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Abstract

The industry of pension funds has become one of the drivers of today’s economic activity

by its important volume of contribution in the financial market and by creating wealth.

The increasing importance that pension funds have acquired in today’s economy and fi-

nancial market, raises special attention from investors, financial actors and pundits in

the sector. Regarding this economic weight of pension funds, a thorough analysis of the

performance of different pension funds plans in order to optimise benefits need to be un-

dertaken. The research explores criteria and invariants that make it possible to compare

the performance of different pension fund products. Pension fund companies currently

do measure their performances with those of others. Likewise, the individual investing

in a pension plan compares different products available in the market. There exist dif-

ferent ways of measuring the performance of a pension fund according to their different

schemes. Generally, there exist two main pension funds plans. The defined benefit (DB)

pension funds plan which is mostly preferred by pension members due to his ability to

hold the risk to the pension fund manager. The defined contributions (DC) pension fund

plan on the other hand, is more popularly preferred by the pension fund managers due

to its ability to transfer the risk to the pension fund members. One of the reasons that

motivate pension fund members’ choices of entering into a certain programme is that their

expectations of maintaining their living lifestyle after retirement are met by the pension

fund strategies. This dissertation investigates the various properties and characteristics

of the defined contribution pension fund plan with a minimum guarantee and benchmark

in order to mitigate the risk that pension fund members are subject to. For the pension

fund manager the aim is to find the optimal asset allocation strategy which optimises its
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retribution which is in fact a part of the surplus (the difference between the the pension

fund value and the guarantee) (2004) [19] and to analyse the effect of sharing between

the contributor and the pension fund. From the pension fund members’ perspective it is

to define a optimal guarantee as a solution to the contributor’s optimisation programme.

In particular, we consider a case of a pension fund company which invests in a bond,

stocks and a money market account. The uncertainty in the financial market is driven

by Brownian motions. Numerical simulations were performed to compare the different

models.

Kelekele Liloo Didier Joel

MSc Thesis, Department of Mathematics and Applied Mathematics, University of the

Western Cape.

February 2015.
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Chapter 1

General introduction

1.1 Introduction

The need for assessing the performance of pension fund managers or investment managers

has become imperative, in view of the large amounts of funds that pension managers are

handling, and the scale of competition this market is facing. From the investor’s point of

view the need is even more serious when one considers the increasing volatility that the

financial market is subjected to. Consider the global financial crisis of 2008, the scandal

of the banking system of 2009, the Eurozone crisis of 2010 and all the economic turmoil

that have been daily reported to the media and news feeds. These events underline

the importance, so paramount, of improving the management of financial institutions,

even more so of mutual funds, when taking into account their social and economic value

and impact. The management of mutual funds such as in pension schemes is so complex,

requiring some high level of skill and sophistication. Pension funds managers and investors

are aware of the above problems and they are concerned to know the performance of

different pension fund schemes that are available in the financial market. To analyse

and assess the performance of financial institutions in general and specifically those of

mutual funds, some practitioners and pundits on the financial field has laid down some

methods and practices. The literature engaging the management of investment strategies
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of pension funds is prolific and present methodologically two approaches:

• The stochastic control method.

This method was pioneered by Merton (1969,1971) [48] [49]. The stochastic method-

ology is mainly based on solving the Hamilton-Jacobi-Bellman (HJB) equation com-

ing from the dynamic programming under the real world probability measure. Sev-

eral authors have laid down theories related to the stochastic control approach. For

instance, Vigna and Haberman (2001) [56] used stochastic dynamic programming to

analyse the financial risk in a defined contribution (DC) pension scheme under Gaus-

sian interest rate models. They attempted to find an optimal investment strategy,

given a final target linked to the net replacement ratio and a set of interim targets.

Haberman and Vigna (2002) [32] extended their paper of earlier to study the in-

vestment allocation in a DC scheme whose fund is invested in several assets, and

considered three different risk measures to analyse the final net replacement ratios.

Devolder et al (2003) [20] studied the management of an annuity contract under

an interest rate model described by a geometric Brownian motion. Menoncin and

Scaillet (2006) [51] provided the same exercise for a life annuity contract. Xiao et al

(2007) [58] applied the constant elasticity of variance model to an annuity contract

and derived the dual solution for the logarithm utility via the Legendre transform.

However, these studies generally suppose the short rate to be a constant. As the

contribution period in a pension plan is very long, generally from 20 to 40 years,

the assumption of constant rates is then difficult to accept in the field of DC plans

(see Gao 2008) [27].

• The second approach, is the martingale method.

It aims generally to calculate an expectation under a risk-neutral measure. This

method was first developed by Cox and Huang (1989) [16] in the setting of complete

markets and relies on the theory of Lagrange multipliers. In the last few years, it was

successfully applied by other authors such as Boulier et al (2001) [7] and Deelstra

et al (2003, 2004) [18] [19] to study the optimal design and asset allocation of a
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pension plan. Recently, Hainaut and Devolder (2006) [33] analysed the dividend

policy and asset allocation of a pension fund under the Vasicek interest model.

While a pension fund manager are called to use these different methods to produce high

returns in the management of assets, one can question the true degree of performance these

funds managers achieve. When a pension member enters a pension programme, his or her

expectation is that the mutual fund will be able to keep safe his wealth and to increase

it in some extent. Because guided by the axiom of non-satiation, which claims that “plus

is preferred to minus” the pension fund member is expected to steer the investment to

yield results that can allow him to continue living the lifestyle he is used to. One of the

instruments of measuring the level of lifestyle is the individual income. The investment

manager is called to make optimal asset allocation which can yield outcomes that are

close to the level of the pension member’s income just prior to retirement.

1.2 Research Problem

The defined contribution pension fund plan has gained important consideration in the in-

vestment portfolio management in the last two decades. Some practitioners of the world

of finance have been paying attention to the maintenance of lifestyle of the pension fund

member as the main motivation guiding their choice of different investment products avail-

able in the financial market and thus the presence of some guarantee in order to mitigate

the risk exposure of pension fund members. Authors such as Boulier et al [7] considers

the Vasicek model for the interest rate and have presented a minimum guarantee in the

form of deterministic process. Deelstra et al (2003) [18] considers stochastic dynamics for

the interest rate, covering as a special case of the Vasicek model and of the Cox-Ingersoll-

Ross model. Their method considers a stochastic minimum guarantee to the worker at

retirement plus a fraction of the surplus (the difference between the final wealth and the

minimum guarantee). The same authors, in Deelstra et al (2004) [19], present a model

with various choices of guarantees that are available to the pension members. The main

objective of the present study is to analyse the defined contribution pension fund model
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with a minimum stochastic guarantee serving as a benchmark and a sharing rule between

the fund manager and the pension fund member.

1.3 Research Objectives

The present research attempts to find an optimal guarantee for a DC pension fund plan

subject to a sharing rule between the fund members and the fund manager. Thus the

objective is then to maximise a certain expected utility of the portfolio manager from his

part of the surplus; and the determination of the optimal sharing rule between the fund

manager and the pension fund member. The structure of the objective function in the

present research is widely used in the investment management literature; the model being

used in the present research assumes that the parameters are time varying. The objective

function depends on a risky asset, riskless asset, the zero coupon bond and the guarantee.

1.4 Structure

The present dissertation proceeds as follows: Chapter two discusses the different types

of pension fund plan. The third chapter present the mathematical model of the defined

contribution (DC) pension fund. The fourth chapter presents the pension fund model

with benchmark under the framework of Browne (1999) [10] with the introduction of the

sharing rule and the growth optimal portfolio (GOP). The fifth chapter gives a conclusion.

4

 

 

 

 



Chapter 2

Different types of pension fund

schemes

The present chapter reviews different types of pension fund schemes that are available in

the market. It revisit the theoretical foundation of the two main pension fund schemes,

which are the defined benefit (DB) and the defined contribution (DC). The main reference

of the chapter are the researches of Bodie et al (1988) [6], Boulier et al (1995) [8] , Andrew

Cairns (2000) [11], Andrew Cairns (2003) [12] and Cairns et al (2000) [13] . The chapter

discusses how the DB and the DC pension fund schemes have evolved in years and how

they have been adapted.

