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Abstract

Mathematical modelling of HIV/AIDS with recruitment of in-
fecteds

Thapelo Seatlhodi

MSc Dissertation, Department of Mathematics and Applied Mathematics, Uni-

versity of the Western Cape.

The influx of infecteds into a population plays a critical role in HIV transmission.

These infecteds are known to migrate from one region to another, thereby having

some interaction with a host population. This interactive mobility or migration

causes serious public health problems. In a very insightful paper by Shedlin et

al. [51], the authors discover risk factors but also beneficial factors with respect

to fighting human immunodeficiency virus (HIV) transmission, in the lifestyles

of immigrants from different cultural backgrounds. These associated behavioral

factors with cross-cultural migrations have not received adequate theoretical at-

tention. In this dissertation we use the compartmental model of Bhunu et al. [6]

to form a new model of the HIV epidemic, to include the effect of infective immi-

grants in a given population.

In fact, we first produce a deterministic model and provide a detailed analysis.

Thereafter we introduce stochastic perturbations on the new model and study sta-
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bility of the disease-free equilibrium (DFE) state. We investigate theoretically

and computationally how cross-cultural migrations and public health education

impacts on the HIV transmission, and how best to intervene in order to minimize

the spread of the disease. In order to understand the long-time progression of

the disease, we calculate the threshold parameter, known as the basic reproduc-

tion number, R0. The basic reproduction number has the property that if R0 is

sufficiently small, usually R0 < 1, then the disease eventually vanishes from the

population, but if R0 > 1, the disease persists in the population.

We study the sensitivity of the basic reproduction number with respect to model

parameters. In this regard, if R0 < 1, we show that the DFE is locally asymp-

totically stable. We also show global stability of the DFE using the Lyapunov

method. We derive the endemic equilibrium points of our new model.

We intend to counteract the negative effect of the influx of infecteds into a popu-

lation with educational campaigns as a control strategy. In doing so, we employ

optimal control theory to find an optimal intervention on HIV infection using ed-

ucational campaigns as a basic input targeting the host population. Our aim is to

reduce the total number of infecteds while minimizing the cost associated with the

use of educational campaign on [0,T ]. We use Pontryagin’s maximum principle to

characterize the optimal level of the control. We investigate the optimal education

campaign strategy required to achieve the set objective of the intervention. The

resulting optimality system is solved numerically using the Runge-Kutta fourth

order method. We present numerical results obtained by simulating the optimality

system using ODE-solvers in MATLAB program.

We introduce randomness known as white noise into our newly formed model,

and discuss the almost sure exponential stability of the disease-free equilibrium.

Finally, we verify the analytical results through numerical simulations.
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Chapter 1

General Introduction

1.1 Introduction to HIV/AIDS

Since its discoveries in the early 1980s, AIDS (Acquired immune deficiency syn-

drome or acquired immunodeficiency syndrome) and its cause, HIV (Human Im-

munodeficiency Virus) has had a great impact around the world both as a disease

and as a source of stigma and discrimination. While HIV/AIDS can be considered

a global pandemic, it is by any account overwhelmingly an African one, partic-

ularly in sub-Saharan Africa. HIV/AIDS continues to be the leading cause of

death in Sub-Saharan Africa, with an estimated 24.1 million people living with

the disease, over two thirds of the global total [26].

As a disease, on one hand, it devastates and weakens the immune system leaving

the immune system more vulnerable to infections and diseases. A person is prone

to experience a brief period of influenza-like illness. This is typically followed by

a prolonged period without symptoms. As the infection spreads further, it inter-

feres with functioning of the immune system, making the person more susceptible

to common infections like tuberculosis (TB), as well as opportunistic infections.

The late symptoms of the infection are referred to as AIDS which comprises the
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defining conditions such as pneumocystis pneumonia, severe weight loss, a type

of cancer known as Kaposi’s sarcoma, or other AIDS-defining conditions.

Understanding the epidemiology of HIV provides an important foundation for

public health authorities in recognizing risk behaviors associated with clinical

manifestations suggestive of HIV infection in their patients. It is also vital to

encourage acceptance of HIV testing and adoption of risk-reduction strategies to

prevent further transmission, and treatment to prevent opportunistic illnesses and

curb disease progression [6].

On the other hand, stigma and discrimination associated with HIV continue to un-

dermine prevention, treatment and care of people living with the HIV and AIDS.

The people living with the virus are still treated as different by those who are un-

infected. This hinders those with the virus from telling their partners about their

status as well as threatening their access to health care [6, 43, 51]. The isolation

and lack of health care available to immigrant populations also impedes HIV test-

ing, treatment, and prevention efforts. HIV-related restrictions for those visiting

or immigrating to a country exacerbate these problems by discouraging individu-

als from seeking testing or treatment for fear of being denied entry or placed on

deportation proceedings.

Since the work of Kermack and Mckendrick, mathematical models of epidemio-

logical dynamics have been developed and utilized extensively. The book [9] of

Brauer and van den Driessche gives a nice introduction to the subject. Such mod-

els are useful in predicting future scenarios, thereby informing policy and strate-

gies for combating the disease(s) in question. Mathematical models have been

developed throughout the past to control and predict the prevalence of infectious

diseases [31]. The driving force behind the disease prevalence is closely linked

2

 

 

 

 



with an increasing population mobility and increasing mutual interaction between

populations [39, 51, 62]. Population mobility and sexual intercourse are well-

known to be major forces in the spread of sexually transmitted diseases (STDs)

worldwide [39]. This mobility and mutual interaction between populations con-

tribute to the HIV pandemic on a significant level. Inadequacy of health facilities

in host regions to deal with mobile and immigrant populations, often make the

immigrants vulnerable to social and public health risks, in particular, HIV. In-

sufficient attention has been paid in public health research to study the impact

of cross-cultural migrations influencing the inflow of infected on the HIV/AIDS

prevalence [44, 50, 51, 53].

Various studies on the vaccination, and possibly the eradication of the HIV dis-

ease, strongly suggest that educational programs regarding HIV/AIDS have a pos-

itive impact on the HIV/AIDS epidemic [6, 45, 18]. Furthermore, educating mi-

grating people, those infected (and those around them) of the consequences of

the disease transmission can in turn reduce HIV/AIDS infections. The theoretical

model by Abiodun et al., [1], provides insightful views around the advantages of

parental care and screening control. Furthermore, studying the effect of public

health education campaigns on HIV transmission dynamics include papers such

as [6, 45, 18, 43].

There is a threshold parameter that might tell whether a population will increase

or decrease or even die out or, whether an infectious disease will persist or die out

within a population. This parameter is commonly known as the basic reproductive

number and is denoted by R0. This, in epidemiology, is defined to be the num-

ber of secondary infections caused by a single infective introduced into a wholly

susceptible population, over the course of the infection of this single infective.

3

 

 

 

 



Bhunu et al. [6] discusses the impact of public health education and abstinence

on the transmission dynamics of HIV in Sub-Saharan Africa. In their model they

derive the basic reproduction number which predicts whether the disease is per-

sistent or not. In their analysis of reproduction numbers, they found that effec-

tive counseling and testing have a positive impact in dealing with HIV/AIDS epi-

demic. Furthermore, their analysis also shows how educational programs regard-

ing HIV/AIDS may have a positive impact on the HIV/AIDS epidemic.

Mukandavire et al. [43] evaluated the impact of educational campaign as a pos-

sible control strategy for the spread of HIV/AIDS. Their model assumes sexual

transmission with an explicit incubation period for HIV infectivity. Their analysis

shows that public health education campaigns can effectively reduce the threshold

parameter, R0, to values below unity as intended for disease control, and conse-

quently can succeed in controlling the epidemic. On the contrary, their results also

suggest that it is more imperative to educate the sexually immature and mature in-

dividuals concurrently than merely focussing public health campaign on sexually

immature or mature individuals only.

Nyabadza et al. [45] presented a model system highlighting the impact of me-

dia campaigns on HIV transmission. Their findings, illustrated through numerical

simulation results, show that an increase in media campaigns as well as with-

drawal of a proportion of AIDS individuals from sexual activities leads to a re-

duction in the HIV transmission.

Brauer et al. [9] developed an HIV model that includes immigration and demo-

graphic effects, and supports the view that HIV infection cannot be eliminated

from the population when there is a constant flow of new infectives into the popu-

lation. Thus suggesting that in order to minimize or eradicate the disease, it would
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be necessary to isolate the fraction of arriving infectives into the population. In

contrast to Brauer et al., [9], recent studies by [39, 51, 62], have a differing state-

ment that it is difficult to measure infected amongst migrants while visiting host

regions, and that isolation phenomena leads to stigmatization. The work of Naresh

et al., [44], suggest that the spread of HIV infection can be slowed down if the re-

cruitment of infected is thoroughly investigated and restricted into the population.

1.2 Aims and objectives

A vital focus of our work is the prevention of HIV/AIDS among mobile and im-

migrant groups who are referred as infecteds in our study. In such groups, we

intend to counteract the negative effect of the influx of infecteds into a popula-

tion through the use of educational campaigns as a control strategy. The research

assumes that campaigns can eventually reduce the contact rate between the sus-

ceptible and the infected individuals. The research will investigate quantitatively

how strategies of public health education campaigns can be rolled out effectively

to deal with the global burden of HIV disease.

We begin by exploring the types of the mathematical epidemic models addressing

infectious diseases and in particular, epidemiology of the HIV/AIDS. Our primary

attention will be on the mathematical models that have a strong focus on the use

of optimal control theory to combat the infectious diseases and in particular, the

epidemiology of HIV/AIDS. We will then employ optimal control theory to find

an optimal intervention on HIV infection using educational campaigns as a basic

input targeting the host population. We use Pontryagin’s maximum principle to

characterize the optimal level of the control. We investigate the optimal education

campaign strategy required to achieve the set objective of the intervention. The
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resulting optimality system is solved numerically using the Runge-Kutta fourth

order method. We present numerical results obtained by simulating the optimality

system using ODE-solvers in MATLAB program. This will be followed by a

discussion of the numerical results to illustrate how the roll-out changes with time.

We introduce randomness known as white noise into our newly formed model,

and discuss the almost sure exponential stability of the disease-free equilibrium.

Finally, we perform numerical simulations to illustrate and verify the analytical

results.

1.3 Scope of this dissertation

This dissertation consists nine chapters which are outlined as follows.

Chapter 1 provides a brief background of HIV/AIDS. It discusses a brief overview

of the mathematical models on the study of HIV/AIDS. The aims and objectives

of the dissertation are laid out and the introductory chapter is concluded with a

scope of the dissertation.

Chapter 2 presents the mathematical tools where all the relevant concepts from

mathematical epidemiology are covered.

Chapter 3 provides a literature review on background to epidemiology and HIV/AIDS.

