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ABSTRACT 

Stroke is the third leading cause of death in South Africa, killing about 240 people a day and 

leaving survivors with residual disabilities. There is no clinically approved neuroprotective 

agent for stroke at the moment but the consumption of plant polyphenols has been suggested 

to offer neuroprotection against stroke and other neurodegenerative diseases. In this study, we 

investigated the effects of long term consumption of fermented rooibos herbal tea (FRHT) on 

ischemia reperfusion brain injury (I-RBI) in rats. Male adult Wistar rats were fed FRHT ad 

libitum for 7 weeks prior to the induction of ischemic injury by the transient bilateral 

occlusion of the common carotid arteries (BCCAO) for 20 minutes followed by 24 hours, 4 

and 7 days of reperfusion respectively. Rats were then evaluated for neurologic deficits 

before sacrifice and brains harvested for assessment of brain oedema, blood-brain-barrier 

(BBB) integrity through Evans blue extravasation (EBE), immunohistochemical studies of 

apoptosis and lipid peroxidation. Oxygen radical antioxidant capacity and ferric reducing 

antioxidant power assays were also conducted to assess total antioxidant capacity after 

ischemia-reperfusion injury. Notably, the long term consumption of fermented rooibos herbal 

tea prevented brain oedema by reducing cerebral swelling induced by I-RBI. We also 

observed that fermented rooibos herbal tea offered neuroprotection against damage to the 

BBB and delayed neuronal death associated with BCCAO as fewer apoptotic cells were 

identified 7 days post BCCAO reperfusion. Significantly reduced levels of lipid peroxidation 

and increased levels of total antioxidant capacity were also observed in brain specimens of 

rats treated with FRHT. Rats treated with FRHT also showed improved neurologic outcomes 

when compared with the untreated animals. Our results show that FRHT has potent 

antioxidant and anti-inflammatory properties which can provide neuroprotective effects 

against neuronal cell loss, cerebral swelling, BBB disruption, lipid peroxidation and 

neurologic deficits following I-RBI. The use of FRHT is therefore highly recommended for 

patients with conditions that predispose them to stroke. 
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CHAPTER ONE 

INTRODUCTION 

1.0         BACKGROUND 

Epidemiological transition is the complex changing relationship between humans and human 

diseases and occurs as a country undergoes socio-economic advancement from a less-

developed country to become a developed nation (Omran, 2005). During this transition, 

communicable diseases decline and non-communicable / lifestyle related diseases increase in 

prevalence (McKeown, 2009). According to World Health Organization (WHO) factsheet, 36 

million people die from non-communicable diseases (NCDs) annually, with 80% of these 

deaths (29 million) occurring in less-developed (low or middle income) countries (WHO, 

2015b). Of all NCDs related deaths, cardiovascular diseases (CVDs) account for most (or 17.3 

million deaths) annually, followed by cancers (7.6 million), respiratory diseases (4.2 million), 

and diabetes (1.3 million) (Lim et al., 2013; WHO, 2015b).  

 

Stroke is the most common of all cardiovascular diseases (CVDs) in the epidemiologic or 

health transition, and there are indications that South Africa is undergoing the transition (Steyn 

et al., 2006). Recent statistics from the Heart Foundation, South Africa (HFSA) show that 

about 130 heart attacks and 240 stroke episodes occur daily in South Africa, implying that 10 

people will suffer a stroke and 5 people will suffer a heart attack every passing hour (Heart 

Foundation South Africa, 2013). The burden of stroke does not only lie in its high mortality but 

also in the high morbidity which leaves up to 50% of survivors with chronic disability 

(Wilkinson et al., 1997). In developed countries, stroke is a significant economic burden as the 

total cost of stroke in the United States is estimated at about 38.6 billion USD / Year 

(Heidenreich et al., 2011), while costs after hospital discharge were estimated at 2.9 billion 

Euros for the year 2002 in France (Feigin et al., 2007).  
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The direct and indirect costs of death and disability from heart diseases and stroke in South 

Africa are estimated to exceed 8 billion Rand per year (Jozi, 2007). If there were effective 

prevention programmes and medication for diseases of lifestyle, such finances could otherwise 

be used to meet other socio-economic needs of South Africa. Most of the approved medications 

for the treatment of stroke [e.g. alteplase (rt-PA), reteplase, tenecteplase, anistreplase, 

streptokinase and urokinase] are known to restore blood flow (Duggal and Harger, 2011), but 

some have been found to be neurotoxic, to disrupt neurovascular matrix and increase the risk of 

intracerebral hemorrhage (ICH) (Wang et al., 2003). Hence, no clinically effective 

neuroprotective drug has yet been licensed for stroke (Macrae et al., 2011). The development 

of therapies that can limit stroke-induced brain damage and disability has been identified as a 

worthy research interest in the last 15 years (Macrae et al., 2011).  

 

Acute ischemic stroke, the most common form of stroke, is caused by blood clotting in cerebral 

arteries leading to brain oxygen deprivation and cerebral infarction. The events involved in 

stroke include neuron death, oedema, blood-brain barrier (BBB) disruption, and hemorrhage 

(Sumii and Lo, 2002). The pathophysiology of cerebral ischemia is complicated by the fact that 

the extent of cellular damage is modulated by numerous secondary consequences of the 

primary ischemic impact (Hagl et al., 2003). Recirculation disturbances, stress responses, 

peroxidative changes, or the activation of genomic responses are only a few examples of the 

many haemodynamic and molecular responses that determine the final outcome of stroke 

(Suzuki et al., 1980; Kogure and Kogure, 1997). This means that the presence of systems to 

prevent or reduce the severity of the primary ischemic attack may reduce the extent of the 

secondary damage as well as the overall extent of cellular injury. For example, mitochondrial 

function disrupted by reactive oxygen species (ROS) during cerebral ischemia will set up a 

feedback cycle in which ROS-mediated oxidative damage to mitochondria will favors more 

ROS generation (Qi et al., 2010). This subsequently triggers the release (secondary 
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consequences) of critical apoptotic activators and effectors of cell death (such as: cytochrome c 

and apoptosis-inducing factor) through exacerbation of intracellular calcium levels. This results 

in mitochondrial swelling, opening of the mitochondrial permeability transition pores and 

depolarization of mitochondrial membrane (Christophe and Nicolas, 2006). This means that the 

presence of a ROS scavenging system may help prevent or reduce insults to the mitochondria, 

thereby preventing or reducing the detrimental chain of events that may have accompanied the 

above-mentioned vicious cycle (Qi et al., 2010). 

 

Neuroprotection as explored by scientists aims to prevent neuronal injury or slow disease 

progression by halting or at least slowing the loss of neurons (Seidl and Potashkin, 2011). Of 

all symptoms or injuries associated with Central Nervous System (CNS) disorders, 

neuroprotective treatments often target oxidative stress and excitotoxicity, both of which are 

principal mechanisms of cell loss in a variety of CNS diseases (Boll et al., 2011). The use of 

antioxidants to tackle oxidative stress is plausible because free radicals are known to distort 

such biochemical components of cells and tissues as DNA, RNA, carbohydrate moieties, 

unsaturated lipids, proteins and micronutrients (Lobo et al., 2010). The elevated ROS levels, 

subsequent mutation of antioxidant enzymes and depletion of existing antioxidants (due to high 

levels of ROS) results in failure in protecting the neurons from oxidative damage (Qi et al., 

2010). In recent times, there has been increasing scientific interest in the potential health 

benefits of long term consumption of antioxidant-rich food substances and beverages and their 

possible use as neuroprotective agents when administered prior to onset of an ischemic brain 

injury. 

 

Rooibos tea is a very popular beverage in South Africa and has increasingly gained more 

popularity among international consumers due to its well acclaimed health benefits 

(Mahomoodally, 2013). Recent animal studies have shown that rooibos tea has potent 
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antioxidant, antimutagenic, immune-modulating and chemopreventive effects (Van der Merwe 

et al., 2006; Ichiyama et al., 2007 and Marnewick et al., 2011). Inanami et al. (1995) reported 

the effects of rooibos tea on older and new born rats following 2-year administration. This 

study found that rooibos tea protected against age-related changes in the brains of rats 

compared to the controls. The scientists concluded that this protection was due to the ability of 

rooibos tea to prevent the age-related accumulation of lipid peroxides in the brain (Inanami et 

al., 1995). Another study showed that high intake of rooibos tea resulted in significant 

reductions in lipid peroxidation, Low Density Lipoprotein (LDL) cholesterol, triglycerides, and 

an increase in High Density Lipoprotein (HDL) cholesterol levels compared with the control 

group. The researchers concluded that rooibos tea lowered the risk factors for cardiovascular 

and degenerative diseases (Marnewick et al., 2011). Marnewick et al. (2011) also showed that 

Rooibos tea contains the flavonoid, "aspalathin" which could account for its strong 

neuroprotective effects and potency in lowering the risk factors for cardiovascular and 

degenerative diseases. 

 

Taken together, these data suggest that rooibos tea possesses antioxidant properties that could 

reduce neurodegeneration in the brain. Its protective effects against ischemic brain injury have 

not been previously studied. Previous studies have shown that 40% of patients with traumatic 

brain injury and stroke experience deteriorating conditions after hospitalization (Narayan, 

2002). Thus a study of the protective effects of antioxidants against neuronal damage following 

an ischemic injury is plausible. Lestage et al. (2002) reported that a "good" in vivo animal 

model of stroke must reproduce the etiology, anatomical, functional and metabolic 

consequences of human pathology involving mechanisms in both ischemic and reperfusion 

pathophysiology. This informed our use of a rat model of ischemic-reperfusion injury in this 

study. 
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1.1 THE SPECIFIC OBJECTIVES OF THE RESEARCH 

The general objective of our research was to determine the neuroprotective properties of 

rooibos tea to complement existing modalities used for the management of ischemic brain 

injury. The specific objectives included: 

i. Investigation of the anti-inflammatory potential of fermented rooibos herbal tea 

against brain oedema and relative brain weight in a rat model of cerebral ischemia 

after 20 minutes of bilateral common carotid artery occlusion. 

ii. Investigation of the possible protection of fermented rooibos herbal tea on the 

integrity of the blood-brain-barrier in a rat model of cerebral ischemia after 20 

minutes of bilateral common carotid artery occlusion (BCCAO). 

iii. Investigation of the neuroprotective potential of fermented rooibos herbal tea against 

oxidative stress-induced apoptosis in rat brains following ischemic brain injury. 

iv. Investigation of the anti-oxidant and neuroprotective potential of fermented rooibos 

herbal tea in modulating lipid peroxidation in rat brains after ischemic brain injury. 

v. Investigation of the neuroprotective potential of fermented rooibos herbal tea in 

enhancing the antioxidant capacity of the brain to withstand oxidative stress induced 

by 20 minutes bilateral common carotid artery occlusion. 

vi. Evaluation of neurobehavioral outcomes in treated rats at day 1, 4, 7 after 20 minutes 

of bilateral common carotid artery occlusion reperfusion injury. 

 

1.2 HYPOTHESIS OF STUDY 

We hypothesize that regular consumption of fermented rooibos herbal tea could protect the 

brain against the severity of an ischemic brain injury. This hypothesis is based on the 

knowledge that the antioxidants in rooibos tea (especially its flavonoid contents) have been 

previously reported to confer some beneficial properties. 
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1.3 SIGNIFICANCE OF STUDY 

About 6.3 million people live with high blood pressure in South Africa and are more prone to 

such life-threatening diseases as stroke (Heart Foundation South Africa, 2013). According to 

the South African Heart and Stroke Foundation, stroke is the third leading cause of death in 

South Africa and is a leading cause of adult disability. It affects about 240 South Africans per 

day, a quarter of which do not survive (Steyn, 2007). Most stroke survivors end up with long-

term residual disabilities (Heart Foundation South Africa, 2013). The pathogenesis of stroke 

shows that its debilitating effects are often associated with ischemia and multifactorial cell 

death. Profound ischemia results in necrosis, and less severe ischemia triggers a series of 

perturbations that may lead to apoptosis in the stroke penumbra, including cortical spreading 

depressions, excitotoxicity and oxidative stress (Maas and Furie, 2009). 

 

It is therefore plausible that measures aimed at preventing the occurrence of ischemic stroke 

and its attendant neurological manifestations be encouraged especially by susceptible 

individuals. Amelioration of oxidative stress and free radical production could provide a 

potential source of protection. In this study, the effects of prolonged consumption of 

fermented rooibos tea in modulating neurological outcome after an ischemic brain injury were 

investigated. 

Rooibos tea has been adjudged the preferred tea in South Africa (Fukasawa et al., 2009) and is 

well known for preventing lipid oxidation while its antioxidant and free-radical scavenging 

properties are also well documented (Marnewick et al., 2011). In spite of the growing 

population of rooibos tea consumers and a plethora of information about its health benefits, 

very little scientific reports are available in literature regarding its effects on the nervous 

system.  

This study aims to evaluate the potential neuroprotective effects of fermented rooibos herbal 

tea especially when consumed for long periods prior to an acute ischemic event.   
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 INTRODUCTION 

Globally, cerebrovascular diseases remain a leading cause of death (Truelsen et al., 2000). It 

has been estimated that 5.5 million people (equivalent to 9.6 % of all global deaths in 2001) 

died from cerebrovascular diseases (Truelsen et al., 2000). With about two-third of stroke-

related deaths occurring in people living in low- and middle-income countries (WHO, 2002), 

prevention is possible by addressing risk factors as well as managing and counselling 

individuals at risk (Di Legge et al., 2012). 

 

2.1 CEREBROVASCULAR DISEASE 

Cerebrovascular disease (CVD) is defined as any abnormality of the brain characterized with 

damage to the vascular integrity of the brain (McCance and Huether, 2014). It is described as 

the most common of all neurological disorders (Mangiapane and Salter, 1999), and ranks as the 

only neurological disorder among the top ten causes of death worldwide (WHO, 2012). 

Cerebrovascular accident (CVA) often called stroke is documented as the most common of all 

cerebrovascular disease reported in hospitals around the world (Craft et al., 2013). 

 

2.1.1 Types of Cerebrovascular Diseases 

1. Cerebral aneurysms: are abnormal areas of cerebral blood vessels that bulges out like a 

balloon and become filled with blood. Aneurysms are mostly congenital but could also result 

from weakening of blood vessels by diseases or injury. A ruptured cerebral aneurysm often 

results in stroke, permanent neuronal damage or death (Novitzke, 2008). 

 

2. Cerebral vascular malformations (CVMs): includes any congenital vascular anomalies of 

the brain that are present at birth, and are clinically evident either during childhood or 
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adulthood (Yakes, 2004). They may include any vascular element (e.g arteries, veins, 

capillaries and lymphatics) (Yakes, 2004). The most common of CVMs are arteriovenous 

malformations (AVMs) and cerebral cavernous malformations (CCMs) (Leblanc et al., 

2009). AVMs occur when there is an abnormal connection between the arteries and veins in 

the brain in which arteries connect directly to veins without having a true capillary bed 

between them (Kim et al., 2011). CCMs do occur when there are enlarged capillaries with 

immature vessel wall components in the cerebral vasculature. They both often result in brain 

hemorrhage in the event of a rupture (Leblanc et al., 2009; Kim et al., 2011). 

