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ABSTRACT 

 

The geometric tortoise is one of the world‟s rarest terrestrial tortoises and is endemic 

to the Southwestern Cape, South Africa. There has been cause for conservation 

concern for Psammobates geometricus, yet as is common for many species, 

quantitative physiological research has been lacking. Considering the important role 

of red blood cells in oxygen circulation, and the role of white blood cells in immune 

resistance, blood profiles have been used across taxa as a reliable indicator of health 

status and physiological processes. Forming part of a larger chelonian conservation 

programme in South Africa, I studied the haematological changes in P. geometricus, 

to better understand their physiological responses to changes in climatic conditions. I 

sampled peripheral blood from males, females and juveniles of the largest known 

wild geometric tortoise population over four seasons (spring, summer, autumn and 

winter) from August 2000 to June 2001. Blood samples were used to make smears 

and determine red cell count (RCC), packed cell volume (PCV), haemoglobin 

concentration (Hb), red cell indices and differential white cell counts. Digital imaging 

analysis was used for the histological evaluation of stained blood smears, including 

descriptions of red and white blood cell morphologies, as well as erythrocyte 

developmental stages. In the cooler periods, geometric tortoises showed low Hb and 

mean cell haemoglobin concentration values. Erythrocytes were larger and rounder 

in winter and spring, which were likely due to hydration states. In addition, increased 

numbers of immature erythrocytes in circulation suggested an erythropoietic 

response in winter and spring. This regenerative response is common in reptiles 

emerging from periods of limited activity and is associated with increasing primary 

production following rainfall events. In the following summer and autumn, increased 

mean cell haemoglobin concentrations suggested elevated metabolic rates 

influenced by rising temperatures. This would seem pertinent to meet the extra 

physical demands associated with foraging effort in the season characterised with 

limited water and food supply, and mating behaviour, which occurs in the summer. 

Low body conditions across all cohorts provided evidence for nutrition stress, while 

erythrocyte size, shape and degenerative responses indicated dehydration stress. 

Physiological responses to seasonal influences are specific to growth or reproductive 

demands and differed for each cohort. Males experienced increased Hb, PCV, RCC, 

and erythrocyte sizes in summer and autumn, which relate to the erythropoietic-

stimulating effects of androgens. Female erythropoietic cycles in spring 

accommodate the increased metabolic demands of increased foraging needed for a 
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larger body size and egg production, and again in autumn again for vitellogenesis. 

Juvenile tortoises showed minimal differences, and could indicate species-specific 

responses to environmental changes. A spring-related erythropoiesis was observed 

in juveniles while during summer and autumn, juveniles showed less evidence for 

dehydration stress than in adults. No haemoparasites were observed in peripheral 

blood. Seven leukocyte types were identified and included heterophils, eosinophils, 

basophils, lymphocytes, plasma cells, monocytes and azurophils, in addition to 

thrombocytes. Heterophils were the most abundant leukocyte, followed by 

lymphocytes and eosinophils while monocytes and basophils were equally low; 

plasma cells and azurophils were rare. Heterophil counts were higher in spring than 

in summer and autumn, and in summer, were more abundant in females than in 

juveniles. Eosinophil counts were low in spring for all cohorts, and additionally, 

female and juvenile counts were low in summer. Eosinophils in juveniles were 

significantly lower than in adults in winter and spring. Lymphocyte numbers increased 

in autumn for all cohorts, while summer counts were higher in juveniles than in 

adults. Basophils and monocytes showed minimal seasonal changes, although 

basophil counts in females in winter tended to be high. Thrombocytes were lowest in 

spring for all cohorts. Understanding the physiological responses associated with 

seasonal changes and for each cohort is critical for effective chelonian conservation 

management. Results obtained from this study indicate a clinically healthy population 

of Psammobates geometricus and represented the first of this kind to establish 

baseline haematological reference data for this Critically Endangered tortoise 

species.  
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1 GENERAL INTRODUCTION 

 

1.1 BLOOD OF REPTILES  

Similar to the higher vertebrates, blood cells in the peripheral blood of reptiles consist 

of erythrocytes (red blood cells, RBC), leukocytes (white blood cells) and 

thrombocytes. While reptilian erythrocytes exceed avian and mammalian red blood 

cells in size, their counts are lower than those of birds and mammals (Reavill 1994). 

 

Due to their ectothermic nature, reptilian physiology (and therefore numbers and 

types of circulating blood cells) is more influenced by external, environmental 

conditions than those of endothermic vertebrates. Specific to reptile blood, certain 

cells remain pluripotent in the peripheral bloodstream, often making them difficult to 

identify. A complete evaluation of the haemogram involves determination of total red 

cell count (RCC), packed cell volume (PCV), haemoglobin concentration (Hb), white 

cell counts (total and differential) and the histological evaluation of a stained 

peripheral blood film, including interpretation of the blood cell morphology.  

 
1.1.1 Erythrocytes 

In contrast to mammalian erythrocytes, reptilian erythrocytes are true nucleus-

containing cells. Since the primary role of erythrocytes is to transport haemoglobin 

that carries oxygen to the tissues, the size, shape and volume of erythrocytes serve 

as an indication of the surface area available for gaseous exchange to meet 

respiratory demands (Hartman & Lessler 1964). The red blood cell is involved in the 

determination of PCV (an indication of erythrocyte mass), RCC (number of 

erythrocytes in circulation) and Hb (oxygen carrying capacity). Typically, reptiles have 

a lower RCC than that of birds and mammals and there is an inverse relationship 

between the size and total number of circulating erythrocytes (Saint Girons 1970; 

Frair 1977). Erythrocyte life cycle compared to that of mammals, the lifespan of the 

reptilian erythrocyte (600 – 800 days) has a long turnover rate, due to the slower 

metabolic rate of reptiles (Mader 2000).  

 

Erythrocyte morphology in blood smears is central to the haematological 

investigation. In light of the clear functional role of the red blood cells in oxygen 

transport and delivery, in particular erythrocyte size, shape, and colour become 

informative. Morphological variation is especially indicative of anaemic conditions; 

variation in red blood cell size is anisocytosis, variation in red cell shape includes 
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poikilocytosis, variation in red cell colour includes polychromasia (increased numbers 

of immature red cells) and hypochromasia (reduced haemoglobin in red cells; Pendl 

2006). 

 

1.1.2 Leukocytes 

Typically observed in the blood smear are the granulocytes and agranulocytes, 

characterised by the presence (or absence) of specific granules that identifies the cell 

lineage (Harding et al. 2005). The granulocytes include heterophils, eosinophils and 

basophils; the agranulocytes include lymphocytes, plasma cells and monocytes, 

while azurophils are considered monocytic leukocytes by most authors. Leukocytes 

perform the same roles in reptiles as in mammals, with some minor differences. The 

leukogram includes calculation of the total leukocyte count, determination of the 

differential leukocyte count, and evaluation of the overall cellular morphology. As with 

erythrocytes, manual methods for determination of total leukocyte counts are 

performed. The most common manual methods include the direct method (using 

Unopette system or Natt and Herrick solution) or the estimate method in which total 

number of leukocytes are counted in each field for ten fields on a blood smear and an 

average taken. To determine the differential leukocyte count, 100 leukocytes are 

counted and the cell type recorded to determine the relative percentage of leukocyte 

(Harding et al. 2005). The classification criteria of chelonian leukocytes vary among 

studies as some cells are not easily identified on the basis of their morphological 

differences alone. 

 

The heterophil is commonly referred to the mammalian neutrophil equivalent and is 

the most numerous leukocyte (Harding et al. 2005). While their primary role is 

phagocytosis, heterophils respond to tissue inflammation and infection (Mader 2000). 

It is common to observe all three forms (mature, immature, toxic) in the blood smear. 

 
The reptilian eosinophil behaves like that of avians (Reavill 1994) and is as distinct 

as in mammals (Mader 2000). In reptiles, they react to parasitic stimuli (external and 

blood parasites) and although a true eosinophlilic response is not observed (Reavill 

1994), it is reported that in chelonians, they act in immune response and 

phagocytose antigens (Mader 2000). 

 
The basophil is a readily identifiable cell in the reptilian blood smear and similar to 

mammals, basophils are believed to be involved in the processing of surface 

immunoglobulins and histamine release. The leukocyte showing the least seasonal 
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differences, basophils may be affected by the presence of blood parasites (Mader 

2000). 

 

The lymphocyte is often the second most abundant leukocyte in the blood smear 

(Mader 2000; Harding et al. 2005) and originates from the thymus, bone marrow, 

spleen and other lymphopoietic tissues. These cells are believed to retain their 

pluripotency while they are circulating in the blood (Saint Girons 1970). In addition, 

they produce certain immunoglobulins as well as moderate immune response. 

Lymphocyte counts are believed to be lower in males and under starving conditions 

and lymphocytosis can occur in cases of inflammation, wound healing and certain 

parasitic infections (Mader 2000). Plasma cells or plasmacytes, as in mammals, 

represent an antibody-producing B cell lymphocyte in response to a specific antigen, 

the effects of which are short-lived (microbiology glossary; 

www.library.thinkquest.org). 

 

The monocyte is typically the largest and least abundant leukocyte (Reavill 1994), 

the reptilian monocyte is similar to its mammalian counterpart, and shows little 

seasonal variation. Numbers are affected by antigenic stimulation; monocytes are 

involved in bacterial infection (Reavill 1994) and also play an active role in granuloma 

formation (Mader 2000). Azurophils have been reported in chelonian circulating 

blood, and are considered by many haematologists to represent a type of monocyte 

(Christopher et al. 1999; Knotkova et al. 2002; Dickinson et al. 2002). 

 

1.1.3 Thrombocytes 

Similar to the mammalian platelet, these cells are involved with blood clot formation, 

wound healing and thrombosis (Mader 2000).  Reptilian thrombocytes play a role in 

haemostasis (Campbell 2004). As in avian blood, reptilian thrombocytes are 

nucleated cells. 

 

While it is widely accepted that all peripheral blood cells arise from one multipotent 

haemoblast capable of differentiating in the bone marrow or spleen into the various 

blood cells, Saint Girons (1970) identifies two possibilities that postulate different 

origins. One begins with the haemoblasts for the leukocytic series on one lineage 

and for the erythrocytes on the other. Another possibility is that blood cells have three 

distinct origins: monocytes derive from a stem cell of the reticulo-endothelial system; 
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granulocytes, and thrombocytes arise from a second type of stem cell, the 

myeoblast; and finally the erythrocytes arise from the erythroblasts. 

 

1.2 FACTORS INFLUENCING HAEMATOLOGICAL PARAMETERS 

Many factors influence the haematological parameters of reptiles, including age, sex, 

season, environmental conditions, health, level of exercise and even circulating 

hormones of individuals (Frair 1977; Reavill 1994; Christopher et al. 1999; Mader 

2000; Dickinson et al. 2002). 

 

Within species, haematological differences have been reported between juveniles 

and adults (Mader 2000; Knotek et al. 2006; Casal & Oros 2007), and are related to 

increased growth before the onset of sexual maturity (Kuchling 1999). Differences 

also arise between males and females (Gardner & Gorshein 1973; Frair 1977) and 

are related to differing reproductive hormones, strategies and timing (Anderson et al. 

1997; Henen et al. 1998; Peterson 2002). Owing to their ectothermic nature, 

environmental and seasonal differences in blood values have been widely recorded 

for chelonian species (Anderson et al. 1997; Christopher et al. 1999; Knotek et al. 

2006). Dickinson (2002) attributed seasonal haematology differences in the Desert 

tortoise to rainfall, forage availability as well as physiological condition. The effects of 

environmental conditions including polluted habitats on haematology have been 

studied in freshwater turtles (Ferronato et al. 2009; Tosunoglu et al. 2011). Oyewale 

et al. (1998) compared haematological differences between two species in identical 

environmental conditions (Kinixys erosa & Gopherus agassizii). Haematological 

differences in captive chelonians have also been studied in several species 

(Martinez-Silvestre et al. 2001; Brenner et al. 2002; Metin et al. 2008).  

 

Compared to mammals, the concentration of reptile blood constituents and plasma 

fluctuate more due to feeding, temperature changes and water availability (Dessauer 

1970). Tortoises are opportunistic osmoregulators, and under drought conditions, 

body mass and total body water volume declines. Consequently, blood plasma 

osmolality increases (a condition called haemoconcentration), and in G. agassizii 

(Peterson 1996), osmolality increased to the highest known levels for terrestrial 

reptiles. Rainfall events have been shown to increase tortoise metabolic rates 

(Henen et al. 1998), body mass, total body water volumes, and rehydrate blood 

plasma (Peterson 1996). Preston (1960) described fluctuations of haemodilution and 

haemoconcentration in the plaice, frog and turtle Chrysemys picta, and have been 

attributed to seasonality and more importantly, temperature. 
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Haematology can directly reflect the physiological condition of the animal, and has 

thus been used as an important diagnostic tool. The haematological effects of 

anaemia (Reavill 1994; Campbell 2004), malnutrition (Tavares-Dias et al. 2009), 

disease, chronic (Frye 1991) and parasitic infections (Knotkova et al. 2005) have 

been studied among reptiles and can readily be identified in the haemogram. 

 

1.3 BLOOD PARASITES 

In addition to describing blood cell morphology and counts, the complete haemogram 

involves the identification of blood parasites that may be present in the blood smear. 

Reptilian erythrocytes play host to a variety of protists, prokaryotic and viral 

infections, all occurring at various stages of the parasite‟s life cycle (Davies & 

Johnston 2000).  

 

The Apicomplexa is well represented in Chelonia (Mihalca et al. 2008). Common 

examples include Plasmodium spp., a common genus of intracellular parasites in the 

blood of reptiles. Coccidian parasites, especially haemogregarines such as 

Hepatozoon spp., Haemogregarina spp. are intracellular blood parasites typical to 

chelonians (Lainson & Naiff 1998), and have been described in South African 

Testunids (Cook et al. 2009). In addition, haemoflagellates such as Trypanosoma 

spp. infect a wide range of reptiles. Many of the blood parasites require blood-

sucking vectors for transmission, and ticks are common ecto-parasites to almost all 

tortoise species.  

 

 

1.4 GEOMETRIC TORTOISES AND STUDY OBJECTIVES 

Southern Africa has five genera of Testunids, or land tortoises (Chersina, Homopus, 

Kinixys, Geochelone and Psammobates) and 11 endemic species (Boycott & 

Bourquin 2000). South Africa has the richest tortoise diversity of any country, having 

five genera and 13 species, with seven being endemic to South Africa. Four genera 

and eight species of tortoise are found in the Northern and Western Cape Provinces 

alone (Branch 1998; Boycott & Bourquin 2000). The genus Psammobates comprises 

three species: P. geometricus, P. oculiferus, and P. tentorius (Boycott & Bourquin 

2000). Psammobates geometricus (Linneaus, 1758), the geometric tortoise, has a 

limited distribution and is found only in the southwestern region of the Western Cape 

Province, (Boycott & Bourquin 2000). At present, three regions support geometric 
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tortoise populations, the Southwestern Coastal Lowlands, Worcester-Tulbagh Valley, 

and Ceres Valley. These populations are isolated from one another by natural 

barriers such as mountain ranges (Baard & Mouton 1993). 

 

Psammobates geometricus is endemic to the vegetation type known as renosterveld. 

West coast renosterveld forms part of the Cape Floristic Kingdom, and experiences a 

typical Mediterranean climate (hot and dry summers followed by cool and wet 

winters). This renosterveld is characterised by mid-dense to closed and small-leaved 

evergreen shrubs of medium height, with regular clumps of broad-leaved, tall shrubs 

(Low & Rebelo 1996). Preferring well-drained, relatively open renosterveld areas of 

medium height and within 350 - 600 mm winter rainfall regimes, this close 

association of P. geometricus to renosterveld may be due to the availability of 

specific food plants, as geometric tortoises may have a specialized diet (Baard 1995; 

Boycott & Bourquin 2000). Its winter diet consists of annual grasses, geophytes and 

herbaceous taxa. In summer, it prefers perennial grasses, shrub and succulent 

components (Baard 1995). Currently, approximately 3% of the original renosterveld 

remains (Kemper et al. 2000), with the largest areas at the Elandsberg Nature 

Reserve and Tygerberg Hills. Renosterveld grows on soils highly suitable for 

cultivation and the conversion of renosterveld to agriculture is believed to be the 

major factor for the decline in geometric tortoises (Baard 1993).  

 

As a result of such habitat and food specificity, Psammobates geometricus now 

appears in Appendix 1 on CITES, the South African Red Data Book of reptiles and 

amphibians (Baard 1993), and has moved from being listed as Vulnerable in 1982 to 

Endangered in the IUCN Red Data Book (IUCN 2011).  In an attempt to protect the 

declining populations of this species, several nature reserves were established for 

this purpose in the southwestern Cape between 1971 and 1986 (Baard 1991). 

Despite increased legal protection of the geometric tortoise, their distribution is 

diminishing and has been attributed to many factors including increased predator 

pressure, with habitat destruction (through agriculture, spread of alien vegetation or 

uncontrolled burns) being the major cause of reduced numbers (Baard 1993). The 

continued decline of the species and threat to its environment resulted in the species 

being elevated to Critically Endangered in the most recent assessment (Baard & 

Hofmeyr, in press). 

 

Physiological research on P. geometricus has been minimal, whilst this knowledge 

could prove critical to any conservation practice.  In the wild, blood profiles provide a 
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minimally invasive tool that can support health evaluations, and baseline reference 

values are critical to establish the health of animals (Dessauer 1970; Frye 1991; 

Campbell 2004; Sykes & Klaphake 2008). The study objective of this investigation is 

to evaluate the effects of season and cohort on haematological values of wild 

geometric tortoise individuals under natural conditions to better understand their 

physiological responses to seasonal environmental fluctuations in the largest known 

remaining population. 
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2 HAEMATOLOGY 

 

2.1 INTRODUCTION 

The health status of reptiles is typically assessed through a physical examination and 

an evaluation of haematological and blood chemical values, which are compared to 

reference intervals, representing baseline values of healthy individuals (Jacobson 

2007). Such baseline health values are presently lacking for most South African 

chelonian species. In reptiles, these reference intervals show much variation 

between and within species, with many factors – both intrinsic and extrinsic – making 

it difficult to establish reference blood intervals for any species. Sex, age, and 

nutritional status of individuals are important intrinsic factors (Mader 2000). Some 

extrinsic factors are seasonal effects, including temperature changes, hydration state 

and diet availability (Jacobson 2007). Habitat, captivity and method of blood sample 

collection may also influence haematological values (Lopez-Olvera et al. 2003; 

Jacobson 2007). Deviations from expected values for healthy individuals can be used 

to assess the impact of stresses such as habitat loss (Brenner et al. 2002), drought 

(Christopher et al. 1999) and infectious diseases (Tavares-Dias et al. 2009) on wild 

tortoise and turtle populations.  

 

Due to its easily diagnostic application, chelonian haematological research has 

increased in recent years, with most studies being undertaken on American, 

European and Asian turtle and tortoise species (Bolten & Bjorndal 1992 ; Knotkova et 

al. 2002; Perpinan et al. 2008). Results of such studies report that blood values 

change with an individual‟s age and sex. For most species, males show higher 

packed cell volumes, haemoglobin concentrations and/or red cell counts (Frair 1977). 