This chapter comprises two main sections. The first section of the chapter briefly

reviews HIV/AIDS and the immune system. Under this section the meaning be-

hind HIV and how it affects the immune system is explained. The explanation

is followed by a model of HIV showing gp120 binding to CD4 molecules and

a flow chart of specific immune response. The second last section discusses the
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epidemiology of HIV/AIDS showing the countries which are mostly affected by

the disease such as South Africa. This section ends with the discussion on the role

of migration on HIV/AIDS.

Chapter 4 provides an overview of mathematical modelling of infectious diseases.

Types of mathematical epidemic models is discussed. This is followed by a dis-

cussion on the role of mathematical models on infectious diseases.

Chapter 5 presents a basic model of an HIV/AIDS epidemic for our current study.

With the model of Bhunu et al. [6], as a basis, we form a new model of the HIV

epidemic. The new model allows for an inflow of infecteds into the population.

We study the existence and other basic properties of the solutions of the our model

system. Global stability analysis of the disease-free equilibrium is studied. We

also give endemic equilibrium solution followed by an example. We numerically

analyze the effect of the rate of knowing ones HIV status through counseling and

testing for our model system. Furthermore, we carry out sensitivity analysis of

basic reproduction number on the basis of the model parameters.

Chapter 6 presents public health education for HIV/AIDS control for the model

described in Chapter 5. We determine efficient roll-out of strategy for the control

of HIV/AIDS in a population. We solve the control model analytically and run

some numerical simulation to illustrate the behaviour of the solution over time.

Chapter 7 provides basic mathematical tools on stochastic differential equations

which are essential for the following Chapter 8.

Chapter 8 constructs a stochastic version of the proposed model described in

Chapter 5 by introducing the stochastic perturbations into the model. In making

our model more realistic, the positivity of the solutions is studied. Almost sure
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stability of the disease free equilibrium is showed through a Theorem. Finally,

results are illustrated by means of numerical simulations to verify the stability of

the Theorem in question.

We conclude and summarize the main results in Chapter 9.
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Chapter 2

Mathematical tools

2.1 Introduction

This chapter presents some definitions, theorems, lemmas and prepositions re-

quired to analyze model systems in this dissertation. We present phenomena and

tools such as compartmental modelling, Runge-Kutta fourth order method, op-

timal control technique, Lyapunov stability function, optimal control technique,

basic reproduction number and sensitivity analysis. Just to give a snapshot on

some of these sections. The first of these sections focuses on the compartmental

modelling which provides a brief background on mathematical modelling within

the history of epidemiology. The third last section, an algorithm for computing the

basic reproduction number is provided. Finally, the last of these sections is on the

sensitivity analysis of the threshold parameter R0. The references are provided

for the proofs of the results.
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2.2 Compartmental modelling

The spread of infectious diseases is a complex phenomenon with many interact-

ing factors. Efficient preventive and control measures of the spread of a life-

threatening pathogen depends on understanding of the mechanisms of that pathogen

[41]. Mathematical epidemiology serves as a tool to model the establishment and

spread of pathogens. A standard procedure is to use the notion of dividing the

population into compartments under certain assumptions, which represent their

health status with respect to the pathogen in the system. A tremendous foundation

in this method was done by Kermack and McKendrick in the year 1927 [8]. This

method is known as compartmental models in epidemiology, and they serve as

a basic mathematical framework for understanding the complex dynamics of the

system, with an intention to model the main characteristics of the system. In the

simplest case, the population is stratified into two health states: susceptible to the

infection of the pathogen (often denoted by S); and infected by the pathogen (de-

noted by the symbol I). The way that these compartments interact is often based

upon key assumptions. These models are usually investigated through ordinary

differential equations which are either deterministic or stochastic in nature.

The compartments usually considered are primarily the following

• Susceptible compartment (S) - A group of individuals in a population are

called susceptibles if they are not infected and however still at risk of being

infected.

• Infected compartment (I) is a group of individuals who are infected with

the disease and are capable of spreading the disease to those in the suscep-

tible category.
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• Recovered or Removed compartment (R) represents the individuals who

have been infected then recover from the disease and acquire either tempo-

rary or permanent immunity through immunization or death. Those in this

compartment are not able to be infected again or to transmit the infection to

others.

Compartmental models have provided valuable insights into the epidemiology

of many infectious diseases which includes Tuberculosis, Malaria, Measles, and

HIV/AIDS, to mention but a few. Some examples on the use of compartmental

modelling can be found in [1, 7, 6, 15, 23], etc. There are types of infectious dis-

eases which confer immunity and those that do not, and each type has a particular

terminology or description. We proceed by highlighting them as follows

• The classical SIR model: describes the infectious disease which confer

immunity, the individuals move from susceptible (S), to the infective (I)

and then move to the removed compartment (R).

• The SIS model: describes the individuals who recovers with no immunity

to the disease, that is, individuals are immediately susceptible once they

have recovered.

• The SIRS model: this model allows members of the recovered class to

be free of infection for some time and at some point rejoin the susceptible

class.

• The SEIR model: This model takes into account only those diseases which

cause an individual not to be able to infect others immediately upon their

infection. Many diseases have what is termed a latent or exposed phase “E”,

during which the individual is said to be infected but not infectious.
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• The SEIS model: In this model an infection does not leave any immunity.

Thus individuals that have recovered return to being susceptible (S) again

immediately.

The magnitude of each compartment at time t are represented by S(t), I(t), R(t),

and N(t) represents the total population. Also, the force of infection, denoted

by symbol λ , is the rate at which susceptible individuals acquire an infectious

disease.

2.3 Optimal control method

Optimal control refers to the process of determining controls and the state tra-

jectories for a dynamic system over a period of time to maximize or minimize

a performance index. The state variables, xi, for i = 1,2, ...,n, depend on the

controls uk, for k = 1,2, ...,m. The primary objective is to alter u to either min-

imize or maximize a performance index described by an objective functional

J(t,x1(t), ...,xn(t),u1(t), ...,um(t)), that attains the anticipated objective while keep-

ing the required cost to attaining it as low as possible. The optimal control can be

derived using Pontryagin’s maximum principle or solving the Hamilton-Jacobi-

Bellman equation, see Lenhart and Workman [31]. We shall be concerned only

with the following type of optimal control problem, which is a special case of the

problem as presented in [31].

The control problem:

Find the maximum of the integral as indicated,

max
u1,...,um

∫ t1

t0
f (t,x1(t), ...,xn(t),u1(t), ...,um(t))dt (2.1)

subject to
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x
′
i(t) = gi(t,x1(t), ...,xn(t),u1(t), ...,um(t)),

xi(t0) = xi0 for i = 1,2, ...,n,

where the functions f , gi are continuously differentiable in all variables.

Necessary conditions for a solution

Define the Hamiltonian:

H(t,x,u,λ ) = f (t,x,u)+λ (t) ·g(t,x,u),

where · is the dot product of vectors and λ (t) is a Lagrange multiplier or co-

state variable. Necessary conditions for u = u∗, x = x∗, and λ = λ ∗, to be an

optimal solution, are the following:

(i) x
′
i(t) =

∂H
∂λi

= gi(t,x,u), xi(t0) = xi0 for i = 1,2, ...n,

(ii) −λ
′
j(t) =

∂H
∂x j

, for j = 1,2, ...n,

(iii) The control u∗ must maximize H. So, if the necessary partial derivatives

exist, then we must have

∂H
∂uk

∣∣∣∣
u∗
= 0, for all k = 1,2, ...,m.

(iv) Certain so-called transitivity conditions must hold, see Lenhart and Work-

man [31].

2.4 Runge-Kutta fourth order method

The fourth order Runge-Kutta method is a numerical approach used to solve ordi-

nary differential equation of the form (see J. C. Butcher [10])
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dy
dx

= f (x,y), y(0) = y0. (2.2)

The fourth order Runge Kutta method is based on the following general equation

y(i+1) = yi +(a1k1 +a2k2 +a3k3 +a4k4)h (2.3)

where from knowing the value of y = yi at the point xi, we can find the value of

y = y(i+1) at the point xi+1, and h = xi+1 − xi is the step size.

The equation (2.3) is the representation of the first five terms of the Taylor series:

yi+1 = yi + f (xi,yi)h+
1
2!

f
′
(xi,yi)h2 +

1
3!

f
′′
(xi,yi)h3 +

1
4!

f
′′′
(xi,yi)h4 (2.4)

Based on the equation (2.4), one of the common solutions used is given as

y(i+1) = yi +
h
6
(k1 +2k2 +2k3 + k4) (2.5)

where

k1 = f (xi,yi)

k2 = f (xi +
1
2 ,yi +

1
2k1h)

k3 = f (xi +
1
2 ,yi +

1
2k2h)

k4 = f (xi +
1
2 ,yi + k3h).

2.5 Lyapunov stability function

In this section we review Lyapunov stability function. This function will be used

in chapter five to analyze the stability of the disease free equilibrium for our basic

model system. We present the function’s definitions, and a theorem that we shall

need in the sequel, with no proof. The interested reader should consult a standard

text, such as Linda and Allen [3].
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The function is demonstrated for the following two dimensional autonomous sys-

tem:
dx
dt

= f (x,y) and
dy
dt

= g(x,y). (2.6)

Definition 2.1 Let U be an open subset of R2 containing the origin. A real-valued

C1(U) function V , V :U →R, [(x,y)∈U,V (x,y)∈R] is said to be positive definite

on the set U if the following two conditions hold:

(i) V (0,0) = 0.

(ii) V (x,y)> 0 for all (x,y) ∈U with (x,y) ̸= (0,0).

The function V is said to be negative definite if −V is positive definite.

Definition 2.2 A positive definite function V in an open neighborhood of the ori-

gin is said to be a Lyapunov function for the autonomous differential system (2.6)

If
dV (x,y)

dt
≤ 0 for all (x,y) ∈U − (0,0).

If
dV (x,y)

dt
< 0 for all (x,y) ∈U − (0,0), the function V is called a strict

Lyapunov function.

Theorem 2.3 Let (0,0) be an equilibrium of the autonomous system (2.6) and let

V be a positive definite C1 function in a neighborhood U of the origin.

(i) If
dV (x,y)

dt
≤ 0 for (x,y) ∈U − (0,0), then (0,0) is stable.

(ii) If
dV (x,y)

dt
< 0 for (x,y) ∈U − (0,0), then (0,0) is asymptotically stable.

(iii) If
dV (x,y)

dt
> 0 for (x,y) ∈U − (0,0), then (0,0) is unstable.
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2.6 Basic reproduction number

The basic reproduction number or basic reproduction ratio, sometimes referred to

as the threshold parameter, is a very important metric in epidemiology. This con-

cept is fundamental to the study of epidemiology as it helps determine whether or

not an infectious disease can spread through a population. This ratio was origi-

nally developed for the study of demographics, independently studied for vector-

borne diseases such as malaria and other human infections. Currently it is widely

used in the study of infectious diseases and in-host population dynamics, see [16].

