant, 

naphthalene received rather little attention prior to the finding of its carcinogenicity in rats in 

2000. The general public is vulnerable to naphthalene mainly through inhalation of ambient 

and indoor air, followed by dietary and non-dietary ingestion. One estimate of the average 

intake rate for inhalation is 19 μg day
-1

, and 0.002 to 4.0 μg day
-1

 for ingestion of water. 
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Exposure to naphthalene has been linked to a number of hostile health effects. The major 

non-cancer endpoints are hyperplasia and metaplasia in respiratory and olfactory epithelium 

and the cancer endpoint of concern are nasal tumors (Jia C et al., 2010). 

 

 

Figure 7 Molecular structure of naphthalene. 

 

Polycyclic aromatic hydrocarbons can be detected by Fluorescence spectroscopy which is 10 

to 100 times more sensitive than UV-vis spectroscopy which is also another method used for 

the detection of PAHs.  Gas–liquid chromatography is extensively used to determine the 

naphthalene content in mixtures. 
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Table 3 Methods of analysing naphthalene. 

Sample matrix Assay procedure Limit of detection 

Air GC/FID 

 

HPLC/UV 

 

GC/FID 

1–10 μg/sample;4 μg/sample 

 

0.6–13 μg/sample 

 

0.3–0.5 μg/sample 

Drinking, ground and surface 

water 

GC/MS 0.04 μg/L 

Drinking water and raw source 

water 

GC/PID 0.01-0.05 μg/L 

Drinking water HPLC/UV/FD 2.20 μg/L 

Wastewater municipal and 

industrial 

HPLC/UV or GC/FID 1.8 μg/L 

 

Abbreviations: GC, gas chromatography, FID, flame ionization detection, HPLC, high 

performance liquid chromatography, UV, ultra violet detection, MS, mass spectroscopy, PID, 

photoionization detection, FD, fluorescence detection 
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Following dermal exposure to diapers or other clothing stored with naphthalene mothballs or 

playing in a room used to store naphthalene mothballs, children aged 1.5-36 months have 

developed hemolytic anemia (Shah et al., 1995). A 68-year-old woman developed aplastic 

anemia following inhalation and possibly dermal exposure to naphthalene and 

paradichlorobenze, which she placed into containers with stored clothing several hours a day 

for three weeks while working for a clothing resale business. With poor ventilation and no air 

conditioning during hot weather, this contributed to high vapor concentrations of naphthalene 

and paradichlorobenzene (Harden et al., 1978). Atlantic croaker fish (Micropogonias 

undulatus) exposed to naphthalene at either 0.5 or 1.0 ppm daily during sexual maturation 

demonstrated reduced rates of sexual maturity and arrested or reduced egg development. 

Reduced egg growth was associated with the decreased gonadal steroid levels in plasma 

(Thomas et al., 1995). 

 

2.6 Flouranthene  

 

Fluoranthene, also known as 1,2-benzacenaphthene, benzo(j,k)fluorene, idryl, 1,2-(1,8-

naphthalenediyl)benzene, or 1,2-(1,8-naphthylene)benzene, is a polycyclic aromatic 

hydrocarbon (PAH). Chemical formula of fluoranthene is C16H10 and it has a molecular 

weight of 202.26 g/mol. Fluoranthene exists as pale yellow needles or plates; it has a boiling 

point of 375 °C, it has a melting point of 111 °C and it has a density of 1.252. Fluoranthene is 

soluble in alcohol, ether, benzene, and acetic acid and basically insoluble in water. The 

vapour pressure of Fluoranthene is 1.91 × 10
-3

 mmHg at 25°C. It can be produced by the 

pyrolysis of organic raw materials such as coal and petroleum at high temperatures; it is also 

known to occur naturally as a product of plant biosynthesis. It is a constituent of coal tar and 
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petroleum-derived asphalt. Fluoranthene is a common environmental pollutant that has been 

found in products of incomplete combustion of fossil fuels, main stream cigarette smoke, and 

in char-broiled foods. It has been recognized in surface, drinking, and waste water, in lake 

sediments, and in ambient air. It has been ranked number one of PAHs on Environmental 

protection agencies, (EPA's) priority pollutant list. There are no commercial productions or 

use of this compound (International Agency for Research on Cancer, 1983). Following 

dermal exposure fluoranthene can be absorbed through the skin (Storer, J.S et al., 1990) and, 

by analogy to structurally-related PAHs, would be expected to be absorbed from the 

gastrointestinal tract and lungs (U.S. Environmental Protection Agency, 1988). 

 

 

Figure 8 Molecular structure of Fluoranthene. 

  

Laser-induced fluorescence spectroscopy (LIFS) is a fast and reliable method for the online 

detection of contaminations with polycyclic aromatic hydrocarbons (PAHs) and oil in 

groundwater and soils (Baumann T et al., 2000). PAHs constitute a large and diverse class of 

organic compounds and are generally described as molecules which consist of three or more 

fused aromatic rings in various structural configurations. The biodegradation of PAHs by 
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microorganisms has been the subject of many excellent reviews and the biodegradation of 

PAHs composed of three rings is well documented (Robert A et al., 2000). Fluoranthene 

metabolites resulting from degradation by a Mycobacterium species has been reported. 

Kelley and Cerniglia showed that in mineral medium supplemented with organic nutrients, 

Mycobacterium sp. strain PYR-1 was capable of degrading greater than 95% of added 

fluoranthene within 24 h (Kelley, I. et al., 1991). HPLC method can be used for simultaneous 

determination of polyaromatic hydrocarbons (PAHs). Fluorescence and UV detection in 

combination with a HPLC system allows for limits of detection below 1 μg/L for all PAH 

(Rapid analysis of 17 polycyclic aromatic hydrocarbons with UV- and FL-detection 

according to DIN EN 17993:2002). 

 

2.7 Luciferase 

 

Scientists have always been interested in bioluminescent organisms, with their inherent 

beauty and ease of detection. Bioluminescence is chemiluminescence that requires an enzyme 

(luciferase). Bioluminescent organisms consist of a diverse set of species that are widely 

distributed, inhabiting terrestrial, freshwater and marine ecosystems. The biological 

significance of bioluminescence in the case of insects often focused on the effects of light 

emission as an attractant in mating. The clarification of luciferase genes regulation permitted 

the discovery of intercellular communication among bacteria, which then led to an improved 

understanding of bacterial pathogenesis and the associations of microorganisms in the 

environment. With the advent of molecular biology, it has been possible to construct 

bioluminescent bacteria that are naturally dark by insertion of lux genes. Initial studies in the 

elucidation of the bacterial bioluminescence mechanism suggested that a series of steps 
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would be involved in the bioluminescence. It was proposed that one molecule of reduced 

flavin mononucleotide (FMNH2) was utilized to reduce the luciferase. These conclusions 

were then modified, when it was found that its two reduced flavin molecules instead of one 

flavin mononucleotide to be involved. During bioluminescence one molecule of FMNH2 

combined with oxygen to form highly reactive organic peroxide while the other combined 

with an aldehyde molecule to form an aldehyde-FMNH2 compound. These reactions account 

for the energetics. The blue-green light emission of bioluminescence, such as that produced 

by the bacteria Photobacterium phosphoreum and Vibrio harvey, arises from the reaction of 

molecular oxygen with FMNH2 and a long-chain aldehyde to give FMN, water and a 

corresponding fatty acid. The luciferase enzyme catalyses a mixed function oxidation of the 

long-chain aldehyde and FMNH2. The reaction is highly specific for FMNH2, which is 

protected against autooxidation once bound to the enzyme. The bioluminescent reaction is as 

follows (da Silva Nunes-Halldorson et al., 2003): 

 

FMNH2 + O2 + R-CHO                   FMN + H2O + R-COOH + Light (~ 495 nm) 

 

Bioluminescence proteins use molecular oxygen to oxidize their substrates to a product 

molecule in its electronically excited state. To get an excited-state product, all 

bioluminescence reactions must be strongly exoergonic. The energy released from the 

oxidation of D-luciferin catalysed by firefly luciferase is about 10 times greater than that 

obtained from the hydrolysis of ATP. There are more than 30 different chemically unrelated 

bioluminescence systems in nature, found in organisms ranging from bacteria and fungi to 

fireflies and fishes, showing emissions ranging from blue-violet to red (Shimomura, 2006). 

The bacterial luciferase (lux) a widely employed bioluminescence protein, obtained from the 

marine luminous bacteria Vibrio fischeri and Vibrio harvey, catalyses a two-step reaction: the 
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reduced flavin bound to bacterial luciferase reacts with oxygen to form an intermediate 

peroxide, which then reacts with the bacterial luciferin (a long-chain aliphatic aldehyde like 

decanal or dodecanal) yielding the luciferase-bound excited hydroxyflavin, which is 

responsible for light emission (Figure 10). The individuality of bacterial luciferase is the 

possibility of constructing self-luminescent engineered organisms through the introduction of 

the whole luxCDABE (Figure 9) gene cassette, encoding for both luciferase and the enzymes 

able to synthesize its BL substrate. The engineered cells expressing other luciferases always 

require the addition of the proper luciferin to emit light (Roda et al., 2009). 

 

 

Figure 9 The arrangement of the luxCDABE open reading frames. 
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Figure 10 The net chemical equation of the bacterial luciferase catalyzed reaction. 

 

Among the analytical methods used for environmental monitoring, microbial and cellular 

biosensors play a crucial role. Microbial biosensors have several advantages in ecotoxicity 

testing. They respond rapidly to toxic compounds and indicate the bioavailability of 

compounds in a way that chemical analysis can’t do. The use of the luciferase genes lux 

(from the marine bacterium Vibrio fischeri) and luc (from the firefly Photinus pyralis) are use 

as biomarkers. These genes have been selected because there is a correlation between light 

output and the metabolic activity of the cell, so bioluminescence is a very rapid indicator of a 

healthy cell. The genes encoding bioluminescence have been engineered into a range of 
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microbes. Measurement of bioluminescence in response to exposure to samples can be used 

to assess the existence of a wide range of pollutants. Light itself is easy to measure in real 

time and offers itself well to automation, allowing the rapid processing of multiple samples. 

A variety of whole-cell-based bioluminescent biosensors have been constructed which 

respond to a wide range of pollutants while simultaneously assessing bioavailability in 

environmental samples. A series of algal and cyanobacterial PSII-based whole-cell and tissue 

biosensors have been developed for detection of a class of herbicides which inhibit 

photosynthetic electron transport. Herbicides are then detected by testing inhibition reaction, 

inhibition of 2,6-dichlorophenol indophenol photoreduction or change in chlorophyll 

fluorescence, which can be correlated with the pollutant concentration (Shao C et. al., 2002). 

Fibre optic biosensors are devices involving immobilised biological active material on the 

end of a single optic fibre or a fibre bundle. Luminescent enzyme systems associated with 

optical transducers are considered to be highly selective and ultrasensitive biosensors. 

Monitoring of light emission occurring during bioluminescence reactions offers strong 

advantages when considering its analytical potential in terms of sensitivity, dynamic range 

and detection limit. A novel fibre optic biosensor was developed whereby the membrane-

bound biocatalyst was placed in close contact with the tip of the fibre bundle. The light 

emitted at the membrane during the bioluminescent process was transmitted into a 

photomultiplier tube allowing the quantification of adenosine triphosphate (ATP) or reduced 

nicotinamide adenine dinucleotide (NADH) (Blum L et al., 1991).   

 

The bioluminescence reactions of luciferase have been widely used for various biochemical 

analyses due to their high sensitivity. Among the various types of luciferases, firefly 

luciferase (FFL) has been used as a model system of biological reactions because of the high 

quantum yield of the luminescence reaction (Ignowski, J.M. et. al., 2004; Eckenhoff, R.G.et. 
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al., 2001). FFL luminescence reaction has been reported to be inhibited by small hydrophobic 

drugs such as inhalation anaesthetics, and it has been utilized to study the action mechanisms 

of these drugs on the protein functions. FFL is unstable and rapidly loses its activity in an 

aqueous solution without stabilizing agents such as dithiothreitol and glycerol. These 

stabilizing agents have the risk, by binding to the FFL, to interfere with the clear 

understanding of the inhibition mechanism of the target drugs. Bacterial luciferase (BL), 

which is also a luminescent enzyme, has a higher stability than FFL in aqueous solution. The 

reaction mechanism of the BL was studied in detail by Hastings group (Hastings J et al 

1963). Small hydrophobic drugs can be considered to bind to the BL in competition with the 

hydrophobic substrate alkyl aldehyde. The BL system is a potential model system to study 

the action mechanisms of hydrophobic drugs on proteins. There is however some underlying 

problems as to use the BL reaction as the model system, and needs to be solved before 

putting this model system into practice. Under aerobic conditions, the FMNH2 is rapidly 

oxidized to FMN by dissolved oxygen before it binds to BL and hence the effective light 

emission is not obtained unless regenerating of the FMNH2 from FMN. In biological systems, 

FMNH2 is regenerated by the enzymatic catalysis of flavin reductase by coupling the 

oxidation of nicotinamide adenine dinucleotide (NADH). In artificial systems, FMNH2 can 

be regenerated by chemical reducing agents such as sodium dithionite and sodium 

borohydride, by employing this method it is difficult to control the reduction of FMN to 

obtain the continuous and constant intensity of the BL luminescence (Yamasaki S et al 2009). 
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Chapter 3 
 

Materials and Methodology 

This chapter describes the various analytical techniques employed, a detailed research 

methodology and general experimental procedures for the electrochemical synthesis of 

nanostructured conducting polymer composites, biosensor construction, characterization and 

application of the developed biosensor for the determination of selected polycyclic 

hydrocarbons. 

 

3.1 Introduction 

 

This chapter consists of the following: 

o Materials: Information on all the materials used. 

o Research design: A general overview of all the sequential steps taken. 

o Methodology: A more detailed presentation of the instrumental techniques and 

experimental parameters. 

 

3.2 Reagents and materials 

 

The reagents 4,4’-oxydianiline (97%) (ODA), 1,2,4,5-benzenetetracarboxylic acid (96%) 

(PMDA), tetrahydrofuran (99.9%) (THF), methanol (99.9%) (MeOH), triethylamine (99%) 

(TEA), acetronitrile (99%) (ACN), pyrrole (98%) was vacuum distilled and stored frozen 

under nitrogen, disodium hydrogen phosphate, potassium dihydrogen phosphate, 
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Naphthalene (99.7%) and Fluoranthene (98%) were all obtained from Sigma-Aldrich, South 

Africa. All chemicals were of analytical reagent grade and were used without further 

purifiation. Deionized (ultra-pure) water with a resistivity of 18.2 MΩcm was purified by a 

Milli-QTM system (Millipore) and was used as reagent water for aqueous solution 

preparation. 

 

Phosphate buffer solution of 0.2 M and pH 7 was prepared by dissolving 17.79 g of disodium 

hydrogen phosphate and 15.60 g of potassium dihydrogen phosphate separately in 500 mL 

deionized water, then mixing the salt solutions according to Henderson-Hasselbalch equation 

to obtain the required pH values. The phosphate buffer solution (PBS) was refrigerated at 4º 

C.  

 

Photobacterium f luciferase (100 mg lyophilized powder) was obtained from Sigma-Aldrich, 

South Africa and refrigerated at -18 ºC. Stock solutions of Photobacterium f luciferase were 

prepared by dissolving 20 mg in 2 mL phosphate buffer (pH 7.01) in eppendorf vials. The 

stocks were refrigerated at -18º C and fresh enzyme solutions prepared prior to experiments. 