2.1 The defined benefit plan

The defined benefit (DB) schemes can be viewed as a plan where the employees’ pension

benefit entitlement is determined by a formula which takes into account years of service

for the employer and, in most cases, wages or salary. Many defined benefit formulas also

take into account the Social Security benefits to which an employee is entitled. These

are the so-called integrated plans (1988) [6]. The defined benefit pension sheme can be

analysed in many ways. In what follows we briefly review the different mathematical

approaches to DB plans.
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2.1.1 Deterministic methods

A process is called deterministic if its value as a function of time can be pre-determined

at a given time. We are presenting in this paragraph a simple discrete time deterministic

model of a pension fund, which aims to build a pension that will be in step with the final

salary at retirement. The model features in the paper of Cairns (2003) [12] and it has the

following assumptions:

• Salaries are increased each year in line with a cost-of-living index CLI(t).

• At the start of the year [t, t+ 1), one new member joins the scheme at age 25, with

a salary of 10000× CLI(t)/CLI(0 ).

• All members stay with the scheme until age 65 and mortality before age 65 is

assumed to be zero.

• At age 65 the member retires and receives a pension equal to a fraction of the final

salary for each year as a member of the scheme, payable annually in advance for

life. This pension is secured by the pension fund member purchasing an annuity

from a life insurer in order to secure his pension and the pension fund has no further

responsibility such as making payments to the member. The final salary is defined

as the salary rate at age 65 including the cost-of-living salary increase at age 65.

• Salaries are increased at the start of each year and include a combination of age-

related and cost-of-living increases.

Let S(t, x) represent the salary at time t for a member aged x at that time. The scheme

structure described above indicates that

S(t+ 1, x) = S(t, x)× w(x+ 1)

w(x)
× CLI(t + 1 )

CLI(t)
(2.1)

where the function w(x) is called the wage profile and determines age-related increases.

Initially it is assumed that S(0, x) = 10000w(x)/w(25) for x= 25, ...., 65, and it follows

that we have the identity:
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S(t, x) = S(0, x)
CLI(t)

CLI(0 )
(2.2)

In this equation, we find that the actuary has a twofold traditional role : Firstly, the

actuary must determine the actuarial liability at time t which is then compared with the

value of the assets. Secondly, the actuary must recommend a contribution rate. There are

different approaches for responding to these two questions. We present two of the most

popular methods in this regard.

• The first one is the Entry Age Method approach. This approach has emerged in

the UK. The method regards the contract as a life insurance policy and poses the

question of : what contribution rate (as a percentage of salary) should a new member

pay throughout his career in order to have the right amount of cash available at age

65 to buy the promised pension? The answer to this question is what paves the way

to calculate the fund overall liability [12].

• The second approach is the Projected Unit Method. It is firstly based on the

calculation of the actuarial liability. In this method only the contribution of fund

accrued to date is valued and the method does not make any allowance for benefits

arising from continued service in the future. The valuation also takes into account

projected future salary increases (age-related and cost-of-living). In this case the

actuarial liability at time t is

AL(t) =

64∑
x=25

x − 25

60

(
S (t , x )

w(65 )

w(x )
(1 + ε)65−x

)
v65−xκ65 +

40

60
S (t , 65 )κ65 (2.3)

In this equation ε represents the assumed rate of growth of CLI(t), (v = 1/(1 + i))

where i is the valuation rate of interest and κ65 is the assumed price for a unit of

pension from age 65. It is generally known that pensions are bought out at age

65. The component of AL(t) of the equation (2.3) represents the liability for the

member who has just attained age 65 but for whom a pension has not yet been
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purchased. The incorporation of some decrements such as mortality, ill-health re-

tirement, resignation from the company before the age of 65 and benefits coming

along with such as early exits are often seen as not appropriate. Since salaries at

each constant age x increase each year in line with CLI(t), we note that:

AL(t + 1 ) = AL(t)CLI(t + 1 )/CLI(t).

Having assets equal to liabilities at time t and at the time t+ 1, the normal contri-

bution rate of the pension fund member, NC(t), payable at time t encompasses the

following elements:

– the sponsor pays in NC(t) times the total salary roll at t,

TSR(t) =
65∑

i=25

S (t , x ); (2.4)

– the pension-fund trustees immediately secure the purchase of a pension (for a

price B(t)) for the member who has just attained age 65;

With experience suggesting that anticipation in the valuation basis of investment return,

the increase of salary at time t + 1 and no deaths occurring before time t + 1, this gives

the following:

(AL(t) + NC(t)TSR(t)− B(t)) (1 + i) = AL(t)(1 + ε). (2.5)

This means that

NC(t) = (B(t)− AL(t)(1 − ρ))/TSR(t) (2.6)

where ρ = (1 + ε)/(1 + i) is the assumed real discount factor. The remaining element

of a funding valuation is the recommendation of a contribution rate and NC(t) is only

appropriate if assets equal liabilities. This leads us to the concept of amortisation of

surplus or deficit. Let F (t) represent the fund size at time t, so that the deficit on the

funding basis is AL(t)-F (t) The recommended contribution rate is

RCR(t) = NC(t) +

(
AL(t)− F (t)

TSR(t)κΣη

)
(2.7)
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where

κΣη =

η−1∑
k=0

ρk =
1− ρη

1− ρ
(2.8)

The constant η is the amortisation period. This could be set according to how rapidly

the fund sponsor wants to get rid of surplus or deficit. Often, though, it is set equal to the

expected future working lifetime of the active membership, in line with certain accounting

guidelines. A related approach to amortisation is mostly used in North America. The

adjustment is divided into η components which are each relating to the amortisation of

the surplus or deficit arising in each of the last η years. Additionally, there may be a

corridor around the actuarial liability within which surplus or deficit is not amortised.

Both of these differences, in comparison to the UK approach, lead to a greater volatility

in contribution rates [12].

2.1.2 Dufresne method

Early work on the stochastic methods was conducted by Dufresne in a series of papers

(Dufresne, 1988, 1989, 1990) [22] [23] [24]. Dufresne took the series of actuarial liabilities,

AL(n) as given. The valuation method and basis were assumed to be given too; these

assumptions were later relaxed by the work of other authors such as Haberman [30]

and it was found that the original conclusions remained broadly intact. In particular, all

elements of the basis were best estimates of the relevant quantities. The method developed

by Dufresne is seen as a precursor of the stochastic method which became widely used in

finance literature and research. In Dufresne’s method the focus is more on the dynamics

of the fund size and the contribution rate,

F (t + 1 ) = (1 + i(t + 1 ))[F (t) + RCR(t)TSR(t)− B(t)], (2.9)

Where i(t + 1 ) is the achieved return on the fund from time t to time t+ 1, and

RCR(t) = NC(t) +

(
AL(t)− F(t)

TSR(t)κΣη

)
. (2.10)
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Simple models for i(t) allow us to derive analytical (or semi-analytical) formulas for the

unconditional mean and variance of both F (t) and RCR(t). The key feature of these

investigations is the assessment of how these values depend upon the amortisation period

η. It is found that if η is too large (typically greater than 10 years) then the amortisation

strategy will be inefficient: a lower value for η would reduce the variance of both the fund

size and the contribution rate. Below a certain threshold for η, however, there would be

a trade-off between continued reductions in Var[F (t)] and an increasing Var[RCR(t)].

2.1.3 Other stochastic methods

Cairns and Parker (1997) [15] and Huang(2000) [36] are among those who have made

some of further advances in the Dufresne method to make it more sophisticated. In

the earlier works the only control variable was the amortisation period [11]. Cairns and

Parker extended this to include the valuation rate of interest, while Huang extended it

furthermore to include the asset strategy as a control variable. They all found that having

a valuation rate of interest different from E[i(t)] enriched the analysis. This meant that

the decision process now had to take into account the mean contribution rate as well as

the variances. Cairns and Parker also conducted a comprehensive sensitivity analysis with

respect to various model parameters and took a close look at conditional, in addition to

unconditional means and variances with finite time horizons.

Up to this point the decision-making process was still relatively subjective. There was

no formal objective which would result in the emergence of one specific strategy out of the

range of efficient strategies. Then came the introduction of stochastic control theory as

a means of assisting in the decision making process. This approach has been taken using

both continuous time modeling [8] and [11] and discrete time, Haberman and Sung (1994)

[31]. The former approach yields some stronger results. Once the objective function has

been specified, dynamic stochastic control theory identifies the dynamic control strategy

which is optimal at all times in the future and in all possible future states of the world.