As a general epidemiological definition, the basic reproduction ratio, which is de-

noted by R0, is defined as the number of secondary cases which one case would

produce in a completely susceptible population. Basically, R0 can be thought of

as the average number of people who will catch a disease from one contagious

person. The interpretation of the word secondary, however, depends on the con-

text. For instance, in demographics and ecology, R0 is taken to be the lifetime

reproductiveness of a typical member of a species. For in-host population dynam-

ics, R0 is taken as the number of newly infected cells produced by one infected

cell during its lifetime assuming that all other cells are susceptible.

In epidemiology, R0 is taken to mean the number of persons affected by a single

person during their entire infectious period, in a population that is entirely sus-

ceptible or disease-free. When R0 < 1, the infection will die out in the long run,

which means each infected person produces, on average, less than one new in-

fected person. Also there exist only one equilibrium, the disease-free equilibrium,

and it is locally asymptotically stable. Alternatively, when R0 > 1, the infection

will be able to spread in a susceptible population. This type of threshold behavior

is the fundamental and useful aspect of the R0 concept. For a larger value of R0,
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that is the endemic infection, we can determine which control measures, and at

what size, would be most effective in reducing R0 below unity, to prevent sus-

tained spread of the infection, thus providing important guidance for public health

initiatives. The following section presents the complete algorithm to compute the

basic reproduction number in mathematical epidemiological modelling, using the

Van den Driessche and J. Watmough setting, [61]. We demonstrate this setting by

way of a computational example using a non-linear deterministic mathematical

model.

2.7 The next generation matrix

This section presents an algorithm for obtaining R0 for a general compartmental

ordinary differential equations model of disease transmission. The term disease

referred in this text includes asymptomatic stages of infection as well as symp-

tomatic. The next generation matrix method introduced by Van den Driessche and

J. Watmough [61], is a general method for deriving R0, or an equivalent thresh-

old parameter, when more than one class of infectives are involved, in which the

population is divided into discrete, dis-joined compartments. The next generation

operator can thus be used for models with age structure or spatial structure. Con-

tinuous variables within the population are approximated by a number of discrete

compartments. In the next generation method, R0 emerges as the spectral radius,

or equivalently, the supremum among absolute eigenvalues in a spectrum, of the

next generation operator. The formation of the operator involves determining the

compartments that are infected and non-infected, from the model.

We outline the steps needed to find the next generation operator in matrix notation.

Suppose we have a heterogeneous population whose individuals are differentiable
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by characteristic behavior, age, spatial position, or stage of the disease, but can be

categorized into n homogenous compartments of which m are infected, see Van

den Driessche and J. Watmough [61].

Xs is defined to be the set of all disease free states:

Xs = {x ≥ 0 | xi = 0, i = 1, ...,m}.

First of all new infections must be distinguished from all other changes in popu-

lation before calculating R0.

Let

• Fi(x): rate of appearance of new infections in compartment i,

• V+
i (x): rate of transfer of individuals into compartment i by all other

means,

• V−
i (x): rate of of transfer of individuals out of compartment i.

Each of the above functions (Fi(x),V+
i (x) and V−

i (x)) is assumed to be at least

twice continuously differentiable.

The disease transmission model consists of non-negative initial conditions cou-

pled with the following system of equations:

ẋi = fi(x) = Fi(x)−Vi(x), i = 1, ...,n, (2.7)

where Vi
−(x)−Vi

+(x) and the functions satisfy assumptions one to five below:

Assumption one: If x ≥ 0, then Fi(x)≥ 0, V+
i (x)≥ 0, V−

i (x)≥ 0 for i = 1, ...,n.

If a compartment is empty, then it means no transfer of individuals between com-

partments. Thus,
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Assumption two: If x= 0, then V−
i (x) = 0. In particular, if x∈Xs then V−

i (x) = 0,

for i = 1, ...,m. The next condition arises from the simple fact that the incidence

of infection for uninfected compartment is zero.

Assumption three: Fi(x) = 0 if i > m. To ensure that the disease-free subspace

is invariant, it is assumed that if the population is free of the disease then the

population will remain disease free. That is, there is no influx of infectives.

Assumption four: x ∈ Xs, then Fi(x) = 0, V+
i (x) = 0 for i = 1, . . . ,m. The re-

maining condition is based on the derivatives of f near a disease-free equilibrium

(DFE). DFE of (2.7) is defined to be a (locally asymptotically) stable equilibrium

solution of the disease-free model, i.e., (2.7) restricted to Xs. An important note

is that the model is assumed to have a unique DFE. Consider a population near

the DFE x0. If the population remains near the DFE, i.e., if the introduction of a

few infective individuals does not result in an epidemic, then the population will

return to the DFE according to the linearized system

ẋ = D f (x0)(x− x0), (2.8)

where D f (x0) is the derivative [
∂ fi

∂x j
] evaluated at the DFE, x0 (i.e., the Jacobian

matrix). Here, and in what follows, some derivatives are one sided, since x0 is on

the domain boundary. The attention is restricted to systems in which the DFE is

stable in the absence of new infection. That is,

Assumption five: If F(x) is set to zero, then all eigenvalues of D f (x0) have neg-

ative real parts.

These conditions make it possible to partition the matrix D f (x0) as shown by the

following lemma.
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Lemma 2.4 P. van den Driessche and J. Watmough [61]. If x0 is a disease-free

equilibrium of system (2.7) and fi satisfies assumptions 1 - 5 above, then the

derivatives DF(x0) and DV (x0) are partitioned as

DF(x0) =

F 0

0 0

 , DV (x0) =

V 0

J3 J4

 ,

where F and V are the m×m matrices defined by

F =
[

∂ Fi
∂ x j

(x0)
]
, V =

[
∂Vi
∂x j

(x0)
]
,

with 1 ≤ i, j ≤ m.

Further, F is non-negative, V is a non-singular M-matrix and all eigenvalues of

J4 have positive real part.

On the basis of the above assumptions, we can form the next generation matrix

FV−1 from matrices of partial derivatives of Fi and Vi as shown in Lemma 2.4,

where, i, j = 1, ...,m and x0 is a DFE. The (i, j) entry of F is the rate at which

new infections are produced in compartment i by infected individuals in compart-

ment j. The ( j,k) entry of V−1 is the mean duration time the infected individual

that is introduced into compartment k spends in compartment j in its life span.

The entries of FV−1 is the expected number of new infections in compartment i

produced by the infected individual originally introduced into compartment j.

So we set,

R0 = ρ(FV−1), (2.9)

where ρ denotes the spectral radius (dominant eigenvalue) of the next generation

matrix (FV−1).
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2.8 Sensitivity analysis

Sensitivity analysis technique in the context of deterministic dynamical model

system refers to how sensitive a model is to changes in the values of its parame-

ters. By deterministic model, the output of the model is strictly determined by the

input parameters and the structure of the model system. That is, the same input

produce the same output if the model is simulated multiple times. In contrast,

its counterpart stochastic model does not produce the same output when repeated

with the same inputs merely because of inherent randomness in the behavior of

the system.

The aim of sensitivity analysis to identify critical inputs of a model quantify-

ing how input uncertainty impacts model outcome. Many parameters used in the

model system usually represent quantities that are often very difficult, or even

impossible to compute accurately. Therefore, these parameter values are often es-

timated to match up with the level of accuracy necessary for a parameter to make

a model system sufficiently useful and valid. When executed, the system behaves

as expected from the real world observations. It provides some indication that the

parameter values reflect, at least in some part, the real world.

In mathematical epidemiology, sensitivity analysis is naturally performed to study

the disease transmission by computing the sensitivity indices of the basic repro-

duction number R0. Sensitivity analysis provides information as to how reactive

each parameter is to disease transmission and somewhat tries to discover parame-

ters that have a high impact on R0 and should be targeted by intervention strate-

gies. Sensitivity analysis is usually carried out by a technique called the normal-

ized forward sensitivity index of a variable with respect to a parameter, which is
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the ratio of the relative change in the variable to the relative change in the param-

eter. The sensitivity index may be alternatively defined using partial derivatives,

when the variable is a differentiable function of the parameter.

Definition 2.5 The normalized forward sensitivity index of R0, that depends dif-

ferentiably on a parameter p, is defined by

ϒR0
p =

∂R0

∂ p
× p

R0
.
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Chapter 3

Background to Epidemiology and

HIV/AIDS

3.1 HIV/AIDS and the immune system

3.1.1 What is HIV/AIDS?

Human immunodeficiency virus (HIV) types, derived from primate lentiviruses,

are the etiologic agents of AIDS. HIV is a retrovirus, a member of the Lentivirus

genus, and exhibits many of the physicochemical features typical of the family

[27]. Since HIV-1 was isolated in 1983, AIDS has become a worldwide epidemic,

expanding in scope and magnitude as HIV infections have affected different pop-

ulations and geographic regions [66]. Millions are now infected worldwide. Once

infected, individuals remain infected for life. AIDS is one of the most important

public health problems worldwide at the start of the 21st century. The develop-

ment of highly active antiretroviral therapy (HAART) for chronic suppression of

HIV replication and prevention of AIDS has been a major achievement in HIV

medicine [27].
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Many studies had claimed that HIV in humans originated from cross-species in-

fections by simian viruses in rural Kinshasa (now Democratic Republic of Congo),

Central Africa, probably due to direct human contact with infected primates (mon-

keys) blood [66]. Current evidence is that the primate counterparts of HIV-1 and

HIV-2 were transmitted to humans on multiple different occasions. Sequence evo-

lution analysis place the introduction of simian immunodeficiency virus (SIV) into

humans that gave rise to HIV-1 group M at about the 1930s [27]. Presumably, such

transmissions occurred repeatedly over the ages, but particular social, economic,

and behavioral changes that occurred in the mid-20th century provided circum-

stances that allowed these virus infections to expand, become well-established in

humans, and reach epidemic proportions [27, 66].

3.1.2 The immune system

The function of the immune system requires antigen-specific lymphocytes of two

major types (T- and B-cells) and cytokines. T-cells are thymus-derived lympho-

cytes and B-cells are bone marrow-derived lymphocytes. Cytokines are secreted

polypeptides that modulate the functions of cells. Those produced by mononu-

clear cells (i.e. lymphocytes and mononuclear phagocytic cells) are called in-

terleukins. These regulate the growth and differentiation of lymphocytes and

hematopoietic stem cells and the interactions among T-cells, B-cells, and mono-

cytes in the elaboration of an immune response. B-cells are responsible for the

humoral immune response [54].

T-cells are responsible for:

• The initiation and modulation of immune responses (including B-cell

responses)
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• Cell-mediated immune processes that involve direct damage to antigen-

bearing tissue or blood cells (e.g. HIV infected host cells)

• Stimulation and enhancement of the nonspecific immune functions of the

host (e.g. the inflammatory reaction and antimicrobial activity of phago-

cytes)

Figure 3.1: A model of HIV showing gp120 binding to CD4 molecules [54].

T-cells are classified by the presence of the surface molecules called CD4 and

CD8, which in turn are related to functional activities classified as helper, sup-

pressor, or cytotoxic. The immune response is a complex but precisely regulated

defense system in which specific recognition is imparted by antibodies, B-cell

immunoglobulin receptors, and T-cell receptors, and activation and differentiation

are dependent on a regulatory cascade of cell-cell communication molecules.

