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ABSTRACT  

Research in renewable energy has become a focal point as a solution to the energy 

crisis. One of renewable forms of energy is solar energy, with the main challenge in 

the development of the solar cells being the high cost. This has led to the exploration 

of the use of organic molecules to construct solar cells since it will lead to lowered 

costs of construction. The focus of this research is on the synthesis and 

characterisation of the polyaniline derivatives materials and zinc gallate for 

application in the construction of hybrid solar cells with [6,6]-phenyl-C61-butyric acid 

methyl ester (PCBM) as an acceptor. The polyaniline (PANi) and doped polyaniline 

derivatives, polyaniline phenathrene sulfonic acid (PANi-PSA), poly[ortho-methyl 

aniline] phenanthrene sulfonc acid (POMA-PSA) poly[ortho-methyl aniline] 

anthracene sulfonc acid (POMA-ASA) were produced via chemical synthetic 

procedures. The zinc gallate (ZnGa2O4) was also produced using a chemical method. 

The vibrational and electronic spectra of the polymers and zinc gallate were 

interrogated independently and dependently. Electronic transitions due to charge 

defects (polarons and bipolarons) were observed for the polymers that are doped.  The 

PANi was the one with the lowest band gap of 2.4 eV with the POMA-ASA having 

the widest bandgap of 3.0 eV. The XRD and TEM analysis of the polymers revealed 

characteristics that show that the PANi has the highest level of crystallinity and the 

POMA-ASA displayed the least level of crystallinity. The electronic data, XRD, TEM 

data led to the conclusion that the conductivity of the polymers is decreasing in the 

following sequence, PANi > PANi-PSA > POMA-PSA > POMA-ASA. The 

photoluminescence of the polymers alone and with the nanoparticles was investigated 

in solution and on an ITO coated glass substrate. Photoluminescence was observed for 

the polymers due to relaxation of the exciton and also from the formation of excimers. 

 

 

 

 



 ix 

The relaxation due to the exciton was observed at higher energy levels, while the one 

that is as a result of the excimer formation was seen at lower energy levels. 

Enhancement of the peak due to the excimer was observed when the compound is 

mixed with the nanoparticles in solution. When the analysis was done on the ITO 

coated glass substrate, it was found that zinc gallate does not lead to quenching of the 

emission of the polymers; hence it can not be used as an acceptor in this particular 

system. The electrochemical behaviour of the polyaniline derivatives was investigated 

using cyclic voltammetry and electrochemical impedance spectroscopy. Interaction of 

the polymers with the PCBM (acceptor) was investigated using UV-visible absorption 

spectroscopy and photoluminescence spectroscopy. It was able to quench the 

photoluminescence of the polymers. Hence it was used as an acceptor in the 

construction of the photovoltaic cells. The polymers alone and with the nanoparticles 

were used in the formation of bulk heterojunction photovoltaic cells with PCBM as an 

acceptor. The photovoltaic behaviour was investigated and PANi was the one that 

displayed the highest efficiency. 
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CHAPTER 1 :INTRODUCTION 

1. 1 SYNOPSIS 

The demand for energy has managed to exceed the supply. Tremendous amount 

of research came into being with the discovery of the photovoltaic effect by 

Alexandre Edmond Becquerel in 1839. This was further elucidated by Albert 

Einstein, who gave a detailed interpretation of the photovoltaic effect in 1905. 

The solar energy research was neglected by the lowered fuel prices in the 

1970’s. But with space research it became alive again [1].  Solar energy is 

generated upon absorption of photons by a semi conducting material; electrons 

are ejected and taken up by the electric field to produce charge [2]. This energy 

is stored in a battery. In a solar panel the semi conducting material is sandwiched 

between two electrodes, this component is what is referred to as a cell. These 

cells are connected together to form what is called the modules. These modules 

are connected together to form an array, which is referred to as a solar panel.  

 

The main component of a photovoltaic device is the semi-conductor material, 

since it is the one that ultimately determines how much energy is taken up by the 

photovoltaic device. The most widely used semi-conductor is the crystalline 

silicon (90 %) [3]. This is because of the reported high efficiency (24%) in 

converting the light energy into electrical energy. They are also very stable. The 

amorphous silicon (a-Si) has also been explored for photovoltaic devices and it 

has been reported to have efficiencies of 13% but with time this goes down to 

5% [4]. This has been attributed to the low stability of the a-Si that is caused 
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because of the breaking down of the hydride bonds with time. There is also what 

is called cadmium indium gallium selenide (CIGS). The development of the 

latter is challenged by the low efficiencies and also the fact that cadmium is a 

very toxic element. One of the challenges that hinder development of solar 

energy is cost of the materials since the most commercially used material (c-Si) 

is very expensive. This is a major reason organic materials are very attractive in 

photovoltaic devices research. Since organic materials are cheaper to process [5]. 

Inherently conducting polymers such as polyacetylene, polyaniline, 

polythiophene, polyparaphenylene, polypyrrole have been studied for potential 

as good conducting materials for photovoltaic devices [6]. The main problem 

with purely organic materials based photovoltaic devices is the recombination of 

the excited molecules upon absorption which limits the amount of energy that 

can be generated. This can be overcome by using a system that has a donor and 

an acceptor; the acceptor may be of a different nature to the donor. Hence in this 

work we investigate zinc gallate as a possible acceptor compound in the 

construction of solar cells.  

 

1.2 AIMS AND OBJECTIVES OF RESEARCH 

In this research the focus will be on developing polymeric materials based on 

polyaniline derivatives for use as donors in photovoltaic cells.  The effect of the 

incorporation of nanoparticles based on zinc gallate will be investigated. The 

objectives that have to be achieved in accordance to the overall aim are as 

follows: 
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(i) To synthesise polymeric material (based on polyaniline derivatives) and 

characterise the compounds using vibrational and electronic spectroscopy, 

photoluminescence, thermal gravimetric analysis (TGA), electron microscopy. 

(ii) To synthesise zinc gallate (ZnGa2O4) and characterise them using 

electronic and photoluminescence spectroscopy, electron microscopy.  

(iii)  To study the electrochemical behaviour of the polymers.  

(iv)  To construct and determine the efficiency of the polymer/ZnGa2O4    

composite with PCBM as an acceptor in photovoltaic cells. 
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CHAPTER 2 : BACKGROUND 

 

The background looks at the history of photovoltaic cells. The different types that 

have been explored with the main focus being on organic solar cells as the work looks 

at organic materials as materials in photovoltaic cells. The operating principle of the 

organic solar cell is explained together with the types of materials that have been used 

so far within the research of organic solar cells. An emphasis is made on the use of 

polyaniline and its derivatives as a semiconductor.   The potential good benefits of 

using polyanilines as a donor material in organic solar cells are explored. The 

importance of morphology in regards to materials that are used in photovoltaic cells is 

explored. As a result the intricacies of morphological techniques such as scanning 

electrochemical microscopy and atomic force microscopy are mentioned. The 

different device architecture of the photovoltaic cells is mentioned. 
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2.1 HISTORY OF PHOTOVOLTAICS 

The photovoltaic concept was first reported by Edmond Becquerel, a French 

physicist, in 1839 using electrochemical studies of silver chloride coated 

platinum electrodes. Towards the late 1800’s there were some significant 

research in regards to using selenium (Se) as the active layer by Adams and Day. 

Even though there was research done in the 1800s it is only upon the discovery 

of the photovoltaic effect by Albert Einstein in the 1960’s. The solar energy 

research was neglected by the lowered fuel prices in the 1970’s. But with the 

advent of space research it became alive again.  

 

Solar energy is generated upon absorption of photons by a semi conducting 

material; electrons are ejected and taken up by the electric field to produce 

charge [7]. This energy is stored in a battery. In a solar panel the semi 

conducting material is sandwiched between two electrodes, this component is 

what is referred to as a cell. These cells are connected together to form what is 

called the modules. These modules are connected together to form an array, 

which is referred to as a solar panel, see Figure 2.1. The main component of a 

photovoltaic device is the semi-conductor material, since it is the one that 

ultimately determines how much energy is taken up by the photovoltaic device. 

The most widely used semi-conductor is the crystalline silicon (90 %) [8].  
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Figure 2.1: A figure depicting the formation of a module of a solar panel from a 

photovoltaic cell 

 

2.2 TYPES OF PHOTOVOLTAIC CELLS 

There are two main distinctions of solar cells, the inorganic and organic solar cells. 

The inorganic solar cells primarily consist of crystalline silicon (c-Si) which has been 

widely used owing to its high efficiency [9-11]. The emergence of thin film science 

has led to other materials such as, amorphous silicon (a-Si), cadmium indium gallium 

selenide (CIGS), being used for formation of inorganic solar cells [12-14]. Organic 

solar cells have been the primary area of research in solar cell technology because it is 

expected to lead to the formation of the solar panel at a lower cost in comparison with 

the c-Si.  

 

2.2.1 Inorganic Solar Cells 

An inorganic materials electronic bands consists of the conduction band and valence 

band, as shown in Figure 2.2, the photovoltaic effect is observed when upon exposure 

to light electron hole pairs are formed [15] with the holes at the valence band and the 

Cell 

Module 
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electrons being in the conduction band. The holes go to the anode while the electrons 

go to the cathode allowing for the free flow of electric energy. 

 

 

Figure 2.2: A diagram showing the formation of the electron hole pair at the 

conduction and valence band of an inorganic material 

 

2.2.1.1 Silicon Solar Cells 

The main semiconductor used in these materials is the c-Si because of its 

comparatively high efficiency and stability [16]. The stability is due to its well 

ordered structure, Figure 2. 3. The factor that hinders the spread of the use of solar 

energy using these materials is the high cost of c-Si. Since the materials cost a lot to 

process, it follows that for the consumers this will be an expensive source of energy 

making solar energy lack attractiveness. The development of thin films, has led to 

research on using the amorphous form of silicon [17-19]. This is preferable since a 

very thin layer of materials is used in the making of the solar cells based on the 

amorphous silicon. The disadvantage of this type is its very low stability [20] which is 

due to the fact that some hydrogen bonding is observed. When the materials are 

exposed to the sun they are reported to decompose because of the breaking of the 

hydrogen bond. 

 

 

Band gap 

Valence 

band (VB) 
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Figure 2.3: (a) c-Si well ordered, stable structure and   (b) a-Si unstable structure  

 

 

2.2.1.2 Nanomaterials  

The advent of nanotechnology has led to the construction of nanomaterials based on 

cadmium indium gallium selenide (CIGS), CuInSe2, Cadmium Selenide (CdSe), 

Cadmium Telluride (CdTe) and Gallium Arsenide (GaAs) [21-23]. They have been 

reported to have an efficiency of up to 16 %. However selenium, tellurium and arsenic 

are very toxic. This makes materials that are based on these elements not ideal for the 

environment, hiking production costs. Since this is not ideal more research has gone 

in the use of materials such as zinc oxide and titanium dioxide for photovoltaic cell 

construction because it is less toxic.    

 

2.2.2. Organic Solar Cells 

Organic material based solar cells have garnered interest in the last two decades 

because of the high versatility in their chemical, electrical and optical properties [24]. 

They have opened a gateway in making solar cells at a lower cost with increased 

flexibility. The versatility also enables the use of substrates such as glass to make 
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solar cells, which further enhances organic solar cell technology’s attractiveness. 

Conjugated organic materials are the ones that are used in solar cell technology as it 

displays a high conductivity, which is essential. 

 

2.2.3.1 Operating Principle of an Organic Solar Cells 

The operating principle of an organic solar cell works by utilising three concepts 

which are light absorption and charge generation, exciton diffusion and separation, 

charge carrier transport [25] as simulated in Figure 2.4. The organic material absorbs 

photons of light with enough energy to form a bound electron hole pair that is referred 

to as an exciton. The exciton is able to undergo charge separation using two routes. It 

can use electronic trap sites when one type of material is used. The latter produces 

organic solar cells that have low efficiencies [26-28], as there is a higher probability 

of charge recombination. Currently the most widely used method is the use of two 

materials (a donor and acceptor) with different electron affinities, this allows for a 

separation of the holes from the electrons at the interface of the materials [29]. In a 

typical system, the absorbing material (donor) acts as a hole charge carrier while the 

one with the greater electron affinity (acceptor) acts as an electron charge carrier to 

the designated electrodes, anode for the holes and cathode for the electrons. 
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Figure 2.4: Schematic representation of the operating principle of a n organic solar 

cell 

 

2.2.3.2 Materials used 

There are different areas within organic solar cells, there are purely organic solar 

cells, hybrid solar cells and dye sensitised solar cells [30-34]. The purely organic solar 

cells use only organic materials as donor and acceptor. Polymers such as 

polythiophenes, polypyrrole, polyaniline and their derivatives have been used as 

donors in these types of cells [35-38]. In these purely organic materials, reported in 

literature, fullerene (C60) is used as an electron acceptor because of the relative good 

electron charge mobility [39-40]. The reported hybrid solar cells utilise organic 

molecules such as polymers as semi conductors of donors and inorganic nanoparticles 

such as zinc oxide and titanium dioxide as acceptors. Research has been mostly based 

on the hybrid type of solar cells since they have shown to have better efficiency 

because of the different electron affinities between the compounds. The research has 

further been encouraged by great strides in nanoscience. 
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2.2.3.2.1 Conducting Polymers 

For a number of years, polymers have been prized for their insulating abilities [41-

43], hence their use as a plastic rubber over electrical wires. This is because 

traditional polymers could only act as insulators as their energy band gap is very wide 

and hinders electron conductivity. They have since been discovered that they have 

some electrical conductivity which makes them important semiconductors [44-45]. 