This is in contrast to the previous approach where a limited range of controls might
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be considered and which might only result in the identification of a strategy which is

optimal for only one state of the world. In stochastic control there is no automatic

requirement to conduct actuarial valuations or set contribution rates with respect to a

normal contribution rate augmented by rigid amortisation guidelines. The use of a clean

sheet and the formulation of an objective function which takes into account the interests

of the various stakeholders in the pension fund has been used. As Cairns [11] proposed,

let the fund size F (t) at time t and the corresponding contribution rate C(t) be governed

by the stochastic differential equation,

dF (t) = F (t)
[
(dδ(t) + C(t)−B)dt+ σdZ(t)

]
. (2.11)

Where: F (t) is the fund size, dδ(t) is the return on asset between t and t+ dt, C(t) is the

contribution rate, B is the expected rate of benefit, σ is the volatility.

This equation assumes that the outgo benefit has a constant mean with fluctuations

around the mean to account for demographic and other uncertainty in the benefit pay-

ments. The first element in (2.11) gives us the instantaneous investment gain on the fund

from t to t+ δdt. The dδ(t) term represents the instantaneous gain per unit invested and

contains the usual mixture of drift (dt) and Brownian motion dZ(t) terms. The second

element represents the contributions paid in by the fund sponsor. The third term in

brackets represents the outgo benefit [8] and [11] assumes that both the contribution rate,

C(t), and the possibly dynamic asset-allocation strategy, p(t), are both control variables

which could be used to optimise the fund’s objective function. The objective function is

similar to that introduced by Merton (1969, 1971,1990) [48] [49] [50] and can be described

as the discounted expected loss function:

Λ(t, f)(C, p) = E
[ ∫ ∞

t

e−βs

L(s, (C), F (s))ds|F (t)
]
. (2.12)

Following Boulier et al (1995) [8], L(s, C, F (s)) is the loss function, C(t) is the contri-

bution rate and P (t) is the pension payement.

From the current fund size F (t) = f the expected discounted loss depends on the choice

of control strategies C∗ and p∗. These strategies depend upon the time of application,
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s, in the future as well as the state of the market at that time (that is, F (s)). The

function L(t, c, f) is a loss function which measures how unhappy (in a collective sense)

the stakeholders are about what is happening at time s given that F (s) = f and that the

contribution rate will be C(s) = C∗. The discount function e−βs determines the relative

weight attached to outcomes at various points in the future: for example, a large value

of β will place more emphasis on the short term. The aim of the exercise is then to

determine what strategies C∗ and p∗ will minimise Λ(t,f)(C, p). Thus the programme is

V (t, f) = inf
C,s

Λ(t,f)(C, p). (2.13)

It is well known that problems of this type V (t, f) can be solved using the Hamilton-

Jacobi-Bellman equation (HJB) as some authors have stipulated Fleming and Rishel,

(1975) [26], Korn, (1997) [42], or Björk, (1998) [4] and Cairns [11]. The HJB is used for

determing the optimal contribution and asset strategies. Cairns has analysed examples

where the loss function is quadratic in C and f as well as power and exponential loss in C

only. These led to some interesting conclusions about the optimal C and p. Some of these

were intuitively sensible but others were less so and this could be connected to aspects of

the original loss function. Cairns concluded that alternative loss functions needed to be

developed to address these problems [11].

2.2 The Defined Contribution plan

A defined contribution (DC) scheme is a plan whereby each employee has an account

into which the employer and, if it is a contributory plan, the employee make regular

contributions. Benefit levels depend on the total contributions and investment earnings

of the accumulation in the account. Often, the employee has some choice regarding the

type of assets in which the accumulation is invested and can easily monitor its value at

any time. Defined contribution plans are, in effect, tax deferred savings accounts in trust

for the employees, and they are by definition fully funded, Bodie et al [6].

Mathematically, the defined contribution plan is characterized by the way it operates.
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The defined contribution pensions fund plan operates quite differently from the defined

benefit pensions fund plan. In the latter case the company sponsoring the fund usually

takes on the majority of risk, especially investment risk. In a DC pension fund the

individual members take on all of the risk. In a typical occupational DC pension fund the

contribution rate payable by both the member and the employer is a fixed percentage of

the salary. This is invested in a variety of managed funds with some control over the choice

of funds in the hands of the member. The result is that there is considerable uncertainty

over the amount of pension that might be achieved at the time of retirement. Again this is

in contrast to a DB pension which delivers a well-defined level of pension. A DC pension

plan is a personal pension which offers additional flexibility over occupational schemes

through variation of the contribution rate. This means that a pension fund member

might choose to pay more if their pension fund investments have not been performing

very well.

2.2.1 Deterministic projection method

This method has emerged since 2003 in the UK, the approach requires that at the point

of sale of a personal pension policy, the insurer is compelled to provide to the potential

policyholder some deterministic projections to help their decision making with regard to

their contribution rate. This is used as means to present some guarantees to pensions fund

members. There is not any formal requirement for actuarial or other advice to help DC

fund members to choose how to invest or what level of contributions they should pay, but

existing DC pension fund members (personal pension policyholders and occupational fund

members) may be provided with deterministic projections. This lamentable situation has

left DC fund members largely ignorant. about the risk that they are exposed to. So the

present situation is that they just have to accept the risks that face them. However, the

growing use of stochastic methods in DB pension funds has spawned similar work in DC

pensions funds.

For a DC pensions funds the aim of a stochastic modeling is to:
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• Inform existing members of the potential risks that they face if they continue with

their present strategy;

• Inform potential new DC fund members or new personal pension policy holders of

the risks that they face, to allow them to choose between the DC pension funds and

some alternatives;

• Allow existing members to manage the risks that they face by choosing an invest-

ment and a contribution strategy which is consistent with their appetite for risk and

with the current status of their personal DC-pension account;

• Allow members to adopt a strategy which will, with high probability, permit them

to retire by a certain age with a comfortable level of pension.

Let us look at occupational DC pension funds, where the contribution rate is a fixed

percentage of salary. This type of scheme has been analysed extensively by Cairns et al

(2001) [13], Haberman and Vigna (2002) [32] and Cairns et al (2003) [14] and (2001) [13],

and the authors have looked at the problem in discrete time from an empirical point of

view. The fund dynamics are

F (t+ 1) = (1 + i(t+ 1))(F (t) + C(t)), (2.14)

Where the annual contribution C(t) = k × S(t) is a fixed proportion k of the member’s

current salary S(t), and i(t+ 1) is the investment return for the period from t to t+ 1.

The pension ratio (PR) represented by the equation (2.15) encompasses the following

elements:

• The salary process which is stochastic and is correlated with investment returns,

• The time of retirement T ,

• The fund size F (T ),

• The Market price or rate a(T ), which depends primarily on long-term interest rates

at time T but could also incorporate changes in mortality expectations,
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• The DB benchmark ratio which is the two-thirds of final salary.

When the time of retirement is for instance 65 the pension ratio (PR) is then given by

the equation (2.15) here below with PEN(T ) being the pension payement at time T .

PR(T ) =
PEN(T )
2
3
S (T )

=
3F (T )

2a65 (T )S (T )
(2.15)

A variety of investment strategies which are commonly used in practice and offered by

pension funds and pension providers have been investigated by Cairns et al [14] They have

considered a variety of different models for investment returns on 6 asset classes in order

to assess the extent of model risk. They conclude that if the models are all calibrated

to the same historical data set then differences between models are relatively small when

compared with the differences which arise as a result of adopting different investment

strategies. They have used the model to generate by simulation the distribution of the

pension ratio at retirement for each investment strategy and their empirical analysis was

simple to avoid the relative complexity of the individual asset models. This then allows

users to compare strategies using a variety of different measures of risk although Cairns

et al [13] have concentrated their analysis on Value at Risk measures. They conclude that

some of the more sophisticated strategies such as the lifestyle strategy, which is popular

with insurers, do not deliver superior performance over the long period of the contract.

Instead they found that a static strategy with a high equity content is likely to be best

for all but the most risk-averse policyholders (2001, 2003) [13] [14]. Haberman and Vigna

(2002) [32] also consider a discrete-time model as in equation (2.14) but restrict themselves

to a fixed contribution rate in monetary terms, in a framework which is consistent with

constant salary over the working lifetime of the policyholder. They use a simpler model

for investment returns and this allows them to conduct a more rigorous analysis using

stochastic control with quadratic or mean-shortfall loss functions.

2.2.2 Stochastic projection method

Cairns et al (2001, 2003) [13] [14] formulate the DC pension problem in continuous time.