The critical significance of CD4+ helper cells to the body is shown by the catas-

trophic effects of acquired immunodeficiency syndrome (AIDS), in which the hu-
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man immunodeficiency virus (HIV-gp120) binds to the CD4 molecule, enters the

cell, and interferes with its function or destroys it. As a result, the body becomes

susceptible to a wide variety of bacterial, viral, protozoal, and fungal infections,

both through loss of preexisting immunity and through failure to mount an effec-

tive immune response to newly acquired pathogens [54]. A flow chart depicting

the aforementioned events and interactions surrounding the specific immune re-

sponse is shown in Figure 3.2. The cell-mediated response begins at the top left

and the humoral response begins at the top center. Fig. 3.1 below shows how the

two responses interact.
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Immature, inac-

tive helper and

cytotoxic T-cells

Pathogen
Immature, in-

active B-cells

Pieces of pathogen

presented on surface

of antigen-presenting

cell (macrophage)

Mature, inactive

helper and

cytotoxic T-cells

Mature, inac-

tive B-cells

Free antigen

in blood

Helper and cytotoxic T-cells are acti-

vated by antigen-presenting macrophage,

but only if T-cells recognize spe-

cific antigen presented by macrophage

B-cell is activated by the antigen, but only

if B-cell recognizes specific antigen. Active

helper T-cell is required for B-cell activation

Active B-cell replicates, and

produces antibody molecules

that can bind to specific antigen

Active helper and cytotoxic T-cells

replicates, including formation of

memory cells. Cytotoxic T-cells

require helper T-cells for activation

Memory T-cells

can respond

to subsequent

infection by that

kind of pathogen

Cytotoxic T-

cells kill any

body cell infected

with that specific

kind of pathogen

Antibody

binds to

antigen

(”tagging”)

Memory B-cells can respond

to subsequent infection

by that kind of pathogen

Complement system

destroys the antigen

Phagocytic cells en-

gulf the tagged antigen

Engulfed by macrophage To thymus In bone marrow

Helper T-cell activates B-cell

Figure 3.2: A flow chart of specific immune response [54].
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3.2 Background to epidemiology

Giving a universally valid definition of epidemiology is difficult. Epidemiology is

a scientific methodology which can be applied to a broad range of health and med-

ical problems, from infectious diseases to health care. It is a constantly changing

field of science, because new questions arise in population health and new sta-

tistical techniques are developed and adapted from other sciences. According to

this definition, epidemiology is the study of the distribution and determinants of

health-related states or events in specified populations, and the application of this

study to the control or management of health problems [66]. Epidemiology is the

fundamental science of public health and provides the evidence on which public

health professionals should base their decisions and strategies [26, 66]. In this

way, epidemiology provides the tools for the control of diseases and health pro-

motion. More specifically, some important tasks of epidemiology for public health

are:

• To elucidate the etiology of a disease

• To describe the spectrum of a disease, what kind of symptoms occur and

how frequently they occur?

• To describe the natural history of a disease, what disease stages does a

patient typically go through?

• To identify risk factors and protective factors, i.e., which factors enhance

or prevent occurrence of a disease?

• To estimate disease burdens and health-care needs of a population

• To predict disease trends, to extrapolate from observations about time
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trends in risk factors and the future occurrence of the disease

• To evaluate the effectiveness of interventions and public health programs.

It should first be emphasized that all epidemiological studies are or should be

based on a particular source population also called the study population or base

population followed over a particular risk period. Within this framework a funda-

mental distinction is between studies of disease incidence, i.e., the number of new

cases of disease over time, and studies of disease prevalence, i.e., the number of

people with the disease at a particular point in time.

3.2.1 Epidemiology of HIV/AIDS

Over the last few decades Acquired Immunodeficiency Syndrome (AIDS) has

been one of the most devastating pandemic diseases humankind ever faced, caus-

ing more than 35 million people to die since its first discovery in 1981 and its

etiologic agent Human Immunodeficiency Virus (HIV) in 1983. There are ap-

proximately 34 million people living with HIV worldwide and about 3 million

become newly infected each year [27]. According to WHO [66], in the year 2008

an estimated 2 million people were killed by HIV/AIDS and more than 95 percent

of HIV positive people are in the low and middle-income countries. Sub-Saharan

Africa remains the most heavily affected region, accounting for 71 percent of all

new HIV infections [27, 66].

UNAIDS estimates that approximately 2.7 million persons were newly infected

with HIV at the end of 2010 and about 1.8 million deaths were attributed to AIDS

worldwide [26]. Table 3.1 below, provides regional HIV and AIDS statistics in

2010. That is, regional estimates of adults and children newly infected with HIV,

people living with HIV, and AIDS-related deaths.
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Epidemiology of HIV/AIDS

World region Estimated prevalence

of HIV infection (adults

and children)

Estimated adult

and child deaths

during 2010

Adult

prevalence

Worldwide 31.6 million - 35.2 mil-

lion

1.6 to 1.9 million 0.8%

Sub-Saharan

Africa

21.6 million - 24.1 mil-

lion

1.2 million 5.0%

South and South-

East Asia

3.6 million - 4.5 million 250,000 0.3%

East Europe and

Central Asia

1.3million -1.7 million 90,000 0.9%

Latin America 1.2 million - 1.7million 67,000 0.4%

North America 1.0 million - 1.9 million 20,000 0.6%

East Asia 580,000 - 1.1 million 56,000 0.1%

Western and Cen-

tral Europe

770,000 - 930,000 9,900 0.2%

Table 3.1: UNAIDS World Aids Day Report (2011) [26].
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Many countries, particularly some in Africa, Asia and Eastern Europe are now

experiencing rapid spread of HIV [27]. Because of the long incubation period

from infection to end-stage disease, about 10 years in the absence of treatment,

these countries are still in relatively early stages of the epidemic with the peak of

HIV-related morbidity and mortality yet to come. As the world goes through a

period of rapid HIV spread with a large gap between the number of new cases and

the number of deaths of prevalent cases, HIV prevalence worldwide is expected

to escalate for the foreseeable future.

The epidemic had spread rapidly worldwide by the late 1980s. In Africa, heterosexually-

acquired HIV dominated the mode of transmission, as opposed to the homosexual

and drug injecting associated epidemics in North America and Western Europe.

In Asia, Latin America and the Caribbean, heterosexual and drug-use associated

transmission led to rapid spread and recently, a drug-use associated epidemic has

emerged in Eastern European nations [27].

Sub-Saharan Africa which is considered to be the epicenter of the global HIV/AIDS

epidemic accounts for over 70% of prevalent cases of HIV worldwide. Countries

like Lesotho, Botswana, South Africa, Swaziland and Zimbabwe have the high-

est HIV prevalence rates in the world. What the exact impact of the HIV/AIDS

epidemic will be is still unknown, but the epidemic is likely to have an impact on

nearly every aspect of life in Southern Africa. The region will be faced with great

personal emotional suffering, a major decline in life expectancy, a great loss of

both skilled and unskilled labour, rising costs of health care, social and economic

disruption at the family and community level and a reduction of human and finan-

cial resources available for civil society organizations and the government. Some

even consider HIV/AIDS a threat to social and political stability. Despite the

warning signs of fertile ground for an infectious disease epidemic, HIV continues
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to confound public health practitioners worldwide. As yet, there is no cure, and no

vaccine. Furthermore, the ability to mount effective prevention and control efforts

are complicated by social taboos, fear and prejudice associated with HIV/AIDS

[27, 66].

3.2.2 South Africa and epidemiology of HIV/AIDS

Recent events show there are three major social factors that seem to place South

Africa at a higher risk of HIV [14, 71]. Firstly, social inequalities in income

and employment status are powerful predictors of HIV infection, although, inter-

estingly, the correlation is neither linear nor clear. Several factors are involved

in the association. For example, a low income or level of employment is asso-

ciated with a greater exposure to risky sexual experience, diminished access to

health information and to prevention, absent or delayed diagnosis and treatment,

and less concern about one’s health and the future, because of the harshness of

the present and so forth [46]. Secondly, mobility is a well-known determinant of

epidemics, but in South Africa the situation is particularly complex [39, 44, 64].

Mass resettlement of population under apartheid, seasonal labour migrations, and

movements along major trade routes, e.g. truck drivers across borders, refugees

fleeing political war in other parts of Africa, and, since 1990, return of political

exiles and liberation soldiers have all contributed to the spread of infections [71].

Thirdly, sexual violence, whether by known or unknown perpetrators, in commer-

cial or conjugal sex also facilitates viral transmission. Sexual violence is linked

with common forms of social and political violence that have long been part of

the everyday life in townships and inner city areas [64]. The combination of the

three factors can be seen in the practice of survival sex, whereby young women in

the townships, often migrants from impoverished rural areas, use their bodies as
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an ordinary economic resource outside the context of prostitution but within the

culture of male violence [64].

Inequality, mobility, and violence are partly the legacy of centuries of colonial

exploitation and racial segregation, culminating in the institution of apartheid

regime. In epidemiological terms, this segregation translates as differential HIV

sero-prevalence between black and white groups and between social classes. A

good example illustrating this legacy is the mining industry. The extraction of a

black male labour force from the villages to work in the mines has been the motor

of the South African economy since the end of the 19th century. These men are

accommodated in hostels, far from their spouses, and commercial sex and access

to alcohol are more or less institutionalized social activities in the hostel dwelling

setting. In this instance, social context has a far greater bearing on risk of infection

than individual sexual behavior [51].

The marks of apartheid are still deeply inscribed in the bodies and minds of the

people who had to suffer under it, two decades after it ended, and the country’s

AIDS crisis manifests the legacy of the politics of the past [14]. For instance,

within South Africa, some black people seems to believe that HIV/AIDS was

developed by the apartheid government with an intention to eliminate the black

population. But perhaps the key neglected factor in explaining the rapid spread

of HIV over the last decade is population mobility. Researchers are still far from

understanding in detail just how and to what extent migration and HIV/AIDS are

interconnected. This dissertation seek to attempt filling in this gap by review-

ing the current state of knowledge on the interconnections between mobility and

HIV and argues for more research that will further our understanding of migrant

vulnerability and the development of appropriate policies and models of interven-

tion. The connections are difficult to unravel because HIV/AIDS arrived in the
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country at a time when population mobility and systems of labour migration were

undergoing rapid transformation.

3.2.3 Migration and HIV/AIDS

According to Lima et al., [32], migration can be defined as the movement from

one region to another and this movement can be either temporary or permanent

and voluntary or involuntary. Recent literature review provides backing that mi-

gration induces important transfers of political, cultural, social and economic val-

ues between nations. While many studies have predominantly focused on trans-

fers of positive norms, Docquier et al.,[13], in their paper assert that movements

of people can also spread negative tremors across nations. History record have

pointed out that migration was the source of propagation of pandemic diseases

such as bubonic plague and Spanish flu within Europe and contributed to spread

of many diseases during slave trade and colonialism from Europe to Africa and

the rest of the world. It is therefore not surprising that again migration is also

alleged as a reason for explaining the spreading of HIV/AIDS within and across

nations, see [13].