This condition - common among vertebrates (Gardner & Gorshein 1973) - is 

attributed to the erythropoiesis-stimulating effects of testosterone and other 

androgenic steroids (Zitzmann & Nieschlag 2004). In a long-term study of green 

iguanas, Knotek et al. (2006) showed that as age increases, packed cell volume and 

red cell counts decrease as haemoglobin concentrations and computed red cell 

indices increase. Casal & Oros (2007) noted significant differences between adult 

and juvenile red blood cell count and packed cell volume in green turtles. Whilst this 

pattern may be typical, studies with small sample sizes reported no differences in 

blood values between males and females, or adults and juveniles (Bolten & Bjorndal 

1992; Martinez-Silvestre et al. 2001), which highlight the importance of sample size 

in quantitative study design. 
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In addition to age and sex, environmental conditions are known to affect chelonian 

blood values, owing to their ectothermic nature (Reavill 1994; Mader 2000). As 

warmer temperatures facilitate an increase in ectotherm activity, metabolic changes 

are required to accommodate the associated raised energy demands (Kuchling 

1999). This can be measured by changes in the haemogram, since erythrocytes 

function primarily in oxygen delivery (Hartman & Lessler, 1964). As blood plasma 

volume is a function of the animal‟s hydration state, rainfall patterns are also closely 

associated to changes in blood profiles. In addition to reproductive cycle, Christopher 

et al. (1999) attributed most haematological variations to the availability of food and 

water in the Desert tortoise, Gopherus agassizii. In a further study on G. agassizii, 

Dickinson et al. (2002) found that rainfall accounted for most variation in seasonal 

and annual haematological values. Surveying the literature on chelonian 

haematology, Frair (1977) noted that for Chelonia in general, packed cell volume and 

red cell count are higher in winter than summer, which he attributed to the 

seasonality associated with erythropoiesis. This is echoed by Hidalgo-Vila et al. 

(2007), who proposed that wide mean cell volume ranges in Mediterranean pond 

turtles (Mauremys leprosa) could be explained by seasonal differences in erythrocyte 

volume, whereas in a comprehensive study on packed cell volumes of G. agassizii, 

Peterson (2002) attributed the seasonal PCV fluctuations to what he termed the 

hydration hypothesis. 

 

To my knowledge, the only previous study to present blood values on P. geometricus 

was in 1938 – a cytological study on Testudo geometrica (Bernstein) and no previous 

study has attempted to assess the possible effects of age, gender, or season 

thereupon. The aim of this investigation was to establish baseline reference 

haematological values for males, females and juveniles of this Critically Endangered 

species and to determine how these cohort values change with seasonal fluctuations 

in environmental conditions.   

 

2.2 MATERIALS AND METHODS 

2.2.1 Sampling procedure 

Blood samples were obtained over four seasons at Elandsberg Nature Reserve (3 

800 ha; 33° 26‟ S; 19° 01‟ E) in the southwestern Cape, South Africa, from 26 to 42 

healthy, free-ranging geometric tortoises (including males, females and juveniles) per 
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season (Table 2.1). Weather data for the study period were obtained from AgroMet-

ISCW for the nearest weather station, De Hoek (33.15° S, 19.03° E), 25 km north of 

Elandsberg, with a similar orientation to the Elandsberg mountain range. 

 

Table 2.1  Field trip dates and sample sizes of female, male and juvenile geometric 

tortoises at Elandsberg Nature Reserve, South Africa. 

 

Season Dates (2000-2001) Female Male Juvenile Total 

Spring 30 August - 16 September 15 11 5 31 

Summer 11-19 December 11 8 7 26 

Autumn 2-10 April 10 12 5 27 

Winter 19-27 June 16 13 13 42 

 

In the field, I weighed individuals to the nearest 0.1 g with an Ohaus digital balance 

and used vernier callipers to record body parameters to the nearest 0.1 mm. I 

recorded: straight carapace length (SCL) from the nuchal to the supracaudal scute, 

shell width (SW) across marginal scutes six to seven, and shell height (SH) over the 

third vertebral scute. I used these measurements to calculate shell volume (SV, cm3) 

from a modified formula for an ellipsoid as derived by Loehr et al. (2004): SV = π * 

SCL * SH * SW / 6000. Body mass (BM) fluctuations can be used to assess changes 

in body condition (Hailey 2000), but BM is often scaled to body size to allow direct 

comparisons among individuals of different sizes (Jakob et al. 1996). I thus 

calculated a body condition index (BCI-ratio) as BM / SV, as described by Loehr  et 

al. (2007). This index uses a three-dimensional measure of body size as opposed to 

a one-dimensional measure such as SCL, as is commonly used (Jacobson et al. 

1993). Additionally, I calculated regression equations for mass-log10 on SV-log10 for 

each cohort in order to use residuals as an indicator of body condition (BCI-residuals; 

Green 2001). Males, females and juveniles were distinguished by external 

morphology (Fig. 2.1), as described by Baard (1990). Before release at its place of 

capture, each tortoise received a unique number by filing shallow notches in specific 

marginal scutes, as in Honegger (1979). 

 

I sampled blood from unanaesthetised tortoises immediately after capture to limit 

stress-induced changes to blood parameters. The mass of the animals determined 

the maximum blood volume sampled and I took care not to exceed 0.5% of the 

animal‟s field body mass (a conservative veterinary standard). I used a 25 G needle 

with a 1 or 2 ml syringe to collect blood from either the jugular vein or carotid artery 
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(Fig. 2.2). Sampling normally took 1 or 2 minutes and I aborted attempts if an 

adequate sample has not been obtained in approximately 5 minutes. The animals 

were kept under observation for 24 hours and during the dry season, I provided 

access to drinking water before returning the animals to the capture site.  

 

   

Figure 2.1  External morphology of Psammobates geometricus cohorts: a) female, b) 

male and c) juvenile. 

 

 

Figure 2.2  Blood sampling from the jugular vein of Psammobates geometricus. 

 

After blood sampling, a 0.2 ml aliquant of whole blood was kept on ice for 

haematological analyses, which were completed within 24 hours of sampling. Two 

heparinised microhaematocrit tubes were filled with blood and centrifuged for 10 

minutes at 7000 rpm to determine packed cell volume (PCV). Red blood cells  were 

counted (RCC) in duplicate with a haemocytometer, and haemoglobin concentration 

(Hb) was measured with a BMS haemoglobinometer. I used dual cell analysis for 

haemoglobin when concentrations were less than 4 g/dL. A correction factor of 0.58 

(determined experimentally) was then used to correct dual cell values. 

 

I calculated red blood cell indices from standard formulae using RCC, PCV and Hb 

values by the method in Duncan et al. (1994) as follows: 

Mean cell volume (MVC) (femtolitres) = (PCV x 10) / RCC (millions); 

A. B. C. 
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Mean cell haemoglobin (MCH) (picograms) = (Hb x 10) / RCC (millions); 

Mean cell haemoglobin concentration (MCHC) (g / dL) = (Hb x 100) / PCV.  

 

2.2.2 Statistical analysis 

I used SigmaStat (SPSS Inc., Chicago, U.S.A. version 2.03) to test each physical 

measurement and haematological parameter for normality and equal variance to 

ascertain if the data satisfied the requirements for parametric tests. Mean and 

standard deviation were calculated for parametric data. I used paired t-tests to 

compare monthly rainfall and temperature data for 2000 and 2001. To test for the 

effects of season, cohort and a possible interaction of the two factors, I performed 

two-way analysis of variance (ANOVA) on morphometric measurements, BCI‟s, and 

the six haematological parameters. Student-Newman-Keuls tests were used as 

multiple post-hoc comparisons to identify specific differences between groups. Data 

for SCL and SV failed normality and/or equal variance. In these instances, I still 

presented two-way ANOVA results after cross-checking if results were similar when 

using multiple one-way ANOVAs with sequential Bonferroni corrections. I used linear 

regressions to assess the possible effects of body condition (BCI-ratios) on blood 

parameters within cohorts and within seasons. All differences were considered 

statistically significant at values of P ≤ 0.05.  

 

2.3 RESULTS 

2.3.1 Weather conditions 

Typical of the mediterranean-type climate experienced at the study site, most rain fell 

from late autumn to early spring, with annual rainfall being more than one and a half 

times higher in 2001 than in  2000 (Fig. 2.3a).  Yet, rainfall did not differ significantly 

between the two years (t11 = 1.87, P = 0.089). Similarly, minimum and maximum 

temperatures between the years did not differ (P > 0.19; Fig. 2.3b). During the spring 

sampling period, September 2000, rainfall was high (117 mm) and temperatures 

were mild (Tmax and Tmin = 20.2 and 9.1°C). Subsequently, rainfall decreased and 

temperatures increased toward summer sampling in December (rain=14 mm; Tmax 

and Tmin = 30.4 and 15.5°C). Rainfall remained low and the first substantial autumn 

rains fell during the first week of autumn sampling (April rainfall = 33 mm). 

Temperatures during autumn sampling were higher than during spring, but lower 

than during summer (Tmax and Tmin = 25.3 and 14.9°C). Winter sampling was 

preceded by high rainfall in May with drier conditions (41 mm) and lower 

temperatures (Tmax and Tmin = 18.8 and 8.0°C) in June. 
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Figure 2.3  Weather data captured at De Hoek weather station showing (a) monthly 

rainfall (mm) and (b) maximum and minimum temperatures (°C) in 2000 and 2001. 

Annual rainfall for each year is also indicated. 

 

 
2.3.2 Body size and condition indices 

Psammobates geometricus showed sexual size dimorphism with females being 

larger than males, and both sexes being larger than juveniles (Fig. 2.4). These size 

differences were valid for SCL (F2,113 = 367, P < 0.001; Fig. 2.4a), SV (F2,113 = 325, P 

< 0.001; Fig. 2.4b) and BM (F2,114 = 352, P < 0.001; Fig. 2.4c). Mean body size of the 

cohorts did not differ among season with respect to SCL or SV (both P > 0.49; Table 

2.2). While there was an interaction of cohort and season for SCL (F6,113 = 2.48, P = 

0.027), but not for SV (P = 0.09), the within cohort post hoc comparisons for SCL 

were not significant. Body mass changed with season (F3,114 = 5.75, P = 0.001; Table 

2.2), with an interaction between cohort and season (F6,114 = 2.50, P = 0.026). 

Overall, the tortoises weighed heavier in winter, spring and summer than in autumn, 

but within cohorts, seasonal mass changes were significant for females only and not 

for males and juveniles. Winter, spring and summer masses of females were higher 

than in autumn, and their winter mass exceeded also their summer mass. 
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Figure 2.4  Body size as carapace length (a), shell volume (b) and body mass (c), 

and condition index (d) based on ratios (mean  SD) of Psammobates geometricus 

cohorts measured at the Elandsberg Nature Reserve from 2000 to 2001. Sample 

sizes for juveniles, males and females, respectively, were 30, 44 and 51, except 

females had 52 samples for mass. 

 

 

The BCI ratios of geometric tortoises were not affected by cohort (P = 0.303; Fig. 

2.4d), but showed a strong seasonal change (F3,113 = 60.8, P < 0.001; Table 2.2). 

The interaction between the two factors just failed significance (F6,113 = 2.17, P = 

0.051). Similar to body mass changes, BCI‟s were higher in winter, spring and 

summer than in autumn. However, in contrast to body mass results, the seasonal 

pattern for BCI applied to females, males and juveniles. Regressions of mass-log10 

on SV-log10 for geometric tortoise cohorts did not always meet parametric 

assumptions but the BCI-residuals nevertheless gave similar results to BCI‟s based 

on ratios (cohort: P = 0.22, season: F3,113 = 55.7, P < 0.001, interaction: P = 0.40).  

 

 

 

 

 



Chapter 2: Haematology 

 15 

Table 2.2  Body size and condition of juvenile (J), male (M) and female (F) 

Psammobates geometricus expressed as means, standard deviation and sample 

sizes (n) for straight carapace length (SCL), shell volume (SV), body mass, and body 

condition index (BCI) during the four seasons of the study from 2000 to 2001. 

 

 

2.3.3 Effect of body condition on blood values 

Regression analysis showed that body condition influenced the PCV (F1,120 = 4.05, P 

= 0.046, r2 = 0.033) and RCC (F1,121 = 6.03, P = 0.015, r2 = 0.047) of geometric 

tortoises, but r2 values were low. Within cohorts, regressions were significant only for 

male RCC (F1,42 = 5.54, P = 0.023, r2 = 0.117), and within seasons, regressions were 

significant only for RCC in autumn (F1,25 = 8.62, P = 0.007, r2 = 0.256). 

 

2.3.4 Effects of cohort and season on blood values 

Packed cell volumes ranged from 13.9% to 27.1% for juveniles, 15.4% to 32.1% for 

males, and 16.6 to 27.6% for females. Packed cell volumes below 20% were 

recorded in all seasons, although the lowest values were recorded in autumn and 

winter. Both cohort (F2,111 = 13.48, P < 0.001) and season (F3,111 = 2.72, P = 0.048) 

influenced the PCV of geometric tortoises (Fig. 2.5a), but there was no interaction 

between cohort and season (P = 0.29). Males had a higher PCV than females and 

juveniles had, while female and juvenile PCVs did not differ. Post hoc tests showed 

  Spring Summer Autumn Winter 

SCL (mm) J 66.1 ± 12.3 (5) 75.2 ± 7.7 (7) 76.2 ± 12.8 (5) 72.3 ± 8.4 (13) 

SCL (mm) M 108.5 ± 3.1 (11) 106.8 ± 5.2 (8) 111.4 ± 6.5 (12) 108.1 ± 5.7 (13) 

SCL (mm) F 124.9 ± 4.8 (15) 118.0 ± 10.4 (10) 119.4 ± 10.9 (10) 125.4 ± 5.3 (16) 

              

SV (cm
3
) J 75.8 ± 33.7 (5) 110.6 ± 31.2 (7) 116.2 ± 47.6 (5) 99.6 ± 28.9 (13) 

SV (cm
3
) M 254.4 ± 19.9 (11) 236.7 ± 29.6 (8) 266.9 ± 35.4 (12) 244.4 ± 38.1 (13) 

SV (cm
3
) F 457.5 ± 58.9 (15) 404.8 ± 96.7 (10) 415.4 ± 109.7 (10) 467.5 ± 52.5 (16) 

              

Mass (g) J 76.2 ± 33.8 (5) 105.7 ± 32.6 (7) 86.3 ± 29.1 (5) 100.8 ± 30.4 (13) 

Mass (g) M 246.2 ± 24.1 (11) 239.1 ± 34.1 (8) 210.0 ± 41.9 (12) 242.1 ± 34.5 (13) 

Mass (g) F 437.4 ± 64.7 (15) 412.5 ± 91.5 (11) 344.4 ± 81.6 (10) 464.6 ± 47.3 (16) 

              

BCI (g cm
-3

) J 1.00 ± 0.04 (5) 0.95 ± 0.05 (7) 0.76 ± 0.08 (5) 1.01 ± 0.05 (13) 

BCI (g cm
-3

) M 0.97 ± 0.04 (11) 1.01 ± 0.03 (8) 0.78 ± 0.08 (12) 0.99 ± 0.04 (13) 

BCI (g cm
-3

) F 0.96 ± 0.08 (15) 1.02 ± 0.04 (10) 0.84 ± 0.09 (10) 1.00 ± 0.06 (16) 
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no difference among seasons. When I forced interaction effects for the ANOVA, the 

differences among cohorts were limited to summer and autumn, and male PCVs 

were higher in summer and autumn than in winter. 

 

Haemoglobin concentrations ranged from 4.2 to 7.7 g/dL for juveniles, 3.5 to 9.7 g/dL 

for males, and 5.2 to 9.0 g/dL for females. In spring, Hb of only two juveniles were 

sampled. Haemoglobin concentration showed cohort (F2,109 = 11.94, P < 0.001) and 

seasonal (F3,109 = 8.39, P < 0.001) differences with no interaction between the two (P 

= 0.39) (Fig. 2.5b). Male Hb was highest and female Hb higher than that of juveniles, 

with Hb of cohorts combined being lowest in winter. Within-group analyses (forced 

interaction) revealed that the overall seasonal trend applied to males only, with 

females having higher Hb values only in summer and spring than in winter, and 

juveniles showing no seasonal Hb differences. Furthermore, there were no cohort 

differences in spring and winter, whereas male Hb concentrations in summer and 

autumn were highest, with no difference between female and juvenile concentrations.  

 

Red blood cell counts ranged from 0.29 to 0.70 million/uL in juveniles, 0.32 to 0.89 

million/uL in males, and 0.42 to 0.81 million/uL in females. Cohort influenced RCC  

(F2,112 = 9.16, P < 0.001). Overall, male RCC was highest, with female and juvenile 

RCCs being similar. The RCC of geometric tortoises just failed significance for 

season (F3,112 = 2.41, P = 0.071) (Fig. 2.5c); summer RCC tended to be higher than 

spring RCC. Similarly, an interaction effect just failed significance (F6,112 = 1.98, P = 

0.075); males had higher RCCs than females and juveniles only in summer and 

autumn, and male RCCs were higher in summer and autumn than in spring and 

winter.  
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Figure 2.5  Seasonal values (mean  SD) for packed cell volume (a), haemoglobin 

concentration (b) and red  blood cell count (c) of Psammobates geometricus 

juveniles, males and females at Elandsberg Nature Reserve from August 2000 to 

June 2001.  

 

 

2.3.5 Effect of cohort and season on RBC indices 

Mean cell volume ranged from 341.9 to 547.9 fL in juveniles, 313.6 to 651.3 fL in 

males, and 322.9 to 580.8 fL in females. Mean cell volume did not differ among 

cohort (P = 0.85), but changed seasonally (F3,110 = 8.80, P < 0.001; Fig 2.6a) with no 

interaction of cohort and season (P = 0.27). Overall, geometric tortoise MCV was 

highest in spring with no differences among the other seasons. Within-cohort 

evaluation (forced interaction) showed that the seasonal pattern applied only to 
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males, whereas spring MCV of females exceeded only winter and summer values, 

and MCV of juveniles did not differ among season.  
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Figure 2.6  Seasonal changes (mean  SD) for mean cell volume (a), mean cell 

haemoglobin (b) and mean cell haemoglobin concentration (c), of Psammobates 

geometricus juveniles, males and females at Elandsberg Nature Reserve from 

August 2000 to June 2001.  

 

 

Mean cell haemoglobin ranged from 98.9 to 150.0 pg in juveniles, 89.8 to 201.3 pg in 

males, and 97.3 to 206.3 pg in females. Mean cell haemoglobin (Fig. 2.6b) showed a 

seasonal response (F3,109 = 4.64, P = 0.004) and was not affected by cohort (P = 

0.089), with no interaction between the two factors (P = 0.084). For combined 

cohorts, spring MCH values exceeded those in winter but not those in autumn or 
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summer. By forcing interactions, the results indicated that male MCH was higher in 

spring than in all other seasons, while for females it was lowest in winter, and 

juveniles showed no seasonal change. Furthermore, the MCH of males exceeded 

that of juveniles in spring. 

 

Mean cell haemoglobin concentration ranged from 25.85 to 35.12 g/dL in juveniles, 

22.9 to 34.0 g/dL in males, and 25.83 to 35.84 g/dL in females. In geometric 

tortoises, MCHC showed seasonal changes (F3,107 = 6.65, P < 0.001; Fig. 2.6c), just 

failed significance for cohort (P = 0.077),  and showed no interaction between the two 

factors (P = 0.36). Overall, summer MCHC was higher than winter and autumn. 

Within-cohort evaluation (forced interaction) indicated that for females, MCHC was 

highest in summer, for males, spring  MCHC was higher than winter values, whilst 

juveniles showed no seasonal change in MCHC. 

 

2.4 DISCUSSION 

2.4.1 Effect of season 

Ectotherms are defined as being dependent on external heat sources for 

thermoregulation, in contrast to endotherms (mammals and birds), which can adjust 

their body temperatures by altering metabolic rates. Reptilian physiological and 

behavioural mechanisms regulate activities within their preferred optimum 

temperature range, and in temperate climates, metabolic activities may fluctuate with 

seasonal variations (Kuchling 1999). Thermoregulation is an important driving factor 

upon ectothermal physiological processes, as noted in many species that practice 

hibernation, aestivation or brumation (Jacobson 2007).  