 

Analytical grade Argon gas was purchased from Afrox Company, South Africa. Alumina 

polishing pads and powder (0.05, 0.3 and 1.0 μM) were obtained from Buehler, Illinois, 

USA. 
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Figure 11 Flow chart of research design. 
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1. Chemical synthesis of polyamic acid 

2. Electrode preparation: cleaning GCE by polishing with pads and alumina powder (0.05, 0.3 

and 1.0 μM) which was obtained from Buehler, Illinois, USA, followed by sonication of 

electrodes in ethanol and water this was done prior to electrochemical measurements. 

3. Different ratios of the PAA/PPy were synthesized via in situ polymerization processes. 

4. Electrochemical measurements: Voltammetric methods such as cyclic voltammetry (CV), 

square wave voltammetry (SWV) were used at different stages to obtain relevant data towards 

the characterization of the new composites. Spectroscopy measurements were done with 

FTIR and Raman spectroscopy. Morphology measurements were carried out using scanning 

electron microscopy (SEM) and Atomic force microscopy (AFM). 

5. Solution phase evaluation of luciferase with each analyte: Electrochemical (CV, SWV, 

EQCM) techniques and Fluorescence spectroscopy. 

6. Biosensor preparation: Incubating PAA/PPy modified GCE in a luciferase solution for 4 

hours. The modified electrode was rinsed with PB (pH 7) to remove excess enzyme. The 

electrode was then ready for use.  

7. Biosensor evaluation with EIS: Measurement of response to naphthalene and fluoranthene, 

stability, linearity, sensitivity and detection limit. 

 

 

 

 

 

 

 

 

 

 



 
 

 Page 51 
 

3.3 Methodology 

3.3.1 PAA synthesis 

 

The PAA liquid was prepared according to Ref. (Andreescu et al, 2005). The synthesis of the 

PAA liquid was carried out in organic medium from 4,4’-oxydianiline (ODA) and 1,2,4,5- 

benzenetetracarboxylic acid (PMDA) precursors. The preparation procedure involved the 

following steps: 2.4 g (0.01 mol) of ODA plus 42 mL of THF were stirred in a 0.5 L round-

bottom flask. PMDA powder (2.1812 g, 0.01 mol) was added to the solution over 1 hr. 

MeOH (35 mL) containing 0.02 mol (2.787 mL) of TEA was added. The solution was stirred 

for 24 hours, which resulted in a dark yellow viscous solution of PAA. The resulting PAA 

liquid content was 9.8%. This viscous PAA liquid (Figure 12) was soluble in phosphate-

buffered saline (PBS) pH 7. When ACN was used as solvent, another PAA derivative was 

obtained in a powdered form from the same ODA and PMDA. To prepare this PAA, 2.0024 g 

(0.01 mol) of ODA plus 157 mL of ACN were stirred till solvation. Then, 50 mL of ACN 

containing 2.1812 g of PMDA (0.01 mol) was added dropwise over 1 h and the solution was 

stirred for over 24 h. The resulting precipitates were filtered under suction and finally The 

PAA solid dried at room temperature. The amount of PAA obtained was 2.170 g. The PAA 

solid was only soluble in organic media eg. N,N'-dimethylacetamide (DMAc), dimethyl 

sulfoxide (DMSO) or dimethylformamide (DMF) and was not used further because of 

solubility interferences when preparing composites. 
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Figure 12 Polyamic acid prepared as a viscous liquid. 

 

3.3.2 Composite preparation 

 

The PAA/PPy was synthesized via in situ polymerization processes. The concentration of 

polyamic acid solution (1.37×10
-6

 M)
 
was kept fixed throughout the composite ratio process. 

The concentration of PPy was varied from 1.9×10
-3

 to 9.09×10
-3

 M. The ratios were as 

follows: 1:1.34×10
3
 (Composite one); 1:2.81×10

3 
(Composite two); 1:4.13×10

3 
(Composite 

three); 1:5.41×10
3 

(Composite four); 1:6.64×10
3 

(Composite five).  The PAA/PPy ratios were 

mixed in 5mL of 0.2 M PBS aqueous solution. The solutions were stirred for a minute and 

degassed before experiments. The GCE were cleaned by mechanical polishing of electrodes 

with polishing pads and powder (0.05, 0.3 and 1.0 micron) which was obtained from Buehler, 

Illinois, USA. The GCE were then sonicated with ethanol and with distilled water afterwards. 

The PAA/PPy composites were electropolymerized onto, working electrodes, glassy carbon 

electrodes (GCE) (diameter 3.0 mm) and a platinum wire (diameter 1.0 mm) and a 
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silver/silver chloride (3 M NaCl type) electrodes (Bioanalytical Systems Ltd., UK) were used 

as counter electrode and reference electrode, respectively.  

 

3.3.3 Biosensor preparation 

 

Onto a cleaned polished and sonicated GCE electrode, 1:4.13×10
3
(Composite three) as 

prepared earlier was electropolymerized onto GCE. The functionalised electrode was rinsed 

with 0.2 M PBS and left to dry for 3-5 minutes. After drying, the functionalised electrode was 

incubated in 2 mL of the luciferase stock solution for 4 hours in the fridge at a temperature of 

4 
o
C. The biosensor was rinsed with 0.2 M PBS (pH 7) and was ready for use. 

 

3.3.4 Preparation and analysis of the PAHs 

 

Most PAHs are insoluble in water hence a suitable organic solvent is necessary to completely 

dissolve them. The choice of solvents is determined by several factors, including 

conductance, solubility of electrolyte and electroactive substance and the reactivity with 

electrolytic products. In Fry and Britton’s handy review of solvents and electrolytes, 

acetonitrile, ethanol, methanol, and methylene chloride are recommended as good oxidative 

(anodic) electrochemical solvents, while dimethylformamide (DMF) and dimethyl sulfoxide 

(DMSO) are suggested for reductive (cathodic) electrochemistry. Acetonitrile was chosen as 

a suitable solvent since it was found that the PAHs dissolved in it and ACN has been reported 

to have relatively high dielectric constant, it is also non-toxic and it portrays good 

electrochemical properties. Since, acetonitrile is a non-aqueous electrolyte, a suitable 

supporting electrolyte was necessary to enhance conductivity, minimize double-layer and 
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migration currents. Most PAHs are found in waste water hence the need to introduce water in 

the acetonitrile. In this work, water was introduced in to the acetonitrile by preparing a 

solution of acetonitrile and water in the ratio 80:20 (acetonitrile: water). This mixture of 

acetonitrile and water was used as the solvent in all sensor applications and will thus be 

referred to as acetonitrile. 1 mM of standard solutions of naphthalene and fluoranthene were 

prepared as follows: 0.022 g and 0.025 g of naphthalene and fluoranthene were dissolved 

each in about 15 cm
3
 of acetonitrile (to achieve solubility), respectively, and later made up to 

25cm
3
 solutions in distilled water with continuous stirring for about 30 min. From these stock 

solutions, 1 μM stock solutions were made. From these 1 μM stock solutions 2 µL aliquots 

were drawn and added to the cell and used for assessment of biosensor behaviour. 

 

3.4 Measurements and Instrumentation  

 

Voltammetric experiments were recorded with BASi 100B electrochemical work station (LG 

Fayette) using a conventional three-electrode system. For the electropolymerization of 

polyamic acid and polypyrrole composites, the working electrodes used was glassy carbon 

electrodes (GCE) with a diameter of 3.0 mm and while a platinum mesh or wire (diameter 1.0 

mm) and a silver/silver chloride (3 M NaCl type) electrode (Bioanalytical Systems Ltd., UK) 

were used as counter electrode and reference electrodes, respectively. The modified screen 

printed carbon electrode (SPCE’s) with a diameter of 3.0 mm, was used for scanning electron 

microscopy (SEM) studies. SEM images were taken with a Hitachi S3000N Scanning 

electron microscope. An acceleration voltage of 20 kV was employed at various 

magnifications. Surface morphology of the modified SPCE was studied with Atomic force 

spectroscopy (AFM), NanoSurf model, tapping mode with silicon tip using spring constant of 

1-5 N/m and resonance frequency of 60-100 kHz. To study the structural changes within 
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composites Raman and Fourier transform infrared (FTIR) spectroscopy was employed. The 

cleaning method involved mechanical polishing of GCE using alumina powder of size 1, 0.3 

and 0.05 micron (Buehler, IL, USA) respectively followed by sonication in ethanol and 

water. Spectroscopic and electrochemical techniques were used to study the interaction of the 

enzyme and the analytes. Fluorescence spectra of liquid samples were recorded using Horiba 

NanoLog™ 3-22- TRIAX (USA), with double grating excitation and emission 

monochromators at a slit width of 5 nm. EQCM measurements of luciferase and the analytes 

were recorded using Nova 1.9.Ink Autolab. Electrochemical impedance spectroscopy of the 

biosensor was measured with a Voltalab instrument (Radiometer Analytical, France).  

 

 

3.5 Electrochemical techniques 

3.5.1 Cyclic voltammetry (CV) 
 

The basic components of a modern electroanalytical system for voltammetric measurements 

are a potentiostat, a computer, and the electrochemical cell. The potentiostat plays the role of 

applying accurate and controlled potential and monitoring the current produced. In the 

computer-controlled instruments, the properties of the modulation and the waveform are 

under software control and can be specified by the operator. The most commonly used 

waveforms are linear scan, differential pulse, and square wave. The electrochemical cell, 

where the electrochemical measurements are carried out, consists of a working (indicator) 

electrode, a reference electrode, and usually a counter (auxiliary) electrode. The electrode 

provides the interface across which charge can be transferred. The reaction or transfers of 

interest takes place at the working electrode, whenever we refer to the electrode, we always 

mean the working electrode. The reduction or oxidation of a substance at the surface of a 

 

 

 

 



 
 

 Page 56 
 

working electrode, at the appropriate applied potential, results in the mass transport of new 

material to the electrode surface and the generation of current.  

 

 

Figure 13 A three electrode system electrochemical cell; WE = working electrode, RE = 

reference electrode and AE = auxiliary electrode. 

 

Working electrode – this is the electrode at which the redox of the analyte or the 

electrochemical phenomena being investigated takes place. The commonly used materials for 

working electrodes include platinum, gold, glassy carbon and boron-doped diamond 

 

Reference electrode – this is the electrode whose potential is known and is constant. Its 

potential is taken as the reference, against which the potentials of the other electrodes are 

measured. The most commonly used reference electrodes for aqueous solutions are the 

saturated calomel electrode (SCE) and silver/silver chloride electrode (Ag/AgCl); 
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Auxiliary electrode – it serves as a sink for electrons so that current can be passed from the 

external circuit through the cell. Reactions occurring at the auxiliary electrode surface are 

unimportant as long as it continues to conduct current well. To maintain the observed current, 

this electrode will often oxidize or reduce the solvent or bulk electrolyte though the reactions 

occur over short periods of time and rarely produce any appreciable changes in bulk 

concentrations. Most often the auxiliary electrode consists of a metallic foil or thin platinum 

wire, although gold and sometimes graphite have also been used. 

 

The cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements were 

performed using a potentiostat BAS 100B/W electrochemical analyzer from Bioanalytical 

Systems, Inc. (West Lafayette, IN) with a conventional three-electrode system consisting of 

glassy carbon electrode (1.6 mm diameter, 3.0 mm diameter) as the working electrode, 

platinum wire as the auxiliary electrode, and Ag/AgCl (saturated 3 M NaCl) as the reference 

electrode. Prior to experiments, the bare glassy carbon electrodes were polished with aqueous 

slurries of 1.0, 0.3 and 0.05 μm alumina powder, rinsing with distilled water after polishing 

with each grade of alumina. The polished electrode was then sonicated in absolute ethanol 

and distilled water. The auxiliary electrode was cleaned by burning in a flame for several 

minutes and the Ag/AgCl electrode was cleaned by rinsing with distilled water. All potentials 

were quoted with respect to Ag/AgCl. The potentiostat was computer-controlled therefore the 

experimental modes were selected from the software and specified during its operation. 

Phosphate buffer solution (0.2 M PBS, pH 7) was used as the supporting electrolyte. All 

experimental solutions were purged with high-purity argon gas for 10 min and blanketed with 

argon atmosphere during measurements. The experiments were carried out at controlled room 

temperature of 22 ºC. 
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The common characteristics of all voltammetric techniques is that they involve the 

application of a potential (E) to an electrode and the monitoring of the resulting current (I) 

flowing through the electrochemical cell. In many cases, the applied potential is varied or the 

current is monitored over a period of time (t). Thus all voltammetric techniques can be 

described as some function of E, I, and t. They are considered as active techniques (as 

opposed to passive techniques such as potentiometry) because the applied potential forces a 

change in the concentration of an electroactive species at the electrode surface by 

electrochemically reducing or oxidizing it. Cyclic voltammetry (CV) is a widely used 

electroanalytical technique. It has wide applications in the study of redox processes, 

electrochemical properties of analytes in solution, and for understanding reaction 

intermediates (Bard & Faulkner, 2001). In CV, the electrode potential is ramped linearly at a 

scan rate of ν. The resultant trace of current against potential is termed as a voltammogram. 

During cyclic voltammetry measurement, the potential is ramped from an initial potential, Ei 

to a more negative potential but, at the end of its linear sweep, the direction of the potential 

scan is reversed, usually stopping at the initial potential Ei (or it may commence an additional 

cycle) (Monk, 2001). The potential is usually measured between the reference electrode and 

the working electrode and the current is measured between the working electrode and the 

auxiliary electrode, also known as the counter electrode. This data is then plotted as current 

versus potential as shown in Figure 14. The forward scan produces a current peak for any 

analytes that can be reduced (or oxidized depending on the initial scan direction) through the 

range of the potential scanned. The current increases as the potential reaches the reduction 

potential of the analyte, but then decreases as the concentration of the analyte is depleted 

close to the electrode surface. If the redox couple is reversible, then reversing the applied 

potential makes it reach a potential that re-oxidizes the product formed in the first reduction 

reaction, thus producing a current of reverse polarity from the forward scan. The oxidation 
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peak usually has the same shape as that of the reduction peak. As a result, the information 

about the redox potential and the electrochemical reaction rates of compounds can be 

obtained. For instance, if the electronic transfer at the surface is fast and the current is limited 

by the diffusion of species to the electrode surface, then the current peak will be proportional 

to the square root of the scan rate. 

 

 

Figure 14 The important parameters in a cyclic voltammogram are the peak potentials (Epc, 

Epa) and peak currents (Ipc, Ipa) of the cathodic and anodic peaks, respectively. 

 

If the electron transfer process is fast compared with other processes (such as diffusion), the 

reaction is said to be electrochemically reversible, and the peak separation is: 

 

ΔEp = │Epa - Epc│ = 2.303 RT / nF                                                    Equation 3.1 
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Thus, for a reversible redox reaction at 25 °C with n electrons ΔEp should be 0.0592/nV or 

about 60 mV for one electron. In practice this value is difficult to attain because of such 

factors as cell resistance. Irreversibility due to a slow electron transfer rate results in ΔEp > 

0.0592/n V, greater, say, than 70 mV for a one-electron reaction. The diagnostic tests for 

electro-reversibility are listed in Table 4. 

 

Table 4 Diagnostic tests for the electrochemical reversibility of a redox couple, carried out 

by cyclic voltammetry. 

1. │Ipa / Ipc│= 1 

2. The peak potentials, Epc and Epa, are independent of the scan rate ν 

3. The formal potential (Eº’) is positioned midway between Epc and Epa, so 

Eº’ = (Epa + Epc) / 2 

4. Ip is proportional to √ν 

 

5. The separation between Epc and Epa is 0.0592/n V for an n-electron 

couple (i.e. ΔEp = │Epa - Epc│ = 0.0592/n V) 

 

 

For a reversible reaction, the concentration is related to peak current by the Randles–Sevčik 

expression (at 25 °C) (Monk, 2001; Bard & Faulkner, 2001): 

 

Ip = 2.686 x 105n3/2Ac0D 1/2ν 
½
                                                Equation 3.2 
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Where Ip is the peak current in amperes, n is the number of electrons transferred, A is the 

electrode area (cm
2
), D is the diffusion coefficient (cm

2
 s

–1
), c0 is the concentration in mol 

cm
–3

, and ν is the scan rate in V s
–1

.  

