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ABSTRACT 

Development of a reporter system for the analysis of Xylophilus ampelinus Type III 

secreted effectors  

 

N. P. P. Nyembe 

MSc Thesis, Department of Biotechnology, University of the Western Cape 

 

Xylophilus ampelinus, the causal agent of bacterial blight and canker of grapevines, has long 

been a threat to the table grape industry in the Western Cape, leading to severe economic losses 

due to the reduced productivity and shortened lifespan of infected grapevines. Very little is 

known about the genetic makeup of the organism, especially with regard to the factors that 

contribute to its pathogenicity. Generally, bacterial pathogens directly inject the effector 

proteins into host cells via Type III secretion system (T3SS). In the attempts to identify and 

characterize the T3 secreted effectors, different reporter plasmid systems have been used to 

study the secretion and translocation mechanisms the effectors employ during pathogenicity. 

The aim of the study was to generate a T3 reporter plasmid system for X. ampelinus that will 

allow the identification and classification of potential pathogenicity factors as members of the 

Type III secretion class of effectors. First, the avrBs1 family genes avrBs1 and avrA were 

identified and characterized. The two avirulence genes induced HR on Nicotiana tabacum 

leaves. Due to the relatedness of the X. ampelinus avr sequences to those of xanthomonads, 

and the fact that Xanthomonas avrBs1 has been successfully used in a number T3 effector 

studies, it was decided to construct an X. ampelinus T3 effector reporter vector based on the 

avrBs1 gene. The minimal segment of the X. ampelinus AvrBs1 protein C-terminus, sufficient 

for recognition inside host cells and also responsible for HR-induction was identified and 

characterized using Agrobacterium-mediated transient expression. The AvrBs157-413 HR-

inducing domain was cloned in-frame with the 3x FLAG epitope, into a broad-host range 

vector. To test the reporter vector, the full length avrBs1 sequences of X. ampelinus and 

Xanthomonas campestris pv. campestris were cloned ahead of the 3x FLAG epitope and the 

constructs were transferred into XaΔavrBs1 knockout mutant to test for protein secretion.  

Furthermore, the reporter construct was tested for Type III protein translocation on Bs1 

resistant pepper cultivar STAR 6657. Optimization of protein secretion and translocation 
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assays is however required for the improved results. This might include the application of an 

alternative protein tag to identify candidate X. ampelinus T3SS effectors.  
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1 CHAPTER 1: LITERATURE REVIEW 

1.1 The importance of grapevines in the agricultural sector   

Vitis vinifera (common grape vine) is a species of Vitis, native to the Mediterranean region, 

central Europe, and south-western Asia, from Morocco and Portugal north to southern 

Germany and east to northern Iran as well as in South Africa. There are currently between 5000 

and 10,000 varieties of Vitis vinifera grapes though only a few are of commercial significance 

for wine and table grape production. 

South Africa is one of the oldest and most reliable suppliers of table grapes nationally and 

internationally (SATI statistical booklet, 2012). In general, grapes are dried, pressed or 

consumed fresh as opposed to grapes that are processed to make wine, juice and/ or raisins. In 

South Africa, table grape is one of the most important deciduous fruit not only because of its 

consumption but also taking into consideration the employment opportunities, foreign 

exchange earnings etc. According to the SATI market value profile, in 2010 dry grapes 

contributed 31% which is 23 532 ha of the total area planted (75 025 ha)2 (SATI market value 

chain profile, 2011), suggesting that the grapes are indeed of great importance and they 

contribute a lot to the country’s economy. A 50% increase in gross value of the table grape 

production was observed over four production seasons [2006/2007 (R2 billion) to R3 billion in 

2009/2010 production season] (SATI market value profile, 2011). The 2009/2010 R3 billion 

was 7% higher than the gross value of the previous season 2008/2009 and a 100% higher than 

the gross value of grapes over a decade ago, meaning the table grape industry is growing and 

the market value is also increasing as the demand increases. 

South Africa produces a wide range of table grape varieties that are harvested over a seven 

month period starting in October and ending in May. The country’s main table grape cultivars 

and their percentage contribution to total exports are Thompson Seedless (11%), Crimson 

Seedless (13%), Red Globe (10%), Prime Seedless (11%), and Sugraone (9%) (SATI statistical 

booklet, 2012). The export demand of the seedless varieties has been increasing over the five 

past years (SATI statistical booklet, 2013/2014). An 83% increase in demand of the Far East 

Africa and 80% for Russia has been observed whereas, UK and Europe remain the main export 

destinations accounting for 79% of the South African exports (SATI statistical booklet, 

2013/2014). 
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Although the table grape industry shows the value increase and growth in production, there are 

some obstacles that halt the progress in production, one being the grapevine diseases affecting 

this crop.  

1.2 Grapevine diseases   

Grapevine is a crop that is susceptible to many diseases but the degree of susceptibility differs 

depending on the variety itself. However, when there is no pest management action carried 

out, the damage can generally be severe. The most important diseases found worldwide are 

bacterial blight, crown gall, downy mildew, powdery mildew, grey mould, anthracnose and 

black rot. Downy mildew, powdery mildew, grey mould, black rot and anthracnose are caused 

by fungi and they generally attack berries, reducing yield and quality. Bacterial blight and 

crown gall are caused by bacteria. Downey mildew is a highly destructive disease of 

grapevines caused by Plasmopara viticola (Prajongjai et al., 2014). Infected berries turn 

colour prematurely or develop spotted appearance. Anthracnose caused by Elsinoe ampelina 

reduces the quality and quantity of the fruit and the vine (Ellis and Erincik, 2008). Grey mould 

is generally a postharvest disease caused by Botrytis cinerea infecting grapes with fungal 

spores which turn to become more susceptible as they mature and increase their sugar content 

(Liu et al., 2010). Powdery mildew caused by Erysiphe necator is a major problem when not 

controlled. It can destroy infected clusters or reduce their quality (Gadoury et al., 2012). In 

addition to fungal diseases, Crown gall caused by Agrobacterium vitis is a difficult disease to 

control and it reduces vine vigour and growth, thus reducing crop yield (Kado, 2002). 

The bacterial blight is also one of the important grapevine diseases. The disease is caused by 

Xylophilus ampelinus. The disease is prominent in Vitis vinifera cultivars in the Mediterranean 

area and in isolated locations in the Western Cape region of South Africa (Erasmus et al., 1974; 

Garau et al., 1988; Bradbury, 1991). Bacterial blight is a serious, chronic and destructive 

vascular disease affecting commercially important grapevine cultivars. Losses arise from 

reduced productivity and shortened life of diseased vines. Some cultivars are more susceptible 

than others and there are no control measures known thus far (Botha et al., 2001). This disease 

was described initially in Crete (Greece) as “Tsilik marasi” (Panagopaulos, 1969), it was then 

announced in Spain as “necrosis bacteriana” (Lopez et al., 1980) and in South Africa as 

“vlamsiekte” (Du Plessis, 1940).  The pathogen has been isolated in the number of different 

countries, but only from infected grapevines showing bacterial necrosis and cankers (Grall and 

Manceau, 2003). 
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1.3 Xylophilus ampelinus 

1.3.1 Description and phylogenetic classification  

Xylophilus ampelinus was originally known as Xanthomonas ampelina and classified as a 

member of the genus Xanthomonas because it possesses the following features of this genus: 

it is an aerobic, non-spore forming Gram negative rod-shaped organism with one polar 

flagellum. It has oxidative carbohydrate metabolism, produces a yellow insoluble pigment and 

it has a mean DNA base composition similar to that of genus Xanthomonas (Willems et al., 

1987). However, hybridizations between rRNA from Xanthomonas campestris NCPPB 528 

type strain and other Xanthomonas species DNA showed that Xanthomonas ampelina is 

definitely not a member of the genus Xanthomonas (De Vos and De Ley, 1983). There are also 

some other additional features that differentiate Xanthomonas ampelina from other 

Xanthomonas species, such as the absence of xanthomonadins (Starr et al., 1977), very slow 

growth at the optimal temperature of 24 °C, the presence of urease activity, utilization of meso-

tartrate and no production of acid from glucose and sucrose (Panagopaulos, 1969). On the basis 

of biochemical tests and DNA-rDNA hybridisation, the bacterium was transferred from the 

genus Xanthomonas to the new genus Xylophilus and renamed as Xylophilus ampelinus 

(Willems et al., 1987).  

The genus is described as a slow growing, yellow pigmented bacteria belonging to the family 

Comamonadaceae in the β-subclass of Proteobacteria (Willems et al., 1991a). Other members 

of the family Comamonadaceae, are Acidovorax, Comamonas, Variovorax, Hyrogenophaga 

genera as well as a number of phytopathogenic Pseudomonas species (Wen et al., 1999) based 

on the relationships determined by extensive DNA-RNA hybridization data.  

The species, Xylophilus ampelinus, is the only member in its genus Xylophilus. On nutrient 

agar (NA), cells occur singly, in pairs or in short chains and may attain diameters of 0.2 to 0.3 

and 0.6 to 0.8 mm (Willems et al., 1987) in about 6-10 days.  Colonies appear circular, semi-

translucent, slightly raised, glistening and pale to yellow. The bacterium grows well in the 

medium containing yeast extract, bacto-peptone, glucose and bacto-agar (YPGA) when 

incubated at 28°C. 
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1.3.2 Disease occurrence, symptoms and distribution 

X. ampelinus survives in the vascular tissues of infected plants (Bradbury, 1991), and is found 

mainly xylem vessels (Grall and Manceau, 2003). The bacteria enter the plant through natural 

and artificial wounds or openings and spread to the cell sap and xylem vessels. It is believed 

that the environmental conditions in these parts of the plant favour bacterial growth and 

development (Ridé and Marcelin, 1983; Grall and Manceau, 2003). It is however, not known 

how the bacteria spread within the xylem system, and how the plants respond to this invasion 

(Chatelet et al., 2011). In the xylem, the bacterial cells develop as assemblages, called biofilms 

(Grall and Manceau, 2003). This xylem tissue invasion is also typical for other bacteria like 

Xylella fastidiosa (Davis et al., 1983), Pseudomonas syzygii; (Roberts et al., 1990), Pantoea 

stewartii (Pataky, 2004), and Ralstonia solanacearum (Hayward, 1991).  

Bacterial blight of grapevine symptoms have been reported in various regions of the world. In 

Slovenia, the disease was localized to one vineyard (Dreo et al., 2005). Although the disease 

is reported as absent in Canary Islands, Tunisia, Argentina, Portugal, Switzerland, and in 

Yugoslava, these records may be unreliable (Bradbury, 1986). In Crete, Italy, Sardinia, Sicily, 

and Moldova the disease is still present (Bradbury, 1986; CABI/EPPO, 1999). The distribution 

of the disease in Spain, Greece and France is restricted and the disease is still invasive in France 

(CABI/EPPO, 1999; Bradbury, 1986; Manceau et al., 2005). In Turkey, the disease has been 

eradicated (CABI/EPPO, 1999). The disease is still present in the some parts of South Africa 

(Botha et al., 2001).  

The life cycle of X. ampelinus has not yet been completely clarified. The primary infections 

occur mainly on shoots that are one to two years old, leaves, blossoms (Figure 1A) and grapes. 

The first signs of infection are linear reddish-brown streaks on the shoot, extending from the 

base to the shoot tip (Figure 1B). Infected plants may also show delayed bud burst where 

stunted shoots have been consumed by bacterial blight at early stages (Figure 1C).  

Cracks appear along such shoots, become deeper and longer, forming cankers. Young shoots 

may develop pale yellowish-green spots on the lowest internodes. These expand upwards on 

the shoot, darken, crack and develop into cankers. Cracks, and later cankers, also form on more 

woody branches later in spring. Shoots subsequently wilt, droop and dry up. In summer, 

cankers are often seen on the sides of petioles, causing a characteristic one-sided necrosis of 

the leaf (Figure 1D). 
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Figure 1.1: Bacterial blight symptoms. (A) Destruction of young bunch of infected vines 

during flowering. The dying bunch on the left is severely destructed by bacterial blight disease 

compared to the intact bunch on the right. (B) Infected vine showing development of small 

lenticular cracks on young shoots. (C) Infected vine showing delayed bud burst where stunted 

shoots are consumed by bacterial blight at an early stage. (D) Angular reddish-brown lesion on 

infected grapevine leaf, characteristic of bacterial blight when the leaves are infected through 

the stomatal openings. The leaf on the right shows leaf-cupping, another characteristic of 

bacterial blight. Anonymous, Wynboer 2012 

 

The pathogen is transmitted with pruning tools (Ridé et al., 1977), therefore entering healthy 

tissues through pruning wounds during windy and wet seasons. The pathogen then moves to 

the healthy shoots in early summer because the disease is often associated with warm, moist 

conditions. The spreading of the disease is favoured by overhead sprinkler irrigation water and 

the pathogen may also be carried in irrigation water (Ridé et al., 1977). The bacteria survive in 

wood, therefore might be transmitted from nursery to nursery through infected cuttings. In the 

vineyards the local spread occurs in rows starting from the disease focal point. 

 

A B 

C D 
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1.3.3 Economic impact and disease control 

Severe infection of susceptible cultivars can lead to serious harvest losses, with negative impact 

on the economy and the environment. Outbreaks of the disease happen periodically and many 

years may pass between symptom outbreaks in infected vineyards. In 1940, Du Plessis 

observed harvest losses of >70% in South Africa. Vines infected one year weakened and died 

back later on in the subsequent years. In France, the disease is still very active in some wine-

producing areas (Manceau et al., 2005). 

The disease was important in Spain in the past (Lopez et al., 1980) but it has not been observed 

recently. In Greece, the disease is still present in Crete, especially in Iraklion, where it occurs 

on the very susceptible cultivar Sultanine.  

Chemicals have failed to effectively control the disease. In the past few years the control of the 

disease has been only obtained through viticultural practices such as destroying infected shoots, 

carrying out pruning in dry weather and as late as possible, and disinfecting pruning tools 

thoroughly during the operation. Most farmers have avoided the use of overhead sprinkler 

irrigation as it seemed to promote spreading of the disease. However, these efforts never 

stopped the disease occurrence, they only reduced the spread of the disease. Other factors that 

contribute to the constant recurrence of the disease include the lack of totally resistant grape 

cultivars, and favourable environmental conditions.  

1.3.4 Bacterial detection and molecular characteristics 

X. ampelinus is a slow–growing bacterium, which makes it difficult to isolate pure cultures 

(Panagopaulos, 1969). This bacterium has been successfully isolated from the grapevines 

showing the disease symptoms associated with this pathogen by a number of research groups 

(Serfontein et al., 1997). X. ampelinus can be isolated on non-selective YPGA and NA media. 

The bacteria grow best when incubated at temperatures ranging from 25 °C to 28 °C. Direct 

isolation, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), polymerase-

chain reaction (PCR), and real time PCR can be used as screening tests. A number of PCR 

primer pairs have been developed over the years for the detection of X. ampelinus (Botha et 

al., 2001; Manceau et al., 2005; Dreo et al., 2007). 
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1.4 Plant-pathogen interactions   

In the environment where there are constant threats against the plants such as the infecting 

pathogens, the plants learn to fight off the infection by employing fast defense responses. The 

lack of immunity specialized cells in plants mean that plant defense responses only depend on 

the pathogen recognition by each cell.  

Plant pathogens have conserved molecules called elicitors, generally referred to as pathogen- 

or microbe-associated molecular patterns (PAMPs or MAMPs), which include flagellin, 

lipopolysaccharide, and peptidoglycan. During infection these MAMPs are recognized as non-

self by the plant pathogen pattern recognition receptors (PPRs). These PPRs are localized on 

the surface of the plant cells. Upon MAMPs recognition by PPRs the first phase of defense 

responses is observed and it is termed MAMP-triggered immunity (MTI) (Jones and Dangl 

2006).  This immunity can protect the plant to a certain extent and it is generally sufficient for 

resistance against most microbes.  However, the MTI is suppressed by direct transportation 

of bacterial effector proteins via the T3SS ( He et al., 2006; Kim et al., 2008). In this case, the 

T3SS apparatus is believed to breach the membrane receptors or PPRs, meaning the effector 

proteins are introduced inside the cells where they can be rendered virulent. This results in 

effector-triggered susceptibility (ETS). The second line of defense often involves the plant 

resistance (R) genes. This defense model was first introduced in 1942 by Flor, and it was termed 

gene-for-gene interaction. It involved the recognition of the avirulence genes or bacterial 

effectors by the R gene products in the cells. This defense reaction is now termed Effector-

triggered immunity (ETI) (Jones and Dangl, 2006). ETI is basically the stronger or accelerated 

MTI which leads to rapid programmed cell death known as hypersensitive response (HR). The 

plant-pathogen interactions are classified into compatible and incompatible interactions. 

Incompatible interactions are cultivar-specific and determined by ETI and generally induce 

HR. In contrast, compatible interactions are thought to lack ETI leading to susceptibility and 

disease development. 

1.4.1 The Type III secretion system 

Bacteria have a class of effectors that are injected directly to the host plant cells by the 

specialized Type III secretion system (T3SS). The first T3SS-associated filamentous structure 

was discovered in the plant pathogen Pseudomonas syringae (Roine et al., 1997). 

Characterization of the T3SS was initially done in the mammalian pathogen Salmonella 

enterica (Kubori et al., 1998). The T3SS was found to have fascinating characteristics 
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including the two pairs of rings that interact with the cytoplasmic and outer membrane 

respectively (Figure 1.2). This filamentous extension resembles a needle-like structure and it 

was also found and characterized in all major plant pathogens with an active T3SS (Roine et 

al., 1997; Van Gijsegem et al., 2000; Weber et al., 2005). The Hrp pili from plant pathogenic 

bacteria are approximately a micrometre longer than the animal pathogen Hrp pili, simply 

because plant pathogen Hrp pili span the thick plant cell wall that is generally an obstacle in 

protein transport. The needle structure, called the Hrp pilus, serves as a channel for secreted 

proteins or effectors from the pathogen through the host cell plasma membrane (Jin et al., 2001; 

Li et al., 2002).  

 

Figure 1.2: T3SS from plant pathogenic bacteria. The Hrp pilus breaches the plant cell wall 

membrane where it facilitates the secretion of the effector proteins. Abbreviations: PM- plasma 

membrane; OM- outer membrane; and IM- inner membrane (Büttner and He, 2009) 

 

In Xanthomonas, the T3SS is encoded by an approximately 23-25 kb hrp (hypersensitive 

response and pathogenicity) gene cluster (Weber et al., 2005; Koebnik et al., 2006; Büttner 
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and Bonas, 2006; Cornelis, 2006) which was first so described Lindgren et al. (1986). 

Mutations in the Xanthomonas T3SS pathway renders all strains non-pathogenic suggesting 

that the T3SS is highly essential for pathogenicity (White et al., 2009; Jiang et al., 2013; 

Rossier et al., 2000). The T3SSs in phytopathogenic bacteria are divided into two groups, group 

I and II. Group I T3SS includes Erwinia spp., Pantoea agglomerans and P. syringae and group 

II T3SS includes Xanthomonas spp. and R. solanacearum.  

Group I T3SSs are regulated by HrpL, a member of ECF (extra-cytoplasmic function) 

subfamily of alternative sigma factors (Mucyn et al., 2014; Xiao et al., 1994; Xiao and 

Hutcheson, 1994; Tang et al., 2006; Wei et al., 2000; Merighi et al., 2003). The HrpL protein 

recognizes and binds to the consensus sequence 5ʹ-GGAACC-N15-16-CCACNNA-3ʹ named the 

Hrp box in the promoter of Type III genes (Xiao and Hutcheson, 1994; Shen and Keen, 1993; 

Nissan et al., 2005). HrpS and HrpR proteins are positive regulatory proteins that activates 

hrpL transcription and they belong to the NtrC family of the two-component regulatory proteins 

(Wei et al., 2000). In Erwinia spp., a two-component signal transduction system HrpX/HrpY 

regulates the expression of hrpL which is partially controlled by HrpS (Wei et al., 2000; Wei 

and Beer, 1995). In addition to group I T3SS regulation, P. stewartii and Pantoea agglomerans 

pv. gypsophilae,phosphorylated HrpY activates transcription of hrpS and autoregulates the 

hrpXY operon (Merighi et al., 2003; Niza-Koren et al., 2003).  