The semi-conducting ability of the conducting polymers is because they have a much 

narrower bandgap in comparison with its insulator counterparts. The latter allows for 

the movement of the electrical charge. The semi conducting ability has led to an 

expansion in the uses of polymers; they have since found a niche in manufacturing of 

electronic displays, as sensors [46-48].  

 

Conducting polymers can be classified into four categories, conjugating conducting 

polymers, charge transfer polymers, ionically conducting polymers and conductively 

filled polymers [49]. The focus will be on conjugated conducting polymers. It can be 

noted in Figure 2.5 that for the conjugated polymers an alternating network of single 

and double bonds runs over the whole polymer chain, this concept is the one that 

makes the polymers to be termed intrinsically conducting. This arises because in 

comparison with its metal counterpart, which is highly conducting because of the 

liberated movement of electrons over the structure, the polymer also has that 

capability due to the overlap of the -orbitals over the polymer chain. In the polymer 

network of conjugated polymers the atoms are sp
2
 hybridised. In this state, the -

orbitals are able to overlap to generate two energy levels, one occupied by electrons 

and one not having the electrons. These are generally referred to as the highest 

occupied molecular orbital (HOMO) or -bonding and the lowest unoccupied 
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molecular orbital (LUMO) or -antibonding. A bandgap is formed in between these 

orbitals. In polymers the size of the bandgap is dependent on the length of 

conjugation, the longer the length of conjugation the smaller the band gap.  

Depending on the size of the band gap a compound can be classified as either an 

insulator, semi conductor or a conductor.  

 

*
*

n

 S **
n

 

*

*

n

 

N N N N* *

HH

x

 
x

 

n

 

N

H

**
n

 

** n

 

Polyacetylene Polythiophene Poly(p-phenylene vinylene)

Polyaniline

Polypyrrole Poly(paraphenylene)

1-x

 

Figure 2.5: Diagrams showing typical conjugated conducting polymers 

 

The conjugated polymers are used as donors in the construction of organic 

photovoltaic cells.  The most commonly used polymer is the poly(p-phenylene 

vinylene) (PPV) [50] and its derivatives such as poly[2-methoxy-5-(2’-ethy-

hexyloxy)-1,4-phenylene vinylene] abbreviated MEH-PPV [51-53], polythiophene 

and its derivatives [54-56] and one based on polyanilines [57], Figure 2.5. Use of 

polyanilines in photovoltaic materials is limited in comparison with the other 
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polymers. This is because the polyaniline has a relatively much lower conductivity in 

comparison with the other polymers. However research in the recent past has focused 

on polyaniline because it can be tailored to give high conductivity values [58].  

 

2.2.3.2.2 Synthesis of the Conductive Polymers 

Polymers can be synthesised using chemical methods [59-60]. One of the chemical 

methods is the use of oxidising agents to form polymers [61]. This type of polymer 

synthesis is referred to as cationic polymerisation. The formation of the chain is 

initiated by the occurrence of a cation upon oxidation, a monomer species reacts with 

the active cation to form another active cation center, this continues until the 

subsequent termination of the process. The chemical synthesis of polymers does not 

allow for efficient control of the specific length of the polymer chain.  

 

Another process that is utilised for the synthesis is electrochemical polymerisation 

[62-63]. This process allows for the formation of a polymer with a specific chain 

length, no mixtures are formed. This makes the electrochemical method of synthesis 

be considered as the ‘cleaner’ form of synthesis. Other excellent traits displayed by 

electrochemical method are its simplicity, reproducibility and the added advantage of 

obtaining a conducting polymer being simultaneously doped. Photochemical 

polymerisation [64-65] has also been reported in the synthesis of polymers. 

Photosensitizers are needed to act as photon absorbers to initiate a polymerization 

reaction. Conducting polymers have also been synthesized by other techniques such 

as metathesis polymerization (Ziegler-Natta polymerization) [66-67], plasma 

polymerization [68-69], chain polymerization [70-71], step growth polymerization 
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[72], concentrated emulsion polymerization [73], chemical vapour deposition [74], 

solid-state polymerization [75]. 

 

2.2.3.2.3 Polyaniline 

Polyaniline is one of the oldest known conjugated polymers. It was first reported in 

1862. Polyaniline is a compound that is formed from the chain propagation of aniline. 

The polyaniline structure has been elucidated to have five oxidation states [76] but 

there are three forms of PANi that have been successfully synthesised and isolated 

using a chemical method, they are depicted in Figure 2.6. There is the fully reduced 

(benzenoid structure) state referred to as the leucoemeraldine, emeraldine which 

exists with half of the chain comprised of the reduced form and another half the 

oxidised form (quinoid structure) and lastly the fully oxidised form, pernigraniline is 

the fully oxidised form (imine quinoid group only) of the polymer. 
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Figure 2.6: The intrinsic redox states of polyaniline 

 

The synthesis of polyaniline has been achieved using chemical and electrochemical 

means in acidic conditions [77-78]. The chemical oxidative polymerisation of PANi 

occurs via two steps, the induction step and chain polymerisation step as shown in 

Figure 2.7. The induction step involves the oxidation of the aniline by the oxidant to 

form a radical cation. The radical cation acts as an oxidant of the monomeric unit, 

aniline. This is followed by the recombination of the radical cations to form the dimer 

species. The chain propagation occurs by the oxidised dimer nitrogen unit attacking 

the para position of the monomeric aniline. 
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Figure 2.7: Schematic representation of the chemical polymerisation of aniline  

 

 

2.2.3.2.4 Poly(ortho-methoxyaniline) (POMA) 

Poly(ortho-methoxy aniline) is a derivative of PANi that has a methoxy group as a 

substituent at the ortho position. The monomer of this derivative is O-methoxyaniline. 

The substitution leads to an improved solubility of the polymer in organic solvents 

[79]. This is as a result of the improved polarity of the polymer chain because of the 

substituent.  Increase in solubility leads to a lowered conductivity as substitution at 

the phenyl or N-position of polyaniline leads to a decrease in the conductivity.  The 

synthesis of POMA can also be done electrochemically or chemically. The intrinsic 

redox states that are formed are the same as the ones that are observed for PANi. 

 

2.2.3.2.5 Doping 

As previously stated when looking at the mechanism of operation of a solar cell, it is 

vital for the polymer to have charge carrying ability. The charge carrying ability of 

the polymer in its neutral state is limited. It is important to utilise processes such as 

doping to improve the charge carrying ability of the compounds. The compound can 
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be doped by partial oxidation of the compound or partial reduction of the compound 

[80]; these are referred to as p-doping and n-doping, respectively. The doping process 

affects the electronic structure of the compound. Upon doping of the polymers there is 

generation of charge defects such as polarons, bipolarons and solitons [81]. The 

polaron forms as a result of the removal of electrons from the HOMO, this leads to 

the HOMO being partially filled and a radical anion is formed. As a result of this 

energy states are formed within the HOMO-LUMO energy band gap. When an 

additional charge is removed within a chain bipolarons are formed. The polarons have 

both spin and charge, but the bipolarons are spinless. The effect of the doping process 

is seen on the optical spectrum by the appearance of peaks at lower energies. 

 

There are two methods that are mostly used for doping, chemical and electrochemical 

doping. In chemical doping the dopants that are commonly used are iodine, which 

acts as an oxidizing agent. This has been used in the study of polyacetylene [82]. The 

use of protonic acids such as sulfonic acid has also been reported [83-84]. The use of 

acids does not change the number of electrons related to the backbone of the polymer 

chain. It only leads to the rearrangement of the energy levels. The most common 

polymer in regards to protonic doping is polyaniline. Due to the highly conjugated 

structure of the conjugated polymers, they are able to undergo redox processes very 

easily. This makes it possible to easily move from a p-doped species (reduced) to an 

n-doped species (oxidised). There is also control of the doping levels of the 

compound. 
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2.2.3.2.5 Charge Carriers in Conjugated Polymers 

As previously stated there is formation of various charge carries such as solitons, 

polarons and bipolarons upon doping of the conjugated polymers. The types of 

charges that are formed are dependent on the molecular structure and the level of 

doping. 

 

Figure 2.8: Schematic representation of the soliton charge defect that can be observed 

in conjugated polymers  

 

The formation of the soliton occurs in compounds that have geometric structures that 

correspond to exactly the same energy [85] as depicted in Figure 2.8. The soliton can 

propagate freely along the polymer chain, as its two sides possess identical energy. In 

a long chain, the unpaired electron in a neutral soliton (or a charge in a charged 

soliton) will not be localized on one carbon but rather will be spread over several 

carbon atoms (up to 14), which causes the soliton to have a width. Although the bond 

lengths are equal at the middle of the soliton, starting from one side of the soliton the 

double bonds become gradually longer and the single bonds shorter; consequently, on 

reaching the other side of the soliton the alteration is completely reversed. The 

presence of a soliton leads to the appearance of a localized electronic level at mid gap, 

which is half occupied in the case of a neutral soliton and empty(doubly occupied) in 

 Soliton  

* 



S0 

Positively Charged 

Soliton 

Negatively Charged 

Soliton 
Neutral Soliton 

 

 

 

 



 19 

the case of positively (negatively) charged soliton. Upon increasing the doping level, 

soliton states at midgap begin to overlap and to form a soliton band.  

 

 

Figure 2.9: Schematic representation of the polaron charge defect that can be 

observed in conjugated polymers 

 

Another type of charge defect that is mostly observed in polymers such as polyaniline 

and polypyrrole [86-87] is called the polaron and the schematic representation of the 

charge polaron charge defects is given in Figure 2.9. These are able to form in 

polymers with geometries that are not necessarily at the same energy level. In such 

polymers, the main charged excitations are radical ions strongly coupled with lattice 

distortion; these are termed polarons (a positive polaron in the case of a radical cation, 

and a negative polaron in the case of a radical anion). The net charges in polarons are 

the result of chemical reduction/oxidation, electrochemical charge injection, or 

photoinduced charge transfer. The local lattice distortion tends to localize the charge. 
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Although polarons can propagate along the polymer chain, the propagation length is 

strongly limited by conjugation interruptions. It is also possible for a polaron to jump 

from one chain to another if the acceptor chain possesses a similar lattice distortion to 

the donor. 

 

A bipolaron [87] is a pair of charges of the same sign (dual cations or dual anions) 

that is coupled to lattice distortion. The schematic representation of the bipolarons is 

givene in Figure 2.10. Bipolarons are similar to polarons, but have larger lattice 

distortions and begin to dominate at a large doping extent or a high charge injection 

rate. Two polarons of the same sign can combine to create a bipolaron, the formation 

of which implies that the energy gained by the interaction with lattice is larger than 

the Coulombic repulsion between the two charges of same sign, confined in the same 

location. 

 

Figure 2.10: Schematic representation of the bipolaron charge defect that can be 

observed in conjugated polymers 
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2.2.3.2.6 Importance of Photoluminescence in Photovoltaic cells 

The transitions that occur upon excitation of a compound are represented by means of 

a Jabłoński diagram [88], Figure 2.11. When we consider the Jabłoński diagram, we 

have the singlet ground state which is denoted as S0, in this state the HOMO level of 

the organic compound which is in this instance a polymer is expected to be occupied 

with two electrons of opposite spin. Upon absorption of light there is movement of 

one of the electrons to the LUMO level without alteration of the spin of the electron, 

this is referred to as the singlet excited state, S1 or S2, of the compound. The 

disintegration of energy from the excited singlet excited can occur via internal 

conversion to the lowest vibrational mode of the excited state followed by 

fluorescence from the lowest vibrational level of the excited state to the ground state. 

This is referred to as a spin allowed transition. Since there is no change in the state it 

has short lifetimes, measured in nanoseconds. There is also the occurence of spin 

disallowed transitions, this occurs when there is change of the spin of the compound 

at the excited state. They occur as a result of spin-orbit coupling which results in the 

intersystem crossing of the compound to the triplet state. Since it is a disallowed 

transition it is long lived, with lifetimes measured at microseconds. The energy 

decipation can occur via phosphorescence from the excited triplet state. 
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Figure 2.11: Jabłoński diagram representing the processes that occur upon 

photoexcitation 

 

The transition that we will be focusing on is fluorescence, since it is a photophysical 

tool that has been used to interrogate materials that are applicable in photovoltaic cells 

[89]. The vibrational modes that occur in fluorescence are supposed to be the same as 

the ones that are denoted in the absorption spectrum of the molecule but occurring at 

lower energies. A change in the vibrational modes can occur as a result of the change 

in the geometry of the compound at the excited level. In this instance fluorescence is a 

good tool for monitoring whether there are significant geometrical changes in the 

compound upon excitation so as to know that the materials that is used in 

photovoltaics is the same as the original compound. In polymers or organic 

compounds there are instances when there are transitions that are observed in 

fluorescence but not absorption spectra [90]. These transitions occur as a result of 

formation of excimers or exciplexes. They are referred to as excimers or exciplexes 
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depending on whether the excited complex is as a result of the interaction between 

two molecule of the same nature (excimers) or different nature (exciplexes). The 

excimers or exciplexes are as a result of the interaction of the excited molecule with a 

molecule that is at its ground state. This leads to a formation of an excited complex 

whose energy is decipated by fluorescence. The complex disintegrates at the ground 

state, hence no occurrence of the transitions at the ground state. 