Their aim was to tackle the same problem as in their paper (2001) [13] with the require-
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ment to optimise the expected value of a terminal utility function. This requires a simpler

model (multivariate geometric Brownian motion) than before for asset values and salary

growth but also includes a full, arbitrage-free model for the term structure of interest rates

which allowed them to calculate accurately the price of the annuity at time T . Terminal

utility is assumed to be of the power-utility form

1

γ
PR(T )γ (2.16)

for γ <1 and γ ̸= 0. Cairns et al [14] et al apply the same HJB technology as used

by Cairns [11] in tackling the DB pension problem to determine the optimal dynamic

asset-allocation strategy for the policy holder with a given level of risk aversion. A crucial

feature of the DC pension policy is that the policyholder needs to take into account

future contributions. The result of this feature is that the optimal strategy should vary

significantly over time, starting with a high proportion in high-return-high-risk assets,

gradually reducing to a mixed portfolio consistent with their degree of risk aversion.

They found that the optimal strategy depends significantly on the current fund size. This

is then compared with a variety of static and deterministic but dynamic asset allocation

strategies, and they concluded that the optimal stochastic strategy delivers a significantly

higher expected terminal utility.
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Chapter 3

Mathematical model of a DC

pension fund with minimum

guarantee and sharing rule

3.1 Introduction

In this chapter, we lay down the mathematical model of the defined contribution pension

fund with minimum guarantee. The main references for this chapter are the papers

Federico (2008) [25], Gozzi et al (2011) [21], Deelstra et al (2003) [18] and Deelstra et al

(2004) [19]. The model under analysis assumes a complete market and in a continuous

time. Essentially we assume the following for our model:

• Competitiveness: assume that the investor’s behaviour is to optimise its utility

function and the time horizon.

• Frictionless: assume that all the assets are perfectly divisible and there exist no

transaction costs or taxes.

• Arbitrage free: any gain opportunity is assumed with positive risk probability.

• Default free: financial institutions issuing assets are no-defaulting.
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• Continuously open: investors can continuously trade in the market.

The research supposes that the pension fund wealth must be above a suitable positive

function which is the solvency level. Also assumed is a demographic stationary hypothesis,

which states that the flow of people who enter into the fund starts at time t = 0 and is

constant over time and that there is an exogenous constant T ≥ 0 which is the time

during which the members adhere to the pension fund. Therefore the exit flow of people

is null in the interval [0;T ] and is constant after time T , balancing exactly the entrance

flow. Gozzi et al (2011) [21].

3.2 The model

The model under analysis encompasses four different elements, which are the wealth,

the contributions, the benefits and the solvency level. As per Gozziet al (2011) [21] the

analysis is made to see how the combination of the different elements drives the model

behaviour.

3.2.1 The dynamic of wealth

The mathematical model is set up by considering a complete probability space (Ω;F ;P)

with a filtration {Ft}t≥0, where t ≥ 0 is the time variable. The filtration {Ft}t≥0 describes

the information structure of the model. It is generated by the trajectories of a one-

dimensional standard Brownian motion B(t), t ≥ 0, defined on the same probability

space and completed with the addition of the null measure sets of F . The financial

market is composed of two kinds of assets: a riskless asset and risky assets. The price of

the riskless asset S0(t), t ≥ 0, evolves according to the equation:

 S0(t) = rS0(t)dt,

S0(0) = 1.
(3.1)
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where r ≥ 0 is the instantaneous spot rate of return. The price S(t), t ≥ 0, of the risky

assets follows an Itô process and satisfies the stochastic differential equation

 dSi(t) = µiS
i(t)dt+ σiS

i(t)dB(t),

Si(0) = si0.
(3.2)

Where i = 1, 2, 3, ..., n, µ is the instantaneous rate of expected return and σ > 0 is the

instantaneous rate of volatility. We assume that the market assigns a premium for the

risky investment, i.e. µ > r. The drift µ can also be expressed by the relation µ = r+σλ,

where λ > 0 is the instantaneous risk premium of the market, i.e., the price that the

market assigns to the randomness expressed by the standard Brownian motion B(.). The

value of λ is assumed to be positive and µ ≥ r. The interest rate is stochastic in line with

the works of Boulier et al (2001) [7], Deelstra et al (2003) [18], Cairns et al (2000) [13],

but with a solvency constraint introduced this time.

The state variable, represented by X(t), t ≥ 0, is the {Ft}t≥0 -adapted process that gives

the amount of the pension fund wealth at any time. It is supposed that the pension fund

starts its activity at the date t = 0 and at this time it owns a starting amount of wealth

X0 ≥ 0. There is a control variable, denoted by θ(t), t ≥ 0 , which is the {Ft}t≥0 adapted

process that represents the proportion of fund wealth invested in the risky assets. The

positivity of the wealth is due to the solvency constraints and the borrowing and short

selling constraints determines the choice of θ(t)∈ [0, 1] for every t. Thus the dynamics of

wealth is formally expressed by the following state equation:

 dX(t) = θ(t)X(t)∑n
i=1 S

i(t)
dSi(t) + [1−θ(t)]X(t)

S0(t)
dS0(t) + c(t)dt− b(t)dt, t ≥ 0

X(0) = x0 ≥ 0.
(3.3)

Where θ(t)X(t)
Si(t)

and [1−θ(t)]X(t)
S0(t)

are the quantities in the portfolio of risky and riskless as-

sets, respectively, while the non-negative integrable function c(t), indicates the flow of

contributions and the non-negative function b(t), represents the flow of benefits.
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Following the Itô representation, the equation (3.3) can be rewritten as: dX(t) = [r + σλθ(t)X(t) + c(t)− b(t)]dt+ σθ(t)X(t)dB(t), t ≥ 0

X(0) = x ≥ 0.
(3.4)

3.2.2 Contributions

In the context of this work we assume that the population is stationary, the flow of

contributions c(.) is exogenous. The present work assumes also that the workers who

enter into the pension fund are a homogeneous class, that is to say a class of people

having the same characteristics. We suppose that their entrance flow is constant over

time and that each participant adheres for a length of time represented by an exogenous

constant T > 0. We assume that there is a fixed number N of fund members after time

T . The flow of aggregate contributions of pension members can be written such as:

c(t) =
t

T
αNω. with 0 ≤ t ≤ T (3.5)

Where α ∈ (0, 1) represents the average contribution rate (per time and per salary) and

W (t) ≥ 0 , t ≥ 0, the average per capita wage rate of the fund members. For simplicity

we take W (.) equal to a constant ω > 0.

3.2.3 The benefit

The benefit of the pension fund member is composed of the minimum guarantee a part

of the surplus of the contributions. By assuming the hypothesis of the demographic

stationarity, the function describing the minimum guarantee is as follows:

g(t) =

∫ τ

t0

c̄(u)eδ(τ−u)du, τ ≥ t0 (3.6)

Where δ > 0 is the guaranteed rate of return, and with r ≥ δ. This inequality is

actually justified by the fact that pension fund members are forced by law to delegate the

management of their funds to mutual fund institutions. Thus they cannot invest directly

into the financial market. The process of investment delegation involves management
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costs which are paid by accepting a guaranteed rate of return δ lower than the risk free

rate r. Due to the solvency level, as developed in the subsequent subsection, the pension

fund manager will always pay the benefit which is the following:

b(t,X(.) | [t0, τ ]) = g(t) + Y (t,X(.) | [t0, τ ]), with τ ≥ t0 . (3.7)

Here Y (., .) the surplus, is a function depending on the time τ and on the fund level within

the interval of time [t0, τ ].

3.2.4 The solvency level

Generally the solvency level is imposed by law or by a supervisory authority to avoid

improper behavior of the fund manager and to guarantee that the mutual fund is able to

pay at least part of the due benefits at any time t ≥ 0. Without the imposition of this

constraint the fund manager may be tempted to use strategies that may bring the mutual

fund to be mismatched with the social target of the pension fund. The solvency level l(.)

is a non-decreasing continuous function of time T and has the following equation:

l(t) = l0 + β

∫ t

0

c̄(u)eδ(t−u)du with t ≥ 0. (3.8)

This equation shows the following:

• At the beginning, the pension fund should hold a given minimum start-up level

which is l0 ≥ 0.

• At any time t > 0 the solvency level is l0 plus a fraction β > 0 of the annual

contribution at time t capitalized at rate δ.

This implies that the value of the pension fund members benefit would be almost surely

equal or superior to the current minimum guarantee.