Regulation of group II T3SSs depends on a member of the AraC family transcription activators, 

designated HrpB in R. solanacearum and HrpX in Xanthomonas species (Cunnac et al., 2004; 

Wengelnk and Bonas; 1996; Wengelnik et al., 1996). Many HrpX-regulated genes of 

Xanthomonas spp. contain a cis-element plant-inducible promoter (PIP) box motif (TTCGC-

N15-TTCGC) in their promoter region (Fenselau and Bonas, 1995; Koebnik et al., 2006). 

During Type III gene regulation, HrpX binds to the PIP box motif thus regulating downstream 

expression of T3SS genes (Wengelnk and Bonas; 1996; Wengelnik et al., 1996; Huang et al., 

2009). Type III genes that are regulated by HrpB often have a HrpII box with a consensus 

sequence TTGG-N16-TTGG (Cunnac et al., 2004). The PIP and hrpII boxes appear to be 

equivalent to each other and they are generally described by consensus sequence TTCGB-N15 

–TTCGB, where B refers to any amino acid base except adenine (Koebnik et al., 2006). This 

means that single nucleotide replacements are tolerated at all positions except for the central 

cytidine of each half-site, leading to 10-30% residual promoter activity (Tsuge et al., 2005) 
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In R. solanacearum, regulation often involves the outer membrane protein PrhA (plant 

regulator of hrp genes), membrane protein PrhR, transcription activator PrhI, PrhJ, HrpG and 

HrpB (Büttner and Bonas, 2006; Marenda et al., 1998). PrhA detects non-diffusible signals 

from the plant cells and transduces the signal to PrhJ which controls hrpG gene expression 

(Marenda et al., 1998; Fu, 2008). HrpG then activates the hrpB regulatory gene, which in turn 

induces the expression of the Type III genes. In both Xanthomonas spp. and R. solanacearum 

HrpX and HrpB are activated by HrpG protein which belongs to the OmpR family of the two-

component signal transduction response regulators (Wengelnik et al., 1996; Wengelnik et al., 

1999).  

In addition to the PIP-box, there is a secretion signal carried in the first 50 amino acids of 

effector proteins (Guttman et al., 2002; Petnicki-Ocweija et al., 2002; Büttner et al., 2004). 

Type III-dependent secretion signal is declared to be located within the first 15-20 amino acids 

of the effector protein N-terminus (Guttman et al., 2002; Petnicki-Ocwieja et al., 2002, Collmer 

et al., 2002). In addition to secretion signal, the tanslocation signal is located within the first 

50-100 amino acids (Sory et al., 1995; Mudgett et al., 2000; Schechter et al., 2004).   

However, for some T3 secreted effectors, N-terminal secretion signal is not sufficient for 

maximal secretion. In such cases efficient type III protein export from pathogens to host cells 

depends on the presence of a corresponding chaperone (Parsot et al., 2003; Büttner et al., 2004; 

Büttner and He, 2009). Chaperones are generally small, leucine-rich, and acidic proteins that 

bind to and often stabilize secreted proteins (Fieldman and Cornelis, 2003; Parsot et al., 2003). 

The importance of type III chaperones was initially declared for Erwinia amylovora and P. 

syringae (Gaundriault et al., 2002; Shan et al., 2004). The hrp gene cluster also contains the 

hpa (hrp-associated) genes which contribute to plant-pathogen interactions (Huguet et al., 

1998). HpaB from Xcv has typical features of Type III chaperone and it has been reported 

responsible for translocation of five effector proteins, making it an important pathogenicity 

factor (Büttner et al., 2004; 2006). 

The T3SS secretes several translocator proteins which facilitate the translocation of effector 

proteins across the host cell membrane. HrpF from Xcv is a secreted translocator essential for 

the effector protein translocation (Büttner et al., 2002). HrpF contributes to bacterial 

pathogenicity and effector protein translocation. During protein secretion, T3SS secrete other 

proteins called harpins into plant cells. Not much is known regarding their role in the process, 
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but they contain distinct motif domains that are probably involved in the interaction of harpins 

with cell wall components (Büttner and He, 2009). 

1.4.2 Bacterial effectors 

Effector proteins possess important functions such as invading the host tissue, suppressing the 

host immune system and modulating host signalling pathways to promote cell infection as well 

as promoting pathogen growth.  

1.4.2.1 Identification of effectors 

Effector research has been carried out by many research groups in past decades and it is still a 

very important and expanding field. Through the understanding of effectors and their targets, 

there is a possibility that these effectors can be used to identify strategies for crop improvement. 

A number of discoveries have been made in effector research dating back to the discovery of 

the first pathogen effector, avrA, by Staskawicz et al., in 1984. In 1996, Alfano and Collmer 

made the major discovery that the effectors are injected directly into the host plant cells 

suggesting that these effectors have intracellular targets (Alfano and Collmer, 1996). About a 

decade ago, the genomic sequence information was made available for several plant bacterial 

pathogens (da Silva et al., 2002; Buell et al., 2003). This sequence information led to the initial 

identification of putative effectors and pathogenicity factors through bioinformatic approaches 

(Büttner et al., 2003). To date, next generation sequencing technologies have provided the 

genomic sequences of many plant pathogen species playing a huge role in improving effector 

discovery strategies. The study of plant pathogen effectors involve both effector discovery and 

target discovery strategies (Alfano, 2009; Boch and Bonas, 2010). 

The classic strategy to identify a pathogen effector, is to determine if it induces the effector-

triggered immunity (ETI) when expressed in a virulent pathogen. This approach was introduced 

by Staskawicz et al., (1984) in the search of effectors in Pseudomonas species. The effector 

proteins with the ability to trigger ETI and induce HR were characteristically named avirulence 

(Avr) proteins. With the subsequent suppression of the basal defense responses and the ability 

of the pathogens to directly inject the effectors using the T3SS, the plants also evolved the 

ability to recognize these avirulence (avr) genes with their corresponding R genes (Jones and 

Dangl, 2006).  
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1.4.2.2 Bacterial Type III effectors 

a) Non-TAL effectors  

Avirulence genes occur in bacteria, viruses, fungi, nematodes and insects. These genes have 

the ability to betray the pathogen to the host defense system causing the plant to elicit resistance 

response against the infecting pathogen. The avirulence genes are therefore regarded as a major 

key to understanding host-pathogen interaction. The avr genes are generally defined by the 

corresponding plant resistance (R) genes, which upon encounter, in most cases results in HR 

or localized cell death. The avr genes are delivered directly to the host cells by the T3SS for 

two major purposes among others i.e. to enhance virulence and invasiveness. Xanthomonas 

campestris pv. vesicatoria (Xcv) avrBs2 gene has been proven to be involved in aggressiveness 

in pepper plants (Kearney and Staskawicz, 1990). The mutations in this avr gene and its 

homologs results in reduced pathogen ability to multiply in the host plant cells suggesting its 

importance in disease formation (Kearney and Staskawicz, 1990).  

 The avr genes have been classified as having dual functions in both virulence and in 

avirulence. These genes have effect on virulence only when present in appropriate strains, 

species and/ or pathovars. Avirulence gene products with virulence effects are targeted to 

specific organelles within the cell. Non-TAL effectors are structurally and functionally diverse 

group. Non-TAL effectors are highly conserved among Xanthomonas strains. They share 

homology among strains of this genera and most of them are associated with virulence. Most 

non-TAL effectors have PIP box motif (X. oryzae pv. oryzae XopL and XopAD effector genes) 

suggesting that their expression is regulated by HrpX (Jiang et al., 2009; Furutani et al., 2009; 

Song and Yang, 2010). The functions of some are directly linked with their functional domains 

or motifs (Ryan et al., 2011), whereas some are still of unknown importance. These effectors 

contribute to minor and major effects of the pathogen virulence (Furutani et al., 2009). Not 

much has been reported on non-TAL effectors especially with regards to their regulation. 

Xanthomonas outer membrane proteins (Xops) are known as non-TAL bacterial effectors that 

are delivered to the plant cell via Hrp T3SS (Cheong et al., 2013). The major roles of these 

effectors involve modulation of signalling in plant defence responses (Mudgett, 2005; Metz et 

al., 2005). Among a lot other Xops, XopN is secreted in a Hrp T3SS-dependent manner, where 

it is translocated into the cell cytoplasm and its expression is regulated by HrpX (Furutani et 

al., 2009). 
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AvrBs2 was the first to be classified as non-TAL effector (Minsavage et al., 1990; Zhao et al., 

2013). AvrBs2 has a significant role in virulence (Zhao et al.,2011). Additionally, AvrBs2 

activates Bs2 resistance protein in resistant plants thus allowing the plant to suppress delivery 

of T3SS effectors into plant cells (Zhao et al., 2011).  

b) TAL effectors 

 TAL effectors belong to the AvrBs3 family class of avr genes and are found in several but not 

all pathogenic members of genus Xanthomonas (Bogdanove et al., 2010). The proteins from 

this family have a transcriptional activation domain in the carboxy (C-) terminus, which is 

highly conserved among family members and required for the avirulence activities of some 

members such as AvrBs3, AvrXa10, and AvrXa7 (Zhu et al., 1998; 1999) from the genus 

Xanthomonas. TAL effectors have a common N-terminus required for T3 secretion and a C-

terminus containing nuclear localization signals (NLSs) as well as the acidic activation domain 

(AAD). TAL effectors are injected via the T3SS into plant cells. Upon their delivery to the host 

plant cells they enter the nucleus where they bind to the TAL effector-specific binding 

sequences and turn on the downstream genes. Some TAL effectors activate host genes that 

facilitate bacterial colonization and spreading. The plants can either choose to recognize them 

or be victimized, therefore the TAL effectors can be virulence factors, plant-recognized 

avirulence factors or both (Bogdanove et al., 2010).  

TAL effector targets were initially identified for AvrBs3 in pepper plants (Marois et al., 2002). 

In pepper plants the AvrBs3 causes hypertrophy, a condition that results due to the enlargement 

of the mesophyll cells in infected plant tissue and it might also help the pathogen to spread to 

other healthy tissues (Kay et al., 2007). Although the bacteria have evolved the T3SS to 

overcome and suppress plant immunity, plants have developed the so called decoys (van der 

Hoorn and Kamourn, 2008) or mousetraps (Boch, 2009) to detect effector activity thus 

conferring resistance against TAL effectors. Xa27 was the first resistance gene to recognize 

TAL effector AvrXa27 (Gu et al., 2004) in rice resistant lines following the infection with X. 

oryzae pv. oryzae. Xa27 induces plant defense reaction but not cell death (Wu et al., 2008).  

Moreover, the AvrBs3 family effectors have shown some important features regarding its 

DNA-binding activity. TAL effectors have the highly repetitive central domain which controls 

the specificity of these effectors (Hebers et al., 1992). This specificity helps the effectors to 

have an affinity for DNA (Yang et al., 2000; Boch et al., 2009) inside the plant host cell 
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therefore, promoting the production of the effector DNA which in turn result in complete cell 

disruption.  

1.4.3 Bacterial effector structure and function 

Bacterial effectors have a number of functions that differ among the proteins and their functions 

are expressed in different levels depending on the strain and the host plant. This all comes to 

the saying that successful growth of the pathogenic bacteria in a plant host is directly associated 

with their ability to interfere with plant defense responses. Bacterial interference with host 

immunity can be linked to the action of specific T3 secreted effectors within the infected cells 

(Mudgett, 2005). Therefore, an infecting pathogen requires T3SS to transfer the effectors to 

the plant host.  

Once the effectors are translocated, they have two major roles to play inside the host cell either 

promoting the disease (virulence) or betraying the pathogen to the plant host defences 

(avirulence).  

The expression of X. campestris pv. vesicatoria XopC and XopJ is regulated by both HrpG and 

HrpX (Noël et al., 2001; 2003). Both XopC and XopJ encode T3 secreted proteins and their 

N-terminal domains contain type III translocation signals. These proteins have been proven to 

contribute to pathogen’s virulence (Noël et al., 2003). XopN is positively regulated by HrpX 

and it acts as an important virulence factor (Cheong et al., 2013). XopD is nuclear localized 

effector (Hotson et al., 2003) targeting nuclear-sumoylated proteins, where it functions in 

suppressing symptom production. Like TAL effectors XopD is a DNA-binding protein that 

alters host transcription thus promoting pathogen growth while delaying the onset of symptoms 

(Kim et al., 2008).  

AvrBs3/PthA family is distinguished by the central repetitive region containing varying 

numbers of near-identical repeats of 34 or 35 amino acids (Van der Ackerveken et al., 1996). 

Differences between the family members in terms of their biological functions depend on the 

particular repetitive region (White et al., 2009). Therefore shuffling of specific repetitive 

regions can disrupt avirulence activity of these effectors (Hebers et al., 1992). Expression of 

these genes strongly rely on the NLSs since their recognition and roles are within the host plant 

cell (Van der Ackerveken et al., 1996). 

The roles that some of these effectors play inside host cells are still under investigation. Some 

roles are purely regulated by putative structural motifs and or the functional domains within 
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these effectors. A variety of putative structural motifs contained in the primary structure of the 

T3 secreted effectors provides insights into their biochemical function (White et al., 2009).  

1.4.4 Methods for identification of T3Es 

The best starting point for identifying effectors is at the genome sequence of a pathogen. About 

a decade ago, genomic sequence information was made available for several plant pathogens 

i.e. X. campestris pv. campestris strain ATCC 33913 (da Silva et al., 2002); R. solanacearum 

strain GM1000 (Salanoubat et al., 2002); P. syringae pv. tomato strain DC3000 (Buell et al., 

2003; Collmer et al., 2002). Accumulation of plant pathogen genome sequences is expected to 

result in identification of a large number of plant pathogen effectors over the next decade. 

Sequence homology among effectors has not only made it easier to classify them but it has also 

facilitated the identification of a number of effectors. Bioinformatic approaches have played a 

significant role in identification and characterization of putative effectors by comparing their 

sequences to known effectors or the presence of conserved motifs sequence suggesting a certain 

role inside host cells (Noël et al., 2003; Büttner et al., 2003).  

Generally in plant pathogens, regulation of effector expression depends on specific regulatory 

proteins such as HrpX , HrpL that recognize conserved sequence motifs (PIP, Hrp, hrpII boxes) 

in effector genes. The presence of these conserved sequence motifs have helped classifying 

such effector genes as members of the T3 effector class (Jiang et al., 2009). In some cases 

additional screens have been employed, such as determining the involvement of T3SS 

translocons and chaperones, suggesting that effector gene in question is secreted and 

translocated in a T3-dependent manner (Jiang et al., 2009). 

Studies show that bacterial effectors have the ability to suppress host innate immunity (Boller 

and He, 2009; Block et al., 2008; Zhou and Chai, 2008) except for TAL effectors that induce 

transcription of susceptibility genes in the host plant (Kay and Bonas, 2009). A classic strategy 

to identify effector genes has been used for over a decade. This strategy involves determining 

whether or not effector genes induce effector-triggered immunity (ETI) when expressed, 

simply referred to as R gene-mediated responses (Astua-Monge et al., 2000a; Bonas et al., 

1989; Ronald and Staskawicz, 1988). Later in the years, improvements in T3 effector 

identification assays were made. Assays that are independent of R-gene responses have 

facilitated the analysis of T3 effector secretion and translocation. Assays involving avirulence 

reporter fusions (Greenburg and Vinatzer, 2003; Guttman et al., 2002) and/ or calmodulin-
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dependent adenylate cyclase (Cya) activity assays (Casper-Lindley et al., 2002; Schetcher et 

al., 2004) were developed and tested. 

The calmodulin-dependent adenylate cyclase (Cya) of Bordetella pertussis cyclolysin was 

initially applied by Casper-Lindley and colleagues as a reporter protein to study the direct 

translocation of Xanthomonas effector protein AvrBs2 into the host cells (Casper-Lindley et 

al., 2002). Adenylate cyclase activity (production of cAMP) depends on the presence of 

eukaryotic plant calmodulin and is only active after translocation from the prokaryotic cell into 

the eukaryotic plant cell. AvrBs2:cya fusion resulted in increased levels of cAMP (formed by 

conversion of ATP to 3',5'-cyclic AMP) in the cell cytosol when expressed in wild type Xcv 

expressing the inner membrane protein hrcV suggesting that translocation of effectors to the 

cell cytosol is T3-dependent (Casper-Lindley et al., 2002). The Cya translocation reporter was 

also employed in studying Pseudomonas T3SS targeting signals and novel proteins (Schechter 

et al., 2004). The AvrPto-Cya fusion helped determine that effector proteins can be translocated 

into plant cells regardless of their minimal secretion in culture, and three novel effector proteins 

were also identified.   

In addition to Cya reporters, effector regions of known effectors truncated at the N-terminal 

domain have been used as reporters. Truncated AvrRpt281-255 and AvrRpt2101-255 were applied 

in effector assays to identify Pseudomonas candidate effectors (Vinatzer et al., 2005). The 

AvrRpt2 protein has an N-terminal secretion signal domain that is distinct from the HR-

inducing domain carrying the effector activity (Mudgett and Staskawicz, 1999). The effector 

region devoid of the N-terminal secretion signal can be delivered into plants when fused to the 

N-terminal domain of the putative effector (Mudgett et al., 2000; Guttman and Greenberg, 

2001). A number of effector genes have been identified using this reporter fusion.  

The HR-inducing domain of Xcc AvrBs1 has also been employed as a reporter to characterize 

X. campestris pv. campestris XC1553 and to prove that XC1553 carries the translocation signal 

in its N-terminal domain suggesting that is indeed a T3 secreted effector (Xu et al., 2008). The 

similar domain was employed by Jiang et al., (2009) to characterize genes with the PIP box 

(plant-inducible promoter) which mediates the HrpX gene regulation in Xanthomonas thus 

classifying them as Type III secretion class of effectors. 

The HR-inducing domains of the effector proteins have been widely applied as reporter fusion 

proteins to identify and characterize other candidate effectors (Jiang et al., 2009; Van der 

Ackerveken et al., 1996; Nöel et al., 2003; Weber and Koebnik, 2005; Xu et al., 2008). 

http://en.wikipedia.org/wiki/Adenosine_triphosphate
http://en.wikipedia.org/wiki/Cyclic_adenosine_monophosphate
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Furthermore, secretion assays have been widely applied to determine if candidate effectors are 

secreted in T3-dependent manner before they can be classified as members of T3SS. A number 

of immune tags have been successfully used in secretion assays, such as HA (hemagglutinin); 

FLAG, 3x FLAG and His- (Histidine) tags. The use of a C-terminal HA-tag helped in validating 

the C-terminus of AvrRpt2 as a reporter for T3SS-dependent translocation of putative effectors 

into plant cells by Pseudomonas species (Vinatzer et al., 2005). The HA-tag was also employed 

in the identification of harpins similar to P. syringae HrpK1 promoting translocation of T3 

effectors (Kvitko et al., 2007). In other studies, His-tag has been used. Its application in 

identification of a novel effector protein EspI from a mammalian pathogen Citrobacter 

rodentium resulted on the detection of the protein in wild type culture supernatant suggesting 

that the protein requires a functional T3SS for secretion into host cells (Mundy et al., 2004). In 

addition, the FLAG epitope has also been widely used. Van der Ackerveken et al. (1996) made 

a major observation on the AvrBs3 effector, using the FLAG epitope. Fusing the FLAG-epitope 

to the C-terminus of AvrBs3, and replacing the serine stop codon revealed that nuclear 

localization of AvrBs3 and its activity are correlated, meaning that recognition of this protein 

occurs inside the host plant cells (Van der Ackerveken et al., 1996). The FLAG peptide is 

encoded by the amino acid sequence, DYKDDDDK. FLAG epitope is more hydrophilic than 

other common epitope tags and therefore less likely to denature or inactivate proteins to which 

it is attached. Li et al., used expression of a FLAG-tagged version of HrpA in order to 

distinguish basal or apical secretion of HrpA subunits (Li et al., 2002). A similar experiment 

was used to study the role of the hrp pilus in T3 protein secretion in Pseudomonas (Li et al., 

2002; Jin and He, 2001; Ham et al., 1998). The FLAG epitope has been recently used in the 

study of establishing an inducing medium for type III effector secretion in X. campestris. The 

expressed effectors fused with FLAG epitope were detected using Anti-FLAG M5 polyclonal 

antibody and goat anti-rabbit IgG antibody (Jiang et al., 2013). 

