
Processing hidden Markov models using recurrent
neural networks for biological applications

Pavan Kumar Rallabandi

A Thesis submitted in partial ful�llment of the requirements for the degree of Doctor

of Philosophy in the Department of Computer Science at the Faculty of Natural

Sciences, University of the Western Cape

Supervisor: Prof. Kailash C. Patidar

November 2013

KEYWORDS

Arti�cial intelligence techniques

Machine learning algorithms and technologies

Neural networks and advanced models

Hidden markov model algorithms

Hybrid systems

Connectionist and symbolic learning

Automata theory and formal languages

Bioinformatic applications

Knowledge based systems frameworks.

i

ABSTRACT

Processing hidden Markov models using recurrent neural

networks for biological applications

Pavan Kumar Rallabandi

PhD thesis, Department of Computer Science, Faculty of Natural

Sciences, University of the Western Cape.

In this thesis, we present a novel hybrid architecture by combining the most popular

sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden

Markov Models (HMMs). Though sequence recognition problems could be potentially

modelled through well trained HMMs, they could not provide a reasonable solution to

the complicated recognition problems. In contrast, the ability of RNNs to recognize the

complex sequence recognition problems is known to be exceptionally good. It should be

noted that in the past, methods for applying HMMs into RNNs have been developed by

other researchers. However, to the best of our knowledge, no algorithm for processing

HMMs through learning has been given. Taking advantage of the structural similarities

of the architectural dynamics of the RNNs and HMMs, in this work we analyze the

combination of these two systems into the hybrid architecture. To this end, the main

objective of this study is to improve the sequence recognition/classi�cation performance

by applying a hybrid neural/symbolic approach. In particular, trained HMMs are used

as the initial symbolic domain theory and directly encoded into appropriate RNN

architecture, meaning that the prior knowledge is processed through the training of

RNNs. Proposed algorithm is then implemented on sample test beds and other real

time biological applications.

ii

DECLARATION

I declare that the Processing hidden Markov models using recurrent neural networks

for biological applications is my own work, that it has not been submitted before for

any degree or examination at any other university, and that all sources I have used or

quoted have been indicated and acknowledged by complete references.

Pavan Kumar Rallabandi November 2013

Signed .

iii

ACKNOWLEDGEMENT

I would like to thank my supervisor Prof. Kailash C. Patidar, the University of the

Western Cape, families and friends, and other relatives. Of course without my parent's

support I would not have been here. Your love and blessings got me through. Finally,

I acknowledge the undivided support of my wife in this journey.

iv

DEDICATION

I dedicate this thesis to my

parents,

grand parents,

and

GOD.

v

Contents

Keywords i

Abstract ii

Declaration iii

Aknowledgement iv

Dedication v

List of Tables viii

List of Figures ix

List of Publications x

1 General Introduction 1

1.1 Rational and motivation for this study 1

1.2 Preliminaries . 3

1.3 Literature review . 12

1.4 Aims and objectives of this thesis . 16

1.5 Outline of the thesis . 20

2 Architectures of the proposed hybrid systems 22

2.1 Introduction . 22

vi

2.2 Concepts of neural networks . 25

2.3 Recurrent Neural Networks (RNNs) . 33

2.4 Hidden Markov Models (HMMs) . 44

2.5 Summary . 49

3 Derivation and training of hybrid systems using HMM and RNN 51

3.1 Introduction . 51

3.2 RNNs based on HMMs . 59

3.3 Real time recurrent learning for the hybrid HMM-RNN system 65

3.4 Applications of hybrid systems . 69

3.5 Summary . 71

4 Sample test beds and implementation results 72

4.1 Introduction . 72

4.2 Finite-state automata and knowledge representation 77

4.3 Experimental results . 84

4.4 Summary . 88

5 Real time application - Enzyme classi�cation 89

5.1 Introduction . 89

5.2 Central design of Molecular Biology . 95

5.3 Enzyme classi�cation . 103

5.4 Results and discussion . 107

5.5 Summary . 108

6 Concluding remarks and scope for further research 109

Bibliography 111

vii

List of Tables

4.3.1 Hidden Markov model parameters . 87

4.3.2 Single order recurrent neural network 87

4.3.3 Learning deterministic �nite state automation using hybrid HMM-RNN 88

5.3.1 Kyte and Doolittle hydrophobicity scale 104

5.3.2 HMM-RNN-EC - Training and testing set percentages 105

5.4.1 Hybrid HMM-RNN for enzyme classi�cation 107

5.4.2 Accuracy of the testing set . 108

viii

List of Figures

2.2.1 Architectures of feed-forward and recurrent neural networks 30

2.3.1 Architectures of RNN . 35

2.3.2 First order RNNs . 37

2.3.3 Second order RNNs . 38

2.3.4 NARX RNNs . 40

2.3.5 Long short term memory - RNN . 41

2.4.1 Hidden Markov model sample with emission states 46

3.1.1 Knowledge based neural network . 56

3.2.1 Hybrid HMM-RNN Architecture . 63

4.2.1 Example of a deterministic �nite state automata 79

4.2.2 Hidden Markov model with emitting states 82

4.3.1 Ten state deterministic �nite state automata 85

5.2.1 Example of a typical DNA molecule . 95

5.2.2 Hybrid HMM-RNN architecture . 97

5.2.3 Topology of a pro�le HMMs . 98

5.2.4 Tested sequence - Isomerase . 101

ix

List of Publications

We are preparing following manuscripts that we will be submitting soon for publication

in international journals:

1. Pavan K. Rallabandi and Kailash C. Patidar, An optimization technique for

hybrid systems of hidden markov models and recurrent neural networks.

2. Pavan K. Rallabandi and Kailash C. Patidar, Processing of hybrid hidden markov

model and recurrent neural network on dynamical systems.

3. Pavan K. Rallabandi and Kailash C. Patidar, Enzyme classi�cation using hybrid

hidden markov model and recurrent neural network.

x

Chapter 1

General Introduction

This thesis deals with performance improvement of sequence recognition or classi�ca-

tion systems. In this chapter, we present a general motivation for this study followed

by some preliminary concepts that will be useful for this study. Then we make problem

statements, list the research hypotheses, illustrate technical objectives and present re-

search methodology. This is augmented with a thorough literature review highlighting

some recent research in the �eld. Finally, we present the outline of the rest of the

thesis.

1.1 Rational and motivation for this study

Sequence recognition is a major step in many applications ranging from processing

(e.g., speech recognition, signature veri�cation, time series modeling and prediction)

to bioinformatics (e.g., DNA analysis). Hidden Markov models (HMMs) are one of the

most popular techniques for sequence modeling and classi�cation because they are easy

to train. However, HMMs generally do not perform satisfactorily on di�cult recognition

problems. Recurrent neural networks (RNNs) are alternative methods for modeling

sequences. One may note that, RNNs have excellent generalization performance, but

training RNNs can be very di�cult.

Previously, it has been shown by several researchers (see, e.g., [79, 86, 180] and some

1

CHAPTER 1. GENERAL INTRODUCTION 2

of the references therein) that recurrent neural networks are excellent tools for process-

ing existing domain theories with hidden states through learning and that learned

knowledge can be extracted in symbolic form. Recently, there has been a lot of interest

in combining symbolic and neural learning. There are di�erent ways in which neural

and symbolic learning can be combined to solve a given learning task. It is, however,

di�cult to interpret the knowledge stored in neural networks.

Two paradigms of computing are developed within the �eld of machine learning:

Symbolic systems learning, that is used as the construction of explicit representations

of knowledge, and Connectionist systems learning, that is used to modify the strength

of connections between interconnected units. The primary motivation for studying con-

nectionist systems is that they present an alternative to the conventional von Neumann

model of computation which stats that `Learning replaces a priori program develop-

ment' [140]. Within this �eld of machine learning, the computational advantages of

such neural computing include e�cient processing once in operation, the ability to learn

knowledge from noisy and incomplete data and to easily adapt to new environments.

Although much research has been done to overcome the weaknesses of neural net-

works, many of the challenges still remain unaddressed. Some of the open problems in

neuro-computing include the di�culty in interpreting the knowledge stored in neural

networks and the lack of clear design rules. Besides these, there is no guarantee that a

network can be trained in a �nite amount of time.

Theoretical models of computation have been shown to be well-suited for investigat-

ing the representational capabilities of recurrent neural network architectures. To this

end, our research is focused on learning and embedding �nite-state automata in recur-

rent neural networks. Thus, it has not only contributed to the theoretical foundation

of recurrent neural networks, but it has also connected a classical discipline of Com-

puter Science, namely, the theory of computation, with an emerging area of arti�cial

intelligence. We are particularly interested in how the nonlinear dynamical behavior of

recurrent neural networks can be exploited for computation, and what impact limita-

tions and extensions of the basic network architectures have on their representational

CHAPTER 1. GENERAL INTRODUCTION 3

and computational capabilities.

We also investigate several questions of learning, i.e., how can learning be made

more e�cient by pre-structuring networks with prior knowledge or how can we guide

learning such that a network can �nd a solution to a learning problem? We also inves-

tigate methods for building hybrid systems, i.e., systems which combine the strengths

of various paradigms while avoiding their respective weaknesses. One such example is

the training or processing of hidden Markov models with recurrent neural networks.

Before we proceed further, let us discuss some necessary concepts that are required

for this study.

1.2 Preliminaries

In this section, we present some of the key concepts and related information that can

be useful for better understanding of the rest of the thesis. In particular, we will discuss

on knowledge based neuro-computing, symbolic knowledge and connectionist learning,

importance of prior knowledge, signi�cance of knowledge extraction, knowledge re�ne-

ment, neural networks, learning algorithms, hidden Markov models, hybrid systems,

etc.

Knowledge based neuro-computing:

There has been an increasing interest in hybrid systems as more applications using

hybrid models emerged in the past. Examples of such hybrid systems include com-

bining arti�cial neural networks and fuzzy systems, and the use of neural networks

for knowledge re�nement with the use of initial domain theories. In view of this, the

main objective of this research is to study the capability of recurrent neural networks

to represent hybrid structures. For these structures, the representational properties

of arti�cial intelligence and machine learning structures as well as their proofs are

important for a number of reasons.

CHAPTER 1. GENERAL INTRODUCTION 4

Many users of a hybrid model would like to know what can they theoretically achieve

using this model? Some are interested to know the performance and capabilities of such

a model whereas others need this for its justi�cation and acceptance. In practical terms,

the study of the representational capabilities includes the development of algorithms

for mapping knowledge into neural networks and for extracting such knowledge from

trained networks. One can also apply these techniques to the prediction of seismic

events in mines where hybrid systems may not only improve prediction accuracy and

reliability (i.e., high probability of prediction and low false alarm rate of large seismic

events). However, the extraction of information from trained neural networks may also

add some insight into the seismology of rock formations.

There are essentially two approaches for building problem-speci�c knowledge in

an automated system: method based on hand-built classi�er systems and empirical

learning [181]. Hand-built systems such as expert systems are non-learning. On the

other hand, the empirical learning systems are generalization through induction from

speci�c examples. Many models and techniques within this paradigm, such as, neural

networks, genetic algorithms, neuro-fuzzy logic and hidden Markov models have been

studied extensively. However, to the best of our knowledge, no single technique could

fully address all the problems and related issues of machine learning. Hybrid systems

on the other hand, incorporate di�erent machine learning techniques and are proved

to be an e�ective paradigm of machine learning for many real-world applications (e.g.,

[67, 173, 180]). Motivated by this fact, in this thesis, we will be looking at hybrid

systems for integrating connectionist and symbolic learning, known as knowledge-based

neural networks.

In knowledge-based neuro-computing the emphasis is on use and representation

of knowledge about an application. Explicit modeling of the knowledge represented

by such a system remains a major research topic. The reason is that humans �nd it

di�cult to interpret the numeric representation of a neural network.

The key assumption of knowledge-based neuro-computing is that the knowledge is

obtainable from, or can be represented by, a neuro-computing system in a form that

CHAPTER 1. GENERAL INTRODUCTION 5

humans can understand, i.e., the knowledge embedded in the neuro-computing system

can also be represented in a symbolic or well-structured form, such as boolean functions,

automata, rules, or other familiar ways. The focus of knowledge-based computing is on

methods to encode prior knowledge and to extract, re�ne, and revise knowledge within

a neuro-computing system.

Symbolic knowledge and connectionist learning:

One of the main reasons for combining connectionist learning with symbolic systems is

the potential of developing intelligent systems that neither type of model alone can eas-

ily deal with. One particular �aw in neural networks is their lack of transparency. Still,

neural networks have been applied very successfully in symbolic-connectionist hybrid

applications to areas such as image classi�cation [115], natural language processing

[113] and �nancial data modeling [114].

The hybrid model facilitates the conversion from symbolic domain theory to con-

nectionist form and vice-versa. To do this, initial domain theory is used to initialize

a neural network. The knowledge is re�ned by neural learning on training data and

symbolic knowledge is extracted from the trained network. The symbolic knowledge is

revised and used to guide the adaptation of the network architecture in the symbolic

component of the model. This enables an iterative process of knowledge insertion,

extraction and re�nement on symbolic interpretations of the knowledge stored in the

neural network.

Often neural networks have shown to outperform other empirical learning methods

in terms of classi�cation accuracy, reasoning with noisy or partial data and generaliza-

tion with small training sets [129, 181]. They have at least comparable accuracies to

symbolic methods such as decision tree induction [6]. Towell et al. [180], for example,

have shown that a knowledge-based neural network can outperform a standard back-

propagation network as well as other related symbolic and numeric algorithms. Another

compelling reason for the use of neural networks is the existence of architectures that

CHAPTER 1. GENERAL INTRODUCTION 6

can model tasks of a sequential nature [192].

It should be noted that good empirical results have been achieved using the frame-

work that combines neural and symbolic learning described above. However, the merits

underlying the symbolic or connectionist approach are not yet well understood. Gain-

ing that insight remains an important open research problem.

Hybrid systems:

Extensive research has been conducted on hybrid systems and they have been applied

to a diverse and growing range of problems. The combination of the two paradigms

(symbolic and connectionist learning systems) has led to the development of a new,

more powerful and �exible paradigm of learning called hybrid systems. These symbolic

and connectionist learning systems have been supplementing each other. Connectionist

structures are now recognized as complementary sub-symbolic abstractions of symbolic

expressions of knowledge. Knowledge insertion, re�ning and extraction provides a dif-

�cult but essential link between symbolic and connectionist knowledge representation.

The importance of prior knowledge:

The utility of knowledge in inductive learning has been evaluated both theoretically

and empirically in [140]. It has been shown that some prior structure is required for

meaningful learning [72, 127]. Many machine-learning problems bene�cially utilize

initial domain theory in the form of a prior knowledge. In feed-forward networks, for

example, the use of prior knowledge has been analyzed in terms of generalization ability

and the required sample size for valid generalization [1, 68]. Some researchers have

indicated that neural network training with prior knowledge requires fewer samples for

valid generalization compared to training without prior knowledge.

Fidelity of the mapping of the prior knowledge into a network is very important since

a network may not be able to take full advantage of poorly encoded prior knowledge

or, if the encoding alters the essence of the prior knowledge, the prior knowledge may

CHAPTER 1. GENERAL INTRODUCTION 7

actually hinder the learning process.

Prior knowledge is usually represented in the form of explicit rules in symbolic form.

The common form for feedforward networks is propositional logic expressions while

�nite-state automata are predominantly used for recurrent architectures. A number

of knowledge encoding algorithms have been proposed (e.g., [102, 124, 180]). Prior

knowledge can be obtained by analysis of the available domain knowledge and can be

used to structure the network prior to learning [1]. Prior knowledge in the form of

rules have been used to de�ne the architecture of the initial neural network [180]. The

inclusion of good quality prior knowledge in a hybrid system can help realize a number

of bene�cial features:

� Faster convergence: A neural network initialized with knowledge about a learning

task prior to training is biased to learn the desired hypothesis more e�ciently

[167]. The speed up can occur in two ways: (1) The time complexity of training

is decreased, and (2) fewer training examples are required to achieve acceptable

results [179].

� The capability to learn incrementally: Initial domain theory can be augmented

with knowledge acquired from new data presented to a hybrid system. This

process is often viewed as knowledge re�nement [68, 124, 180].

� The ability to con�gure the architecture: The use of prior knowledge obviates

the need to guess an initial architecture or at the least, can restrict the combina-

torial search for a good starting point or hypothesis space to explore.

Feed-forward architectures have been shown to deal successfully with applications

where prior knowledge is bounded such as classi�cation tasks [67, 181]. Recurrent

networks, on the other hand, provide a means for dealing with unbounded structures

[66]. Pollack [144], for example, uses recursive auto-associative memories and other re-

searchers employ stack structures to handle unbounded knowledge such as context-free

grammars [47, 131]. A number of algorithms exist for inserting prior knowledge into

feedforward [67, 167] and recurrent networks [35, 66].

CHAPTER 1. GENERAL INTRODUCTION 8

Signi�cance of knowledge extraction:

Knowledge extraction provides a direct way of converting the knowledge stored in a

neural network to a symbolic form [5, 6]. Rule extraction from neural networks is

distinct from rule induction on a data set by symbolic methods. Knowledge extraction

from neural networks is useful for a number of things, for example, neural network

transparency, neural network validation, knowledge acquisition and discovery, knowl-

edge transfer and re�nement, etc. Andrews et al. [6] discussed the importance of

knowledge extraction. They further explored several knowledge extraction techniques

applicable to feed-forward networks.

Knowledge re�nement:

Knowledge re�nement or revision is one of the main goals of learning in hybrid systems

[167]. Knowledge re�nement in the connectionist component of a knowledge-based

system equates to neural network learning. Approaches to guide re�nement more

e�ectively include the use of di�erent activation functions [67] and constraining weight

changes to maintain the symbolic interpretation of the network [124].

Utgo�'s perceptron tree construction algorithm [185] and the knowledge based arti-

�cial neural network method of Shavlik et al. [180] are examples of symbolic inductive

learning performed in conjunction with feed-forward neural learning. One more exam-

ple of domain knowledge re�nement is RuleNet [124]. Some of the bene�ts of knowledge

re�nement are

� Increased training speed,

� Better understanding of the internal operation of the network,

� Improved generalization, and

� A means of bridging the gap between symbolic and sub-symbolic levels of knowl-

edge representation.

CHAPTER 1. GENERAL INTRODUCTION 9

Neural networks:

Depending on the �ow of signals, neural networks can be classi�ed into two types of

topologies:

(i) feed-forward networks that contain only open-loop interconnections, and

(ii) recurrent networks that contain one or more closed feedback paths in addition to

open-loop paths.

In contrast to feed-forward networks, recurrent networks are dynamical systems whose

output depends on the present state of the units in the network; learning in feedback

networks corresponds to function approximation [96]. Examples of recurrent networks

are the Hop�eld net [94] with symmetric fully connected feedback neurons with discrete

states and hard limiting activation function, and the Boltzmann machine [89] which is

a stochastic version of the discrete-time Hop�eld net with transfer function fT .

Recurrent neural networks:

Recurrent networks are computational systems with context-varying responses, i.e.,

they have the ability to model two types of time-dependent behavior: The �rst deals

with gradually settling into a solution for a complex set of con�icting constraints such as

pattern completion, whereas the second concerns the modeling of pattern sequences.

Recurrent networks have been successfully applied to problems ranging from formal

grammars, speech and image recognition to time series prediction [58, 193].

Recurrent networks generally use some delayed output to calculate the current

activation. Some represent this delayed copy explicitly by means of context units, e.g.,

Jordan and Elman networks, whereas others employ an implicit signal delay mechanism

[107]. Examples of the latter are Hop�eld networks, Boltzmann machines and second-

order networks.

Recurrent network behaviour has been shown to correspond to discrete state tran-

sitions and can hence emulate �nite-state automata. Although RNNs can learn stable

CHAPTER 1. GENERAL INTRODUCTION 10

encodings for short-term dependencies, they are not as e�ective in learning long tem-

poral relationships. Several approaches have been proposed to overcome this di�culty.

These methods however, impose various constraints on the RNN architecture and the

state space or learning algorithm that is employed, e.g., compressing regular sequences

and discretized state spaces. Some of these approaches may be advantageous under

certain circumstances. However, an approach that imposes no such limitations is more

desirable in practice.

Learning algorithms:

Backpropagation is the most widely applied learning algorithm for both feed-forward

and recurrent neural networks. Recurrent networks can exhibit a wide range of asymp-

totic behaviors. The simplest is that the system reaches a stable �xed point; more

complex asymptotic behaviors include limit cycles and chaos. Empirical evidence sug-

gests that �rst-order networks generalize better than second-order networks of similar

number of neurons [80].

There are basically two learning algorithms which can be used for training the re-

current neural network based on the back-propagation technique. A recurrent network

can be unfolded in time, into a feed-forward network by adding a layer for each time

step. Such a network has identical behavior to a recurrent network for a �nite number

of time steps and is referred as a deep multilayer network. The learning algorithm is

known as back-propagation through time [159]. Real-time recurrent learning is a real

time learning algorithm which updates the weights at the end of each sample string

presentation with a gradient descent weight update rule. The algorithm computes the

derivatives of states and outputs with respect to all weights as the network processes

the sequence during the forward step. There is no unfolding performed or necessary

for real time recurrent learning.

CHAPTER 1. GENERAL INTRODUCTION 11

Training methods:

The back-propagation algorithm is predominantly employed for recurrent network

learning. Some variations of this algorithm are of the following forms

� Back-propagation through time which limits the upper bound time complexity

to Θ(n2d), where d is the depth of error back-propagation.

� Real-time recurrent learning, which computes the gradient by storing additional

information about the interactions between processing units. While the memory

requirements remain constant, the time complexity is Θ(n3).

� The Long Short-term algorithm proposed by Schmidhuber et al. [92] is used to

overcome the problem of long-term dependencies.

� An earlier approach by the same author that learns to `divide and conquer' by

recursively decomposing sequences [162]. The algorithm �rst constructs a multi-

level hierarchy of recurrent networks and then attempts to collapse this into a

single structure.

� Teacher forcing where desired output values are fed back to train previous layers

instead of the output activation values given that the outputs are known for every

point in the sequence.

Hidden Markov models:

As mentioned in [150], Hidden Markov model (HMM) describes a process, which goes

through a �nite number of states whilst generating a signal of either discrete or continu-

ous nature. The model probabilistically links the observed signal to the state transitions

in the system. A HMM is parameterized through a matrix of transition probabilities

between states and output probability distributions for observed signal frames given

the internal process state. These probabilities are used in the algorithms that are used

for achieving the desired results. A typical way to combine HMMs and neural networks

CHAPTER 1. GENERAL INTRODUCTION 12

is to replace the Gaussian density function estimates of emission probabilities by neural

networks.

1.3 Literature review

Below we present a critical overview of the relevant literature on the topic in a chrono-

logical order. More speci�c works are reviewed in the individual chapters.

In the �rst part of this review, we discuss some works on neural networks and

optimization techniques.

Fuzzy grammatical inference comparison using the genetic algorithm and the real

time recurrent learning algorithm was given by Blanco et al. [25]. The utilization

of Recurrent Neural Networks is not as impressive as Feed-forward Neural Networks.

Training algorithms for Recurrent Neural Networks, based on the error gradient, are

very unstable in their search for a minimum and require much computational time when

the number of neurons is high. These authors presented a real coded genetic algorithm

that uses the appropriate operators for this encoding type to train Recurrent Neural

Networks.

A method for sequential supervised learning that exploits explicit knowledge of

short and long-range dependencies was given by Alessiso et al. [36]. They designed an

architecture consists of a recursive and bi-directional neural network that takes as input

a sequence along with an associated interaction graph. The interaction graph models

(partial) knowledge about long-range dependency relations. They tested the method

on the prediction of protein secondary structure, a task in which relations due to beta-

strand pairings and other spatial proximities are known to have a signi�cant e�ect

on the prediction accuracy. In this particular task, interactions can be derived from

knowledge of protein contact maps at the residue level. Their validated and research

results show that prediction accuracy can be signi�cantly boosted by the integration

of interaction graphs.

A learning method for some weak and strong convergence results is presented by Wu

CHAPTER 1. GENERAL INTRODUCTION 13

et al. [196] indicating that the gradient of the error function goes to zero and the weight

sequence goes to a �xed point, respectively. An online gradient learning method for

back-propagation neural networks with a single hidden layer is been considered. The

conditions on the activation function and the learning rate to guarantee the convergence

are relaxed compared with the existing results.

Zhang and Cao [205], designed a method for analyzing the convergence performance

of neural networks ranking algorithm by means of the given samples and approxima-

tion property of neural networks. Their research results showed the upper bounds of

convergence rate can be considerably tight and independent of the dimension of input

space when the target function satis�es some smooth condition. Their �nal results

imply that neural networks are able to adapt to ranking function in the instance space.

In [195], Wu and Zeng developed a general method or class of memristor-based

recurrent neural networks with time-varying delays. Conditions on the nondivergence

and global attractivity are established by using local inhibition, respectively. They even

studied the exponential convergence of the networks using local invariant sets. They

analyzed results from the theory of di�erential equations with discontinuous right-hand

sides.

A penalty based recurrent neural network method for solving a class of constrained

optimization problems with generalized convex objective functions was given by Alireza

et al. [97]. Their model has a simple structure described by using a di�erential inclu-

sion and also applicable for any non-smooth optimization problem with a�ne equality

and convex inequality constraints, provided that the objective function is regular and

pseudo-convex on feasible region of the problem. Their validation results indicated

that the state vector of the proposed neural network globally converges to and stays

thereafter in the feasible region in �nite time, and converges to the optimal solution

set of the problem.

In [31], Buse and Mutlu explained a new model for radial basis function based

classi�cation neural network named as generalized classi�er neural network. Unlike

other radial basis function based neural networks such as generalized regression neural

CHAPTER 1. GENERAL INTRODUCTION 14

network and probabilistic neural network, their generalized classi�er neural network

has �ve layers. They are input, pattern, summation, normalization and output layers.

In addition to topological di�erence, the neural network proposed in this paper has

gradient descent based optimization of smoothing parameter approach and diverge

e�ect term added calculation improvements. Diverge e�ect term is an improvement

on summation layer calculation to supply additional separation ability and �exibility.