 

As previously stated in organic photovoltaics there is a donor and acceptor, 

fluorescence is one of the best photophysical tools that is used to look at the 

interaction of the acceptor and donor at the excited level. This is because with the 

fluorescence it is possible to monitor the decipation of the emitted energy of the donor 

compound by the acceptor compound. The decipation of energy in the presence of a 

donor and acceptor leads to two other possible transitions that can occur besides 

fluorescence of the donor compound. There is photoinduced charge transfer and 

excitation energy transfer [91-92]. Upon excitation of the donor species one of the 

electrons that occupies the HOMO level jumps to the LUMO, this means that one of 

the electrons has gained more energy and can be easily donated. However the HOMO 

has become half occupied and can easily accept electrons from a reductant, this state 

describes a photoinduced electron transfer process and is illustrated in Figure 2.12. 

One can conclude whether there is photoinduced electron transfer, from the donor to 

the acceptor upon excitation by the total quenching of the fluorescence of the donor. 

This is dependent on whether there electron transfer occurs at a faster rate in 

comparison with the fluorescence decay. In organic photovoltaics it has been 

observed that the use of fullerenes as an acceptor allow for more efficient electron 
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transfer processes [93]. This is because the electron transfer process occurs at a faster 

rate than fluorescence in the presence of fullerene as a donor. 

 

 

Figure 2.12: Schematic representation of the photoinduced electron transfer process 

 

2.2.3.5 Acceptors in Organic Solar Cells 

A list of the acceptors that are currently used in solar cell technology with their band 

gaps is shown in Table 1. The bandgap for the single walled carbon nanotube 

(SWCNT) is not supplied because it varies depending on the chirality and also the 

diameter of the SWCNT [94]. In purely organic solar cells there has been exploration 

of the use of fullerenes as electron acceptors. This is because they have a high 

electron affinity in comparison with other organic compounds such as polymers [95]. 

Light induced processes (in the presence of fullerene and polymers) such as 

fluorescence quenching have been observed because of this characteristic. This factor 

makes fullerenes good electron acceptors. They are able to carry up to six electrons 

per molecule. There are acceptors based on nanomaterials (listed in Table 1), such as 

titanium dioxide, zinc oxide that have been used for hybrid solar cells [96]. The 

inorganic nature of the compounds makes them good as electron carriers in solar 

cells. Considerable interest has gone into utilising these inorganic acceptors because 
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they can be tailored using inexpensive methods such as wet chemical synthesis. Other 

reports include the use of GaAs [97-98], tungsten trioxide (WO3) [99], single walled 

carbon nanotubes [100-101], tin dioxide (SnO2) [102] as acceptors in photovoltaic 

cells.  

Table 1: The band gaps of materials commonly used as electron acceptors 

 

Material Band Gap (eV) 

C60 2.27 

PCBM 2.35 

SWCNT   

TiO2 3.20 

CdS 2.25 

CdSe 1.70 

CdTe 1.73 

SiC 3.00 

SnO2 3.80 

WO3 2.60 

GaAs 1.40 

GaP 2.25 

ZnO 3.20 

Fe2O3  2.10 

 

2.3 DEVICE ARCHITECTURE 

In photovoltaic cells the active layer is inserted between two electrodes that are 

referred to as the anode and cathode. The anode is an electrode made that is 
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transparent, indium thin oxide (ITO) is often used, and the other electrode referred to 

as a cathode is an electrode that can be made from aluminium or calcium. Aluminium 

is preferred over calcium because it is more stable in air. Different device designs 

arise as a result of the way the active layer (donor and acceptor) compounds are 

incorporated on the electrode. There are four types of device architecture in organic 

photovoltaic cells; single layer cells, bilayer heterojunction, bulk heterojunction and 

hybrid heterojunction. They are illustrated in Figure 2.13. 

 

2.3.1. Single-layer Cells 

This type of architecture uses one type of compound in the active layer of the cell and 

as illustrated in Figure 2.13 [103]. This means that the polymer compound would be 

expected to act as an electron carrier. It has been proven that the polymers are more 

liable to carry holes than electrons. Another factor that makes this type of architecture 

not desirable is that high recombination has been experienced. The mentioned factors 

lead to photovoltaic cells with very low efficiencies. This type of architecture is 

mostly used when studying properties such as current densities. 

 

2.3.2 Bilayer Heterojunction 

The bilayer heterojunction uses the concept of using a donor and an acceptor. These 

compounds must have different electron affinities and ionisation energy to allow for 

the efficient transfer of charge between them. As the name implies the compounds are 

introduced layer by layer. The limitation of this type of cell is that there is a small 

interface area between the donor and acceptor. Sariciftci et.al were one of the first 

groups to report on the formation of organic solar cells using the layered method 

[104]. They used ITO as the transparent electrode and MEH-PPV was spin coated on 
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the electrode followed by the fullerene moiety. This was also the first report on the 

use of fullerene as an electron acceptor. 

 

2.3.3 Bulk Heterojunction 

The concept of bulk heterojunction was first introduced by Halls et.al in 1995 [105] 

in order to combat the limitation experienced by bilayer heterojunction, which is the 

small interface area between the donor and acceptor. Bulk heterojunction also uses 

the donor-acceptor concept with the only difference being that the two compounds are 

‘blended’ together. This maximises the interface area between the donor and acceptor 

which ultimately leads to more excitons being able to reach the donor-acceptor 

interface. Yu et.al also looked at the blended type of solar cell design, they used 

MEH-PPV and PCBM, these achieved efficiencies of 2.3%[106]. The results are 

higher than when the same type of materials was used in bilayer heterojunction. Since 

this discovery there have been various reports on the use of bulk heterojunction in the 

formation of solar cells. 

 

2.3.4 Hybrid Heterojunction 

A very different kind of heterojunction has emerged as a result of trying to improve 

the efficiencies of organic solar cells; this is the hybrid heterojunction [107-108]. The 

hybrid heterojunction utilises the two concepts practised in bilayer heterojunction and 

bulk heterojunction, with the only difference being that there is use of an organic and 

inorganic compound in the active layer of the cell.  
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                                 Single layer    Bilayer   heterojunction    Bulk heterojunction 

Figure 2.13: Schematic representation of the device architecture in solar cells 

 

 

2.4 CHARACTERISATION TECHNIQUES FOR PHOTOVOLTAIC CELL 

MATERIALS 

2.4.1 Morphology 

Morphology is one of the main factors that affect the efficiencies of solar cells. A lot 

of research has focused at looking at different forms of polymers and how their 

morphology can affect the efficiency of solar cell [109-110]. It has been discovered 

that materials that form long tubular structures display high efficiencies due to an 

enhanced interface contact between the donor and acceptor. The techniques that make 

it possible to look at the morphology are scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM). 

 

2.4.1.1 Scanning Electron Microscopy (SEM)  

SEM is a powerful technique that utilises a scanning probe that moves over the 

surface of the compound in order to form an image. The scanning probe is a focused 

electron beam. There are three signals that occur in response to exposure to the 
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electron beam, there are secondary electrons, backscattered electrons and x-rays. The 

secondary electrons are the ones that are detected for the development of a SEM 

image. These are emitted at relatively low energies, 50 eV; they are from the top 

surface of the compound. As a result with SEM it is possible to only look at the 

surface morphology of the compound. The image is developed as the scanning probe 

moves along the sample under analysis. The backscattered electrons are from the 

beam that have been elastically scattered by nuclei in the sample and escape from the 

surface. Backscattered electrons have higher energy and are able to give information 

regarding sample composition. This capability is enhanced in combination with the x-

rays. The performance of a SEM instrument is largely dependent on the electron 

source. SEM is the most widely used technique for the analysis of morphology of 

polymers. 

 

2.4.1.2 Transmission Electron Microscopy (TEM) 

The transmission electron microscopy develops an image based on the interaction of 

the compound under analysis with the electron beam. In the case of the TEM, it is 

possible to analyse large areas at once instead of the small areas that are analysed 

with SEM. As with SEM a field emission gun is used as an electron beam. The 

images that are supplied by TEM for polymers are not that well resolved as there is 

the problem of phase contrast in the analysis of polymers using electron microscopy 

techniques. TEM is useful in resolving the degree of crystallinity of the polymers as it 

is possible to see the way in which the polymeric chain is folded on itself. 
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2.4.2 Thermal Gravimmetric Analysis 

This technique is used to determine the thermal stability of the compounds. This is a 

very important factor when considering materials for use in photovoltaic application. 

This is because the material will be exposed to high temperatures, it is advantageous 

to make that the materials that are used are stable at high temperatures. A good 

thermally stable donor material for application in photovoltaic cells has been reported 

to undergo decomposition at temperature that is higher than 300 
o
C.    

 

2.4.3 Electrochemistry 

The electrochemistry of donor and acceptor can be investigated by using 

voltammetric methods such as cyclic voltammetry and electrochemical impedimetric 

methods. This is to determine the suitability of the compound in terms of 

conductivity, since a highly conductive compound is desired.  

 

2.4.3.1 Voltammetry 

Cyclic voltammetry involves the reduction and oxidation of the species. Oxidation 

occurs on application of a positive potential, an increase in the peak current with an 

increase in the potential is observed until the potential of the analyte is reached, 

Figure 2.4. Thereafter a decrease in current occurs. The reoxidation of the species 

occurs with application of a positive potential. The movement of the species to the 

electrode can be facilitated by migration, convection and diffusion. Diffusion is the 

movement of analyte due to concentration gradient. The latter is the one that is of 

interest when dealing with electroanalytical reactions. When working with 

voltammetry, specifically cyclic voltammetry, a system can be characterised as a 

reversible, quasi-reversible and irreversible. This is dependent on the ease of the 
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redox reaction of the species and whether both the oxidised and reduced species are 

redox active. A reversible system shows the redox reaction of the species in the 

forward scan followed by the redox reaction upon application of a reverse scan, the 

Nernst equation applies to this system. The ratio of the reverse to forward peak 

currents is equal to unity for this system. E (anodic to cathodic peak potential 

separation) is ~ 59 mV/n for a reversible system. 
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Figure 2.13: A typical cyclic voltammogram for a reversible system 

 

 

 

The number of electrons transferred in this system is determined using equation 2.1 
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where R is the universal gas constant, T is the temperature in Kelvin and F is the 

Faraday’s constant (96485 C mol
-1

). The half wave potential is determined using 

equation 2.2 

2
2/1

pcpa EE
E


                                            2. 2 

The system is said to be quasi-reversible when the equilibrium concentration is not 

maintained between the redox species. This results in E values that are greater than 

59 mV for a one electron system with Ipa/Ipc deviating from unity.  An irreversible 

system is observed by the occurrence of a forward peak with a peak in the reverse 

direction being very weak or not observed at all due to failure to regenerate the 

starting electroactive species. A shift in the potential with change in scan rates is 

observed with an irreversible system because of the slow electron transfer.  

 

2.4.3.2 Electrochemical Impedance Spetroscopy (EIS) 

Electrochemical impedance spectroscopy is a technique that uses an applied 

sinusoidal voltage which gives a response in the form of current.   The technique is 

effective in interrogating surfaces, these include surface modified electrodes.   EIS 

measurements allow for the proper quantification of the capacitative effect of a 

particular material at different frequencies. The impedance data is dependent on the 

frequency that is applied and the relationship between the two is expressed in the 

equation below: 

)(")(')(  jZZjZ   

where Z′  and Z″ are the real and imaginary impedance terms, respectively; j = √-1 

and is an imaginary number while ω is the radial frequency (rad. s
-1

) and equals 2πf, f 
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being the exciting frequency (Hz). The EIS data can be represented using two forms, 

Nyquist and Bode plots.  

 

A typical Nyquist plot is shown in Figure 2.14. As can be seen from Figure 2.14, the 

Nyquist plot is a plot of the imaginary versus real impedance terms. A typical plot 

consists of the semi circle part which is a representative of the capacitative effect of 

the material. This part is the one that is used to deduce the charge transfer resistance 

of the material. This is because the diameter of the semi circle is considered the actual 

value of the charge transfer resistance. The linear region of the plot is indicative of 

diffusion controlled electrochemical processes. Since the impedance is dependent on 

the frequency, the high frequency side on a Nyquist plot is denoted by the left side of 

the diagram and the low frequency side by the right side of the diagram. Considering 

the latter, it is seen that the semi circle is observed on the high frequency side with the 

linear part at the low frequency region. The major limitation with presenting data 

using a Nyquist plot is that the frequency at any given data on the plot is not 

annotated. It has to be calculated. 
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Figure 2.14: The schematic representation of a Nyquist plot  

 

 

The total impedance is affected by several parameters these include the electrolyte 

solution resistance (Rs), the charge transfer resistance (Rct), the double layer 

capacitance (Cdl) and the Warburg impedance (Zw). The quantification of these 

parameters can be done by fitting data using the Randles circuit. This can be done 

using software such as zview. The electrolyte solution resistance emerges as a result 

of the conductance of the ions in the bulk solution. The use of the three electrode 

system is supposed to make the solution resistance between the counter and reference 

electrodes negligible but consideration has to be made for the solution resistance 

between the reference electrode and the working electrode. The electrolyte solution 

resistance is influenced by the concentration of the ions, type of ions and geometry of 

the area that carries the current as well as the temperature. This is seen in the equation 

that defines solution resistance shown below: 

A

l
Rs                            2.3 

Zreal (k) 

-Zim 

(k) 

|Z| 
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Where Rs is the solution resistance,  is the solution resistivity, A is the area and l is 

the length carrying the uniform current.  