Putative type III effectors can therefore be identified and characterized using reporter protein 

fusions consisting of the HR-inducing domain of an avr gene fused to an immuno-detectable 

tag in secretion assays. 
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1.5 Aims of the study  

The aim of this study was to generate the reporter plasmid system that will allow the 

identification and classification of potential effectors as members of the Type III Secretion 

class of effectors, in Xylophilus ampelinus. The first objective of the study was to identify and 

characterize an avrBs1-family avirulence gene in X. ampelinus using bioinformatic approaches 

and hypersensitive response (HR) assays. The mutant was essential in the testing of the reporter 

system. The second objective was to use the HR-inducing domain of the avrBs1 gene 

characterized in the first objective to develop the T3 effector reporter plasmid system for X. 

ampelinus. In order for the plasmid system to work in X. ampelinus, an avrBs1 gene knockout 

mutant also had to be created via overlap extension PCR and allelic exchange. Using the avrBs1 

knockout mutant as a recipient, the reporter system was tested through in vitro secretion and in 

vivo translocation assays.  

The reporter plasmid system developed in this study will be used in the X. ampelinus Type III 

secreted effector research by cloning N-terminal domains of putative effectors in front of the 

HR-inducing domain of avrBs1 in the reporter plasmid. The analysis and classification of the 

putative effectors may give better understanding of the pathogen’s virulence and/ pathogenicity 

factors. 
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2 CHAPTER 2: Identification and characterization of avrBs1-family avirulence genes 

from Xylophilus ampelinus 

2.1  INTRODUCTION 

Pathogenicity of many Gram negative bacterial pathogens of plants and animals depend on the 

specialized Type III secretion system (T3SS) which spans both bacterial and host cell 

membranes and is associated with the extracellular appendage referred to as the needle complex 

for animal pathogens or the Hrp pili for plant pathogens (Büttner and He, 2009; Cornelis and 

van Gijsegem, 2000; Galan and Collmer, 1999).  The T3SS mediates protein secretion into the 

extracellular medium as well as translocation of effector proteins into the host cell (Büttner and 

He, 2009). Mutants with mutations in the T3SS tend to lose pathogenicity, indicating that the 

functions of the effector proteins inside the host cell are essential for its pathogenicity (Büttner 

and Bonas, 2002, Galan and Collmer, 1999). 

In plant pathogens, a number of effectors have been identified as the products of avirulence 

(avr) genes that betray the pathogen to the resistant plant surveillance system (Collmer, 1998). 

Generally, recognition of avr gene products by corresponding plant resistance (R) gene 

products lead to the specific induction of a strong defense response called effector-triggered 

immunity (ETI) that often results in the hypersensitive response (HR) (White et al., 2000; Noël 

et al., 2003), a rapid localized cell death at the infection site associated with arrest of bacterial 

growth (Klement, 1982; Staskawicz, 2001). A number of genes involved in the HR and 

pathogenicity (hrp) in many Gram negative phytopathogenic bacteria have been identified and 

characterized. The hrp genes have also been demonstrated to be required for the pathogens to 

cause disease in susceptible host plants and to induce HR in resistant host and non-host plants 

(Lindgren, 1997). Generally, hrp genes encode components of the T3SS (Büttner and Bonas, 

2006; Cornelis, 2006). The T3SS of the plant pathogenic bacteria translocates effector proteins 

directly into the plant cells (Büttner and Bonas, 2006). Effectors can act to activate or suppress 

plant defense signal transduction and in addition to that, many avirulence proteins of plant 

pathogenic bacteria have been shown to be translocated effectors (Alfano and Collmer, 2004; 

Grant et al., 2006; Mudgett, 2005).  

Genome sequence information has now been made available for a number of plant pathogens 

including members of the genera Xanthomonas (Cunnac et al., 2013; da Silva et al., 2002) R. 

solanacearum (Salanoubat et al., 2002; Xu et al., 2011); and Pseudomonas (Baltrus et al., 

2011; Buell et al., 2003) . This sequence information led to the initial identification of candidate 
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effectors and pathogenicity factors through bioinformatic approaches (Baltrus et al., 2011; 

Büttner et al., 2003). Effector gene candidates have been discovered as a result of homology 

to known effectors or due to the presence of conserved sequence motifs that suggest a certain 

role inside host cells (Noёl et al., 2003). Identification of the complete repertoire of 

pathogenicity factors of plant pathogens and their biological functions is the prerequisite to 

understanding the pathogen-plant interactions.     

Agrobacterium-mediated transient expression is based on the expression of non-integrated T-

DNA and it provides a valuable procedure for readily assessing genetic information (Jones et 

al., 2005; 2009). Moreover, this technique has led to a number a studies in areas such as gene-

for-gene interactions, regulation and expression of multiple genes simultaneously and gene 

silencing (Yang et al., 2000). Agrobacterium-mediated transient expression assay has been 

widely applied to many plant systems (Cheng et al., 2009; Li et al., 2009; Sparkes et al., 2006). 

Agrobacterium-mediated transient expression of many avirulence proteins from P. syringae 

pathovars and Xanthomonas species resulted in induction of HR in resistant plants (Bonas and 

van der Ackerveken, 1997; Kjemtrup et al., 2000; Escolar et al., 2001). This indicates the 

usefulness of transient expression in the identification of potential pathogenicity factors. 

Xylophilus ampelinus, the causal agent of bacterial blight of grapevines, is a Gram negative 

plant pathogen with unknown virulence factors. Very little is known about the genetics of the 

pathogen, especially with regard to its pathogenicity. Transposon mutagenesis is a genetic tool 

employed to study gene or protein function. The technique gained recognition after it was 

applied and proved to have potential for studying virulence genes in plant pathogens (reviewed 

by Mills, 1985). A similar tool was applied in the characterization of pathogenicity and 

virulence factors in X. ampelinus (Y. Petersen, personal communication). Transposon mutant 

sequence analysis revealed the presence of avrBs1 and avrA-like avirulence gene homologs 

thus motivating gene function analysis. Therefore, identifying effector proteins of X. ampelinus 

is the first step to understanding the pathogenicity factors of this pathogen. For this objective 

the avrBs1-family genes of X. ampelinus were characterized using bioinformatic sequence 

analysis and Agrobacterium-mediated transient expression, to better understand the roles these 

genes play during pathogenicity. 
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2.2 MATERIALS AND EXPERIMENTAL PROCEDURES  

Chemicals used in this study are listed in APPENDIX A. Preparation of stock buffers and 

growth medium is discussed in APPENDIX B. 

2.2.1 Bacterial strains, plasmids and plant growth conditions  

The bacterial strains used in this study were kept as glycerol stocks at -70 °C. They were 

continuously revived when needed and kept frozen. All X. ampelinus strains were grown on 

YPGA agar plates at 28 °C (Grall and Manceau, 2003) for five to ten days depending on the 

experiment to be pursued. Agrobacterium strains were grown on YEP agar plates or in broth at 

28 °C for 48 hours. YEP medium was always supplemented with 50 µg/ml rifampicin, unless 

there was a plasmid involved then additional antibiotics were added depending on plasmid 

requirements. Escherichia coli JM109 was grown on LB agar plates or broth at 37 °C for 16 

hours. The medium was supplemented with appropriate antibiotics depending on the plasmid 

maintenance requirements. The characteristics of the bacterial cultures and plasmids used, and 

those generated in this study, are listed in Table 2.1. 

Tobacco plants (Nicotiana tabacum) were grown from seeds in the glasshouse under controlled 

environmental conditions. Seedlings were grown for up to five weeks and leaves were then 

used for transient expression studies. 

Table 2.1: Plant lines, strains and plasmids used in this study 

Bacterial strain or 

plasmid 
Relevant characteristics 

Reference or 

source 

Xylophilus ampelinus 

VS20 Wild type Xylophilus ampelinus 

ARC-PPRIa 

Culture collection 

Agrobacterium 

tumefaciens C58C1 Rifʳ 

Dirk Stephan, 

USb 
 

Agrobacterium 

tumefaciens EHA105 Rifʳ Lab strain 

Escherichia coli 
JM109 

endA1, recA1, gyrA96, thi, hsdR17 (rk–, 

mk+), relA1, supE44, Δ( lac-proAB), [F´ 

traD36, proAB, laqIqZΔM15]. Lab strain 

Plasmids   

p442 

Vector containing 35S Cauliflower Mosaic 

Virus(CaMV) promoter; Ampʳ 
Dirk Stephan, US  

pCB301 

Mini Binary vector series, RK2 oriV, similar 

to nptIII, plasmid RK2 TrfA region, T-DNA 

right border, MCS, T-DNA left border; Kanʳ 

Dirk Stephan, US  



 

37 
 

pCB3∆B 

Binary vector pCB301 with BamHI 

restriction site removed; Kanʳ This study 

pCB3CaMV 

pCB301 with 35S CaMV promoter and 

terminator; Kanʳ This study 

pCB3CaMV_avrBs1 

pCB3CaMV carrying full length avrBs1 

gene; Kanʳ This study 

pCB3CaMV_avrA 

pCB3CaMV carrying full length avrA gene; 

Kanʳ This study 
aARC PPRI: Agricultural Research Council, Plant Protection Research Institute 

bUS: University of Stellenbosch 

 

2.2.2 Polymerase chain reaction (PCR) primers used in this study 

All primers used in this study are listed in Table 2.2 below. Most of them were designed for 

this study using both CLC genomics workbench Version 6 (CLC Bio, Århus, Denmark) and 

NCBI Primer BLAST (Altschul et al., 1990). All primers were ordered from IDT and 

resuspended in sterile water to make 100 µM stock solutions.  

To prepare working solutions, the stock solution was diluted 1:10 in nuclease free sterile water 

resulting in 10 µM primer working solutions. For all PCR reactions a final concentration of 0.2 

µM Melting temperatures (Tm) provided on each product specification sheet were used to 

determine the annealing temperatures of each primer set.  

Table 2.2. Polymerase chain reaction primers 

Primer  Sequence Description Reference 

    

S3 GGTGTTAGGCCGAGTAGTGAG 

Forward primer for detection of X. 

ampelinus Ribosomal ITS 

sequence 

Botha et 

al., 2001 

S4 GGTCTTTCACCTGACGCGTTA 

Reverse primer for detection of X. 

ampelinus Ribosomal ITS 

sequence. Product length = 277 bp 

Botha et 

al., 2001 

YP269 

ATGCTAAACCCAAAATCCGATT

CC 

Forward primer specific for X. 

ampelinus avrA Open reading 

frame (ORF)  This study 

YP272 

TTATTTCCGGGCATCGTTGATT

TTCAAT 

Reverse primer specific for X. 

ampelinus avrA ORF. YP269+272 

product length = 1224 bp This study 

YP273 

ATGGATATAAACCATATCGAA

TTTGC 

Forward primer specific for X. 

ampelinus avrBs1 ORF This study 
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YP270 

TCATTTCTCGAATATGACTTCC

TGT 

Reverse primer specific for X. 

ampelinus avrBs1 ORF. 

YP273+270 product length = 1239 

bp This study 

YP276 ACGTTCTACGAGCTTTGCCA 

Forward primer specific for binary 

vector pCB301 nptII region  This study 

YP277 

 

AGATTGTCGTTTCCCGCCTT 

 

Reverse primer specific for binary 

vector pCB301 nptII region; 

YP276+277 product length = 705 

bp 

 

This study 

 

 

2.2.3 Sequence analysis 

X. ampelinus sequence analysis and construction of plasmid and restriction enzyme maps were 

done using CLC Genomics Workbench version 6.0 and nucleotide sequence comparisons were 

done using BLAST (Altschul, 1990). ORF nucleotide sequences were translated to protein 

sequences in reading frame one and sequence comparisons were done using the BLASTp 

function (Altschul, 1997) on the NCBI website (http://www.ncbi.nlm.nih.gov).  

2.2.4 X. ampelinus HR assay on tobacco leaves 

Given that hypersensitive response (HR) is induced when non-host or resistant plants are 

invaded by a certain pathogen, therefore HR assay was conducted using the wild type X. 

ampelinus cells. Wild type cells were revived from glycerol stock into YPGA plates and grown 

at 28 °C for six to eight days. The cells were aseptically transferred onto fresh YPGA plates 

and incubated for five days at 28 °C. The cells were carefully transferred to 1x PBS buffer and 

adjusted to OD600nm of ~0.3-0.35. Approximately 20 µL of cell suspension was infiltrated into 

plant leaves using 1 ml needleless syringe. 1x PBS buffer was infiltrated into plant leaves to 

serve as a negative control. 

2.2.5 X. ampelinus genomic DNA extraction   

Total genomic DNA of wild type X. ampelinus was extracted by the CTAB genomic DNA 

isolation procedure (Ausubel et al., 1989). Cells were grown for eight days on YPGA (7g/L 

yeast extract, 7g/L Bacto-peptone, 7g/L glucose and 15g/L bacto-agar) at 28 °C. After eight 

days, the bacteria were subcultured onto fresh YPGA plates by transferring a loop-full of 

culture onto a new plate and kept at 28 °C for five days. The bacterial growth was transferred 

into sterile tubes and centrifuged at 13000 rpm for one minute at room temperature. 



 

39 
 

Supernatants were discarded and the cell pellets were resuspended in 567 µL of TE buffer and 

gently vortexed. Thirty microlitres of 10% (w/v) SDS and three microlitres of 20 mg/ml 

proteinase K was added, mixed and incubated for one hour. One hundred microlitres of 5 M 

NaCl was added and mixed, followed by 80 µL of CTAB/NaCl and the samples were then 

incubated at 65 °C for one hour. An equal volume of chloroform/isoamylalcohol (24:1) solution 

was added and the samples were centrifuged at 13000 rpm for ten minutes. The top aqueous 

phase was transferred to a clean tube and the DNA was precipitated by adding 0.6 volumes of 

isopropanol and centrifugation at 13000 rpm for 20 minutes. The pellet was washed with 70% 

ethanol, air-dried and resuspended in TE buffer. 

2.2.6 Preparation of competent cells 

2.2.6.1 Preparation and transformation of chemical competent E. coli JM109  

E. coli JM109 cells from a glycerol stock was streaked onto LB agar and incubated at 37 °C 

overnight. A single colony forming unit (CFU) was used to inoculate a five millilitre LB broth 

starter culture and incubated overnight on a shaking platform at 37 °C. This culture was used 

to inoculate a larger volume of LB which was then incubated at 37 °C until the OD600nm reached 

0.6. The cells were precipitated by centrifugation at 5000 rpm for ten minutes at four degrees 

Celsius. Pellets were slowly dissolved in ice cold 100 mM MgCl2, chilled on ice for 20 minutes 

and harvested at 4000 rpm for ten minutes at 4°C. After supernatant was removed, the cell 

pellet was gently dissolved in two millilitres of ice cold 100 mM CaCl2 with 15% (v/v) glycerol. 

One hundred microliter aliquots of cells were flash frozen with cold ethanol and stored at -70 

°C. 

For transformation, 100 µL of competent cells were thawed on ice. Five microlitres of ligation 

mixture was added to the cells, gently mixed and incubated for five minutes on ice. The mixture 

of cells and DNA was heat-shocked at 42 °C for 45 seconds and then quickly returned onto ice. 

The reaction was kept on ice for two minutes, before adding 900 µL of ice cold LB medium 

and incubation at 37 °C for one hour with shaking at 150 rpm. Transformants were recovered 

following overnight incubation at 37 °C on LB-agar plates supplemented with the appropriate 

antibiotics. 

 

 



 

40 
 

2.2.6.2 Preparation and transformation of electro-competent A. tumefaciens strain 

C58C1  

A. tumefaciens strain C58C1 from glycerol stock was revived by culturing on YEP agar plates 

(10 g/L yeast extract; 10 g/L Bacto-peptone; 5 g/L NaCl; 15 g/L Bacto-agar) supplemented 

with 50 µg/ml of rifampicin. Plates were incubated at 28 °C for 48 hours. The starter culture 

was prepared by transferring a single CFU from a fresh-grown plate into five millilitres of YEP 

medium (with 50 µg/mL rifampicin) and the culture was grown for 48 hours at 28 ˚C on a 

shaking platform. The starter culture was transferred into 250 ml LB broth medium 

supplemented with 50 µg/mL rifampicin. The culture was kept at 28 ˚C for four to six hours 

until the OD600nm was between 0.5 and 1.0. The cells were kept on ice for 30 minutes and 

harvested by centrifugation at 5000xg for ten minutes at 4 °C. Pellets were washed twice with 

cold sterile distilled water and centrifugation at 4000xg in between. The cells were then washed 

four times with ice cold sterile 10% (v/v) glycerol. Electro-competent cells were finally 

resuspended in one millilitre of 10% (v/v) glycerol and dispensed into sterile microcentrifuge 

tubes. Electro-competent cells were used directly for electroporation or stored at -70 ˚C for 

future use. 

For electroporation, competent A. tumefaciens cells were thawed on ice. Two microlitres 

plasmid was added to 40 µL of electrocompetent cells, gently mixed and kept on ice for ten 

minutes. The cell-plasmid DNA mixture was transferred into cold 0.2 cm electroporation 

cuvettes and pulsed once with 1.8 kV, at 25 µF capacitance and 200 Ω resistance. One millilitre 

of cold YEP medium was added quickly and the cell suspension incubated at 28 °C for two 

hours shaking at 140 rpm before being plated onto YEP agar plates supplemented with 50 

µg/ml each of rifampicin and kanamycin. Plates were incubated at 28 °C for 48 hours and 

transformants were verified by colony PCR using specific primers.  

2.2.7 Construction of pCB3CaMV binary vector for transient expression 

E. coli harbouring the plasmids, p442 or pCB301, were cultured on LB-agar plates 

supplemented with ampicillin 100 µg/ml or 50 µg/ml kanamycin. The plates were grown 

overnight at 37 °C. Single CFUs were inoculated into five millilitres LB broth supplemented 

with the appropriate antibiotic and grown overnight at 37 °C on a shaking platform. The 

plasmids were isolated using the Qiagen miniprep kit (Qiagen GmbH, Germany) according to 

the manufacturer’s instructions. The plasmid, p442, was digested with FastDigest restriction 
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enzymes HindIII and EcoRI (Thermo Scientific, Inqaba Biotec, South Africa) according to the 

manufacturer’s instructions in order to release a 1 kb DNA fragment containing the Cauliflower 

mosaic virus (CaMV) 35S promoter and terminator (refer to figure 2.1 for complete vector 

manipulation process). The reactions were incubated at 37 °C for 30 minutes. The restriction 

digest was then electrophoresed on a 1 % agarose gel stained with 0.2 µg/ml ethidium bromide 

prior to setting. The HindIII/ EcoRI fragment containing the CaMV 35S promoter and 

terminator was cut from the gel after visualization on the ultraviolet (UV) light transilluminator 

(Chromato-Vue Transluminator MT-36, UVP Inc. San Gabriel, USA) and purified using the 

QiaexII gel extraction kit (Qiagen GmbH, Germany) according to the manufacturer’s 

instructions.  