From the equation (3.8) and (3.5) it gives the equation:

l(t) = l0 + βαNω
eδ(t) − 1

δT
, t ≥ 0. (3.9)
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3.3 The objective function

The objective function of a pension fund is usually different from that of other forms of

firms intervening directly into the financial market. This is due mostly to the fact that

pension funds are subject to a certain number of restrictions from regulatory authorities

in order to enforce a guarantee for subscribers to obtain the promised benefits. While

firms intervening directly into the financial market are willing to optimise their welfare

by taking direct advantage from stock market opportunities, a pension fund subscription

is usually a process of investment delegation forced by the social security laws. It is

well known that the process of investment delegation involves costs for the contributors

and a potential divergence between the interests of the collectivity of subscribers and the

manager of the fund. In order to bring some incentive to the manager, it is common

practice to introduce a variable component in the management fee proportional to the

absolute level of funds wealth as shown by Goetzmann et al (2003) [29]. This is basically

to say that the optimization criterion for the management of a pension fund does take

into account two different points of view:

• The point of view of the pension fund members: the fund manager is directly

delegated by the members to invest in the risky market in order to generate their

benefits and the function programme is proportional to contributions of pension

fund members.

• The point of view of the pension fund manager: the manager is led to invest in risky

assets in order to improve his fee, which is an increasing function of the absolute

level of the funds wealth.

In the following subsection the research looks at the aforementioned views and

translate them into a suitable optimisation programme.
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3.3.1 The optimisation programme of the contributor

The optimisation programme of the contributor is set such that the contributor pays a

flow to the pension fund which consists of a lump sum at date 0, denoted by X0 and a

continuously paid premium, at a rate denoted by c(t), t ∈ [0, T ]. The flow of contributions

is assumed to be a non-negative, progressively measurable process such that:∫ T

0

c2(t)dt < ∞, (3.10)

Let Ht be the deflator price process and it is defined as:

Ht = exp(−
∫ t

0

(rsds −
∫ t

0

λ′
sdWs −

1

2

∫ t

0

||λ′
s||2ds). (3.11)

The value of the cash given by the contributor to the pension fund at the date 0 is equal

to:

X ′
0 = X0 + E

[ ∫ T

0

H(s)c(s)ds
]
. (3.12)

At time T the pension fund member will receive from the fund a certain benefit which

encompasses two parts, the guarantee Gt and a certain fraction of the surplus Yt which

is equal to Xt −Gt. Following prior studies on the incentives of agents under a constant

absolute risk aversion (CARA) utility function, the model of surplus is linear (Holstrom

and Milgrom (1987) [35]). Thus the benefit process will be

Bt = Gt + (1− β)Yt, (3.13)

With :

• Yt = Xt −Gt is the surplus process,

• Gt is the guarantee.

In the hypothesis of a stochastic guarantee and with the other variables being constant,

one can ask where lies the optimal guarantee that gives the pension fund member a

desirable benefit. The cases of β = 0 or β = 1 are trivial, and so will not be pursued in
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the present dissertation. Thus we will consider only 0 < β < 1.

The programme of the contributor amounts to finding

max

[
E[U(1− β)Yt +Gt]Et

∫ T

t

Hs

Ht

Csds

]
, (3.14)

subject to

 (1− β)YtHt +Gt = k,

Gt > 0.
(3.15)

The solution of this programme will require to first find the characteristics of the surplus

process. Let Yt = Xt +Dt −Gt be the surplus process with t ≥ 0 and

Dt = Et

∫ T

t

Hs

Ht

Csds; Gt = Et

∫ T

t

Hs

Ht

Csds, (3.16)

Which gives,

Yt = Xt + Et

∫ T

t

Hs

Ht

Csds− Et

∫ T

t

Hs

Ht

Csds. (3.17)

The surplus process is in fact the value of the portfolio Xt plus the discounted value of the

future engagements coming from the pension fund member Dt and minus the discounted

value of the pension fund future engagement which is the guarantee Gt. The surplus

process is self financing as defined by Karatzas and Shreve (1998) [39]. This means that

there exists a progressively measurable random process Yt = (y1t, ..., ynt)
′, t ∈ [0, T ] such

that

dYt = Ytrtdt + y′t(bt − rt)dt + y′tσtdWt, (3.18)

and the final surplus process is such:

YT = Y0 exp(

∫ T

0

(rt + y′t(bt − rt)dt+

∫ T

0

y′tσtdWt −
1

2

∫ T

0

||y′tσt||2dt), (3.19)

with

Y0 = X0 + E[
∫ T

0

Hscsds]− E[HTGT ] ≥ 0. (3.20)

The value of YT has two parts; the deterministic part which is represented by Y0 and link

YT to GT and the random part which is represented by

Ψ = exp(

∫ T

0

(rt + y′t(bt − rt)dt+

∫ T

0

y′tσtdWt −
1

2

∫ T

0

||y′tσt||2dt). (3.21)
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3.3.2 The optimisation programme of the pension fund manager

The present section describes the problem faced by the pension fund manager. He max-

imises the expected utility of his terminal wealth which is his part of the surplus. The form

of the pension fund manager function is of the type of power utility, U(Y ) = Y 1−γ

1−γ
. The

choice of the power utility function is guided by the fact that the power utility presents

the characteristics that better capture the features of pension fund companies due to the

large scale of money they are managing. Pensions funds companies are regulated in such

a way as to not reach negatives values. The power utility function endorses this through

the infinite marginal utility at zero [18].

Let Xt being the wealth of the fund at date t ∈ [0, T ], and πt the proportion of wealth

invested into the risky assets so that 1−
∑n

i=1 πt is the proportion of wealth invested into

the riskless asset p0(t). The optimisation programme of the pension fund will be

max
1

1− γ
E(βXT −GT )

1−γ, (3.22)

subject to :

dXt = [Xtrt +Xtπ
′
t(bt − rt) + ct]dt+Xtπ

′
tσtdWt, (3.23)

with X(0) = X0 > 0 and lets Λx = πt = (π1t, ..., πnt)
′, t ∈ [0, T ], being an Ft − adapted

process such that
∫ T

0
||Xtπ

′
tσt||2dt < ∞ and Xt −Gt ≥ 0.

The condition:

E[HTGT ] < X0 + E[
∫ T

0

Htctdt] = X ′
0. (3.24)

shows that the market value of the contributions is larger than the market value of the

guarantee, and this condition guarantees the non emptiness of the set of admissible strate-

gies.

Ideas from the framework developed in this chapter will be used in the Browne’s frame-

work, which constitute the main results of this dissertation and are developed in the

following chapter.
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Chapter 4

A defined contribution pension fund

scheme with benchmark

In this chapter, the research presents the portfolio proposed in the paper of Browne (1999)

[10] and it is attached to it a certain sharing rule, similarly as in the paper of Deelstra

et al (2004) [19]. The research analyses the impact of the different parameters on the

stochastic evolution of the model. Then it observes the performance of the investment

portfolio with respect to a certain benchmark which is also stochastic. Benchmarking

has been widely used in the pension fund literature and in practice. In this regard, see

for example the works of Lioui and Poncet (2013) [45], Gaivonronski et al (2005) [28],

Platen and Heath (2006) [34]. In the present case there is a guarantee that serves as a

benchmark. The portfolio manager has as goal to maximise his surplus, which is Xt−Gt,

where Xt is the wealth process and Gt is the guarantee process. When the surplus is

positive, the fund manager is performing well and vice versa. As mentioned above, the

analysis of a benchmark function in the financial literature has been prominent in recent

years. The notion has its roots in portfolio management theory. In portfolio management

there are two alternative approaches that managers of different assets management units

can use to run their activities. Those types are the passive portfolio management and the

active portfolio management.

26

 

 

 

 



• The passive portfolio management is a financial strategy in which a fund manager

invest in a predetermined manner which mostly consist of trying to replicate a

return of a certain benchmark which are mostly market indices. Once the portfolio

has been set, the manager does not alter it until maturity.

• The active portfolio management is a financial strategy where the fund manager

makes a specific investment and continually changes it with the goal of outper-

forming the market represented by an investment benchmark index, see Bodie et al

(2004) [5] for instance.

Active portfolio management has gained considerable importance in financial investment

practice, due to its ability to take advantage of the market inefficiencies by using arbitrage.

As argued in Browne (1999) [10], active portfolio management may have many possible

objectives related to outperforming a benchmark, such as:

• the maximisation of the probability of beating the benchmark,

• the maximisation or (respectively) the minimisation of the expected time of beating

or (respectively) being beaten by the benchmark,

• the maximisation or the minimisation of the expected discounted rewards upon

beating or being beaten by the benchmark,

• the maximisation of terminal utility.