 

The solution resistance is found upon fitting of the data. The double layer capacitance 

is present at the interface of the working electrode, which is between the working 

electrode and the surrounding electrolyte solution. This is as a result of the ions from 

the electrolytic solution adhering on the electrode surface. The double layer 

capacitance is affected by the concentration of ions, type of ions, temperature, 

electrode roughness, impurity adsorption, oxide layers. In EIS the double layer 

capacitance behaviour varies from the ideal capacitor instead it behaves like a 

constant phase element (CPE). This is the reason in most models the CPE is used to 

denote the double layer capacitance. The variation from the ideal case is because of 

factors such as the surface roughness, non-uniform current distribution. The 

relationship between impedance and capacitance is expressed in equation 2.4 below. 

  



 j

C
Z

1
                        2.4 

Where Z is the impedance, C is the capacitance, j is an imaginary number,  is the 

radial frequency,  is an exponent that has a value of one for an ideal capacitor.  This 

latter is not true for systems that contain a CPE; the value of  is less than one in that 

instance.  

Another component that is important in EIS is the charge transfer resistance.  As the 

name implies this is the monitoring of the ease of the transfer of charge between the 

electrolyte solution and the surface (electrode). When the overpotential is very small 

in a system in equilibrium the charge transfer resistance can be expressed as follows, 

0nFi

RT
Rct                         2.5 
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where Rct is the charge transfer resistance, R is the gas constant, T is the temperature 

in Kelvin, n is the number of electrons, F is the Faradays constant and i0 is the 

exchange current density. 

 

Diffusion has been shown to lead to an impedimetric response that is termed the 

Warburg impedance. This is shown to occur at low frequencies in the Nyquist plot. 

This is because at high frequencies the distance travelled by diffusing species is very 

small while at low frequencies the opposite is true. Hence the Warburg impedance 

observed at low frequencies. The equation that is a representation of infinite Warburg 

impedance is as follows: 

)1( jZw                                  2.6 

Where Zw is the Warburg impedance,  is the Warburg coefficient,  is the radial 

frequency. The Warburg coefficient can be expressed in the form of an equation as 

follows, 
















R

R

o

o DCDCAFn

RT 11

222
    2.7 

where  is the Warburg coefficient, R is the gas constant, T is the temperature in 

Kelvin, n is the number of electrons, F is the Faradays constant, A is the area, C
o
 is the 

concentration of the oxidant, Do is the diffusion coefficient of the oxidant, C
R
 is the 

concentration of the reductant, DR is the diffusion coefficient of the reductant. 

 

The relationship between impedance and frequency is not clearly defined when using 

Nyquist plots. Thus the use of Bode plots. The Bode plot is a plot of the log of the 

modulus of impedance versus the frequency, with the phase angle being also plotted 

against the log of frequency. The diagram in Figure 2.15 shows that the phase angle 
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tends towards zero at low frequencies and high frequencies. The leaning of the phase 

angle towards zero at low frequencies is because of the current and voltage being in 

phase to each other. The observation of the same phenomenon at high frequencies is 

due to the influence of the electrolyte solution resistance. This effect can be expressed 

in the form of an equation shown below. 













 

ct

s

R

R
21

1
tan 1                          2.8 

Where  is the phase angle, Rs is the electrolyte solution resistance and Rct is the 

charge transfer resistance. 

 

 

 

Figure 2.15: Bode plot for a simple electrochemical system 
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CHAPTER 3 :EXPERIMENTAL 

 

The synthetic procedures used for the synthesis of the polymers and nanoparticles are 

reported. Characterisation techniques such as fourier transform infrared spectroscopy, 

ultraviolet-visible spectroscopy, fluorescence spectroscopy, electrochemical 

techniques, morphological techniques (AFM and SEM) are used in order to analyse 

the nature of the materials. The steps taken in the construction of the photovoltaic 

cells are reported. 
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3.1 MATERIALS 

Hydrochloric acid (HCl), anthracene, phenanthrene, aniline, ortho-methyl aniline 

(OMA), dimethyl sulfoxide (DMSO), hydrochloric acid (HCl), fuming sulphuric acid 

(H2SO4), zinc nitrate (ZnNO3), gallium (Ga), perchloric acid (HClO4), methanol, 

dimethyl ether, ammonium persulfate (APS), [6,6]-phenyl-C61-butyric acid methyl 

ester (PCBM) was supplied by sigma Aldrich. 

 

3.2 ANALYTICAL TECHNIQUES 

The UV-visible spectra were recorded on a Nicolet Evolution 100 Spectrometer from 

Thermo Electron Corporation (UK). The polymers were dissolved in DMSO and 

decanted into a 1X1 cm quartz cuvette. The ZnGa2O4 was able to be partially 

dissolved in ethanol before being added into the cuvette. The UV-visible absorption 

spectrum range that was used is 280 nm to 900 nm for the polymers. 

 

Attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy was 

utilised to observe the vibrational transitions within the doped conjugated polymers. 

ATR-FTIR spectroscopy was done by loading the sample unto the sample holder 

without prior sample preparation. 

 

The fluorescence masurements were obtained by the using of the Horiba Jobin Yvon 

NanoLog from France. The measurements were done both in solution and as a film 

on a glass substrate. 

The X-ray analysis was done using Bruker multi purpose (powder) diffractometer. 

The X-ray source that was used was Cu K utilising a 2 range of 5-60
o
 

 

 

 

 



 40 

The thermal gravimetric analysis was done using a Perkin-Elmer thermal gravimetric 

analyser.  The samples were all analysed using a heat rate of 20 
o
C/min starting from 

50 
o
C.  The range that was analysed was from 50 

o
C to 600 

o
C for all the polymers. 

 

All electrochemical experiments were carried out in a conventional three-electrode 

electrochemical cell by means of BAS100 electrochemical analyzer from 

BioAnalytical Systems (BAS) Technicol (Stockport, UK). The working electrode was 

a platinum disk encapsulated in epoxy resin (electrode geometric area: 0.0177 cm
2
), a 

platinum wire and a Ag|AgCl electrode were used as counter electrode and reference 

electrode, respectively. Electrochemical impedance spectroscopy (EIS) measurements 

were recorded with VoltaLab PGZ 402 from Radiometer Analytical (Lyon, France). 

 

There are two techniques that were utilised to probe the morphology of the 

compounds, scanning electrochemical microspopy (SEM) and high resolution 

transmission electron microscopy (HR-TEM). SEM studies were done on polymers 

that were first spin coated on a glass substrate using a Zeiss Auriga, high resolution 

(FEG-SEM) field emission gun scanning electron microscope. HR-TEM studies were 

performed on samples of polymers and nanoparticles mounted on a copper coated 

TEM grid using a Tecnai G2F20X-Twin MAT 200 kV Field Emission Transmission 

Electron Microscope from FEI Eindhoven (Netherlands). 

 

A KW 4A spin coater and 4 KW-AH hotplate was used from Chemat Technology 

Incorporated (California, USA) in the construction of the photovoltaic cell device.  
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3.3 SYNTHESIS 

3.3.1 Synthesis of Anthracene sulfonic acid and Phenanthrene sulfonic acid 

 10 mL of fuming H2SO4 was added to 10 mL H2SO4 (6 M) and the mixture was 

diluted to 100 mL in a volumetric flask. 50 mL of the above solution was added to a 

round bottom flask that contained 2 g of anthracene or phenanthrene. The contents 

were heated to boiling in an oil bath (temperature between 120 – 140 °C) fitted with a 

condenser and thermometer. The mixture was refluxed for 2-3 h with constant 

shaking to immerse reactants into solution. The mixture was poured into a beaker with 

crushed ice. After 20 min the unreacted anthracene/phenanthrene was filtered off. 10 

mL of a 50% NaOH solution was added to the mixture and put in a refrigerator to 

crystallize, to form a white anthracene- or phenanthrene sulfonic salt. The salt was 

then hydrolysed to form the anthracene/phenanthrene sulfonic acid. 

 

3.3.2 Synthesis of polyaniline   

Aniline (0.2592 mL, 0.142 M) was added into 20 mL of deionised water in a round 

bottomed flask. The vigorously stirred mixture was heated for 30 min at 50 °C on an 

oil bath that is temperature controlled. An aqueous solution of ammonium persulfate 

(APS) (0.1 M) was added dropwise to the hot solution. The mixture was cooled down 

to room temperature. Then it was left stirring for con 24 h. The product was filtered 

and washed with deionised water, methanol and dimethyl ether, respectively, to 

remove impurities such as APS and unreacted aniline. The latter was repeated three 

times. 

 

3.3.3 Synthesis of Polyaniline/Phenanthrene sulfonic acid  
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Aniline (0.2592 mL, 0.142 M) was added into 20 mL of deionised water, whereby 

phenanthrene sulfonic acid (0.2592 mg) was added. The vigorously stirred mixture 

was heated for 30 min at 50 °C on an oil bath that is temperature controlled. An 

aqueous solution of ammonium persulfate (APS) (0.1 M) was added dropwise to the 

hot solution. The mixture was cooled down to room temperature while continuously 

stirred for 24 h. The product was filtered and washed with deionised water, methanol 

and dimethyl ether, respectively, to remove impurities such as APS, free PSA and 

unreacted aniline. The latter was repeated three times. 

 

3.3.4 Synthesis of poly(ortho-methoxyaniline)/Anthracene sulfonic acid 

nanostructures and poly(ortho-methoxyaniline)/Phenanthrene sulfonic acid 

Poly(ortho-methoxyaniline)/Anthracene-/Phenanthrene sulfonic acid were prepared 

by adopting a similar procedure as in section 3.3.2. In a 100 mL round bottomed 

flask, 0.26 mL of orth-omethoxyaniline was added to 20 mL of deionised water. This 

was followed by the addition of 0.2592 mg of anthracene sulphonic acid. The 

vigorously stirred mixture was heated for 30 min at 50 °C on an oil bath that is 

temperature controlled. An aqueous solution of ammonium persulphate (APS) (0.1 M) 

was added dropwise to the hot solution. The mixture was cooled down to room 

temperature while continuously stirred for 24 h. The product was filtered and washed 

with deionised water, methanol and dimethyl ether 3 times, respectively, to remove 

impurities such as APS, free ASA and unreacted ortho-methoxyaniline. The same 

procedure was used for the synthesis of poly (ortho-methoxyaniline)/Phenanthrene 

was utilised. 
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3.3.6 Synthesis of the Gallium Perchlorate 

7 g of gallium metal was weighed into a round bottomed flask and 5 mL of 

concentrated HClO4 added. The mixture was refluxed under constant stirring for 6 h 

at 120 °C, after which, a white precipitate of Ga(ClO4)3.6H2O was formed. 

 

3.3.7 Synthesis of the ZnGa2O4 nanoparticles 

Synthesis of the nanoalloy was done by utilising a coreduction method of Zn(NO3)2 

and Ga(ClO4)3.6H2O with sodium borohydride in a 1:1 molar ratio of the salts. The 

precipitate was filters off and washed with water. 

 

3.4 MEASUREREMENT OF PHOTOPHYSICAL PROPERTIES 

3.4.1 Fluorescence quantum yields 

Fluorescence quantum yield is defined as the ratio of the photons emitted to the 

number of photons absorbed. As a result it gives the probability of the excited state 

being deactivated via fluorescence  

The comparative method was used to determine the fluorescence quantum yields (F) 

of the polymers using equation 3.1 

2

Std Std

2
 Std

(Std) FF

 .A  .F

 .A . F
ΦΦ






                            3.1 

where F and Fstd are the areas under the fluorescence curves of the polymers and the 

standard, respectively.  A and Astd are the respective absorbances of the sample and 

the standard at the excitation wavelength and η and ηstd are the refractive indices of 
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the solvents used for the sample and standard, respectively. Anthracene was used as a 

standard in ethanol where F = 0.27. 

 

3.5 ELECTROCHEMICAL CHARACTERISATION 

3.5.1 Preparation of the surface modified electrode 

A platinum disk electrode was thoroughly cleaned by polishing it on a soft polishing 

pad using 1.00 µM, 0.30 µM and 0.05 µM slurries of alumina, respectively, rinsing 

with de-ionized water after each polish. This was followed by ultrasonication in de-

ionized water for 5 min. All the electrochemical data was run in a paste of the 

polymer that was made by taking 0.05 g of polymer and 500 mL of 0.1 M HCl. Cyclic 

voltammetry measurements were done at different scan rates. 

 

3.5.2 Electrochemical Impedance measurements 

The electrochemical impedance measurements were conducted on the polymer pastes. 

The impedimetric spectra were recorded with a VoltaLab PGZ 402 at a frequency 

range of 100 kHz to 10 mHz, amplitude of 10 mV and a potential of 150 mV. 

 

3.6 TECHNIQUES USED IN CONSTRUCTION OF THE PHOTOVOLTAIC 

CELL 

3.6.1 Spin Coating 

 

Spin coating is one of the techniques that is predominantly used in the field of 

research where a thin film of uniform thickness is formed on a substrate. This 

technique is predominantly used in electronics. Spin coating involves several stages, 

that is deposition of fluid, spin up, spin off and solvent evaporation, as shown in 

Figure 3.1. The deposition of the fluid stage involves the addition of the fluid by 
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using a pipette or a micro syringe at the centre of the substrate and the primary speed 

is the one that is used to spread the fluid from the centre outward. This is done to form 

a uniform spread over the surface of the substrate. This is followed by the spin up 

phase, which happens when the secondary speed, which is higher than the primary 

speed, is used to make a thin layer on the substrate. Thus this stage is said to influence 

the thickness of the film that is formed on the substrate. Spin off and evaporation 

stage can occur concurrently. This is when the substrate is spinning at a constant rate 

and formation of the film is predominantly influenced by the evaporation of the 

solvent.  