Before the HindIII/ EcoRI fragment could be cloned into the binary vector, pCB301, BamHI 

restriction site in the multiple cloning site (MCS) of this vector needed to be removed, since 

the aim was to clone the avrBs1 and avrA ORFs at the BamHI site situated between the CaMV 

35S promoter and terminator. To achieve this, pCB301 was digested with 10 units of 

FastDigest BamHI (Thermo Scientific) in a total reaction volume of 20 µL at 37 °C for one 

hour, electrophoresed on a one percent agarose gel, excised and purified using the QiaexII gel 

purification kit.  To permanently remove the restriction site, 1 µg/ml of purified linearized 

pCB301 was treated with 10 U of S1 nuclease enzyme (Thermo Scientific, Inqaba, South 

Africa) according to the manufacturer’s instructions, in a total reaction volume of 30 µL to 

remove the 3ʹ- and 5ʹ- overhangs created by sticky-end restriction with BamHI. Thereafter, the 

reaction was electrophoresed on a one percent agarose gel, excised and purified using the 

QiaexII gel purification kit.  The plasmid was re-circularized using five units of T4 DNA ligase 

(Thermo Scientific, Inqaba, South Africa) according to the manufacturer’s instructions. The 

ligation mixture was incubated at 22 °C for 30 minutes and five microlitres of the reaction was 

used to transform E. coli JM109 competent cells by heat-shock method (Section 2.2.6.1.). The 

resultant plasmid, named pCB3∆B was propagated and purified as described previously. 
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Figure 2.1. Transient expression vector construction. The 35S CaMV promoter and 

terminator region was excised from vector p442 and cloned between the HindIII and EcoRI 

restriction sites on binary vector pCB3ΔB, from which the original BamHI site had been 

removed.  

Vector pCB3∆B was digested with FastDigest EcoRI and HindIII restriction enzymes, 

electrophoresed and gel purified as described previously. This 3.5 kb linearized vector DNA 

was ligated with the one kilobase pair EcoRI and HindIII DNA fragment from vector p442 

carrying the CaMV 35S promoter and terminator to create the vector, pCB3CaMV. Five 

microliters of the ligation reaction was used to transform 100 µL of E. coli JM109 chemical 

competent cells using a heat-shock method. Transformed cells were grown on LB-agar plates 

containing 50 µg/ml kanamycin at 37 °C for overnight. Resulting transformants were PCR-

verified using primer pair YP276 and YP277. A PCR-positive colony was transferred and 

grown in a liquid LB broth supplemented with 50 µg/ml kanamycin and the plasmid DNA 

extracted after overnight incubation at 37 °C. This plasmid vector was named pCB3CaMV.  
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2.2.8 Amplification and cloning of X. ampelinus avrBs1 and avrA ORFs  

Genomic DNA of wild type X. ampelinus was used as template for PCR with primers YP270 

and YP273, and YP269 and YP272 to amplify the avrBs1 and avrA ORFs, respectively. The 

proofreading polymerase, Phusion High fidelity DNA polymerase (Thermo Scientific, Inqaba 

Biotech, South Africa) was used for amplification according to manufacturer’s instructions.  

Reactions typically contained 20 ng of a template DNA, 200 µM of dNTPs, 200 nM of each 

primer and one unit of Phusion polymerase. 

The PCR programme for amplification of avrA was as follows: 98 °C for 30 seconds, 30 cycles 

of (98 °C for 15 seconds, 54 °C for 15 seconds, 72 °C for 45 seconds) and a final extension at 

72 °C for five minutes. The PCR programme for amplification of avrBs1 was as follows: 98 

°C for 30 seconds, 30 cycles of (98 °C for 15 seconds, 52 °C for 15 seconds, 72 °C for 45 

seconds) and a final extension at 72 °C for five minutes. 

PCR products were resolved in ethidium-containing 0.8% agarose gels in Tris/Borate/EDTA 

(TBE) buffer electrophoresed at 100 volts for one hour. The DNA bands were visualized under 

UV light and photographed using the Ingenius Bio-Imaging system (Syngene, Vacutec, South 

Africa). The PCR products were excised from the gel using a sterile blade, and the DNA was 

purified using the QiaexII gel extraction kit.  

The binary vector, pCB3CaMV, was digested with 10 U of FastDigest BamHI enzyme in a 20 

µL reaction volume. The linear vector band was excised from the gel and purified using the 

QiaexII kit. The vector was treated with S1 nuclease, to remove the 3ʹ and 5ʹ overhangs. The 

blunt-ended vector was then purified using QiaexII kit and ligated together (as previously 

described) with blunt-ended PCR-amplified avrA and avrBs1 in separate reactions. PCR 

verification of transformants was done using primers specific for the avr inserts. Positive 

transformants were cultured into fresh five millilitres of LB medium supplemented with 

kanamycin and incubated at 37 °C for overnight. Cultured bacterial cells were harvested and 

plasmids were extracted with the Qiagen miniprep kit and stored at -20 °C. The plasmids were 

digested with PstI and separated by gel electrophoresis to determine insert orientation. Two 

constructs with the avr genes in the correct orientation were selected and named 

pCB3CaMV_avrBs1 and pCB3CaMV_avrA, respectively. The constructs were digested with 

PstI and separated by gel electrophoresis to check insert orientation. These two constructs were 

used to transform A. tumefaciens strain C58C1 as describe in section 2.2.6.2.  
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2.2.9 Agrobacterium-mediated transient expression 

A. tumefaciens strain C58C1 carrying pCB3∆B, pCB3CaMV, pCB3CaMV_avrBs1, 

pCB3CaMV_avrA and untransformed A. tumefaciens C58C1 was grown in five millilitres of 

YEP broth containing 50 µg/ml each of rifampicin and kanamycin and 50 µg/ml of rifampicin 

only for the untransformed C58C1, at 28 °C for 48 hours. Thereafter, one millilitre of culture 

was transferred into fresh 50 ml YEP broth supplemented with appropriate antibiotics, 10 mM 

MES buffer pH 5.6 and 150 µM acetosyringone (Refer to APPENDIX B). Cell cultures were 

grown at 28 °C for 16 hours with constant shaking at 180 rpm to an OD600nm value of 

approximately one. The cells were harvested by centrifugation at 3000xg for 10 minutes. The 

cell pellets were washed with 50 ml of the induction medium containing 10 mM MgCl2 and 10 

mM MES buffer in sterile distilled water. The cell suspension was centrifuged again at 4000xg  

for 10 minutes and the pellets were resuspended in 50 ml of infiltration medium containing 10 

mM MgCl2; 10 mM MES, pH 5.6 and 150 µM acetosyringone according to Annamalai and 

Rao (2006). Bacterial suspensions were kept at room temperature for two to three hours without 

shaking before plant inoculation. Bacterial suspensions were inoculated into six to eight weeks 

old tobacco plant leaves using a needleless syringe. After infiltration, plants were kept at room 

temperature in a 16 hour light and eight hour dark cycle. Leaves were photographed after a two 

to three days post-inoculation period. 
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2.3 RESULTS 

2.3.1 X. ampelinus induces HR in N. tabacum 

X. ampelinus induced strong HR on N. tabacum plants at room temperature. After incubation 

for 48 hours the brown-translucent lesions developed at inoculation sites. The lesions were 

observed just after 24 hours and they were pronounced at 48 hours incubation period. 

Generally, pathogenic bacteria can elicit HR when introduced into non-host plant as opposed 

to susceptibility and disease formation when introduced into host plants. The ability of X. 

ampelinus to elicit HR in non-host (figure 2.2) inspired the continuous search for effector 

proteins responsible for HR induction.  

 

Figure 2.2: X. ampelinus HR assay on tobacco. Right leaf panel was inoculated with 1x PBS 

buffer and the left leaf panel was inoculated with wild type X. ampelinus (wtXa). Brown 

translucent lesion on the left leaf panel represents HR-induction by wild type X. ampelinus. 

 

2.3.2 Sequence analysis of wild type X. ampelinus avirulence open reading 

frames (ORFs) 

Analysis of transposon mutants revealed mutant XaTn5-742 had an insertion in a gene encoding 

an avr protein with similarity to AvrA from P. syringae pv. glycinea and avrBs1 present in 

members of the genus Xanthomonas (Y. Petersen, personal communication). Further 

sequencing revealed other coding sequences with greater similarities to avrBs1 family 

avirulence gene from Xanthomonas and Acidovorax species.  

In my study, I analysed the sequence of the identified avrBs1 and avrA homologs using CLC 

Bio version 6.0.The ORFS (avrBs1 and avrA-like) were 1239 and 1224 bp, encoding 413 and 
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408 aa proteins respectively. The NCBI BLASTp function was then used to determine the 

percentage identity of the X. ampelinus protein sequences with those in the Genbank database. 

X. ampelinus AvrBs1 and AvrA-like proteins share up to 58% and 63% sequence homology 

with avirulence proteins from Xanthomonas, Pseudomonas and Acidovorax species (refer to 

Table 2.3 and 2.4).  

Table 2.3: X. ampelinus AvrA alignemt with NCBI protein sequences 

Hit accession 

number Protein description 

Percentage 

Identity 

   

WP_006449061 

X. gardneri ATCC 1986 putative 

T3 effector belonging to avrBs1 

class 63.81% 

P11437 

P. syringae avirulence A (AvrA) 

protein 61.94% 

WP_010209602  

P. syringae pv. tomato avirulence 

protein 59.83% 

WP_005734998  

P. syringae pv. aesculi str. 

0893_23 avirulence protein 

AvrBs1  58.97% 

WP_010215138 P. amygdali avirulence protein 58.97% 

      

 

Table 2.4: X. ampelinus AvrBs1 alignment with NCBI protein sequences  

Hit accession 

number Protein description 

Percentage 

Identity 

   

ACS12852 

X. campestris pv. campestris 

AvrBs1 protein 75.50% 

WP_012438467 

X. campestris pv. campestris str. 

B100 AvrBs1 protein 58.24% 

WP_011037255 

X. campestris pv. campestris str. 

ATCC 33913 avirulence protein  58.24% 

P19520 

X. campestris full uncharacterized 

50 kDa protein encoded by ORF2 

in avrBs1 region 57.95% 

WP_006449061 

X. gardneri ATCC 19865 AvrBs1 

protein 54.24% 

WP_005734998  

P. syringae pv. aesculi str. 

0893_23 avirulence protein 

AvrBs1  53.70% 
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P11437 

P. syringae avirulence A (AvrA) 

protein 53.59% 

WP_010209602  

P. syringae pv. tomato avirulence 

protein 53.07% 

WP_011795287 

Acidovorax citruli avirulence 

protein AvrBs1  41.53% 

      

 

 

2.3.3 Cloning and transient expression of X. ampelinus avrA and avrBs1 

homologs in tobacco plants  

The evidence that avrBs1 and avrA gene homologs from Xanthomonas and Pseudomonas 

strains are recognized inside plant cells and elicit HR when expressed, inspired the similar 

assay for X. ampelinus CDs.  To determine if coding sequences of avrBs1 and avrA elicit 

hypersensitive response (HR) in a non-host both genes were isolated using PCR primers 

specific to each CD and cloned into a binary vector pCB3CaMV under the control of 35S 

promoter for gene expression in planta. The constructs were verified by colony PCR (Figure 

2.3, 2.4 and 2.5). The avrBs1 and avrA homolog constructs transiently expressed by A. 

tumefaciens strain C58C1 induced HR on tobacco plants within 48 hours post inoculation 

(Figure 2.6). 

 

Figure 2.3: Verification of pCB3CaMV construct. Colony PCR screen was performed using 

primers specific to the nptIII region (YP276 and YP277) of the binary vector. Lane M- 100 bp 

Plus DNA marker (Thermo Scientific, Inqaba, South Africa), lane 1- negative control (no 

DNA), lane 2 to 17- Agrobacterium-pCB3CaMV transformants.  
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Figure 2.4: Verification of pCB3CaMV_avrA construct. Primer pair (YP269 and YP272) 

specific for avrA CD was used in colony screening experiments. Lane M- 100 bp Plus DNA 

marker, lane 1- negative control, lane 2 to 17- Agrobacterium-pCB3CaMV_avrA 

transformants. 

 

 

Figure 2.5: Verification of pCB3CaMV_avrBs1 construct. Primer pair (YP270 and YP273) 

specific for 1239 bp avrBs1 ORF. Lane M- 100 bp Plus DNA marker, lane 1- negative control, 

lane 2 to 17- Agrobacterium- pCB3CaMV_avrBs1 transformants screened for the presence of 

avrBs1 homolog construct.  
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Figure 2.6. Agrobacterium-mediated transient expression of avrBs1 and avrA in tobacco 

plants. Both avrBs1 and avrA were expressed in planta under the control of the 35S promoter 

using A. tumefaciens. Expression of avrBs1 (A) and avrA (B) resulted in HR on tobacco plant 

leaves. Right panel of both leaves shows HR lesions formed after inoculation with X. ampelinus 

avrA and avrBs1 homologs. The left panel of both leaves were inoculated with induction 

medium and served as the negative control. 
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2.4 DISCUSSION 

Out in the field, the only form of protection that plants can use against pathogens is through 

genetic resistance. However, genetic resistance is based on single dominant or semi-dominant 

genes (Tai et al., 1999). In general, resistance (R) genes confer race-specific resistance and 

their effectiveness depends on the interaction with complementary pathogen avirulence genes. 

There are however some limitations to this, i.e. the plant can have the ability to express 

resistance genes but pathogens keep on changing to evade host defense responses, and 

emergence of strain that do not express complementary gene renders  resistance gene 

ineffective. 

X. ampelinus is known to be virulent in V. vinifera species, but there is not much evidence 

about discovery of resistant plant cultivars. In this study, we tested the ability of X. ampelinus 

to elicit hypersensitive response (HR) in a non-host plant. The positive result obtained, 

proposed the possibility that the pathogen might be carrying active effector genes. Assuming 

that X. ampelinus employs a T3SS to transfer effector proteins, the best attempt was to discover 

more about these avirulence genes contributing to its pathogenicity.  

Initial analysis of X. ampelinus transposon mutants (Y. Petersen, personal communication) 

revealed a mutant, XaTn5-742, which had an insertion site in a gene encoding an avirulence 

protein with similarities to a P. syringae pv. glycinea AvrA protein and an AvrBs1 protein 

present in members of genus Xanthomonas. Sequence analysis showed that a 1224 bp avrA 

homolog which shares up to 63% sequence identity with a number of avirulence proteins from 

Xanthomonas and Pseudomonas species including X. gardneri ATCC 19865, P syringae pv. 

tomato and P. syringae pv. aesculi to name a few. The protein shares 61% sequence homology 

with P. syringae pv. glycinea avirulence A (AvrA) protein. AvrA protein was the first to be 

cloned and characterized and has been widely applied in many studies involving plant pathogen 

interactions (Staskawicz et al., 1984; Lorang et al., 1994). X. ampelinus AvrA is not a complete 

protein but forms a part of full length avrA and the sequence homology is observed towards 

the N-terminal domain of a 907 aa Pseudomonas AvrA protein. 

The X. ampelinus avrBs1 ORF is 1239 bp in length and encodes a protein of 413 amino acids. 

It shares great homology with AvrBs1 proteins from many members of the genera 

Xanthomonas, Pseudomonas and Acidovorax including including the species X. campestris pv. 

campestris (Xcc) str. B100, X. gardneri str. ATCC 19865, P. syringae pv. asceculi str. 

0893_23, P. syringae pv. tomato and A. citrulli. Discovery of this coding region encoding 
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AvrBs1 protein was intriguing and further characterization was required to better understand 

protein function. AvrBs1 protein was first identified in X. campestris pv. vesicatoria (Xcv)and 

characterized by Ronald and Staskawicz in 1988, since then the protein has been applied in 

many functionality studies including identification of T3 secreted effectors (Jiang et al., 2009; 

Xu et al., 2008).  

The fact that X. ampelinus has AvrA and AvrBs1 homologs suggests that the pathogen utilizes 

T3SS in one way or the other during pathogenicity. The AvrA protein from P. syringae pv. 

glycinea, the causal agent of bacterial blight of soybean, led to compatibility interaction in 

susceptible soybean cultivars whereas in resistant cultivars it conferred resistance and induced 

HR (Staskawicz et al., 1984). The protein has been widely used in studying other putative 

effectors. The AvrBs1 protein from Xcv, the causal agent of foliage and fruit spot disease of 

tomato and pepper plants, induces HR when introduced into pepper plants expressing the Bs1 

resistance gene (Minsavage et al., 1990). This is one of the reasons avrBs1 has been widely 

applied in effector research.  

Therefore, we tested if X. ampelinus avrBs1 and avrA homologs elicit HR in the non-host, 

tobacco. Cloning the full length gene coding regions individually into the binary vector under 

the control of Cauliflower Mosaic Virus (CaMV) promoter endorsed constitutive expression 

of genes through Agrobacterium-mediated transient expression. The wound response 

facilitated by acetosyringone only improved the process. The results obtained showed that X. 

ampelinus avrBs1 and avrA were functional as seen from their ability to elicit HR in non-host 

tobacco plants. These results suggested that avrBs1 and avrA homologs could be applied in a 

number of studies into X. ampelinus effector research, including identification of putative 

effectors and investigation into the compatibility and incompatibility interactions of this 

organism and its plant host.  

Finally this study provides the basis of the T3 effector search for X. ampelinus. Due to the 

relatedness of the X. ampelinus avr sequences to those of xanthomonads, and the fact that 

Xanthomonas avrBs1 has been successfully used in a number T3 effector studies (Jiang et al., 

2009; Xu et al., 2008), it was decided to construct an X. ampelinus T3 effector reporter vector 

based on the avrBs1 gene.  
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3 CHAPTER 3: Development of a Type III effector reporter plasmid system using the 

HR-inducing domain of AvrBs1 

3.1 INTRODUCTION  

Plants are constantly under attack by infecting pathogens, as a result plants have evolved a 

specialized complex surveillance system which includes mediation by plant resistance (R) 

genes. The system can recognize and actively respond to the presence of many different plant 

pathogens. Generally during infection, bacterial plant pathogens inject proteins directly into 

plant cells via a specialized Type III secretion system (T3SS) (Collmer et al., 2000; Casper-

Lindley et al., 2002). Seemingly, pathogen secreted effector proteins alter the plant cell 

function to create a more favourable environment for pathogen growth and development 

(Kearney and Staskawicz, 1990; Swarup et al., 1991; Kim et al., 2008). R genes monitor plant 

cells for presence of pathogen-secreted effector proteins and upon detection, activate rapid and 

strong plant defense responses (Ellis and Dodds, 2003). These plant defense responses often 

result in the hypersensitive response (HR), a rapid localized programmed cell death that 

severely reduce the ability of a pathogen to grow and cause disease (Dangl and Jones, 2001; 

Bonas and Lahaye, 2002).  

Historically, all pathogen effector proteins that were recognized by R genes were termed 

avirulence (avr) genes (White et al., 2000). This was due to a fact that the presence of the 

effector gene in a pathogen prevents it from successfully infecting a host plant with the 

corresponding R gene. However, plants generally carry a number of different R genes as much 

as pathogens harbour a diverse range of effector genes, but interaction between an effector and 

R gene is quite specific. If neither of the genes is present, then no R gene-mediated defense 

response occurs during infection and the disease progresses (Wichmann and Bergelson, 2004).  

Suppression of the plant’s immune system by pathogen effectors can give fundamental insights 

to innate immune system components, which can lead to innovative strategies for crop 

improvement by producing more resistant plant varieties (Alfano, 2009). However, the study 

of effector activity and its targets is also of great importance in understanding pathogen 

virulence factors. Availability of genome sequences of the major phytopathogenic bacteria has 

facilitated the identification of T3SS effector genes in a number of bacteria (Baltrus et al., 

2011; Büttner et al., 2003; Cunnac et al., 2004; Linderberg et al., 2006; Vinatzer and 

Greenberg, 2007). Candidate genes encoding effectors can be identified by bioinformatic 

analysis of genome sequence based on homologies to known T3SS effectors in other bacterial 

pathogens, the presence of sequence patterns associated with hrp (HR and pathogenicity) 
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promoters and T3SS-targeting domains, genes with similar regulation by hrp regulatory genes, 

gene products exhibiting distinctive motifs, or genes flanking the hrp gene cluster (Alfano and 

Collmer, 2004; Büttner et al., 2003; Cunnac et al., 2004; Lindeberg et al., 2006; Vinatzer and 

Greenberg, 2007). 

The elucidation of T3SS-dependent and R gene-dependent HR in plants revealed the presence 

of a functional translocation signal in the N-terminal region of the candidate gene product 

(Greenberg and Vinatzer, 2003). The functional translocation signal of the effector proteins 

can also be indicative of the Type III secretion function (Xu et al., 2008; Jiang et al., 2009). 

Therefore, effector candidates can be functionally validated as Type III effectors by 

translational fusion of 5ʹ N-terminal coding regions of candidate effector genes with a reporter.  