The above objectives are important for financial institutions, especially those who are

managing portfolio funds, in the sense that their performances are judged with respect to

the return they realise against a certain benchmark.
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4.1 Analysis of the wealth process with respect to a

benchmark

In the present section, we are analysing the model that follows the framework of Browne

[10]. The wealth process given in the equation (5.4) below is composed of the following

processes :

• The risk free asset Bt evolves as:

dBt = rtBtdt, (4.1)

with r ≥ 0.

• The risky asset St under the filtered probability space (Ω,F,P) satisfies the stochas-

tic differential equation:

dSi
t =

K∑
i=1

Si
t [µidt+ σidW

i
t ], (4.2)

with i = 1, 2, 3, ..., K. In order to avoid any kind of triviality, we impose the

condition that µi > rt for all i = 1, 2, 3, ..., K.

• The contribution from the pension fund member is Ct and from the equation (3.5)

it takes the following form:

dCt = αNωtdt, (4.3)

Where, for some constant α, N denotes the number of members in the pension fund,

and ω the flow of the salary.

The wealth process as in Browne takes the form:

dXt = Xt

[
(rt + π′

t(µt − rt) + ct)
]
dt+Xtπ

′
tσtdWt. (4.4)

It entails the risky asset which is composed of stocks, the risk free asset which is a bond

and the contribution of pension fund members and where π′ is the vector of the investment
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policy of the portfolio.

The guarantee is assumed to be a stochastic process of the form :

dGt = Gtr
′
tdt +Gtγt(bt − r′t)dt +GtγtσtdWt. (4.5)

The research is interested in determining an investment strategy that is optimal with

respect to the performance against a certain benchmark. The benchmark that is presented

in this work is another stochastic process. Generally the benchmark can take many forms.

It might be an inflation rate, or an exchange rate, it might also represent the value process

of a non-traded asset or even a wealth process from a different portfolio strategy. In the

present research a non-traded asset such as the guarantee serves as the benchmark. Then

the fund manager, in order for him to observe the performance of his fund against it, will

be interested in the ratio of the wealth process as compared to the guarantee process.

The ratio is Yt = Xt/Gt and it is as per Browne’s notation [10], and its equation is of the

form:

dYt = Yt

[
(r̂t + (θtf̂t + ct))dt + θtσtdWt.

]
(4.6)

Where : r̂t = rt − r′t, θt = π′
t − γt, f̂t = bt − rt.

After presenting the benchmarking problem, there is the task analysing its optimality.

Thus the following section will treat issues relative to the portfolio optimisation.

4.2 The portfolio optimisation problem.

To find the maximal expected terminal utility of the ratio process at some fixed terminal

time T < ∞, we can either use the Hamilton - Jacobi - Bellman method or the martingale

method. The martingale method has been applied in the present research to find the

expected values as per Rogers and Williams (1987)[53] or Davis and Norman (1990)[17].

It entails finding an appropriate function that is either uniformly integrable martingale

under a certain chosen optimal policy or a supermartingale under any other admissible

policy, with respect to the filtration Ft.
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Let Φ(t) =
∫ t

s
λ(Yt)dt be a stochastic integral and let us introduce the following functional

process, which is a martingale with respect to the filtration Ft.

M(t, Yt) = exp(Φ(t))Π(Yt) +

∫ t

0

exp(Φ(s))g(Ys)ds for t ≥ 0 (4.7)

Similarly to the study in Browne [10] we consider a reward function υ(Yt) which, for

a portfolio f , is defined by the equation below.

υf (y) = Ey

[ ∫ τf

0

g(Yt) exp{−
∫ t

0

λ(Yt)ds}dt+ h(Yτf ) exp{−
∫ τf

0

λ(Yt)ds}
]

(4.8)

where τ f is the first escaping time of Y f (t) from a predetermined interval (l, u) with

l < Y (0) < u. There is also a non-negative function λ(Yt), and a bounded continuous

function g(Yt). There exist a function h(Yt) which takes l and u values such y = l or

y = u, with h(u) < ∞. The value function υ(Yt) and the optimal portfolio f ∗
v (Yt) are as

follows:

υ(Yt) = sup{υf (Yt): f ∈ A},

f ∗
v (Yt) = argf sup{υ(Yt) :f ∈ A},

Where A is the set of admissible policies.

As demonstrated in Browne [10, Theorem 1] an optimal control vector fv(Yt) does exist,

and is of the form:

fv(Yt) = −δ−1µ̂
(Πy(Yt))

YtΠyy(Yt)
+ (σ−1)′b. (4.9)

In the subsequent section we introduce the sharing rule parameter in order to analyse the

risk mitigation that might ensue from its presence in the model.

4.3 Analysis of the portfolio with respect to the

sharing rule

In this section, we analyse the impact of the parameter β which represents the sharing rule

between the fund manager and the contributor. With the introduction of the sharing rule

[54], the ratio function became: βXt/Gt and this determines the ratio process Yt which is
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a geometric Brownian motion because Xt and Gt are geometric Brownian motions.

The ratio is of the form:

Ŷt = βYt

[
(r̂t + (θtf̂t + ct))dt + θtσtdWt

]
(4.10)

Finding the optimal control value of the terminal utility of the ratio process with the

presence the parameter β, is analogous to the process without β with the only difference

being the introduction of the β parameter. Thus we introduce β into the functional

martingale process given by the equation (4.7) giving the following:

M(t, Ŷt) = exp(Φ(t))Π(βYt) +

∫ t

0

exp(Φ(s))g(βYs)ds for t ≥ 0 (4.11)

Following the same reasoning as in the section (4.2) we have a reward function defined

in equation (4.8) and a stopping time given by τ f which has an optimal control vector

given by the equation (4.9). With the introduction of the sharing rule the optimal control

solution vector of the equation (4.9) given in the equation (4.8) becomes:

fv(Ŷt) = β

[
− δ−1µ̂

(Πy(Yt))

YtΠyy(Yt)
+ (σ−1)′b

]
. (4.12)

Now as we have the grasp of the impact of the introduction of the sharing rule parameter

β, let us take a look at the notion of growth optimal portfolio (GOP) which is popularly

used in the world of finance.

4.4 Growth optimal portfolio

The notion of GOP has been widely used in the financial industry and in the financial lit-

erature since the work of Kelly (1956) [40]. Many authors have studied the growth optimal

portfolio such as Latane (1959) [43], Breiman (1960) [9], Thorp (1961) [55], Markowitz

(1976) [47] and Long (1990) [46], in gambling problems, portfolio optimization and the

pricing of derivatives. Authors such as Browne [10] and Heath and Platen (2006) [34] have

studied the GOP as the benchmarking model of portfolio optimisation. The GOP has the

characteristic of being the portfolio that maximises the expected log-utility from terminal
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wealth T , that is the quantity E[ln(VT )]. The GOP possesses also some other remarkable

properties. For instance, it maximises the expected growth rate over any time horizon.

It is also a strictly positive portfolio which almost surely outperforms any other strictly

positive portfolio over a sufficiently long time horizon [34]. Following the definition of the

GOP in the works of Heath and Platen [34], the GOP satisfies the following stochastic

differential equation :

dVt = Vt

[
rtdt +

d∑
k=1

θkt (θ
k
t dt + dW k

t )
]
. (4.13)

where θkt denote the market price of the risk and it is represented by the equation.

θkt =
d∑

j=1

b−1
t (αt − rt). (4.14)

with b−1
t being the inverse of the volatility matrix process, αt is the appreciation rate

process and rt is the vector of the interest rate process. As shown in Browne [10] the

proportion of investment for the GOP is given by the equation 4.15 below:

π = Σ−1µ̂+ (σ−1)′b. (4.15)

The following section will focus on the numerical and graphical analysis of the different

portfolios treated in the previous sections namely: the wealth process Xt, the guarantee

process Gt, the ratio process Yt and the GOP Vt.

4.5 Numerical and graphical illustration of the port-

folio.