 

 

For a surface thin layer adsorption or strong adsorption: 

 

Ip = (n
2
F

2
/4RT)vAΓ0                                                                                   Equation 3.3 

 

Cyclic voltammetry is carried out in quiescent solution to ensure diffusion control. A three-

electrode arrangement is used. The utility of cyclic voltammetry is highly dependent of the 

analyte being studied. The analyte has to be redox active within the experimental potential 

window. It is also highly desirable for the analyte to display a reversible wave. A reversible 

wave is displayed when an analyte is reduced or oxidized on a forward scan and is then re-

oxidized or re-reduced in a predictable way on the return scan as shown in Figure 14. 

Electrochemical reactions sometimes show non-reversible or quasi-reversible waves with 

deviation from the above reversibility behaviours. For quasi-reversible systems for instance, 

the peak separation (ΔEp) is greater than 59 mV/ n and increases with increasing ν; the peak 

current Ip increases with √ν but is not proportional to it and the cathodic peak potential shifts 

negatively with increasing ν. In this study, CV was employed for the in-situ synthesis of the 

composites and to investigate the redox processes and the electrochemical properties of the 

biosensor and analytes in solution. 
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3.5.2 Square Wave Voltammetry (SWV) 
 

Figure 15 is typical square wave voltammogram showing the forward (if), reverse (ir) and net 

(inet) currents is shown below: 

 

 

Figure 15 Diagram of a Square wave voltammogram 

 

Though SWV was pioneered by Barker (Barker GC, 1952), it was the work of Osteryoung 

and co-workers (Osteryoung, J, et al., 1986) that brought it to limelight. It has a slightly better 

sensitivity that DPV and can be used to study electrochemical processes at fast scan rates. 

The potential waveform above consists of a square wave superimposed on a staircase. The 

current at the end of the forward pulse, if , and the current at the end of the reverse pulse, ir, 

are both registered as a function of the staircase potential, which is midway between the 

potentials corresponding to the forward and backward potential steps. The difference, inet, (if-
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ir) is larger than each individual component in the region of the peak that is centred on the 

half-wave potential because if and ir have opposite signs. This difference, effectively cancels 

the capacitive currents and thus higher scan rates are possible without background current 

interferences. This makes SWV a useful tool in kinetic study. SWV is characterised by four 

parameters: square wave period, τ, pulse width, tp = τ /2, step height, ΔEs and pulse height, 

ΔEsw . The pulse width is related to the square wave frequency, f = 1/(2tp) and as the staircase 

step at the beginning of each cycle is ΔEs it means that the effective scan rate is υ  = ΔEs 2tp = 

fΔEs. Peak Current is given by 

 

Δip = (nFAD
1/2

 C/ π
1/2

tp
1/2

) Δ ψp                                                                    Equation 3.4  

 

Experimentally, ΔEs is usually kept constant while the frequency is varied. 

 

3.5.3 Electrochemical Impedance Spectroscopy (EIS) 
 

Macdonald, in his review (Macdonald, D.D., 2006), traced the foundation of electrochemical 

impedance spectroscopy (EIS) back to a scientist called Oliver Heaviside. Heaviside was the 

first person to define the term impedance. Electrochemical impedance spectroscopy is an 

excellent, non-destructive, accurate and rapid in situ technique for examining processes 

occurring at electrode surfaces. A small amplitude ac (sinusoidal) excitation signal (potential 

or current), covering a wide range of frequencies, is applied to the system under investigation 

and the response (current or voltage or another signal of interest) is measured. This is in 

contrast to the ‘usual’ spectroscopic techniques where interactions of electromagnetic waves 
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and materials are measured. The measurement of impedance is only valid when the system is 

linear – thus the need for the small amplitude of the excitation signals in EIS. The 

measurement should be carried out without significantly disturbing the properties being 

measured. Due to the wide range of frequencies used, the complex sequence of coupled 

processes such as, electron transfer, mass transport, chemical reaction, etc. can often be 

separated and investigated with a single measurement. It is routinely used in electrode 

kinetics and mechanism investigations, and in the characterization of batteries, fuel cells, and 

corrosion phenomena (Macdonald, D.D, 1990). It is also widely applied in the 

characterization of semiconductors, organic films and very recently biosensors. The 

application of EIS in biosensor is relatively new (Pejcic, B. et. al., 2006). A brief theory: 

From Ohm’s law 

 

                                      Equation 3.5 

 

Resistance is independent of frequency. AC current (Figure 16) and voltage through a resistor 

are in phase with each other. Suppose we apply a sinusoidal potential excitation. The 

response to this potential is an AC current signal containing the excitation frequency and its 

harmonics which is not in the same phase with the AC voltage. The resultant resistance in 

this case is called Impedance. 

V = IR 
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Figure 16 A bridge circuit for measurements of electrochemical impedance 

 

Impedance is the totally complex resistance encountered when a current flows through a 

circuit made of combinations of resistors, capacitors, or inductors. Electrochemical 

transformations occurring at the electrode–solution interface can be modeled using 

components of the electronic equivalent circuitry that correspond to the experimental 

impedance spectra. Particularly useful to model interfacial phenomena is the Randles and 

Ershler electronic equivalent-circuit model. This includes the double-layer capacitance Cd, 

the ohmic resistance of the electrolyte solution Rs, the electron transfer resistance Rp, and the 

Warburg impedance W resulting from the diffusion of ions from the bulk solution to the 

electrode surface. The impedance of the interface, derived by application of Ohm’s law, 

consists of two parts, a real number Z′ and an imaginary one, Z″: 
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Z(ω) = Rs + Rp (1 + ω2Rp2Cd2 ) − jωRp2Cd (1 + ω2Rp2Cd2 ) = Z′ + jZ′′ 

where j = √−1                                                                                                         Equation 3.6 

 

 

Impedance spectroscopy involves the use of a small-amplitude perturbing sinusoidal voltage 

signal to the electrochemical cell and measuring the current response. The resulting faradaic 

impedance spectrum, known as a Nyquist plot, corresponds to the dependence of the 

imaginary number on the real number, and contains extensive information about the 

electrified interface and the electron transfer reaction. Nyquist plots commonly include a 

semicircle region lying on the axis followed by a straight line. The semicircle portion 

(observed at higher frequencies) relates to the electron-transfer-limited process, while the 

straight line (characteristic of the low-frequency range) signifies the diffusion-limited 

process. Such spectra can be used for extracting the electron transfer kinetics and diffusional 

characteristics. At very fast electron transfer processes the impedance spectrum includes only 

the linear part, while at very slow electron transfer processes are characterized by a large 

semicircular region. The diameter of the semicircle equals the electron transfer resistance. 

The intercepts of the semicircle with the Z' axis correspond to those of Resistance (Rs). This 

technique has been found extremely useful for transduction of bioaffinity events in 

connection to modern electrical immunosensors and DNA biosensors (Buch, R.M et. al., 

1989). Such transduction of bioaffinity events relies on the increased insulation of the 

electrode surface in respect to redox probes (e.g., ferrocyanide), present in the solution, on 

binding of large biomolecules (e.g., capture of an antigen that retards the electron transfer). 

Figure 17 Faradaic impedance spectra presented in the form of Nyquist plots, along with the 

electronic equivalent circuit of the electrified interface (Schlapfer, P. et. al. 1974).  
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Figure 17 Faradaic impedance spectra presented in the form of Nyquist plots, along with the 

electronic equivalent circuit of the electrified interface (Schlapfer, P. et. al. 1974) 

 

3.5.4 Electrochemical Quartz Crystal Microbalance (EQCM) 
 

The mass changes of the enzyme, luciferase due to the addition of each analyte were 

measured by Electrochemical Quartz microbalance (EQCM) from the N series Autolab 

potentiostat/galvanostat instrument, PGSTAT128N. EQCM provides the means to perform 

Electrochemical Quartz Crystal Microbalance measurements. The EQCM module measures a 

mass change per unit area by measuring the change in resonant frequency of a quartz crystal.  

Quartz crystals belong to a group of materials displaying the so-called piezoelectric effect. 

The microbalance is based on a quartz crystal wafer, which is sandwiched between two 

electrodes, used to induce an electric field (Figure 18). Such a field produces a mechanical 
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oscillation in the bulk of the wafer. Surface reactions, involving minor mass changes, can 

cause perturbation of the resonant frequency of the crystal oscillator. The frequency change 

(Δf ) relates to the mass change (Δm) according to the Sauerbrey equation:  

 

 

Figure 18 Quartz crystal microbalance: (1) the quartz crystal; (2) the gold electrode; (3, 4) 

connecting metal wires; (5) the base 

 

                                                         Equation 3.7 
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Where Δf is the change in frequency, in Hz, f0 is the nominal resonant frequency of the 

crystal (6 MHz), Δm is the change in mass, in g/cm
2
, A is the area of the crystal in cm

2
, ρq is 

the density of quartz, in g/cm3 and μq is the is the shear modulus of quartz, in g/cm·s
2
.  For a 

6 MHz crystal, the same equation can be reduced to: 

 

                                                       Equation 3.8 

 

Where Cf is 0.0815 Hz/ng/cm
2
.  

 

The Sauebrey equation forms the basis for the excellent mass sensitivity of the EQCM. In-

situ mass changes of 1ng/cm
2 

can thus be detected. The EQCM is very useful for probing 

processes that occur uniformly across the surface. Numerous surface reactions have thus been 

investigated, including deposition or dissolution of surface layers and various uptake 

processes. Such changes can be probed using various controlled-potential or controlled-

current experiments. In these experiments, one of the electrodes (on the wafer) contacts the 

solution and serves as the working electrode in the electrochemical cell, to allow 

simultaneous frequency and current measurements. Figure 19 displays the frequency (mass) 

vs. potential profiles, and the corresponding cyclic voltammograms, during the uptake of a 

multiply charged complex ion at an ion exchanger coated electrode. Application of the 

Sauerbrey equation to the study of polymeric films in solutions requires adherence to the 

rigid-film approximation (i.e., behavior of elastic, solvent-free thin layer). In the absence of 

molecular specificity EQCM cannot be used for molecule-level characterization of surfaces. 

Electrochemical quartz crystal microbalance devices also hold promise for the task of 

affinity-based chemical sensing, as they allow simultaneous measurements of both the mass 
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and current. The combination of EQCM with scanning electrochemical microscopy has also 

been reported recently for studying the dissolution and etching of various thin films (85).The 

development of multichannel quartz crystal microbalance (86), based on arrays of resonators, 

should further enhance the scope and power of EQCM. 

 

 

Figure 19 EQCM (bottom) and cyclic voltammetry (top) profiles at an ion exchanger-coated 

electrode in the presence of 6 × 10
−3

M Ru(NH3)6Cl6. (Wang, J et. al. 1996) 
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3.5.5 Fourier Transform Infrared Spectroscopy 
 

The FTIR spectra were recorded on a PerkinElmer Spectrum 100, FT-IR spectrometer. The 

specimens were prepared by first electrodepositing polyamic acid/polypyrrole composites on 

the glassy carbon electrode (GCE) surface. The spectra of the specimen were recorded in the 

region 400 - 4000 cm
-1

. The spectra obtained were used to identify the various functional 

groups in polyamic acid, polypyrrole and the composites. 

 

3.5.6 Raman Spectroscopy 
 

Raman measurements were carried out with Raman spectrometer (LabRam HR by Jobin-

Yvon Horiba scientific Explora, France with a 1200 lines mm
-1

 grating) coupled to a 

microscope (Model BX41, Olympus). The excitation of Raman scattering was operated with 

a laser at a wavelength of 532 nm. The laser beam was focused on the sample by means of an 

x100 microscope objective. 

 

3.5.7 Fluorescence spectroscopy 
 

The fluorescence spectra were recorded on Fluorescence spectra of liquid samples were 

recorded using Horiba NanoLog™ 3-22-TRIAX (USA), with double grating excitation and 

emission monochromators at a slit width of 5 nm. Fluorescence is a type of electromagnetic 

spectroscopy which analyzes fluorescence from a sample. Fluorescence spectroscopy 

involves using a beam of light, usually ultraviolet light, that excites the electrons in molecules 

of certain compounds and causes them to emit light; typically, visible light. A complementary 

technique is absorption spectroscopy. The luciferase dissolved in 0.2 M PBS pH 7 was placed 
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in 4 cm
3
 quartz cuvettes and their Fluorescence spectra recorded. The obtained spectra were 

then used to characterize the absorption bands of the active sites of luciferase as well as the 

binding events of luciferase with naphthalene and fluoranthene. 

 

 

3.5.8 Scanning electron microscopy (SEM) 
 

Scanning electron microscopy was used to characterize the morphology of PAA/PPy 

composites. The images were acquired using either a Gemini LEO 1525 Model or a Hitachi 

X-650 analyzer employing the secondary electron (SE) mode with interchangeable 

accelerating voltages of 25 kV. Screen-printed carbon electrodes were used for 

electrodeposition of samples for SEM analysis. After electrodeposition of samples, the 

electrodes were rinsed with deionized water and left to dry at room temperature for about 30 

min. The same samples were subjected to further analysis by EDX to determine their 

percentage atomic compositions. 

 

3.5.9 Atomic Force Microscopy 
 

The Nanosurf easyScan 2 AFM is an atomic force microscope system that can make 

nanometer scale resolution measurements of topography and several other properties of a 

sample. The main parts of the basic system are the easyScan 2 AFM scan head, the AFM 

Sample stage, the easyScan 2 Controller with AFM Basic module, and the easyScan 2 

software.  
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Figure 20  easyScan 2 AFM system: Computer, Cantilever with deflection measurement 

system scanning the sample 

 

There are different  modes and can be divided into the static operating modes that control the 

Z-position control using the cantilever deflection, the dynamic operating modes that control 

the Z-position using the vibration amplitude. 

 

Table 5 Operating modes with the type of cantilever 

Operating mode Type of cantilever 

Static force Contact  

Dynamic force Non-contact 

Phase contrast Non-contact 
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In the Static Force mode, the ‘static’ deflection of the cantilever is used as the error signal for 

the Z-position Controller. The Set point in Newton is calculated by multiplying the deflection 

with the spring constant of the selected cantilever. In order to minimize tip/sample wear, the 

force set point should be made as small as possible. In some cases, even a negative set point 

(i.e. an adhesive force) may work, but when the tip momentarily loses contact with the 

sample due to some disturbance, the Z-Controller will always fully retract the cantilever from 

the sample. In the Dynamic Force mode, changes in the dynamic behaviour of the cantilever 

are detected by measuring changes in its vibration amplitude when it is excited with a 

sinusoidal signal with a frequency close to the cantilever’s free resonance frequency. The set 

point is the percentage of the vibration amplitude when the cantilever was far away from the 

surface. To minimize tip/sample wear, the set point should be made as large as possible. The 

Phase Contrast mode is an extension of the Dynamic Force mode. In addition to the vibration 

amplitude, the phase shift between the cantilever vibration and a reference signal is 

measured. This phase shift changes when the resonance characteristic of the cantilever 

changes due to changes in the tip-sample interaction. Thus, the Phase contrast mode can be 

used to produce material contrast when there is a significant difference in the tip sample 

interaction of these materials (AFM Theory, Nanosurf easyScan 2 User manual;pg 70-72). 