According to UNAIDS [27] Africa is the most infected continent with average

HIV prevalence rates approximately 25% or more in Sub-Saharan Africa. Many

case studies have highlighted the mechanism through which workers’ movement

for instance has contributed to spread of HIV/AIDS all over the world. In South-

ern Africa, this is especially the case for male workers migrating or commuting to

find jobs in South African mines, where there high activity of sex workers. This

circular nature of migration and the maintenance of links with home through fre-

quent end of year visits put people at risk at both ends of the migratory movement.

While many migrants have regular sexual partners, some have relations with ca-
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sual partners and face a higher risk to be infected by illness such as HIV/AIDS

and to transmit it. This fact indicates that the truck drivers community is such a

social group that is vulnerable to the dangers of HIV/AIDS and when infected,

and in turn poses the risk of transmitting the disease. This is because the type

of their work involves a lot of trans-countries traveling which means getting to

meet casual partners along the way, often having unprotected sexual intercourse

with these women who are not their regular partners so they are vulnerable to

contracting HIV/AIDS and other sexual transmitted diseases Docquier et al. [13].

Although many cross-country studies have investigated the links between macroe-

conomic variables and HIV/AIDS of truck drivers, few have analyzed it using

mathematical models to determine the HIV incidence.
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Chapter 4

An overview of mathematical

modelling of infectious diseases

4.1 Introduction

Mathematical modelling is of considerable importance in the study of infectious

diseases because it may provide understanding on the underlying mechanisms

which influence the disease spread and may help inform public health interven-

tions. In particular, the first attempt to model and hence predict or explain patterns

of infectious diseases dates back in the early nineteen hundreds by the work of

Kermack and Mckendrick [8, 28]. These early models along with many subse-

quent revisions and improvements generally categorized individuals in a form of

compartments such as susceptibles, infected and recovered (no longer infectious).

In this review, we highlight briefly the use of the mathematical models for the

study of infectious diseases with a special focus on the Acquired Immunodefi-

ciency Syndrome (AIDS) and its etiologic agent Human Immunodeficiency Virus

(HIV). Also, we provide the specific types of epidemic models being used.
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4.2 Types of mathematical epidemic models

Mathematical models are usually developed based on assumptions. Which means

that mathematical models are only as good or useful as the assumptions on which

they are based. Mathematical models of epidemics of infectious diseases may be

classified into two broad classes namely deterministic and stochastic. The term

“stochastic” refers to being or having a random variable. A stochastic model is

an important tool for estimating probability distributions of outcomes by allowing

for random variation in one or more inputs over time. There are three different

processes for formulating stochastic epidemic models. They include discrete time

Markov chain (DTMC) models, continuous time Markov chain (CMTC) models

and stochastic differential equation (SDE) models. These stochastic processes

differ in the underlying assumptions regarding the time and the state variables.

For instance, in a DTMC model, the time and the state variables are discrete. In

a CTMC model, time is continuous, but the state variable is discrete. Finally, the

SDE model is based on a diffusion process, where both the time and the state

variables are continuous. Further expansion on the use and structure of these

processes can be found in Allen [4].

A key theoretical distinction between models is that a deterministic model is based

on population averages and a stochastic model is based on individual-based simu-

lations. In individual-based simulations, each individual in the population is mod-

eled as a discrete entity and characteristics are determined separately. For models

based on population averages, it is assumed that all individuals in the population

have identical characteristics [25]. These two approaches have common character-

istics, i.e., they divide the population into cohorts of individuals. The individuals

in the same cohort are assumed to share the same characteristics. For instance,
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the characteristics used to define cohorts in HIV/AIDS models are usually factors

such as age, sex, level of sexual risk behaviour. Also, cohorts are usually defined

according to disease status, i.e., susceptibles, infected (possibly further split ac-

cording to the stage of the disease), removed (either by natural death or disease

induced death).

In mathematical epidemiology, stochastic models are often used with individual-

based simulations, as these kinds of models will allow events such as HIV infec-

tion and death to be simulated by random process. Deterministic models on the

other hand, calculate expected numbers of events in cohorts of individuals and are

therefore used with models based on population averages. Deterministic models

generate unique solutions, because they are based only on average values of ran-

dom process. A stochastic model, however, generates different trajectories each

time it is run because the answers depend on the actual simulation of the random

process [20, 25] .

A widely recognized need to accommodate this variation and uncertainty has

given rise to a rather large literature on stochastic models of epidemics, which

takes into account variability in the development of epidemics and quantifies the

uncertainties as to what course an epidemic may take in terms of probabilities.

Because, for the most part, the mathematics underlying stochastic formulations

is more difficult to penetrate than that used in deterministic formulations, this

difficulty has in the past proven to be a barrier to applying stochastic models in

practical situations. However, with the help of computer intensive methods de-

signed to compute sample realizations of an epidemic, practical illustrations of

the variability inherent in the evolution of a stochastic process are provided, and

the barriers to practical application may, in part, be removed [31].
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One of the most important differences between the deterministic and stochastic

epidemic models is their asymptotic dynamics. It may happen that eventually

stochastic solutions (sample paths) converge to the disease-free state even though

the corresponding deterministic solution converges to an endemic equilibrium.

For stochastic differential equations in general, this phenomenon is discussed in

Mao’s book [36] for instance. Other properties that are unique to the stochas-

tic epidemic models include the probability of an outbreak, the quasi-stationary

probability distribution, the final size distribution of an epidemic and the expected

duration of an epidemic.

4.3 Mathematical models and infectious diseases

On a year to year basis, a large number of people worldwide suffer and die

from infectious diseases such as measles, malaria, tuberculosis, Human Immuno-

deficiency Virus (HIV). Taking a closer look into historical deaths of infectious

diseases, classic examples of these deaths include the Black Death and smallpox

and influenza disasters. In the fourteenth century, 25 million deaths in Europe

from the Black Death is estimated to have killed 30%-60% of Europe’s popula-

tion, reducing the world’s population from an estimated 450 million to between

350 and 375 million [69]. The pre-Columbian Mesoamerican people of central

Mexico, also known as Aztecs, lost half their population of 3.5 million from small-

pox. Approximately 20 million people worldwide died from influenza pandemic

in the year 1919 [69].

There are other diseases like Influenza, Cholera, Tuberculosis (TB), Human Immuno-

deficiency Virus (HIV) which continue to kill millions of people presently. Ac-

cording to World health Organization (WHO), over one million people die from
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malaria each year, mostly children under five years of age, with 90% of malaria

cases occurring in Sub-Saharan Africa. An estimated 300-600 million people suf-

fer from malaria each year. More than 40 percent of the world’s population lives

in malaria-risk areas. Measles is a highly contagious virus, spread by contact with

an infected person through coughing and sneezing. Approximately 4000 mostly

children less than five years of age die from measles-related complications each

day, or 17 deaths every hour. About 1.5 million people die from tuberculosis each

year, and it is thought that as many as one third of the current seven billion hu-

man population may be infected with Mycobacterium tuberculosis. Cholera is an

acute, diarrhea illness caused by infection of the intestine with the bacterium Vib-

rio cholerae. An estimated 3-5 million cases and over 100,000 deaths occur each

year around the world. According to estimates by WHO and UNAIDS, 35 million

people were living with HIV globally at the end of 2013. That same year some

2.1 million people became newly infected, and 1.5 million died of AIDS-related

causes. A particularly interesting case is that of Ebola virus disease (EVD) which

erupted in the year 2014 in West Africa. According to Centers for Disease Control

and Prevention (CDC) on Ebola outbreak in West Africa [70], there are at least

25,178 suspected cases, 14,764 laboratory confirmed cases and over 10,445 total

deaths and counting.

The total burden of discomfort and suffering that result from these diseases is

clearly immense, and an understanding of mathematical modelling techniques can

be useful towards informing how to alleviate this terrible state of affairs. While

there may be many complicating factors behind these deaths, simple mathemati-

cal models can provide much insight into the dynamics of disease epidemics and

help global health officials make informed decisions about public health poli-

cies. We highlight briefly some examples on the use of mathematical models

of infectious diseases. Okuonghae [48] studied some qualitative properties of a
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delayed differential equation model that explored some qualitative properties of

Tuberculosis (TB). Elsje Pienaar and Maria Lerm [49] proposed a mathemati-

cal model of the initial interaction between Mycobacterium Tuberculosis (M-TB)

and macrophages, where their model considered the interplay between bacterial

killing and the pathogen’s interference with macrophage function. Zhenguo Bai

and Dan Liu [5] modelled seasonal measles transmission in China where they

studied and formulated a discrete-time deterministic measles model with periodic

transmission rate. Okosun and Makinde [47], proposed and examined a deter-

ministic model for the co-infection of malaria and cholera diseases with optimal

control. Concerning HIV disease, Abiodun et al., [1], studied a model for con-

trol of HIV/AIDS with parental care. Immonen et al. [21] proposed a new hy-

brid stochastic-deterministic, spatially distributed computational model to simu-

late growth competition assays on a relatively immobile monolayer of peripheral

blood mono-nuclear cells (PBMCs), commonly used for determining ex vivo fit-

ness of human immunodeficiency virus type-1 (HIV-1). Witbooi [63] proposed

and analyzed the stability of an SEIR epidemic model with independent stochas-

tic perturbations. Many sources on the study of infectious disease modelling can

be found in the infectious diseases literature.
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Chapter 5

The compartmental model for

HIV/AIDS

5.1 Model formulation

With the model of Bhunu et al. [6], as a basis, we form a new model of the

HIV epidemic. The new model allows for an inflow of infecteds into the popula-

tion. We first describe the variables and parameters as from [6]. The model we

present has six compartments which are the susceptibles (S); the individuals who

are HIV positive and do not know their status (I1); the individuals who are HIV

positive and know their status and have reduced their risky sexual behavior as a

result of knowing their status (I2); the individuals who are HIV positive and know

their status and have increased their risky sexual behavior as a result of knowing

their status (I3); HIV positive individuals who have become sexually inactive (I4);

AIDS patients (A). The total population is N(t) and we have

N(t) = S(t)+ I1(t)+ I2(t)+ I3(t)+ I4(t)+A(t). (5.1)
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(1−h)Λ µ
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(1− f )δ θ

θ

h2Λ
h1Λ

h4Λh3Λ

Figure 5.1: The transfer diagram for the HIV model.

Let h, h1, h2, h3 and h4 be non-negative constants with h = h1 + h2 + h3 + h4 ≤

1. Now we assume that for each j = 1,2,3,4, there is an inflow of magnitude

h jΛ into the compartment I j, together with a recruitment (1− h)Λ into the S(t)

compartment, as shown in Figure 5.1.
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The per capita natural death rate is denoted by µ > 0 in all classes. The disease-

induced mortality rate is denoted by ν .