 

There is evidence that P. geometricus adapts its blood physiology in response to 

environmental conditions, as seasonality showed significant effects on most blood 

parameters tested in this study. During the cold winter months, lowest haemoglobin 

concentration and mean cell haemoglobin concentrations were observed, implying a 

reduction in oxygen transport which is indicative of slower metabolic rates (Jacobson 

2007). In concordance with this trend, geometric tortoise mean cell haemoglobin  

concentrations were higher in the warmer months of summer and spring. Following 

winter rainfall, and the resulting abundance of food taxa (Balsamo et al. 2004), 

elevated MCHC in spring and summer suggests an erythropoietically-enabled  rise in 

metabolic activity, in order to maximise increased foraging opportunities.  
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In conjunction to the effects of varying temperature ranges, seasonality also brings 

about a change in water availability. Seasonal hydration fluctuations can be observed 

through variations in packed cell volume, as plasma volume is influenced by 

hydration state. Significant correlations between packed cell volume and level of 

dehydration and malnourishment are reported for tortoises (Christopher et al. 1999) 

and turtles (Tavares-Dias et al. 2009). Geometric tortoise PCV, however,  showed 

little evidence of dehydration in the dry season, This is typical in certain arid or semi-

arid tortoises, which have evolved  anatomical and physiological adaptations 

enabling them to thrive under water-restricted conditions. Notably, Jacobson (2007) 

reports that tortoises have proportionally, the largest urinary bladder, which serves as 

a storage site for water and in which osmoregulatory ions are concentrated during 

periods of drought. This anhomeostasis of body plasma is observed and described in 

the Desert tortoise (G. agassizii, Peterson 1996; Peterson 2002).  Since packed cell 

volumes are also affected by red cell count and size, it is difficult to identify 

responses to isolated factors. Rehydration after rains in autumn may cause a 

haemodilution – resulting in lower PCV – however, there is little evidence for this in 

P. geometricus, but this may be found to be the case in the few individuals sampled 

shortly after the rains.  

 

Whilst rainfall itself may not bear a direct effect on blood values, it does influence the 

availability of herbaceous food plants (Joshua et al. 2005), and hence nutritional 

states – or condition of tortoises. This can be observed by seasonal changes of 

geometric tortoise body mass, being lowest in autumn, the driest sampling period. It 

is interesting to note that once mass was scaled to size (body condition), the same 

pattern applied to each cohort. Assessing body condition in greek tortoises (Testudo 

spp.) among different sites, Willemsen & Hailey (2002) report that while differences in 

body condition between sites in spring were related to activity and thermoregulation, 

differences in summer and autumn were related to food availability. Hailey (2000) 

advises that seasonal variation in condition index for males, females and juveniles be 

interpreted in relation to activity of these cohorts, including reproductive 

requirements.  

 

2.4.2 Effect of cohort 

The reproductive state of tortoises is an important intrinsic factor on blood 

physiology, with timing of seasonal reproduction being influenced by external cues 

(such as temperature or water availability; Kuchling 1999). Geometric tortoise mating 

season has been observed to occur in the summer months (Hofmeyr & Henen, 
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unpublished data). In this study, the most pronounced seasonal blood value 

differences occured in summer and autumn in males. Packed cell volume, red blood 

cell count and haemoglobin concentration were highest in males in these dry months, 

with no significant differences between females and juveniles. The higher male 

haematological values are common in vertebrates, and while research has been 

undertaken on mammalian species, the mechanisms apply in reptiles also. The 

erythropoietic-stimulating effects of androgens (Gardner & Gorshein 1973) has been 

ascribed to the stimultion of erythropoietin, promotion of erythroid formation in bone 

marrow, enhancement of iron incorporation in red blood cells and the enhancement 

of haemoglobin synthesis (Zitzmann & Nieschlag 2004). The increased PCV, Hb and 

RCC in males in these summer months, could be attributed to increased androgenic 

hormones during the mating period. This suggests male erythropoiesis occurs to 

accommodate raised metabolic demands of mate-seeking and male aggression 

during the mating period. 

 

Seasonal blood values in female geometric tortioses, however, follow a different 

pattern. Female haemoglobin concentrations were high in spring and summer, whilst 

mean cell haemoglobin concentration was highest in the summer months. Mean cell 

volume was high in spring, and in contrast to males, appears to rise again in autumn. 

Van Bloemestein (2005) noted that geometric tortoise females in spring were more 

active than males, moving more often and more randomly, and related this 

movement pattern to foraging activity. It is likely that erythropoiesis in female 

geometric tortoises is necessary to facilitate the extra metabolic requirements of 

foraging activities to satisfy higher nutritional demands associated with larger body 

size and egg production. Geometric tortoises mate in the summer and females nest 

from late winter to early summer (Hofmeyr et al. 2006). A new vitellogenic cycle 

starts in spring with rapid enlargement of follicles in autumn, in preparation for 

ovulation after the first autumn rains (Hofmeyr & Henen, unpublished data). The 

increased MCV in autumn suggests that females may experience a second phase of 

erythropoiesis to accommodate their reproductive requirements. 

 

The blood values of juvenile geometric tortoises showed no significant seasonal 

effect which appears to be typical for juveniles in other chelonians (Anderson et al. 

1997). Nevertheless, several studies indicated that blood values of juveniles differ 

from that of adults. In a long-term study of green iguanas, Knotek et al. (2006) 

showed that with aging, packed cell volume and red cell counts decrease, as 

haemoglobin concentrations and computed red cell indices increase. Casal & Oros 
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(2007) found also that adult green turtles displayed lower packed cell volumes than 

juveniles, while in this species, adults had higher red cell counts than those of 

juveniles. Differences between adults and juveniles could be attributed to reduced 

energy requirements associated with smaller body size, as well as the absence of 

reproductive stresses in juveniles (Kuchling 1999; Jacobson 2007). For juvenile 

geometric tortoises, only their Hb concentration was lower than that of males and 

females. Juvenile PCV and RBCC did not differ from female values, and their RBC 

indices did not differ from either adult sex. The close correspondence of juvenile 

blood values with adults, may reflect species specific responses to environmental 

conditions, or it may be a consequence of low juvenile sample sizes, particularly in 

spring. 

 

Geometric tortoise haematology appears to follow similar patterns to those reported 

for other studied tortoises. Higher male PCV, Hb and RCC are recorded for land 

tortoises Gopherus agassizii, Kinixys erosa, Testudo graeca and T. hermanii 

(Oyewale et al. 1998; Christopher et al. 1999; Peterson 2002) as well as aquatic 

turtle species (Anderson et al. 1997; Hidalgo-Vila et al. 2007). Krasilnikov (1963, as 

quoted in Frair ,1977) reports that seasonal variations in both PCV and RCC may 

result from fluctuations in erythropoiesis, quoting a study of 18 reptilian species that 

included tortoises, where it was found that the peak of erythropoiesis occur in 

summer with a lesser spring peak after hibernation when feeding began.  

 

Psammobates geometricus haematological values fall within ranges described for 

other  tortoise species. Red blood cell values for Kinixys erosa, Gopherus agassizii 

(Oyewale  et al. 1998), and Testudo marginata (Martinez-Silvestre et al. 2001), 

respectively, include average PCV of 30, 29 and 23%; Hb of 10, 9.7 and 6.2 g/dL; 

and RCC of 0.7, 0.5 and 0.6 million/uL. This suggests a relatively healthy P. 

geometricus population, as low PCV, Hb and RCC values could be indicative of 

malnourishment, dehydration or sickness (Frair 1977; Christopher et al. 1999; 

Tavares-Dias et al. 2008). Baseline studies of natural wild populations have proven 

to be important in assessing the physiological state of individuals, which is 

particularly useful in captive or farming programs (Willemsen et al. 2002; Knotkova et 

al. 2005). 
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2.5 CONCLUSIONS 

Haematological evaluations have been used widely as successful tools in 

determining health status of a variety of chelonian species. A range of external 

conditions (temperature, seasonal patterns, rainfall) and internal factors (age, sex, 

reproductive state) influence tortoise physiology, and such associated changes are 

reflected in the haemogram. 

 

The haematology of geometric tortoises changed with season, and environmental 

fluctuations explained these changes only partially. The physiological responses of 

males, females and juveniles differed substantially and can be related to reproductive 

needs. Thus, baseline health studies should assess cohorts separately, and 

seasonal variations should be considered.  

 

To ensure that baseline value ranges are truly meaningful, researchers should 

maintain standardardised methods of laboratory and analytical technique, as well as 

consider the important role of the environmental and individual circumstances on 

blood parameters. This is made difficult by the plasticity of chelonian physiological  

strategies and intricate complexity of environmental influences thereupon.  
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3 RED BLOOD CELL HISTOLOGY 

 

3.1 INTRODUCTION 

A thorough haematological evaluation includes an assessment of red and white 

blood cell counts and morphology (Campbell 2004). The sampling of blood to make 

blood smears is minimally invasive and easily performed in wild populations. Blood 

smears have been used with success to indicate an animal‟s health, and can reflect 

the state of physiological processes (Arikan & Cicek 2010). In the clinical application 

of reptilian histological examinations, the polychromatic Romanowsky stains have 

been used with success to identify the different cell lineages in haemopoietic tissues 

(Couture & Hafer 2004). Although histological techniques for reptiles are similar to 

those used for mammals, slight differences exist, due to nucleation of reptilian 

erythrocytes and pluripotency of thrombocytes (Pendl 2006). External environmental  

factors such as temperature, and internal factors that influence the activity level of 

individuals, e.g., hibernation or breeding status, have great effects on the physiology 

of ectotherms, which is reflected in the wide range of interspecific and intraspecific 

variation of reptilian blood cell morphology (Campbell 2004; Strik et al. 2007).  

 

Wintrobe (1933, as cited in Arikan & Cicek 2010) suggested that the size of red blood 

cells depicts the place of a species along the evolutionary scale, with large, 

nucleated erythrocytes belonging to lower vertebrates while small, anucleated 

erythrocytes are found in the higher vertebrates. Based on this principle, results 

obtained from a study of the blood cell morphologies of Turkish herpetofauna (Arikan 

& Cicek 2010) place reptiles intermediate between amphibians and birds. Since the 

red blood cells transport oxygen and carbon dioxide throughout the body, the surface 

area to volume ratio of red blood cells is an important determining factor for gaseous 

exchange in the tissues. Smaller cells have a larger surface to volume ratio and are 

more efficient in gas exchange than larger cells. Likewise, elliptical cells provide a 

larger surface area for gaseous exchange than round cells (Hartman & Lessler 

1964). Metin et al. (2008) report a positive correlation between erythrocyte size and 

nuclear size for testudinids, and Shadkhast et al. (2010) linked elongated nuclei of 

Testudo horsfieldii to an increased surface area for exchange with erythrocyte 

cytoplasm. Based on comparative studies of red blood cell sizes, Arikan & Cicek 

(2010) found that cell and nuclear shape and size of erythrocytes render terrestrial 

species more efficient at gaseous exchange than aquatic species. 
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Due to the clear functional role of the erythrocyte in metabolic facilitation, 

morphological descriptions, including shape, size, colour and irregularities of both 

erythrocytes and nuclei, are important characteristics and have been described for a 

few tortoise (Shadkhast et al. 2010) and turtle (Metin et al. 2008) species, although 

knowledge in this field is still lacking for many chelonians. Hartmann & Lessler (1964) 

describe reptile red blood cell size ranges of 15 to 19 µm in length, widths between 

7.5 and 12 µm and nuclear dimensions between 5.1 and 8 µm. Among the reptiles 

studied, chelonians have the largest erythrocytes, and among chelonians, the 

smallest erythrocytes are observed in terrestrial species (Arikan & Cicek 2010).   

 

The lifespan of red blood cells is not finite; senescent cells disintegrate and are 

replaced through erythropoiesis. In all animals, erythropoiesis occurs early during 

embryogenesis in the blood islands of yolk sacs, and while this is the main embryonic 

erythropoietic organ, as development continues, erythropoiesis is noted to occur also 

in the liver and spleen (Palis & Segel 1998). Vasse & Beaupain (1981) have 

observed differentiation stages towards mature erythrocytes in early somite stages of 

turtle embryos. After hatching, most erythropoiesis occurs in the leg bone marrow, 

whilst the liver remains erythropoietically functional in young turtles (Vasse & 

Beaupain 1981).  

 

Terminology for the different developmental stages of erythrocytes is inconsistent. 

Pienaar (1962) described six morphologically identifiable stages in reptile erythroid 

differentiation; categorised into primitive (pro-erythroblasts, erythroblasts and 

basophilic normoblasts), immature (polychromatophilic normoblasts and pro-

erythrocytes) and mature erythrocytes. Literature that is more recent generally refers 

to early stages in the continuum of erythrocyte development as different types of 

rubricytes (e.g., prorubricytes, basophilic rubricytes, polychromatophilic rubricytes 

and metarubricytes), and to the more advanced immature stages as 

polychromatophils or polychromatophilic erythrocytes (Bounous & Stedman 2000; 

Campbell 2004; Strik et al. 2007). The term polychromatophilic relates to the 

cytoplasm showing both basophilic and eosinophilic staining properties after 

haemoglobin production started. 

 

Peripheral red blood composition always contains a percentage of immature red cell 

stages, mostly polychromatophilic erythrocytes and rubricytes, and particularly 

among juveniles (Pienaar 1962; Campbell 2004). It is generally accepted that 

immature erythrocytes change from a round to oval shape as they mature, have 
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intensely basophilic cytoplasm in the early stages, have large, dark-staining nuclei, 

and are smaller than mature erythrocytes in tortoises (Reavill 1994; Mader 2000; 

Zhang et al. 2011). Mature cells are easily identifiable as large, flattened, oval-

ellipsoid cells with centrally positioned oval-ellipsoid nuclei (Reavill 1994; Campbell 

2004; Zhang et al. 2011). Pienaar (1962) distinguished two genealogically different 

lineages of immature erythrocytes, namely lymphoid-type pro-erythrocytes and stem 

cell-type pro-erythrocytes, the former being the more common form. The younger 

rubricytes also appear in the two different varieties, although there are fewer in 

circulating blood. The two genealogically different forms of erythrocyte progenitors 

vary in nuclear and cytoplasmic staining quality and intensity, and undergo different 

changes as the cells mature. The lymphoid-type derivations are smaller cells and 

Frye (1991) as well as Pendl (2006) propose that these are rather thrombocyte 

derivations. The occurrence in low frequencies of immature erythrocytes in peripheral 

blood is considered normal (Pienaar 1962).  

 

The variation in immature erythrocyte colouration is referred to as polychromasia and 

arises from the differing stages in haemoglobin synthesis, with hyperchromasia 

observed in the intense basophilic staining of immature cells, and hypochromasia 

observed in the pale acidophilic staining of mature/senile erythrocytes (Pendl 2006). 

The senescent erythrocytes in the later stages of degeneration present a different 

staining reaction and the loss of cytoplasm result in free erythrocytic nuclei (Pienaar 

1962), or haematogones (Frye 1991). Old or senile erythrocytes are characterised by 

pallid staining of the cytoplasm (Pendl 2006), and increased condensing of the 

chromatin occurs (Mader 2000). As erythrocytes age, and increase their 

haemoglobin concentrations, the staining reaction of cytoplasm changes from darker 

basophilic in young immature cells to barely basophilic in mature cells, to a near 

complete loss of staining potential in senescent cells. This change is associated with 

the decrease in RNA and DNA, as well as increasing haemoglobin concentrations in 

maturing cells, as well as the decreased metabolic activity of aging erythrocytes 

(Hajkova et al. 2000).  

 

Other red blood cell features include varied erythrocyte sizes (anisocytosis or the 

presence of large and small erythrocytes – macrocytes and microcytes respectively), 

a change in the shape of the cell (poikilocytosis) and/or nucleus, and together with 

polychromatic changes, provide evidence for erythropoiesis (Campbell 2004; Pendl 

2006). Morphological features not associated with erythropoiesis include cytoplasmic 

vacuolation, the presence of intracytoplasmic inclusion bodies (visible as basophilic 
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spots or stippling), the absence of nuclei (erythroplastids) and spindle-shaped 

erythrocytes. Mitotic nuclei or binucleation have been reported in individuals showing 

regenerative anaemia, inflammatory response or following hibernation (Campbell 

2004). Similarly, while mild levels of anisocytosis, poikilocytosis and polychromasia 

may be common in healthy reptiles, severe levels indicate disease (Mader 2000). 

Morphological changes that influence cell and nuclear structure and/or colouration 

can be distinguished as regenerative or degenerative changes (Pendl 2006). A 

regenerative response is characterised by an increase in the number of immature 

cells in peripheral blood and indicates erythropoietic activity. Degenerative changes 

incorporate those changes that are not associated with the normal developmental 

series of erythropoiesis, and as such, an increased degenerative response signifies a 

clinical abnormality.  

 

The aims of this study were to: (1) identify and describe morphological characteristics 

of erythrocyte types in peripheral blood of P. geometricus; (2) assess differences in 

the erythrocyte profiles of males, females and juveniles; and (3) evaluate seasonal 

changes in erythrocyte profiles of cohorts.  

 

3.2 MATERIALS AND METHODS 

3.2.1 Preparation of stained blood smears 

Blood samples were obtained over four seasons at Elandsberg Nature Reserve (3 

800 ha, 33° 26‟ S; 19° 01‟ E) in the southwestern Cape, South Africa, from 26 to 42 

healthy, free-ranging geometric tortoises (including males, females and juveniles) per 

season (see Table 2.1 for sample sizes in different seasons). I sampled blood from 

unanaesthetised tortoises immediately after capture to limit stress-induced changes 

to blood parameters. The mass of the animals determined the maximum blood 

volume sampled and I took care not to exceed 0.5% of the animals‟ field body mass 

(a conservative veterinary standard). I used a 25 G needle with a 1 or 2 ml syringe to 

collect blood from either the jugular vein or carotid artery. Since EDTA is known to 

cause lysis of chelonian cells (Harding et al. 2005; Knotek 2006), heparin was used 

as an anticoagulant, although it has been observed to impart a blue tinge to blood 

smears as well as affect the clumping nature of cells (Houwen 2000; Strik et al. 

2007). Sampling normally took 1 to 2 minutes and I aborted attempts if an adequate 

sample has not been obtained in approximately 5 minutes. The animals were kept 

under observation for 24 hours and during the dry season, I provided access to 

drinking water before returning the animals to the capture site. 
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I produced blood smears, in duplicate, using the wedge-smear technique with a 

single-use, bevel-edged glass slide spreader (Pendl 2006). Smears were air-dried, 

fixed in absolute methanol, and stored in dust-free boxes until being stained. I 

obtained best staining results from the May-Grünwald – Giemsa stains, using the 

technique described in Houwen (2000). To prepare the stock solutions, May-

Grünwald reagent powder (0.3 g) was mixed in 100 ml absolute methanol, left to 

stand overnight, and subsequently filtered. Giemsa reagent powder (1 g) was mixed 

in 66 ml glycerol, heated to 56 ºC for 100 minutes, mixed with 66 ml absolute 

methanol, left to stand overnight, filtered and stored in an airtight container. I used a 

buffer of pH 6.8 to dilute stock solutions each time before staining; May-Grünwald 

stock was mixed with equal parts of buffer whereas Giemsa stock was diluted with 

nine parts buffer. The May-Grünwald stain was introduced to the blood smear, letting 

stand for 5 minutes, after which the excess solution was drained from the slide that 

was then introduced to the Giemsa stain for 12 minutes. The slide was then rinsed 

once with the buffer solution, washed in, and left to stand in distilled water for 3 

minutes. Stained blood smears were left to dry and later fitted with a glass cover slip 

using Entellan New rapid-mounting medium for microscopy (Merck). 

 

3.2.2 Histological evaluation and measurements 

I used a Leica DM 500 photomicroscope (Leica LAS Software, Leica Microsystems 

Ltd., Switzerland, version 1.8.0), with 10x eyepieces, for the histological evaluation of 

erythrocytes under immersion oil with a 100x objective to give 1000x magnification. I 

assessed the size, shape and staining characteristics of cells and their nuclei for 

identification and a detailed description of each cell type.  

 

In order to quantify the abundance of erythrocyte types and the occurrence of 

particular features, I combined  erythrocyte assessments with differential white cell 

counts  of individuals using the meandering technique. After counting 100 white 

blood cells, I rated the abundance of particular cell types (rubricytes, 

polychromatophils, senescent erythrocytes, macrocytes and microcytes), the degree 

of poikilocytosis, and the presence of cytoplasmic inclusions, vacuoles and parasites 

in the blood smear. Each item was ranked from zero to three, with zero indicating 

that the cell or feature was absent, and one to three representing three increasing 

levels of abundance: low, intermediate and high.  
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I used a Leica ICC50 camera linked to the Leica DM 500 digital photomicroscope 

(40x objective and total magnification of 400x) to take digital images of blood cells for 

morphometric evaluation. The images were saved as jpeg files (2048 x 1536 pixels) 

and then analysed using the NIKON NIS Elements (Basic Research version 3.10 

Inc., Nikon Instruments, Europe B.V) imaging software. To eliminate background 

staining effects, the lighting contrast was increased (both high and low ranges were 

set to their lowest) and „auto detect‟ thresholding function (from the binary toolbar) 

was used to select the immediate area of hue of selected pixels, thus incorporating 

the entire erythrocyte area. The „erode‟ or „open‟ function of NIS was used to 

precisely match cellular and nuclear boundaries with thresholded boundaries. 