They compared the performance of generalized classi�er neural network with that of the

probabilistic neural network, multilayer perceptron algorithm and radial basis function

neural network on 9 di�erent data sets, and with that of a generalized regression neural

network on 3 di�erent data sets.

Now we discuss some research works on hybrid HMMs-RNNs and their biological

applications.

A new learning architecture for sequences analyzed on short-term basis was given

by Diego et al. [53], but not assuming stationarity within each frame. Hidden Markov

models have been found very useful for a wide range of applications in machine learn-

ing and pattern recognition. The training algorithms for all the parameters in the

composite model are developed using the expectation-maximization framework. They

worked on two experiments with arti�cial and real data: model-based denoising and

speech recognition. They found that the de�ned model and learning algorithm are

more e�ective than previous approaches based on isolated hidden Markov trees. In the

case of the Doppler benchmark sequence, with 1024 samples and additive white noise,

their method reduced the mean squared error from 1.0 to 0.0842.

Alignment-free classi�ers presented by Guillermin et al. [82] are especially useful

in the functional classi�cation of protein classes with variable homology and di�erent

domain structures. They developed three non-linear models for RNase III class pre-

diction: Decision Tree Model (DTM), Arti�cial Neural Networks (ANN) model and

Hidden Markov Model (HMM). The �rst two are alignment-free approaches, using TIs

as input predictors. Their performances were compared with a non-classical HMM,

modi�ed according to our amino acid clustering strategy. The alignment-free models

CHAPTER 1. GENERAL INTRODUCTION 15

showed similar performances on the training and the test sets reaching values above

90% in the overall classi�cation. The non-classical HMM showed the highest rate in

the classi�cation with values above 95% in training and 100% in test. They mentioned

that as compared to the higher accuracy of the HMM, the DTM showed simplicity for

the RNase III classi�cation with low computational cost. They evaluated such sim-

plicity with respect to HMM and ANN models for the functional annotation of a new

bacterial RNase III class member, isolated and annotated by their group.

A reliable model miRANN given by Eamin et al. [56] is a supervised machine

learning approach. MicroRNA (miRNA) is a special class of short noncoding RNA that

serves pivotal function of regulating gene expression. The computational prediction

of new miRNA candidates involves various methods such as learning methods and

methods using expression data. MiRANN used known pre-miRNAs as positive set and

a novel negative set from human CDS regions. The number of known miRNAs is now

huge and diversi�ed that could cover almost all characteristics of unknown miRNAs

which increases the quality of the result (99.9% accuracy, 99.8% sensitivity, 100%

speci�city) and provides a more reliable prediction. They mentioned that MiRANN

performs better than other state-of-the-art approaches and declares to be the most

potential tool to predict novel miRNAs. They validated and tested the result using a

previous negative set.

A new model presented by Sepideh et al. [164] investigated the bidirectional RNNs

to make the strong correlations between secondary structure elements, types of modular

reciprocal recurrent neural networks (MRR-NN) are examined. They indicated that

precise prediction of protein secondary structures from the associated amino acids

sequence is of great importance in bioinformatics and yet a challenging task for machine

learning algorithms.

A SARS genome given byWeichen et al. [38] demonstrated, how to conduct training

and derive the corresponding results. These authors reported the discovery of strong

correlations between protein coding regions and the prediction errors when using the

simple recurrent network to segment genome sequences. They mentioned that the

CHAPTER 1. GENERAL INTRODUCTION 16

distribution of prediction error indicates how the underlying hidden regularity of the

genome sequences and the results are consistent with the �nding of biologists: predi-

cated protein coding features of SARS genome. This implies that the simple recurrent

network is capable of providing new features for further biological studies when applied

on genome studies. The HA gene of in�uenza A subtype H1N1 is also analyzed in a

similar way.

Now before we move onto the next section dealing with the aims and objectives in

this thesis, we would like to mention that some other relevant works are appropriately

reviewed in the individual chapters.

1.4 Aims and objectives of this thesis

In this section, we present the main aims and objectives of this study with an insights

to the sequence recognition or classi�cation performance systems. Often, �rst order

HMMs are deployed in practice. This means that state transition probabilities are

dependent only on the previous state. This assumption is unrealistic for many real

world applications of HMMs. Researchers have shown that RNNs can learn higher

order dependencies from training data. Furthermore, the number of states in HMM

needs to be �xed beforehand. Few other research work indicated how ANNs can be

pruned (e.g., optimal brain damage) or extended during training to achieve higher

discriminative and generalization performance. The structural similarity between the

alpha calculation procedure in hidden Markov models and recurrent neural networks

is the foundation for the mapping HMM → RNN. To begin with, let us consider the

equation of the forward algorithm of HMM for the calculation of P (O/λ):

αt
j =

(
(

N∑
i

αt−1
i aij) · bj(ot)

)
,

where αi's are the initial states, aij's are the transition probabilities, and bj(o
t) are

observation probabilities at time t. The above alpha calculation is inherently recurrent

CHAPTER 1. GENERAL INTRODUCTION 17

and bares resemblance to the recursion in a vanilla RNN:

xt
i = f

(
N∑
j

xt−1
j wji

)
, (1.4.1)

where xjs are input units and wji's are the weights on the network.

Aims:

Recurrent neural networks can generate outputs based on a given input and state

that is characteristic of such dynamical behavior. Also, recurrent neural networks

have the capability to learn �nite-state behavior and �nite-state representations can

be extracted from such networks. Furthermore, it is known that neural networks can be

modi�ed constructively or destructively using criteria based on the number of network

parameters as adaptation measure. With this view, this thesis investigates the following

open problem:

The aim of this project is to improve the sequence recognition performance by

applying a hybrid neural or symbolic approach. Trained HMMs are used as an ini-

tial symbolic domain theory, which can be directly encoded into appropriate recurrent

neural network architecture. Training the recurrent neural network re�nes this prior

knowledge. A symbolic representation of the re�ned HMM is extracted from the trained

network if appropriate. We therefore develop a gradient descent algorithm for process-

ing the knowledge stored in trained HMMs in this study.

The big hypothesis is that these HMM-RNN can improve classi�cation performance

through HMMs. This hypothesis can then be subdivided into following:

� HMM-RNNs cannot only represent HMMs, but also learn through training (e.g.,

gradient descent learning algorithm) the dynamics of the underlying unknown

dynamical process.

� A HMM-RNN initialized with a HMM can then re�ne the HMM.

CHAPTER 1. GENERAL INTRODUCTION 18

� Since the HMM-RNN contains all the information about the model of the dy-

namical process, it ought to be possible to extract a symbolic representation, e.g.,

in the form of a HMM.

� HMM-RNN can learn higher-order dependencies. This may tie in together with

big hypothesis, but can be investigated independently.

Technical Objectives:

In order to validate the above research hypotheses and to achieve the set goals we have

to address the following technical objectives:

� The development of gradient descent algorithm for training HMM-RNN architec-

ture.

� The insertion of domain knowledge and demonstrate faster RNN training on toy

problems.

� Testing of HMM-RNN architecture initialized with prior knowledge will be able

to re�ne HMM.

� The construction of a hybrid system of symbolic rules and recurrent networks for

enhanced domain theory acquisition and re�nement.

� Extractions of re�ned HMMs from trained RNNs.

� To explore the usefulness of such a system as applied to synthetic and real-world

predictive learning problems.

Methodology:

Here we present the entire methodology in order to achieve the above mentioned aims

and objectives of this thesis and �nally the total structure of the thesis has been

explained.

CHAPTER 1. GENERAL INTRODUCTION 19

A neural-symbolic hybrid system implements a framework of learning that

1. initializes a network with a priori domain knowledge,

2. re�nes this knowledge by training the network, and

3. extracts a re�ned domain theory from the trained network.

Our method of research proceeds from the investigation and development of a training

algorithm that meets the �rst technical objective. Once the performance of the algo-

rithm has been established, we apply domain/prior knowledge in the new architecture

and demonstrate faster recurrent neural network training on sample problems then we

use to test it on real world problems. After we perform good training results then we

will do extraction of re�ned HMMs from trained RNNs and �nally we apply to real

world problems.

Network adaptable weights are initialized with random values drawn according to

some distribution. Using numerical optimization methods (e.g., gradient descent tech-

niques, simulated annealing), the network is trained on some known data to perform

a certain task (e.g., pattern classi�cation) until some training criterion is met. After

successful training, a network can take advantage of its generalization capabilities to

perform the intended task on arbitrary data. Notice that during the entire process,

the knowledge remains hidden in a network adaptable connections, hence the name

connectionist representation.

The above training paradigm can be enriched with symbolic knowledge in the fol-

lowing way (symbolic representation): Prior knowledge about a task (initial domain

knowledge) is used to initialize a network prior to training. This requires a translation

of the information from a symbolic into a connectionist representation. The partic-

ular method for converting the symbolic into a representation of knowledge into its

equivalent connectionist representation depends on the kind of symbolic knowledge,

the learning task, and the network model used for learning.

To date, most e�orts are directed towards encoding prior knowledge by program-

ming some network weights to speci�ed values instead of choosing small random values.

CHAPTER 1. GENERAL INTRODUCTION 20

The programmed weights de�ne a starting point for the research of a solution in weight

space. The premise is that a better solution will be found faster compared to starting

the search from a random point in weight space. Examples of this approach include

pre-structuring of feed-forward networks with boolean concepts and imposing rotation

invariance in neural networks for image recognition. The choice of network architecture

itself represents an implicit use of prior knowledge about an application.

Once a network has succeeded in learning a task as measured by its performance

on the training data, it may be useful to extract the learned knowledge. The question

arises whether it is possible to extract an adequate symbolic representation of the

knowledge learned by a network, i.e., a representation that captures the essence of the

learned knowledge. In many cases, the extracted knowledge may only approximate

a network's true knowledge; however, it is also possible for the extracted symbolic

representation to exceed the accuracy of the knowledge stored in a trained network.

Finally, we compare the performance of the HMM approach with that of our hybrid

approach using real time applications such as enzyme classi�cation, etc. Then we

attempt to determine the order of the best HMM by augmenting the network training

procedure with the capability to prune the weights connecting the input with the

hidden state neurons. Finally, we study the feasibility of extracting a re�ned version

of the HMM in symbolic form.

1.5 Outline of the thesis

The reminder of the thesis is organized as follows.

In Chapter 2, we discuss the fundamentals of neural network architectures, RNNs,

HMMs, and the hybrid systems which are the combinations of RNNs and HMMs.

In Chapter 3, we discuss the hybrid systems which combine the strengths of in-

telligent system paradigms such as neural networks, expert systems, fuzzy logic and

the combination of RNNs and HMMs and the hybrid architecture of the currently de-

veloped system and gradient descent algorithm using real time recurrent learning of

CHAPTER 1. GENERAL INTRODUCTION 21

RNN.

In Chapter 4, we discuss the implementation of the gradient descent algorithm using

real time recurrent learning (RTRL) of RNN on sample test bed in the form of �nite

automata theory which focuses on learning and training the deterministic �nite state

automata. We also present the results obtained by using this approach.

In Chapter 5, we discuss the implementation of hybrid HMM-RNN for some real

world problems. As an example, we discuss its application for enzyme classi�cation.

In Chapter 6, we present some concluding remarks where we also present scope for

further research.

Chapter 2

Architectures of the proposed hybrid

systems

In this chapter, we present an overview of arti�cial intelligence; machine learning; other

related concepts. Relevant architectures, models and methods useful for designing

and developing the hybrid HMM-RNN architecture are discussed extensively. Then

we provide a detailed description of the basic learning algorithms, methods and the

architectures of neural networks, �rst order and second order recurrent neural networks,

di�erent types of networks.

2.1 Introduction

The term �Arti�cial Intelligence� (AI) is de�ned as the simulation of human intelligence

on a machine, so as to make the machine e�cient to identify and use the right place of

�Knowledge� at a given step of solving a problem [93]. A system capable of planning

and executing the right task at the right time is generally called rational. Thus, AI

alternatively may be stated as a subject dealing with computational models that can

think and act rationally.

The subject of arti�cial intelligence deals with the various kinds of knowledge rep-

resentation schemes, di�erent techniques of intelligent search, various methods for re-

22

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 23

solving uncertainty of data and knowledge [6]. Moreover, AI has several real world

applications, some of which we will discuss in this thesis.

Learning is an inherent characteristic of the human beings. By virtue of this,

people, while executing similar tasks, acquire the ability to improve their performance.

Here, we will provide an overview of the principle of learning that can be adhered to

machines to improve their performance. Such learning is usually referred to as �Machine

Learning�. Machine learning can be broadly classi�ed into three categories:

(i) Supervised learning,

(ii) Unsupervised learning, and

(iii) Reinforcement learning.

Supervised learning requires a trainer, who supplies the input-output training instances.

The learning system adapts its parameters by some algorithms to generate the desired

output patterns from a given input pattern. In absence of trainers, the desired output

for a given input instance is not known, and consequently the learner has to adapt its

parameters autonomously. Such type of learning is termed as �unsupervised learning�.

The third type, the reinforcement learning, bridges a gap between supervised and

unsupervised categories. In reinforcement learning, the learner does not explicitly know

the input-output instances, but it receives some form of feedback from its environment.

The feedback signals help the learner to decide whether its action on the environment

is rewarding or punishable. The learner thus adapts its parameters based on the states

(rewarding / punishable) of its actions.

There has been a great account of work on optimization and learning algorithms

applied to neural networks.

In [175], Takehiko explained the theoretical analysis of two essential training schemes

for gradient descent learning in neural networks: batch and on-line training. The con-

vergence properties of the two schemes applied to quadratic loss functions are analyt-

ically investigated. They quanti�ed the convergence of each training scheme to the

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 24

optimal weight using the absolute value of the expected di�erence and the expected

squared di�erence between the optimal weight and the weight computed by the scheme.

Although on-line training has several advantages over batch training with respect to

the �rst measure, it does not converge to the optimal weight with respect to the sec-

ond measure if the variance of the per-instance gradient remains constant. However,

if the variance decays exponentially, then on-line training converges to the optimal

weight with respect to second measure. The �nal analysis or results reveals the exact

degrees to which the training set size, the variance of the per-instance gradient, and

the learning rate a�ect the rate of convergence for each scheme.

Ilya and Hinton [100] explained a method for training RNNs to predict sequences

exhibits signi�cant long-term dependencies, focusing on a serial recall task where the

RNN needs to remember a sequence of characters for a large number of steps before

reconstructing it. They introduced the Temporal-Kernel Recurrent Neural Network

(TKRNN), which is a variant of the RNN that can cope with long-term dependencies

much more easily than a standard RNN, and show that the TKRNN develops short-

term memory that successfully solves the serial recall task by representing the input

string with a stable state of its hidden units.

A method for comparing the maze learning performance of three arti�cial neural

network architectures are elman recurrent neural network, a long short-term memory

(LSTM) network and Mona was given by Thomas [145]. The mazes are networks of

distinctly marked rooms randomly interconnected by doors that open probabilistically.

The mazes are used to examine two important problems related to arti�cial neural

networks: the retention of long-term state information and the modular use of learned

information. They examined the e�ect of modular and non-modular training. In mod-

ular training, the door associations are trained in separate trials from the intervening

maze paths and only presented together in testing trials. Their validation results

indicated that all networks performed well on mazes without the context learning re-

quirement. The Mona and LSTM networks performed well on context learning with

non-modular training; the Elman performance degraded as the task length increased.

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 25

Mona also performed well for modular training; both the LSTM and Elman networks

performed poorly with modular training.

The second order statistical learning framework given by Su et al. [78] is to study

the general class of nonlinear adaptive �lters with feedback realized as recurrent neural

networks (RNNs). For rigour, both the so-called proper and improper-second order

statistics of complex processes is taken into account and the proposed augmented com-

plex real-time recurrent learning (ACRTRL) algorithm for RNNs has been shown to

be suitable for processing a wide range of both benchmark and real-world complex

processes.

In view of the above mentioned works, we present in this chapter a thorough con-

ceptual framework that is useful for study as described in later parts of this thesis.

Rest of the chapter is organized as follows. In Section 2.2, we discuss some relevant

concepts of minimization and learning algorithms. Basic elements and architectures of

the neural system has been explained in Sections 2.3 and 2.4. Finally, we provide a

brief summary of the work contained in this chapter in Section 2.5.

2.2 Concepts of neural networks

In this section, we discuss the concepts and architectures of optimization and learning

algorithms, neural networks, recurrent neural networks.

Arti�cial neural networks are loosely modeled after biological neural systems. They

learn by training from past experience data and make generalization on unseen data.

Neural networks consist of arti�cial neurons and weights between them. The arti�cial

neurons (processing units) transport incoming information on their outgoing connec-

tions to other units.

There are three main components when creating a functional model of the biological

neuron. First one is the synapses of the neuron are modeled as weights. The strength

of the connection between an input and a neuron is noted by the value of the weight.

Negative weight values re�ect inhibitory connections, while positive values designate

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 26

excitatory connections. The next two components model the actual activity within the

neuron cell. An adder sums up all the inputs modi�ed by their respective weights. This

activity is referred to as linear combination. Finally, an activation function controls

the amplitude of the output of the neuron. An acceptable range of output is usually

between 0 and 1, or -1 and 1.

Mathematically, the above process can be described as

Yk =

(
p∑

j=1

WkjXj

)
,

where Yk describes the output associated with unit k, Wkj are weights from unit k to

unit j and Xj are the input neurons associated with the unit j.

Neural networks have been applied to many real world problems such as speech

recognition [20], bio-conservation [48], gesture recognition [120], medical diagnostics

[138]. Neural networks learn by training on past experience using an algorithm which

modi�es the interconnection weights as directed by a learning objective for a particular

application. A neuron is a single processing unit which computes the weighted sum of

its inputs. The output of the network relies on cooperation of the individual neurons.

The learnt knowledge is distributed over a set of trained networks weights.

In general, the neural networks are characterized [96, 147] into feed-forward and re-

current neural networks. Feed-forward networks are used in application where the data

does not contain time variant information while recurrent neural networks model time

series sequences and possesses dynamical characteristics. Neural networks are capable

of performing tasks that include pattern classi�cation, function approximation, predic-

tion or forecasting, clustering or categorization, time series prediction, optimization,

and control.

Arti�cial neural networks (ANNs) with cycles are referred to as feedback, recursive,

or recurrent neural networks [172]. These ANNs without cycles are referred to as feed-

forward neural networks (FNNs). Well known examples of FNNs include perceptrons,

radial basis function networks, Kohonen Self Organizing Maps and Hop�eld nets. The

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 27

most widely used form of FNN is the multi-layer perceptron MLP [160, 197]. The units

in a multi-layer perceptron are arranged in layers, with connections feeding forward

from one layer to the next. Input patterns are presented to the input layer, and the

resulting unit activations are propagated through the hidden layers to the output layer.

This process is known as the forward pass of the network. The units in the hidden layers

have (typically nonlinear) activation functions that transform the summed activation

arriving at the unit. Since the output of an MLP depends only on the current input,

and not on any past or future inputs, MLPs are more suitable for pattern classi�cation.

An MLP can be thought of as a function that maps from input to output vectors. Since

the behaviour of the function is parameterised by the connection weights, a single MLP

is capable of instantiating many di�erent linear as well as nonlinear functions.

Neural networks, sometimes referred to as connectionist models, are parallel dis-

tributed models that constituted by several components including a set of processing

units, their activation states, propagation rules, activation function, external inputs,

learning algorithms, optimization parameters, etc.

Within the neural systems there are three types of units: Input units, which receive

data from outside of the network; Output units, which send data out of the network,

and Hidden units, whose input and output signals remain within the network. Through

synaptic connections from other units, each of the non-input units in a neural network

combine values that are fed into them and then they produce a single value called net

input. The total input to a particular unit is simply the weighted sum of the separate

outputs from the connected units plus a threshold or bias term.

Mathematically, the above can be expressed as

aj =
n∑

i=1

wjixi + θj,

where θj represents a bias term associated with the unit j. In the above, aj represents

the total input corresponding to unit j, wji are the synaptic weights from unit j to

unit i, xi is the input signal. In some cases, more complex rules for combining inputs,

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 28

for example, the σ − π propagation rules ([4])

aj =
n∑

i=1

wji

m∏
k=1

xik + θj.

are used. Here xik is the input signal from multiple nodes. Most units in neural network

transform their net inputs by using a scalar-to-scalar function, called an activation

function [63]. One of the popularly used activation function is the binary step function

(also known as threshold function or Heaviside function). The output of this binary

step function is limited to one of the two values, either in a form of a sigmoid function

g(x) =
1

1 + e−x
,

or in the form of a bipolar sigmoid function

g(x) =
1− e−x

1 + e−x
.

Note that the sigmoid function especially advantageous for use in neural networks

trained by back-propagation, because it is easy to di�erentiate, and thus can dramat-

ically reduce the computation burden for training. It applies to applications whose

desired output values are between 0 and 1. One the other hand, the bipolar sigmoid

function has similar properties as those of the sigmoid function but it works well for

applications that yield output values in the range of [-1,1].

Note that it is the non-linearity that makes multi-layer networks very powerful.

Such non-linearity is introduced into the network using activation functions. The

simple reason is that the composition of linear functions is again a linear function.

Almost any nonlinear function does the job, although for back-propagation learning it

must be di�erentiable and it helps if the function is bounded. However, the sigmoid

functions are the most common choices ([161]) for these activation functions.

As far as the continuous-valued targets with a bounded range are concerned, one

can again use the sigmoid functions, provided that either the outputs or the targets to

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 29

be scaled to the range of the output activation function. But if the target values have

no known bounded range, it is better to use an unbounded activation function, most

often the identity function (which amounts to no activation function).

In order to train a network and measure how well it performs, one also requires an

objective function (or cost function) which must be de�ned to provide an unambiguous

numerical rating of system performance. Selection of an objective function is very

important because the function represents the design goals and decides what training

algorithm can be taken. To develop an objective function that measures exactly what

we want is not an easy task.

The next important concept is the network structures. The structure of a network

is usually de�ned by the number of layers, the number of units per layer, and the

interconnection patterns between layers. They are generally divided into two categories

based on the pattern of connections: `Feed-forward networks' and `Recurrent networks'.

In `Feed-forward networks, the data �ow from input units to output units is strictly

feed-forward. The data processing can extend over multiple layers of units, but no

feedback connections are present. However, in the `Recurrent networks', which contain

feedback connections, the dynamical properties of the network are important. Feed-

forward neural networks are used in applications where the data does not contain time

variant information while recurrent neural networks model time series sequences and

possesses dynamical characteristics.

A layered feed-forward network consists of a certain number of layers, and each

layer contains a certain number of units. There is an input layer, an output layer, and

one or more hidden layers between the input and the output layer. Each unit receives

its inputs directly from the previous layer (except for input units) and sends its output

directly to units in the next layer (except for output units). Unlike the Recurrent

network, which contains feedback information, there are no connections from any of

the units to the inputs of the previous layers nor to other units in the same layer, nor

to units more than one layer ahead. Every unit only acts as an input to the immediate

next layer. Obviously, this class of networks is easier to analyze theoretically than other

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 30

general topologies because their outputs can be represented with explicit functions of

the inputs and the weights.

Inputs

Hidden units

Outputs

(a)

Inputs
Outputs

(b)

Hidden units

Figure 2.2.1: Architectures of feed-forward and recurrent neural networks

An example of a layered network with one hidden layer is shown in Figure 2.2.1.

The algorithm for evaluating the derivative of the error function is known as back-

propagation, because it propagates the errors backward through the network. This

back-propagation technique was popularized by [160]. It is the most commonly used

method for training multi-layer feed-forward networks. It can be applied to any feed-

forward network with di�erentiable activation functions.

In the learning process in most of the networks, one requires to use an error function

which must be suitably minimized. This minimization has to be done with respect to

the weights and bias. If a network has di�erential activation functions, then the input

variable of the di�erentiable functions are the activations of the output units. These

input variable are the weights and bias. One can evaluate the derivative of the error

with respect to weights. These derivatives can then be used to �nd the weights that

minimize the error function, by using the popular gradient descent method. For further

details on this, as well as on the gradient descent algorithm, one may refer to [159].

It should be noted that the gradient descent optimization method is one of the

most popularly used back-propagation learning algorithm. It has been proved as a

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 31

very successful method in many applications. However, this method does not converge

very fast. Moreover, the convergence to the global minimum is not always guaranteed.

Many researchers (see, e.g., [24, 70]) have attempted for improvements to the stan-

dard gradient descent method, such as dynamically modifying learning parameters or

adjusting the steepness of the sigmoid function. To this end, gradient methods using

second-derivatives (Hessian matrix), such as Newton's method, are found to be very

e�cient under certain conditions [153].

A large number of more sophisticated gradient descent algorithms have been de-

veloped (e.g., rprop, quickprop, conjugate gradients) that are generally observed to

outperform steepest descent, if the gradient of the entire training set is calculated at

once. Such methods are known as batch learning algorithms. However, one advantage

of steepest descent is that it lends itself naturally to online learning (also known as se-

quential learning), where the weight updates are made after each pattern or sequences

in the training set. Online steepest descent is often referred to sequential gradient

descent or stochastic gradient descent.

Online learning tends to be more e�cient than batch learning when large datasets

containing signi�cant redundancy or regularity are used [83]. In addition, the stochas-

ticity of online learning can help to escape from local minima, since the stationary

points of the objective function will be di�erent for each training example. The stochas-

ticity can be further increased by randomizing the order of the sequences in the training

set before each pass through the training set (often referred to as a training epoch).

A recently proposed alternative for online learning is stochastic metadescent [81],

which has been shown to give faster convergence and improved results for a variety of

neural network tasks.

The generalization ability of neural networks is an important measure of their per-

formance as it indicates the accuracy of the trained network when presented with data

not present in the training set. A poor choice of network architecture will result in poor

generalization even with optimal weight selection. The organization of neurons in the

hidden layer may a�ect the generalization; too many neurons may result in over�tting

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 32

or overtraining while few neurons will result in under�tting.

The generalization performance in the case of over�tting may be improved by in-

creasing the number of instances in the training set. Another technique is using weight

decay during training. Weight decay in gradient descent learning fractionally decreases

the weights at each iteration. A successful method is to provide a validation set in

addition to the training data. In this method the training algorithm monitors the gen-

eralization error with respect to the validation set and terminates the training before

the error increases.

