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ABSTRACT 

Solute carrier transporters belonging to the major facilitator family of 

membrane transporter are increasingly being recognized as a possible 

mechanism to explain inter-individual variation in drug efficacy and response. 

Genetic factors are estimated to be responsible for approximately 15-30% of 

inter-individual variation in drug disposition and response. The aims of this 

study were to determine the minor allele frequencies of 78 previously 

identified single nucleotide polymorphisms in the pharmacogenetically 

relevant SLC22A1-3 and SLC47A1 genes in the indigenous African population 

of South Africa. Secondly, to determine whether allele and genotype 

frequencies for these SNP were different from that reported for other African, 

Caucasian, and Asian populations. Thirdly, to infer haplotypes from the genetic 

information which can potentially be used in future to design and interpret 

results of pharmacogenetics association studies involving these genes and their 

substrate drugs. Finally, to determine whether the Xhosa population harbour 

novel SNPs in the SLC22A2 gene, that encodes the kidney-specific hOCT2. 

SNaPshot™ multiplex single base minisequencing systems were developed 

and optimized for each of SLC22A1, SLC22A2, SLC22A3, and SLC47A1 

covering the previously identified 78 SNPs. These systems were then used to 

genotype the alleles of 148 healthy Xhosa subjects residing in Cape Town, 

South Africa. In addition, the proximal promoter region and all 11 exons and 

flanking regions of the SLC22A2 gene of 96 of the participants were screened 

for novel SNPs by direct sequencing. The Xhosa subjects investigated lacked 

heterozygosity and were monomorphic for 91% of the SNPs screened. None of 

the SLC22A3 and SLC47A1 SNPs investigated was observed in this study. 
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Sequencing of the SLC22A2 gene revealed 28 SNPs, including seven novel 

polymorphic sites, in the 96 Xhosa subjects that were screened. The minor 

allele frequencies of the seven previously identified variant SNPs observed in 

this study were different compared to that observed for American and 

European Caucasian, and Asian populations. Moreover, the allele frequencies 

for these SNPs differed amongst African populations themselves. Eight and 

seven haplotypes were inferred for SLC22A1 and SLC22A2, respectively, for 

the Xhosa population from the information gathered with SNaPshot™ 

genotyping. This study highlights the fact that African populations do not have 

the same allele frequencies for SNPs in pharmacogenetically relevant genes. 

Furthermore, the Xhosa and other African populations do not share all reduced-

function variants of the SLC22A1-3 and SLC47A1 genes with Caucasian and 

Asian populations. Moreover, this study has demonstrated that the Xhosa 

population harbours novel and rare genetic polymorphisms in the key 

pharmacogene SLC22A2. This study lays the foundation for the design and 

interpretation of future pharmacogenetic association studies between the 

variant alleles of the SLC22A1-3 and SLC47A1 genes in the Xhosa population 

and drug disposition and efficacy. 
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CHAPTER 1 

1. LITERATURE REVIEW 

1.1. Introduction 

Inter-individual differences in the clinical efficacy and the toxicity of medication are 

common amongst patients (Kalow, 2006, Shastry, 2005). These inter-individual 

differences in drug response could be due to age, sex, body weight, nutrition, organ 

function, infections, co-medication, environmental factors, and genetic variation 

(Sadee and Dai, 2005, Shastry, 2005). In general, genetic factors are estimated to 

account for 15-20% of inter-individual variations in drug disposition and responses 

(Choi and Song, 2008). 

Adverse drug reactions (ADRs) are side effects experienced during drug therapy 

within the approved dosage and labelling recommendations for the specific drug 

(Daly, 2012). Severe ADRs are a significant clinical problem which may result in 

disabilities or permanent damage, congenital abnormalities or birth defects, 

hospitalizations, life-threatening events, and death (Daly, 2013). ADRs are amongst 

the leading causes of hospitalizations in the developed world, and the incidence of 

severe ADRs has been estimated at 6.2-6.7% in hospitalized patients (Bachtiar and 

Lee, 2013). However, in developing countries like South Africa ADRs are estimated 

to occur in 14% of hospitalized patients (Mehta et al., 2008, Warnich et al., 2011).  

Moreover, the incidence of fatal ADRs is estimated at between 0.15-0.3% in 

developed countries and may be five to ten times higher in developing countries 

(Bachtiar and Lee, 2013, Mehta et al., 2008). The economic impact of ADR-related 

hospitalizations has been estimated at $ 136 billion in the USA alone (Becquemont, 

2009, Bond and Raehl, 2006). 
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CHAPTER 1 

It has long been recognized that genetic variations in drug metabolizing enzymes 

underlie the inter-individual differences in drug response. However, polymorphisms 

in solute carrier transporters (SLCs) are increasingly being recognized as a factor 

accounting for inter-individual variation in drug response and being involved in the 

toxicity of drug treatment or predisposition to ADRs. These polymorphisms are 

attracting interest because SLCs are widely distributed in the epithelial membrane of 

the liver, kidney, and intestine and play an important role in the gastrointestinal 

absorption, biliary and renal uptake and excretion, and distribution to target sites of 

their substrate drugs. 

Approximately 40% of therapeutic drugs are organic cations or weak bases at 

physiological pH and are substrates of organic cation transporters (OCTs) and 

multidrug and toxin extrusion (MATEs) transporters (Neuhoff et al., 2003). The 

transport of OCs is mediated by OCTs in an electrogenic, and independently of 

sodium-gradient, and by MATEs through an oppositely directed proton gradient 

(Koepsell et al., 2007, Otsuka et al., 2005). Examples of clinically important drugs 

transported by OCTs and MATEs include the antidiabetic drugs metformin and 

phenformin, the antineoplastic drugs cisplatin and oxaliplatin, the anti-HIV drugs 

lamivudine and zalcitabine, and the histamine receptor antagonist cimetidine 

(Barendt and Wright, 2002, Busch et al., 1998, Ciarimboli et al., 2005b, Dresser et 

al., 2002, Kimura et al., 2005b, Jung et al., 2008). 

Previous studies have shown that human OCTs and MATEs are highly polymorphic 

in ethnically diverse populations (Sakata et al., 2004, Shu et al., 2003, Kang et al., 

2007). A number of these variants have been associated with reduced effect of 

therapeutic drugs, example the anti-diabetic metformin and the anti-neoplastic 
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CHAPTER 1 

imatinib. However, these aforementioned reduced-function genetic variants were 

however primarily found in studies with European participants and have not been 

consistently replicated for other ethnic groups (Chen et al., 2010b, Leabman et al., 

2003). 

Although Africa and South Africa harbour a significant proportion of genomic 

diversity and have a significant disease burden, the impact of this genomic diversity 

on the inter-individual differences in drug response is however understudied 

(Coovadia et al., 2009, Hardy et al., 2008, Tishkoff et al., 2009). Furthermore, 

pharmcogenomic and pharmacogenetic research in Africa is in its infancy and has 

primarily focused on drug-metabolizing enzymes (Hardy et al., 2008, Warnich et al., 

2011). Thus, this review summarizes our current understanding about the structure, 

distribution, substrate specificity, physiological roles of OCTs and MATEs and to 

discuss the importance of these transporters in the pharmacokinetics and 

pharmacodynamics of clinically important cationic drugs. 

1.2. Human genetic variation and its contribution to complex traits 

Human genetic variants are typically referred to as either common or rare, to denote 

the frequency of the minor allele in the human population. These variants are 

classified as single nucleotide polymorphsisms (SNPs), insertions-deletions, varying 

number of tandem repeats (VNTRs), inversions, and copy number variants 

(Brockmöller and Tzvetkov, 2008). SNPs are the most prevalent class of variants 

amongst individuals.  

Currently, it is estimated that the human genome contains at least between 11 and 12 

million SNPs (Brockmöller and Tzvetkov, 2008). Moreover, approximately 7 

million of these SNPs occur at a minor allele frequency (MAF) greater than 5% and 
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CHAPTER 1 

the remaining at a MAF between 1 and 5%. The current opinion is that African 

populations harbour more genetic variation than other populations (Hardy et al., 

2008, Tishkoff et al., 2009). This view is supported when considering the fact that 

the Yoruban genome has 1.25 fold more single-base variants than the Caucasian 

genomes and that a greater percentage is novel, which is reflective of the overall 

increased amount of genome diversity in individuals of African origin (Frazer et al., 

2009). 

Variation in the human genome has a wide variety of medical and health 

implications. The current belief is that the knowledge acquired through human 

genetic studies will have a major impact on medical sciences, and that initially our 

increased understanding of the molecular pathways/mechanisms involved in disease 

will provide new potential drug targets (Frazer et al., 2009, Séguin et al., 2008, Daar 

and Singer, 2005). Subsequently, the expectation is that this increased understanding 

will equip us to predict disease susceptibility, to classify diseases in sub-phenotypes 

from genotypic information, and to improve treatment and expand the use of 

pharmacogenetics (Frazer et al., 2009).  

1.3. Pharmacogenetics/Pharmacogenomics and Individualized/Personalized 

Drug Therapy 

Pharmacogenetics, however, is not a new discipline itself but has been around for 

approximately 50 years (Kalow, 2006). However, advances in genomics, especially 

in methodology, have allowed the merging of pharmacogenetics and 

pharmacogenomics, improving our ability to identify the genetic causes of diseases, 

search for novel drug targets, and to improve drug development (Daar and Singer, 

2005). 
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CHAPTER 1 

Pharmacogenetics is defined as the discipline which uses the patient’s genetic 

information of drug metabolizing enzymes, drug receptors, and drug transporters in 

order to develop and individualized drug therapy that will result in optimal choice 

and dose of the drugs in question (Holm, 2008). The science of pharmacogenetics 

originated from the analysis of a few rare and sometimes unexpectedly found 

extreme reactions (phenotypes) observed in some humans. These phenotypes were 

either inherited diseases or abnormal reactions to drugs or other environmental 

factors (Brockmöller and Tzvetkov, 2008). An important milestone in 

pharmacogenetics occurred when it became clear that drug effects tended to differ 

not only between individuals, but also between human population groups (Kalow, 

2006). 

Pharmacogenomics, on the other hand, is defined as ‘The study of variations of DNA 

and RNA characteristics as related to drug response’ (Bhathena and Spear, 2008). 

Moreover, pharmacogenomics is an approach that has evolved from 

pharmacogenetics and has become a new scope for the pharmaceutical and 

biomedical fields (Khoury et al., 2008). It is widely expected that 

pharmacogenomics will facilitate a trend toward improved patient outcomes by 

increasing our understanding at the molecular level of both the disease and treatment 

response (Bhathena and Spear, 2008, Eichelbaum et al., 2006). Moreover, the 

pharmacogenomics approach has already supplied researchers with a number of 

candidate genes and their translational ramifications on drug response in many 

complex states (McCarthy and Zeggini, 2007). 

Inter-individual difference in the efficacy and the toxicity of medication is common 

amongst patients (Shastry, 2005). This difference in drug response could be due to 
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age, sex, body weight, nutrition, organ function, infections, co-medication, 

environmental factors, the dose-response curve of a drug (pharmacokinetics and 

pharmacodynamics), and genetic variation (Sadee and Dai, 2005, Shastry, 2005). 

However, when treating individual patients, the focus must be shifted from 

populations, ethnicities or races to the inherent genetic individuality that results from 

mosaics of variable haplotypes (Suarez-Kurtz). Knowledge of an individual’s genetic 

variability in drug response is, therefore, clinically and economically important. This 

type of genetic profiling provides benefits for future medical care by predicting drug 

response or assisting in the development of DNA-based tests. Thus, 

pharmacogenetics and pharmacogenomics are two recent developments to 

investigate inter-individual variations in drug response (Shastry, 2005). 

While the initial focus of pharmacogenetics was on drug-metabolizing pathways 

(pharmacokinetics), the focus of pharmacogenomics is on the genetic basis of the 

individual variation in drug efficacy and toxicity (pharmacodynamics) (Kalow, 2006, 

Urban, 2010). The assumption or expectation of both pharmacogenetics and 

pharmacogenomics is the ability to deliver “personalized medicine”, a broad and 

rapidly advancing field of healthcare that is informed by each patient’s unique, 

clinical, genetic, genomic, and environmental information (Holm, 2008, Limdi and 

Veenstra, 2010). That is, personalized medicine can be used to refine the definition 

of disease, identify disease subtypes, and ultimately define biomarkers capable of 

discriminating between the patients most likely to benefit from a specific treatment 

and those unlikely to respond or likely to experience adverse events (Reitman and 

Schadt, 2007). 
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CHAPTER 1 

There are many challenges that must be overcome to apply rapidly accumulating 

genomic information to understand variable drug responses. These include, defining 

candidate genes and pathways; relating disease genes to drug response genes; 

precisely defining drug response phenotypes; and addressing analytic, ethical, and 

technological issues involved in the generation and management of large drug 

response sets (Roden et al., 2006). One of the impediments to the use of 

pharmacogenomics testing is the fact that some prescribing decisions must be made 

emergently, necessitating the availability of pre-emptive genotype results (Relling et 

al., 2010). Furthermore, various pharmacogenomic associated studies have not been 

reproduced and confirmed. In addition, the Genome Wide Association Studies 

(GWAS) that have been performed have been restricted primarily to populations of 

European descent, mostly because biomedical research funding is highest in the 

United States and Western Europe, where European ancestral populations make up 

the majority (Urban, 2010). Furthermore, a great deal of education for the public and 

healthcare professionals in the area is necessary before gaining overall acceptance 

(Avery et al, 2009). 

1.4. Adverse Drug Reactions 

Adverse drug reactions (ADRs) is defined as a response to a drug which is noxious 

and unintended, and occurs at doses normally used in man for the prophalaxis, 

diagnosis, or therapy of disease, or for the modification of physiological function 

(WHO, 2004). The undesirable effects of the drug may lead to any of the following: 

death or a life-threatening event, hospitalization, disability or permanent damage, 

congenital abnormality or birth defect (FDA, 2011). 
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From a clinical perspective, ADRs can be broadly classified as either Type A, which 

are dose-dependent, or Type B (idiosyncratic), where the reaction is not predictable 

from normal drug pharmacology and is generally dose-independent (Daly, 2013). 

Although Type A ADRs are more common, they are frequently mild and often self-

limited. On the other hand, Type B ADRs are less common, but are often more 

severe and are more likely to result in serious morbidity or even mortality. 

ADRs are implicated in a notable number of hospitalizations, and fatal ADRs are 

amongst the leading causes of death in developed nations (Sim and Ingelman-

Sundberg, 2011, Wester et al., 2008). The incidence of severe ADRs internationally 

has been estimated at between 6.2-6.7% in hospitalized patients and the incidence of 

fatal ADRs is estimated to be between 0.15-0.3%. In South Africa, on the other 

hand, ADRs are reported to occur in 14% of hospitalized patients with a five to ten 

times higher fatality rate (Mehta et al., 2008). In recent years, the economic cost of 

ADR-related hospitalizations has reached $136 billion in the USA alone 

(Becquemont, 2009, Bond and Raehl, 2006). 

Genetic susceptibility is an important feature of serious ADRs and there is 

considerable interest in the possibility that development of genetic tests to identify 

all those at risk of adverse events prior to prescription might lead to valuable drugs 

being retained (Daly, 2013). In order to achieve this goal consideration must be 

given to the fact that population differences exist in drug response, including 

susceptibility to ADRs, and that these differences are in part due to genetic 

polymorphisms (Bachtiar and Lee, 2013). Genetic variation frequencies differ 

among different ethnicities, which may be associated with variation of susceptibility 

to ADRs among different populations. 
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1.5. Race, Ethnicity and Genetic Ancestry in Biomedical Research 

The problem of race in scientific research is not a new one, and the issue seems to 

perpetually reappear and remain fundamentally unresolved (Caulfield et al., 2009). 

However, it is a known fact that specific monogenic diseases such as sickle cell 

anemia, Tay-Sachs, and cystic fibrosis for example, differ between populations (Via 

et al., 2009). In order to use genomic knowledge to develop drugs and to improve 

health, we need to consider ethnical differences in different populations (Shastry, 

2005). There exist inter-ethnical differences in polymorphisms of genes encoding 

drug-metabolizing enzymes, transporters and disease-associated proteins (Bachtiar 

and Lee, 2013). Many gene variants differ in frequency between populations or 

subpopulations, but this is often merely due to random fluctuations (called genetic 

drift) and has no true biological meaning (Urban, 2010). With the availability of 

genetic ancestry estimates it is believed that admixed populations represent a 

valuable opportunity to study complex disease and drug response (Via et al., 2009). 

Since admixed populations share varying proportions of different ancestral 

populations their genetic complexity can potentially complicate biomedical research. 

On the other hand, precisely because of this complexity, admixed populations can 

also provide unique opportunity to disentangle the clinical, social, environmental, 

and genetic underpinnings of population differences in health outcomes (Suarez-

Kurtz, 2008). 

The accumulated data reveal that allele, genotype and haplotype frequency of 

polymorphisms of pharmacological relevant genes (pharmacogenes) may differ 

significantly among populations categorized by race, ethnicity, or continental origin 

(Suarez-Kurtz). It is widely accepted that population based pharmacogenetics studies 

10 
 

 

 

 

 



CHAPTER 1 

can help in establishing baseline frequency distributions of SNPs of genes important 

in drug metabolism and/or transport. Therefore, recognition of inter-ethnic 

differences in drug response might be useful in the establishment of public health 

policies, the design and interpretation of clinical drug trials, and possibly to guide 

clinicians to prospectively evaluate those patients with the greatest possibility of 

expressing a variant genotype which may be associated with inter-individual 

variation in drug response, efficacy and toxicity (Matimba et al., 2008, Suarez-Kurtz, 

2008). 

1.6. Single-Nucleotide Polymorphisms and Variability in Drug Response 

and Toxicity 

Inter-individual variability in drug response and toxicity is a significant clinical and 

public health problem. This variation can be due to genetic, environmental, 

physiological, and pathophysiological factors (Choi and Song, 2008, Giacomini et 

al., 2010). It is estimated that genetic factors generally account for 15-30% of inter-

individual variation in drug disposition and response, and for certain drugs genetic 

factors can account for up to 95% of the inter-individual variation in drug disposition 

and effects (Avery et al., 2009, Choi and Song, 2008). 

A considerable body of evidence currently exists that suggests that single nucleotide 

polymorphisms (SNPs) in genes encoding drug-metabolizing enzymes, enzymes 

involved in DNA biosynthesis and repair, and drug transporters might determine 

drug efficacy and toxicity (Shastry, 2005). Many drug-metabolizing enzymes and 

drug transport proteins have consistently replicated associations between genetic 

variants and the clinical pharmacokinetics of at least one drug (Bhathena and Spear, 

2008). Genetic polymorphisms in membrane transporter genes are increasingly been 
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recognized as a possible mechanism for explaining variation in drug response 

(Leabman et al., 2003, Yan Shu et al., 2007). 

1.7. Membrane Transporters 

Membrane transporters are specialized integral proteins that span cell membrane 

bilayers and play a critical role in the translocation of chemicals into and out of cells 

using active and passive mechanisms (Klaassen and Aleksunes, 2010). They are 

responsible for maintaining cellular and organismal homeostasis by importing 

nutrients essential for cellular respiration and exporting metabolic waste products 

and xenobiotics (Leabman et al., 2003). These transporters are located in the 

epithelial membrane of the liver, kidney, intestine, and target organs and are now 

widely acknowledged as important determinants governing drug absorption, 

excretion, and, in many cases, extent of drug entry into target organs (Choi and 

Song, 2008, DeGorter et al., 2012). 

Inter-individual variation in transporter activity can arise from numerous factors, 

including genetic heterogeneity, certain disease processes, concomitant medications, 

and herbal and dietary constituents that may inhibit or induce transporter expression 

or activity (DeGorter et al., 2012, Giacomini et al., 2010). Numerous studies have 

suggested that membrane transporters play a part in vivo in drug disposition, 

therapeutic efficacy, and adverse drug reactions. Moreover, genetic polymorphisms 

in membrane transporter genes have increasingly been recognized as a possible 

mechanism accounting for variation in drug response (Leabman et al., 2003, Yan 

Shu et al., 2007).  

During the last decade, a greater focus has been given to the impact of genetic 

variations in membrane transporters on the pharmacokinetics and toxicity of 
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numerous therapeutic drugs (Hediger et al., 2004). However, while the majority of 

transporter-related pharmacogenetic research has been in regards to classic genes 

encoding the outward-directed ATP-binding cassette (ABC) transporters, more 

studies have been conducted in recent years evaluating genes encoding solute carrier 

(SLC) transporters that mediate the cellular uptake, distribution and elimination of 

clinically important drugs (Franke et al., 2010). 

1.8. Solute Carrier Transporters 

The solute carrier transporter (SLC) superfamily is a large family of membrane-

bound proteins that share 20-25% of sequence homology (Hediger et al., 2004). This 

major facilitator family consists of more than 300 members grouped into 51 classes. 

SLC transporters typically use secondary and tertiary active transport to move 

chemicals over biological membranes (Klaassen and Aleksunes, 2010). They are 

trans-membrane proteins which typically have a predicted membrane topology that 

consists of 12 α-helical transmembrane helices (TMHs), an intracellular N-terminus, 

a large glycosylated extracellular loop between TMHs 1 and 2, a large intracellular 

loop with phosphorylation sites between TMHs 6 and 7, and an intracellular C-

terminus (Koepsell et al., 2007). SLCs are expressed in most tissues. However, these 

proteins are expressed most abundantly in the liver, kidney, and intestine where they 

are either located at the basolateral or apical plasma membranes of polarized cells 

(Wojtal et al., 2009). Today it is known that members of the SLC family are 

involved in the facilitated transport of a variety of substances including drugs, 

environmental toxins, xenobiotics, and endogenous metabolites across plasma 

membranes (Hediger et al., 2004, Koepsell et al., 2007). Moreover, these SLC 

transporters play a critical role in the absorption and excretion of drugs in the 
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kidneys, liver, and intestine, thus, influencing the pharmacodynamic and 

pharmacokinetic characteristics of these drugs (Meier et al., 2007). 

The SLC family can be divided into three subgroups based on substrate specificity 

and function: organic cation transporters (OCTs), the organic cation/zwitterion 

transporters (OCTNs), and the organic anion transporters (OATs) (Koepsell et al., 

2007). The OCT subgroup contains three subtypes of facilitated transporters called 

hOCT1 (encoded by the SLC22A1 gene), OCT2 (SLC22A2), and OCT3 (SLC22A3). 

The genes encoding the three OCT isoforms are clustered together on the long arm 

of chromosome 6 (Tzvetkov et al., 2009, Koehler et al., 1997). Based on their 

substrate properties and tissue distributions, hOCT1, hOCT2, and hOCT3 are 

thought to play important roles in the biliary and renal excretion of their substrates 

and the distribution of organic cationic drugs in the liver, kidney, heart, and brain 

(Jonker and Schinkel, 2004, Koepsell et al., 2007). Moreover, there are several 

members of the SLC family for which the substrate specificity and/or function have 

not been elucidated yet. 
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Figure 1.1 - Multiple protein sequence alignment of OCTs from four animal species 
showing a high degree of evolutionary conservation. 
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human  OCT1 MP-TVDDILEQVGESGWFQKQAFLILCLLSAAFAPICVGIVFLGFTPDHH-CQSPGVAELSQRCGWSPAEELNYTVPGLGPAGEA-FLGQCRRYEVDWNQ
rabbit OCT1 MP-TVDDVLEQVGEFGWFQKRTFLFLCLISAILAPIYLGIVFLGFTPDHR-CRSPGVDELSQRCGWSPEEELNYTVPGLG-ATDGAFVRQCMRYEVDWNQ
mouse  OCT1 MP-TVDDVLEHVGEFGWFQKQAFLLLCLISASLAPIYVGIVFLGFTPDHH-CRSPGVAELSQRCGWSPAEELNYTVPGLGSAGEASFLSQCMKYEVDWNQ
rat    OCT1 MP-TVDDVLEQVGEFGWFQKQAFLLLCLISASLAPIYVGIVFLGFTPGHY-CQNPGVAELSQRCGWSQAEELNYTVPGLGPSDEASFLSQCMRYEVDWNQ
human  OCT2 MPTTVDDVLEHGGEFHFFQKQMFFLLALLSATFAPIYVGIVFLGFTPDHR-CRSPGVAELSLRCGWSPAEELNYTVPGPGPAGEAS-PRQCRRYEVDWNQ
rabbit OCT2 MP-TVDDILEQVGHFHFFQKQTFFLLALISAAFTPIYVGIVFLGFTPDHR-CRSPGVAELSQRCGWSPGEELNYTVPGLG-AADGAFARQCMRYEVDWNQ
mouse  OCT2 MP-TVDDILEHIGEFHLFQKQTFFLLALLSGAFTPIYVGIVFLGFTPNHH-CRSPGVAELSQRCGWSPAEELNYTVPGLGSAGEVSFLSQCMRYEVDWNQ
rat    OCT2 MS-TVDDILEHIGEFHLFQKQTFFLLALLSGAFTPIYVGIVFLGFTPDHH-CWSPGAAKLSQRCGWSQAEELNYTVPGLGPSDEASFLSQCMRYEVDWNQ
human  OCT3 MP-SFDEALQRVGEFGRFQRRVFLLLCLTGVTFAFLFVGVVFLGTQPDHYWCRGPSAAALAERCGWSPEEEWNRTAPASRGPEPPERRGRCQRYLLEAAN
rabbit OCT3 ----------------------------------------------------------------------------------------------------
mouse  OCT3 MP-TFDQALRKAGEFGRFQRRVFLLLCLTGVTFAFLFVGVVFLGSQPDYYWCRGPRATALAERCAWSPEEEWNLTTPELHVPAERRGQGHCHRYLLEATN
rat    OCT3 MP-TFDQALRKAGEFGRFQRRVFLLLCLTGVTFAFLFVGVVFLGSQPDYYWCRGPRATALAERCAWSPEEEWNLTTPELHVPAERRGQGHCHRYLLEDTN
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. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