 

3. Cerebrovascular accident: often referred to as a brain attack or stroke, occurs when blood 

supply to any part of the brain is interrupted or blocked. It ranks as the second largest cause 

of death behind ischemic heart disease with 6.7 million deaths worldwide in the year 2012 

(WHOa, 2015). An estimated 28% of people younger than 65 years of age experience an 

event of stroke during their lifetime (Perkin, 2002) but it is most common in individuals 

above the age of 60 years (Moghtaderi and Alavi-Naini, 2012). 

 

2.1.2 Major Risk Factors Associated With Stroke 

The term risk factor is defined as a trait associated with a pathological medical condition. 

Such factors when observed before the onset of a stroke can be related to the occurrence of 

stroke later in life (Lindgren, 2014). Most of the risk factors associated with stroke are shown 

in table 2.1.  Arterial hypertension and both elevated systolic and diastolic blood pressures 

are independent risk factors for stroke (Perkin, 2002). Cigarette smoking has also been 

reported to increase the risk of stroke by 25% to 50% (Buttaro et al., 2013). Another risk 

factor associated with stroke is diabetes which increases the risk of ischemic stroke by 2.5 to 

3.5 times (Schwartzman, 2006). Non-thematic atrial fibrillation have also been associated 

with an increase in the incidence of ischemic stroke (Norris and Vladimir, 2001). 
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Table 2.1: Risk factors for stroke 

Hypertension a Cigarette Smoking b Diabetes c,d Atrial fibrillation e 

Increased arterial pressure can 

damage inside of cerebral arterial 

wall. 

Increases oxidative stress from 

cigarette smoke and is a potential 

stimulus that initiates cardiovascular 

dysfunction. 

Chronic hyperglycemia can lead to 

damage to the vascular endothelium. 

Atrial fibrillation can cause blood 

flow to pool and clot in the atrial 

chambers. 

Damaged or altered blood cell-

endothelium interaction can 

subsequently lead to local thrombi 

formation. 

Cardiovascular dysfunction can 

progress to the development of 

atherothrombotic disease. 

Widening of the basement 

membrane does compromise the 

integrity of adjacent vascular 

smooth muscle cells, pericytes and 

astrocytic end feet. 

Blood clot in the heart can travel 

long distances from the heart into 

the cerebral vasculature. 

Degenerative changes in smooth 

muscle cells can accelerate 

atherosclerotic process which 

predisposes vessel to stroke 

Atherosclerotic plaque may narrow 

cerebral arteries and limit the flow 

of oxygen-rich blood to the brain 

resulting in stroke. 

Diffuse swelling of the astrocytic 

end feet compromises the blood 

brain barrier (BBB) causing 

cytotoxic oedema and stroke. 

Occlusion of a cerebral vessel by 

such blood clot is the cause of 

cardio-embolic stroke. 

 a = (Johansson, 1999), b = (Mazzone et al, 2010), c = (Ergul et al, 2012), d = (Kagansky et al, 2001), e = (Arboix and Alió, 2010) 
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2.1.3 Classification of Stroke 

The brain abnormalities induced by cerebrovascular accidents are classified according to their 

pathophysiology and include:  

1. Ischemic stroke (thrombotic or embolic) 

2. Hemorrhagic stroke 

 

2.1.3.1 Ischemic Stroke 

2.1.3.1.1     Thrombotic stroke 

Cerebral thrombosis is the most common type of ischemic stroke documented in clinical 

studies (Nagaraj et al., 2011). It arises from arterial occlusion caused by thrombi (blood clots) 

formed along the walls of major arteries supplying the brain (figure 2.1) (Appel and Llinas, 

2007). Cerebral thromboses are mostly associated with areas where inflammatory and 

atherosclerotic processes have caused narrowing of blood vessels. Atherosclerotic plaques are 

known to cause the smooth area of blood vessel walls to degenerate, forming an ulcerated area 

of the vessel wall which attracts platelets and fibrins to adhere to the damaged wall (Porth, 

2011). This subsequently results in clot formation which gradually occludes the artery and 

prevents blood flow to the remaining part of the brain. More-often, portions of a thrombotic 

clot may break off and travel up the cerebral vessel to distant sites where occlusion could 

occur, producing a thromboembolic stroke (McCance and Huether, 2014). This results in death 

or necrosis of the parts of the brain deprived of blood and oxygen. Thrombotic strokes may be 

further subdivided on the basis of their clinical manifestations into: Transient ischemic attacks 

(TIAs), Strokes-in-evolution and Completed strokes. 

 

In a true TIA, the neurologic deficits are of short duration and are completely clear within 24 

hours, leaving no residual dysfunction (Good, 1990) as the temporary disturbance in cerebral 

blood flow reverses before infarction occurs (Porth, 2011). The typical development process of 
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thrombotic stroke causes the clinical syndrome known as stroke-in-evolution (progressive 

stroke), while a completed stroke is a CVA that has reached its maximum destructiveness in 

producing neurologic deficits (McCance and Huether, 2014). 

 

2.1.3.1.2     Embolic stroke 

An embolic stroke is caused by a moving clot which travels from a distant source (outside the 

cerebrovascular system) and becomes trapped in small cerebral vessels, mostly at bifurcations 

(Rink and Khanna, 2011). The most frequent site of embolic strokes is the middle cerebral 

artery distribution (Karen and Aidin, 2012). While most cerebral emboli originate in the 

thrombus in the left heart, they may also originate from an atherosclerotic plaque in the carotid 

arteries (Pooler, 2009). Long periods of bone / cardiac surgeries are known to also produce 

emboli in the form of blood, fat, or air (Shahpouri et al., 2012). Rheumatic heart diseases, atrial 

fibrillation, recent myocardial infarction are various conditions that predispose to the formation 

of emboli. In persons who experience an embolic stoke, a second stoke usually follows at some 

point because the source of emboli continues to exist (Pooler, 2009). 

 

2.1.3.2 Hemorrhagic Stroke 

Hemorrhagic stroke or intracranial hemorrhage is defined as an acute neurological injury which 

occurs when weakened cerebral arteries bleed into the head (figure 2.1) (Smith and Eskey, 

2011). It is the third most common cause of CVA (McCance and Huether, 2014). Hemorrhagic 

stroke is of two distinct types: intracerebral hemorrhage (ICH) which involves vessel bleeding 

directly into the brain parenchyma (ICH), and subarachnoid hemorrhage (SAH) which occurs 

when there is bleeding into the cerebrospinal fluid (CSF), the sulci, fissures, and cisterns 

(Smith and Eskey, 2011). Hypertension (56% to 81%), ruptured aneurysms, vascular 

malformations, head trauma and illicit drug use remain the most common cause of hemorrhagic 
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stroke (McCance and Huether, 2014). Other risk factors for hemorrhagic stroke include 

previous cerebral infarct, coronary heart disease and diabetes mellitus (Pooler, 2009).  

 

About a quarter of most strokes which occur during sleep (Soler and Ruiz, 2010); however 

cerebral hemorrhage is known to occur suddenly usually when the person is active (Porth, 

2011). Most people may complain of a severe headache and stiff neck (nuchal rigidity), as a 

result of blood entering the cerebrospinal fluid (CSF) which may subsequently be accompanied 

by focal neurologic signs or other symptoms such as nausea/vomiting, loss of consciousness, or 

seizure depending on the vessel involved (Smith and Eskey, 2011). There is usually 

contralateral hemiplegia, with initial flaccidity progressing to spasticity. The hemorrhage and 

resultant oedema exert great pressure on the brain substance, and the clinical course progresses 

rapidly to coma and frequently to death (Pooler, 2009). 

 

 

Figure 2.1: Representation of different stroke types. Ischemic stroke as depicted on the left 

side of the picture shows blockage of blood flow to the brain by a blot clot and plaque. The 

leakage of blood into the brain is known as hemorrhagic stroke and is shown on the right 

side of the picture (Adapted from Appel and Llinas, 2007).  
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2.1.4 Pathophysiology of Ischemic Brain Injury 

Ischemia is defined as a decrease in blood flow to organs or tissues sufficient enough to alter 

cellular metabolic demands, and if not corrected, will cause death of the cells and tissues 

(Woodruff et al., 2011). In the brain, the threshold of ischemic injury varies in the different 

regions with the white matter being more resilient than the gray matter (Troncoso et al, 2010). 

A phenomenon due to the fact that areas of the brain with high energy consumption becomes 

rapidly depleted of energy during an ischemic episode and are therefore most vulnerable 

(Huang and Castillo, 2008). The impact of an ischemic injury on the structure and function of 

the brain also depends on the severity and duration of the blood flow reduction. In ischemia 

produced by occlusion of the middle cerebral artery, the impact is more rapid, severe and 

irreversible in the “ischemic core” which is the area where blood flow is lowest and less than 

20% of its normal rate (Iadecola, 1999). However, the ischemic damage is less severe in the 

ischemic penumbra (the region around the ischemic core) because of collateral blood supply 

from adjacent non-ischemic territories which keep the region functionally silent, but 

metabolically active and potentially salvageable (Iadecola and Anrather, 2011). 

 

The pathophysiology of cerebral ischemia involves a series of complex events best studied in 

animal models of stroke (Smith, 2004). These pathologic events include morphological 

alterations in brain cells, energy failure, loss of cell ion homeostasis, increased intracellular 

calcium levels, excitotoxicity, free radical-mediated toxicity, disruption of the blood-brain 

barrier (BBB), activation of glial cells, and infiltration of leukocytes (Woodruff et al., 2011). 

 

2.1.4.1 Morphological Alterations in the Brain Cells after an Ischemic Brain Injury 

The cellular changes occurring after an ischemic brain injury are well defined in literature. 

These reports (Iadecola, 1999; Kalogeris et al., 2012) describe the response of tissue cells to 

ischemia in experimental models of cerebral ischemia in which blood flow to the brain was 
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compromised to mimic clinical conditions in humans. The resultant pathologic cellular events 

are briefly summarized and tabulated below (Table 2.2). 

 

2.1.4.1.1     Neurons 

Deficiency in the amount of oxygen and glucose reaching neurons during cerebral ischemia 

presents pathomorphological changes in the nuclei and cytoplasm. During the first few hours of 

ischemia, disseminated eosinophilic ischemic neurons with granular chromatin condensation, 

dilatation of the endoplasmic reticulum and swelling of the mitochondrial inner matrix occur 

(Ito et al., 2006). Because neurons do not store alternative source of energy (Bramlett and 

Dietrich, 2004), they remain more sensitive to ischemia than any other cell in the brain 

(Damjanov, 2012). 

 

2.1.4.1.2     Glial cells 

Glial reactions to ischemic injury are reported to be quantitative or qualitative and may involve 

all four cell types (astrocytes, microglial, oligodendrocytes and ependymal cells) (Damjanov, 

2012). Astrocytes are star shaped glial cells derived from neural stem cells. These cells are the 

only glycogen-storing cells in the brain, known to be less susceptible to ischemic injury. 

Astrocytic glycogen breaks down during ischemic conditions to lactate as a temporary 

substitute for glucose (Nikonenko et al., 2009). During ischemia, astrocytes are reported to 

swell, elongate and undergo cytoplasmic fragmentation processes, with an increase in the 

expression of glial fibrillary acidic protein (GFAP) in the ischemic penumbra (Iadecola, 1999 

and Nikonenko et al., 2009). During an ischemic injury, microglia retract their processes and 

assume an amoeboid morphology, typical feature found on activated microglia (Taylor and 

Sansing, 2013). Oligodendrocytes which make up the myelin that wrap around axons in both 

the grey and white matter are specifically sensitive to hypoxia and ischemia in premature 
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infants. Ependymal cells which line the walls of the ventricles and form the specialized choroid 

epithelium which secrets cerebrospinal fluid (CSF) may also be injured during ischemia. 

 

2.1.4.1.3     Neutrophils and Macrophages 

The role of inflammation in the pathogenesis of ischemic brain injury is also well documented. 

There are several cells within the brain tissue that are able to secrete pro-inflammatory 

mediators after an ischemic insult. These include endothelial cells, astrocytes, microglia and 

neurons. During cerebral ischemia, the brain responds by recruiting various types of 

inflammatory cells (neutrophils, different T cells subtypes, monocyte/macrophages, etc.) into 

the ischemic brain tissue. The influx of neutrophils peaks at 48-96 hours following permanent 

occlusion of the middle cerebral artery after which their number decrease rapidly with time. 

Blood-borne macrophages migrate into the inflammatory site to become the most predominant 

cell 5-7 days after ischemia (Jin et al., 2010a).  
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Table 2.2: Cellular changes occurring after focal cerebral ischemia in the rat brain (Iadecola, 1999) 

Time after 

Ischemia 

Neurons Astrocytes Microglia Neutrophils Macrophages 

30 minutes Shrinkage 

Swelling; 

Degeneration 

of GFAP+ 

cells 

- - - 

1 hour 

Swelling; 

Vacuolation; 

Chromatin 

clumping 

- - - - 

6 hours - 

Increase in 

GFAP+ cells 

at the infarct 

periphery 

- 

Adhesion to 

endothelia 

cells; Brain 

infiltration 

begins 

- 

12 hours 

Axonal 

swelling; 

Cytoplasmic 

and nuclear 

disintegration; 

Mitochondrial 

densities 

- 

Activation in 

the ischemic 

area 
- - 

1 day - Ghost cells - - 
Brain 

infiltration 

begins 

2 – 3 days Ghost neurons - 

Brain 

infiltration 

maximal 
- - 

4 – 5 days - - 
Activation in 

distant 

regions 
- - 

7 days - 

Focused 

gliosis; Glial 

scar 
- - - 
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2.1.4.2 Molecular Alterations in Brain Cells after an Ischemic Injury 

2.1.4.2.1     Glutamate excitotoxicity 

Glutamate is one of the most prominent and an essential neurotransmitter that regulates the 

functions of the brain (Kim et al, 2011). It is required for the rapid synaptic transduction in the 

nervous system and plays important roles in normal brain function, neuronal growth and 

synaptic plasticity in health and disease (Lai et al., 2014). While glutamate is essential, it is 

also very toxic at high extracellular concentration (Gillessen et al., 2000), and has been 

reported to be involved in the early pathologic process of ischemia-induced neuronal damage 

during the early hours of ischemic injury (Woodruff et al., 2011). The reduction or cessation of 

blood flow to neurons during an ischemic brain injury results in the failure of energy-dependent 

cellular pumps which in turn results from failure of ATP generation by hypoxic neurons. The 

failure of such energy-dependent processes (e.g. sodium-potassium ATPase) subsequently 

result in an ionic imbalance, cellular swelling through osmosis, cellular depolarization and 

inhibition of the re-uptake of excitatory neurotransmitters such as glutamate from the 

extracellular space. Under this circumstance, excess glutamate binds to its receptors hereby 

promoting an excessive influx of calcium ions (CA2+) into the cell, triggering a wide array of 

downstream phospholipases and lipases which in-turn degrade membranes and proteins 

essential for cellular integrity, thus ending in cell death (Cross et al., 2010). 