It should be clear from the architecture of Feed-forward neural networks that past

inputs have no way of in�uencing the processing of future inputs. This situation can

be recti�ed by the introduction of feedback connections in the network. Now network

activation produced by past inputs can cycle back and a�ect the processing of future

inputs.

Feed-forward neural networks have been successfully used to solve problems that

require the computation of a static function, i.e., a function whose output depends only

upon the current input, and not on any previous inputs. In the real world however,

one encounters many problems which cannot be solved by learning a static function

because the function being computed changes with each input received.

As an example consider a deterministic �nite state automata (DFA) which output

its state every time it makes a transition. Clearly, the DFA may produce di�erent

outputs for the same input if it is in di�erent states. Thus, any system that seeks to

predict the outputs of a DFA must have some have some notion of how the past inputs

a�ect the processing of the present input, as well as a way of storing the past inputs.

In other words such a system must have a memory of the past input and a way to use

that memory to process the current input.

The class of Neural Networks which contain cycles or feedback connections are

called Recurrent Neural Networks (RNNs). While the set of topologies of a feed-

forward networks is fairly constrained, an RNN can take on any arbitrary topology as

any node in the network may be linked with any other node (including itself). The

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 33

only requirement we make is that the network have clearly de�ned input and output

nodes. This we will discuss in next section.

2.3 Recurrent Neural Networks (RNNs)

In this section, we discuss about the advanced neural network architectures and its

concepts have been studied extensively.

Recurrent neural networks are well suited for modeling time dependent processes

due to their dynamical abilities. This feature has made them successful in applications

to speech recognition, time series prediction, language learning and control. Recur-

rent neural networks are loose models of the brain and various architectures of recur-

rent neural networks have been applied to a wide range of problems with strengths

and weaknesses in knowledge representation and learning capability. Gradient de-

scent is most widely used for recurrent network training with variation in the form of

backpropagation-through-time and real-time-recurrent learning. Symbolic knowledge

in the form of �nite automaton can be encoded in recurrent neural networks. Knowl-

edge extraction from recurrent neural networks aims at �nding the underlying models

of the learnt knowledge in the form of �nite state machines.

The feedback signals in recurrent neural networks may be transmitted through

a time delay. In contrast to feed-forward networks, recurrent neural networks are

dynamical systems whose next state and output depend on the present network state

and input; they are particularly useful for modeling dynamical systems.

Although processing real-valued time series is much more popular, RNNs are also

frequently used for symbolic sequence processing. For example in cognitive science

community people often try to use recurrent neural networks to establish links between

human ability to process linguistic structures and the potential of arti�cial RNNs [24,

154]. Other works study what kind of dynamical behaviour has to be acquired by

RNNs to solve particular tasks such as processing strings of context-free languages,

where counting mechanism is needed [70, 160].

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 34

Standard RNNs trained by common gradient descent techniques have problems with

processing symbolic sequences containing long-time dependencies [55]. When propa-

gating teaching signal, error tends to vanish or blow up. To overcome this limitation

and to solve tasks, traditional RNNs cannot solve, novel architecture was suggested

[55, 150]. Long short-term memory networks are equipped with special units called

constant error carrousels with self-recurrent feedback connection of constant weight set

to 1. In this way, error signal can span theoretically in�nite time distances.

Another novel RNN architecture called Echo-state network (ESN) [103] is based on

rich reservoir of potentially interesting behaviour. Reservoir is the RNNs recurrent layer

formed by large number of sparsely interconnected units with non-trainable weights.

Under certain conditions RNN state is a function of the �nite history of inputs presented

to the network - the state is the �echo� of the input history. Some of the architectures of

�rst-order RNNs can be found in [157, 198] whereas those of the NARX networks can

be found in [95, 117, 169]. For other type of networks, e.g., LSTM recurrent networks,

Hop�eld Networks, Fully Recurrent Neural Networks, Extended Kalman Filter and

Decoupled Extended Kalman Filter Networks, one may refer to [74, 77, 91, 92, 103].

In Figure 2.3.1, we showed Recurrent networks architectures of Elman (�gure a),

Jordan (�gure b), Robinson and Fallside (�gure c) and (d) Williams and Zipser (�gure

d). Dashed lines indicate feedback connections. The Elman architecture used the con-

text layer which makes a copy of the hidden layer outputs in the previous time steps.

This architecture can be expanded to include additional hidden layers. The Jordan

network is the earliest network speci�cally designed for temporal sequence modelling

and gained popularity by highlighting the idea of context units. In the this architec-

ture, the context layer receives feedback from the output as well as the context layer

activations in the previous time steps. The context units are also referred to as state

units. Hidden and output layer activations and respectively, are calculated at time t,

from the weighted sum of the inputs and context units as follows:

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 35

Hidden

Hidden (t)

Output (t-1) Context (t-1)

Output (t)

Input (t)Context (t)

Output

Input Context

Output

Context Input

(a)

(d)(c)

(b)

Output

Context Input

Figure 2.3.1: Architectures of RNN

hj(t) = f

(
n∑

i=1

wjixi(t) +
m∑
i=1

wjici(t)

)
.

yk(t) = g

(
p∑

j=1

wkjhj

)
,

where n, m and p are the number of input, context and hidden units, respectively. The

context layer units are updated at each time step by

ci(t+ 1) = αci(t) + yi(t).

The Robinson and Fallside architecture [155] is single layer network which has a con-

text layer of fully recurrent connections. The model proposed by Williams and Zipser

consists of a single layer of fully connected units from the output to the context layer in-

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 36

stead [198]. The outputs and context unit values at the following time step is computed

by

yj(t) = f

(
n∑

i=1

wjixi(t) +
m∑
i=1

wjici(t)

)
,

ci(t+ 1) = g

(
α

n∑
j

wijyj(t)

)
.

First-order recurrent neural networks:

The Jordan network has been used to model attractor dynamics [105] and is more

suited to applications where the serial order is dependent on the previous context as

well as the output. Applications of this network architecture include speech recognition

and sunspot prediction [42, 105]. The most well-known application of the Elman net-

work is for modeling the syntactic and semantic structure of English phrases [59, 60].

Other applications include �nancial data prediction [114] and Mackey-Glass time series

prediction [42].

The model proposed by Mozer [130] has full adaptive connectivity between the input

and context layer; the self-connections are also trained with other connections. Mozer

derived a modi�ed gradient learning rule by di�erentiating a cost function similar to

that used by Williams and Zipser [198]. While this architecture has also been used

for modeling �nite-state behavior, it is more suitable for sequence classi�cation than

sequence generation. Both models by Jordan and Mozer employ what is termed locally

recurrent or self connections. Applications of these architectures include prediction of

future values of a �nancial time series [132] and process control [146].

The �rst-order recurrent neural network uses a context layer to store the output of

the state neurons in the previous time steps. The context layer is used for computation

of present states as they contain information about the previous states. They have

shown to learn and represent deterministic �nite automaton and fuzzy �nite automaton

[73].

In Figure 2.3.2, we present the architecture of a �rst order context layer RNN. The

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 37

units

Input

units

Output

Hidden

units

Context

units

Context

units

Figure 2.3.2: First order RNNs

connection from the context to hidden layer provides the recurrence relation. Note

that the number of neurons in the hidden layer is equal to the number in the context

layer. The neurons propagate information from one layer to another buy computing a

non-linear function of their weighted sum of inputs. The equation of the dynamics of

the change of hidden state neuron activations in �rst order context layer networks is

given by equation (2.3.1).

Si(t) = g

(
K∑
k=1

VikSk(t− 1) +
J∑

j=1

WijIj(t− 1)

)
, (2.3.1)

where Sk and Ij represent the output of the state neuron and input neurons respectively.

Vik and Wij represent their corresponding weights, and g(·) is a sigmoidal discriminant

function.

Knowledge extractions through clustering and machine learning from �rst-order

recurrent neural networks have been successfully applied [46]. They have been applied

to a wide range of real world problems including speech recognition [155], �nancial

price prediction [166] and gesture recognition [120].

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 38

Second order recurrent neural networks:

Goudreau [80] have shown that second-order single-layer recurrent neural networks are

more suited to modeling �nite-state behavior than their �rst-order counterparts. An

experimental comparison of some recurrent network architectures on problems includ-

ing grammatical inference and nonlinear systems identi�cation can be found in [95].

The single-layer, second-order network employs product units of external input

neurons xk(t) and recurrent state units sj(t) for all combinations of sj(t) × xk(t) as

input to the context units in the output layer. The activation for the context units is

computed by:

si(t+ 1) = f

(
n∑

j=1

m∑
k=1

wijksj(t)xk(t)

)
,

for n context units and m input units. This architecture has been widely applied to

grammatical induction problems.

Second order recurrent neural networks are more suited for modelling �nite-state

behavior than �rst-order context layer networks [65]. However, it has been shown that

�rst-order recurrent networks generalize better than second-order networks given that

both of them have the same number of neurons as second-order networks have more

weight connections [80]. The second-order recurrent network has been shown that

deterministic �nite automaton can be directly encoded in them. In Figure 2.3.3, we

f(·) f(·) f(·)

Xk (t)Sj (t)

Si (t+1) S0 (t+1)

Wijk

bi (t)

z -1

Figure 2.3.3: Second order RNNs

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 39

present the architecture of second-order RNNs. The second-order recurrent network

with three state units and two input units. The output computes a sigmoidal function

of weighted product units.

Types of RNN architectures:

Here, we are giving a brief overview of di�erent types of RNN architectures.

Locally recurrent neural networks:

Locally recurrent neural networks are a class of networks that contain recurrent con-

nections only within individual neurons [184]. It can be trained with gradient descent

learning algorithms. It consists of an input layer, a layer of dynamic neurons with self-

recurrent connections whose outputs are the inputs of a standard layered feed-forward

network. The dynamics of locally recurrent neural networks is given as follows:

ci(t) = f

(
wc

iici(t− 1) +
∑
j

wx
ijxj(t)

)
,

yi(t) = g

(∑
j

wy
ijcj(t)

)
,

where xj(t), ci(t) and yi(t) represent the input, internal and output activations, respec-

tively at time t. The self connection of the weight matrix is given by wij and f and g

are the nonlinear functions.

NARX recurrent neural networks:

NARX recurrent neural networks are inspired by nonlinear autoregressive models with

exogenous inputs [169]. They have shown better training and generalization results

when compared to other recurrent network architectures [95]. They compute their

current output from past inputs and past outputs as shown in Figure 2.3.4. The

architecture has two delay lines; one for input and the other for outputs with all taps

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 40

fully connected to the hidden layer. Their lengths are referred as input and output

order, respectively.

Figure 2.3.4: NARX RNNs

In Figure 2.3.4, we present the NARX network architecture. The NARX topology

with two delayed lines for the inputs and outputs fully connected to the hidden layer.

The hidden state neurons receive as inputs a window of past network input and output.

The output y(t) for the linear case with input order Tx and Tx output order is given

by

y(t) =
Tx∑
τ=1

αtx(t− τ) +

Ty∑
τ=1

βty(t− τ),

y(t) = f(x(t− Tx), . . . , x(t− 1), x(t), y(t− Ty), . . . , y(t− 1)).

NARX networks have been applied to �nite automaton identi�cation and signal pro-

cessing [117]. They can retain information up to two or three times longer than con-

ventional recurrent neural network architectures and hence can alleviate the problem

of long-term dependencies [17].

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 41

Long short term memory:

Recurrent neural networks can represent non-linear dynamical systems; however, learn-

ing long time dependencies can be di�cult [17]. There is a di�culty in propagating

long-time dependencies as the gradient descent learning mechanism can only reliably

propagate information over certain time steps. In the process of error backpropagation,

the error gradient approaches zero after certain number of time steps when n becomes

large.

The Long Short Term Memory (LTSM) networks have been proposed to overcome

the problem of long-term dependencies [92]. They have been applied to grammatical

induction and speech recognition problems [75] . More recently, they have also been

applied to bioinformatics problems with great success. They are composed of memory

cells and gate units. Each memory cell is built around a central linear unit with a �xed

self connection. The gate units open and close access to constant error carrousel.

Figure 2.3.5: Long short term memory - RNN

LSTM networks can be trained using multi grid random search, time-weighted

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 42

pseudo Newton, discrete error backpropagation, and expectation maximization [18, 19].

LSTM solves complex long time lag tasks that have never been solved by previous

recurrent network algorithms. It also works with local, distributed, real-valued, and

noisy pattern representations.

The three learning algorithms for the training of Recurrent Neural Networks are as

follows:

� Back Propagation Through Time [BPTT] algorithm,

� Real Time Recurrent Learning [RTRL] algorithm, and

� Decoupled Extended Kalman Filter [DEKF] algorithm.

Backpropagation through time:

Backpropagation is the most widely applied learning algorithm for both feed-forward

and recurrent neural networks. It learns the weights for a multilayer network, given

a network with a �xed set of weights and interconnections. Backpropagation employs

gradient descent to minimize the squared error between the networks output values

and desired values for those outputs. The learning problem faced by backpropagation

is to search a large hypothesis space de�ned by weight values for all the units of the

network. Error is propagated from the output layer back to the hidden layers from

which the weights are updated.

Backpropagation is used for training feed-forward networks while backpropagation

through time (BPTT) is employed for training recurrent neural networks [197]. The

BPTT is the extension of backpropagation algorithm. The general idea behind BPTT

is to unfold the recurrent neural network in time so that it becomes a deep multilayer

feed-forward network. This can be done by adding a layer for each time step. When

unfolded in time, the network has the same behavior as a recurrent neural network for

a �nite number of time steps.

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 43

Real Time Recurrent Learning:

Backpropagation-through-time uses the backward propagation of error information to

compute the error gradient used in the weight update. An alternative approach for

computing the gradient is to propagate the error gradient information forward. Real-

time recurrent learning (RTRL) is a real time learning algorithm which updates the

weights at the end of each sample string presentation with a gradient descent weight

update rule. The algorithm computes the derivatives of states and outputs with respect

to all weights as the network processes the sequence during the forward step [200].

There is no unfolding performed or necessary for real time recurrent learning.

In RTRL, the weights can be incremented on-line or at the end of the whole input

sequence. Because on-line updating is possible, the RTRL algorithm can deal with

input sequences of arbitrary length and does not require memory proportional to the

length of input sequence. It allows recurrent networks to learn tasks that require

retention of information over time periods having either �xed or inde�nite length.

The recusive equation is given by

pkij(t+ 1) = fk(netk(t))
∑
I∈U

wkIp
I
ij(t) + δikzj(t).

The weight update equations are

△ wij(t) = µ
∑
kinU

ek(t)p
k
ij(t)

and the overall correction to be applied to wij is given by

△ wij(t) =
t1∑

t=t0+1

△ wij(t).

This avoids the need for allocating memory proportional to the maximum sequence

length and leads to simple on-line implementations. The power of this method was

demonstrated through a series of simulations [198].

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 44

Decoupled extended Kalman �ltering:

A standard Kalman �ltering can be applied to linear system with Gaussian noise. Non-

linear system such as RNNs with sigmoidal units, can be handled by extended Kalman

�lters (EKF). Decoupled variant of EKF [147, 199] is based on ignoring dependencies

of weights feeding di�erent units and thus signi�cantly reduce computational require-

ments linked with the matrix inversion.

The following section describes about the hidden Markov models and its algorithms

towards this study.

2.4 Hidden Markov Models (HMMs)

In this section, the theoretical foundations and their algorithms of hidden Markov mod-

els has been discussed brie�y. Particularly, we emphasized on the forward algorithm

of HMM as it is the key link between neural networks and hidden Markov models.

Hidden Markov models were �rst described in a series of statistical papers by Baum

and other authors in the second half of the 1960's. One of the �rst applications of

HMM was speech recognition, starting in the mid 1970s. In the second half of the

1980's HMMs began to be applied to the analysis of biological sequences, in particular

DNA. Since then, they have become ubiquitous in the �eld of Bioinformatics.

� Bioinformatics and Genomics

� Prediction of protein-coding regions in genome sequences,

� Modeling families of related DNA or protein sequences, and

� Prediction of secondary structure elements from protein primary sequences.

A HMM is a �nite set of states, each of which is associated with a probability dis-

tribution. Transitions among the states are governed by a set of probabilities called

transition probabilities. In a particular state an outcome or observation can be gen-

erated, according to the associated symbol observation probability distribution. It is

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 45

only the outcome, not the state that is visible to an external observer and therefore

states are �hidden� to the outside; hence the name HMM.

In a regular Markov model, the state is directly visible to the observer, and therefore

the state transition probabilities are the only parameters. In a HMM, the state is

not directly visible, but output, dependent on the state, is visible. Each state has a

probability distribution over the possible output tokens. Therefore the sequence of

tokens generated by an HMM gives some information about the sequence of states.

In order to de�ne an HMM completely, the following elements are needed.

1. The number of states of the model, N .

2. The number of observation symbols in the alphabet, M . If the observations are

continuous then M is in�nite.

3. A set of state transition probabilities A = aij.

4. A probability distribution for the alphabets in each of the states B = bj(k).

5. If the observations are continuous then we will have to use a continuous proba-

bility density function, instead of a set of discrete probabilities.

6. The initial state distribution πi.

Therefore we can use the compact notation

λ = (A,B, π),

to denote an HMM with discrete probability distributions.

Three basic problems in HMMs:

Once we have an HMM, there are three problems of interest that we will consider

below:

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 46

Figure 2.4.1: Hidden Markov model sample with emission states

1. The Evaluation Problem: Given an HMM λ and a sequence of observations

O = {o1, o2, . . . , oT} what is the probability that the observations are generated

by the model, p(O|λ)?

In the evaluation problem, namely given a model and a sequence of observations,

how do we compute the probability that the observed sequence was produced by

the model. We can also view the problem as one of scoring how well a given

model matches a given observation sequence. The latter viewpoint is extremely

useful. For example, if we consider the case in which we are trying to choose

among several competing models, the solution to problem 1 allows us to choose

the model which best matches the observations.

2. The Decoding Problem: Given the HMM λ = (π,A,B) and the observation

sequence O = {o1, o2, . . . , oT} calculate the most likely sequence of hidden states

that produced this observation sequence O. Usually this problem is handled by

Viterbi Algorithm.

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 47

3. The Learning Problem: Given a model λ and a sequence of observations O =

{o1, o2, . . . , oT} how should we adjust the model parameters (π,A,B) in order

to maximize p{(O|λ)}. Usually this problem is handled by �Baum-Welch of

Forward-backward algorithm/procedure�. As the forward algorithm of HMM

exactly resembles the �rst order equation of Recurrent Neural Network, we are

going to discuss the forward algorithm in detail for the evaluation problem.

As the forward algorithm of HMM exactly resembles the �rst order equation of

RNN, we are going to discuss the forward algorithm in detail for the evaluation problem.

The evaluation problem and the forward algorithm:

We have a model λ = (A,B, π) and a sequence of observations O = {o1, o2, . . . , oT}

and p{O/λ} must be found. We could calculate this quantity using simple probabilistic

arguments. But the number of operations involved in this calculation is in the order of

NT . This is very large even if the length of the sequence, T is moderate. Therefore we

adopt an another method for this calculation which has considerably lower complexity

and makes use of an auxiliary variable, αt(i) called forward variable.

The forward variable is de�ned as the probability of the partial observation sequence

O = {o1, o2, . . . , oT} when it terminates at the state i. Mathematically,

αt(i) = p{o1, o2,ot, qt = i/λ},

Then it is easy to see that following recursive relationship holds

αt+1(j) = bj(ot+1)

[
N∑
i=1

αt(i)aij

]
, 1 ≤ j ≤ N, 1 ≤ t ≤ T − 1,

where

α1(j) = πjbj(o1), 1 ≤ j ≤ N.

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 48

Using this recursion we can calculate αT (i), 1 ≤ j ≤ N which will be used in

p{O/λ} =
N∑
i=1

αT (i),

αt(i) = Pr(O1,...,t, qt = Si).

The sum of the �nal α's is the probability of the observations.

N∑
i

αT (i) =
N∑
i

Pr(O1,...,T , qT = Si) = Pr(O1,...,T).

The α′s can be calculated as follows

α1(i) = bi(O1)πi,

αt(i) = bi(Ot)
N∑
j=1

ajiαt−1(j).

Same as δ recursion except that max is replaced by sum.

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 49

The above forward algorithm can collectively be written as follows:

α1(i) = Pr(O1, q1 = Si)

= Pr(O1|q1 = Si)Pr(q1 = Si)

= bi(O1)πi

αt(i) = Pr(O1,...,t, qt = Si),

= Pr(Ot|O1,...,t−1, qt = Si)Pr(O1,...,t−1, qt = Si),

= Pr(Ot|qt = Si)Pr(O1,...,t−1, qt = Si),

= bi(Ot)Pr(O1,...,t−1, qt = Si),

= bi(Ot)
N∑
j=1

Pr(O1,...,t−1, qt = Si, qt−1 = Sj),

= bi(Ot)
N∑
j=1

Pr(qt = Si|O1,...,t−1, qt−1 = Sj)Pr(O1,...,t−1, qt−1 = Sj),

= b1(Ot)
N∑
j=1

Pr(qt = Si|qt−1 = Sj)Pr(O1,...,t−1, qt−1 = Sj),

= b1(Ot)
N∑
j=1

ajiαt−1(j).

In the next chapter, the above forward calculation of HMM is used in the process of

integrating and building the proposed hybrid HMM-RNN algorithm is presented, i.e.,

we will interpret the knowledge in HMM through RNN. Brie�y, the hybrid HMM-

RNN is the combination of �rst order calculation of RNN plus the forward algorithm

of HMM.

2.5 Summary

We have brie�y discussed the fundamental concepts and architectures of arti�cial neural

networks, recurrent neural networks and hidden Markov models in this chapter. Feed-

forward networks are applied in problems where time variant information is not present

CHAPTER 2. ARCHITECTURES OF THE PROPOSED HYBRID SYSTEMS 50

whereas recurrent neural networks are used for modeling dynamical processes. The goal

of learning in neural networks is to approximate the output with a given set of inputs.

Backpropagation employs gradient descent and is the most commonly used algorithm

for training neural networks. The learning complexity and generalization are the two

major factors which measure the performance of neural networks.

We have discussed the architectures of recurrent neural networks which include

�rst-order recurrent networks, second-order recurrent networks, locally recurrent net-

works, NARX networks and LSTM networks. One limitation to neural networks is the

di�culty to train using gradient descent learning where the network may get trapped

in the local minima resulting in poor training and generalization performance. The

extraction of �nite-state automata from trained recurrent neural networks shows dy-

namical features of it knowledge representation.

In the following chapter, we will discuss the architecture and total framework of

knowledge based systems using symbollic connectionist learning for the proposed hybrid

HMM-RNN architecture. We will also present the mathematical derivation of this

hybrid HMM-RNN architecture as well as the associated learning algorithm.

Chapter 3

Derivation and training of hybrid

systems using HMM and RNN

In this chapter, we present a complete derivation of hybrid systems using Hidden

Markov Model and Recurrent Neural Network. This chapter is the heart of this the-

sis. Here, we study the knowledge based systems framework using the connectionist

systems. We design the hybrid architecture by combining the most powerful sequence

recognition or classi�cation algorithms. Finally, we present the mathematical deriva-

tion of this hybrid HMM-RNN architecture as well as the associated learning algorithm.

3.1 Introduction

In this section we will discuss about the introduction to the hybrid systems, relevant

review on knowledge based systems, hybrid symbolic connectionist framework has been

explained along with the the derivation of hybrid learning algorithm for HMM-RNN.

Hybrid systems combine strengths of at least two intelligent system paradigms. Ex-

amples of hybrid systems include, symbolic connectionist learning, evolutionary neural

learning, neural expert systems and neuro-fuzzy systems. Neural expert systems com-

bine the learning in neural networks with reasoning in expert systems. Therefore, they

are able to learn from past experience and also have the ability to explain to their user

51

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 52

how they arrived to a particular solution. In hybrid symbolic connectionist learning,

expert knowledge in neural networks is combined prior to training for better generaliza-

tion and training performance. Neuro-fuzzy systems on the other hand combine human

style reasoning of fuzzy logic with neural network learning. Evolutionary neural learn-

ing combines the optimization technique of genetic algorithm with neural networks to

learn the weights of the network from past experience.

Below, we present an overview of the relevant literature on hybrid systems, knowl-

edge based connectionist models, combinations of HMM and RNN in terms of hybrid

systems in a chronological order.

In [29], Bridle explained the combination of recurrent neural network and hidden

Markov model. In his model, RNN is treated as an HMM isolated word recognizer

using full likelihood scoring for each word model. The author presented the units in

the recurrent loop as linear, but the observations enter the loop via a multiplication.

Training can use back-propagation of partial derivatives to hill-climb on a measure of

discriminability between words. The back-propagation has exactly the same form as

the backward pass of the Baum-Welch (EM) algorithm for maximum-likelihood HMM

training. The author used the relative entropy error criterion (equivalent to the so-

called Mutual Information criterion which has been used for discriminative training

of HMMs) that have derivatives which are interestingly related to the Baum-Welch

re-estimates and to Corrective Training.

The performance analysis of three evolutionary swarm computation technology-

based methods, known as di�erential evolution (DE), particle swarm optimization

(PSO), and the hybrid of DE and PSO (DEPSO), in training RNNs was investigated

and presented by Rui et al. [158]. Furthermore, the gene networks are reconstructed via

the identi�cation of the gene interactions, which are explained through corresponding

connection weight matrices. These authors studied and investigated because recurrent

neural networks (RNNs) have attracted more e�orts in inferring genetic regulatory net-

works (GRNs), using time series gene expression data from microarray experiments.

This is critically important for revealing fundamental cellular processes, investigating

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 53

gene functions and understanding their relations. However, RNNs are well known for

training di�culty. Traditional gradient descent-based methods are easily stuck in lo-

cal minima and the computation of the derivatives is also not always possible. Their

research results studied on two data sets which demonstrates the DEPSO algorithm

performs better in RNN training. Also, the RNN-based model can provide meaningful

insight in capturing the nonlinear dynamics of genetic networks and revealing genetic

regulatory interactions.