 

These techniques have been used to study the voltammetry, morphology and spectroscopy of 

all the PAA/PPy composites synthesised in-situ. 
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Chapter 4 

 

Results and Discussion: Polymers and Polymer Composites 

Synthesis and Characterization 
 

 

4.1 Introduction 

 

A drawback in the usage of conducting polymers is that they have low mechanical properties; 

preparation of composites with conducting polymer fillers is one of the ways to solve this 

problem. The most effective way to improve the mechanical properties and environmental 

stability of ICPs is to prepare composites with a chemically inert and a mechanically stable 

matrix. For commercial development PPy is said to be the best candidate. To its disadvantage 

polypyrrole’s mechanical properties and thermostability are low. To improve the mechanical 

properties and thermal stability is to prepare composites comprised of intrinsically 

conducting polymers. Polyimides (PI) are considered to be attractive candidates as a matrix 

for formation composites with ICPs filler because of its excellent thermal stability and 

excellent mechanical properties and environmental stability. Conducting polymer-polyimide 

composites has exclusively high temperature stability, good mechanical properties, and high 

chemical stability (Su, T. M. et. al., 1997). Langmuire-Blodgett films containing conducting 

polymers have been reported (Brynda, M.M. et. al., 1996). Conducting Ag-PI films prepared 

by the electrochemical method have shown that the electric conductivity in the range from 

semiconductor to metallic silver and were suggested for flexible electrical circuits 

applications (Levine, K.L et. al., 1999). The same applications such as electromagnetic 
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screens and antistatic coatings were suggested for PPy/PI composites (Tieke B. et al., 1990; 

Levin, K.L. et. al., 1993; Selampinar, U. et. al., 1997), active elements in rechargeable 

batteries (Lu, W. et. al., 1999), and gas separation membranes (Brynda, M.M et. al., 1996). 

They show enhanced temperature and environmental stability (Levin, K.L. et. al., 2000).  

 

This chapter presents results and discussion on the electrochemical synthesis and 

characterization of polyamic acid, polypyrrole and their composites. Cyclic Voltammetry 

(CV) and square wave voltammetry (SWV) was performed to evaluate the electrochemistry 

of the individual polymers and their composites, Fourier Transform Infrared spectroscopy 

(FTIR) and Raman spectroscopy to understand the structure and structural changes of PAA, 

PPy and PAA/PPy composites, to investigate the morphology and morphological changes 

Scanning electron microscope (SEM) and Atomic Force microscopy (AFM) was employed.  

 

 

4.2 Reagents and materials 

 

The reagents 4,4’-oxydianiline (ODA), 1,2,4,5-benzenetetracarboxylic acid (PMDA), 

tetrahydrofuran (THF), methanol (MeOH), triethylamine (TEA), acetronitrile (ACN), pyrrole 

(98%) was vacuum distilled and stored frozen under nitrogen., disodium hydrogen phosphate, 

potassium dihydrogen phosphate, were all obtained from Sigma-Aldrich, South Africa. All 

chemicals were of analytical reagent grade and were used without further purification. 

Deionized water (18.2 MΩcm) purified by a Milli-QTM system (Millipore) was used as 

reagent water for aqueous solution preparation. Phosphate buffer solution of 0.2 M was 

prepared by dissolving 17.79 g of disodium hydrogen phosphate and 15.60 g of potassium 

dihydrogen phosphate separately in 500 mL deionized water, then mixing the salt solutions 
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according to Henderson-Hasselbalch equation to obtain the required pH 7 value. The 

phosphate buffer solution (PBS) was refrigerated at 4 
o
C. Analytical grade Argon gas was 

purchased from Afrox Company, South Africa. Alumina polishing pads and powder (0.05, 

0.3 and 1.0 μM) were obtained from Buehler, Illinois, USA. 

 

Voltammetric experiments were recorded with BASi 100B electrochemical work station (LG 

Fayette) using the conventional three-electrode system. For the electropolymerization of 

polyamic acid, polypyrrole and PAA/PPy composites, the working electrode used was glassy 

carbon (GCE) (diameter 3.0 mm) electrodes while a platinum mesh or wire and a silver/silver 

chloride (3 M NaCl type) electrode (Bioanalytical Systems Ltd., UK) were used as counter 

electrode and reference electrode, respectively. Alumina micro-polish (1.0, 0.3 and 0.05 μM 

alumina slurries) and polishing pads (Buehler, IL, USA) were used for polishing the 

electrode. The modified SPCEs screen printed carbon (SPCE) (diameter 3.0 mm), were used 

for scanning electron microscopy (SEM) and Atomic Force microscopy studies. SEM images 

were taken with a Hitachi S3000N scanning electron microscope. An acceleration voltage of 

20 kV was employed at various magnifications. Surface morphology of the modified SPCE 

was studied with atomic force spectroscopy (AFM) tapping mode NanoSurf model with 

silicon tip using spring constant of 1-5 N/m and resonance frequency of 60-100 kHz. To 

study the structural changes within composites Raman measurements were carried out with 

Raman spectrometer (LabRam HR by Jobin-Yvon Horiba scientific Explora, France with a 

1200 lines mm
-1

 grating) coupled to a microscope (Model BX41, Olympus) and Fourier 

Transform Infrared (FTIR) on a PerkinElmer Spectrum 100, FT-IR spectrometer was 

employed.  
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4.3 Synthesis and Characterization of PAA 

4.3.1 Electrochemical synthesis and characterization of PAA 
 

Cyclic voltammetry is often used to characterize conducting polymer films, for studying the 

reversibility of electron transfer because the oxidation and reduction can be monitored in the 

form of a current-potential diagram. The electrochemical polymerization of PAA film on 

glassy carbon electrode (GCE) surfaces was achieved by cycling the potential repeatedly 

between -400 and +600 mV at a scan rate of 50 mV/s. The cyclic voltammogram for the 

electrodeposition of PAA film on the glassy carbon electrode (GCE) surfaces are shown in 

Figure 21. All potential values are recorded vs. Ag/AgCl reference electrode. 
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Figure 21 Cyclic Voltammogram of the electrochemical synthesis PAA in 0.2 M PBS at a 

scan rate of 50 mV/s. 

 

The electrodeposited PAA film was further subjected to characterization by CV in 0.2 M PBS 

(pH 7) at different scan rates of 50 mV/s, 60 mV/s, 70 mV/s, 80 mV/s, 90 mV/s and 100 

mV/s, the CV of PAA/GCE are shown in Figure 22. As the potential was scanned from -1000 

mV to 1000 mV, two quasi-reversible oxidation redox couples were observed at 190 mV and 

516 mV respectively. From the CV data, PAA film was considered to be a multicomponent 

system (Bard and Faulkner). Multicomponent systems are the consecutive reduction of two 

substances eg. O and O' in one potential scan experiment. The first oxidation peak (Epa1) 

was due to the one electron removal from the nitrogen atoms at the tetraphenyl-1,2-
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phenylenediamine structure in each repeating unit to yield one stable delocalised radical 

cation, poly(amine-amide)
+
 and the second oxidation peak (Epa2) is due to one stable quinoid 

type dication poly(amine-amide)
2+

 (Eq 4.1) respectively (Liou et al., 2006). The reverse scan 

from 1000 mV to -1000 mV showed two reduction couples (Epc1 and Epc2) at -125 mV (vs. 

Ag/AgCl) and -654 mV (vs. Ag/AgCl)  respectively.  

 

R-NH → R-NH
+
 → R-NH

2+
                                                                                 Equation 4.1            

 

The first redox couple (Epa1 and Epc1) will be refered to as E
0
1, and the second redox couple 

(Epa2 and Epc2) will be referred to as E
0
2 throughout the discussions. Based on the results 

from CV the PAA film was considered to be electroactive and to be conductive at both 

couples (E
0
1 and E

0
2) because the CV showed a current (A) increase as the scan rates were 

increased, and also from the calibration plots of current (A) vs. scan rate (mV/s) that current 

was directly proportional to the scan rate with correlation coefficients (R
2
) of ±0.99. These 

results confirm that the PAA film was indeed successfully attached onto the glassy carbon 

electrode (GCE) surface. From the calibration plot of anodic/cathodic peak current versus 

square root of scan rate, the electron diffusion coefficient (De), which is a measure of how 

fast charge can be transported through the polymer layer, was calculated using Randle Sevcik 

equation (Eq. 4.2).  

  

ip = (2.68 x 10
5
)(n)

3/2
(A)(C)(√v)                                                                             Equation 4.2 

 

 

 

 

 

 

 

 



 
 

 Page 81 
 

The De was found to be 7.10 × 10
-6

 cm
2
/s for E

0
1 and 9.11 × 10

-6 
cm

2
/s for E

0
2 in good 

agreement with other De for PAA (N. Noah et al., 2012). The De were in range of some other 

conducting polymers PANI (Iwouha E.I et al., 1997) and poly(p-phenylene vinylene) (Vyas 

R. et al., 2010). Formal potentials (E
0'
), linear regressions, diffusion coefficients (De) and are 

listed in Table 6. 

 

Figure 22 Cyclic Voltammogram (CV) of PAA film on a GCE in 0.2 M PBS (pH 7) at 

different scan rates; 50, 60, 70, 80, 90 and 100 mV/s. 
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To verify the different peaks observed in CV, Ouster young square wave voltammetry 

(OSWV) a complimentary technique to CV was done.  An oxidation sweep from -1000 mV 

to 1000 mV (Figure 23 a) was run to observe the oxidation peaks. In CV only peaks (ii) and 

(iii) was observed, but OSWV showed that there was a slight peak (i) at about -500 mV (vs. 

Ag/AgCl). On reverse scan, the reduction sweep from 1000 mV to -1000 mV (Figure 23 b) 

peaks (ii') and (iii') were observed. OSWV was also used to get the formal potentials (E
0'
) and 

compare them to that of the E
0' 

calculated from CV of the different redox couples (Table 6). 
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Figure 23 Square Wave Voltammograms of (a) oxidation (b) reduction of PAA in 0.2 M PBS 

(pH 7). 
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4.4 Synthesis and Characterization of PPy  

 

4.4.1 Electrochemical synthesis and characterization PPy  
 

PPy was electrochemically synthesised from the monomer pyrrole in a 0.2 M PBS (pH 7) 

solution (Figure 24). Cyclic voltammetry was used to evaluate the film of PPy at the GCE. 

The oxidation or reduction of polypyrrole involves two simultaneous processes: (i) the 

transfer of electrons either from or to polypyrrole and (ii) the diffusion of the counterion, or 

in some cases the diffusion of the cation into or out of the polypyrrole film to maintain charge 

neutrality. The oxidation or reduction of polypyrrole requires two simultaneous processes: (i) 

the transfer of electrons either from or to polypyrrole and (ii) the diffusion of the counterion, 

or in some cases the diffusion of the cation into or out of the polypyrrole film to maintain 

charge neutrality. The redox mechanism of polypyrrole is described by one-electron transfer 

step; 

PPy ⇋ PPy+ + e-                                                                               Equation 4.3 

Where PPy is the neutral species and PPy+ is the radical cationic species or polaron (one 

positive charge localized over three to four monomer units). The polaron can further be 

oxidized; 

PPy+ ⇋ PPy++ + e-                                                                              Equation 4.4 

Where PPy++ is the dicationic species or bipolaron (two positive charges localized over three 

to four monomer units). 
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Figure 24 Cyclic Voltammograms of the synthesis PPy in 0.2 M PBS (pH 7) at a scan rate of 

50 mV/s. 

  

On the forward scan from -1000 mV to 1000 mV, one oxidation peak at 192 mV was 

observed it was due to the neutral species PPy being oxidised to PPy
+
 (Equation 4.3). On the 

reverse scan a reduction peak at -480 mV was observed it was due to the cationic species, 

PPy
+
 being reduced back to PPy. The multiscan voltammograms of the PPy-modified GC 

electrode in 0.2 M PBS (pH 7) was recorded (Figure 25). Both peak potentials and 

corresponding peak currents varied, which showed that the polymer PPy was indeed 

electroactive and that diffusion of electrons was taking place. 
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Figure 25 Cyclic Voltammogram of PPy in 0.2 M PBS (pH 7) at scan rates 50, 60, 70, 80, 90 

and 100 mV/s on GCE. 
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4.5 Synthesis and Characterization of PAA/PPy Composites 

 

4.5.1 Electrochemical synthesis and characterization PAA/PPy 

composites 

 

The PAA/PPy composites were synthesized via in-situ polymerization processes. The 

concentration of polyamic acid solution (1.37×10
-6

 M)
 
was kept fixed throughout the 

composite ratio process. The concentration of pyrrole was varied from 1.9×10
-3

 to 9.09×10
-3

 

M. The ratios were as follows: 1:1.34×10
3
; 1:2.81×10

3
; 1:4.13×10

3
; 1:5.41×10

3
; 1:6.64×10

3
.  

The individual PAA/PPy ratios were added and mixed with 5mL of 0.2 M PBS (pH7) 

aqueous solution. The solutions were stirred for a minute and degassed before experiments. 

The electrochemical polymerization of PAA/PPy composites on glassy carbon electrode 

surfaces was achieved by cycling the potential repeatedly between -400 and 0.6 mV at a scan 

rate of 50 mV/s. An example of the in-situ electrochemical synthesis of PAA/PPy film onto 

glassy carbon electrode (GCE) surface is shown in Figure 26.  
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Figure 26 Cyclic Voltammogram of an in-situ polymerization process PAA/PPy composite 

in 0.2 M PBS (pH 7) at a scan rate of 50 mV/s. 

 

The in-situ electrochemical synthesis of PAA/PPy composites onto the glassy carbon 

electrodes was studied at different concentrations of PPy, under potentiodynamic conditions. 

The different composite films obtained were characterized by different shapes and slopes of 

the cyclic voltammograms as a function of different scan rates. The data from each individual 

CV plots of the different composites have been extracted and is summarised in Table 6, thus 

the individual cyclic voltammograms of each composite are not shown as well as their 

calibration curves. The prime variables which determine the films formation of polyamic and 

polypyrrole from electrochemistry aspect are the oxidation and reduction potentials, De and 

 

 

 

 



 
 

 Page 89 
 

the linearity of the calibration plots of the composites. The PAA concentration was kept 

constant throughout the different composites preparation. Comparisons to the freestanding 

PAA film parameters and the different composites were made. The different composite 

matrices are characterized by different shapes of the peaks and values of the oxidation and 

reduction potentials as well as the De. For the electrochemical polymerization of the 

freestanding PAA film on GCE (PAA/GCE) the capacitance is small as to when the PPy is 

added, the capacitance in the electrochemical polymerization CV of PAA/PPy on GCE is 

much larger. The current (I)–potential (E) curve for PPy deposition into PAA matrix (Figure 

26) shows the occurrence of a steady state electrodeposition controlled by the diffusion of 

PPy. The changes in slope of I–E curves are due to increased rate of deposition of PPy into 

the PAA matrix on the GCE (Iroh et al., 2002). Therefore the permeability of the PAA film to 

ion flux increases during the deposition of PPy (Figure 27). The linear regressions of these 

slopes are also tabulated in Table 6.  
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Figure 27 Schematic representation of PAA/PPy and hydrogen bonding interaction (Iroh et 

al., 2002). 
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Table 6  Electrochemical parameters of PAA, PPy and their composites. 