human  OCT1 SA------LSCVDPLASLATNRSHLPLGPCQDGWVYDTPGSSIVTEFNLVCADSWKLDLFQSCLNAGFLFGSLGVGYFADRFGRKLCLLGTVLVNAVSGV
rabbit OCT1 SS------LGCVDPLASLAPNRSHLPLGPCQHGWVYDTPGSSIVTEFNLVCADAWKVDLFQSCVNLGFFLGSLGVGYIADRFGRKLCLLLTTLINAVSGV
mouse  OCT1 ST------LDCVDPLSSLAANRSHLPLSPCEHGWVYDTPGSSIVTEFNLVCGDAWKVDLFQSCVNLGFFLGSLVVGYIADRFGRKLCLLVTTLVTSLSGV
rat    OCT1 ST------LDCVDPLSSLVANRSQLPLGPCEHGWVYDTPGSSIVTEFNLVCGDAWKVDLFQSCVNLGFFLGSLVVGYIADRFGRKLCLLVTTLVTSVSGV
human  OCT2 ST------FDCVDPLASLDTNRSRLPLGPCRDGWVYETPGSSIVTEFNLVCANSWMLDLFQSSVNVGFFIGSMSIGYIADRFGRKLCLLTTVLINAAAGV
rabbit OCT2 SS------PGCVDPLASLAPNRSHLPLGPCQHGWVYDTPGSSIVTEFNLVCARSWMLDLFQSAVNIGFFIGSVGIGYLADRFGRKLCLLVTILINAAAGV
mouse  OCT2 ST------LDCVDPLSSLAANRSHLPLSPCEHGWVYDTPGSSIVTEFNLVCAHSWMLDLFQSLVNVGFFIGAVGIGYLADRFGRKFCLLVTILINAISGV
rat    OCT2 ST------LDCVDPLSSLAADRNQLPLGPCEHGWVYNTPGSSIVTEFNLVCAHSWMLDLFQSVVNVGFFIGAMMIGYLADRFGRKFCLLVTILINAISGA
human  OCT3 DSASATSALSCADPLAAFP-NRS-APLVPCRGGWRYAQAHSTIVSEFDLVCVNAWMLDLTQAILNLGFLTGAFTLGYAADRYGRIVIYLLSCLGVGVTGV
rabbit OCT3 -------------------------------------------------------MLDLTQAILNLGFLAGAFTLGYAVDRYGRRVTYLISCLGVGITGV
mouse  OCT3 TSSELS-----CDPLTAFP-NRS-APLVSCSGDWRYVETHSTIVSQFDLVCSNAWMLDLTQAILNLGFLAGAFTLGYAADRYGRLIIYLISCFGVGITGV
rat    OCT3 TSSELS-----CDPLAAFP-NRS-APLVPCSGDWRYVETHSTIVSQFDLVCGNAWMLDLTQAILNLGFLAGAFTLGYAADRYGRLIVYLISCFGVGITGV
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human  OCT1 LMAFSPNYMSMLLFRLLQGLVSKGNWMAGYTLITEFVGSGSRRTVAIMYQMAFTVGLVALTGLAYALPHWRWLQLAVSLPTFLFLLYYWCVPESPRWLLS
rabbit OCT1 LTAVAPDYTSMLLFRLLQGLVSKGSWMSGYTLITEFVGSGYRRTVAILYQVAFSVGLVALSGVAYAIPNWRWLQLTVSLPTFLCLFYYWCVPESPRWLLS
mouse  OCT1 LTAVAPDYTSMLLFRLLQGMVSKGSWVSGYTLITEFVGSGYRRTTAILYQVAFTVGLVGLAGVAYAIPDWRWLQLAVSLPTFLFLLYYWFVPESPRWLLS
rat    OCT1 LTAVAPDYTSMLLFRLLQGMVSKGSWVSGYTLITEFVGSGYRRTTAILYQMAFTVGLVGLAGVAYAIPDWRWLQLAVSLPTFLFLLYYWFVPESPRWLLS
human  OCT2 LMAISPTYTWMLIFRLIQGLVSKAGWLIGYILITEFVGRRYRRTVGIFYQVAYTVGLLVLAGVAYALPHWRWLQFTVSLPNFFFLLYYWCIPESPRWLIS
rabbit OCT2 LMAVSPNYTWMLIFRLIQGLVSKAGWLIGYILITEFVGLNYRRTVGILYQVAFTVGLLVLAGVAYALPRWRWLQLTVTLPYFCFLLYYWCIPESPRWLIS
mouse  OCT2 LMAISPNYAWMLVFRFLQGLVSKAGWLIGYILITEFVGLGYRRTVGICYQIAFTVGLLILAGVAYALPNWRWLQFAVTLPNFCFLLYFWCIPESPRWLIS
rat    OCT2 LMAISPNYAWMLVFRFLQGLVSKAGWLIGYILITEFVGLGYRRMVGICYQIAFTVGLLILAGVAYVIPNWRWLQFAVTLPNFCFLLYFWCIPESPRWLIS
human  OCT3 VVAFAPNFPVFVIFRFLQGVFGKGTWMTCYVIVTEIVGSKQRRIVGIVIQMFFTLGIIILPGIAYFIPNWQGIQLAITLPSFLFLLYYWVVPESPRWLIT
rabbit OCT3 VVAFAPNFPVFAVFRFLQGVFGKGTWMTCYVIVTEIVGSKQRRIVGIVIQMFFTLGIIILPGIAYFIPSWQGIQLAVTLPNFLFLLYYWVVPESPRWLIT
mouse  OCT3 VVAFAPNFSVFVIFRFLQGVFGKGAWMTCFVIVTEIVGSKQRRIVGIVIQMFFTLGIIILPGIAYFTPSWQGIQLAISLPSFLFLLYYWVVPESPRWLIT
rat    OCT3 VVAFAPNFSVFVIFRFLQGVFGKGAWMTCFVIVTEIVGSKQRRIVGIVIQMFFTLGIIILPGIAYFTPSWQGIQLAISLPSFLFLLYYWVVPESPRWLIT
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human  OCT1 QKRNTEAIKIMDHIAQKNGKLPPADLKMLSLEEDVTEKLSPSFADLFRTPRLRKRTFILMYLWFTDSVLYQGLILHMGATSGNLYLDFLYSALVEIPGAF
rabbit OCT1 QKRNTDAVKIMDNIAQKNGKLPPADLKMLSLDEDVTEKLSPSLADLFRTPNLRKHTFILMFLWFTCSVLYQGLILHMGATGGNVYLDFFYSSLVEFPAAF
mouse  OCT1 QKRTTQAVRIMEQIAQKNRKVPPADLKMMCLEEDASERRSPSFADLFRTPSLRKHTLILMYLWFSCAVLYQGLIMHVGATGANLYLDFFYSSLVEFPAAF
rat    OCT1 QKRTTRAVRIMEQIAQKNGKVPPADLKMLCLEEDASEKRSPSFADLFRTPNLRKHTVILMYLWFSCAVLYQGLIMHVGATGANLYLDFFYSSLVEFPAAF
human  OCT2 QNKNAEAMRIIKHIAKKNGKSLPASLQRLRLEEETGKKLNPSFLDLVRTPQIRKHTMILMYNWFTSSVLYQGLIMHMGLAGDNIYLDFFYSALVEFPAAF
rabbit OCT2 QNKNAKAMRIMEHIAKKNGKSLPVSLQSLRAAEDVGEKLNPSFLDLVRTPQIRKHTCILMYNWFTSSVLYQGLIMHLGLAGGDIYLDFFYSALVEFPAAF
mouse  OCT2 QNKNAKAMKIIKHIAKKNGKSVPVSLQSLTADEDTGMKLNPSFLDLVRTPQIRKHTLILMYNWFTSSVLYQGLIMHMGLAGDNIYLDFFYSALVEFPAAF
rat    OCT2 QNKIVKAMKIIKHIAKKNGKSVPVSLQNLTPDEDAGKKLKPSILDLVRTPQIRKHTLILMYNWFTSSVLYQGLIMHMGLAGDNIYLDFFYSALVEFPAAF
human  OCT3 RKKGDKALQILRRIAKCNGKYLSSNYSEITVTDEEVS--NPSFLDLVRTPQMRKCTLILMFAWFTSAVVYQGLVMRLGIIGGNLYIDFFISGVVELPGAL
rabbit OCT3 RKEGDEALKILRKIAKCNGKYLSPNYSEITVTDEEVS--NPSFLDLVRTPQMRKCTLILMFAWFTSAVVYQGLVMRLGIIGGNLYIDFFISGVVELPGAL
mouse  OCT3 RKQGEKALQILRRVAKCNGKHLSSNYSEITVTDEEVS--NPSCLDLVRTPQMRKCTLILMFAWFTSAVVYQGLVMRLGLIGGNLYIDFFISGLVELPGAL
rat    OCT3 RKQGEKALQILRRVAKCNGKHLSSNYSEITVTDEEVS--NPSCLDLVRTPQMRKCTLILMFAWFTSAVVYQGLVMRLGLIGGNLYMDFFISGLVELPGAL
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human  OCT1 IALITIDRVGRIYPMAMSNLLAGAACLVMIFISPDLHWLNIIIMCVGRMGITIAIQMICLVNAELYPTFVRNLGVMVCSSLCDIGGIITPFIVFRLREVW
rabbit OCT1 VILVTIDRVGRIYPMAASNLAAGVASVILIFVPQDLHWLTIVLSCVGRMGATIVLQMICLVNAELYPTFVRNLGVMVCSALCDVGGIITPFMVFRLMEVW
mouse  OCT1 IILVTIDRIGRIYPIAASNLVAGAACLLMIFIPHELHWLNVTLACLGRMGATIVLQMVCLVNAELYPTFIRNLGMMVCSALCDLGGIFTPFMVFRLMEVW
rat    OCT1 IILVTIDRIGRIYPIAASNLVTGAACLLMIFIPHELHWLNVTLACLGRMGATIVLQMVCLVNAELYPTFIRNLGMMVCSALCDLGGIFTPFMVFRLMEVW
human  OCT2 MIILTIDRIGRRYPWAASNMVAGAACLASVFIPGDLQWLKIIISCLGRMGITMAYEIVCLVNAELYPTFIRNLGVHICSSMCDIGGIITPFLVYRLTNIW
rabbit OCT2 LIIATIDRVGRRYPWAVSNMVAGAACLASVFVPDDLQGLRITVACLGRMGITMAYEMVCLVNAELYPTFIRNLGVLVCSSLCDVGGIVTPFLVYRLTAIW
mouse  OCT2 IIILTIDRIGRRYPWAVSNMVAGAACLASVFIPDDLQWLKITVACLGRMGITIAYEMVCLVNAELYPTYIRNLAVLVCSSMCDIGGIVTPFLVYRLTDIW
rat    OCT2 IIILTIDRVGRRYPWAVSNMVAGAACLASVFIPDDLQWLKITIACLGRMGITMAYEMVCLVNAELYPTYIRNLGVLVCSSMCDIGGIITPFLVYRLTDIW
human  OCT3 LILLTIERLGRRLPFAASNIVAGVACLVTAFLPEGIAWLRTTVATLGRLGITMAFEIVYLVNSELYPTTLRNFGVSLCSGLCDFGGIIAPFLLFRLAAVW
rabbit OCT3 LILLTIERLGRRLPFAASNMMAGVACLVTAFLPEGVPWLRTTVATLGRLGITMAFEIVYLVNSELYPTTLRNFGVSLCSGLCDFGGIIAPFLLFRLAAVW
mouse  OCT3 LILLTIERLGRRLPFAASNIVAGVSCLVTAFLPEGIPWLRTTVATLGRLGITMAFEIVYLVNSELYPTTLRNFGVSLCSGLCDFGGIIAPFLLFRLAAIW
rat    OCT3 LILLTIERLGRRLPFAASNIVAGVSCLVTAFLPEGIPWLRTTVATLGRLGITMAFEIVYLVNSELYPTTLRNFGVSLCSGLCDFGGIIAPFLLFRLAAIW
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human  OCT1 QALPLILFAVLGLLAAGVTLLLPETKGVALPETMKDAENL-GRKAKPKE--------NTIYLKVQTSE----------------PSGT------------
rabbit OCT1 QPLPLIVFGVLGLLAGGMTLLLPETKGVALPETIEDAENL-RRKAKPKE--------SKIYLQVQTSE----------------LKGP------------
mouse  OCT1 QALPLILFGVLGLSAGAVTLLLPETKGVALPETIEEAENLGRRKSKAKE--------NTIYLQVQTGK----------------SPHT------------
rat    OCT1 QALPLILFGVLGLTAGAMTLLLPETKGVALPETIEEAENLGRRKSKAKE--------NTIYLQVQTGK----------------SSST------------
human  OCT2 LELPLMVFGVLGLVAGGLVLLLPETKGKALPETIEEAENMQRPRKNKEK---------MIYLQVQKLD----------------IPLN------------
rabbit OCT2 LQLPLVVFAVVGLVAGGLVLMLPETKGRTLPETIEEAENLQRPRKNREK---------VIYVHVRKAD----------------GPLT------------
mouse  OCT2 LEFPLVVFAVVGLVAGGLVLLLPETKGKALPETIEDAEKMQRPRKKKEK---------RIYLQVKK------------------AELS------------
rat    OCT2 MEFPLVVFAVVGLVAGALVLLLPETKGKALPETIEDAENMQRPRKKERKENLPPSQASRPSAKLKRKGIIAAGADFALSEARDGASLSPPPKPTQTNLTY
human  OCT3 LELPLIIFGILASICGGLVMLLPETKGIALPETVDDVEKLGSPHSCKCG--------RNKKTPVSRSHL-------------------------------
rabbit OCT3 LELPLIIFGVLASVCGGLVMLLPETKGIALPETVDDVENLGSPHSFRCR--------RKKKSPVCSSHL-------------------------------
mouse  OCT3 LELPLIIFGILASVCGGLVMLLPETKGIALPETVEDVEKLGSSQLHQCG--------RKKKTQVSTSDV-------------------------------
rat    OCT3 LELPLIIFGILASVCGGLVMLLPETKGIALPETVEDVEKLGSSQLHQCG--------RKKKTQVSTSNV-------------------------------
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1.8.1. Organic Cation Transporters 

1.8.1.1. Structure 

Members of the OCT family are highly conserved among species and generally 550-

560 amino acids in length and share common structural features, including a 

characteristic membrane topology, depicted in Figures 1.1 and 1.2, of 12 putative 

transmembrane spanning α-helices (TMHs), intracellular COOH and NH2 termini, an 

intracellular loop with phosphorylation sites between the sixth and the seventh 

TMHs and a large extracellular loop between the first and second TMHs containing 

glycosylation sites (Burckhardt and Wolff, 2000, Ciarimboli, 2008, Koepsell et al., 

2007). 

 

Figure 1.2 - Predicted membrane topology of OCTs as represented by human OCT1 

(Shu et al., 2003). 

1.8.1.2. Substrate Specificity 

OCTs are defined as polyspecific transporters and function as uniporters that play a 

role in facilitated diffusion in either direction and are involved in translocation of 
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organic cations, endogenous amines, therapeutic drugs and cationic xenobiotics with 

different molecular structures (Tables 1.1-1.3 and Figures 1.3 & 1.4) (Jonker and 

Schinkel, 2004, Koepsell et al., 2007). There is extensive overlap of substrate and 

inhibitor specificities among hOCT1-3 from different species. Oct1/hOCT1 

orthologs from four species (rat, mouse, rabbit, and human) all transport 

tetraethylammonium. However, the affinity and transport rates differ between the 

four species. Oct1/hOCT1 substrates (Table 1.1) include pharmaceuticals such as the 

antidiabetic drug metformin (Kimura et al., 2005a, Wang et al., 2002), the antiviral 

drugs acyclovir and zalcitabine (Jung et al., 2008, Takeda et al., 2002), the 

antineoplastic cisplatin (Ciarimboli et al., 2005b, Ciarimboli et al., 2010), the N-

methyl-D-aspartate-receptor antagonist memantine, and the histamine H2-receptor 

antagonist ranitidine. In addition, OCTs are also responsible for the transport of 

biogenic amine neurotransmitters (Table 1.2 and Figure 1.3) such as dopamine, 

epinephrine, norepinephrine, and histamine (Klaassen and Aleksunes, 2010). 

 

Figure 1.3 - Chemical structures of 4 platinum agents which are substrates of 
hOCTs and hMATEs (Yokoo et al., 2007). 
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Table 1.1 - Selected drugs transported by hOCTs and hMATEs. 

Drug Category Typical Drug Pharmacological Action References 

    

Anthraquinones Mitoxantrone Antineoplastic (Koepsell et al., 2007) 

Aromatic diamidines Furamidine Anti-parasitic (Ming et al., 2009) 

Biguanides Metformin Antidiabetic (Shikata et al., 2007, Takane et al., 2008) 

Camptothecin analogs Irinotecan Antineoplastic (Gupta et al., 2012) 

Cationic steroids Rocuronium Neuromuscular blocking (Van Montfoort et al., 2001) 

Dopamine agonists Pramipexole Anti-Parkinsonian (Diao et al., 2010) 

Dopamine antagonists Sulpiride Antidepressant (Koepsell et al., 2007) 
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Table 1.1 Continued - Selected drugs transported by hOCTs and hMATEs. 

    

Fluoroquinolones Ciprofloxacin Antimicrobials (Ciarimboli et al., 2013) 

Histamine Antagonists Cimetidine Antigastric ulcers (Tahara et al., 2005, Zhang et al., 1998) 

NMDA receptor antagonists Memantine Anti-Parkinsonian (Amphoux et al., 2006) 

Nucleoside analogs Lamividine Antivirals (Jung et al., 2008, Takeda et al., 2002) 

Opioids O-Desmethyltramadol Analgesic (Tzvetkov et al., 2011) 

Psychostimulant D-Amphetamine  (Amphoux et al., 2006) 

Tyrosine kinase inhibitor Imatinib Antineoplastic (Herraez et al., 2013, Schmidt-Lauber et al., 2012, Thomas et al., 2004) 
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Table 1.2 - Endogenous compounds transported by hOCTs and hMATEs. 

Category Compound References 
   

Biogenic monoamines Histamine (Amphoux et al., 2006, Busch et al., 1998, Koepsell et al., 2007) Serotonin 
   

Biogenic polyamines 
Agmatine 

(Gründemann et al., 2003, Sala-Rabanal et al., 2013) Putrescine 
Spermidine 

   

Cathecolamines 
Dopamine 

(Amphoux et al., 2006) Epinephrine 
Norepinephrine 

   
Ethanolamines Choline (Koepsell et al., 2007) 
   

Prostaglandins Prostaglandin E2 (Kimura et al., 2002) Prostaglandin F2α 
   

Vitamins N-methylnicotinamide (Chen et al., 2014, Gorboulev et al., 1997, Lemos et al., 2012) Thiamine 
   

Other metabolites Creatinine (Masuda et al., 2006) L-carnitine 
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Table 1.3 - Xenobiotics transported by OCTs and MATEs in vitro. 

Category Xenobiotic Reference 

   

Quaternary ammonium 
compounds Tetraethylammonium (Iwai et al., 2009, Zhang et al., 1998) 

   
Herbicides Paraquat (Chen et al., 2007) 
   

Neurotoxins 
1-Methyl-4-phenylpyridinium (MPP+) 

(Gorboulev et al., 1997, Yang et al., 2001) 
1-Methyl-4-phenyl-tetrahydropyridine (MPTP) 

   

Alkaloids 
APD-ajmalinium 

(Kim and Shim, 2006, Nies et al., 2008, Van Montfoort 
et al., 2001) Berberine 

Nicotine 
   

Fluorescent Dyes 

4′,6-diamidino-2-phenylindole (DAPI) 
(Ahlin et al., 2008, Bednarczyk et al., 2000, Kim and 
Shim, 2006, Lee et al., 2009, Mehrens et al., 2000, 

Yasujima et al., 2011) 

4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP) 

[2-(4-nitro-2,1,3-benzooxadiazole-7-yl)aminoethyl]trimethylammonium 

Ethidium 
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1.8.1.3. Tissue Distribution and Localization 

The tissue distribution of the OCT subgroup is quite distinctive, with hOCT1 being 

primarily expressed in the basolateral or sinusoidal membrane of hepatocytes and 

also being present in the epithelial membrane of the intestine at low levels 

(Gorboulev et al., 1997, Zhang et al., 1997). Thus, hOCT1 is thought to play a 

fundamental role in the uptake of substrates into the hepatocytes. On the other hand, 

hOCT2 is predominantly expressed at the basolateral membrane of the proximal 

renal tubules and facilitates uptake of substrates from the circulation into renal 

epithelial cells (Gorboulev et al., 1997, Motohashi et al., 2002). hOCT3, on the other 

hand, shows a widespread tissue distribution, including the brain, heart, skeletal 

muscle, blood vessels, placenta, and liver (Koepsell et al., 2007). 

 

Figure 1.4 - Chemical structures of selected bio-amine substrates of hOCTs (Chen et 
al., 2010a). 
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1.8.1.4. Expression and Regulation of OCTs 

The regulation of OCTs has great physiological and even clinical importance 

because they can ultimately change the mRNA or protein levels of OCTs, and as a 

result, alter the absorption, secretion and tissue distribution of endogenous 

metabolites, drugs, and xenobiotics (Choi and Song, 2008, Ciarimboli et al., 2005a). 

These regulatory mechanisms are important because stimulation of OCT expression 

can accelerate detoxification, whereas inhibition can prolong exposure of the body to 

dangerous substances. However, the regulation of OCTS is complex and may occur 

at the transcription, message stability, translation, and various posttranslational 

modification levels (Koepsell et al., 2007). 

 

Figure 1.5 - Schematic representation of transcriptional and post-translational 
regulation of hOCT1 (A) and hOCT2 (B) (Choi and Song, 2008). 
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1.8.1.4.1. Short-Term Regulation 

Mechanisms of post-translational activation of hOCT1 by its phosphorylation status 

have been proposed (Ciarimboli et al., 2004, Ciarimboli and Schlatter, 2005).  There 

are multiple potential phosphorylation sites that are conserved among OCTs, which 

provide target sequences for functional regulation by kinases and phosphatases. 

hOCT1 and hOCT2 share common regulatory mechanisms involving protein kinase 

A (PKA) and calmodulin (CAM). hOCT1 is activated by Src-like p53lck tyrosine 

kinase (Ciarimboli et al., 2004). However, PKC activation decreases the affinity of 

hOCT1 for prototypical substrates (Ciarimboli and Schlatter, 2005). Expression 

levels of hOCT1 were unchanged by a PKA activator, whereas OCT2 was down-

regulated by the PKC activator 1,2-diocanoyl-sn-glycerol (DOG). 

Çetinkaya et al. (2003) demonstrated that hOCT2 is inhibited by PKA and 

phosphatidylinositol 3-kinase (PI3K) and activated by a CAM-dependent signalling 

pathway, probably through a change in substrate affinity (Cetinkaya et al., 2003). 

Furthermore, in a subsequent study Biermann et al. (2006) showed that inhibition of 

the Ca2+/CAM complex by calmidazolium causes changes in transport capacity due 

to reduced hOCT2 trafficking/localization to the plasma membrane (Biermann et al., 

2006). 

1.8.1.4.2. Long-Term Regulation 

Transcription factors may be responsible for the constitutive expression of SLC22A1. 

In a study by Saborowski et al. (2006) it was demonstrated that transcriptional 

activation of SLC22A1 can be mediated by the binding of  hepatocyte nuclear factor 

4α (HNF-4α) to DNA response elements (DR-2) adjacent to the gene and suppressed 

by bile acids via the bile acid-inducible transcriptional repressor, small heterodimer 
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partner (SHP) (Saborowski et al., 2006). Furthermore, Rulcova et al. (2013) in a 

recent study showed that SLC22A1 expression is indirectly induced by 

glucocorticoid activation through the upregulation of HNF4-α in primary 

hepatocytes (Rulcova et al., 2013). Moreover, Asaka et al. (2007) demonstrated that 

basal transcription of SLC22A2 was stimulated by binding of the ubiquitously 

expressed and constitutively active upstream stimulating factor (USF) 1 to the 

proximal promoter region (Asaka et al., 2007). In a recent study O’Brien et al 

showed through electrophoretic mobility shift and chromatin immunoprecipitation 

assays that the expression of hOCT1 is regulated by HNF1 through binding to an 

evolutionary conserved region in intron 1 of SLC22A1 (O’Brien et al., 

2013).Epigenetic gene silencing may also provide a mechanism of organic cation 

transporter gene regulation. Recent studies have shown that DNA methylation of 

SLC22A1 in hepatocellular carcinoma (HCC) (Schaeffeler et al., 2011) and SLC22A3 

in prostate cancer (Chen et al., 2013) is associated with reduced expression of these 

genes. 
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Figure 1.6 - Multiple protein sequence alignment of MATE protein sequences from 
four different animal species. 

  

10 20 30 40 50 60 70 80 90 100
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

human  MATE1 MEAPEE-PAPVRGGPEATLEVRGS-RCLRL-------SAFREELRALLVLAGPAFLVQLMVFLISFISSVFCGHLGKLELDAVTLAIAVINVTGVSVGFG
rabbit MATE1 MEAPVE-LGP--GGRQASPERRHWLRCLVL-------SDFREELRALLVLACPAFLAQLMVFLISFVSSVFCGHLSKLELNAVTLAIAVINVMGVSVGFG
mouse  MATE1 MERTEE-SAPGPGGADAASERRGL-RCLLL-------PGFLEELRALLVLAGPAFLAQLMMFLISFISSVFCGHLGKLELDAVTLAIAVINVTGISVGHG
rat    MATE1 MEVLEE-PAPGPGGADAA-ERRGL-RRLLL-------SGFQEELRALLVLAGPAFLAQLMMFLISFISSVFCGHLGKLELDAVTLAIAVINVTGISVGHG
human  MATE2 isoform 1 MDSLQDTVALDHGGCCPALSRLVP-------------RGFGTEMWTLFALSGPLFLFQVLTFMIYIVSTVFCGHLGKVELASVTLAVAFVNVCGVSVGVG
human  MATE2 isoform 3 MDSLQDTVALDHGGCCPALSRLVP-------------RGFGTEMWTLFALSGPLFLFQVLTFMIYIVSTVFCGHLGKVELASVTLAVAFVNVCGVSVGVG
human  MATE2 isoform 2 MDSLQDTVALDHGGCCPALSRLVP-------------RGFGTEMWTLFALSGPLFLFQVLTFMIYIVSTVFCGHLGKVELASVTLAVAFVNVCGVSVGVG
rabbit MATE2 MDSQQDVVNLDQGGCCPALRKLLP-------------RGFWDEARALFVLSGPLFLFQVLNFLTYVVGTVFCGHLGKVELASVTLGVAFVNVCGVSVGAG
mouse  MATE2 MEPAEDSLGATIQPPELVRVPRGRSLRILLGLRGALSPDVRREAAALVALAGPVFLAQLMIFLISIVSSIFCGHLGKVELDAVTLAVSVVNVTGISVGTG

110 120 130 140 150 160 170 180 190 200
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

human  MATE1 LSSACDTLISQTYGSQNLKHVGVILQRSALVLLLCCFPCWALFLNTQHILLLFRQDPDVSRLTQTYVTIFIPALPATFLYMLQVKYLLNQ----------
rabbit MATE1 LSSACDTLISQTYGSRNLKHVGVILQRGSLILLLCCLPCWALFLNTQHILLLFRQDPAVSRLTQTYVTIFIPALPATFLYTLQVKYLLNQ----------
mouse  MATE1 LSSACDTLISQTYGSQNLKHVGVILQRGTLILLLCCFPCWALFINTEQILLLFRQDPDVSRLTQTYVMIFIPALPAAFLYTLQVKYLLNQ----------
rat    MATE1 LSSACDTLISQTYGSQNLKHVGVILQRGTLILLLCCFPCWALFINTEQILLLFRQDPDVSRLTQTYVMVFIPALPAAFLYTLQVKYLLNQ----------
human  MATE2 isoform 1 LSSACDTLMSQSFGSPNKKHVGVILQRGALVLLLCCLPCWALFLNTQHILLLFRQDPDVSRLTQDYVMIFIPGLPVIFLYNLLAKYLQNQGWLKGQEEES
human  MATE2 isoform 3 LSSACDTLMSQSFGSPNKKHVGVILQRGALVLLLCCLPCWALFLNTQHILLLFRQDPDVSRLTQDYVMIFIPGLPVIFLYNLLAKYLQNQ----------
human  MATE2 isoform 2 LSSACDTLMSQSFGSPNKKHVGVILQRGALVLLLCCLPCWALFLNTQHILLLFRQDPDVSRLTQDYVMIFIPGLPVIFLYNLLAKYLQNQ----------
rabbit MATE2 LSSACDTLMSQSFGSPNKKHVGVILQRGSLILLLCCLPCWALFLNTQHILLLFRQDPAVSRLTQDYAMIFIPGLPAIFLYSLLAKYLQNQ----------
mouse  MATE2 LASACDTLMSQSFGGKNLKRVGVILQRGILILLLCCFPCWAIFLNTERLLLLLRQDPDVARLAQVYVMICIPALPAAFLFQLQTRYLQSQ----------

210 220 230 240 250 260 270 280 290 300
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

human  MATE1 --------------------------GIVLPQIVTGVAANLVNALANYLFLHQLHLGVIGSALANLISQYTLALLLFLYILGKKLHQATWGGWSLECLQD
rabbit MATE1 --------------------------GIVLPQVVTGVAANLVNALANYLFVYQLHLGVMGSALANTVAQFTLALLLFLYILRSKVYQATWGGWSLECLQD
mouse  MATE1 --------------------------GIVLPQIMTGIAANLVNALANYVFLYHLHLGVMGSALANTISQFALAIFLFLYILWRRLHQATWGGWSWECLQD
rat    MATE1 --------------------------GIVLPQVITGIAANLVNALANYLFLHQLHLGVMGSALANTISQFALAIFLFLYILWRKLHHATWGGWSWECLQD
human  MATE2 isoform 1 PFQTPGLSILHPSHSHLSRASFHLFQKITWPQVLSGVVGNCVNGVANYALVSVLNLGVRGSAYANIISQFAQTVFLLLYIVLKKLHLETWAGWSSQCLQD
human  MATE2 isoform 3 --------------------------KITWPQVLSGVVGNCVNGVANYALVSVLNLGVRGSAYANIISQFAQTVFLLLYIVLKKLHLETWAGWSSQCLQD
human  MATE2 isoform 2 --------------------------KITWPQVLSGVVGNCVNGVANYALVSVLNLGVRGSAYANIISQFAQTVFLLLYIVLKKLHLETWAGWSSQCLQD
rabbit MATE2 --------------------------GIVWPQVLSGVVGNCVNGVANYALVSVLNLGVRGSAYANTISQFVQAAFLFLHIVLKKLHLETWEGWSSQCLRD
mouse  MATE2 --------------------------GIIMPQVIVGIAANVVNVGMNAFLLYALDLGVVGSAWANTTSQFFLSALLFLYVWWKRIHIHTWGGWTRECFQE

310 320 330 340 350 360 370 380 390 400
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

human  MATE1 WASFLRLAIPSMLMLCMEWWAYEVGSFLSGILGMVELGAQSIVYELAIIVYM--------------VPAGFSVAASVRVGNALGAGDMEQARKSSTVSLL
rabbit MATE1 WASFFRLAIPSMLMLCMEWWAYEIGSFLSGILGMVELGAQSVTYELAVIVYM--------------IPMGLSVAVNVRVGNALGAGNIEQAKKSSAVALL
mouse  MATE1 WASFLRLAIPSMLMLCIEWWAYEVGSFLSGILGMVELGAQSITYELAIIVYM--------------IPSGFSVAANVRVGNALGAGNIDQAKKSSAISLI
rat    MATE1 WASFLQLAIPSMLMLCIEWWAYEVGSFLSGILGMVELGAQSITYELAIIVYM--------------IPAGFSVAANVRVGNALGAGNIDQAKKSSAISLI
human  MATE2 isoform 1 WGPFFSLAVPSMLMICVEWWAYEIGSFLMGLLSVVDLSAQAVIYEVATVTYM--------------IPLGLSIGVCVRVGMALGAADTVQAKRSAVSGVL
human  MATE2 isoform 3 WGPFFSLAVPSMLMICVEWWAYEIGSFLMGLLSVVDLSAQAVIYEVATVTYMRHSHRLAYAAHVTRIPLGLSIGVCVRVGMALGAADTVQAKRSAVSGVL
human  MATE2 isoform 2 WGPFFSLAVPSMLMICVEWWAYEIGSFLMGLLSVVDLSAQAVIYEVATVTYM--------------IPLGLSIGVCVRVGMALGAADTVQAKRSAVSGVL
rabbit MATE2 WGPFLSLAIPSMLMMCVEWWAYEIGSFLMGLLGVVDLSGQAIIYEVATVVYM--------------IPMGLGMAVCVRVGTALGAADTLQAKRSAVSGLL
mouse  MATE2 WSSYTRLAIPSMFMVCIEWWTFEIGTFLAGLVNVTELGAQAVIYELASVAYM--------------VPFGFGVAASVRVGNALGAGNADQARCSCTTVLL

