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ABSTRACT 

ABSTRACT: 

Passage of spermatozoa through the female reproductive tract is essential for the 

regulation of fertilization, ensuring that healthy sperm reach the oocyte. Previous studies 

were devoted to morphological selection of sperm cells by the cervical mucus. However, 

research prove that the loss of integrity of the sperm plasma membrane is associated with 

infertile men, irrespective of their normal semen parameters. This indicates that the sperm 

plasma membrane plays an important role in fertilization. Further studies indicated that 

sperm surface proteins assist penetration through the female reproductive tract and would 

therefore provide useful insight in understanding other factors associated with male 

infertility. The aim of this project was to determine if there are any differences between 

sperm surface proteins of fertile donor samples in relation to infertile patient samples 

using different separation techniques and different detergents. 

Three different sperm separation techniques were employed, including wash, swim-up 

(SU) and Percoll density gradient centrifugation (DGC).Parallel to this, the deoxy-ribose 

nucleic acid (DNA) fragmentation of these cells were analysed for comparison of the 

extent of DNA damage induced due to different separation techniques used. This 

provided evidence that the best separation technique is the DGC as it minimises the 

amount of DNA fragmentation caused. 

Four different detergents were used in the process of extracting the membrane proteins 

from spermatozoa, namely sodium dodecyl sulphate (SDS),saponin,cetyl-trimethyl-
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ammonium bromide (CTAB), and TWEEN-20. The membrane proteins were then 

separated on a12% SDS poly-acrylamide gel electrophoresis (PAGE), and analysed by 

Coomassie blue and silver staining techniques as well as densitometry. Due to the 

different chemical nature of the detergents that extracted different surface proteins, 

CTAB (cationic) and SDS (anionic) extracted the most because of its strong solubilising 

abilities as non-ionic detergents. Common proteins that were extracted in donor samples 

included; 115, 92.5, 89, 61, 55.5, 51.5, 47, 44.5, 43, 38.5, 34 and 28 kDa proteins. In 

patients, commonly occurring proteins included; 92.5, 74.5, 70, 60.5, 51.5, 50, 44.5, 43, 

36, 29.5, and 25.5 kDa proteins. 

Marked differences were found between membrane proteins extracted from donor 

samples in comparison to patient samples. Identification of these proteins was done using 

the SwissProt database and a literature search. Mostly non-genomic progesterone 

receptors were identified; others included oestrogen receptor, a phosphotyrosyl protein, 

P34H, equatorial segment protein, mannose lectin receptor, human guanylylcyclase 

receptor, epididymal protease inhibitor receptor, PH30 and estradiol binding protein. 

The function of the membrane surface proteins identified in this study plays a vital role in 

fertilization. A few of these functions include sperm attachment and binding to the oocyte 

as well as penetration thereof. Others play a role in signalling events such as capacitation, 

hyperactivation and acrosome reaction. The absence of these proteins in patient sperm 

possibly accounts for the functional inability to successfully achieve fertilization 

suggesting that this provides molecular insight to reasons for infertility amongst men. In 

addition to this, proteins presented by patient samples that were absent in healthy donors 
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may too account for their infertility status. Estradiol binding protein and PH30 are two 

proteins presented only in patient samples. Their function plays a role in the inhibition of 

the acrosome reaction and sperm-egg fusion, respectively. 

In conclusion, these differences in protein expression between fertile donors and patients 

may form the molecular basis of infertility amongst men and indicates possibilities for 

novel proteonomic approaches to improve andrological diagnosis in future. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Transport through the female reproductive tract 

Upon ejaculation at copulation, millions of sperm cells are deposited in the upper 

region of the female vagina by the male (Figure 1; Williams et al., 1993). Of this, 

only 10% will enter the cervix; 1% the uterus and 0.1% the fallopian tube. Eventually, 

one spermatozoon will fertilize the oocyte (Williams et al., 1993). In essence, sperm 

movement through the female reproductive tract ensures the selection of spermatozoa 

for motile and morphologically normal sperm cells to succeed (Suarez and Pacey, 

2006). The vast decrease in the number of sperm progressing to the upper regions of 

the female reproductive tract suggests that this is a very stringent process of sperm 

selection (Henkel, 2012). 

In the human, spermatozoa encounter the following natural barriers by the female 

reproductive tract during sperm movement. The process of fertilization include the 

following (Henkel, 2012): 

1.1.1. Cervix 

1.1.2. Uterus 

1.1.3. Oviduct 

1.1.4. Oocyte 
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Figure 1: Diagram indicating the progression of human spermatozoa through the 

female reproductive tract (Modified from Kaupp et al. (2008).  

 

1.1.1. The cervix and its cervical mucus 

The lining of the cervical canal of the cervix in the human female reproductive tract is 

a thin layer of mucus known as the cervical mucus (Lagow et al., 1972), containing 

mucus, soluble proteins, ions, simple sugars, immunoglobulins and enzymes (Katz et 

al., 1997). The cervix and its secretions are the first barrier spermatozoa are required 

to cross in the female reproductive tract after ejaculation (Sobrero & MacLeod, 1962; 

Mortimer, 1983). This is achieved when spermatozoa swim out of their seminal 

plasma into the vaginal environment. Uterine and vaginal contractions aid the 

colonization process (Overstreet & Katz, 1977). However, the process by which the 

spermatozoa migrate through the mucus molecules is dependent on and facilitated by 

flagellar movements and seminal enzymes present on the sperm-mucus interface 
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(Overstreet et al., 1980), suggesting that the cervical mucus filters sperm on basis of 

motility rather than morphology (Hanson and Overstreet, 1981). However, this could 

be argued, as morphologically abnormal sperm have lower motility (Overstreet et al., 

1980). In mammals it is also evident that the cervical mucus decreases the number of 

morphologically abnormal sperm cells (Perry et al., 1996). Previous studies further 

support the concept that cervical mucus has the ability to store sperm for many days 

before ovulation (Perry et al., 1996). Interactions between spermatozoa and the fluids 

in the female reproductive tract are essential for functioning and survival of these 

cells (Barratt& Cooke, 1991). This effect is not well known and the molecular basis is 

poorly understood (Chakroun Feki et al., 2004). 

Physical properties of the cervical mucus in humans account for its functions, few of 

these functions include: 

1.1.1.1. Filtering out abnormal spermatozoa in humans 

The physical and biochemical properties of the cervical mucus have the ability to 

select sperm by a filtering process (Hanson and Overstreet, 1981). It nurtures and 

biochemically supports sperm cells (Katz, 1991), thereby serving as a reservoir for 

storing and filtering spermatozoa. From here, sperm cells are released at a constant 

rate into the uterus (Freundl et al., 1988). This suggests that the cervix serves as 

reservoir site (Overstreet and Katz, 1977) to filter out morphologically and 

functionally abnormal cells (Freundl et al., 1988; Katz, 1991). Therefore, sustenance 

and colonization in the cervix and its mucus requires highly motile spermatozoa 

(Mattner, 1963). 
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Surface interactions of the sperms’ membrane with the mucus molecules are 

suggested to take place (Katz et al., 1989). Since it is well known that cervical mucus 

has the ability to exclude DNA damaged sperm, the large amount of excluded 

spermatozoa cannot only be based on their motility and morphology (Bianchi et al., 

2004). 

 

1.1.1.2. Capacitation 

Capacitation is a molecular event (Flesch et al., 2001) whereby the sperms’membrane 

proteins and lipids undergo various biochemical changes (Florman and Ducibella, 

2006; Gadella and Visconti, 2006). This is inclusive of an extensive amount of 

organization and rearrangement of the entire membrane (Flesch et al., 2001). 

Molecules on the plasma membrane integrate, adhere to or get removed from the 

sperms surface (Ickowicz et al., 2012), and surface receptors are activated or 

unmasked (Fabro et al., 2002; Bahat et al., 2003). These surface receptors require 

exposure as they bind to structures in the female reproductive tract (Bedford, 

1983).The process initiates downstream signalling cascades, achieved by the changes 

in ion fluxes in the plasma membrane (Cross, 1998). This is accounted for in response 

to the chemical stimuli from the oocyte (Fabro et al., 2002; Bahat et al., 2003) and is 

essential as it prepares the sperm cell for binding to the oocyte and successful 

fertilization thereof (Yanagimachi, 1988; De Jonge, 2005; Ickowicz et al., 2012). 
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1.1.2. Uterus 

Just before ovulation, contraction intensity of the smooth muscle cells lining the 

uterus (Lyons et al., 1991) stimulated by seminal components (Crane and Martin, 

1991) increases (Lyons et al., 1991), thereby, assisting the transportation of 

spermatozoa through the vestment by expelling spermatozoa from the cervix into the 

uterus (Suarez and Pacey, 2006). Sperm are rapidly moved through the uterus. This is 

a proposed method to enhance the cells survival from immune attack by the vagina or 

the cervix (Suarez and Pacey, 2006), as both, leukocytes and phagocytes may attack 

both normal and abnormal spermatozoa. They are primarily aimed at eliminating 

defective sperm cells, as these cells loose most of its defense mechanisms afforded by 

components in its seminal plasma (Suarez and Oliphant, 1982). 

 

1.1.3. Oviduct 

The oviduct is divided into three compartments, each with their own physiological 

function (Rath et al., 2008). In order, these compartments are; 

 Isthmus with the uterotubal junction (UTJ) 

 Ampulla 

 Infundibulum  

In many mammalian species, the UTJ serves as an anatomical, mucosal and 

physiological barrier to spermatozoa in their passage through the female reproductive 

tract (Suarez and Pacey, 2006). However, in the human, no significant function could 
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be found (Suarez and Pacey, 2006; Henkel, 2012). It is a distinct site that connects the 

uterus with the fallopian tube (Hafez and Black, 1969), and is characterized by very 

narrow lumen with mucosal folds (Hook and Hafez, 1968) with a thick muscular layer 

that extends from the uterine wall (Hafez and Black, 1969). It possesses prominent 

cilia (Hook and Hafez, 1968), suggesting that these mucosal folds are to entrap sperm 

cells (Suarez, 2007). Furthermore, Dukelow and Riegle (1972) suggest that the UTJ 

specifically restricts immotile and damaged sperm from entering the oviduct by 

impairing the transportation of abnormal sperm cells (Saacke, 1982). 

At this point, the UTJ also appears to differentiate between poor and high-quality 

DNA in spermatozoa (Hourcade et al., 2010) and preserves the functions of good 

quality spermatozoa, thus enhancing their viability and motility (Hunter and Wilmut, 

1984). Yet, the molecular mechanism by which the UTJ can discriminate between the 

integrity of the DNA is poorly understood (Henkel, 2012). As stipulated by Burkitt 

(2012), an assumption can be made that all sperm cells reaching this point are motile 

and capable of reaching the site of fertilization. Progression through the mammalian 

UTJ is then influenced by molecules present on the sperms’ surface (Holt, 2009). 

A study performed on murine sperm cells suggests that there are epitopes present on 

the sperms surface to allow for interaction with the UTJ for penetration (Krege et al., 

1995).This assumption is supported by studies with sperm from knock-out mice that 

lack a chaperone protein, calmegin, making it impossible to transverse through the 

UTJ (Holt, 2009). Other studies by Cho et al.(1998), Ikawa et al.(2001) and 

Nishimura et al.(2004), using germ cells from knock-out mice also prove that fertilin-

B and ADAM1a proteins are important for assisting the movement of sperm through 
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the UTJ, suggesting that sperm has some unknown interaction with the UTJ (Holt, 

2009). Sperm cells possessing these surface molecules could naturally occur during 

spermatogenesis, thus producing a population of sperm already rendered incapable of 

passing the UTJ (Holt, 2009). 

The fallopian tube contains soft tissue, yet is also a very complex structure (Burkitt et 

al., 2012) rich in nutrients which assist in supporting the life span of the sperm 

(Suarez, 2008). The complexity of the tubes’ mucosal surface regulates the passing of 

sperm to the oocyte (Zamboni, 1972). This is achieved by slowing down sperm 

movement towards the ovary as the surface creates obstruction for spermatozoa 

(Suarez and Pacey, 2006). This is required to prevent introducing two sperm nuclei 

into the oocyte as mentioned by Ducibella (1996), which could result in unusual 

development. 

Once the sperm is in the fallopian tube, it will attach itself to the epithelium, or swim 

off in another direction (Burkitt et al., 2012). Attachment prevents polyspermic 

fertilization by allowing only a few sperm cells to be released to the oocyte at a time 

(Suarez and Pacey, 2006), and by housing only few sperm cells in the fallopian tube 

(Ducibella, 1996). Sperm encounter many complex barriers up until they reach the 

fallopian tube, where capacitation and fertilization occurs (Suarez and Pacey, 2006). 

A safe haven is then established for sperm by the fallopian tube. As described by 

Rodriguez-Martinez et al. (1990), spermatozoa will not be under attack by the 

female’s defense systems in this region, as in the vagina, cervix and uterus. 
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In the oviduct, only certain sperm undergo capacitation (Eisenbach, 1999). The 

process is not understood, but could possibly be due to the involvement of sperm 

membrane receptors (Holt and van Look, 2004). In vitro studies indicate that if 

spermatozoa are already capacitated once they reach the oviduct, they cannot cross 

the UTJ (Shalgi et al. 1992). Furthermore, animal studies showed that capacitation 

will reduce the binding ability to the epithelium due to the loss of surface proteins 

(Lefebvre and Suarez, 1996). Together with the male germ cells being hyperactivated, 

a condition which is characterized by vigorous flagellar movement and a large lateral 

head displacement causing a whiplash movement required for spermatozoa to detach 

itself and progress through the lumen towards the oocyte (Jansen, 1980; Ho and 

Suarez, 2001; Holt, 2009). Hyperactivation also occurs in the fallopian tube, whereby 

the flagellar beats are increased, which is essential for the sperm to overcome forces 

exerted by the epithelium (Ho and Suarez, 2001). 

After the UTJ, sperm reach the isthmus (Beck and Boots, 1972), which in many 

species serves as a functional sperm reservoir (Pacey et al., 1995), which is retaining 

and storing sperm cells (Hunter, 1975) and only releasing them once ovulation has 

occurred (Baillie et al., 1997). Upon ovulation, with the assistance of sperm 

capacitation and hyperactivation, spermatozoa are gradually released from the 

reservoir for fertilization (Morales et al., 1988). 

To date, there is no substantial research to verify mechanisms on how sperm cells 

bind to the epithelium of the isthmus (Henkel, 2012). Some animal studies suggest 

that sperm binding occurs through acidic heparin-binding proteins, which derive from 

the bovine seminal vesicle that coat the sperm head (Manjunath and Sairam, 1987), 
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and bind to annexin receptors containing fructose (Ignotz et al., 2007). Homologues 

of these bovine seminal vesicles were found in both mice and human (Lefebvre et al., 

2007). Recent studies carried out on the bull revealed oxidation and reduction of 

sulphhydryl groups of the sperms’ surface proteins (Gualtieri et al., 2009), which 

modulated adhesion of sperm to the oviductal epithelium as well as capacitation 

(Gualtieri et al., 2009). 

The isthmus restricts sperm from movement. This owes to the downstream fluid and 

constrained space of the narrow lumen in the Fallopian tube (Katz et al., 1989). In 

turn, a situation whereby the sperm has to increase its amount of energy for higher 

motility is created (Katz et al., 1975). Once the sperm increases its flagellar beats, it 

inhibits motions away from the epithelium of the UTJ and retains sperm to the 

surfaces (Katz et al., 1989). As a result, poorly motile sperm will remain trapped in 

this area and eventually be eliminated from the epithelium (Hunter, 1996). The 

mechanisms by which these cells are detached from the epithelium are by the 

activation of capacitation and hyperactivation under the influence of ovulation 

(DeMott and Suarez, 1992; Ho and Suarez, 2001). Hence, spermatozoa that are 

incapable of this process are drastically reduced in numbers at this site (Hunter, 

1996). 

 

1.1.4. Oocyte interaction 

Oocytes are surrounded by s cumulus cells, which, in terms of their microstructure, 

are similar to that of the cervical mucus (Yuldin et al., 1988). However, their 
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viscoelastic properties are different (Katz et al., 1989). The cumulus cells are 

inflexible, and enzymes present in the sperm acrosome are required to penetrate them 

(Katz et al., 1989). Both, the cumulus cells as well as the cervical mucus 

microstructure molecules have electrochemical affinities for molecules present on the 

surface of the sperm cell, creating an affinity of spermatozoa to these epithelial cells 

and thus creating more resistance for sperm cells to penetrate through them (Katz et 

al., 1989).  

Sperm transport to the cumulus is mediated by chemoattractants from the follicular 

fluid, cumulus cells and the oocyte itself (Sun et al., 2005). Only capacitated sperm 

are responsive to this process (Cohen-Dayag et al., 1995; Fabro et al., 2002; Giojalas 

et al., 2004). Progesterone is responsible for creating the chemical attractant 

concentration gradient that guides the gamete towards the egg in mammalian species 

(Eisenbach and Giojalas, 2006). This steroid (Teves et al., 2006; Guidobaldi et al., 

2008) is the only physiological chemoattractant (Guidobaldi et al., 2008) secreted by 

the cumulus cells (Teves et al., 2006; Guidobaldi et al., 2008) 
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1.2. Surface properties of spermatozoa 

Successful fertilization in mammals incorporates the union of two gametes and 

involves a flow of cell to cell and cell to matrix interactions (Lefevre et al., 1997). For 

the sperm to successfully fertilize an oocyte, sperm are required to be mature (Abu et 

al., 2011). Spermatozoa face a stringent selection process in the female reproductive 

tract (Holt and Van Look, 2004), whereby sperm competition and sperm selection 

occurs (Holt et al., 2010). As described by Holt (2010), these mechanisms are 

complex and consider various sperm factors including the following:  

 The ability of the sperm to undergo the acrosome reaction (Abu et al., 2011) 

 Motility (Holt, 2010). 

 Sperm count and morphology (Ombelet et al., 1998). 

 Morphological problems (Gomendio and Roldan, 1991) 

 Zona binding (Abu et al., 2011) 

 Ability of the sperm to interact with the female reproductive tract (Holt, 2010) 

These factors are of importance, because, as previously mentioned, the cervix would 

select sperm on basis of their motility and morphology (Perry et al., 1996). The 

oviduct excludes immotile and damaged cells (Dukelow and Riegle, 1972). There are 

reports stipulating that sperm motility and mid-piece volume are one of the crucial 

determinants of the sperms fertilization ability (Gomendio & Roldan 1991; Anderson 

& Dixson, 2002). Failure of any of the sperm cells’ systems, such as its motility, or 

damage to the DNA, will result in inability to fertilize the oocyte (Holt and Van Look, 

2004), because the female reproductive tract is capable of selecting male traits that 
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would increase the rate of fertilization success (Holt et al., 2010). Many researchers 

support this hypothesis by concluding that the female reproductive tract selects male 

gametes by natural selection (Holt et al., 2010). 

 

1.2.1. The acrosome 

The acrosome is a Golgi-derived organelle covering the anterior two thirds of the 

sperm nucleus (Chemes and Sedo, 2012). It is of importance as it assists in sperm 

penetration and oocyte activation (Chemes and Sedo, 2012). Spermatozoa with no 

acrosome or deformed flagella are regarded incompetent to fertilize and egg (Holt and 

Van Look, 2004), therefore rendering the patient infertile (Chemes and Sedo, 2012). 

A common feature of severe teratozoospermia is acrosomal hypoplasia, which is 

characterized by a small detached acrosome with diminished contents and this result 

in a change in chromatin condensation (Chemes and Sedo, 2012). Microscopically, 

these cells appear big and irregular in shape and can be caused by; abnormally 

compacted chromatin without a membrane (Chemes and Rawe, 2003). Because these 

sperm cells have no acrosome, its nucleus appears round (Chemes et al., 1987). 

Insufficient chromatin condensation worsens their potential to fertilize the egg (Nistal 

et al., 1978). This condition is a result of abnormal development of Golgi 

proacrosomic vesicles that fails to attach and spread over the spermatid nucleus as 

described by Chemes and Sedo (2012). 

Upon acrosome reaction, hyaluronidase is released from the acrosome (Shams-Borhan 

and Harrison, 1981). Hyaluronidase is an acrosomal enzyme detected in various 
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species (Stambaugh and Buckley, 1970; Brown, 1975; Morton, 1976) possessing 

different forms (Harrison, 1988). The enzyme is involved in penetrating the cumulus 

oophorus for fertilization (Cummins and Yanagimachi, 1986; Yudin et al., 1988; Lin 

et al., 1994). Spermatozoa that have not undergone the process of capacitation are 

rendered incapable of the acrosome reaction (Austin, 1951).  