 

2.1.4.2.2     Oxidative stress 

Oxidative stress is defined as the imbalance between pro-oxidants and antioxidants in systemic 

homeostasis resulting in excessive production of reactive oxygen species (ROS) which leads to 

tissue damage (Allen and Bayraktutan, 2009). All cells in the body such as neurons are 

normally exposed to a baseline level of oxidative stress from both exogenous and endogenous 

sources (Woodruff et al., 2011) with a balance maintained by the body’s antioxidant defense 

systems which involve enzymatic and non-enzymatic processes (Łagowska-Lenard et al., 
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2008). ROS are highly reactive molecules which are naturally produced as a by-product of 

normal oxygen metabolism (Uttara et al., 2009). In aerobic organisms, superoxide anion radical 

(O2-) is the primary ROS which also generates hydrogen peroxide (H2O2) by dismutation. Other 

ROS forms are generated by the reaction of oxygen radical with other tissue components; O2- 

with nitric oxide (NO) produces peroxynitrous acid (ONOOH) that spontaneously decomposes 

to produce OH- (Allen and Bayraktutan, 2009). Despite their beneficial role in cell signaling 

during normal biologic process, ROS at toxic levels play a key role in brain tissue damage after 

cerebral ischemia where they cause injury to cell structures including lipids, membranes, 

proteins, and DNA (Olmez and Ozyurt, 2012). Shortly after the onset of brain ischemia, several 

detrimental processes accompany the loss of oxygen and glucose supply to neurons. These 

include the accumulation of lactic acid in neurons following energy (ATP) depletion with a 

resultant acidic cellular environment which promotes an increase in H+ concentration which in-

turn enhance the overproduction of oxidants, inactivation of detoxification systems, and 

consumption of endogenous antioxidants (Allen and Bayraktutan, 2009). These changes 

consequently cause the disruption of the brain’s antioxidative defense ability (Chen et al., 

2011). The overproduction of ROS in the absence of an endogenous antioxidant defense system 

activates several pathways involved in cell death; this includes apoptosis and inflammation 

(Woodruff et al., 2011). 

 

2.1.4.2.3     Inflammation 

Inflammation, either acute or chronic is a defense reaction to tissue insult or injury (Kriz, 

2006). Acute inflammation comprises of an early response against an injury which helps in the 

repair of the damaged site, while chronic inflammation results from persistent and unresolved 

harmful stimuli (Streit et al., 2004). Experimental and clinical evidence continues to support 

the involvement of inflammatory processes in the post-ischemic events that accompany a 

primary ischemic insult (Amantea et al., 2009). In animal models of focal cerebral ischemia, 
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time-dependent recruitment and activation of neutrophils, T cells and monocytes / macrophages 

have confirmed the involvement of inflammatory process in the patho-mechanism of ischemic 

brain injury, with inhibition of such inflammatory response seen to reduce brain damage (Jin et 

al., 2010a). In the early hours of ischemic brain injury, increased levels of pro-inflammatory 

mediators (cytokines and chemokines) released or present at the site of the blood-brain-barrier 

(BBB) increases the expression of adhesion molecules on cerebral endothelial cells and 

leukocytes, and as a result facilitates the migration of peripheral inflammatory cells (circulating 

neutrophils and monocytes) from blood into the brain tissue (Stanimirovic and Satoh, 2000). 

The brain's inflammatory response is further amplified by the release of more cytokines and 

chemokines during the sub-acute phase (hours to days) of ischemic injury by infiltrating 

leukocytes which leads to disruption of the BBB, brain oedema, neuronal death, and 

hemorrhagic transformation (Jin et al., 2010a). 

 

2.1.4.2.4     Necrosis and Apoptosis 

Necrosis and apoptosis are two most commonly described forms of neuronal cell death 

following cerebral ischemia in scientific literature (Pang and Geddes, 1997). As reported by 

Onténiente et al., (2003), characterization and differentiation of these cell death pathways 

remains an area of intense investigation in the search for a neuroprotective drug against 

ischemic cell death. While, necrosis is characterized by rapid cell swelling and cell lysis which 

mostly results in the rupture of cell content, and predominantly occurs in area of severe 

ischemic insult (mostly especially in the infarct core area after focal cerebral ischemia) (Liu et 

al., 2004), apoptosis may occur in the ischemic penumbra (areas of mild ischemic injury with 

longer survival periods). The key features of apoptosis are cell body shrinkage, cytoplasmic 

and nuclear fragmentation and internucleosomal chromatin cleavage (Pang and Geddes, 1997). 

In contrast to necrosis, apoptosis appears to be a coordinated process of energy-dependent 

programmed cell death (Elmore, 2007).  
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There are two inter-connected pathways that lead to apoptosis: the intrinsic pathway which is 

initiated by internal cellular events and is dependent on the release of apoptogenic protein -

cytochrome C from disrupted mitochondria leading to downstream activation of caspase 

cascade, and an extrinsic pathway which is activated by specific ligands binding to death 

receptors on the surface of the cell (Elmore, 2007; Broughton et al., 2009). Specifically, the 

most important regulators of the intrinsic pathway of apoptosis are the Bcl-2 family which 

protect neurons and other cell types against a wide variety of apoptotic insults and are labelled 

antiapoptotic proteins (Soane et al., 2011). After cerebral ischemia, a downregulation of Bcl-2 

levels and an upregulation of proapoptotic protein Bax levels result in activation of caspases 

which are principal triggers of apoptosis (Figure 2.2) (Phan et al., 2002; Broughton et al., 

2009).  

 

Figure 2.2: Apoptotic signaling cascade after cerebral ischemia (Adapted from Broughton et 

al., 2009). 

 

2.1.4.3 Ischemic reperfusion injury 

The prompt restoration of blood flow to an ischemic tissue is indisputably considered the most 

effective therapeutic response to reducing the severity or preventing neurologic damage in 

patients suffering from an ischemic brain injury (Sanderson et al., 2013). However, restoration 
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of blood flow may aggravate the initial injury caused by ischemia by triggering a multifactorial 

process of (molecular and biochemical) events that antagonize the beneficial role of reperfusion 

(Aronowski et al., 1997). Yang and Betz (1994) showed that 3 hours of MCA occlusion 

followed by 3 hours of reperfusion exacerbated brain infarct and damage to the blood-brain-

barrier when compared to 6 hours of permanent MCA occlusion. 

  

The involvement of leukocytes in ischemia-reperfusion damage is common and extensively 

discussed in literature (Panetta and Clemens, 1993). Though important in tissue protection and 

repair, activated leukocytes may release substances that are harmful to vessel wall upon 

interacting with the vascular endothelium, and examples of such substances are the products of 

phospholipase which can damage the endothelium to allow transmigration into the ischemic 

brain tissue (Vasthare et al., 1990). Upon transmigrating into the brain parenchyma, activated 

leucocytes release toxic ROS, proteases and elastases, which result in oedema, thrombosis and 

parenchymal cell death (Eltzschig and Collard, 2004). 

 

2.1.5 Diagnosis of Acute Ischemic Brain Injury 

A complete history and thorough physical and neurologic examination is important to 

accurately diagnose and characterize stroke into either ischemic or hemorrhagic (Pooler, 2009). 

In recent years, computerized tomography (CT) scans and magnetic resonance imaging (MRI) 

have become the most commonly used techniques in the assessment of acute cerebral vascular 

disease (Birenbaum et al., 2011). While CT does not present much information in the first 24 

hours of an ischemic insult, positron emission tomography (PET) is considered the gold 

standard in defining the location and size of neuronal loss and assessment of potentially 

salvable tissue in the penumbra (Sá de Camargo and Koroshetz, 2005). The rapid onset of 

irreversible brain injury necessitates the need for an urgent diagnosis and selection of an 

efficient treatment for acute ischemic brain injury (Kasner and Gorelick, 2004).  
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2.1.6 Treatment of Acute Ischemic Brain Injury 

Although preclinical studies have greatly enhanced our knowledge of the pathomechanism 

underlying an acute ischemic brain injury, translating such knowledge from bench to bedside 

for clinical use remains a challenge in healthcare (Balkaya et al., 2013). The main therapeutic 

goal in the acute phase of an ischemic brain injury is the restoration of blood flow either 

naturally or with the aid of a thrombolytic agent that dissolves blood clots (Woodruff et al., 

2011). Urokinase / streptokinase and recombinant tissue plasminogen activator (rt-PA, 

alteplase) are examples of thrombolytic drugs used clinically for the removal of blood clot in 

acute ischemic stroke (Bivard et al., 2013). The use of intravenous rt-PA has also been found 

beneficial in improving functional outcomes in patients if administered during the first 3 hours 

of acute ischemic stroke (Wardlaw et al., 2012). Clinical studies of desmoteplase and 

tenecteplase are also ongoing to alleviate the short time therapeutic window, risk of 

hemorrhage, and limited efficacy of alteplase on large clot removal (Bivard et al., 2013). 

However, because reperfusion of an ischemic tissue may magnify tissue injury and worsen the 

challenge of treatment (Nour et al., 2012), thrombolytic therapy for acute ischemic stroke is 

seldom used and has only been found useful in 2% of eligible persons (Miller et al., 2011). 

Other vascular therapies include the prevention of microcirculatory disturbance, protection of 

the BBB and augmentation of collateral blood flow and cellular therapy by protection of 

neurons (Tanaka, 2013). 

 

2.1.7 Animal Models of Ischemic Brain Injury 

Animal models of ischemic brain injury have been developed to mimic or recreate the 

pathophysiological mechanisms of ischemic brain injury seen in humans (Belayev, 2012). An 

understanding of these mechanisms is believed to be critical to enhancing our knowledge of the 

pathological changes that occur during and after the onset of an ischemic brain injury for new 
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therapeutic strategies for stroke to be developed (Sicard and Fisher, 2009). The two main 

animal models of ischemic brain injury often used in preclinical studies include the focal 

ischemic and global ischemic stroke models (Belayev, 2012), both of which involve a reduction 

of oxygen and glucose supplies to brain tissue. Although both models are similar in many 

respects, their differences are discussed in the following sections. 

 

2.1.7.1 Focal Ischemic Stroke Model 

Focal ischemic stroke models usually involve the occlusion or blockage of the middle cerebral 

artery (MCA) (Yang et al., 2006) which is the most commonly affected artery in human 

ischemic stroke patients (Uluç et al., 2011). The technique employed (see figure 2.3) include 

the occlusion of the middle cerebral artery by either of the following methods; (1) suture 

ligation, (2) electrical cauterization, (3) intraluminal filament occlusion (4) blood clot injection 

and (5) Photothrombotic occlusion (Wang-Fischer and Koetzner, 2008). Depending on the 

research interest, each method provides a valuable tool for studying the neuroprotective 

potentials of agents against cellular, neurological and behavioral outcomes over a period of 

time (Sicard and Fisher, 2009). The major outcome is however the final infarct size and 

sensorimotor deficits with the latter more relevant in evaluating neuroprotective agents for 

clinical trials (Macrae, 2011). 
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Figure 2.3: Diagrammatic illustrations of middle cerebral artery (MCA) occlusion models in 

rats and mice. Pink shading on MCA territory in the diagram represents part of the brain 

tissue supplied by the MCA (A). (B) Shows the intraluminal method of inserting an occluding 

filament or embolus through the external carotid artery (ECA) into the origin of the MCA. 

(C-G) shows animal models of ischemic stroke which uses craniotomy to directly access the 

MCA or its branches for electrocoagulation, (D) intraluminal injection of thrombin, (E and 

F) microinjection or topical application of endothelin-1  and (G) Clip occlusion of MCA 

(Adapted from Macrae, (2011)). (ACA: anterior cerebral artery, PCA: posterior cerebral 

artery, ICA: Internal cerebral artery, BA: basilar artery). 

 

2.1.7.2 Global ischemic stroke model 

Global ischemic models unlike focal ischemic models involve the occlusion of two or more 

blood vessels to reduce blood flow to the entire brain mimicking cerebral ischemia resulting 

from cardiac arrest and severe hypotension (Wang-Fischer and Koetzner, 2008). It is reported 

to be a very suitable model for histopathological, molecular, biochemical and physiological 

evaluation of neuroprotective agents (Raval et al., 2009) and mainly involves 2-Vessel 

occlusion (VO) of both common carotid arteries (CCA) or 3-Vessel occlusion of the CCAs and 
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the basilar artery (Figure 2.4) (Woodruff et al., 2011). The advantage of the 2-VO model in 

producing forebrain ischemia is that it involves a more simple surgical preparation, produces a 

highly reproducible ischemic damage and reperfusion can easily be accomplished with high 

animal survival rate making it suitable for chronic survival studies (Traystman, 2003). The 2-

VO ischemia model produces selective neuronal vulnerability typical of the CA1 pyramidal 

neurons of the hippocampus and also delayed neuronal death after a transient ischemic episode, 

3-7 days after reperfusion (Belayev, 2012).  

 
Figure 2.4: Diagrammatic illustration of occlusion points in animal models of ischemic brain 

injury. Black arrows and red arrows indicates global (3-VO) and focal (MCA) occlusion 

points respectively (CCA: Common carotid artery) (Adapted from Woodruff et al., 2011). 

 

2.2 ROOIBOS TEA 

Rooibos tea or Aspalathus linearis is produced from the Rooibos plant which grows in the 

Cederberg area of the Western Cape Province of South Africa (figure 2.5 A) (Standley et al., 

2001). It has been consumed as a healthy beverage for more than a century in the Republic of 

South Africa and in Europe (Baba et al., 2009). There are two types of Rooibos tea, the 
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fermented (red) and unfermented (green) varieties, each having a distinct flavor. The red 

variety is sweet and nutty, while the green variety has a malty taste. In South Africa, this tea 

has been said to have many functions such as increasing appetite, improving gastrointestinal 

motility, and controlling mental condition (Morton, 1983; Nakano et al., 1997). In recent times, 

extracts from the fermented herb have become more popular as a beverage for everyday use 

(Crozier et al., 2011). 

 

2.2.1 History of rooibos tea 

As reported by Joubert et al. (2008), the first recorded use of rooibos tea was during the 17th 

century when the leaves and stems of the rooibos plant served as beverage among the 

mountain-dwelling tribe of Khoi in the Clanwilliam region of the Western Cape. The Khoi tribe 

harvested the plant during the summer months of the year from the wild mountains, where they 

grew and prepared infusions of the fermented rooibos by chopping the plant stems together 

with their leaves, crushing them with a hammer, sweetening them in the hollows of stone reefs, 

before sun-drying. This process is believed to be the basis of the industrialized process for 

fermented rooibos that is common today (Joubert et al., 2008). Aspalathus linearis is now 

cultivated commercially and there are new improvements in the methods of harvesting and 

drying the tea (Small, 2011). Asides being consumed as a tea, rooibos is also utilized in the 

production of cosmetic products, alcoholic drinks and ingredients in food preparations by the 

food industry (figure 2.5 B - E) (Mahomoodally, 2013). Its popularity is also reported to have 

increased globally among consumers due to its notable antioxidant activity (Mahomoodally, 

2013). 
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Figure 2.5: Images of rooibos plant cultivation and uses. (A): Rooibos plant growing in the 

Cedarberg region of South Africa (Erickson, 2003). (B-E): The use of rooibos plant does cut across 

the production of; (B) herbal teas, (C) cosmetics, (D) alcoholic drinks and (E & F) food ingredients 

and pet food (Images adapted from Rooibos Ltd, South Africa). 
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2.2.2 Plant Taxonomy 

Aspalathus linearis belongs to the family of the Fabaceae and about 278 species in the genus 

Aspalathus are confined to South Africa (Dahlgren, 1988; McKay and Blumberg, 2007). The 

plant is an erect shrub of about 2 meters tall with red-brown branches and needle-like leaves 

which are about 1.5 to 6 centimeters long (Small, 2011). In some species the leaves bear hard, 

sharp, spines at their tips (Phillips, 1951) and the flowers have been seen to vary in the degree of 

their color complexity ranging from showy yellow, to pink and pale violet (Marloth et al., 

1915). Prior to the 20th Century, Aspalathus linearis was exclusively collected in the wild but an 

increasing demand has encouraged the cultivation of this plant thereby diminishing the 

proportion of wild rooibos available commercially (Malgas et al., 2010). Approximately 60% of 

national harvest is exported annually (Small, 2011). 