Cellular measurements were digitally automated to a precision of 0.01 µm. Pixel size 

was manually calibrated using a micrometer scale automatically generated when 

capturing the images (at 400x and 1000x magnification, 1 pixel =  0.16 µm and 0.07 

µm, respectively). Morphometric measurements were exported to Windows Excel 

(MS Office) and collated into one spreadsheet for statistical analysis. 

 

In order to evaluate the effects of season and cohort on erythrocyte characteristics, I 

took measurements from 100 erythrocytes per individual by capturing 10 images 

within the mono-layered section of each bloodsmear, with each image containing at 

least 10 distinguishable erythrocytes. In addition, I used all the smears to identify, 

photograph and measure 10 representative cells of each immature erythrocyte type 

and of senescent cells to quantify their morphological features. Immature 

erythrocytes in peripheral blood included rubricytes and polychromatophils, but 

because the morphology of rubricytes changed substantially during development, I 

measured three stages of development (stages I, II and III) to represent the 

continuum. For each erythrocyte, I measured the following parameters of both cell 

and nucleus: area (surface area of the image in μm2), perimeter (the total boundary 

in μm), length (the longest axis in μm), width (a derived measure calculated from 

area / length in μm), circularity (a measure derived from area and perimeter 

measurements; a circular shape has a value of 1.0 with other shapes having values 

<1.0), elongation (determined from Feret‟s diameters as MaxFeret / MinFeret) and 

pixelation (the statistical mean of intensity values of pixels).  

 

3.2.3 Data and statistical analysis 

SigmaStat (SPSS Inc., Chicago, U.S.A. version 2.03) was used to evaluate the data 

statistically. Despite various transformations, most data could not satisfy the 
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requirements for parametric tests and are summarised as median, 25th and 75th 

percentiles.  

 

Measurements of erythrocytes were linked to specific individuals and could be 

evaluated for effects of season and cohort. In most instances, I could not use two-

way ANOVAs because the data were not parametric, and instead used one-way 

ANOVAs to identify differences among seasons within each cohort and differences 

among cohorts within each season. When data were parametric, one-way ANOVA 

was followed by Student-Newman-Keuls post hoc comparisons, whereas for non-

parametric data, Kruskal-Wallis ANOVA on ranks was followed by Dunn‟s post hoc 

comparisons. Because cell measurements of the immature erythrocyte stages and 

senescent cells were not linked to specific individuals, I used one-way ANOVAs to 

test for size and shape differences among these types, and separately evaluated size 

and shape differences among senescent cells, mature cells, and the most advanced 

immature cell, the polychromatophil. I used one-way ANOVAs to assess the effects 

of season and cohort on the prevalence (ranked from 0 to 3) of immature and 

aberrant erythrocytes, and specific morphological features.  

 

Because erythrocyte cell areas varied widely, I divided the data for 100 cell areas of 

each individual into six size categories (≤130, 130.1-140, 140.1-150, 150.1-160, 

160.1-170 and >170 μm2) to allow more refined analyses for differences among 

cohorts and seasons. Because small or large cells may reflect specific physiological 

states, I also divided the data into fewer size classes to represent the smallest class 

against the remainder (≤130 versus >130 μm2), and the largest class against the 

remainder (>170 versus ≤170 μm2). Subsequently, I used Chi-square tests to 

evaluate if frequencies for all size classes, and for reduced size classes, differed 

among cohort and among season. 

 

In all instances when multiple tests were performed, I applied sequential Bonferroni 

corrections to each family of tests to prevent Type I errors.  

 

3.3 RESULTS 

3.3.1  Erythrocyte types and features 

Mature erythrocytes were the most common component in peripheral blood of P. 

geometricus (Fig. 3.1a). The cells were oval to elliptical with a centrally placed round-

oval, dark blue-purple staining nucleus, sometimes with an irregular border. The 
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chromatin was visible as a coarse, evenly dispersed, strongly basophilic network. 

The abundant cytoplasm stained pale blue, had a homogenous texture and 

sometimes had basophilic inclusions (Fig. 3.1b). Occasionally, the flattened shape of 

erythrocytes became apparent when the edges of the cell were folded over when the 

smear was made (Fig. 3.1c). 

 

Rubricytes varied greatly in size, shape and staining quality, and could be described 

in three distinguishable developmental stages, based mainly on staining quality and 

nuclear to cellular size ratios; defined as early - , intermediate - and late rubricytes (I, 

II and III respectively; Fig. 3.2 a – c). Transitional stages appear between all 

consecutive classes of development, showing a sequential development through the 

classes.  

 

Rubricyte I cells were typically small (cell areas ranging from 31.43 to 120.12 µm2) 

and easily mistaken for thrombocytes and/or lymphocytes. The large, irregularly 

shaped nucleus (ranging from 19.23 to 60.06 µm2) stained dark blue-violet with 

intensely basophilic chromatin appearing coarsely stippled within darkly basophilic 

parachromatin (Fig. 3.2a). The sparse, hyperchromatic cytoplasm stained slightly 

less intense blue than the nucleus. Nuclear to cellular size ratios were 

characteristically high in this stage (43.6% – 63.1% in range). 

 

The intermediate rubricyte II cells (cellular areas from 50.51 to 144.26 µm2) displayed 

an increasing amount of cytoplasm, together with an irregular decrease in basophilic 

intensity (Fig. 3.2b). The increase in cytoplasm resulted in a decreasing nuclear to 

cellular size ratio (ranging from 37.0% – 48.6%). In this stage, nuclei ranged from 

19.43 to 70.15 µm2 in area. The still darkly basophilic chromatin appeared to 

contract, appearing increasingly clumped within less intensely basophilic 

parachromatin. 

 

In the advanced rubricyte III stage of rubricyte development, the cells tended to be 

large (cell area ranged of 89.87 to 169.0 µm2), with still increasing amounts of 

cytoplasm which sometimes appeared „folded‟ and stained less intensely basophilic 

(Fig. 3.2c). The nuclear to cell area ratio continued to decrease, ranging from 24.3% 

to 37.5% in this stage. The basophilic nucleus ranged from 27.91 to 53.97 µm2 in 

size. The chromatin appeared condensed and both chromatin and parachromatin 

stained less intensely.  
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Figure 3.1  Mature erythrocytes of Psammobates geometricus with condensed 

chromatin in the nucleus (a, b). Note basophilic inclusion bodies in cytoplasm (b). 

Edges of the flattened cells can fold over when making smears (c). Scale represents 

20 µm, 1000x magnification, Romanowsky stains. 

 

   

   

   

Figure 3.2  Immature and senescent red blood cells of Psammobates geometricus 

showing three rubricyte developmental stages (a - c), polychromatophilic 

erythrocytes (d - f) and senile erythrocytes (g - i). Scale represents 20 µm, 1000x 

magnification, Romanowsky stains. 
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Polychromatophils typically appeared larger (116.87 to 243.53 µm2) than early 

rubricytes, and rounder than mature erythrocytes. The faintly basophilic cytoplasm 

did not stain uniformly, but instead had a mottled appearance, indicating the patchy 

accumulation of haemoglobin and the reduction of nucleic acids in the cytoplasm 

(Fig. 3.2 d-f). Polychromatophil nuclei measured 22.34 to 45.68 µm2, were roundish, 

and the chromatin still appeared clumped with an increase in lighter-staining 

parachromatin. Nuclear to cellular ratios were low (17.8% to 27.9%) compared to 

other immature cells. As the cells matured from this stage, elongation increased so 

that the cell became oval to ellipsoid, cytoplasmic staining became more 

homogenous, the nuclei tended to contract and elongate, and the chromatin became 

denser. 

 

Senile or senescent erythrocytes were large with cell areas ranging from 187.56 to 

301.03 µm2 and nuclei between 39.92 and 77.08 µm2. Nuclear to cellular ratios were 

between 16.3% and 34.6%. Two types of cellular degeneration could be 

distinguished. The most common form of senescence was in which the cell and 

nucleus “swell” as they degenerated, with both displaying an increasing loss in 

staining potential, giving the appearance of „ghost cells‟. When cytoplasm was still 

visible, it stained a pale light blue, almost clear, while the nucleus stained pale lilac 

(Fig. 3.2 g,h). Often, the cytoplasm disintegrated, releasing the nucleus, which 

appeared as lilac stains in the smear. Less typically observed in the degeneration of 

erythrocytes was the increased condensing and pyknosis of the nucleus, with the 

cytoplasm “imploding” around it until it disappeared, releasing the very dark, round 

nucleus (Fig. 3.2i).  

 

Present but in consistently low occurrence in peripheral blood were macrocytes (Fig. 

3.3a), whereas microcytes were not observed. Erythrocyte inclusion bodies were 

noted as darkly basophilic-staining small cytoplasmic spheres and/or rods (Fig. 3.3b), 

often associated with cytoplasmic vacuolation (Fig. 3.3b). Also observed were mitotic 

erythrocytes in various stages of mitosis (Fig. 3.3c). Poikilocytosis (Fig. 3.3d) was not 

common and no evidence of blood parasites was observed; this includes extra-

cellular and intra-erythrocytic haemoparasites.  
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Figure 3.3  Red blood cells of Psammobates geometricus showing erythrocyte 

diversity in circulation (a). Note macrocyte (MACRO), rubricytes (RII, RIII), 

polychromatophil (POLY), cytoplasmic inclusion bodies (IB), vacuoles (V; b), mitotic 

erythrocyte (MI; c) and poikilocytosis (d). Scale represents 20 µm, 1000x 

magnification, Romanowsky stains 

 

 

Statistical comparisons of size and shape of immature and senescent erythrocytes 

(Table 3.1) indicated that stage III rubricytes and polychromatophils had larger areas 

and were longer and wider than stages I and II rubricytes (F4,45 > 14.13, P < 0.0001). 

Senescent cells had larger areas and lengths than all immature stages, but their 

widths did not differ from those of polychromatophils. Nuclear to cellular area ratios 

decreased progressively as cells matured, but did not differ between 

polychromatophils and senescent erythrocytes (F4,45 = 73.30, P < 0.0001).  

Senescent erythrocytes were less circular, and more elongated, than immature cells, 

with no differences among the immature stages (F4,45 > 17.70, P < 0.0001). When 

comparing cell areas of the complete data set, representing mostly mature 

erythrocytes, with those of the most advanced immature (polychromatophil) and 

senescent cells, I found that mature cells had smaller cell areas than senescent cells 

but did not differ from polychromatophils (H2 = 28.18, P < 0.0001). Mature and 

A. B. 

D. C. 
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senescent cells were more elongated, or less circular, than polychromatophils (H2 > 

18.19, P < 0.0005). The nuclear to cellular ratio was lower in mature cells than in 

senescent cells and polychromatophils (H2 = 46.63, P < 0.0001).  

 

Erythrocyte nuclei of senescent cells had larger surface areas (Table 3.1), lengths 

and widths than immature cells had, but nuclear measurements did not differ among 

immature cell stages (F4,45 > 4.80, P < 0.002). Mature erythrocyte nuclei had smaller 

areas, lengths and widths than both polychromatophils and senescent erythrocytes 

(H2 > 35.38, P < 0.0001). Nuclear circularity and elongation did not differ among 

immature and senescent cells (P > 0.11), whereas nuclei of mature erythrocytes 

were more elongated (H2 = 38.55, P < 0.0001) and tended to be less circular (H2 = 

6.11, P = 0.047, post hoc comparisons not significant) than those of 

polychromatophils or senescent erythrocytes. 

 

Table 3.1  Erythrocyte cellular and nuclear sizes, and circularities, as well as the ratio 

of nuclear to cellular (N/C) areas in geometric tortoises. Data are mean ± standard 

deviation  for immature developmental stages and senescent erythrocytes, measured 

from ten cells of each type.  

 
Cell area 

(µm
2
) 

Nuclear area 

(µm
2
) 

N/C area 

ratios (%) 

Cell   

circularity 

Nuclear 

circularity 

Rubricyte I 70.73 ± 28.11 36.26 ± 13.35 52.33 ± 6.56   0.95 ± 0.02 0.92 ± 0.04 

Rubricyte II 96.88 ± 34.34 40.73 ± 17.58 41.14 ± 3.87 0.94 ± 0.02 0.94 ± 0.03 

Rubricyte III 133.80 ± 25.79 41.88 ± 7.85 31.64 ± 4.33 0.93 ± 0.04 0.96 ± 0.03 

Polychromatophil 161.28 ± 47.24 32.22 ± 8.02 20.37 ± 3.32 0.94 ± 0.03 0.95 ± 0.02 

Senescent Cell 232.32 ± 36.44 56.17 ± 13.60 24.29 ± .5.19 0.86 ± 0.03 0.95 ± 0.02 

 

 

3.3.2 Prevalence of erythrocyte types and features 

In addition to the mature erythrocytes, younger as well as senile erythrocytes were 

present in circulation throughout all seasons and cohorts (Fig. 3.3a); however, the 

seasonal composition of erythrocyte developmental stages differed. For female 

tortoises, rubricytes were more abundant in winter and spring than in autumn (H3 = 

15.61, P = 0.0014) whereas polychromatophils were more abundant in winter than in 

summer, and both winter and spring values were higher than autumn values (H3 = 

26.50; P < 0.0001). While males showed no significant seasonal effect on rubricytes 

(P = 0.241), polychromatophils were more frequent in winter than in autumn (H3 = 

13.05, P = 0.0045). Season did not influence the abundance of immature cells in 
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juveniles (P > 0.149), and within seasons, the abundance of rubricytes or 

polychromatophils did not differ among cohorts (P > 0.138). A two-way ANOVA was 

possible when rubricyte and polychromatophil counts were combined. The 

abundance of immature erythrocytes changed with season (F3,114 = 12.80, P < 

0.0001), with winter and spring values exceeding summer and autumn values, while 

cohort had no effect on immature erythrocyte abundance and cohort and season did 

not interact (P > 0.15).  

 

Data for senescent erythrocytes failed normality but two-way ANOVA is particularly 

robust for normality violations (Zar 1999). The test showed that although cohort had 

no effect on senescent erythrocyte abundance (P = 0.890), season had a strong 

effect (F3,114 = 14.29, P < 0.0001), with a higher occurrence of senescent cells in 

autumn than in the other seasons. These results were confirmed by multiple one-way 

ANOVAs, in which this trend applied to adult tortoises only, although the female P-

value did not pass the corrected Bonferroni value. 

 

Degrees of poikilocytosis did not differ among season in adult geometric tortoises (P 

> 0.161), but was significant for juveniles (H3 = 12.30, P = 0.0064), which showed a 

tendency towards increased poikilocytosis in autumn despite not having significant 

post hoc differences. Within-season analyses revealed that juveniles tended to have 

a higher degree of poikilocytosis than males or females had in autumn (H3 = 8.07, P 

= 0.018 was higher than adjusted Bonferroni P of 0.0083); there were no cohort 

differences within other seasons (P > 0.097). 

 

There were no significant effects of cohort within each season, or season within each 

cohort, upon the abundances of macrocytes, vacuoles and inclusion bodies (P > 

0.059), although males and juveniles tended to have more erythrocytic inclusion 

bodies in autumn than in other seasons (H3 = 9.62 and 9.32, P = 0.022 and 0.025, 

respectively; required adjusted Bonferroni P = 0.0071).  

 

3.3.3 Erythrocyte size and shape 

Erythrocyte cell size (surface area) ranged from 52.88 to 274.46 µm2 (Fig. 3.4a). 

Male erythrocytes were larger than those of juveniles and females in summer and 

autumn (H2 > 17.75, P < 0.0005), while in winter, male and juvenile erythrocytes were 

larger than those of females (H2 = 53.42, P < 0.0001). Erythrocytes in spring were 

largest in juveniles, followed by males, and smallest in females (H2 = 85.94, P < 

0.0001). Within males, erythrocytes were equally large in winter and spring, followed 
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by autumn, with smallest erythrocytes in summer (H3 = 77.61, P < 0.0001). 

Erythrocytes in both females and juveniles were largest in spring, followed by winter, 

and equally small in autumn and summer (H3 > 140.36, P < 0.0001).  
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Figure 3.4  Seasonal changes in male, female and juvenile geometric tortoise 

erythrocyte cellular and nucleus surface areas (µm2), as well as nuclear to cellular 

area ratios, measured from 100 cells per animal. Box plots contain the median, 25th 

and 75th quartiles, while error bars represent the 5th and 95th percentiles. Seasonal 

sample sizes are indicated in Table 2.1. 

 

 

Erythrocyte nuclei ranged from 4.10 to 49.51 µm2 (Fig. 3.4b). Nuclear areas in 

summer, autumn and winter showed the same pattern: male nuclei were largest, 

followed by juveniles, and female nuclei were smallest (H2 > 80.11, P < 0.0001). In 

C. 

B. 
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spring however, juveniles had larger nuclei than  adult tortoises had (H2 = 61.72, P < 

0.0001). Nuclear areas were larger in winter and spring than in summer and autumn 

for all cohorts (H3 > 398.36, P < 0.0001); the patterns were Wi>Sp>Au>Su for males, 

Wi>Sp>Su=Au for females, and Wi=Sp>Su=Au for juveniles. 

 

Nuclear to cellular area ratios ranged between 3.05% and 31.59% (Fig. 3.4c) and 

differed among cohorts within seasons (H2 > 10.06, P < 0.0065), and among seasons 

within cohorts (H3 > 313.5, P < 0.0001). Spring ratios were highest in juveniles, with 

no differences between adults. Summer ratios of juveniles and males were higher 

than in females, winter ratios for males were higher than in juveniles and females, 

whereas autumn ratios were highest in males, followed by juveniles, and females had 

lowest nuclear to cellular ratios. All cohorts followed a similar pattern of nuclear to 

cellular ratios with high values in winter and spring. In males, winter ratios were 

higher than spring, summer and autumn, with spring values being higher than values 

in autumn. Female ratios were highest in winter, followed by spring, then summer, 

and lowest in autumn, while juveniles showed equally lowest ratios in summer and 

autumn, preceded by spring, and largest ratios in winter.  

 

Erythrocyte lengths ranged between 9.92 and 33.44 µm while widths ranged from 

4.12 to 14.17 µm (Table 3.2); both lengths and widths showed seasonal (H3 > 18.01, 

P < 0.0004) and cohort (H2 > 55.96, P < 0.0001) differences, except for widths in 

summer and autumn (P > 0.081). Erythrocytes in winter, summer and autumn were 

longer in males than in juveniles and females with female erythrocytes being longer 

than those of juveniles in autumn. In the spring, juveniles had the longest 

erythrocytes, followed by males and then females. Erythrocyte widths showed 

significant differences only in winter and spring, in which they followed the same 

pattern, with juveniles showing widest erythrocytes, and no difference between adult 

erythrocyte widths. Within males, erythrocytes were longer in autumn and winter than 

in summer and spring. Females‟ erythrocytes were longer in autumn than in spring 

and summer, while winter lengths were higher than in summer. In juveniles, 

erythrocytes were longer in spring than in other seasons, and erythrocytes in winter 

were longer than in summer. Erythrocytes were widest in spring, followed by winter; 

in females and juveniles, autumn and summer widths did not differ but males had 

wider erythrocytes in autumn than in summer. 
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Table 3.2  Dimensions (medians, 25th and 75th quartiles) of erythrocyte cells (C) and 

nuclei (N) in female, male and juvenile geometric tortoises over spring, summer, 

autumn and winter, measured from 100 cells per animal. 