410 420 430 440 450 460 470 480 490 500
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

human  MATE1 ITVLFAVAFSVLLLSCKDHVGYIFTTDRDIINLVAQVVPIYAVSHLFEALACTSGGVLRGSGNQKVGAIVNTIGYYVVGLPIGIALMFATTLGVMGLWSG
rabbit MATE1 VTELIAVVFCVMLLSCKDLVGYIFTSDRDIIALVAQVTPIYAVSHLFESLAGTSGGILRGSGNQKFGAIVNAIGYYVVGLPIGIALMFAAKLGVIGLWLG
mouse  MATE1 VTELFAVTFCVLLLGCKDLVGYIFTTDRDIVALVAQVIPIYAVSHLFEGLACTCGGILRGTGNQKVGAIVNAIGYYVIGLPIGIALMFAAKLGVIGLWSG
rat    MATE1 VTELFAVTFCVLLLGCKDLVGYIFTTDWDIVALVAQVVPIYAVSHLFEALACTCGGVLRGTGNQKVGAIVNAIGYYVIGLPIGISLMFVAKLGVIGLWSG
human  MATE2 isoform 1 SIVGISLVLGTLISILKNQLGHIFTNDEDVIALVSQVLPVYSVFHVFEAICCVYGGVLRGTGKQAFGAAVNAITYYIIGLPLGILLTFVVRMRIMGLWLG
human  MATE2 isoform 3 SIVGISLVLGTLISILKNQLGHIFTNDEDVIALVSQVLPVYSVFHVFEAICCVYGGVLRGTGKQAFGAAVNAITYYIIGLPLGILLTFVVRMRIMGLWLG
human  MATE2 isoform 2 SIVGISLVLGTLISILKNQLGHIFTNDEDVIALVSQVLPVYSVFHVFEAICCVYGGVLRGTGKQAFGAAVNAITYYIIGLPLGILLTFVVRMRIMGLWLG
rabbit MATE2 CTAGTSLVVGTLLGLLNSQLGYIFTSDEEVIALVNQVLPIYIVFQLVEAVCCVFGGVLRGTGKQAFGAIVNAIMYYIVGLPLGIVLTFVVGMRIMGLWLG
mouse  MATE2 CAGVCALLVGILLAALKDVVAYIFTNDKDIISLVSQVMPIFAPFHLFDALAGTCGGVLRGTGKQKIGAVLNTIGYYGFGFPIGVSLMFAAKLGIIGLWAG

510 520 530 540 550 560 570 580 590 600
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

human  MATE1 IIICTVFQAVCFLGFIIQLNWKKACQQAQVHANLKVNNV-------PRSGNSALPQDPLHPGCP-ENLEGILTNDVGKTGEPQSDQQMRQEEPLPEHPQD
rabbit MATE1 IVVCAVSQAVCFLGFIARLNWTKACQQARVHANLTVN-T-------ASNGNSAVLPDQPHPVGP-DSHGGIVLRDADRKEGAELNEQVHPELPLPVRPED
mouse  MATE1 IIICTTCQTTCFLAFIARLNWKRACQQAQVHANLKVN----------VALNSAVSHEPAHPVCP-ESHGEIMMTDLEKKDETQLDQPMNQQQALPIRPKD
rat    MATE1 IIICSVCQTSCFLVFIARLNWKLACQQAQVHANLKVN----------VALNSAVSQEPAHPVGP-ESHGEIMMTDLEKKDEIQLDQQMNQQQALPVHPKD
human  MATE2 isoform 1 MLACVFLATAAFVAYTARLDWKLAAEEAKKHSGRQQQQR------AESTATRPGPEKAVLSSVATGSSPGITLTTYSRS-ECHVDFFRTPEEAHALSAPT
human  MATE2 isoform 3 MLACVFLATAAFVAYTARLDWKLAAEEAKKHSGRQQQQR------AESTATRPGPEKAVLSSVATGSSPGITLTTYSRS-ECHVDFFRTPEEAHALSAPT
human  MATE2 isoform 2 MLACVFLATAAFVAYTARLDWKLAAEEAKKHSGRQQQQR------AESTATRPGPEKAVLSSVATGSSPGITLTTYSRS-ECHVDFFRTPEEAHALSAPT
rabbit MATE2 MLTCIFLAAVTFVVYAVQLDWKLAAEEAQKHAGLQQQQQQQQQQGAECTAPSPGPDKAVVSSVATGCNPGIALTMYSRP-GCHVDFYGRPEAAPAPAAPA
mouse  MATE2 LIVCVSFQAFSYLIYILRTNWSRVAEQAQVRAGLKST-------------KELIPTPADLPILEREVMDGVILPDIIRP-ESQTGQLVVEENSQCAVPTV

610 620 630
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . .

human  MATE1 GAKLSRKQLVLRRGLLLLGVFLILLVGILVRFYVRIQ
rabbit MATE1 SAHLSGKQLALRRGLLLLGVILVLLAGILVKVYVRTQ
mouse  MATE1 SNKLSGKQLALRRGLLLLGVVLVLVGGILVRVYIRIE
rat    MATE1 SNKLSGKQLALRRGLLFLGVVLVLVGGILVRVYIRTE
human  MATE2 isoform 1 S-RLSVKQLVIRRGAALGAASATLMVGLTVRILATRH
human  MATE2 isoform 3 S-RLSVKQLVIRRGAALGAASATLMVGLTVRILATRH
human  MATE2 isoform 2 S-RLSVKQLVIRRGAALGAASATLMVGLTVRILATRH
rabbit MATE2 S-RLSVRQLLFRRGAALAASVAVLMAGLLVRVLTTGY
mouse  MATE2 GEVLTGRQLVFYRGMALTVSVAVLIAGIVVRVFNDRG
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1.8.2. Multidrug and Toxin Extrusion 1 (MATE-1) 

1.8.2.1. Structure 

hMATE1 and the kidney-specific hMATE2-K are orthologs of the multidrug and 

toxin extrusion (MATE) family of bacteria. hMATE1 is encoded by the SLC47A1 

gene located at 17p11.2 with gene organization as depicted in Figure 1.7 (Otsuka et 

al., 2005, Terada and Inui, 2008). MATEs are highly conserved among species as 

shown in Figure 1.6 with human, mouse, rat, and rabbit MATE1 being 570, 532, 

566, and 568 amino acid residues in length, respectively (Otsuka et al., 2005, Terada 

et al., 2006). While the prokaryotic, fungal, and plant MATE family members share 

a predicted membrane topology of 12 TMHs, Zhang and Wright’s study has shown 

that hMATE1and hMATE2-K appear to have an additional COOH-terminal helix 

(Zhang and Wright, 2009). 

Initial studies using rat renal brush-border membranes vesicles have indicated that 

cysteine and histidine residues are critical for H+/organic cation antiporter activity 

(Hori et al., 1987, Hori et al., 1989). Subsequently, Matsumoto et al. (2009) showed 

that when the conserved Glu-273, Glu-278, Glu-300, and Glu-389 residues of 

hMATE1 were substituted with alanine or aspartate transport activity was reduced, 

suggesting an important role in the transport function of the MATE family 

(Matsumoto et al., 2008). 
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Figure 1.7 - A schematic representation of the gene organization and the primary 
protein structure of human (A) SLC47A1 (hMATE1) and (B) SLC47A2 (hMATE2-
K). The diagram depicts exons (numbered 1-17) and introns of both genes together 
with the arrangement of transmembrane helices (TMHs) (numbered 1-13) of 
encoded proteins (Staud et al., 2013). 

1.8.2.2. Tissue Distribution, Membrane Localization and Substrate 

Specificity 

hMATE1 is predominantly expressed at the luminal membranes of the renal 

proximal tubules (kidney) and the bile canaliculi (liver) and mediates the secretion of 

organic cations by using an oppositely directed H+ gradient as a driving force 

(Masuda et al., 2006, Otsuka et al., 2005, Tsuda et al., 2009b). On the hand, 
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hMATE2-K is primarily expressed in the brush-border membrane of renal proximal 

tubules (Masuda et al., 2006). 

hMATE1 and hMATE2-K mediates the H+-coupled electroneutral exchange of 

tetraethylammonium (TEA) and 1-methyl-4-phenylpyridinium (MMP+), two 

prototypical organic cation substrates of renal and hepatic H+-coupled organic cation 

antiporters (Koepsell et al., 2007, Tanihara et al., 2007). In addition, MATEs are 

also involved in the transport of clinically important drugs such as metformin, 

cimetidine, and procainamide (Tanihara et al., 2007). Km values of cationic drugs for 

hMATE1 and hMATE2-K are similar and higher than the plasma concentrations in 

clinical use. As a key element in the renal (and hepatic) secretion of cationic drugs, 

the human MATEs are likely targets for unwanted drug-drug interactions, as well as 

principal arbiters of the pharmacodynamics and pharmacokinetics of many clinically 

important agents (Zhang et al., 2012). Although MATEs recognize substrates similar 

to the OCT family, MATEs can transport zwitterions and anionic compounds in 

addition to cationic drugs.  In spite of having overlapping substrate spectra, MATE1 

and MATE2-K do differ in substrate specificity and affinity. 

1.8.2.3. Regulation of MATEs 

In contrast to OCTs, little information is available on the regulation of MATEs. The 

proximal promoter region of human, murine, and rat SLC47A1 genes lacked a 

canonical TATA-box but contained two conserved Sp1-binding consensus 

sequences. Moreover, disruption of Sp1 binding through mutagenesis affected 

hMATE1 activity that lead to an approximate 50% reduction relative to the control. 

In a study by Lickteig et al (2008) the pharmacological induction of MATEs in the 

liver by the activation of known transcription factors was investigated (Lickteig et 
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al., 2008). Their study suggested that none of Aryl hydrocarbon receptor (AhR), 

constitutive androstane receptor (CAR), pregnane x receptor (PXR), peroxisome 

proliferator-activated receptor α (PPARα), and NF-E2-related factor 2 (NrF2) were 

able to alter hMATE1 or hMATE2 function. 

1.9. Clinical association between OCT and MATE variant alleles and drug 

disposition, response and toxicity 

1.9.1. Metformin and type-2 diabetes 

Metformin is a biguanide organic cationic (pKa 12.4) drug that is routinely 

prescribed as the preferred first-line therapeutic drug in the treatment of type-2 

diabetes mellitus (Kirpichnikov et al., 2002, Nathan et al., 2009). It improves insulin 

sensitivity and thus decreases the insulin resistance that is prevalent in type-2 

diabetes mellitus. Metformin is not metabolized and is excreted unchanged by active 

tubular secretion and glomerular filtration into the urine. 

Although, the exact mechanistic pathway for metformin action is currently only 

partially understood, it is widely believed to activate adenosine monophosphate 

(AMP)-activated protein kinase (AMPK) by inhibition of the mitochondrial 

respiratory chain (Owen et al., 2000, Zhou et al., 2001). Moreover, this activation of 

AMPK by metformin requires the phosphorylation of AMPK by a serine-threonine 

kinase, LKB1 (Shaw et al., 2005). This results in an increase in cellular AMP levels 

which in turn lead to insulin suppression of glucose production via gluconeogenesis 

and increased peripheral glucose uptake (Hawley et al., 2010, Hundal et al., 2000, 

Zhou et al., 2001). However, evidence exists which suggests that metformin also 

exerts its metabolic effects via AMPK-independent mechanisms. 
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In addition to its favorable effect on hyperglycemia, metformin also has other 

beneficial effects. Firstly, metformin is able to exert its glucose-lowering actions 

with a low risk of hypoglyceamia. Secondly, it reduces the likelihood of developing 

macrovascular (hypertension and atheroscelorosis) and microvascular (neuropathy, 

retinopathy, and nephropathy) complications. Thirdly, it is weight neutral, that is, it 

does not affect body mass index (BMI) or decrease body weight in obese patients 

with or without diabetes. 

However, approximately 30-40% of patients using metformin as an anti-diabetic 

therapeutic experience adverse events such as diarrhea and nausea; or a more serious 

but rare side effect, lactic acidosis (Reitman and Schadt, 2007, Takane et al., 2008, 

Wang et al., 2002). Moreover, approximately 38% of metformin users did not 

achieve acceptable control of fasting glucose levels and showed a variable glycemic 

response (Reitman and Schadt, 2007). This variation in glycemic response to 

metformin was attributed to the uptake of the drug either at the hepatic level or the 

elimination of the drug at the renal level. Furthermore, it was established that genetic 

variations in solute carrier transporter (SLC) genes, specifically hOCT1 (hepatic 

level) and hOCT2 (renal level), are involved in this varied response to the drug 

(Figure 1.8) (Kimura et al., 2005a, Wang et al., 2002). In addition, genetic variation 

in another SLC, hMATE1 transporter protein was also implicated in the glucose 

lowering effect of metformin (Matthijs L Becker et al., 2009). 
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Figure 1.8 - Pharmacokinetics pathway of metformin (Gong et al., 2012). 

1.9.2. Implication of the Genetic Polymorphisms in OCTs on the 

Pharmacokinetic and/or Pharmacodynamic Profiles of Metformin in 

Humans 

Recent studies suggest that inter-patient variability in response to metformin therapy 

could be related to polymorphisms in the organic cation transporter (OCT) genes 

and/or the multidrug and toxin extrusion (MATE) genes.  

Shikata et al. (2007) and Shu et al. (2007) showed in their respective studies that 

hOCT1 is an important determinant of the therapeutic action of metformin and that 

genetic variation in the SLC22A1 gene may contribute to variation in therapeutic 

response to the drug, presumably by decreasing the hepatic uptake of the drug 
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(Shikata et al., 2007, Y Shu et al., 2007). Furthermore, Shu et al showed that 

deletion of Slc22a1 in mouse liver reduced metformin effects on 5’ adenosine 

monophosphate-activated protein kinase (AMPK) phosphorylation and 

gluconeogenesis; as a consequence, the glucose-lowering effect of metformin was 

abolished. In addition, they demonstrated that four loss-of-function polymorphisms 

in SLC22A1 in a study of 20 normal glucose-tolerant individuals resulted in a 

reduction of the effect of metformin on response to oral glucose (Y Shu et al., 2007). 

Subsequently, it was shown that individuals carrying the loss-of-function hOCT1 

polymorphisms had higher serum metformin concentrations, suggesting that this 

may be due to reduced hepatic uptake of the drug (Shu et al, 2008). 

Non-synonymous genetic variants in hOCT1, implicated in reduced activity in 

assays done in vitro, have been identified largely in populations of European 

ancestry. However, hOCT1 is highly polymorphic in ethnically diverse populations. 

Tzvetkov et al. (2009) found in their study an increase in renal metformin excretion 

in individuals with amino acid variants of hOCT1 with low or missing transport 

which is in apparent contradiction to the findings of Shu et al (Shu et al., 2008). 

Genetic variations in SLC22A2 are associated with decreased renal excretion and 

increased plasma concentrations of metformin (Shikata et al., 2007, Song et al., 

2008a, Song et al., 2008b, Wang et al., 2008). Furthermore, it was shown that 

coadministration of cimetidine resulted in the inhibition of renal tubular secretion of 

metformin and a concomitant increase in plasma levels of metformin. In addition, it 

was also demonstrated that drug-drug interactions between metformin and 

cimetidine depend on genetic polymorphisms in the hOCT2 gene. However, in 

contrast Tzvetkov et al. (2009) concluded in their study that there was not a 
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statistically significant association of genetic variants in hOCT2 with the renal 

elimination of metformin (Tzvetkov et al., 2009). This was consistent with the 

findings of previous studies which did not find any relationship between non-

synonymous variations of hOCT2 and metformin uptake in vitro or the glucose-

lowering effect of metformin (Leabman et al., 2002, Shikata et al., 2007). Moreover, 

Leabman et al (2002) concluded that selection has acted against amino acid changes 

in hOCT2, suggesting that hOCT2 is relatively intolerant of non-synonymous 

changes (Leabman et al., 2002). 

Metformin has also been identified as a good substrate of hMATE1 and hMATE2-K 

proteins. The hMATE1 protein is expressed in the bile canalicular membrane of 

hepatocytes and in the renal epithelium, whereas hMATE2-K is expressed primarily 

in the renal epithelium. Based on the tissue distributions of these proteins it is 

believed that they play an important role in the elimination of metformin into the bile 

(hMATE1) and urine (hMATE1 and hMATE2-K). Moreover, hMATE1 is 

considered to play an important role in the pharmacokinetics and pharmacodynamics 

of metformin (ML Becker et al., 2009). Furthermore, polymorphisms in the 

SLC47A1 gene were associated with a reduction in A1C level, consistent with a 

reduction in hMATE1 transporter activity (Matthijs L Becker et al., 2009). In 

addition, zu Schwabedissen et al showed that coordinate function of hMATE1 with 

hOCT2 likely contributes to the vectorial renal elimination of organic cationic drugs 

and that altered activity of hMATE1, whether by drugs or polymorphisms, should be 

considered as an important determinant of renal cationic drug elimination (zu 

Schwabedissen et al., 2010). 
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1.9.3. hOCT1 transcript levels and SNPs as predictors of response to imatinib 

in CML 

Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder, 

characterized by the presence of the Philadelphia (Ph) chromosome that results from 

a balanced reciprocal translocation between chromosomes 9 and 22 (Singh et al., 

2012). Functionally, this translocation results in the formation of the BCR-ABL gene 

which is then translated into the BCR-ABL a protein with intrinsic tyrosine kinase 

activity that is critical to the development of CML (Rowly, 1973). Imatinib mesylate, 

a tyrosine kinase inhibitor (TKI), is now the first-line therapeutic for the treatment of 

chronic phase CML (White et al., 2010). However, 30-40% of patients with CML 

are resistant to imatinib treatment and do not achieve a complete cytogenic response 

(CCR) (Druker et al., 2006, Hochhaus et al., 2009). 

This heterogeneity in imatinib response could be attributed to the presence of SNPs 

in the SLC22A1 gene which codes for the hOCT1 transporter protein (Giannoudis et 

al., 2013). hOCT1 is an influx organic cation transporter that mediates the uptake of 

imatinib, a selective inhibitor of the oncogenic protein Bcr/Abl, into CML cells 

(Crossman et al., 2005, Thomas et al., 2004). In a recent study by Giannoudis et al. 

(2013), the effect of polymorphisms rs628031 (M408V) and rs35191146 (M420del) 

on imatinib uptake and clinical efficacy was investigated (Giannoudis et al., 2013). 

In CML cell lines transfected with the M420del variant and/or M408V variant, 

M420del significantly decreased imatinib uptake. However, this effect was 

countered if the M408V SNP was also present. Giannoudis et al. (2013) concluded 

that the only SNP associated with imatinib treatment outcome was M420del 

35 
 

 

 

 

 



CHAPTER 1 

(rs35191146), with patients with the M420del genotype demonstrating an increased 

probability of imatinib treatment failure (Giannoudis et al., 2013). 

However, the role of hOCT1 in the uptake of imatinib is controversial. In a recent 

study, Nies et al. (2014) challenged the role of hOCT1 in imatinib uptake, and 

showed through transport and inhibition studies that overexpression of functional 

hOCT1 did not lead to increased accumulation of imatinib (Nies et al., 2014). They 

concluded that cellular uptake of imatinib is independent of hOCT1 and as such 

hOCT1 is not a valid biomarker for imatinib resistance. 

1.10. OCTs and MATEs in drug-drug interactions 

OCTs and MATEs play an important role in the uptake, distribution, and elimination 

of commonly used clinical drugs. Since more than 30% of clinically used drugs are 

organic cations, drug-drug interaction (DDI) by inhibition of OCT and/or MATE 

transporters may be clinically relevant. DDIs involving the inhibition of metabolism 

and/or excretion prolong the plasma elimination half-lives, leading to the 

accumulation of victim drugs in the body, and consequently potentiate 

pharmacological/adverse effects (Ito et al., 2012). 

Apical efflux by the MATE family is considered one of the sites of DDI in addition 

to OCTs at the basolateral membrane (Tsuda et al., 2009b). The anti-histamine 

cimetidine is known to cause DDIs with OCs in the kidney, and a previous study 

showed that the coadministration of cimetidine with fexofenadine (FEX), for 

example, decreases the renal clearance of the drug.  Previously hOCT2 was 

implicated in DDIs which involved the antihistamine cimetidine. In a study by 

Matsushima et al. (2009) it was suggested that the DDI with cimetidine and FEX 

was mainly caused by the inhibition of hMATE1-mediated efflux of FEX rather than 
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the inhibition of its renal uptake process (Matsushima et al., 2009).  Moreover, a 

recent study by Ito et al. (2012) supported this observation and showed that it is in 

fact the competitive inhibition of the luminal efflux by hMATE1, and not the 

basolateral uptake by hOCT2, which is the likely mechanism underlying the 

pharmacokinetic DDIs caused by cimetidine in the kidney (Ito et al., 2012). 

Inhibitors that preferentially interact with and impair the function of MATEs, may 

not only result in decreased clearance but may also lead to nephrotoxicity. 

Minematsu et al. (2011) investigated the inhibitory effect of 8 tyrosine kinase 

inhibitors on metformin transport activity by human hOCT1, hOCT2, hOCT3, 

hMATE1 and hMATE2-K (Minematsu et al., 2010). They found that imatinib, 

nilotinib, gefitinib, and erlotinib exerted selectively potent inhibitory effects on 

hMATE1, hOCT3, hMATE2-K, and hOCT1, respectively. Furthermore, they found 

that compared to the reference hOCT1, the M420del variant was more sensitive to 

drug inhibition erlotinib. 

1.11. OCTs and Cancer 

OCTs may play an important role in the treatment of malignant tumours. For 

example, hOCT1 is responsible for the active uptake of the charged hydrophilic anti-

cancer agents imatinib, cisplatin, oxaliplatin, picoplatin, irinotecan, and paclitaxel, 

thus contributing to the susceptibility of cancer cells to these antineoplastic drugs 

(Gupta et al., 2012). hOCT1 activity was reported to correlate well with the 

sensitivity of tyrosine kinase inhibitors (TKIs) such as imatinib in patients with 

chronic myeloid leukemia (CML). 

Yokoo et al. (2008) investigated whether hOCT3 was significantly involved in the 

oxaliplatin-induced cytotoxicity and accumulation of platinum in colorectal cancer 
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(Yokoo et al., 2008). They found that SLC22A3 expression was higher in colon and 

rectal cancerous tissues compared to normal tissues in Caucasian patients. Moreover, 

they found that the cytotoxicity and accumulation of platinum caused by the 

treatment of oxaliplatin but not cisplatin depended on SLC22A3 expression. Li et al. 

(2012) in a recent study investigated whether drug transporters played a role in 

determination of cisplatin resistance in cervical cancer cells (Li et al., 2012). They 

found that hOCT3 partially contributed to the sensitivity of adenocarcinoma cells to 

cisplatin cytotoxicity. Based on their data they suggested that down-regulation of 

SLC22A3 as a mechanism responsible for cisplatin accumulation in cervical 

adenocarcinoma cells. Expression of hOCT3 in kidney carcinoma cell lines increases 

chemosensitivity to the antineoplastics melphalan, irinotecan, and vincristine 

(Shnitsar et al., 2009). 

In a recent study, Heise et al. (2012) investigated the impact of OCT expression on 

hepatocellular carcinoma (HCC) and patient survival (Heise et al., 2012). They 

found that down-regulation of SLC22A1 expression in HCC is associated with 

advance tumour stages and a worse patient survival rate. Down-regulation of 

SLC22A1 expression was also associated with tumor progression and reduced patient 

survival in human cholangiocellular carcinoma (CCA) (Lautem et al., 2013). 

Moreover, the down-regulation of SLC22A1 was significantly associated with 

advanced CCA stages. These findings could be important in future treatment 

strategies for these diseases. 

Mohelnikova-Duchonova et al. (2013) investigated the association between the 

expression of solute carrier transporters and the prognosis of pancreatic cancer 

(Mohelnikova-Duchonova et al., 2013). They found that expression of some SLCs 
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predicted the outcome of PDAC patients regardless of chemotherapy and that there is 

considerable variability in the expression in SLC transporters between tumor and 

normal human pancreas tissues which may modify the outcomes of patients treated 

with nucleoside analogs- and platinum containing regimens. 

A common variant in 6q26-q27 is associated with distal colon cancer in a Japanese 

population (Cui et al., 2011).  However, Zhu et al. (2013) found that the genetic 

variant rs7758229 in 6q26-27 was not associated with colorectal cancer risk in a 

Chinese population (Zhu et al., 2013). Genetic and functional analysis have 

implicate the SLC22A3 gene together with 2 other genes in prostate cancer 

pathogenesis (Grisanzio et al., 2012). 

1.12. Genomic Diversity and Personalized Medicine: The African Perspective 

Although controversial, the concepts of race, ethnicity, and ancestry, have for a long 

time been recognized as having a strong influence on pharmacogenetic discovery, 

and our understanding of population differences in drug efficacy and toxicity (Urban, 

2010). 

Most dosing regimens are recommended on the basis of clinical trials that have been 

conducted in Caucasian or Asian populations which may not be appropriate for 

African populations (Masimirembwa and Hasler, 2013). 

Pharmacogenomic/pharmacogenetic applications hold the promise of using genome-

based technologies to improve health by the prevention or effective treatment of 

disease. The current belief is that even developing nations, such as those in sub-

Saharan Africa, can benefit from pharmacogenomics in order to inform public health 

policies, designing and interpreting clinical trials, and possibly to help guide 
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clinicians to prospectively evaluate those patients with the greatest probability of 

expressing a variant genotype (Suarez-Kurtz, 2008, Daar and Singer, 2005). 

The South African health system, both private and public, faces a high burden of 

communicable and non-communicable diseases, high maternal and child mortality, 

as well as injury and violent related deaths (Coovadia et al., 2009, Mayosi et al., 

2012). This high burden of infectious and chronic diseases results in a health system 

that is continuously under-resourced. Although South Africa’s per capita health 

expenditure is the highest of any middle-income country in the world its health 

outcomes are often worse than that of lower-income countries (Coovadia et al., 

2009, Warnich et al., 2011). The current challenge in 

pharmacogenomics/pharmacogenetics in sub-Saharan Africa, and for that matter 

South Africa, is to ascertain the extent of the genomic diversity in our under-studied 

populations, to understand genotype-environment interactions, and to translate this 

knowledge into clinical applications that can be utilized in public health care (Hardy 

et al., 2008). 

1.13. Summary and Main Objectives of the Project 

The past decade has seen remarkable progress in the field of membrane transporters, 

not only in terms of functional characterization and substrate specificity but also in 

elucidating the important role that transporters play in diseases such as cancer and in 

the disposition and efficacy of drugs in clinical use. To date 48 members of the ABC 

and over 325 members of the SLC families of membrane transporters have been 

identified. These transporters are ubiquitously expressed and play a critical role in 

maintaining cellular and organismal homeostasis by importing nutrients essential for 

cellular metabolism and eliminating metabolic by-products and toxic xenobiotics. 
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Whereas most membrane transporters are oligospecific (specialized for the 

translocation of specific metabolic or nutritional compounds), polyspecific 

transporters accept compounds with different sizes and molecular structures. These 

polyspecific transporters exhibit large variations in affinity and turnover for different 

compounds and may have specific physiological roles. Given the fact that 40% of 

clinically used drugs exist as organic cations at physiological pH, the polyspecific 

OCT and MATE families of SLCs have attracted a significant amount of interest. 

The genes encoding these transporters are also being investigated as potential risk 

loci for cancer, and SNPs in these genes have been associated with imatinib 

treatment failure in CML patients. Moreover, genetic variations in these transporters 

are increasingly being recognized as a possible mechanism that can explain the inter-

individual variability in drug efficacy and toxicity. However, the majority of these 

studies were conducted in Caucasian and Asian populations and were based on 

genetic variants that are specific to these populations. The findings of these studies 

are often extrapolated for use and interpretation in other populations. This is in spite 

of the fact that the population frequency of variant alleles can differ markedly 

between populations. In addition, ethnic-specific variants exist in non-Caucasian and 

non-Asian populations which may be more predictive of treatment outcome or 

disease progression for a specific ethnic group. However, the allelic distribution and 

role of genetic variants of OCT and MATE transporters in drug efficacy and toxicity 

and disease progression in indigenous South African populations have not received 

the necessary priority. 

Inter-individual variability in drug response is a significant clinical problem which 

has attracted a fair amount of research interest. It is estimated that genetic factors can 

account for approximately 15-30% of inter-individual variability in drug response 
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and efficacy. Initially the focus has been on drug metabolizing enzymes, however 

membrane transporter belonging to the SLC family are increasingly being 

recognized as a possible mechanism explaining this variability in drug response and 

efficacy. Given that 40% of therapeutic drugs exist as OCs at physiological pH, the 

OCTs and MATEs of the SLC family is receiving a greater amount of attention. 