The force of infection is:

λ (t) =
βc(I1(t)+ϕ1I2(t)+ϕ2I3(t))

N(t)
(5.2)

where β represents the transmission rate probability per sexual contact, c is the

effective contact rate, ϕ1 ∈ (0,1) models the effect of a positive behavioral change

as a result of knowing one’s HIV positive status while ϕ2 > 1 accounts for in-

crease in risky behaviour from knowing one’s HIV positive status. Susceptible

individuals who become infected with HIV will move into the class of HIV in-

fected people not knowing their status (I1). Individuals in the class (I1) will know

know their HIV status at a rate δ through testing and counseling. HIV positive

individuals who know their status will move into the sexually inactive class I4 at a

rate θ . A proportion f of HIV positive people knowing their status will move into

the class I2 and the complementary fraction (1− f ) will move into the class I3,

respectively. HIV positive people in classes I1, I2, I3 and I4 progress to the AIDS

class (A) at a rate ρ .

The above transfer diagram with recruitment of infecteds gives rise to six ordinary

differential equations as follows:



dS
dt = (1−h)Λ − (λ +µ)S
dI1
dt = h1Λ +λS− (µ +ρ +δ )I1

dI2
dt = h2Λ + f δ I1 − (µ +θ +ρ)I2

dI3
dt = h3Λ +(1− f )δ I1 − (µ +θ +ρ)I3

dI4
dt = h4Λ +θ(I2 + I3)− (µ +ρ)I4

dA
dt = ρ(I1 + I2 + I3 + I4)− (µ +ν)A

(5.3)
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5.2 Positivity and boundedness

In this section, we study the existence and other basic properties of the solutions

of the model system (5.3). Using an approach described in papers [45, 15], we

establish the positivity and the boundedness of solutions of model system (5.3) in

a subset Γ of R6 defined as:

Γ = {z ∈ R6 :
6

∑
i=1

zi 6
Λ
µ
}. (5.4)

Like in Bhunu et al., [6], we require some auxiliary results from [58], which we

quote below.

Lemma 5.1 [58]. Let F: Rn
+→Rn, F(x)= (F1(x),F2(x), . . . ,Fn(x)), x=(x1,x2, . . . ,xn)

be continuous and have partial derivatives ∂Fj
∂xk

which exist and are continuous in

Rn
+ for j,k = 1,2, . . . ,n. Then F is locally Lipschitz continuous in Rn

+.

Theorem 5.2 [58]. Let F: Rn
+ →Rn be locally Lipschitz continuous and for each

j = 1,2, . . . ,n satisfy Fj(x)≥ 0 whenever x∈Rn
+, x j = 0 . Then for every x0 ∈Rn

+,

there exists a unique solution of x̄ = F(x), x̄(0) = x0 with values in Rn
+ which is

defined in some interval (0,b] with b ∈ (0,∞]. If b < ∞, then sup
0≤t≤b

n

∑
j=1

x j(t) = ∞.

We note: Fj(x)≥ 0 whenever x ∈ Rn
+,x j = 0.

Now we can prove the following theorem, similar to that in [6].

Theorem 5.3 Given any y ∈ Γ, there exists a unique solution of model (5.3) with

x(0) = y and x(t) ∈ Γ for all t > 0.
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Proof. By Lemma 5.1 and Theorem 5.2, it follows that there exists b > 0 such

that over the interval t ∈ [0,b) we have a unique positive solution,

x(t), with x(0) = y ∈ Γ.

Given such a solution x(t), we now proceed to prove that
6
∑

i=1
≤ Λ

µ .

Adding up the equations of model system (5.3), we obtain:

dN
dt

=
dS
dt

+
dI1

dt
+

dI2

dt
+

dI3

dt
+

dI4

dt
+

dA
dt

= (1−h)Λ− (λ +µ)S+Λ+λS− (µ +ρ +δ )I1

+h2Λ+ f δ I1 − (µ +θ +ρ)I2 +h3Λ+(1− f )δ I1 − (µ +θ +ρ)I3

+h4Λ+θ(I2 + I3)− (µ +ρ)I4 +ρ(I1 + I2 + I3 + I4)− (µ +ν)A

= Λ−µN −νA

(5.5)

Now we note the following inequality:

dN
dt

= Λ−µN −νA ≤ Λ−µN(t).

Let

Q(t) =
Λ
µ
−N(t).

Then

−dQ(t)
dt

≤ Λ−µN(t) = µQ(t),

dQ(t)
dt

≥−µQ(t).

Therefore
dQ(t)

dt
=−µQ(t)+K(t) (5.6)

where K(t) > 0 is some positive function. The derivative dQ
dt constitutes a first

order linear differential equation [2].
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Rearranging (5.6), we obtain

dQ
dt

+µQ(t) = K(t),

and an integrating factor denoted by e
∫

P(t)dt = eµt .

Multiplying both sides of the equation (5.6) by the integrating factor eµt , we obtain

d(Q(t)eµt)

dt
= K(t)eµt .

Now for any τ ∈ (0,b], we have Q(τ)eµτ −Q(0) =
∫ τ

0 K(t)eµtdt ≥ 0.

Thus:

Q(τ)eµτ ≥ Q(0).

Since N(0)< Λ
µ , it follows that Q(0)> 0.

Therefore also

Q(τ)> 0, i.e, N(τ)<
Λ
µ
.

We have proved that the solution is bounded. Therefore by Theorem 5.2 it follows

that b = ∞. This completes the proof.

5.3 Global stability analysis of the disease-free equi-

librium

The disease-free equilibrium (DFE) exists only if hi = 0 for all i = 1,2,3,4. The

DFE of the model (5.3) is the point E0 = (Λ
µ ,0,0,0,0,0). Of course then, from the

work of Bhunu et al. [6] we have the following basic reproduction number:
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RA =
βc(µ +ρ +θ +( f ϕ1 +(1− f )ϕ2)δ )

(µ +ρ +θ)(µ +δ +ρ)
(5.7)

Theorem 5.4 The disease-free equilibrium E0, exist, and is locally asymptoti-

cally stable for RA < 1 and unstable otherwise.

Regarding global stability, in the paper [6], global stability of the DFE was proved

subject to another property, but was not proved absolutely.

We now prove global stability, using a Lyapunov function and we state the fol-

lowing Theorem 5.5.

Theorem 5.5 Consider the condition hi = 0, i = 1,2,3,4. If RA < 1, then the

disease-free equilibrium of the model is globally asymptotically stable.

Proof. We seek to construct a Lyapunov function. To this end let us introduce a

number of constants.

We first define m1, m2 and m3 as follows:

m1 = µ +ρ +δ ,

m2 = µ +ρ +θ ,

m3 =
2θ

µ +ρ
+1.

In particular then we note that RA can be written as

RA = (m1m2)
−1βc(m2 +δ ( f ϕ1 +(1− f )ϕ2)).

Now we define V : R5 → R by the formula,

V = bI5 +
4

∑
r=1

arIr,

where I5 = A and constants b,a1, a2, a3, a4 are chosen as below, and they are all

positive. In particular b > 0 because we assume that RA < 1.
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a1 = 1

a2 =
1

m2
(βcϕ1 +ρb(1+

2θ
µ +ρ

)

a3 =
1

m2
(βcϕ2 +ρb(1+

2θ
µ +ρ

)

a4 =
2bρ

µ +ρ

b =
1
2

ρ−1m1(1−RA)[1+
δ

m2
(1+

2θ
µ +ρ

)]−1,

After calculating the time derivative V̇ , we present it in the form

V̇ = bİ5 +Σ4
r=1ar İr

= b[ρ(I1 + I2 + I3 + I4)− (µ +ν)A]+a1(h1Λ+λS− (µ +ρ +δ )I1)

+a2(h2Λ+ f δ I1 − (µ +θ +ρ)I2)+a3(h3Λ+(1− f )δ I1 − (µ +θ +ρ)I3)

+a4(h4Λ+θ(I2 + I3)− (µ +ρ)I4)

= bρI1 −a1(µ +ρ +δ )I1 −a2 f δ I1 −a3(1− f )δ I1

+bρI2 −a2(µ +θ +ρ)I2 −a4θ I2 +bρI3 −a3(µ +θ +ρ)I3 −a4θ I3

+bρI4 −a4(µ +ν)I4 −b(µ +ν)I5

= K5İ5 +Σ4
r=1Kr İr.

(5.8)

where the coefficients Ki are being expressed in terms of S(t), N(t) and the pa-

rameters. The idea is to show that V̇ is a negative-definite function, by showing

that each of these Kr are strictly negative. In fact after some routine calculations,

we obtain the coefficients Ki to be as follows.

K1 = cβ S(t)
N(t) −m1 +δ f a2 −δ (1− f )a3 +ρb

K2 = ϕ1cβ S(t)
N(t) −m2a2 −θa4 +ρb

K3 = ϕ2cβ S(t
N(t) −m2a3 −a4θ +ρb

K4 =−(µ +ρ)a4 +ρb

K5 =−(µ +ν)b
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It immediately follows that K5 < 0 (since b > 0).

Also,

K4 =−(µ +ρ)
2ρb

µ +ρ
+ρb =−ρb < 0.

Now we note that S(t)
N(t) ≤ 1 for all t > 0.

We also observe that

θa4 +ρb = ρb(1+ 2θ
µ+ρ ).

We continue to check the negativity of the coefficients K3,K2 and K1

K3 < ϕ1cβ −m2a3 +θa4 +ρb

= ϕ1cβ − [βcϕ1 +ρb(1+ 2θ
µ+ρ )]+θa4 +ρbρb− 2ρb

µ+ρ −θ 2bρ
µ+ρ +bρ

= 0.

Therefore K3 < 0. Likewise K2 < 0. Finally, for K1 we have the following

K1 < cβ −m1 +δ f a2 +δ (1− f )a3 +ρb

= cβ −m1+
δ f
m2
(βcϕ1+ρb(1+ 2θ

µ+ρ )+
δ (1− f )

m2
(βcϕ2+ρb(1+ 2θ

µ+ρ )+ρb

= cβ −m1 +
cβδ
m2

( f ϕ1 +(1− f )ϕ2)+
δ

m2
ρb(1+ 2θ

µ+ρ )+ρb

= −m1 + cβ [1+ δ
m2
( f ϕ1 +(1− f )ϕ2)]+ρb[1+ δ

m2
(1+ 2θ

µ+ρ )]

= m1[−1+ (m− 1m2)
−1cβ [m2 + δ ( f ϕ1 + (1− f )ϕ2)]] + ρb[1+ δ

m2
(1+

2θ
µ+ρ )]

= m1[RA −1]+ 1
2m1[1−RA]

= 1
2m1[RA −1]< 0.