 

1.2.2. Motility 

If the sperm flagellum is defective, sperm motility is also compromised (Chemes and 

Sedo, 2012) and relevant sperm are then disqualified from the fertilization process 

(Holt and Van Look, 2004). Motility is important for the movement of the male germ 

cell through the female reproductive tract and also for the penetration of the oocyte 

(Holt and van Look, 2004; Malo et al., 2006). Sperm with good motility have been 

proven to show less sperm head abnormalities (Cho et al., 2003) 

 

1.2.3. Morphology 

Anomalies to the sperm head and neck are classified by different morphologies of the 

sperm cell (Chemes and Sedo, 2012). This is one of the most predictive semen 

parameters for pregnancy (Bonde et al., 1998; Guzick et al., 2001). Due to the 

difficulty in classifying the variations of the human sperm head into categories, 

information on sperm head morphology is scarce (Utsuno et al., 2013). These authors 

concluded that spermatozoa with abnormal sperm heads and large nuclear vacuoles 
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shows a higher percentage of having DNA fragmentation. Evaluating the sperm head, 

acrosome, mid-piece and tail has shown associations with the DNA integrity of the 

cell (Garolla et al., 2008; Oliveira et al., 2010; Braga et al., 2011; Wilding et al., 

2011). 

 

1.2.4. Zona binding 

The second last barrier sperm are required to penetrate is the zona pellucida (ZP), 

which is generally as thick as the head of the sperm cell (Katz et al., 1989). Binding 

of sperm cells to the ZP is only achieved once they have been capacitated 

(Yanagimachi, 1994). At this point, the female reproductive tract analyses the 

morphology (van den Bergh et al., 2009) and DNA quality of the sperm in some not 

identified way once again (Ye et al., 2006). Suggestions are made that the final 

selections could test the cells ability to induce the acrosome reaction (Nijs et al., 

2010) as well as the presence of excessive cytoplasmic retentions (Paes Almeida 

Ferreira de Braga et al., 2009). 

 

1.3. Chemical features relating to DNA quality of spermatozoa 

1.3.1. Protamines  

Eighty five percent of the sperms’ DNA is complexed to protamines (Churikov et al., 

2004; Rousseaux et al., 2005) and during spermiogenesis, the chromatin of the sperm 

cell undergoes an extensive amount of compaction, whereby the histones are replaced 
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by specific nuclear proteins related to the testis, as well as transitional proteins and 

protamines (Aoki and Carrell, 2003; Dadoune 2003). Any abnormality in the 

expression of the nuclear proteins changes the structure of chromatin, creating the 

possibility for male infertility (Carrell and Liu, 2001; Olivia, 2006). Epigenetic 

changes could result in certain paternal genes being expressed when the embryo is 

being developed (Hammoud et al., 2009). It may also cause an increase in DNA 

fragmentation (Aoki et al., 2005b; Aoki et al., 2006), reducing the DNA integrity of 

the sperm cell (Tarozzi et al., 2009; Tavalaee et al., 2009), and decreasing the ability 

of the sperm to penetrate the oocyte. Overall, this causes a decrease in the fertilizating 

ability of spermatozoa (Carrell and Liu, 2001; Aoki et al., 2005a; Aoki et al., 2006). 

DNA damage is one of the factors that affect the sperm cells of infertile men, thereby 

contributing to male infertility, particularly idiopathic infertility (Barratt et al., 2010). 

Thus, DNA integrity seems to have great impact on the fertility status of male germ 

cells (Madrid-Bury et al., 2005; Morrell et al., 2007). Therefore, if the sperms’ 

membrane is damaged, it will not progress through the female reproductive tract 

(Holt, 2009).  
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1.3.2. Reactive oxygen species (ROS) 

Reactive oxygen species are highly reactive derivatives of oxygen with half-life times 

in the nano- to milli-second range. Many of these molecules are free radicals, which 

are characterized by the unpaired electrons in the outer shell (Lopes et al., 2010). 

ROS are formed in the mitochondria of any aerobic cell during oxidative 

phosphorylation whilst adenosine-triphosphate (ATP) is produced (Fujii et al., 2005; 

Halliwell, 2006). During these processes, the electrons leak from the mitochondrial 

electron transport chain, forming most of the ROS (Fujii et al., 2005; Halliwell, 

2006). Hence, ROS are produced when oxygen is used as a substrate in the reactions 

involving oxygenase and electron transfers (Chandra et al., 2009). 

A strict balance needs to be established between the amount of ROS present and the 

anti-oxidation defenses (Harvey, 2007). This is essential for the regulation of 

physiological functioning of cells including the interactions of sperm with the oocyte 

(Harvey, 2007; Lopes et al., 2010). Oxidation, in moderation, is required for the 

formation of disulfide bonds in the sperm nucleus (Premkumar and Agarwal, 2012). 

However, oxidative stress can cause damage to the spermatozoa (Premkumar and 

Agarwal, 2012). On the other hand, lack of oxidants may too (Lewis et al., 1997) lead 

to oxidative damage of the cell (Aitken et al., 1995a). Due to their high reactivity, 

radicals have the ability to modify purine and pyrimidine bases in the DNA, causing 

damage in the DNA are therefore referred to as the most toxic inflictor of oxidative 

damage (Agarwal, 2004).  
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1.4. Analysis of DNA quality by the female reproductive tract 

In the human spermatozoa, DNA fragmentation as a diagnostic paramter has only 

become of interest since the early 2000’s (Evenson and Wixon, 2006). From 

numerous studies it has been deduced that patients with ejaculates exhibiting a 

percentage of more than 30% spermatozoa with DNA damage have increased failure 

in conception (Evenson and Wixon, 2006). Many aspects account for the causes of 

DNA damage in sperm cells (Henkel et al., 2003), amongst them are:  

 Apoptosis, which is a process of programmed cell death (Wyllie, 1980). This 

mechanism is biochemically characterized by the activation of endonucleases 

which cause breakages in the DNA (Gandini et al., 2000). 

 Excessive ROS production, leading to oxidative stress (Duran et al., 2002) that 

causes DNA fragmentation to the cell (Lopes et al., 1998; Duru et al., 2000). 

 Tension applied during spermatogenesis onto the chromatin while 

condensation thereof. Therefore, topoisomerase attempts to release the 

tension, but causes strand breaks in the process (Sakkas et al., 1999; Marcon 

and Boissonneault, 2004).  

 Chronic or acute infections in the male reproductive tract lead to the increase 

of leukocytes which in turn causes an increase generation of ROS (Aitken and 

West, 1990), resulting in oxidative damage (Aitken and De Iuliis, 2010) to the 

DNA (Alvarez et al., 2002). 

In conclusion to the causes of DNA damage in sperm cells, it is evident that apoptosis 

and ROS are amongst the leading causes thereof. During the apoptotic process, the 
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cells’ are killed and eliminated altogether (Wyllie, 1980; Gorczyca et al., 1993). This 

is indicated by the translocation of phosphatidyl serine (PS) from the inner to the 

outer leaflet of the plasma membrane as an early event (Vermes et al., 2005) 

demonstrating the sperm cells’ inappropriateness for fertilization. 

With regard to excessive ROS production, it should be taken into consideration that 

the membrane function and motility are of importance at each level of the progression 

of spermatozoa through the female reproductive tract. This process includes 

molecular interaction, adherence to the epithelia and oocyte vestments as well as 

penetration thereof (Overstreet et al., 1980; Katz, 1989; Ho and Suarez, 2001; Holt 

and van Look, 2004; Guaitieri et al., 2009). Furthermore, DNA damage caused by 

free radicals during oxidative stress induces lipid peroxidation of lipids the plasma 

membrane, which in turn leads to disruption in the plasma membrane, and impairs 

motility (Aitken, 1995a). Therefore, impairment of motility results in the inability to 

progress through the female reproductive tract (Holt and van Look, 2004) 

 

1.5. Biochemical rationale: protein interactions and sperm functioning 

Many sperm surface proteins are associated with sperm function, of which some 

could be important to diagnose certain cases of infertility amongst men (Liu et al., 

1996; Naz and Leshie, 1999). Studying sperm proteins allows for insight into the 

molecular aspects of reproduction and could assist with identifying different causes of 

male infertility in humans (Marinez-Heredia et al., 2006). In the testis, the sperm cell 

undergoes meiotic and mitotic differentiation, whereby these cells gain various 
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differentiated proteins (Schroter et al., 1999). Besides spermatozoa having to achieve 

successful fertilization, it is also required to withstand the immune defenses presented 

by the female reproductive tract and present itself in a manner that will differentiate 

itself from the poor quality spermatozoa (Schroter et al., 1999). 

Gametes interaction, is mediated by cell surface proteins (Vacquier, 1998). A series of 

studies was carried out on fertilization and sperm membrane proteins, yet, these 

processes are still poorly understood (Rajeev and Reddy, 2004). Many proteins on the 

sperm cells’ surface have been identified (Wolf et al., 1992; Diekman et al., 2000). 

However, their clinical importance is still vague (Wolf et al., 1992; Diekman et al., 

2000). A number of researchers are stating that epigenetic changes are responsible for 

certain pathologies (Lima et al., 2010), indicating a possibility that this could be 

involved in male infertility (Jenkins and Carrell, 2011). 

Many infertile men have sperm abnormalities, such as low sperm count or immotile 

spermatozoa, which can easily be detected. However, there is a group of men that 

have normal semen characteristics, but are unable to fertilize the oocyte in vitro 

(Jeremias and Witkin, 1996). Routine semen analysis gives minimal information 

regarding sperm chromatin defects or surface proteins that could be abnormal 

(Jeremias and Witkin, 1996). Since these membrane surface molecules are required to 

stabilize the plasma membrane and assist in interactions between spermatozoa, the 

female reproductive tract and the oocyte, molecular approaches are required to 

identify these patients with idiopathic infertility and analyze their problems (Jeremias 

and Witkin, 1996). 
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Integrins are described as a family of surface receptors that assist with cell to cell 

interactions and cell to extracellular environment interaction (Hynes, 1987; Hemler, 

1990). Many integrins are recognized as ligand proteins which contain the Arg-gly-

asp sequence (Fusi et al., 1992). Integrins are proteins that consist of non-covalently 

linked α-and β-subunits with different proteins (Jeremias and Witkin, 1996) due to its 

amino acid tripeptide recognition sequence (arginine-glycine-aspartic acid) (RGD) 

(Albelda and Buck, 1990). This RGD tripeptide has shown involvement in adhesion 

and penetration of human sperm cells to the zona-free hamster eggs (Fusi et al., 

1992a; Henkel et al., 2012), and there is sufficient evidence that supports the idea of 

integrins playing a role in assisting sperm adherence to the oolemma (Fusi et al., 

1992). β1-integrins are found on the surface of spermatozoa, showing a relationship 

between thier expression of cell adhesion molecules and its ability to fertilize the egg 

in vitro (Klentzeris et al., 1995). Sub-families of these integrins are α3β1, α4β1, α5β1, 

and α6β1, which show a higher expression in spermatozoa from patients suffering 

from tubal or idiopathic infertility than patients suffering from male factor infertility 

(Jermias and Witkin, 1996). 

These proteins include fibronectin, vitronectin and laminin (Fusi et al., 1992). 

Vitronectin is localized on the equatorial region of the sperms head (Jeremias and 

Witkin, 1996), and fibronectin all over the surface (Anapliotou et al., 1995; Fusi and 

Bronson, 1992; Fusi et al., 1992a). Both proteins are correlated with the sperms cell’s 

ability to undergo acrosome reaction (Fusi et al., 1992a).With the inclusion of 

laminin, these three proteins assist in spermatozoa adhering to the epithelium of the 

endometrium and fallopian tubes (Jeremias and Witkin, 1996). Additionally, these 
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proteins have the ability to encourage attachment of the sperm to ligands on the 

oocyte (Fusi et al., 1992a; Anapliotou et al., 1995) for penetration through the oocyte 

(Jeremias and Witkin, 1996). 

These ligand proteins are required to assist the sperm cell to successfully progress 

through the female reproductive tract (Jeremias and Witkin, 1996). This assumption is 

supported by Rath (2008) who suggested that the molecular connection between the 

uterine epithelial cells and sperm cells may be similar to the lectin interactions. 

Further research proved that spermatozoa that are not attached to epithelial cells of the 

uterus had damaged plasma membranes (Rodriguez-Martinez et al., 1990) indicating 

that an intact outer membrane is required for the male germ cell to attach to the 

uterine wall (Taylor et al., 2008). 

Since motility of these sperm cells is impaired in the fallopian tubes due to the 

viscous fluid present (Overstreet et al., 1980), their function is mediated by receptor-

ligand interactions (Krege et al., 1995; Ikawa et al., 1997; Cho et al., 1998). In mice, 

it was found that regardless of good morphology and motility, the absence of certain 

surface proteins inhibits passage through the UTJ (Krege et al., 1995; Ikawa et al., 

1997; Cho et al., 1998). These findings then further support the notion that the 

passage of sperm cells through the UTJ depends on direct contact between the 

sperms’ membrane and the epithelium (Rath et al., 2008). 

 

1.6. Aim 
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The aim of this study was to establish differences in surface proteins present on the 

spermatozoa’s membrane in humans using dissimilar sperm separation techniques to 

identify differences in fertile and infertile men at a molecular level.  

In this regard, sperm surface proteins from fertile donors and infertile patients were 

isolated and analyzed by means of SDS-polyacrylamide gel electrophoresis. These 

results were then to be related with functional parameters such a motility and sperm 

DNA fragmentation using different separation techniques.  
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CHAPTER TWO 

MATERIALS AND METHODS 

 

2.1. Sample collection 

For all procedures, ethical clearance was approved by the University of the Western 

Cape and Tygerberg Hospital, Stellenbosch University. 

A total 20 semen samples was collected in sterile plastic beakers from donors (n=10) 

and patients (n=10) attending the Reproductive Biology Unit at Tygerberg Hospital 

(Tygerberg, Cape Town, SA) after a period of three day abstinence to sexual 

intercourse, with informed consent.   

 

2.2. Sperm concentration and motility 

Sperm concentration and motility were determined using the Sperm Class Analyzer 

(SCA) (Microptic S.L., Barcelona, Spain) version 4.1.0.1. This analyzer is capable of 

measuring and assessing sperm motility, concentration and morphology, having a 

higher precision and quantitative rate than manual methods (WHO, 2010). The 

minimum requirements for the semen samples used were least 50% forward 

progression and total sperm concentration of less than 100M/ml. This was done to 

ensure that an optimal concentration of protein was available for SDS-PAGE. 
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To avoid particles of dust being detected by the analyzer, the slides (Lasec, Cape 

Town, SA) were washed and rinsed thoroughly with distilled water, then dried with 

towelling paper. Thereafter, 5 μl semen were pipetted in the centre of the slide, 

covered with a 22 mm x 22 mm coverslip (Chance Propper LTD, Warley, England) 

and placed onto the stage of the microscope, which had been heated to 37ºC. The slide 

was left on the stage for 1-2 minutes to avoid flow of the sample. During this time, the 

SCA programme was set to analyse human sperm motility, providing data on total 

motility in percentage (%) and concentration of spermatozoa in million cells per 

millilitre (X 10
6
/ml). Using a negative phase lens, with the green filter, the sample 

was then analysed at 10X magnification. A minimum number of 200 spermatozoa 

were captured in four different fields. All patient samples used never had less than 50 

million cells per millilitre. However, their motility ranged between 7% - 50% for their 

total percentage of motile sperm. 

 

2.3. Media 

In this study, Human Tubule Fluid Medium, according to Quinn et al. (1985). This 

medium mimics the environment created by the epithelial cells in the fallopian tube 

(Tay et al. (1997). Constituents of this medium included the following, which was 

prepared in 1L distilled water: 

 Sodium chloride (Saarchem, Gauteng, SA): 5.931 g 

 Potassium chloride (Kimix, Cape Town, SA): 0.35 g 

 Calcium chloride dehydrate (Saarchem, Gauteng, SA): 0.301g 
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 Magnesium sulfate heptahydrate (Kimix): 0.050 g 

 Potassium dihydrogen phosphate (Saarchem): 0.050 g  

 Phenol red (Sigma Aldrich, Steinheim, Germany): 0.005 g 

 Sodium bicarbonate (Kimix): 2.1 g 

 Glucose (anhydrous) (Saarchem): 0.5 g 

 Sodium pyruvate (Biochemical Int LTD, England, UK): 0.036 g 

 Sodium lactate (60% syrup; Sigma Aldrich): 3.9982 ml 

 Hepes (Sigma Aldrich): 5.206 g 

The osmolarity of this medium was adjusted using to 280 mOsmol/kg with distilled 

water using an osmometer (Wescor, Logan, USA). Then, aliquots of 50 ml were 

stored at -20°C until use. Before working with the medium, 50 ml tubes were 

defrosted in an incubator (Lasec) and supplemented with bovine serum albumin 

(BSA) (Sigma Aldrich) to yield a 1% (HTF-BSA) 

 

2.4. Sperm separation techniques 

Since there is no separation technique that serves as the ideal technique for the 

isolation of spermatozoa (Henkel and Schill, 2003), three different sperm separation 

techniques, namely wash swim-up and density gradient centrifugation, were used to 

separate spermatozoa from the seminal plasma. These methods have different 

efficiencies and depending on the quality of the ejaculate (Henkel and Schill, 2003) 

the recovery rate, motility, morphology and amount of DNA damage will vary (Byrd 

et al., 1994). 
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2.4.1. Wash 

This technique was the first sperm separation technique available, whereby the semen 

sample is first diluted with culture medium, centrifuged, the supernatant discarded 

and subsequently the pellet is resuspended (Edwards et al., 1969). From this very 

basic method, Mahadevan and Baker (1984) developed the swim-up method, pathing 

the way for the development of more sophisticated separation techniques to isolate 

and increase the number of motile and, most importantly, functional sperm from an 

ejaculate (Henkel and Schill, 2003). 

Washing a semen sample serves purpose to yield the largest amount of sperm in the 

ejaculate (WHO, 2010) giving the pellet is rich with motile and a highly concentrated 

number of spermatozoa (Boomsma et al., 2004). For the washing, the semen sample 

was diluted 1: with 0.1 M phosphate buffered Saline (PBS) (Oxoid, Basingstoke, 

Hampshire, England), pH 7.4, and centrifuged (Hermle Z160M centrifuge, 

Labortechnik, Wehingen, Germany) at 300xg for 10 minutes at room temperature. 

The supernatant was discarded, and the pellet used for sperm membrane protein 

extraction. 

 

2.4.2. Swim-up (SU) 

For the isolation of progressively motile spermatozoa from the ejaculate the swim-up 

technique was developed (Mahadevan and Baker, 1984). This technique allows 
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spermatozoa to swim out of a pellet and into the overlaying culture medium, thus 

allowing for extraction of the most motile spermatozoa (WHO, 2010). However, the 

method results a lower yield of spermatozoa than the washing technique (WHO, 

2010).The swim-up (Zini et al., 2000; Younglai et al., 2001) and density gradient 

centrifugation (Larson et al., 1999; Sakkas et al., 2000) technique can to an extent, 

reduce DNA-fragmented sperm, but not remove them all (Utsuno et al., 2013) 

Aliquots of 200 μl were washed in 1ml HTF-BSA in a conical 15 ml test tube, 

followed by discarding the supernatant and gently overlaying the resulting pellet with 

500 µl HTF-BSA, then gently placing the sample at a 45ଂ angle for 1 hour in a Series 

2000 incubator (Lasec) at 37
o
C. During this incubation, spermatozoa are allowed to 

swim up into the medium. After the incubation, the supernatent was carefully 

aspirated and washed twice in PBS (Oxoid), as descibed above. Thereafter, sperm 

from the pellet were used for membrane protein extraction.  

 

2.4.3. Discontinuous Density Gradient Centrifugation (DGC) 

Density gradient centrifugation using Percoll creates a density gradient that separates 

sperm with high motility from bacteria and the seminal plasma in the ejaculate (Ziebe 

and Anderson, 1993). The principle behind this technique is to layer the semen, which 

has a lower density, over the higher density medium (Henkel and Schill, 2003). By 

employing centrifugation, spermatozoa will move towards the bottom of the test tube; 

however, highly motile sperm will be able to penetrate faster through the boundaries 

of the gradient created by the density medium opposed to poorly motile sperm 
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(Henkel and Schill, 2003). A soft pellet containing highly motile sperm yields as a 

result (Henkel and Schill, 2003). 