 

 

Figure 3.1: Schematic representation of the spin coating process 

 

3.6.2 Sputter coating 

The sputter coater makes use of different targets which can be gold, palladium, silver.  

The target is bombarded with heavy gas atoms (argon), this leads to the ejection of the 

metal from the target to cross the plasma to the substrate that is close to the target 

plate, Figure 3.2. This occurs at low pressure. The deposition of the metal on the 
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surface using this method is in the form of islands. Even though the deposition is in 

the form of islands the thickness of the deposited materials is able to be controlled by 

varying parameters such as the current at which the sputter coating is done. 

 

 

 

   

Figure 3.2: Schematic representation of the sputter coater 

 

3.7 CONSTRUCTION OF THE PHOTOVOLTAIC CELL 

The photovoltaic cell was constructed using an indium tin oxide coated glass. The 1.5 

cm X 1.5 cm glass substrate was cleaned in three different solvent, acetone, ethanol, 

and isopropanol, respectively in an ultrasonication bath for 5 min in each solvent. A 

thin layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) 

solution was spin-coated on conductive side of the glass. The parameters that were for 

the primary stage were 500 rpm for nine seconds and for the secondary stage it was 

1500 rpm for 40 s. The PEDOT-PSS layer was subsequently annealed at 50 ◦C for 15 

min on a hotplate. The active layer containing the blended polymer and PCBM was 

dissolved in 1 mL of DMSO and spin-coated on top of the PEDOT-PSS layer. The 

parameters that were used are 500 rpm for nine s for the primary stage and 1000 rpm 
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for 18 s for the secondary stage. A plain glass with the same dimensions as the ITO 

coated glass was then taken and cellotape plastered on three sides of the glass to 

expose an area of ~1 cm
2
. Silver was then sputtered on the glass using a sputter coater 

to form a layer with a thickness of 150 nm on the glass substrate. The cellotape was 

removed from both glasses and a thin coating of silicone glue was placed at these 

edges. The two glass substrates (one with the active polymer PCBM blend and the 

other with the silver) were adhered together making sure the edge of each is exposed. 

These were pressed together for 4 h using clips before measurements. 

The current-voltage (I-V) measurements on the solar cell devices were performed 

using a Keithly semiconductor characterization system (SCS) by connecting the 

positive terminal to the anode (ITO) and a negative terminal to the cathode (silver). 

 

3.8 ANALYSIS OF THE PERFORMANCE OF THE PHOTOVOLTAIC 

DEVICE 

When light shines on a solar cell, the current that is measured is called the 

photocurrent. The value of the photocurrent is dependent on many factors in addition 

to just the quality of the device. The quality of the device, the incident wavelength, 

intensity of the incident light and the area of the device being illuminated are some of 

factors that affect the photocurrent. A graph of current (I) versus voltage (V) in Figure 

3.1 is a common way to illustrate the properties of solar cells [111]. In the dark, the I–

V curve passes through the origin, with no potential, no current flows, Figure 3.1(a). 

Illumination of the device leads to the shift of the curve in such a way that it moves 

away from the origin as illustrated in Figure 3.3(b). 
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Figure 3.3: The I-V curves of an organic solar cell without light (a) and illuminated 

with light (b). The open circuit voltage (Voc) and the short-circuit current (Isc) are 

shown.  

 

The I-V curve contains a number of important parameters that are related to 

photovoltaic cells, these include open circuit voltage (Voc), short circuit current (Isc), 

maximum current and voltage. The latter factors make it possible to calculate 

parameters such as the fill factor (FF), maximum power (Pmax). Pmax is important in 

the determination of the efficiency of the solar cell. 

 

3.8.1 Open Circuit Voltage (Voc) 

Open circuit voltage is defined as the maximum voltage that can be obtained when 

measuring between two leads when the device is disconnected. The value for the open 

circuit voltage is taken from the I-V curve at the point where the current is ~ zero. The 

Voc is a factor that influences the devices efficiency. The origin of the influence of the 

(a) (b) 
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Voc on the organic solar cells has not been clearly defined, but what has been clearly 

seen is that it is greatly influenced by the morphology of the organic layer. 

 

3.8.2 Short Circuit Current (Isc) 

The short circuit current gives the maximum current density that can be obtained 

when the two leads are connected to each other. When analysing an I-V curve, the 

short circuit current is the value where the voltage is ~ zero. 

 

3.8.3 Fill Factor (FF) 

The fill factor is defined as the ratio of the curve under the maximum power point of 

the cell (Pmax =Imax Vmax) to the area associated with open and closed circuit (P =Isc 

Voc). The fill factor is referred to as a quantifying unit for the squareness of the I-V 

curve. This is also influenced by the materials morphology. In addition to this it is 

also influnced by the stability of the materials. 

The fill factor can be calculated using the following equation: 

scoc IV

IV
FF

.

. maxmax  

 

Where Vmax and Imax are the current and voltage at the point of maximum power 

output of the solar cell. Imax and Vmax can be determined by calculating the power 

output P of the solar cell (P=I*V) at each point between Isc and Voc and finding the 

maximum of Pmax. The theoretical limit of a fill Factor (FF) is between 0.25 and 1. 

 

3.8.4 Power Conversion Efficiency () 

Power Conversion efficiency can be defined as the ratio between the maximum power 

output (Pmax) and the power that is from the incident light (Pin). As already stated the 
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power conversion efficiency is greatly influenced by the Voc and Isc. The latter is 

displayed in the following equation used to calculate the efficiency. 

in

scoc

P

IVFF ..
  
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CHAPTER 4 : 
CHARACTERISATION OF THE 

MATERIALS 

 

Analysis of the data that is found using FTIR, UV-visible spectroscopy, fluorescence 

spectroscopy, SEM and AFM is provided. The vibrational spectroscopy technique 

such as FTIR spectroscopy helps in deducing that there has been successful synthesis 

of the polymers. This is because it is able to show bonds that are broken and also 

bonds that are formed. The UV-visible spectroscopy helped in determining the 

electronic transitions that are occurring in each compound and also the energy band 

gap of each transition. The fluorescence spectroscopy was used to see whether there is 

energy transfer between the potential donor (polymer) and acceptor (nanoparticles). 

The latter is analysed for both in solution. 

 

 

 

 



 52 

4.1 VIBRATIONAL SPECTROSCOPY OF THE POLYMERS 

4.1.1. FTIR of the Conjugated Polymers 

Figure 4.1 depicts the FTIR spectrum of the synthesised conjugated polymers. In 

Figure 4.1(a), it is shown that PANi has strong stretching vibrations that are observed 

at 1637 cm
-1

, 1549 cm
-1

, 1373 cm
-1

 and 1198 cm
-1

. The band at 1637 cm
-1

 is assigned 

to the quinoid moiety of the polymer chain, at 1549 cm
-1

 to the benzenoid moiety of 

the polymer and the stretching vibration at 1373 cm
-1

 is due to the CN stretching 

vibration. The relative intensities between these two vibrational bands is able to give 

the intrinsic oxidation state of the polymer [112].  The stretching vibration due to the 

quinoid moiety is more intense than the one that is due to the benzenoid moiety. This 

implies that the polymer synthesised is predominantly in its oxidised form, 

pernigraniline. This is further supported by the fact that the wavenumber at which the 

transition occurs for the CN stretching is for a tertiary amine. The latter can lead to 

the conclusion that the PANi synthesised is predominantly in its oxidised form, 

pernigraniline. The C-H stretching vibrations were observed at 1198 cm
-1

. The PANi-

PSA FTIR spectrum  that is shown in Figure 4.1(b) shows transitions that are due to 

the quinoid and benzenoid ring at lower wavenumbers, 1579 cm
-1

 and 1491 cm
-1

, 

respectively. There is an additional peak at 1089 cm
-1

 that is seen in PANi-PSA, this 

is attributed to the sulfone moiety (S=O) of the phenanthrene sulfonic acid. 

 

Figure 4.1 (c) and (d) depicts the FTIR of POMA-PSA and POMA-ASA, 

respectively. Stretching vibrations were observed for the POMA-PSA at 1579 cm
-1

, 

1491 cm
-1

, 1291 cm
-1

, 1161 cm
-1

, 1084 cm
-1

 and 762 cm
-1

. The first two stretching 

vibrations are the quinoid and benzenoid moiety, respectively. The intensity of the 

vibrational stretch that is due to the benzenoid is much greater in comparison with the 
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quinoid. This shows that the formed polymer is in its emeraldine form. As mentioned 

in Chapter 2, the benzenoid moiety is expected to occur at a higher percentage in 

emeraldine than the quinoid moiety. The transition at 1291 cm
-1

 is because of the CN 

stretching vibration of a secondary amine. The peak at 1084 cm
-1

 is due to the sulfone 

from the dopant, phenanthrene sulfonic acid. The peak at 761 cm
-1

 is as a result of the 

substitution at the ortho position of the aromatic ring, since POMA-PSA has a 

methoxy substituent at that position. The transitions observed for POMA-ASA are the 

same as the ones for POMA-PSA with slight shifts. The transitions for the quinoid 

moiety are observed at 1579 cm
-1

. Other bands are at 1487 cm
-1

, 1294 cm
-1

, 1161 cm
-1

 

and 773 cm
-1

. They can be attributed to the benzenoid moiety, CN stretching, CH 

stretching and S=O stretching vibration, respectively.  
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Figure 4.1: ATR-FTIR spectrum of a) PANi b) PANi-PSA, c) POMA-ASA, d) 

POMA-PSA 
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4.1.2 Raman Spectra of the Conjugated Polymers 

A 532 nm laser beam was used to obtain the Raman spectra of all the conjugated 

polymers. The laser beam that was used makes it possible to observe vibrations that 

are due to both the benzenoid and quinoid moiety of the polyaniline and its 

derivatives [113]. The Raman spectrum of PANi and PANi-PSA is shown in Figure 

4.2. The Raman spectrum of PANi has vibrational modes that are as a result of the 

benzenoid moiety at 1663 cm
-1

 and also ones that are due to the quinoid moiety at 

1584 cm
-1

. There is no apparent difference in the intensities of the peaks that are 

assigned to the benzenoid and the quinoid moiety. Hence no conclusions can be made 

in terms of the intrinsic oxidation state of the PANi as seen in the IR data above. The 

stretching vibrations due to C-N bond are observed at 1441 cm
-1

. The PANi-PSA has 

the same vibrational modes as the one that is seen in PANi, there is vibration due to 

the benzenoid moiety at 1670 cm
-1

 and the one due to the quinoid moiety at 1584 cm
-

1
. Even the PANi-PSA is in its emeraldine form. The latter is also true for the POMA-

PSA and POMA-ASA as seen in Figure 4.3. The vibrations that are as a result of the 

benzenoid moiety are at 1634 cm
-1

 and 1649 cm
-1

 for POMA-PSA and POMA-ASA, 

respectively. The vibrations that are due to the C-N bond are observed at 1458 cm
-1

 

and 1451 cm
-1

 for POMA-PSA and POMA-ASA, respectively.  
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Figure 4.2: The Raman spectra of PANi and PANi-PSA using a 532 nm laser beam 
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Figure 4.3: The Raman spectra of POMA-ASA and POMA-PSA using a 532 nm 

laser beam 
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4.2 PHOTOSPECTROSCOPIC CHARACTERISATION OF THE 

COMPOUNDS IN SOLUTION 

4.2.1 Electronic Transitions in Conjugated Polymers 

The UV-visible spectra of the polymers were done in DMSO. The generally observed 

wide absorption spectrum of the polymers is advantageous for photovoltaic cells, 

Figure 4.4-4.7. This is because with photovoltaic cells, compounds that absorb at a 

wide spectral range are required to absorb as much energy as it is possible from the 

sun. 

 

The UV-visible spectrum depicted in Figure 4.4 of the POMA-ASA showed five 

transitions at 287 nm, 320 nm, 440, 640 nm and 835 nm. As previously outlined in 

Chapter 2, the electronic transitions observed in conjugated compounds are mainly 

due to the movement of electrons from the -bonding to the -antibonding orbitals. 

The latter is true for polyanilines as well. Considering this, the assignation of the 

transitions is as follows, the transition at 320 nm is due to the movement of electrons 

from -bonding to the -antibonding orbital within the benzenoid moiety of the 

compound. When a polymer is doped other transitions arise within the normal -* 

band gap, these transitions are due to the formation of the polaron energy carriers 

[86]. These are responsible for the electronic transitions observed at 420 nm and 640 

nm. The transition at 835 nm is due to the formation of a bipolaron, which is of lower 

energy than the polaron.   
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Figure 4.4: The electronic transition spectrum of POMA-ASA 

 

In comparison with POMA-ASA, the number of transitions observed for POMA-PSA 

is much less, only three transitions shown in Figure 4.5, at 318 nm and one at ~450 

nm and a very wide peak is observed at ~600 nm.  The peak at 318 nm is still due to 

the -* transitions. The one at ~450 nm is from the energy states of the polaron, 

which is formed upon doping, to the -antibonding orbital of the benzenoid moiety. 