A new hybrid model using discrete wavelet transform (DWT) and support vector

machine (SVM) for distinguishing enzyme structures from non-enzymes was presented

by Jianding et al. [104]. These authors studied because it is highly desirable to develop

an automated method to identify whether a given new sequence belongs to enzyme or

non-enzyme. These networks have been trained and tested on two datasets of proteins

with di�erent wavelet basis functions, decomposition scales and hydrophobicity data

types. They obtained a maximum accuracy using SVM with a wavelet function of

Bior 2.4, a decomposition scale j = 5, and Kyte-Doolittle hydrophobicity scales. Their

validation and research results obtained by the self-consistency test, jackknife test and

independent dataset test are encouraging, which indicates that the designed method

can be employed as a useful assistant technique for distinguishing enzymes from non-

enzymes.

In [138], Pandey and Mishra combined the Knowledge-based systems (KBS) and in-

telligent computing systems that are frequently used in the medical planning, diagnosis

and treatment. Their KBS model consists of rule-based reasoning (RBR), case-based

reasoning (CBR) and model-based reasoning (MBR) whereas intelligent computing

method (ICM) encompasses genetic algorithm (GA), arti�cial neural network (ANN),

fuzzy logic (FL) and others. The combination of methods in KBS such as CBR-RBR,

CBR-MBR and RBR-CBR-MBR and the combination of methods in ICM is ANN-GA,

fuzzy-ANN, fuzzy-GA and fuzzy-ANN-GA. The combination of methods from KBS to

ICM is RBR-ANN, CBR-ANN, RBR-CBR-ANN, fuzzy-RBR, fuzzy-CBR and fuzzy-

CBR-ANN. These authors studied and presented a di�erent singular and combined

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 54

methods applicable to medical domain from mid 1970s to 2008. They represented in

tabular form, showing that the methods and its salient features, processes and appli-

cation areas in medical domain (diagnosis, treatment and planning). They observed

that most of the methods are used in medical diagnosis very few are used for planning

and moderate number in treatment.

In [44], Christos and Andreas presented a hybrid approach by combining the Self-

Organizing Map (SOM) and the Hidden Markov Model (HMM). The Self-Organizing

Hidden Markov Model Map (SOHMMM) establishes a cross-section between the the-

oretic foundations and algorithmic realizations of its constituents. These respective

architectures and learning methodologies are fused in an attempt to meet the increas-

ing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic

acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsu-

pervised training and the HMM dynamic programming algorithms bring forth a novel

on-line gradient descent unsupervised learning algorithm, which is fully integrated into

the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with

little or no prior knowledge, it can have a variety of applications in clustering, di-

mensionality reduction and visualization of large-scale sequence spaces, and also, in

sequence discrimination, search and classi�cation. These authors conducted two series

of experiments based on arti�cial sequence data and splice junction gene sequences and

demonstrated the SOHMMM's characteristics and capabilities.

Sharma and Srinivasan [166] designed and explained a new hybrid model to examine

the electricity price time series from dynamical system perspective and proposes a

hybrid model which employs a synergistic combination of Recurrent Neural Network

(RNN) and coupled excitable system for prediction of future prices in deregulated

electricity markets. The approximation ability of Recurrent Neural Networks to map

dynamic functions together with sharp jumping attribute of coupled excitable systems

allows close approximation of spiky time series. These authors developed hybrid model,

which was applied for point and interval forecasting in various markets worldwide

over di�erent seasons for testing its adaptability in di�erent environments. Their �nal

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 55

results of the prediction were obtained in all the markets, in stable as well as spiking

regions of the time series.

A new hybrid model for integrating neural network language models in the de-

coding process of three state-of-the-art systems: one based on bidirectional recurrent

neural networks, another based on hybrid hidden Markov models and, �nally, a com-

bination of both was given by Zamora et al. [204]. These authors examined due to

unconstrained o�-line continuous handwritten text recognition is a very challenging

task which has been recently addressed by di�erent promising techniques. The valida-

tion results obtained on the IAM o�-line database demonstrate that consistent word

error rate reductions can be achieved with neural network language models when com-

pared with statistical N-gram language models on the three tested systems. The best

word error rate 16.1% reported with ROVER combination of systems using neural net-

work language models signi�cantly outperforms current benchmark results for the IAM

database.

Symbolic connectionist learning:

The general paradigm of symbolic connectionist learning includes the combination of

symbolic knowledge in neural networks for better training and generalization perfor-

mance [1, 67]. The traditional connectionist representation approach of using neural

networks includes initializing of neural network with small random values and training

it using some optimization methods such as gradient descent and genetic algorithms on

some known data to perform a certain task. After successful training, the network can

take advantage of its generalization capability to perform tasks such as classi�cation

and recognition when presented with data. During the entire process, the knowledge

remains hidden in the networks adaptable connections, hence the name connectionist

representation. The connectionist representation is shown in the Figure 3.1.1.

The paradigm in the connectionist representation can be enriched with symbolic

knowledge by initializing a network with prior knowledge, i.e., the initial domain theory,

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 56

prior to training. A translation of information from a symbolic into a connectionist

representation is required. This is done by programming subset of weights in the

network prior to training instead of choosing small random values. The programmed

weights de�ne a starting point in weight space for a search of a solution during training.

Examples of this approach include pre-structuring a network with boolean concepts and

imposing rotation variance in neural networks for image recognition [13, 67, 181].

Initialized
neural

network

Trained
neural

network

Refined
domain
theory

Extracted
symbolic

knowledge

Neural learning

Knowledge pruning

Symbolic
knowledge
extraction

Symbolic
knowledge

insertion

Initial
domain
theory

Connectionist module

Symbolic module

Figure 3.1.1: Knowledge based neural network

In Figure 3.1.1, we present a framework for combining symbolic and neural learn-

ing. The use of neural networks for knowledge re�nement consists of (i) insertion of

prior knowledge known as initial domain theory into a neural network, (ii) re�nement of

knowledge through training a network on examples, and (iii) extraction of learnt knowl-

edge from a trained network in symbolic form, known as re�ned domain theory. Once

the network has been trained, knowledge can be extracted in symbolic form, i.e., the

re�ned domain theory. The extracted knowledge may approximate the networks true

knowledge; in some cases the extracted knowledge may outperform the performance of

the trained network.

The signi�cance and insertion of prior knowledge:

The �delity in the mapping of the prior knowledge is very important since the network

may not take advantage of poorly encoded knowledge. Poorly encoded knowledge may

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 57

hinder the learning process. Good prior knowledge encoding may provide the network

with bene�cial features such as

� The leaning process may lead to faster convergence to a solution meaning better

training performance,

� the networks trained with prior knowledge may provide better generalization

when compared to networks trained with no prior knowledge and,

� the rules in prior knowledge may help to generate additional training data which

are not present in the original data set.

Prior knowledge usually represented in the form of explicit rules in symbolic form is

encoded in neural networks by programming some weights prior to training [181]. In

feed-forward neural networks, prior knowledge is encoded in propositional logic expres-

sion form by programming a subset of weights. Prior knowledge also determines the

topology of the network, i.e., the number of neurons and hidden layers appropriate

for encoding the knowledge. The paradigm has been successfully applied to real world

problems including bio-conservation and molecular biology. The prior or expert knowl-

edge helps the network to get better generalization and training performance when

compared with network architecture with no prior knowledge encoding.

For recurrent neural networks, �nite-state automata are the basis for knowledge

insertion. It has been shown that deterministic �nite-state automata can be encoded

in discrete-time second-order recurrent neural networks by directly programming a

small subset of available weights. For �rst order recurrent neural networks, a method

for encoding �nite-state automata has been proposed and shown in [66].

Knowledge extraction:

In the past, neural networks were considered as black boxes as they were not able to

explain the knowledge acquired in the weights after the training process. Research on

this topic has resulted in a number of algorithms for knowledge extraction in symbolic

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 58

form [46]. In feed-forward networks, knowledge is usually extracted in the form of

Boolean and fuzzy if-then clauses [69, 86]. For recurrent networks, �nite-state automata

have been the main paradigm for temporal symbolic knowledge extraction [45].

The goal of knowledge extraction is to �nd the knowledge stored in the network

weights in symbolic form. One main concern is the �delity of the extraction process,

i.e., how accurately the extracted knowledge corresponds to the knowledge stored in

the network. Extraction algorithms can be basically divided into two classes: decom-

positional methods extract rules from the internal networks structure by looking at the

weights and nodes of the network, e.g., extraction through clustering [46]. Pedagogical

methods view trained neural networks as black-boxes and uses some machine learning

methods to extract rules obtained from the input-output mapping of the network e.g

machine learning TB algorithm.

Knowledge re�nement:

Knowledge re�nement or revision is the main goal of learning in a hybrid system where

neural learning together with knowledge extraction is combined to produce a more

accurate set of rules within a given domain [167]. The initial domain knowledge, which

may also contain information inconsistent with the available training data, is encoded

in a network. The network is then trained with the available data set with several

training runs depending on how close the initial symbolic knowledge is to the �nal

solution. Then the re�ned or revised rules, i.e., in case of poor prior knowledge can

be extracted from the trained network in symbolic form. The bene�ts of knowledge

re�nement include

� Better training performance,

� Improved generalization performance, and

� Clear understanding of the internal representation of the trained network.

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 59

The rest of the chapter is organized as follows. We describe recurrent neural networks

based on the hidden Markov models in Section 3.2. Real time recurrent learning for

the hybrid HMM-RNN system is presented in Section 3.3. Some applications of hybrid

systems are explored in Section 3.4. Finally, a brief summary is provided in Section

3.5.

3.2 RNNs based on HMMs

In this section, we present a link between recurrent neural networks and hidden Markov

models, signi�cance of the hybrid system, derivation of the algorithm.

Recurrent neural networks (RNNs) have been an important focus of research as they

can be applied to di�cult problems involving time-varying patterns. Their applications

range from speech recognition and �nancial prediction to gesture recognition [155].

They have the ability to provide good generalization performance on unseen data but

are di�cult to train. Hidden Markov models (HMMs), on the other hand, have also

been applied to solve di�cult real world problems involving time-varying patterns. For

instance, they have been very popular in areas of speech recognition [71]. Training

HMMs is easy, i.e., they learn faster when compared to recurrent neural network, but

their generalization performance may not perform satisfactorily when compared to the

performance of recurrent neural networks.

The structural similarities between HMMs and RNNs are the basis for mapping

HMMs into RNNs. The combination of the two paradigms into a hybrid system may

provide better generalization and training performance which would be a useful con-

tribution to the �eld of machine learning and pattern recognition. We call the new

hybrid architecture as hybrid HMM-RNN in further discussions.

Signi�cance of hybrid HMM-RNN:

We have stated earlier that the structural similarities of hidden Markov models and

recurrent neural networks form the basis for combining the two paradigms into a hybrid

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 60

architecture. Why is it a good idea? Most often, �rst-order HMMs are used in practice

in which successor states are dependent only on the previous state. This assumption

is unrealistic for many real world applications of HMMs. It has been shown that

RNNs can learn higher-order dependencies from training data [20]. Furthermore, the

number of states in the HMMs needs to be �xed beforehand for a particular application.

However, the numbers of states for di�erent applications vary. The theory on RNNs

and HMMs suggest that the combination of the two paradigms may provide better

generalization and training performance. Our proposed architecture of hybrid recurrent

neural networks may also have the capability of learning higher order dependencies and

one does not need to �x the number of states as in the case of HMMs.

Derivation and training of hybrid HMM-RNN:

Here, we presented the structural similarities of the two paradigms and design the

hybrid recurrent neural networks architecture. Consider the equation of the forward

procedure for the calculation of the probability of the observation O given the model,

thus in HMM is given by

αt
j =

(
N∑
i

αt−1
i aij

)
· bj(ot), (3.2.1)

where N is the number of hidden states in the HMM, a is the probability of making a

transition from state i to j and bj(o
t) is the Gaussian distribution for the observation at

time t. The calculation in equation (3.2.1) is inherently recurrent and bares resemblance

to the recursion of recurrent neural networks as shown in equation (3.2.2)

xt
i = f

(
N∑
j

xt−1
j wji

)
, (3.2.2)

where f(·) is a non-linearity as sigmoid, N the number of hidden neurons and wji the

weights connecting the neurons with each other and with the input nodes. We are now

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 61

going to consider the dynamics of �rst-order recurrent neural network which is given

by

yj(t) = f

(
N∑
i=1

wjixi(t) +
M∑
i=1

wjici(t)

)
. (3.2.3)

ci(t+ 1) = g

(∑
j

wijyj(t)

)
, (3.2.4)

where wji represent their corresponding weights and g(·) is a sigmoidal discriminant

function.

Let us combine equation (3.2.1) with equations (3.2.2) and (3.2.4) to form a hybrid

architecture. We are replacing the subscript j in bj(o
t) which denotes the state by time

t in hidden Markov models - to incorporate the feature into recurrent neural networks.

Hence, the dynamics for the hybrid recurrent neural networks architecture is given by

yj(t) = f

(
N∑
i=1

wjixi(t) +

[
M∑
i=1

wjici(t)

]
bt−1(O)

)
, (3.2.5)

where bt−1(O) is the Gaussian distribution. Note that the subscript in bt−1(O), i.e.,

time t, in equation (3.2.5) is di�erent from the subscript for Gaussian distribution in

equation (3.2.1). The dynamics of hidden Markov models and recurrent networks varies

in this context; however, we can adjust the parameter for time t as shown in equation

(3.2.5) in order to map hidden Markov models into recurrent neural networks. For a

single input, the univariate Gaussian distribution is given by

bt(O) =
1√
2πσ

exp

(
−1

2

(O − µ)2

σ2

)
, (3.2.6)

where O is the observation at time t, µ is the mean and σ2
i is the variance. Similarly,

for the discrete inputs, the Gaussian Distribution using histograms is de�ned as

Observation at time t =
Number of observations occured at time t

Total number of observations
. (3.2.7)

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 62

Finally, the observation probabilities for discrete case is calculated as frequency of

these inputs.

For Continuous inputs, we de�ne the Gaussian Mixture Models which is a para-

metric probability density function and represented as weighted sum of Gaussian com-

ponent densities and it is given by the equation:

It can also be represented in the following form

bj(ot) =
M∑

m=1

CjmN (ot;µjm,Σjm), (3.2.8)

where (x, µ, U), denotes a D-dimensional normal density function of mean vector µ and

covariance matrix U and M is the number of mixture components for the distribution,

and Cjm, µjm and Σjm are a weight, a L-dimensional mean vector, and a L{x}L

covariance matrix of mixture component m of state i, respectively.

Mixture weights Cjm satisfy the following stochastic constraint
∑M

m=1Cjm = 1,

Hence, bi(o)
′s are normalized as probability density function.

A Gaussian distribution (o, µjm,Σjm) of each component is de�ned by

bt(O) =
1

2πd/2|Σ|1/2
exp

[
−1

2
(O − µ)tΣ−1(O − µ)

]
, (3.2.9)

where O is a d-component column vector, µ is a d-component mean vector, σ is a d×d

covariance matrix, respectively.

Figure 3.2.1 shows how the Gaussian distribution for hidden Markov model is

mapped into hybrid recurrent neural networks. The output of the Gaussian func-

tion solely depends on the two input parameters which are the mean and the variance.

These are parameters that observe the sequence of the input data in the hybrid archi-

tecture which may be DFA strings or data from any real-world time series for example

bioinformatics, biometrics and etc..

In Figure 3.2.1, we present the architecture of a hybrid HMM-RNN. The dashed

lined indicates that the architecture can represent more neurons in hidden and input

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 63

Figure 3.2.1: Hybrid HMM-RNN Architecture

layer if required. The output of the Gaussian is further multiplied with the output

of the neurons in the hidden layer. Note that one Gaussian distribution will be used

irrespective of the number of neurons in hidden and input layer.

Hence, by combining and representing the forward algorithm of HMM equation

(3.2.1) in terms of RNN equation (3.2.2) and taking the derivative with respect to aij,

we get

∂

∂aij
(αt

j) =

[
N∑
i=1

∂

∂aij

(
αt−1
i aij

)
bj(o

t)

]

=

[
N∑
i=1

∂

∂aij

(
αt−1
i aij

)]
bj(o

t)

=

[
N∑
i=1

∂

∂aij

(
αt−1
1 a1j + · · ·+ αt−1

n anj
)]

bj(o
t). (3.2.10)

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 64

Now
∂

∂a1j
(αt−1

1 a1j) =

[
∂

∂a1j

(
αt−1
1 a1j

) ∂a1j
∂aij

]
bj(o

t),

⇒ ∂

∂a1j
(αt−1

1 a1j) =


∂

∂a1j

(
αt−1
1 a1j

)
1 if i = 1

0 if i ̸= 1,

⇒ ∂

∂a1j
(αt−1

1 a1j) =
∂

∂a1j
(αt−1

1 a1j)

= αt−1
1

∂

∂a1j
a1j

= αt−1
1 .

Similarly,
∂

∂a2j
(αt−1

2 a2j) = αt−1
2 .

Hence
∂

∂aij
(αt

j) =
[
αt−1
1 + αt−1

2 + ..+ αt−1
N

]
bj(o

t),

∂

∂aij
(αt

j) =

[
N∑
i=1

∂

∂aij

(
αt−1
i aij

)]
bj(o

t)

=

[
N∑
i=1

αt−1
i

]
bj(o

t). (3.2.11)

In the case of training strings of certain lengths representing �nite automaton, a uni-

variate Gaussian for one dimensional input will be used as shown in equation (3.2.6).

For real world applications where multiple dimensions are involved, multivariate Gaus-

sian function would be used instead as shown in equation (3.2.8).

In gradient descent training algorithm, the general real time recurrent learning

of recurrent neural networks [200] can be applied keeping in mind that additional

parameters, i.e., the mean and variance of the Gaussian distribution, must be trained.

Now before we move onto the next section, which deals with the real time recurrent

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 65

learning algorithm for the derived HMM-RNN system in this thesis, we would like to

mention that some other relevant works are appropriately reviewed in the individual

sections.

3.3 Real time recurrent learning for the hybrid HMM-

RNN system

In this section, we presented the RTRL algorithm for the developed HMM-RNN archi-

tecture along with a brief overview of the computational models.

We presented a learning algorithm which is based on the Williams and Zipser's real

time recurrent learning (RTRL) algorithm [198]:

In deriving a gradient-based update rule for recurrent networks, we make network

connectivity highly unconstrained. We simply suppose that we have a set of input

units, I = xk(t), 0 < k < m, and a set of other units, U = yk(t), 0 < k < n, which can

be hidden or output units. To index an arbitrary unit in the network we can use

zk(t) =

xk(t)) if k ∈ I,

yk(t)) if k ∈ U.

(3.3.1)

Let W be the weight matrix with n rows and n+m columns, where wij is the weight to

unit i (which is in U) from unit j (which is in I or U). Units compute their activations

in the now familiar way, by �rst computing the weighted sum of their inputs:

netk(t) =
∑

I∈U⊔I

wkIzI(t), (3.3.2)

netk(t) =
∑

I∈U⊔I

wkIzI(t) bt(O). (3.3.3)

Here bt(o) got two cases:

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 66

Case - 1:

bt(O) =
1√
2πσ

exp

[
−1

2

(O − µ)2

σ2

]
. (3.3.4)

Case - 2:

bt(O) =
1

2πd/2|Σ|1/2
exp

[
−1

2
(O − µ)tΣ−1(O − µ)

]
, (3.3.5)

where the only new element in the formula is the introduction of the temporal index t. Units

then computes some non-linear function of their net input

yk(t+ 1) = fk [netk(t)] (3.3.6)

Usually, both hidden and output units will have non-linear activation functions. Note

that external input at time t does not in�uence the output of any unit until time t+1. The

network is thus a discrete dynamical system.

Let T (t) be the set of indices k in U for which there exists a target value dk(t) at time t.

We are forced to use the notation dk instead of t here, as t now refers to time. Let the error

at the output units be

ek(t) =


dk(t)− yk(t) if k ∈ T (t),

0 otherwise.

and de�ne our error function for a single time step as

E(τ) = −1

2

∑
k∈U

[ek(τ)]
2 .

The error function we wish to minimize is the sum of this error over all past steps of the

network

Etotal(to, t1) =

t1∑
τ=t0+1

E(τ).

Now, because the total error is the sum of all previous errors and the error at this time step,

so also, the gradient of the total error is the sum of the gradient for this time step and the

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 67

gradient for previous steps

▽wEtotal(to, t+ 1) = ▽wEtotal(to, t) + ▽wE(t+ 1).

As a time series is presented to the network, we can accumulate the values of the gradient, or

equivalently, of the weight changes. We thus keep track of the value

△ wij(t) = −µ
∂E(t)

∂wij
.

After the network has been presented with the whole series, we alter each weight wij by

t1∑
t=t0+1

△ wij(t). (3.3.7)

Then we computes

−∂E(t)

∂wij
= −

∑
k∈U

∂E(t)

∂yk(t)

∂yk(t)

∂wij
=
∑
k∈U

ek(t)
∂yk(t)

∂wij
,

at each time step t. Since we know ek(t) at all times (the di�erence between our targets and

outputs), we only need to �nd a way to compute the second factor ∂yk(t)
∂wij

.

Derivation of ∂yk(t)
∂wij

:

From equation (3.3.6) and equation (3.3.7) we get

∂yk(t+ 1)

∂wij
= fk [netk(t)]

[∑
I∈U⊔I

wkI
∂yI(t)

∂wij
+ δikzj(t)

]
, (3.3.8)

where δik is the Kronecker delta

δik =


1 if i = k,

0 otherwise.

Because input signals do not depend on the weights in the network,

∂yI(t)

∂wij
= 0 for i ∈ I,

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 68

equation (3.3.8) becomes

∂yk(t+ 1)

∂wij
=

[
fk(netk(t))

[∑
I∈U⊔I

wkI
∂yI(t)

∂wij

]
bt(O) + δikzj(t)

]
. (3.3.9)

This is a recursive equation. Because we have assumed that our starting state (t = 0) is

independent of the weights, then we have

∂yk(t0)

∂wij
= 0.

These equations hold for all. We therefore need to de�ne the values

pkij(t) =
∂yk(t)

∂wij
,

for every time step t and all appropriate i, j and k. We start with the initial condition

pkij(t) = 0, (3.3.10)

and compute at each time step along by substituting the equation (3.2.11), we get

pkij(t+ 1) =

[
fk(netk(t))

[∑
I∈U

wkIp
I
ij(t)

]
bt(O) + δikzj(t)

]
. (3.3.11)

The algorithm then consists of computing, at each time step t, the quantities pijk(t) using

equations (3.3.10) and (3.3.11) and then using the di�erences between targets and actual

outputs to compute weight changes

△ wij(t) = µ
∑
kinU

ek(t)p
k
ij(t), (3.3.12)

and the overall correction to be applied to wij is given by

△ wij(t) =
t1∑

t=t0+1

△ wij(t). (3.3.13)

Hybrid HMM-RNN can be trained both with gradient descent learning methods and

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 69

genetic algorithms. In the case of training strings of certain lengths representing �nite au-

tomaton, a univariate Gaussian for one dimensional input will be used as shown in equation

(3.2.6). For real world applications, where multiple dimensions are involved, multivariate

Gaussian function is used instead of equation shown in (3.2.8).

In gradient descent training, the general backpropagation through time learning can be

applied keeping in mind that additional parameters, i.e., the mean and variance of the Gaus-

sian distribution, must be trained. Gradient descent learning, as discussed earlier, has its

drawbacks as the network can become trapped in the local minima resulting in poor training

and generalization performance.

Recurrent neural networks as models of computation:

Recurrent neural networks are appropriate tools for modeling time varying systems for exam-

ple; speech recognition, physical dynamical systems, and �nancial prediction. However, these

applications are not well suited for addressing their fundamental issues such as training algo-

rithms and knowledge representation. These applications come with speci�c characteristics,

for example, in application to speech recognition feature extraction may be required which

may hinder the investigation of networks fundamental issues. Di�erent applications require

di�erent feature extraction techniques.

The models such as �nite-state automata and their corresponding languages can be viewed

as a general paradigm of temporal, symbolic language. There is no feature extraction necessary

for recurrent neural networks to learn these languages. The knowledge acquired in recurrent

neural networks through learning well corresponds with the dynamics of �nite-state automata.

The representation of automata as a prerequisite for learning its corresponding languages; i.e.,

if the architecture cannot represent a particular automaton then it would not be able to learn

it either.

3.4 Applications of hybrid systems

In this section, we presented some of the key applications of hybrid systems has been discussed

and concluded the chapter with the overall summary.

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 70

Speech recognition:

Speech recognition systems are composed of two major components. These are (1) feature ex-

traction component which extracts features from a speech database, and (2) machine learning

component which builds a model on the extracted features. A speech sequence contains huge

amount of irrelevant information. In order to model them, feature extraction is necessary. In

feature extraction, useful information from speech sequences are extracted which then is used

for modeling using recurrent neural networks.

Hybrid systems have been successfully applied in modeling speech sequences for large

vocabulary speech recognition problems [29]. They have been applied to isolated word recog-

nition. The performance of speech recognition system can be measured in terms of accuracy

and speed. They have been applied to recognize words and phonemes. Extensive research

on the application of research recognition has been done for more than forty years; however,

scientists are unable to implement systems which can show excellent performance in envi-

ronments with background noise. Applications of speech recognition include voice command

systems in home ware devices, speech input devices for interaction with computers other than

mouse and keyboards, and speech command interaction with robots.

Molecular Biology:

The prediction of three-dimensional structure of proteins is an important problem in molecular

biology. The tertiary structure determines the function of a protein. Direct determination

of the tertiary structure using methods such as X-ray crystallography is expensive and time

consuming. The local or secondary structure of proteins provides good approximation of

the three-dimensional structure also known as strings of amino acids. The Chou-Fasman

algorithm is the standard algorithm for the problem which achieves a prediction accuracy of

up to 58 percent. Recurrent neural networks have been initiated with Chou-Fasman domain

and have been trained using sliding windows of amino acid sequences [51]. Knowledge based

neuro-computing paradigm using feed-forward networks have also been applied to the problem

which has shown small, statically signi�cant improvements in the prediction.

CHAPTER 3. DERIVATION AND TRAINING OF HYBRID SYSTEMS USING
HMM AND RNN 71

Signature veri�cation:

A signature veri�cation system is based upon the similarity between signatures. The system

is composed into two major components :(1) the signature preprocessing component which

focuses on the timing information and positioning of the pen point while making signatures

and (2) machining learning component for modeling the extracted features. Recurrent neural

networks have been successfully applied for modeling signatures [148]. A training set of

extracted features from signatures is used for training which may contain both positive and

negative samples. Upon successful training, the network will be presented with new signatures

of people who were included in training. The network thus has to predict whether a given

signature belongs to a person. Signature veri�cation systems can be used in banks, airports

and security systems.