This completes the proof.
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5.4 Endemic equilibrium solution and numerical ex-

ample

Using Mathematica program to compute, the model system (5.3) admits a unique

endemic equilibrium solution, which is given by

E∗ = (S∗, I∗1 , I
∗
2 , I

∗
3 , I

∗
4 ,A)

where,

S∗ =
Λ(1−h)
(λ +µ)

I1
∗ =

Λ(λ +(λ +µ)h1 −λh)
(λ +µ)(δ +µ +ρ)

I2
∗ =

Λ( f δ (λ +µ)h1 +(λ +µ)(δ +µ +ρ)h2 − f δλ (−1+h))
(λ +µ)(δ +µ +ρ)(θ +µ +ρ)

I3
∗=

Λ(−(−1+ f )(λ +µ)h1 +(λ +µ)(λ +µ +ρ)h3 +(−1+ f )λ (−1+h))
(λ +µ)(δ +µ +ρ+)(θ +µ +ρ)

I4
∗ =

Λ
µ +ρ

[−h4 −
1

(λ +µ)(δ +µ +ρ)(θ +µ +ρ)
[θ(−1(−1+ f )(λ+

µ)h1 +(λ +µ)(δ +µ +ρ)h3 +(−1+ f )λ (−1+h)

+θ( f δ (λ +µ)h1 +(λ +µ)(δ +µ +ρ)h2 − f δλ (−1+h))]]

A∗ =
1

(λ +µ)(µ +ρ)(δ +µ +ρ)
(Λρ(−λ (−1+h)(1− f + f δ +µ +ρ)

+(λ +µ)(1+ f (−1+δ )+µ +ρ)h1+(λ +µ)(δ +µ +ρ)h2+δλh3+

δ µh3+µ2h3+λρh3+µρh3+δλh4+δ µh4+λ µh4+µ2h4+λρh4+

µρh4))

Since the disease-free equilibrium is globally asymptotically stable, as illustrated

in Theorem 5.5, it is evident that E∗ is unique.
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Numerical solutions to the coordinates of an endemic equilibrium above are ex-

ecuted using MAPLE program with realistic hypothetical parameter values and

initial conditions as follows.

Model parameters similar to Bhunu et al. [6]:

Λ = 0.26, βc = 0.275, ϕ1 = 0.01, ϕ2 = 1.01, δ = 0.1, f = 0.85,

h = 0.015, h1 = 0.21, h2 = 0.03, h3 = 0.045, h4 = 0.04, µ = 0.02,

ν = 0.4, ρ = 0.1, θ = 0.2.

Initial conditions (in units of millions):

S(0) = 7, I1(0) = 1, I2(0) = 1.4, I3(0) = 2.6, I4(0) = 0.7, A(0) = 0.3.

The numerical solutions are:

S∗ = 11.1471, I1
∗ = 0.0975, I2

∗ = 0.0503, I3
∗ = 0.0411,

I4
∗ = 0.2390, A∗ = 0.1019.

It is important to note that the parameter values above were chosen such that the

total population never goes into extinction and threshold parameter yields RA =

1.3198 > 1 in the absence of vaccination and treatment. Therefore, it means that

the HIV/AIDS disease will prevail and persist in a population.

5.5 Numerical simulations

In this section, we numerically analyze the effect of the rate of knowing one’s HIV

status through counseling and testing (δ ) for model system (5.3), using model

parameters in Table 5.1 with model equations coded in MATLAB.

Using the Euler scheme to determine stability analysis of disease-free equilibrium,
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when there are no recruitment of infecteds, i.e., h1 = h2 = h3 = h4 = 0, Figures

5.2,5.3, and 5.4, gives the graphical representation of the effects of knowing one’s

HIV status through counselling and testing (δ ) as well as in conjunction with

effective contact rate c for HIV infection and probability of HIV transmission per

contact (β ).

The parameter values used in this section are similar as in the paper presented in

Bhunu et al., [6], as follows S(0) = 2000; I1(0) = 1500; I2(0) = 1000; I3(0) =

1000; I4(0) = 2000; A(0) = 1000; Λ = 32; µ = 0.02; δ = 0.02; ρ = 0.01; ϕ1 =

0.25; ϕ2 = 1.01; f = 0.85; ν = 0.4; βc = 0.2; θ = 0.2.

It is worth noting here that disease free equilibrium, in Figures 5.3 and 5.4, etc.,

is shown to be globally asymptotically stable when the corresponding basic re-

production number is less than unity as stated by the aforementioned theorem.
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Figure 5.2: Deterministic trajectories of epidemic model (5.3) β = 0.5;c = 4; δ =

0.02.
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Figure 5.3: Deterministic trajectories of epidemic model (5.3) β = 0.5;c = 4; δ =

0.02.

5.6 Sensitivity analysis

In this section we carry out the sensitivity analysis to determine the robustness of

the basic reproduction number, RA, to the model parameter values. That is, to help

us identify the parameters that have high impact on RA. We employ Mathematica

software to derive the normalized forward index of RA with respect to each model

parameters as follows:

∂RA

∂β
× β

∂RA
= 1

∂RA

∂c
× c

∂RA
= 1

∂RA

∂ µ
× µ

∂RA
=−µ∆

∂RA

∂ρ
× ρ

∂RA
=−ρ∆
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Figure 5.4: Deterministic trajectories of epidemic model (5.3) β = 0.5;c = 4; δ =

0.02.

∂RA

∂θ
× θ

∂RA
=− δθ( f ϕ1 − (−1+ f )ϕ2)

(δ +µ +ρ)(θ +µ +ρ + f δϕ1 +(δ − f δ )ϕ2)

∂RA

∂ϕ1
× ϕ1

∂RA
=

f δϕ1

(θ +µ +ρ + f δϕ1 +(δ − f δ )ϕ2)

∂RA

∂ϕ2
× ϕ2

∂RA
=

(1− f )δϕ2

(θ +µ +ρ + f δϕ1 +(δ − f δ )ϕ2)

∂RA

∂δ
× δ

∂RA
=−δ (θ +µ +ρ − f (µ +ρ)ϕ1 +(−1+ f )(µ +ρ)ϕ2)

(δ +µ +ρ)(θ +µ +ρ + f δϕ1 +(δ − f δ )ϕ2)

∂RA

∂ϕ2
× ϕ2

∂RA
=

f δ (ϕ1 −ϕ2)

(θ +µ +ρ + f δϕ1 +(δ − f δ )ϕ2)

where ∆=
((θ +µ +ρ)2 + f δ (δ +θ +2(µ +ρ))ϕ1 − (−1+ f )δ (δ +θ +2(µ +ρ))ϕ2)

(δ +µ +ρ)(θ +µ +ρ)(θ +µ + f δϕ1 +(δ − f δ )ϕ2)
.

The following Table 5.1 illustrates the sensitivity indices of RA with respect to

model parameter. Parameters are arranged from most sensitive to the least. The

most sensitive parameters are the recruitment rate probability of HIV transmission
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per contact (βc) and abstinence rate (θ ). The least is the proportion reducing risky

sexual behaviour as a result of knowing ones status. The sensitivity index of RA

with respect to the transmission probability of getting HIV infection (β ) is +1,

implying that, increasing or decreasing β by 10%, increases RA by approximately

10%. Similarly, increasing or decreasing abstinence rate by 10% increases RA by

5.612%.
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Parameter values and sensitivity index of RA

Parameter description Parameter Value Source Sensitivity

Probability of HIV transmission per

contact

βc 0.95 Bhunu et

al.[6]

+1

Abstinence rate θ 0.2 Bhunu et

al.[6]

+0.5612

Natural rate of progression to AIDS ρ 0.1 Bhunu et

al.[6]

+0.2806

Rate of knowing ones HIV status

through counseling and testing

δ 0.1 Bhunu et

al.[6]

+0.1021

Modification parameter ϕ1 0.25 Bhunu et

al.[6]

+0.0596

Percapita natural death rate µ 0.02 Bhunu et

al.[6]

+0.0561

Modification parameter ϕ2 1.01 Bhunu et

al.[6]

+0.0425

Proportion reducing risky sexual

behaviour as a result of knowing

ones status

f 0.85 Bhunu et

al.[6]

-0.1813

Table 5.1: Sensitivity index of RA
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Chapter 6

Public health education for

HIV/AIDS control

6.1 Model formulation

In this section we determine efficient roll-out of public health education for the

control of HIV/AIDS in a population. We investigate the effect of education as

a function of time, on the transmission of HIV infection. We assume that as a

result of education on HIV, behavioral patterns will change for the better and HIV

transmission will decrease. In particular, with respect to infected individuals from

elsewhere moving into a given population, it it expected that through education,

there will be much more caution. It is fair to expect that due to HIV information,

people will avoid sexual intercourse with complete strangers or even partners that

they do not know well.

Let us use the symbol u(t) to denote the magnitude of the effort of education that

is being rolled-out.

The set U of admissible controls: [0,T ]→ R is defined as follows.
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U =
{

u(t)| u(t) is measurable, ||u||∞ < a < 1, t ∈ [0,T ]
}
. (6.1)

We assume that there are constants η1 and η2 such that in the model (5.3), we

can replace the θ related to the I2 class by θ(1+η1u(t)) and θ of I3 class by

θ(1+η2u(t)). Thus our system takes the form:



dS
dt = (1−h)Λ− (λ +µ)S
dI1
dt = h1Λ+λS− (µ +ρ +δ )I1

dI2
dt = h2Λ+ f δ I1 − (µ +θ(1+η1u(t))+ρ)I2

dI3
dt = h3Λ+(1− f )δ I1 − (µ +θ(1+η2u(t))+ρ)I3

dI4
dt = h4Λ+θ(I2 + I3)+θ(η1I2 +η2I3)u(t)− (µ +ρ)I4

dI5
dt = ρ(I1 + I2 + I3 + I4)− (µ +ν)I5

(6.2)

Where I5 = A. Our goal is to minimize the total number of infective individuals

with the use of educational campaign on [0,T ]. Towards investigating the optimal

level of public health education effort needed to control the disease in question,

we formulate the control problem.

6.2 Optimal control problem

We intend to find ||u||∞ < a < 1, to maximize the following objective functional:

J(u) =
∫ T

0
S(t)− cu2(t)dt (6.3)

subject to the system of equations (6.2)

and
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S(0)≥ 0, I1(0)≥ 0, I2(0)≥ 0, I3(0)≥ 0, I4(0)≥ 0, A(0)≥ 0.

Our aim is to maximize the total number of susceptible individuals while also op-

timizing the use of educational campaign at the minimum cost possible given the

initial population sizes of all compartments S(0), I1(0), I2(0), I3(0), I4(0), A(0).

The symbol c is a weight parameter which describes the importance of the edu-

cational campaign while the term u2(t) represent the educational campaign itself.

The quadratic term is particularly chosen to describe the nonlinear behaviour of

implementing the educational campaign.