Reduced-function variants have been identified, primarily in American and European 

Caucasians, which affect the pharmacokinetics of OCT and MATE substrate drugs 

such as metformin for example. Although African populations are considered to 

harbour more genomic diversity than Caucasian populations, this diversity is 

however under-studied. Thus, little or no information is available on the extent of 

genetic variation in OCT and MATE genes within African populations. Although 

several populations from West, East, and Central Africa are included in the 1000 

Genomes and HapMap projects, these groups cannot represent the genomic diversity 

of the entire continent. Therefore, in order to bridge the gap that exist with regards to 

information on the pharmacogenetic relevant OCT and MATE genes, especially in 

indigenous southern African populations, this study prioritized the genotyping of 78 

SNPs in four genes, known to affect drug disposition and efficacy, in the Xhosa 

population of South Africa. 

We have developed and optimized eight SNaPshot™ multiplex genotyping systems 

covering the 78 previously identified SNPs in SLC22A1-3, and SLC47A1. The 

SLC22A1 systems were subsequently used to genotype 148 Xhosa individuals, which 

is described in Chapter 2. The allele and genotype frequencies obtained were then 

compared to other populations to assess the amount of variation between the Xhosa 

population and two other African populations, the Yoruba of Nigeria and Luhya of 

Kenya, African Americans, Caucasians, and Asians. In addition, the genotypic 
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information was used to establish haplotype structures for the Xhosa population in 

the SLC22A1 gene which can potentially be used in future pharmacogenetic studies. 

In Chapter 3 we expanded the study to investigate genotype and allele frequency 

distributions of 20 nonsynonymous SNPs of SLC47A1, the gene that codes for the 

H+/organic cation efflux transporter hMATE1, which is co-localized with the uptake 

OCTs hOCT1 (liver) and hOCT2 (kidney) and facilitates the elimination of cationic 

drugs and other xenobiotics from the kidney into the urine. Chapter 4 describes the 

genotyping of 20 nonsynonymous SNPs of SLC22A2, the gene coding for the 

kidney-specific hOCT2 which is a hOCT1 paralogue and a known site of DDIs. The 

hOCT1 and hOCT2 paralogue hOCT3 has been identified as a biomarker in several 

cancers and is also involved in the transport of various antineoplastics. The extent of 

genetic variation within the SLC22A3 gene, encoding hOCT3, was assessed by 

genotyping previously identified 18 nonsynonomous as described in Chapter 5. In 

order to determine whether the Xhosa participants harboured any novel genetic 

polymorphisms, we embarked on sequencing approximately 500bp of the proximal 

promoter region and all 11 exons plus flanking regions of SLC22A2 in 96 individuals 

as described in Chapter 6. The main conclusions of the project were summarized in 

Chapter 7, and few prospects for the pharmacogenetics of OCTs and MATEs in the 

indigenous African populations residing in South Africa were also presented. 
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CHAPTER 2 

Genetic Polymorphisms and Haplotype Structure of SLC22A1 in the Xhosa 

Population 

2.1. Abstract 

Human organic cation transporter 1 is primarily expressed in hepatocytes and 

mediates the electrogenic transport of various endogenous and exogenous 

compounds, including clinically important drugs. Genetic polymorphisms in the 

gene coding for human organic cation transporter 1, SLC22A1, are increasingly 

being recognized as a possible mechanism explaining the variable response to 

clinical drugs, which are substrates for this transporter. The genotypic and allelic 

distributions of nineteen nonsynonymous and one intronic SLC22A1 single 

nucleotide polymorphisms were determined in 148 healthy Xhosa participants from 

South Africa, using a SNAPshot™ multiplex assay. In addition, haplotype structure 

for SLC22A1 was inferred from the genotypic data. The minor allele frequencies for 

S14F (rs34447885), P341L (rs2282143), V519F (rs78899680), and the intronic 

variant rs622342 were 1.7%, 8.4%, 3.0%, and 21.6%, respectively. None of the 

participants carried the variant allele for R61C (rs12208357), C88R (rs55918055), 

S189L (rs34104736), G220V (rs36103319), P283L (rs4646277), R287G 

(rs4646278), G401S (rs34130495), M440I (rs35956182), or G465R (rs34059508). In 

addition, no variant alleles were observed for A306T, A413V (rs144322387), 

M420V (rs142448543), I421F, C436F (rs139512541), V501E, or I542V 

(rs137928512) in the population. Eight haplotypes were inferred from the genotypic 

data. This study reports important genetic data that could be useful for future 
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pharmacogenetic studies of drug transporters in the indigenous Sub-Saharan African 

populations.  

2.2. Introduction 

Membrane transporters play an important role in the metabolism of clinical drugs 

and endogenous compounds. Single nucleotide polymorphisms (SNPs) in ATP-

binding cassette (ABC) and solute carrier transporter (SLC) genes have been 

increasingly recognized as a possible mechanism accounting for altered transport 

activity, which may have profound clinical implications (Leabman et al., 2003). In 

general, genetic factors are estimated to account for 15-20% of inter-individual 

variations in drug disposition and responses (Choi and Song, 2008, Evans and 

Relling, 1999, Eichelbaum et al., 2006). However, for certain drugs genetic factors 

can account for up to 95% of inter-individual variability in drug disposition and 

effect (Eichelbaum et al., 2006, Evans and Relling, 2004). 

Polyspecifc organic cation transporters (OCTs) are involved in the sodium-

independent electrogenic transport of small organic cations (OCs) with different 

molecular structures (Koepsell et al., 2007). These organic cations include clinically 

important drugs (metformin, cimetidine, procainamide), endogenous compounds 

(dopamine, norephinephrine, and toxic substrates (tetra-ethylammonium, 

haloperidol-derived pyridinium metabolite, 1-methyl-4-phenylpyridinium) 

(Gorboulev et al., 1997). Based on their substrate properties and tissue distributions, 

human OCT1-3 are thought to play important roles in the biliary and renal excretion 

of their substrates and the distribution of organic cationic drugs in the liver, kidney, 

heart, and brain (Jonker and Schinkel, 2004). 
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The uptake transporter hOCT1 is encoded by the SLC22A1 gene which is located on 

chromosome 6q26, and consists of 11 exons spanning approximately 37kb 

(Gorboulev et al., 1997, Koehler et al., 1997, Koepsell et al., 2007). hOCT1 is 

primarily expressed in the sinusoidal or basolateral membrane of hepatocytes and is 

thought to play an important role in the hepatic uptake, distribution and excretion of 

clinically important drugs (Gorboulev et al., 1997, Zhang et al., 1997). 

The role of hOCT1 in the clinical pharmacology of clinical therapeutics such as the 

anti-diabetic drug metformin, the anti-neoplastic imatinib, the anti-HIV drug 

lamivudine, and the serotonin receptor type antogonists tropisetron and ondansetron 

has been extensively researched (Yan Shu et al., 2007, Shu et al., 2008, Tzvetkov et 

al., 2009). Moreover, a number of SLC22A1 variants have been associated with 

functional changes in protein activity, as well as drug disposition, response, and 

toxicity. For example, Bazeos et al. (2010) found that SLC22A1 transcript levels and 

SNPs can be predictive factors for response to imatinib in chronic myeloid leukemia 

(CML) (Bazeos et al., 2010). Previous studies have shown that hOCT1 is highly 

polymorphic in ethnically diverse populations (Sakata et al., 2004, Shu et al., 2003, 

Kang et al., 2007). 

These aforementioned reduced-function genetic variants were however primarily 

found in studies with European participants and have not been consistently replicated 

for other ethnic groups (Chen et al., 2010b, Leabman et al., 2003). Recent reports 

using genome-wide polymorphisms suggested that: (i) genetic variation seen outside 

of Africa is generally a subset of the total genetic variation that exists within Africa, 

(ii) genetic diversity decreases with increased geographic distance from Africa, and 

(iii) linkage disequilibrium (LD) patterns increase proportionally to the distance from 
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Africa (Jakobsson et al., 2008, Li et al., 2008, Tishkoff et al., 2009). Moreover, 

Rosenberg et al (2002) found that there is greater genetic diversity among African 

populations compared to Caucasian or Asian populations (Rosenberg et al., 2002). 

However, despite Africa harboring a significant proportion of human genomic 

diversity, this genomic diversity is unfortunately relatively under-studied (Hardy et 

al., 2008, Tishkoff et al., 2009). 

South Africa is home to a large number of indigenous and immigrant population 

groups (Hardy et al., 2008, Benjeddou, 2010). Amongst these are the Bantu-

speaking populations such as the Xhosa, Zulu, and Sotho, which are believed to have 

originated approximately 3000 – 5000 years ago in West Africa between the present-

day Cameroon and Nigeria (Berniell-Lee et al., 2009, Lane et al., 2002). The 

indigenous African populations potentially contain a significant amount of genomic 

diversity (Tishkoff et al., 2009, Hardy et al., 2008).  These populations include the 

Xhosa, historically indigenous to the Eastern Cape Province of South Africa, and the 

second largest ethnic grouping in the country making up an estimated 8 million or 

17.6% of the South African population (Drögemöller et al., 2010, Warnich et al., 

2011). 

This genomic diversity could provide a wealth of information and knowledge, which 

could eventually be applied to aid our understanding of the impact of genetic 

variation on complex diseases such as cancer, diabetes mellitus, hypertension and the 

inter-individual variability in response of patients to drugs used in the treatment of 

these diseases. Although limited, studies that have been conducted in South Africa 

suggest that South African populations have unique genetic profiles which include 
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novel and rare variants, with allele frequencies differing from each other and other 

African populations (Warnich et al., 2011). 

Previous studies have shown that South African populations exhibit unique allele 

frequencies and novel genetic variations in pharmacogenetically relevant genes 

(Ikediobi et al., 2011). However, these studies have primarily focused on variants in 

drug metabolizing enzyme genes. Information on variants in drug transporter genes 

for South African populations is however limited or non-existent. Therefore, the aim 

of this study was to investigate the genotypic and allelic distributions of nineteen 

nonsynonymous and one intronic SNP(s), and to infer the haplotype structure of the 

SLC22A1 gene in the Xhosa population. These SNPs include A306T, A413V, 

M420V, C436F, I421F, V501E, V519F, and I542V for which, to our knowledge, no 

population data exist in the public domain. 

2.3. Materials and Methods 

2.3.1. Subjects 

Samples were obtained from the participants with informed consent. This study was 

approved by the Senate Research Ethics Committee of the University of the Western 

Cape, South Africa. Biological samples were collected in the form of buccal swabs 

from 148 unrelated healthy volunteers from the Xhosa population. Ethnicity of 

volunteers was determined by self-report. 

2.3.2. DNA extraction 

Genomic DNA was isolated from buccal swab samples using a standard salt-lysis 

protocol and stored frozen at -20°C until the time of genotyping (Leat et al., 2004a). 
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2.3.3. SNP selection 

A total of 20 OCT1 gene SNPs (19 nonsynonymous and 1 intronic) were selected for 

this study. SNPs were selected from the literature and the Ensembl database 

(http://www.ensebl.org) (Flicek et al., 2012). Variants A306T, A413V, M420V, 

C436F, I421F, V501E, V519F, and I542V were included in this study based on 

predicted effect on function, using the SIFT (Sorting Intolerant From Tolerant) 

program (Flanagan et al., 2010, Kumar et al., 2009, Ng and Henikoff, 2003). To our 

knowledge no population data exist in the public domain for these variants. 

2.3.4. Primer design 

Multiplex PCR primers, listed in Table 2.1, were designed to have an annealing 

temperature between 55°C and 60°C using Primer3 software 

(www.genome.wi.mit.edu/cgi-bin/primer/primer3). To test for possible non-specific 

amplification, primers were aligned with the NCBI sequence databases using Basic 

Local Alignment Search Tool (www.ncbi.nlm.nih.gov/blast/blast-cgi). Two 

SNaPshot® Multiplex systems were specifically designed for the study, successfully 

optimized and used for genotyping. The single base extension primer sets for 

multiplex 1 and 2 are listed in Tables 2.2 and 2.3. 
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Table 2.1 - Multiplex PCR primers for the generation of SLC22A2 amplicons used in SNaPshot™ genotyping.  

 

Location Forward primer (5´to 3´) Reverse Primer (5ʹto 3ʹ) Amplified region (NC_000006.12) Amplicon length 
 (bp) 

     

Exon 1 TGCTGAGCCATCATGCCCACCGTG GGACACAGCCAGACACCCACG 160121924 - 160122483 560 

Exon 2 CTCTTGCCGTGGTATGACTGGCAG CAGAGGGGCTTACCTGGACTGG 160130080 - 160130240 161 

Exon 3 CCTCCATGTCTCCTTCTCTCTGAAG CTGGCCTCATCCCCATGATAATTAC 160132207 - 160132411 205 

Exon 4 CCCGCATAACGTCCACACCTCCTG GTAGGCAGGAGGAAGGGCCTCAC 160133927 - 160134148 222 

Exon 5 & 6 GATAGTGATGAGTGGTGTTCGCAG GCGAGCGTGCTGATTCTGCCT 160136196- 160136698 503 

Exon 7 GACTTGAAACCTCCTCTTGGCTCAG TTCCCCACACTTCGATTGCCTGGGA 160139628 - 160139923 296 

Exon 8 GAAGCCCCCATCCACCACCCACACC GGCTACCCCTGTTCCATGCACTCAC 160143495 - 160143674 180 

Exon 9 ATTGCATGGGCAACGGATGGCT CCATGCTGAGCCCACTGCCGAGCTG 160154557- 160154972 416 

Intron 9 GAGTAGGAGGGGTTAATAGAGAGAG GTAGCTGAGACTACATGCATGCACCAC 160151769 - 160152004 236 

Exon 10 TTCCTCTCTTTGGCTGGCTGTGA ACTCCAGCAAACCTTGCTCTCTGT 160155888 - 160156508 621 

Exon 11 TGCCCTTTTCTTCTTTGCTGTTTGC AGCACCAACAGCTTTCCCTAGATCG 160158364 - 160158823 460 
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2.3.5. Multiplex PCR 

All the SLC22A2 exons and the portion of intron 9 spanning rs622342 were 

simultaneously amplified using the primers listed in Table 2.1. The PCR reactions 

were performed in a 20 µl volume, containing 20 – 50 ng of genomic DNA, 1 x 

Qaigen multiplex PCR master mix (Qaigen, Courtaboeuf, France) and 0.2 µM of 

each primer. Cycling consisted of an initial 15 minute activation step for HotStar Taq 

polymerase at 95°C, followed by a total of 35 cycles using the following conditions: 

94°C denaturation for 30 seconds, primer annealing at 60°C for 90 seconds, and 

primer extension at 72°C for 30 seconds, and 15 minutes of final extension at 72°C 

and a 4°C holding step. PCR products were purified to remove excess primers and 

un-incorporated dNTPs using an Exo/SAP protocol. The entire 20 µl of PCR 

products were incubated with 0.5 µl of Exo1 and 1 µl of FastAP for 30 minutes at 

37°C followed by 15 minutes at 80°C for enzyme inactivation. PCR quality and 

yield were checked using NanoDrop. 
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Table 2.2 – SLC22A1 multiplex 1 single base extension primers. 

NCBI 
(dbSNP) 

Amino Acid 
Change 

Nucleotide 
Change 

Single Base Extension Primers 
(5′ to 3′) 

Position 
Accession number 
(NC_000006.12) 

Size bp polydGACT 
tail 

       

rs34447885 S14F C/T TGACTATTCTGGAGCAGGTTGGGGAGT 160121976 40 13 

rs34104736 S189L C/T GAACTGTGCTGGTCAACGCGGTGT 160132282 45 21 

rs36103319 G220V G/T GGTCAGCAAGGGCAACTGGATGGCTG 160132375 50 24 

rs4646277 P283L C/T GATAACAGCCACCGGGGGACACC 160136228 55 32 

rs34130495 G401S G/A AGCCCTCATCACCATTGACCGCGTG 160139792 60 35 

rs72552763 M420V A/G AACTTACCAGGTGAGATAAAAATCA 160139849 65 40 

rs35956182 M440I G/A CATAATCATGTGTGTTGGCCGAAT 160143584 70 46 

rs34059508 G465R G/A CCACAGGGAGGAACACACCATCACTC 160154805 75 49 

rs78899680 V519P G/T CTACTTCTTCCAGAGACCAAGGGG 160156031 80 56 

rs137928512 I542V A/G CAGAGGTTTGGACCTTAAGGTAAA 160158541 85 61 
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Table 2.3 – SLC22A1 multiplex 2 single base extension primers. 

NCBI 
(dbSNP) 

Amino Acid 
Change 

Nucleotide 
Change 

Single Base Extension Primers 
(5′ to 3′) 

Position 
Accession number 
(NC_000006.12) 

dGACT Size bp 

       

rs622342 Intron A/C ATTTCTTCAAATTTGATGAAAACTTC 160151834 14 40 

rs12208357 R61C C/T TCCTGGGGTGGCTGAGCTGAGCCAG 160122116 20 45 

rs4646278 R287G C/G CAGTGTTTCTTTTTTGTGATAACAGCCACC 160136239 20 50 

rs55918055 C88S T/A TCCAGTCCACTTCATAGCGCCTGC 160122197 31 55 

COSM164365 A306T G/A AGGAGGCAACTTCCCATTCTTTTGAG 160136296 34 60 

rs2282143 P341L C/T CTTCATTTGCAGACCTGTTCCGCACGC 160136611 38 65 

rs144322387 A413V C/T CCCCATGGCCATGTCAAATTTGTTGG 160139829 44 70 

rs151333280 I421F A/T CCAACTTACCAGGTGAGATAAAAA 160143571 51 75 

rs139512541 C436F G/T GCACTGGTTAAACATCATAATCATGT 160143571 54 80 

rs143175763 V501E T/A CACTCCCGCGGCAAGCAGGCCCAAC 160155979 60 85 
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2.3.6. Multiplex minisequencing reactions 

Multiplex minisequencing was performed in a 10 µl reaction volume using 3 µl of a 

1/10 dilution of purified PCR products, 0.1-0.2 µM of primers, and 5 µl of 

SNaPshot® ready reaction mix. Sequence cycling consisted of 25 cycles of 

denaturation at 96°C for 10 seconds, primer annealing at 50°C for 5 seconds, and 

primer extension at 60°C for 30 seconds. Post-extension treatment was done by 

adding 1 U of FastAP to the 10 µl reaction volume and incubation at 37°C for 30 

minutes followed by 15 minutes at 80°C to deactivate the enzyme. 

2.3.7. Electrophoresis of the minisequencing products 

The purified minisequencing products (1 µl) were mixed with 8.7 µl of HiDi™ 

formamide and 0.3 µl of GeneScan-120 Liz size standard (Applied Biosystems) and 

denatured at 95°C for 5 minutes. The fluorescently labelled fragments were 

separated on 36 cm-long capillaries in POP4 polymer on an ABI Prism 3500 Genetic 

Analyzer (Applied Biosystems). Data analyses were performed using GeneMapper® 

IDX Software Version 1.2. 

2.3.8. Statistical Analysis 

Genotype and allele frequencies as well as the deviation from the Hardy-Weinberg 

Equilibrium were calculated using GenAlEx 6.5 software (Peakall and Smouse, 

2012, Wigginton et al., 2005). Allele and genotype frequencies are given with 

binomial proportion 95% confidence intervals (CI) calculated according to the 

method of Wilson. The SHEsis analysis platform was used to infer the haplotype 

frequencies (Yong and Lin, 2005, Li et al., 2009). Statistical significance was 

defined as p<0.05. 
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2.4. Results 

The population studied consisted of 148 healthy Xhosa individuals between the ages 

of 18 and 61 years. There were 80 (54%) female and 68 (46%) male participants. 

The mean age of female participants was 25.3±9.0 years, whereas male participants 

had a mean age of 24.8±7.7 years. 

The genotype and allele frequencies of the 20 OCT1 gene SNPs investigated in the 

148 Xhosa subjects are summarized in Table 4. The allelic frequency of each SNP 

was in HWE (p>0.05), except for rs622342. Sixteen out of the nineteen investigated 

nonsynonymous SNPs were monomorphic in the Xhosa population. None of the 

participants were homozygous for the variant allele for S14F (rs34447885), P341L 

(rs2282143), and V519F (rs78899680). The S14F variant genotype frequencies for 

homozygote wild-type (CC), heterozygote (CT) and homozygote (TT) were 96.6%, 

3.4% and 0.0%, respectively. The MAF observed for S14F was 1.7%.  The P341L 

variant genotype frequencies, on the other hand, for homozygote wild-type (CC), 

heterozygote (CT) and homozygote (TT) were 83.1%, 16.9% and 0.0%, respectively. 

The V519F variant genotype frequencies for homozygote wild-type (CC), 

heterozygote (CT) and homozygote (TT) were 93.9%, 6.1% and 0.0%, respectively. 
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Table 2.4 - Genotype and allele frequencies of OCT1 (SLC22A1) gene SNPs in 148 
healthy Xhosa individuals. 

Amino Acid 
Substitution dbSNP ID 

 Observed Genotype 
Frequency  Allele Frequency  

Genotype % 95% CI Allele % 95% CI HWE 
(P) 

         

S14F rs34447885 
CC 96.6 92.0 – 98.8 C 98.3 96.3 – 99.1 

0.834 CT 3.4 1.2 – 8.0 T 1.7 0.9 – 3.7 
TT 0.0 0.0 – 3.1    

         

R61C rs12208357 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

C88R rs55918055 
TT 100.0 96.9 – 100.0 T 100.0 98.4 – 100.0 

 TA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

S189L rs34104736 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 -1.6 
TT 0.0 0.0 – 1.3    

         

G220V rs36103319 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GT 0.0 0.0 – 1.3 T 0.0 0.0 -1.6 
TT 0.0 0.0 – 1.3    

         

P283L rs4646277 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3  0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

P341L rs2282143 
CC 83.1 74.6 – 80.9 C 91.6 87.0 – 93.7 

0.261 CT 16.9 12.8 – 19.1 T 8.4 6.3 -13.0 
TT 0.0 0.0 – 3.1    

         

G401S rs34130495 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 -1.6 
AA 0.0 0.0 – 1.3    

         

M440I rs35956182 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 -1.6 
AA 0.0 0.0 – 1.3    

         

G465R rs34059508 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

V519F rs78899680 
GG 93.9 88.6 – 96.9 G 97.0 94.2 – 98.5 

0.703 GT 6.1 3.1 – 11.4 T 3.0 1.5 – 3.7 
TT 0.0 0.0 – 3.1    

         

Intronic SNP rs622342 
AA 64.2 54.7 – 70.3 A 78.4 72.2 – 81.8 

0.048 AC 28.4 22.3 – 36.9 C 21.6 18.2 – 23.0 
CC 7.4 6.1 – 16.2    

         

R287G rs4646278 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CG 0.0 0.0 – 1.3 G 0.0 0.0 – 1.6 
GG 0.0 0.0 – 1.3    

         
I542V rs137928512 AA 100.0 96.9 – 100.0 A 100.0 98.4 – 100.0  

  AG 0.0 0.0 – 1.3 G 0.0 0.0 – 1.6    GG 0.0 0.0 – 1.3     
         

M420V rs142448543 
AA 100.0 96.9 – 100.0 A 100.0 98.4 – 100.0 

 AG 0.0 0.0 – 1.3 G 0.0 0.0 – 1.6 
GG 0.0 0.0 – 1.3    
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A413V rs144322387 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

I421F rs151333280 
AA 100.0 96.9 – 100.0 A 100.0 98.4 – 100.0 

 AT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

C436F rs139512541 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

V501E rs143175763 
TT 100.0 96.9 – 100.0 T 100.0 98.4 – 100.0 

 TA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

A306T COSM164365 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         
 

The MAF of a selected number of the investigated SLC22A2 gene SNPs in different 

ethnic groups are summarized in Table 2.5 and depicted in Figure 2.1. SLC22A1 

SNP variants R61C (rs12208357), C88R (rs55918055), S189L (rs34104736), G401S 

(rs34130495), and G465R (rs34059508) were not observed in the Xhosa, Sub-

Saharan or Asian populations. However, it was observed in Caucasian populations.  

Two SLC22A1 SNP variants, S14F and V519F, were only observed in the Xhosa and 

the other Sub-Saharan populations, but not in the Asian or Caucasian populations. 

Inferred haplotypes are listed in Table 2.6. 
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Table 2.5 - Comparison of MAF of SLC22A1 gene SNPs of the Xhosa population to other ethnic groups. 
dbSNP ID Amino acid 

change 
Minor 
Allele 

Minor Allele Frequency (%) 
Xhosaa Luhyab Yorubab African-Americanc Japanesed Chinese-Hanb Caucasian-Finishb Caucasian-Americane 

           

rs34447885 S14F T 1.7 2.6 1.7 3.1 0.0 0.0 0.0 0.0 

rs12208357 R61C T 0.0 0.0 0.0 0.0 0.0 0.0 5.4 7.2 

rs55918055 C88R A 0.0 0.0 0.0 ND ND 0.0 0.0 0.6 

rs34104736 S189L T 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 

rs36103319 G220V T 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 

rs4646277 P283L T 0.0 0.0 0.0 ND ND 0.5 1.3 ND 

rs2282143 P341L T 8.4 8.0 9.0 8.2 16.8 12.4 16.7 0.0 

rs34130495 G401S A 0.0 0.0 0.0 0.7 0.0 0.0 1.6 1.1 

rs35956182 M440I A 0.0 0.0 0.0 0.5 0.0 0.0 2.7 0.0 

rs34059508 G465R A 0.0 0.0 0.0 0.0 0.0 0.0 1.1 4.0 

rs78899680 V519F T 3.0 2.0 6.0 ND ND 0.0 0.0 ND 

rs622342 Intronic C 23.0 22.0 15.0 ND ND 13.2 37.1 ND 

           

This study; b. Data from 1000Genomes; c. Data from (Shu et al., 2003); d. Data from (Itoda et al., 2004) 
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Figure 2.1 - Allele frequencies of selected SLC22A1 SNPs in the Xhosa population compared to other African and world populations. 
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Table 2.6 - Haplotype structure defined by 20 SNPs in the SLC22A1 gene in the 
Xhosa population. 

Haplotype No. Haplotypes a Frequency % 

   

Haplotype *1 CCTCGCCGCGCAAGGAGTGA 69.4 

Haplotype *2 CCTCGCCGCGCAAGGAGTTA 2.8 

Haplotype *3 CCTCGCCGCGCAAGGCGTGA 17.6 

Haplotype *4 CCTCGCCGTGCAAGGAGTGA 5.0 

Haplotype *5 CCTCGCCGTGCAAGGCGTGA 3.2 

Haplotype *6 CCTCGCCGTGCAAGGCGTTA 0.2 

Haplotype *7 TCTCGCCGCGCAAGGAGTGA 1.1 

Haplotype *8 TCTCGCCGCGCAAGGCGTGA 0.6 

 Total 99.9 

a) Haplotype sequences are based on the position of SNPs on chromosome 6. 
 

2.5. Discussion 

Single nucleotide polymorphisms in hOCT1 have been increasingly recognized as a 

possible mechanism explaining inter-individual variation in drug response (Leabman 

et al., 2003). In this study we determined the allelic frequency of 20 SNPs in the 

hOCT1 gene of 148 healthy individuals of the Xhosa population of South Africa, 

and the data was compared with other published studies. No polymorphisms were 

observed for the Xhosa population for sixteen out of the twenty SNPs investigated in 

this study. In a previous study aimed at the development of male specific genotyping 

systems for use in sexual assault cases in South Africa, low levels of polymorphism 

were also observed for the Xhosa population (Leat et al., 2004a, Leat et al., 2007, 

Leat et al., 2004b). 
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hOCT1 carrying the S14F (rs34447885) substitution was previously shown to 

exhibit an increased uptake of the prototypical organic cation MPP+ (Shu et al., 

2003). However, in a subsequent study by Shu et al. (2007) it was shown that the 

S14F variant displayed a reduced uptake of the anti-diabetic drug metformin which, 

was attributed to a reduction in the transporter’s Vmax for metformin (Y Shu et al., 

2007). The MAF of S14F (rs34447885) for the Xhosa population (2.0%) was similar 

to that of African-Americans (3.0%) (Shu et al., 2003) and of two other sub-Saharan 

African populations, the Luhya in Webuye, Kenya (3.0%) and the Yoruba in Ibadan. 

Nigeria (2.0%). However, the MAF was significantly higher than that observed in 

Caucasians (0.0%) and Asians (0.0%). Therefore, it is possible to expect that drugs 

which are substrates of hOCT1 could have different response profiles in the Xhosa 

population compared to Caucasian and Asian populations. 

Previous studies have found that hOCT1 R61C (rs12208357) and G401S 

(rs34130495) variants showed reduced transport of the prototypical organic cation 

MPP+ (Shu et al., 2003). In addition, it was shown that these variants exhibited 

reduced transport of metformin (Y Shu et al., 2007). Furthermore, the R61C variant 

has been reported to be strongly correlated with low hOCT1 protein expression in 

liver tissues of a 150 Caucasian subjects (Nies et al., 2009). Moreover, these 

reduced-function variants were associated with an increase in the renal clearance of 

metformin (Tzvetkov et al., 2009). Both these variants are frequently observed in 

Caucasian populations with MAF of 7.2% and 4%, respectively (Shu et al., 2003). In 

contrast, none of these variants were observed for the Xhosa, Luhya, Yoruba, 

African-Americans or any of the Asian populations. 
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In Xenopus laevis oocytes expression systems, the uptake of the prototypical organic 

cation MPP+ by the C88R (rs55918055) variant transporter was reduced to 1.4% 

compared with the reference, whereas serotonin uptake was reduced to only 13% of 

the wild-type (Kerb et al., 2002). The MAF for C88R in a Caucasian population was 

observed at 6.2% by Kerb et al (Kerb et al., 2002), compared to 0.0% for the Xhosa 

population in this study. 