Over the years, different reporter systems have been applied in effector research. Calmodulin-

dependent adenylate cyclase (Cya) of B. pertussis cyclolysin and/ or effector regions of known 

effectors truncated at the N-terminal domain have been used as reporters (Casper-Lindley et 

al., 2002; Vinatzer et al., 2005; Xu et al., 2008). The HR-inducing effector regions of Avr 

proteins such as AvrRpt2 (AvrRpt281-255 and AvrRpt2101-255) from P. syringae, AvrBs3 

(AvrBs3∆2) from X. campestris pv. vesicatoria and AvrBs1 (AvrBs159-445) also from X. 

campestris pv. vesicatoria have been employed as reporters (Vinatzer et al., 2005; Noël et al., 

2003; Xu et al., 2008).  

The objective of this study was to determine the shortest X. ampelinus AvrBs1 protein segment 

responsible for in planta recognition and HR elicitation in resistant pepper plants through 

Agrobacterium-mediated transient expression assays in order to construct a Type III effector 

(T3E) reporter vector for X. ampelinus. The HR-inducing segment was fused to the 5ʹ end of 

3x FLAG epitope in the multiple cloning site (MCS) region of a broad-host range vector to 

create a reporter protein fusion. The functionality of the reporter vector with respect to secretion 

and translocation was then tested in an X. ampelinus avrBs1 knockout mutant.  
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3.2 MATERIALS AND EXPERIMENTAL PROCEDURES 

Chemicals used for this objective are listed in APPENDIX A. Preparation of stock buffers and 

growth medium is discussed in APPENDIX B. 

3.2.1 Bacterial strains, plasmids and plant growth conditions 

The bacterial strains used in this study were kept as glycerol stocks at -70 °C. They were 

continuously revived when needed and kept frozen. All X. ampelinus strains were grown on 

YPGA agar plates at 28 °C (Grall and Manceau, 2003) for five to ten days depending on the 

experiment to be pursued. XaΔavrBs1 mutant was grown on YPGA plates supplemented with 

10 µg/ml kanamycin and when transformed with the broad host vector and its derivatives, the 

medium was supplemented with 5 µg/ml gentamycin. Agrobacterium strains were grown on 

YEP agar plates or in broth at 28 °C for 48 hours. YEP medium was always supplemented with 

50 µg/ml rifampicin, unless there was a plasmid involved then additional antibiotics were 

added depending on plasmid requirements. E. coli JM109 was grown on LB agar plates or 

broth at 37 °C for 16 hours. The medium was supplemented with appropriate antibiotics 

depending on the plasmid maintenance requirements. The characteristics of the bacterial 

cultures and plasmids used, and those generated in this study, are listed in Table 3.1. 

Pepper plants, STAR 6657, were grown from seeds in the glasshouse under controlled 

environmental conditions. Seedlings were grown for up to five weeks before leaves were 

inoculated. The sweet pepper hybrid, STAR 6657, was used instead of N. tabacum because it 

carries the Bs1, Bs2 and Bs3 resistance genes, and Bs1 recognizes avrBs1.  

Table 3.1: Plant lines, strains and plasmids used in this study 

Plant line, strain or 

plasmid 

 

Relevant characteristics 

 

Reference or 

source 

 

   

Plant lines   

Sweet pepper STAR 6657 
Hybrid sweet pepper with resistance to Bacterial 

Leaf Spot (Strain 1, 2, 3); recognizes avrBs1 
Starke Ayres 

Bacterial strains   

Xylophilus ampelinus 

VS20 
Wild type Xylophilus ampelinus  

ARC-PPRIa 

Culture 

collection 

Xa∆avrBs1 X. ampelinus avrBs1 knockout mutant Kanʳ This study 

Agrobacterium tumefaciens 

C58C1 
Rifʳ 

Dirk Stephan. 

USb 2012. 
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Escherichia coli JM109 

endA1, recA1, gyrA96, thi, hsdR17 (rk–, mk+), 

relA1, supE44, Δ( lac-proAB), [F´ traD36, 

proAB, laqIqZΔM15]. 

Lab strain 

Plasmids   

pCB301 

Mini Binary vector series, RK2 oriV, similar to 

nptIII, plasmid RK2 TrfA region, T-DNA right 

border, MCS, T-DNA left border; Kanʳ 

Dirk Stephan. 

USb  

pCB301∆BX 
Binary vector pCB301 with BamHI and XbaI 

restriction sites removed; Kanʳ 
This study 

pCB3CamV2 
pCB301∆BX carrying a 35S CaMV promoter and 

terminator ; Kanʳ 
This study 

pCB3-AvrBs1Xa 
pCB3CaMV carrying full length avrBs1 gene; 

Kanʳ 
This study 

pCB3-AvrBs122-413 
pCB3CaMV2 carrying avrBs1 gene N-terminal 

deletion from amino acid 1-21; Kanʳ 
This study 

pCB3-AvrBs144-413 
pCB3CaMV2 carrying avrBs1 gene N-terminal 

deletion from amino acid 1-43; Kanʳ 
This study 

pCB3-AvrBs157-413 
pCB3CaMV2 carrying avrBs1 gene N-terminal 

deletion from amino acid 1-56; Kanʳ 
This study 

pCB3-AvrBs164-413 
pCB3CaMV2 carrying avrBs1 gene N-terminal 

deletion from amino acid 1-63; Kanʳ 
This study 

pCB3-AvrBs1100-413 
pCB3CaMV2 carrying avrBs1 gene N-terminal 

deletion from amino acid 1-99; Kanʳ 
This study 

pCB3- AvrBs1Xcc 
pCB3CaMV2 carrying full length Xcc. avrBs1 

gene; Kanʳ 
This study 

pBBR1-MCS5 

Broad-host-range vector, MCS, LacZ alpha 

peptide, RK2, IncP, IncQ, IncW, ColE1 and 

P15a-based replicons; Gmʳ 

Kovach et al., 

1995 

pBM5flg 
pBBR1-MCS5 vector with 3x FLAG epitope; 

Gmʳ 
This study 

pBM5flg-avrBs1Xa 

pBBR1-MCS5 vector with 3x FLAG epitope and 

avrBs1 full length gene inserted at the 5ʹ end of 

3x FLAG in BamHI/XbaI cloning sites; Gmʳ 

This study 

pBM5flg-AvrBs157-413 

pBBR1-MCS5 vector with 3x FLAG epitope and 

AvrBs1 deletion mutant consisting of amino 

acids 57-413 inserted at the 5ʹ end of 3x FLAG in 

a BamHI/XbaI cloning site; Gmʳ 

This study 

pBM5flg_avrBs1Xcc 

pBBR1-MCS5 vector with 3x FLAG epitope and  

Xanthomonas campestris pv. campestris avrBs1 

inserted at the 5ʹ end of 3x FLAG in BamHI/XbaI 

cloning sites; Gmʳ 

This study 

      
aARC PPRI: Agricultural Research Council, Plant Protection Research Institute 

bUS: University of Stellenbosch 

 



 

61 
 

3.2.2 Polymerase Chain Reaction (PCR) primers used in this study 

All primers used in this study are listed in Table 3.2 below. Most of them were designed for 

this study using both CLC genomics workbench Version 6 (CLC Bio, Århus, Denmark) and 

NCBI Primer BLAST (Altschul et al., 1990). All primers were ordered from IDT and 

resuspended in sterile water to make 100 µM stock solutions. To prepare working solutions 

refer to Chapter 2 Section 2.2.2.  
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Table 3.2: Polymerase chain reaction primers 

Primer 

name 

Primer sequence (5ʹ-3ʹ; restriction sites 

underlined) 
Description Reference 

S3 GGTGTTAGGCCGAGTAGTGAG Forward primer for the detection of X. ampelinus ribosomal DNA Botha et al., 2001 

S4 GGTCTTTCACCTGACGCGTTA 
Reverse primer for the detection of X. ampelinus ribosomal DNA; 

S3+4 product length = 277bp 
Botha et al., 2001 

YP273 ATGGATATAAACCATATCGAATTTGC Forward primer specific for X. ampelinus avrBs1 ORF This study 

YP270 TCATTTCTCGAATATGACTTCCTGT 
Reverse primer specific for X. ampelinus avrBs1 ORF; YP273+270 

product length = 1239 bp 
This study 

YP276 ACGTTCTACGAGCTTTGCCA 
Forward primer specific for binary vector pCB301 (and its 

derivatives) nptIII region  
This study 

YP277 AGATTGTCGTTTCCCGCCTT 
Reverse primer specific for binary vector pCB301 nptIII region; 

YP276+277 product length = 705 bp 
This study 

YP320 TTACAATTTCCATTCGCCATTCAG 
Forward primer specific for Lac Z operon in broad host range vector 

pBBR1-MCS5 
This study 

YP321 ATGACCATGATTACGCCAAGC 
Reverse primer specific for Lac Z operon in broad host range vector 

pBBR1-MCS5; YP320+321 product length = 366 bp 
This study 

YP343 
TCTGGATCCATGACACAGCAAAATCGGGA

G 

Forward primer to create avrBs1 N-terminus deletion avrBs122-413 

for cloning into pCB3CaMV2; Primer has added ATG-Methionine 
This study 
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start codon and a BamHI restriction site; YP343+348 product length 

= 1175 bp  

YP344 
TCAGGATCCATGAATACTGTCAGACCAATT

GA 

Forward primer to create avrBs144-413 N-terminus deletion for 

cloning into pCB3CaMV2;  Primer has added ATG-Methionine 

start codon and a BamHI restriction site; YP344+348 product length 

= 1109 bp  

This study 

YP345 ACTGGATCCATGAAGTCTTTGCAGACCTC 

Forward primer to create avrBs157-413 N-terminus deletion for 

cloning into pCB3CaMV2;  Primer has added ATG-Methionine 

start codon and a BamHI restriction site; YP345+349 product length 

= 1070 bp  

This study 

YP346 GATGGATCCATGCTTCAGCGAATCCAAGA 

Forward primer to create avrBs164-413 N-terminus deletion for 

cloning into pCB3CaMV2; Primer has added ATG-Methionine start 

codon and a BamHI restriction site; YP346+348 product length = 

1050 bp  

This study 

YP347 TATGGATCCATGTCCTTCGCCAAAGAAGTT 

Forward primer to create avrBs1100-413 N-terminus deletion for 

cloning into pCB3CaMV2; Primer has added ATG-Methionine start 

codon and a BamHI restriction site; YP347+348 product length = 

941 bp  

This study 

YP348 
ACATCTAGATCATTTCTCGAATATGACTTC

CTG 

Reverse primer to create avrBs1 N-terminus deletions for cloning 

into pCB3CaMV2; primer has added XbaI restriction site.  
This study 
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YP339 
TACAGGATCCAAGTCTTTGCAGACCTCGGC

G 

Forward primer to create avrBs157-413 N-terminus deletion for 

cloning into pBM5flg; YP339+342; primer has added BamHI site; 

product length = 1064 bp  

This study 

YP342 TAGTCTAGATTTCTCGAATATGACTTCCTG 
Reverse primer to create avrBs1 N-terminus deletions for cloning 

into pBM5flg; primer has added XbaI restriction site. 
This study 

YP351 AGCCGTTCGGTCTTAGCGGGAG 
Forward primer specific for SOEing sequence upstream of avrBs1 

for knocking out avrBs1 CD 
This study 

YP410 
ACAATTCATCGATGATGGTTGGATTTCGGG

ATTTCACTA 

Reverse primer specific for SOEing sequence upstream of avrBs1 

for knocking out avrBs1 CD, overlapping with promoter sequence 

ahead of kanamycin gene; YP351+410 product length = 1202 bp 

This study 

YP411 
TAGTGAAATCCCGAAATCCAACCATCATC

GATGAATTGT 

Forward primer specific for SOEing sequence of the kanamycin 

gene including promoter sequence on Epicentre transposon, EzTn5, 

overlapping with X. ampelinus sequence.  

This study 

YP399 
AATCTAATTGAGGAAAATCTTAGAAAAAC

TCATCGA 

Reverse primer specific for SOEing kanamycin gene sequence 

overlapping with Xa avrBs1 deletion on X. ampelinus sequence. 

YP411+399 product length = 926 bp 

This study 

YP355 
GATGAGTTTTTCTAACATTTTCCTCAATTA

GAT 

Forward primer specific for SOEing sequence downstream of 

avrBs1 ORF for knocking out avrBs1 CD overlapping with 

kanamycin gene 

This study 
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YP356 CTATCAATCAAGCATTATCCCT 

Reverse primer specific for SOEing sequence downstream of 

avrBs1 ORF for knockout of avrBs1 CD; YP355+356 product 

length = 1206 bp 

This study 

YP404 

TGGTCTAGAGATTACAAGGATCATGATGG

CGATTACAAGGATCACGACATCGACTACA

AGGATGACGATGACAAGTAAGAGCTCAC 

Forward 3x FLAG epitope oligo with partial SacI and XbaI sites  This study 

YP405 

GTGAGCTCTTACTTGTCATCGTCATCCTTGT

AGTCGATGTCGTGATCCTTGTAATCGCCAT

CATGATCCTTGTAATCTCTAGACCA 

Reverse complimentary 3x FLAG epitope oligo with partial SacI 

and XbaI sites  
This study 

YP408 
ATCAGGATCCATGGATATAAACCATATCG

AATTTGC 

Forward primer with BamHI site for amplification of X. ampelinus 

full length avrBs1 CD 
This study 

YP409 
TAGTCTAGATCATTTCTCGAATATGACTTC

CTGT 

Reverse primer with XbaI site for amplification of X. ampelinus full 

length avrBs1 for cloning into pCB3CaMV2. YP408+409 product 

length = 1239 bp 

This study 

YP342 TAGTCTAGATTTCTCGAATATGACTTCCTG 

Reverse primer with XbaI site for amplification of X. ampelinus full 

length avrBs1 without a stop codon for cloning at 5ʹ end of 3x 

FLAG epitope in pBM5flg. YP408+342 product length = 1236 bp 

This study 

YP416 TACAGGATCCATGACGGACTTGTGCTCG 

Forward primer specific for full length Xcc avrBs1. Primer modified 

from avrBs1-642U (Wichmann and Bergelson, 2004). SacI site 

replaced with a BamHI site. 

This study 
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YP417 ACATCTAGAGTGGCGGATACTTCTTCTCT 
Reverse primer specific for full length Xcc avrBs1 for cloning into 

pCB3CaMV2 product size 1335 bp with XbaI site added 
This study 

YP501 ACATCTAGACGCTTCTCCTGCATTTGT 

Reverse primer specific for Xcc avrBs1 without stop codon for 

cloning at the 5ʹ end of 3x FLAG in pBM5flg. Primer modified 

from avrBs1-2069L (Wichmann and Bergelson, 2004). SphI site 

replaced with XbaI site; product length = 1332 bp 

This study 
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3.2.3 Sequence analysis 

X. ampelinus sequence analysis and construction of plasmid and restriction enzyme maps were 

done using CLC Genomics Workbench version 6.0 and nucleotide sequence comparisons were 

done using BLAST (Altschul, 1990). ORF nucleotide sequences were translated to protein 

sequences in reading frame one and sequence comparisons were done using the BLASTp 

function (Altschul, 1997) on the NCBI website (http://www.ncbi.nlm.nih.gov).  

3.2.4 Identification of X. ampelinus AvrBs1 HR-inducing domain 

3.2.4.1 Construction of binary vector: restriction digestion and cloning 

Binary vector pCB3CaMV2 was created by cloning the Cauliflower Mosaic Virus (CaMV) 

35S promoter and terminator into the HindIII/ EcoRI sites of pCB301 after the deletion of 

BamHI and XbaI sites from this vector. The BamHI and XbaI sites needed to be removed from 

pCB301, since the aim was to clone the avrBs1 ORF and its deletion mutants between the 

BamHI and XbaI sites situated between the CaMV 35S promoter and terminator. Restriction 

digestion, gel purification and removal of the 3ʹ- and 5ʹ overhangs created by sticky-end 

restriction was done as described in Chapter 2. Briefly, once the BamHI site had been removed 

and the plasmid recircularized, the new plasmid named pCB3∆B was digested with XbaI, the 

3ʹ- and 5ʹ overhangs removed with SI nuclease and recircularized to produce the plasmid, 

pCB3∆BX, which was now void of both BamHI and XbaI sites.  

Vector pCB3∆BX was digested with FastDigest EcoRI and HindIII restriction enzymes, 

electrophoresed and gel purified as described previously. This 3.5 kb linearized vector DNA 

was ligated with the one kilobase pair EcoRI and HindIII DNA fragment from vector p442 

carrying the CaMV 35S promoter and terminator to create the vector, pCB3CaMV2 as 

previously described in Section 2.2.7. After PCR-verification with primer pair YP276 and 

YP277, the vector was named pCB3CaMV2 and stored at -20°C.  

3.2.4.2 Amplification and cloning of X. ampelinus avrBs1 N-terminal deletion 

mutants 

Genomic DNA of wild type X. ampelinus was used as template for PCR with primers YP343, 

YP344, YP345, YP346, YP347 and reverse primer YP348 to amplify five avrBs1 N-terminal 

deletion mutants AvrBs122-413, AvrBs144-413, AvrBs157-413, AvrBs164-413 and AvrBs1100-413, 

respectively. All forward primers had added ATG (Methionine) start codon to mark the 

http://www.ncbi.nlm.nih.gov/
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beginning site of protein synthesis. The proofreading polymerase, Phusion High fidelity DNA 

polymerase (Thermo Scientific, Inqaba Biotech, South Africa) was used for amplification 

according to manufacturer’s instructions.  Reactions typically contained 20 ng of a template 

DNA, 200 µM of dNTPs, 200 nM of each primer and one unit of Phusion polymerase. 

Table 3.3 below shows all PCR conditions for each primer pair. Annealing temperatures were 

dependent on each primer set melting temperatures. Extension times were also dependent on 

the length of each product.  Initial denaturation was 98 °C for 30 seconds for all primer pairs 

and 30 cycles for denaturation, primer annealing and extension steps for each primer pair. The 

final extension remained the same for all reactions at 72 °C for five minutes and a 4 °C storage 

step was included for all reactions. 

Table 3.3: PCR cycling conditions for all primer sets 

           

           

Component 

YP343+ 

YP348 

YP344+ 

 YP 348 

YP345+ 

YP348 

YP346+ 

YP348 

YP347+ 

YP348 

 Temp Time Temp Time Temp Time Temp Time Temp Time 

           

Denaturation 98 °C 15 sec 98 °C 15 sec 98 °C 15 sec 98 °C 15 sec 98 °C 15 sec 

Primer 

annealing 59°C 15 sec 57°C 15 sec 58°C 15 sec 58°C 15 sec 58°C 15 sec 

Extension 72°C 30 sec 72°C 30 sec 72°C 30 sec 72°C 25 sec 72°C 20 sec 

 

Along with five avrBs1 N-terminal deletions, the full length avrBs1 genes were amplified and 

used as positive controls. X. ampelinus genomic DNA was used as template for PCR with 

primers YP408 and YP409 to amplify Xa avrBs1 ORF. Furthermore, X. campestris pv. 

campestris genomic DNA was used as template for PCR with primers YP416 and YP417 to 

amplify Xcc avrBs1. The PCR programme for amplification of Xa avrBs1 was as follows: 98 

°C for 30 seconds, 30 cycles of (98 °C for 15 seconds, 57 °C for 15 seconds, 72 °C for 45 

seconds) and a final extension at 72 °C for five minutes. The PCR programme for amplification 

of Xcc avrBs1 was as follows: 98 °C for 30 seconds, 30 cycles of (98 °C for 15 seconds, 60 °C 

for 15 seconds, 72 °C for one minute) and a final extension at 72 °C for five minutes. 

PCR products were resolved in ethidium-containing 0.8% agarose gels in Tris/Borate/EDTA 

(TBE) buffer electrophoresed at 100 volts for one hour. The DNA bands were visualized under 

UV light and photographed using the Ingenius Bio-Imaging system (Syngene, Vacutec, South 
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Africa). The PCR products were excised from the gel using a sterile blade, and the DNA was 

purified using the QiaexII gel extraction kit. 