3.5 Summary

We have seen how the strengths of intelligent system paradigms can be combined into hybrid

systems. We have discussed the combination of neural networks with symbolic knowledge

in symbolic connectionist learning. We have seen how the strengths of neural networks and

expert systems can be combined into a hybrid system which can explain how it arrived at

a particular solution and also learns from past experience. Upon presentation of new data,

the expert system can update its existing rules through learning in order to keep up-to-date

with a changing environment. These systems have contributed to a wide range of applications

including pattern recognition problems. Finally, we have shown and discussed in detail our

proposed hybrid system. We have discussed the possible training methods of hybrid recurrent

neural networks.

In the next chapter, we will discuss the implementation of hybrid HMM-RNN architecture

on sample test beds such as automata theory to show that it can learn and represent the

dynamical systems.

Chapter 4

Sample test beds and implementation

results

In this chapter, we present the experimental results on sample test beds to show that the

hybrid architecture can learn and represent the dynamical systems using �nite state automata.

Here, we discuss some research �ndings about the dynamical systems, automata theory, formal

languages, �nite state machines and hidden Markov models. Later on, the detailed explanation

about the formal languages, automata theory, �nite state machines related hidden Markov

models is presented. Finally, we present the implementation and the results of the hybrid

HMM-RNN algorithm on sample test beds with a concluding summary of this chapter.

4.1 Introduction

In this section, we present the relevant research �ndings on RNNs and HMMs related to the

automata theory and dynamical systems, etc.

Finite-state automata represent dynamical behavior and are useful frameworks for study-

ing recurrent neural networks as no feature extraction is necessary. A deterministic �nite

automaton is a �nite automaton where for each pair of state and input signal, there is one

transition to the next state. A deterministic �nite automaton reads in a string of input sym-

bols. For each input symbol, it performs a state transition. When the last input symbol has

been received, the automaton will either accept or reject the string depending on the output

72

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 73

of the state. Hidden Markov models are �nite state machines and have been successfully

applied for modeling speech sequences.

Here, we present an overview of relevant research review on dynamical systems using RNN

and theory of automation.

In [172], Alessando explained that recurrent neural networks can simulate any �nite state

automata as well as any multi-stack Turing machine. When constraining the network ar-

chitecture, however, this computational power may no longer hold. For example, recurrent

cascade-correlation cannot simulate any �nite state automata. Thus, it is important to assess

the computational power of a given network architecture, since this characterizes the class of

functions which, in principle, can be computed by it. These authors discussed the compu-

tational power of neural networks for structures. Elman-style networks, cascade-correlation

networks and neural trees for structures are introduced. Their validated results indicates that

that Elman-style networks can simulate any frontier-to-root tree automation, while neither

cascade-correlation networks nor neural trees can. The �nal results indicates that the neural

trees for sequences cannot simulate any �nite state machine.

Trentin and Cattoni [182] proposed an hybrid system for modeling, learning and recog-

nition of sequences of states in indoor robot navigation. States are broadly de�ned as local

relevant situations (in the real world) in which the robot happens to be during the navigation.

The hybrid is based on parallel Recurrent Neural Networks trained to perform a posteriori

state probability estimates of an underlying hidden Markov model given a sequence of sensory

(e.g. sonar) observations. Their approach was suitable for navigation and for map learning.

These authors explored the recognition of noisy sequences acquired by a mobile robot equipped

with 16 sonars.

A connectionist model dynamical system proposed by Baldi et al. [12] for learning in

sequential domains which uses hidden states to store contextual information. In principle,

these models can adapt to variable time lags and perform complex sequential mappings. In

spite of several successful applications (mostly based on hidden Markov models), the general

class of sequence learning problems is still far from being satisfactorily solved. A dynamical

system was said to be causal if the output at (discrete) time t does not depend on future

inputs. Causality was easy to justify in dynamics that attempt to model the behavior of

many physical systems. Clearly, in these cases the response at time t cannot depend on

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 74

stimulae that the system has not yet received as input. As it turns out, non-causal dynamics

over in�nite time horizons cannot be realized by any physical or computational device. For

certain categories of �nite sequences, however, information from both the past and the future

can be very useful for analysis and predictions at time t. This is the case, for example, of

DNA and protein sequences where the structure and function of a region in the sequence may

strongly depend on events located both upstream and downstream of the region, sometimes

at considerable distances.

In [101], Ivan and Andrej explained about the �nite state automata, which can be treated

as general discrete dynamical systems from the view of systems theory. These authors ad-

dressed the problem of unconditional on-line identi�cation of an unknown �nite automaton.

They proposed a generalized architecture of recurrent neural networks with a corresponding

on-line learning scheme as a solution to the problem. An on-line rule-extraction algorithm

is further introduced. They presented the proposed architecture and tested on the on-line

learning scheme and the on-line rule-extraction methods, strongly connected automata, rang-

ing from a very simple example with two states only to a more interesting and complex one

with 64 states; their results indicates that both training and extraction processes are very

promising.

A method for combining the evolutionary hill climbing with incremental learning and

a well-balanced training set presented was by Stephan et al. [37], which enables the �rst

order recurrent networks to reliably learn context-free and mildly context-sensitive languages.

These authors trained the networks to predict symbols in string sequences of the context-

sensitive language. Comparative experiments with and without incremental learning indicated

that incremental learning can accelerate and facilitate training. Furthermore, incrementally

trained networks generally resulted in monotonic trajectories in hidden unit activation space,

while the trajectories of non-incrementally trained networks were oscillating. They �nally

concluded that non-incrementally trained networks were more likely to generalize.

A recurrent neural network architecture given by Hiroyuki et al. [90] was capable of

incremental learning and test the performance of the network. In incremental learning, the

consistency between the existing internal representation and a new sequence is unknown, so

it was not appropriate to overwrite the existing internal representation on each new sequence.

Their proposed model states that the parallel pathways from input to output are preserved as

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 75

possible, and the pathway which has emitted the wrong output is inhibited by the previously

�red pathway. Accordingly, the network begins to try other pathways ad hoc. This modeling

approach was based on the concept of the parallel pathways from input to output, instead of

the view of the brain as the integration of the state spaces. Their validation study indicates

that the extension of this approach to building a model of the higher functions such as decision

making.

A problem in the control of automata on in�nite strings was de�ned and analyzed by This-

tle and Wonham [176]. In order to investigate the development of a �xpoint characterization

of the controllability subset� of a deterministic rabin automaton, the set of states from which

the automaton can be controlled to the satisfaction of its own acceptance condition. Their

representation of �xpoint allows straightforward computation of the controllability subset and

the construction of a suitable state-feedback control for the automaton. Their results indi-

cates that the applications to control synthesis, automaton synthesis, and decision procedures

for logical satis�ability; in particular, they represent a direct, e�cient and natural solution

to Church problem, the construction of winning strategies for two-player zero-sum ω-regular

games of perfect information, and the emptiness problem for automata on in�nite trees.

A decentralized adaptive synchronization problem for a simple yet nontrivial discrete-

time stochastic model of network dynamics was investigated by Bin et al. [22], which also

illustrates a general framework for a class of adaptive control problems for complex systems

with uncertainties. They describe synchronization phenomena in noisy environments, several

new de�nitions of synchronization for stochastic systems are given and applied in our model.

In the framework proposed and proved that in four di�erent cases on local goals, including

deterministic tracking, center-oriented tracking, loose tracking, and tight tracking, under mild

conditions on noise sequence and communication limits, the agents in the considered model

can achieve global synchronization in sense of mean by using local estimators and controllers

based on a least-squares (LS) algorithm. Their results indicates that agents in a complex

system disturbed by noise with communication limits can autonomously achieve the global

goal of synchronization by using local LS-based adaptive controllers while they are pursuing

for their local goals.

In [152], Razvan and Herbert explained a simple working memory model in which all of

the performance modes are trained into a recurrent neural network (RNN) of the echo state

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 76

network (ESN) type. They demonstrated the model on a bracket level parsing task with a

stream of rich and noisy graphical script input. In terms of nonlinear dynamics, memory

states correspond, intuitively, to attractors in an input-driven system. These authors also

contributed to a rigorous formal framework to describe such attractors, generalizing from the

standard de�nition of attractors in autonomous (input-free) dynamical systems.

A model reduction technique for the class of discrete space and time hidden Markov models

was presented by Wu and Noe [202]. In order to e�ciently simulate and analyze large scale

stochastic models, which are very relevant in the �elds of computational biology, �nance,

social sciences, etc. Their method was illustrated on some model applications to preserve the

dynamical properties of the system.

Torkestani [177] designed an automata-based focused web crawler. Taking advantage of

learning automata, they proposed a crawler learns the most relevant URLs and the promising

paths leading to the target on-topic documents. It can e�ectively adapt its con�guration

to the Web dynamics. This crawler is expected to have a higher precision rate because

of construction a small Web graph of only on-topic documents. Based on the Martingale

theorem, the convergence of the proposed algorithm is proved. To show the performance

of the proposed crawler, extensive simulation experiments are conducted. Their indicated

results show the superiority of the proposed crawler over several existing methods in terms of

precision, recall, and running time. Their t-test is used to verify the statistical signi�cance of

the precision results of the proposed crawler.

In [168], Shibata and Yoshinaka presented several collapsed Bayesian methods, which work

by �rst marginalizing out transition probabilities, for inferring several kinds of probabilistic

�nite automata. Their methods include collapsed Gibbs sampling (CGS) and collapsed varia-

tional Bayes, as well as two new methods. Their targets range over general probabilistic �nite

automata, hidden Markov models, probabilistic deterministic �nite automata, and variable-

length grams. They implemented and compared these algorithms over the data sets from the

Probabilistic Automata Learning competition, which were generated by various types of au-

tomata. They reported that the CGS-based algorithm designed to target general probabilistic

�nite automata performed the best for any types of data.

Tracking problem for control systems using recurrent neural network was presented by

Michael et al. [125] and they demonstrated that a major di�culty in training any RNN is

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 77

the problem of exploding gradients and proposed a solution to this in the case of tracking

problems, by introducing a stabilization matrix and by using carefully constrained context

units. Their solution allows to achieve consistently lower training errors and hence allows us to

more easily introduce adaptive capabilities. The resulting RNN is one that has been trained

o�-line to be rapidly adaptive to changing plant conditions and changing tracking targets.

The case study they used is a renewable-energy generator application; that of producing an

e�cient controller for a three-phase grid-connected converter. The controller they produced

can cope with the random variation of system parameters and �uctuating grid voltages. It

produces tracking control with almost instantaneous response to changing reference states,

and virtually zero oscillation. This compares very favorably to the classical proportional

integrator (PI) controllers, which we show produce a much slower response and settling time.

Their RNN �nally exhibits better learning stability and convergence properties and can exhibit

faster adaptation, than has been achieved with adaptive critic designs.

Rest of the chapter is organized as follows: In the next section, we deal with the �nite

state automata and the knowledge representation using HMMs and the relation to the hybrid

architectures has been discussed. Finally, the experimental results on the implementation of

the gradient descent algorithm for hybrid HMMs-RNNs on automata theory, which is one of

the sample test bed used for this study has been presented with the concluding summary.

4.2 Finite-state automata and knowledge representa-

tion

In this section, we present an overview of the formal languages and the �nite state automata

representation, deterministic �nite state automata, �nite state machines related to the hidden

Markov model.

Symbollic or expert knowledge can be inserted into neural networks prior to training

for better training and generalization performance. It has been shown that deterministic

�nite-state automata can be directly encoded into recurrent neural networks prior to train-

ing. Initially, neural networks were viewed as black boxes as they could not explain the

knowledge learnt in the training process, i.e., it was believed to be di�cult to understand the

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 78

knowledge or its representation in the weights as part of the information processing in the

network. Knowledge extraction is the process of �nding the meaning of the internal weight

representation of the network.

For recurrent neural networks, knowledge can be extracted in the form of �nite-state

automata which gives insight into knowledge representation in recurrent neural networks.

Recurrent neural networks have been trained on deterministic �nite-state automata (DFA's)

and knowledge extraction methods have been applied to explore the knowledge representation

in the weights of the trained network.

Formal languages:

Formal languages are useful for studying recurrent neural networks for a number of reasons;

� There is no need for feature extraction,

� They allow us to study the knowledge representation in recurrent neural networks and

� The dynamics of many real world processes can be represented as �nite-state processes

at some level of abstraction [114]. Finite-state automata encoding, induction and extraction

has been studied extensively [45, 66, 119, 191].

Finite-state automata:

A �nite-state automata is a device that can be in one of a �nite number of states. Under certain

conditions, it can switch to another state; this is called a transition. When the automaton

starts processing input, it can be in one of its initial states. Some automata contain another

important subset of states: the �nal (or accepting) states. If an automaton is in a �nal state

after processing an input sequence, it is said to accept or reject its input according to the

output membership of the last state. We use �nite-state automata as test beds for training

recurrent neural networks. Presumably, strings used for training do not need to undergo

any feature extraction. They are used to show that recurrent neural networks can represent

dynamical systems.

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 79

Deterministic �nite-state automata:

A deterministic �nite-state automata (denoted by M) is de�ned as

M = (Q,Σ, δ, q0, F),

where

� Q is a �nite set of states;

� Σ is an input alphabet;

� q0 ∈ Q is the initial state;

� F ⊆ Q is the set of �nal states; and

� δ maps Q× Σ to Q.

M has a �nite control, an input tape, and a read head. In one move, M , in state q, reads

input symbol a, changes state to δ(q, a), and moves the read head one symbol to the right. If

M is in an accepting state when the read head moves o� the end of the tape, then M accepts

the input.

Figure 4.2.1: Example of a deterministic �nite state automata

In Figure 4.2.1, we present an example of deterministic �nite-state automata. Double

circles show accepting states. Rejecting states are shown by single circles.

The DFAs are widely used in text editors for pattern matching, in compilers for lexical

analysis, in web browsers for html parsing, and in operating systems for graphical user in-

terfaces. They also serve as the control unit in many physical systems including: vending

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 80

machines, elevators, automatic tra�c signals, and computer microprocessors. Also network

protocol stacks and old VCR clocks. They also play a key role in natural language processing

and machine learning.

A DFA captures the basic elements of an abstract machine: it reads in a string, and

depending on the input and the way the machine was designed, it outputs true or false. A

DFA is always is one of N states, which we name 0 through N−1. Each state is labeled true or

false. The DFA begins in a distinguished state called the start state. As the input characters

are read in one at a time, the DFA changes from one state to another in a pre-speci�ed way.

The new state is completely determined by the current state and the character just read in.

When the input is exhausted, the DFA outputs true or false according to the label of the state

it is currently in.

Finite state machines and hidden Markov models:

Since during 1990's to till date, �nite state automata (FSA) and hidden Markov models

(HMMs), have been used quite successfully to address several complex sequential pattern

recognition problems, such as speech recognition, handwritten recognition, time series predic-

tion, biological sequence analysis, and many others.

Finite State Automata allows complex learning problems to be solved by assuming that the

sequential pattern can be decomposed into piecewise stationary segments, encoded through the

topology of the FSA. Each stationary segment can be parametrized in terms of a deterministic

or stochastic function. In the latter case, it may also be possible that the SFSA state sequence

is not observed directly but is a probabilistic function of the underlying �nite state Markov

chain. This thus yields to the de�nition of the powerful HMMs, involving two concurrent

stochastic processes: the sequence of HMM states modeling the sequential structure of the

data, and a set of state output processes modeling the (local) stationary character of the data.

Let us assume that f be the transition function and g is the emission function. Any

automation is called a stochastic, when the transition and emission functions are probabilistic.

Regular Markov model, can be called as a stochastic automata when the the functions in the

model are probabilistic and deterministic.

From the view of automation theory, an HMM di�ers basically from two features, mainly,

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 81

when the state of the model is not observable and if it contains the probabilistic emission

function.

Informally speaking, an HMM is a variant of a �nite state machine. However, unlike �nite

state machines, they are not deterministic. A normal �nite state machine emits a deterministic

symbol in a given state. Further, it then deterministically transitions to another state. HMMs

do neither deterministically, rather they both transition and emit under a probabilistic model.

Usually, with a �nite state machine, a string of symbols can be given and it can be easily

determined

1. if the string could have been generated by the �nite state machine in the �rst place and

2. the sequence of state transitions it was undertaken.

From the view of automata theory, an HMM diverge basically from two features, mainly, the

state of the model is not observable and also if it has a probabilistic emission function. With

an HMM, (1) is replaced with a probability that the HMM generated the string and (2) is

replaced with nothing.

In general, the exact sequence of state transitions undertaken is hidden, hence the name.

A Markov model is a probabilistic process over a �nite set, S1, . . . , Sk, usually called its states

and each state-transition generates a character from the alphabet of the process.

In computing such processes, if they are reasonably complex and interesting, are usually

called Probabilistic Finite State Automata (PFSA) or Probabilistic Finite State Machines

(PFSM) because of their close links to deterministic and non-deterministic �nite state au-

tomata as used in formal language theory.

In a regular Markov model, the state is directly visible to the observer. Therefore, the

state transition probabilities are the only parameters. In an HMM, the state is not directly

visible; however, the variables in�uenced by the states are visible. Each state has a probability

distribution over the possible output tokens. The sequence of tokens generated by a HMM

gives some information about the sequence of states. In a �rst order HMM, the state at time

t+ 1 depends only on state at time t, regardless of the states in the previous times.

The term hidden hints at the process state transition sequence which is hidden from the

observer. The process reveals itself to the observer only through the generated observable

signal. A HMM is parameterized through a matrix of transition probabilities between states

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 82

and output probability distributions for observed signal frames given the internal process

state. Thus, other than a deterministic �nite state automata, where the state sequence, given

an input sequence, is uniquely determined, a HMM gives only a probability measure for a

state sequence matching a given input sequence.

We assume that for every time step t the system is in state w(t) and emits some visible

symbol v(t). We de�ne a particular sequence of visible states as and thus we have . The

model is the that in any state we have a probability of emitting a particular visible state

v(t) = {v(1), v(2), ...v(T)}. We denote this probability P = bjk. Since we only have access to

the visible states, while the are unobservable. The model is called an HMM as shown in the

Figure 4.2.2.

Figure 4.2.2: Hidden Markov model with emitting states

In Figure 4.2.2, we present an hidden Markov model. It represents three hidden units in

a HMM and transitions between thenm are shown in solid lines. The visible states and the

emission probabilities of visible states are shown with dashed lines. This model shows that

all transitions are possible. In other HMMs, some candidate transitions are not allowed.

The following are some drawbacks of the HMM proposed by [28]:

� The training algorithm which maximizes the likelihoods instead of posteriori probabil-

ities is mainly due to the poor discrimination.

� A priori choice of model topology and statistical distributions, e.g., assuming that

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 83

the probability density functions associated with the HMM state can be described as

multivariate gaussian densities, each with a diagonal-only covariance matrix.

� First-order Markov chains assumption is the state sequences.

� Assumption that the input observations are not correlated over time. Thus, apart

through the HMM topology, the possible temporal correlation across features associated

with the same HMM state is simply disregarded.

In order to overcome some of these problems, many researchers have concentrated on

integrating Arti�cial Neural Networks into the HMMs.

Stochastic �nite state automata based on RNN:

The idea of combining HMMs and RNNs was motivated by the observation that HMMs and

RNNs had complementary properties:

� HMMs are clearly dynamic and very well suited to sequential data, but several assump-

tions limit their generality,

� RNNs can approximate any kind of nonlinear discriminant functions, are very �exible

and do not need strong assumptions about the distribution of the input data,

but they cannot properly handle time sequences (although recurrent neural networks can

indeed handle time, they are known to be di�cult to train long term dependencies, and

cannot easily incorporate knowledge in their structure as it is the case for HMMs).

Hybrid HMM-RNN Systems in terms of formalism:

The HMMs are based on a strict probabilistic formalism, making them di�cult to interface

with other modules in a heterogeneous system.

When using these posterior probabilities (instead of local likelihoods) in stochastic FSA,

the model becomes a recognition model, where the observation sequence is an input to the

system, and where all local and global measures are based on a posteriori probabilities.

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 84

These hybrid HMM-RNN approaches provide more discriminant estimates of the emission

probabilities needed for HMMs, without requiring strong hypotheses about the statistical

distribution of the data.

In the next section, we present the implementation of developed learning algorithm of hy-

brid HMM-RNN architecture on sample test beds and �nally we concluded with the summary

followed by a brief idea of the next chapter.

4.3 Experimental results

In the current study, we investigate to show how �nite automaton can be used to train recur-

rent neural networks making them suitable for modeling dynamical systems. We will train

�rst-order recurrent neural networks on deterministic �nite-state automata to show their

knowledge acquisition. Finally, we will show how our proposed hybrid recurrent neural net-

works architecture based on hidden Markov models can train and represent �nite automaton

making them suitable for modeling dynamical systems.

Recurrent neural networks as models of computation:

Finite state automata and their corresponding languages can be viewed as a general paradigm

of temporal, symbolic language. There is no feature extraction necessary for recurrent neu-

ral networks to learn these languages. The knowledge acquired in recurrent neural networks

through learning well corresponds with the dynamics of �nite-state automata. The repre-

sentation of automata as a prerequisite for learning its corresponding languages, i.e., if the

architecture cannot represent a particular automaton then it would not be able to learn it

either. It has been shown that recurrent networks can represent certain automaton and au-

tomaton can be mapped directly into recurrent networks.

Recurrent neural networks are systems that model dynamical processes. Formal languages

such as �nite state automata have characteristics of dynamical systems. Using �nite state

automata we can show that recurrent neural networks can learn and represent dynamical

systems. Recurrent neural networks can be trained with strings whose labels are assigned by

deterministic �nite state automata.

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 85

We generate the training data set by presenting string length of 1 to 10 to correspond-

ing �nite automaton which labels the output with each corresponding string. Similarly, we

generate a testing data set for string lengths from 1 to length 15. In time varying sequences,

longer patterns represent long time dependencies. Gradient descent has di�culties in learning

long time dependencies as error gradient vanishes with increasing duration of dependencies.

Incremental data learning addresses this problem by learning through working sets of the

complete training set patterns of increasing lengths. In this way, short time dependencies are

learnt �rst which then helps the network to learn longer time dependencies. A working set

contains patterns of increasing order of lengths. The networks trains on each working set of a

number of training epochs until the network converges. The training is terminated when the

network performs satisfactorily on the entire training set or iterates through all working sets

of the training set.

In Figure 4.3.1, we present a ten state deterministic �nite sate automata which is used for

training the hybrid recurrent network architecture interpreted by hidden Markov models.

Figure 4.3.1: Ten state deterministic �nite state automata

An example of 10 State deterministic �nite state automata is presented in Figure 4.3.1.

Double circles show accepting states. Rejecting states are shown by single circles while state

1 is the automaton start state. The training and testing set is obtained upon presentation of

strings to this automaton which gives an output, i.e., a rejecting or accepting state depending

on the state where the last sequence of the string was presented. For example, the output of

a string of length 10, i.e., aaaabaaaba in alphabet {0,1} is state 7. It is an accepting state,

therefore the output is 1.

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 86

Deterministic �nite-state automata training:

To show the e�ectiveness and e�ciency of the proposed algorithm of the hybrid architecture,

the following tests were performed.

We generate the training data set by presenting string length of 1 to 10 to a deterministic

�nite automaton. The deterministic �nite automaton labels the output on each string it takes

as input depending on the state where the �nal symbol of the string was presented. Similarly,

we generate a testing data set for string lengths from 1 to length 15. We obtain a training

data set with 2048 string samples and a testing data set of 65535 strings.

We used the �rst order recurrent neural networks architecture with the following topology:

2 neurons in the input layer which represents the string input and 1 neuron in the output

layer representing the string output. We used a learning rate value of 0.3, momentum rate

value of 0.9, sigmoid sensitivity rate of 11.5 and ran experiment with 5, 10 and 15 neurons in

the hidden layer along with the hidden Markov model Parameters (No. of observations = 10,

No. of observation symbols = 2, No. of States = 3).

While deriving the equations for Hybrid HMM-RNN architecture, we �nally ended up with

the initial values, weights and observation probabilities of the network. We initially started

with a training cycle which contained 2 and 3 samples in a working set of increasing string

lengths and ran the experiment up to 50 cycles and started training again with the same set of

weights that were obtained from training in the previous cycle and continued till 100 cycles.

The network trains on each working set on a number of training cycles until it converges

to a solution. The training is terminated when the network performs satisfactorily on the

entire training set or iterates through all working sets of the training set. We calculated the

training and generalization performances of the data ie., it has correctly classi�ed/learned all

the strings in the training and testing sets. The network is presented with data in the testing

set and the performance of the networks is determined upon its generalization on the test

data. The Table 4.3.1 shows the HMM parameters which are used for processing the hybrid

HMM-RNN architecture, and tables 4.3.2 and 4.3.3 show the results obtained for single order

RNN and Hybrid HMM-RNN. Here, we carried out two experiments

� Case 1: Simple DFA learning using RNN, and

� Case 2: Hybrid HMM-RNN architecture implementation of DFA.

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 87

In the �rst case, the training and generalization performances were quite good and achieved

an average of 85 percent performance using simple RNNs, i.e., It has been shown that it

correctly classi�es all the strings in the training set which means the total number of accepted

and rejected strings in the training and the testing sets and in the second case ie., using the

Hybrid HMM-RNN architecture, initially we got zero performance with -1 to 1 and -3 to 3

weight ranges and when we increase the number of hidden units from 5, 10, 15 and weight

ranges between -5 to 5, -7 to 7 we got an average of 83 percent on the performances.

Learning Deterministic Finite Automaton:

The tables 4.3.2 and 4.3.3 shows the training and generalization performances of single order

RNN and hybrid HMM-RNN architecture with di�erent number of neurons in the input and

hidden layers, weight ranges and number of training cycles for learning deterministic �nite

state automaton.