 

2.2.2.1 Classification (Plant database, 2008) 

Kingdom  Plantae – Plants 

Subkingdom Tracheobionta – Vascular plants 

Superdivision Spermatophyta – Seed plants 

Division  Magnoliophyta – Flowering plants 

Class  Magnoliopsida – Dicotyledons 

Subclass  Rosidae 

Order  Fabales 

Family  Fabaceae – Pea family 

Genus  Aspalathus L. – aspalathus 

Species  Aspalathus linearis (Burm. f.) R. Dahlgren – rooibos 
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2.2.3 Chemical Composition of Rooibos Tea 

There are two forms of rooibos tea that are produced commercially, the traditional fermented 

and the “green” unfermented rooibos tea (Marnewick, 2009). The unfermented rooibos tea has 

a higher antioxidant capacity when compared to the fermented rooibos, mainly because of the 

minimum oxidative (or fermentative) changes allowed during its production process (Joubert et 

al., 2008). A chemical analysis of a teaspoon per cup of rooibos tea (both fermented and 

unfermented) was reported to contain 300 mg of protein, 7.8% Copper (Cu), 5.5-7.3% Fluorine 

(Fl) and 1.7-2.2% Manganese (Mn) of the recommended percentage of  U.S daily values 

respectively (McKay and Blumberg, 2007). 

 

Rooibos tea does not contain the stimulant caffeiene, but traces of the alkaloid sparteine have 

been reported by Van Wyk and Verdoorn (1989). Among the phenolic compounds found in 

rooibos tea are tannins, which may vary in content ranging from about 3.2% to 14% and to as 

high as 50% depending on the two types of rooibos tea (fermented or unfermented) and the 

methods of extraction (dried water, methanol, etc.) (Joubert et al., 2008). Several other 

chemical compounds are present in both fermented and unfermented rooibos and identifications 

of these compounds are important for proper understanding of the potential 

phytopharmacuetical health benefits of rooibos tea (Beelders et al., 2012). Aspalathin, 

nothofagin, apigenin, luteolin, rutin, isoquercetin, hyperoside, quercetin, luteolin and 

chrysoeriol are some predominant flavonoids identified in both types of rooibos tea (McKay 

and Blumberg, 2007; Villaño et al., 2010). Their antioxidant activity are tabulated in Table 2.3 

below. Natural aspalathin has only been isolated from rooibos and remains the most abundant 

flavonoid and a major antioxidant in the unfermented rooibos tea and also in the water extract 

of fermented rooibos despite its substantial decrease during fermentation (Joubert, 1996; 

Bramati et al., 2002). While fermented extracts of rooibos tea have been reported to 

demonstrate less antioxidant activity based on their reduced flavonoid content during 
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fermentation, several studies have shown that fermented rooibos could scavenge 

physiologically relevant reactive oxygen species, superoxide radical anion (O2•−) (Yoshikawa 

et al., 1990; Standley et al., 2001; Joubert et al., 2004) and hydroxyl radical (•OH) (Yoshikawa 

et al., 1990; Lee and Jang, 2004; Joubert et al, 2005). Fermented rooibos tea also remains the 

most popular tea among an increasing population of consumers.  
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 Free Radical Scanvenging Assay Lipid Peroxidation Assays 

Compounds 
ABTS  

(IC50, μM)a 

ABTS 

(TEAC)b 

DPPH 

(% Inhibition)c 

Superoxide 

(% Inhibition)d 

Microsomes 

(IC50, µM)e 

LDL (Lag 

Time, h)f 

Rancimat 

(Lag Time, h)g 

Aspalathin 3.33 2.62 91.74 (87.62) 81.01 50.2 6.2 2.55 

Notthofagin 4.04 2.06 - - 1388 4.3 - 

Orientin 11.43 1.47 -(88.65) 72.52 137.9 2.7 - 

Isoorientin 11.25 1.54 - (82.18) 63.32 480.7 3.8 - 

Vitexin > 2313 0.86 - (3.99) 10.15 > 2323 - - 

Isovitexin 1224 0.81 - - 1689 - - 

Luteolin 10.82 - 90.85 (88.01) 57.83 185.9 - - 

Chrysoeriol 21.54 - - (2.02) 32.93 217.7 - - 

Rutin 10.47 1.2 91.18 (66.75) 68.16 240.1 - - 

Isoquercitrin 12.89 1.23 91.99 (86.59) 66.67 111.3 9.6 4.17 

Hyperoside 8.55 1.33 - - 283.2 - - 

Quercetin 3.6 2.7 93.27 (91.11) 81.45 17.5  26.93 

Procyanidin B3 - - - (90.16) - 53.3 - 27.23 

Caffeic acid - - 93.65 (-) - - - 18.85 

Ferulic acid - - - - - - 1.26 

p-coumaric acid - - - (58.10) 5.31 - - 1.08 

Vanilic acid - - 20.66* (-) - - - - 

 

 

aSnijman et al., (2009), bKrafczyk et al., (2009), c% inhibition at 0.25 mol compound/mol DPPH Von Gadow et al., (1997) and Joubert et al., (2004), 
d% inhibition of 12.5 µmol/mL, Joubert et al., (2004), giron-induced microsomal lipid peroxidation, Snijman et al., (2009), hcopper-induced low –density 

lipoprotein oxidation at 1 nmol, Krafczyk et al., (2009), ioxidation of lard at 0.02 µg compound/100µg lard, Von Gadow et al., (1997). 

ABTS: 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid; DPPH: 1,1-diphenyl-2-picrylhydrazyl, IC50: Concentration of sample needed to obtain 50% 

inhibition, LDL: Low-density lipoprotein, TEAC: Trolox equivalent antioxidant capacity. 

Table 2.3: Antioxidant activity of Phenolic Compounds from Rooibos and selected reference compounds (Joubert and de Beer, 2014) 
 

 

 

 



32 
 

2.2.4 Cellular Effects of Rooibos Tea 

The protective effects of chronic intake of rooibos tea against the age-related brain changes 

have long been studied (Inanami et al., 1995). The authors reported that the contents of the 

thiobarbituric acid (TBA) reactive substances (TBARS) present in the frontal cortex, occipital 

cortex, hippocampus and cerebellum of 24 months old rats pre-treated with rooibos tea for 21 

months was insignificantly different when compared to 5 weeks old rats. Also, MRI images of 

the brains of the 24 months old rats pre-treated with rooibos tea were similar to those of 5-week 

old rats. However in aged rats without rooibos pre-treatment, the results showed significantly 

higher content of TBARS and a decrease in the signal intensity of the MRI imaging at the same 

brain regions of the 24 months old rats pre-treated with rooibos. Based on these observations, 

Inanami and colleagues concluded that chronic rooibos tea administration could prevent age-

related accumulation of lipid peroxidases in several regions of rat brain.  

 

The anti-inflammatory effects of unfermented rooibos tea have also been investigated in colitis-

induced with dextran sodium sulfate (DSS). Treatment with rooibos tea resulted in a significant 

increase and decrease in serum levels of superoxide dismutase (SOD) levels and urine levels of 

8-hydroxy-2′-deoxyguanosine respectively in the rooibos group compared to the controls (P < 

0.05 for both). The study showed that unfermented rooibos tea was able to modulate serum 

levels of SOD which remained significantly higher in the rooibos group when compared to the 

controls after induction of colitis. This in vivo study showed that rooibos tea may prevent DNA 

damage and inflammation by its anti-oxidative activity (Baba et al, 2009). 

 

The antimutagenic properties of fermented and unfermented rooibos tea in preventing the 

transformation of a mutagenic compound into a mutagen have also been investigated with the 

Salmonella typhimurium mutagenicity assay. Briefly, aqueous extracts of fermented and 

unfermented rooibos tea and honeybush tea showed antimutagenic activity against 2-
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acetylaminofluorene (2-AAF) and aflatoxin B(1) (AFB(1))-induced mutagenesis after using 

tester strains TA98 and TA100 in the presence of metabolic activation (Van der Merwe et al., 

2006). 

 

Researchers at the Institute of Animal Biochemistry and Genetics (Slovak Republic) reported 

the possible hepatoprotective effects of rooibos tea following the treatment of rats with carbon 

tetrachloride (CCl(4)). Rooibos tea significantly inhibited the increase of tissue 

malondialdehyde, triacylglycerols, cholesterol and plasma activities of aminotransferases 

(ALT, AST), alkaline phosphatase and billirubin concentrations which are known markers of 

liver diseases. Simultaneously, the anti-fibrotic effects of rooibos tea as indicated by 

histological regression of steatosis and cirrhosis of the liver were reported (Ulicná et al., 2003). 

In humans, the effects of fermented rooibos herbal tea on biochemical and oxidative stress 

parameters in adults at risk of cardiovascular diseases was studied in 40 volunteers who drank 

six cups of fermented rooibos herbal tea daily for 6 weeks, followed by a control period. The 

results from the study showed that consumption of fermented rooibos herbal tea significantly 

increased total plasma polyphenol levels when compared to controls (from 79.8 ± 16.9 mg/L to 

89.8 ± 14.1 mg/L) (Marnewick et al., 2011). These findings were corroborated by further 

studies by same authors which showed improved lipid profiles (serum LDL-cholesterol, 

triacylglycerol, and HDL-cholesterol), improved redox status (total glutathione - tGSH, ratio of 

reduced to oxidized glutathione – GSH: GSSG) and also reduced levels of lipid peroxidation 

markers (conjugated dienes - CDs, thiobarbituric acid reactive substances - TBARS) when 

compared with controls. Lipid profiles as well as redox status are both relevant in adults at risk 

of developing cardiovascular diseases (Marnewick et al., 2011). 
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CHAPTER THREE 

MATERIALS AND METHOD 

3.0 INTRODUCTION 

This chapter summarizes how the study was carried out. It is divided into sections that explain 

each experimental procedure (e.g. the animal model, experimental design, protocol for 

collecting data, data analysis, etc.), presented in detail to allow for reproducibility of the 

experimental procedures. 

 

3.1 ETHICAL CONSIDERATION 

Ethical guidelines as specified by the faculty board research and ethics committee and by the 

senate research committee of the University of the Western Cape, Cape Town, South Africa 

were followed. Ethical registration and project registration numbers; 13/10/94 and 

ScR1Rc2013/07/18 were subsequently assigned to the research project before commencement. 

 

3.2 MATERIALS AND DRUGS 

The materials and drugs used in this study are tabulated on Table 3.1 and 3.2: 

Table 3.1: Materials used in these study 

Product Supplier 

Wound auto closing system Kent Scientific (USA) 

4-0 Silk Suture Kent Scientific (USA) 

Heating Pad Doccol corporation (USA) 

Retractors Kent Scientific (USA) 

CODA blood pressure monitor Kent Scientific (USA) 
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Table 3.2: Drugs used in this study 

Product Use Supplier 

Isoflurane Anesthesia Safeline Pharmaceuticals Ltd (South 

Africa). 

Meloxicam Analgesic Norpharm Medical (South Africa) 

Sodium Pentobarbital  Anesthesia Norpharm Medical (South Africa) 

 

3.3 PROCUREMENT OF ROOIBOS HERBAL TEA 

The fermented rooibos (Aspalathus linearis) used in this study was a generous gift from 

Rooibos Ltd (Clanwilliam, South Africa) to the research laboratory of Prof. Thomas Moonses 

at the Department of Medical Biosciences, University of the Western Cape, Bellville, Cape 

Town, South Africa. 

 

3.4 DAILY PREPARATION OF FERMENTED ROOIBOS TEA 

A concentration of 2g / 100ml of fermented rooibos herbal tea was used throughout this study 

(Marnewick et al., 2003; Pantsi et al., 2011) as these concentrations have been reported to be 

routine for tea-making purposes (Marnewick et al., 2003). Briefly, 1000 ml of freshly boiled 

tap water was added to 20g of fermented rooibos herbal tea leaves and stems. The infusion was 

allowed to stand for 5 minutes after which it was filtered using a piece of cheese cloth and 

Whatman's filter paper (number 4). The aqueous extract was then allowed to stand at room 

temperature. Each day, fermented rooibos herbal tea was prepared freshly before being fed to 

experimental rats ad libitum (Opuwari and Monsees, 2014). 

 

3.5 ACCLIMATIZATION AND CARE OF ANIMALS 

Fifty (50) healthy male wistar rats with an average weight of 250 g were procured from the 

University of Stellenbosch animal facility, Cape Town, South Africa and maintained at the 

Animal House of the Department of Medical Bioscience, University of the Western Cape, 
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Bellville, Cape Town, South Africa, under standard laboratory conditions of temperature (25 ± 

2°C), humidity (50 ± 15 %) and light period (12 h light dark cycle) for an acclimatization 

period of two weeks. The rats were fed freely on standard rat chow and tap water ad libitum. 

They received humane care in accordance with the Guide for the Care and Use of Laboratory 

Animals 8th edition (www.nap.edu). 

 

3.6 EXPERIMENTAL DESIGN AND GROUPING 

In this study, a total of 50 adult experimental rats were randomly separated into 4 main groups 

which consisted of a Control-sham group (15 animals), Rooibos-sham group (5 animals), 

Rooibos + ischemia group (15 animals) and Ischemia group (15 animals). Animals in these 

respective groups were used for the assessment of brain oedema, relative brain weight, blood 

brain barrier (BBB) Integrity, histological and immunohistochemistry (IHC) assessment of 

apoptosis and neurochemical studies (NS) of lipid peroxidation, oxygen radical antioxidant 

capacity assay (ORAC) and ferric reducing antioxidant power. All rats in the Control-sham and 

Ischemia groups received food and tap water ad libitum throughout the study while rats in the 

Rooibos-sham and Rooibos + ischemia groups had daily access to food and Fermented Rooibos 

Herbal Tea (FRHT) ad libitum for 7 weeks prior to BCCAO and 24 hours to 7 days post-

BCCAO depending on the experimental protocol (See table 3.3). 

 

 

 

 

3.7 BODY WEIGHT MEASUREMENT 

Daily body weights of rats were measured using a weighing balance (ae-adam, Keynes, United 

Kingdom) and weight changes relative to the initial weight were determined. In addition, 

. 
 

Experimental 

procedure 

n =  Total Number of Animals  / Group 

 Control-sham (n= 15) Rooibos-sham (n= 5) Rooibos + Ischemia (n= 

15) 

Ischemia (n= 15) 

Brain Oedema 5 - 5 5 

BBB Integrity 5 - 5 5 

IHC and NS 5 5 5 5 

 

Table 3.3: Experimental design and grouping 
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relative organ weights (organ weight-to-body weight-ratios) were calculated at the end of the 

study. 

 

3.8 ROOIBOS AND WATER INTAKE 

Daily measurement of fermented rooibos herbal tea and water intake was done throughout the 

experimental period by subtracting the volume of the remaining fluid from the volume pre-

determined 24 hours prior. A visual observation was used to ascertain that no major fluid 

(fermented rooibos herbal tea or water) leaked from water bottles. 