The hOCT1 variants G220V (rs36103319) and G465R (rs34059508) were first 

identified as non-functional variants. The G220V variant has thus far only been 

observed in the African American population with MAF of 0.5%, whereas, the 

G465R was only observed in the Caucasian population at a MAF of 4.0%. 

Moreover, G465R was associated with reduced localization at the basolateral 

membrane (Y Shu et al., 2007). However, none of these non-functional variants were 

observed in this study for the Xhosa population. These variants were also not 

observed in other African populations or in any of the Asian populations. 

The allele frequency of P341L (rs2282143) in the Xhosa population (8.4%) was 

similar to those of other Sub-Saharan African populations, lower than the Asian 

populations, and significantly higher than that of the Caucasian populations (Table 

5). Functional transport assays conducted in vitro have shown that the P341L variant 

results in a decrease rate of MPP+ transport, and has no effect on the transport of the 

anti-diabetic drug metformin (Sakata et al., 2004, Y Shu et al., 2007). Thus, 

impaired transport activities related to the P341L SNP may differ between Africans, 

Asians, and Caucasians, with consequent effects on the 

pharmacokinetics/pharmacodynamics of certain substrates (Kang et al., 2007). 
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The P283L (rs4646277) variant was first described in a Japanese population and was 

shown to have reduced transport activity despite similar protein expression levels of 

the plasma membrane (Takeuchi et al., 2003, Sakata et al., 2004). The P283L variant 

was subsequently also found in other Asian populations with an allele frequency of 

1.3% in a Korean population and did not differ significantly from those of Chinese 

and Vietnamese populations (Kang et al., 2007).This variant was however not 

observed in the Xhosa population or any of the other African populations nor in any 

of the Caucasian populations (Figure 2.1). 

The hOCT1 Met420 deletion (rs72552763) that occurs in exon 7 is a common 

variant with a MAF of 18.5% in Caucasians and 5% in African Americans, 

respectively (Goswami et al., 2014, Shu et al., 2003). The expression of this variant 

in HEK293 cells resulted in reduced hOCT1 function with a concomitant reduction 

in metformin uptake by altering the kinetics (decreasing Vmax) of metformin (Shu et 

al., 2008). In addition, the Met420del variant is also associated with an increased 

probability of imatinib failure in patients with CML (Giannoudis et al., 2013). 

However, this variant was not observed in the current study population. 

The intronic SNP rs622342 was first reported by Becker et al. (2009) in a group of 

Dutch incident metformin users with a MAF of 37.0% (ML Becker et al., 2009). In 

contrast, the MAF for this variant in the Xhosa population was lower (21.6%). 

Moreover, Becker et al. (2009)  concluded that an association existed between 

genetic variation in the gene encoding for the hOCT1 transporter protein and the 

glucose lowering effect of metformin in diabetes mellitus patients, and that 

metformin therapy was less effective in patients carrying the minor C allele (ML 

Becker et al., 2009). In a subsequent study, by the same group, it was shown that the 
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effect of the hMATE1 rs2289669 polymorphism on the glucose lowering effect of 

metformin was larger in patients with the hOCT1 rs622342 CC genotype than those 

with the AA genotype (Becker et al., 2010). 

In the present study, the nonsynonymous SNP V519F (rs78899680) was also 

genotyped and the observed MAF was 3.0%. This value was higher than that of the 

Luhya (2.0%), a population from Eastern Africa, and lower than that of the Yoruba 

(6.0%) of Western Africa (Table 5). However, this variant was not observed in any 

of the Caucasian or Asian populations, indicating that it may be specific to African 

populations. The impact of this variant on transport function or drug efficacy has not 

yet been determined and requires further investigation. 

It is well known that individual variation in drug response can be attributed to 

specific genetic variants. Moreover, it is believed that the incorporation of 

haplotypes in pharmacogenetic studies will provide a more complete picture of loci 

that are relevant in the practice of “genetic medicine” both at an individual or 

population level (Crawford and Nickerson, 2005). In this study, the haplotype 

structure defined by 20 SNPs in the SLC22A1 gene was inferred for the investigated 

population. The most frequently observed haplotypes were 

CCTCGCCGCGCAAGGAGTGA (69.4%), CCTCGCCGCGCAAGGCGTGA 

(17.6%), and CCTCGCCGTGCAAGGAGTGA (7.0%).  

Although Africa is the continent where the burden of disease is the heaviest, research 

and clinical trials are predominantly performed on Caucasian and Asian populations. 

This contributes to poor treatment response and occurrence of adverse drug reactions 

in the genetically diverse African populations. Thus, hOCT1variant alleles which are 

commonly/only found in African populations will/may have a profound impact on 
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organic cationic drug transport efficacy and toxicity. Given that organic cationic 

drugs are used in the treatment of diseases such as type-2 diabetes mellitus, various 

cancers, and HIV, these variants may impact profoundly on healthcare provided over 

the African continent. Therefore, given the aforementioned reasons studies such as 

this is valuable in the generation of useful pharmacogenetic information specific for 

African populations. 

2.6. Conclusions 

To our knowledge, this is the first study that investigated the allele and genotype 

frequency distributions of SNPs in the SLC22A1 gene of the Xhosa population. This 

study also reports the observed haplotypes in the investigated population. It has also 

been shown that reduced-function nonsynonymous SNPs in the SLC22A1 gene 

found in Caucasian and Asian populations are absent from the Xhosa population. We 

have shown that, although MAF observed for the Xhosa population is largely similar 

to other African populations, differences exist that may translate into differences in 

organic cationic drug transport between these ethnic groups. These variations may 

translate into differences in the transport and efficacy of organic cationic drugs 

commonly used for the treatment of diseases prevalent in Africa. However, it should 

be noted that this was only a descriptive study and that no associations are made 

between any diseases or treatment outcomes. This study contributes towards filling 

the gap that exists with regards to genetic information about important variations in 

organic cation transporter genes, such as SLC22A1, for the indigenous populations of 

South Africa. The uptake transporters hOCT1 and hMATE1 are co-localized in the 

liver and function cooperatively in the elimination of organic cation substrates such 

as metformin from hepatocytes. Thus, Chapter 3 will focus on the investigation of 
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allele frequency distribution of potential deleterious SLC47A1 genetic variants in the 

Xhosa population. 
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CHAPTER 3 

Assessment of Genetic Variations within the SLC47A1 Gene of the Xhosa 

Population 

 

3.1. Abstract 

Multidrug and toxin extrusion 1 (MATE1) is a recently identified organic cation/H+ 

exchanger, localized in the apical membrane of proximal renal tubules, which 

mediates the cellular elimination of organic cations into the renal lumen. These 

organic cations include clinically important drugs such as metformin, oxaliplatin, 

and cimetidine. Moreover, genetic polymorphisms of SLC47A1, the 

pharmacogenetically relevant gene encoding hMATE1, have been implicated in 

reduced transport or accumulation to cytotoxic levels of these drugs in vitro. 

However, little or no information is available on the minor allele frequency 

distribution of known SLC47A1 coding SNPs in the sub-Saharan African 

populations. Thus, the aim of this study was to determine the baseline minor allele 

frequency distribution of 20 known coding SNPs in the SLC47A1 gene of 148 Xhosa 

individuals residing in Cape Town, South Africa. This study did not identify any of 

these known SLC47A1 coding SNPs in the Xhosa individuals that participated in this 

study. This study lays the foundation for future association studies between 

SLC47A1 variations and treatment outcomes in the Xhosa population. However, this 

study has inherent limitations and was not exhaustive with regards to known 

SLC47A1 polymorphisms. Furthermore, whole genome or exome sequencing may 

reveal novel SNPs in the Xhosa and other sub-Saharan African populations, which 

may have been missed with the current genotyping strategy. 
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3.2. Introduction 

Multidrug and toxin extrusion (MATE) proteins are recently discovered secondary 

active transporters responsible for the efflux of organic cations (OCTs) from cells. 

MATEs are widely distributed and have been cloned from various living organisms, 

including prokaryotes, plants, and mammals (Otsuka et al., 2005). This widespread 

distribution of MATEs coupled with their capacity to transport a wide variety of 

endo-/exogenous substrates underlines the importance of these transporters in 

physiological and/or pharmacological processes such as pharmacokinetics, resistance 

to antimicrobials in bacteria, resistance to chemotherapeutic agents in tumour tissues, 

and hormone secretion (Staud et al., 2013). 

hMATE1, consisting of 570 amino acid residues, is encoded by the SLC47A1 gene 

which is located on chromosome 17p11.2 (Otsuka et al., 2005). MATE transporters 

are primarily expressed in the kidney and liver, and they are localized at the apical 

membrane of the renal tubules and bile canaliculi, and transport organic cations 

(OCs) with an oppositely directed H+ gradient as a driving force (Masuda et al., 

2006, Tsuda et al., 2007). However, a recent study found that hMATE1/hMATE 

isoforms are also expressed in the human placenta, albeit with considerable inter- 

and intra-individual variability (Ahmadimoghaddam et al., 2013)  Substantial 

evidence has accumulated that implicates hMATE1, hMATE2, and its kidney-

specific homolog hMATE2-K as critical components in the luminal efflux of OCs 

from renal proximal tubules into urine (Komatsu et al., 2011, Masuda et al., 2006, 

Tsuda et al., 2009a, Watanabe et al., 2010). In vitro studies have shown that MATE1 

and MATE2-K are involved in the transport of prototypical OCs such as 

tetraethylammonium bromide (TEA), the neurotoxin 1-methyl-4-pyridinium (MPP+), 
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the histamine antagonist-receptor inhibitor cimetidine, the antidiabetic drug 

metformin, the antiarrhythmic drug procainamide. In addition, MATE1 can also 

effectively transport the zwitterionic β-lactam antibiotics cephalexin and cephradine 

and the anionic compounds estrone sulphate, acyclovir, and ganciclovir (Tanihara et 

al., 2007, Terada et al., 2006).  Because MATEs and OCTs cooperate in transcellular 

passage, considerable overlap in substrate specificity must exist between these 

transporters (Iwata et al., 2012). 

Mammalian MATE1, similar to other MATE family members have a predicted 

protein fold composed of 12 transmembrane helices (TMHs) (He et al., 2010, Zhang 

et al., 2012). Zhang et al in their study showed that the human orthologue of MATE, 

similar to its rabbit and mouse paralogues, has an extacelluar C-terminus, consistent 

with the presence of 13 TMHs (Zhang and Wright, 2009, Zhang et al., 2012). 

Moreover, Zhang et al. (2012) concluded that the terminal 13th TMH is not required 

for the functional activities of human, rabbit, and mouse MATE1, and that ligand 

binding of truncated proteins consisting of 12 TMHs is essentially normal. This 

supports the general view that the functional core structure of MATE proteins, 

including mammalian MATEs, is comprised of 12 TMHs and that the 13th TMH is 

merely influences transporter turnover activity (Zhang et al., 2012).  Combined in 

vitro/in silico and quantitative structure-activity relationship (QASAR) models 

suggest that MATE preferentially bind large, lipophilic, and positively charged 

molecules (Astorga et al., 2012, Wittwer et al., 2013). 

In animal models of human diseases, Mate1 expression was decreased in renal 

failure and increased in metabolic acidosis, suggesting pathological conditions may 

affect MATE1 expression and resultantly the pharmacokinetics and 
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pharmcodynamics of its substrates (Gaowa et al., 2011, Nishihara et al., 2007). 

Becker et al. (2009) demonstrated that genetic variation in the SLC47A1 gene was 

associated with the glucose-lowering effect of metformin (Matthijs L Becker et al., 

2009). Ha Choi et al. (2009) found that a common promoter variant may affect the 

expression of MATE1 in the kidney, and may ultimately result in variation of drug 

disposition and response (Choi et al., 2009). 

In addition to genetic polymorphisms, adverse drug-drug interactions (DDIs) can 

also affect the pharmacokinetics and/or pharmacodynamics of hMATE substrate 

drugs. In a study by Tsuda et al. (2009) double-transfected Madin-Darby canine 

kidney (MDCK) cells stably expressing both hOCT2 and hMATE transporters were 

used as an in vitro model of proximal tubular epithelial cells to assess the interaction 

of the histamine-receptor antagonist, cimetidine with the biguanide antidiabetic, 

metformin (Tsuda et al., 2009b). Contrary to the findings of previous studies, they 

found that cimetidine showed a higher affinity for hMATEs than hOCT2. 

Subsequently, Ito et al. (2012) showed that competitive inhibition of the luminal 

efflux by hMATE1, and not the basolateral uptake by hOCT2, is the likely 

mechanism underlying the pharmacokinetic DDIs caused by cimetidine in the kidney 

(Ito et al., 2012). Furthermore, in a study by Grün et al. (2013) the antibiotic 

trimethoprim significantly reduced metformin elimination resulting in increased 

exposure to the antidiabetic (Grun et al., 2013). The anti-malarial drug 

pyrimethamine is a potent inhibitor of both hMATE1 and hMATE2-K activity (Ito et 

al., 2010). 

Sub-Saharan Africa, and for that matter South Africa, has a significant disease 

burden of both communicable and non-communicable diseases (Coovadia et al., 
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2009, Mayosi et al., 2012). Although African populations harbour more genetic 

diversity than Caucasians, for example, this genetic diversity is however 

understudied (Hardy et al., 2008). This lack of genetic information with robust allele 

frequencies currently serves as a significant hurdle to designing biomedical research 

and medical implications (May et al., 2013). South Africa is home to several 

indigenous African populations for which there is limited or no genomic 

information. The Xhosa population, historically indigenous to the Eastern Cape 

Province, is the second largest ethnic group in South Africa, and comprises 

approximately 17.6% (~8 million) of the total population (Drögemöller et al., 2010). 

Previous studies have shown that these populations harbour unique genotype and 

allele frequencies for pharmacogenetically relevant drug metabolizing enzymes 

(Ikediobi et al., 2011). However, to our knowledge only a limited number of studies 

have to date been undertaken to establish baseline genotype and allele frequency 

distributions of genetic polymorphisms in membrane transporter genes of the 

indigenous South African populations. Therefore, the aim of this study was to 

determine the baseline genotype and allele frequency distributions of 20 known 

SLC47A1 coding SNPs in 148 Xhosa individuals residing in Cape Town, South 

Africa 

3.3. Materials and Methods 

3.3.1. Subjects 

Subjects were as described in Chapter 2. 

3.3.2. DNA extraction and SNP selection 

A standard salt-lysis method was used for the isolation of genomic DNA was 

isolated from buccal swab samples as described in Chapter 2 and stored frozen at -
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20°C until the time of genotyping (Leat et al., 2004a). A total of 20 SLC47A1 coding 

SNPs were selected for this study. SNPs were selected from the literature and the 

Ensembl database (http://www.ensebl.org) (Flicek et al., 2012). Variants, were 

included in this study based on predicted effect on function, using the SIFT (Sorting 

Intolerant From Tolerant) program (Flanagan et al., 2010, Kumar et al., 2009, Ng 

and Henikoff, 2003). To our knowledge no population data exist in the public 

domain for these variants. 

3.3.3. Primer design 

Multiplex PCR primers for the amplification of all SLC47A1 exons and flanking 

regions were designed using Primer3 software (www.genome.wi.mit.edu/cgi-

bin/primer/primer3) and are listed in Table 3.1. To test for possible non-specific 

amplification, primers were aligned with the NCBI sequence databases using Basic 

Local Alignment Search Tool (www.ncbi.nlm.nih.gov/blast/blast-cgi). Two 

SNaPshot™ Multiplex systems were specifically designed for the study, successfully 

optimized and used for genotyping. The single base extension primer sets for 

multiplex 1 and 2 are listed in Tables 3.2 and 3.3. 
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Table 3.1 - MATE-1 multiplex PCR primers for the amplification of SLC47A1 exons and flanking regions. 

Location Forward primer 5ʹ to 3ʹ Reverse primer 5ʹ to 3ʹ Nucleotide position Amplicon size (bp) 

     

Exon 2 CCCAGGTGACAGTGTGAGAC CAGCAGAAGGCAAACACAGA 19542097 - 19542550 454 

Exon 3 GGTCCAGGCAGCTAACAAAG CTGGCTGCTGAACTCTTCCT 19546291 - 19546599 309 

Exon 4 TATCCAGCCAACCTGCTTCT GGAGGGTGCTTGCAAATCTA 19547879 - 19548374 496 

Exon 5 GGAAACAGCCAAGAATGGAA GACCCCAAGAAGGGAATCTC 19549522 - 19549716 195 

Exon 6 CTGAGACGACAGCCTCTGTG CCCATTCCCAGAAAGGTACA 19551282 - 19551531 250 

Exon 7 CAGTCCTTGCACTGTTGGAA TCCATCCCTGACAGTGCTTT 19554910 - 19555456 547 

Exon 8 - 10 CACGGGAAGGGATGAGTCT GGAGATGGAGAACCAGCAGA 19555502 - 19556294 793 

Exon 11 - 12 TGCTTCTCTGCACGTGTTCT CCTCCTGGGCTCAAGAGATT 19560120 - 19560809 690 

Exon 13 - 14 GGCTGGTCTCAAACTCCTGA GCCCCCTACACTCTCTGACA 19566635 - 19567377 743 

Exon 15 CCTCAGCCATGAAAGCAGAT ATCATCTGGCCCTTCACATC 19571359 -19571748 390 

Exon 16 TGGGATTACAGGTGTGAGCA CTCACTAACAGCCCCTCCAG 19572589 - 19572928 340 

Exon 17 GGGCACTCTGCGATAAGATT CAATGCAGTCAGCACATTGA 19577166 - 19577823 658 
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3.3.4. Multiplex PCR 

All the 17 SLC47A1 exons and their flanking regions were simultaneously amplified 

using the primers listed in Table 3.1. The PCR reactions were performed in a 20 µl 

volume, containing 20 – 50 ng of genomic DNA, 1 x Qaigen multiplex PCR master 

mix (Qaigen, Courtaboeuf, France) and 0.2 µM of each primer. Cycling parameters 

used and PCR product purification were as described in Chapter 2. 

 

3.3.5. SNaPshot™ genotyping reactions 

Multiplex minisequencing was performed in a 10 µl reaction volume using 3 µl of a 

1/10 dilution of purified PCR products, 0.1-0.2 µM of primers, and 5 µl of 

SNaPshot™ ready reaction mix (Applied Biosystems). Sequence cycling was 

performed according to the instructions of the manufacturer. Post-extension 

treatment was done as described in Chapter 2
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Table 3.2 – Multiplex 1 of SLC47A1 single-base extension primers for SNaPshot™ minisequencing reactions. 

NCBI 
(dbSNP) 

Amino Acid 
Change 

Nucleotide 

change 

Nucleotide sequence 

(5′ to 3′) 

Position 

Accession number 

(NC_000006.12) 

Primer length 

(bp) 
polyGACT tail 

       

rs143217368 T75M C>T ACCTGGGCAAGCTGGAGCTGGATGCAGTCA 19542481 30 0 

rs77474263 L125F C>T ATCCTGCAGCGGAGTGCGCTCGTCCTGCTC 19548051 35 5 

rs143542564 S151F C>T TGCTGCTCTTCAGGCAGGACCCAGATGTGT 19548130 40 10 

COSM218508 A193S G>T ATTGTACTGCCCCAGATCGTAACTGGAGTT 19555245 45 15 

rs145720500 M269T T>C TCCTCCGCCTGGCCATCCCCAGCATGCTCA 19555862 50 20 

rs149774861 D328A A>C TCCGGGTAGGAAACGCTCTGGGTGCTGGAG 19560249 55 25 

COSM141490 A409V C>T TGAGGGGGAGTGGAAATCAGAAGGTTGGAG 19567145 60 30 

rs147768037 G424R G>A CAAGTGTGGTTGCAAACATCAGCGCGATCC 19567189 65 35 

rs141945405 A473T G>A CTGAGTTTCATTTTCCAGGCTCAGGTACAC 19572791 70 40 

rs144621154 R545Q G>A AAGAAGACCCCCAGGAGCAGAAGCCCTCGC 19577474 75 45 
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Table 3.3 - Multiplex 2 of SLC47A1 single-base extension primers for SNaPshot™ minisequencing reactions. 

NCBI 
(dbSNP) 

Amino Acid 
Change 

Nucleotide 

change 

Nucleotide sequence 

(5′ to 3′) 

Position 

Accession number 

(NC_000006.12) 

Primer length 

(bp) 
polyGACT tail 

       

rs139122064 R482W C>T CACGCCAATTTGAAAGTAAACAACGTGCCT 19572819 30 0 

rs145557304 Y203C A>G CAGCCAACCTTGTCAATGCCCTCGCCAACT 19555276 35 5 

rs11551331 P148R C>G AGCACATCCTGCTGCTCTTCAGGCAGGACC 19548121 40 10 

rs148155569 A469S G>T AAGCCTGATGGACTGAGTTTCATTTTCCAG 19572780 45 15 

rs77138970 R118Q G>A ACCTGAAGCACGTGGGCGTGATCCTGCAGC 19548031 50 20 

rs149729794 P186T C>A GCGGTGTCCTTTTTCCAGGGAATTGTACTG 19555224 55 25 

rs77630697 G64D A>G TGATCAGCTTCATAAGCTCCGTGTTCTGTG 19542448 60 30 

rs148469848 Y566C A>G TCTTGCTGGTGGGGATTTTAGTGAGATTCT 19577537 65 35 

rs149920616 G397S G>A AATGCTCTCTGCCTGCAGTGCACGAGTGGT 19567108 70 40 

rs141572615 V279D T>A TGCTGTGCATGGAGTGGTGGGCCTATGAGG 19555892 75 45 
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3.3.6. Electrophoresis of the minisequencing products 

. The fluorescently labelled fragments were treated and separated on an ABI Prism 

3500 Genetic Analyzer (Applied Biosystems) as described in Chapter 2. Data 

analyses were performed using GeneMapper® IDX Software Version 1.2. 

3.4. Results and Discussion 

Our study population consisted of a 148 healthy, unrelated Xhosa individuals 

residing in the Cape Town Metropolitan area, South Africa. The age of the 

participants ranged from 18 to 61 years with the mean age of female participants 

being 25.3±9.0 years, while male participants had a mean age of 24.8±7.7 years. 

There were 80 (54%) female and 68 (46%) male participants. 

In this study we have developed two SNaPshot™ multiplex assays for genotyping 20 

known nonsynonymous coding SNPs in the SLC47A1 gene. The results for the 

SNaPshot™ genotyping are summarized in Table 3.4. Genetic variants of the 20 

SNPs assayed were absent in the Xhosa individuals analysed in this study. 
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Table 3.4 - Genotype and allele frequencies of MATE1 (SLC47A1) gene SNPs in 
148 healthy Xhosa individuals. 

Amino Acid 
Substitution dbSNP ID 

Observed Genotype Frequency Allele Frequency 

Genotype % 95% CI Allele % 95% CI HWE 
(P) 

         

G64D rs77630697 
AA 100.0 96.9.0 – 100.0 A 100.0 98.4 – 100.0 

 AG 0.0 0.0– 1.3 G 0.0 0.0 – 1.6 
GG 0.0 0.0 – 1.3    

         

T75M rs143217368 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

R118Q rs77138970 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

L125F rs77474263 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 -1.6 
TT 0.0 0.0 – 1.3    

         

P148R rs11551331 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CG 0.0 0.0 – 1.3 G 0.0 0.0 -1.6 
GG 0.0 0.0 – 1.3    

         

S151F rs143542564 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

P186T rs149729794 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

A193S COSM218508 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GT 0.0 0.0 – 1.3 T 0.0 0.0 -1.6 
TT 0.0 0.0 – 1.3    

         

Y203C rs145557304 
AA 100.0 96.9 – 100.0 A 100.0 98.4 – 100.0 

 AG 0.0 0.0 – 1.3 G 0.0 0.0 -1.6 
GG 0.0 0.0 – 1.3    

         

M269T rs145720500 
TT 100.0 96.9 – 100.0 T 100.0 98.4 – 100.0 

 TC 0.0 0.0 – 1.3 C 0.0 0.0 – 1.6 
CC 0.0 0.0 – 1.3    

         

V279D rs141572615 
TT 100.0 96.9 – 100.0 T 100.0 98.4 – 100.0 

 TA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 3.1    

         

D328A rs149774861 
AA 100.0 96.9 – 100.0 A 100.0 98.4 – 100.0 

 AC 0.0 0.0 – 1.3 C 0.0 0.0 – 1.6 
CC 0.0 0.0 – 1.3    

         

G397S rs149920616 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

A409V COSM141490 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

G424R rs147768037 GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0  GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 

78 
 

 

 

 

 



CHAPTER 3 

  AA 0.0 0.0 – 1.3     
         

A469S rs148155569 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

A473T rs141945405 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

R482W rs139122064 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

R545Q rs144621154 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

Y566C rs148469848 
AA 100.0 96.9 – 100.0 A 100.0 98.4 – 100.0 

 AG 0.0 0.0 – 1.3 G 0.0 0.0 – 1.6 
GG 0.0 0.0 – 1.3    

         
 

The human MATE1 is highly expressed at the apical membranes of liver  

hepatocytes and renal proximal tubules, and mediates the biliary and renal excretion 

of many cationic drugs and their metabolites (Otsuka et al., 2005). Functional 

changes in the expression level of SLC47A1 caused by genetic variations in the 

coding and noncoding regions could alter the transport activity of MATE1 and 

ultimately the effects of the substrates translocated by the transporter in vivo. The 

aim of this study was to determine the allelic and genotypic distribution of 20 known 

coding SNPs in the SLC47A1gene, encoding MATE1, in the Xhosa population of 

South Africa. 

This study did not identify any of the known investigated nonsynonymous coding 

variations in the SLC47A1 gene of the Xhosa individuals. However, searching the 

dbSNP database revealed only 60 nonsynonymous coding SNPs, with very low 

minor allele frequencies, in the SLC47A1 gene. This lack of protein sequence and 

mutational diversity was also observed in other studies for hOCT2 and hOCT3 

(Kang et al., 2007, Lazar et al., 2003). This absence of genetic diversity merely 
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demonstrates the critical role the MATE1 transporter performs in the elimination of 

xenobiotics and the maintenance of cellular and organismal homeostasis (Lazar et 

al., 2003, Leabman et al., 2003). 

Kajiwara et al. (2009) identified the hMATE1 variant G64D in their study of 89 

healthy Japanese individuals (Kajiwara et al., 2009). This variant was also observed 

by Chen et al. (2009) in a study with 272 ethnically diverse individuals (Chen et al., 

2009b). Both these groups went on and demonstrated that this variant leads to a 

complete loss of transport activity. When Kajiwara et al. (2009) evaluated membrane 

expression levels using cell surface biotinylation, they found that the expression of 

the G64D variant was significantly decreased compared to that of the wild-type. This 

variant was included in the current study, but was not observed in the Xhosa 

individuals screened in this study. However, because of the limited sample size, and 

the low global allele frequency of this variant the presence of this variant in the 

Xhosa population cannot be excluded. 

This study did not investigate the allele frequency distribution for known genetic 

variants in the proximal promoter region of the SLC47A1 gene. However, in a study 

conducted by Kajiwara et al. (2007) the authors described a variant, g.-32G>A with 

a minor allele frequency of 3.7%  in the SLC47A1 proximal promoter region that 

showed markedly decreased promoter activity (Kajiwara et al., 2007). Their study 

showed that the SpI transcription factor has a critical role in the basal promoter 

activity of the SLC47A1 gene, and that the g.-32G>A variant reduced the binding 

affinity of SpI to the promoter. In a subsequent study, Ha Choi et al. (2009) 

identified novel polymorphisms in the proximal promoter of SLC47A1, and found 

that one of the polymorphisms, g.-66T>C, is associated with a significant reduction 

80 
 

 

 

 

 



CHAPTER 3 

of SLC47A1 promoter activity and with lower expression of MATE1 in the kidney 

(Choi et al., 2009). They concluded that this reduced SLC47A1 promoter activity 

seemed to be related to the binding of the transcription factor AP-1 which acts as an 

activator of transcription, and to an increased binding of the repressor AP-2rep to the 

region containing the g.-66T>C substitution. Since these promoter variants can have 

a profound effect on the expression of the gene, which in turn can affect the transport 

activity and the pharmacokinetic and pharmacodynamic consequences of clinical 

drugs transported by MATE1, the determination of allele frequency distributions of 

known promoter SNPs and the extent of rare variants within the Xhosa population 

requires further investigation. 

Metformin, an oral anti-diabetic drug, is one of the most frequently prescribed drugs 

in the treatment of type-2 diabetes. Tanihara et al. (2007) demonstrated that MATE1 

transports metformin and could be a determinant of its efficacy (Tanihara et al., 

2007).  The elimination of metformin from the body mainly depends on renal 

clearance, including excretion mediated by OCT and  MATE transporters (Graham 

et al., 2011). Genetic variations in the genes encoding the hOCT1, hOCT2, hOCT3, 

MATE1 and MATE2-K transporters have been associated with an altered 

pharmacokinetic and pharmacodynamic response to metformin (Christensen et al., 

2011). Becker et al. (2009) reported that a SNP located in the intronic region of 

SLC47A1, rs2289669G>A, was associated with the glucose-lowering effect of 

metformin in a group of Dutch diabetic patients (Matthijs L Becker et al., 2009). 