 Females  Males  Juveniles 

 Med 25% 75%  Med 25% 75%  Med 25% 75% 

C-Length            

   Spring 17.8 16.8 18.9  18.0 17.0 19.2  18.6 17.2 20.0 

   Summer 17.7 16.6 18.8  18.2 17.2 19.2  17.6 16.6 18.7 

   Autumn 18.1 17.0 19.1  18.7 17.5 19.7  17.8 16.6 18.9 

   Winter 17.9 16.8 19.1  18.5 17.4 19.6  17.8 16.9 18.9 

C-Width            

   Spring 8.5 8.0 9.3  8.6 8.0 9.4  9.2 8.3 9.8 

   Summer 8.1 7.6 8.7  8.1 7.6 8.7  8.1 7.6 8.6 

   Autumn 8.1 7.5 8.8  8.2 7.7 8.8  8.2 7.6 8.8 

   Winter 8.3 7.8 8.9  8.4 7.8 9.1  8.7 8.1 9.4 

C-Elongation            

   Spring 1.7 1.5 1.8  1.7 1.5 1.9  1.7 1.5 1.8 

   Summer 1.8 1.6 2.0  1.8 1.7 2.0  1.8 1.6 1.9 

   Autumn 1.8 1.7 2.0  1.9 1.7 2.0  1.8 1.6 1.9 

   Winter 1.7 1.6 1.8  1.8 1.6 1.9  1.6 1.4 1.8 

C-Pixelation            

   Spring 190 180 201  192 1808 200  192 185 199 

   Summer 192 184 198  178 169 189  191 180 201 

   Autumn 194 182 201  188 171 202  184 173 198 

   Winter 181 171 190  180 168 190  180 172 186 

N-Length            

   Spring 6.0 5.3 6.7  6.2 5.6 6.8  6.6 5.9 7.4 

   Summer 5.5 5.0 6.1  6.0 5.4 6.7  5.8 5.3 6.3 

   Autumn 5.4 4.8 6.1  6.1 5.5 6.8  5.6 5.1 6.2 

   Winter 6.3 5.8 6.8  6.5 6.0 7.1  6.5 6.0 7.1 

N-Width            

   Spring 3.3 2.9 3.8  3.3 2.9 3.7  3.4 3.0 3.7 

   Summer 2.8 2.5 3.2  3.0 2.7 3.4  2.9 2.6 3.3 

   Autumn 2.8 2.4 3.1  3.1 2.8 3.6  3.0 2.6 3.3 

   Winter 3.4 3.1 3.8  3.5 3.2 3.9  3.5 3.2 3.8 

N-Elongation            

   Spring 1.3 1.2 1.5  1.4 1.3 1.5  1.5 1.4 1.6 

   Summer 1.5 1.3 1.6  1.5 1.4 1.7  1.5 1.4 1.7 

   Autumn 1.5 1.3 1.6  1.5 1.3 1.6  1.4 1.3 1.6 

   Winter 1.4 1.3 1.5  1.4 1.3 1.5  1.4 1.3 1.6 

N-Pixelation            

   Spring 153 141 164  148 134 161  153 146 162 

   Summer 149 137 159  134 125 146  153 140 164 

   Autumn 150 136 161  141 129 153  142 133 152 

   Winter 120 111 128  123 115 133  122 116 130 
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Erythrocyte nuclei lengths ranged between 2.72 and 12.58 µm and widths ranged 

between 1.42 and 5.91 µm (Table 3.2). Nuclear lengths and widths were influenced 

by season (H3 > 200.7, P < 0.0001) and by cohort (H2 > 7.59, P < 0.022). Nuclei were 

longer in males and juveniles than in females in winter, whereas in spring, they were 

longest in juveniles, followed by males and then females. In the summer and autumn, 

erythrocyte nuclei were longest in males, followed by juveniles and shortest in 

females. Nuclei were widest in males in winter, summer and autumn, as well as 

being narrowest in females in summer and autumn; in winter, there was no difference 

between juvenile and female nuclei widths. In spring, juveniles had the widest nuclei, 

but widths did not differ between males and females. Within males, winter nuclei 

were longer than in other seasons whereas female nuclei were longest in winter, 

followed by spring, and equally short in summer and autumn. Juvenile erythrocyte 

nuclei were longest in spring and winter, followed by summer and shortest in autumn. 

Among all cohorts, nuclei were widest in winter, followed by spring; in males, nuclei 

were wider in autumn than in summer, but summer and autumn widths did not differ 

in females and juveniles.  

 

Erythrocyte circularity ranged from 0.332 to 1.000 (Fig. 3.5a) and elongation from 

1.06 to 2.87 (Table 3.2). Both circularity and elongation showed effects of season (H3 

> 172.2, P < 0.0001), and cohort (H2 > 19.51, P < 0.0001), except for circularity in 

spring (P = 0.129). Erythrocytes in juveniles were more circular than those of males 

in summer, autumn and winter, with male erythrocytes in autumn being  more circular 

than in females, and female erythrocytes being more circular than those of males in 

winter. The reciprocal pattern was valid for elongation in winter, but male and female 

elongation did not differ in autumn, and males had more elongated erythrocytes than 

females had in spring. In summer, elongation was greatest in males and smallest in 

juveniles. Within males, erythrocytes were roundest in spring, followed by winter, and 

were least round in summer and autumn. Elongation showed the same trend but 

erythrocytes were more elongated in autumn than in summer. Female erythrocyte 

circularities were higher in winter and spring than in summer, followed by autumn. 

Again, elongation reflected the same pattern but winter erythrocytes were more 

elongated than spring erythrocytes. Juvenile erythrocytes were roundest in winter, 

followed by spring and were least round in summer and autumn, with a reciprocal 

pattern for elongation.  
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Figure 3.5  Seasonal changes in circularity (where 1.0 represents a sphere) of 

erythrocyte cells (a) and nuclei (b) of Psammobates geometricus, measured from 

100 cells per animal. Box plots contain the median, 25th and 75th quartiles, while error 

bars represent the 5th and 95th percentiles. Seasonal sample sizes are indicated in 

Table 2.1. 

 

 

Erythrocyte nuclei circularity ranged from 0.35 to 1.00 (Fig. 3.5b) and elongation from 

1.03 to 3.30 (Table 3.2). Both circularity and elongation were affected by season (H3 

> 55.87, P < 0001) and cohort (H2 > 14.15, P < 0008). In spring, nuclei in adults were 

rounder than those in juveniles, but the pattern did not correspond for elongation; 

males had more elongated nuclei than females had. In winter, female nuclei were 

rounder than those in males, with both being rounder than juvenile nuclei. The 

reciprocal, elongation, yet again did not mirror results for circularity; although juvenile 

nuclei were more elongated than those of adults, elongation did not differ for males 

and females. In autumn, juvenile nuclei were roundest, followed by males, and 

female nuclei were least round. Male and female elongation did not differ, but their 

nuclei were more elongated than those of juveniles were. Summer nuclear 
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circularities were larger in females and juveniles than in males, whereas male and 

juvenile elongation did not differ but were more pronounced than in females. Within 

males, winter and spring nuclei circularities were larger than summer and autumn 

circularities, but elongation decreased progressively from summer to autumn, spring 

and winter. In females, circularity was higher in winter than in spring, summer and 

autumn, with spring and summer being higher than autumn. Elongation was more 

pronounced in autumn and summer than in spring and winter. Erythrocyte nuclei in 

juveniles were more circular in autumn, winter and summer than in spring, whereas 

the nuclei were more elongated in summer and spring than in autumn and winter.   

 

Erythrocyte and nuclear pixelation (Table 3.2) was influenced by cohort (H2 > 6.99, P 

< 0.030) and season (H3 > 382.4, P < 0.0001). In summer, females and juveniles had 

higher pixelation values than males had, while in autumn, female values were higher 

than those of males, and juveniles had lowest pixelation values. In winter, females 

had higher values than males had, whereas juvenile values were higher than those of 

males in spring. Within males, pixelation values were highest in spring, followed by 

autumn, while winter and summer values were equally low. In females, pixelation 

was lowest in winter whereas in juveniles, erythrocyte pixelation was highest in 

spring, followed by summer, then autumn, with lowest pixelation in winter.  

 

Nuclear pixelation followed similar patterns in spring and summer: juvenile values 

were higher than those in females, and males showed lowest values. In autumn, 

female nuclear pixelation was higher than that in males and juveniles. In winter 

however, males and juveniles had higher nuclear pixelation intensity than in females.  

Within males, pixelation values in nuclei were largest in spring, followed by autumn, 

then summer and lowest in winter. Female nuclear pixelation was higher in spring 

than in autumn, summer and winter, and autumn and summer values were higher 

than winter values. In juveniles, nuclear pixelation was highest in spring and summer, 

followed by autumn, and lowest in winter. 

 

3.3.4 Proportional representation of erythrocyte size classes 

The frequency distribution of the six erythrocyte size classes differed among cohorts 

within each season (χ2
5 > 15.3, P < 0.009), except that females and juveniles did not 

differ in summer and autumn (P > 0.52). The size class frequencies differed among 

seasons for males, females, and juveniles (χ2
5 > 13.8, P < 0.016) except between 

autumn and summer for females and between winter and spring for males (P > 0.17).  
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The seasonal pattern of abundance for small erythrocytes (< 130 μm2) relative to the 

other size classes was relatively similar for females and juveniles: for both cohorts, 

small erythrocytes were most abundant in summer and autumn, which did not differ 

(P > 0.611). Juveniles had fewer small cells in spring and the least in winter (χ2
1 > 

10.36, P < 0.0001; Fig. 3.6). In females, small erythrocytes were more abundant in 

summer than in spring and winter, whereas autumn counts were higher than in 

spring, but did not differ from those in winter (χ2
1 > 10.02, P < 0.002).  Males had the 

largest frequency of small cells in summer (χ2
1 > 20.26, P < 0.0001) with no 

difference among the other seasons (P > 0.19). There were no cohort differences in 

the relative abundance of small erythrocytes during spring and summer (P > 0.103). 

However, in autumn, females and juveniles had a higher relative abundance of small 

cells than males had (χ2
1 > 33.50, P < 0.001), whereas in winter, females had the 

higher relative abundance of small cells, followed by males, and juveniles had the 

least abundance  (χ2
1 > 7.53, P < 0.006; Fig. 3.6).  

 

Males and females had the same seasonal pattern of abundance for the largest 

erythrocyte size class (> 170 μm2) relative to the other size classes (χ2
1 > 10.40, P < 

0.002; Fig. 3.6). The relative frequency for large erythrocytes was equally high in 

winter and spring (P > 0.66) and lower in autumn and summer, although these two 

seasons did not differ after applying a Bonferroni correction (P > 0.032). Juveniles 

had the highest proportion of large erythrocytes in spring (χ2
1 > 27.37, P < 0.0001), 

followed by winter, then autumn and summer, which did not differ following 

Bonferroni corrections (P = 0.042). Within seasons, large erythrocyte frequencies 

differed among cohorts, with a similar pattern in summer and autumn, where males‟ 

frequencies were higher than in females and juveniles (χ2
1 > 10.57, P < 0.001). In 

spring, juveniles had the highest frequency of large erythrocytes, followed by males 

and then females (χ2
1 > 11.79, P < 0.001). In winter, the relative abundance of large 

cells did not differ for juveniles and males, both of which were higher than that in 

females (χ2
1 > 7.88, P < 0.005). 
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Figure 3.6  Seasonal proportional representation of small (<130 µm2) and large (> 

170 µm2) erythrocyte cell sizes of male, female and juvenile geometric tortoises, 

measured from 100 cells per animal. 
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3.4 DISCUSSION 

3.4.1 Erythrocyte development, morphology and profiles 

Evaluation of blood cell morphology and characteristics can reflect the state of 

physiological processes (Arikan & Cicek 2010). External factors such as temperature 

and internal factors that influence the activity level of individuals, such as 

reproductive status, have great effects on the physiology of ectotherms, which is 

reflected in the wide range of interspecific and intraspecific variation of reptilian red 

blood cell morphology (Frair 1977; Campbell 2004; Strik et al. 2007). Exacerbating 

this wide variation has been the inconsistencies in identification and nomenclature of 

red blood cell types. 

 

While Bernstein (1938) describes early and late erythroblasts as well as normoblasts, 

Pienaar (1962) continues to include basophilic as well as polychromatic normoblasts 

to his description of erythrocyte developmental stages, which are also used by Vasse 

& Beaupain (1981). These terms have been modified to rubriblasts and pro-, meta- 

and rubricytes by certain authors, whereas most authors describe simply immature 

and / or polychromatic erythrocytes (Alleman et al. 1992; Hajkova et al. 2000). My 

classification of immature erythrocytes into the three rubricyte stages and 

polychromatophils incorporates nomenclature used in modern literature (Strik et al. 

2007) and identifies recognisable changes in early (rubricyte) immature erythrocyte 

morphology.  

 

Mature erythrocytes can result from a variety of pathways (Pienaar 1962; Frye 1991; 

Pendl 2006), and although certain authors refer to the pluripotentiality of 

thrombocytes (Pendl 2006), some refer to the pluripotentiality of lymphocytes (Saint 

Girons 1970). Frye (1991) related the pluripotentiality of thrombocytes to the 

development of mature erythrocytes, whereas Pienaar (1962) describes rather 

lymphoid-type pro-erythrocytes, as well as stem-cell pro-erythrocytes, which are 

loosely described as “Type V cells” by Hajkova et al. (2000) and Knotkova et al. 

(2005). 

  

Erythrocytes in circulating P. geometricus blood were observed to exist in immature, 

mature and senescent stages of development, as is common in reptiles (Pienaar 

1962; Campbell 2004), indicating a co-existence of all maturation stages. Immature 

erythrocytes were identified occurring from the earliest stage rubricytes, to the latest 

developmental stage, the  polychromatophils, with all stages in the continuum 
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represented. As cells matured from earliest rubricytes to later polychromatophils, an 

increase in cellular area, together with declining nuclear to cellular area ratios was 

observed. This suggests that rubricytes increased in size by cytoplasmic increase 

and that nuclear shrinking appeared evident only in the polychromatophils. As 

polychromatophils developed into mature erythrocytes, cell size did not change, 

although cells became more elongate, with further shrinking and elongation of the 

nucleus. Senescence in mature erythrocytes was characterised by increased cellular 

and nuclear swelling.  

 

A number of authors report immature erythrocytes of reptiles and tortoises being 

smaller than mature erythrocytes (Frair 1977; Reavill 1994; Mader 2000), while 

Bernstein (1938) described immature erythroblasts of Testudo geometrica having 

larger cellular and nuclear lengths and widths than the mature erythrocytes. Zhang et 

al. (2011) describe chelonian immature erythrocytes only as being rounder, with 

rounder nuclei than mature erythrocytes. Immature erythrocytes in P. geometricus 

appear similar to those in the Desert tortoise (G. agassizii; Alleman et al. 1992) as 

being smaller than mature erythrocytes, however, with larger nuclei, and my findings 

suggest that nuclear to cellular area ratios are more indicative of erythrocyte maturity, 

compared to cellular and nuclear sizes.  

 

While there have been no reports of cohort differences in immature erythrocyte 

occurrences, it is reported that juvenile reptiles have a high occurrence of immature 

erythrocytes in circulation (Pienaar 1962; Mader 2000; Campbell 2004). My results 

indicate no significant differences in seasonal abundances of immature erythrocytes 

in juvenile geometric tortoises, and could be attibuted to low sample size. 

 

Erythrocyte profiles showed no significant effect of cohort within seasons, but 

erythrocyte maturation stages showed significant seasonal changes. The proliferation 

of immature erythrocytes in winter and spring indicate a regenerative (erythropoeitic) 

response in geometric tortoises during winter and spring. Erythrocyte morphometrics 

during these sampling seasons reveal that nuclear to cellular ratios were highest for 

all cohorts, suggesting that high nuclear to cellular ratios can indicate the presence of 

immature cells. This regenerative erythropoietic response is common to ectotherms 

emerging from a period of limited metabolic activity brought about by low 

environmental temperatures (Pienaar 1962; Dessauer 1970).  
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Senescent erythrocytes were more abundant in circulation in autumnn. Intra-

erythrocytic inclusion bodies and vacuoles in geometric tortoise blood were observed 

without any significant seasonal or cohort differences, however with a tendency 

towards increased prevalence during the drier autumn months in juveniles and 

males. Reavill (1994) describes such basophilic bodies, sometimes being associated 

with cytoplasmic vacuoles as common in the Desert tortoise; they are noted in 

chelonian erythrocytes by Zhang et al. (2011) without evidence for illness, as in blood 

cells of the Green turtle (Casal & Oros 2007), and are believed to be remnants of 

organelle degeneration (Work et al. 1998). In addition to this, and also occurring in 

autumn, was the tendency towards poikilocytosis. The increased presence of 

erythrocyte inclusion bodies, senesence and poikilocytosis is indicative of a 

degenerative response (Pendl 2006) and suggests stress conditions during the dry 

season, which correspond to low body conditions for all cohorts in autumn (see Table 

2.2). 

 

3.4.2 Erythrocyte dimensions and shape  

Since erythrocytes exist in circulation throughout the full range of developmental 

stages, it was impossible to exclude immature erythrocytes from the selection when 

making erythrocyte measurements. It is likely that smaller cells incorporated 

rubricytes and larger cell classes included polychromatophils and senescent cells. 

 

Understanding size and shape characteristics of erythrocytes is important, since the 

surface area to volume ratio of red blood cells is a critical determining factor for 

gaseous exchange in the tissues. Thus, smaller cells have a larger surface to volume 

ratio and are more efficient in gas exchange than larger cells, and similarly, elliptical 

cells provide a larger surface area for gaseous exchange than round cells (Hartman 

& Lessler 1964; Shadkhast et al. 2010).  

 

Erythrocyte measurements of P. geometricus obtained in this study are similar to 

those in Testudo geometrica (Bernstein 1938), in which average erythrocyte lengths 

and widths were reported at 18 and 10 µm, with slightly higher nuclei lengths and 

widths at 8 and 4 µm respectively. When compared to blood cells of T. graeca 

(Arikan & Cicek 2010), with lengths and widths of cells at 17.4 and 12.0 µm, and 

nuclei at 6.1 and 4.9 µm, erythrocytes and nuclei of geometric tortoises appeared to 

be more elongate. Psammobates geometricus erythrocyte ranges are within those 

described for Agrionemys horsfieldii (Hajkova et al. 2000) which have lengths and 
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widths measuring 19.5 and 9.2 µm, with nuclei measuring 6.4 µm in length and 3.6 

µm in width.  

 

3.4.3 Seasonal changes in erythrocyte morphology 

Owing to the direct influence of external environmental factors on ectothermal 

homeostatic regulation, seasonal influences can be reflected in changes in  red blood 

cell morphology (Campbell 2004; Strik et al. 2007).  

 

Erythrocytes in P. geometricus showed evidence of haemodilution in winter and 

spring, where larger cell size classes dominated in circulation. Hydration following the 

rainfall events (Fig. 2.3) is likely to have caused an increase in blood plasma and 

erythrocyte cytoplasm, accounting for largest cellular and nuclear areas during these 

sampling periods. Added to this, cellular morphometrics revealed that erythrocyte 

circularity was hightest for all cohort during winter and spring, suggesting that high 

cellular circularity can represent haemodilution conditions. Similarly, during the drier 

seasons, haemoconcentration likely resulted in cellular shrinking, and a proliferation 

of the smallest erythrocyte size class is evident for males, females and juveniles.  

 

Seasonal hydration fluctuations can be observed through variations in packed cell 

volume, as plasma volume is influenced by hydration state. Geometric tortoise PCV, 

however,  showed little evidence of dehydration in the dry season (see Chapter 

2.4.1). This is typical in certain arid or semi-arid tortoises, which have evolved  

anatomical and physiological adaptations enabling them to thrive under water-

restricted conditions. This anhomeostasis of body plasma is observed and described 

in the Desert tortoise (G. agassizii, Peterson 1996; Peterson 2002).  Since packed 

cell volumes are also affected by red cell count and size, it is difficult to identify 

responses to isolated factors.  

 

During the dry summer and autumn, smaller and more elongate erythrocytes as well 

as nuclei dominate in circulating blood. Elongation of the nuclei is reported to provide 

a larger surface area exchange with haemoglobin-rich cytoplasm (Shadkhast et al. 