 

3.9 BILATERAL COMMON CAROTID ARTERY OCCLUSION MODEL  

Acclimatized adult male Wistar rats weighing 300 – 350 g were used. Cerebral ischemia was 

transiently induced for 20 minutes by bilateral occlusion of the right and left common carotid 

arteries (CCA) according to the method described by Xi et al, (2014) ( See figure 3.1).  

 

3.9.1 Animal preparation and surgery 

On the day of surgery, rats were transferred 1 hour before surgery from the animal holding 

room to the operating room, for animals to acclimatize to the operating environment. A pre-

operative animal weight was then recorded before induction of anesthesia by weighing each 

animal in a weighing scale (ae-Adam, Keynes, United Kingdom). Rats were subsequently 

deeply anesthetized in an induction box with 3% Isoflurane in an oxygen-nitrous oxide mixture 

(30:70). The degree of anesthesia was ascertained by the absence of a withdrawal reflex after 

performing a toe pinch on the animal (Moon et al., 2012). If the animal showed no reflex, the 

surgical procedure was continued. Each rat was placed on a heating pad in a supine position 

and allowed to breathe through a facemask. Isoflurane was adjusted to 1.5 – 2 % and 

administered continuously in the O2/N2O mixture at a flow rate of 1 L/min. 

 Aseptic surgical procedure was followed by shaving the fur on the ventral neck area of the rat 

and disinfecting the surgical work surface and surrounding fur with an alcohol pad spiraling 
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from the centre outwardly. Pre-emptive analgesia was also given to each rat by injection of a 2 

mg/kg dose of Meloxicam injection subcutaneously to prevent post-surgical pain and distress. 

By making a 1 – 2 cm midline neck incision, the submandibular glands were separated to allow 

access to the underlying muscles covering the trachea. With a self-retraining retractor, the right 

sternomastoid muscle and the omohyoid muscle were retracted to expose the underlying right 

CCA which can be easily seen pulsating. With a careful blunt dissection, the right CCA was 

separated from its surrounding fascia and accompanying vagus nerve (See figure 3.1).  

 

3.9.2 Vascular occlusion procedure 

A 10 cm 4-0 silk suture was then around the right CCA in preparation for occlusion and the 

same surgical procedure carried out on the left side to expose the left CCA. Once the left CCA 

was separated from its fascia and vagus nerve, it was occluded by tying a 4-0 silk suture around 

it and the time of occlusion was recorded. The right CCA was also occluded by tightening the 

already prepared loop within the next 30 seconds. Complete occlusion of the CCAs was 

confirmed by visibly monitoring the CCA for swelling around the point of occlusion and the 

direction of flow of blood rostral to the occlusion. Rectal temperature was monitored with a 

digital thermometer using a rectal probe inserted to a depth of approximately 2 cm. Core 

temperature was controlled during and after surgery and maintained at about 37˚C by a heating 

pad and Infrared Lamp. The animals were maintained under Isoflurane anesthesia throughout 

the occlusion period until the end of ischemia (20 minutes) when reperfusion was permitted by 

loosening and removing the silk sutures from both CCAs. Reperfusion was confirmed before 

closing the incision with a wound closing system. Animals were thereafter carefully placed in a 

recovery cage. Post-surgery, 2ml of sterile saline was injected subcutaneously along the scruff 

of the neck in order to reduce dehydration. In sham animals (Control-sham and Rooibos-sham), 

the CCA was surgically prepared for occlusion, but was occlusion did not take place (i.e., no 

ischemia was induced). 
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3.10 PHYSIOLOGICAL PARAMETERS 

As previously described by Ord et al. (2012) and while under anesthesia, physiological 

parameters were measured prior to, during and after the occlusion of the right and left common 

carotid arteries. Systolic and diastolic blood pressure and heart rate were measured by the 

CODA non-invasive tail cuff blood pressure monitor (Kent Scientific, USA) which uses the 

volume pressure technology. Values from each animal were determined from the mean of a 

minimum of 3 separate pressure and heart rate measurements. Temperature was monitored 

using a rectal thermometer and was maintained at about 37°C using a heating pad and infrared 

heating lamp. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Bilateral common carotid artery occlusion (BCCAO) in rat. (A-D). (A) Each rat was 

placed in a supine position and the nostrils connected to an Isoflurane anesthetic system through a 

facemask. (B) The fur on the ventral neck area disinfected using an alcohol pad. (C-D) A 1-2 cm 

ventral midline incision exposed the facial covering the salivary glands. This was carefully dissected 

to expose the underlying musculature (Sternomastoid (SM) and Sternohyoid (SH) muscles). (E) 

Retraction of the SH and Omohyoid muscles allowed access to the common carotid artery which was 

occluded for 20 minutes and thereafter reperfused. (E) The wound was closed with wound closing 

clips and the rat was put in a recovery cage and monitored. 
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3.11 BRAIN OEDEMA ASSESSMENT 

Twenty four hours after reperfusion, rats were sacrificed under deep anesthesia (Sodium 

pentobarbital, 150 mg / bw i.p) and decapitated. The brains were harvested and the cerebellum, 

pons, and olfactory bulbs removed and weighed immediately (wet weight (WW)). Brain 

sections were then placed in an oven (Memmert, Germany), dehydrated at 105°C for 48 h and 

reweighed (dry weight (DW)). Brain oedema was estimated as the difference in percentage of 

brain water and calculated with the formula below (Bigdeli et al., 2007). 

Brain water content (BWC) = [(WW−DW)/WW] × 100. 

 

3.12 BLOOD BRAIN BARRIER ASSESSMENT 

Disruption of the blood-brain-barrier (BBB) integrity after an ischemic brain injury could be 

determined following extravasation of plasma content into the brain tissue (Klohs et al., 2009). 

Four days after reperfusion, the integrity of the BBB was evaluated by studying Evans Blue 

(Sigma Aldrich, USA) extravasation into the brain parenchyma. Briefly, 4ml/kg of 2% EB 

solution in PBS was administered to each rat by tail vein injection an hour before sacrifice after 

which the thoracic cavity was opened under sodium pentobarbital anesthesia. The rats were 

perfused with cold PBS through the left ventricle to wash out the blood until a colorless 

perfusion fluid was obtained at the right atrium. The rats were then decapitated and the cerebral 

hemispheres removed and weighed. The brains were homogenized in 1:10 w/v PBS to extract 

the EB and an equal volume of 60% trichloroacetic acid (Sigma Aldrich, USA) was also added 

and mixed by vortex for 30 seconds to precipitate protein. The samples were then centrifuged 

at 1000×g for 30 min at 4°C. The amount of EB in the supernatants was measured at 610 nm 

using a POLARstar omega spectrophotometer (BMG Labtech, Ortenberg, Germany). Serial 

dilutions of EB in PBS were used to prepare a standard curve (see Appendix A for standard 

curve, page.105) and the result was expressed as µg/g brain tissue (Bigdeli et al., 2007). 
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3.13 BRAIN TISSUE PREPARATION  

Rats were sacrificed 24 h, 4 days and 7 days after BCCAO with an overdose of Sodium 

pentobarbital injection (150 mg/bw i.p). The skin over the abdomen of deeply anesthetized rat 

was lifted up with a forceps and cut open to expose the thoracic cavity and the rib-cage cut and 

retracted to expose the beating heart (Zhang et al., 2012). Once cleared of connective tissue, the 

heart was held with a forceps and a blunt-ended 16 gauge needle attached to a perfusion 

fixation set-up was inserted to the base of the heart through the left ventricle and directed 

towards the aorta. The needle was secured in place with a clamp and the rat perfused 

transcardially with a 300 ml of cold Phosphate buffered saline (PBS). A pale color of the liver 

was indicative of a successful perfusion after which, the rats were decapitated and the brains 

removed, weighed and bisected along the mid-sagittal plane. The right hemisphere was fixed in 

4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) for 24 h for histological and 

immunohistochemical analysis. The left hemisphere was also quickly immersed in 1:10 w/v 

0.1M cold PBS solution and stored at -80°C to be used for biochemical analyses (Zhang et al., 

2012). 

 

3.13.1 Tissue processing 

After fixation of tissues, brains were processed in a Leica-2125 automatic tissue processor 

(Leica, Germany) to prepare specimen for sectioning, staining and analysis. This standard 

process consisted of a series of steps which included dehydration (passing tissues through 

different changes of ethanol to remove water), clearing (the process of removing alcohol) and 

finally infiltration of tissue with molten paraffin wax. The tissue processing was completed in 7 

hours cycle (see table 3.4 below). After which brain tissue were removed from the last change 

of infiltrating wax and embedded in liquid paraffin wax. After cooling, embedded blocks were 

sectioned (at 5 microns per section) using a Leica TP-1020 microtome (Leica, Germany) and 

mounted unto glass slides. 
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Station Solution Temperature Time 

1 70 % Alcohol 40°C 30 minutes 

2 80 % Alcohol 40°C 30 minutes 

3 95 % Alcohol 40°C 45 minutes 

4 95 % Alcohol 40°C 45 minutes 

5 100% Alcohol 40°C 45 minutes 

6 100% Alcohol 40°C 45 minutes 

7 Xylene 2 40°C 45 minutes 

8 Xylene 3 40°C 45 minutes 

9 Paraffin wax 1 58°C 30 minutes 

10 Paraffin wax 2 58°C 30 minutes 

11 Parrafin wax 3 58°C 30 minutes 

 

3.13.2 Hematoxylin and Eosin staining 

Glass slides holding the brain sections were stained with hematoxylin and eosin (Sigma 

Aldrich, USA) to assess for histopathological changes in the hippocampus of the brain. The 

glass slides were placed on a staining rack and de-parrafinized in 3 changes of xylene. The 

sections were then rehydrated by immersing the slides in 2 changes of 100% ethanol for 2 

minutes followed by 95% and 70% ethanol for 2 minutes each. Thereafter the slides were 

rinsed in running tap water for at least 2 minutes before staining in hematoxylin for 3 minutes. 

The slides were then placed in running water at room temperature for 2-3 minutes, 

differentiated in acid alcohol for 2-3 seconds before being immersed in running water again. 

Slides were counter stained in eosin for 2 minutes and dehydrated in 3 different 100 % alcohol 

Table 3.4: Tissue processing procedure  
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baths for 2 minutes each and cleared in 3 changes of xylene at 2 minutes each. Coverslips were 

then mounted on the slides using DPX mounting medium (Cardiff et al., 2014). 

 

3.13.3 Cresyl Violet / Nissl staining 

The cresyl violet (CV) staining is a widely used technique to examine brain cytoarchitecture as 

it provides detailed information about the perikaryon of neurons in comparison to the simple 

rendition of shape and size of cell bodies provided by hematoxylin and eosin staining (Li, 

2012). Briefly, Slides were hydrated in serial concentrations from absolute ethanol to tap water 

and incubated in 0.5% cresyl violet solution (Sigma Aldrich, USA) for 2 min. Slides were 

quickly washed in distilled water and differentiated in 95% ethanol and then in two changes of 

absolute ethanol for 5 minutes. Thereafter, slides were cleared in two changes of xylene for 5 

minutes and mounted in a mounting medium. 

 

3.14 IMMUNOHISTOCHEMICAL STUDIES OF APOPTOSIS 

Immunohistochemical studies of post-ischemic neurons are valuable for the assessment of the 

severity of morphological and cytochemical changes in neurons following cerebral ischemia. 

As described earlier, brains were collected 7 days after BCCAO reperfusion were cut sagittally 

at 5 microns using a Leica TP-1020 microtome (Leica, Germany). A Terminal dUTP Nick-End 

Labeling (TUNEL) Assay was subsequently conducted using the in Situ DNA Fragmentation 

Assay Kit (BioVision, U.S.A.) following manufacturer’s instruction described below.  
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3.14.1 Deparaffinization and Rehydration 

1.  Glass slides holding brain sections were deparaffinized in two changes of freshly prepared 

xylene at room temperature for 5 minutes.  

2.  Slides were immersed in two changes of 100% ethanol for 5 minutes at room temperature 

(RT). 

3.  Slides were then immersed in graded changes of 90%, 80% and 70% ethanol for 3 minutes 

at RT. 

4.  Slides were immersed into 1X PBS and the slides carefully dried carefully. 

 

3.14.2 Permeabilization, Inactivation of Endogenous Peroxidase and Equilibration. 

 Slides were incubated with 100μl proteinase K for 20 minutes and endogenous peroxidases 

inactivated by 3% hydrogen peroxide in methanol for 5 minutes. Slides were then incubated 

with 100 μl reaction buffer for 10 minutes at room temperature. 

 

3.14.3 End Labeling Reaction, Detection and Counterstain 

Slides were incubated with 50 μl of complete labeling reaction mixture containing 

deoxynucleotidyl transferase (TdT) enzyme in a humidified chamber at 37 °C for 1 h, then a 

blocking buffer was applied for 30 min at 37 °C. The slides were then incubated with Anti-

BrdU-Biotin antibody, and visualized with diaminobenzidine (DAB) substrate. The sections 

were counterstained with Methyl Green. In the TUNEL stained slides, 3 fields of each section 

were selected from the hippocampus and the TUNEL-positive cells were quantified by light 

microscopy at magnification (X400). The total cell numbers and TUNEL-positive cell numbers 

were obtained in each field. The percentage of TUNEL-positive cells was described as the 

percentage of the numbers of TUNEL-positive cells to the total numbers of cells in each field. 
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3.15 MORPHOLOGICAL AND MORPHOMETRIC STUDIES 

Since 15 minutes of global cerebral ischemia induces delayed neuronal death selectively in 

about 80% of CA1 pyramidal neurons, and about 10% in neocortical neurons (Raval and Hu, 

2012), morphological and morphometric analysis was carried out on the H&E, cresyl violet and 

TUNEL -stained cornus ammonis 1 (CA1) region of the hippocampus on images captured at a 

magnification of x400 using the Zeiss Primo Vert microscope (Zeiss, Germany). In order to 

cover the area of interest at 400x, 3 captured images were used with each measuring 1159.4 x 

869.57 µm. Viable pyramidal neurons of the hippocampus were identified as those exhibiting 

clear purple cytoplasmic staining with visible nuclei and nucleoli, while ischemic (dead) cells 

were identified as showing shrunken perikarya, triangular shapes and mostly exhibiting dark-

stained nuclei. The data obtained was expressed as percentages of TUNEL-positive cells in 

total number of cells. Quantification of viable and TUNEL positive cells was done using the 

NIH Image analysis software (Image J) (Onken et al., 2012).  

 

3.16 NEUROCHEMICAL ASSAYS 

3.16.1 Homogenization of tissues 

Brain tissues stored at -80°C were thawed and homogenized (IKA Laboratories, Germany) in 

10 times (w/v) 0.1M PBS (pH 7.4) in a Teflon glass homogenizer for two periods of 10 seconds 

each. The homogenate was then centrifuged at 15,000 rpm in a microcentrifuge at 4°C for 10 

minutes. The supernatant was collected and transferred into newly marked Eppendorf tubes for 

different biochemical index (Ahmed et al., 2014). 

 

3.16.2 Lipid peroxidation assay 

Assessment of lipid peroxidation (LPO) in the left hemispheric brain was done according to the 

method described by Wills (1966). This method depends on the formation of lipid peroxidation 

end product; malondialdehyde (MDA) which reacts with thiobarbituric acid (TBA) to produce 
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a thiobarbituric acid reactive substance (TBARS) a pink chromogen which can be measured 

spectophotometrically at 532 nm. Briefly, 100 μl of supernatant was collected into new 2 ml 

Eppendorf tubes and 12.50 μl of cold ethanol and 100 μl of 0.2M ortho-phosphoric acid added. 