Table 4.3.1: Hidden Markov model parameters

Number of States Number of Observations Number of Observation Symbols
3 10 2

Table 4.3.2: Single order recurrent neural network

Input Hidden Training Training Testing Generalization
Neurons Neurons Cycles MSE MSE MSE

3 5 50 0.194652 92.9169 87.9641
3 5 101 0.177034 78.9566 70.6649
3 5 500 0.150888 85.9326 82.0357
5 10 1000 0.0822267 83.0292 81.4205
5 10 1500 0.0886557 72.4865 71.4137
5 10 2000 0.0854211 60.1392 50.3495
10 15 2500 0.0787231 79.2631 74.1746
10 15 5000 0.184652 68.5339 64.9201

Finally, in order to reveal that the hybrid recurrent neural network has good recogni-

tion/classi�cation and generalization performance to solve the �rst order and hybrid HMM-

RNN problems, the results show that recurrent neural networks can learn deterministic �nite

CHAPTER 4. SAMPLE TEST BEDS AND IMPLEMENTATION RESULTS 88

Table 4.3.3: Learning deterministic �nite state automation using hybrid HMM-RNN

Hidden Weight Training Training Generalization
Neurons Range Cycles Performance Performance

1 -1 to +1 100 0% 0%
3 -3 to +3 100 0% 0%
5 -5 to +5 53 84.5% 79.3%
10 -7 to +7 31 82.2% 81.3%
15 -15 to +15 9 0% 0%

state automata by means of gradient descent learning. They show good training and general-

ization performance compared to other models and it is also seen that the number of training

epochs in the last cycle vary for di�erent neural networks topologies depending on the number

of neurons in the hidden layer.

4.4 Summary

In this chapter, we have discussed �nite automata which have been the basis of studying

knowledge representation of recurrent neural networks. Finite State Automata can be char-

acterized as deterministic, fuzzy or probabilistic automata.

The constructed and proposed hybrid HMM-RNN architecture shown that they can train

and represent dynamical systems such as deterministic �nite automaton. Our results in gen-

eral show that �nite automaton can be trained and represented by recurrent neural networks

and hybrid recurrent networks based on hidden Markov models.

In the next chapter, we present the implementation of hybrid HMM-RNN algorithm on a

real world application like Enzyme Classi�cation.

Chapter 5

Real time application - Enzyme

classi�cation

In this chapter, we present the implementation details of the hybrid HMM-RNN algorithm

for a real time application in the �eld of biological sciences. The relevant research �ndings

have been presented in the �eld of bioinformatics, molecular biology and genomics; we give

an overview about the central design of molecular biology, protein classi�cation and enzyme

classi�cation. Finally, we present the results of enzyme classi�cation using our hybrid HMM-

RNN architecture.

5.1 Introduction

Generally, the biological applications consist of huge amount of data to be processed. These

data are analyzed to improve the performance of the existing systems using di�erent types of

algorithms that are based on the classical theory of hidden Markov models. In this thesis, we

are interested to apply hybrid HMM-RNN algorithm. Before we proceed further, we wish to

emphasize that the hybrid HMM-RNN architecture can be applied to the following biological

applications:

� Biological sequence analysis,

� Prediction of protein structures,

89

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 90

� Clustering of sequences,

� Pattern classi�cations,

� Enzyme classi�cations, etc.

The Hybrid HMM-RNN algorithm can also be used in the following real time environments,

i.e., Bioinformatics, Biometrics, Speech recognition, Time series analysis, Robotics, Data

mining, etc..

As far as the biological applications are concerned, during the course of our study, we have

explored the use of hybrid HMM-RNN architecture to model the proteins. We have compared

the performances with a single HMM architecture with and without using a prior knowledge.

Those results are partial and we are still working on optimizing them.

Another application of our hybrid architecture that we have explored is a real time protein

sequence analysis, namely, enzyme classi�cation in bioinformatics. We obtained successful

results which we present in detail in this chapter.

Before we proceed further, we present a recent research �ndings on enzyme classi�cation

in the �eld of ANNs, RNNs, HMMs that are relevant to this study.

A model developed for predicting the function of a protein from its amino-acid sequence

was presented by Des et al. [52]. Given features that can be computed from the amino-

acid sequence in a straightforward fashion (such as pI, molecular weight, and amino-acid

composition), the technique allows us to answer questions such as: Is the protein an enzyme?

If so, in which Enzyme Commission (EC) class does it belong? Their proposed approach uses

machine learning (ML) techniques to induce classi�ers that predict the EC class of an enzyme

from features extracted from its primary sequence. These authors explored the following

experiments with the use of three di�erent ML techniques in conjunction with training datasets

derived from PDB and from Swiss-Prot. They also demonstrated the use of several di�erent

feature sets. Their method predicts the �rst EC number of an enzyme with 74% accuracy

(thereby assigning the enzyme to one of six broad categories of enzyme function), and to

predict the second EC number of an enzyme with 68% accuracy (thereby assigning the enzyme

to one of 57 subcategories of enzyme function). Their validation results indicates that the

proposed technique could be a valuable complement to sequence-similarity searches and to

pathway-analysis methods.

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 91

A method to predict an enzyme class that combines the strengths of statistical and data

mining methods was presented by Luiz et al. [27]. Predicting enzyme class from protein

structure parameters is a challenging problem in protein analysis. Their proposed method

has a strong mathematical foundation and is simple to implement, achieving an accuracy of

45%. Their validation results demonstrated an excellent performance after comparing with

the methods found in the literature designed to predict enzyme classes indicates that their

method outperforms the existing methods.

The hybrid model proposed and tested by Osman et al. [137] applied to di�erent topolo-

gies of network architecture, especially in determining the number of hidden nodes. These

authors indicated that the proposed model results are quite promising in classifying the en-

zymes from the nucleic acid and protein sequences which are taken from protein data bank.

Protein sequence classi�cation deals with the assignment of sequences to known categories

based on homology detection properties developed using multilayer perceptron with the ge-

netic algorithm and backpropagation. Their research results demonstrated that the proposed

hybrid model which was tested with di�erent topologies of network architecture, especially

in determining the number of hidden nodes are quite promising in classifying the enzyme

accordingly.

Ali and Shawky [3] built a new hybrid model for protein classi�cation using Fourier trans-

form method. Proteins that are evolutionarily and thereby functionally related are said to

belong to the same classi�cation. Identifying protein classi�cation is of fundamental impor-

tance to document the diversity of the known protein universe. It also provides a means to

determine the functional roles of newly discovered protein sequences. Their goal is to predict

the functional classi�cation of novel protein sequences based on a set of features extracted

from each protein sequence and they proposed the technique that used datasets extracted

from the structural classi�cation of proteins (SCOP) database. A set of spectral domain fea-

tures based on Fast Fourier Transform (FFT) was used. These authors proposed a classi�er

which uses multi-layer back propagation (MLBP) neural network for protein classi�cation.

The maximum classi�cation accuracy is about 91% when applying the classi�er to the full

four levels of the SCOP database. However, it reaches a maximum of 96% when limiting

the classi�cation to the family level. Their research results reveals that the classi�cation re-

sults that spectral domain contains information that can be used for classi�cation with high

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 92

accuracy. In addition, the results emphasize that sequence similarity measures are of great

importance especially at the family level.

Automatic classi�cation of proteins using machine learning was given by Zimek et al. [208]

is an important problem that has received signi�cant attention in the literature. One feature

of this problem is that expert-de�ned hierarchies of protein classes exist and can potentially

be exploited to improve classi�cation performance. They investigated empirically whether

this is the case for two such hierarchies and they compare multi-class classi�cation techniques

that exploit the information in those class hierarchies and those that do not, using logistic

regression, decision trees, bagged decision trees, and support vector machines as the underlying

base learners. In particular, they compare hierarchical and �at variants of ensembles of

nested dichotomies. The latter have been shown to deliver strong classi�cation performance

in multi-class settings. They demonstrated the results for synthetic, fold recognition, enzyme

classi�cation, and remote homology detection data. Their results indicates that exploiting

the class hierarchy improves performance on the synthetic data, but not in the case of the

protein classi�cation problems. The strong �at multi-class methods be used as a baseline to

establish the bene�t of exploiting class hierarchies in this area.

A methodology based on Arti�cial Neural Networks for protein functional classi�cation

was given by Thiago et al. [51]. A new protein coding scheme, called here Extended-Sequence

coding by Sliding Windows, is presented with the goal of overcoming some of the di�culties

of the well method sequence coding by Sliding Window. The new protein coding scheme uses

more than one sliding window length with a weight factor that is proportional to the window

length, avoiding the ambiguity problem without ignoring the identity of small subsequences

Accuracy for Sequence Coding by Sliding Windows ranged from 60.1 to 77.7 percent for the

�rst bacterium protein set and from 61.9 to 76.7 percent for the second one, whereas the

accuracy for the proposed Extended-Sequence Coding by Sliding Windows scheme ranged

from 70.7 to 97.1 percent for the �rst bacterium protein set and from 61.1 to 93.3 percent

for the second one. Additionally, they also classi�ed the protein sequences inconsistently

by the Arti�cial Neural Networks that were analyzed by CD-Search revealing that there are

some disagreement in public repositories, calling the attention for the relevant issue of error

propagation in annotated databases due the incorrect transferred annotations.

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 93

In [128], Mohammed and Guda proposed an enzyme classes using di�erent computational

methods and can be used to annotate the enormous amount of unannotated enzyme sequences.

For function prediction and classi�cation of enzymes, features based on amino acid composi-

tion, sequence and structural properties, domain composition and speci�c peptide information

have been widely used by di�erent computational approaches. The total predicted accuracy

in each feature space has its own merits and limitation. Prediction accuracy improves when

machine-learning methods are used to classify enzymes. Given the incomplete and unbal-

anced nature of annotations in biological databases, ensemble methods or methods that bank

on a combination of orthogonal feature are more desirable for achieving higher accuracy and

coverage in enzyme classi�cation.

The comparison of enzyme mechanistic descriptors derived from the MACiE (Mechanism,

Annotation and Classi�cation in Enzymes) database and use multivariate statistical analysis

for assessment of enzyme classi�cation was proposed by Neetika et al. [135]. As the volume

of available information is increasing, a large number of informatics groups have tried to use

protein sequence and structural information to understand and reproduce the classi�cations.

They developed a computational protocol using the R package CARET to predict EC num-

ber from MACiE-derived descriptors. They evaluated 260 well annotated chemical reaction

mechanisms of enzymes using machine learning methods, placing them into the six top level

EC classes. Finally, they compared the classi�cation performances of three supervised learn-

ing techniques, Support Vector Machine, Random Forest, and K-Nearest, for the reaction

mechanism classi�cation task using �ve di�erent descriptor sets from MACiE data. Results:

They �nally found that all classi�ers performed similarly in terms of overall accuracy with

the exception of K-Nearest Neighbour analysis, which has the lowest performance. The best

performance was achieved by the Random Forest classi�er.

A method that distinguishes protein enzyme sequences from those of non-enzymes was

given by Chetan et al. [40]. These authors presented the approaches that cluster enzymes

based on their sequence and structural similarity have been identi�ed. But, these approaches

are known to fail for proteins that perform the same function and are dissimilar in their

sequence and structure. A supervised machine learning model to predict the function class

and sub-class of enzymes based on a set of 73 sequence-derived features has been modelled.

The functional classes are as de�ned by International Union of Biochemistry and Molecular

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 94

Biology. Using an e�cient data mining algorithm called random forest, They constructed

a top-down three layer model where the top layer classi�es a query protein sequence as an

enzyme or non-enzyme, the second layer predicts the main function class and bottom layer

further predicts the sub-function class. Their model reported overall classi�cation accuracy of

94.87% for the �rst level, 87.7% for the second, and 84.25% for the bottom level. Their valid

research results compare very well with existing methods, and in many cases report better

performance. Using feature selection methods, they have shown the biological relevance of a

few of the top rank attributes.

A novel ab initio predictor of protein enzymatic class was presented by Viola et al. [187].

This predictor can classify proteins, solely based on their sequences, into one of six classes

extracted from the enzyme commission (EC) classi�cation scheme and is trained on a large,

curated database of over 6,000 non-redundant proteins assembled in this work. These authors

developed �The predictor� which is powered by an ensemble of N-to-1 Neural Network, a

novel architecture which N-to-1 Neural Networks operate on the full sequence and not on

prede�ned features. All motifs of a prede�ned length (31 residues in this work) are considered

and are compressed by an N-to-1 Neural Network into a feature vector which is automatically

determined during training. Their validated results indicates that the predictor in 10-fold

cross-validation and obtain state of the art results, with a 96% correct classi�cation and 86%

generalized correlation. All six classes are predicted with a speci�city of at least 80% and false

positive rates never exceeding 7%. They are still investigating the enhanced input encoding

schemes which include structural information, and are analyzing trained networks to mine

motifs that are most informative for the prediction.

The rest of this chapter is organized as follows. In Section 5.2 we present the design of

molecular biology, hidden Markov models and neural networks in the �eld of bioinformatics.

Section 5.3 deals with the application of protein and enzyme classi�cations. The results and

relevant discussions are provided in Section 5.4. Finally, in Section 5.5, we provide a brief

summary of the work presented in this chapter.

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 95

5.2 Central design of Molecular Biology

In this section, we present an overview of molecular biology, in particular, about its compo-

nents, such as DNA, RNA, proteins, pro�le HMMs, protein classi�cation, etc..

Proteins are composed of amino acids connected by peptide bonds. The primary structure

of proteins is regarded as the linear sequence of amino acids in a polypeptide chain. Proteins

can be grouped into families and these families into superfamilies according to features such as

hydrophobicity, composition, structure, length, three-dimensional shape, and electric charge

(eg isoelectric point) [116] with the objective of establishing the common biological functions.

The amino acid sequence of a protein ultimately determines its function. Proteins usually

have segments in their sequence of amino acids known as motifs [9] that are crucial for their

biological functions, and that can be used for their identi�cation. There are 20 di�erent types

of amino acids presented in Table 5.3.1 that are combined in a linear sequence, which has the

necessary information to generate a unique three-dimensional structure. Theoretically, the

number of possible combinations of amino acids is in�nite [116]. Amino acids, in turn, vary

in the side chain. The physical and chemical properties of the side chains of the amino acids

of a protein (for instance, the fact that some of them have a�nity with water) are important

for the folding of the protein and its function. Like the proteins that make, amino acids can

be classi�ed in several ways, such as by electric charge, molecular weight and hydrophobicity.

Kyte and Doolittle [111] proposed a hydrophobicity scale for all 20 amino acids ranging from

4.0 (most hydrophilic) to +4.5 (most hydrophobic). This scale is shown in Table 5.3.1, where

it can be seen that amino acids can be also categorized as hydrophobic, neutral or hydrophilic.

DNA - Deoxyribonucleic acid:

Figure 5.2.1: Example of a typical DNA molecule

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 96

In humans, as in other higher organisms, a DNA molecule consists of two strands that

wrap around each other to resemble a twisted ladder whose sides, made of sugar and phosphate

molecules, are connected by rungs of nitrogen containing chemicals called bases. Four di�erent

bases are present in DNA: adenine (A), thymine (T), cytosine (C), and guanine (G). The

particular order of the bases arranged along the sugar- phosphate backbone is called the

DNA sequence; the sequence speci�es the exact genetic instructions required to create a

particular organism with its own unique traits. The two DNA strands are held together

by weak bonds between the bases on each strand, forming base pairs (bp). Genome size is

usually stated as the total number of base-pairs; the human genome contains roughly 3 billion

base-pairs. A gene is a segment of a DNA molecule (ranging from fewer than 1 thousand

bases to several million), located in a particular position on a speci�c chromosome, whose

base sequence contains the information necessary for protein synthesis.

RNA:

RNA has the same structure as DNA. The primary di�erences between RNA and DNA are:

RNA has a hydroxyl group on the second carbon of the sugar and instead of using nucleotide

thymine, RNA uses another nucleotide called uracil (U). Since RNA has extra hydroxyl group

on it's sugar strand, RNA is too bulky to form a stable double helix therefore it exists as a

single-stranded molecule. In addition to that, because the RNA molecule is not restricted to

a rigid double helix, it can form many di�erent structures. There are several di�erent kinds

of RNA made by the cell. They are mRNA, tRNA, rRNA and snRNA.

PROTEIN's:

Proteins are involved in almost all biological activities, structural or enzymatic. A protein is

made by arranging amino acids together in a speci�c sequence (the sequence of every protein

is di�erent). These amino acids are held together by a special bond called a peptide bond.

There are altogether 20 di�erent amino acids.

How does the sequence of a strand of DNA correspond to the amino acid sequence of a

protein? This concept is explained by the central theme of molecular biology, according to

which:

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 97

� The DNA replicates its information in a process called replication that involves many

enzymes.

� The DNA codes for the production of messenger RNA (mRNA) during transcription.

In eukaryotic cells, the mRNA is processed (essentially by splicing) and migrates from

the nucleus to the cytoplasm.

� Messenger RNA carries coded information to ribosomes. The ribosomes "read" this

information and use it for protein synthesis. This process is called translation

The above can be viewed better through Figure 5.2.2.

Figure 5.2.2: Hybrid HMM-RNN architecture

Hidden Markov model's in bioinformatics:

Hidden Markov model contains the following:

� Π-vector : contains the probability of the hidden model being in a particular hidden

state at time t = 1;

� state transition matrix : holding the probability of a hidden state given the previous

hidden state;

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 98

� output matrix : containing the probability of observing a particular observable state

given that the hidden model is in a particular hidden state.

Thus a hidden Markov model is a standard Markov process augmented by a set of observ-

able states, and some probabilistic relations between them and the hidden states.

Pro�le HMMs:

Protein structural similarities make it possible to create a statistical model of a protein family

which is called a pro�le. The idea is, given a single amino acid target sequence of unknown

structure, we want to infer the structure of the resulting protein. The pro�le HMM is built

by analyzing the distribution of amino-acids in a training set of related proteins. This HMM

in a natural way can model positional dependent gap penalties.

Figure 5.2.3: Topology of a pro�le HMMs

The basic topology of a pro�le HMM is shown in Figure 5.2.3. Each position, or module,

in the model has three states. A state shown as a rectangular box is a match state that models

the distribution of letters in the corresponding column of an alignment. A state shown by

a diamond-shaped box models insertions of random letters between two alignment positions,

and a state shown by a circle models a deletion, corresponding to a gap in an alignment.

States of neighboring positions are connected, as shown by lines. For each of these lines there

is an associated `transition probability', which is the probability of going from one state to

the other.

The match state represents a consensus amino acid for this position in the protein family.

The delete state is a non-emitting state, and represents skipping this consensus position in the

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 99

multiple alignment. Finally, the insert state models the insertion of any number of residues

after this consensus position.

A repository of protein pro�le HMMs can be found in the PFAM Database (see, e.g.,

http://pfam.wustl.edu). Building pro�les from a family of proteins (or DNA) a pro�le HMM

can be made for searching a database for other members of the family. Pro�le HMMs can

also be used for the following:

� Scoring a sequence: We are calculating the probability of a sequence given a pro�le by

simply multiplying emission and transition probabilities along the path.

� Classifying sequences in a database: Given a HMM for a protein family and some

unknown sequences, we are trying to �nd a path through the model where the new

sequence �ts in or we are tying to align the sequence to the model. Alignment to the

model is an assignment of states to each residue in the sequence. There are many such

alignments and the Viterbi algorithm is used to give the probability of the sequence for

that alignment.

� Creating multiple sequence alignment: HMMs can be used to automatically create a

multiple alignment from a group of unaligned sequences. By taking a close look at

the alignment, we can see the history of evolution. One great advantage of HMMs is

that they can be estimated from sequences, without having to align the sequences �rst.

The sequences used to estimate or train the model are called the training sequences,

and any reserved sequences used to evaluate the model are called the test sequences.

The model estimation is done with the forward-backward algorithm, also known as the

Baum-Welch algorithm. It is an iterative algorithm that maximizes the likelihood of

the training sequences.

Protein Classi�cation:

Protein sequence classi�cation is one of the challenging and crucial problems of computational

biology. The problem is to determine whether or not an unknown protein sequence belongs

to a known set of class or family. If a new protein sequence belongs to a given class, it is

presumed that it shares similar functions and structural characteristics. In several studies,

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 100

protein classi�cation problem has been examined at various levels, according to a top hierarchy

in molecular taxonomy, consisting of superfamilies, families and subfamilies [9].

Although, as yet, there is not consensus about protein classi�cation, several properties

can be used for this purpose, such as composition, number of side chains, 3-D folding shapes

or biological function [116]. Another classi�cation of protein database for the investigation of

sequences and structures was proposed, in which the Murzin et al. [133] presented a model

based on the protein domain. Many computational techniques have been used to classify

proteins into families, such as structural transformations [136], data compression [41], genetic

programming [108] and Markov chains [57]. They have demonstrated limited applicability

and results. However, few studies published in the recent literature have applied Neural

Networks to protein classi�cation. This approach has gained some attention in the analysis

of molecular sequences. For instance, in Wang et al. [190] proposed a new technique to

extract data from proteins with a Bayesian Neural Network for classi�cation. Wu et al. [201]

explored the informative segments of sequences and used a three-layer Neural Network with

a backpropagation algorithm for classi�cation.

There are several approaches have been developed for solving protein classi�cation. Most

of them are based on appropriately modeling proteins families, either directly or indirectly [41].

Direct modeling technique means that by using a set of sequences namely training pattern, a

model that characterizes the family of interest is built. The tool named HMMER using HMM

employs a machine learning algorithm based on probabilistic graphical models to describe

time-series and sequence data [57]. HMM is a generalization of the position-speci�c scoring

matrix to include insertion and deletion states. HMM aligns an unknown sequence, to a given

family if the scoring point is more signi�cant than a cut-o� value. Indirectly the techniques

use a preprocessing tool to extract signi�cant feature from sequences. In this way, sequences

of variable length are transformed into �xed-length input vectors that are subsequently used

for training discriminative models, such as neural networks [57].

Enzymes are proteins that catalyze (i.e., accelerate) chemical reactions [134]. There are

generally globular proteins which play a big role in determining the next steps that will occur

in metabolic pathway inside living organisms. Without enzymes, metabolism would neither

progress through the same steps, nor be fast enough to serve the needs of the cell.

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 101

Protein Structure:

A striking characteristic of proteins is that they have very well de�ned 3-D structures. A

stretched-out polypeptide chain has no biological activity, and protein function arises from

the conformation of the protein, which is the 3-D arrangement or shape of the molecules in

the protein. The native conformation of a protein is determined by a number of factors, and

the most important are the four levels of structure found in proteins. Primary, secondary

and tertiary refer to the molecules in a single polypeptide chain, and the fourth (quaternary)

refers to the interaction of several polypeptide chains to form a multi-chained protein.

Sequence encoding:

There are many protein databases available in open source websites, such as Protein Infor-

mation Resources (PIR), SCOP, Swiss Prot, Protein Data Bank (PDB). In our work, the

training-testing datasets are collected from PDB (http://www.rcsb.org/pdb). The Figure

5.2.4 represents an enzyme coded by 131 amino acids named Steroid Delta-isomerase which

belongs to Isomerases family.

Figure 5.2.4: Tested sequence - Isomerase

For protein classi�cation, two types of extracting feature from sequence are conducted: one

is related to the global structure, and the other is related to the local similarity of sequence.

Global feature is usually made by using 2-gram encoding scheme that count occurrence of two

consecutive amino acids in protein sequence [26].

Enzymes are composed by a variable number of amino acids. We focus on encoding

directly primary structure of protein, in string of letters forms into a numerical vector that

appropriate for RNNs. The main idea of encoding procedure is by using Kyte and Doolittle

hydrophobicity scale as seen in Table 5.3.1 to convert a string of amino acids symbol into

real-valued vector.

RNNs are a neurobiological inspired systems that emulates the functioning of the brain,

based on the way we believe that neurons work, because they are recognized as the cellular

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 102

elements responsible for the brain information processing [122]. In more practical terms, RNNs

are non-linear statistical data modelling tools. RNNs are particularly suitable to solve problem

in such applications like time series prediction, pattern and sequence recognition/classi�cation,

etc.

In this work, we develop an enzyme classi�cation system based on a hybrid HMM-RNN

gradient descent algorithm using real time recurrent learning of recurrent neural networks. We

shall call the system as HMM-RNN-EC which stands for Hidden Markov Model - Recurrent

Neural Network for Enzyme Classi�cation. Some testings were undertaken to determine the

training and generalization performance of the system.

Once the encoding scheme is de�ned, the next step is the construction of the RNN system

for classi�cation. In this work, we consider that there can be n di�erent classes (numbers

of families of enzymes), and in each class there can be m cases (number of enzymes). The

length of a given sequence Sij is de�ned as Sij (i = 1, . . . , n; j = 1, . . . ,m). For the sake of

simpli�cation, we considered that all classes in the training set have the same m. But, in the

testing set this was not necessary.

The hybrid algorithm can be applied into the following �elds of bioinformatics: DNA

sequencing, Sequence alignment, Sequence analysis, Protein structure, family prediction and

so on.

Initially, we work on a sequence similarity problem of bio-informatics application. In

particular, we aimed to �nd a closely related pattern by giving a particular sequence in a

database. We have also explored the HMMER3 and PFAM softwares that identi�es the

pattern for a particular given sequence in its own generalized in-built databases, for example,

the sequences in Humans, Rats, Plants, etc. We also compared the performances of HMMER3,

PFAM and Hybrid HMM-RNN.

To search the sequences, there are two methods. The �rst method is to �nd the closely

related patterns in Map20 Sequence �le, i.e., we give one total sequence to �nd in map20 data

set which consists of six sequences. The second method involves the use of the derived hybrid

HMM-RNN algorithm. We search for closely related given pattern in a particular sequence

training set.