Material No

of e 

De (cm
2
/s) R

2
 E

0'  

(E
0
1) 

(mV) 

E
0'  

(E
0
2) 

(mV) 

Epa1 

(mV) 

Epa2 

(mV) 

Epc1 

(mV) 

Epc2 

(mV) 

PAA 1 E
0
1:7.1×10

-6
; 

E
0
2: 9.1×10

-6
 

± 0.99 158 585 190 516 -125 -654 

PPy 1 Epa:4.7×10
-14

, 

Epc: 2.6×10
-14

 

±0.99 334 - 192 - -476 - 

Comp 1 1 E
0
1:5.1×10

-4
; 

E
0
2: 9.9×10

-4
 

±0.99 85 599 142 474 27 -723 

Comp 2 1 E
0
1:4.9×10

-4
; 

E
0
2: 9.9×10

-4
 

0.99 91 573 162 493 20 -652 

Comp 3 1 E
0
1:4.2×10

-4
; 

E
0
2: 3.3×10

-4
 

±0.99 99 567 116 448 81 -686 

Comp 4 1 E
0
1:5.4×10

-4
; 

E
0
2: 6.7×10

-4
  

 

±0.99 80 500 113 374 46 -627 

Comp 5 1 E
0
1:3.9×10

-4
; 

E
0
2: 1.4×10

-4 

±0.99 142 596 220 506 64 -686 

 

PAA, polyamic acid; PPy, polypyrrole; the composite ratios are as follows [PAA (M): Py (M)]; Comp 

1 = 1:1.34×10
3
; Comp 2 = 1:2.81×10

3
; Comp 3 = 1:4.13×10

3
; Comp 4 = 1:5.41×10

3
; Comp 5 = 

1:6.64×10
3
; De = diffusion coefficient; R

2
 = linear regression coefficients; E

0
1 = redox couple one; 

E
0
2 = redox couple 2; E

0'
 = Formal potential; Epa = anodic peak potential; Epc = cathodic peak 

potential. 
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From the data obtained from cyclic voltammograms of the different ratios of PAA/PPy 

composites it is evident that as the amount of PPy increases the peak potentials (Epa and Epc) 

shift to more positive values. The lowest redox current (Figure 28) was observed for Ep2 for 

composite 3. After that point as the PPy concentrations was further increased the oxidation 

potential decreased, this then affected the system’s catalytic properties as a result the energy 

for catalysis was lowered.   

 

The CV of PAA discussed in section 4.3.1, discussed PAA on GCE as a quasi-reversible 

multicomponent system with redox couples E
0
1 (mV) and E

0
2 mV. For multicomponent 

systems we consider that the reactions  

О + ne →R                          and 

O' + n'e →R' 

With n = n'; Concentration of O = O' and De of O = O'  

The second oxidation peak potential (Epa2) was observed to be slower than the first oxidation 

peak potential (Epa1), and was considered to be the rate determining step. The De of the PAA 

film on GCE is in the range of 10
-6

 cm
2
/s. 

The electrochemistry of PPy showed one oxidation peak potential and one cathodic peak 

potential. The neutral specie, PPy is oxidised to PPy
+
 and it is reduced back to PPy. From the 

peak separation, it is an irreversible system. The De of E
0
1 was in the range of 10

-14
 cm

2
/s. 

First observation from these electrochemical parameters showed that the peak potentials 

shifted to more positive values with respect to freestanding PAA film. The trend in oxidation 

as well as reduction peak potentials is displayed in Figure 28. The second redox couple E
0
2 
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of the original PAA was observed to be present in every composite verifying the presence of 

PAA in each composite. The first redox couple E
0
1 present in all composites, was a unique 

couple identified in the composites only and not in PAA or PPy individually. The 

homogeneous mixing of PAA and PPy during electrochemical synthesis, shifted the E
0
1 of 

the PPy (334 mV) and E
0
1 of PAA (158 mV) to a new E

0
1 at 99 mV for composite 3. The 

average E
0
1 for the composites 1 – 5 was observed to be 99.4 mV. This peak at E

0
1 = 99 mV 

(Standard deviation = 24, 85; n = 5) confirms that a change in structure accompanies the 

interaction between PAA and PPy resulting in the unique composites represented in this 

dissertation.  For further analytical evaluation only composite 3 was used in this work. 

However in related work the other composites was used for the detection of domoic acid 

which was able to detect domoic acid in real freshwater samples at a level of 1.37 × 10
-5

 M 

confirmed by SWV and UV/Vis spectroscopy. The second observation from the 

electrochemical parameters calculated, the De of the composites are in between the values of 

PAA and PPy, with De in the range of 10
-4

 cm
2
/s. The comparison of the De of PAA and 

different composites are showed in Figure 29. Surface coverage of the PAA, PPy and their 

composite films produced were in the range of monolayer coverage of the electrode surface 

from 10
-13

 to 10
-14 

mol/cm
2
. The surface coverage was calculated from the Brown-Anson 

equation from of the I vs scan rate CV responses of the thin films. This was confirmation that 

rather than the PAA forming layers on the PPy or vice versa, a uniform monolayer of 

composites was formed. 
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Figure 28 Bar charts of oxidation and reduction peaks of PAA/PPy composites prepared on 

GCE. 

0 = pure PAA film; 1 = composite 1; 2 = composite 2; 3 = composite 3; 4 = composite 4; and 

5 = composite 5 
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As PPy was introduced into PAA matrix an initial increase in De was observed (composite 1 

and 2). However a significant drop in De (Figure 29) was observed at composite 3. Uniform 

incorporation of the PAA into PPy matrix is supported by morphology data. From the De it 

was observed that the first oxidation reaction was catalytically faster than the second 

oxidation reaction which suggests that an electrochemical reaction is followed by a chemical 

reaction. At low concentrations of PPy (composite1, 2 and 3) a consistent increase in 

diffusion coefficient was observed. 

 

Bar charts showing the distribution of peak potentials for Epa1/Epc1 and Epa2/Epc2 are shown 

in Figure 28. The oxidative peak potential for the first couple, which presents the uniqueness 

of the composites, was observed to vary between 125 mV and 220 mV. The reduction peak 

potentials, representing the slower electron transfer in this couple, were distributed between 

25 mV and 90 mV as a function of PPy incorporation. The second couple representing PAA 

incorporation was observed to be more or less equal in terms of oxidative and reductive 

electron shifting with Epa2 spread between 500 mV and 510 mV, and Epc2 spread between -

670 and -700 mV. 
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Figure 29 Bar charts of the diffusion coefficients (De) of the oxidation and reduction peaks of 

PAA and the different ratios of PAA/PPy composites on GCE. 

Diffusion Coefficients (De) of the anodic peak potentials (Epa1 & Epa2) and cathodic peak 

potential (Epc1 & Epc2); 1 = pure PAA; 2 = comp 1; 3 = composite 2; 4 = compo 3; 5 = comp 

4; 6 = comp 5. 
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The De for the oxidative peaks (Figure 29) of the unique couple (Epa1) representing the novel 

composites was consistent in the range from 6 × 10
-4

 cm
2
/s and 7 × 10

-4
 cm

2
/s (standard 

deviation 1.22 × 10
-4

; n = 5).  However depending on the ratio of PPy; the De of the PAA 

couple Epa2/Epc2 may dominate.  
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4.6 Fourier Transform Infrared (FTIR) spectroscopy of PAA 

 

In infrared spectroscopy, IR radiation is passed through a sample and the infrared radiation is 

then absorbed by the sample and some of it is passed through (transmitted). The spectrum 

then represents the molecular absorption and transmission, creating a molecular fingerprint of 

the sample. FTIR spectroscopy has been used extensively for characterization of conducting 

polymers in order to depict their conducting states. The FTIR spectra for PAA films were 

recorded in the range of 0 and 4500 cm
-1

 (Figure 30) following the electrochemical 

polymerization and drying of PAA film in 0.2 M PBS (pH 7) on GCE. The absorption bands 

that occur at 1717 cm
-1

 and a shoulder at 1304 cm
-1

 were assigned to the vibrational modes of 

carboxylic acid, while the bands occurring at 1653, 1540, and 1410 cm
-1

 were assigned to the 

vibrational mode of the amide group. The peak around 1225 cm
-1

 that is associated with a 

stretching vibration of the ether group (Andreesu et al., 2005). 
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Figure 30 FTIR spectra of polyamic acid film on GCE. 

 

4.7 Fourier Transform Infrared (FTIR) spectroscopy of PPy 

 

FTIR analysis of the PPy film (Figure 31) showed a band at around 3400 cm
-1

 that was 

assigned to the N–H stretching mode. The heterocyclic aromatic ring C-C conjugation band 

was at 1600–1300 cm
-1

. The bands around 1200–1000 cm
-1

 was assigned to the C–N 

stretching vibration modes. These results accounts for the presence of the PPy ring after 

electrochemical polymerization. 
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Figure 31 FTIR spectra of PPy film on GCE. 

 

4.8 FTIR Spectroscopy: Overlay of PAA/PPy composites 

 

The IR spectra of the PAA/PPy composites are shown in Figure 32. The amide %T bands 

intensify from pure PAA film to composite 3 as a function of PPy concentration. Composite 4 

and 5 however shows a decrease in %T which indicates a densification of the material. The 

characteristic IR peaks for PPy are nearly screened by the stronger PAA vibrations. The N-H 

stretching observed for the pure PPy is still visible, and the band intensity becomes stronger 

with increase concentration of PPy. The bands at 1653, 1540, and 1410 cm
-1

 due to amide 
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ring increases when the amount of PPy increases indicating some changes in PAA spectrum. 

The C–H vibrations in the phenyl ring of PAA occur at (1100–1300) cm
-1

 and they are 

distorted possibly because of the interaction with PPy and cation-radical formation (Iroh et. 

al., 2002). The FTIR confirms that the functionalities of both PAA and PPy are present 

confirming an interaction between the two polymers. The carboxylic and amide moieties 

from PAA are present in all the composites, confirmation that PAA is still present in the 

composites as PPy is incorporated into the PAA film.    

 

 

Figure 32 FTIR spectra of PAA/ PPy composites 1, 2, 3, 4 and 5 on GCE. 
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4.9 Raman Spectroscopy of polyamic acid (PAA) 

 

Raman spectroscopy is used to observe vibrational, rotational, and other low-frequency 

modes in a system, and the Raman effect occurs when light impinges upon a molecule and 

interacts with the electron cloud and the bonds of that molecule The vibration is Raman 

active if it causes a change in polarisability. A change in the molecular polarization potential 

or amount of deformation of the electron cloud with respect to the vibrational coordinate is 

required for a molecule to exhibit a Raman effect. The amount of the polarizability change 

will determine the Raman scattering intensity. The pattern of shifted frequencies is 

determined by the rotational and vibrational states of the sample, in this case shift from the 

amide band of PAA film as a result of adding PPy. This dependence on the polarizability 

differs from Infrared spectroscopy where the interaction between the molecule and light is 

determined by the dipole moment; this contrasting feature allows analyzing transitions that 

might not be IR active via Raman spectroscopy. It’s also important as the vibrational 

information is specific to the chemical bonds and symmetry of molecules. Therefore, it will 

provide a fingerprint by which the PAA molecule can be identified. The fingerprint region of 

organic molecules is usually in the (wavenumber) range 500–2000 cm
−1

. The characteristic 

bands of PAA film on SPCE (Figure 33) are as follows: 881 cm
-1

, amide I; 1247 cm
-1

, amide 

III; 1330 cm
-1

, symmetric stretching of carboxylic acid; 1565 cm
-1

, amide II; 1606 cm
-1

, ring 

vibration of carboxylic acid; 1662 cm
-1

, amide I; 1724 cm
-1

, C=O of carboxylic acid (Han Yu 

et al 2002). The assignments of the Raman bands are similar to those proposed by Tsai et al 

and Ishida et. al. for PMDA/ODA model compounds and by Varsanyi and Young et. al. for 

PMDA/ODA polyamic acid and polyimide. The band near 1623 cm
-l
 was attributed to the 

tangential ring stretching mode of the C6H2 ring while those near 1691 and 941 cm
-l
 were 

assigned to the C 4 stretching and OH out-of-plane bending modes of the acid groups, 
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respectively. Bands near 1577 and 1341 cm
-l
 were attributed to modes of the amide groups 

while the band near 1180 cm
-l
 was assigned to the C-X stretching mode of the C6H14 ring (W. 

H. Tsai et al 1992).  

 

Figure 33 Raman spectra of polyamic acid (PAA) film on SPCE. 
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4.10 Raman Spectroscopy of PPy 

 

The Raman spectra of PPy (Figure 34) showed bands at 1556 and 1037 cm
-1

, was assigned as 

a symmetric stretching vibration of C = C and the CH in-plane deformation in the PPy (Chan 

S. Choi et. al., 1989). The Raman technique gave specific information, in particular, it 

allowed to follow accurately the doping level of the film through two bands, one 

corresponding to the continuous transition between the C = C and C – C intercycles vibration 

stretching. 

 

Figure 34 Raman spectra of polypyrrole PPy on SPCE.  
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4.11 Raman Spectroscopy: Comparison of different PAA/PPy 

composites 

 

The Raman spectrum obtained for PAA/PPy composites (Figure 36) shows the presence of 

characteristic absorption 881 cm
-1

, amide I; 1247 cm
-1

, amide III; 1330 cm
-1

, symmetric 

stretching of carboxylic acid; 1565 cm
-1

, amide II; 1606 cm
-1

, ring vibration of carboxylic 

acid; 1662 cm
-1

, amide I; 1724 cm
-1

, C = O of carboxylic acid as seen in pure PAA Raman 

spectrum (Han Yu et al 2002) respectively. The intensity of these bands increases, showing 

how PPy affects the Raman of pure PAA film on SPCE. At composite 3 from the Raman shift 

cm
-1

 vs composite calibration plot (Figure 35) it is evident that neither the PAA nor the PPy is 

dominating. When the PPy contribution is low, the Raman shift of amide bands from the 

PAA is small but as the PPy contribution increases, the Raman shift of the amide band 

increases. Therefore at composite 3 there is a clear shift from the original amide band of 

PAA. 
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Figure 35 The change in Raman shift (827 cm
-1

 = amide band) for the PAA film and the 

composites 1 to 5 on SPCE. 

0 = pure PAA film; 1 = composite 1; 2 = composite 2; 3 = composite 3; 4 = composite 4; and 

5 = composite 5 
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Figure 36 Raman Spectra of the composite 1, 2, 3, 4 and 5 on SPCE. 
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4.12 Scanning electron microscopy (SEM) of polyamic acid 

 

Scanning electron microscopy (SEM) produces images of a sample by scanning it with a 

focused beam of electrons, which produces information about the sample's surface 

topography and composition. SEM was performed for a bare SPCE and for pure PAA films 

to determine the differences in morphology of the PAA film and the bare. SEM analysis was 

carried out on the PAA film that was electrodeposited onto a screen printed carbon electrode 

after drying for an hour at room temperature. The surface of the bare carbon SPCE was 

covered with a uniform PAA layer, containing few amorphous PAA clusters. For the 

electrodeposited PAA film, EDX measurements (EDX graph not shown) showed trace 

amounts carbon, oxygen and nitrogen. Carbon and oxygen as principle elements in the PAA 

layer (Andreesu et al., 2005). 
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(a) 

 

 

(b) 

Figure 37 SEM micrographs recorded for electrodeposited films on the screen printed carbon 

electrode (SPCE): (a) bare screen printed electrode (b) PAA film. 
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4.13 Scanning electron microscopy (SEM) PPy 

 

The surface morphology of the PPy film was characterized by scanning electron microscopy 

(SEM). Morphology plays an important role in determining conductivity and mechanical 

properties of the materials because electrical conductivity is related to surface morphology. 

The bulk polymer tends to aggregate in large particles in the form of large globules. This is 

probably due to an increased inter-chain interaction compared to its stabilized particles in 

which the polymeric surfactant chains act as a limiting factor for such an interaction. 