The mixture was vortexed for 10 seconds before 12.50 μl of 0.67% TBA (Sigma Aldrich, USA) 

was added. The reaction mixture was then heated at 90°C for 45 minutes in a water bath 

(Electrothermal, England). After cooling on ice for 2 minutes and at room temperature for 5 

minutes, 1000 μl of n-butanol and 100 μl of saturated sodium chloride (NaCl) were added. The 

mixture was vortexed and centrifuged at 12,000 rpm at 4°C for 2 minutes after which 300 μl of 

the top n-butanol phase was collected and used for spectrophotometric measurement at 532 nm. 

The results were expressed as µmol of MDA per g of wet brain tissue.  

 

3.16.3 Oxygen radical absorbance capacity (ORAC) assay 

The ORAC assay is one of the most accepted methods for measuring the activity and amount of 

antioxidants present in biological samples (Cao et al., 1993). The assay works on the principle 

of adding a sample to a free radical generating system and measuring the degree of protection 

offered by the sample in preventing free radical damage against a fluorescent molecule. 

Briefly, 2,2’-azobis-2-methyl-propanimidamide, dihydrochloride (AAPH) and fluorescein 

(Sigma Aldrich, USA) were used as the free radical producing system and fluorescent molecule 

respectively. The oxidation of fluorescein was measured by initiating a reaction following the 

addition of 50 µl of AAPH to a mixture of 138 µl of fluorescein and 12 µl of sample in a 96-

well black plate and the fluorescence read for 2 hours at every 5 minutes interval at an emission 

and excitation wavelength of 530 nm and 485 nm using a Fluoroskan Ascent fluorescent plate 

reader (Thermo Fisher Scientific, Waltham, MA, USA). A standard curve was prepared from a 

500 µM stock solution of Trolox, an artificial Vitamin E (see Appendix B for standard curve) 

(Prior et al., 2003). The results obtained were expressed as µM Trolox equivalent (TE) / g of 

wet brain tissue. 
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3.16.4 Ferric reducing antioxidant power (FRAP) assay 

Another assay used for the determination of antioxidant capacity in biological samples is the 

FRAP assay which uses an oxidation/reduction reaction to measure the ability of antioxidants 

in a sample to reduce ferric tripyridyltriazine (Fe3+ - TPTZ) to a ferrous form (Fe2+) which has 

an intense blue color which can be monitored by a spectrophotometer (Ndhlala et al., 2010). 

Briefly, a mixture of 30 ml acetate buffer (300 mM, pH 3.6), 3 ml TPTZ (10 mM in 100 mM 

HCl), and 3 ml FeCl3·6H2O (20 mM) was used to prepare the FRAP reagent, from which 300 

µl was added to 10 µl of the sample in a clear 96-well plate using a multi-channel pipette. The 

mixture was then incubated in the incubating oven (Memmert, Germany) at 37°C for 30 

minutes and the read at a wavelength of 593 nm in a Multiskan Spectrum automated plate 

reader (Thermo Fisher Scientific, Waltham, USA). A serial dilution was prepared from a stock 

solution of Ascorbic acid for the preparation of a standard curve (see Appendix C for standard 

curve) and expressed as FRAP mg per g of wet brain tissue (Vakili et al., 2014). 

 

3.17 OPEN FIELD NEUROBEHAVIOURAL TEST 

The open field (OF) test is a commonly used neurobehavioral assessment tool that provides 

simultaneous measurement of locomotion and anxiety in laboratory animals (Kendigelen et al., 

2012). The apparatus for the OF assessment involved a square plexi glass box (72 × 72 × 20 

cm), with a digital camera (Samsung HMX-F90, South Korea) mounted directly above it. The 

open-field arena was divided into 16 equal squares, via a 4 × 4 grid, to assist in data analysis 

and animals were tested singly. Briefly, animals were transported from the housing room to the 

testing room and allowed to acclimatize prior to testing. Testing began by removing each rat 

from its home cage and placing it in the centre zone of the OF arena. Each session lasted 10 

minutes in a single run after which the rat was returned into its home cage and the OF box 

cleaned with 70% ethanol before testing the next rat. The Smart video tracking software 
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version 3.0, from Panlab Harvard Apparatus (Massachusetts, USA) was used to measure the 

locomotor activity of each experimental rat by extracting the total distance traveled in the OF 

arena. As a measure of anxiety, the total distance traveled in the 12 squares near the walls was 

compared with the distance traveled in the 4 squares at the centre of the arena. All analysis was 

done by “blind” observers. 

3.18 STATISTICAL ANALYSIS 

Results were compared using one-way analysis of variance (ANOVA) test. If a statistically 

significant difference was obtained, Tukey’s post hoc test was conducted for further 

comparison among groups. A two-way ANOVA followed by Fisher’s protected least 

significance difference (Post hoc LSD) test was used for analysis of relative brain weights and 

open field measurements. Values were expressed as means ± standard error of mean (SEM). P 

< 0.05 was considered as statistically significant. 
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Figure 3.2: Schematic maps of animal experiment. The course of BCCAO and sham surgery is shown 

in 3A. Note that animals were kept under anesthesia throughout the surgery. 3B shows the timeline of 

events after bilateral common carotid artery occlusion surgery. 
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CHAPTER FOUR 

RESULTS 

4.0 INTRODUCTION 

In this study, ischemic brain injury was induced in 30 adult male wistar rats (15 pre-treated 

with fermented rooibos herbal tea and 15 non-treated) by the transient occlusion of the right 

and left common carotid arteries for 20 minutes. Outcomes from the ischemic group were 

compared with rats in the control and rooibos sham groups, 24 hours to 7 days post BCCAO. 

This study was done to evaluate the potential of a 7 weeks administration of fermented rooibos 

herbal tea in preventing or reducing the severity of ischemic injury to rat brains. Findings from 

this study are presented below: 

 

4.1 AVERAGE DAILY INTAKE OF FLUID AND FERMENTED ROOIBOS HERBAL 

TEA 

A - Before BCCAO 

Throughout the experiment, rats were allowed free access to tap water and fermented rooibos 

herbal tea ad libitum. Recorded values for water and rooibos intake showed that animals in the 

treatment groups “rooibos sham” and “rooibos + ischemia” significantly drank less fluid 

(fermented rooibos tea) during the first week of the experiment when compared to the “control 

sham” and “ischemia groups” which drank tap water. This difference was seen to disappear 

from the 2nd week onward as rats became familiar with the fluid (fermented rooibos herbal tea). 

At the end of the 7th week, no significant difference was found in the overall amount of fluid 

intake across the different experimental groups (Table 4.1). 

B - Post BCCAO 

Animals continued to receive fermented rooibos herbal tea ad libitum after BCCAO or sham 

surgery. There was however no evaluation of fluid intake post-surgery as animals were kept for 

only 7 days before sacrifice. 
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Table 4.1: Average daily intake of fluid (ml/day/animal) over 7 weeks in experimental rats. Fermented rooibos herbal tea was given to 

experimental rats ad libitum, the amount of rooibos intake in the rooibos sham and rooibos + ischemia group was significantly different to the 

control sham and ischemia group (given tap water ad libitum) at week 1 and 2. This difference was not observed over the remaining weeks and 

the overall (in average) intake of fluid during the entire experiment did not differ among groups. aP < 0.001 when compared with Control sham 

group, bP < 0.01 when compared with the ischemia group. Data expressed as Mean ± SEM. 

Experimental 

Groups 

Mean Fluid intake (MFI) over 7 weeks period (ml/day/animal) 

Average MFI 

(ml/day/animal) Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 

Control sham 

(n =15) 
46.0 ± 2.5 47.6 ± 7.8 39.0 ± 2.9 38.0 ± 1.8 33.9 ± 1.9 35.1 ± 3.2 40.1 ± 3.8 40.0 ± 2.0 

Rooibos Sham 

(n =5) 

30.8 ± 1.2 

(a, b) 

26.6 ± 1.1 

(a) 
33.9 ± 3.0 39.0 ± 3.1 35.9 ± 1.3 37.8 ± 1.9  38.9 ± 1 34.7 ± 1.8 

Rooibos + 

Ischemia 

(n =15) 

33.5 ± 0.7 

(a, b) 

34.1 ± 1.2 

(a, b) 
35.2 ± 1.1 35.2 ± 5.3 35.2 ± 1.1 39.5 ± 1.4 36.6 ± 1.3 36.07 ± 1.0 

Ischemia 

(n =15) 
44.3 ± 3.2 42.7 ± 2.5 40.2 ± 2.3 40.4 ± 3.2 35.0 ± 2.9 36.6 ± 2.4 38.8 ± 2.1 39.7 ± 1.2 
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4.2 EFFECT OF FERMENTED ROOIBOS HERBAL TEA ON POST SURGERY 

BODY WEIGHT CHANGES 

Following the experimental protocol, rats were sacrificed on different days after BCCAO or 

sham surgery. Post-BCCAO body weight changes were monitored on day 1, 4 and 7 in rats 

belonging to the brain oedema, BBB and IHC/LPO sub-groups respectively. Table 4.2 below 

shows that loss in body weight across all groups on days 1, 4 and 7 was not statistically 

significant when compared to the pre-surgery weights except in the ischemia group on post-

surgery day 4 when body weight was significantly lower (p < 0.01) when compared to the pre 

surgery weight.  

 

PRE-SURGERY WEIGHTS (g) (Day 0) 

DAYS SUB – GROUPS C – SHAM R + I ISCHEMIA 

D
A

Y
 0

 

B.E 389 ± 14.04 378.8 ± 8.31 359 ± 13.14 

BBB 302 ± 2.36 371.6 ± 9.41 409 ± 3.61 

IHC / LPO 365.8 ± 12.75 367 ± 26.82 399 ± 12.99 

VERSUS POST-SURGERY WEIGHTS (g)  (Day 1 – 7) 

DAY 1 B.E 375 ± 11.91 364 ± 6.93 338 ± 13.43  

DAY 4 BBB 296 ± 2.35 360 ± 3.67 384 ± 4.56* 

DAY 7 IHC / LPO 364 ± 12.19 357 ± 26.89  374 ± 11.35  

Table 4.2: Body weight changes after bilateral common carotid artery occlusion and sham 

surgery. There was an immediate body weight loss in all animals that underwent surgery on 

post-surgery day 1. This loss in body weight was however not significant on post-surgery days 1, 

4 and 7 except in the ischemia group on post-surgery day 4. Astericks (*) indicate significant 

difference when compared with the pre-surgery weights. C – SHAM: Control sham, R + I: 

rooibos + ischemia. N = 5, Data is presented as mean ± S.E.M. 
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4.3 EFFECTS OF FERMENTED ROOIBOS HERBAL TEA ON RELATIVE BRAIN 

WEIGHT 

In this study, the neuroprotective effects of FRHT on post-BCCAO relative organ weight was 

studied on days 1, 4 and 7, following 7 weeks intake of fermented rooibos herbal tea (FRHT). 

Results show that FRHT did prevent against a significant decrease in relative organ weight in 

the rooibos + ischemia group when compared to the control group. In contrast, the brain / body 

weight ratios of rats in the ischemia group were significantly reduced only on day 4 after 20 

minutes BCCAO 
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Figure 4.1: Changes in relative brain weighs of rats. At different time point, the brain / body 

weight ratio of experimental rats was assessed after 20 minutes of bilateral common carotid 

artery occlusion or sham surgery. While the brain volume was mostly insignificantly different 

across all groups and duration of the experiment post BCCAO, the ischemia group at 4 days 

after 20 minutes BCCAO presented a reduced brain / body weight ratio. C – SHAM: control 

sham, R + I: rooibos + ischemia, BCCAO: Bilateral common carotid occlusion. N = 5 **P < 

0.01 versus control sham group. Data is presented as mean ± S.E.M. 
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4.4 PHYSIOLOGICAL PARAMETERS 

Physiological parameters such as systolic blood pressure (SBD), diastolic blood pressure 

(DBP), mean arterial blood pressure (MAP) and heart rate (HR) were carefully measured 

before, during and after BCCAO and sham surgery. The recorded values were compared 

among all groups (see table 4.3) and the result showed no difference.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3: Physiological parameters measured before, during and after BCCAO when the 

animals were underneath isoflurane anesthesia. Measurements were not statistically different 

across groups (P > 0.05). NA: Not Applicable, SBP: Systolic blood pressure, DBP: Diastolic 

blood pressure, MAP: Mean arterial blood pressure, HR: Heart rate. Data is presented as mean 

± S.E.M.    

Physiological 

Parameter 
Group (N) 

Before 

Occlusion 

During 

Occlusion 

After 

Occlusion 

SBP (mmHg) 

Control sham 15 108 ± 5.1 N/A 106 ± 6.5 

Rooibos sham 5 96 ± 4.7  N/A 93 ± 7.3 

Rooibos + Ischemia 15 110 ± 3.2 134 ± 3.5 114 ± 3.1 

Ischemia 15 110.4 ± 6.9 127.3 ± 6.5 110 ± 4.2 

DBP (mmHg) 

Control sham 15 82 ± 4.0  N/A 80 ± 4.3 

Rooibos sham 5 74 ± 3.9 N/A 75 ± 6.1 

Rooibos + Ischemia 15 82 ± 4.3 110 ± 3.4 82 ± 2.6 

Ischemia 15 80.2 ± 4.7 99 ± 5.1 82 ± 3.7 

MAP (mmHg) 

Control sham 15 90.7 ± 2.4 N/A 88.7 ± 3.2 

Rooibos sham 5 81 ± 3.2 N/A 81 ± 4.6 

Rooibos + Ischemia 15 91.3 ± 1.6 118 ± 3.6 92.7 ± 1.3 

Ischemia 15 90.3 ± 2.3 108.4 ± 6.7 91.3 ± 1.4 

HR (beat/min) 

Control sham 15 371 ± 6.8 N/A 400 ± 5.8 

Rooibos sham 5 389 ± 10.2 N/A  412 ± 9.1 

Rooibos + Ischemia 15 374 ± 8.0 395 ± 7.4 425 ± 10.4 

Ischemia 15 383 ± 7.1 419 ± 17.5 442 ± 13.3 
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4.5 BRAIN OEDEMA ASSESSMENT 

Twenty four hours after reperfusion, the water content of the brain was assessed to evaluate 

brain oedema following BCCAO. As shown in figure 4.2, hemispheric brain water content was 

significantly higher (p < 0.05) in the ischemia group (77.80 % ± 0.27) when compared with the 

control-sham group (76.68 % ± 0.36). Interestingly, no significant increase in brain water 

content was observed following pre-consumption of FRHT for 7 weeks as the percentage 

increase of brain water in the rooibos + ischemia group was not significantly different to the 

control-sham group (77.17 % ± 0.11 and 76.68 % ± 0.36, respectively). 
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Figure 4.2: Effects of 7 weeks pretreatment with fermented rooibos herbal tea on brain 

oedema in rats after 24 hours of BCCAO. Brain water content in the R+I group was not 

significantly greater than control sham value. BCCAO: Bilateral common carotid artery 

occlusion; C- SHAM: Control sham; R + I: Rooibos + Ischemia. Asterisk (*) = Significant 

change. N = 5, Data is presented as mean ± S.E.M,*P < 0.05. 
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4.6 BLOOD BRAIN BARRIER ASSESSMENT 

Assessment of blood-brain-barrier integrity after 20 minutes BCCAO was done by studying the 

extravasation of injected Evans blue solution into the brain tissue 4 days after BCCAO. As 

shown in figure 4.3, BCCAO with 4 days of reperfusion appeared to compromise BBB 

integrity in the ischemia group was higher in the content of Evans blue in the brain from 

baseline level in the control sham group (0.6880 µg/g ± 0.22 to 0.9189 µg/g ± 0.34); however 

this difference was not statistically significant. On the other hand, it does appear that 7 weeks 

pretreatment with fermented rooibos herbal tea did ameliorate the impairment of BBB integrity 

as Evans blue extravasation values were similar to the control sham group (0.7341 µg/g ± 0.25 

and 0.6880 µg/g ± 0.22). 
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Figure 4.3: Blood brain barrier integrity assessment by Evans blue extravasation into the 

brain substance 4 days post BCCAO and sham surgery. Twenty minutes of BCCAO did 

compromise the integrity of the blood brain barrier by increasing the extravasation of Evans 

blue into the brain parenchyma. However this increase was not statistically significant. wbt = 

Wet brain tissue. 
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4.7 HISTOLOGICAL STUDIES 

In this study, brain sections were stained with hematoxylin and eosin (H&E) and Cresyl violet 

stains to evaluate the neuroprotective potential of fermented rooibos herbal tea in preventing or 

reducing the severity of the delayed neuronal cell death associated with 20 minutes BCCAO in 

rats. The H&E staining procedure helps to demonstrate the shapes and sizes of cell bodies 

while the cresyl violet staining helps to give more detailed information about neuronal cell 

bodies. 