In this section, we present a numerical and graphical comparative analysis of different

portfolios. We consider the wealth process, the guarantee, the growth optimal portfolio

and the ratio process. Computations have been made by calculating the values of these

portfolios. On the page 35 we have the graph Fig 4.1, illustrating the evolution of the

wealth process which is following the Browne’s portfolio comparatively to the guarantee
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and the ratio. It can be seen on the graph how the ratio in green just evolve below the

wealth in blue with the same pattern but where the difference is the guarantee in red as

it is the denominator of the ratio with respect to the wealth portfolio. The Table 4.2 on

the same page 35 correspond to the Fig 4.1 and it illustrates the numerical evolution of

wealth process, the guarantee, and the ratio process. On the page 36 we have the Fig

4.2 illustrating the stochastic evolution of wealth process, the guarantee, and the growth

optimal portfolio (GOP); and the Table 4.3 which contains the corresponding computed

values of the wealth process, the guarantee and the GOP. On the page 37 the Fig 4.3

illustrates the evolution of the guarantee, the wealth process and the ratio process where

we have introduced the parameter β which is the sharing rule [54]. It can be seen on the

graph that β does not change the pattern of the ratio but it diminishes its value, by doing

so it mitigates the risk by sharing it between the pension fund manager and the pension

fund member [19].

The graphs in Fig 4.1 and 4.2 on pages 35 and 36 show the stochastic evolution of the

wealth process, the guarantee, the ratio process and the growth optimal portfolio. As it

can be seen in these figures, the evolution of the guarantee is less volatile than the wealth

process and the growth optimal portfolio. The guarantee reach hardly negatives values

[19]. This is because of its state imposed positive constraint structure. The reading of

the Tables 4.2, 4.3 and 4.4 on pages 35 to 37 is quite interesting, especially observing how

the parameter β impacts on the values of the ratio process. This can be observed on the

computed values of the Table 4.4 on page 37 by looking at the value on the column Yt

and Zt = βYt. It can be spotted that the introduction of the sharing rule parameter is

mitigating the risk in the process; as the value of the surplus process with β comparatively

to the value of the surplus process without β is dwindling. It shows how the value of β

does impact the ratio process as it dwarfs its value comparing to the other portfolios.

The fact that the value of the ratio process is reduced shows how the risk is shared as

the return does diminish, going along with the theoretical reasoning which link returns to

risks [6]. The ratio process is positive when the values of the wealth process are over the
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guarantee’s. The fund manager will always try to find a combination of asset portfolio

that allows him to have a ratio that is positive.

The following Table contains num. value used to analyse the model under this disser-

tation with the Matlab Software.

Table 4.1: Num. value relative to Fig 4.1 to 4.12 and Tables 4.1 to 4.9

Symbols σ11=σ22 σ12=σ21 α β µ1 µ2

Num. value 1 0 0.01 0.9 0.52 0.58

Symbols dt b1 b2 b3 alf c1

Num. value 1 0.15 0.25 0.5 0.4 0.41

Here σ is the volatility, µ is the drift, β is the sharing parameter, b1b2 b3 alf c1 are

coefficients, dt is the differential with respect to time.
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Figure 4.1: Evolution of the Ratio process vs the Wealth process.

Table 4.2: The wealth Xt, guarantee Gt, and ratio process Yt.

Time Xt Gt Yt

0 1.0000 1.0000 1.0000

10 1.0385 1.0254 1.0128

20 1.1109 1.0642 1.0439

30 1.1625 1.0889 1.0676

40 1.2373 1.1336 1.0915
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Figure 4.2: Evolution of the GOP process vs the Wealth process.

Table 4.3: The wealth Xt, guarantee Gt, and The GOP process Vt.

Time Xt Gt Vt

0 1.0000 1.000 1.0000

10 1.0322 1.0303 0.9968

20 1.0819 1.0615 1.0634

30 1.1128 1.0940 1.1409

40 1.0762 1.1313 1.2435
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Figure 4.3: Evolution of the Wealth, Guarantee, Ratio with and without β.

Table 4.4: The wealth Xt, guarantee Gt, ratio process Yt before sharing and Zt the ratio

after sharing with β = 0.9.

Time Xt Gt Yt Zt = (βYt)

0 1.0000 1.000 1.0000 0.0000

10 1.0313 1.0408 0.9998 0.0008

20 1.0284 1.0103 1.0018 0.0016

30 1.0339 1.0136 1.0245 0.0041

40 1.0408 1.0157 1.0159 0.0053
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4.6 Sensitivity analysis of the portfolio

The sensitivity analysis is a technique used to determine how a value of particular asset

is impacted by variations occurring to some factors in the market such interest rate, time,

volatility,... [37]. The sensitivity analysis is one of the means used by financial institutions

to manage risk. Generally the measures used in sensitivity analysis are restricted with

the black-scholes parameters set and called as the Greeks [2]. The Greeks are:

• Delta (δ): is the rate of change of the value of the portfolio with respect to it market

value (δ = ∂Π
∂S

).

• Theta (θ): is the rate of change of the value of the portfolio with respect to time, it

often referred as the time decay (θ = ∂Π
∂T

).

• Gamma (γ): is the rate of change of the value of the portfolio’s delta with respect

to market value of the portfolio (γ = ∂2Π
∂S2 ).

• Vega 1 (ν): is the rate of change of the value of the portfolio with respect to the

volatility of the portfolio ( ν = ∂Π
∂σ
).

• Rho (ρ): is the rate of change of the value of the portfolio with respect to the interest

rate (ρ = ∂Π
∂r
).

In the present research, the focused is put on the level of the volatility of the Browne’s

wealth portfolio (Xt), the ratio process (Yt), the guarantee (Gt) and the GOP (Vt). The

financial theory states that the value of the portfolio is very sensitive to small changes in

volatility [37]. The graph Fig 4.4 on page 40 illustrates the rate of the variation of the

Wealth with respect the value of Vega (ν), it shows how volatile is the wealth portfolio

(Xt). It can be seen in the graph that any small variation of vega (ν) impact the value of

the wealth portfolio; this is captured by the degree of the envelop of the curve. The graph

Fig 4.5 on page 40 illustrates how a combined analysis of the volatility of the Wealth

1it is worthwhile to notice that Vega is not a Greek letter, but the symbol ν has been used as its

representation in the finance literature.
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process (Xt) following Browne portfolio, the Guarantee process (Gt), the Ratio process

(Yt) and the GOP (Vt) ( growth optimal portfolio) vary with respect of Vega. It can be

spotted that a little variation of vega (ν) does significantly affect the level of the portfolios

values. The degree of acutancy of the curve in graph as it goes along with vega’s and

portfolios’ values.
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4.7 Utility function of the portfolio

The present paragraph illustrates graphically and numerically the estimation of the power

utility function. Computations have been made, comparing the value of the power util-

ity function under constant relative risk aversion (CRRA) of the pension fund manager

U(Zt) and of the pension fund members U(αZt), with each having its own pattern of risk

aversion. The literature on the utility function has shown that fund managers and fund

members have conflicting patterns of risk aversion with the former tending to be less risk

averse than the latter [38]. The power utility function is of the form:

U(Yt) =
β(Yt)

1−ζ

1− ζ
with ζ ̸= 1 (4.16)

In Tables 4.5 to 4.8 we computed the utility values of the ratio process, of the share of the

pension fund manager as well as of the share of the pension fund member. In Table 4.5 on

page 42 we assigned a high value of coefficient of risk aversion to both the pension fund

manager and the pension fund member. The finding is that when both are risk averse

their respective utility values are low. This goes along with the theoretical reasoning

which stipulate that risk aversion is inversely related to return [52] [57].

In Table 4.6 on page 42 a lower value of the coefficient of risk aversion was assigned for

both the pension fund manager and the pension fund members. The outcome is that

the utility value for both are higher as the coefficient of risk aversion is low [37]. In the

subsequent tables on page 43 which follow, the computation has been made by allocat-

ing either high or low the value of risk aversion for both the pension fund manager and

the pension fund members. In those tables the theoretical reasoning of risk aversion and

return does stand as well. The coefficients of risk aversion on these tables are namely

ζ for the pension fund manager and η for the pension fund members. It is worthwhile

to note that the ratio process appearing in the tables and represented by Yt, has been

assigned the coefficient ζ for the pension fund manager, only for the sake of comparative

analysis. Graphs in Fig 4.6 to 4.9 on pages 44 and 45 are related to Tables 4.5 to 4.8 .

The results illustrates even better how utility values are rising and dwindling inversely

with the coefficient of risk aversion.
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Table 4.5: Utility value of the PF Manager (ζ = 0.85) and of PF Members (η = 0.85).

Time U(Yt) U(Zt) U(αZt)

0 0.000 0.0000 0.0000

10 2.9499 2.6978 0.4168

20 2.9562 2.7028 0.4176

30 2.9484 2.6962 0.4166

40 2.9447 2.6939 0.4162

Table 4.6: Utility value of the PF Manager (ζ = 0.3) and of PF Members (η = 0.3).