2010), thus rendering them more efficient during these warmer, drier months. This 

increased efficiency of erythrocytes would not only serve to accommodate elevated 

metabolic rates, which in ectotherms, result from higher temperatures in the dry 

seasons (Dessauer 1970), but also enables increased physiological processes 

brought about by favourable conditions following winter rainfall. These include an 

increase in foraging opportunities as well as mating behaviour typically observed in 
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P. geometricus in the drier seasons (Hofmeyr & Henen, unpublished data) and have 

been described for G. agassizii (Henen et al. 1998; Christopher et al. 1999; 

Dickinson et al. 2002). 

 

3.4.4 Cohort differences in erythrocyte morphology 

Erythrocyte size differences between males and females have been reported in 

Caspian turtles (Metin et al. 2008), but not in the terrapin Emys orbicularis (Colagar & 

Jafari 2007) nor in Russian tortoises T. horsfieldii (Shadkhast et al. 2010). Worth 

noting, is that these results have been based on studies with comparably smaller 

sample sizes. Results obtained in this study indicate that erythrocytes of P. 

geometricus differ among cohort, and these differences are attributed to differences 

in growth and/or reproductive patterns.  

 

In male tortoises, erythrocyte differences were more pronounced in the summer and 

autumn, showing largest cell and nuclear sizes, as well as highest frequencies of the 

largest cell size, among all cohorts. The increased PCV, RCC and Hb in males in the 

summer and autumn (Chapter 2.3.4), were most probably due to increased 

erythrocyte numbers (RCC), since erythrocytes and nuclei were smaller and more 

elongate in these drier seasons compared to winter and spring. The increase in 

erythrocyte size, together with an increase in their numbers, indicates the mechanism 

responsible for the  erythropoietic - stimulating effects of androgens in males 

(Gardner & Gorshein 1973) during the mating season.  

 

Erythrocytes in females tended to be smaller with smaller nuclei than males, despite 

females having larger body sizes (see Fig. 2.4). While smallest erythrocytes in adults 

were more dominant in circulation in summer, in contrast to males, this pattern 

continues into autumn in females,  Since female rubricyte counts were comparably 

low in autumn, the small size cell class probably represents small, mature 

erythrocytes. Further supporting this is nuclear shape: through all seasons female 

nuclei are more circular than males and juveniles, except in autumn, where nuclei are 

more elongate, characteristic of mature erythrocytes. This could account for the high 

summer Hb concentrations in females (see chapter 2.3.4), since mature erythrocytes 

contain more haemoglobin than immature erythrocytes (Bernstein 1938).  

  

Juvenile tortoises showed significant differences in the spring, where erythrocytes 

and nuclei were larger than in adults, and frequencies of largest erythrocytes in 

circulation were higher than in adults. This, and higher spring nuclear to cellular 
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ratios compared to adults, suggests a proliferation of younger erythrocytes in 

circulation. Since juvenile haemoglobin concentrations are lower than those of adults 

in the spring (chapter 2.3.4), this further lends evidence that immature erythrocytes 

have lower haemoglobin concentrations than in mature erythrocytes. These spring 

differences imply increased metabolic rates in juveniles, which could be attributed to 

increased growth rates compared to those of adults, which is typical for reptiles 

(Pienaar 1962) as slower adult growth rates are evident following sexual maturity. 

While in the summer and autumn, there was evidence for haemoconcentration in 

adult erythrocytes, juvenile erythrocytes were more circular than in adults, which 

suggests that juveniles were more resilient to dehydration in the dry seasons, 

presumably due to a lack of added physiological demands of reproductive pressures. 

 

3.5 CONCLUSIONS 

Blood profiles are used in clinical practice to determine an animal‟s health status. 

Due to the clear functional role of the erythrocyte in metabolic facilitation, 

morphological descriptions, including shape, size, colour and irregularities of both 

erythrocytes and nuclei, are important characteristics and have been described for a 

few tortoise and turtle species, although knowledge in this field is still lacking for 

many chelonians. Exacerbating this has been the inconsistent terminologies for the 

different developmental stages of erythrocytes. This is the first study to describe 

erythrocyte morphology and development, as well as to investigate seasonal 

changes in blood profiles among male, female and juvenile geometric tortoises. 

 

Erythrocytes in circulation were represented through the full continuum of 

developmental stages including immature rubricytes, polychromatophils, mature and 

senile erythrocytes. Growth in rubricytes was evident by cytoplasm increase, and 

increased haemoglobin concentrations in the cytoplasm. As the cells matured from 

the polychromatophil stage, nuclear condensing and cellular and nuclear elongation 

was observed. Immature erythrocytes proliferated in circulation in winter and spring 

and this erythropoietic response is related to the limited metabolic activity of 

ectotherms during colder conditions.    

 

The lack of significant degenerative responses as well as parasites in circulating 

blood indicates this population of geometric tortoises to be clinically healthy, 

however, symptoms of abnormalities included erythrocyte inclusion bodies, vacuoles 

and poikilocytosis, and were more prevalent in the drier autumn months, suggesting 
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seasonally-based stress conditions. Evidence for haemoconcentration in the dry 

seasons and haemodilution in the wetter sampling periods result from changes in red 

blood cell size and shape. Erythrocyte morphometrics are useful in quantifying 

morphological changes, and together with haematological  parameters, further 

illuminate differences in blood profiles. Changes in nuclear to cellular area ratios 

corresponded to maturation in erythrocytes, whereas changes in circularity and 

elongation can indicate cytoplasmic swelling or shrinking; indicative of haemodilution 

and haemoconcentration respectively.  

 

Erythropoiesis is affected by a host of exogenous and endogenous factors including 

age, climate, nutrition, reproductive state and disease. Marked seasonal differences 

in blood profiles highlight the importance of external environmental conditions, acting 

as cues for the timing of important physiological processes. Cohort differences in 

geometric tortoises suggest these physiological processes revolve around increased 

growth rates in juveniles, and reproductive pressures in adults. The erythropoietic 

response in winter and spring, together with the prevalence of mature erythrocytes 

during summer and autumn highlight the mechanisms enabling elevated or 

supressed metabolic functioning and thus activity levels in response to differing 

climatic conditions.  

 

Being a heterogeneous group of vertebrates, reptilian blood cell morphology is highly 

varied, and representative values are necessary for the different genera and species. 

Results obtained in this study could serve as baseline haematological values to 

monitor the physiological responses of the Critically Endangered geometric tortoise. 
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4 WHITE BLOOD CELL AND THROMBOCYTE  HISTOLOGY 

 

 

4.1 INTRODUCTION 

The complete leukocyte evaluation includes a total white blood cell count, 

determination of the differential leukocyte count, and a description of leukocyte 

morphology based on analysis of the blood smear. Laboratory techniques are similar 

to those used in mammalian studies, although reptilian blood differs from mammalian 

blood through nucleation of all cells, pluripotentiality of certain cell types and the 

inevitable direct effect of influences such as gender, age, environmental conditions 

and nutritional status (Zhang et al. 2011). Difficulties in leukocyte descriptions arise 

from inconsistent terminology and uncertain cellular lineages. Nomenclature has 

largely been based on the cell‟s lineage, cytological (including staining) 

characteristics and the cell‟s function (Pienaar 1962). In addition to the leukocytes, of 

which up to seven types have been described in reptiles, the circulating blood also 

includes nucleated thrombocytes. 

 

Leukocytes can be divided into two major groups; the granulocytes and 

agranolucytes. The granulocytes include heterophils, eosinophils and basophils. 

Heterophils replace the mammalian neutrophil in reptiles. The heterophils function 

against bacterial infections and are relatively large, round cells with clear cytoplasm 

with many spindle-shaped granules, which generally stain eosinophilic pink-orange or 

reddish-brown in chelonians (Frye 1991). These cells are described as being fragile, 

easily distorted in the production of a blood smear, and are known to display 

chromophobic (weak-staining) properties in „watery‟ solutions. The heterophil is 

described as a Type I eosinophil by Pienaar (1962), being derived from granuloblasts 

(myeloid stem cells), while immature cells display a relatively larger nucleus and 

cytoplasm stains more basophilic. Heterophil numbers in circulation display most 

inconsistency among reptiles, and Jacobson (2007) noted it as the most predominant 

leukocyte type in Chelonia. In cases of infectious inflammatory disease, toxically 

reactive cells, in which basophilic or vacuolated intracytoplasmic granulation is 

observed, are more numerous. In reptiles, highest heterophil numbers occur in the 

summer months and lowest numbers during hibernation, although Jacobson (2007) 

also noted a stress/gravidity-related increase. 
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Eosinophils are morphologically and functionally similar to those in mammals, 

although it is not described in all reptile species. They are round cells containing 

distinct spherical granules which stain faint-pink to deep orange-red in the abundant 

cytoplasm (Frye 1991). A distinction from heterophils is the shape of the cytoplasmic 

granules, as well as eosinophils appear less distorted in shape (Zhang et al. 2011).  

Pienaar (1962) reported eosinophils as being derived from lymphocytoid cells. 

Whereas heterophils typically react to extra-cellular bacterial infections, eosinophils 

react to allergens, parasitic infestations (Frye 1991; Strik et al. 2007) and reactive 

forms may appear degranulated and/or vacuolated.  

 

Basophils, as their mammalian counterparts, are the most readily identifiable 

granulocyte, being small, round with dark-purple staining, uniformly metachromatic 

intracytoplasmic granules and a dark nucleus which is often obscured (Zhang et al. 

2011). Due to their water-sensitivity, basophils may appear degraded, resulting in 

faint, smudged „ghost‟ cells in the blood slide (Strik et al. 2007). Basophils typically 

occur in constant numbers in circulation, with minimal seasonal influences, yet 

counts among reptile species are very varied. Basophils are described as „mast‟ 

leukocytes and function in inflammation (Davis et al. 2008), histamine release and 

may be associated with haematoparasites as well as certain viral infections (Strik et 

al. 2007).  

 

The major agranulocytic leukocytes are the lymphocytes and monocytes. 

Lymphocytes reportedly display diversity beyond T and B cell forms (Campbell 

1996), and Pienaar (1962) reported them as the main blood-cell progenitor for most 

leukocyte types. In the blood smear, they are easily mistaken for thrombocytes, 

however certain morphological and cytochemical differences between the two are 

discernable in that lymphocytes tend to be larger cells, with a distinct border and 

lightly to moderately basophilic cytoplasm, with larger nuclei and a higher nuclear to 

cytoplasm area ratio than thrombocytes (Strik et al. 2007). They are noted to be more 

numerous in females, and also during warmer periods, possibly due to the relative 

inability of some temperate species to invest in a primary immune response during 

low environmental temperatures (Frye 1991). Lymphocytes are associated with 

inflammation, parasitic infestations as well as antigenic stimulation (Campbell 1996; 

Canfield 1998), reactive forms have been observed, as well as what Strik et al. 

(2007) refer to as plasmacytoid forms. 
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Plasma cells represent a specialised lymphocyte in response to a specific antigen. 

Pienaar (1962) identifies plasma cell-lymphocyte transition stages in the peripheral 

blood of reptiles. While they resemble lymphocytes, in comparison, plasma cells are 

less abundant than lymphocytes (Frye 1991) and the cytoplasm stains a deeper blue, 

with a more intense blue eccentrically-placed nucleus. Plasma cell composition in 

circulation may increase in cases of severe infections or inflammatory disease (Strik 

et al. 2007). 

 

Monocytes are similar in morphology and function to their mammalian counterparts, 

often described as large, with a large, kidney-shaped nucleus surrounded by 

abundant pale-blue staining cytoplasm (Zhang et al. 2011). Owing to their largely 

phagocytic function, reactive monocytes can be seen with ingested intracytoplasmic 

particles, sometimes referred to as macrophages. Monocytes are associated with 

chronic infection, inflammation, immunogenic stimulation, as well as bacterial 

infections (Frye 1991; Campbell 1996; Canfield 1998).  

 

Azurophils have been described in chelonian circulating blood, and have been 

closely allied to monocytic leukocytes. Frye (1991) refered to them as neutrophils, 

while they have been described as monocytoid azurophils (Campbell 1996) and as 

having both monocytic and granulocytic features (Pienaar 1962; Strik et al.  2007). In 

independent haematological studies in the turtle C. mydas, Samour et al. (1998) 

observed azurophils in circulation, while  Work et al. (1998) found no evidence of this 

cell type in peripheral blood. 

 

Reptile thrombocytes are nucleated, involved in the phagocytosis of bacteria, tissue 

debris and senescent erythrocytes, and as mammalian platelets, haemostasis. The 

cells are often described as small, basophilic-staining, ellipsoidal with pale, delicate 

cytoplasm which can easily be distorted, and a relatively large, distinctly darker 

basophilic nucleus (Pienaar 1967; Zhang et al. 2011). Although often resembling  

small lymphocytes, a distinguishing characteristic of thrombocytes is the aggregration 

of the cells on a blood smear.  Derived from thromboblasts, these cells (together with 

erythrocytes) can divide amitotically and have the pluripotentiality to transform into 

erythrocytes (Frye 1991). As a result, a range of transitional phases can be seen in 

the circulating blood and due to their phagocytotic role, reactive cells can be seen 

with pseudopodia and/or cytoplasmic vacuolation (Frye 1991; Canfield 1998; Strik et 

al. 2007). 

 

 

 

 

 



Chapter 4: Leukocytes and thrombocytes 

 55 

The objectives of this study were to: (1) identify and describe morphological 

characteristics of leukocyte types and thrombocytes in peripheral blood of P. 

geometricus; (2) assess differences in the leukocyte and thrombocyte profiles of 

males, females and juveniles; and (3) evaluate seasonal changes in leukocyte and 

thrombocyte profiles.  

 

4.2 MATERIALS AND METHODS 

4.2.1 Sampling procedure 

Blood samples were obtained over four seasons at Elandsberg Nature Reserve (3 

800 ha, 33° 26‟ S; 19° 01‟ E) in the southwestern Cape, South Africa, from 26 to 42 

healthy, free-ranging geometric tortoises (including males, females and juveniles) per 

season (see Table 2.1 for sample sizes in different seasons).  I sampled blood from 

unanaesthetised tortoises immediately after capture to limit stress-induced changes 

to blood parameters. The mass of the animals determined the maximum blood 

volume sampled and I took care not to exceed 0.5% of the animal‟s field body mass 

(a conservative veterinary standard). I used a 25 G needle with a 1 or 2 ml syringe to 

collect blood from either the jugular vein or carotid artery. Since EDTA is known to 

cause lysis of chelonian cells (Harding et al. 2005; Knotek et al. 2006), heparin was 

used as an anticoagulant, although it has been observed to impart a blue tinge to 

blood smears as well as affect the clumping nature of cells (Houwen 2000; Strik et al. 

2007). Sampling normally took 1 to 2 minutes and I aborted attempts if an adequate 

sample has not been obtained in approximately 5 minutes. The animals were kept 

under observation for 24 hours and during the dry season, I provided access to 

drinking water before returning the animals to the capture site. 

 

I produced blood smears, in duplicate, using the wedge-smear technique with a 

single-use, bevel-edged glass slide spreader (Pendl 2006). Smears were air-dried, 

fixed in absolute methanol, and stored in dust-free boxes until being stained. I 

obtained best staining results from the May-Grünwald – Giemsa stains, using the 

technique described in Houwen (2000). To prepare the stock solutions, May-

Grünwald reagent powder (0.3 g) was mixed in 100 ml absolute methanol, left to 

stand overnight, and subsequently filtered. Giemsa reagent powder (1 g) was mixed 

in 66 ml glycerol, heated to 56 ºC for 100 minutes, mixed with 66 ml absolute 

methanol, left to stand overnight, filtered and stored in an airtight container. I used a 

buffer of pH 6.8 to dilute stock solutions each time before staining; May-Grünwald 

stock was mixed with equal parts of buffer whereas Giemsa stock was diluted with 
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nine parts buffer. The May-Grünwald stain was introduced to the blood smear, letting 

stand for 5 minutes, after which the excess solution was drained from the slide that 

was then introduced to the Giemsa stain for 12 minutes. The slide was then rinsed 

once with the buffer solution, washed in, and left to stand in distilled water for 3 

minutes. Stained blood smears were left to dry and later fitted with a glass cover slip 

using Entellan New rapid-mounting medium for microscopy (Merck). 

 

4.2.2 Histological evaluation and measurements 

I used all the smears to identify, photograph and measure 10 representative cells of 

each leukocyte type and of thrombocytes. I used a Leica DM 500 photomicroscope 

(Leica LAS Software, Leica Microsystems Ltd., Switzerland, version 1.8.0), with 10x 

eyepieces, for the histological evaluation of leukocytes and thrombocytes under 

immersion oil with a 100x objective to give 1000x magnification. For thrombocytes 

and each leukocyte type, I assessed the size, shape and staining characteristics of 

cells and their nuclei for identification and a detailed description of each cell type.  

 

To determine size ranges of leukocytes, thrombocytes and their nuclei, I used a 

Leica ICC50 camera linked to the Leica DM 500 digital photomicroscope (100x 

objective and total magnification of 1000x) to take digital images of blood cells. The 

images were saved as jpeg files (2048 x 1536 pixels) and then analysed using the 

NIKON NIS Elements imaging software (refer to chapter 3.2.2 for image analysis 

technique). 

 

Nuclei in basophils were obscured by dark cytoplasmic granules, and so were not 

measured. For each other leukocyte, I measured the area of both cell and nucleus 

(surface area of the image in μm2). Cell measurements were digitally automated to a 

precision of 0.01 µm. Pixel size was manually calibrated using a micrometer scale 

automatically generated when capturing the images (at 1000x magnification, 1 pixel =  

0.07µm).  

 

In addition, for each individual, I performed a differential white cell count, using the 

meandering technique to identify the first 100 leukocytes encountered. Leukocytes 

were counted as heterophils, eosinophils, basophils, lymphocytes, plasma cells, 

monocytes or azurophils. All thrombocytes encountered within the first 100 

leukocytes were counted, and reported as relative to 100 leukocytes. Data were 

exported to Windows Excel (MS Office) and collated into one spreadsheet for 

statistical analysis. 
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4.2.3 Data and statistical analysis 

SigmaStat (SPSS Inc., Chicago, U.S.A. version 2.03) was used to statistically 

evaluate leukocyte and thrombocyte counts. Square root transformations were 

sufficient for most parameters to comply with parametric requirements, however 

certain tests still failed normality and/or equal variance. Due to low numbers, I 

analysed plasma cell and azurophil counts separately. To test for the effects of 

season and cohort on each individual cell type, I used two-way ANOVAs followed by 

Student-Newman-Keuls post hoc comparisons. Furthermore, one-way ANOVAs were 

used to test for differences in cellular and nuclear areas among cell types, following 

log10 transformations. When data were parametric, one-way ANOVA was followed by 

Student-Newman-Keuls post hoc comparisons, whereas for non-parametric data, 

Kruskal-Wallis ANOVA on ranks was followed by Dunn‟s multiple post hoc 

comparisons.  

 

4.3 RESULTS 

4.3.1 Leukocyte types, thrombocytes and features 

Seven leukocyte types were identified circulating in peripheral blood of P. 

geometricus (Fig. 4.1). These included the heterophils, eosinophils, basophils, 

lymphocytes, plasma cells, monocytes and azurophils. Additionally, the smears 

contained thrombocytes.  

 

Heterophils were typically round, large cells, ranging between  121.56 and 226.25 

µm2 in surface area and often appeared polymorphic (Fig. 4.2a - b). Nuclei ranged 

between 29.42 and 52.19 µm2, and nuclear to cellular ratios ranged from 17.2% to 

31.9%. A distinguishing character of the eccentrically-placed heterophil nucleus was 

the clumping of nuclear material, with darker staining clumped chromatin within paler-

staining abundant parachromatin (Fig. 4.2a - c). Sometimes bi-lobed nuclei were 

observed (Fig. 4.2c). The abundant clear cytoplasm contained dense, spindle-

shaped eosinophilic granules which stained faint pink to deep red, and in reactive 

heterophils, a deep lilac (Fig. 4.2d). Often, heterophils appeared with ingested 

particles within the cytoplasm (Fig. 4.2e). In some cases, degranulation (Fig. 4.2f) 

and senescence (Fig. 4.2g) was visible, resulting in eosinophilic cellular debris (Fig. 