The wide peak is due to the quinoid moiety. Its wideness might be attributed to the 

existence of the polymer in a wide variety of chain lengths. 
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Figure 4.5: The electronic transition spectrum of POMA-PSA 

 

When considering that a compound with a wide absorption is advantageous in 

photovoltaic cells, POMA-ASA would be the most attractive polymer in photovoltaic 

cell construction. When comparing the two polymers it is expected that the POMA-

ASA will have a more efficient transportation of the holes since it has two types of 

charge carriers. 

There are three clearly defined transitions that are observed for the PANi-PSA as 

denoted in Figure 4.6. These transitions occur at 330 nm, 435 nm and 600 nm.  
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Figure 4.6: The electronic transition spectrum of PANi 

 

The transition at 330 nm is attributed to the excitation of the polymer from the -

bonding orbital to the -antibonding orbital of the benzenoid moiety. The transition at 

435 nm occurs as a result of the formation of polarons upon doping. This transition is 

as a result of the movement of electrons from the lowest energy orbital of the polaron 

to the -antibonding orbital. The transition that is observed at 600 nm is attributed to 

the transitions that involve the quinoid moiety. These are charge transfer transitions. 

The very broad peak can be attributed to the different chain lengths of the polymers. 

 

PANi displays two electronic transitions as denoted in Figure 4.7. The transitions are 

observed at 330 nm and 600 nm. These transitions occur at the same wavelength as 

the previously discussed PANi-PSA and are as a result of the same reasons as stated 

above. The peak at 330 nm is as a result of the - bonding to the-antibonding orbital 
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of the benzenoid moiety. The transition at 600 nm is as a result of the charge transfer 

transitions from the quinoid structure to the benzenoid. As expected for PANi that has 

not been doped, there is no occurrence of the peaks that are due to the transitions 

involving polaron or bipolaron energy states. 

 

When looking at the transition that is due to the -* orbital, a trend is observed. The 

PANi and PANi-PSA have the transition at 330 nm which is a more bathochromic 

position in comparison with POMA-PSA and POMA-ASA, with the transitions being 

observed at 318 nm and 320 nm, respectively. This is as a result of the methoxy 

substituents on the polymer chain; it lowers the extent of  conjugation.  
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Figure 4.7: The electronic transition spectrum of PANi-PSA 

 

The energy band gap was calculated and reported in Table 2. The calculated energy 

gap values showed that PANi had the smallest band gap of 2.4 eV with the POMA-
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ASA displaying the largest value of 3.0 eV. The smallest energy band gap value that 

is observed with the PANi is as a result of the higher degree of conjugation in this 

compound in comparison with the ones that are doped with the sulfonic acid [83, 

114]. The sulfonic acid shortens the degree of conjugation which leads to a higher 

energy gap which consequently implies that the conductivity of the polymers is also 

lowered. In the POMA compounds the degree of conjugation is relatively much lower 

compared to the PANi-PSA, as there are two factors that contribute in lowering the 

conjugation length; the sulfonic acid and the methoxy substituent on the aromatic 

ring. 

 

Table 2: The energy band gaps of the conjugated polymers 

 

Polymer 1 (nm) 2 (nm) 3 (nm) 4 (nm) Eband gap (eV) 

PANi   330    600    2.48 

PANi-PSA  330  430   600    2.55 

POMA-ASA  320  440  640  835  2.71 

POMA-PSA  318  450  600    3.0 

 

 

4.2.2 Electronic transitions in ZnGa2O4 nanoparticles 

The absorption spectrum of the nanoparticle showed a broad peak at the high energy 

area of the UV-visible spectrum, Figure 4.8. The maximum absorption of the peak is 

observed at 282 nm. The electronic transitions that are observed are as a result of the 

excitation of the electron from the valence band to the conduction band, forming the 

electron hole pair, the exciton. The band gap of the nanoparticles was calculated to be 
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4.2 eV. This is indicative of a compound with low conductivity and a very weak semi-

conductor material. 
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Figure 4.8: The electronic transition spectrum of ZnGa2O4 nanoparticles 

 

4.2.3 Photoluminescence of the Conjugated Polymers 

The photoluminescence of the compounds were studied in DMSO. As already 

illustrated in Chapter 2, photoluminescence or fluorescence is a transition that occurs 

when a compound in its excited state goes back to its ground state by releasing a 

photon. The singlet excited state of the polymers occurs as an exciton. This exciton is 

able to hop along the polymer chain until it dissipates by transitions such as 

fluorescence. The polymers were all excited at 320 nm and their spectra is depicted in 

Figure 4.9. The photoluminesce behaviour that is as a result of the exciton is 

observed at 391 nm and 393 nm for PANi and PANi-PSA, respectively. The transition 
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is observed at 385 nm for POMA-ASA and POMA-PSA.  The observation of the 

transition at higher energy for the POMA-ASA and POMA-PSA in relation to PANi 

and PANi-PSA is as a result of the lower extent of conjugation that is expected for 

POMA derivatives. There is a Stokes shift of ~ 60 nm that is observed for all the 

polymers as shown in Table 3.  
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Figure 4.9: The fluorescence spectra of the conjugated polymers  

 

The emission spectra of the conjugated polymers have a peak at the low energy levels. 

This is as a result of the formation of the excimer between the chain of the polymer at 

its excited state and another chain of the polymer at its ground state. The shoulder is 

more pronounced in PANi, PANi-PSA and POMA-PSA than in POMA-ASA.  
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Seemingly there is no obvious relation between the wavelength at which the emission 

occurs and the fluorescence quantum yield as shown in Table 3. The fluorescence 

quantum yields that were calculated are as follows, 0.41, 0.56, 0.50 and 0.18 for 

PANi, PANi-PSA, POMA-ASA and POMA-PSA, respectively. There have been 

reports of the band gap and the fluorescence quantum yield being related, an increase 

in the band gap has been reported to lead to an increase in the fluorescence quantum 

yield by Kim et.al [115]. This comes as a result of a decrease in the extent of 

conjugation. When considering these findings it is expected that the PANi should 

have the lowest fluorescence quantum yield and the POMA-ASA the highest 

fluorescence quantum yield. This is not the case in this instance; POMA-PSA is the 

one with the lowest quantum yield of 0.18. This shows that other factors are 

influencing the fluorescence quantum yield. The underlying factor is the existence of 

the excimers that are able to quench the fluorescence of the polymers leading to 

lowered values of the fluorescence quantum yield [90]. 

 

Table 3: The absorption and emission wavelength maxima with the Stokes shift 

values and fluorescence quantum yield values 

 

Polymer  Absorption 

max (nm) 

Emission 

max  (nm) 

 

Stokes shift 

(nm) 

Φf 

 

PANi 331 391 60 0.41 

PANi-PSA 335 393 58 0.56 

POMA-ASA 320 385 65 0.50 

POMA-PSA 323 385 62 0.18 
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4.2.4 Photoluminescence of the ZnGa2O3 nanoparticles 

Generally it is agreed upon that when a semi conductor material is exposed to a 

photon of light, there is excitation of the electron from the valence band to the 

conduction band thereby leaving a hole in the valence band. An electron hole pair is 

formed because of the existence of coulombic forces between the particles. The 

electron hole pair is referred to as an exciton. When the electron-hole pair 

recombines, energy is released in the form of photoluminescence. There are additional 

factors that contribute to the excitation and emission spectrum of the nanoparticles for 

oxide compounds. The presence of the oxide moiety leads to observation of 

transitions that are due to the oxygen vacancies [116]. As a result there can be 

observation of transitions that are as a result of the charge transfer between the 

transition metal and oxygen.  

 

The emission and excitation spectrum of the nanoparticles is shown in Figure 4.10, 

with the excitation and emission peak being a mirror image of each other, this is 

indicative of that there are no geometric changes within the nanoparticles upon 

excitation. The emission spectrum of the synthesised nanoparticles showed three 

peaks at 425 nm, 440 nm, 493 nm and 535 nm. The peak at 425 nm is as a result of 

the relaxation of the exciton of the nanoparticles from the excited state to the ground 

state. The peak at 493 nm is as a result of the interaction between the oxygen 

vacancies and gallium [117]. There is observation of vibronic vibrations at 493 nm 

and 535 nm. 
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Figure 4.10: The excitation and emission spectra of ZnGa2O4 nanoparticles  

 

4.2.5 Photoluminescence behaviour of the Conjugated Polymers with the 

nanoparticles in solution 

The nanopartciles that were used were explored for the potential use as acceptors in 

photovoltaic cells. The effect of the presence of the nanoparticles in the 

photoluminescence spectra of the polymers is a very important parameter that needs 

to be explored so as to determine the applicability of a compound as an acceptor in the 

photovoltaic system. The photoluminescence was measured for the polymers in the 

absence and presence of the polymers at an excitation wavelength of 320 nm. Overall 

for all the polymers there is an enhancement of the emission at the low energy range 

and decrease in the intensity of the peak at high energy as shown in Figure 4.11. As 

discussed in section 4.2.3 the emission that is observed at low energies is as a result of 

the excimers that are formed as a result this suggests that the presence of the 
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nanoparticles might lead to a greater degree of quenching of the emission of the 

polymer by the excimers.  
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Figure 4.11: The emission of the (a) PANi alone and  PANi with nanoparticles 

(ZnGa2O4)  (b) PANi-PSA alone and  PANi-PSA with nanoparticles (ZnGa2O4) (c) 

POMA-ASA alone and  POMA-ASA with nanoparticles (ZnGa2O4) (d) POMA-PSA 

alone and  POMA-PSA with nanoparticles (ZnGa2O4)in DMSO at an excitation 

wavelength of 320 nm 

 

4.3 MORPHOLOGICAL ANALYSIS FROM SEM 

4.3.1 Conjugated Polymers 

The morphology of the different polymers, POMA-ASA, POMA-PSA, PANi and 

PANI-PSA was investigated. All the represented data shown for the polymers is at a 

magnification of 100 000X. The SEM images for the POMA-ASA and POMA-PSA 

are depicted in Figure 4.12. POMA-ASA (Figure 4.12(a)) was shown to display 

micelle like character. The POMA-PSA (Figure 4.12(b)) showed tubular structures 

that are ~200 nm in length. The tubular morphology of the POMA-PSA is 

(d) 
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advantageous in solar cells since it allows for a better interface interaction between 

the donor and acceptor. 

 

 

 

 

Figure 4.12: SEM images of (a) POMA-ASA and (b) POMA-PSA 

 

The micrographs for PANi and PANi-PSA are depicted in Figure 4.13. It can be seen 

that the PANi (Figure 4.13(a)) has formed a densely interconnected fibers. The 

PANi-PSA (Figure 4.13(b)) shows the same arrangement as seen for the PANi.  

 

   

 

 

 

Figure 4.13: SEM images of (a) PANi and (b) PANi-PSA 
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4.4 X-RAY DIFFRACTION PATTERN OF THE CONJUGATED POLYMERS 

Polymers can come in many forms. They can display crystalline, semi crystalline and 

amorphous behaviour. In most cases it is found that one polymer exists in all three 

states [118]. The polyaniline and its derivative can be characterised as highly 

crystalline as shown from their XRD data, Figure 4.14. Even though the polyaniline 

and its derivatives can be classified as crystalline, there are minute traces of 

amorphous behaviour. These traces of a higher degree amorphous behaviour are more 

pronounced in the doped PANi derivatives, that is PANi-PSA, POMA-PSA and 

POMA-ASA. This suggests that the doping of the PANi with sulfonic acid introduces 

a level of disorder within the structure. Crystallinity in polymers is as the result of the 

folding of the polymer within itself, a highly ordered folding leads to a highly 

crystalline structure. The fact that there is a lowered level of crystallinity with doping 

suggests that the bulky sulfonic acid groups act as a hindrance in the folding process 

of the polymers. This may be as result of the branched structure that is formed when 

there is incorporation of the sulfonic acid groups. The degree of disorder is higher for 

the anthracene sulfonic acid substituted polymer in comparison with the phenanthrene 

sulfonic acid. The latter is because of the linear bulky structure of the anthracene 

sulfonic acid dopant which has a lower degree of flexibility in comparison with the 

phenanthrene sulfonic acid dopant which has a more angular characteristic.  
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Figure 4.14: X-ray Diffraction pattern of the conjugated polymers 

 

4.5 X-RAY DIFFRACTION PATTERN OF THE ZnGa2O4 

The general XRD spectrum for the nanoparticles is characterised by a high level of 

crystallinity, Figure 4.15. The XRD data of the ZnGa2O4 revealed that there are 

combination characteristics displayed by the sample.  There are characteristics that are 

as a result of the ZnGa2O4 and also the slightly amorphous characteristic that is due to 

the presence of GaO(OH) which is observed at a peak position where 2 =33.4-34.2 

[119]. The presence of characteristics that are due to the GaO(OH) is because of the 

temperature at which synthesis was done which was  lower than 200 
o
C.  
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Figure 4.15: X-ray diffraction pattern of the ZnGa2O4 nanoparticles 

 

4.6 MORPHOLOGICAL ANALYSIS FROM TEM 

4.6.1 Conjugated Polymers 

As seen in Figure 4.16, TEM allows for the monitoring of the way the chains of the 

polymers are folded. As previously stated in Section 4.4, folding of the polymeric 

chains determine the level of crystallinity of the compound. The images show a high 

degree of crystallinity for PANi and POMA-PSA, Figure 4.14(a) and (c). The latter 

can be concluded because of the presence of well defined ridges within the images of 

the polymer chains. The PANi-PSA (Figure 4.14(b)) and POMA-ASA (Figure 

4.14(d)) display the lowest level of crystallinity, with the POMA-ASA being the 

worst one. This agrees with the XRD data, the PANi was highly crystalline and 

POMA-ASA showed a more amorphous behaviour. This can be as a result of the 

nature of the doping agent that is anthracene sulfonic acid has a linear, rigid structure 

that is hindering a well ordered folding process of the polymer. 
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Figure 4.16: TEM images of (a) PANi (b) PANi-PSA, (c) POMA-ASA and (d) 

POMA-PSA 
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4.5.2 ZnGa2O4 nanoparticles 

The TEM images of the nanoparticles are highly agglomerated nanorods, Figure 

4.17(a). The image of the agglomerated nanorods, in Figure 4.17(b), at higher 

magnification shows the presence of ridges which is indicative of a crystalline 

compound. 