The PCR products were individually digested with BamHI and XbaI, and individually ligated 

between the BamHI and XbaI sites of binary vector, pCB3CaMV2. The newly created plasmid 

constructs were used to transform E. coli JM109 competent cells as described before (Chapter 

2 Section 2.2.6.1). The plasmids were extracted from cells, verified with FastDigest EcoRV 

and used to transform A. tumefaciens strain C5C81. 

3.2.4.3 Transformation of A. tumefaciens electro-competent cells 

The pCB3CaMV2-N-terminal deletion construct series (pCB3- AvrBs122-413, -AvrBs144-413, -

AvrBs157-413, -AvrBs164-413 and -AvrBs1100-413) along with full length X. ampelinus avrBs1 and 

Xcc avrBs1 as well as pCB3CaMV2 empty vector construct were used to transform 

Agrobacterium strain C58C1 (Refer to Chapter 2 Section 2.2.9). Transformed cells were 

cultured on YEP-agar plates with 50 µg/ml each of kanamycin and rifampicin. Cultured plates 

were incubated at 28 °C for 48 hours. CFUs were verified by colony PCR using primers specific 

for the avrBs1 deletion mutants, Xa avrBs1 and Xcc avrBs1 homologs respectively.  

3.2.4.4 Agrobacterium-mediated transient expression 

A. tumefaciens strain C58C1 carrying binary vector constructs (pCB3-AvrBs1Xa and pCB3- 

AvrBs1Xcc positive controls; pCB3- AvrBs122-413, -AvrBs144-413, -AvrBs157-413, -AvrBs164-413 

and -AvrBs1100-413 N-terminus vector deletion series; and pCB3CaMV2 empty vector negative 

control) and untransformed A. tumefaciens C58C1 were grown in five millilitres of YEP broth 

containing 50 µg/mg each of rifampicin and kanamycin and 50 µg/ml of rifampicin only for 

the untransformed C58C1, at 28 °C for 48 hours. The transient expression experiment was 

carried out as described in Chapter 2 Section 2.2.10. Bacterial suspensions were inoculated into 

six to eight weeks old pepper plant leaves using a needleless syringe. After infiltration, plants 

were kept at room temperature in a 16 hour light and eight hour dark cycle. Leaves were 

photographed after a two to three days post-inoculation. 
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3.2.5 Preparation and transformation of X. ampelinus electro-competent cells 

X. ampelinus from glycerol stock was revived by culturing on YPGA agar plates (7 g/L Yeasst 

extract; 7g/L Bacto-peptone; 7 g/L Glucose; 15 g/L Bacto-agar). Plates were incubated at 28 

°C for six to eight days. After sixth or eighth day, the cells were transferred onto as many new 

YPGA plates as possible for full growth and incubated for five days at 28 °C. On day five, the 

cells were scraped off the plates and aseptically resuspended in sterile distilled water. The cells 

were diluted to an OD600nm of approximately one. The cells were harvested by centrifugation 

at 5000xg for 10 minutes at 4 °C. Pellets were washed twice with cold sterile distilled water 

(1/10th of initial volume) and centrifugation at 5000xg for 10 minutes. The cells were then 

washed five to six times with ice cold sterile 15% (v/v) glycerol. Electro-competent cells were 

finally resuspended in 1/100th of the initial volume of 15% (v/v) glycerol and dispensed into 

sterile microcentrifuge tubes. Electro-competent cells were used directly for electroporation or 

stored at -70 ˚C for future use. 

For electroporation, competent X. ampelinus, plasmid constructs and frozen SOC medium were 

thawed on ice. Two to five microlitres of plasmid construct was added to 50 µL electro-

competent cells, mixed by flicking the tube, and kept on ice for 10 minutes. The cell-plasmid 

DNA mixture was transferred into cold 0.2 cm electroporation cuvettes and pulsed once with 

1.8 kV, at 25 µF capacitance and 200 Ω resistance. One millilitre of cold SOC medium was 

added quickly and the cell suspension incubated at 28 °C for four hours shaking at 140 rpm. 

The cells were plated on YPGA supplemented with the appropriate antibiotics and incubated 

at 28 °C for seven to ten days. CFUs were verified by colony PCR using specific primers.  

3.2.6 Generation of X. ampelinus avrBs1-knockout mutant 

3.2.6.1 "Splicing by Overlap Extension" PCR (SOEing PCR) 

Genomic DNA of wild type X. ampelinus was used as template for PCR with primers YP351 

and YP410, and YP355 and YP356 to amplify 1.2 kb DNA fragments each at the upstream and 

downstream regions of the avrBs1 CD. The amplified fragments were designated avrBs1_AB 

and avrBs1_CD. A kanamycin resistance cassette was amplified with primers YP411 and 

YP399 from a plasmid carrying the Epicentre EzTn5<Kan2> transposon cassette. The 

proofreading polymerase, Phusion High fidelity DNA polymerase (Thermo Scientific, Inqaba 

Biotech, South Africa) was used for amplification according to manufacturer’s instructions.  

Reactions typically contained 20 ng of a template DNA, 200 µM of dNTPs, 200 nM of each 

primer and one unit of Phusion polymerase.  
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The PCR programme for amplification of avrBs1_AB was as follows: 98 °C for 30 seconds, 

30 cycles of (98 °C for 15 seconds, 60 °C for 15 seconds, 72 °C for 45 seconds) and a final 

extension at 72 °C for five minutes. The PCR programme for amplification of avrBs1_CD 98 

°C for 30 seconds, 30 cycles of (98 °C for 15 seconds, 53 °C for 15 seconds, 72 °C for 45 

seconds) and a final extension at 72 °C for five minutes. The PCR programme for amplification 

of the kanamycin cassette was as follows: 98 °C for 30 seconds, 30 cycles of (98 °C for 15 

seconds, 60 °C for 15 seconds, 72 °C for 30 seconds) and a final extension at 72 °C for five 

minutes. PCR products were gel purified as mentioned previously. Approximately 20 ng of 

each purified PCR product was used in SOEing overlap extension PCR. A pictorial overview 

of the process followed to generate the construct to be used to delete the avrBs1 CD from the 

X. ampelinus chromosome is shown in Figure 3.1. 

The actual method for synthesis by overlap extension (SOE) PCR was as follows: two separate 

master mixes A and B were prepared on ice (Refer to Table 3.4 below for volumes and 

concentrations). 

Table 3.4: Generic SOEing PCR 

Component Master Mix A Master Mix B 

   

5X Phusion buffer 5 µl 5 µl 

10 MM dNTPs 0.5 µl 0.5 µl 

Phusion polymerase 0.25 µl 0.25 µl 

10 µM external forward 

primer 
0 µl 1 µl 

10 µM external reverse 

primer 
0 µl 1 µl 

AB_∆avrBs1 20 ng/µl 0 µl 

Kanamycin cassette  20 ng/µl 0 µl 

CD_∆avrBs1 20 ng/µl 0 µl 

Nuclease free water up to 25 µl up to 25 µl 

TOTAL 25 µl 25 µl 

 

Master mix A containing the three DNA templates were set up to run for 15 cycles to create a 

single template from three sequences in the absence of primers (Refer to figure 3.1 below). The 

overlapping sequences were able to hybridize with their complementary sequences at the 

terminals of each fragment. The primary PCR reaction (A) was set as follows: 98 °C for 30 

seconds, 15 cycles of (98 °C for 15 seconds, 57 °C for 30 seconds and 72 °C for 30 seconds) 

and a final extension at 72 ° for two minutes. The samples were put on hold at ten degrees 
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Celsius to add master mix B. After adding master mix B, a new program (PCR reaction B) was 

loaded as follows: 98 °C for 30 seconds, 30 cycles of (98 °C for 15 seconds, 55 °C for 15 

seconds, 72 °C for one minute) and a final extension at 72 °C for ten minutes and stored at 10 

°C.  

The PCR product was resolved in ethidium-containing 0.8% agarose gels in Tris/Borate/EDTA 

(TBE) buffer electrophoresed at 100 volts for one hour. The DNA band was visualized under 

UV light and photographed using the Ingenius Bio-Imaging. The PCR product was excised 

from the gel using a sterile blade, and the DNA was purified using the QiaexII gel extraction 

kit. The purified SOEing PCR product was ligated into a suicide vector, pJET1.2/Blunt (Figure 

3.2) using the CloneJET™ PCR Cloning Kit (Thermo-Scientific, Inqaba, South Africa) 

according to the manufacturer’s protocol.  

Five microliters of SOEing ligation mixture was used to transform E. coli JM109 chemical 

competent cells using a heat-shock method (Section 2.2.6.1) and grown on LB-agar plates 

supplemented with 100 µg/ml ampicillin and 40 µg/ml kanamycin. Resulting transformants 

were PCR verified using primer pair YP411 and YP399. A positive CFU was selected, grown 

in LB broth supplemented with 40 µg/ml kanamycin, and the SOEing plasmid construct, 

extracted after overnight incubation at 37 °C. This plasmid construct was named 

pJET1.2/SOEing. Two to three microliters of pJET1.2/SOEing was used to transform electro-

competent wild type X. ampelinus as described in Section 3.2.5.  
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Figure 3.1. SOEing PCR Overlap extension. The first step shows the DNA fragments for the 

SOEing construct with their specific primer pairs. Individual PCR products were purified and 

used in overlap PCR. The purification PCR step involved the use of primer pair YP351 and 

YP356 to amplify a 3.33 kb SOEing product. 

 

 



 

74 
 

 

Figure 3.2: pJET1.2/SOEing vector construction. The 3.3 kb SOEing PCR product 

containing the regions upstream and downstream of X. ampelinus avrBs1 as well as the 

kanamycin resistance cassette was ligated into the suicide vector, pJET1.2/Blunt. 

 

3.2.6.2 Confirmation of allelic exchange 

To confirm that the avrBs1 gene on the chromosome had been replaced by the kanamycin 

cassette, two separate colony PCR reactions were carried out using primers specific for either 

the kanamycin cassette (YP399+411) or avrBs1 (YP270+273). To confirm that the 

pJET1.2/SOEing construct was not present in the cells, CFUs which were PCR positive for 

kanamycin and negative for avrBs1, were sub-cultured onto YPGA plates supplemented with 

30, 40 or 50 µg/ml ampicillin. The plates were incubated at 28 °C for eight to ten days, checking 

the growth of cells every day after the fifth day. The isolate that didn’t grow on ampicillin-agar 

plates was named XaΔavrBs1, and used to make a glycerol stock with nutrient broth in 10% 

(v/v) glycerol and stored at -70 °C. 
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3.2.6.3 Testing Xa∆avrBs1 mutant for HR induction on pepper  

Xa∆avrBs1 mutant strain was transferred onto YPGA plates with kanamycin 10 µg/ml and 

grown for four days along with the wild type X. ampelinus as a positive control. After a four-

day incubation period, the cells were scraped from plates and resuspended in sterile 1x PBS 

(phosphate buffered saline). Cell suspensions with OD600nm readings of approximately 0.3 to 

0.35 were immediately used for inoculation. Approximately 20 µL of cell suspension was 

infiltrated into six to eight weeks old pepper, STAR 6657. After inoculation, plants were kept 

at room temperature in an eight hour dark and 16 hour light cycle. Leaves were photographed 

after 24 to 48 hours post-inoculation. 

3.2.7 Development of the T3E reporter plasmid system 

3.2.7.1 Linker ligation and cloning of 3x FLAG into a broad-host range vector 

The 3x FLAG peptide is a synthetic peptide consisting of 22 amino acid residues with sequence 

DYKDHDGDYKDHDIDYKDDDDK. Two complementary oligonucleotides (YP404 and 

YP405) were designed based on this peptide sequence and a stop codon was included at the 3ʹ 

end. The oligos were designed to have partial XbaI and SacI restriction sites at the 5ʹ and 3ʹ 

ends, respectively to facilitate cloning into the broad host range vector, pBBR1-MCS5, as well 

as fusion to the N-terminal sequences of candidate T3Es. The two oligos were annealed using 

a modified linker ligation protocol 

(http://structure.biochem.queensu.ca/protocols/linkerligation). Briefly, oligonucleotide stock 

solutions of 100 µM concentration was prepared in a 1x linker buffer (refer to APPENDIX B 

for buffer composition). For a single linker ligation reaction, 10 µL of each oligonucleotide 

was mixed together to give a final concentration of 50 µM of each oligo, and annealed as 

follows: 95 °C for two minutes; 60 °C for 10 minutes; and storage at 4 °C. 

The pBBR1-MCS5 vector was prepared by inoculating five millilitres of LB broth 

supplemented with 10 µg/ml gentamicin with a single colony grown on antibiotic-

supplemented LB-agar plates and incubating the cultures overnight at 37 °C on a shaking 

platform. The plasmid was isolated using the Qiagen miniprep kit (Qiagen GmbH, Germany) 

according to manufacturer’s instructions and stored at -20 °C. The plasmid, pBBR1-MCS5 was 

digested with FastDigest restriction enzymes XbaI and SacI (Thermo Scientific, Inqaba Biotec, 

South Africa) according to the manufacturer’s instructions in order to create compatible sites 

for insertion (linker ligation) of the double-stranded 3x FLAG sequence. The linearized vector 

was gel purified as explained in previous sections and stored at -20 °C.  
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The linker ligation reaction was set up as follows: 0.5 µL of the 50 µM the annealed 3x FLAG 

oligonucleotide reaction was added to five microliters of pBBR1-MCS5 SacI/ XbaI linear 

fragment, two microliters of 10x ligation buffer and five units of T4 DNA ligase (Roche, SA)  

in a 20 µL total reaction volume. The ligation reaction was carried out overnight at 16 °C in a 

PCR machine. Five microliters of the overnight ligation mixture was used to transform 100 µL 

of chemical competent E. coli using the heat shock method and cells were plated onto LB agar 

containing 10 µg/ml gentamicin for incubation at 37 °C for overnight. Resulting transformants 

were PCR-verified using primer pair YP320 and YP321. A PCR-positive colony was selected, 

grown in liquid LB broth supplemented with 10 µg/ml gentamicin and the plasmid DNA 

extracted after overnight incubation at 37 °C. This plasmid construct was named pBM5flg and 

stored at -20 °C. 

3.2.7.2 Construction of the T3E reporter plasmid using the HR-inducing domain 

of avrBs1 

Genomic DNA of wild type X. ampelinus was used as template for PCR with primers YP339 

and YP342 to amplify the AvrBs1 HR-inducing domain (amino acids 57-413). At the same 

time, two control constructs were also created by amplifying, full length avrBs1Xa and 

avrBs1Xcc CDs from wild type X. ampelinus and X. campestris pv. campestris, genomes, with 

primers YP408 and YP342, and YP416 and YP501, respectively . The proofreading 

polymerase, Phusion High fidelity DNA polymerase was used for amplification according to 

manufacturer’s instructions.  Reactions typically contained 20 ng of a template DNA, 200 µM 

of dNTPs, 200 nM of each primer and one unit of Phusion polymerase.  The PCR cycling 

conditions for each primer pair are shown in Table 3.5. Initial denaturation was 98 °C for 30 

seconds for all primer pairs and 30 cycles for denaturation, primer annealing and extension 

steps for each primer pair. The final extension remained the same for all reactions at 72 °C for 

five minutes and a 4 °C storage step was included for all reactions. 
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Table 3.5: PCR cycling conditions for avr amplification 

       

Component 

YP339+ 

YP342 

YP408+ 

 YP342 

YP416+ 

YP501 

 Temp Time Temp Time Temp Time 

       

Denaturation 98 °C 15 sec 98 °C 15 sec 98 °C 15 sec 

Primer 

annealing 60 °C 15 sec 57 °C 15 sec 60 °C 15 sec 

Extension 72 °C 30 sec 72 °C 45 sec 72 °C 1min  

 

All PCR products were gel purified as previously described, digested individually with 

FastDigest BamHI and XbaI enzymes, before being gel purified again. These purified products, 

which all lacked a stop codon, were individually ligated between the BamHI and XbaI sites 

located at the 5ʹ end of the 3x FLAG tag in the broad host range vector, pBM5flg, in order to 

give rise to a fusion protein that would be detectable via western blotting. Each of the three 

ligation reactions were used to transform E. coli JM109 competent cells as described before 

(Chapter 2 Section 2.2.6.1).  

Resulting transformants were PCR-verified using primer pair YP320 and YP321 as well as 

primer pairs specific for each insert. The plasmid constructs were extracted from cells, verified 

with FastDigest PvuII and used to transform electrocompetent mutant, XaΔavrBs1. The 

constructs were named pBM5flg_AvrBs157-413, pBM5flg-avrBs1Xa and pBM5flg-avrBs1Xcc, 

respectively and stored at -20 °C. As an additional control, the empty vector, pBM5flg, was 

also electroporated into the mutant, XaΔavrBs1. PCR-verified CFUs were stored at -70 °C in 

10% (v/v/) nutrient broth glycerol (NBG). These isolates were sub-cultured onto fresh YPGA 

agar plates with appropriate antibiotics for HR, protein secretion and translocation assays 

described in the following sections.  
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3.2.8 Testing of the T3E reporter plasmid system I: Protein Secretion assay 

3.2.8.1 Protein extraction from bacterial cell cultures 

The Xa∆avrBs1 mutant carrying pBM5flg, pBM5flg-avrBs1Xa, -avrBs1Xcc and -AvrBs157-413 

constructs and untransformed strain were grown separately on YPGA plates with kanamycin 

10 µg/ml and gentamicin 5 µg/ml for five days at 28 °C. On day five, the cells were resuspended 

in 50 ml YPG broth and the absorbance (OD600 value) was adjusted to ~0.5. The cells were 

harvested by centrifuging at 5000 xg for 10 minutes. Cell pellets were washed once with 20 ml 

of YPG and/ or minimal medium (XAM3) per sample. The cells were pelleted at 5000 xg for 

10 minutes and finally resuspended in 50 ml of YPG / or XAM3 medium (per each sample) 

and grown at 28 °C for 24 hours shaking at 200 rpm. Cultures were separated into cellular and 

supernatant fractions by 10 minutes of centrifugation at 10000 xg. The pellets were washed 

once with 25 ml 1xPBS buffer and finally resuspended in 25 ml 1xPBS buffer. The supernatant 

was filtered through a 0.22 µM-pore membrane filter to eliminate residual cells. Success of this 

step was confirmed by culturing 200 µL onto YPGA plates. The proteins in both the cellular 

and supernatant fractions were precipitated with one volume of 25% trichloroacetic acid 

followed by overnight incubation at 4 °C. After overnight incubation the protein precipitates 

were collected by centrifugation at 6000 xg for 30 minutes at 4 °C. The protein pellets were 

washed three times with two milliliters ice cold 90% acetone. Precipitated proteins were 

recovered by centrifugation at 15000 rpm for five minutes and the pellets were dried and 

resuspended in 100 µL PBS buffer. 

3.2.8.2 Protein quantification: Bradford assay 

The concentrations of all protein extracts were determined using a modified Bradford assay 

(Bradford, 1976). After resuspension of proteins in 1xPBS, the samples were prepared for 

quantification. Bovine serum albumin (BSA) standards were prepared in duplicate from 20 

mg/ml BSA stock solution in 1000 µL plastic cuvettes as indicated in Table 3.6 below. Protein 

extracts were prepared in plastic cuvettes by mixing 2.5 µL of protein sample with 17.5 µL of 

1xPBS. The Bradford reagent (Bio-RAD; Hercules, CA, USA) was diluted five times with 

distilled water prior to use. A volume of 980 µL of diluted Bradford reagent was added to all 

standards and protein extracts, mixed and incubated for five minutes at room temperature. 

Absorbance was measured at 595 nm on a BioDrop TOUCH UV/Visible Spectrophotometer 

(Integrated Scientific Solutions) using 1xPBS as a blank solution. The standards were used to 
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plot a standard curve from which concentrations of all protein extract samples were 

extrapolated. All samples were stored at -20 °C until needed. 