Since the advent of separating sperm into fractions as described by Gorus and 

Pipeleers (1981), separation using continuous gradient centrifugation has widely been 

applied in medically assisted reproduction procedures. Thus, density gradient 

centrifugation is a very popular technique when processing normal semen samples 

(Chen and Bongso, 1999) since it selects sperm with not only high motility, but also 

those with good fertilizing ability (Elglert et al., 1992). 

In this study, a discontinuous density gradient was used. A 100% Percoll (Amersham 

Pharmacia Biotech AB, Uppsala, Sweden) stock solution was aseptically prepared in 

a 1.5M NaCl solution, of which a 80% and 40% gradient was then prepared in HTF-

BSA. The technique was performed by pipetting 400 µl of 80% Percoll solution (1.10 

g/ml) into a 1.5ml Eppendorf vial. This layer was then carefully overlaid with 400 µl 

40% Percoll solution (1.04 g/ml) in HTF-BSA. Finally, 400 µl liquefied semen were 

overlaid. The Eppendorf vial was then carefully placed in a centrifuge (Labortechnik) 

and centrifuged at 600xg for 20 minutes at room temperature. A soft pellet was 

yielded and aspirated using a Pasteur pipette. The spermatozoa were then washed with 

PBS and used for membrane protein extraction. 
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2.5. Removal of plasma membrane proteins 

2.5.1. Preparation of samples 

To analyse membrane proteins, these protein have to be extracted from the sample 

using detergents (Matthews et al., 2006). In this study, the following detergents were 

prepared as a 1% solution in 0.02M Tris -HCl (Sigma Aldrich) buffer (pH 8.0): 

 Tween-20 (Sigma Aldrich) 

 Cetyl trimethylammonium bromide (CTAB) (Sigma Aldrich) 

 Sodium dodecyl-sulphate (SDS) (Sigma Aldrich) 

 Saponin (Sigma Aldrich) 

Protease inhibitors were added before working, these included 1mM solutions in 0.1% 

dimethyl sulphoxide (DMSO) (Sigma Aldrich): 

 Benzidine (Sigma Aldrich) 

 Phenylmethanesulfonyl fluoride (PMSF) (Sigma Aldrich) 

 

2.5.2. Study design 

Figure 2 shows a flow diagram representing the layout of the experimental study. As 

depicted, each sample underwent three different separation techniques (Wash; Swim-

up (SU); Percoll density gradient centrifugation (DGC)). Furthermore, for each 

technique, the sample was treated with four detergents, possessing different chemical 

properties (1: CTAB; 2: Saponin; 3: SDS; 4: Tween 20). The proteins were then 
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separated on SDS-PAGE according to their molecular weights, then analysed by 

Coomassie and Silver staining techniques. 
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2.5.3. Extraction of plasma membrane proteins 

Plasma membrane proteins were extracted by a protocol followed according to Rajeev 

and Reddy (2004). Briefly, the sperm pellets obtained after employing the three 

different separation techniques were sonicated using a Qsonica XL-2000 Series 

(Lasec) with ultrasound for 8 bursts, 15 seconds each. After sonication, the samples 

were centrifuged at 5000xg for 10 minutes at 4
o
C. The supernatants were aspirated 

and diluted 1:1 with Laemmli’s loading buffer. This mixture was heated on a heating 

block at 95
°
C for 15 minutes before loading it onto SDS polyacrylamide gel 

electrophoresis (SDS-PAGE) (Biorad, Hercules, California, USA).  

 

2.6. Determination of protein concentration  

Protein concentrations in the samples were determined using the Bradford assay kit 

(Biorad) and 96-well plates. The final protein concentration used for electrophoresis 

was adjusted to 100 µg/ml. Briefly, samples were diluted with lysis reagent, 

consisting of a 1M NaOH (Saarchem) in 0.1% SDS (Sigma Aldrich) solution. The 

absorbance was determined using a LT 4000 spectrophotometer (Lasec) at a 

wavelength of 630nm. The standard curve (Figure 3) used was a 0mg/ml; 1.25 mg/ml; 

2.5 mg/ml; 0.5 mg/ml and 10 mg/ml of Bovine Serum Albumin (BSA) (Sigma 

Aldrich), respectively. 
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Figure 3: Standard curve for the determination of the protein concentration using 

bovine serum albumin (BSA). Optical density was measured at 630 nm. 

 

2.7. Gel electrophoresis 

2.7.1. Laemmli’s loading buffer 

Laemmli’s loading buffer for the electrophoresis was prepared, for usage before 

loading the samples onto the gel. This buffer was prepared according to Laemmli 

(1970), consisting of the following:  

 

 20% glycerol (Sigma Aldrich) 
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 4% SDS (Sigma Aldrich) 

 10% β-mercaptoethanol (Sigma Aldrich) 

 0.01% Bromophenol blue (Bio-Rad, Hercules, USA) 

 

2.7.2. Electrophoresis 

During electrophoresis, an electrical field is created in gels that separate protein 

molecules according to their size and charge (Bonner and Hargreaves, 2011). An 

estimation of the molecular weight of the proteins that have been separated can be 

made by comparing its electrophoretic migration to a protein standard of known 

molecular weights (Bonner and Hargreaves, 2011). 

In this study, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) was used to separate the protein molecules. SDS gels were prepared using the 

Fluka-SDS Gel Preparation Kit (Sigma Aldrich). The gels were prepared according to 

Laemmli (1970), whereby a 12% separation gel and a 4% stacking gel were prepared. 

The volumes loaded per well included 20 µl sample and 7 µl molecular weight marker 

(Optima Scientific), ranging from 10-kDa to 170 kDa. 

Initially, the gel ran at 200V for 15 minutes, followed by 150V for 45 minutes on a 

mini-PROTEAN Tetra cell (Biorad). Thereafter, the gel was placed in Coomassie 

brilliant blue stain and left overnight on a low speed orbital shaker (Labnet, 

Woodbridge, USA). 

2.8. Coomassie brilliant blue staining 
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Coomassie stain is a commonly employed technique used to visualise and quantify 

proteins (Wilson, 1983). The stain was originally produced as an acid wool dye by 

Imperial Chemical Industries (Wilson, 1983). Later, Fazekas de St. Groth and 

colleagues (1963) provided results that showed proportional values of protein 

concentration after gel electrophoresis. Improvements were made on this technique 

and today it is widely used to visualise proteins in gels (Luo et al., 2006). 

The principle behind the technique proposes that the dye forms a strong non-covalent 

bond with the proteins in the gel, creating a negatively charged ionic form of the dye, 

which is a combination of van der Waals forces and electrostatic interactions (Diezel 

et al., 1972). Therefore, it is essential to de-stain the gel in order to visualise the 

protein bands (Diezel et al., 1972). 

 

2.8.1 Staining procedure 

After electrophoresis, the gels were gently removed from in between the two glass 

plates and placed into 200 ml 0.2% Coomassie dye solution: 50% ethanol (Polychem 

Suppliers, Cape Town, SA), 7.5% glacial acetic acid (Saarchem Merck), and then left 

overnight on an orbit LS gel rocker at 50 RPM (Labnet) for destaining the following 

day. 

 

2.8.2 De-staining procedure 
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The de-staining solution consisted of 40% ethanol (Polychem Suppliers, Cape Town, 

SA) and 10% glacial acetic acid (Saarchem Merck): 

Four hundred ml ethanol (B&M Scientific) in addition with 100ml glacial acetic acid 

(Saarchem Merck) were topped with 600 ml distilled water (dH2O) to 1L. 

Gels were placed in 600ml de-stain solution on the gel rocker (Labnet) for 1-3 hours. 

The de-stain solution was changed after each 30 minute interval until the gel appeared 

transparent. 

 

2.9. Silver staining  

Silver staining is a procedure that is about 100 times more sensitive than Coomassie 

staining. It detects protein concentrations in the very low nanogram range (Chevallet 

et al., 2006), whereby Coomassie detects protein concentration only between 10 ng 

and 20 µg per band (Luo et al., 2006). Here, silver ions are allowed to bind to 

proteins, then are reduced for visualisation of silver metal bands on the gel (Chevallet 

et al., 2006). The protocol was performed according to Blum et al. (1986). 

The following chemicals were prepared for the staining procedure: 

 Sensitizing solution: 0.02% sodium thiosulphate (Riedel-deHaen, Hannover, 

Germany) solution  

This was prepared by dissolving 0.2 g sodium thiosulphate in 1000 ml distilled water. 
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 Silver nitrate (Sigma Aldrich): 0.2% solution 

Silver nitrate can be re-used and stored in a dark glass bottle at 4ºC; to prepare, 0.1 g 

silver nitrate was dissolved in 500 ml distilled water. 

 Developing solution (freshly prepared): 3% Na2CO3 (Sigma Aldrich), 0.025% 

formaldehyde (Kimix), 10 mg/L sodium thiosulphate  

From the stock solution of sodium thiosulphate (Riedel-deHaen), 25 ml were used in 

addition to 15 g Na2CO3 and 125 µl 40% formaldehyde topped to 500 ml with 

distilled water for the developing solution. 

 Stop solution: tris-acetic acid 

The stop solution was prepared by adding 50 g tris base (Sigma Aldrich) to 25 ml 

glacial acetic acid (Saarchem Merck) and topping it to 1000 ml with distilled water. 

 

2.9.1. Procedure 

After the Coomassie de-staining, the gels were rinsed in distilled water for 10 minutes 

and then pre-treated for 1 minute in 150 ml sodium thiosulphate solution. The gels 

were rinsed thrice in 150 ml distilled water, each for 20 seconds. Impregnation of the 

gels occurred by incubating them for 20 minutes in 150ml silver nitrate solution at 

4ºC. To remove excess silver nitrate, the gels were rinsed with 150 ml distilled water 

for 7 seconds.  
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Gels were then soaked in 150 ml developing solution until bands appear; the reaction 

was stopped by soaking the gels in 150 ml tris acetic acid solution for 25 minutes and 

stored in distilled water for further analyses. 

 

2.10. Analysis of SDS gels 

Gels were analysed using the Visionworks LS software programme at the University 

of the Western Cape, Department of Biotechnology. The system calculated the 

approximate size (kDa) of the expressed protein bands in relation to the molecular 

weight marker (Optima Scientific, Cape Town) (Fig 4), as well as the are density of 

protein bands, thus providing an indication of the protein concentration (Figure 5). 

 

Figure 4: Molecular weight marker ranging from 24-170 kDa 
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Figure 5: Inversely proportional graph showing the intensities of bands on one well 

of the gel (donor sample separated by DGC using the detergent Saponin). This was 

used to measure the area densities of particular bands of interest in kg/m
3
. 

 

2.11. Statistical analysis 

Normal distribution was tested using Kolmogorov-Smirnov test, considering a P-

value of less than 0.05 (P< 0.05) as statistically significant. For statistical evaluation 

of the protein band density after SDS-PAGE and DNA fragmentation in relation to 

the different sperm separation techniques independent t-tests were performed. Due to 

the small sample size, statistical sampling was employed in order to estimate sample 

sizes that will give significant results for. MedCalc
®
 statistical software (version 

12.3.0; Mariakerke, Belgium) was used for all statistical tests and analysis of data. 
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2.12. Identification of membrane surface proteins 

Two approaches were employed to identify commonly occurring surface membrane 

proteins of donor and patient samples. One approach included a SwissProt database 

search using the identified molecular weights of the extracted proteins as basis. 

Alternatively, a literature search in the following articles was done: 

1. Ahmad and Naz, 1995 

2. Aitken et al., 1995b 

3. Baldi et al., 1998 

4. Benoff et al., 1993 

5. Benoff, 1998 

6. Buddhikot et al., 1999 

7. Falkenstein et al., 1999 

8. Lambard et al., 2004) 

9. Le’gare et al., 1999 

10. Luconi et al.,1998 

11. Luconi et al., 1999 

12. Luconi et al., 2002 

13. Naz et al., 1991 

14. Naz, 1999 

15. Rochwerger et al., 1992 

16. Sabeur et al., 1996 

17. Sabeur et al., 1996b 

18. Saunders et al., 2001 

19. Schroter et al., 1999 

20. Wang et al., 2005 

21. Wolkowicz et al, 2003 

22. Yang et al., 2009 

Both methods ensured accurate nomenclature of membrane proteins of interest.  

 

2.13. Terminal deoxynucleotide transferase mediated dUTP nick-end labelling 

(TUNEL)-assay 

After sperm separation, aliquots of the samples were analysed for DNA damage using 

the TUNEL assay kit (Promega: Apoptosis detection system, Madison, USA), 

containing equilibration buffer, nucleotide mix, TdT enzyme and 20X SSC solution. 

The purpose of this technique is to assess DNA strand breaks in the spermatozoa 
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(Hughes et al., 1996; Lopes et al., 1998). Smears were prepared from the pellet of 

each separation technique and stained as follows for the detection of DNA fragmented 

spermatozoa. 

Each slide was fixed by immersing them in freshly prepared 4% methanol free 

formaldehyde (Kimix) in PBS (Oxoid) (pH 7.4) for 25 minutes at 4ºC. Thereafter, 

slides were washed in fresh PBS (Oxoid) for 5 minutes at room temperature, followed 

by permeabilizing the cells for 5 minutes in a 0.2% Triton X-100 (Sigma Aldrich, 

Steinheim, Germany) in PBS (Oxoid). A repetition of washing the cells in fresh PBS 

(Oxoid) for 5 minutes occurred twice. Any excess liquid on the surface of the slide 

was removed by gently tapping the slide on paper towel. The cells were then 

equilibrated with a 100 µl equilibration buffer (Promega), provided with the kit, for 

10 minutes. While the cells were equilibrating, the nucleotide mix (Promega) was 

thawed on ice; the nucleotide mix (Promega) was needed to prepare the TdT 

incubation buffer. This incubation buffer was calculated and prepared according to the 

number of slides to be stained. The buffer included equilibration buffer (Promega) (45 

µl per reaction), nucleotide mix (Promega) (5µl per reaction) and TdT enzyme 

(Promega) (1µl per reaction). Twenty micro-litres equilibration buffer (Promega) 

were added to each slide and covered with plastic coverslips provided with the kit, to 

prevent the cells from drying out. A humidifying chamber was made, and the cells 

were placed inside then covered with aluminium foil, and incubated (Lasec) for 60 

minutes at 37ºC. After the hour, 40ml 2x SSC (Promega) were prepared from a 20x 

SSC (Promega) stock solution. The coverslips were removed and slides immersed in 

the solution for 15 minutes. Thereafter, the sample was washed in fresh PBS (Oxoid) 
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for 5 minutes at room temperature This was repeated thrice and 100 sperm cells were 

then analysed immediately with a fluorescent microscope at 40x magnification (Zeiss, 

Oberkochen, Germany). Fragmented sperm cells were distinguished from non-

fragmented ones by fluorescing green (Figure 6).  

 

Figure 6: Illustration of DNA fragmentation detection with the TUNEL- assay. A: 

visualization of sperm cells under normal light microscopy, 1 and 2 indicate two 

sperm cells. B: visualization of sperm cells under fluorescent light, 1 indicating a 

sperm cell with no DNA fragmentation; 2 indicating a DNA fragmented sperm cell. 

(x1000 magnification) (Figure modified from: Mupfiga, 2009) 
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CHAPTER THREE 

RESULTS 

 

 

3.1. Comparison of donor and patient protein extraction using different 

separation techniques 

Three different separation techniques were used to separate the seminal plasma from 

the spermatozoa. These included the wash, swim-up (SU) and Percoll density gradient 

centrifugation (DGC). This was done to evaluate which method possibly gives the 

best selection of sperm cells based on their type of proteins extracted. Both,healthy 

donors and infertile samples were exposed to these techniques. 

 

The three separation techniques, extracted a total of 49 different sperm membrane 

surface proteins from donor samples. The molecular weights ranged from 21-175.6 

kDa (Table 1). In contrast, patient samples extracted a total of 61 proteins with 

molecular weights ranging from 14-180.4 kDa (Table 2). Amongst donor samples, 12 

common protein bands were observed ranging between 28-115 kDa, whereas amongst 

the patients 11 protein bands with molecular weights between 25-126 kDa frequently 

appeared (Table 3). Theses two experimental groups shared 7 commonly occuring 

proteins with molecular weights ranging from 36-93 kDa. 
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3.1.1 Membrane proteins extracted from donor samples 

In donor samples, separation by the wash method (Figure 7A) extracted a total 

number of 49 sperm surface proteins, of which the molecular masses ranged between 

25-175.6 kDa (Table 1). The SU only separated 19 sperm surface proteins (Figure 7B) 

with proteins of molecular weights ranging between 26-157.7 kDa (Table 1). 

Similarly to the washing technique, DGC extracted a total of 41 sperm membrane 

proteins (Figure 7C), with molecular masses ranging between 21-163 kDa (Table 1). 

From donor samples a total of 6 commonly occuring proteins that were not present in 

the patient group were extracted (Table 4). For all 3 techniques employed, a 

prominent protein band was visualized at an approximate molecular mass of 71 kDa. 

The 71 kDa band appears darker and thicker when separated with SU (Figure 7B) or 

DGC (Figure 7C) opposed to separation using the wash method (Figure 7A). 
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Table 1: Summary of all proteins extracted from donors sperm. The numbers shown 

in this table represent molecular weights (kDa). (C: CTAB; SA: Saponin; SD: SDS; 

T: Tween 20) 

Wash Swim up Percoll 

C SA SD T C SA SD T C SA SD T 

  175.6          

          163.1  

 158.5  157.8 157.7    158.5    

 142.1 141.9      141.3   141 

  131.4          

          126.5  

123        123.1  122.6  

122  121.8          

  115.4  115.3    114.8 114.5 113.5 114.8 

   109.4      111.5  108.8 

  102.9    106.2     107 

        99.5 99.5   

        98.9    

        97.4  97.4  

96   95       95.9  

93   93.6      93.5 94.4  

 92.1 92.1         91 

 89.6 88.7  88.8    89.1 89.1  89.3 

   83.3         

80 79.6 80.8 81.1   78.9      

  75.9  75.9    75.9 73.9  75.9 

  74.4          

  72      72.8  71.8  

71   71     71.3    

70 70.2       70.2  69.4 70.3 

     67.4  68.4  68.4 68.8  

         67.1  67.1 

   64.9     64   66.3 

 59.5 61.5  61.6 60.5  61.1 61.7 61 62 61.7 

 58.4          59 

57.3 57 57.4      57    

  55.3   55.4 56.1 56.0 54 55 56  

  53.2         53 

  51.8     51.2 52 52 51  

50  50.7   50.5   50  50  

49 48.4 48          

46  47.4   46.8  47.4 46  46.8 47 

45 44.3 44 44.8      44.2  45 

  42    43.8    43 43 

40  40         40 

38 38.5 38       39 39 39 
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37 36.8 36 36.2  36.4  36.6 36    

  35      35    

34 34.6 34 34  34.1  34.6  34 34 34 

 32.5    31.6  31.7     

      29.3      

28     27 27 28     

  25    26.3      

        21    
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Table 2: Summary of all proteins extracted from patient sperm. The numbers shown 

in this table represent the molecular weights in kDa.  