4.2h). 
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Eosinophils were distinctly round cells ranging between 59.54 and 145.16 µm2 in 

surface area. The slightly basophilic cytoplasm contained distinct spherical 

eosinophilic globules, which ranged in staining from reddish brown to orange (Fig. 

4.3a). The blue nuclei were typically lentiform, often seen displaced to one pole (Fig. 

4.3b), and ranged between 15.01 and 45.53 µm2 in size. Nuclear to cellular ratios 

ranged from 24.3% to 44.6%. Eosinophils showed less polymorphy compared to 

heterophils, and the eosinophilic nucleus appeared more homogenous in chromatin 

and parachromatin texture (Fig. 4.3c). In some cases, degranulated eosinophils were 

present (Fig. 4.3d).  

 

Basophils were round cells, readily identifiable due to their intense basophilic staining 

(Fig. 4.4a), and ranged between 53.82 and 135.96 µm2 in surface area. The 

cytoplasm was densely packed with round, dark blue-violet staining granules (Fig. 

4.4b) that often obscured the dark blue nucleus (Fig. 4.4c). Often seen, were 

damaged cells, resulting in a burst/leaked appearance, with the hyperchromatic 

granules released into the blood plasma (Fig. 4.4d). 

 

Lymphocytes ranged from small to large forms (Fig. 4.5a - b), between 68.55 and 

147.14 µm2 in surface area. The cells were round, and nuclei and cytoplasm both 

stained basophilic blue to grey, often both with a homogenous appearance (Fig. 

4.5a), rendering the nuclei difficult to identify. Nuclei ranged between 30.03 and 

59.03 µm2 in surface area, and nuclear to cellular area ratios ranged between 46.2% 

and 79.2%. Medium-sized lymphocytes were often reactive, in which the cytoplasm 

appeared vacuolated (Fig. 4.5c - d). Less commonly noted, were small cytoplasmic 

projections in reactive forms (Fig. 4.5d).  

 

Plasma cells were uncommon in peripheral blood in P. geometricus. These 

basophilic cells were round with large nuclei, which were often difficult to distinguish 

within the intensely staining, abundant blue cytoplasm (Fig. 4.6). These 

characteristics bore a close resemblance to lymphocytes. Due to its scarcity, only 

one cell was measured (Table 4.1), revealing a  large nuclear to cellular ratio 

(46.7%). 
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Figure 4.1  Leukocytes in circulating blood of Psammobates geometricus, showing 

the heterophil (a), eosinophil (b), basophil (c), lymphocyte (d), plasma cell (e), 

monocyte (f) and azurophil (g), as well as thrombocytes (h). Scale represents 20 µm, 

1000x magnification, Romanowsky stains. 

 

 

 

 

 

    

    

Figure 4.2  Heterophils in circulating blood of Psammobates geometricus, showing 

spindle-shaped cytoplasmic granules, clumping of chromatin (a – b), a bi-lobed 

nucleus (c), lilac-staining cytoplasmic granules (d), ingested particles (e), 

degranulation (f), senescence (g) and cellular debris (h). Scale represents 20 µm, 

1000x magnification, Romanowsky stains. 
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Figure 4.3  Eosinophils in circulating blood of Psammobates geometricus, showing 

spherical cytoplasmic granules (a – b). Note differences to a heterophil (c; heterophil 

on right) and cytoplasmic degranulation (d). Scale represents 20 µm, 1000x 

magnification, Romanowsky stains.  

 

 

 

 

 
 

    

Figure 4.4  Basophils in circulating blood of Psammobates geometricus, showing 

intensely basophilic cytoplasm and nuclei (a – c) as well as a ruptured cell (d). Scale 

represents 20 µm, x1000 magnification, Romanowsky stains. 

 

 

 

 

 

   

 

 

 

Figure 4.5  Small and medium lymphocytes in circulating blood of Psammobates 

geometricus, showing basophilic cytoplasm and nuclei (a - b), cytoplasmic 

vacuolation (c), and projections (d). Scale represents 20 µm, 1000x magnification, 

Romanowsky stains.  
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Monocytes were typically large (surface areas ranged from 110.02 to 245.95 µm2), 

round, basophilic cells which varied in staining reactions from purple, blue or grey 

(Fig. 4.7a - c). The nuclei were very large (ranging between 51.54 and 151.54 µm2), 

generally amorphous, and displaced the abundant cytoplasm, which tended to be 

paler in staining intensity (hypochromatic; Fig. 4.7a - c). Nuclear to cellular ratios 

were between 35.4% and 62.9%. A common feature of reactive cells, was 

vacuolation of cytoplasm (Fig. 4.7c), while azurophilic granulation has been  

observed (Fig. 4.7d).  

 

Azurophils were infrequent, identifiable by their distinctly-postitioned nuclei, which 

were often displaced by the abundant cytoplasm. These cells showed a characteristic 

purple-staining quality, with the large nucleus staining more intensely than the 

cytoplasm (Fig. 4.8). Nuclear material was difficult to discern, while the cytoplasm 

appeared finely granulated. Cellular and nuclear characteristics were similar to those 

in monocytes. Due to its scarcity, only one cell was measured (Table 4.1), displaying 

a nuclear to cellular ratio of 35.3%. 

 

Thrombocytes were numerous in the blood smear, ranging in size between 25.44 

and 47.91 µm2, generally appearing as round to oval (Fig. 4.9a), although the cells 

were often irregularly shaped. Thrombocytes were identifiable by a prominent, often 

intensely blue staining, irregularly-shaped nucleus (ranging between  20.67 and 

35.44 µm2) surrounded by scant, faintly-staining basophilic cytoplasm (Fig. 4.9b), 

which was rarely visible intact (Fig. 4.9c). Nuclear to cellular ratios were between 

70.9% and 91.4%.  A characteristic feature of this cell type was that of forming 

aggregations (Fig. 4.9a and d), which was useful in distinguishing cellular and 

nuclear characteristics of thrombocytes from small lymphocytes (Fig. 4.9d). 

Lymphocytes tended to have more regular cellular membranes, whereas in 

thrombocytes, the cytoplasm appeared faint, and ruptured easily. Lymphocyte nuclei 

were difficult to discern from cytoplasm, whereas thrombocyte nuclei tended to be 

more easily identifiable, and irregular in shape.  
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Figure 4.6  Plasma cell in circulating blood of Psammobates geometricus, showing 

intensely blue-staining cytoplasm and large nucleus. Scale represents 20 µm, 1000x 

magnification, Romanowsky stains. 

 

 

 
 

    

Figure 4.7  Monocytes in circulating blood of Psammobates geometricus, showing 

hypochromatic cytoplasm, large nuclei (a – c), cytoplasmic vacuolation (c) and 

azurophilia (d). Scale represents 20 µm, 1000x magnification, Romanowsky stains. 

 

 

 

 

 

 

Figure 4.8  Azurophil in circulating blood of Psammobates geometricus, showing 

characteristic purple-staining, abundant cytoplasm and large nucleus. Scale 

represents 20 µm, 1000x magnification, Romanowsky stains. 
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Other cell types observed in the leukogram included small, round, possibly immature 

granulocytes (heterophils or eosinophils) showing relatively large nuclei and 

cytoplasmic basophilia (Fig. 4.10a - b). Other types included round, often small, 

basophilic cells that appeared to be lymphocyte-monocyte transition type leukocytes, 

showing relatively large nuclei and basophilic cytoplasm (Fig. 4.10c - d). Other 

varieties of basophilic leukocytes appeared degranulated, vacuolated or both, which 

rendered them indiscernable (Fig. 4.10e - f). 

 

Monocytes and heterophils had larger surface areas than the other leukocytes had 

and eosinophils were larger than lymphocytes. All leukocytes were larger than the 

thrombocytes (Table 4.1, F5,54 = 49.99, P < 0.0001). Nuclei were not measured in 

basophils, due to intensely metachromatic staining in cellular granules. Monocyte 

nuclei were larger than the nuclei of other leukocytes. Lymphocytes had larger nuclei 

than eosinophils, and both lymphocyte and heterophil nuclei were larger than in 

thrombocytes (F4,45 = 23.59, P < 0.0001). Nuclear to cellular area ratios were highest 

in thrombocytes, followed by lymphocytes, monocytes, eosinophils and least in 

heterophils (F4,45 = 91.76, P < 0.0001). 

 

Table 4.1  Cellular and nuclear sizes of circulating leukocytes and thrombocytes in 

Psammobates geometricus, as well as nuclear to cellular surface area ratios. Data 

are presented as mean and standard deviations of ten cells of each cell type, except 

for the plasma cell and azurophil (one only).  

Cell type 
Cellular surface 

area (µm2) 

Nuclear surface 

area (µm2) 
N/C ratios (%) 

Heterophil 164.80 ± 33.16 39.37 ±  7.15 24.39 ±  4.83 

Eosinophil 106.40 ± 31.47 35.85 ±  9.40 34.33 ±  6.51 

Basophil 91.56 ± 26.79 - - 

Lymphocyte 76.94 ± 15.04 46.74 ± 7.65 61.72 ± 10.33 

Monocyte 170.13 ± 50.50 84.60 ±  32.10 49.22 ±  7.40 

Plasma Cell  151.3 70.49 46.66 

Azurophil 101.26 35.72 35.28 

Thrombocyte 35.46 ± 6.06 28.47 ±  4.33 80.61 ±  6.47 
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Figure 4.9  Thrombocytes in circulating blood of Psammobates geometricus, showing 

irregularly-shaped nuclei (a), scant cytoplasm (b), bi-nucleation (c) and aggregations 

(a and d), with a lymphocyte (d). Scale represents 20 µm, 1000x magnification, 

Romanowsky stains. 

 

 

 

  

  

  

Figure 4.10  Leukocytes in circulating blood of Psammobates geometricus, showing 

immature granulocytes (a - b), mono-lympho transition type leukocytes (c - d), and 

vacuolated/degranulated leukocytes (e - f). Note the small lymphocyte in b. Scale 

represents 20 µm, 1000x magnification, Romanowsky stains. 
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4.3.2 Leukocyte and thrombocyte frequencies  

Differential leukocyte counts were made by recording the frequency of each 

leukocyte type relative to 100 white blood cells whereas thrombocyte counts were 

recorded per 100 leukocytes (Table 4.2). 

 

Table 4.2  Seasonal differences in differential leukocyte counts, and thrombocyte 

numbers relative to 100 leukocytes, for cohorts of Psammobates geometricus. Data 

are presented as means and standard deviations. 

    Females   Males   Juveniles 

Spring Heterophils (%) 49.40 ± 17.11  56.91 ± 12.23  65.40 ± 13.96 

 Eosinophils (%) 6.47 ± 5.67  5.82 ± 3.49  0.40 ± 0.55 

 Basophils (%) 3.87 ± 2.64  3.55 ± 2.02  1.20 ± 1.64 

 Lymphocytes (%) 36.27 ± 15.42  30.82 ± 9.47  30.60 ± 13.20 

 Monocytes (%) 3.93 ± 2.22  2.64 ± 2.77  1.20 ± 1.30 

 Plasma Cells (%) 0.07 ± 0.26  0.09 ± 0.30  0.80 ± 1.30 

 Azurophils (%) 0.0  0.18 ± 0.60  0.40 ± 0.55 

  Thrombocytes 83.60 ± 44.04   112.64 ± 34.41   79.80 ± 18.40 

Summer Heterophils (%) 51.36 ± 14.32  44.00 ± 11.08  38.00 ± 9.33 

 Eosinophils (%) 11.91 ± 7.85  16.25 ± 12.45  8.00 ± 15.10 

 Basophils (%) 3.64 ± 2.84  3.88 ± 3.48  3.14 ± 1.57 

 Lymphocytes (%) 29.73 ± 12.91  33.50 ± 11.49  45.43 ± 8.98 

 Monocytes (%) 3.18 ± 4.12  2.00 ± 3.78  4.43 ± 3.95 

 Plasma Cells (%) 0.18 ± 0.40  0.25 ± 0.71  0.86 ± 1.07 

 Azurophils (%) 0.0  0.13 ± 0.35  0.14 ± 0.38 

  Thrombocytes 137.73 ± 26.87   140.25 ± 28.26   160.71 ± 41.98 

Autumn Heterophils (%) 46.70 ± 21.33  48.17 ± 11.57  41.00 ± 14.73 

 Eosinophils (%) 8.50 ± 7.75  8.67 ± 7.08  3.20 ± 3.56 

 Basophils (%) 4.10 ± 6.17  2.75 ± 3.25  2.80 ± 2.17 

 Lymphocytes (%) 37.80 ± 23.74  37.42 ± 15.10  48.20 ± 18.27 

 Monocytes (%) 2.30 ± 2.06  2.75 ± 1.91  3.80 ± 4.82 

 Plasma Cells (%) 0.30 ± 0.48  0.17 ± 0.39  0.80 ± 1.30 

 Azurophils (%) 0.30 ± 0.67  0.08 ± 0.29  0.20 ± 0.45 

  Thrombocytes 106.30 ± 49.07   118.83 ± 42.04   130.40 ± 48.92 

Winter Heterophils (%) 57.75 ± 7,78  51.38 ± 10.13  55.46 ± 16.26 

 Eosinophils (%) 8.13 ± 4.08  11.31 ± 6.85  2.38 ± 2.57 

 Basophils (%) 5.56 ± 10.31  1.62 ± 2.10  3.85 ± 3.56 

 Lymphocytes (%) 26.25 ± 14.14  32.15 ± 16.04  35.46 ± 15.77 

 Monocytes (%) 1.25 ± 1.29  2.00 ± 1.91  1.69 ± 2.53 

 Plasma Cells (%) 1.06 ± 1.24  1.54 ± 2.40  1.15 ± 2.41 

 Azurophils (%) 0.0  0.0  0.0 

  Thrombocytes 111.25 ± 48.32   136.92 ± 38.40   136.15 ± 65.90 
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4.3.3 Effects of season and cohort 

Because plasma cells and azurophils had low representation in differential white cell 

counts, I excluded these cells in order to do two-way ANOVAs to evaluate the effects 

of season, cohort and type. Within the cohorts, there were no seasonal effects on  

differential white cell counts (P > 0.183). In adult geometric tortoises, the pattern of 

leukocyte type frequencies was the same; heterophils were most abundant, followed 

by lymphocytes, then eosinophils, with no difference between monocyte and basophil 

counts (F4, 200 or 240 > 210.2, P < 0.0001). Males showed an interaction of season and 

leukocyte type (F12,200 = 2.21, P = 0.013), and the general pattern applied in autumn 

and winter, whereas in summer, heterophils and lymphocytes were equally abundant.  

 

In spring, eosinophil counts were the same as monocytes and basophils. 

Additionally, male eosinophil values were higher in summer than in spring and 

autumn. In juveniles, the pattern was slightly different; heterophils were most 

abundant, followed by lymphocytes, but eosinophils, monocytes and basophils did 

not differ (F4,130 = 178.2, P < 0.0001 ). Due to an interaction of season and type for 

juveniles (F12,130 = 2.51, P = 0.0053), the overall pattern appeared in winter and 

spring whereas in summer and autumn, lymphocyte counts were the same as 

heterophils. Additionally, heterophil values were higher in spring and winter than in 

summer, and spring values were also higher than in autumn. Furthermore, eosinophil 

counts were higher in summer than in spring. 

 

Within season analyses showed a cohort effect in spring (F2,140 = 3.82, P = 0.024) but 

not in autumn, summer or winter (P > 0.59). Furthermore, the frequency of leukocyte 

types differed within each season (F > 98.6, df1 = 4, df2 = 115, 120, 140 or 195; P < 

0.0001). Leukocyte counts showed similar patterns in winter and summer; most 

abundant were heterophils, followed by lymphocytes, eosinophils, monocytes and 

basophils, with no difference between the latter two types. Autumn lymphocyte and 

heterophil counts did not differ, with no interactions (P = 0.580). Winter tests showed 

an interaction of cohort and cell type (F8,195 = 4.36, P < 0.0001) and revealed that 

males displayed the overall pattern, whereas in females, basophils were more 

abundant than monocytes, while in juveniles, eosinophil counts were not higher than 

in monocytes and basophils. Additionally in winter, adult values for eosinophils were 

higher than juvenile values. In summer, heterophils were most abundant, followed by 

lymphocytes, eosinophils, with monocytes and basophils equally least abundant, with 

an interaction of cohort and cell type (F8,115 = 3.06, P = 0.0037). This pattern applied 

to males only, because in females there was no difference between eosinophil, 

 

 

 

 



Chapter 4: Leukocytes and thrombocytes 

 67 

basophil and monocyte numbers, and in juveniles, lymphocyte counts were the same 

as heterophils, and eosinophil, monocyte and basophil counts did not differ. In 

summer, heterophils were more abundant in females than in juveniles, and 

lymphocytes were more abundant in juveniles than in adults. In spring, there was an 

interaction between cohort and cell type (F8,140 = 2.64, P = 0.010). Heterophils were 

most abundant, followed by lymphocytes, with no difference among eosinophil, 

basophil and monocyte counts for each cohort. Heterophil, lymphocyte, basophil and 

monocyte counts were the same in all cohorts, whereas eosinophils were more 

abundant in adults than in juveniles.  

 

Because plasma cells and azurophils had such low occurrences (0% to 2% for all 

cohorts among all seasons), it was not possible to do two-way ANOVAs on these cell 

types. Instead, I have done one-way ANOVAs on cohort within each season, and on 

season within each cohort. The differential frequency of plasma cells did not differ 

among cohorts or among seasons (P > 0.0089 did not meet Bonferroni corrected P-

value of 0.0071). Similarly, azurophil differential frequencies did not differ among 

cohorts or among seasons (P > 0.035 did not meet Bonferroni corrected P-value of 

0.0071).  

 

Thrombocyte counts (relative to 100 leukocytes) ranged between 113 and 140 cells 

in males, 84 and 138 cells in females, and 80 and 161 cells in juveniles. In spring, 

counts were between 80 and 113, in summer between 138 and 161, autumn counts 

were between 106 and 130, and in winter, between 111 and 137 cells per 100 

leukocytes. Thrombocyte counts changed seasonally (F3,114 = 6.79, P = 0.00030), but 

not with cohort (P = 0.110), and with no interactions (P = 0.759). Summer, winter and 

autumn counts were higher than in spring.  

 

4.4 DISCUSSION 

The complete leukogram includes determination of the differential leukocyte count, 

thrombocyte count and evaluation of the overall cellular morphology. The 

classification criteria of chelonian leukocytes vary among studies, as some cells are 

not easily identified based on their morphological differences alone, and cell lineages 

are unclear.  

 

Variation in nomenclature and classification is less common in recent literature. Saint 

Girons (1970) described eosinophils, azurophils, neutrophils and plasma cells in 
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reptiles. Bernstein (1938) described neutrophils, Pienaar (1962) described these as 

Type I eosinophils, while recent agreement is that reptilian heterophils are analogous 

to mammalian neutrophils (Frye 1991; Strik et al. 2007). Bernstein (1938) also 

included the leukocyte type macrocytes, in which his description of this cell type is 

similar to those for monocytes. Lineages of certain leukocytes are also unclear. 

Heterophils and eosinophils (commonly referred to as acidophils) have been 

regarded as one cell in different stages of development (Zhang et al. 2011), however 

Knotkova et al. (2002) and most authors report them as separate cell types. Frye 

(1991) reported the pluripotentiality of thrombocytes into erythrocytes, while Pienaar 

(1962) described medium-sized lymphocytes as being the chief leukocyte progenitor, 

and small lymphocytes giving rise to thrombocytes.    

 

In addition to the nucleated thrombocytes, seven leukocyte types were identified in 

circulating blood of Psammobates geometricus. These include the heterophils, 

eosinophils, basophils plasma cells, lymphocytes, monocytes and azurophils.  

Leukocytes  and thrombocytes were similar to those described in reptiles and other 

chelonian species, with variation among cell type characteristics, percentage 

composition, as well as seasonal and cohort differences. Leukocyte profiles reveal 

the relative white blood cell composition in circulation at the time of sampling and 

alone can not infer immunocompetence. At a population level, increased numbers of 

leukocyte types can indicate a general response to a common stimulant / stressor 

(Davis et al. 2008). 