However, Tzvetkov et al. (2009) found no association between rs2289669G>A and 

the renal or extrarenal clearance of orally administered metformin (Tzvetkov et al., 

2009). In addition, a recent study by Toyama et al. (2012) found that heterozygous 

nonsynonymous variants of both MATE1 and MATE2-K do not affect metformin 
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disposition in diabetic patients (Toyama et al., 2012). As current knowledge in this 

field is still limited and contradictory, further studies are required to confirm the 

clinical relevance of SLC47A1 SNPs in the pharmacokinetics and 

pharmacodynamics of metformin and other clinical substrates of MATE1 (Matthijs L 

Becker et al., 2009, Tkáč et al., 2013, Tzvetkov et al., 2009). 

3.5. Conclusions 

To our knowledge this study is the first that prioritized the genotyping of known 

coding SNPs of SLC47A1, a pharmacogenetically relevant gene, in the Xhosa 

population. The SNPs genotyped in this study are known variants that have been 

observed in other populations and may not be present in the Xhosa population. 

Given the under-studied genomic diversity harboured within sub-Saharan indigenous 

African populations, the potential exist that novel and rare low frequency variations 

could be identified in the Xhosa population. This study also lays the foundation for 

future association studies between SLC47A1 variations and treatment outcomes in 

the Xhosa population. The H+/organic cation efflux transporter hMATE1 also co-

operatively functions with the organic cation uptake transporter hOCT2 in the kidney 

where it is involved in the elimination of organic cations from the body. Therefore, 

Chapter 4 will prioritize the investigation of nonsynonymous variants of the 

SLC22A2 gene in the Xhosa participants. 
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CHAPTER 4 

Genotype and Allele Frequency Distribution of 20 SLC22A2 Single Nucleotide 

Polymorphisms in the Xhosa Population 

4.1. Abstract 

The solute carrier family of the major facilitator membrane transporters play an 

important role in maintaining cellular and organismal homeostasis. Organic cation 

transporters, which belong to the SLC22A2 family, are polyspecific transporters that 

mediate the electrogenic transport of small organic cations with different molecular 

structures, independent of sodium gradient. The kidney-specific hOCT2, which is 

encoded by SLC22A2, is an organic cation transporter which is involved in the 

translocation of a diverse group of therapeutic drugs including metformin, 

cimetidine, procainamide, cisplatin, and lamivudine. Moreover, single nucleotide 

polymorphisms of SLC22A2 are clinically significant because they can alter the 

transport of substrate drugs, and as such can influence the efficacy and toxicity 

thereof. Although it is widely accepted that African populations harbour a greater 

amount of genomic diversity compared to other populations, limited information is 

available regarding genetic polymorphisms in SLC genes, and for that matter the 

SLC22A2 gene, of sub-Saharan African populations or on the ethnic differences 

between African and other populations and among African populations themselves 

regarding genetic polymorphisms related to impaired functional activity of hOCT2. 

Therefore, the initial aim of this study was to develop a multiplex SNaPshot™ 

genotyping assay system for 20 previously reported SLC22A2 nonsynonymous SNPs 

and to assess the baseline allele frequencies of these variants in 148 Xhosa 

individuals residing in Cape Town, South Africa. We identified three 
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nonsynonymous SNPs namely, A270S, R400C, and K432Q in the population studied 

at minor allele frequencies of 6.1%; 3.4%; and 0.7%, respectively. The genetic 

variants and the allele frequencies observed in this study again highlight the fact that 

the distribution of these variants and their allele frequencies differ amongst African 

and other populations. Moreover, the distribution of genetic variants and their allele 

frequencies differ even among the African populations themselves. This study lays 

the foundation for ethnicity-specific genotype-to-phenotype correlates of treatment 

outcome for SLC22A2 genetic polymorphisms and hOCT2 substrate drugs. In 

addition to SNPs, the haplotypes identified in this study can in future also aid in 

identifying associations between causative genetic variants and drug response. 

4.2. Introduction 

At physiological pH, approximately 40% of drugs are organic cations or weak bases 

which cellular uptake may be mediated by organic cation transporters (OCTs) 

(Neuhoff et al., 2003). Polyspecific OCTs belong to the major facilitator family of 

solute carrier transporters, and are involved in the bidirectional transport of a variety 

of structurally diverse lipophilic organic cations of endogenous or xenobiotic origin 

across the plasma membrane (Koepsell et al., 2007). 

OCT-mediated transport is electrogenic and independent of sodium ion or proton 

gradient. Three isoforms of human OCTs exist, namely hOCT1, hOCT2, and 

hOCT3, which share a partially overlapping substrate spectra and have a similar 

membrane topology consisting of 12 transmembrane helices (TMHs), an intracellular 

N-terminus, a large glycosylated extracellular loop between TMHs 1 and 2, a large 

intracellular loop with phosphorylation sites between TMHs 6 and 7, and an 

intracellular C-terminus (Koepsell et al., 2007). However, OCTs show different 
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affinities to particular substrates and differ in their tissue distribution, membrane 

localization as well as in their regulation (Ciarimboli and Schlatter, 2005, Hayer‐

Zillgen et al., 2002). 

The hOCT2 gene SLC22A2, consisting of 11 exons, was first cloned in 1997 and is 

located on chromosome 6q26, adjacent to SLC22A1 which encodes for hOCT1 

(Gorboulev et al., 1997, Koehler et al., 1997, Koepsell et al., 2007). The hOCT1 

paralogue hOCT2 consists of 555 amino acid residues and has been detected in the 

kidney, placenta, spleen, intestine, and neuron (Busch et al., 1998, Gorboulev et al., 

1997, Koepsell et al., 2007). The hOCT1 is predominantly localized in the liver 

whereas hOCT2 is mainly expressed in the basolateral membrane of kidney proximal 

tubules and is the major facilitator for the uptake of cationic substrates from the 

circulation into renal epithelial cells (Gorboulev et al., 1997, Motohashi et al., 2002). 

Examples of clinically important drugs transported by hOCT2 include the 

antidiabetic drugs metformin and phenformin, the antineoplastic drugs cisplatin and 

oxaliplatin, the anti-HIV drugs lamivudine and zalcitabine, and the histamine 

receptor antagonist cimetidine (Barendt and Wright, 2002, Busch et al., 1998, 

Ciarimboli et al., 2005b, Dresser et al., 2002, Kimura et al., 2005b, Jung et al., 

2008). In addition, hOCT2 is also responsible for the transport of endogenous 

compounds such as monoamine neurotransmitter 5-hydroxytryptamine (5-HT), 

agmatine, choline, dopamine, epinephrine, histamine, and norepinephrine, as well as 

compounds such as creatinine (Amphoux et al., 2006, Busch et al., 1998). Moreover, 

the transporter is critical in the detoxification and elimination of xenobiotics from the 

systemic circulation and is also involved in the transport of toxic substances such as 

tetraethylammonium bromide (TEA), HPP+, and 1-methyl-4-phenylpyridinium 

(MPP+) (Burckhardt and Wolff, 2000, Gorboulev et al., 1997, Okuda et al., 1999, 
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Otsuka et al., 2005, Zhang et al., 1997, Zhang et al., 1998). Tissue expression and 

membrane localization of hOCT2 are closely linked to the tissue distribution, 

pharmacological effects, and/or adverse effects of its substrate drugs (Aoki et al., 

2008). 

Polymorphisms that change expression level, regulation, turnover, membrane 

trafficking, and/or substrate affinity of OCTs can potentially influence the 

therapeutic efficiency of substrate drugs and may lead to  severe or even fatal 

adverse drug reactions (Bachtiar and Lee, 2013). Recent studies have identified 

several single nucleotide polymorphisms in the SLC22A2 gene in ethnically diverse 

populations (Fukushima-Uesaka et al., 2004, Leabman et al., 2002, Kang et al., 

2007). However, in comparison to its liver-specific paralog, hOCT1, hOCT2 is less 

diverse in terms of both amino acid mutations and functional activity (Fujita et al., 

2006). However, single nucleotide polymorphisms identified in SLC22A2 have been 

associated with changes in the pharmacokinetic/pharmacodynamics responses in 

substrate drugs such as metformin (Wang et al., 2008). 

Metformin, the biguanide anti-diabetic drug, has been identified as a superior 

substrate of hOCT2 (Wang et al., 2008, Leabman et al., 2002). Song et al. (2008) 

found that the uptake of metformin was greater in oocytes expressing the hOCT2 

wildtype, than in ones expressing hOCT1 wild-type (Song et al., 2008b). Moreover, 

transport of metformin was significantly reduced in oocytes expressing the 

nonsynonymous hOCT2 variants T199I (rs201919874), T201M (rs145450955), and 

A270S (rs316019) compared to the hOCT2 wild-type (Song et al., 2008a, Song et 

al., 2008b). In a recent study Chen et al. (2009) demonstrated that the A270S 

(rs316019) variant was associated with a greater clearance of renal metformin in 
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healthy volunteers of European and African ancestries (Chen et al., 2009a). 

Moreover, Li et al. (2010) found that the A270S (rs316019) variant can affect the 

plasma lactate levels and the incidence of hyperlactacidemia (lactic acidosis), a 

severe and sometimes lethal side-effect of metformin treatment, in Chinese Han 

patients with type-2 diabetes that are on metformin therapy (Li et al., 2010).  

Furthermore, solute carrier transporters (SLCs), in particular OCTs, have been 

implicated in the cellular uptake and elimination of platinum-containing anti-cancer 

compounds. Burger et al. (2010) found that hOCT2 is a critical determinant in the 

uptake and toxicity of various platinum compounds, especially oxaliplatin (Burger et 

al., 2010). This finding was supported by Sprowl et al. (2013) who found that 

hOCT2 is an important factor in oxaliplatin-induced neurotoxicity because it is 

responsible for the accumulation of oxaliplatin in the root ganglia cells of the 

nervous (Sprowl et al., 2013). 

In contrast to our understanding of the effects of ethnicity on drug metabolism, little 

information is known about ethnicity-related differences in the disposition and 

effects of drugs that are substrates of membrane transporters (Cropp et al., 2008). 

Moreover, ethnic specific variations are currently not taken into account in most 

commercially available pharmacogenetic tests or on FDA drug labels (Ikediobi et al., 

2011). Although African populations harbour more genetic diversity than other 

populations, most pharmacogenetic studies to date have been conducted most 

frequently in Western European and North American Caucasians population groups 

only (Frazer et al., 2009, Hardy et al., 2008, Ikediobi et al., 2011). 

The SLC22A2 gene is relevant for the pharmacokinetic disposition of a number of 

clinically important drugs, including those used in the treatment of type-2 diabetes, 
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cancer, and HIV (Burger et al., 2010, Burger et al., 2011, Jung et al., 2008, Jung et 

al., 2013, Kimura et al., 2005a, Kimura et al., 2009). Sub-Saharan Africa currently 

has the highest global prevalence of HIV/AIDS and rates for lifestyle diseases are 

rising due to rapid urbanisation (Mayosi et al., 2012, Shisana et al., 2009). It is 

estimated that approximately 60% of deaths in southern African countries are 

attributable to communicable diseases, whilst 30% are caused by non-communicable 

disorders (Coovadia et al., 2009, Mayosi et al., 2012). Although the role of OCTs in 

the pathogenesis and transport of drugs used in the treatment of these diseases are 

generally recognized, little or no information is available regarding genetic 

polymorphisms of the SLC22A2 gene in African populations residing in southern 

Africa. In addition, no information is available on the inter-ethnic differences among 

African populations with regards to genetic polymorphisms related to impaired 

functional activity of hOCT2. Thus, the aim of this study was to develop a multiplex 

SNaPshot™ genotyping assay system for 20 previously reported SLC22A2 

nonsynonymous SNPs and to assess the baseline minor allele frequencies (MAFs) of 

these variants in 148 Xhosa individuals residing in Cape Town, South Africa. 

Secondly, to compare the MAF estimates obtained for other African, American, 

European, and Asian populations. Finally, to determine the haplotype structure of the 

SLC22A2 gene in the Xhosa population based on the selected loci. 
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4.3. Materials and Methods 

4.3.1. Subjects 

As described in Chapter 2. 

4.3.2. Multiplex PCR and Single-Base Extension Primer Design 

Multiplex PCR and single base extension (SBE) primers, listed in Tables 4.1 to 4.3, 

were designed using Primer3 software (www.genome.wi.mit.edu/cgi-

bin/primer/primer3). To test for possible non-specific amplification, primers were 

aligned with the NCBI sequence databases using Basic Local Alignment Search Tool 

(www.ncbi.nlm.nih.gov/blast/blast-cgi). Two SNaPshot® SBE Multiplex systems 

were specifically designed for this study, successfully optimized and used for 

genotyping. A total of 20 SLC22A2 gene SNPs were selected for this study. SNPs 

were selected from the literature and the Ensembl database (http://www.ensebl.org) 

(Flicek et al., 2012). Variants M1V; R176H; C282G; L351W; R207H; T357M; 

M393T; R404C; G439E; R463K; R487Q R487W; V502E/G; and V502M were 

included in this study based on predicted effect on function, using the SIFT (Sorting 

Intolerant From Tolerant) program (Flanagan et al., 2010, Kumar et al., 2009, Ng 

and Henikoff, 2003). To our knowledge no population data exist in the public 

domain for these variants. 
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4.3.3. DNA isolation and SNaPshot™ genotyping 

DNA isolation and SNaPshot™ genotyping were performed as described in Chapter 

2. 

4.3.4. Electrophoresis of the minisequencing products 

The purified fluorescently labelled minisequencing products were mixed with  

HiDi™ formamide and GeneScan-120 Liz size standard (Applied Biosystems), 

denatured, and separated on an ABI Prism 3500 Genetic Analyzer (Applied 

Biosystems) as described in Chapter 2. Data analyses were performed using 

GeneMapper® IDX Software Version 1.2. 
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Table 4.1 - Multiplex PCR primers for the generation of SLC22A2 amplicons used in SNaPshot™ genotyping. 

 

Location Forward primer (5´to 3´) Reverse Primer (5ʹto 3ʹ) Amplified region (NC_000006.12) Amplicon length 
(bp) 

     

Exon 1 TTTGGGAAGTGCAGAAGGAC CCATTTGCTTCTCCATCTGAG 160258972 - 160258303 670 

Exon 2 GGAACACTTCTCCCCTGCT CACCACAGGTGATTCAACCTAC 160256741 - 160256592 150 

Exon 3 GTGAATGGGGCTTATCATGC TCTATTTTGGCAGCGAGGTT 160250933 - 160250491 443 

Exon 4 CAGGCCTTTCATCCCATCTA GGGTCTGGAGAGTGAAAGCA 160249613 - 160249098 516 

Exon 5 GGATGGGGTAAGGAGGATTC TTTCTCCATCCCCTGATTTG 160247353 - 160247143 211 

Exon 6 TGACCCAGGGACACTAGCAT TACCGGGATGAGGTCATGTT 160245603 - 160245344 260 

Exon 7 CACAGCCAGCCACTGAAGTA GCTGGCCATATGAATTTGCT 160243961 - 160243408 554 

Exon 8 ATTCTGGGATGGGGAATTTG TCCTTTGTCTGCACTTGTGG 160242504 - 160242212 293 

Exon 9 AGGGGTGGATGGGAGATAAC ACATCCAGGAAGAACGCAAG 160241655 - 160241313 343 

Exon 10 TTCAATGGAGTTTGGAACTGG TGAATTTATCTCAGTGTATGGTGTGA 160224991 - 160224588 404 

Exon 11 AATTTCTTTCTCCCCTCTCCA TTTTAAAATCCACAAATGTTAAGACA 160217538 - 160216700 839 
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Table 4.2 - SLC22A2 gene multiplex 1 single base extension primers for SNaPshot™ genotyping assay of selected SNPs. 

NCBI 
(dbSNP) 

Amino Acid 
Change Nucleotide sequence (5′ → 3′) 

Position 
Accession number 
(NC_000006.12) 

Primer 
length 
(bp) 

polyGACT tail 

      

rs57371881 R176H ATGAGGACTGTAGTTAGGAGGCAGAGCTTA rs57371881 30 0 

rs201919874 T199I CAGCTGGAGTTCTCATGGCCATTTCCCCAA 160250625 35 5 

rs8177508 M165V TCAGTGAATGTAGGATTCTTTATTGGCTCT 160256639 40 10 

rs144729356 C282G AGATCAGCCACCTGGGAGACTCAGGTATGC 160247297 45 15 

rs45599131 L351W GTGAAAAATATTCCTTACCAGTTGTACATC 160245451 50 20 

rs8177517 K432Q TCTTTTCCCTCTTAGATCTACAATGGCTA 160242388 55 25 

rs145450955 T201M CCTTGGATTAAGCGAAAAATTAACATCCAC 160250619 60 30 

rs316019 S270A CCTCACTGGAGGTGGTTGCAGTTCACAGTT 160249250 65 35 

rs8177516 R400C ATGCAGCCCAAGGGTAACGGCGTCCGATGC 160243653 70 40 

rs141582772 M1V GCAGCCTCGGGCCCTCCTGCCTGCAGGATC 160258757 75 45 
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Table 4.3 - SLC22A2 gene multiplex 2 single base extension primers for SNaPshot™ genotyping assay of selected SNPs.  

NCBI 
(dbSNP) 

Amino Acid 
Change Nucleotide sequence (5′ → 3′) 

Position 
Accession number 
(NC_000006.12) 

Primer 
length 
(bp) 

polyGACT tail 

      

rs141205337 M393T CGTCCGATGCGGTCGATGGTGAGGATGATC 160243673 30 0 

rs141405449 G439E ATCTCATAGGCCATTGTGATCCCCATTCTT 160242366 35 5 

rs3907239 R463K CCCTCGTCATTCTAAGGAAAATGCACTCAC 160242294 40 10 

rs184227446 T357M ATGATGAGGCCCTGGTAGAGCACAGAGCTC 160243781 45 15 

rs140829992 R487W GGTGGCATCATCACGCCATTCCTGGTCTAC 160241516 50 20 

rs17853948 V502E/G AGCACCAGACCTCCAGCAACCAAGCCAAGC 160224801 55 35 

rs137885730 R404C CAACCATATTTGATGCAGCCCAAGGGTAAC 160243641 60 30 

rs140033522 V502M ATGTGATATTCATCTGTTTGGCTTTCAGGC 160224802 65 25 

rs151282335 R487Q AGCGGGAGCTCAAGCCAGATGTTAGTGAGC 160241515 70 40 

rs199783132 R207H GCTGCTTTGCTGACCAGTCCTTGGATTAAGC 160250602 75 45 
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4.4. Results 

4.4.1. SNaPshot™ Genotyping 

To determine the allele frequencies of 20 known coding variants of OCT2 we 

screened 148 Xhosa individuals. The genotype and allele frequencies of the 20 SNPs 

are summarized in Table 4.5. A typical electropherogram of the SLC22A2 SNaPshot 

genotyping system is displayed in Figure 4.1. All the variants observed were in 

Hardy-Weinberg equilibrium (p>0.05). Seventeen out of the 20 investigated 

nonsynonymous SNPs were monomorphic in the Xhosa population. Heterozygosity 

was only observed for three of the investigated nonsynonymous SNP in this study as 

shown in Table X. The A270S (rs316019) genotype frequencies for wild-type (GG), 

heterozygote (GT), and homozygote (TT) were 87.8%; 12.2%; and 0.0% 

respectively. The MAF for A270S (rs316019) observed in this study was 6.1%. The 

genotype frequencies for the R400C (rs8177516) variant wild-type (CC), 

heterozygote (CT), and homozygote (TT) were 93.2%; 6.8%; and 0.0%, respectively. 

The MAF for R400C (rs8177516) was 3.4%. The K432Q (rs8177517) genotype 

frequencies wild-type (AA), heterozygote (AC), and homozygote (CC) were 98.6%; 

1.4%; and 0.0%, respectively. The MAF for the K432Q (rs8177517) was 0.7%. 
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Figure 4.1 – Typical electropherogram of SLC22A2 multiplex 1 minisequencing 
fragments. Black represents C, green A, blue G, and red T. 

 

Table 4.4 – Haplotype structure of SLC22A2 gene in the Xhosa population as 
defined by the 20 selected loci. 

Haplotype Id Haplotype Frequency 
   

Haplotype *1 AAGGCGGTTGACGAGCCGAC 90.0% 
   

Haplotype *2 AAGGCGTTTGACGAGCCGAC 6.0% 
   

Haplotype *3 AAGGCGGTTGATGAGCCGAC 3.2% 
   

Haplotype *4 AAGGCGGTTGACGCGCCGAC 0.7% 
   

Haplotype *5 AAGGCGTTTGATGAGCCGAC 0.1% 
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4.4.2. Haplotype Analysis 

Haplotypes were constructed using the SHesis online platform. Five haplotypes 

listed in Table 4.4 were identified from the 20 investigated nonsynonymous SNPs. 

The most observed haplotype was Haplotype *1 which had a frequency of 90.0%. 

Haplotype *2 and *3 were observed at frequencies of 6.0% and 3.2%, respectively. 

The two least observed haplotype, Haplotype *4 and *5, were observed at 

frequencies of 0.7% and 0.1%, respectively. 

Table 4.5 - Genotype and allele frequencies of 20 known SLC22A2 coding SNPs in 
148 healthy Xhosa individuals. 

Amino Acid 
Substitution dbSNP ID 

Observed Genotype Frequency Allele Frequency 

Genotype % 95% CI Allele % 95% CI HWE 
(P) 

         

M1V rs141582772 
CC 100.0 96.9 – 100.0 C 98.3 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 1.7 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

M165V rs8177508 
TT 100.0 96.9 – 100.0 T 100.0 98.4 – 100.0 

 TC 0.0 0.0 – 1.3 C 0.0 0.0 – 1.6 
CC 0.0 0.0 – 1.3    

         

R176H rs57371881 
TT 100.0 96.9 – 100.0 T 100.0 98.4 – 100.0 

 TA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

T199I rs201919874 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 -1.6 
TT 0.0 0.0 – 1.3    

         

T201M rs145450955 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GT 0.0 0.0 – 1.3 T 0.0 0.0 -1.6 
TT 0.0 0.0 – 1.3    

         

R207H rs199783132 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3  0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

S270A rs316019 
TT 87.8 81.5 – 92.2 C 91.6 90.9 – 96.4 0.655 TG 12.2 7.2 – 17.8 T 8.4 3.6 -9.1 
GG 0.0 0.0 – 1.9     

         

C282G rs144729356 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 -1.6 
AA 0.0 0.0 – 1.3    

         

L351W rs45599131 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 -1.6 
AA 0.0 0.0 – 1.3    
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T357M rs184227446 GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0  

  GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6    AA 0.0 0.0 – 1.3     
         

M393T rs141205337 
GG 100.0 88.6 – 96.9 G 100.0 98.4 – 100.0 

 GT 0.0 0.0 – 1.3 T 3.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

R400C rs8177516 
CC 91.3 87.8 96.4 A 96.6 94.2 – 98.4 

0.886 CT 8.5 3.1 – 11.4 C 3.4 18.2 – 23.0 
TT 0.0 0.0 – 1.9    

         

R404C rs137885730 
CC 100.0 87.8– 96.4 C 100.0 98.4 – 100.0 

 CG 0.0 0.0 – 1.3 G 0.0 0.0 – 1.6 
GG 0.0 0.0 – 1.3    

         

K432Q rs8177517 
AA 98.6.0 94.8 – 99.9 A 100.0 97.9 – 100.0 

0.934 AC 1.4 0.0 – 4.2 G 0.0 0.0 – 2.1 
CC 0.0 0.0 – 1.9    

         

G439E rs141405449 
AA 100.0 96.9 – 100.0 A 100.0 98.4 – 100.0 

 AG 0.0 0.0 – 1.3 G 0.0 0.0 – 1.6 
GG 0.0 0.0 – 1.3    

         

R463K rs3907239 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

R487Q rs151282335 
AA 100.0 96.9 – 100.0 A 100.0 98.4 – 100.0 

 AT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

R487W rs140829992 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

V502E/G rs17853948 
TT 100.0 96.9 – 100.0 T 100.0 98.4 – 100.0 

 TA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

V502M rs140033522 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    
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Table 4.6 - Comparison of MAF of selected SLC22A2 SNPs in the Xhosa population to other ethnic groups. 
dbSNP ID Amino acid 

change 
Minor 
Allele 

Minor Allele Frequency (%) 
Xhosaa Luhyab Yorubab African-Americanb Japaneseb Chinese-Hanb Caucasian-Finishb Caucasian-Americanb 

           

rs8177508 M165V T 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 

rs201919874 T199I T 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 

rs145450955 T201M A 0.0 0.0 0.0 0.0 2.2 0.5 0.0 0.0 

rs199783132 R207H T 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 

rs316019 S270A T 8.4 16.0 15.9 14.8 0.0 14.7 5.9 8.8 

rs8177516 R400C T 3.4 0.0 2.3 1.6 0.0 0.0 0.0 0.0 

rs8177517 K432Q T 1.4 5.2 6.2 1.6 0.0 0.0 0.0 0.0 

           

a.This study; b. Data from 1000 Genomes 
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4.5. Discussion 

The kidney-specific hOCT2 is responsible for therapeutic drug uptake from the 

circulation into renal proximal tubules. Therefore it is an important determinant of 

drug disposition and response, and adverse events that result from drug-drug 

interactions. Genetic polymorphisms of the SLC22A2, which codes for hOCT2, have 

been implicated in altered transport which in turn influences drug disposition and 

response. However, little information is available on the genetic variation of 

SLC22A2 in African populations residing in southern Africa. Therefore, the aim of 

this study was to develop a SNaPshot genotyping system in order to assess the 

baseline allele frequency distributions of previously identified nonsynonymous 

SLC22A2 SNPs in the Xhosa population of South Africa. 

The reduced-function variant M165I (rs8177508) was first observed by Leabman et 

al. (2002) in African-American participants who formed part of a group of 247 

ethnically diverse individuals (Leabman et al., 2002). The minor allele frequency 

recorded for the M165I variant in the Leabman study was 1%. However, this variant 

was not observed in the current study and is also absent from those African 

populations included in the 1000 Genomes database. 

The two nonsynonymous SLC22A2 variants T199I (rs201919874) and T201M 

(rs145450955) were previously identified as rare SNPs in Asian populations with 

MAF <1% ((Fukushima-Uesaka et al., 2004, Kang et al., 2007). These variants 

showed decreased transport of prototypical organic cations in functional studies in 

vitro which were not attributable to either protein expression or plasma membrane 

localization. The T199I (rs201919874) and T201M (rs145450955) were not 
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observed in this study and can be considered an Asian-specific variants since it has 

not been observed in any of the other population groups. 

The A270S (rs316019) variant has been identified as a common SNP that occurs at a 

high allelic frequency (7-15%) in all ethnic groups studied (Fujita et al., 2006, Kang 

et al., 2007, Leabman et al., 2002). The MAF for the A270S (rs316019) variant in 

the Xhosa population was recorded at 6.1% which is significantly lower than the 

global MAF for this variant of 12%. Moreover, the MAF for the Xhosa population 

was substantially lower than that recorded for the Luhya of Kenya (16%), and 

Yoruba of Nigeria (15.9%), showing that inter-ethnic variability does exist between 

populations in Southern Africa and those from West and East Africa for the A270S 

(rs316019) variant. The functional activity of the A270S (rs316019) variant has been 

well characterized, and it has been shown to result in decreased transport of 

prototypical substrates in vitro, compared with the wild-type. Recent studies by Song 

et al. (2008) and Wang et al. (2008) showed significantly lower renal clearance of 

metformin in carriers homozygous for A270 (rs316019)S as compared to 

homozygous wild-type (Song et al., 2008a, Wang et al., 2008). This observation was 

supported by Tzvetkov et al. (2009) who made a similar in a population of 

Caucasian men (Tzvetkov et al., 2009). In addition, Li et al. (2010) showed that the 

A270S (rs316019) variant can affect the plasma lactate level and the incidence of 

hyperlactacidemia in type-2 diabetes patients on metformin therapy (Li et al., 2010). 

The R400C (rs8177516) variant of hOCT2 is of particular interest because it changes 

an arginine that is evolutionary conserved amongst the OCT paralogs (OCT1-3) 

(Leabman et al., 2002). The MAF for R400C (rs8177516) in this study was 6.8%, 

compared to 2.3% and 1.6% MAF reported for the Yoruba and African Americans in 
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the 1000 Genomes project, respectively. This variant has thus far only been observed 

in African populations (Fukushima-Uesaka et al., 2004, Kang et al., 2007, Leabman 

et al., 2002). Functional analysis of R400C (rs8177516) revealed that this variant 

had significant reduced transport activity of prototypical cationic substrates in vitro 

compared to the hOCT2 reference (Leabman et al., 2002). However, the role of this 

variant on the pharmacokinetics and efficacy of its substrate drugs in vivo had not 

been establish yet. Given the high MAF of this variant in the Xhosa individuals 

studied, and its effect on hOCT2 transport activity in vitro, the impact of this variant 

on drug disposition and efficacy in the Xhosa population requires closer 

investigation. 