 

4.7.1 Hematoxylin and Eosin Staining 

Seven days after 20 min BCCAO or sham surgery, neuronal damage in the CA1 region of the 

hippocampus was evaluated by staining serial sagittal sections of the right cerebral hemispheres 

with hematoxylin and eosin stains. As shown in Figure 4.4 (B and D), photomicrographs from 

the control-sham and rooibos-sham groups presented no histopathological changes. In the 

ischemia group (Figure 4.4 E & F), marked neuronal ischemic damage was observed by cells 

exhibiting a triangular shape and a dark staining due to the condensation of cytoplasm and 

karyoplasm. These changes were less frequent in the rooibos + ischemia group (Figure 4.4 H). 

 

4.7.2 Cresyl Violet / Nissl Staining 

Representative photomicrographs of cresyl violet / Nissl staining of rat brain sections show 

neurodegenerative changes in the cytoarchitecture of the CA1 region of the hippocampus in the 

ischemia group at 7 days post-BCCAO. These changes were identified by the presence of 

shrunken and darkly stained neurons (Figure 4.5 F). Quantitative analysis (see Figure 4.8 B) of 

viable cells showed a significant decrease in the amount of viable hippocampal neurons in the 

CA1 region of rats the in ischemia group when values were compared with the control (Figure 

4.5 B) and rooibos sham (Figure 4.5 D) groups. However, 7 weeks pretreatment of rats with 

FRHT (figure 4.5 H) did antagonize the pathogenesis of delayed neuronal death as the 

percentage of viable cells in the CA1 region of the hippocampus of the rooibos + ischemia 

group was similar to those in the control and rooibos sham groups (see Figure 4.7 A).  
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Figure 4.4: Photomicrographs of Hematoxylin and Eosin staining of hippocampal sections of rats 7 days 

after 20 minutes BCCAO or sham surgery. The left panel depicts the CA1 region displayed on the right 

panel. The ischemia group shows the presence of numerous shrunken CA1 pyramidal cells with 

condensed and deeply stained nuclei (white arrows in “F”). Following 7 weeks intake of FRHT, these 

effects were reduced (black arrows = normal neurons in “H”). A & B=Control sham; C & D=Rooibos 

sham; E & F=Ischemic and G & H=Rooibos + ischemia groups. 

  

Magnification: left panel = X4; right panel = X40 
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Figure 4.5: Photomicrographs of Cresyl Violet staining of hippocampal sections of rats 7 days after 20 

minutes BCCAO or sham surgery. The left panel depicts the CA1 region displayed on the right panel. 

Neurons appear normal (black arrows) in the Control and Rooibos sham groups, while remarkable damage 

(white arrows) was seen in the hippocampal CA1 region in the ischemia group (F). The Rooibos + 

Ischemia group was however similar to both control and rooibos sham groups. (H). A & B: Control sham; 

C & D: Rooibos sham; E & F: Ischemic and G & H: Rooibos + ischemia groups. Magnification: left panel 

= X4 and right panel = X40 
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4.8 IMMUNOHISTOCHEMISTRY (IHC) STUDIES 

For an in-depth assessment, cellular changes in rat hippocampus immunohistochemical studies 

were done to detect disruptions in nuclear DNA which is an established hallmark of apoptotic 

cell death detection. In this assay, apoptotic cells were recognized by the presence of 

chromosomal DNA fragmentation into discrete fragments of increasing length using the 

terminal deoxynucleotidyl transferase mediated UTP nick end labeling (TUNEL) method. 

In this assay, TUNEL positive cells are identified as those labelled with a dark or light-brown 

color or with dark brown granules in the cell nucleus. Evaluation of hippocampal CA1 brain 

sections from the control sham and rooibos sham groups showed very few TUNEL positive 

cells on day 7 post-sham surgery (8.12 % ± 2.6 and 6.21 %± 2.47) (Figure 4.6 B & D and 

figure 4.7 B). However, immunohistochemical analysis of CA1 sections of the ischemia group 

7 days post-BCCAO showed an increased number of TUNEL positive cells (46.72 % ± 12.8) 

(Figure 4.7 B) when compared with the control sham and rooibos sham groups (8.12 % ± 2.6 

and 6.6 % ± 6.56). The number of TUNEL positive cells in the rooibos + ischemia group was 

also high (36.54 % ± 12.2) (Figure 4.6 H), but the increase was not statistically significantly 

when compared to the control sham and rooibos sham groups (8.12 % ± 2.6 and 6.21 % ± 2.47) 

respectively (Figure 4.7 B). 
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Figure 4.6: TUNEL staining of hippocampal sections of rats 7 days after 20 minutes BCCAO or sham 

surgery. The left panel depicts the area of the CA1 region displayed in the right panel. Immunohistological 

evidence of apoptosis in the CA1 region of the hippocampus of rats from the ischemia group (F) is 

identified by cells labelled with the dark or light brown color (white arrows), normal neurons are colored 

green (black arrows). Apoptotic neurons are less present in the rooibos + ischemia (H) than in the 

ischemia group (F). A & B: Control sham; C & D: Rooibos sham; E & F: Ischemic and G & H: Rooibos + 

ischemia groups. Magnification: left panel = X4 and right panel = X40 
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Figure 4.7: Morphometric analysis by cresyl violet and IHC staining. (A) Hippocampal cell survival 

as assessed by cresyl violet staining at 7 days after 20 minutes BCCAO or sham surgery. The left 

panel shows photomicrographs of the CA1 region of the hippocampus with viable neurons identified 

with black arrows. Number of CA1 viable neurons 7 days after 20 minutes BCCAO or sham surgery 

in the ischemia group was significantly lower in comparison to the C – sham, R-Sham and R + I 

groups (****P < 0.0001 vs control sham, ***P < 0.001 vs R-sham and **P < 0.01 vs R +I , n = 5 

rats per group;). (B) Cellular apoptosis was determined by TUNEL assay. The left panel is a 

photomicrograph of the CA1 region of the hippocampus showing apoptotic cells labelled in dark and 

a light brown color. Apoptosis rate in the CA1 region was calculated as follows: neuronal apoptosis 

rate (%) = 100 × (number of apoptotic neurons / total number of neurons). At 7 days post BCCAO, 

the rate of apoptosis was significantly higher in the ischemia group when compared to the R – SHAM 

group. C - SHAM: Control sham; R-SHAM: Rooibos sham; R + I: Rooibos + Ischemia. N = 5 rats 

per group. Data are expressed as mean ± SEM; Asterisk (*) = Significant change. 
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4.9 NEUROCHEMICAL ANALYSIS 

4.9.1 LIPID PEROXIDATION (LPO)  

Seven days after BCCAO, the level of lipid peroxidation was determined by measuring 

malondialdehyde (MDA) levels in the cerebrum. MDA is a specific metabolic tracer molecule 

for LPO using the thiobarbituric acid reaction (TBAR). Results show that there was a 

significant increase in the levels of MDA in the cerebral hemispheres of rats in the ischemia 

group (0.029 µmol/g ± 0.0014) when compared to the control-sham groups (0.017 µmol/g ± 

0.0014) and R-sham whereas the rooibos + ischemia group (prior to induction of BCCAO) 

showed significantly lower MDA levels comparable to the sham levels when compared with 

the ischemia group (0.014 µmol /g ± 0.003 vs 0.017 µmol/g ± 0.0014). 
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Figure 4.8: Effects of 7 weeks intake of fermented rooibos herbal tea on MDA levels in the cerebral 

hemispheres of rats 7 days after BCCAO. Fermented rooibos herbal tea prevented increased MDA 

content following cerebral ischemia induced by BCCAO. Data are presented as mean ± S.E.M, n = 5. 

a*** = P < 0.001 vs control-sham group; b*** = P < 0.001 vs rooibos-sham group; c*** = P < 

0.001 vs R+I group. BCCAO: Bilateral common carotid artery occlusion; C - SHAM: Control sham; 

R-SHAM: Rooibos sham; R + I: Rooibos + Ischemia. Asterisk (*) = significant difference, wbt = wet 

brain tissue. 

 

 

 

 



64 
 

4.9.2 Oxygen Radical Absorbance Capacity (ORAC) 

Assessment of total antioxidant capacity is very important in our understanding of how 

antioxidants protect against reactive oxygen species (ROS). In the human body, peroxyl 

radicals are the most abundant free radicals, which make measurement of antioxidant capacity 

against peroxyl-radical even more biologically relevant. In this study, measurement of 

antioxidant capacity against peroxyl-radical in the rooibos-sham and rooibos + ischemia groups 

showed that ORACROO values were significantly higher (36.68 µmol/g ± 1.98 and 35.16 

µmol/g ± 1.62 respectively) when compared the ischemia group (22.26 µmol/g ± 3.22) (Figure 

4.9). 
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Figure 4.9: Effect of 7 weeks intake of fermented rooibos herbal tea on peroxyl radical absorbance 

capacity (ORACROO) in the cerebral hemispheres of rats 7 days after BCCAO.Data are presented as 

mean ± S.E.M, n = 5. a** = P < 0.01 vs rooibos-sham group; b** = P < 0.01 vs R + I group by 

student t-test. C-SHAM: Control sham; R-SHAM; Rooibos sham; R + I: Rooibos + Ischemia. Asterisk 

(*) = Significant difference, wbt = wet brain tissue. 
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4.9.3 Ferric Reducing Antioxidant Power (FRAP) 

The FRAP assay (a measure of the ability of compounds to neutralize free radicals by acting as 

an electron donors) was done. As showed in Figure 4.10 below, measurement of FRAP levels 

in the control and rooibos-sham groups presented a higher significant differences (2.36 ± 0.16 

and 1.93 ± 0.37) respectively when compared to the ischemia group (0.63 ± 0.11). 

Interestingly, the FRAP values for samples from the rooibos + ischemia group (2.12 ± 0.16) 

were significantly higher than the rooibos-sham and rooibos + ischemia groups respectively. 
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Figure 4.10: Effect of 7 weeks intake of fermented rooibos herbal tea on ferric reducing antioxidant 

power (FRAP) in the cerebral hemispheres of rats 7 days after BCCAO. The intake of fermented 

rooibos herbal tea maintained the ferric reducing antioxidant power of in the pretreated ischemia 

group (R+I) compared to the sham groups. FRAP values were very low in the ischemia group. Values 

are presented as mean ± S.E.M, n = 5. ** = P < 0.01 vs Rooibos-sham group; *** = P < 0.001 vs R 

+ I group by student t-test. *** = P < 0.0001 vs control sham group. C- SHAM: Control sham; R + I: 

Rooibos + Ischemia. Asterisk (*) = Significant difference, wbt = wet brain tissue. 
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4.10 THE OPEN FIELD TEST 

The open field test is one of the most widely used measures of animal neurobehavioral deficits. 

In this study, we investigated neurobehavioural deficits in experimental rats on day 1, 4 and 7 

after BCCAO by subjecting animals to a 10 minutes open field test. Results obtained on day 7 

show that locomotor / exploratory activity (represented by total distance travelled) of rats in the 

rooibos + ischemia group was much improved and become insignificantly different at day 7 

post-BCCAO when compared with day 1 (Figure 4.11 D), while the exploratory activity of rats 

in the ischemia group at day 7 post BCCAO was significantly reduced (Figure 4.11 D).  The 

frequency of rearing episodes which is one of the measure of anxiety in rodents during the open 

field test was seen to have improved across all groups from day 1 to 4, but was significantly 

lower in both the rooibos + ischemia and the ischemia group at day 7 when compared to the 

control sham group. However, when compared with the ischemia group, a small improvement 

in these rearing episodes was noticed in the rooibos + ischemia group pre-treated with 

fermented rooibos herbal tea but this difference did not reach statistical significance (Figure 

4.11 E).  
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Figure 4.11: Effect of 7 weeks pre-treatment with FRHT on neurobehavioural outcomes. Seven weeks pre-treatment with fermented rooibos herbal tea 

attenuated neurobehavioral deficits in the 10 minutes Open field test (OFT). Images A, B & C represent the path travelled by the control-sham (C- SHAM), 

rooibos + ischemia (R + I) and ischemia groups in the OFT D = The significant difference in total distance travelled during the OFT on day 7 post-BCCAO in 

rats from the ischemia group was significantly reduced by 7 weeks pre-treatment with FRHT (E) The frequency of rearing episodes during the OFT was 

however not significantly different on days 1 & 4 post BCCAO, while on day 7, the rooibos + ischemia and the ischemia group showed a significant difference 

when compared to the control sham groups respectively. *P < 0.05, Asterisk (*) = Significant difference. 
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CHAPTER FIVE 

DISCUSSION 

5.0 INTRODUCTION 

The World Health Organization reports that the burden of stroke is expected to rise greatly in 

the next 20 years since no clinically approved drug is available or licensed for the prevention or 

treatment of stroke besides thrombolytics which restore blood flow (Johnston, 2008). In 

addition, the efficacy and safety concerns of thrombolytics have limited their use in medicine 

(Jin et al., 2010b). A large number of studies are currently ongoing, all in the search for novel 

neuroprotective agents for stroke.  

 

The current study was done to investigate for the first time, the neuroprotective potentials of 

fermented rooibos herbal tea (FRHT) in preventing or reducing the severity of an ischemic 

brain injury to the brain. In this study, seven weeks intake of FRHT by adult male wistar rats 

remarkably protected the brain against ischemic damage induced by 20 minutes of BCCAO 

ischemia-reperfusion injury. FRHT was seen to offer protection against brain oedema 

formation, blood brain barrier impairment, neuronal loss, oxidative stress and the attendant 

neurological deficits all of which are known to be associated with ischemic brain injury. Many 

studies have focused on phytochemical analysis of plant extracts to profile their active 

ingredients (Wu et al., 2010), there is need to also study the mechanisms of action of these 

phytomedicines. Details about the neuroprotective effects of FRHT are discussed in sections 

that follow. 
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5.1 FERMENTED ROOIBOS HERBAL TEA PROTECTS AGAINST OEDEMA 

FORMATION AND INCREASED RELATIVE BRAIN WEIGHT.  