 

Figure 38 SEM micrographs recorded for electrodeposited PPy film on the screen printed 

carbon electrode (SPCE). 
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4.14 Scanning electron microscopy: Different ratios of PAA/PPy 

composites 

 

The surfaces of the PAA/PPy composites have structures that incorporate both PAA and PPy 

(Figure 39 (a), (b), (c), (d) and (e). The structure of the composite surfaces differs 

significantly from the rough structure (amorphorous) of the PAA film. As the concentration 

of PPy increases the film becomes a more smooth and porous (Iroh et al., 2002). The pores 

range from 350 to 550 nm filled with the filaments of a conducting polymer impregnated 

with the rough PAA matrix as shown on the microphotograph of PAA/PPy composite. It is 

believed that the PPy filaments are formed and anchored along the PAA matrix. This is 

confirmed by the EDX analysis as it still provides evidence of O2 (from the carboxylic 

moiety) that comes from PAA, as PPy does not have oxygen moieties. This is important as it 

proves that the PPy film does not form a blanket layer on top of the PAA film and that a 

composite is formed rather than then two polymers forming layers on top of each other. This 

is best described in composite three as it clearly shows the best morphology of the two 

polymers combined. As the PPy concentration increases the PAA just becomes flooded with 

PPy and the rough porous structures are not evident anymore. 
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(a) Composite 1 

(b) Composite 2 
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(c) Composite 3 

(d) Composite 4 
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Figure 39 SEM micrographs recorded for electrodeposited PAA/PPy films on the SPCE (a) 

Composite 1; (b) Composite 2; (c) Composite 3; (d) Composite 4 and (e) Composite 5. 

 

4.15 Atomic Force Microscopy (AFM) of PAA, PPy and PAA/PPy 

composites 

Atomic force microscopy (AFM) is a very high-resolution type of scanning probe 

microscopy, and can do imaging of almost any type of surface, including polymers, ceramics, 

composites, glass, and biological samples. AFM was used for surface morphology and 

roughness estimates of the polymers PAA, PPy (Figure 40 and 41) and the PAA/PPy 

composites (Figure 42 to 46) prepared.  

(e) Composite 5 
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Figure 40 AFM image of polyamic acid (PAA) film on screen printed carbon electrode 

(SPCE). 

 

Figure 41 AFM image of polypyrrole (PPy) on screen printed carbon electrode (SPCE). 
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The surface features of the PAA sample was observed to have a height distribution of 0-755 

nm (Figure 40) whereas the PPy sample showed a height distribution of 0-106 nm (Figure 

41).  This height distribution is in good agreement with the observed surface features of the 

polymers from 20.00 kV SEM, where it was evident that the surface features of the PAA film 

was on a larger scale than that of the PPy.  Polypyrrole (PPy) was observed to have a finer 

granular structure whereas PAA displayed comparatively larger scale like features. 

 

 

Figure 42 AFM image of Composite 1 on screen printed carbon electrode (SPCE). 
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Figure 43 AFM image of Composite 2 on screen printed carbon electrode (SPCE). 

 

Figure 44 AFM image of Composite 3 on screen printed carbon electrode (SPCE). 
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Figure 45 AFM image of Composite 4 on screen printed carbon electrode (SPCE). 

 

Figure 46 AFM image of Composite 5 on screen printed carbon electrode (SPCE). 
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The presence of the PPy in the composite breaks up the large scale like appearance of the 

pure PAA film and introduces a controlled laminar surface morphology as a function of PPy 

concentration.  This is most clearly defined in composite 2 and 3 (Figure 43 and 44) where 

individual needle-like surface features can be clearly distinguished. At higher PPy 

concentrations these features become less distinct and eventually blend into a smoothed 

surface appearance. 

 

 

Figure 47 XY plot of Ra as a function of electropolymerised thin film composition, where 0 

= PAA, 1 = composite 1; 2 = composite 2; 3 = composite 3; 4 = composite 4 and 5 = 

composite 5 (the composites 1 to 5 as previously defined); 6 = PPy. 
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The line roughness (Ra) (Figure 47) values showed a clear distribution of roughness 

associated with pure PAA and PPy respectively and a decreasing trend upon inclusion of PPy 

into the PAA matrix.  The samples most distinctly associated with equal contribution from 

the pure polymers appear to be composites 2 and 3.  It is clear from AFM and SEM 

micrographs that the PAA provides a template for highly ordered arrangement of polypyrrole 

formation at these ratios during electrochemical synthesis, resulting in unique nanorod 

formation, yielding a highly reactive surface area. This trend in Ra is supported by 

electrocatalysis as evidenced in CV measurements and De calculations. 

The viscous liquid PAA was chemically synthesised from the monomers ODA and PMDA. 

Homogeneity played crucial role in composite preparation, thus the viscous PAA was used 

for composite preparation with PPy. A series of new polyamic acid and polypyrrole 

(PAA/PPy) composites was electrochemically synthesised in-situ and characterized in 0.2 M 

phosphate buffer solutions at pH of 7. A total of five PAA/PPy composites were prepared. 

Electrochemical characterization proved that PAA/PPy composites was formed as a new peak 

was observed, that was not in observed in the individual polymers (PAA and PPy) 

characterization. E
0
2 of PAA was still present in all composites, confirming PAA existence in 

composites. Peak potentials and De were evaluated using the parameters from CV; composite 

3 were proved to have the best electrochemical properties out of the five composites 

prepared. From FTIR the amide %T bands intensified from pure PAA film to composite 3 as 

a function of PPy concentration. Composite 4 and 5 however showed a decrease in %T which 

indicates a densification of the material. The Raman spectrum obtained for PAA/PPy 

composites shows the presence of characteristic amide and carboxylic absorption bands. The 

intensity of these bands increased, which was an indication of how PPy affects the Raman of 

pure PAA film on SPCE. At composite 3 from the Raman shift cm
-1

 vs composite calibration 

plot it is evident that neither the PAA nor the PPy is dominating. Therefore at composite 3 
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there is a clear shift from the original amide band of PAA. From SEM images it was observed 

that the surfaces of the PAA/PPy composites have structures that incorporate both PAA and 

PPy. The structure of the composite surfaces differs significantly from the rough structure 

(amorphorous) of the PAA film and the PPy filaments are formed and anchored along the 

PAA matrix. This is confirmed by the EDX analysis as it still provides evidence of O2 (from 

the carboxylic moiety) that comes from PAA, as PPy does not have oxygen moieties. This is 

best described in composite three as it clearly shows the best morphology of the two 

polymers combined. The line roughness (Ra) values obtained from AFM showed a clear 

distribution of roughness associated with pure PAA and PPy respectively and a decreasing 

trend upon inclusion of PPy into the PAA matrix. 
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Chapter 5: 

Part 1: Evaluation of Spectroscopic Properties and 

Electrochemical of Enzyme (Luciferase) and Analytes 

(Naphthalene and Fluoranthene) 
 

5.1 Introduction 

 

This chapter presents the result of the interaction between the enzyme luciferase and analytes 

(naphthalene and fluoranthene) in preparation for the construction of a biosensor. 

Electrochemical characterization and immobilisation of the enzyme; Photobacterium Vibrio 

fisheri luciferase, and its application for a biosensor for the polycyclic aromatic hydrocarbons 

is described in this chapter. Fluorescence spectroscopy, cyclic voltammetry (CV), and 

electrochemical quartz microbalance (EQCM) studies were carried out to characterize the 

enzyme’s response to each analyte in 0.2 M PBS at pH 7. To study the interaction of the 

enzyme with each analyte Fluorescence spectroscopy was used, also to see how the 

bioluminescence properties of the enzyme changes with the addition of each analyte. A 

diluted solution of the enzyme in 0.2 M PBS pH7 was put into a 3 mL cuvette. Luciferase 

showed an emmision peak at 340 nm. Fluorescence measurements were done after adding 2 

µL aliquots of analytes into enzyme solution and shaking the mixture for few seconds. The 

emmision peak at 340 nm gradually decreased as the concentrations of each analyte were 

increased.  The luciferase biosensor was prepared by drop coating 10 µL of luciferase 

solution onto a bare GCE surface (GCE/LUC) and left to immobilize for 24 hours. The 

enzyme was electroactive in 0.2 M PBS pH 7 with two quasi-reversible redox couples at E°′ 

= +110 mV and E°′ = +730 mV (vs. Ag/AgCl); has diffusion coefficient of 1.1 × 10 
-12

 cm
2
/s 

and has a surface coverage of 1.50×10
-13

 moles/cm
2
. The mass changes due to the addition of 
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each analyte were measured by Electrochemical Quartz microbalance (EQCM) from the N 

series Autolab potentiostat/galvanostat instrument, PGSTAT128N. 

 

 

5.2 Fluorescence Spectroscopy of Luciferase and Luciferase with 

analytes 

5.2.1 Fluorescence Spectroscopy of Luciferase 

 

Firefly bioluminescence arises from the oxidation of a substrate (luciferin), by an enzyme, a 

luciferase that results in the formation of the product (an oxyluciferin,) in an electronically 

excited singlet state. Relaxation of the oxyluciferin to the corresponding ground state is 

accompanied by the emission of light (Ren A. M. et. al., 2005). According to Baldwin et al 

the bacterial luciferase uses the oxygen in a flavin monooxygenase reaction in which the 

molecular oxygen has been activated by a reaction with reduced flavin mononucleotide 

(FMNH2), reacts with an aldehyde to yield carboxylic acid, oxidized flavin (FMN), and blue-

green light in the following reaction (Baldwin T.O et. al., 1995): 

 

 FMNH2+O2+RCHO → FMN + RCOOH + H2O + hv                                          Equation 5.1 

  

 

 

 

 

 

 



 
 

 Page 124 
 

 

Figure 48 Chemical reactions involved in the oxidation of luciferin via a dioxetanone to 

excited state oxyluciferins. These reactions are catalysed by luciferase and are the basis for 

light emission in the firefly luciferase (Baldwin T.O et. al., 1995). 
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An emmision peak at around 340 nm was observed for luciferase in PBS pH 7, which agrees 

well with literature where the emittance for luciferase in aqueous media should occur (Figure 

49). The reaction mechanism of the bacterial luciferase luminescence has been studied in 

detail by the Hastings group.  

Where FMNH2 and FMN are the reduced and oxidized forms of the flavin mononucleotide, 

respectively, CnCHO is the alkylaldehyde and CnCOOH is the corresponding fatty acid. The 

BL system requires FMNH2 for the light emission reaction. The FMNH2 is easily oxidized to 

FMN by dissolved O2. To promote a continuous luminescence reaction FMNH2 should be 

regenerated from FMN. 

 

 

Figure 49 Fluorescence spectra of the enzyme; luciferase in a 0.2 M PBS (pH 7) solution. 
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5.2.2 Fluorescence spectroscopy of Luciferase with Naphthalene  

 

To examine the applicability of the developed luciferase luminescence system for a study of 

the effects of hydrophobic molecules such as naphthalene and fluoranthene on the enzymatic 

function of luciferase, aliquots of naphthalene was added and the corresponding change in the 

luciferase luminescence intensity was measured. As shown in Figure 50, the luciferase 

luminescence was shown to decrease (in aqueous media) in the presence of naphthalene. The 

decrease in the luciferase luminescence intensity was associated with the binding of 

naphthalene with the luciferase.  

 

Figure 50 Fluorescence spectra of the enzyme; luciferase with increasing concentrations (6.7 

× 10
-4

 to 6.6 × 10
-3 

µM) of naphthalene in 0.2 M PBS (pH 7). 
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Figure 51 shows the calibration curve of intensity vs. concentration of naphthalene. From the 

linear region of the calibration curve (Figure 52) a sensitivity of 80 µM was observed, and a 

limit of detection (LOD) 6.6 × 10
-1

 µM. 

 

 

Figure 51 Calibration curve of the Intensity vs. concentration of the enzyme; luciferase with 

increasing concentrations of naphthalene. 
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Figure 52 The linear range of the Intensity vs. concentration calibration curve of the enzyme; 

luciferase with increasing concentrations of naphthalene. 

 

 

5.2.3 Fluorescence spectroscopy of Luciferase with Fluoranthene  

 

Aliquots of fluoranthene were added into the luciferase 0.2 M PBS (pH 7) solution system, 

and the corresponding change in the luciferase luminescence intensity was measured. As 

shown in Figure 53, the luminescence intensity gradually decreased with the addition of 

fluoranthene. The decrease in the luciferase luminescence intensity was caused by binding of 

fluoranthene with the luciferase.  
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Figure 53 Fluorescence spectra of the enzyme; luciferase with increasing concentrations of 

fluoranthene (decrease in bioluminescence). 

 

 

Intensity vs. concentration profiles was drawn up for fluoranthene (Figure 54), and from the 

linear region of the calibration curve (Figure 55) a sensitivity of 30 µM was observed, and a 

limit of detection (LOD) of 2.67 × 10
-7

 µM was calculated.  
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Figure 54 Calibration curve of the Intensity vs. concentartion of the enzyme; luciferase with 

increasing concentrations of fluoranthene. 
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Figure 55 The linear range of the Intensity vs. concentration calibration curve of the enzyme; 

luciferase with increasing concentrations of fluoranthene. 

 

Fluoranthene has a higher molecular-weight than naphthalene therefore in solution with 

luciferase it would accumulate more to a certain level towards luciferase than naphthalene 

and exhibit more toxicity. Naphthalene has a lower partition coefficient than fluoranthene and 

its water solubility increases, thus hampering the intercalation of it to luciferase and 

subsequently reduces toxic effect of naphthalene.  
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5.3 Electrochemical evaluation of the Enzyme; Luciferase and 

Analytes i.e. Naphthalene and Fluoranthene 

 

5.3.1 Electrochemistry of GCE/Luciferase in 0.2 M PBS (pH 7) 

 

The bioluminescence reactions of various luciferase species have been widely used for a wide 

range of biochemical analyses because of their high sensitivity. Among the various types of 

luciferases, firefly luciferase has been most frequently used as a model system of biological 

reactions because of its high luminescence reaction efficiency. Firefly luciferase is unstable 

and rapidly loses its activity in aqueous solution. Bacterial luciferase has a higher solubility 

and stability in aqueous solution compared to firefly luciferase. Bacterial luciferase 

luminescence has been used to develop a model system to analyze the inhibition mechanisms 

of hydrophobic drugs on protein functions (Yoji K. et. al., 2012). A bare GCE in 0.2 M PBS 

(pH 7) was recorded (Figure 56) to ensure no peaks occurred in the areas of interest.  
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Figure 56 Cyclic voltammogram of a bare GCE in 0.2 M PBS (pH 7) at a scan rate of 100 

mV/s.  

 

The enzyme, luciferase was electroactive in 0.2 M PBS (pH7), as two oxidation peaks 

(Epa1,2) and two reduction peaks (Epc1,2) was observed for the enzyme (Figure 57). The bare 

electrode (Figure 56) showed no peak as expected of the bare electrode in the buffer solution. 