Another hOCT2 variant, K432Q (rs8177517) , in an in vitro assay showed a stronger 

affinity for the prototypical organic cation MPP+ and a sensitivity to TBA (Leabman 

et al., 2002). This variant has thus far only been observed in Admixed Americans, 

Colombians, African Americans, and Africans. The MAF for K432Q (rs8177517) 

observed in this study was 1.4%, compared to that observed in the 1000 Genomes 

project of 6.6%, 5.6%, and 1.6% for the Luhya, Yoruba and African Americans, 

respectively. Although this variant has shown reduced transport activity in vitro, no 

information is available on the clinical impact of this SNP in vivo. Thus, given the 

fact that this variant occurs at a higher allele frequency in African populations, the in 

vivo effect of this variant on hOCT2 substrate drug transport requires further 

scrutiny. 
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4.6. Conclusions 

In this study the 20 investigated nonsynonymous SLC22A2 SNPs showed a low level 

of heterozygosity, with 85% of the loci displaying monomophism in the Xhosa 

subjects. This study once again highlighted the fact that the distribution of SNPs and 

the MAFs thereof differ between African and other populations, and even amongst 

African populations themselves. These differences in allele frequencies, although not 

fully understood, might provide us with the insight into inter-ethnic and inter-

individual variability in drug response for substrate drugs of hOCT2. Moreover, the 

single SNPs identified and haplotypes inferred for the Xhosa population may be 

important in future pharmacogenetic in identifying association between causative 

variants and altered drug response. While Chapters 1-3 have dealt with genetic 

variation in the uptake and efflux transporters which are co-localized in the liver and 

kidney, respectively, Chapter 5 explores genetic variations of SLC22A3, the gene of 

the ubiquitously expressed organic cation transporter hOCT3  
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CHAPTER 5 

Evaluation of 18 Single Nucleotide Polymorphisms in the SLC22A3 Gene of the 

Xhosa Population 

5.1. Abstract 

Organic cation transporters of the amphiphilic solute facilitator family of membrane 

proteins are involved in the translocation of a diverse range of endogenous and 

exogenous organic cations. These organic cations include clinically important 

substrates such as the anti-diabetic drug metformin, the anti-neoplastic drug 

oxaliplatin, and the anti-retroviral drug lamivudine. Inter-individual variation in drug 

disposition and efficacy is a major clinical problem and the role of these transporters 

is increasingly being recognized as a possible mechanism explaining this variation. 

Moreover, it is estimated that genetic factors can account for between 15-30% of 

inter-individual variation of drug disposition and response. The aim of this study was 

to determine the baseline minor allele frequency distribution of 18 known coding 

SNPs in the SLC22A3 gene of 148 Xhosa individuals residing in Cape Town, South 

Africa. This study found no genetic polymorphisms in the coding region of the 

SLC22A3 gene of the Xhosa individuals investigated. To our knowledge this study 

represents the first of its kind to investigate the baseline allele and genotype 

frequency distributions of known genetic polymorphisms within the SLC22A3 gene 

of the Xhosa population. This study has shown that SLC22A3 coding SNPs observed 

in other populations are absent in the sample of Xhosa individuals studied. The lack 

of protein sequence variation was consistent with other studies and may reflect the 

significant physiological role of hOCT3 in maintaining cellular and organismal 

homeostasis. 
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5.2. Introduction 

Organic cation transportes (OCTs) belong to the amphiphilic solute facilitator (ASF) 

family integral transmembrane proteins and are involved in various metabolic 

processes and detoxification (Schömig et al., 1998). These transporters are 

characterized by a specific organ and species-dependent expression and mediate the 

transport of organic cations (OCs) in an electrogenic and Na+-independent manner 

(Burckhardt and Wolff, 2000). 

The human organic cation transporter 3 (hOCT3), also known as extraneuronal 

monoamine transporter (EMT), has a broad distribution and is found in various 

tissues, including the liver, heart, placenta, skeletal muscle, kidney, and brain 

(Gründemann et al., 1998, Wu et al., 2000). Moreover, hOCT3 is a polyspecific 

transporter that is involved in the cellular uptake and elimination of small OCs with 

different molecular structures. These OC substrates include endogenous bioamines, 

clinically important drugs and xenobiotics. Examples of substrates transported by 

hOCT3 include the antidiabetic metformin, the biogenic amines histamine, 

dopamine, and epinephrine, and the xenobiotics tetraethylammonium bromide (TEA) 

and the neurotoxin 1-methyl-4-pyridinium (MPP+) (Martel 2003). 

The gene encoding for hOCT3, SLC22A3, encodes a protein consisting of 556 amino 

acid residues and is located on chromosome 6 where it is clustered together with 

SLC22A1 and SLC22A2 the genes coding for hOCT3’s paralogues hOCT1 and 

hOCT2, respectively (Koehler et al., 1997, Verhaagh et al., 1999). The SLC22A3 

gene is 77kb in length and consists of 11 exons with consensus GT/AG splice sites 

and conserved intron locations (Gründemann and Schömig, 2000). Moreover, the 

SLC22A3 gene contains two transcriptional start points and the promoter, located 
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within a CpG island, lacks a canonical TATA box but contains a prototypical 

initiator element and a number of potential binding sites for ubiquitous transcription 

factors SpI and NF-1 (Gründemann and Schömig, 2000). Recently, Chen et al. 

(2013) demonstrated that genetic polymorphisms in the proximal promoter region of 

SLC22A3 alter the transcription rate of the gene and may be associated with altered 

expression levels of hOCT3 in the liver (Chen et al., 2013). In addition, they also 

showed that hypermethylation of the CpG island in the proximal promoter region is 

the probable mechanism accounting for decreased expression of hOCT3 in prostate 

cancer. 

The ubiquitously expressed hOCT3 is also increasingly been recognized as an 

important transporter of anti-cancer drugs. For example, a study by Yokoo et al. 

(2008) investigated whether hOCT3 was significantly involved in oxaliplatin-

induced cytotoxicity and accumulation of platinum in colorectal cancer (Yokoo et 

al., 2008). They concluded that hOCT3-mediated uptake of oxaliplatin into cancer 

cells was indeed important for its toxicity, and that hOCT3 may be a marker for 

cancer chemotherapy. In another study, Shnitsar et al. (2009) found that renal cell 

carcinoma (RCC) cell lines, usually chemoresistant, expressing hOCT3 increases 

chemosensitivity to the antineoplastics, melphalan, irinotecan, and vincristine 

(Shnitsar et al., 2009). In a recent study, Li et al. (2012) found that hOCT3 also 

partially contributed to the sensitivity of human cervical adenocarcinoma cells to 

cisplatin cytotoxicity (Li et al., 2012). 

The hOCT3 gene, SLC22A3, was also identified as an important risk locus for 

prostate cancer, and was markedly under-expressed in aggressive prostate cancers 

(Eeles et al., 2008). This study also revealed that hypermethylation of the SLC22A3 
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promoter region in prostate cancer was one of the important mechanisms for the 

reduced expression of this transporter. Furthermore, a  study by Mohelnikova-

Duchonova et al. (2013) found a significant upregulation of SLC22A3 in pancreatic 

ductal adenocarcinoma (PDAC) tumours compared to non-neoplastic tissues 

(Mohelnikova-Duchonova et al., 2013). In addition to cancer, the SLC22A3-LPAL2-

LPA gene cluster was also previously identified in a genome-wide association 

(GWAS) haplotype study as a risk locus for coronary artery disease (CAD) 

(Trégouët et al., 2009). 

The biguanide antidiabetic drug metformin is usually the first-line therapeutic used 

in the treatment of type-2 diabetes (Kirpichnikov et al., 2002, Nathan et al., 2009). 

The action of metformin appears to be related to its activation (phosphorylation) of 

the energy sensor AMP-activated kinase (AMPK), which results in suppression 

glucagon-stimulated glucose production and enhancement of glucose uptake in 

muscle and hepatic cells (Abbud et al., 2000, Zhou et al., 2001). Previous studies 

have shown that OCTs, the hOCT3 paralogues hOCT1 and hOCT2, together with 

MATEs play a critical role in the disposition response and that genetic variants of 

these transporters are associated with variation in pharmacokinetic and anti-diabetic 

action of the drug (ML Becker et al., 2009, Becker et al., 2010, Kimura et al., 2009, 

Yan Shu et al., 2007, Shu et al., 2008). Subsequently, a study by Chen et al. (2010) 

has suggested that in addition to hOCT1, hOCT2 and MATE1, hOCT3 should be 

considered an important mechanism for metformin uptake in muscle cell types and 

that variation in this transporter may modulate the response to metformin (Chen et 

al., 2010a).  
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The role of hOCT3 is not only recognized as a pharmacogene in the transport of 

metformin but is also considered a promising drug target in antidepressant therapy 

(Zhu et al., 2012). Because of its expression pattern and physiological profile, 

hOCT3 is also considered as a candidate gene for various neuropsychiatric disorders 

of inherent monoaminergic dysfunction (Wultsch et al., 2009). hOCT3’s importance 

in the regulation of neurotransmission has been well documented in a number of 

animal studies (Amphoux et al., 2006, Baganz et al., 2008, Cui et al., 2009, Wultsch 

et al., 2009) and more recently, in humans (Cui et al., 2009). Aoyama et al. (2006) 

found that certain SNPs in the SLC22A3 gene were associated with the development 

of polysubstance abuse in Japanese individuals with dependence on the amphetamine 

derivative methamphetamine (Aoyama et al., 2006). In addition, Lazar et al. (2008) 

in a case-control study of 84 Caucasian children and adolescents found that known 

SLC22A3 genetic polymorphisms were not associated with obsessive compulsive 

disorder (OCD) in their study sample, but did identify two novel polymorphisms that 

were associated with  OCD (Lazar et al., 2008). 

Mental disorders are a major contributor to the burden of disease globally, with 

about 14% of the global burden being attributed to neuropsychiatric disorders 

(Prince et al., 2007, Tomlinson et al., 2009). Moreover, in sub-Saharan Africa 

neuropsychiatric disorders account for nearly 10% of the total burden of disease 

(Lopez et al., 2006, Tomlinson et al., 2009). The genetic basis for several diseases, 

including neuropsychiatric disorders is well established. To bridge the gap in 

pharmacogenetic mapping in African populations, especially those residing in 

southern Africa, this study prioritized the genotyping of 18 known variable sites in 

the coding region of the SLC22A3 gene in the Xhosa population living in the Cape 

Town, South Africa. 
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5.3. Materials and Methods 

5.3.1. Subjects 

As described in Chapter 2. 

5.3.2. DNA extraction and SNP selection 

Isolation of genomic DNA from buccal swab samples was carried out as outlined in 

Chapter 2 using a standard salt-lysis protocol and stored frozen at -20°C until the 

time of genotyping (Leat et al., 2004a). A total of 18 SLC22A3 coding SNPs were 

selected for this study. SNPs were selected from the literature and the Ensembl 

database (http://www.ensebl.org) (Flicek et al., 2012). Variants N162I; A169T; 

R212H; M248V; G269E; R293C; R310C; S337F; R348W; I381T; V388M; R403H; 

R407H; I431K; and R490Q were included in this study based on predicted effect on 

function, using the SIFT (Sorting Intolerant From Tolerant) program (Flanagan et 

al., 2010, Kumar et al., 2009, Ng and Henikoff, 2003). To our knowledge no 

population data exist in the public domain for these variants. 

5.3.3. Primer design 

Multiplex PCR primers for the amplification of all 11 SLC22A3 exons and flanking 

regions were designed using Primer3 software (www.genome.wi.mit.edu/cgi-

bin/primer/primer3) and are listed in Table 5.1. To test for possible non-specific 

amplification, primers were aligned with the NCBI sequence databases using Basic 

Local Alignment Search Tool (www.ncbi.nlm.nih.gov/blast/blast-cgi). Two 

SNaPshot™ Multiplex systems were specifically designed for the study, successfully 

optimized and used for genotyping. The single base extension primer sets for 

multiplex 1 and 2 are listed in Tables 5.2 and 5.3.
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Table 5.1 - Multiplex PCR primers for the generation of SLC22A3 amplicons used in SNaPshot™ genotyping.  

 

Location Forward primer (5´to 3´) Reverse Primer (5ʹto 3ʹ) Amplified region (NC_000006.12) Amplicon 
length (bp) 

     

Exon 2 TGCATTCTGGCATGTCTCCATGTGT ACCGGGAACAGCCTCAGACCT 160397935 - 160398311 377 

Exon 3 GTTTAAGGTGAGCTCTTTTCCTGT TTGGCTCCCAAAGTAAGGTGG 160407004 -160407404 401 

Exon 4 CTGCAAGTGTGGAAGCCTCCGT GCTGGGCAGCGTGATGGCTA 160408607 -160408898 292 

Exon 5 TGCAGGAATAATCTGTATTTCAGGG ACTGAAAATGATTTCCCAGATGTT 160410569 - 160411034 466 

Exon 6 & 7 TGAAAGCCCCTAGTCACTTCAG TGGAGTGACATCACGAAAGACT 160436664 - 160437340 677 

Exon 8 CTTCAGACTGGAGGCCACTAAGCA ACGCTGGTCTACAGAGTTACTTAG 160442659 - 160442921 263 

Exon 9 GGATAACACCCTCCACCCAC ACTGAATTGGCTCTCAAAACTG 160443405 - 160443934 530 

Exon 10 TGTTTCCCTGTGATGCAGGA TGCTTCTCTCTTCACAACCACAT 160447401 -160448051 651 

Exon 11 TGATCCTGGAGACAGATATTGTTGT GTCAGAGACCACAGGGAACA 160450844 - 160451347 504 
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5.3.4. Multiplex PCR 

All the 11 SLC22A3 exons and their flanking regions were simultaneously amplified 

using the primers listed in Table 5.1. The PCR reactions were performed in a 20 µl 

volume, containing 20 – 50 ng of genomic DNA, 1 x Qaigen multiplex PCR master 

mix (Qaigen, Courtaboeuf, France) and 0.2 µM of each primer. Cycling parameters 

used and PCR product purification were as described in Chapter 2. 

5.3.5. Multiplex minisequencing reactions 

Multiplex minisequencing was performed in a 10 µl reaction volume using 3 µl of a 

1/10 dilution of purified PCR products, 0.1-0.2 µM of primers, and 5 µl of 

SNaPshot™ ready reaction mix (Applied Biosystems). Sequence cycling and post-

extension treatment was performed according to the instructions of the 

manufactureras described in Chapter 2 

5.3.6. Electrophoresis of the minisequencing products 

The fluorescently labelled fragments were separated on 36 cm-long capillaries in 

POP4 polymer on an ABI Prism 3500 Genetic Analyzer (Applied Biosystems) as 

described in Chapter 2.. Data analyses were performed using GeneMapper® IDX 

Software Version 1.2. 
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Table 5.2 - SLC22A3 gene multiplex 1 single base extension primers for SNaPshot™ genotyping assay of selected SNPs. 

NCBI 
(dbSNP) 

Amino 
Acid 

Change 

Nucleotide 
change Nucleotide sequence (5′ → 3′) 

Position 
Accession number 
(NC_000006.12) 

Primer 
length 
(bp) 

polyGACT tail 

       

rs183669984 R310C C>T AAAGGAGATAAAGCATTACAGATCCTGAGA 160410799 30 0 

rs137958808 M370I G>T AAGCGCAGTGGTGTATCAAGGACTTGTCAT 160437033 35 5 

rs199688797 R212H G>A CACCAAACTTCCCTGTGTTTGTGATCTTCC 160407142 40 10 

rs150004342 A169T G>A ACCTGTCTGCTGCATAGCCTAAGGTGAATG 160398054 45 15 

rs142228053 R293C C>T TTCTTTGCCAGGGTGGTCCCTGAGTCTCCC 160410748 50 20 

rs149424049 I431K T>A AATGTAGCCACTGTGGTCCTCAACCATGCT 160442764 55 25 

rs147863404 G269E G>A AAGCTGGGCAGCGTGATGGCTAACTGGATT 160408870 60 30 

rs8187725 T400I C>T AAGGGGAGGCGTCGTCCAAGGCGCTCAATG 160437122 65 35 

rs149101094 M248V A>G CAAAGGAGGATTGTGGGAATCGTGATTCAA 160408806 70 40 

rs141104413 S337F C>T CTGTTACAGATGAGGAAGTTAGTAATCCAT 160436814 75 45 
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Table 5.3 - SLC22A3 gene multiplex 2 single base extension primers for SNaPshot™ genotyping of selected SNPs. 

NCBI 
(dbSNP) 

Amino Acid 
Change 

Nucleotide 
change Nucleotide sequence (5′ → 3′) 

Position 
Accession number 
(NC_000006.12) 

Primer 
length (bp) polyGACT tail 

       

rs139266499 N162I A>T GGATGCTGGACCTCACCCAAGCCATCCTGA 161081878 35 5 

rs145328121 R348W A>T TTTTTAGATCTGGTGAGAACTCCCCAAATG 160436846 45 15 

rs187750009 I381T T>C GCCTGGGAATTATAGGGGGCAACCTCTATA 160437065 50 20 

rs189883656 V388M G>A AGATCAAGAGAGCTCCTGGCAGTTCCACCA 160437085 55 25 

rs200478210 R403H G>A GAGCTCTCTTGATCTTACTAACCATTGAGC 160437131 60 30 

rs145082363 R407H G>A GCCACTATATTGCTTGCCGCAAAGGGGAGG 160437143 65 35 

rs12212246 A439V C>T CAGGAATAGCATGGTTGAGGACCACAGTGG 160442788 70 40 

rs144856002 R490Q G>A AGAGGTAGTTCTAGCCACACGGCTGCTAGC 160443701 75 45 
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5.4. Results and Discussion 

The population studied consisted of 148 healthy Xhosa individuals between the ages 

of 18 and 61 years. There were 80 (54%) female and 68 (46%) male participants. 

The mean age of female participants was 25.3±9.0 years, whereas male participants 

had a mean age of 24.8±7.7 years. 

In this study we have developed two SNaPshot™ multiplex assays for genotyping 18 

known nonsynonymous coding SNPs in the SLC22A3 gene. The genotype and allele 

frequencies of the 18 SLC22A3 gene SNPs investigated in the 148 Xhosa subjects 

are summarized in Table 5.4. All 18 coding SNPs genotyped in this study were 

monomorphic in the Xhosa population. 

Table 5.4 - Genotype and allele frequencies of the OCT3 (SLC22A3) gene SNPs in 
148 healthy Xhosa individuals. 

Amino Acid 
Substitution dbSNP ID 

Observed Genotype Frequency Allele Frequency 

Genotype % 95% CI Allele % 95% CI HWE 
(P) 

         

N162I rs139266499 
AA 100.0 96.9 – 100.0 A 100.0 98.4 – 100.0 

 AT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

A169T rs150004342 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

R212H rs199688797 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

M248V rs149101094 
AA 100.0 96.9 – 100.0 A 100.0 98.4 – 100.0 

 AG 0.0 0.0 – 1.3 G 0.0 0.0 -1.6 
GG 0.0 0.0 – 1.3    

         

G269E rs147863404 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 -1.6 
AA 0.0 0.0 – 1.3    

         

R293C rs142228053 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

R310C rs183669984 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

S337F rs141104413 CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0  CT 0.0 0.0 – 1.3 T 0.0 0.0 -1.6 
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  TT 0.0 0.0 – 1.3     
         

R348W rs145328121 
AA 100.0 96.9 – 100.0 A 100.0 98.4 – 100.0 

 AT 0.0 0.0 – 1.3 T 0.0 0.0 -1.6 
TT 0.0 0.0 – 1.3    

         

M370I rs137958808 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         
I381T rs187750009 TT 100.0 96.9 – 100.0 T 100.0 98.4 – 100.0    TC 0.0 0.0 – 1.3 C 0.0 0.0 – 1.6    CC 0.0 0.0 – 1.3     

         

V388M rs189883656 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

T400I rs8187725 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0 

 CT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3    

         

R403H rs200478210 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

R407H rs145082363 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

A439V rs12212246 
CC 100.0 96.9 – 100.0 C 100.0 98.4 – 100.0  CT 0.0 0.0 – 1.3 T 0.0 0.0 – 1.6 
TT 0.0 0.0 – 1.3     

         

I431K rs149424049 
TT 100.0 96.9 – 100.0 T 100.0 98.4 – 100.0  TA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3     

         

R490Q rs144856002 
GG 100.0 96.9 – 100.0 G 100.0 98.4 – 100.0 

 GA 0.0 0.0 – 1.3 A 0.0 0.0 – 1.6 
AA 0.0 0.0 – 1.3    

         

 

Over the last number of years hOCT3 has increasingly being recognized as an anti-

diabetic and anti-cancer drug transporter (Chen et al., 2010a, Nies et al., 2009, 

Yokoo et al., 2008). Recently published reports also provide evidence of the 

increased interest in the role of hOCT3 in neurotransmission and maintenance of 

homeostasis in the central nervous system (CNS) as a result of its recognized ability 

to translocate monoamines (Amphoux et al., 2006). In addition, hOCT3 is also 

drawing interest as a potential target in the treatment of selected neuropsychiatric 

disorders. 
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In the current study we genotyped 18 known SNPs in the SLC22A3 gene of 152 

Xhosa individuals residing in the Cape Town metropolitan area, South Africa. We 

observed no genetic variation for the 18 noncoding SNPs genotyped in the 

investigated population. However, this lack of genetic variation in the coding region 

of SLC22A3 in the Xhosa population is not a unique situation and has also been 

observed in other populations (Kang et al., 2007, Lazar et al., 2003). Moreover, 

according to Lazar et al. (2008), this high degree of genetic preservation and lack of 

protein sequence variation may reflect the crucial physiological role hOCT3 plays in 

maintaining homeostasis (Lazar et al., 2008). 

Unlike its paralogues hOCT3 has a broad distribution in the human body and 

because of its localization in the CNS and its affinity for monoamines is believed to 

play a significant role in neuropsychiatric disorders. Methamphetamine (MAP) is a 

powerful highly addictive psycho-stimulant that affects the CNS. The illicit us of 

MAP has become a growing problem in a number of countries over the last two 

decades, and has recently emerged as a significant problem in South Africa 

(Plüddemann et al., 2010). Smoking crystalline MAP has been associated with high 

levels of harm. The most salient harms associated with MAP use are mental health 

problems, including psychosis, depression, anxiety, and violent behaviour. Ayoma et 

al. (2006), in a study with Japanese MAP users, found that SLC22A3 polymorphisms 

may be related to the development of polysubstance use in patients with MAP 

dependence (Aoyama et al., 2006). The polymorphisms used in the Aoyama study 

were not included in the present study and as such no inferences can be drawn. 

However, given the health problems associated with, and the current prevalence of 

MAP use in South Africa, the role of genetic polymorphisms of SLC22A3 in the 
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development of polysubstance use in individuals with MAP dependence in 

indigenous African populations need further investigation. 

The role of hOCT3 in monoamine transport in vivo is well established. Because of its 

role in monoamine transport and its localization in the CNS, hOCT3 has also been 

implicated in non-neuronal termination of noradrenergic signalling in the CNS and 

as a candidate gene for a variety of neuropsychiatric disorders (Lazar et al., 2008, 

Wultsch et al., 2009). Moreover, Lazar et al. (2008) identified two SNPs, -

106/107delAG and Met370Ile in a group of Caucasian patients diagnosed with 

obsessive compulsive disorder (OCD), which lead to a decrease in promoter activity 

and transport of norepinephrine, respectively, in assays performed in vitro (Lazar et 

al., 2008). Haenisch et al. (2012) showed that two psychoactive drugs nefazodone 

and clozapine had the potential to inhibit hOCT3 activity. However, their study was 

unable to demonstrate whether this direct inhibition of hOCT3 plays a role in the 

clinical effects of these drugs (Haenisch et al., 2012). 

The ubiquitously expressed hOCT3 has not only been implicated in the transport of 

anti-cancer drugs, but more recently also as a biomarker for cancer pathogenesis. For 

example, in colorectal cancers hOCT together with its paralogues, hOCT1 and 

hOCT2, have been shown to be determinants of oxaliplatin cytotoxicity (Yokoo et 

al., 2008, Zhang et al., 2006). Moreover, SLC22A3 expression in renal cell 

carcinoma cell lines enhances the sensitivity of these cell lines towards the 

chemotherapeutic agents melphalan, irinotecan, and vincristine (Shnitsar et al., 

2009). Cui et al. (2011) recently identified the SLC22A3 SNP rs7758229 as a risk 

locus for distal colon cancer in an Asian population (Cui et al., 2011). In addition, a 

study by Grisanzio et al. (2012) showed that SLC22A3 is inversely correlated with 
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prostate cancer progression, with markedly decreased expression in aggressive 

prostate cancers (Grisanzio et al., 2012). 

Metformin is a biguanide anti-diabetic drug and is widely used as a first-line 

therapeutic in the treatment of type-2 diabetes. Earlier studies have shown that 

metformin is transported by OCT1 and OCT2, and that genetic polymorphisms of 

these transporters affect the pharmacokinetic and therapeutic effect of the drug (ML 

Becker et al., 2009, Becker et al., 2010, Kimura et al., 2009, Yan Shu et al., 2007, 

Shu et al., 2008). Recent studies have now also implicated hMATEs and hOCT3 in 

metformin absorption, disposition, and pharmacological action (Becker et al., 2010, 

Chen et al., 2010a). Chen et al (2010) found that the OCT3 variant T400I 

significantly reduced metformin uptake by the transporter (Chen et al., 2010a). 

Structural modelling suggested that this variant may be located in the pore lining of 

the TMHs, where it plays a critical role in substrate translocation. The T400I variant 

is a rare variant that has a low allele frequency and was not observed in the 

individuals that participated in this study. Given the prevalence of type-2 diabetes in 

South Africa and the widespread use of metformin as a therapeutic, the distribution 

of this variant in the indigenous African populations require further investigation. 

The effect of this variant in vivo on metformin pharmacokinetics and efficacy has not 

been demonstrated yet, but should be assessed if the T400I variant is identified in the 

Xhosa or any of the indigenous African populations. 

Ideally a larger sample size and complete sequencing of the SLC22A3 gene would 

provide a more complete picture of the spectrum of genetic variation within this gene 

for the Xhosa population. In addition, a number of SNPs in the proximal promoter 

region had been associated with altered expression of the SLC22A3 gene previously, 
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however the current approach of genotyping coding SNPs only, excluded these 

variants from being assayed. Furthermore, although medical research has primarily 

focused on protein-coding variants, this picture has changed with advances in the 

systematic annotation of functional non-coding elements (Ward and Kellis, 2012). 

However, the genotyping strategy adopted in this study have excluded the typing of 

non-coding SNPs, which could be useful when performing linkage disequilibrium 

analysis or extracting information about disease association. 

5.5. Conclusions 

To our knowledge this study represents the first of its kind to investigate the baseline 

allele and genotype frequency distributions of known genetic polymorphisms within 

the SLC22A3 gene of the Xhosa population. This study has shown that SLC22A3 

coding SNPs observed in other populations are absent in the sample of Xhosa 

individuals studied. The lack of protein sequence variation was consistent with other 

studies and may reflect the significant physiological role of hOCT3 in maintaining 

cellular and organismal homeostasis. The lack of heterozygosity at known 

polymorphic sites observed within SLC22A1-3 and SLC47A1 in the Xhosa subjects 

prompted the question whether the Xhosa subjects harboured any novel variants 

within these genes. Since kidney-specific hOCT2 is a critical determinant of drug 

disposition and toxicity, and a known site of drug-drug interactions, Chapter 6 

prioritized the sequencing of the SLC22A2 gene to search for novel genetic variants 

within the Xhosa population. 
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CHAPTER 6 

Identification of Novel Genetic Variations within the SLC22A2 Gene of the 

Xhosa Population 

6.1. Abstract 

Human organic cation 2 (hOCT2) is an important determinant of organic cation 

uptake from the circulation into the renal proximal tubules. These organic cations 

include clinical drugs such as metformin, lamivudine, cimetidine, cisplatin and the 

neurotoxin 1-methyl-4-phenyl-pyridinium. Considerable interindividual variation 

exists in drug responses and toxicity. It is estimated that genetic factors account for 

at least 15-30% of variations in drug disposition and responses. Moreover, genetic 

polymorphisms in drug transporters are increasingly being recognized as a possible 

mechanism explaining this variation in drug disposition and response. However, to 

date only a few studies have explored the genetic diversity harboured in the 

pharmacogenetically relevant organic cation transporter (OCT) genes of indigenous 

southern African populations. Therefore, the aim of this study was to determine 

whether the SLC22A2 gene of the Xhosa participants harbours any novel SNPs using 

direct sequencing of the 11 exonic and flanking intronic regions of the gene in 96 of 

the participants. Twenty-three genetic polymorphisms, including 7 novel SNPs, were 

identified in the SLC22A2 gene of the Xhosa individuals that participated in this 

study. This study represents the first report of novel SLC22A2 SNPs in the Xhosa 

population. The rare singleton SNPs identified and haplotypes inferred for the Xhosa 

population in this study is an important step in filling the gap with regards to genetic 

information on the pharmacogenetically relevant SLC22A2 gene in indigenous 

southern African populations. The information generated in this study can potentially 
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lay the foundation for future pharmacogenetic study design and for the identification 

of association between the rare SNPs and drug response and toxicity. 

 

6.2. Introduction 

Human organic cation 2 (hOCT2) is primarily expressed in the kidney and located 

on the basolateral membrane of renal proximal tubules (Gorboulev et al., 1997, 

Motohashi et al., 2002). Because of this tissue distribution and membrane 

localization hOCT2 is thought to play a critical role in the uptake, pharmacological 

effects and/or adverse effects of many cationic clinical therapeutics and xenobiotics. 