 

Table 3.6: Preparation of BSA protein standards for protein quantification 

BSA final 

concentration 

(µg/ml) 

BSA 20 mg/ml 

stock solution 

(µL) 

1xPBS Buffer 

(µL) 

   

0* 0 20 

10 0.5 19.5 

20 1 19 

30 1.5 18.5 

40 2 18 

50 2.5 17.5 

75 3.75 16.25 

100 5 15 

   

*blank solution 

 

3.2.8.3 SDS-PAGE and Coomassie Brilliant blue staining of gels  

The protein extracts were separated on 1D SDS-PAGE, a system composed of a stacking and 

resolving gel. The resolving and stacking gels were prepared as described in Table 3.7. The 

resolving gel solution was allowed to polymerize for 15 minutes at room temperature after the 

addition of 1 ml isopropanol to prevent air bubbles from forming. After 15 minutes the 

isopropanol was removed, and the gel was washed twice with 1 ml distilled water and the 

stacking gel solution was then added on top of the resolving gel. The comb was carefully 

inserted and the gel was allowed to polymerize for 30 to 40 minutes. Each 20 µl protein sample 

contained 5 µl Laemmli sample buffer (4:1 Laemmli buffer to mercapto-ethanol) and 15 µl 

protein extract. The samples were denatured at 90 °C for five minutes. After the samples cooled 

down at room temperature, 10 µl of Precision Plus Protein™ Dual Color Standards and total 

protein samples were loaded into the wells and electrophoresed at 100 V for three to four hours 

or until the sample dye ran out into the buffer. The electrophoresis was carried out at low 

temperatures with constant cooling with ice.  
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Table 3.7: Preparation of resolving and stacking gel solutions for two 10x10 cm gels using 1 

mm spacers 

Component 

12% Resolving 

gel Stacking gel 

   

Distilled water 5.25 ml 4.2 ml 

30% stock acrylamide 

soulution 6 ml 0.65 ml 

4x Tris SDS resolving 

solution gel pH 8.8 3.75 ml 0 ml 

4x Tris SDS stacking gel 

solution pH 6.8 0 ml 1.6 ml 

10% Ammonium 

persulphate 150 µl 67 µl 

TEMED 15 µl 6.7 µl 

 

Protein separated by ID SDS-PAGE were routinely detected using a modified CBB R-250 

staining protocol using one way step. Because of less complexity with bacterial proteins there 

was no need for sequential staining. After electrophoresis, the gels were dismounted from the 

gel plate assembly and immersed in CBB staining solution. The gels were gently rocked on a 

shaking platform for overnight at 30 rpm. After staining, the gels were immersed in distaining 

solution (5% methanol, 10% acetic acid in water) with constant shaking at room temperature 

until the bands were visibly distinct against a clear background. The gels were photographed 

using a general white light camera.  

3.2.8.4 Protein secretion analysis: Western blotting 

a) Transfer of protein from 1D SDS-PAGE gels onto Nitrocellulose membrane 

Proteins samples separated by 1D SDS-PAGE were transferred onto 0.45 µm pore 

Nitrocellulose membrane (Bio-RAD, South Africa). Prior to protein transfer, electrophoresed 

gels were pre-equilibrated in cold transfer buffer [25 mM Tris, 192 mM glycine and 20% (v/v) 

methanol] for 20 minutes along with filter pads with shaking at room temperature. The gel-

membrane sandwich was prepared on the gel holder cassette according to the Enduro 

electrophoresis system manual (Labnet International Inc). Electrophoretic transfer of proteins 

was performed at a constant current of 400 mA for three and half hours with constant cooling 

effect. 
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b) Immunoprobing of Nitrocellulose membrane with antibodies 

After protein transfer, the membrane was incubated in the blocking solution (1% (w/v) Elite 

fat free instant milk in TBS buffer) at 4 °C overnight. After overnight incubation the membrane 

was agitated at room temperature for 1 hour before processing. The membrane was incubated 

with the primary antibody, Anti-FLAG M2 monoclonal antibody (Agilent Technologies 

Incorporation, USA) diluted 1:500 in 1% (w/v) blocking solution for the minimum of one hour. 

The membrane was washed three times with TTBS buffer with a minimum of three minutes 

per wash. The membrane was incubated with the secondary antibody, Goat anti-mouse IgG 

alkaline phosphate conjugate (BIO-RAD), diluted 1:3000 in 1% (w/v) blocking solution for 

one hour.  

c) Immunodetection of proteins using Alkaline Phosphatase Conjugate Substrate kit 

After secondary antibody incubation, the membrane was washed three times in TTBS buffer 

for five minutes per wash. FLAG-fusion proteins were detected using the Alkaline phosphatase 

conjugate substrate kit (BIO-RAD) according to manufacturer’s instructions. The membrane 

was left for 30 minutes in the dark to allow colour development. 

3.2.9 Testing of a T3E reporter plasmid system II: Protein Translocation Assay 

Xa∆avrBs1 mutant strain carrying pBM5flg, pBM5flg-avrBs1Xa, -avrBs1Xcc and -AvrBs157-413 

constructs and untransformed strain were grown separately on YPGA plates supplemented with 

appropriate antibiotics for six to eight days at 28 °C. After the eighth day, bacterial cells were 

transferred onto new YPGA plates supplemented with appropriate antibiotics and grown at 28 

°C for five days. On day five, the cells were resuspended in sterile 1xPBS buffer and the 

absorbance (OD600) of all samples was adjusted to 0.3- 0.35. Bacterial suspensions were 

inoculated into six to eight weeks old Sweet pepper STAR 6657 plant leaves using a needleless 

syringe. After infiltration, plants were kept at room temperature in a 16 hour light and eight 

hour dark cycle. Leaves were photographed after two to three days post-inoculation. 
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3.3 RESULTS 

3.3.1 Identification of X. ampelinus AvrBs1 HR-inducing domain 

Given that Xanthomonas AvrBs1 protein HR-inducing domain is within its C-terminus, a 

similar study was used to determine X. ampelinus AvrBs1 HR-inducing domain through N-

terminal deletion and transient expression of deletion mutants in sweet pepper. To determine 

AvrBs1 HR-inducing domain amino acids at the N-terminus were deleted, and these deletion 

mutants were cloned into a binary vector pCB3CaMV2 under the control of 35S promoter. X. 

ampelinus and X. campestris pv. campestris full length AvrBs1 proteins induced strong HR. 

Agrobacterium-mediated transient expression of AvrBs1 N-terminal deletion constructs on 

pepper plants revealed that AvrBs157-413 is the shortest protein segment that elicited HR (Figure 

3.3, Table 3.7). The N-terminal deletion constructs, AvrBs164-413 and AvrBs1100-413 did not 

induce HR (Figure 3.3, Table 3.7). Therefore X. ampelinus AvrBs1 amino acids 57-413, 

harbouring the HR-inducing domain was used in the development of a reporter plasmid system. 

 

 

Figure 3.3: HR analysis of AvrBs1 protein N-terminus deletion mutants. HR inducing 

ability of AvrBs1 protein N-terminal deletions was measured by comparing the response 

intensity resulting from inoculating with full length genes and N-terminus deletion mutants. 

All DNA inserts were expressed from binary vector pCB3CaMV2 within Agrobacterium cells 

under Cauliflower Mosaic Virus (CaMV) 35S promoter control. 
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Table 3.8: Identification of X. ampelinus AvrBs1 protein HR-inducing domain through  

Agrobacterium-mediated transient expression in sweet pepper STAR 6657 

Construct Description HR test 

   

pCB3-avrBs1Xcc 

Binary vector with CaMV 35S promoter 

and X. campestris pv. campestris full 

length avrBs1 gene 

     + 

pCB3-avrBs1Xa 
Binary vector with CaMV 35S promoter 

and X. ampelinus full length avrBs1 gene 
     + 

pCB3-AvrBs122-413 

Binary vector with CaMV 35S promoter 

and X. ampelinus AvrBs1 N-terminal 

deletion starting from amino acid 22  

     + 

   

pCB3-AvrBs157-413 

Binary vector with CaMV 35S promoter 

and X. ampelinus AvrBs1 N-terminal 

deletion starting from amino acid 57 

     + 

pCB3-AvrBs164-413 

Binary vector with CaMV 35S promoter 

and X. ampelinus AvrBs1 N-terminal 

deletion starting from amino acid 64 

      - 

pCB3-AvrBs1100-413 

Binary vector with CaMV 35S promoter 

and X. ampelinus AvrBs1 N-terminal 

deletion starting from amino acid 100 

     - 

pCB3CaMV2 Binary vector with CaMV 35S promoter      - 

   

Key: - no HR; + full-blown HR 

 

3.3.2 Generation and testing of the XaΔavrBs1 mutant  

Generation of gene knockout mutants is an important and popular practice commonly applied 

in determining gene function. In order for us to be able to test a T3E reporter system based on 

the avrBs1 gene, a mutant X. ampelinus strain with deleted avrBs1 gene was required. To 

generate the mutant, PCR-overlap extension was used to create a gene SOEing insert by joining 

avrBs1 flanking sequences together with a kanamycin resistance cassette. The SOEing insert 

was cloned into a suicide plasmid pJET1.2/blunt, and the construct was verified by restriction 

digest using FastDigest HindIII and BamHI restriction enzymes. The two size bands observed 

in each reaction (Figure 3.4) corresponds to the sizes for the plasmid and insert as generated 

by CLC Genomics workbench v6. To determine whether allelic  exchange had occurred, X. 
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ampelinus cells transformed with pJET1.2/blunt-SOEing were PCR-verified with primers 

specific for the kanamycin resistance cassette and avrBs1 CD (Figure 3.5). The HR test of the 

XaΔavrBs1 mutant on pepper leaves expressing the Bs1 resistance gene revealed the loss of the 

HR-inducing ability (Figure 3.7). This XaΔavrBs1 knockout mutant was used in the subsequent 

testing of the T3E reporter system. 

 

 

Figure 3.4: Verification of pJET1.2/SOEing construct. Lane M- 100 bp Plus DNA marker, 

lane 1- and 2- uncut pJET1.2/SOEing construct, lane 3- and 4- pJET1.2/SOEing construct 

digested with HindIII; lane 5- empty; lane 6- and 7- pJET1.2/SOEing digested with BamHI.  

 

 

Figure 3.5: Verification of XaΔavrBs1 knockout mutant using primers specific for the 

kanamycin cassette (A) and avrBs1 CD (B). Lane M- 100bp Plus DNA marker; lane 1- 

negative control (no DNA), lane 2 to 14- wt X. ampelinus-pJET1.2/SOEing transformants. 
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Figure 3.6: XaΔavrBs1 knockout mutant HR assay on pepper STAR 6657. In the wild type, 

HR appeared with 24 hours as necrosis at the sites of inoculation (A), while the mutant did not 

produce an HR reaction (B).   

 

3.3.3 Development and testing of the T3E reporter plasmid system 

HR reporter plasmid systems have been widely applied in effector research (Xu et al., 2008; 

Schechter et al., 2004). HR-inducing domains of known effector proteins from Xanthomonas 

and Pseudomonas have been used to develop the reporter systems for the identification and 

classification of candidate effectors. In this study we determined the HR-inducing domain of 

the X. ampelinus AvrBs1 protein (Section 3.3.1) which played a huge role in the development 

of the reporter. To develop a reporter protein construct, the AvrBs157-413 HR-inducing domain 

was fused to the 5ʹ end of a 3x FLAG epitope in the broad host range vector pBM5flg. Full 

length avrBs1Xa and avrBs1Xcc CDs were individually fused to the 5ʹ end of a 3x FLAG epitope 

to serve as positive controls. Transformants for each construct were screened by colony PCR 

and the final isolates selected for the secretion and translocation assay were again PCR-verified 

to ensure that avrBs1 had been deleted from the chromosome and replaced with the kanamycin 

resistance cassette, and that each construct in the broad host range vector was present in the 

respective XaΔavrBs1 isolates (Figure 3.7).  
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Figure 3.7: Verification of isolates to be used for secretion and translocation assays. The 

PCR primers specific for the following were used: X. ampelinus ITS sequence, XaΔavrBs1 

mutant kanamycin cassette, pBM5flg Lac Z operon, AvrBs157-413, deletion mutant, pBM5flg-

avrBs1Xa full length X. ampelinus avrBs1, pBM5flg-avrBs1Xcc full length X. campestris pv. 

campestris avrBs1. Lane M- 100 pb Plus DNA marker, lane 1- negative control (no DNA), 

lane 2 and 3- wild type X. ampelinus CFUs, lane 4 and 5- XaΔavrBs1, lane 6 and 7- XaΔavrBs1-

pBM5flg, lane 8 and 9- XaΔavrBs1-pBM5flg- AvrBs157-413, lane 10 and 11- XaΔavrBs1-

pBM5flg-avrBs1Xa, lane 12 and 13- XaΔavrBs1-avrBs1Xcc pBM5flg CFUs. 

 

Protein secretion assays of the full length avrBs1Xa, avrBs1Xcc and the reporter protein 

constructs expressed by the mutant, XaΔavrBs1, resulted in the expression of the avirulence 

protein AvrBs1 from both X. ampelinus and X. campestris pv. campestris as well as the reporter 

protein construct when grown in either YPG or minimal medium (Figure 3.8). The secretion 

of proteins to the medium was, however, not observed (Figure 3.9). The results obtained for 

the protein translocation assay in pepper STAR 6657 was not satisfactory, since the isolates, 

XaΔavrBs1 and XaΔavrBs1-pBM5flg unexpectedly also induced HR (Figure 3.10).  
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Figure 3.8: Protein secretion assay- cell pellets. Total protein extracts of the cellular fraction 

of X. ampelinus grown in YPG and XAM3 medium were analysed by 1D SDS-PAGE (A) and 

Western blot (B). Lane M- Precision Plus Protein™ Dual Color Standards, lane 2 and 3- 

XaΔavrBs1 mutant in YPG and XAM3 medium, lane 4 and 5- XaΔavrBs1-pBM5flg in YPG 

and XAM3, lane 6 and 7- XaΔavrBs1-pBM5flg-AvrBs157-413 in YPG and XAM3, lane 8 and 9- 

XaΔavrBs1-pBM5flg-avrBs1Xa in YPG and XAM3, lane 10 and 11- XaΔavrBs1-pBM5flg-

avrBs1Xcc in YPG and XAM3. 
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Figure 3.9: Protein secretion assay- supernatants. Total protein extracts of the supernatants 

of X. ampelinus grown in YPG and XAM3 medium were analysed by 1D SDS-PAGE (A) and 

Western blot (B). Lane M- Precision Plus Protein™ Dual Color Standards, lane 2 and 3- 

XaΔavrBs1 mutant in YPG and XAM3 medium, lane 4 and 5- XaΔavrBs1-pBM5flg in YPG 

and XAM3, lane 6 and 7- XaΔavrBs1-pBM5flg-AvrBs157-413 in YPG and XAM3, lane 8 and 9- 

XaΔavrBs1-pBM5flg-avrBs1Xa in YPG and XAM3, lane 10 and 11- XaΔavrBs1-pBM5flg-

avrBs1Xcc in YPG and XAM3. 
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Figure 3.10. Protein translocation assay of the reporter system. Strains wild type X. 

ampelinus, untransformed mutant XaΔavrBs1, XaΔavrBs1-pBM5flg, XaΔavrBs1-pBM5flg- 

AvrBs157-413 (Type III reporter vector construct), XaΔavrBs1-pBM5flg-avrBs1Xa, and 

XaΔavrBs1-pBM5flg-avrBs1Xcc HR test on sweet pepper STAR 6657 plants. 
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3.4 DISCUSSION 

Effector discovery has been of increasing importance lately. Many research groups have 

focused on identification and characterization of bacterial pathogen effector proteins to better 

understand the pathogenicity factors as well as plant-microbe interactions (Alfano, 2009). In 

this search, application of bioinformatic approaches as well as studying effector protein 

functional domains have gained increasing popularity. The effectors from many plant 

pathogenic bacteria have been identified by comparing their sequences with sequences from 

other known effectors or sequence motifs that suggest certain roles during pathogenicity.  

Functional sequence motifs required by pathogens to cause disease or colonize the host cells 

have been identified. This has expanded to the identification and characterization of effector 

protein functional domains (Boch and Bonas, 2010).  The studies suggest that in the majority 

of effector proteins the N-terminal domain encodes the translocation signal (Sory et al., 1995; 

Schesser et al., 1996; Guttman and Greenberg, 2001). Many studies have focused on the C-

terminal domain of effector proteins. The studies suggest that the C-terminal domain is 

responsible for HR-induction and that the domain is sufficient for recognition inside host cells 

(Schechter et al., 2004; Mudgett et al., 2000; Guttman and Greenberg, 2001). This finding led 

to a range of analysis and classification of T3 secreted effectors studies. A number of research 

groups have applied the HR-inducing domains of effector proteins in the development of 

reporter plasmid systems to identify and classify candidate T3 secreted candidate effectors 

(Jiang et al., 2009; Nöel et al., 2003; Xu et al., 2008).  

The availability of genomic sequences of known pathogens and genetic sequencing tools have 

played a major role in effector research. Sequence homologies within effector protein families 

have facilitated the identification and characterization of effector proteins due to the presence 

of conserved sequence motifs and protein domains that serve certain major functions during 

pathogenicity. AvrBs1 protein from X. ampelinus shares up to 58% identity with known T3 

effector proteins from Xanthomonas. The sequence homology is observed towards the C-

terminus (Chapter 2). X. campestris pv. vesicatoria and X. campestris pv. campestris AvrBs1 

effector proteins have been widely applied in effector identification studies (Jiang et al., 2009; 

Xu et al., 2008). Therefore, sequence homology between these effectors presented a challenge 

to identify the HR-inducing domain of AvrBs1 protein from X. ampelinus, so that it too could 

be applied to the identification of T3 secreted effectors. Agrobacterium-mediated transient 

expression of AvrBs1 protein N-terminal deletion mutants revealed that amino acids 57-413 is 
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the shortest segment required for in planta recognition and HR-induction in Sweet pepper 

hybrid STAR 6657 carrying Bs1 resistance gene which recognizes avrBs1 gene products. 

Characterization of X. ampelinus AvrBs1 HR-inducing domain suggested its recognition inside 

plant cells, thus making the protein a viable option as a reporter for protein translocation 

studies.  

A broad-host range vector, pBBR1-MCS5 was used in construction of the reporter due to the 

relatively small size of the vector of which made it more suitable for easy transformation; 

(Kovach et al., 1995). Cloning of the DNA segments lacking the stop codons, allowed protein 

fusion between the avrBs1 HR-inducing domain and the 5ʹ end of the 3x FLAG epitope, thus 

allowing easy selection of expressed proteins.  

The XaΔavrBs1 mutant, for the testing of a reporter system, was generated using PCR-overlap 

extension and allelic exchange where an avrBs1 gene was replaced with a kanamycin gene for 

selection purposes. The knockout mutant was verified through PCR using primers specific for 

the kanamycin gene and primers specific for an avrBs1 gene to confirm its complete 

replacement with kanamycin. Ampicillin sensitivity test confirmed assimilation of kanamycin 

gene in the chromosome proving that kanamycin resistance expressed by the mutant was not 

conferred by SOEing construct and also proving the destruction of a suicide plasmid during 

allelic exchange. This was all confirmed by inability of the bacteria to grow in ampicillin 

containing medium. XaΔavrBs1 mutant lost total ability to elicit HR when inoculated on 

pepper. Even though the pepper hybrid STAR 6657 expresses two other dominant resistance 

genes Bs2 and Bs3, avrBs2 and avrBs3 were not located on X. ampelinus chromosome (Y. 

Petersen, personal communication).  

In vitro protein secretion assays revealed that full length X. ampelinus and Xcc AvrBs1 proteins 

were expressed within the bacterial cells. However, colourimetric detection of the secreted 

proteins in the supernatant was not successful. This does not mean that the proteins were not 

secreted. The result may have been due to an ineffective minimal medium composition which 

led to undetectable levels of protein secretion or perhaps the protein concentrating method used 

resulted in loss of the already low levels of secreted protein in the supernatant. If the proteins 

are being secreted at low levels, it might be of benefit to try a chemiluminescent detection 

method which has a greater sensitivity (Noël et al., 2003; Xiao et al., 2007; Li et al., 2014).  

The results from the translocation assay in pepper leaves also did not give the expected result. 