 

 

 

Figure 4.17: TEM images of ZnGa2O4 at a (a) 100 000 X magnification and (b) at 

500 000X magnification 
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4.7 THERMAL GRAVIMMETRIC ANALYSIS OF THE CONJUGATED 

POLYMERS 

The thermal gravimmetric analysis (TGA) of the polyaniline shows two transitions, 

Figure 4.18(a). The one that is due to the loss of water and one due to the breakdown 

of polyaniline into its scission products such as aniline, ammonia [120]. The loss of 

water transpires at ~100 
o
C and is observed because of the hydroscopic nature of 

polyaniline. The polymeric chain of the polyaniline undergoes degradation at 

temperatures above 300 
o
C to form scission products depicted in Figure 4.19.  These 

products undergo further degradation to form ammonia at temperatures above 450 
o
C. 

The PANi-PSA undergoes three transitions, Figure 4.18(b). The transition due to the 

loss of water is observed together, at ~110 
o
C. This is followed by another transition 

at ~250 
o
C that is as a result of the loss of the dopant, which is in this case 

phenanthrene sulfonic acid. This is followed by the degradation of the chain length 

that occurs at temperatures above 300 
o
C.  

 

The POMA-PSA and POMA-ASA also undergoes three transitions when analysed 

using TGA as seen in Figure 4.18(c) and 4.18(d). The transitions that are observed 

are the loss of water at 100 
o
C and 110 

o
C for POMA-ASA and POMA-PSA, 

respectively. This is followed by the transition that is due to the loss of the dopants 

that is observed at 250 
o
C for the POMA-ASA and 290 

o
C for the POMA-PSA.  The 

degradation of the polymeric chain for POMA-ASA and POMA-PSA occurs at 

temperatures of 300 
o
C and 350 

o
C, respectively. Overall it is seen that the polymers 

are stable at high temperatures. The subtle differences in the temperatures that 

undergo degradation between the polymers can be attributed to the use of different 

masses. 

 

 

 

 



 78 

 

 

 

 

(a) 

(b) 

 

 

 

 



 79 

 

 

 

 

Figure 4.18: Thermal gravimmetric curve of (a) PANi, b) PANi-PSA, c) POMA-

ASA, d) POMA-PSA 
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Figure 4.19: Possible degradation products from thermal gravimmetric analysis of the 

conjugated polymers 
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CHAPTER 5 : 
ELECTROCHEMICAL 

CHARACTERISATION OF THE 

CONJUGATED POLYMERS 

 

Analysis of the electrochemical kinetics is depicted in this chapter. There is use of 

two techniques for the analysis of the electrochemical parameters for the conjugated 

polymers. It is cyclic voltammetry and electrochemical impedance spectroscopy. The 

use of these techniques determines the ease at which charge transfer occurs for the 

different polymers. This is to ascertain the best conjugated polymer for photovoltaic 

application in terms of the electrochemical kinetics that is obtained.  
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5.1. CYCLIC VOLTAMMETRY OF THE CONJUGATED POLYMERS 

The cyclic voltammetry of PANi paste was obtained using 1 M HCl is shown in 

Figure 5.1.  There is only one reduction and oxidation peak that is observed for the 

PANi as shown in Figure 5.1. The oxidation peaks are occurring at +295 mV and 

+420 mV. The peak at +110 mV is due to the emeraldine form of polyaniline. The 

polyemeraldine is further oxidised to form polyemeraldine radical cation. The radical 

cation gets reduced at +254 mV to form a partly reduced polyleucoemeraldine. The 

latter undergoes further reduction at +107 mV to form fully reduced 

polyleucoemeraldine [47, 121]. The peak potentials and corresponding currents are 

also seen to vary as the scan rates value varies. This indicates that the polymer 

nanomaterial structures are conducting and that diffusion of electrons was taking 

place along the polymer chain [62]. 
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Figure 5.1: Scan rate dependence of the cyclic voltammetry of PANi paste in 1 M 

HCl 
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The cyclic voltammetry of PANi-PSA paste was obtained using 1 M HCl is shown in 

Figure 5.2. The oxidation peaks are occurring at +110 mV and +282 mV. The peak at 

+110 mV is due to the emeraldine form of polyaniline. The polyemeraldine is further 

oxididised to form polyemeraldine radical cation. The radical cation gets reduced at 

+210 mV to form a partly reduced polyleucoemeraldine. The latter undergoes further 

reduction at +100 mV to form fully reduced leucoemeraldine [47, 62, 121] . The peak 

potentials and corresponding currents are also seen to vary as the scan rates value 

varies. This indicated that the polymer nanomaterial structures are conducting and that 

diffusion of electrons was taking place along the polymer chain [62]. 
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Figure 5.2: Scan rate dependence of the cyclic voltammetry of the PANi-PSA paste 

in 1 M HCl 

 

There is only one reduction and oxidation peak that is observed for the POMA-PSA 

as shown in Figure 5.3. There is an oxidation peak occurring at +261 mV for the 
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formation of polyemeraldine radical cation. There reduction peak is occurring at +208 

mV for the formation of the partly reduced polyleucoemeraldine. The peak potentials 

and corresponding currents are also seen to vary as the scan rates value varies. This 

indicates that the polymer nanomaterial structures are conducting and that diffusion of 

electrons was taking place along the polymer chain [62]. 
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Figure 5.3: Scan rate dependence of the cyclic voltammetry of the POMA-PSA paste 

in 1 M HCl 

 

The paste of POMA-ASA also has one oxidation and one reduction peak as shown in 

Figure 5.4. The oxidation peak at +317 mV is as a result of the polyemeraldine 

radical cation and the reduction peak at +248 mV is as a result of the formation of the 

partly reduced polyleucoemeraldine. The peak potentials and corresponding currents 

are also seen to vary as the scan rates value varies. This indicates that the polymer 
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nanomaterial structures are conducting and that diffusion of electrons was taking 

place along the polymer chain [62]. 

 

Figure 5.4: Scan rate dependence of the cyclic voltammetry of the PANi-PSA paste 

in 1 M HCl 

 

The number of electrons transferred (n) was estimated from the CV and was 

calculated for each of the polymers, using the equation 5.1 below.  

 

nF

RT
EE

20.2
2/1              5.1        

 

Where E is the maximum peak potential, E1/2 is the half maximum peak potential, R is 

the gas constant (8.314 J mol K
-1

), T is the temperature of the system in Kelvin, F is 

the Faradays constant (96584 C mol
-1

) and n is the number of electrons transferred. 

The number of electrons transferred was found to be approximately one for all of the 

polymers. The linear dependence of peak current on the scan rate for the various 

polymers showed that we have a thin film of conducting electroactive material 
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immobilised on the electrode, which undergo rapid electron transfer reactions [122]. 

Since the behaviour is the same as a surface confined species, it is possible to 

determine the surface concentration of the polymers on the platinum electrode. The 

surface concentration (= mol cm
-2

) of the adsorbed electroactive species is able to be 

calculated approximately from a plot of Ip versus v in accordance with the Brown 

Anson model, 

RT

AvFn
I p

4

22 
                  5.2 

 where Ip is the maximum current peak, n is the number of electrons transferred, F is 

the Faradays constant, A is the surface area of the electrode, v is the scan rate, R is the 

gas constant, T is the temperature in Kelvin and  is the surface concentration of the 

electroactive species on the electrode. The surface concentration is increasing from 

PANI-PSA > POMA-PSA > POMA-ASA > PANi as shown in Table 4. The higher 

surface coverage for PANi is as a result of the PANi being free from bulky dopants. 

 

The quantitative analysis of the diffusion process was done by the determination of 

the diffusion coefficient from the Randle Sevčik equation for a reversible system: 

2/12/12/351069.2 CvADnXI p                5.3 

 where Ip is the maximum current peak, n is the number of electrons exchanged during 

the redox process, A (cm
2
) the active area of the working electrode, D the diffusion 

coefficient (cm
2
 s

–1
), C is the bulk concentration of the electroactive species (mol cm

–

3
) and v is the voltage scan rate (V s

–1
). The values found showed that there is an 

increase in the diffusion coefficient from POMA-ASA > POMA-PSA > PANi-PSA > 

PANi, Table 4. The diffusion coefficient trend is following the trend that was 
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displayed by the band gaps.  This implies that the diffusion coefficient is affected by 

the conductivity of the material. 

 

Table 4: The diffusion coefficient and surface concentration of the polymers 

 

Surface  (mmol cm
-2

) D ( cm
2
 s

-1
) 

 

PANi  18.5 

 

 

 3.97 x 10
-19

 

PANi-PSA 0.036 4.3 x 10
-23

 

POMA-PSA 0.061 1.13 x 10
-21

 

POMA-ASA 0.096 1.07 x 10
-21

 

 

5.2 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY OF 

CONJUGATED POLYMERS 

The electrochemical impedance analysis of the polymers was done using 1 M HCl as 

an electrolyte. Analysis of the EIS data can be done using Nyquist plots and Bode 

plots. The focus of this work is on analysis of the EIS data using Bode plots since 

with Bode plots frequency data is directly supplied. 

The Bode plots are able to directly supply the phase angle data and the frequency.  

The value of the phase angle determines whether a compound is considered a 

conductor, semiconductor or an insulator. The increase in the capacitative effect is 

denoted by the increase in the value of the phase angle. The value of 90
o
 denotes a 

pure capacitor. The phase angle maximum for bare platinum electrode is occurring at 

76.5
o
 and at a frequency of 436 Hz. The phase angle maximum for PANi is occurring 

at 42
o
 and at a frequency of 1659 Hz. The phase angle maximum for the PANi-PSA is 
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occurring at 42
o
 and at a frequency of 1.26 Hz. The phase angle maximum for the 

POMA-ASA is occurring at 39
o
 and at a frequency of 245 Hz.  The phase angle 

maximum for the POMA-PSA is occurring at 55
o
. The frequency at which the 

maxima of the phase angle is reached can be used to conclude the whether there is fast 

electron transfer or slow electron transfer.  The data that was found can lead to the 

conclusion that there is relatively fast electron transfer that is occurring when PANi is 

used, since the capacitative effect maximum is only reached at relatively high 

frequencies in comparison with the other compounds. The sequence for the 

capacitative effect is decreasing in the following sequence bare platinum electrode > 

POMA-PSA > PANi-PSA = PANi> POMA-ASA. 
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Figure 5.5: The Bode plots of a) PANi, b) PANi-PSA, c) POMA-PSA and d) POMA-

ASA analysed using 1 M HCl
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CHAPTER 6 : APPLICATION OF 

MATERIALS IN HYBRID 

PHOTOVOLTAIC CELLS 

 

This chapter focuses on the study of the interaction of the polymers (donors) in the 

presence of PCBM (acceptor). The electronic spectra and photoluminescence are used 

as means to investigate the effect of the PCBM upon the spectra of the polymer 

donors. There is further investigation of the effect of the PCBM in the presence of the 

nanoparticle and polymers. The electronic and photoluminescence spectra are 

reported. The photovoltaic parameters are investigated for the different system 

(polymer/PCBM and polymer/nanoparticle/PCBM). 
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6.1 ELECTRONIC BEHAVIOUR OF THE CONJUGATED POLYMERS IN 

THE PRESENCE OF NANOPARTICLES AND PCBM IN SOLUTION  

The importance of studying the electronic behaviour of the polymers (donors) in the 

presence of the PCBM (acceptor) is to determine whether the acceptor compound 

does not have adverse effect on the electronic behaviour of the compound. The 

adverse effects are the ones that lead to the degradation of the polymer. 

 

6.1.1 Electronic Interaction between the Conjugated Polymers and PCBM 

The electronic interaction of the conjugated polymers with the PCBM alone was 

studied in DMSO. The acceptor compound does not display electronic transitions 

within the scan range of 250 nm to 900 nm as observed in Figure 6.1. The ratio of the 

polymers (donors) to the PCBM (acceptor) that was used is 1:0.5 in DMSO. POMA-

ASA is the one that is showing a level of instability in the presence of PCBM as an 

acceptor, using the previously stated ratio as shown in Figure 6.1. The instability is 

shown since the observed spectrum of the polymer alone in DMSO (Chapter 4) is not 

the same as the one observed in the presence of PCBM. The electronic absorption due 

to the transition from the -bonding orbital to the -antibonding orbital was still 

observed for the polymers at ~340 nm. The transition that is as a result of the charge 

transfer transitions between the quinoid moiety and the benzenoid moiety is occurring 

at ~ 600 nm for the polymers.  

 

The presence of PCBM is supposed to induce the electron transfer from the polymer 

to the PCBM. As a result one would expect that there will be formation of polarons on 

the polymer backbone, this formation of polaron will induce the occurrence of 

electronic transitions that are observed at slightly lower energy levels. The transitions 

 

 

 

 



 93 

were observed for the doped polymers alone in DMSO at ~425 nm. There is 

observation of an absorption peak at ~ 425 nm in the presence of PCBM, but it is not 

clearly defined. This indicates that there is charge transfer from the polymer to the 

PCBM. The poor definition may be as a result of aggregation in the presence of 

PCBM. 