Time U(Yt) U(Zt) U(αZt)

0 0.0000 0.0000 0.0000

10 5.5835 5.4095 2.7982

20 5.5821 5.4103 2.7987

30 5.5825 5.4109 2.7990

40 5.5823 5.4100 2.7985
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Table 4.7: Utility value of the PF Manager(ζ = 0.85) and of PF Members (η = 0.3).

Time U(Yt) U(Zt) U(αZt)

0 0.0000 0.0000 0.0000

10 2.9509 2.6987 2.3116

20 2.9524 2.6986 2.3113

30 2.9494 2.6975 2.3110

40 2.9517 2.6993 2.3115

Table 4.8: Utility value of the PF Manager(ζ = 0.3) and of PF Members (η = 0.85).

Time U(Yt) U(Zt) U(αZt)

0 0.0000 0.0000 0.0000

10 5.5838 2.6978 0.4168

20 5.5849 2.7028 0.4176

30 5.5830 2.6962 0.4166

40 5.5850 2.6939 0.4162
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Figure 4.6: Evolution of the utility function of the fund manager with ζ, η = 0.85
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Figure 4.7: Evolution of the utility function of the fund manager with ζ = 0.3, η = 0.3
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Figure 4.8: Evolution of the utility function of the fund manager with ζ = 0.85, η = 0.3
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Figure 4.9: Evolution of the utility function of the fund manager with ζ = 0.3, η = 0.85
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4.8 The share of the pension fund manager

The present paragraph illustrates graphically and analyses numerically the share C of the

pension fund manager and the benefit B of the pension fund member. As demonstrated

by Deelstra et al [19] the share of the pension fund manager is defined as C = βKt,

where Kt = Xt − Gt is the surplus process; and the benefit of the pension fund member

is defined as B = Gt + (1 − β)Kt with (1 − β)Kt being the share of the pension fund

member. Computations have been made by calculating the values of the share C of the

pension fund manager, the surplus Kt and the benefit B of the pension fund member.

Those values are provided by the Table 4.9 on page 47. They correspond to the graph

Fig 4.12 on page 49. The Table 4.10 on the page 47 provide the values of the surplus

process with different levels of β (1, 0.985, 0.95, 0.85) and we observed that the values

of the surplus process are dwindling with β. The reduction of the value of the surplus

with the reduction of β is of the financial importance as it suggest that the risk is shared

between the pension fund stakeholders namely the pension fund manager and the pension

fund member [19][54].

In the graph Fig 4.10 on the page 48 is the illustration of the evolution of the surplus

process with different levels of β. The impact of this parameter is seen on the graph

by showing how the surplus process is lowering with the level of β. The presence of the

parameter β in the surplus process illustrates how the risk is shared by pension funds

and their clients. This provides some guarantee to the pension fund member investment,

thus rendering the programme more attractive in the client investment point of view. The

graph in Fig 4.11 on page 48 illustrates the evolution of the share of the surplus process

of the pension fund manager C = βKt and of the pension fund member (1−β)Kt. In the

graph we can see how the gap between pension fund managers and pension fund members

widen as years goes, it shows how the effect of β is felt by the two stakeholders of the

pension fund during the investment life. The graph in Fig 4.12 on page 49 illustrates the

evolution of the surplus process (Kt), the share of the pension fund manager (C = βKt)

and the benefit of the pension fund member B = Gt + (1− β)Kt.
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Table 4.9: Share of the PF Manager(C) and Benefit of PF Members (B)

Time Surplus(Xt −Gt) C, Share of PF Manager B, benefit of PF Member)

0 0.0000 0.0000 0.0000

10 0.0764 0.0688 1.0482

20 0.1221 0.1099 1.0768

30 0.1261 0.1135 1.1138

40 0.1846 0.1661 1.1440

Table 4.10: Evolution of the surplus with different levels of β

Time Surp,β = 1 Surp1,β = 0.985 Surp2,β = 0.950 Surp3,β = 0.90 Surp4,β = 0.85

0 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.0484 0.0477 0.0460 0.0436 0.0411

20 0.0966 0.0952 0.0918 0.0868 0.0821

30 0.1415 0.1394 0.1344 0.1274 0.1203

40 0.1706 0.1680 0.1620 0.1535 0.1450
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Figure 4.10: Evolution of the surplus with different levels of β.
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Figure 4.11: Evolution of the share of the pension fund manager and member.
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Figure 4.12: Evolution of the Surplus process, Share of the PF Manager, Benefit of the

PF Member.
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Chapter 5

Conclusion

The present dissertation presents an analysis of the problem of the optimal performance

measurement of a defined contribution pension fund scheme where we have introduced

two parameters: the guarantee and the sharing rule. The defined contribution pension

fund scheme has seen its importance increased in the last two decades and this is due to

its capacity of transferring risk to pension fund members. This has pushed most fund

managers to adopt the aforementioned pension fund scheme. The defined contribution

pension fund programme present a considerable advantage such as providing more benefits

than the ever present programme of defined benefit pension fund. This is due to the fact

that the DC pension fund scheme goes into the market and thus present the possibility

of returns which are deemed higher than of the DB pension fund plan. By the same

token, because it presents a possibility of a higher return, it bears with a higher risk as

well. This possibility of higher risk which is mostly borne by pension fund members, is its

downside. The question raised here is to find means to solve this problem encountered in

the DC pension fund programme in order to mitigate the risk borne by the pension fund

contributor.

Two elements have been introduced as part of the solution to try to improve the

defined contribution pension fund plan; those element are the guarantee and the sharing

rule represented by the parameter β. The research has aimed to analyse the impact of

these elements into the defined contribution programme, in the context benchmarking
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model with minimum guarantee.

The numerical and graphical analysis have been conducted in order to measure the

impact of the two parameter on the evolution of the portfolio. It has for instance shown

that the introduction of the parameter β which represent the sharing rule, has contributed

to reduce the volatility of the portfolio, thus its risk; although this reduce the expected

return at the same time. The ideal here is that as the defined contribution is a marketable

pension fund programme, the introduction of the parameter β serves as a trade-off between

the pension fund member and the pension fund manager in terms of risk.

• The guarantee, unlike to the sharing rule’s parameter β is a state imposed parameter,

which makes it quite difficult to the pension fund manager to have full control of

the variable. Nonetheless, finding a guarantee that gives an optimal benefit to

the programme is paramount against the risk of running the pension fund plan in

loss. In Chapter 4, we have analysed the benchmarking model of pension fund

with minimum guarantee in the Browne’s framework [10]. The finding is that the

parameter guarantee by its status of being state imposed, presents an incentive

element for pension fund members to embrace the defined contribution programme.

Thus pension fund members are almost sure of getting their investment back. This

limits the reckeless behavior of pension fund managers and make them more cautious

when entering in the financial market.

• The sharing rule on the other hand is a variable mostly controlled by pension fund

managers. A comparative numerical and graphical analysis of the pension fund

programme with different level of the parameter β representing the sharing rule have

been conducted. The numerical analysis has shown in Chapter 4 that the volatility

of the portfolio does decrease with the sharing parameter β. For the graphical

analysis the finding is that, although the portfolio without the sharing parameter

β present some return higher than the portfolio with the sharing parameter β; its

does not present any guarantee to the pension fund member due to the fact that

it does not mitigate the risk mostly borne by the the pension fund member. The
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present research has tried to confront the problem of the optimal sharing rule found

in the existing literature and it is shown that the parameter β is a trade-off between

pension fund managers and pension fund members in terms of risk mitigation. [19]

[54].

We have conducted a comparative analysis between the growth optimal portfolio (GOP)

with the guarantee process, the Browne’s wealth process and the ratio process. The

sensitivity analysis of the portfolios have been also conducted. It has been found that our

portfolios are so sensitive to the market volatility as illustrated in graphs Fig 4.4 and Fig

4.5 on the page 40. We have also conducted a numerical analysis on the level of the utility

and its degree of risk aversion between the pension fund manager and the pension fund

member. The finding is that the level of the utility for both stakeholder evolve inversely

with the level of risk aversion [52]. Finally we have computed the share of the pension

fund manager and the benefit of the pension fund member.

Concerning these issues of the guarantee and of the sharing rule, there are different

ways for taking it forward. So for instance one can use the tracking method to compare

the guarantee with other benchmark instruments such as the GOP.
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