Examples of clinical drugs transported by hOCT2 include metformin (antidiabetic), 

lamivudine (antiretroviral), cisplatin (antineoplastic) and cimetidine (antihistamine) 

(Jung et al., 2008, Ciarimboli et al., 2005b, Kimura et al., 2005b, Koepsell et al., 

2007). In addition, hOCT2 is also involved in the translocation of endogenous 

bioactive amines such as dopamine and norepinephrine, and in the elimination of 

toxic substances such as the neurotoxin 1-methyl-4-phenyl-pyridinium (MPP+) 

(Burckhardt and Wolff, 2000, Dresser et al., 2002, Gorboulev et al., 1997, Okuda et 

al., 1999). Clinical studies and in vivo animal experiments with knockout mice have 

demonstrated that variation in the expression level of SLC22A2 can be responsible 

for individual variation in pharmacokinetics. Moreover, SLC22A2 genetic 

polymorphisms have been implicated in the altered function of hOCT2 which may 

lead to a change in the disposition and response of substrate drugs. 

To date several single nucleotide polymorphisms (SNPs) have been identified in the 

SLC22A2 gene of ethnically diverse populations (Fukushima-Uesaka et al., 2004, 

Kang et al., 2007, Leabman et al., 2002, Tzvetkov et al., 2009). Functional 
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characterization have revealed that several of these SNPs affect the transport 

function of hOCT2 in vitro (Leabman et al., 2002). Although in vivo evidence for the 

involvement of these SNPs in clinical phenotype is limited, recent studies have 

shown that homozygous carriers of the hOCT2 variant A270S (rs316019) have a 

lower renal clearance of metformin compared to those carrying the homozygous 

wild-type (Song et al., 2008a, Wang et al., 2008). Furthermore, this reduced-

function SLC22A2 SNP, rs316019, was also associated with reduced nephrotoxicity 

from cisplatin in cancer patients (Filipski et al., 2009). However, these 

pharmacogenetic association studies have primarily been conducted in non-African 

populations, usually Western European and North American Caucasians, and have 

focused on genetic variants which are common to these populations (Urban, 2010). 

The results of these studies are often extrapolated for use and interpretation in other 

populations. This is in spite of the fact that variant allele frequencies in 

pharmacogenetic genes can differ significantly between populations and even within 

populations (Drögemöller et al., 2010, Yen-Revollo et al., 2009). In addition, 

population-specific variants exist in non-Caucasians which will probably be more 

relevant to treatment/study outcomes then those found in Caucasians. 

Although it is widely accepted that African populations harbour more genomic 

diversity than non-African populations, this genetic diversity is however 

understudied (Frazer et al., 2009, Hardy et al., 2008, Tishkoff et al., 2009). 

However, in recent years African populations have started to attract research interest, 

with especially northern and central African countries being increasingly 

incorporated into studies assessing population structure (Ramsay, 2012, Tishkoff et 

al., 2009). The HapMap and 1000 Genomes projects currently include information 

on the Luhya and Maasai of Kenya, Yoruba and Esan of Nigeria, Gambian of The 
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Gambia, and the Mende of Sierra Leone. However, the current opinion is that the 

population genetics of these groups cannot represent the total genomic diversity of 

the remaining populations in West and East Africa, nor the populations residing in 

southern Africa (Ikediobi et al., 2011, May et al., 2013). Moreover, the role of this 

genetic diversity in disease pathogenesis and treatment is currently not fully 

understood. Thus, in order to fully understand and correlate this genomic diversity 

with pharmacogenetic phenotypes, the extent of variation in pharmacogenetically 

relevant genes such as SLC22A2 in more African populations needs to be studied. 

Therefore, the aim of this study was to determine whether the SLC22A2 gene of the 

Xhosa participants harbours any novel SNPs, using direct sequencing of the 11 

exons and flanking intronic regions of the gene in 96 healthy individuals. Secondly, 

to determine the haplotype structure of the SLC22A2 gene based on the genetic 

information acquired by sequencing, and finally, to compare the minor allele 

frequencies obtained for the Xhosa to the HapMap estimates for other African, 

American, European and Asian populations.  

6.3. Materials and Methods 

6.3.1. Subjects 

The DNA from 96 of the 148 unrelated healthy Xhosa subjects (As described in 

Chapter 2)  was used to screen for novel SNPs by direct sequencing. 

6.3.2. DNA extraction and direct sequencing 

Genomic DNA samples were collected in the form of buccal swabs and were 

extracted using a standard salt-lysis method as described in Chapter 1 (Leat et al., 

2004a). The proximal promoter region and 11 exonic fragments of the SLC22A2 

gene were generated using self-designed primer sequences. These primers were 
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designed using Primer3 software (www.genome.wi.mit.edu/cgi-bin/primer/primer3) 

and obtained from Integrated DNA Technologies (San Diego, California, USA). The 

PCR reactions were performed in a 50 µl volume, containing 20 – 50 ng of genomic 

DNA, 1 x Qaigen multiplex TopTaq master mix (Qaigen, Courtaboeuf, France) and 

0.2 µM of each forward and reverse primer. The PCR conditions included an initial 

denaturation at 95°C for 15 minutes, followed by 35 cycles of denaturation at 95°C 

for 1 minute, annealing for 1 minute, and extension at 72°C for 1minute, and then a 

final extension at 72°C for 10 minutes. The sequences and details of all the primers 

used in this study are listed in Table. The fragments were sequenced at Macrogen 

(Seoul, South Korea). 

6.3.3. Statistical Analysis 

Genotype and allele frequencies as well as the deviation from the Hardy-Weinberg 

Equilibrium were calculated using as described in Chapter 2. Statistical significance 

was defined as p<0.05. 
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Table 6.1 - PCR primer sequences for SLC22A2 sequencing amplicon generation. 

Location Forward Primer (5′ to 3′) Reverse Primer (5′ to 3′) Amplified region (NC_000006.12) Amplicon length 
(bp) 

     

Promoter GGGAAGATTACTGGGCTGTG GAGAGCAGAGCCAAGAGGAA 160259130 - 160258669 462 

Exon 1 GCTGGTCACTTGCAGAGGTA TCTCCACCATTTGCTTCTCC 160258886 - 160258297 590 

Exon 2 AGGGCAAGCCTTTTGGTTAT GAAAGGATGGGATTCAAGCA 160257099 - 160256522 578 

Exon 3 GGGTATTCAGCACAGGATGG GAAGCTGGGTCCCTTTTCTT 160251022 - 160250450 573 

Exon 4 AGCTGGACAGCCAACTCATT TTCCTCTGAGTGGGGAGAGA 160249445 - 160248858 588 

Exon 5 ATCCAGTCCTTGACCCCTCT CTCTGTTGCATTCCGCTACA 160247625 - 160247038 588 

Exon 6 ATTGCACCACTGCACTCAAG GGGGTTTTGGCTTTGGTATT 160245764 - 160245169 596 

Exon 7 CACAGCCAGCCACTGAAGTA GCTGGCCATATGAATTTGCT 160243961 - 160243408 554 

Exon 8 CCTTCCTCTCCATTTTGCTG TTGGGTAATCCCTGTCTTGC 160242666 - 160242059 608 

Exon 9 GTTTATTCAGGGGTGGATGG TCAGGAAGGGTGGAAATCAG 160241663 - 160241110 554 

Exon 10 CAGCAGTCAGAGATGGCAAA TTGTTAGGAAAATTAGCCCAATG 160224947 - 160224328 620 

Exon 11 TGGCATTCACGAAGACAAGA GCTGCCATCAAAGCTAGGTC 160217981 - 160217387 595 
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6.4. Results 

6.4.1. Variant Screening 

To identify variants of hOCT2 we screened all 11 exons and the proximal promoter 

region of the SLC22A2 gene in 96 Xhosa participants, using direct sequencing. 

Twenty-eight variable sites including four novel ones were found in this study 

(Table 6.2). Eight of these variations were in the coding region and 20 were in the 

non-coding or intronic region of the gene. Four of the SNPs present in the coding 

region were non-synonymous and four were synonymous substitutions. 

The four non-synonymous SNPs observed in this study, A270S (rs316019), R400C 

(rs8177516), K432Q (rs8177517), and N552I (rs139045661) had ethnic-specific 

minor allele frequencies (MAFs) greater than or equal to 1%. The R400C 

(rs8177516) and N552I (rs139045661) variants have thus far only been observed in 

African populations or ethnic groups with a link to the African continent such as the 

African-Americans. Two of the synonymous SNPs, T130T (rs624249) and V502V 

(rs316003) were reported previously by Leabman et al. (2002) and Fukushima et al. 

(2004), while the S133S (rs112210325) variant was only submitted to the dbSNP 

database in the last year and had not been reported in any study yet. In addition, a 

novel synonymous SNP V94V (MBPG_OCT2002) in exon 1 (Figure 6.1) had been 

identified in this study and will be submitted to the dbSNP database in due course.  
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Table 6.2 - Summary of SNPs identified with direct sequencing in the SLC22A2 gene of Xhosa subjects. 

dbSNP ID Location 

Nucleotide 

Position Accession 

number 

(NC_000006.12) 

Position from 

the 

translational 

initiation site or 

the nearest 

exon 

Nucleotide change 

and flanking 

sequence  

(5′ to 3′) 

Amino Acid 

Position 

Amino Acid 

change 
MAF HWE 

         

rs55920607 Promoter 160259003 -246 C>T   0.084 0.370 

rs59695691 Promoter 160258952 -195 A>G   0.263 0.000 

MBPG_OCT2001 Promoter 160258913 -156 C>T   0.005 0.959 

rs150063153 Promoter 160258852 -95 A>C   0.016 0.876 

MBPG_OCT2002 Exon 1 160258476 282 G>A 94 Val>Val 0.011 0.914 

rs624249 Exon 1 160258368 390 G>T 130 Thr>Thr 0.128 0.566 

rs112210325 Exon 1 160258359 399 G>T 133 Ser>Ser 0.012 0.913 

rs8177511 Intron 2-3 160250720 -18 T>C   0.026 0.793 

rs112710522 Intron 3-4 160250473 +75 A>G   0.086 0.581 

rs372467753 Intron 4-5 160247329 -31 A>G   0.011 0.958 

rs316019 Exon 4 160249250 808 T>G 270 Ser>Ala 0.149 0.090 

rs112425400 Intron 4-5 160247418 -120 G>A   0.011 0.917 

rs2279463 Intron 4-5 160247357 -59 T>C   0.183 0,536 

MBPG_OCT2003 Intron 6-7 160245318 +65 G>T   0.010 0.918 
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Table 6.2 Continued - Summary of SNPs identified with direct sequencing in the SLC22A2 gene of Xhosa subjects. 

 

 

         

rs617217 Intron 6-7 160245324 +71 G>C   0.278 0.661 

rs115889347 Intron 6-7 160245346 +93 G>A   0.005 0.959 

MBPG_OCT2004 Intron 6-7 160245368 +115 G>C   0.052 0.590 

rs8177516 Exon 7 160243653 1198 C>T 400 Arg>Cys 0.052 0.590 

rs8177517 Exon 8 160242388 1293 A>C 432 Lys>Gln 0.011 0.917 

rs17588242 Intron 8-9 160242198 +96 A>G   0.011 0.917 

rs11967308 Intron 9-10 160241327 +147 G>A   0.146 0.973 

rs114897022 Intron 9-10 160241316 +158 A>G   0.016 0.876 

MBPG_OCT2005 Intron 9-10 160241261 +213 A>T   0.005 0.959 

MBPG_OCT2006 Intron 9-10 160241210 +272 G>A   0.005 0.959 

rs316003 Exon 10 160224800 1506 G>A 502 Val>Val 0.333 0.635 

MBPG_OCT2007 Intron 10-11 160217752 -254 C>A   0.005 0.959 

rs3103352 Intron 10-11 160217693 -195 C>T   0.235 0.00015 

rs139045661 Exon 11 160217445 1656 T>A 552 Ile/Asn 0.016 0.876 
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Figure 6.1 - Electropherograms of novel SNPs observed in the proximal promoter 
region and exon 1 of the SLC22A2 gene. (A) MBPG_OCT2001 (wild-type -156 G/G 
and variant -156 G/A) a novel SNP detected in the proximal promoter region. (B) 
MBPG_OCT2002 (wild-type 282 GG; variant 282 G/A) a novel synonymous SNP 
detected in exon 1. 
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Figure 6.2 - Electrophoretograms of novel SNPs observed in the intronic region 
between exon 6 and 7 of SLC22A2. (A) MBPG_OCT2003 (wild-type 
MBPG_OCT2003G/G and variant MBPG_OCT2003G/T) a novel SNP detected in 
the intronic region between exons 6 and 7. (B) MBPG_OCT2004 (wild-type 
MBPG_OCT2004 G/G; variant MBPG_OCT2004G/C) a novel SNP detected in the 
intronic region between exons 6 and 7. 

 

 

Figure 6.3 - Electropherograms of novel SNPs observed in the intronic region 
between exons 6 and 7 and exon 9 and 10 of SLC22A2. (A) MBPG_OCT2005 (wild-
type MBPG_OCT2005A/A and variant MBPG_OCT2005A/T) a novel SNP detected 
in the intronic region between exons 6 and 7. (B) MBPG_OCT2006 (wild-type 
MBPG_OCT2006 A/A; variant MBPG_OCT2006G/C) a novel SNP detected in the 
intronic region between exons 9 and 10. 
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Figure 6.4 - Electropherogram of a novel SNP observed in the intronic region 
between exons 10 and 11of SLC22A2. MBPG_OCT2007 (wild-type 
MBPG_OCT2007C/C and variant MBPG_OCT2007C/A) a novel SNP detected in 
the intronic region between exons 10 and 11. 

Fourteen of the 15 non-coding or intronic SNPs (Table 6.2) have been observed only 

in African populations or populations with an African connection. The MAF for nine 

SNPs is compared to other populations in Table 6.3 and is depicted in Figure 6.5 

These variations were observed at MAFs between 0.5% and 26.3%. Moreover, seven 

novel SNPs (Figures 6.1 to 6.4), one in the 5′-untranslated region at position -156 

from the start codon, with a MAF of 0.5%, and four in the intronic regions with 

MAFs between 0.1% and 0.5% were identified in this study. We also observed a 

singleton for rs112425400 a variant that has thus far only been observed in the 

Bushman of southern Africa. In addition, we also observed rs2279463, a MAF of 

18.3%, a SNP that was identified as a risk locus in chronic kidney disease. 
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Figure 6.5 - Allele frequencies of selected SLC22A2 SNPs in the Xhosa population compared to other African and world populations. 
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Table 6.3 - Comparison of MAF of selected SLC22A2 SNPs identified by direct sequencing in the Xhosa population to other ethnic groups. 
dbSNP ID Minor 

Allele 
Minor Allele Frequency (%) 

Xhosaa Luhyab Yorubab African-Americanb Japaneseb Chinese-Hanb Caucasian-Finishb Caucasian-Americanb 
          

rs55920607  8.4 4.5 6.2 3.3 0.0 0.0 0.0 0.0 

rs59695691  26.3 2.6 1.7 0.0 0.0 0.0 0.0 0.0 

rs150063153  1.6 0.5 0.0 0.8 0.0 0.0 0.0 0.0 

rs8177511  2.6 3.1 8.0 4.9 0.0 0.0 0.0 0.0 

rs112710522  8.6 3.1 3.4 4.9 0.0 0.0 0.0 0.0 

rs372467753  1.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

rs112425400  1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

rs11967308  14.6 5.7 5.7 2.5 0.0 0.0 0.0 0.0 

rs114897022  1.6 1.0 5.1 1.6 0.0 0.0 0.0 0.0 
          

a.This study; b. Data from 1000 Genomes 
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6.4.2. Haplotype Analysis 

Haplotypes were calculated using an inferential procedure (Yong and Lin, 2005). 

This method identified 47 distinct haplotypes. The ten major haplotypes are listed in 

Table 6.4.the seven major haplotypes were observed at frequencies of 28.46%, 

11.24, 7.00%, and 6.00% respectively. 

Table 6.4 - Major haplotypes inferred from 28 SLC22A2 SNPs identified with direct 
sequencing. 

Haplotype ID Haplotype Frequency (%) 

   

Haplotype *1 GCCTGGGTTTGCTGGGGCTACAAAGCCT 28.46% 

Haplotype *2 GCCTGGGTTTGCTGCGGCTACAAAGCCT 11.24% 

Haplotype *3 GCCTGGGTTTGCTGGGGCTACAAAGCTT 7.00% 

Haplotype *4 GTCTGGGTTTGCTGGGGCTACAAAACCT 6.00% 

Haplotype *5 GCCTGGGTTTGCCGGGGCTACAAAGCCT 2.26% 

Haplotype *6 GCCTGGGTTTGCTGGGGCTACATAGCCT 2.17% 

Haplotype *7 GCCTGTGCTTGCTGGGGCTACAAAGCCT 2.00% 

   

 

6.5. Discussion 

The kidney-specific hOCT2 plays an important role in the uptake of a wide range of 

OCs from the circulation and has been identified as a site of DDIs. The aim of this 

study was to determine the extent of the genetic variation in the SLC22A2 gene, 

which codes for hOCT2, within the Xhosa population of South Africa. We have 

identified 28 SNPs in the SLC22A2 gene, including seven novel variants, of 96 

healthy Xhosa individuals. 
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Twenty-one of the SNPs identified in this study were already reported and listed in 

the dbSNP database. In a study by Leabman et al. (2002) 28 SNPs were also 

identified in ethnically diverse populations which included the African-American 

population (Leabman et al., 2002). Among these five coding SNPs, T130T 

(rs624249), A270S (rs316019), R400C (rs8177516), K432Q (rs8177517), and 

V502V (rs316003), were also observed in this study. Leabman et al. (2002) went on 

to demonstrate that A270S (rs316019), R400C (rs8177516), and K432Q (rs8177517) 

are reduced-function variants that alter hOCT2 affinity for prototypical organic 

cations in vitro. In addition, they observed that the less frequent variants, R400C 

(rs8177516) and K432Q (rs8177517), resulted in significantly more and deleterious 

functional changes compared to the more frequently occurring A270S (rs316019). In 

another study Fukushima et al. (2004) identified 33 SNPs, including fourteen novel 

ones, in a group of 118 arrhythmic Japanese patients (Fukushima-Uesaka et al., 

2004). Only six of the variants observed were common among the Leabman and 

Fukushima studies. In this study we have observed nine SNPs (Figure 6.5), including 

seven novel variants, which are specific to African populations or populations with a 

link to the African continent and that were not observed by either the 

abovementioned studies. 

Furthermore, we have identified a novel promoter SNP at position -156, which can 

potentially alter transcription of the SLC22A2 gene. In addition, we also observed 

two promoter SNPs (rs59695691 and rs150063153) that are found only in African 

population groups. Basal promoter activity is an important determinant of 

SLCA22A2 expression in vivo, and may influence the transport function of hOCT2, 

which in turn may affect the uptake, disposition, and elimination of its substrates. A 

deletion analysis of the hOCT2 proximal promoter region by Asaka et al. (2007) 
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suggested that the region spanning -91 to -58 base pairs (bp) was essential for basal 

transcriptional activity of the SLC22A2 gene (Asaka et al., 2007). However, on 

closer inspection of their results this essential region could probably be expanded to 

between -214 and -58 bp. This region lacks a canonical TATA-box, but does contain 

a CCAAT box and an E-box. The electrophoretic mobility assays revealed that the 

SLC22A2 E-box binds upstream stimulating factor 1 (USF-1) which functions as a 

basal transcriptional regulator of the gene. The effect of these African-specific 

variations on basal promoter regulation has not yet been determined and requires 

further investigation. 

In addition to the novel promoter variant, we have also identified five intronic 

genetic variants novel. Although the functional impact of these intronic SNPs are 

currently unknown, the importance of non-coding variants in complex traits and 

human disease are increasingly being recognized (Ward and Kellis, 2012). 

Moreover, rare and low-frequency (MAF between 0.5 and 1.0%) variants, such as 

the novel polymorphisms identified in this study, have been hypothesized to explain 

a substantial fraction of the heritability of common, complex diseases (McClellan 

and King, 2010, Tennessen et al., 2012). 

Although this study revealed seven novel SNPs, the coding region of the SLC22A2 

gene of individuals investigated lacked the genetic diversity we expected to see in 

this population. Leabman et al. (2002) have ascribed the low mutational rate and 

amino acid substitutions observed with hOCT2 to selection pressure that has acted 

against amino acid changes within the transporter (Leabman et al., 2002). According 

to them such selection may be due to the important function hOCT2 plays in the 

renal elimination of endogenous compounds and xenobiotics. Moreover, they have 
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concluded that amino acid residues in the TMHs tend to be evolutionary more 

conserved than those found in the loops of membrane transporters (Leabman et al., 

2003). This lack of amino acid and genetic diversity observed with hOCT2 and 

SLC22A2 is not unique, and was also observed with hOCT3 and SLC22A3 (Lazar et 

al., 2003, Lazar et al., 2008). 

6.6. Conclusions 

The kidney-specific hOCT2 plays an important role in the renal uptake of many 

commonly used clinical drugs. Moreover, hOCT2 is an important site of drug-drug 

interactions and is therefore clinically relevant. Several SNPs have been identified in 

the SLC22A2 gene that alters the function of hOCT2 and consequently the 

pharmacokinetics/pharmacodynamics of its substrate drugs. This study represents the 

first report which investigated the presence of novel SLC22A2 SNPs in the Xhosa 

population. The rare singleton SNPs identified and haplotypes inferred for the Xhosa 

population in this study is an important step in filling the gap with regards to genetic 

information on the pharmacogenetically relevant SLC22A2 gene in indigenous 

southern African populations. The information generated in this study can potentially 

lay the foundation for future pharmacogenetic study design and for the identification 

of association between the rare SNPs and drug response and toxicity. 

.  
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CHAPTER 7 

Summary and Future Perspectives 

Membrane transporters of the SLC family, and specifically the OCTs and MATEs, 

play a critical role in maintaining organismal and cellular homeostasis. They perform 

this important function by being involved in the absorption of nutrients essential for 

cellular metabolism and the elimination of metabolic waste products and toxic 

xenobiotics. Moreover, the current body of knowledge suggest that these transporters 

also play an important part in vivo drug disposition, therapeutic efficacy, and adverse 

drug reactions. A great deal of inter-individual variability exists in drug disposition, 

therapeutic efficacy, and adverse drug reactions. Although numerous factors can 

contribute to this variation, it is estimated that genetic factors account for between 

15-30% of inter-individual variations in drug disposition, efficacy and adverse 

responses, and for certain drugs this estimate can even be as high as 95%. Genetic 

polymorphisms in SLC22A1-3 and SLC47A1 have been associated with reduced 

transport and efficacy of clinically important drugs such as, for example, the 

biguanide anti-diabetic metformin. However, these studies with reduced-function 

variants have primarily focused on genetic polymorphisms that are prevalent within 

Caucasian and Asian populations. This is in spite of numerous studies which have 

shown that the genomic diversity found within African populations is greater than 

the genetic variation found within other populations. However, this genomic 

diversity, especially in the southern African context, is currently relatively 

understudied. Given the enormous health burden that sub-Saharan Africa, and for 

that matter South Africa, faces, this lack of local genetic information with robust 
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allele frequency distribution currently serves as a significant hurdle to designing 

biomedical research, and may have important medical implications.  

Our investigation into the allele and genotype frequency distributions of previously 

reported nonsynonymous SNPs revealed that SLC22A1 reduced-function variants 

found in Caucasians (R61C, C88R, S189L, G401S, M440I and G465R) and Asians 

(P283L and R287G) were not only absent in the Xhosa subjects genotyped in this 

study, but are also absent from other African populations that are included in the 

HapMap and 1000 Genomes projects. Given that these variants have been implicated 

in reduced transport of the anti-diabetic metformin, screening for them in the Xhosa 

and African populations still remains clinically relevant. 

The high frequency, reduced-function nonsynonymous variants which are common 

amongst populations such as P341L in SLC22A1 and A270S in SLC22A2 have 

different frequency distributions for African populations when compared to other 

populations. For example the average reported MAF for P341L is higher for Asians 

(13.5%) and Africans (7.1%) compared to that observed for Caucasians (1.0%). On 

the other hand, the average reported MAF for A270S is higher for Africans (15.7%) 

than that recorded for Asians (13.3%), European-Caucasians (10.6%) and American-

Caucasians (8.8%). 

Furthermore, ethnic-specific nonsynonymous genetic variants that have been 

observed at allele frequencies >1% within the Xhosa and other African populations, 

such as S14F and V519F (SLC22A1) and R400C, K432Q, and I552N (SLC22A2) 

have to date not been reported for Asian or Caucasian populations or are very rare in 

these populations with MAF of <1%. Moreover, the in vitro and in vivo 

consequences of the V519F and I552N variants on hOCT1 and hOCT2 function, 
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respectively, have not yet been established. The effect in vivo of these Africa-

specific nonsynonymous variants on drug disposition, efficacy, and adverse reactions 

in African patients has not yet been determined, and requires further investigation. 

The M420del deletion variant of hOCT1 had been implicated in the reduced 

transport and efficacy of the anti-diabetic drug metformin. In addition, this variant is 

also associated with increased failure rate of imatinib, an antineoplastic TKI, 

treatment in CML patients. Although the M420del variant was not observed in the 

current study, screening for it in indigenous African populations still remain a 

priority. 

Genotyping of the SLC22A3 and SLC47A1 genes, which encode hOCT3 and 

hMATE1 respectively, revealed that none of the nonsynonymous SNPs assayed were 

present in the Xhosa subjects screened. However, these polymorphisms are rare 

variants that occur at very low frequency in a population and therefore the results are 

consistent with studies conducted in other populations. This lack of protein sequence 

and mutational variability was ascribed to selective pressures that act at the SLC22A3 

and SLC47A1 loci and pointed at the important physiological roles the hOCT3 and 

hMATE1transporters perform in vivo. Furthermore, the SNPs typed in this study 

were previously identified in other populations and therefore we cannot rule out the 

presence of novel SNPs in the SLC22A3 and SLC47A1 genes of Xhosa individuals. 

In the current study we have identified seven novel SNPs in the SLC22A2 gene of 

the Xhosa population. These novel SNPs include a variant in the 5′-untrnaslated 

region of SLC22A2 -156 bp from the initiation codon. In addition, we have also 

observed two other promoter SNPs that have to date only been observed in African 

populations. We have searched the literature and to our knowledge no studies have 
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thus far investigated the impact of these substitutions on SLC22A2 expression. The 

effect of the aforementioned promoter SNPs on the expression of SLC22A2 and the 

turnover of hOCT2 needs to be investigated given the importance of hOCT2 in drug 

disposition and efficacy, as well as a site of DDIs. In addition, the correlation 

between genotype of the newly identified SLC22A2 intronic SNPs and clinical 

phenotype also needs to be investigated. 

The sample size of this study compared well to that of the HapMap and 1000 

Genomes Projects, which have more than demonstrated their value as reference 

panels for specific populations, but a larger sample size and complete individual 

gene/genome sequences would give a more accurate account of the full spectrum of 

genetic diversity within the Xhosa population. However, sequencing whole 

genomes/exomes remains an expensive exercise. 

To our knowledge this study is the first of its kind to investigate the allele 

frequencies of known SNPs in four pharmacogenetically relevant genes, SLC22A1, 

SLC22A2, SLC22A3 and SLC47A1, in the Xhosa population. Furthermore, through 

sequencing of the promoter, exonic, and intronic flanking regions of SLC22A2, this 

study has revealed seven novel variants. This study again highlights the fact that not 

all African populations share the same allele frequencies of key pharmacogenes and, 

that care should be exercised in using a single African population as a proxy for all 

African populations in pharmacogenetic studies. In addition, a total of eight robust 

and cost-effective SNaPshot™ multiplex genotyping systems were developed and 

optimized for 78 SLC22A1-3 and SLC47A1 SNPs. These systems have since been 

routinely used to genotype additional indigenous and admixed populations. The 

variants included deleterious SNPs which have been implicated in altered 
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pharmacokinetics and pharmacodynamics of the widely-prescribed antidiabetic drug 

metformin and as a predictor of treatment outcome for the antineoplastic imatinib. 

Firstly, these genotyping systems can now potentially be used to screen routinely for 

these reduced-function variants in responders and non-responders to metformin 

therapy. Secondly, it can also be used to determine whether CML patients carry the 

M420del allele which is a predictor of imatinib treatment outcome. Thirdly, the 

genotyping systems for SLC22A2 and SLC47A1 can potentially be used to determine 

whether certain individuals have a genetic predisposition for drug-drug interactions. 

Lastly, the genotyping systems developed for the screening of SLC22A3 SNPs can 

be used to screen patients with psychiatric disorders in order to determine whether 

they carry any of the variant alleles included in these systems.  

Future studies require a more comprehensive sequencing of the SLC22A1-3 and 

SLC47A1-2 genes and to expand this to more individuals or, where such sequencing 

information becomes available from other large-scale sequencing projects, use it to 

determine correlation between genotypes and clinical phenotypes. Furthermore, the 

effect of the newly identified and the other African-specific promoter SNPs on the 

expression on SLC22A2 and on hOCT2 transport function needs to be assessed in 

future work. In addition, the effects of the African-specific nonsynonymous V519F 

and I552N variants on transport kinetics, protein turnover, and plasma membrane 

localization of hOCT1 and hOCT2, respectively, also requires further investigation. 

Assessing of the genetic variation of SLC transporter genes with emerging clinical 

importance in the absorption and disposition of drugs such as SLCO1B1, SLCO1B3, 

SLCO1A2, SLCO2B1, SLC15A1, SLC15A2, SLC22A6, SLC22A8 in the Xhosa and 

other indigenous African populations should also be prioritized in future studies. 
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