Brain oedema is reported to be one of the two major acute neurologic complications observed 

following the occurrence of an ischemic stroke in patients (Bansal et al., 2013). Brain oedema 

is defined as the pathological accumulation of fluid in brain tissue resulting in the expansion of 

brain tissue volume (Ito et al., 1979; and Kahle et al., 2009). In this study, 7 weeks intake of 

fermented rooibos herbal tea was found to prevent cerebral oedema by lowering cerebral 

swelling and water content in the cerebral hemisphere following ischemic injury. Michinaga 

and Koyama, (2015) reported that the brain oedema observed during the first few hours of 

ischemia is of the cytotoxic type, characterized by cell swelling in the absence of BBB 

disruption due to low ATP levels from reduced blood flow to cells. This results in excessive 

intracellular accumulation of Na+ followed by accelerated outflow of Na+ and fluid from blood 

vessels to compensate for the extracellular decrease. The intra-vascular Na+ outflows 

subsequently result in the accumulation of fluid in the brain parenchyma leading to cerebral 

swelling (Michinaga and Koyama, 2015). Polyphenols from FRHT have been shown to prevent 

the intracellular accumulation of Na+ by modulating the activity of the enzyme Na+/K+-ATPase 

which is responsible for establishing an electrochemical gradients of Na+ and K+ across the cell 

membrane (Vlkovicová et al., 2009). The polyphenols from Fenugreek seeds have also shown 

similar activities in the red blood cell membrane (Anuradha et al., 2003), adding credence to 

the possibility that the brain oedema seen in this study was caused by the extracellular 

accumulation of fluids in the brain from failure of the energy dependent Na+/K+-ATPase 

gradient during ischemia (Fogarty-Mack and Young, 2006). The evaluation of Aquaporin 4 

(AQP4) immunoreactivity (a principal protein involved in intra-extra cellular water balance) 

(Yang et al., 2012) may have helped confirm how FRHT functioned in preventing brain 

oedema formation in the rooibos treated brains. Future studies on other animal models of stroke 
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including the MCAO model may help confirm the exact mechanism involved in the anti-

cytotoxic and anti-vasogenic effects of FRHT in the progression of cerebral oedema. 

 

5.2 FERMENTED ROOIBOS HERBAL TEA ATTENUATES BLOOD BRAIN 

BARRIER IMPAIRMENT 

The high mortality associated with ischemic strokes can also be linked to the damage of the 

blood brain barrier (Knowland et al., 2014), making the maintenance of BBB integrity an 

important therapeutic approach in the management of ischemic stroke patients (Zhang et al., 

2013). Damage to the integrity of the BBB may occur spontaneously during acute stroke or as a 

result of reperfusion therapy (Nguyen et al., 2013). The exhaustion of ATP, imbalance in ionic 

homeostasis, oxidative or nitrosative stress signaling and the concomitant phosphorylation of 

tight junction accessory proteins are processes that could subsequently result in BBB disruption 

(Kim et al., 2013). BBB damage causes increased vascular permeability which results in 

vasogenic oedema and cell death, metabolic failure and inflammatory responses (Heo et al., 

2005; Rosenberg and Yang, 2007). In the present study, ischemia-reperfusion injury caused 

increased extravasation of Evans blue into the brain parenchyma, indicating an impairment of 

the blood brain barrier. Though this increase was not statistically significant, the findings are 

similar to those reported by Chen et al. (2010) as animals pre-administered FRHT showed 

Evans blue extravasation into the brain parenchyma when compared to the untreated animals.  

The protective effects of FRHT on the BBB has not been previously investigated but can be 

linked to the ability of the active polyphenols in rooibos tea to modulate paracellular 

permeability and prevent the disruption of tight junctions between brain microvascular 

endothelia cells. Recent findings by Liu et al. (2013), have shown that, alleviating the post-

ischemic decrease in expression of tight junction proteins (claudin-5, occludin, and ZO-1) 

could be the mechanism of action for the neuroprotective benefits conferred by green tea 

polyphenols on the BBB during early ischemic periods. In addition, Panickar et al. (2013) have 
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also reported the prevention of endothelia cell swelling by dietary polyphenols in vitro. The 

prevention of endothelia degeneration has been suggested by Krueger et al. (2015) as a 

promising therapeutic approach to prevent ischemia-related BBB damage. We suggest rooibos 

tea polyphenols may have conferred its neurovascular protection along these line of thought but 

also suggest future studies to deeply evaluate these claims. 

 

5.3 FERMENTED ROOIBOS HERBAL TEA PREVENTED HIPPOCAMPAL 

NEURODEGENERATION IN THE ISCHEMIC BRAIN 

In the absence of therapeutic intervention during an ischemic stroke, the brain during each hour 

irreversibly loses as many neurons as it does in almost 3.6 years of normal aging (Saver, 2006). 

Findings from both animal and human studies have shown that, brief ischemic period could 

initiate complex processes that ultimately lead to neuronal death (Woodruff et al., 2011; Baron 

et al., 2014). Because cerebral ischemia-reperfusion injury by the bilateral occlusion of the 

common carotid arteries does result in delayed neuronal death (DND) in selective regions of 

the brain, researchers have often used the characteristics of the CA1 cells of the hippocampus 

to investigate the effects of various treatments therapy (Wang et al., 2009). In this study, we 

investigated the effects of FRHT on the CA1 region of the hippocampus after 7 days of 

ischemic-reperfusion. Our findings confirmed that transient global cerebral ischemia does 

cause neuronal death in the CA1 region of the hippocampus which is consistent with other 

findings (Abe et al., 1995; Koponen et al., 2000; Nikonenko et al., 2009). Results from the 

Nissl staining also showed an increase in CA1 hippocampal cell survival in the ischemia group 

animals pre-administered with FRHT before ischemia. This suggests a protective effect of 

fermented rooibos herbal tea on neuronal death induced by ischemia. Similarly, the number of 

TUNEL-positive cells (cells undergoing apoptosis) was also reduced by the consumption of 

FRHT. 
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Put together, these results indicate that FRHT could mitigate the delayed hippocampal cell loss 

and possible neurodegenerative processes induced by BCCAO ischemia–reperfusion injury. 

The loss of oxidative phosphorylation (necessary for ATP production), mitochondria 

dysfunction, depolarization of the cytoplasmic potential, calcium overload, etc. are few of the 

possible complex processes mechanisms by which fermented rooibos herbal tea may have 

prevented ischemia-induced neurodegeneration. Further studies are required to validate these 

assumptions. 

 

5.4 FERMENTED ROOIBOS HERBAL TEA PREVENTED LIPID PEROXIDATION IN 

THE ISCHEMIC BRAIN TISSUES 

The role of oxidative stress in the pathophysiology of ischemic stroke has been well 

documented (Cichon et al., 2015). Cellular damage during and after an ischemic brain injury 

has been suggested to be due to oxidative damage caused by free radicals (Kinuta et al., 1989). 

While free radicals are only harmful at high concentrations, their production can be linked to 

several mechanisms, including mitochondria dysfunction, the activation of nitric oxide 

synthase (NOS), and the migration of neutrophils and leukocytes, mechanisms known to 

generate free radicals (such as the superoxide anions (O2
-)) which are harmful to the brain (Tsai 

et al., 2014). 

 

The profound effects of oxidative stress in stroke can be attributed to the following reasons; (1) 

the brain tissue is rich in polyunsaturated fatty acids which are particularly prone to damage by 

free radicals, (2) low content of antioxidant enzymes and (3) high consumption of oxygen 

(Allen and Bayraktutan, 2009; Hong et al., 2014). One of the most commonly reported 

biomarkers of oxidative stress in tissues is Malondialdehyde (MDA), the amount of which 

shows severity of lipid peroxidation (Serteser et al., 2002). MDA is produced as a by-product 
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of the reaction of superoxide (O2
-) and hydroxyl (–OH) radicals with unsaturated lipid (Ozkul 

et al., 2007). 

 

Results from this study show that cerebral ischemia-reperfusion injury by transient BCCAO 

caused a significant increase in the amount of MDA in the cerebrum but in animals pre-treated 

with FRHT before ischemia, the amounts of MDA were at physiologic levels. These findings 

compliment other published reports on the antioxidant benefits of rooibos tea. Inanami et al. 

(1995), Fukasawa et al. (2009), Marnewick et al. (2011), Awoniyi et al. (2012), and Hong et al. 

(2014) have all reported the antioxidative effects of rooibos tea against lipid peroxidation The 

activity of the abundant polyphenolic compounds in rooibos tea, particularly aspalathin, has 

been suggested to be responsible for the remarkable antioxidative benefits reported (Hong et 

al., 2014). The ability of flavonoids to donate H+ to the peroxyl radical produced as a result of 

lipid peroxidation has also been discussed as a possible mechanism of protection by Awoniyi et 

al, (2012). Although findings from the current study appear to support both suggested 

mechanisms, future studies should investigate the exact mechanism of action by which rooibos 

tea confers its health benefits. 

 

5.5 FERMENTED ROOIBOS HERBAL TEA MAINTAINED TISSUE TOTAL 

ANTIOXIDANT CAPACITY LEVELS 

Total tissue antioxidant capacity (TAC) levels measure the ability of endogenous systems to 

resist oxidative damage and current research shows that the TAC assay is a reliable biomarker 

for many different pathophysiological conditions (e.g. heart and vascular diseases, diabetes 

mellitus, neurological and psychiatric disorders, renal disorders and lung diseases) (Kusano and 

Ferrari, 2008). While TAC assays are of more than 2 types (Prior et al., 2005), this study only 

investigated the antioxidative properties of FRHT using the ORAC and FRAP assays. The 

ORAC and FRAP assays are of high scientific importance across several disciplines as they 
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have been used to provide information regarding the antioxidant capacity of many compounds 

and food samples, with some manufactures now including ORAC values on product labels 

(Prior et al., 2005). ORAC represents a hydrogen atom transfer reaction mechanism, and is 

more relevant to human biology than FRAP which analyses the ability of a compound to reduce 

ferric ion. When total antioxidant capacity levels are low in the body, cells and tissues become 

more susceptible to disease (Kusano and Ferrari, 2008) and in this case to ischemic brain 

injury. 

Results from this study show that low levels of ORAC and FRAP observed 7 days after the 

induction of BCCAO are indicative of the high levels of oxidative stress from the ischemia-

reperfusion injury. Consumption of fermented rooibos herbal tea before BCCAO however 

appeared to have mitigated the oxidative stress by keeping ORAC and FRAP levels at 

physiological levels. This suggests that long term consumption of FRHT could help maintain 

the total antioxidant capacity of the brain during an ischemic injury. These findings are similar 

to the reports from Akinmoladun et al. (2015) on the antioxidative properties of Kolaviron 

against ischemia reperfusion injury and are strongly supported by previous studies by Cao et 

al., 1998; Vergely et al., 1998 and Jung et al., 2011. 

 

5.6 FERMENTED ROOIBOS HERBAL TEA ALLEVIATED NEUROBEHAVIOURAL 

DEFICITS 

The 2009 stroke therapy academic industry roundtable (STAIR) recommendation for 

preclinical studies of stroke, suggested that evaluation of neurological outcomes be conducted 

in preclinical-studies (Minnerup et al., 2012). This is to show that functional neurological 

outcomes are also improved together with the tissue endpoints since neurological outcomes 

remain the primary device for clinical assessment of therapeutic interventions (Fisher et al., 

2009). To demonstrate the neuroprotective value of FRHT, the open field test (a simple method 
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for assessment of locomotor activity in rodents) was conducted as suggested by STAIR. 

Findings from the OF study showed that ischemia-reperfusion injury induced neurobehavioural 

deficits due to damage to the brain 7 days after BCCAO, whereas pre-consumption of FRHT 

appeared to attenuate the behavioural impairment induced by ischemia. Since severity of 

neurologic examinations is often related to histomorphological findings (Hong et al., 2000; 

Schiavon et al., 2014), our study also show similar correlations.  

In this study, a significant amount of neuronal cells survived the ischemic injury, similar to 

findings by Inanami et al. (1995) who reported rooibos tea to prevent age related changes in the 

brain. Since neuronal death has been reported to occur months after BCCAO ischemic-

reperfusion injury (Shin et al., 2010), the potential neuroprotective effects observed in this 

study (7 days after BCCAO) could be compromised in the long-run. It is therefore 

recommended that future studies should assess neuroprotective effects of FRHT months after 

post-BCCAO reperfusion.  
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CHAPTER SIX 

CONCLUSION, LIMITATION AND 

RECOMMENDATION 

6.0 CONCLUSION 

Our results provide substantial evidence of neuroprotection conferred by fermented rooibos 

herbal tea during an ischemic-induced brain injury. A possible explanation for this protection 

might be the ability of the active polyphenols present in rooibos tea to modulate the oxidative 

stress and neuroinflammatory pathways which lead to neuronal death, brain oedema and blood-

brain-barrier disruption. Our results tend to suggest that long term consumption of fermented 

rooibos herbal tea could confer multifactorial protective benefits to the brain in the event of 

ischemic injury especially due to stroke. These findings could potentially inform future clinical 

trials and public health policy decisions regarding stroke prevention and management, 

considering the increasing numbers of cases of patients with conditions that are considered risk 

factors for stroke. 

 

6.1 LIMITATION OF STUDY 

Neuroinflammation is a very important component of the ischemic re-perfusion study, hence 

immunohistochemical studies of microglia activation through GFAP staining could be used to 

investigate the neuroprotective properties of fermented rooibos herbal tea as seen in this study. 

Also, the role of astrocytes in the blood-brain-barrier is well documented; hence astrocyte 

activation studies using the IBA-1 staining could be performed. Both these assays were 

however not done in this study due to limited funding. In addition, the use of Intraoperative 

Doppler ultrasonography (IDU) for the measurement and monitoring of changes in cerebral 
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blood flow during induction of ischemia and reperfusion is important in stroke modeling. The 

IDU technique could not be employed in this study because the equipment was not available. 

Another limitation in this study is the use of only the open field test (OFT) for assessing 

neurobehavioural deficits due to limited availabity of other equipment. Although the OFT test 

provided useful data in this study, additional neurobehavioural tests (e.g. T-maze test, Water 

maze test and Object recognition test) could have offered more information on cognitive 

deficits associated with hippocampal lesions in animals pretreated with fermented rooibos 

herbal tea before and after the induction of cerebral ischemia-reperfusion injury. 

 

6.2 FUTURE RECOMMENDATION 

Future studies are recommended to incorporate the following aspects: 

 determine the most active compounds in fermented rooibos herbal tea and test their 

neuroprotective potential against cerebral ischemia 

 use of animal models with ischemic co-morbid factors such as atherosclerosis, hypertension 

which more closely mimic the pathophysiology of cerebral ischemia in humans 

 monitoring of biomarkers of inflammation in future experimental research 

 administration of fermented rooibos herbal tea before and several months after the 

induction of cerebral ischemia-reperfusion injury to determine its long-term therapeutic 

benefits. 

 use of additional neurobehavioural tests to corroborate findings on cognitive and motor 

deficits. 
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APPENDICES 

Appendix A: Standard curve for the determination of Evans Blue extravasation 

 

 

Appendix B: Standard curve for the determination of ORAC 
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Appendix C: Standard curve for the determination of FRAP 
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