We found the following results using PFAM HMMER:

Using the sequence

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 103

MTKVEPLKERAHDKTKAATTKNITKAPAKENKKPLEFKLHSGERAVKRAMFNYSVATNYY

IQKLQKKQEERLQKMIEEEEIRMLRKEMVPKAQLMPFFDRPFLPQRSSRPLTMPKEPSFG

NVNSTCWTCVFNNQHYLYHINHAHA

in Pfam and looking for protein search, we identi�ed the following patterns:

query/39-95 LHSGERAVKRAMFNYSVATNYYIQKLQKKQEERLQK-MIEEEEIRMLRKEM--VPKAQLM

Q9SJ62_ARATH/248-304 FRLEERAEKRKEFYMKLEEKIHAKEVEKTNLQAKSK-ESQEEEIKRLRKSL--TFKAGPM

Q94C48_ARATH/209-265 FKCDQRAEKRKEFYVKLEEKTHAKEEEINSMQAKSK-ETQEAELRMLRKSL--NFKATPM

Q9SSK3_ARATH/269-325 FKCSERAEKRKEFYMKLEEKIHAKKTETNQVQAKTQ-QKAEAEIKQFRKSL--NFKATPM

Q8LES4_ARATH/167-223 FSSTSRLERRREFYQKLEEKQKALEAEKRENEKRLK-EEQEAVTKQLRKNM--AYKANPV

Q9LS82_ARATH/232-288 FRSTERAEKRKEFYTKLEEKHQAMEAEKTQSEARNK-EATEAALRQLRKSL--RFKANPM

Q8LAB8_ARATH/129-185 FRSAQRAEKRKEYYQKLEEKNQALEAERNELEQRQK-DEQEAALKQLRKNL--KFKAKPV

Q9LU87_ARATH/427-485 FRSDERAEKRKEFFKKVEEKNKKEKEDKFSCGFKAN-QNTNLASEEHKNPQVGGFQVTPM

Q9I8N0_XENLA/630-686 LATAKRAKERQEFDKCLAETEAQKSLLEEEIRKRR-EEEEKEEISQLRQEL--VHKAKPI

Q8BTJ3_MOUSE/661-717 LATERRAKERQELEKKMAEVEAWKLQQLEEVRQQEE-EQQKEELARLRKEL--VHKANPI

Q9LF31_ARATH/386-439 LHSDVRAVERAEFDYQVAEKMSFIEQYKMERERQQK----EEEIRRLRKEL--VPKAQPM

Q9FKW1_ARATH/210-266 LHVDHRPIERADFDHKIKEKEMMYKRHLEEAEAAKM-VEEERALKQLRRTI--VPQTRPV.

Using our proposed hybrid HMM-RNN architecture, we obtained some results. We brie�y

describe the outcomes as follows:

The hybrid HMM-RNN architecture has been trained to test and predict the closely related

sequences of a given pattern in a particular sequences of the training set. The results were

reasonably �ne. Then we worked on enzyme classi�cation. The performance of the classi�ed

hybrid HMM-RNN-EC is very impressive and the following study reveals that any stochastic

model based on HMM can be generalized and improve the accuracy or performance of the

existing system.

5.3 Enzyme classi�cation

In this section, we described about the actual real world problem implementation and its

results. we studied the enzyme classi�cation extensively in order to test an hybrid HMM-

RNN system.

A number of experiments were done to test the performance of the Hybrid HMM-RNN

system in the protein classi�cation problem. The following issues were investigated: the

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 104

classi�cation performance of the proposed system using a large dataset (of enzymes); the

in�uence of the size of the training set in the learning process of the RNNs; the number

of RNNs necessary for a satisfactory balance between computational time and classi�cation

performance.

Table 5.3.1: Kyte and Doolittle hydrophobicity scale

Amino Acid K and D Scale Type
Name Symbol

Isoleucine I 4.5 Hydrophobic
Valine V 4.2 Hydrophobic
Leucine L 3.8 Hydrophobic

Phenylalanine F 2.8 Hydrophobic
Cysteine C 2.5 Hydrophobic

Methionine M 1.9 Hydrophobic
Alanine A 1.8 Hydrophobic
Glycine G -0.4 Natural

Threonine T -0.7 Natural
Serine S -0.8 Natural

Tryptophan W -0.9 Natural
Tyrosine Y -1.3 Natural
Proline P -1.6 Natural
Histidine H -3.2 Hydrophilic
Giutamine Q -3.5 Hydrophilic
Asparagine N -3.5 Hydrophilic

Glumatic acid E -3.5 Hydrophilic
Aspartic acid D -3.5 Hydrophilic

Lysine K -3.9 Hydrophilic
Arginine R -4.0 Hydrophilic

Classi�cation performance:

For this experiment, we used a whole enzyme superfamily extracted from PDB. A total of

3200 enzymes were used, divided into six families. The tables 5.3.1 and 5.3.2 summarizes the

data used for the training set and the testing set.

All the results reported were obtained by performing a modi�ed �ve-fold cross-validation

procedure [85]. First, a given number of proteins were randomly drawn from the dataset for

each of the six families. The sum of these samples constituted the training set (1200). All the

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 105

Table 5.3.2: HMM-RNN-EC - Training and testing set percentages

Class Family Training Set Testing Set Percentage(%) Total
1 Oxidoreductases 200 354 17.7 554
2 Transferases 200 422 21.1 622
3 Hydrolases 200 918 45.9 1118
4 Lyases 200 164 8.1 364
5 Isomerases 200 92 4.6 292
6 Ligases 200 50 2.6 250

1200 2000 100 3200

other proteins were allocated to the testing set (2000). Then, the neural system was trained

and later evaluated using this partition. The accuracy rate on the testing set was computed

as the ratio of the number of correctly classi�ed proteins to the total number of proteins, as is

standard in the literature. Next, a new sampling was taken from the dataset to form another

training and testing set, and the training and testing processes were repeated. This procedure

was repeated �ve times and the �nal results were reported as the averaged accuracy rate over

these �ve runs.

The performance of our proposed hybrid HMM-RNN was compared with a classi�cation

procedure based on HMMs. For this purpose, we used the software package HMMER 3.0

(http://hmmer.wustl.edu/) that uses HMMs [57]. The HMMs are a well-known statistical

modelling technique frequently applied to the analysis of time series and biological sequences

[61]. The use of HMMER for protein classi�cation encompasses three steps. First, a multiple

sequence alignment is done using the training set. For this purpose we used the software

ClustalX, version2.1, for generating six �les (one for each class) with the multiple alignment

of the proteins. The second step is building a HMM that represents each class of the training

set. This was done using as input the pre-aligned �le mentioned before and the module

HMMBUILD. This program creates a pro�le HMM for the family based on the examples

given. Additionally, we used HMMCALIBRATE to optimize the generated models, so as

to improve the classi�cation performance. Finally, the third step is the classi�cation of the

testing set using the pro�le models generated. This was done using HMMPFAM.

The use of accuracy rate to assess classi�cation performance is standard in the classi�ca-

tion literature [85], but sometimes this measure can be misleading since it does not discrimi-

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 106

nate between positive and negative cases. That is, the accuracy rate is the sum of the correctly

classi�ed cases. Another useful way to measure a system classi�cation performance is using

sensitivity and speci�city, two indicators commonly used in medical and life sciences. These

measures are frequently used in two-class problems, but can be readily adapted for multiclass

problems, as will be shown. When using a system for classifying a protein of unknown class,

depending on the class predicted by the system and on the actual class of the protein, one of

the following four types of result can be observed:

� True positive (TP) : The system predicts that the protein belongs to a given class and

the protein really does belong to that class.

� False positive (FP) : The system predicts that the protein belongs to a given class but,

in fact, it does not belong to it.

� True negative (TN) : The system predicts that the protein does not belong to a given

class, and indeed it does not belong to it.

� False negative (FN) : The system predicts that the protein does not belong to a given

class but, in fact, the protein does belong to it.

Based on these parameters, sensitivity (Se) and the speci�city (Sp) can be de�ned as follows:

� Se = TP /(TP + FN),

� Sp = TN /(TN + FP).

Sometimes sensitivity and speci�city are called true positive rate and true negative rate,

respectively. Sensitivity measures the ability of the classi�er system to correctly assign a

protein to its real class. In the other hand, speci�city measures the ability of the system to

reject a given protein as belonging to a class to which it does not belong.

For both approaches, speci�city values were always higher than sensitivity. This means

that both systems are more e�cient at predicting when a given protein does not belong to

a class than the opposite. Again, the Hybrid HMM-RNN system performed better than

HMMER, when the values for both sensitivity and speci�city are taken into account.

In the next section, we present the implementation details of enzyme classi�cation using

the hybrid HMM-RNN architecture.

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 107

5.4 Results and discussion

This section deals with the implementation results on enzyme classi�cation using the hybrid

HMM-RNN architecture.

In this study, our dataset consists of 6 enzymes superfamilies extracted from PDB. Here

we used 3200 enzymes in total as the training and testing samples. The number of these

samples constituted the training set is 1200. Other proteins were allocated to the testing set

(2000). Table 5.3.2 summarized the data used for the training and the testing processes. We

used a same number of enzymes in training for each class while for testing; number of samples

for each class was according to percentage of total enzymes in PDB database, respectively.

Total system have the same topology; one input layer with 40 input nodes, one hidden layer

with 3, 5, 9, 10 and 15 hidden nodes and one output layer with 6 output nodes where each

node represents one class of enzymes. The exception is in determining the number of hidden

nodes, in which we applied two di�erent approaches, i.e., using those proposed by [14, 188].

Table 5.4.1 presents the distributions of the training patterns and the number of hidden nodes

in each of the network used in HMM-RNN-EC.

Table 5.4.1: Hybrid HMM-RNN for enzyme classi�cation

Input Training Output Training Set Testing Set
Neurons Epochs Nodes Size Size

40 300 6 1200 2000

To evaluate performance for our network system, we measured the accuracy in simulation

for the testing set. Accuracy is de�ned as follows:

Accuracy =
Revealed Sequences

Total number of Sequences Involved
∗ 100. (5.4.1)

Accuracy of the testing set is presented in the Table 5.4.2.

We adopted a new approach in encoding primary structure into real-valued vector that

feeds into recurrent neural network using Kyte and Doolittle hydrophobicity scale [111]. Ad-

ditionally, we used a set of networks with hybrid HMM-RNN algorithm in the weighting

system. The results achieved showed that combination between HMM and RNN algorithm

can be employed to optimize network structure. By using the method proposed by [188] in

CHAPTER 5. REAL TIME APPLICATION - ENZYME CLASSIFICATION 108

Table 5.4.2: Accuracy of the testing set

Superfamily Accuracy - 1 Accuracy - 2 Accuracy - 3 Accuracy - 4 Accuracy - 5

Oxidoreductases 78.11 77.29 75.33 78.29 79.33

Transferases 77.18 77.11 76.65 77.32 78.23

Hydrolases 74.64 72.20 71.18 79.13 78.46

Lyases 76.78 76.15 75.77 72.27 77.12

Isomerases 72.10 71.54 69.81 77.33 79.35

Ligases 61.45 60.11 58.86 63.54 67.11

Average 75.33 71.89 65.79 75.16 75.89

�nding the optimal number of hidden nodes in the network, we successfully obtained good

precision performance values for the testing datasets.

The accuracy rate for testing dataset with 6 classes of enzymes is reasonable (75.89 percent

on average).

5.5 Summary

In this chapter, we have discussed the implementation of developed hybrid HMM-RNN ar-

chitecture on a real world application such as Enzyme Classi�cation. After having discussed

the latest works in the �eld of bioinformatics, genetics and proteomics related to the hybrid

systems of HMMs and RNNs, we have elaborated on some fundamental structure of molecular

biology. As a �rst step, pro�le HMMs are implemented using the proposed hybrid HMM-RNN

followed by results obtained using this approach. Then we implemented it on classifying the

given sequence in a group of enzymes. Finally, we presented some results and compared them

with those obtained by other existing methods.

In the next chapter, we present the concluding remarks and scope for further research.

Chapter 6

Concluding remarks and scope for

further research

In this thesis, we have developed and implemented a HMM-RNN hybrid architecture using

the gradient descent learning algorithm of real time recurrent neural networks on sample test

beds and as well as on real time application. The trained hidden Markov model data is

used as a prior knowledge into the recurrent neural network to process the knowledge stored

in the networks. This is achieved by taking the advantages and disadvantages of both the

models and through building a successful architecture. This allows for implementation of any

generalized stochastic model on this network. We have then explored this approach for some

biological applications.

The main contributions of the thesis are

� Design of a generalized hybrid HMM-RNN architecture for optimizing any stochastic

model based on Hidden Markov Models.

� A mathematical derivation of a hybrid HMM-RNN architecture.

� Development of the hybrid HMM-RNN gradient descent learning algorithm using real

time recurrent learning of recurrent neural networks.

� Implementation of the learning algorithm on sample test beds. It is achieved by mod-

elling the dynamical systems such as deterministic �nite state automata.

109

CHAPTER 6. CONCLUDING REMARKS AND SCOPE FOR FURTHER
RESEARCH 110

� Real world applications of the hybrid HMM-RNN algorithm to bioinformatics. Our

results show that we can successfully classify a given protein sequence from the six

di�erent types of enzymes.

As far as the scope for further research is concerned, we indicate the following:

� Application of hybrid HMM-RNN architecture can be further explored to other appli-

cations (speech recognition, biometrics, etc.).

� Learning and representing the fuzzy �nite state automata with the hybrid HMM-RNN

can be worked further.

� The hybrid HMM-RNN architecture can be further explored in conjunction with the

long short term memories of RNN and decoupled extended Kalman �lters.

Bibliography

[1] Y.S. Abu-Mostafa, Learning from hints in neural networks, Journal of Complexity,

6:192, 1990.

[2] E. Alba and J.F. Chicano, Training neural networks with GA hybrid algorithms, Lecture

Notes in Computer Science, Springer Berlin/Heidelberg, 3102:852-863, 2004.

[3] A.F. Ali and D.M. Shawky, A Novel Approach for Protein Classi�cation Using Fourier

Transform, World Academy of Science, Engineering and Technology, 44, 2010.

[4] L.B. Almeida, A Learning Rule for Asynchronous Perceptrons with Feedback in a Com-

binatorial Environment, Procedings of IEEE First Annual International Conference on

Neural Networks, 2:199, 1987.

[5] R. Alquezar and A. Sanfeliu, An algebraic framework to represent �nite state automata

in single-layer recurrent neural networks, Neural Computation, 7(5):931-949, 1995.

[6] R. Andrews, J. Diederich and A. Tickle, A survey and critique of techniques for extract-

ing rules from trained arti�cial neural networks. Knowledge-Based Systems, 8(6):373-

389, 1995.

[7] P.J. Angeline, G.M. Sauders and J.B. Pollack, An evolutionary algorithm that builds

recurrent neural networks, IEEE Transactions on Neural Networks, 5:54-65, 1994.

[8] K. Asai, S. Hayamizu and H. Handa, Prediction of protein secondary structures by

hidden marko models, Computer Application in the Biosciences, 9(2):141-146, 1993.

[9] T.K. Attwood, M.E. Beck, A.J. Bleasby, K. Degtyarenko and D.J.P. Smith, Progress

with the PRINTS protein �ngerprint database. Nucleic Acids Research, 24:182-8, 1996.

111

BIBLIOGRAPHY 112

[10] P. Baldi, Y. Chauvin, T. Hunkapiller and M.A. McClure, Hidden Markov Models in

Molecular Biology: New Algorithms and Applications, In Advances in Neural Informa-

tion Processing Systems, 747-754, 1993.

[11] P. Baldi, Y. Chauvin, T. Hunkapiller and M.A. McClure, Hidden Markov Models of Bio-

logical Primary Sequence Information, Proceedings of the National Academy of Science,

91:1059-1063, 1994.

[12] P. Baldi, S. Brunak, P. Frasconi, G. Pollastri and G. Soda, Bidirectional dynamics for

protein secondary structure prediction, Lecture Notes in Computer Science, 80-104:1828,

2001.

[13] E. Barnard and D. Casasent, Invariance and neural networks, IEEE Transactions on

Neural Networks, 2:498-508, 1991.

[14] E.B. Baum and D. Haussler, What size net gives valid generalization?, Neural Compu-

tation. 1:151-160, 1989.

[15] R. Bellman, Adaptive control processes: A guided tour, Princeton University Press, New

Jersey, 1961.

[16] K. Ben and V.D. Patrick, An Introduction to Neural Network, The University of Ams-

terdam, 1996.

[17] Y. Bengio, P. Frasconi and P. Simard, learning long-term dependencies with recurrent

neural networks, IEEE International Conference on Neural Networks, 3:157-166, 1993.

[18] Y. Bengio, P. Simard and P. Frasconi, Learning long-term dependencies with gradient

descent is di�cult, IEEE Transactions on Neural Networks, 5(2):157-166, 1994.

[19] Y. Bengio and P. Frasconi, An EM approach to learning sequential behavior, Technical

Report RT-DSI-11/94, Universita di Firenze, 1994.

[20] Y. Bengio, Neural Networks for Speech and Sequence Recognition, International

Thompson Computer Press, 1996.

BIBLIOGRAPHY 113

[21] P.N. Bidargaddi, M. Chetty and J. Kamruzzaman, Combining segmental semi-Markov

models with neural networks for protein secondary structure prediction, Neuro-

computing, 72:3943-3950, 2009.

[22] H. Bin Ma, Decentralized adaptive synchronization of a stochastic discrete-time mul-

tiagent dynamic model, SIAM Journal on Control and Optimization, 48(2):859-880,

2009.

[23] E. Birney, Hidden Markov models in biological sequence analysis, Deep computing for

the life sciences, 45, 2001.

[24] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[25] A. Blanco, M. Delgado and M.C. Pegalajar, A real-coded genetic algorithm for training

recurrent neural networks, Neural Networks, 14(1):93-105, 2001.

[26] K. Blekas, D.I. Fotiadis and A. Likas, Motif-based protein sequence classi�cation using

neural networks, Journal of Computational Biology, 12:64-82, 2005.

[27] C.L. Borro, R.M. Stanley Oliveira, E.B. Michel Yamagishi, L. Adaulto Mancini, G.

Jose Jardine, M. Ivan, H. Edgard dos Santos, H. Roberto Higa, R. Paula Kuser and G.

Neshich, Predicting enzyme class from protein structure using Bayesian classi�cation,

Genetic. Molecular Research, 5(1): 193-202, 2006.

[28] H. Bourlard and S. Bengio, Hidden Markov Models and other Finite State Automata,

The Handbook of Brain Theory and Neural Networks, Second edition, (M.A. Arbib,

Ed.), Cambridge, MA: The MIT Press, 2002.

[29] S.J. Bridle, Alpha-nets: A recurrent neural network architecture with a hidden Markov

model interpretation, Speech Communication, 9(1):83-92, 1990.

[30] L. Bum, H. Lee and H. Keun, Design of a Novel Protein Feature and Enzyme Function

Classi�cation, Computer and Information Technology Workshops, 450-455, 2011.

[31] O. Buse and A. Mutlu, Generalized classi�er neural network, Neural Networks, 39:18-26,

2013.

BIBLIOGRAPHY 114

[32] C.Z. Cai, L.Y. Han, Z.L. Ji and Y.Z. Chen, Enzyme Family Classi�cation by Support

Vector Machines, PROTEINS: Structure, Function, and Bioinformatics, 55:66-76, 2004.

[33] B. Cannas, S. Cincotti, A. Fanni, M. Marchesi, F. Pilo and M. Usai, Performance

analysis of locally recurrent neural networks, The International Journal for Computation

and Mathematics in Electrical and Electronic Engineering, 17(6):708-716, 1998.

[34] S. Carola, C. Antje and D. Schomburg, Development of a classi�cation scheme for

disease-related enzyme information, BMC Bioinformatics, 12:329, 2011.

[35] R.C. Carrasco, M.L. Forcada, M.A Valdes and R.P. Neco, Stable encoding of �nite-state

machines in discrete-time recurrent neural nets with sigmoid units, Neural Computation,

12(9):2129-2174, 2000.

[36] A. Ceroni, P. Frasconi and G. Pollastri, Learning protein secondary structure from

sequential and relational data, Neural Networks, 18(8):1029-1039, 2005.

[37] K.S. Chalup and D.A. Blair, Incremental training of �rst order recurrent neural networks

to predict a context-sensitive language, Neural Networks, 16(7):955-972, 2003.

[38] W. Cheng, J. Huang and C. Liou, Segmentation of DNA using simple recurrent neural

network, Knowledge-Based Systems, 26:271-280, 2012.

[39] V. Cherkassky. From statistics to neural networks: Theory and pattern recognition

applications. In V. Cherkassky, J.H. Friedman, and H. Wechsler (eds.), From Statistics

to Neural Networks: Theory and Pattern Recognition Applications, NATO ASI Series

F: Computer and System Sciences, 136:127-146, 1994.

[40] K. Chetan and A. Choudhary, A top-down approach to classify enzyme functional classes

and sub-classes using random forest, Journal on Bioinformatics and Systems Biology,

2012. DOI:10.1186/1687-4153-2012-1.

[41] S. Chiba, K. Sugawara and T. Watanabe, Classi�cation and function estimation of

protein by using data compression and genetic algorithms. Proceedings of the 2001

Congress on Evolutionary Computation, IEEE Press, 2:839-44, 2001.

BIBLIOGRAPHY 115

[42] T.J. Cholewo and J.M. Zurada. Sequential network construction for time series pre-

diction. Proceedings of the IEEE International Conference on Neural Networks, IEEE

Press, 2034-2039, 1997.

[43] M.H. Christiansen and N.Chater, Toward a connectionist model of recursion in human

linguistic performance, Cognitive Science, 23:417-437, 1999.

[44] F. Christos and S. Andreas, Self-Organizing Hidden Markov Model Map (SOHMMM),

Neural Networks, 48:133-147, 2013.

[45] A. Cleeremans, D. Servan-Schreiber and J. McClelland, Finite-state automata and sim-

ple recurrent neural networks, Neural Computation, 1(3):372-381, 1989.

[46] S. Das and R. Das, Induction of discrete state-machine by stabilizing a continuous

recurrent neural network using clustering, Journal of Computer Science and Informatics,

21(2):35-40, 1991.

[47] S. Das, C.L. Giles, and G.Z. Sun, Using hints to successfully learn context-free grammars

with a neural network pushdown automaton. In S.J. Hanson, J.D. Cowan and C.L. Giles

(eds.), Advances in Neural Information Processing Systems 5, San Mateo, CA, Morgan

Kaufmann Publishers, 65-72, 1993.

[48] K. David, D. Haussler, G. Martin Reese and H. Frank Eeckman, A generalized hidden

Markov model for the recognition of human genes in DNA, Procedings of the Fourth

International Conference on Intelligent Systems for Molecular Biology, AAAI Press,

1996.

[49] M.O. Dayo�, R.M. Schwartz and B.B. Orcutt, A Model of evolutionary change in pro-

teins, Atlas of protein sequence and structure, National Biomedical Resource Found,

5:345-358, 1978.

[50] L. Derong, X. Xiaoxu, Z. Hou and B. DasGupta, Identi�cation of motifs with inser-

tions and deletions in protein sequences using self-organizing neural networks, Neural

Networks, 18(5-6):835-842, 2005.

BIBLIOGRAPHY 116

[51] R.T. De Souza, C.F. Caldas, R.S. Maria, S.C. Oliveira and A.P. Braga, Protein Clas-

si�cation with Extended-Sequence Coding by Sliding Window, TCBB, 8(6):1721-1726,

2011.

[52] M. Des Jardins, P.D. Karp, M. Krummenacker, T.J. Lee and C.A. Ouzounis, Prediction

of enzyme classi�cation from protein sequence without the use of sequence similarity,

Procedings of the International Conferance on Intelligent System, Molecular Biology,

5:92-9, 1997.

[53] H. Diego Milone, E. Leandro Di Persia and E. Mar Torres, Denoising and recognition

using hidden Markov models with observation distributions modeled by hidden Markov

trees, Pattern Recognition, 43(4):1577-1589, 2010.

[54] X. Ding and S. Canu, Neural Network Based Model for Forecasting, p153-165, Neural

Networks and their Applications, edited by J. G. Taylor, John Wiley and Sons, 1996.

[55] R.O. Duda, P.E. Hart and D.G. Stork, Pattern classi�cation, Wiley Publications, 2001.

[56] Md. Eamin Rahman, R. Islam, S.Islam, M. Shakhinur Islam and Md. Ruhul Amin,

MiRANN: A reliable approach for improved classi�cation of precursor microRNA using

Arti�cial Neural Network model, Genomics, 99(4):189-194, 2012.

[57] S. Eddy, Pro�le hidden Markov models, Bioinformatics, 14:755�763, 1998.

[58] J.L. Elman and D. Zipser, Learning the hidden structure of speech, Journal of the

Acoustical Society of America, 83:1615-1626, 1988.

[59] J.L. Elman, Finding structure in time, Cognitive Science, 14:179�211, 1990.

[60] J.L. Elman, Distributed representations, simple recurrent networks, and grammatical

structure, Machine Learning, 7:195-226, 1991.

[61] E. Eskin, W.S. Noble and Y. Singer, 2003. Protein family classi�cation using sparse

Markov transducers, Journal of Computational Biology, 10:187-214, 2003.

[62] I. Evangelia, G. Pantelis, I. Zoi and J. Stavros Hamodrakas, PredSL: A Tool for the

N-terminal Sequence-based Prediction of Protein Subcellular Localization, Genomics,

Proteomics and Bioinformatics, 4(1):48-55, 2006.

BIBLIOGRAPHY 117

[63] L. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms, and Appli-

cations. Prentice-Hall, 1994.

[64] L. Feldkamp, D. Prokhorov, C. Eagen and F.Yuan, Enhanced multi-stream kalman �lter

training for recurrent networks, Nonlinear Modeling: Advanced Black-Box Techniques,

29-53, 1998.

[65] M. L. Forcada and R. C. Carrasco, Learning the initial state of a second-order recurrent

neural network during regular-language inference, Neural Computation, 7(5):923�930,

1995.

[66] P. Frasconi, M. Gori, M. Maggini and G. Soda. Uni�ed integration of explicit rules and

learning by example in recurrent networks, IEEE Transactions on Knowledge and Data

Engineering, 7(2):340-346, 1995.

[67] L.M. Fu and L.C. Fu, Mapping rule-based systems into neural architecture, Knowledge-

Based Systems, 3(1):48-56, 1990.

[68] L.M. Fu, Knowledge-based connectionism for revising domain theories, IEEE Transac-

tions on Systems, Man and Cybernetics, 23(1):173-182, 1993.

[69] L. Fu, Rule generation from neural networks, EEE Transactions on Systems, Man and

Cybernetics, 24(8):1114-1124, 1994.

[70] Y. Fukuoka and H. Matsuki, A Modi�ed Back-propagation method to avoid local min-

ima, Neural Networks, 11:1059-1072, 1998.