Wash SU DGC 

C SA SD T C SA SD T C SA SD T 

   180.4         

  175.6          

158 158 158 158  126 142 134 148 114 148  

151 151 151  151        

141 141 141 141      96   

135 135 135 135         

  131.4          

    126  126 126 126  126  

120   122         

115 115 115 115   115      

          110  

105 105 105 105 105 105       

 103 103          

  98.2  98 98 98 98 94 84   

93 93 93 93 93    92   93 

   91     91  91  

  86.6   87 88 89.4     

    84.3 83 83  81 81 81 81 

79 79 79 79    79 77.8    

 75 76  74 74 74 75 74  74 74 

72 72 72 72    70.44 71.6 71   

70 69.8  70  70    69 69 70 

65.7    67 67.4 68.9  68 67 68 66 

      66 66 66 65 65  

     63  63   63  

    62  62 62    62 

 60.3 61.51  61 61   60 61  60 

    58    59 59 59 59 

     57   57    

    56 56 56 56  56  56 

55 55 55 55     55    

54  53.7 54       54 54 

51 51 51    52 51  52.6 52 50 

50 50  50 50     51.5 50  

48    47.6    49 49 49  

46 46 46 46   46  46   46 

    44 44 45   45  44 

43 43 43 43 43 43 43 43 43 42 43  

     38 37.2 40 39  39 40 

35 35 35  35 36 35 36.4 36 36 36 36 

     34  34 35 34  34 
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    32.2  32 33 32 32 33  

29 29 29 29 29.3 30 30 30 30 30 30 30 

        28 28 28 28 

    27 27 27 27    27 

  25  25.8  26 26 25 25 25  

         24   

         22   

         19  19 

14 15.7 14 15.4         
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Table 3: List of commonly occurring membrane surface proteins in spermatozoa 

from fertile donors and infertile patients. The identification was made from the 

SwissProt database and literature search. 

kDa and identification of protein kDa and identification of protein 

115    Phosphotyrosyl Protein 

92.5   Non-genomic Progesterone Receptor 

89      Surface receptor 

61      Mannose lectin 

55.5   Steroid binding domain of the 

          progesterone genomic receptor 

51.5   Major non-genomic progesterone band 

47      Minor progesterone band 

44.5   Progesterone Receptor 43 kDa protein 

38.5   Equatorial Segment Protein 

34      P34H 

28      Progesterone Receptor 

92.5   Progesterone Receptor 

74.5   Phosphoprotein 

70      Human guanylyl cyclase receptor 

60.5   Oestrogen Receptor β 

51.5   Major progesterone band 

50      Oestrogen Receptor β 

44.5   Progesterone Receptor 

43      Surface protein 

29.5   Estradiol-binding protein 

25.5   PH-30  

 

Table4: Molecular weights of surface proteins extracted from donor sperm and not 

present in patient samples similarly to the proteins extracted from the patient samples 

that were not present in the donor samples. 

Donors (kDa) Patients (kDa) 

115 74.5 

89 70 

55.5 29.5 

44.5 25.5 

38.5  

28  
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Figure 7: Donor sample membrane proteins separated on 12.5% poly-acrylamide gel 

(PAGE) after employing the washing technique (A), SU (B) and DGC (C). 

Lane 1: CTAB; lane 2: Saponin; lane 3: SDS; lane 4: Tween 20; lane 5: molecular 

weight marker. 
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Figure 8: Membrane proteins separated on 12.5% PAGE from patient samples after 

employing the wash technique (A), SU (B), DGC (C). 

Lane 1: CTAB; lane 2: Saponin; lane 3: SDS; lane 4: Tween 20; lane 5: molecular 

weight marker. 
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3.1.2. Membrane proteins extracted from patient samples 

Membrane surface proteins of patient samples separated by means of the washing 

method extracted 34 proteins (Figure 8A) ranging from 14-180.4 kDa in molecular 

weight (Table 2). The common approximate 71 kDa protein band was present. 

However, it appeared extremely faint (Figure 8A). The swim-up technique (Figure 

8B) employed on patients extracted 3 more protein bands than the wash method, with 

a total number of 37 proteins. Their molecular masses ranged between 26-126 kDa 

(Table 2). With this method, the 71 kDa band was, dependent on the patients, 

sometimes absent, or detected as an approximate 74 kDa protein (Table 2). The most 

membrane proteins were detected in patient samples separated using DGC. This 

method extracted 43 proteins in total (Figure 8C) of which the molecular masses 

ranged between 19-148 kDa (Table 2). The patient samples extracted 5 commonly 

occuring proteins that were not present in donor samples (Table 4). For this separation 

technique, the 71 kDa protein band appeared markedly darker (Figure 8C), but not as 

dark and thick as in donor samples (Figure 7). 

 

3.2. Detergents with different properties 

For each of the 3 separation techniques, 4 detergents were used for extraction of 

membrane proteins namely, CTAB (cationic detergent), Saponin (non-ionic 

detergent), SDS (anionic detergent) and Tween 20 (non-ionic detergent). These 

detergents were of different chemical nature, therefore extracting different types of 

surface proteins, depending on their properties. 

 

3.2.1. Donors 
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A total of 49 proteins among the different detergents were extracted when the wash 

method in donors. From these, SDS extracted the most proteins (n=28) and TWEEN 

20 the least (n=11) (Figure 9A; Table 5). For the SU technique, amongst a total of 19 

proteins, CTAB extracted the least (n=5), and Saponin and Tween 20 the most (n=9) 

(Figure 9B; Table 6). In DGC separated sperm, CTAB extracted the most proteins 

(n=22) of the total of 41 compared to Saponin which extracted the least (n=14) 

(Figure 9C; Table 7). 

 

A common pattern of proteins extracted in a certain range of molecular masses was 

detected amongst the different detergents. For instance, most of the proteins extracted 

with CTAB and SDS were between 37-120 kDa, whereas Saponin and Tween 20 

aggregated in a slightly lower region of between 32-100 kDa (Table 11)  

 

3.2.2. Patients 

In patients, in sperm separated from seminal plasma by washing led to the extraction 

of a total of 34 proteins, of which CTAB extracted the most (n=22), and Tween 20 the 

least (n=19) (Figure 9A; Table 8). After SU, CTAB and SDS extracted the most 

proteins (n=21) and Saponin the least (n=19) of a total of 37 proteins (Figure 9B; 

Table 9). Forty three different proteins were extracted after DGC was utilized, CTAB 

extracting the most (n=27) and Tween 20 the least (n=20) (Figure 9C; Table 10).  

 

Similar to donor groups, the molecular masses of proteins extracted by the patient 

samples exhibited approximately the same pattern. CTAB and SDS extracted proteins 
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of slightly higher molecular weight ranging between 37-120 kDa. Saponin and Tween 

20 extracted proteins in a lower range of 32-100 kDa (Table 11).  
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Table 5: Summary of all proteins extracted from donors using the washing technique. 

The numbers in the table represent the molecular weight of the proteins in kDa. 

Wash 

CTAB SAPONIN SDS TWEEN 20 

  175.6  

 158.5  157.8 

 142.1 142  

  131.4  

123    

122  121.8  

  115.4  

   109.4 

  102.9  

96   95 

93   93.5 

 92.1 92.1  

 89.6 88.7  

   83.3 

80 79.6 80.8 81.1 

  75.9  

  74.4  

  72  

71   71 

70 70.2   

   64.9 

 59.5 61.5  

 58.4   

57.3 57 57.4  

  55.3  

  53.2  

  51.8  

50  50.7  

49 48.4 48  

46  47.4  

45 44.3 44 44.8 

  42  

40  40  

38 38.5 38  

37 36.8 36 36.2 

  35  

34 34.6 34 34 

 32.5   

28    

  25  
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Table 6: Summary of all proteins extracted from donors using the swim-up technique. 

The numbers in the table represent the molecular weight of the proteins in kDa. 

Swim up 

CTAB SAPONIN SDS TWEEN 20 

157.7    

115.3    

  106.2  

88.8    

  78.9  

75.9    

 67.4  68.4 

61.6 60.5  61.1 

 55.4 56.1 56.0 

   51.2 

 50.5   

 46.8  47.4 

  43.8  

 36.4  36.6 

 34.1  34.6 

 31.6  31.7 

  29.3  

 27 27 27 

  26.3  
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Table 7: Summary of all proteins extracted from donors using DGC technique. The 

numbers in the table represent the molecular weight of the proteins in kDa. 

Percoll 

CTAB SAPONIN SDS TWEEN 20 

  163.1  

158.5    

141.3   141 

  126.5  

123.1  122.6  

114.8 114.5 113.5 114.8 

 111.5  108.8 

   107 

99.5 99.5   

98.9    

97.4  97.4  

  95.9  

 93.5 94.4  

   91 

89.1 89.1  89.3 

75.9 73.9  75.9 

72.8  71.8  

71.3    

70.2  69.4 70.3 

 68.4 68.8  

 67.1  67.1 

64   66.3 

61.7 61 62 61.7 

   59 

57    

54 55 56  

   53 

52 52 51  

50  50  

46  46.8 47 

 44.2  45 

  43 43 

   40 

 39 39 39 

36    

35    

 34 34 34 

21    
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Table 8: Summary of all proteins extracted from patients using the washing 

technique. The numbers in the table represent the molecular weight of the proteins in 

kDa. 

Wash 

CTAB SAPONIN SDS TWEEN 20 

   180.4 

  175.6  

158 158 158 158 

151 151 151  

141 141 141 141 

135 135 135 135 

  131.4  

   122 

120    

115 115 115 115 

    

105 105 105 105 

 103 103  

  98.2  

93 93 93 93 

   91 

  86.6  

    

79 79 79 79 

 75 76  

72 72 72 72 

70 69.8  70 

65.7    

 60.3 61.5  

55 55 55 55 

54  53.7 54 

51 51 51  

50 50  50 

48    

46 46 46 46 

    

43 43 43 43 

35 35 35  

29 29 29 29 

  25  

14 15.71 14 15.4 

 

 

 

 

 



 

59 

 

Table 9: Summary of all proteins extracted from patients using the SU technique. The 

numbers in the table represent the molecular weight of the proteins in kDa. 

SU 

CTAB SAPONIN SDS TWEEN 20 

 126 142 134 

151    

126  126 126 

  115  

105 105   

98 98 98 98 

93    

 87 88 89.4 

84.3 83 83  

   79 

74 74 74 75 

   70.4 

 70   

67 67.4 68.9  

  66 66 

 63  63 

62  62 62 

61 61   

58    

 57   

56 56 56 56 

50  52 51 

47.6    

  46  

44 44 45  

43 43 43 43 

   40 

 38 37.23  

35 36 35 36.4 

 34  34 

32.2  32 33 

29.3 29.7 30 30 

27 27 27 27 

25.8  26 26 
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Table 10: Summary of all proteins extracted from patients using DCG technique. The 

numbers in the table represent the molecular weight of the proteins in kDa. 

DGC 

CTAB SAPONIN SDS TWEEN 20 

148 114 148  

 96   

126  126  

  110  

94 84   

92   93 

91  91  

81 81 81 81 

77.8    

74  74 74 

71.6 71   

 69 69 70 

68 67 68 66 

66 65 65  

  63  

   62 

60 61  60 

59 59 59 59 

57    

 56  56 

55    

  54 54 

 52.6 52 50 

 51.5 50  

49 49 49  

46   46 

 45  44 

43 42 43  

   40 

39  39  

36 36 36 36 

35 34  34 

32 32 33  

30 30 30 30 

28 28 28 28 

   27 

25 25 25  

 24   

 22   

 19  19 
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Figure 9: SDS-PAGE of membrane proteins after separation donor and patient 

samples. (A): wash technique, (B): SU, (C): DGC. 

Lanes 1-4; donor membrane proteins extracted with CTAB, Saponin, SDS and Tween 

20, respectively. Lanes 5-8: patients’ membrane proteins extracted with CTAB, 

Saponin, SDS and Tween 20, respectively.  
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Table 11: Range in which the respective detergents, CTAB (cationic) and SDS 

(anionic) opposed to Saponin and Tween 20 (non-ionic), extracted proteins of both 

donor and patient samples. 

CTAB and SDS (kDa) Saponin and TWEEN-20 (kDa) 

37 32 

38 33 

39 34 

40 35 

42 36 

43 37 

44 38 

45 39 

46 40 

47 42 

48 43 

49 44 

50 45 

51 46 

52 47 

53 48 

54 49 

55 50 

56 51 

57 52 

58 53 

59 54 

60 55 

61 56 

62 57 

63 58 

64 59 

65 60 

66 61 

67 62 

68 63 

69 65 

70 66 

71 67 

72 68 

74 69 

75 70 

76 71 

77 72 

79 74 

80 75 

81 76 

82 79 

83 80 

84 81 

86.6 82 

88.8 83 

91 84 

92 89 

93 90 

94 91 
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95 92 

96 93 

97 94 

98.9 95 

99.5 96 

103 98 

105 100 

106  

110  

113  

114  

115  

120  
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3.3. Similarities and differences in proteins extracted from donors and patients 

for different techniques 

Donor and patient samples were compared in relation to the different separation 

techniques employed (wash, SU and DGC). In both, donors and patients, the wash 

and DGC separation extracted the most amounts of common sharing proteins from the 

sample (Table 12 and 13). 

 

For the donor group, 9 common protein bands were extracted from the plasma 

membranes after the samples were separated by both washing and DGC technique, 

opposed to SU that extracted 3 commonly occurring protein bands (Table 12). 

 

For patients, after washing the sperm cells, 17 protein bands were detected. After 

separation with SU: 13 and separation with DGC: 16 (Table 13).  

 

Table 12: Summary of donors samples sharing common proteins for the wash, SU 

and DGC. The numbers are representative of the molecular mass of the proteins in 

kDa. 

Wash SU DGC 

158 61.5 115 

92 56 89 

80 27 75.5 

57  61.5 

48  55.5 

45  52 

38  47 

36  39 

34  34 
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Table 13: Summary of patient samples sharing common proteins for the wash, SU 

and DGC. The numbers are representative of the molecular mass of the proteins in 

kDa. 

 

  

Wash SU DGC 

158 126 81 

151 98 74 

141 88 70 

135 74 67.5 

115 68 65.5 

105 62 60.5 

93 56 59 

79 44 51.5 

72 35.5 49 

55 33 43 

51 29.5 36 

50 27 34 

46 26 33 

43  30 

35  28 

29  25 

15   
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3.4. The 71 kDa protein  

A prominent band was present in both patient and donor samples (Figure 10). The 

average molecular mass (kDa) of the protein band across gels (n=6) of 48 different 

lanes was calculated as an approximate 71 kDa (excluding outliers). Considering that 

visual differences in its protein concentration of its bands were observed, the average 

area density of the protein band was determined in 38 donors and 36 patients, 

respectively. Significant differences for the band density were established for this 71 

kDa protein band (P=0.0094) as in donor samples this protein was thrice more dense 

than in patient samples (Figure 11). 

 

A B 

  

Figure 10: Visual differences between the 71 kDa protein band occurring in donors 

(A) and patients (B). 
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Figure 11: Comparison of band density of the 71 kDa protein band of donors and 

patients. On average, the band density in donor samples is about thrice of that 

appearing in patient samples (P= 0.0094). 

 

3.5. DNA fragmentation  

DNA fragmentation of sperm cells was tested in sperm samples from donors and 

patients after sperm separations using the wash and DGC techniques (Fig 12). 

Although no significance differences (P=0.701) were seen when comparing donor 

sperm DGC and patient sperm DGC using the sample size of n=5, statistical sampling 

revealed that if the sample size were increased to n=13 significant differences would 

be seen. Similarly, by analyzing the data from the sample n=5 of the DGC for donor 

of patient samples, no significance was seen with DGC method in patients and 

washing method in donors. However, it would be significant if the sample size were 

to be increased to n=9 (sampling test). Significant differences were observed between 
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DGC of donor samples and washing the donor samples (P= 0.001) as well as between 

washing the donor samples and washing patient samples (P< 0.001).  

 

 

Figure 12: Comparison of the total the percentages of DNA-fragmented spermatozoa 

in donors and patients after washing and DGC. 

  

P= 0.001 

P< 0.001 
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CHAPTER FOUR 

DISCUSSION 

 

4.1 Plasma membrane  

In the human testis, the sperm cell undergoes meiotic and mitotic differentiation, 

whereby these cells gain many different proteins (Schroter et al., 1999). Besides 

spermatoza having to achieve successful fertilization, male germ cell are also required 

to withstand the immune defenses presented by the female reproductive tract. 

Therefore, they present in a manner that will differentiate those spermatozoa that are 

able to fertilize oocytes from spermatozoa with poor quality (Schroter et al., 1999). 

A total number of 6198 human sperm proteins have been reported (Amaral et al., 

2013). Since spermatozoa need to interact with the female reproductive tract and the 

oocyte efficiently (Flesch and Gadella, 2000), these proteins are associated with 

cellular functioning of the sperm cell (Amaral et al., 2013; Ashrafzadeh et al., 2013) 

and play an important role in the fertilization process (O’Rand et al., 1979). The 

function of these proteins is of such importance that the loss of their integrity, even 

with normal semen parameters, is associated with male infertility (Wassarman, 1990). 

As pointed out by Pixton (2004), many underlying causes of male infertility are 

poorly understood. However, the information on these causes of sperm dysfunction in 

men that suffer from an unknown cause of infertility is inadequate (Mackenna et al., 
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1995). Commonly, a rise in information regarding defective zona binding accounts for 

poor fertilization rates or no fertilization occurring in assisted reproduction 

(Esterhuizen et al., 2001; Liu et al., 2001; Bastiaan et al., 2003; Liu and Baker, 2003), 

suggesting that the plasma membrane is of utmost importance in the process of 

fertilization (Wassarman, 1990). 

As the sperm cell progresses through the female reproductive tract, the most suitable 

sperm for fertilization is selected (Henkel, 2012). From the cervix, the number of 

sperm cells is reduced due to the elimination of cells with poor morphology and 

motility (Pretorius et al., 1984). As these cells progress to the uterus, all non-

functional sperm are eliminated on bases of their motility and ability to undergo 

capacitation and acrosome reaction (Henkel, 2012). At the isthmus, capacitation is 

induced, hyperactivation occurs (DeMott and Suarez. 1992; Ho and Suarez, 2001) and 

spermatozoa are required to be responsive with good DNA integrity (Henkel, 2012). 

Once the sperm cells eventually reach the cumulus and the zona pellucida, they 

undergo hyperactivation and their DNA integrity is assessed (Henkel, 2012). 

Apparently, this process seems to go along with the cells ability to bind to the zona 

pellucida, (Menkveld et al., 1991; Liu and Baker, 1992). 

Certain causes of male infertility may now be diagnosed with specific membrane 

proteins being identified in humans (Liu et al., 1996; Naz and Leshie, 1999). For the 

sperm to attach to and penetrate the oocyte, specific ligands and receptors are required 

(Jeremias and Witkin, 1996). If the sperm cell is unable to bind to the zona pellucida, 

it may cause poor fertilization or complete fertilization failure, especially in assisted 

reproduction methods (Oehninger et al., 1997; Liu and Baker, 2000, 2003; 
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Esterhuizen et al., 2001; Liu et al., 2001; Bastiaan et al., 2003).Therefore, a detailed 

molecular approach is needed to identify these abnormalities as well as their 

underlying causes (Jeremias and Witkin, 1996). 

 

4.1.1. Classification of membrane proteins 

Membrane proteins can be broadly classified as integral or peripheral (Brewis and 

Gadella, 2010). Certain transmembrane glycoproteins are made in the testis. These 

proteins, which are usually hormone receptor proteins, such as progesterone and 

oestrogen receptors, have extracellular portions that are glycosylated and protrude to 

the outer cell surface (Schröter et al., 1999). Another group of proteins are produced 

once the cycle of spermatogenesis is complete. Therefore, this production of proteins 

occurs outside the testis in other areas of the male reproductive tract (Schröter et al., 

1999). The last type of proteins is those that seem to undergo secondary integrations 

into the plasma membrane of the spermatozoa (Schröter et al., 1999).  

 

4.1.2. Functions of commonly extracted membrane proteins 

4.1.2.1. Non-genomic progesterone receptors 

Most of the proteins extracted in this study were non-genomic progesterone receptors 

(Table 14 and 15) (92-93 kDa; 51-52 kDa; 46-48 kDa; 45 kDa; 28 kDa).  
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Table 14: Common proteins extracted from donor sperm plasma membranes and their 

associated function 

kDa Name of protein Function 

115 Phosphotyrosyl Protein(116 

kDa) 
 Human sperm activation (Aitken et al., 

1995b) 

92-

93 

Non-genomic Progesterone 

Receptor (90-95 kDa) (Luconi et 

al., 2002) 

 Stimulates capacitation 

 Hyperactivates sperm  

 Induces the acrosome reaction (Baldi et al., 

1998) 

89 89 kDa surface receptor (Ahmad 

and Naz, 1995) 
 Autophosphorylation for a signal 

transduction (Ahmad and Naz, 1995) 

61 Mannose lectin (Benoff, 1998)  Expressed after capacitation (Benoff et al., 

1993) 

55.5 Steroid binding domain of the 

Progesterone genomic receptor 

(52-57 kDa) (Sabeur et al., 1996; 

Luconi et al.,1998) 

 Inhibits calcium influx (Sabeur et al., 1996; 

Luconi et al.,1998) 

51.5 Major non-genomic 

progesterone band (Sabeur et al., 

1996) 

 Initiates the acrosome reaction (Sabeur et 

al., 1996) 

47 Minor progesterone band (46-

48kDa) (Sabeur et al., 1996) 
 Initiates the acrosome reaction (Sabeur et 

al., 1996) 

44.5 Progesterone Receptor (45 kDa) 

(Luconi et al., 2002) 
 Stimulates capacitation 

 Hyperactivates the sperms motility 

 Induces the acrosome reaction (Baldi et al., 

1998) 

43 43kDa protein (Naz, 1999)  Autophosphorylation (Naz, 1999) 

38.5 Equatorial Segment Protein (38 

kDa) (Wolkowicz et al, 2003) 
 Binding sperm to the egg and fusion thereof 

(Wolkowicz et al, 2003) 

34 P34H  Sperm-zona pellucida binding (Le’gareet 

al., 1999).  