The formal potentials (E
0
') of these two redox couples was calculated from CV {[Epa + 

Epc]/2}, E°′ = +110 mV and E°′ = +730 mV (as represented in table 7). From the Ipc vs √v 

calibration plot (Figure 58) the diffusion coefficient (De) was calculated to be 1.1 × 10
-12 

cm
2
/s from Randle Sevcik equation. Using Brown-Anson equation the surface coverage was 

calculated to be 1.50 × 10
-13

 moles/cm
2
, which is in the monolayer region. The ks values were 

calculated using the following equation ks (Ep) = 2.18 [D α n Fv/RT]
1/2

, where ks is the 

electron transfer rate constant, the sweep rate v, D is the diffusion coefficient, F the Faraday’s 
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constant, α is the charge transfer coefficient, R is the gas constant (8.314 J K
-1

 mol
-1

) and T is 

the temperature and was calculated to be 7.1 ×10
-5

 cm/s for CV. The De values was calculated 

from the Epc2 (-730 mV) slope as the interaction between the analytes and enzymes occurs at 

this peak potential. The Flavin mononucleotide (FMN) maybe electrochemically reduced to 

FMNH2, which is one of the substrates of the BL luminescence reaction. The peak observed 

at -730 mV was due to the reduced flavin mononucleotide, FMNH2 as reported by Yoji 

Kawanami et al., 2012. The FMNH2 was regenerated by the electrochemical reduction of 

FMN by using the following scheme:  

 

FMN + 2H+ 2e– → FMNH2                                                                                  Equation 5.2 
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Figure 57 Cyclic voltammogram of luciferase on a bare GCE in 0.2 M PBS (pH 7) at 

different scan rates; 25, 40, 50, 60, 70, 80, 90 and 100 mV/s. 
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Figure 58  Ip vs √v calibration curves of luciferase on GCE in 0.2 M PBS (pH 7). 
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5.3.2 Electrochemistry of Naphthalene (1 mM) on bare GCE in 0.2 M 

PBS (pH 7) 

 

An experiment on the electrochemical behaviour of naphthalene was investigated using a 

bare GCE in 0.2 M PBS (pH 7) as the electrolyte. The following discussion is based on the 

cyclic voltammetric response to a stock solution of naphthalene which had a concentration of 

1 mM, and was made up in a mixture of acetronitrile/water (85:15) solution. A cathodic peak 

(Epc) around -630 mV (vs. Ag/AgCl) was observed for naphthalene. The electrochemical 

process observed at the bare GCE was only for the reduction of naphthalene. This irreversible 

behaviour suggested that naphthalene was reduced.  

 

 

 

 



 
 

 Page 138 
 

 

Figure 59 Cyclic voltammogram of different concentrations (5 × 10
-3

 to 3.4 × 10
-2 

mM) of 

naphthalene at a bare GCE electrode in 0.2 M PBS (pH 7). 

 

From the calibration curve of Ip vs concentration (Figure 60) the bare GCE had a sensitivity 

of 1x10
-4

 mM towards the detection of naphthalene. 
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Figure 60 Calibration curve of Ip vs concentration of naphthalene at a bare GCE electrode in 

0.2 M PBS (pH 7). 

 

5.3.3 Electrochemistry of GCE/Luciferase and Naphthalene (1 µM) in 

0.2 M PBS (pH 7) 

 

The detection of naphthalene was investigated using the cathodic peak of luciferase at -730 

mV (vs. Ag/AgCl) and all analysis was based on this potential. The biosensor system became 

less conductive, as the cathodic peak decreased with an increase of naphthalene concentration 
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(Figure 61). The decrease in peak current was due to competitive binding of naphthalene with 

the substrate. 

 

Figure 61 Cyclic voltammogram of GCE/luciferase with different concentrations of 

naphthalene in 0.2 M PBS (pH7). 

 

Square wave voltammetry was done to show that when naphthalene was added, the peak 

around -730 mV (vs. Ag/AgCl) decreased almost completely (Figure 62). Figure 63 shows 

the calibration curve of Ip vs concentration of GCE/LUC with increasing concentration of 

naphthalene. From the linear region of the calibration curve (Figure 64), the sensitivity of 

enzyme (luciferase) towards naphthalene was 4 × 10
-5

 M. The limit of detection was 
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calculated to be 0.022 µM. Compared to the bare GCE for the detection of naphthalene; the 

luciferase biosensor was more sensitive 

 

Figure 62 Square wave voltammogram of GCE/luciferase with 5.5 × 10
-3

 µM naphthalene in 

0.2 M PBS (pH 7), showing the cathodic peak at -730 mV decreased. 
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Figure 63 Ip vs concentration calibration curve of GCE/luciferase with increasing 

concentrations of naphthalene in 0.2 M PBS (pH 7). 
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Figure 64 The linear range of the Ip vs concentration calibration curve of the GCE/luciferase 

with increasing concentration of naphthalene in 0.2 M PBS (pH 7). 
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5.3.4 Electrochemistry of Fluoranthene on a bare GCE in 0.2 M PBS 

(pH 7) 

 

An experiment on the electrochemical behaviour of fluoranthene was investigated using a 

bare GCE in 0.2 M PBS (pH 7) as the electrolyte. The electrochemical process observed at 

the bare GCE was only for the reduction of fluoranthene. The following discussion is based 

on the cyclic voltammetric response to fluoranthene (1 mM) dissolved in acetronitrile/water 

solution. A cathodic peak (Epc) around -750 mV (vs. Ag/AgCl) was observed for 

fluoranthene. This irreversible behaviour suggested that fluoranthene was reduced. The bare 

GCE had a sensitivity of 2x10
-4

 uM towards the detection of fluoranthene. 
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Figure 65 Cyclic voltammogram of different concentrations (5 × 10
-3

 to 5.5 × 10
-3

 mM) 

fluoranthene in 0.2 M PBS (pH 7). 

 

 

From the calibration curve of Ip vs concentration (Figure 66) the bare GCE had a sensitivity 

of 1x10
-4

 mM towards the detection of fluoranthene. 
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Figure 66 Calibration curve of different concentrations of fluoranthene at a bare GCE in 0.2 

M PBS (pH 7). 
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5.3.5 Electrochemistry of GCE/Luciferase with fluoranthene in 0.2 M 

PBS (pH 7) 

 

The detection of fluoranthene was investigated using the cathodic peak of the enzyme, 

luciferase at -730 mV (vs. Ag/AgCl). As the concentration of fluoranthene increased the 

cathodic peak of the luciferase decreased. The biosensor system also became less conductive, 

as the cathodic peak decreased with an increase in fluoranthene concentration (Figure 67). 

The decrease in peak current was due to competitive binding of fluoranthene with the 

substrate. Figure 68 shows the SWV of GCE/Luciferase with fluoranthene, and that the peak 

at -730 mV (vs. Ag/AgCl) decreased as a result of adding fluoranthene. 
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Figure 67  Cyclic Voltammetry of GCE/luciferase with different concentrations of 

fluoranthene from 5 × 10
-4

 to 5.5 × 10
-3

 in 0.2 M PBS (pH 7). 
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Figure 68 Square wave voltammetry of GCE/luciferase with fluoranthene in 0.2 M PBS (pH 

7). 

 

An Ip vs concentration profile calibration plot was drawn to show how the Ip changes with 

concentration (Figure 69). The GCE/luciferase biosensor had sensitivity (Figure 70) towards 

fluoranthene of 2 × 10
-4

 µM and a limit of detection (LOD) of 4.4 × 10
-3

. When comparing 

the luciferase biosensor for the detection of naphthalene and fluoranthene, it was more 

sensitive for fluoranthene. 

 

 

 

 

 



 
 

 Page 150 
 

 

Figure 69 Calibration curve of GCE/Luciferase with different concentrations of fluoranthene 

in 0.2 M PBS (pH 7). 
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Figure 70 Linear range of the calibration curve of GCE/Luciferase with different 

concentrations of fluoranthene in 0.2 M PBS (pH 7). 
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Table 7 The analytical response of the biosensor to analytes. 

Material Epa1 

(mV) 

Epa2 

(mV) 

Epc1 

(mV) 

Epc2 

(mV) 

E
0’

 

(mV) 

Sensitivity 

 

LOD 

GCE/Naphthalene - - -630 - -630 1 × 10
-4 

A/mM 

0.08 mM 

GCE/LUC + 

Naphthalene 

175 783 35 -680 - 4 × 10
-5

 

A/µM 

0.02 µM  

GCE/Fluoranthene - - -750 - -750 2 × 10
-4

 

A/mM 

0.02 mM 

GCE/LUC + 

Fluoranthene 

180 790 55 -705 - 2 × 10
-4

 

A/µM 

4.4 × 10
-3

 

µM 

 

 

Table 7 shows the anodic peak potentials (Epa1,2), cathodic peak potentials (Epc1,2), formal 

potential (E
0
'), sensitivities and the limit of detection (LOD). From the table the biosensor 

GCE/LUC was most sensitive to fluoranthene with a sensitivity of 2 × 10
-4

 A/µM and a LOD 

of 4.4 × 10
-3

 µM. The biosensor GCE/LUC was slightly less sensitive to naphthalene with a 

sensitivity of 4 × 10
-5

 A/µM and a LOD of 0.02 µM. The electrochemsitry corroborates what 

was evaluated in fluorescence spectroscopy, where the solution phase enzyme, lucferase was 

also most sensitive to fluoranthene then naphthalene.  
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5.4 Electrochemical Quatrz Microbalanace (EQCM) of 

Luciferase and analytes in 0.2 M PBS (pH 7) 

5.4.1 EQCM of Luciferase and Naphthalene  

 

Using the EQCM, one determines the ratio of mass deposited at the electrode surface during 

an electrochemical reaction to the total charge passed through the electrode. The EQCM 

module is fitted with a 6 MHz crystal oscillator and it can be used to monitor changes in 

frequency, with a dynamic range of 80 000 Hz. The module is also fitted with a temperature 

probe, which can be connected to the temperature sensor embedded in the standard 

electrochemical cell provided with the module. Gold-coated quartz crystal as working 

electrode was used; a Pt wire as auxiliary electrode and Ag/AgCl as reference electrode was 

connected for EQCM measurements. The Au-coated quartz crystals (ATcut, 6 MHz) of 0.2 

cm
2
 geometric area per face were obtained from AutoLab. 

The biosensor was prepared by drop coating 50 µL of the stock luciferase solution onto the 

one side of the Au-coated quartz crystals and leaving it in the fridge for 4 to 5 hours. The 

effect of luciferase immobilization over the surface of Au-coated quartz crystal microbalance 

was investigated and how it responded to the addition of PAHs was compared, resulting in a 

better sensitivity and binding efficiency in the former method. When an inhibition study with 

the developed sensor was undertaken at the optimized luciferase immobilization with varying 

concentrations of PAHs (naphthalene and fluoranthene), a sensitive detection for them was 

possible with the limit of detection (LOD) corresponding to 9.43 µM and 30.6 µM, 

respectively. 
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Previously studies on the electrochemistry of luciferase onto GCE surface using cyclic 

voltammetry was investigated and GCE/LUC interactions with PAHs. The study showed that 

the peak potential at -730 mV gradually decreased to a point where it diminished completely 

for both analytes; naphthalene and fluoranthene. This was the cause of by the changes in 

structure of the interface associated with the introduction of PAHs.   

Using EQCM, the present studies attempt to shed some light into the mechanism of signal 

generation involving the luciferase immobilized on the Au-coated quartz microbalance. The 

mass-potential profiles for PAHs interaction with enzyme were investigated. A change in 

mass of the quartz crystal following the oxidation/reduction of the attached enzyme can be 

calculated using Sauerbrey equation (5.3), which relates changes in the resonant frequency of 

the quartz crystal to the changes in mass of the enzyme: 

              Equation: 5.3 

Where Δf is the change in frequency, in Hz, f0 is the nominal resonant frequency of the 

crystal (6 MHz), Δm is the change in mass, in g/cm
2
, A is the area of the crystal in cm

2
, ρq is 

the density of quartz, in g/cm
3
 and μq is the is the shear modulus of quartz, in g/cm·s

2
.  For a 

6 MHz crystal, the same equation can be reduced to:  

                                      Equation: 5.4 

Where Cf is 0.0815 Hz/ng/cm
2
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In the liquid phase, QCM data should account for the effect of the piezoelectric movement of 

the quartz. When a metal part is in contact with solution, the piezoelectric movement is 

usually hindered, thus resulting in a decrease in frequency (Bruckenstein S., et al., 1985; 

Monura T., et al., 1982). Such a frequency change may be ignored if the initial and final 

states are under the same environmental conditions with respect to density, temperature and 

viscosity of the solution phase. Previous studies on acetylcholinesterase showed inhibition by 

measuring the precipitation degree of an enzymatic reaction product, 4,4'-diimino-3,3'-

diaminobiphenyl which is derived from 3,3'-diaminobenzidine substrate, over the QCM 

electrode (Kim, N., et al., 2007). This justifies that the validity of the Sauerbrey equation 

when the crystal electrode is modified. Other several examples have been shown shown in 

which Sauerbrey equation is obeyed in the solution phase and when modified (Son, D.; et al., 

1994; Ebara, Y. et al., 1993).  

The operating principle of the EQCM sensor of this study is based on the measurement of the 

enzymatic activity of luciferase, immobilized on one side of the QCM and simultaneously 

exposed to the substrate solution. As the enzymatic reaction product is precipitated over the 

QCM surface after dimerization (Abad et al., 1998), the degree of sensor response can be 

traced, in real-time scale, by determining the frequency decrease caused by mass deposit over 

the QCM surface. After the immobilization of luciferase on Au-coated quartz crystal 

(Au/LUC), the electrode was rinsed with 0.2 M PBS (pH7) to remove excess luciferase. The 

∆m vs. potential of Au/LUC is shown in figure 30. The potential was scanned from 1000 mV 

to -1000 mV, the mass increase until about 0 V and then from ~ - 0.5 V it started to decrease 

towards more negative potentials and then increased on the reversed scan as it went to more 

positive values. The increase in mass during EQCM experiments correspond to the insertion 

of ions into the LUC film.  
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Figure 71 ∆mass vs potential profile obtained at Au/LUC coated quartz crystal in 0.2 M PBS 

(pH 7) at a scan rate of 100 mV. 

 

To the EQCM cell filled with 2 mL 0.2 M PBS (pH 7.0), where the Au/LUC electrode was 

already inserted, followed by the measurement of resonant frequency of the sensor until a 

steady-state baseline was obtained. The change in frequency was converted into ∆m and ∆m 

was plotted against potential (Figure 71). Then, aliquots of the substrates were injected into 

the cell, with a simultaneous stirring for 3 min, to induce complete substrate dissolution in the 

aqueous buffer. The steady-state resonant frequency (F2) was read again to calculate the ∆m.  

An inhibition study on the Au/LUC in the presence of individual model PAHs was 

conducted. At the potential of - 0.79 V the mass change (∆m) of luciferase was observed to 
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be 81.71 ng/cm
2
 (Figure 71). The peak at the potential of - 0.79 V was used to observe the 

change in mass as the concentration of naphthalene was increased. The ∆m of luciferase was 

81.71 ng/cm
2
 and the mass increased to a ∆mass of 273 ng/cm

2
 when naphthalene was added 

(Figure 72). From the ∆m vs concentration calibrations plot a linear regression (R
2
) of 0.96 

and sensitivity of 2×10
11

 µM was observed.   
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Figure 72 ∆mass vs. potential profiles obtained at an Au/LUC coated quartz microbalance 

using concentrations of 9.99 × 10
-11 

M to  9.99 × 10
-10 

µM of naphthalene in 0.2 M PBS (pH 

7) (the concentration profiles up to 6.99 × 10
-10 

µM were not included in figure). 
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Figure 73 Concentration-dependent ∆m of the Au/LUC sensor with naphthalene plotted 

calibration curve. 

 

The change in frequency (Hz) vs. time (s) was also evaluated (Figure 74), to trace the 

relationship between naphthalene concentration and the sensor response quantitatively.  
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Figure 74 Time-dependent resonant frequency profiles at different concentrations of 

naphthalene in 0.2 M PBS (pH 7). 

 

The percent inhibitions were calculated using the following equation: 

% I = (∆F0-∆Fp / ∆F0) × 100                                                                                Equation 5.5 

Where ∆F0 is the frequency shift obtained in the absensce of analyte and ∆Fp is the frequency 

shift obtained after addition of analyte 

The percent inhibitions of the sensor response were plotted against naphthalene 

concentrations. For this purpose, the concentrations of naphthalene were varied from 9.09 × 

10
-11

 to 6.99 × 10
-10

 µM, respectively (Figure 75). In the case of naphthalene addition, the 

increase in concentration was closely related with the increase in frequency shift and a linear 
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relationship was found between analyte concentration and %I, with the linear regression (R
2
) 

as 0.94 and sensitivity of 8 × 10
10

 Hz/µM. 