[71] M.J.F. Gales, Maximum likelihood linear transformations for Hidden Markov Model-

based speech recognition, Computer Speech Language, 12:75-98, 1998.

[72] S. Geman, E. Bienenstock and R. Dourstat, Neural networks and the bias/variance

dilemma, Neural Computation, 4(1):1-58, 1992.

[73] G.R. George and F. Cardullo, Application of Neuro-Fuzzy Systems to Behavioral Rep-

resentation in Computer Generated Forces, Proc. of the Eighth Conference on Computer

Generated Forces and Behavioral Representation, 575-585, 1999.

BIBLIOGRAPHY 118

[74] F.A. Gers, J. Schmidhuber and F.A. Cummins, Learning to forget: Continual prediction

with LSTM, Neural Computation, 12(10):2451-2471, 2000.

[75] F. Gers and J. Schmidhuber, LSTM networks learn simple context free and context

sensitive languages, Technical Report, IDSEA, Manno, Switzerland, 2001.

[76] F. Gers, D. Eck and J. Schmidhuber, Applying LSM to time series prediction through

time-window approaches, Technical Report, IDSEA, Manno, Switzerland, 2002.

[77] F. Gers, N. Schraudolph and J. Schmidhuber, Learning precise timing with LSTM

recurrent networks, Journal of Machine Learning Research, 3:115-143, 2002.

[78] L.S. Goh and P.D. Mandic, An augmented CRTRL for complex-valued recurrent neural

networks, Neural Networks, 20(10):1061-1066, 2007.

[79] M. Golea, On the complexity of rule-extraction from neural networks and network-

querying. Technical report, Department of Systems Engineering, Australian National

University, 1996.

[80] M.W. Goudreau, C.L. Giles, S.T. Chakradhar and D.Chen, First-order vs second-order

single layer recurrent neural networks, IEEE Transactions on Neural Networks, 5(3):511-

513, 1994.

[81] A. Graves, Supervised Sequence Labelling, Studies in Computational Intelligence

Springer, 385:1-131, 2012.

[82] A. Guillermin, A. Gustavo de la Riva, R. Molina-Ruiz, A. Sanchez-Rodriguez, P. Gis-

selle, V. Vitor and A. Antunes, Non-linear models based on simple topological indices

to identify RNase III protein members, Journal of Theoretical Biology, 273(1):167-178,

2011.

[83] R. Hadsell, P. Sermanet, E. Ayse, J. Ben, J. Han, F. Beat, U. Muller and Y. LeCun,

Online Learning for O�road Robots: Using Spatial Label Propagation to Learn Long-

Range traversability, Procedings of Robotics Science and Systems Conference, 2007.

BIBLIOGRAPHY 119

[84] Z. Haiquan, Z. Xiangping, J. Zhang, Y.Liu, X. Wang and T. Li, A novel joint-processing

adaptive nonlinear equalizer using a modular recurrent neural network for chaotic com-

munication systems, Neural Networks, 24(1):12-18, 2011.

[85] D.J. Hand, Construction and assessment of classi�cation rules, John Wiley & Sons, New

York, USA, 1997.

[86] Y. Hayashi and A. Imura, Fuzzy neural expert systems with automated extraction of

fuzzy if-then rules from a trained neural network, Procedings of First IEEE Conference

on Fuzzy Systems, 489-494, 1990.

[87] J. Henderson, S. Salzberg and K. Fasman, Finding genes in human DNA with a hidden

Markov model, Journal of Computational Biology, 4:127-141, 1997.

[88] J. Henriques and A. Dourado, A Multivariable adaptive control using a recurrent neural

network, Proceedings of the Engineering Applications of Neural Networks, 9(12):118-121,

1998.

[89] J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Computation.

Addison-Wesley Publishing Company, 1991.

[90] O. Hiroyuki and G. Yukio Pegio, Recurrent neural network architecture with pre-

synaptic inhibition for incremental learning, Neural Networks, 19(8):1106-1119, 2006.

[91] S. Hochreiter, Y. Bengio, P. Frasconi and J. Schmidhuber, Gradient �ow in recurrent

nets: the di�culty of learning long-term dependencies, Field Guide to Dynamic Recur-

rent Networks, 237-243, 2001.

[92] S. Hochreiter and J. Schmidhuber, Long Short Term memory, Neural Computation,

9(8):1735-1780, 1997.

[93] J.H. Holland, Adaption in natural and arti�cial systems, University of Michigan Press,

Cambridge, 1975.

[94] J.J. Hop�eld, Neural networks and physical systems with emergent collective computa-

tional facilities, Proceedings of the National Academy of Sciences of the USA, 79:2554�

2558, 1982.

BIBLIOGRAPHY 120

[95] B. Horne and C. Giles, An experimental comparison of recurrent neural networks, Ad-

vances in Neural Information Processing Systems, 7:697-704, 1995.

[96] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal

approximators, Neural Networks, 2:359-366, 1989.

[97] A. Hosseini, J. Wang and S. Mohammad, A recurrent neural network for solving a class

of generalized convex optimization problems, Neural Networks, 44:78-86, 2013.

[98] Y. Hu, Biopattern discovery by genetic programming, In Koza Jr. (ed.) Proceedings

of the Third Annual Genetic Programming Conference, Madison, USA, San Francisco:

Morgan Kaufmann Publishers, 152-7, 1998.

[99] R. Hughey and A. Krogh, Hidden Markov models for sequence analysis: extension and

analysis of the basic method, Computer Applications in the Biosciences, 12:95-107,

1996.

[100] S. Ilya and G. Hinton, Temporal-Kernel Recurrent Neural Networks, Neural Networks,

23(2):239-243, 2010.

[101] G. Ivan and D. Andrej, On-line identi�cation and reconstruction of �nite automata with

generalized recurrent neural networks, Neural Networks, 16(1):101-120, 2003.

[102] R.A. Jacobs, M.I. Jordan, S.J. Nowlan and G.E. Hinton, Adaptive mixtures of local

experts, Neural Computation, 3:79-87, 1991.

[103] H. Jaeger, The echo state approach to analyzing and training recurrent neural networks,

GMD Report 148, German National Research Center for Information Technology, 2001.

[104] Q. Jian-Ding, L. San-Hua, H. Jian-Hua and L. Ru-Ping, Support vector machines to

distinguish enzymes: Approached by incorporating wavelet transform, Journal of The-

oretical Biology, 256(4-21):625-631, 2009.

[105] M.I. Jordan, Attractor dynamics and parallelism in a connectionist sequential ma-

chine, In Proceedings of the Ninth Annual conference of the Cognitive Science Society,

Lawrence Erlbaum, 531-546, 1986.

BIBLIOGRAPHY 121

[106] K.N. Kasabov, V. Jain and B. Lubica Lau, Integrating evolving brain-gene ontology and

connectionist-based system for modeling and knowledge discovery, Neural Networks,

21(2-3):266-275, 2008.

[107] J.F. Kolen and S.C. Kremer, (ed.), A Field Guide to Dynamical Recurrent Networks,

IEEE Press, Piscataway, NJ, 2001.

[108] J.R. Koza, Classifying protein segments as transmembrane domains using genetic pro-

gramming and architecture-altering operations, In T. Back, D.B. Fogel, Z. Michalewicz,

eds., Handbook of Evolutionary Computation, UK: Institute of Physics Publishing,

6:1-5, 1997.

[109] A. Krogh, M. Brown, I.S. Mian, K. Sjolander and D. Haussler, Hidden Markov Models

in Computational Biology: Applications to Protein Modeling, Journal of Molecular

Biology, 235:1501-1531, 1994.

[110] A. Krogh, In S.L. Salzberg et al., An Introduction to Hidden Markov Models for Bio-

logical Sequences,Computational Methods in Molecular Biology, Elsevier, 45-63, 1998.

[111] J. Kyte and R. Doolittle, A simple method for displaying the hydropathic character of

proteins, Journal of Molecular Biology, 157:105-32, 1982.

[112] S. Lawrence, C.L. Giles and S. Fong, Natural Language Grammatical Inference with

Recurrent Neural Networks. IEEE Transactions on Knowledge and Data Engineering.

12(1):126-140, 2000.

[113] S. Lawrence, S. Fong and C.L. Giles, Natural language grammatical inference: A com-

parison of recurrent neural networks and machine learning methods. In S. Wermter,

E. Rilo�, and G. Scheler (eds.), Symbolic, Connectionist, and Statistical Approaches to

Learning for Natural Language Processing, Lecture notes in AI, Springer-Verlag, Berlin,

33-47, 1996.

[114] S. Lawrence, C.L. Giles and A.C. Tsoi, Symbolic conversion, grammatical inference and

rule extraction of foreign exchange rate prediction, Decision Technologies for Financial

Engineering: Procedings of the Fourth International Conference on Neural Networks in

the Capital Markets, World Scienti�c, Singapore, 333-345, 1998.

BIBLIOGRAPHY 122

[115] Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard and L.D.

Jackel, Backpropagation applied to handwritten zip code recognition, Neural Compu-

tation, 1:541-551, 1989.

[116] A.L. Lehninger, D.L. Nelson and M.M. Cox, Principles of biochemistry with an extended

discussion of oxygen-binding proteins, New York: Worth Publishers Inc., 1998.

[117] T. Lin, B.G. Horne, P. Tino and C.L. Giles, Long-term dependencies in NARX Neural

Networks, World Congress in Neural Networks, 3:142-146, 1995.

[118] J.P. Lisboa and F.G.T. Azzam, The use of arti�cial neural networks in decision support

in cancer: A systematic review, Neural Networks, 19(4):408-415, 2006.

[119] P. Manolios and R. Fanelli, First order Recurrent Network and deterministic �nite state

automata, Neural Computation, 6(6):1154-1172, 1994.

[120] K. Marakami and H Taguchi, Gesture recognition using recurrent neural networks,

Procedings of the SIGCHI conference on Human factors in computing systems, 237-242,

1991.

[121] F. Marco, B. Alberto, R. Matteo and V. Giorgio, A neural network algorithm for semi-

supervised node label learning from unbalanced data, Neural Networks, 43:84-98, 2013.

[122] E.D. Martin and A. Araque, Astrocytes and the biological neural networks, Arti�cial

Neural Networks in Real Life Applications, 22-45, 2006.

[123] W.S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous

activity, 5:115-33, 1943.

[124] C. McMillan, M.C. Mozer and P. Smolensky, Rule induction through integrated sym-

bolic and subsymbolic processing, In J. Moody, S. Hanson, and L. Giles (eds.), Advances

in in Neural Information Processing Systems 4, San Mateo, CA, Morgan Kaufmann,

1992.

[125] F. Michael, S. Li, X. Fu, A. Eduardo and W. Donald, An adaptive recurrent neural-

network controller using a stabilization matrix and predictive inputs to solve a tracking

problem under disturbances, Neural Networks, 49:74-86, 2014.

BIBLIOGRAPHY 123

[126] H. Mike, N. Lydia, P. Damon, M. John, L. Chris, F. Sky, F. Vance and ed., Multi-scale

correlation structure of gene expression in the brain, Neural Networks, 24(9):933-942,

2011.

[127] M.L. Minsky, Logical vs. analogical or symbolic vs. connectionist or neat vs. scru�y, In

Patrick H. Winston, editor, Arti�cial Intelligence at MIT, Expanding Frontiers, MIT

Press, Cambridge, MA, 1, 1990.

[128] A. Mohammed and C. Guda, Computational approaches for automated classi�cation of

enzyme sequences, Journal of Proteomics and Bioinformatics, 23(4):147-152, 2011.

[129] R. Mooney, J. Shavlik, J. Towell and A. Gove, An experimental comparison of symbolic

and connectionist learning programs, Proceedings of the International Joint Conference

on Arti�cial Intelligence, 775-780, 1989.

[130] M.C. Mozer, A focused backpropagation algorithm for temporal pattern processing,

Complex Systems, 3(4):349�381, 1989.

[131] M.C. Mozer and S. Das, A connectionist chunker that induces the structure of context-

free languages, In S.J. Hanson, J.D. Cowan, and C.L. Giles (eds.), Advances in Neural

Information Processing Systems 5, MorganKaufmann Publishers, San Mateo, CA, 1993.

[132] M.C. Mozer, Neural net architectures for temporal sequence processing, In A.S. Weigend

and N.A. Gershenfeld (eds.), Time Series Prediction, Addison�Wesley, 243�264, 1994.

[133] A.G. Murzin, S.E. Brenner, T. Hubbard and C. Chothia, SCOP: A structural classi�-

cation of proteins database for the investigation of sequences and structures, Journal of

Molecular Biology, 247:536-40, 1995.

[134] A. Narayanan, E.C. Keedwell and B. Olsson, Arti�cial intelligence techniques for bioin-

formatics, Applied Bioinformatics, 1(4):191-222, 2002.

[135] N. Neetika, B. John and O. Mitchell, Classi�cation of Enzymes via Machine Learning

Approaches, 2011.

[136] T. Ohkawa, D. Namihira, N. Komoda and H. Nakamura, Protein structure classi�cation

by structural transformation. In N.G. Bourbakis (ed), Proceedings of IEEE International

BIBLIOGRAPHY 124

Joint Symposia on Intelligence and Systems, Rockville, USA, Los Alamitos, USA: IEEE

Computer Society Press, 23-9, 1996.

[137] H.M. Osman, L. Choong-Yeun and I. Hashim, Hybrid Learning Algorithm in Neural

Network System for Enzyme Classi�cation, Int. J. Advance Soft Computing Applica-

tions, 2(2), 2010.

[138] B. Pandey and R.B. Mishra, Knowledge and intelligent computing system in medicine,

Computers in Biology and Medicine, 39(3):215-230, 2009.

[139] A.G. Parlos, O.T. Rais and A.F. Atiya, Multi-step-ahead prediction using dynamic

recurrent neural networks, Neural Networks, 13(7):765-786, 2000.

[140] M.J. Pazzani and D. Kibler, The utility of knowledge in inductive learning, Machine

Learning, 2:57-94, 1992.

[141] B.A. Pearlmutter, Earning state space trajectories in recurrent neural networks, Neural

Computation, 1(2):263�269, 1989.

[142] R. Perkins and A. Brabazon, Predicting credit ratings with a GA-MLP hybrid, in

Arti�cial Neural Networks in Real Life Applications, J.R. Rabunal and J. Dorrado,

eds., IGI Global, USA, 220-237, 2006.

[143] V. Petridis and A. Kehagias, Predictive modular neural networks: Applications to Time

Series, Kluwer Academic Publishers, 123-133, 1998.

[144] J.B. Pollack, Recursive distributed representations, Arti�cial Intelligence, 46:77�105,

1990.

[145] E.T. Portegys, A maze learning comparison of Elman, long short-term memory and

Mona neural networks, Original Research Article, Neural Networks, 23(2):306-313, 2010.

[146] D.V. Prokhorov, G.V. Puskorius and L.A. Feldman, Dynamical recurrent networks in

control, In J.F. Kolen and S.C. Kremer (eds.), A Field Guide to Dynamical Recurrent

Networks, IEEE, Piscataway, NJ, 257-289, 2001.

BIBLIOGRAPHY 125

[147] G.V. Puskorius and L.A. Feldkamp, Decoupled extended Kalman �lter training of feed-

forward layered networks, Proceedings of the International Joint Conference on Neural

Networks, 1:771-777, 1991.

[148] W. Quen, J. Chang and S. Lee, On-line signature veri�cation using LPC cepstrum and

neural networks, IEEE Transactions on Systems, Man and Cybernetics, 27(1):148-153,

1997.

[149] L.R. Rabiner and B.H. Juang, An Introduction to Hidden Markov Models, IEEE ASSP

Magazine, 1-16, 1986.

[150] L.R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition , Proceedings of the IEEE, 77(2):257-285, 1989.

[151] J.R. Rabunal and J. Puertas, Hybrid system with arti�cial neural networks and evo-

lutionary computation in civil engineering, in Arti�cial Neural Networks in Real Life

Applications, 166-187, 2006.

[152] P. Razvan and J. Herbert, A neurodynamical model for working memory, Neural Net-

works, 24(2):199-207, 2011.

[153] R.D. Reed and J. Robert Mark, Neural Smithing: Supervised Learning in Feedforward

Arti�cial Neural Networks, The MIT Press, 1999.

[154] B.D. Ripley, Pattern Recognition and Neural Networks, Cambridge University Press,

1996.

[155] A.J. Robinson, An application of recurrent neural nets to phone probability estimation,

IEEE transactions on Neural Networks, 5(2):298-305, 1994.

[156] P. Rodriguez, Simple recurrent networks learn context-free and context-sensitive lan-

guages by counting, Neural Computation, 13(9), 2001.

[157] P. Rodriguez, J. Wiles and J.L. Elman, A recurrent neural network that learns to count,

Connection Science, 11:5-40, 1999.

BIBLIOGRAPHY 126

[158] X. Rui, K.G. Venayagamoorthy and C.D. Wunsch, Modeling of gene regulatory networks

with hybrid di�erential evolution and particle swarm optimization, Neural Networks,

20(8):917-927, 2007.

[159] D.E. Rumelhart, J.L. McCLelland and the PDP Research Group, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Foundations, MIT Press,

Cambridge, MA, 1, 1986.

[160] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal representations by

error propagation, Nature, 323:533-536, 1986.

[161] W.S. Sarles, Neural Network faq, periodic posting to the Usenet newsgroup, 1997.

[162] J. Schmidhuber, Learning complex extended sequences using the principle of history

compression, Neural Computing, 4(2):234�242, 1992.

[163] U. Sei�ert and M.H. Osman et al., Multiple layer perceptron training using genetic

algorithm, Proceedings of European Symposium on Arti�cial Neural Network, 12, 2001.

[164] B. Sepideh, G. Amir and S. Ali Seyyedsalehi, Towards designing modular recurrent

neural networks in learning protein secondary structures, Expert Systems with Appli-

cations, 39(6):6263-6274, 2012.

[165] S.S. Seyhan, N.F. Alpaslan and Y. Mustafa, Simple and complex behavior learning using

behavior hidden Markov model and CobART, Neurocomputing, 103:121-131, 2013.

[166] V. Sharma and D. Srinivasan, A hybrid intelligent model based on recurrent neural

networks and excitable dynamics for price prediction in deregulated electricity market,

Engineering Applications of Arti�cial Intelligence, 26(5-6):1562-1574, 2013.

[167] J.W. Shavlik, Combining symbolic and neural learning, Machine Learning, 14(3):321-

331, 1994.

[168] C. Shibata and R. Yoshinaka, A comparison of collapsed Bayesian methods for proba-

bilistic �nite automata, Machine Learning, 2013.

[169] H. Siegelmann, B. Horne and C.L. Giles, Computational capabilities of recurrent narx

neural neworks, IEEE Transactions on Systems, Man and Cybernatics, 27(2):208, 1997.

BIBLIOGRAPHY 127

[170] J. Sima, Neural Expert Systems, Neural Networks, 2:261-271, 1995.

[171] A.D. Smith, Oxford dictionary of biochemistry and molecular biology, Oxford University

Press, Oxford, 1997.

[172] A. Sperduti, On the Computational Power of Recurrent Neural Networks for Structures,

Neural Networks, 10(3):395-400, 1997.

[173] R. Sun and L. Bookman, eds. Computational Architectures Integrating Neural and Sym-

bolic Processes, Kluwer Academic Publishers, 1994.

[174] A. Tan and H. Pan, Predictive neural networks for gene expression data analysis, Neural

Networks, 18(3):297-306, 2005.

[175] N. Takehiko, Theoretical analysis of batch and on-line training for gradient descent

learning in neural networks, Neurocomputing, 73(1-3):151-159, 2009.

[176] J.G. Thistle and W.M. Wonham, Control of in�nite behavior of �nite automata, SIAM

Journal on Control and Optimization, 32(4)1075-1097, 1994.

[177] J.A. Torkestani, An adaptive focused Web crawling algorithm based on learning au-

tomata, Applied Intelligence, 37(4):586-601, 2012.

[178] W. Ti�in, Advanced Algorithms for Neural Networks: a C++ Sourcebook. John Wiley

and Sons, Inc., 1995.

[179] G.G. Towell and J.W. Shavlik, Using symbolic learning to improve knowledge-based

neural networks, Proceedings of the Tenth National Conference on Arti�cial Intelligence,

San Jose, CA, 177-182, 1992.

[180] G.G. Towell and J.W. Shavlik, The extraction of re�ned rules from knowledge-based

neural networks, Machine Learning, 13(1):71-101, 1993.

[181] G.G. Towell and J.W. Shavlik, Knowledge-based arti�cial neural networks, Arti�cial

Intelligence, 70(1-2):119-165, 1994.

[182] E. Trentin and R. Cattoni, A Hybrid Framework for Indoor Robot Navigation, Sequence

Learning, Perspectives in Neural Computing, 255-263, 1999.

BIBLIOGRAPHY 128

[183] B. Trakhenbrot and Y. Barzdin, Finite Automata: Behaviour and Synthesis, North

Holland, Amsterdam, 1973.

[184] A.C. Tsoi and T. Back, Locally recurrent globally feedforward networks, a critical review

of architectures, IEEE Transactions on Neural Networks, 5(2):229-239, 1994.

[185] P.E. Utgo�, Incremental induction of decision trees, Journal of Machine Learning, 4:161-

186, 1990.

[186] K. Vered, S. Zach, E. Shimon, R. Eytan and H. David, Motif Extraction and Protein

Classi�cation, IEEE Computational Systems Bioinformatics Conference (CSB'05), 0-

7695-2344-7, 2005.

[187] V. Viola, A. Alessandro and G. Pollastri, Accurate prediction of protein enzymatic class

by N-to-1 Neural Networks, BMC Bioinformatics, 14(1):S11, 2013.

[188] N. Wanas, G. Auda, M.S. Kamel and F. Karray, On the optimal number of hidden

nodes in a neural network, IEEE Canadian Conference on Electrical and Computer

Engineering, 1998.

[189] J.T.L. Wang, Q. Ma, D. Shasha and C.H. Wu, New techniques for extracting feature

from protein sequences, IBM: System Journal, 40:426-441, 2001.

[190] J.T.L. Wang, Q. Ma, D. Shashaand and C.H. Wu, Application of neural networks to

biological data mining: a case study in protein sequence classi�cation, In R. Ramakr-

ishnan ed., Proceedings of 6th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Boston, USA, New York, USA: ACM Press., 2003.

[191] R.L. Watrous and G.M. Kuhn, Induction of �nite-state automata using second-order

recurrent networks, Procedings of Advances in Neural Information Systems, California,

USA, 309-316, 1992.

[192] A.S. Weigend, D.E. Rumelhart and B.A. Huberman. Generalization by weight-

elimination with application to forecasting, In R.P. Lippmann, J.E. Moody and D.S.

Touretzky (eds.), Advances in Neural Information Processing Systems, Proceedings of

the 1990 Conference, Morgan Kaufmann, San Mateo, CA, 875-882, 1991.

BIBLIOGRAPHY 129

[193] A.S. Weigend and N.A. Gershenfeld, The Future of Time Series, Learning and Under-

standing, Addison-Wesley, Reading, MA, 1-17, 1993.

[194] R.W. Weinert and S.H. Lopes, A Neural Network System for Enzyme Classi�cation,

Applied Bioinformatics, 3(1):41-48, 2004.

[195] A. Wu and Z. Zeng, Dynamic behaviors of memristor-based recurrent neural networks

with time-varying delays, Neural Networks, 36:1-10, 2012.

[196] W. Wu, J. Wang, M. Cheng and Z. Li, Convergence analysis of online gradient method

for BP neural networks, Neural Networks, 24(1):91-98, 2011.

[197] P.J. Werbos, Backpropagation through time; what it does and how to do it, Proceedings

of the IEEE, 78:1550-1560, 1990.

[198] R.J. Williams and D. Zipser, A learning algorithm for continually running fully recurrent

neural networks, Neural Computation, 1(2):270-280, 1989.

[199] R.J. Williams, Training recurrent networks using the extended Kalman �lter, In Inter-

national Joint Conference on Neural Networks, 4:241-250, 1992.

[200] R.J. Williams and D. Zipser, Gradient-based learning algorithms for recurrent networks

and their computational complexity, In: Y. Chauvin and D.E. Rumelhart (eds.), Back-

propagation: Theory, Architectures and Applications, Hillsdale, NJ: Erlbaum, 433-486,

1995.

[201] C.H. Wu, G.M. Whitson and G.J. Montllor, PROCANS: a protein classi�cation system

using a neural network, Proceedings of IEEE International Joint Conference on Neural

Networks, IEEE Computer Society Press, 2:91-6, 1990.

[202] H. Wu and F. Noe, Probability distance based compression of Hidden Markov Models,

Society for Industrial and Applied Mathematics, 8(5):1838-1861, 2010.

[203] D. Xeumei and D. Zhou, Learning gradients by a gradient descent algorithm Original

Research Article, Journal of Mathematical Analysis and Applications, 341(2):1018-1027,

2008.

BIBLIOGRAPHY 130

[204] F. Zamora-Martinez, V. Frinken, S. Espana-Boquera, M.J. Castro-Bleda, A. Fischer

and H. Bunke, Neural Network Language Models for O�-Line Handwriting Recognition,

Pattern Recognition, In Press, 2013.

[205] Y. Zhang and F. Cao, Analysis of convergence performance of neural networks ranking

algorithm, Neural Networks, 34, 65-71, 2012.

[206] X. Zhao, Y. Cheung and D. Huang, A novel approach to extracting features from motif

content and protein composition for protein sequence classi�cation, Neural Networks,

18(8):1019-1028, 2005.

[207] P.V. Zhdanov, Three generic bistable scenarios of the interplay of voltage pulses and

gene expression in neurons, Neural Networks, 44:51-63, 2013.

[208] A. Zimek, F. Buchwald, E. Frank and S. Kramer, A Study of Hierarchical and Flat

Classi�cation of Proteins, IEEE/ACM Trans Computational Biology, Bioinformatics,

7(3):563-71, 2010.

	Title page
	Keywords
	Abstract
	Acknowledgements
	Contents
	Chapter one: General introduction
	Chapter two: Architectures of the proposed hybrid systems
	Chapter three: Derivation and training of hybrid systems using HMM and RNN
	Chapter four: Sample test beds and implementation results
	Chapter five: Real time application- Enzyme classification
	Chapter six: Concluding remarks and scope for further research
	Bibliography