28 Progesterone Receptor  Induces acrosome reaction (Falkenstein et 

al., 1999; Buddhikot et al., 1999)  
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Table 15: Common proteins extracted from the plasma membrane of patient sperm 

and their associated functions 

kDa Name of protein Function 

92.5 Progesterone Receptor (90-95 

kDa) (Luconi et al., 2002) 
 Stimulates capacitation 

 Hyperactivates the sperms motility 

 Induces the acrosome reaction (Baldi et al., 

1998) 

74.5 Phosphoprotein (75kDa) (Naz 

et al., 1991)  
 Involved in capacitation (Naz et al., 1991) 

70 Human guanylyl cyclase 

receptor  (hGC) (Yang et al., 

2009)  

 Involved in capacitation (Yang et al., 2009) 

60.5 Oestrogen Receptor β 

(Saunders et al., 2001) 
 Possible residues of spermatogenesis 

(Lambard et al., 2004) 

51.5 Major progesterone band 

(Sabeur et al., 1996) 
 Initiates the acrosome reaction (Sabeur et 

al., 1996) 

50 Oestrogen Receptor β 

(Saunders et al., 2001) 
 Possible residues of spermatogenesis 

(Lambard et al., , 2004) 

44.5 Progesterone Receptor (45 

kDa) (Luconi et al., 2002) 
 Stimulates capacitation 

 Hyperactivates the sperms motility 

 Induces the acrosome reaction (Baldi et al., 

1998) 

43 43kDa protein (Naz, 1999)  Autophosphorylation (Naz, 1999) 

36 Epididymal protease inhibitor 

receptor (Wang et al., 2005)  
 Formation of protein complexes (Wang et 

al., 2005) 

29.5 

 

Estradiol-binding protein (29 

kDa) (Luconi et al., 1999) 
 Inhibits acrosome reaction (Luconi et al., 

1999) 

25.5 Weak secondary PH-30 band 

(26 kDa) (Schroter et al., 1999) 
 Sperm-egg binding 

 May also inhibit the union of the sperm to 

the egg (Rochwerger et al., 1992) 
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In addition, the steroid binding domain of this non-genomic progesterone receptor 

(55-56 kDa) was identified. The differences and similarities between fertile donor and 

infertile patient samples are apparent in this study. 

Progesterone is a steroid secreted by the cumulus cells surrounding the oocyte (Sabeur 

et al., 1996) and found at high concentrations in follicular fluid (Lobo et al., 1985; 

Frederick et al., 1991; Anderson, 1993). The effects of progesterone on mammalian 

sperm cells are of physiological importance for fertilization to occur (Luconi et al., 

2002) and exhibits rapid effects on sperm cells upon interaction with their surface 

receptors (McEwen, 1991; Nemere and Norman, 1991; Wehling, 1997). 

Sabeur et al. (1996) suggested that human sperm have two non-genomic progesterone 

receptors, a major and minor (Sabeur et al., 1996). Both major (51-52 kDa) and minor 

(47 kDa) progesterone bands were identified in this study as identified in a study by 

Sabeur et al. (1996) (Table 14 and 15). Other progesterone receptors were too 

identified in this study. These included non-genomic progesterone receptors of 92-93 

kDa, 55-56 kDa, 47 kDa and 28 kDa in molecular mass (Table 14 and 15). 

Progesterone receptors are of significant importance as they stimulate capacitation, 

hyperactivate sperm cells and induces the acrosome reaction (Baldi et al., 1998) via 

its surface receptors (Sabeur et al., 1996) located on the plasma membrane of viable 

sperm heads (Blackmore and Lattazio, 1991; Tesarik et al., 1992). Two of the 

progesterone receptors, 28 and 47 kDa, were missing in patient samples but present in 

donors.  
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Both these receptors play a role in the initiation and induction of the acrosome 

reaction, respectively (Sabeur et al., 1996; Falkenstein et al., 1999; Buddhikot et al., 

1999) (Table 14 and 15), and the lack of these receptors in patients may therefore be 

an indication of these patients’ infertility. 

Another noticeable difference between donor and patient samples in this study was 

the absence of the steroid binding domain of the progesterone genomic receptor (55-

56 kDa) in patients. The functional importance of this domain is to inhibit the calcium 

influx to the cell (Sabeur et al., 1996; Luconi et al., 1998). Only a millimolar 

concentration of calcium influx is required for capacitation in man (Stock and Fraser, 

1989; DasGupta et al., 1993). Therefore, this needs to be modulated to regulate 

capacitation and the acrosome reaction (Naz and Rajesh, 2004). Without this receptor 

being present in patient samples, this suggests that capacitation, in patients may be 

compromised. 

 

4.1.2.2. Oestrogen receptors 

Aside from progesterone, oestrogen was found in high quantities in human follicular 

fluid (Lobo et al., 1985; Frederick et al., 1991; Anderson, 1993). Similarly to 

progesterone, it also possesses two hormone receptors, oestrogen receptor α (ERα) 

(Green et al., 1986) and β (ERβ) (Kuiper et al., 1996). In this present study, ERβ was 

identified as commonly occurring protein extracted from patient samples (50 kDa; 

60.5 kDa). ERβ was shown to be found on the membrane of spermatocytes, 
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spermatogonia and developing spermatids, and not in mature spermatozoa (Luconi et 

al., 1999; Saunders et al., 2001). 

Luconi et al. (1999) suggest that these receptors function to increase internal calcium 

concentrations as well as stimulate tyrosine phosphorylation of proteins (Luconi et al., 

1999). As a result of the tyrosine phosphorylation pathway, the calcium influx due to 

the stimuli of progesterone is prohibited (Luconi et al., 1999). With the inability of 

progesterone to stimulate its receptors come further problems in the fertilization 

process. Amongst them are the inability to undergo the acrosome reaction, 

hyperactivation and capacitation. 

For mammalian sperm to acquire their ability to progressively move through the 

female reproductive tract and interact with the oocyte, epididymal maturation is 

required (Bedford et al., 1983). During the period of sperm cells passing through the 

tracts of the male reproductive system, sperm surface properties are significantly 

modified (Ross et al., 1990; Le’gare et al., 1999). These distributional changes result 

in biochemical alterations of the membrane (Le’gare et al., 1999), possibly suggesting 

that cells possessing these receptors are not mature, and can therefore not fertilize an 

oocyte.  

 

Taking all these aspects of the oestrogen receptor into consideration, one can 

conclude that the expression of this ERβ receptor present in patient samples could be 

another factor explaining their infertility. Therefore, patients could possibly be 

identified with this proteomic approach. It could also be said that these cells 
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possessing this surface membrane protein are immature, also aiding to its inability of 

successful fertilization.  

 

4.1.2.3. Protein phosphorylation receptors 

Membrane surface proteins extracted from donor and patient samples both commonly 

expressed sperm surface proteins required to undergo protein phosphorylation (Table 

14 and 15). In this study, these surface membrane proteins included phosphotyrosol 

protein (115 kDa); mannose lectin receptor; phosphoprotein (74.5 kDa); human 

guanylyl cylase receptor (70 kDa), and an un-named 43 kDa surface membrane 

protein. 

Protein phosphorylation is an important biological event required to regulate the 

functioning of many receptors (Hunter and Cooper, 1985; Yarden and Ullrich, 1988) 

by the post-translational modification of proteins (Naz and Rajesh, 2004) in sperm 

(Visconti and Kopf, 1998). The activation of this process is mediated through ligand-

receptor interaction, which in turn induces a signal transduction pathway (Hunter and 

Cooper, 1985; Cadena and Gill, 1992). The mechanism involved in this process to 

regulate protein activity is the addition or removal of phosphate groups from serine, 

threonine or tyrosine residues of proteins as described by Naz and Rajesh (2004). 

During this process of removal or addition of these phosphate groups, allosteric 

modifications are induced that result in conformational changes of the proteins which 

in turn either activate or inactivate them (Naz and Rajesh, 2004).  
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The entire process is under control of cyclic adenosine monophosphate (cAMP), 

which is a second messenger present in all cell types (Naz and Rajesh, 2004). This 

cAMP dependant pathway activates protein kinase A that in turn regulates protein 

tyrosine phosphorylation (Naz and Rajesh, 2004). As an end result, the cell gains the 

ability to undergo capacitation, acrosome reaction (Naz et al., 1991; 1993), 

hyperactivation as well as binding to, penetration of and fusion of the spermatozoa 

with the oocyte (Naz and Rajesh, 2004). This is supported by a study, using mice, by 

Visconti et al. (1995) that proved that compounds required for tyrosine 

phosphorylation to occur are too needed for the process of capacitation. 

 

4.1.2.4. Receptors required for the fusion of the sperm to the egg 

Before the sperm crosses the oolema there is receptor-ligand interaction that occurs 

(Fusi et al., 1992) for the completion of fertilization (Primakoff and Myles,2002). The 

interaction of surface proteins of the sperm cell and the oocyte is of importance for 

the assistance of adhesion and fusion of these two cells (Primakoff and Myles,2002). 

Equatorial Segment Protein (38.5 kDa) and P34H (34 kDa) (Table 14) were two of 

the commonly occurring receptor proteins that have only been extracted in donor 

samples. As these proteins are known to mediate binding of the sperm to the oocyte 

(Wolkowicz et al, 2003), they are essential for the attachment of the sperm to the zona 

pellucida and require recognition and interaction between complementary molecules 

present on both gametes as described by O’Rand (1988) and Wassarman (1988). Once 

the sperm cell reaches and binds to the zona pellucida they receive a signal to undergo 
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the acrosome reaction which is needed to penetrate the zona (Primakoff and 

Myles,2002).  

With both equatorial segment protein and P34H being absent in patient samples as 

shown in this study, this suggests an incompetent condition of these cells to adhere 

and bind to the zona pellucida, and possibly the inability to induce acrosome reaction 

too. With these defects it is evident that a sperm cell will be incapable of fertilizing 

the egg and is therefore rendered infertile.  

 

4.2. Optimal methods for membrane protein extraction 

4.2.1. Donors 

Amongst the semen samples from healthy donors, most proteins were extracted from 

the plasma membrane after either washing the sample or separation by DGC. In this 

context, it must be realized that washing the samples did not only provide many 

sperm of from which most proteins could be extracted, but also include proteins from 

debris or leukocytes. Therefore, this sperm separation technique seems to be rather 

inappropriate, not only from the diagnostic proteomic view, but also from the point of 

the sperm cells’ functionality. Many reports pointed the detrimental effect and the 

problems involved on the fertilizing potential out (Miller et al., 1996). More gentle 

methods such as DGC would be better, and could possibly be the preferred technique 

of choice, as it selects sperm with good motility patterns (Jaroudi et al., 1993).  
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4.2.2. Patients 

The best separation technique for patient samples yielding spermatozoa of which the 

most protein extraction could occur was DGC. These cells were obtained from 

infertile patients’ samples with poor quality sperm cells. Therefore, density gradient 

medium enriches these types of cells (Amersham Bioscience, 2001). The properties of 

Percoll are of great importance as these cells have poor motility and other unknown 

defects, rendering them infertile and Percolls medium creates an environment similar 

to physiological conditions (Amersham Bioscience, 2001). In addition to this, DGC 

also rendered less sperm with fragmented DNA (Figure 12) 

Washing and performing the SU on patient samples rendered less sperm cells for 

protein extraction although equal amounts of protein were loaded per well per gel. 

Since these cells are already of poor quality, exposing them to high speed 

centrifugation creates potential for the generation of increased levels of ROS that 

damages the sperm cells membrane (Aitken and Clarkson, 1988), with the membrane 

being damaged. As a result, sperm surface proteins would also be damaged. With 

employing the wash technique on patient samples the amount of DNA fragmentation 

was remarkably high (Figure 12). 

 

4.3. Classification of detergents for extracting membrane proteins 

The type of detergents being used for the dissolution of proteins plays a significant 

role in the approach to characterizing proteins and their functions (Garavito and 
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Ferguson-Miller, 2001). The detergents used assist in isolating and solubilizing 

membrane proteins (Garavito and Ferguson-Miller, 2001) due to their chemical 

nature. In addition, the preference of the detergent has an impact on specific proteins 

(Garavito and Ferguson-Miller, 2001). CTAB as cationic and SDS as anionic 

detergent extracted the most proteins with a slightly higher molecular mass than 

Saponin and Tween-20 as non-ionic detergents. The variation in the amount of 

proteins extracted is due to the properties of the used detergents.  

Detergents of an ionic nature, such as CTAB and SDS have very strong solubilizing 

abilities (Macfarlane, 1983; Seddon et al., 2004), which is known to increase 

renaturation yields. This is made possible because CTAB and SDS inhibit the 

formation of intermolecular bonds that could lead to aggregation (De Bernardez 

Clark, 2001). 

Contrary to CTAB and SDS, non-ionic detergents, such as Saponin and Tween 20 are 

of a milder class of detergents (Reisinger and Eichacker, 2006) that destabilize the 

sperm membrane (Jakop et al., 2009). These classes of detergents are less likely to 

denature the protein, hence it does not separate protein-protein bonds (Sigma-Aldrich, 

2008) 

 

4.4. 71 kDa protein 

There were marked differences in one protein that were expressed denser in donors 

than the patient samples. This protein was approximately 71 kDa in molecular weight, 

and presented in both patient and donor groups. However, the area densities in donors 
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were thrice as higher than in patients, suggesting that this protein is expressed in 

higher quantities in healthy than infertile men. This protein is known as the heat 

shock-related protein 8 isoform 1, as similarly detected in a study performed by 

Martinez-Heredia et al. (2006). It belongs to the heat shock protein 70 family, 

functioning in the process of protein folding assisting with the binding to polypeptides 

to facilitate correct folding (Martinez-Heredia et al., 2006). The low expression of this 

protein amongst patient samples could be due to a lack of expression during the early 

stages of spermatogenesis as described by Rajeev and Reddy (2004). The marked 

differences in expression of this surface membrane protein between donor and patient 

samples could possibly be a molecular marker of incorrect protein folding within the 

sperm cell. This then further contributes to the possibility of infertility. 

 

4.5. Molecular approaches in Andrology 

Many infertile men have sperm abnormalities that are easily detected. However, there 

are subgroups of men who have normal semen characteristics, but are unable to 

fertilize the oocyte in vitro (Jeremias and Witkin, 1996). Routine semen analysis gives 

minimal information regarding chromatin defects or its surface protein molecules that 

could be abnormal in the sperm cell (Jeremias and Witkin, 1996), making these 

techniques insufficient in determining the fertility status of a man (Milardi et al., 

2012). Therefore, novel molecular approaches are developed to detect and analyze 

these problems (Sutovsky, 2012), as it may provide insight to allow identification of 

molecular markers of the sperm proteome for male infertility (Milardi et al., 2012) 
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Events that occur during the fertilization process are mediated through the interactions 

of the sperm plasma membrane and the female reproductive tract (Darszon et al., 

2012). Therefore, genomic and proteomic approaches deliver insight into the process 

of sperm maturation (Dacheux et al., 2012), which assists with detail to the functional 

abilities of spermatozoa during the process of fertilization (Ferrer et al., 2012). 

Signaling pathways involved in the process of fertilization such as capacitation and 

other events that occur in the female reproductive tract for the preparation of the 

spermatozoa for fertilization are too being studied (Signorelli et al., 2012). 

Advances have been made regarding the interaction between the sperm and the oocyte 

(Gupta et al., 2012). This including the identification of the sperm receptors as well as 

proteins present on the eggs surface (Gupta et al., 2012). Upon identifying, 

quantifying and characterizing surface proteins on sperm cells, this provides insight 

into the cellular functions (Brewis and Gadella, 2010). Therefore, proteins present on 

the plasma membrane of the sperm surface would assist in the molecular interaction 

occurring at early fertilization events (Brewis and Gadella, 2010). Thus, providing 

better insight to the requirements needed to be met by the spermatozoa for successful 

fertilization in its journey through the female reproductive tract. This is of importance, 

especially for assisted reproductive techniques and for the diagnosis of idiopathic 

infertility amongst men.  

 

4.6. Conclusion 
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In conclusion, the advent of molecular approaches to characterize and diagnose male 

infertility may be the possible solution running parallel with routine examinations. 

This proteomic approach could assist with the explanation as to why patients are 

rendered infertile without obvious cause by identifying surface membrane proteins 

that are required in the process of fertilization. It is evident in this study that certain 

surface proteins are absent from patient samples, yet present on donors, or present on 

patient samples surface membrane and absent on donors’. The function of these 

proteins is closely related to their ability to fertilize the oocyte, which renders them 

fertile or infertile. Therefore, the infertility status of men may go beyond what meets 

the eye. 

  

 

 

 

 



 

86 

 

CHAPTER FIVE 

REFERENCES 

 

Abu, D., Franken D.R., Hoffman, B., Henkel, R. (2011). Sequential analysis of sperm 

functional aspects involved in fertilization: a pilot study. J Androl, 1-7 

Agarwal, A., Saleh, R.A., Bedaiwy, M.A. (2003). Role of reactive oxygen species in 

the pathophysiology of human reproduction. Fertil Steril, 79(4), 829-843 

Agarwal, A.A.S. (2004). Oxidants and antioxidants in human fertility. Middle East 

Society Fertil J, 9(3), 187-97. 

Ahmad, K., and Naz, R.K. (1995). Thymosin alpha-1 and FA-1 monoclonal antibody 

affect fertilizing capacity of human sperm by modulating protein phosphorylation 

pattern. J Reprod Immunol, 29, 1-17 

Aitken, R.J. (1995). Free radicals, lipid peroxidation and sperm function. Reprod 

Feril Dev, 7(4), 659-668. 

Aitken, R.J. (2004). Founders' Lecture. Human spermatozoa: fruits of creation, seeds 

of doubt. Reprod Fertil Dev, 16(7), 655–664. 

Aitken, R.J., and Clarkson, J.S. (1988). Significance of reactive oxygen species and 

antioxidants in defininf the efficacy of sperm preparation techniques. J Androl, 9, 

367-376. 

 

 

 

 



 

87 

 

Aitken, R.J., and De Iuliis, G.N. (2010). On the possible origins of DNA damage in 

human spermatozoa. Mol Hum Reprod, 16(1), 3-13 

Aitken, R.J., and West, K.M. (1990). Analysis of the relationship between reactive 

oxygen species production and leucocyte infiltration in fractions of human semen 

separated on Percoll gradients. J Androl, 13, 433–451. 

Aitken, R.J., Buckingham, D.W., Brindle, J., Gomez, E., et al. (1995a). Analysis of 

sperm movement in relation to the oxidative stress created by leukocytes in washed 

sperm preparations and seminal plasma. Hum Reprod, 10, 2061–2071. 

Aitken, R.J., Paterson, M., Fisher, H., Buckingham, D.W., van Duin, M. (1995b). 

Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in 

the control of human sperm function. J Cell Sci, 108, 2017-2025. 

Albelda, S.M., and Buck, C.A. (1990). Integrins and other cell adhesion molecules. 

FASEB J, 4, 2868-2880. 

Alvarez, J.G., Sharma, R.K., Ollero, M., Saleh, R.A., et al. (2002). Increased DNA 

damage in sperm from leukocytospermic semen samples as determined by the sperm 

chromatin structure assay. Fertil Steril, 78, 319–329. 

Amaral, A., Castillo, J., Ramalho-Santos, J., Oliva, R. (2013). The combined human 

sperm proteome: cellular pathways and implications for basic and clinical science. 

Hum Reprod Update, 20(1), 40-62. 