300 400 500 600 700 800 900
0.00

0.15

0.30

0.45

0.60

0.75

A
b
s
o
rb

a
n
c
e

Wavelength (nm)

 PANi/PCBM

 PANi-PSA/PCBM

 POMA-PSA/PCBM

 POMA-ASA/PCBM

 PCBM

 

Figure 6.1: The electronic spectrum of the conjugated polymers in the presence of the 

PCBM (acceptor) in DMSO 

 

6.1.2 Electronic Interaction between the Conjugated Polymers and Nanoparticles 

in the presence of PCBM 

The wt ratio that was used is 1:1:0.5 in the interrogation of the interaction of the 

conjugated polymers in the presence of the nanoparticles and PCBM, Figure 6.2. 

There is observation of the characteristics due to the polymer and also the 

nanoparticles observed for PANi, PANi-PSA and POMA-PSA. The transitions due to 

the charge transfer from the quinoid moiety to the benzenoid moiety are observed at 
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~600 nm and there is prominence of the charactereristic transitions due to the 

nanaoparticles at the high energy wavelength. The POMA-ASA displays 

characteristics that show there is possible degradation of the polymer in the presence 

of the PCBM. 
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Figure 6.2: The electronic spectrum of the conjugated polymers in the presence of 

nanoparticles and PCBM (acceptor) 

 

6.2 PHOTOLUMINESCCENCE BEHAVIOUR OF THE COMPOUNDS ON 

ITO COATED GLASS 

The photoluminescence behaviour of the conjugated polymers and nanoparticles was 

studied in solution in Chapter 4. It is important to look at the fluorescence behaviour 

of the compounds as a film since in photovoltaic cells the photoactive material forms 

a film on a chosen substrate. When the material are in its film, there is a high level of 

aggregation as a result there is a higher possibility of interaction between the polymer 

strands. The latter implies that there is a higher likelihood of experiencing 

 

 

 

 



 95 

photoluminescence behaviour that is as a result of excimers in films. The study of the 

fluorescence behaviour of the polymers with the nanoparticles was done so as to 

verify whether there is quenching of the emission of the polymer which will be used 

as a donor in the photovoltaic cell by the nanoparticle which is a potential acceptor. It 

is important to develop potential acceptors since there is a smaller pool of acceptors 

that are used in photovoltaic cells. 

 

6.1.1 Conjugated Polymers with Nanoparticles 

The photoluminescence behaviour of the conjugated polymers alone and in the 

presence of the nanoparticles is depicted in Figure 6.3. The emission of the polymers 

alone on the ITO is such that there is observation of one wide peak that is due to the 

polymer emission at ~400 nm and the presence of an emission peak that is as a result 

of the ITO coated glass at ~600 nm. The observation of the latter emission is as a 

result of the thinness of the film that is formed on the substrate. The mixture of 

nanoparticles and polymers was done in a ratio of one is to one wt ratio. In the 

presence of the nanoparticles, there is observation of the emission due to both the 

polymer and nanoparticle without quenching of the emission. This characteristic 

makes the ZnGa2O4 nanoparticles not suitable as acceptors in photovoltaic cell 

technology. 
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Figure 6.3: The photoluminescence behaviour of (a)PANi ) PANi alone and  PANi with 

nanoparticles (ZnGa2O4)  (b) PANi-PSA alone and  PANi-PSA with nanoparticles (ZnGa2O4) (c) 

POMA-ASA alone and  POMA-ASA with nanoparticles (ZnGa2O4) (d) POMA-PSA alone and  

POMA-PSA with nanoparticles (ZnGa2O4) on ITO 
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6.1.2 Conjugated Polymers with PCBM on ITO 

As previously stated the importance of looking at the interaction of the polymers 

(donors) and the PCM (acceptor), is to determine whether there is interaction of the 

donor and the acceptor at the excited level. This interaction is observed by the 

quenching of the fluorescence of the donor. The interaction was done using a 1:0.5 wt 

ratio. The mixture was spin coated on the ITO substrate before measurement. There is 

observation of the complete quenching of the fluorescence of the acceptor that is 

observed for all the polymers, Figure 6.4. This implies that there is charge 

dissociation that is occurring on the donor in the presence of PCBM as an acceptor 

[123]. This gives a potential system that can be used in photovoltaic cells. 
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Figure 6.4: The photoluminescence behaviour of the polymers in the presence of 

PCBM 
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6.1.3 Conjugated Polymers with nanoparticles and PCBM on ITO 

As observed in Section 6.1.1, the fluorescence of the polymer is not quenched by the 

nanoparticles, implying that the nanoparticles are incapable of being used as electron 

acceptors in this system. An experiment was done to observe whether the PCBM is 

able to act as an acceptor in the presence of the nanoparticles. The photoluminescence 

spectra that observed showed quenching of the emission due to the polymer and the 

nanoparticles, Figure 6.5. There is only observation of emission peaks due to the ITO 

substrate.  
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Figure 6.5: The photoluminescence response of the polymers in the presence of 

nanoparticles and PCBM 

 

 

6.1.4 Photovoltaic behaviour of the Conjugated Polymers with PCBM as 

acceptor 

As previously stated in Chapter 2, charge generation in organic solar cells involves 

the absorption of light by the donor, upon absorption an exciton is formed that is able 
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to dissociate into separate charge or recombine. The way in which to limit the degree 

of recombination is the use of an acceptor that has a lower HOMO level to the LUMO 

of the donor. This is the reason that PCBM is introduced as an acceptor in this case.  

The current-voltage (I-V) characteristics of the constructed photovoltaic cells were 

done and are denoted in Figure 6.6. The I-V curves are for the following devices 

ITO/PEDOT-PSS/PANi:PCBM/Ag,  ITO/PEDOT-PSS/PANi-PSA:PCBM/Ag, 

ITO/PEDOT-PSS/POMA-PSA:PCBM/Ag and ITO/PEDOT-PSS/POMA-

ASA:PCBM/Ag with a wt ratio of 1:1 between the donor (polymers) and acceptor 

(PCBM) under a simulated AM 1.5 illumination. The parameters that characterise a 

photovoltaic cell was calculated and is denoted in Table 6, overall the power 

conversion efficiency () values are much lower compared to the reported values of 

currently reported values for organic solar cells [25-26, 124], this can be accounted by 

the interconnected fibres that are formed and shown in SEM images. It has been 

reported [110] that the tubular form is more advantageous in the overall performance 

of the solar cell. 

 

Photovoltaic cell that used PANi as a donor is the one that showed the best in terms of 

performance, with an efficiency of 4.62 x 10
-6

 %, Voc of 4.8 mV, Isc of 3.2 mA and a 

FF of 0.296. This can be accounted under the basis that the PANi showed the highest 

level of crystallinity and conductivity compared to the other polymers. The former 

was demonstrated conclusively by XRD and TEM. There photovoltaic cell that used 

PANi-PSA as a donor showed a much lower level in the efficiency of the solar cell 

with an efficiency of 1.45 x 10
-8

 %. This is as a result of the lower conductivity and 

crystallinity. The POMA-PSA and POMA-ASA display much lower efficiencies in 

photovoltaic cells in comparison with the PANi and PANi-PSA. POMA-ASA has the 
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lowest values when looking at the photovoltaic parameters. This is following the trend 

in regards to crystallinity and conductivity, PANi > PANi-PSA > PANi-PSA > PANi-

ASA. Another reason that can account for POMA-ASA’s poor photovoltaic activity is 

that POMA-ASA seems to degrade in the presence of the PCBM; this is illustrated by 

the electronic spectrum of the POMA-ASA in the presence of the PCBM in Section 

6.1.1.  
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Figure 6.6: The I-V Curves of the photovoltaic cells under illumination 
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Table 5: The photovoltaic response of the polymers in the presence of PCBM as 

an acceptor under 1000 W cm
-2

 Simulated Solar Irradiation 

 

Polymer Voc (mV) Isc (mA)  (%)  FF 

PANi 4.85 3.21 4.62 x 10
-6

 0.296 

PANi-PSA 1.45 

 

0.239 

 

8.13 x 10
-8 

 

0.234 

 

POMA-PSA 0.961 0.329 8.16 x 10
-8

 0.257 

POMA-ASA 0.234 0.233 1.085 x 10
-8

 0.199 

 

The photovoltaic parameters of the polymers with the ZnGa2O4 nanoparticles were 

investigated in the presence of PCBM as a donor. The current-voltage curves are 

illustrated in Figure 6.7. The overall response is very weak as can be seen by the fact 

that the intersection of the curve is very close to zero. This was confirmed by the 

values that were found for the photovoltaic parameters, the efficiency in power 

conversion is much lower in comparison with when the nanoparticles are not 

incorporated in the polymer. The data found is against the reported data that has been 

seen that there incorporation of nanoparticles such as zinc oxide leads to much higher 

efficiencies, Table 7.  The negative effect may be as a result of the use of a gallium 

based nanoparticle which leads to the formation of nanoparticles that have a wide 

bandgap, hence a lower conductivity. The morphology of the nanoparticles that is 

displayed is spherical, which is not conducive in photovoltaic cells. Photovoltaic 

applications favour morphology that is tubular for the nanomaterials.  
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Figure 6.7: The I-V Curves of the photovoltaic cells under illumination 

 

Table 6: The photovoltaic response of the polymers in the presence of PCBM as 

an acceptor under 1000 W cm
-2

 Simulated Solar Irradiation 

 

Polymer Voc (mV) Isc (mA)  (%)  FF 

PANi-np 0.987 1.14 3.15 x 10
-7

 0.28 

PANi-PSA-np 0.654 0.515 1.13 x 10
-7

 0.334 

POMA-PSA-np 0.558 0.342 4.14 x 10
-8

 0.217 

POMA-ASA-np 0.0229 0.029 2.027 x 10
-10

 0.306 
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CHAPTER 7 : CONCLUSIONS 

 

Polymers that absorb in the visible region were synthesised. The polymeric materials 

were highly crystalline. Relationship between crystallinity and conductivity was 

displayed by the compounds. Conductivity and crystallinity increased in the following 

order, POMA-ASA < POMA-PSA <PANi-PSA < PANi. The PANi was the one that 

showed highest level of crystallinity and also a low energy band gap. The high level 

of crystallinity and band gap is as a result of the higher level of conjugation of the 

PANi in comparison with the other polymer derivatives. The dopants lower the level 

of conjugation and also the order in the folding process of the polymers. The emission 

of the polymers is quenched by the existence of excimers at the excited state of the 

polymers; this occurrence is propagated by the presence of the zinc gallate 

nanoparticles in solution. Reversible, single electron processes are observed for all the 

polymers. The diffusion coefficient is increasing with an increase in the surface 

concentration of the polymers on the electrode. 

 

Generally the value of the efficiencies of the photovoltaic devices is low. This can be 

attributed to the morphology of the polymers that were synthesised. The morphology 

was not the desired nanorods that allow for higher produce higher efficiencies. The 

trend in the performance of the photovoltaic devices with the polymers alone with 

PCBM as an acceptor is the same as the one observed in the band gap, POMA-ASA < 

POMA-PSA <PANi-PSA < PANi. The observed trend was expected as it is 

anticipated that compounds that are highly conductive in organic solar cells, give the 

best response. The incorporation of the nanoparticles within the polymers lowered the 
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efficiency of the photovoltaic cell. Since the use of the bimetallic oxide increase the 

band gap, it seems to be advisable to make use of metal oxides that are composed of 

only one metal in order to lower the band gap, consequently increasing the 

conductivity of the compounds. Hence one recommendation for augmenting this work 

will be the use of metal oxides that are based on zinc and gallium, independently. The 

other recommendation is the investigation of the effect of different morphologies of 

the nanoparticles affect the overall performance of the zinc gallate as an electron 

acceptor. 

 

The properties that are displayed by the polymers show that they can be useful in 

other areas besides photovoltaic application. The polymers display a highly 

fluorescent characteristic with good fluorescence quantum yield. This is an indication 

that they can be useful in the manufacturing of light emitting diodes. Since for light 

emitting diodes the requirement is that the compound must be a good fluorophore. An 

additional advantage is the ease of tailoring the polyaniline’s conductivity by doping. 

This is a very attractive characteristic in the manufacture of electroluminescent 

devices for use in light emitting diodes. The luminescent properties of the polymers 

were not affected by the incorporation of the zinc gallate into the polymers when 

placed as a thin film on ITO glass. Instead there was a display of the luminescence 

behaviour of the polymer and the zinc gallate. Thus, it can be concluded that the 

polyaniline- zinc gallate composites can be used for electroluminescent devices. A 

synergistic effect may be demonstrated in the electroluminescence of the composite in 

comparison with the polymer alone. 
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The simplicity of tailoring the conductivity of the polyaniline derivatives by doping 

also makes it possible to use the polyaniline derivatives as electromagnetic radiation 

shields in the manufacturing of paints. This is due to the fact that the doping of the 

polymers can lead to polyaniline materials that have conductivity values that are close 

to those of the metals (aluminium and copper) that are used for electromagnetic 

shielding in the manufacturing of paints. The ease of processing of the polymeric 

materials is an additional factor that can lead to the polymers being able to find a 

niche in this area. There is also the thermal and environmental stability of the 

polymers that make them very attractive in this area.  
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