 

 

 

Figure 75 Concentration-dependent inhibitions of the Au/LUC QCM- sensor with 

naphthalene concentrations from 5 × 10
-9

 to 3.5 × 10
-9

 µM. 
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5.4.2 EQCM analysis of Luciferase and Fluoranthene 

 

The same procedure as for naphthalene was employed for fluoranthene EQCM analysis. To 

the EQCM cell filled with 2 mL 0.2 M PBS (pH 7.0), where the Au/LUC electrode was 

already inserted, followed by the measurement of resonant frequency of the sensor until a 

steady-state baseline was obtained (F1). Then, aliquots of the fluoranthene were injected into 

the cell, with a simultaneous stirring for 3 min, to induce complete substrate dissolution in the 

aqueous buffer. The steady-state resonant frequency (F2) was read again to calculate the 

frequency shift (∆F = F1 −F2).  An inhibition study on the Au/LUC in the presence of 

individual model PAHs was conducted making use of 0.2M PBS (pH 7.0). The behavioiur of 

the EQCM film containing different concentrations of fluoranthene was studied and mass 

changes recorded. Results obtained indicate that the interaction of luciferase with different 

concentrations of fluoranthene at the quartz crystal electrode surface is dependent on the 

applied potential and the specificity of immobilised enzyme. The peak at – 0.7 mV was used 

as reference for the enzyme and analyte interactions. As the concentration of fluoranthene 

was increased the ∆m increased. The ∆m of luciferase was 16.63 ng/cm
2
 and the mass 

increased to a ∆m of 26 ng/cm
2
 when fluoranthene was added (Figure 76). From the ∆m vs 

concentration calibrations plot (Figure 77) a linear regression (R
2
) of 0.97 and sensitivity of 

6×10
11

 µM was observed.   
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Figure 76 ∆mass vs. potential profiles obtained at an Au/LUC coated quartz microbalance 

using concentrations of 9.99 × 10
-11 

M to  9.99 × 10
-10 

µM of  fluoranthene in 0.2 M PBS (pH 

7) (the concentration profiles up to 6.99 × 10
-10 

µM were not included in figure). 
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Figure 77 Concentration-dependent ∆m of the Au/LUC sensor with fluoranthene plotted 

calibration curve. 

 

 

The percent inhibitions of the sensor response were plotted against fluoranthene 

concentrations. For this purpose, the concentrations of fluoranthene were varied from 9.09 × 

10
-11

 to 6.99 × 10
-10

 µM, respectively (Figure 78). In the case of fluoranthene addition, the 

increase in concentration was closely related with the increase in frequency shift and a linear 

relationship was found between analyte concentration and %I, with the linear regression (R
2
) 

as 0.94 and sensitivity of 7 × 10
10

 Hz/µM. 
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Figure 78 Time-dependent resonant frequency profiles at different concentrations of 

fluoranthene in 0.2 M PBS (pH 7). 
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Figure 79 Concentration-dependent inhibitions of the Au/LUC QCM- sensor with 

fluoranthene concentrations from 3 × 10
-9

 to 3.25 × 10
-9

 µM. 
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Part 2: Application of PAA/PPy as a Platform for Luciferase 

attachment for the Detection of PAHs. 

5.5 Evaluation of Electrochemical Impedance Spectroscopy and 

of the biosensor and Analytes (Naphthalene and Fluoranthene) 

 

5.5.1 Introduction 

 

The specificity and simplicity in modern electronics enables electrochemical sensors to rival 

the most advanced optical protocols (Omowunmi A. Sadik, et al., 2009). Biosensors such as 

enzyme sensors are primarily based on the immobilization of an enzyme onto an electrode. 

The development of such enzyme-based sensors for the detection of glucose in blood 

represents a major area of biosensor research. An important aspect is the material selection 

for the sensor development, as it allows the response characteristics of a sensor to be altered 

in a way that minimizes non-specific adsorption by other molecules (Pejcic, B et al., 2006). 

The application of electrochemical impedance spectroscopy (EIS) in the development of 

biosensors at conductive and semi-conductive surfaces has been reviewed by a number of 

investigators (Alfonta, L. et al., 2001; Guan, J. G. et al., 2004; Katz, E. et al., 2003). 

Electrochemical Impedance Spectroscopy provides important mechanistic information on the 

adsorption by measuring the changes in the interfacial capacitance and resistance of surfaces 

(Bordi, F. et al., 2002; Chaki, N. K. et al., 2002). The circuit used to fit the data was the 

Randle’s Circuit (Figure 83). 
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Figure 80 Randle’s Circuit used to fit EIS data. 

 

The direct electron transfer between an electrode and a redox enzyme is very crucial for the 

fundamental studies and the construction of biosensors. Because of the unfavourable 

orientation of the enzyme on the bare electrode surface or the adsorption of impurities that 

denature the enzyme, the enzyme often exhibits sluggish electron transfer at electrode 

surfaces. Modifications of the electrode surface using suitable compatible matrices are known 

to provide a favourable micro-environment for the protein to exchange its electrons directly 

with the underlying electrode and thus the study of enzyme electrochemistry can be achieved. 

Conducting polymers have attracted attention in biological and chemical researches because 

of their biocompatibility. Nanostructured polymers possess interesting features including high 

electrical conductivity, stability, improved processability and solubility in a variety of 

solvents which are superior to those of the parent polymers. They can act as tiny conduction 

centres to facilitate electron transfer between the enzyme and the electrode surface. They 

provide a suitable micro-environment for enzyme immobilization during biosensor 
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construction enabling direct communication between the immobilized enzyme and the 

electrode surface. Luciferase-based biosensors are becoming increasingly used for 

environmental monitoring. Although there have been studies on luciferase, its direct 

electrochemistry is relatively difficult to be investigated.  

Electrochemical impedance spectroscopy studies of the biosensor were measured with a 

Voltalab instrument (Radiometer Analytical, France). After the PAA/PPy composite 3 was 

electrochemically polymerized onto GCE, the enzyme; luciferase was immobilized by the 

incubation method resulting in an enzyme biosensor. The incubation procedure involved 

leaving the functionalized GCE/PAA/PPy electrode in a stock solution of luciferase (as 

prepared in chapter 3) and keeping it in the fridge for 4 to 5 hours. The potential was kept 

fixed at -730 mV; initial frequency was from 100 mHz to a final frequency of 1 kHz. This 

part of chapter 5 therefore presents the results for the characterization of the 

GCE/PAA/PPy/LUC biosensor for the detection of PAHs, i.e. naphthalene and fluoranthene. 

 

5.5.2 Electrochemical Impedance Spectroscopy of GCE/ 

PAA/PPy/Luciferase and Naphthalene in 0.2 M PBS (pH 7) 

 

The potential controlled impedance behaviour of the biosensor with naphthalene at a fixed 

potential of – 730 mV was measured. The binding of naphthalene to the biosensor was 

evaluated over a concentration range of 5-20 µM. The impedance data was modelled as a 

Randles Equivalent circuit and the Rct values were extracted for the fitting of the EIS data. 

The Rct values increased (Figure 81) as naphthalene became more concentrated, the system 

thus became less conductive. The Rct vs concentration of naphthalene calibration curve was 
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S-shaped in the concentration range evaluated, which is an indication of competitive binding 

(Yoji K. et. al., 2012). The Rct values increased until the biosensor was saturated and then 

started to decrease as a function of naphthalene concentration. This corroborates what was 

evaluated in Part 1, the electrochemistry (CV) of the luciferase with naphthalene additions. 

Comparing the sensitivities from CV and sensitivities obtained from EIS the conclusion was 

made that the GCE/PAA/PPy/LUC biosensor is more sensitive to the detection of 

naphthalene, than the GCE/LUC biosensor. The biosensor could detect naphthalene with a 

satisfactory sensitivity of 1×11
6
 Ω/µM (Figure 82) and a limit of detection (LOD) of 2×11

-3
 

µM results. 

 

Figure 81 Rct vs Concentration calibration plot of the GCE/PAA/PPy/LUC biosensor with 

different concentrations of naphthalene in 0.2 M PBS (pH 7). 
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Figure 82 Linear range of the Rct vs Concentration calibration curve of the 

GCE/PAA/PPy/LUC biosensor with naphthalene additions. 

 

Rct is a parameter associated with the conductivity of the novel PAA/PPy composite 3. 

Enzyme binding to naphthalene as well as to fluoranthene would result in the blocking of the 

conductive surface and hence an increase in Rct. 
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5.5.3 Electrochemical Impedance Spectroscopy of 

GCE/PAA/PPy/Luciferase and Fluoranthene 

 

Electrochemical impedance spectroscopy (EIS) can provide useful information on the 

impedance changes of the electrode surface during the fabrication process. Figure 83 shows 

the Rct vs concentration profile for increasing concentration of fluoranthene in 0.2 M PBS 

(pH 7). A fix potential of -730 mV was used for analysis binding. It is evident from the Rct 

vs concentration profile of the biosensor response to fluoranthene that there is a marked 

difference in the interfacial electrokinetics after the addition of more than 8 μM fluoranthene 

as there is sharp increase in the Rct values, indication that the system is becoming less 

conductive. This is in good agreement with the detection for the biosensor towards 

fluoranthene as determined by CV. The Rct vs concentration also showed S-shaped form 

which is an indication of competitive binding (Yoji K. et. al., 2012).  
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Figure 83 The Rct vs Concentration calibration curve of the GCE/PAA/PPy/LUC biosensor 

with increasing concentration of fluoranthene in 0.2 M PBS (pH 7). 

 

The GCE/PAA/PPy/LUC biosensor had sensitivity (Figure 84) for the detection of 

naphthalene, of 2.6 × 10
5
 M and a LOD of 8×11

-1
 µM. Compared to the GCE/LUC biosensor, 

the GCE/PAA/PPy/LUC biosensor also showed to be more sensitive towards the detection of 

fluoranthene.   
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Figure 84 Linear range of the Rct vs Concentration calibration curve of the 

GCE/PAA/PPy/LUC biosensor with fluoranthene additions in 0.2 M PBS (pH 7). 
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Chapter 6 

 

Conclusions and recommendations 

 

6.1 Conclusions 

 

Polyamic acid was chemically synthesised as a viscous liquid and powder from monomers, 

ODA and PMDA. The PAA was soluble in PBS (pH 7). Homogeneity played crucial role in 

composite preparation, thus the viscous PAA was used for composite preparation with PPy. 

A series of new polyamic acid and polypyrrole (PAA/PPy) composites was electrochemically 

synthesised in-situ and characterized in 0.2 M phosphate buffer solutions at pH of 7. To have 

some form of control over the PAA/PPy composite preparations, the polyamic acid 

concentrations was kept constant throughout the in-situ synthesis and the PPy concentrations 

were varied. A total of five PAA/PPy composites were prepared. Electrochemical 

characterization proved that PAA/PPy composites was formed as a new peak was observed, 

that was not in observed in the individual polymers (PAA and PPy) characterization. It also 

proved that PAA (E
0
2) was still present in all composites. From the CV parameters i.e. peak 

potentials and De evaluated, composite 3 was proved to have the best electrochemical 

properties out of the five composites prepared. 
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The FTIR confirms that the functionalities of both PAA and PPy are present confirming an 

interaction between the two polymers. The carboxylic and amide moieties from PAA are 

present in all the composites, confirmation that PAA is still present in the composites as PPy 

is incorporated into the PAA film.  

 

All the Raman bands characteristic to PAA was present each composite with the difference of 

intensity of these bands increasing. This shows how PPy affects the Raman spectra of pure 

PAA film on SPCE. At composite 3 from the Raman shift cm
-1

 vs composite calibration plot 

it is evident that neither the PAA nor the PPy is dominating. 

 

Morphology studies (SEM and AFM) showed that the PAA/PPy composites have structures 

incorporating both PAA and PPy. PAA had a rough-like (amorphorous) film, and PPy film 

displayed globular-like features. As the concentration of PPy was increased, the composite 

films became smoother with porous features. The conclusion was that PPy filaments were 

actually formed and anchored along the PAA matrix. Out of the five composites, composite 3 

best described the incorporation of both polymers, because as the concentration of PPy 

increased the films just became flooded with PPy as to forming homogeneous layers.   AFM 

corroborated what was observed in SEM. The presence of PPy breaks up the large scale like 

appearance of PAA and introduces a controlled laminar surface. The line roughness (Ra) 

values showed a distribution of roughness associated with PAA and PPy, and the composite 

films with equal contribution from each polymer were composite 2 and 3. 
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The interaction between the luciferase and naphthalene and fluoranthene in solution was 

investigated by Fluorescence spectroscopy. To examine the luciferase luminescence system 

for a study of the effects of naphthalene and fluoranthene on enzyme functions, each analyte 

was injected into a cuvette containing luciferase mixed in 0.2 M PBS (pH 7), and the 

corresponding change in the luciferase luminescence intensity was measured. The luciferase 

luminescence intensity gradually decreased with the increase in concentration of each 

analyte.  The decrease in the luciferase luminescence intensity was caused by competitive 

binding of the PAHs with the enzyme. From the calibration curves sensitivities of 80 µM and 

30 µM for naphthalene and fluoranthene was obtained. From the sensitivities obtained from 

fluorescence measurements, the enzyme, luciferase was more sensitive towards the detection 

of fluoranthene. 

 

The electrochemistry of the bare GCE and luciferase on GCE (GCE/LUC) was investigated 

with addition of each analyte. The GCE/LUC biosensor was more sensitive towards the 

detection of naphthalene and fluoranthene respectively obtained, 4 × 10
-5

 A/µM and  2 × 10
-4

 

A/µM compared to the bare GCE with sensitivities of 1 × 10
-4

 A/mM and 2 × 10
-4

 A/mM. 

EQCM was also used to investigate the enzyme with analyte interaction in terms of mass 

changes. The luciferase was immobilised onto the Au-quartz crystal (Au/LUC). The ∆m 

increased as a function of concentration for each analyte.  
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After synthesising the PAA/PPy composites, and investigating the interfacial properties of 

luciferase with PAHs; the application of PAA/PPy as a platform for luciferase immobilisation 

as a biosensor for PAHs, the final peace of the puzzle (thesis) was evaluated. The 

GCE/PAA/PPy/LUC biosensor evaluated using Rct values obtained from EIS. The biosensor 

had a sensitivity of 1 × 10
6
 µM for naphthalene and 2.2 × 10

5
 µM for fluoranthene 

respectively. The detection of both analytes was in good agreement based on other methods 

of detection HPLC, UV-Vis that’s in the µg/L range. 

 

From the fluorescence measurements, GCE/LUC biosensor, PAA/PPy/LUC biosensor 

fluoranthene had lower detection limits and was more sensitive than that for naphthalene.  
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6.2 Recommendation and Future work: 

 

The results indicate that the PAA/PPy/LUC biosensor is sensitive enough to detect the PAHs 

at low concentrations. However, in order that the biosensor can be fully applied for the 

detection of these PAHs in samples containing complex matrices, further optimization and 

selectivity studies would be required. A follow up procedure should include the studies of 

interfering species in the analyte solutions.  

The application of PAA/PPy/LUC biosensor should be extended to analysis of other PAHs 

that can inhibit the activity of luciferase. Once optimized, it is clear that this inhibition based 

biosensor would provide rapid monitoring of environmental occurrence of PAHs. Integration 

of the PAA/PPy/LUC biosensor into an automated system would be more attractive to 

provide the detection of many PAHs reducing the time of analysis. Miniaturization is further 

required for the biosensor to be applied for “on-site” monitoring of these PAHs. 

Additional characterization of the GCE/PAA/PPy/LUC biosensor for the detection of PAHs 

using the different composites is also suggested. 

Evaluate the response of the composites with other analytes i.e. Fe(CN)6
3+

, and study their 

electro-kinetic behaviour. 
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