 

 

 

 



 

88 

 

Anapliotou, M.L.G., Goulandris, N., Douvara, R. (1995). Seminal fibronectin-like 

antigen and transferring concentration in infertile and fertile men. J Adrol, 27, 137-

142. 

Anderson, C.Y., (1993). Characteristics of human follicular fluid associated with 

successful conception after in vitro fertilization. J Clin Endocrinol Metab, 77, 1227-

1234. 

Anderson, M.J., and Dixson, A.F., (2002). Sperm competition: motility and the 

midpiece in primates. Nature, 416, 496. 

Aoki, V.W., and Carrell, D.T., (2003). Human protamines and the developing 

spermatid: their structure, function, expression and relationship with male infertility. 

Asian J Androl, 5, 315-324 

Aoki, V.W., Liu, L., Carrell, D.T. (2005a). Identification and evaluation of a novel 

sperm protamine abnormality in a population of infertile males. Hum Reprod, 20, 

1298–1306. 

Aoki, V.W., Liu, L., Jones, K.P., Hatasaka, H.H., et al. (2006). Sperm protamine 

1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive 

of fertilization ability. Fertil Steril, 86, 1408–1415. 

Aoki, V.W., Moskovtsev, S.I., Willis, J., Liu, L., et al. (2005b). DNA integrity is 

compromised in protamine-deficient human sperm. J Androl, 26, 741–748. 

 

 

 

 



 

89 

 

Ashrafzadeh, A., Karsani, S.A., Nathan, S. (2013). Mammalian sperm fertility related 

proteins. Int J Med Sci, 10, 1649-1657 

Austin, C.R. (1951). Observation of the penetration of the sperm into to the 

mammalian egg. Aust J Sci Res, 4, 581-596. 

Bahat, A., Tur-Kaspa, I., Gakamsky, A., Giojalas, L.C., et al. (2003). Thermotaxis of 

mammalian sperm cells: a potential navigation mechanism in the female genital tract. 

Nat Med, 9, 149–150. 

Baillie, H.S., Pacey, A.A., Warren, M.A., Scudamore, I.W., et al. (1997). Greater 

numbers of human spermatozoa associate with endosalpingeal cells derived from the 

isthmus compared with those from the ampulla. Hum Reprod, 12, 1985–1992 

Baldi, E., Luconi, M., Bonaccorsi, L., Forti G. (1998). Nongenomic effects of 

progesterone on spermatozoa: mechanisms of signal transduction and clinical 

implications. Front Biosci, 3, 1051-1059 

Barratt, C.L., and Cooke, I.D. (1991). Sperm transport in the human female 

reproductive tract a dynamic interaction. Int J Androl, 14, 94-411. 

Barratt, C.L.R., Aitken, R.J., Björndahl, L., Carrell, D.T., et al. (2010). Sperm DNA: 

organization, protection and vulnerability: from basic science to clinical 

applications—a position report. Hum Reprod, 25(4), 824-838. 

Barratt, C.L.R., and Mansell, S.A. (2013). Andrology is desperate for a new assay – 

Let us make sure we get it right this time. Middle East Fertil Soc J, 18(2), 82-83. 

 

 

 

 

http://humrep.oxfordjournals.org/search?author1=Christopher+L.R.+Barratt&sortspec=date&submit=Submit
http://humrep.oxfordjournals.org/search?author1=R.+John+Aitken&sortspec=date&submit=Submit
http://humrep.oxfordjournals.org/search?author1=Douglas+T.+Carrell&sortspec=date&submit=Submit


 

90 

 

Bastiaan, H.S., Windt, M.L., Menkveld, R., Kruger, T.F., et al. (2003). Relationship 

between zona pellucida-induced acrosome reaction, sperm morphology, sperm-zona 

pellucida binding, and in vitro fertilization. Fertil Steril, 79, 49-55. 

Batova, I.N., Ivanova, M.D., Mollova, S., et al. (1998). Human sperm surface 

glycoproteins involved in sperm-zona pellucida interaction. Int J Androl, 21, 141-153. 

Beck, L.R., and Boots, L.R. (1972). The comparative anatomy, histology, and 

morphology of the mammalian oviduct. New York: Academic Press. 

Bedford, J.M. (1983). The significance of the need for sperm capacitation before 

fertilization in eutherian mammals. Biol Reprod, 28, 108-120. 

Benoff, S. (1998). Modelling human sperm-egg interactions in vitro: signal 

transduction pathways regulating the acrosome reaction. Mol Hum Reprod, 4(5), 453-

471 

Benoff, S., Hurley, I., Cooper, G.W., et al. (1993). Human sperm head-specific 

mannose-ligand receptor expression is dependent on capacitation-associated 

membrane cholesterol loss. Hum Reprod, 8, 2141–2154 

Bianchi, P.G., De Agostini, A., Fournier, J., Guidetti, C., Tarozzi, N., Bizzero, D., 

Manicardi, G.C. (2004). Human cervical mucus can act in vitro as a selective barrier 

against spermatozoa carrying fragmented DNA and chromatin structural 

abnormalities. J Assist Reprod Genet, 21(4), 97-102. 

 

 

 

 



 

91 

 

Blackmore, P.F., and Lattanzio, F.A. (1991). Cell surface localization of a novel non-

genomic progesterone receptor on the head of human sperm. Biochem Biophys Res 

Commun, 181, 331-336. 

Blum, H., Beier, H., Gross, H.J. (1987). lmproved silver staining of plant proteins, 

RNA and DNA in polyacrylamide gels. Electrophoresis, 8, 93-99.  

Bohring, C., and Krause, W. (1999). The characterization of human spermatozoa 

membrane proteins- surface antigens and immunological infertility. Electrophoresis, 

20, 971-976. 

Bonde, J.P., Ernst, E., Jensen, T.K., Hjollund, N.H., Kolstad, H., Henriksen, T.B., et 

al. (1998). Relation between semen quality and fertility: a population-based study of 

430 firstpregnancy planners. Lancet, 352, 1172–1177. 

Bonner, P.L.R., and Hargreaves, A.J. (2012). Basic Bioscience Laboratory 

Techniques. Oxford, UK: John Wiley and Sons Ltd.  

Boomsma, C.M., Heineman, M.J., Cohen, B.J., and Farquar, C. (2004). Semen 

preparation techniques for intrauterine insemination. Cochrane Database of 

Systematic Reviews, DOI: 10.1002/14651858.CD004507.pub3. 

Braga, D.P.A.F., Setti, A.S., Figueira, R.C., Nichi, M., Martinhago, C.D., Iaconelli, 

A., et al. (2011). Sperm organelle morphologic abnormalities: contributing factors and 

effects on intracytoplasmic sperm injection cycles outcomes. Urology, 78, 786–91. 

 

 

 

 



 

92 

 

Brewis, I.A., and Gadella, B.M. (2010). Sperm surface proteomics: from protein list 

to biological function. Mol Hum Reprod, 16(2), 68-79. 

Brown, C.R. (1975). Distribution of hyaluronidase in the ram spermatozoa. J Reprod 

Fertil, 45, 537-539. 

Buddhikot, M., Falkensein, E., Wehling, M., Meizel, S. (1999).Recognition of a 

human sperm surface protein involved in the progesterone-initiated acrosome reaction 

by antisera against an endomembrane progesterone binding protein from porcine 

liver. Mol Cell Endocrinol, 158, 187–93. 

Burkitt, M., Walker, D., Romano, D.M., Fazeli, A. (2012). Using computational 

modeling to investigate sperm navigation and behavior in the female reproductive 

tract. Theriogenology, 77, 703-716. 

Byrd, W., Drobnis, E.Z., Kutteh, W.H., Marshburn, P., Carr, B.R. (1994). Intrauterine 

insemination with frozen donor sperm: a prospective randomized trial comparing 

three different sperm preparation techniques. Fertil Steril, 62, 850-856. 

Cadena, D.L., and Gill, G.N. (1992) Receptor tyrosine kinases. FASEB J. 6, 2322-

2337. Capacity of the human zona pellucida. Mol Reprod Dev, 30, 346–352. 

Carrell, D.T., Liu, L. (2001). Altered protamine 2 expression is uncommon in donors 

of known fertility, but common among men with poor fertilizing capacity, and may 

reflect other abnormalities of spermiogenesis. J Androl, 22, 604–10. 

 

 

 

 



 

93 

 

Chakroun Feki, N., Therond, P., Couturier, M., Limea, G., Legrand, A., Jouannet, P., 

Auger, J. (2004). Human lipid sperm content is modified after migration into the 

cervical mucus. Mol Hum Reprod, 10(2), 137-142. 

Chandra, A., Srti, N., Kesavan, S., Agarwal A. (2009). Significance of oxidative 

stress in human reproduction. Arch Med, 5(1A), S28-S42. 

Chemes, H.E., Sedo, C.A. (2012). Tails of the tail and sperm head aches. Asian J 

Adrol, 14, 14-23 

Chemes, H.E., and Rawe, V.Y. (2003). Sperm pathology: a step beyond descriptive 

morphology. Origin, characterization and fertility potential of abnormal sperm 

phenotypes in infertile men. Hum Reprod Update, 9, 405–428. 

Chemes, H.E., Brugo, S., Zanchetti, F., Carrere, C., Lavieri, J.C. (1987). Dysplasia of 

the fibrous sheath: An ultrastructural defect of human spermatozoa associated with 

sperm immotility and primary sterility. Fertil Steril, 48, 664–9. 

Chen, M.J., and Bongso, A. (1999). Comparative evaluation of two density gradient 

preparations for sperm separation for medical assisted conception. Hum Reprod, 

14(3), 759-764 

Chevallet, M., Luche, S., Rabilloud, T. (2006). Silver staining of proteins in 

polyacrylamide gels. Nat Proto, 1 (4), 1852-1858 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Chemes%20HE%5BAuthor%5D&cauthor=true&cauthor_uid=3653424
http://www.ncbi.nlm.nih.gov/pubmed?term=Brugo%20S%5BAuthor%5D&cauthor=true&cauthor_uid=3653424
http://www.ncbi.nlm.nih.gov/pubmed?term=Zanchetti%20F%5BAuthor%5D&cauthor=true&cauthor_uid=3653424
http://www.ncbi.nlm.nih.gov/pubmed?term=Carrere%20C%5BAuthor%5D&cauthor=true&cauthor_uid=3653424
http://www.ncbi.nlm.nih.gov/pubmed?term=Lavieri%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=3653424


 

94 

 

Cho, B.S., Schuster, T.G., Zhu, X.Y., Chang, D., Smith, G.D., Takayama, S. (2003). 

Passively driven integrated microfluidic system for separation of motile sperm. Anal 

Chem, 75, 1671–1675. 

Cho, C., Bunch, D.O., Faure, J.E., Goulding, E.H., Eddy, E.M., Primakoff, P., Myles, 

D.G. (1998). Fertilization defects in sperm from mice lacking fertilin beta. Science, 

281, 1857–1859. 

Churikov, D., Siino, J., Svetlova, M., Zhang, K., et al. (2004). Genomics, 84, 745-

756. 

Cohen-Dayag, A., Tur-Kaspa, Y., Dor, J., Mashiach, S., and Eisenbach, M. (1995). 

Sperm capacitation in humans is transient and correlates with chemotactic 

responsiveness to follicular factors. Proc Natl Acad Sci USA, 92, 11039–11043. 

Crane, L.H., and Martin, L. (1991). Postcopulatory myometrial activity in the rat as 

seen by video-laparoscopy. Reprod Fertil Dev, 3, 685–698. 

Cross, N.L. (1998). Role of cholesterol in sperm capacitation. Biol Reprod, 59, 7-11. 

Cummins, J.H., and Yanagimachi, R. (1986). Development of ability to penetrate the 

cumulus oophorus by hamster sspermatozoa capacitated in vitro in relation to the 

timing of the acrosome reaction. Gamete Res, 15, 187-212. 

Dacheux, J-L., Belleannée, C., Guyonnet, B., Labas, V., Teixeira-Gomes, A-P., 

Ecroyd, H., Druart, X., Gatti, J-L., Dacheux, F. (2012). The contribution of 

 

 

 

 



 

95 

 

proteomics to understanding epididymal maturation of mammalian spermatozoa. Sys 

Biol Reprod Med, 58(4), 197-210 

Dadoune, J.P. (2003). Expression of mammalian spermatozoa nucleoproteins. 

Microsc Res Tech, 61, 56-75. 

Dallapiccola, B., and Novelli, G. (2000). Male infertility pleiotropic genes and 

increased risk of diseases in future generations. J Endocrinol Invest, 23, 557-559.  

DasGupta, S., Mills, C.L., Fraser, L.R. (1993). Ca(2+)-related changes in the 

capacitation state of human spermatozoa assessed by a chlortetracycline fluorescence 

assay. J Reprod Fertil, 99, 135-143. 

De Bernardez Clark, E. (2001). Protein refolding for industrial processes. Curr Opin 

Biotechnol, 12(2): 202–207  

De Jonge, C. (2005). Biological basis for human capacitation. Hum Reprod Update, 

11, 205–214. 

De Maistre, E., Bene, M.C., Foliguet, B., Touati, F., Faure, G.C. (1996). 

Centrifugation on Percoll gradient enhances fluorescent lectin binding on human 

sperm: a flow cytometric analysis. Arch Androl, 37, 179-87. 

DeMott, R.P., and Suarez, S.S. (1992). Hyperactivated sperm progress in the mouse 

oviduct. Biol Reprod, 46, 779–785. 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0958166900002007


 

96 

 

Diekman, A.B., Norton, E.J., Westbrook, V.A., et al. (2000). Antisperm antibodies 

from infertile patients and their cognate sperm antigens: a review ± Identity between 

SAGA-1, the H6-3C4 antigen and CD52. Am J Reprod Immunol, 43, 134-143. 

Diezel, W., Kopperschläger, G., Hofmann, E. (1972). An improved procedure for 

protein staining in polyacrylamide gels with a new type of Coomassie brilliant blue. 

Anal Biochem, 48, 617–620. 

Ducibella, T. (1996). The cortical reaction and development of actiavtion competance 

in mammalian oocytes. Hum Reprod Update, 2(1), 29-42. 

Dukelow, W.R., and Riegle, G.D. (1972). Transport of gametes and survival of the 

ovum as functions of the oviduct. New York, USA: Cambridge University Press. 

Duran, E.H., Morshedi, M., Taylor, S., Oehninger, S. (2002). Sperm DNA quality 

predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod, 

12, 3122-3128.  

Duru, N.K., Morshedi, M., Oehninger, S. (2000). Effects of hydrogen peroxide on 

DNA and plasma membrane integrity of human spermatozoa. Fertil Steril, 74(6): 

1200- 1207 

Edwards, R.G., Bavister, B.D.,Streptoe, P.C. (1969). Early stages of fertilization in 

vitro of human oocytes matured in vitro. Nature, 221, 632-635 

Eisenbach, M. (1999). Mammalian sperm chemotaxis and its association with 

capacitation. Dev Genet, 25, 87–94. 

 

 

 

 



 

97 

 

Eisenbach, M., and Giojalas, L.C. (2006) Sperm guidance in mammals - an unpaved 

road to the egg. Nat Rev Mol Cell Biol, 7, 276–285. 

Elglert, Y., Van DBM, Rodesch, C. (1992). Comparative auto-controlled study 

between swim up and percoll preparation of fresh semen samples for in-vitro 

fertilization. Hum Reprod, 7, 399-402 

Esterhuizen, A.D., Franken, D.R. Lourens, J.G.H., Van Rooyen, L.H. (2001). Clinical 

importance of zona pellucida-induced acrosome reaction and its predictive value for 

IVF. Hum Reprod, 16, 138-144. 

Evenson, D.P., and Wixon, R. (2006). Clinical aspects of sperm DNA fragmentation 

detection and male infertility. Theriogenology, 65, 979-991. 

Fabro, G., Rovasio, R.A., Civalero, S., Frenkel, A., Caplan, S.R., Eisenbach, M., 

Giojalas, L.C. (2002). Chemotaxis of capacitated rabbit spermatozoa to follicular fluid 

revealed by a novel directionality-based assay. Biol Reprod, 67, 1565–1571. 

Falkenstein, E., Heck, M., Gerdes, D., Grube, D., Christ, M., Weigel, M., Buddhikot, 

M., Meizel, S., Wehling, M. (1999). Specific progesterone binding to a membrane 

protein and related nongenomic effects on Ca2_ fluxes in sperm. J Mol Endocrinol, 

140, 5999–6002. 

Fazekas de St Groth, S., Webster, R.G., Datyner, A. (1963). Two staining procedure 

for quantitative estimation of proteins on electrophoretic strips. Biochim Biophys 

Acta, 71, 377-391 

 

 

 

 



 

98 

 

Ferrer, M., Rodriguez, H., Zara, L., Yu, Y., Xu, W., Oko, R. (2012). MMP2 and 

acrosin are major proteinases associated with the inner acrosomal membrane and may 

cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue 

Res, 349(3), 881-895. 

Flesch, F.M., and Gadella, B.M. (2000). Dynamis of the mammalian sperm plasma 

membrane in the process of fertilization. Biochim Biophys Acta, 1469, 197-235 

Flesch, F.M., Brouwers, J.F., Nievelstein, P.F., Verkleij, A.J., van Golde, L.M., 

Colenbrander, B., Gadella, B.M. (2001). Bicarbonate stimulated phospholipid 

scrambling induces cholesterol redistribustion and enables cholesterol depletion in the 

sperm plasma membrane. J Cell Sci, 114, 3542-3555. 

Florman, H.M., and Ducibella, T. (2006). Fertilization in mammals. San Diego, CA: 

Academic Press. 

Frederick, J.L., Francis, M.M., Macaso, T.M., Lobo, R.A., Sauer, M.V., Paulson, R.J. 

(1991). Preovulatory follicular fluid steroid levels in stimulated and unstimulated 

cycles triggered with human chorionic gonadotropins. Fertil Steril, 55, 44-47. 

Freundl, G., Grlmm, H.J., Hofmann, N. (1988). Selective filtration of abnormal 

spermatozoa by the cervical mucus. Hum Reprod, 3(3), 277-280. 

Fujii, J., Iuchi, Y., and Okada, F. (2005). Fundamental roles of reactive oxygen 

species and protective mechanisms in the femae reproductive system. Reprod Biol 

Edocrinol, 3, 43. 

 

 

 

 



 

99 

 

Fusi, F.M., and Bronson, R.A. (1992a). Sperm surface fibronectin, expression 

following capacitation. J Androl, 13, 28-35. 

Fusi, F.M., Lorenzetiio, I., Vignali, M., Bronson, R.A. (1992b). Sperm surface 

proteins after capacitation expression of vitronectin on the spermatozoan head and 

laminin on the sperm tail. J Androl, 13(6), 488-497 

Gadella, B.M., and Visconti, A. (2006). Regulation of capacitation. In: de Jonge CJ, 

Barratt C The Sperm Cell (ed). Cambridge: Cambridge University Press. 

Gandini, L., Lombardo, F., Paoli, D., Caponecchia, L., Familiari, G., Verlengia, C., 

Dondero, F., Lenzi, A. (2000). Study of apoptotic DNA fragmentation in human 

spermatozoa. Hum Reprod, 15(4), 830-839. 

Garavito, R.M., and Ferguson-Miller, S. (2001). Detergents as Tools in Membrane 

Biochemistry. J Biol Chem, 276(35), 32403-32406 

Garolla, A., Fortini, D., Menegazzo, M., De Toni, L., Nicoletti V., Moretti, A., et al. 

(2008). High-power microscopy for selecting spermatozoa for ICSI by physiological 

status. Reprod Biomed Online, 17, 610–6. 

Giojalas, L.C., Rovasio, R.A., Fabro, G,. Gakamsky, A., Eisenbach, M. (2004). 

Timing of sperm capacitation appears to be programmed according to egg availability 

in the female genital tract. Fertil Steril, 82, 247–9. 

Gomendio, M., and Roldan, E.R.S. (1991). Sperm competition influences sperm size 

in mammals. Proc Biol Sci, 243, 181–185. 

 

 

 

 



 

100 

 

Gorczyca, W., Traganos, F., Jesionowska, H., Darzynkiewicz, Z. (1993). Presence of 

DNA strand breaks and increased sensitivity of DNA in situ to dentaturation in 

abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res, 

207, 202-205.  