 

Heterophil counts ranged between 38% and 65%, and heterophils were the most 

abundant leukocyte in males and females, and juveniles. Strik et al.  (2007) and 

Sykes et al. (2008) report them as the predominant leukocyte type in chelonians and 

reptiles respectively, Pienaar (1962) reported Type I eosinophils as ranging between 

13% and 15%, Frye (1991) reports counts between 30% and 45% in healthy reptiles, 

and generally, numbers are known to show variation within individuals and species. 

This is attributible to morphological variations due to a possible chromophobic 

reaction in watery solutions (for example in Giemsa reagents; Pienaar 1962) as well 

as the cell maturing in circulation (Sykes et al. 2008). Immature heterophils were 

noted in P. geometricus, which were smaller, stained more basophilic, with larger 

nuclei than in mature heterophils. Reactive forms were observed in which 

cytoplasmic vacuolation, degranulation and/or basophilia was evident. The primary 

function of heterophils is phagocytosis, responding mainly to bacterial infections 

(Frye 1991; Canfield 1998; Strik et al. 2007). Although Campbell (1996) reported an 
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increase in heterophils during the warmer months, in P. geometricus spring counts 

were higher in summer and autumn. Female counts in summer were higher than in 

juveniles, which could reflect a reproduction-related stress, as described by Strik et 

al. (2007). Heterophil sizes ranged between 122 and 226 µm2, compared to Testudo 

graeca (Kassab et al. 2009), with ranges between 139 and 195 µm2. 

 

Eosinophils ranged between 0.4% and 16% composition in circulating blood, and  

were the third most abundant leukocyte. Frye (1991) reports them as comprising 7% 

to 20% the total leukocyte count in healthy reptiles. Compared to heterophils, 

eosinophils appeared less easily ruptured, with less polymorphic tendencies. 

Reactive forms were observed in circulation, in which cells showed an increase in 

cytoplasmic degranulation and/or basophilia. As in heterophils,  immature forms were 

also observed, being smaller, more basophilic and with larger nuclei than in mature 

eosinophils. Like heterophils, they function in inflammation, however react primarily 

to parasitic infestations (ecto-parasites and blood parasites; Frye 1991; Canfield 

1998). While large and small forms are not commonly reported in reptiles, Work et al. 

(1998) postulated that in C. mydas, large eosinophils were reactive cells in response 

to parasitic infections or inflammation. Campbell (1996) described reptilian 

eosinophils as being more abundant in winter and less so in summer, however, in P. 

geometricus, were found to be low in spring for all cohorts. High summer counts in 

males could indicate an increased immune response during the mating season, since 

female and juvenile summer eosinophil counts were as low as in monocytes and 

basophils.  Additionally, low juvenile spring and winter eosinophil counts compared to 

adults may represent a reduced immunological reaction. Eosinophil sizes in P. 

geometricus were between 60 and 145 µm2, while in T. graeca (Kassab et al. 2009), 

ranged between 108 and 132 µm2. 

 

Basophil counts were low in P. geometricus, ranging from 1% to 6% in circulation, 

while Frye (1991) reports counts between 10% and 25% in normal reptiles. 

Commonly observed in P. geometricus, were ruptured basophils, a condition 

reported by Pienaar (1962) and Strik et al. (2007) in which the cells are described as 

being easily destroyed by watery solutions. While the function of the basophil is not 

clearly defined, it is associated with blood parasites and viral infestations, and is 

involved in immune responses (Canfield 1998; Strik et al. 2007). Campbell (1996) 

reported varied sizes, numbers, and minimal seasonal influences. Frye (1991) 

reports basophil numbers increasing in the active seasons, and decreasing during 

hibernation. While in P. geometricus, basophil counts were consistently as low as in 
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monocytes, in females, winter basophil counts were higher than in monocytes, which 

likely represented an increased immunological response during gravidity. Basophil 

sizes were between 54 and 136 µm2, while in T. graeca (Kassab et al. 2009), ranged 

between 108 and 103 µm2. 

 

Lymphocyte counts ranged between 26% and 48%, and were the second most 

prolific leukocyte in P. geometricus. Common to reptilian blood, small, medium and 

large forms were observed, smaller forms being more abundant. Reactive forms 

were also noted, more commonly in medium-sized lymphocytes, in which 

cytoplasmic vacuolation and/or inclusions were present. Possible transitional forms 

between lymphocytes and plasma cells were observed in circulation, as reported by 

Strik et al.  (2007). Lymphocytes are associated with inflammation and parasitic 

infestations (Campbell 1996; Canfield 1998). Lymphocyte counts in P. geometricus 

were higher in autumn, and may have been associated with nutrition and dehydration 

stress during the dry season. Pienaar (1962) reported lymphocyte counts being 

higher in juveniles than in adults, and in P. geometricus, this was true in summer. 

Lymphocyte sizes ranged between 55 and 104 µm2, compared to T. graeca (Kassab 

et al. 2009), in which ranges were reported between 48 and 85 µm2. 

 

Plasma cells were rare, comprising between 0 and 2% of leukocyte composition in 

circulating peripheral blood. They appeared as round, blue-staining cells with round 

nuclei in abundant cytoplasm, and nuclei stained more intensely than cytoplasm. 

They appeared lymphocytic, as described by many authors (Pienaar 1962; Campbell 

1996; Canfield 1998). Frye (1991), described them comprising 0.2 – 0.5% leukogram 

composition in healthy reptiles, and they are believed to increase in cases of severe 

infections or inflammatory disease (Strik et al.  2007).  

 

Monocyte counts were low, ranging from 1% to 4%, while ranges have been reported 

from 0.5% by Frye (1991), to 10%  (Strik et al. 2007), while Pienaar (1962) reports 

values as high as 20%. Reactive forms were observed, in which ingested particles, 

and/or cytoplasmic vacuolation was present. Monocytes are stimulated by 

immunogenic pathogens, chronic infections (Frye 1991), and have a microbicidal role 

in reptiles (Canfield 1998). Monocyte counts are reported to experience little 

seasonal variation (Pienaar 1962; Campbell 1996) and this was found to apply to P. 

geometricus. Monocyte sizes ranged between 110 and 246 µm2, while in T. graeca, 

between 100 and 148 µm2 (Kassab et al. 2009).  
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Azurophils in P. geometricus were rarely observed, occupying between 0 and 0.4% 

of the leukogram composition, identifiable by their characteristic purple-staining 

affinity, and distinct nuclei. The cytoplasm appeared finely granulated, while the large 

nucleus resembled that of a monocyte. These cells are reportedly common in snakes 

and crocodiles (Strik et al. 2007), and have been occasionally reported in chelonians. 

No seasonal or cohort differences were noted. Having been commonly ascribed to 

both granulocyte and monocyte leukocyte lineages (Knotkova et al. 2002; Strik et al. 

2007), these cells have been described as azurophilic monocytes in reptiles 

(Campbell 1996) and in G. agassizii (Alleman et al. 1992).  

 

Thrombocytes in P. geometricus were reported between 80 and 160 cells per 100 

leukocytes, while Pienaar (1962) reported ranges between 25 and 350 cells per 100 

leukocytes in healthy reptiles. Hajkova et al. (2000) identified two thrombocyte types 

in Agrionemys horsfieldii, one oval with clear cytoplasm, and one rectangular with 

basophilic projections, yet in a 2010 study on A. horsfieldii, Shadkhast et al. describe 

thrombocytes as elliptical cells with eliptical nuclei. Reactive forms, showing 

cytoplasmic vacuolation and/or pseudopods (Strik et al. 2007) were not observed in 

P. geometricus. The role of thrombocytes is mainly the phagocytosis of senescent 

erythrocytes and leukocytes, as well as bacteria and tissue debris (Frye 1991; Strik 

et al. 2007). Geometric tortoise spring counts were lowest for all cohort, and may be 

associated with low erythrocyte senescence, suggesting homeostatic regulation. 

Thrombocytes ranged in size between 29 and 48 µm2, and in T. graeca (Kassab et 

al. 2009), between 20 and 26 µm2. 

 

A critical aspect of accurate leukocyte counts is the differentiation between small 

lymphocytes and thrombocytes (Shadkhast et al. 2010). Thrombocytes in P. 

geometricus, in addition to their aggregative nature, had irregular-shaped nuclei and 

faintly-stained, scant cytoplasm. Compared to thrombocytes, lymphocytes appeared 

with more of a distinct cellular border, tended to be rounder in shape, and the 

cytoplasm more basophilic.  

 

Factors affecting variation in leukocyte profiles range from the preparation of the 

blood smears, to methods and classification criteria used. The use of heparin as an 

anticoagulant in chelonians has been noted to impart a blue intensity in Romanowsky 

stains (Houwen 2000) as well as influence aggregation of leukocytes and 

thrombocytes on the blood smear. Tavares-Dias et al. (2008) reported an absence in 

blood cell aggregation when heparin was diluted with sodium chloride. Leukocyte 
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classification and leukocyte counts are subjective to cellular clumping, as well as 

differentiation of thrombocytes from lymphocytes. These factors render automated 

haematological counts unreliable, and using light microscopy, provide sources of 

biases when performing estimated and differential leukocyte counts (Tavares-Dias et 

al. 2008).  

 

Assessments of leukogram profiles have proved an important tool in determining 

health parameters in a number of chelonian species (Harding et al. 2005; Knotek et 

al. 2006). Leukocyte profiles have recently been used as an indicator of stress in 

ecological studies of wild animals, since changes in stress hormones have been 

shown to cause changes in leukocyte numbers, most notably heterophils, 

lymphocytes and eosinophils (Davis et al. 2008). Conditions of heterophilia and 

lymphopenia (high heterophil and low lymphocyte numbers) as well as low eosinophil 

counts have been used to validate stress conditions in vertebrates, although little 

research has been done in reptiles. To this end baseline reference values are 

needed, against which to interpret normal or abnormal physiological changes which 

may be represented in blood profiles. Results obtained from this study provide 

morphological characteristics of leukocyte types and thrombocytes in peripheral 

blood of P. geometricus. Causes for seasonal and cohort differences in leukocyte 

profiles are difficult to isolate, and interactions between the two were evident. This 

further highlights the differing responses to environmental changes among males, 

females and juveniles, and are most likely explained by reproductive mechanisms. 

The immunological response of all cohort through periods of both limited and 

increased metabolic activity, suggested this population of geometric tortoises to be in 

clinically healthy condition. 

 

 

4.5 CONCLUSIONS 

Evaluation of white blood cell and thrombocyte morphologies and profiles have been 

used as successful tools in determining the health status of a variety of chelonian 

species. In this study, thrombocytes as well as seven leukocytes in Psammobates 

geometricus have been described. These included the heterophil, eosinophil, 

basophil, lymphocyte, plasma cell, monocyte and azurophil, and were similar as 

described in other chelonian species. Cell size ranges, counts, as well as seasonal 

profiles of males, females and juveniles were determined, to serve as baseline 

reference values  for this clinically healthy population.   
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Heterophils and lymphocytes comprised the major leukocyte components, followed 

by eosinophils, while monocytes and basophils appeared in equally low frequencies; 

plasma cells and azurophils were rare. It is difficult to isolate sources of variation in 

leukocyte profiles, yet changes in the population could indicate a response to 

environmental changes / stresses. Heterophil counts in P. geometricus tended to be 

higher in spring than in summer and autumn, which suggested increased phagocytic 

activity, while females showed more consistency in heterophil and lymphocyte 

numbers. This could be associated with continual physical demands of egg 

production in females, while high summer heterophil counts compared to juveniles, 

could be related with follicular enlargement. Similarly, the increased basophil count in 

females in winter suggested an elevated immunological response during gravid 

stages.  

 

Eosinophil numbers followed the reverse pattern, showing lower numbers in spring 

for all cohorts. Since both heterophils and eosinophils are associated with immune 

responses, this could reflect a granulocyte-specific response to differing antigenic 

stimulants during the summer and spring. It is possible that during the dry season, 

low body conditions render geometric tortoises more susceptible to external parasitic 

infestations, since eosinophils are associated with ecto-parasitic infections.  

 

High lymphocyte numbers in autumn were probably associated with nutrition and 

dehydration stresses typical of the dry season. Lymphocytes in summer were more 

abundant in juveniles than in adults, which could suggest an increased immune 

response in the absence of reproductive demands. This was supported by low 

eosinophil counts in juveniles in winter and spring, compared to adults.  

 

Considering that a major function of thrombocytes is phagocytosis of senescent 

erythrocytes, low thrombocyte counts in spring most probably reflected the low 

occurrence of erythrocyte senescence. As there is evidence for erythropoiesis 

occurring in spring, low thrombocyte numbers could illuminate the haemostasis 

mechanism in geometric tortoises. 

 

Factors influencing leukocyte profiles include method of blood slide preparation, 

classification criteria and accurate cellular identification. In addition to this, is the 

direct effect of environmental factors that influence tortoise physiology, and as such, 

white blood cell profiles should assess cohorts separately, and seasonal variations 
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should be considered. To ensure that baseline value ranges are meaningful, 

researchers should maintain standardised methods of laboratory and analytical 

technique, as well as consider the important role of the environmental and individual 

circumstances on leukocyte profiles.  
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5 GENERAL CONCLUSIONS 

Owing to their ectothermal nature, reptiles are inevitably reliant on environmental 

conditions to regulate important physiological processes to survive. In response to a 

climate experiencing seasonal fluctuations of cool, wet periods with warm, dry ones, 

Natural Selection should optimise the survival strategies of terrestrial tortoises during 

favourable conditions (Henen et al. 1998; Christopher et al. 1999; Dickinson et al. 

2002). This involves investing in growth and / or reproductive costs, instigated by 

seasonal cues involving changes in temperature, rainfall and food availability 

(Kuchling 1999). 

 

These physiological mechanisms are often reflected in the blood profiles, considering 

the roles of the red and white blood cells. Erythrocytes circulate haemoglobin, which 

permits aerobic respiration at the tissues, enabling metabolic functioning and thus 

physical activity (Hartman & Lessler 1964; Dessauer 1970). The leukocyte types are 

all involved in producing and maintaining an immune response, while thrombocytes 

function in haemostasis (Work et al. 1998; Sykes & Klaphake 2008).  Haematology 

has been used as a successful diagnostic tool to reflect the health, nutritional and 

reproductive status in a number of chelonian species, as well as understand the 

physiological responses to environmental changes.  

 

Environmental changes in temperature, rainfall and food supply are reflected in 

seasonal differences in circulating erythrocyte numbers, size, morphology, 

composition (Frair 1977; Anderson et al. 1997; Zhang et al. 2011) as well as 

leukocyte numbers and morphology (Campbell 1996; Canfield 1998; Strik et al. 

2007). During the winter and spring, low temperatures cause a reduction in metabolic 

rate (Kuchling 1999), and in P. geometricus, was reflected by low haemoglobin and 

mean cell haemoglobin concentrations. Winter rainfall likely caused hydration states, 

involving an increase in blood plasma and haemodilution. This is supported by the 

proliferation of the largest erythrocyte size class coupled with high cellular 

circularities. The abundance of preferred food supply following rainfall (Balsamo et al. 

2005; Joshua et al. 2005) most probably induced an erythropoietic response, evident 

by the abundance of immature erythrocytes in circulation. This regenerative response 

was presumably in preparation for increased metabolic rates associated with 

increased foraging and mating behaviour typical of the following seasonal cycle 

(Hofmeyr & Henen, unpublished data). Leukocyte profiles suggested an active 

immune response during the cooler periods. Heterophils were more abundant in the 
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spring, while eosinophils were relatively low, compared to other seasons. This 

suggested a granulocyte-specific immune response to different stimulants / stresses.   

 

In the dry summer and autumn, higher temperatures enabled an increase in 

metabolic rates, supported by high mean cell haemoglobin concentrations as well as 

the elliptical shape of erythrocytes, which both suggested increased oxygen-

exchange efficiency (Hartman & Lessler 1964). Increased metabolic ability was 

necessary to engage in mating behaviour and increased foraging for less abundant 

and less nutritional food supply, both of which occur in the dry season (Baard 1995; 

Boycott & Bourquin 2000). Reduced water availability likely resulted in 

haemoconcentration, and was evident through the proliferation of small erythrocytes 

in circulation. This dehydration stress was also reflected through increased 

degenerative abnormalities such as senescence and poikilocytosis. Coupled with 

this, is limited food supply in these dry seasons, and was reflected through low body 

conditions during autumn. Low body condition, together with the relative abundance 

of lymphocytes, could suggest a compromised immune defence in the summer and 

autumn.  

 

Owing to differing growth and reproductive strategies, these physiological responses 

to seasonal fluctuations affect each cohort differently. In males, haematological 

changes were most pronounced in summer and autumn; geometric tortoise mating 

season. Males experience elevated metabolic demands associated with mate-

seeking and male to male aggression, and the high packed cell volume, haemoglobin 

concentration and red blood cell counts were attributed to the erythropoietic effects of 

male hormones (Gardner & Gorshein 1973; Zitzmann & Nieschlag 2004). The 

increase in size and abundance of large red blood cells suggested the mechanism by 

which androgens influence erythropoiesis in males. Elevated eosinophil counts in 

summer might also indicate an increased immune response, possibly parasite load 

during mating season. 

 

Female reproductive cycles are more complex, involving ovulation, vitellogenesis and 

nesting, and are timed to environmental cues throughout the year (Kuchling 1999; 

Loehr et al. 2004). It is likely that erythropoiesis in female geometric tortoises is 

necessary to facilitate the extra metabolic requirements of foraging activities to 

satisfy higher nutritional demands associated with larger body size and egg 

production. High haemoglobin concentrations and mean cell volumes in spring may 

provide evidence for this, as vitellogenesis occurs in spring with rapid enlargement of 
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follicles in autumn, in preparation for ovulation after the first autumn rains (Hofmery & 

Henen, unpublished data). The increased mean cell volume again in autumn 

suggested that females may experience a second phase of erythropoiesis to 

accommodate their reproductive requirements. Female heterophil and lymphocyte 

counts showed greater consistency than in males or juveniles, which may result from 

continual reproductive requirements. Higher summer heterophil counts compared to 

juveniles may indicate a gravidity-related stress, while the increased winter basophil 

counts in females suggested elevated immune responses during the gravid phase.  

 

The lack of reproductive pressures in juveniles allows more energy investment 

towards growth, and as a result, growth rates slow considerably after sexual maturity 

has been reached (Pienaar 1962; Baard 1995). There is little evidence for this in P. 

geometricus, as juveniles showed only a difference in haemoglobin concentrations; 

being lower than in adults. The lack of differences in packed cell volume and red 

blood cell count could be attributed to a species-specific response to environmental 

conditions or sample size. Juveniles in spring showed an increase in immature 

erythrocytes, suggesting an erythropoietic response which is likely to maximise 

foraging opportunities during favourable conditions. Evidence for 

haemoconcentration in the drier seasons was less than in adults, since erythrocytes 

were more circular than in adults, which suggested a greater resilience to 

dehydration conditions than adults. Lymphocytes were reported to be more abundant 

in juveniles than in adults, and this applied to P. geometricus in summer. Juvenile 

eosinophil counts were lower than in adults in winter and spring, and this may be 

related to lower ecto-parasite loads due to smaller body size of juveniles.  

 

Because of the direct influence of environmental fluctuations, as well as the differing 

growth and reproductive strategies among males, females and juveniles, it is 

imperative to assess physiological responses across all seasonal ranges for each 

cohort. The heterogeneity in survival strategies observed within taxa further 

highlights the need for species-specific research. This is the first study of this nature 

on P. geometricus, and in addition, the use of digital imaging analyses provided 

meaningful morphometric measurements, which can contribute towards the 

standardisation of haematological practice and can be applied in future studies.  

Baseline haematological values obtained in this study suggest a clinically healthy 

wild population of geometric tortoises and illuminate the physiological processes of 

each cohort over all seasons. These results serve as reference data against which 

abnormal changes can be measured, while an understanding of physiological 
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responses to environmental change is imperative in the effective management of this 

Critically Endangered species (Baard 1993). This becomes even more critical in the 

anticipation of altered weather patterns resulting from global climate change.   
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