In this assay, the negative control, XaΔavrBs1 also induced HR. The assay was repeated three 
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times and the similar results were observed, despite the fact that when initially tested, 

XaΔavrBs1 did not elicit HR.  

In addition, although the hybrid pepper, STAR 6657, carries active Bs1, Bs2, and Bs3 resistance 

genes, X. ampelinus has only the avrBs1 gene which would be recognised in planta. The fact 

that X. ampelinus AvrA-like protein shares some homology with AvrBs1 proteins suggest that 

the protein might have contributed to the response observed. Therefore deleting both avrBs1 

and avrA CDs from X. ampelinus might improve the translocation assay specificity. Another 

recommendation would be the application of Cya as a reporter to create the AvrBs1-Cya fusion 

that can facilitate and perhaps improve the successful translocation of the effectors into plant 

cells despite of the low concentration of secreted protein in the culture medium. This reporter 

has been successfully used by Schechter et al. (2004). 

 

3.5 CONCLUSION 

The determination of the X. ampelinus AvrBs1 HR-inducing domain using Agrobacterium-

mediated transient expression led to the development of the reporter system by cloning the 

domain at the 5ʹ end of 3x FLAG in pBBR1-MCS5 broad host range vector. The testing of a 

reporter plasmid construct was divided into two assays viz. protein secretion and protein 

translocation. The production and expression of an ~44 kDa X. ampelinus AvrBs1 protein 

inside cells suggested that the pathogen can express the proteins. Provided the medium 

composition supports AvrBs1 expression and secretion, the availability of sensitive protein 

detection kits could also enhance the testing of secreted proteins. For the translocation assays 

a better gene knockout mutant void of avrBs1-family genes and the application of an alternative 

translocation reporter may facilitate the testing of the T3 effector reporter on Bs1 resistant 

pepper plants 
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4 CHAPTER 4: General discussion, conclusion and future prospects 

Xylophilus ampelinus, the causal agent of bacterial blight of grapevines has long been a threat 

to South African table grape industry. Bacterial blight has led to some serious losses in past 

due to its occurrence. To date there are no successful control measures that are known and have 

been tested, meaning the disease is still of great importance. X. ampelinus is a Gram negative, 

slow growing rod-shaped member of Comamonadaceae, a β-subclass of Proteobacteria. The 

pathogen lives in the vascular vessels of infected vines. The symptoms are generally observed 

in young shoots that are 2-3 years old, leaves, and bunches.  

Unfortunately there is really not much known about the genetic make-up of the pathogen 

especially with regards to the factors contributing to its pathogenicity. The research conducted 

at the ARC Infruitec-Nietvoorbij has made extensive progress in sequencing of the bacterial 

genome.  Availability of the pathogen’s genomic sequence has assisted in the attempts to 

discover its virulence factors. Although there are limited resources to start with since the 

bacteria is the only species in its genus Xylophilus, we managed to engage other close relatives 

in the attempts to learn more about the pathogen. 

Dating back to the initial detection of the pathogen, it was classified as belonging to the genus 

Xanthomonas due to features such as being an aerobic, non-spore forming Gram negative rod-

shaped organism with one polar flagellum. It has oxidative carbohydrate metabolism, produces 

a yellow insoluble pigment and it has a mean DNA base composition similar to that of genus 

Xanthomonas. Even though the bacteria was lately moved to its genus Xylophilus, these 

features were not about to go unnoticed. These features suggested that the two genera are 

somehow related, not only phenotypically but also at genetic level. Luckily a lot of research 

has focused on Xanthomonas and Pseudomonas species. These pathogens have been reported 

to utilize the Type III secretion system (T3SS) in attempts to evade plant innate immunity. 

From literature, it has been repeatedly mentioned that the T3SS facilitates pathogenicity or 

virulence by directly injecting effectors inside host cells. This was interesting and the big 

question that remained was: does X. ampelinus employ the T3SS like all its relatives? 

Initial analysis of X. ampelinus transposon mutants revealed a mutant, XaTn5-742, which had 

an insertion site in a gene encoding an avirulence protein with similarities to major avirulence 

gene protein families in P. syringae pv. glycinea and some Xanthomonas species. 
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Bio-informatic analysis of the open reading frames (ORFs) in this region of the X. ampelinus 

genomic DNA sequence seemed like a great start in identifying gene coding sequences that are 

somehow involved in pathogenicity. The search at protein level proved what was observed in 

transposon mutagenesis study and returned two hits which were closely related to 

Xanthomonas and Pseudomonas T3 secreted effectors. The X. ampelinus CDs shared above 

50% sequence identity with known avrBs1-family avirulence genes secreted as type III 

effectors. These two homologs were easy enough to work with based on high level of sequence 

identity. Avirulence genes are defined based on their ability to betray the pathogen to the host 

defense system causing the plant to elicit resistance response against the infecting pathogen. 

Xanthomonas avrBs1 genes have been widely characterized as HR-inducing genes and secreted 

in a Type III dependent manner.  

The first step was to characterize an avirulence gene family from X. ampelinus strain VS20. 

The full length avrA and avrBs1-like homologs induced HR when transiently expressed in 

tobacco plants. Even though this was not the final conclusion since the plants did not really 

express the corresponding Bs1 resistance gene, it was enough to say the genes can elicit HR in 

non-host. Generally, effector protein secretion and translocation signals are located at the N-

terminal domain whereas, the HR-inducing domain is within the C-terminal region. Through 

literature it has been proven that the HR-inducing domain of the effector protein is sufficient 

for in planta recognition and this region has been widely applied in reporter fusion studies. 

Among other effector proteins Xanthomonas AvrBs1 HR-inducing domain has been 

successfully applied as a reporter to identify and classify Type III secreted effector repertoire.  

The aim of the study was to generate a reporter system for the analysis and classification of X. 

ampelinus candidate effectors as T3-secreted class of effectors. Identification and 

characterization of an avrBs1-family gene was enough motivation to determine the HR-

inducing domain of the protein and apply it in reporter protein fusions. Agrobacterium-

mediated transient expressions in sweet pepper STAR 6657 hybrid expressing the Bs1 gene 

revealed that the HR-inducing domain of X. ampelinus AvrBs1 protein was within amino acid 

57 and 413 region. X. ampelinus AvrBs1 HR-inducing domain was enough for in planta 

recognition and therefore it was sufficient for reporter protein fusion. The cloning of this 

domain into a FLAG-containing broad host range vector, pBBR1MCS5, produced a reporter 

fusion construct that could be used in T3 effector studies.  
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As mentioned before, effector secretion and translocation signals are localized at their N-

terminal domains. Therefore the effector protein requires a secretion signal for its secretion in 

the medium and/ or translocation in plants. The C-terminus HR-reporter was tested along with 

full length avrBs1 proteins for protein secretion into growth medium and translocation in 

plants. The expression of AvrBs1 fusion proteins was observed in the cellular fraction, 

indicating that there was no problem with the transcription and translation of the full length 

AvrBs1-3x FLAG fusion protein, however, the protein was not detected in the supernatant 

fraction using the growth medium, and protein precipitation and detection methods mentioned 

in Chapter 3. Perhaps the use of the Cya reporter can enhance effector protein secretion and 

translocation in combination with a more sensitive detection method base on 

chemilumniscence. 

Although the X. ampelinus T3 effector reporter vector did not produce all the results expected, 

a number of conclusions can be made. Firstly, X. ampelinus AvrBs1 and AvrA-like proteins 

share up to 60% homology with known avirulence proteins from Xanthomonas, Pseudomonas, 

and Acidovorax species, which are secreted by the T3SS, therefore suggesting that X. 

ampelinus might be employing the T3SS to secrete and translocate effectors during 

pathogenicity. 

We showed that X. ampelinus AvrBs1 and AvrA-like proteins are functional as elicitors of HR 

in N. tabacum when transiently expressed. Expression through Agrobacterium-mediated 

transient expression under the control of 35S promoter gave strong HR suggesting that the two 

avirulence proteins can be used as reporter system for the analysis of T3 effector repertoire. 

Although a reporter vector was successfully constructed, additional research is required to 

determine why the XaΔavrBs1 knockout mutant, which was HR-negative when initially tested, 

later produced a different result when the translocation experiment was done. Further research 

into suitability of growth medium for optimal T3 effector secretion is also required. 

Development of the T3 effector reporter system for X. ampelinus was progress in attempts to 

analyse and characterize the effector repertoire in this pathogen. The N-terminal secretion 

signal is a key element in T3 effector classification, which is why candidate effector N-terminal 

domains will be cloned at the 5ʹ end of AvrBs157-413 and a FLAG tag in a reporter system. 

Effectors secreted only when expressed in a strain with full T3SS activity will be then classified 

as Type III secreted class of effector. 
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In conclusion, effector discovery is a long road that at the end will give full understanding of 

the pathogen’s pathogenicity factors. The lack of resistant cultivars is still a major problem in 

world’s economy. However, baby steps in understanding plant pathogen effectors may lead to 

crop improvement. Discovering effectors, their targets and the functions they express when 

reaching the target could be the way to go.  
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APPENDIX A 

General Chemicals and Suppliers 

All chemicals used in this study, their suppliers and perspective catalogue numbers are listed 

alphabetically in the table below. 

Table A: List of chemicals used in the study 

Chemical name Supplier Catalog number 

   

Absolute ethanol Merck SAAR2233540LP 

Acetone Kimix 5144 K07/07/14 

Acetosyringone Sigma D134406  

Acrylamide stock solution (30%) BioRad 161-0158 

Agarose Lonza  50004 

Ammonium acetate Merck 101115/6 

Ammonium di-Hydrogen phosphate Merck A464426 

Ammonium persulphate (APS) BioRad 161-0700 

Ampicilin Roche 10835242001 

Anti-FLAG M2 antibody Agilent 200472-21 

Anti-mouse antibody IgG Promega W4028 

Bacto-agar Biolab Merck 1023407 

Bacto- Casamino Acids Difco  0230-01-1 

Bacto-peptone Kimix 211677/2156028 

Boric Acid Merck SAAR1405200EM 

Bovine Serum albumin (BSA) Roche 10227825/711454 

Bromocresol purple Chemicaland21 115-40-2 
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Calcium Chloride AnalaR BDH 10070 

Coomassie Blue R250 BiorRad 161-0400 

CTAB BDH AnalaR 276654L 

D(+) Xylose Sigma X3877 

di-Sodium Hydrogen Phosphate Sigma 71640 

DMSO Merck 802912 

dNTP mix Promega C1141 

EDTA Merck SAAR2236020EM 

Ethidium bromide Sigma E8751 

FastAP dephosphorylation kit Thermo-scientific EF0651 

Fast digest BamHI Thermo-scientific FD0054 

Fast digest EcoRI Fermentas FD0274 

Fast digest EcoRV Fermentas FD0304 

Fast digest HindIII Fermentas FD0504 

Fast digest PstI Thermo-scientific FD0614 

Fast digest PvuII Fermentas ER0634 

Fast digest SacI Thermo-scientific FD1133 

Fast digest XbaI Fermentas FD0684 

Fat Free Milk powder Clover 3284 

Ferrous Sulphate UniLAB Saarchem 53076 

Generuler DNA Ladder Thermo-scientific SM0323 

Glucose Kimix 27642 K25/0712 

Glycerol Kimix 

BASX7A2759 

K09/1111 
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Glycine Kimix ZY080718 K21/1008 

GoTaq Flexy DNA polymerase Promega M8305 

Hydrochloric Acid (HCl) AnalaR BDH 10307 

Isopropanol Kimix 4200 K16/0311 

Kanamycin Sigma K4378 

L(+) Arabinose Sigma A3256 

Loading dye Thermo-scientific R 6 111 

Magnesium chloride Sigma M8266 

Magnesium sulphate BDH AnalaR BB101514Y 

Mecarpto-ethanol Kimix 805740 

MES hydrate Sigma  M2933 

Methanol Kimix 4145 K05/1110 

Nutrient agar Difco  213000 

Nutrient broth Difco  234000 

Phusion DNA polymerase Thermo-Scientific F-530S 

Potasium chloride AnalaR BDH 10198 

Potassium phosphate monobasic Sigma P9791 

Potasium phosphate dibasic Sigma P2222 

Precision Plus Protein Standards BioRad 161-0363 

Primers 

IDT White-head 

Scientific  

Proteinase K Macherey-Nagel 740506 

QiaexII gel purification kit Qiagen 20021 

Qiagen plasmid mini-prep kit Qiagen 27106 
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Rifampicin Sigma R 3 501 

RNAse Fermentas EN0531 

S1 Nuclease DNA blunting kit Fermentas EN0321 

Sodium chloride Kimix 2741 K39/0605 

Sodium hydroxide Kimix 11-10/01 K15/0311 

SDS AnalaR BDH 44244 

T4 rapid DNA ligation kit Thermo-Scientific K1422 

TEMED Merck 10732 

Trichloroacetic Acid Merck SAAR6110500EM 

Tris  Melford B2005 

Tryptone Kimix B60678 

Tween 20 Merck 8.22184.05000 

Yeast extract Kimix LP0021 
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APPENDIX B 

B1. General Stock Solutions and Buffers 

Most buffers and solutions were autoclaved at 121 °C for 20 minutes using a Vertical Type 

Steam Sterilizer Speedy Autoclave HL-340 (Gemmy Industrial Corp, Taiwan) 

 

90% acetone: 90% (v/v) acetone in distilled water. 

70% ethanol: 70% (v/v) absolute ethanol in distilled water. 

10% APS: 10% (w/v) APS in distilled water. The solution was freshly prepared before use. 

1% blocking solution: 1% (w/v) Elite fat free instant milk powder in TBS. 

Bradford reagent: 1 part of Bradford protein assay dye reagent concentrate diluted with 4 

parts of distilled water. 

20 mg/ml BSA stock solution: 20 mg/ml BSA in 1X PBS. 

100 mM acetosyringone: 100 mM acetosyringone (3ʹ,5ʹ-Dimethoxy-4ʹ-hydroxyacetophenine) 

in DMSO. 

1 M MES: 1 M (w/v) MES 2-(N-Morpholino)ethanesulfonic acid in distilled water adjusted to 

pH 5.6 with 2 M NaOH. 

Induction medium: 10 mM (v/v) MgCl2; 10 mM (v/v) MES pH 5.6 and 150 µM (v/v) 

acetosyringone in distilled water. 

Linker buffer: 50 mM (v/v) Tris-HCl pH 8.0, 100 mM (v/v) NaCl and 1 mM EDTA (v/v) in 

distilled water. 

10% CTAB/ 0.7 mM NaCl: 10% NaCl and 0.7. mM CTAB in distilled water. 

0.5 M EDTA stock solution: 0.5 M (w/v) EDTA (Ethylenediaminetetraacetic acid) in distilled 

water. 

1 M Tris/HCl stock solution: 1 M (w/v) Tris/HCl in distilled water, pH 8.0. 

1X TE buffer: 10 mM Tris/HCl and 1 mM EDTA in distilled water. 

Bradford dye reagent: 0.1% (w/v) CBB Commasie Brilliant blue G-250, 25% (v/v) Methanol, 

and 42.5% (v/v) Phosphoric acid. 
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10% SDS buffer: 10% (w/v) SDS in distilled water. 

5 M NaCl: 5 M (w/v) NaCl in distilled water. 

Chloroform/Isoamylalcohol (24.1): 24 parts (v/v) chloroform in 1 part isoamylalcohol. 

10x TBE buffer: 89 mM (w/v) Tris Base, 89 mM (w/v) boric acid, and 2 mM (w/v) EDTA in 

distilled water. 

1x TBE buffer: 1 part (v/v) 10x TBE stock in 9 parts of distilled water. 

50 mg/ml Kanamycin: 50 mg/ml (w/v) in sterile distilled water 

100 mg/ml Ampicillin: 100 mg/ml (w/v) in sterile distilled water 

34 mg/ml Rifampicin: 34 mg/ml (w/v) in 100% methanol. 

10 µM primer solution: 1 part (v/v) 100 mM primer stock solution in 9 parts of sterile distilled 

water. 

10% Glycerol solution: 10% (v/v) glycerol in distilled water. 

15% Glycerol solution: 15% (v/v) glycerol in distilled water. 

0.8% agarose gel solution: 0.8% (w/v) agarose in distilled water. 

1% agarose gel solution: 1% (w/v) agarose in distilled water. 

1 M MgCl2 stock solution: 1 M (w/v) MgCl2 in distilled water. 

100 mM MgCl2 solution: 100 mM (v/v) MgCl2 in distilled water. 

100 mM CaCl2/ 15% glycerol: 100 mM (w/v) CaCl2 and 15% (v/v) glycerol in distilled water. 

25% TCA: 25% (w/v) TCA (Trichloroacetic acid) in distilled water. 

10x PBS: NaCl 80 g/L, KCl 2 g/L, Na2HP04 14.4 g/L, KH2PO4 2.4 g/L. 

4x Tris-SDS Resolving gel solution pH 8.8: 1.5 M (w/v) Tris HCl, 0.8% (v/v) 10% SDS in 

distilled water. 

4x Tris-SDS Stacking gel solution pH 6.8: 0.5 M (w/v) Tris HCl, 0.8% (v/v) 10% SDS in 

distilled water. 

Transfer buffer: 25 mM (w/v) Tris Base, 192 mM (w/v) Glycine and 20% (v/v) Methanol in 

distilled water. 
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TBS (Tris Buffered saline) pH 7.5: 50 mM (w/v) Tris Base and 150 mM (w/v) NaCl in 

distilled water. 

TTBS pH 7.5: 50 mM (w/v) Tris Base, 0.5ml/L (v/v) Tween 20 and 150 mM (w/v) NaCl in 

distilled water. 

Coomassie Brilliant Staining solution: 0.25% (w/v) Coomassie Blue R-250, 45% methanol, 

and 10% acetic acid 

Coomassie destaining solution: 5% methanol, 10% acetic acid in water. 

  

B2. Bacterial growth medium  

Growth media for all bacterial culture was autoclaved at 121 °C for 20 minutes using a Vertical 

Type Steam Sterilizer Speedy Autoclave HL-340 (Gemmy Industrial Corp, Taiwan). 

 

LB (Luria-Bertani) broth: Yeast extract 5 g/L, Bacto-Tryptone 10 g/L, NaCl 10 g/L, Glucose 

1 g/L, and MgCl2 1 g/L in distilled water. 

LB-agar medium: Yeast extract 5 g/L, Bacto-Tryptone 10 g/L, NaCl 10 g/L, Glucose 1 g/L, 

Bacto-agar 15 g/L and MgCl2 1 g/L in distilled water. 

YEP broth: Bacto-peptone 10 g/L, Yeast extract 10 g/L and NaCl 5 g/L in distilled water. 

YEP agar medium: Bacto-peptone 10 g/L, Yeast extract 10 g/L, Bacto-agar 15 g/L and NaCl 

5 g/L in distilled water. 

YPG broth: Yeast extract 7 g/L, Bacto-peptone 7 g/L and Glucose 7 g/L in distilled water. 

YPGA medium: Yeast extract 7 g/L, Bacto-peptone 7 g/L, Bacto-agar 15 g/L and Glucose 7 

g/L in distilled water. 

SOC medium: Trypone 20 g/L, Yeast extract 5 g/L, NaCl 10 g/L, Glucose 1 g/L, MgCl2.6H20 

1 g/L. 

NBG (Nutrient broth/ 10% glycerol): Nutrient broth 8 g/L (w/v) and 10% glycerol (v/v) in 

distilled water. 
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XAM3 medium pH 6.5-8): 10 mM (w/v) NH4H2PO4, 2.87 mM (w/v) K2HPO4, 5 mM (w/v) 

MgCl2.6H2O, Bacto-Casamino acids 0.3 g/L (w/v), Bromocresol purple 0.7 ml/L (v/v) [1.5% 

(w/v) stock in ethanol], 10 µM (v/v) FeSO4, 15 mM (v/v) D(+)xylose, and 20 mM (v/v) 

L(+)arabinose in distilled water. 

1 M D(+)xylose: 1 M (w/v) D(+)xylose in distilled water. 

1 M L(+)arabinose: 1 M (w/v) L(+)arabinose in distilled water. 
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