Gorus, F.K., and Pipeleers, D.G. (1981). A rapid method for the fractionation of 

human spermatozoa according to their progressive motility. Fertil Steril, 35, 662-665  

Green, S., Walter, P., Kumar, V., Krust, A., Bornert, J.M., Argos, P., Chambon, P. 

(1986). Human oestrogen receptor cDNA: sequence, expression and homology to v-

erb-A. Nature, 320, 134–139 

Gualtiere, R., Mollo, V., Duma, G., Talevi, R. (2009). Redox control of surface 

protein sulphhydryls in bovine spermatozoa reversibly modulates sperm adhesion to 

the oviductal epithelium and capacitation. Reproduction, 138, 33-43. 

Guidobaldi, H.A., Teves, M.E., Un˜ ates, D.R., Anastasia, A., Giojalas, L.C. (2008). 

Progesterone from the cumulus cells is the sperm chemoattractant secreted by the 

rabbit oocyte cumulus complex. PLoS one: 3(8): e3040 

Guzick, D.S., Overstreet, J.W., Factor-Litvak, P., Brazil, C.K., Nakajima, S.T., 

Coutifaris, C., et al. (2001). Sperm morphology, motility, and concentration in fertile 

and infertile men. N Engl J Med, 345, 1388–93. 

Hafez, E.S.E., and Black, D.L. (1969). The mammalian uterotubal junction. Chicago, 

IL: The University of Chicago Press. 

 

 

 

 



 

101 

 

Halliwell, B. (2006). Oxidative stress amd neurodegeneration: where are we now? J 

Neurochem, 97(6), 1643-58. 

Hammoud, S.S. Nix, D.A., Zhang, H., Purwa, R.J., and Carrell, D.T. (2009). Cairns 

BR. Distinctive chromatin in human sperm packages genes for embryo development. 

Nature, 460, 473–8. 

Hanson, F.W., and Overstreet, J.W. (1981). The interaction of human spermatozoa 

with cervical mucus in vivo. Am J Obstet Gynecol, 140, 173–178. 

Harrison, R.A.P. (1988). Preliminary characterization of multiple forms of ram sperm 

hyaluronidase. Biochem J, 252, 875-882. 

Harvey, A.J. (2007). The role of oxygen in ruminant preimplantation embryo 

development and metabolism. Anim Reprod Sci, 98(1-2), 113-28. 

Hemler, M.E. (1990). VLA proteins in the integrin family. Annu Rev Immunol, 8, 

365-400. 

Henkel, R. (2012). Sperm preparation: state-of-the-art- physiological aspects and 

application of advanced sperm preparation methods. Asian J Androl, 1-10. 

Henkel, R., Kierspel, E., Hajimohammad, M., Stalf, T., Hoogendijk, C., Mehnert, C., 

Menkveld, R., Schill, W-B., Kruger, T.F. (2003). DNA fragmentation of spermatozoa 

and assisted reproduction technology. Reprod BioMed Online, 7(4), 477-484. 

Henkel, R., Schill, W-B. (2003). Sperm preparation for ART. Reprod Biol 

Endocrinol, 1, 108 

 

 

 

 

http://www.sciencedirect.com/science/journal/14726483
http://www.ncbi.nlm.nih.gov/pubmed/?term=Henkel%20RR%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schill%20WB%5Bauth%5D


 

102 

 

Ho, H.C., and Suarez, S.S. (2001). Hyperactivation of mammalian spermatozoa: 

function and regulation. Reproduction, 122, 519–26. 

Holt, W., Hernandez, M., Warrell, L., Satake, N. (2010). The long and short sperm 

selection in vitro and in vivo: swim up techniques select for the longer and faster 

swimming mammalian sperm. J Evol Biol, 23, 598-608. 

Holt, W.V. (2009). Is semen analysis useful to predict the odds that the sperm will 

meet the egg? Repro Dom Anim, 44(3), 31-38. 

Holt, W.V., and van Look, K.J.W. (2004). Concepts in sperm heterogeneity, sperm 

selection and sperm competition as biological foundations for laboratory tests of 

semen quality. Reprod and Fertil, 127, 527-535. 

Holt, W.V., Hernandez, M., Warrel, L., Satake, N. (2010). The long and the short of 

sperm selection in vitro and in vivo: swim-up techniques select for the longer and 

faster swimming mammalian sperm. J Evol Biol, 23, 598-608.  

Hook, S.J., and Hafez, E.S.E. (1968). A comparative study of the mammalian 

uterotubal junction. J Morphol, 125, 159-184. 

Hourcade, J.D., Perez-Crespo, M., Fernandez-Gonzalez, R., Pintado, B., Gutierrez-

Adan, A. (2010). Selection against spermatozoa with fragmented DNA after 

postvulatory mating depends on the type of damage. Reprod Biol Endocrinol, 8, 9. 

 

 

 

 



 

103 

 

Hughes, C.M., Lewis, S.E.M., McKelvey, M.V., et al. (1996). A comparison of 

baseline and induced DNA damage in human spermatozoa from fertile and infertile 

men, using modified Comet assay. Mol Hum Reprod, 2, 613-619. 

Hunter, R.H. (1996). Ovarian control of very low sperm/egg ratios at the 

commencement of mammalian fertilisation to avoid polyspermy. Mol Repro Dev, 44, 

417-22. 

Hunter, R.H., and Wilmut, I. (1984). Sperm transport in the cow: peri-ovulatory 

redistribution of viable cells within the oviduct. Reprod Nutr Dev, 24, 597-608. 

Hunter, R.H.F. (1975). Transport, migrations and survival of spermatozoa in the 

female genital tract: species with intrauterine deposition of semen. New York: 

Academic Press. 

Hunter, T., and Cooper, J.A. (1985) Protein tyrosine kinases. Annu Rev Biochem, 54, 

897-930 

Huszar, G., and Vigue, L. (1990).Spermatogenesis-related change in the synthesis of 

the creatine kinase B-type and M-type isoforms in human spermatozoa. Mol Reprod 

Dev, 25(3), 258–262. 

Hynes, R.O. (1987). Integrins: a family of cell surface receptors. Cell, 48, 549-554. 

Ickowicz, D., Finkelstein, M., and Breitbart, H. (2012). Mechanism of sperm 

capacitation and the acrosome reaction: role of protein kinases. Asian J Androl, 14, 

816-821. 

 

 

 

 



 

104 

 

Ignotz, G.C., Cho, M.Y., Suarez, S.S. (2007). Annexins are candidate oviductal 

receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm 

in the oviductal reservoirs. Biol Reprod, 77, 906-13. 

Ikawa, M., Nakanishi, T., Yamada, S., Wada, I., Kominami, K., Tanaka, H., Nozaki, 

M., Nishimune, Y., and Okabe, M. (2001). Calmegin is required for fertilin a ⁄ b 

heterodimerization and sperm fertility. Dev Biol, 240, 254–261. 

Ikawa, M., Wada, I., Kominami, K., Watanabe, D., Toshimori, K., Nishimune, Y., 

and Okabe, M. (1997). The putative chaperone calmegin is required for sperm 

fertility. Nature, 387, 607–611. 

Jakop, U., Fuchs, B., Süß, R., Wibbelt, G., Braun, B., Müller, K.M., Schiller, J. 

(2009). The solubilisation of boar sperm membranes by different detergents - a 

microscopic, MALDI-TOF MS, P NMR and PAGE study on membrane lysis, 

extraction efficiency, lipid and protein composition. Lipids Health Dis, 8(49): 1-16 

Jansen, R.P.S. (1980). Cyclic changes on the human fallopian tubes isthmus and their 

functional importance. Am J Obstet Gynecol, 136, 292–308. 

Jaroudi, K.A., Carver-Ward, J.A., Hamilton, C.J.C.M., Sieck, U.V., Sheth, U.V. 

(1993). Andrology: Percoll semen preparation enhances human oocyte fertilization in 

male-factor infertility as shown by a randomized cross-over study. Hum Reprod, 8(9), 

1439-1442.  

Jenkins, T.G., and Carrell, D.T. (2011). The paternal epigenome and embryogenesis: 

poising mechanisms for development. Asian J Androl, 13, 76-80. 

 

 

 

 



 

105 

 

Jeremias, J., and Witkin, S.S. (1996). Molecular approaches to the diagnosis of male 

infertility. Mol Hum Reprod, 2(3), 195-202.  

Katz, D., Drobnis, E.Z., and Overstreet, J.W. (1989). Factors regulating mammalian 

sperm migration through the female reproductive tract and oocyte vestiments. Gamete 

Res, 22, 443-469. 

Katz, D.F. (1991). Human cervical mucus: research update. Am J Obstet Gynecol, 

165, 1984-1986. 

Katz, D.F., Blake, J.R and Paveri Fontana, S. (1975). On the movement of slender 

bodies near plane boundaries at low Reynolds number. J Fluid Mech, 72, 529-540. 

Katz, D.F., Drobnis, E.Z., Overstreet, J.W. (1989). Factors regulating mammalian 

sperm migration through the female reproductive tract and oocyte vestments. Gamete 

Res, 22(4), 443-469. 

Katz, D.F., Slade, D,A., Nakajima, S.T. (1997). Analysis of pre-ovulatory changes in 

cervical mucus hydration and sperm penetrability. Adv Contracept, 13, 143-151. 

Kaupp, U.B., Kashikar, N.D., Weyand, I. (2008). Mechanisms of sperm chemotaxis. 

Annu Rev Physiol, 70, 93-117. 

Kerr, L. (1993). Sperm antigens and immunocontraception. Reprod Fertil Dev, 7, 

825-830.  

Kirchhoff, C. (1996). CD52 is the ‘major maturation-associated’ sperm membrane 

antigen . Mol Hum Reprod, 2, 9-17. 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Katz%20DF%5BAuthor%5D&cauthor=true&cauthor_uid=1755453
http://onlinelibrary.wiley.com/doi/10.1002/mrd.v22:4/issuetoc


 

106 

 

Kirchhoff, C., and Hale, G. (1996). Cell-to-cell transfer of glycophosphatidylinositol-

anchored membrane proteins during sperm maturation. Mol Hum Reprod, 2, 177-184. 

Klentzeris, L.D., Fishel, S., McDermott, H., et al. (1995). A positive correlation 

between expression of α1-integrin cell adhesion molecules and fertilizing ability of 

human spermatozoa in virto. Mol Hum Reprod, 10, 728-733. 

Krege, J.H., John, S.W., Langenbach, L.L., Hodgin, J.B., Hagaman, J.R., Bachman, 

E.S., Jennette. J,C., O’Brien, D.A., and Smithies, O. (1995). Male-female differences 

in fertility and blood pressure in ACE-deficient mice. Nature, 375, 146–148. 

Kuiper, G.G.J.M., Enmark, E., Pelto-Hukko, M., Nillson, S., Gustafsson, J.A. (1996). 

Cloning of a novel estrogen receptor expressed in rat prostate. Proc Natl Acad USA, 

93, 5925-5930. 

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the 

head of bacteriophage T4. Nature, 227, 680–685. 

Lagow, E., DeSouza, M.M., and Carson, D.D. (1972). Mammalian reproductive tract 

mucins. Hum Reprod Update, 5, 280–292. 

Lambard, S., Galeraud-Denis, I., Saunders, P.T.K., and Carreau, S. (2004). Human 

immature germ cells and ejaculated spermatozoa contain aromatase and oestrogen 

receptors. J Mol Endocrinol, 32, 279–289. 

 

 

 

 



 

107 

 

Larson, K.L., Brannian, J.D., Timm, B.K., Jost, L.K., Evenson, D.P. (1999). Density 

gradient centrifugation and glass wool filtration of semen remove spermatozoa with 

damaged chromatin structure. Hum Reprod, 14, 2015–2019. 

Le´ gare, C., Gaudreault, C., St-jacques, S., Sullivan, R. (1999). P34H Sperm Protein 

Is Preferentially Expressed by the Human Corpus Epididymidis. J Mol Endocrinol, 

140(7), 3318-3327 

Lefebvre, J., Fan, J., Chevalier, S., Sullivan, R., Carmona, E., and Manjunath, P. 

(2007). Genomic structure and tissue specific expression of human and mouse genes 

encoding homologues of the major bovine seminal plasma proteins. Mol Hum Reprod, 

13, 45-53. 

Lefebvre, R., and Suarez, S.S. (1996). Effect of capacitation on bull sperm binding to 

homologous oviductal epithelium. Biol Reprod, 54, 575– 582. 

Lefevre, A., Ruiz, C.M., Chokomian, S., Duquenne, C., and Finaz, C. (1997). 

Characterization and isolation of SOB2, a human sperm protein with a potential role 

in oocyte membrane binding. Mol Hum Reprod, 3(6), 507-516. 

Lewis, S.E., Sterling, E.S.L., Young, I.S., Thompson, W. (1995). Comparison of 

individual antioxidants of sperm and seminal plasma in fertile and infertile men. 

Fertil Steril, 67, 142–7. 

Lewis, S.E.M., Sterling, E.S.L., Young, I.S., Thompson, W. (1997). Comparison of 

individual antioxidants of sperm and seminal plasma in fertile and infertile men. 

Fertil Steril, 67(1), 142-147. 

 

 

 

 



 

108 

 

Lima, S.C., Hernandez-Vargas, H., Herceg, Z. (2010). Epigenetic signatures in 

cancer: implications for the control of cancer in the clinic. Curr Opin Mol Ther, 12, 

316–324. 

Lin, Y., Maham, K., Lathrop, W.F., Myles, D.G., Primakoff, P. (1994). A 

hyaluronidase activity of the sperm membrane protein PH-20 enables sperm to 

penetrate the cumulus cell layer surrounding the egg. J Cell Biol, 125, 1157-1163. 

Liu, D.Y., and Baker, H.W. (1992). Morphology of spermatozoa bound to the zona 

pellucida of human oocytes that failed to fertilize in vitro. J Reprod Fertil, 94, 71–84. 

Liu, D.Y., and Baker, H.W. (2003). Disordered zona pellucida-induced acrosome 

reaction and failure of in vitro fertilization in patients with unexplained infertility. 

Fertil Steril, 79, 74-80. 

Liu, D.Y., Clarke, G.N., Martic, M., Garrett, C., Baker, H.W. (2001). Frequency of 

disordered zona pellucida (ZP)-induced acrosome reaction in infertile men with 

normal semen analysis and normal spermatozoa-binding. Hum Reprod, 16, 1185-

1190. 

Liu, Q.Y., Wang. L.F., Miao, S.Y., et al. (1996). Expression and characterization of a 

novel human sperm membrane protein. Biol Reprod, 54, 323-330. 

Lobo, R.A., diZerega, G.S., Marrs, R.P. (1985). Follicular fluid steroid levels in 

dysmature and mature follicles from spontaneous and hyperstimulated cycles in 

normal and anovulatory women. J Clin Endocrinol Metab, 60, 81-87. 

 

 

 

 



 

109 

 

Lopes, A.S., Lane, M., Thompson, J.G. (2010). Oxygen consumption and ROS 

production are increased at the time of fertilization and cell cleavage in bovine 

zygotes. Hum Reprod, 25(11), 289-299. 

Lopes, S., Jurisicova, A., Sun, J.G., et al. (1998). Reactive oxygen species: potential 

cause for DNA fragmentation in human spermatozoa. Hum Reprod, 13, 896-900. 

Luconi, M., Bonaccorsi, L., Bini, L., Liberatori, S., Pallini, V., Forti, G., Baldi, E. 

(2002). Characterization of membrane nongenomic receptors for progesterone in 

human spermatozoa. Steroids, 76, 505-509. 

Luconi, M., Bonaccorsi, L., Maggi, M., Pecchioli, P., Krausz, C.S., Forti, G., Baldi, E. 

(1998). Identification and characterization of functional nongenomic progesterone 

receptors on human sperm membrane. J Cell Endocrinol Metab, 83, 877-90. 

Luconi, M., Mutatori, M., Forti, G., Baldi, E. (1999). Identification and 

characterization of a novel functional estrogen receptor on human sperm membrane 

that interferes with progesterone effects. J Clin Endocrinol Metab, 84(5), 1670-1768 

Luo, S., Wehr, N.B., Levine, R.L. (2006). Quatitation of protein on gels and blots by 

infrared fluorescence of Coomassie blue and Fast green. Analytical Biochemistry, 

350, 233-238  

Lyons, E.A., Taylor, P.J., Zheng, X.H., Ballard, G., Levi, C.S., Kredentser, J.V. 

(1991). Characterization of subendometrial myometrial contractions throughout the 

menstrual cycle in normal fertile women. Fertil Steril, 55, 771–774. 

 

 

 

 



 

110 

 

Macfarlane, D.E. (1983). Anal Biochem, 132, 231–235 

MACKENNA, A. (1995). Contribution of the male factor to unexplained infertility: a 

review. Int J Androl, 18(1): 58-67 

Madrid-Bury, N., and Perez-Gutierrez, J.F., Perez-Garnelo, S., Moreira, P., 

Sanjuanbenito, B.P., Gutierrez-Adan, A., Martinez, J.D. (2005). Relationship between 

non-retum rate and chromatincondensation of deep frozen bull spermatozoa. 

Theriogenology, 64, 232–241. 

Mahadevan, M., and Baker, G. (1984). Assessment and prepartation of semen for in 

vitro fertilization. Berlin: Springer-verlag. 

Mäkinen, S., Mäkela, S., Zhang, W.H., Warner, M., Rosenlund, B., Salmi, S., 

Hovatta, O., Gustafsson, J.A. (2001). Localization of oestrogen receptors alpha and 

beta in human testis. Mol Hum Reprod, 7, 497–503 

Malo, A.F., Gomendio, M., Garde, J., Lang-Lenton, B., Soler, A.J., Roldan, E.R. 

(2006). Sperm design and sperm function. Cell Mol Biol Lett, 2, 246–249. 

Manjunath, P., and Sairam, M.R. (1987). Purification and biochemical 

characterization of three major acidic proteins (BSP-A1, SPA-A2 and BSP-A3) from 

bovine seminal plasma. Biochem J, 241, 685-692. 

Marcon, L., Boissonneault, G. (2004). Transient DNA Strand Breaks During Mouse 

and Human Spermiogenesis: New Insights in Stage Specificity and Link to Chromatin 

Remodeling. Biol Reprod, 70, 910-918 

 

 

 

 



 

111 

 

Martines-Heredia, J., Estanyol, J.M., Ballesca, J.L., Oliva, R. (2006). Proteomic 

identification of human sperm proteins. Proteomics, 6, 4356-4369. 

Martinez-Heredia, J., Estanyol, J.M., Ballesca, J.L., Oliva, R. (2006). Proteomic 

identification of human sperm proteins. Proteomics, 6, 4356-4369. 

Matthews, E.E., Zoonens, M., Engelman, DM. (2006). Dynamic Helix Interactions in 

Transmembrane Signaling. Cell, 127(3), 447–450 

Mattner, P.E. (1963). Spermatozoa in the genital tract of the ewe. II. Distribution after 

coitus. Aust J Biol Sci, 16, 688. 

McEwen, B.S. (1991). Non-genomic and genomic effects of steroids on neural 

activity. Trends Phannacol Sci, 12, 141-147. 

Meizel, S., Pillai, M.C., Diaz-Perez, E., and Thomas, P. (1990). Initiation of the 

human sperm acrosome reaction by thapsigarin. J Exp Zool, 267(3), 350-355. 

Melendrez, C.S., Meizel, S., and Berger, T. (1994). Comparison of the ability of 

progesterone and heat solubilized porcine zona pellucida to initiate the porcine sperm 

acrosome reaction in vitro. Mol Reprod Dev, 39, 433-438. 

Menkveld, R., Franken, D.R., Kruger, T.F., Oehninger, S., Hodgen, G.D. (1991). 

Sperm selection capacity of the human zona pellucid. Mol Reprod Dev, 30(4), 346-

352. 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0092867406013420
http://www.sciencedirect.com/science/article/pii/S0092867406013420


 

112 

 

Meyers, S.A., Overstreet, J.W., Liu, I.K.M., Drobnis, E.Z. (1995). Capacitation in 

vitro of stallion spermatozoa: comparison of progesterone-induced acrosome reactions 

in fertile and subfertile males. J Androl, 16, 47-54. 

Milardi , D., Grande, G.,  Vincenzoni, F., Messana, I.,  Pontecorvi, A., De Marinis, L., 

Castagnola, M., Marana, R. (2012). Proteomic approach in the identification of 

fertility pattern in seminal plasma of fertile men. Fertil Steril, 97(1): 67-79-3.e1 

Miller, K,F., Falcone, T., and Goldberg, J.M. (1996). Variation in recovery of motile 

sperm after preparation by a simple Percoll gradient technique. J Assist Reprod 

Genet,13, 485-488. 

Morales, P., Overstreet, J.W., and Katz, D.F. (1988). Changes in human sperm motion 

during capacitation in vitro. J Reprod Fertil, 83, 119-28. 

Morrell, J.M. Dalin, A.M., Sandeberth, T., Rodriguez-Martinez, H. (2007). 

Morphology of spermatozoa from warmblood stallions: relation to pregnancy rate. 

Reprod Domest Anim, 42, 85–86. 

Mortimer, D. (1983). Sperm transport in the human female reproductive tract. 

Oxford: Clarendon Press. 

Mortimer, D. (1994). Laboratory standards in routine clinical andrology. 

Reproductive Medicine Review, 3, 97-111 

Morton, D.B. (1976). Lysosomal enzymes in mammalian spermatozoa. Amsterdam: 

North Holland Publishing.  

 

 

 

 



 

113 

 

Naz, R.K. (1999). Involvement of Protein Serine and Threonine Phosphorylation in 

Human Sperm Capacitation. Biol Reprod, 60, 1402-1409 

Naz, R.K., Ahmad, K., and Kaplan, P. (1993). Involvement of cyclins and cdc’ 

serine/threonine protein kinase in human sperm cell function. Biol Reprod, 48, 720-

728 

Naz, R.K., Ahmad, K., and Kumar, R. (1991). Role of membrane phosphotyrosine 

proteins in human spermatozoa function. J Cell Sci, 99, 157-165  

Naz, R.K., and Ahmad, K. (1994). Molecular identities of human sperm proteins that 

bind human zona pellucida: nature of sperm-zona interactionm tyrosine kinase 

activity, and involvement of FA-1. Mol Repro Dev, 39, 397-408. 

Naz, R.K., and Leshie, M.H. (1999). Sperm surface protein profiles of fertile and 

infertile men: search for a diagnostic molecular marker. Arch Androl, 43, 173-181 

Naz, R.K., and Rajesh, P.B. (2004). Role of tyrosine phosphorylation in sperm 

capacitation/ acrosome reaction. Reproductive Biology and Endocrinology, 2(75), 1-

12. 

Nemere, I., and Norman, A.W. (1991). Steroid hormone actions at the plasma 

membrane: induced calcium uptake and exocytotic events. Mol Cell Endocrinol, 80, 

C165-C169. 

 

 

 

 



 

114 

 

Ng, F.L., Liu, D.Y., and Baker, H.W. (1992). Comparison of Percoll, mini-Percoll 

and swim-up methods for sperm preparation from abnormal semen samples. Hum 

Reprod, 7, 261-266. 

Nishimura, H., Kim, E., Nakanishi, T., and Baba, T. (2004). Possible function of the 

Adam1a ⁄Adam2 fertilin complex in the appearance of Adam3 on the sperm surface. J 

Biol Chem, 279, 34957–34962. 

Nistal, M., Herruzo, A., Sanchez Corral, F. (1978).Teratozoospermia absoluta de 

presentacio´n familiar: espermatozoides microce´ falos irregulares sin acrosoma. J 

Androl, 10, 234–240. 

O’Rand, M.G. (1988) Sperm–egg recognition and barriers to interspecies fertilization. 

Gamete Res, 19, 315–328. 

O’Rand, M.G., Widgren, E.E., and Fisher, S.J. (1979). Changes of sperm surface 

properties correlated with capacitation. Baltimore, USA: Urban and Schwarzenberg. 

Oliva, R. (2006). Protamines and male infertility. Hum Reprod Update, 12, 417–35. 

Oliveira, J.B.A., Massaro, F.C., Baruffi, R.L.R., Mauri, A.L., Petersen, C.G., Silva, 

L.F.I., et al. (2010). Correlation between semen analysis by motile sperm organelle 

morphology examination and sperm DNA damage. Fertil Steril, 94, 1937–1940. 

Ombelet, W., Bosmans, E., Janssen, M., Cox,A., Maes, M., Punjabi, U., Blaton, V., 

Gunst, J., Haidl, G., Wouters, E., Spiessens, C., Bornman, M.S., Pienaar, E., 

 

 

 

 



 

115 

 

Menkveld, R., Lombard, C.J. (1998). Multicenter study on reproducibility of sperm 

morphology assessments. Arch Adrol, 41(2), 103-114. 

Osman, R.A., Andria, M.L., Jones, A.D., Meizel, S. (1989). Steroid induced 

exocytosis: the human sperm acrosome reaction. Biochem Biophys Res Commun, 160, 

828-833. 

Overstreet, J.W., and Katz, D.F. (1977). Sperm transport and selection in the female 

genital tract. North Holland, Amsterdam: MH Johnson. 

Overstreet, J.W., Coats, C., Katz, D.F., Hanson, F.W. (1980). The importance of 

seminal plasma for human sperm penetration of cervical mucus. Fertil Steril, 34, 569-

572. 

Overstreet, J.W., Katz, D.F., and Johnson, L.L. (1980). Motility of rabbit spermatozoa 

in the secretions of the oviduct. Biol Reprod, 22, 1083–1088. 

Pacey, A.A., Hill, C.J., Scudamore, I.W., Warren, M.A., Barratt, C.L.R., Cooke, ID. 

(1995). The interaction in vitro of human spermatozoa with epithelial cells from the 

human uterine (Fallopian) tube. Hum Reprod, 10, 360–366. 

Percoll Methodology and Application: Amersham Bioscience AB. (2001). Uppsala, 

Sweden.  

Perry, R.L., Barratt, C.L., Warren, M.A., and Cooke, I.D. (1996). Comparative study 

of the effect of human cervical mucus and a cervical mucus substitute, Healonid, on 

 

 

 

 



 

116 

 

capacitation and the acrosome reaction of human spermatozoa in vitro. Hum Reprod, 

11, 1055-1062. 

Pixton, K.I., Deeks, E.D., Flesch, F.M., Moseley, F.L.C., Bjorndahl, L., Ashton, P.R., 

Barratt, C.L.R., and Brewis, I.A. (2004). Sperm proteome mapping of a patient who 

experienced failed fertilization at IVF reveals altered expression of at least 20 proteins 

compared with fertile donors: Case resport. Hum Reprod, 19(6), 1438-1447. 

Premkumar, B.J, and Agarwal, A. (2012). Female infertility and assisted 

reproduction: impact of oxidative stress- and update. Curr Womens Health Rep, 8, 

183-207. 

Pretorius, E., Franken, D.R., de Wet, J., Grobler, S. (1984). Sperm selection capacity 

of cervical mucus. Arch Androl, 12, 5–7. 

Primakoff, P. Myles, D. G. (2002). Penetration, adhesion and fusion in mammalian 

sperm-egg interaction. Science, 296, 2183-2218 

Rajeev, S.K, and Reddy, K.V.R. (2004). Sperm membrane protein profiles of fertile 

and infertile men: identification and characterization of fertility- associated sperm 

antigen. Hum Reprod, 15(2), 234-242. 

Rath, D., Schuberth, H.J., Coy, P., and Taylor, U. (2008). Sperm Interactions from 

Insemination to Fertilization. Reprod Dom Anim, 43(5), 2-11. 

Reisinger, V., and Eichacker, L.A. (2006). Analysis of membrane protein complexes 

by blue native PAGE. Proteomics, 6 (Suppl 2), 6–15 

 

 

 

 



 

117 

 

Rochwerger, L., Cohen, D.J., Cuanescu`, P.S. (1992). Mammalian sperm– egg fusion: 

the rat egg has complementary sites for a sperm protein that mediates gamete fusion. 

Dev Biol, 153, 83–90. 

Rodriguez-Martinez, H., Nicander, L., Viring, S., Einarsson, S., and Larsson K. 

(1990). Ultrastructure of the uterotubal junction in preovulatory pigs. Anat Histol 

Embryol, 19, 16–36. 

Roldan, R.S., Murase, T., and Shi, Q.X. (1994). Exocytosis in spermatozoa in 

response to progesterone and zona pellucida. Science, 266, 1578-1581. 

Ross, P., Kan, F.W., Antaki, P., Vigneault, N., Chapdelaine, A., Roberts, K.D. (1990). 

Protein synthesis and secretion in the human epididymis and immunoreactivity with 

sperm antibodies. Mol Reprod Dev, 26, 12–23. 

Rousseaux, S., Caron, C., Govin, J., Lestrat, C., Faure, A.K., Khochbin, S. (2005). 

Establishment of male-specific epigenetic information. Gene, 345, 139-153. 

Saacke, R.G. (1982). Components of semen quality. J Anim Sci, 55, 1-13. 

Sabeur, K., Edwards, D.P., Meizel, S. (1996). Human Sperm Plasma Membrane 

Progesterone Receptors(s) and the Acrosome Reaction. Biol Reprod, 54, 993-1001. 

Sakkas, D., Manicardi, G.C., Tomlinson, M., Mandrioli, M., Bizzaro, D., Bianchi, 

P.G., et al. (2000). The use of two density gradient centrifugation techniques and the 

swim-up method to separate spermatozoa with chromatin and nuclear DNA 

anomalies. Hum Reprod, 15, 1112–1116. 

 

 

 

 



 

118 

 

Sakkas, D., Mariethoz, E., Manicardi, G., Bizzaro, D., Bianchi, P.G., Bianchi, U. 

(1999). Origin of DNA damage in ejaculated human spermatozoa. J Reprod Fertil, 4: 

31-37 

Saunders, P.T.K., Sharpe, R.M., Williams, K., Macpherson S., Urquart, H., Irvine, 

D.S., Millar, M.R. (2001). Differential expression of oestrogen receptor and proteins 

in the testis and male reproductive system of human and non-human primates. Mol 

Hum Reprod, 7, 227–236 

Schroter, S., Derr, P., Conradt, H.S., et al. (1999). Male-specific modification secreted 

protein CD52. J Biol Chem,274, 29862–72983. 

Seddon, A.M., Curnow, P., Booth, P.J. (2004). Membrane proteins, lipids, and 

detergents: not just soap opera. Biochim Biophys Acta, 1666, 105–117.  

Shalgi, R., Smith, T.T., Yanagimachi, R. (1992). A quantitative comparison of the 

passage of capacitated and incapacitated hamster spermatozoa through the uterotubal 

junction. Biol Reprod, 46, 419–424. 

Shams-Borhan, G., and Harrison, R.A.P. (1981). Production, characterization and use 

of ionophores induced calcium dependant acrosome reaction in ram spermatozoa. 

Gamete Res, 4, 407-432.  

Sigma-Aldrich Biofiles. (2008). St Louis, MO. 

Signorelli, J., Diaz, E.S., Morales, P. (2012). Kinases, phosphatases and proteases 

during sperm capacitation. Cell Tissue Res, 349(3): 765-782. 

 

 

 

 



 

119 

 

Sombrero, A.J., and MacLeod, J. (1962). The immediate post-coital test. Fertil Steril, 

13, 184-189 

Stambaugh, R., and Buckley, J. (1970). Comparative studies of the acrosomal 

enzymes of rabbit, rhesus monkey and human spermatozoa. Biol Reprod, 3, 275-282. 

Stock, C.E., and Fraser, L.R. (1989). Divalent cations, capacitation and the acrosome 

reaction in human spermatozoa. J Reprod Fertil, 87, 463-478 

Suarez, S.S. (2007). Interactions of spermatozoa with the female reproductive tract: 

inspiration for assisted reproduction. Reprod Feril Dev, 19, 103-110. 

Suarez, S.S. (2008). Regulation of sperm storage and movement in the mammalian 

oviduct. Int J Dev Biol, 52, 455– 462. 

Suarez, S.S., and Oliphant, G. (1982). The interaction of rabbit spermatozoa and 

serum complement proteins. Biol Reprod, 27, 473–483. 

Suarez, S.S., and Pacey, A.A. (2006). Sperm transport in fermale reproductive tract. 

Hum Reprod Update, 12(1), 23-37.  

Sun, F., Bahat, A., Gakamsky, A., Girsh, E., Katz, N., Giojala, L.C., Kaspa, I.T., 

Eisenbach, M. (2005). Human sperm chemotaxis, both the oocyte and its surrounding 

cumulus cells secrete chemoattractants. Hum Reprod, 20(3), 761-767. 

Talbot, P., Shur, B.D., Myles, D.G. (2003). Cell Adhesion and Fertilization: Steps in 

Oocyte Transport, Sperm-Zona Pellucida Interactions, and Sperm-Egg Fusion. Biol 

Reprod, 68: 1-9 

 

 

 

 



 

120 

 

Tarozzi, N., Nadalini, M., Stronati, A., Bizzaro, D., Dal Prato, L., Coticchio, G., 

Borini, A. (2009). Anomalies in sperm chromatin packaging: implications for assisted 

reproduction techniques. Reprod Biomed Online, 18, 486–495. 

Tavalaee, M., Razavi, S., Nasr-Esfahani, M.H. (2009). Influence of sperm chromatin 

anomalies on assisted reproductive technology outcome. Fertil Steril, 91, 1119–1126. 

Tay, J.I., Rutherford, A.J., Killick, S.R., Maguiness, S.D., Partridge, R.J., Leese, H.J. 

(1997). Human Tubal Fluid: production, nutrient composition and response to 

adrenergic agents. Hum Reprod, 12(11), 2451-2456  

Taylor, U., Rath, D., Zerbe, H., Schuberth, H.J. (2008). Interaction of intact porcine 

spermatozoa with epithelial cells and neutrophilic granulocytes during uterine 

passage. Reprod Domest Anim, 43, 166–175. 

Tesarik, J., Mendoza, C., Moos, J., Carreras, A. (1992). Selective expression of a 

progesterone receptor on the human sperm surface. Fertil Steril, 58, 784-792. 

Teves, M.E., Barbano, F., Guidobaldi, H.A., Sanchez, R., Miska, W., et al. (2006). 

Progesterone at the picomolar range is a chemoattractant for mammalian 

spermatozoa. Fertil Steril, 86, 745–749. 

Tyres, M., Mann, M. (2003). From Genomics to proteomics. Nature, 422(6928), 193-

197 

 

 

 

 



 

121 

 

Utsuno, H., Oka, K., Yamamoto, A., Shiozawa, T. (2013). Evaluation of sperm head 

shape at high magnification revealed correlation of sperm DNA fragmentation with 

aberrant head ellipticity and angularity. Fertil and Steril, 99(6), 1573-1580. 

Vacquier, V.D. (1998). Evoultion of Gamete Recognition Proteins. Science, 281, 

1995-1998. 

Van den Bergh, M.J.G., Fahy-Deshe, M., Hohl, M.K. (2009). Pronuclear zygote score 

following intracytoplasmic injection of hyaluronan-bound spermatozoa: a prospective 

randomized study. Reprod BioMed Online, 19(6), 796–801. 

Vermes, I., Haanen, C., Reutelingsperger, C.P. (1995). A novel assay for apoptosis: 

flow cytometric detection of phosphatidylserine expression on early apoptotic cells 

using fluorescence labelled annexin V. J Immunol Methods, 180, 39–52 

Vermes, I., Haanen, C., Steffens-Nakken, H. Reutelingsperger, C. (1995). A novel 

assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on 

early apoptotic cells usingfluorescein labelled Annexin V.J. Immunol Methods,184, 

39–51. 

Visconti, P.E., Moore, G.D., Bailey, J.L., Leclerc, P., et al. (1995). Capacitation of 

mouse spermatozoa II. Protein tyrosine phosphorylation and capacitation are 

regulated by a cAMP-dependant pathway. Dev, 121: 1139-1150. 

Wang, Z., Widgren, E.E., Sivashanmugam, P., O’Rand, M.G., Richardson, R.T. 

(2005). Association of Eppin with semenogelin on human spermatozoa. Biol Reprod, 

72, 1064–1070. 

 

 

 

 

http://www.sciencedirect.com/science/journal/14726483
http://www.sciencedirect.com/science/journal/14726483/19/6


 

122 

 

Wassarman, P.M. (1990). Profile of a mammalian sperm receptor. Development, 108, 

1-17 

Wasserman, P.M. (1988) Zona pellucida glycoproteins. Annu Rev Biochem, 57, 415–

442. 

Wehling, M. (1997). Specific nongenomic actions of steroid hormones. Annu Rev 

Physiol, 59, 365-393 

Wilding, M., Coppola, G., di Matteo, L., Palagiano, A., Fusco, E., Dale, B. (2011). 

Intracytoplasmic injection of morphologically selected spermatozoa (IMSI) improves 

outcome after assisted reproduction by deselecting physiologically poor quality 

spermatozoa. J Assist Reprod Genet, 28, 253–62. 

Williams, M., Hill, C.J., Scudamore, I., Dunphy, B., Cooke, I.D., et al. (1993). Sperm 

numbers and distribution within the human fallopian tube around ovulation. Hum 

Reprod, 8, 2019-2026. 

Wilson, C.M. (1983). Staining of protein gels: comparisons of dyes and procedures. 

Methods in enzymology, 91, 236-247 

Wolf, D.E., McKinnon, C.A., Leyton, L., et al. (1992). Protein dynamics in sperm 

function membranes: implication for sperm function during gamete interaction. Mol 

Reprod Fertil, 33, 228-234. 

Wolkowicz, M.J., Shetty, J., Westbrook, A., Klotz, K., Jayes, F., Mandal, A., 

Flickinger, C.J., Herr, J.C. (2003). Equatorial segment protein (ESP) defines a 

 

 

 

 



 

123 

 

discrete acrosomal subcompartment persisting throughout acrosomal biogenesis. Biol 

Reprod, 69, 735–745 

World Health Organization: Standard procedures. (2010). In WHO laboratory 

manual for the examination and processing of human semen. 5th edition. Cambridge: 

Cambridge University Press 

Wyllie, A.H. (1980). Glucocorticoid-induced thymocyte apoptosis is associated with 

endogenous endonuclease activation. Nature, 284, 555-556. 

Yanagimachi, R. (1988). Sperm-egg fusion. In: Bronner F, ed. Current topics in 

membranes and transport. Orlando, FL. Academic Press. 1988, 3-43. 

Yanagimachi, R. (1994). The Physiology of Reproduction. 3rd ed. New York: Raven 

Press. 

Yang, R.B., Au, H.K., Tseng, C.R., Tsai, M.T., Wu, P., Wu, Y.C., Ling, T.Y., Huang, 

Y.H. (2009). Characterization of a novel cell-surface protein expressed on human 

sperm. Hum Reprod, 25(1), 1-10 

Yarden, Y., and Ullrich, A. (1988) Growth factor receptor tyrosine kinases. Annu Rev 

Biochem, 57, 443-478 

Yasui, Y. (1997) A ‘good sperm’ model can explain the evolution of costly multiple 

mating by females. American Naturalist. 149, 573–584. 

 

 

 

 



 

124 

 

Ye, H., Huang, G., Gao, Y., Liu, D.Y. (2006). Relationship between human sperm-

hyaluronan binding assay and fertilization rate in conventional in vitro fertilization. 

Human Reprod, 21, 1545–1550. 

Younglai, E.V., Holt, D., Brown, P., Jurisicova, A., Casper, R.F. (2001). Sperm 

swim-up techniques and DNA fragmentation. Hum Reprod, 16, 1950–1953. 

Yuldin, A.I., Cherr, G.N., Katz, D.F. (1988). Structure of the cumulus matrix and 

zona pellucid in the golden hamster: a new view of sperm interaction with oocyte- 

associated extracellular matrices. Cell Tissue Res, 251, 555-564. 

Zamboni, L. (1972). Fertilization in the mouse. Springfield: Illinois CC Thomas. 

Ziebe, S., and Anderson, C. (1993). Isolation of motile spermatozoa: comparison of 

Percoll centrifugation, SpermPrep filtration, and swim up techniques. J Assist Reprod 

Genet, 10, 485-587. 

Zini, A., Finelli, A., Phang, D., Jarvi, K. (2000). Influence of semen processing 

technique on human sperm DNA integrity. Urology, 56, 1081–1084. 

 

 

 

 

 


	Title page
	Acknowledgements
	Keywords
	Abstract
	Content
	Chapter one: Introduction
	Chapter two: Materials and methods
	Chapter three: Results
	Chapter four: Discussion
	Bibliography