We need to find an optimal control u∗(t) such that

J(u∗) = max{J(u(t))| u ∈ U}. (6.4)

6.3 Optimality

We use the Pontryagin’s Maximum principle since it is a constrained control prob-

lem, see for instance Lenhart and Workman [31]. The necessary conditions that an

optimal system must satisfy come from Pontryagin’s Maximum principle. What

this principle does, is to convert system (6.2) and equation of objective functional

(6.3) into the problem of maximizing a Hamiltonian H with respect to u(t).

The Hamiltonian function H is obtained as follows, with ξS,ξI1,ξI2,ξI3,ξI4,ξI5 be-

ing Lagrange multipliers, also called co-state variables, associated with respective

classes.

The Hamiltonian function takes the following form:
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H= S(t)− cu2(t)+ξS
dS
dt

+
5

∑
i=1

ξIi

dIi

dt
(6.5)

which can be expanded as,

H= S(t)− cu2(t)+ξS[(1−h)Λ− (λ +µ)S]

+ξI1[h1Λ+λS− (µ +ρ +δ )I1]

+ξI2[h2Λ+ f δ I1 − (µ +θ(1+η1u)+ρ)I2]

+ξI3[h3Λ+(1− f )δ I1 − (µ +θ(1+η2u)+ρ)I3]

+ξI4[h4Λ+θ(I2 + I3)+θ(η1I2 +η2I3)u− (µ +ρ)I4]

+ξI5[ρ(I1 + I2 + I3 + I4)− (µ +ν)I5]

(6.6)

Necessary conditions for our optimal solution are as follows:

−ξ̇S = (ξS −ξI1)βc(I1 +ϕ1I2 +ϕ2I3)
(N −S

N2

)
−1

−ξ̇I1 = (ξS −ξI1)
βc(N − (I1 +ϕ1I2 +ϕ2I3))

N2 +ξI1(µ +ρ +δ )−ξI2 f δ

−ξI3(1− f )δ −ξI5ρ

−ξ̇I2 = (ξS −ξI1)
βc(ϕ1N − (I1 +ϕ1I2 +ϕ2I3))

N2 +ξI2(µ +θ(1+uη1)+ρ)

−ξI4(θ +uη1θ)−ξI5ρ

−ξ̇I3 = (ξS −ξI1)
βc(ϕ2N − (I1 +ϕ1I2 +ϕ2I3))

N2 +ξI3(µ +θ(1+uη2)+ρ)

−ξI4(θ +uη2θ)−ξI5ρ

−ξ̇I4 = (ξI1 −ξS)
βcS(I1 +ϕ1I2 +ϕ2I3)

N2 +ξI4(µ +ρ)−ξI5ρ

−ξ̇I5 = (ξI1 −ξS)
βcS(I1 +ϕ1I2 +ϕ2I3)

N2 +ξI5(µ +ν)
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The six equations above represented by −ξ̇i(t) = ∂H
∂ i , i = S, I1, I2, I3, I4, I5 are

called the adjoint equations.

Characterization of the optimal control u∗ is derived by computing
H
∂u

as follows,

0 =
∂H
∂u

=−2cu−ξI2θη1I2 −ξI3θη2I3 +ξI4θ(η1I2 +η2I3).

Therefore u∗ takes the form:

u∗ =


0 i f m∗ ≤ 0,

m∗ i f 0 < m∗ < 1,

1 i f m∗ ≥ 1

(6.7)

where m∗ =
ξI4θ(η1I2 +η2I3)−θ(ξI2η1I2 +ξI3η2I3)

2c
.

6.4 Numerical simulations

We used Pontryagin’s maximum principle to characterize the optimal level of

the control denoted by u∗ and derived the optimality system (6.6). This sys-

tem consists of six ordinary differential equations arriving from the state equa-

tions together with six adjoint equations. We use the forward-backward sweep

method (FBSM) to solve the differential optimality system generated by the Max-

imum Principle that characterizes the solution. The numerical computations of

the FBSM algorithm were implemented using MATLAB.

The differential equation solver of MATLAB used, is an iterative fourth order

Runge-Kutta scheme. The idea exploited by the FBSM is that the initial value
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problem of the state equation is solved forward in time with an estimate for the

control and costate variables. Consequently, the costate final value problem is

solved backwards in time. The iterations run until the convergence is obtained.

The FBSM algorithm was discussed in the paper by McAsey et al. [38], obtained

from the textbook by Lenhart and Workman [31].

The simulation results view in fig 6.1 (a-d) and fig 6.2 (e-g) shows information

about HIV/AIDS population dynamics over time (in months) without optimal con-

trol strategies and with optimal control, respectively. The simulation is executed

using initial conditions (in units of millions) for each state variables and parame-

ters values similar as in the paper of Bhunu et al. [6] as follows,

S(0) = 20.0, I1(0) = 10.0, I2(0) = 35.0, I3(0) = 15.0, I4(0) = 25.0, N(0) = 105,

Λ = 0.029, µ = 0.02, δ = 0.1, ρ = 0.1, ϕ1 = 0.95, ϕ2 = 4.01, f = 0.85, βc =

0.015, θ = 0.4, h = 0.095, h1 = 0.006, h2 = 0.005, h3 = 0.08, h4 = 0.954, η1 = 2,

η2 = 3.

Lets take a closer look at the population of infected individuals without optimal

control strategy, that is fig 6.1(b) and also at fig 6.2(e), representing the popu-

lation of infected individuals with optimal control strategy of state variable I2.

We observe that in fig 6.1(b) the population decreases significantly from the 50th

month than the individuals without control strategy which only start decreasing

from 150th month in time. This shows that public health educational campaign

intervention plays a vital role as the disease decreases much faster. Similarly this

can be observed for state variable I3. In fig 6.2(g), that is, the number of HIV posi-

tive people who are sexually inactive (I4), the numerical simulation shows that the

number of infected people rises significantly from 25 million to about 105 million

when optimal control education is implemented. Thus we can easily conclude that

education control strategy gives optimal results.
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Figure 6.1: Simulation showing HIV/AIDS population dynamics without optimal

control strategies.
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Figure 6.2: Simulation showing HIV/AIDS population dynamics with optimal

control strategies.
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Chapter 7

Basics on stochastic differential

equations

7.1 Introduction

Stochastic differential equations (usually abreviated to SDE’s), are used to model

diverse phenomena such as fluctuating stock prices or physical systems subject to

randomness or noise. Typically, SDEs incorporate random white noise which can

be thought of as the “derivative” of Brownian motion. Also, other types of random

fluctuations include jump processes. In this dissertation, and on this chapter, our

focus is mainly on the Brownian motion which is also known as the Wiener pro-

cess. We briefly introduce some phenomenon of stochastic differential equations

with a focus on epidemiological modelling. This includes, filtered probability

space, Brownian motion, Itô’s formula, Stochastic stability, etc. A brief back-

ground of Brownian motion is provided. Readers are referred to the indicated

references for the proofs of the results.
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7.2 Filtered probability space

Let (Ω,F ,P) be a probability space. A filtration is a nested family {Ft}t≥t0 of

sub-σ -algebras of F with Ft ⊂ Fs ⊂ F for all t0 ≤ t < s < ∞.

The filtration is said to be right continuous if Ft =
∩
s>t

Fs for all t ≥ 0.

When the probability space is complete, the filtration is said to satisfy the usual

conditions if it is right continuous and F0 contains all P-null sets.

7.3 Brownian motion

We live in a day and age where human lives are full of uncertainties, as with many

natural phenomena. No one can easily foresee what will happen in the near future

not even in the next second. Rather than accepting the fact that the future is always

uncertain, many models and algorithms have been continually formulated to bring

about the prediction of matters involving uncertain elements. One of them is the

Brownian model.

Brownian motion is the random movement of particles that are suspended in a

fluid medium (a liquid or gas) resulting from their collision with the molecules in

the gas or liquid. The phenomenon was discovered by the botanist Robert Brown

in 1827, while he was looking through a microscope at particles found in pollen

grains in water. He noted that the particles moved to and fro through the water in

a random manner but was not able to determine the mechanisms that caused this

movement.

It was in 1905 that a quantitative analysis was brought about, when Albert Einstein
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in his investigation explained in precise detail how the movement that Brown had

observed was a result of the pollen being moved by individual water molecules.

This irregular motion of suspended particles subsequently became known as Brow-

nian motion. An amazing number of scientists like Louis Bachelier, Albert Ein-

stein, Norbert Wiener, and Paul Levy, to mention just a few, contributed to the

theory of Brownian motion.

The Wiener process describes a random, but continuous movement of a particle,

subject to the influence of a large number of chaotically moving molecules of the

liquid. Any displacement of the particle over an interval of time as a sum of many

almost independent small influences is normally distributed with expectation zero

and variance proportional to the length of the time interval.

Brownian motion is a formal concept, which is defined in Definition 7.1 below.

The mathematical model of Brownian motion has several real-world applications

such as in physics, population dynamics, epidemiology, finance and so on. For

instance, in the stock market, Brownian motion is a limiting phenomenon in the

random walk theory. Brownian motion and the random walk hypothesis offer a

way to understand how markets and economies function, and provides a basis

for a speculative view of stock market fluctuations. In basic terms, a “random

walk” is essentially a Brownian motion, where the previous change in the value

of a variable is unrelated to future or past changes. Other amazing applications

of Brownian motion involves its usage in epidemiology, see for example, Mao

[36]. Herewith we refer to the book of Mao [36] for a mathematical definition of

Brownian motion.

Definition 7.1 Let (Ω,F ,P) be a probability space with a filtration {Ft}t≥t0 .

A (standard) one-dimensional Brownian motion is a real-valued continuous Ft
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adapted process {Bt}t≥t0 with the following properties:

(i) B0 = 0 almost surely;

(ii) for 0 ≤ s < t < ∞, the increment Bt −Bs is normally distributed with mean

zero and variance t − s;

(iii) for 0 ≤ s < t < ∞, the increment Bt −Bs is independent of Fs ;

(iv) Bt is continuous in t ≥ 0.

For further reading, see the text by Mao [36]. In particular there are obvious

higher dimensional analogues of the concept of Brownian motion.

7.4 Itô’s formula

Itô’s formula is an identity used to find the differential of a time-dependent func-

tion of a stochastic process. The basic definition is to evaluate the integral and it

plays a key role in stochastic analysis. We hereby establish the one-dimensional

Itô formula.

Let {Bt}t≥t0 be a one dimensional Brownian motion defined on the complete prob-

ability space (Ω,F ,P) adapted to the filtration {Ft}t≥t0 .

Let L1(R+;Rd) denote the family of Rd-valued measurable {Ft}-adapted process

f = { f (t)}t≥t0 such that

∫ T

0
| f (t)|dt < ∞ almost surely (or a.s.) for every T > 0.

Definition 7.2 A one-dimensional Itô process is a continuous adapted process

x(t) on t ≥ 0 of the form
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x(t) = x(0)+
∫ t

0
f (s,x(s))ds+

∫ t

0
g(s,x(s))dBs,

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd). We shall say that x(t) has stochastic

differential dx(t) on t ≥ 0 given by

dx(t) = f (t,x(t))dt +g(t,x(t))dBt .

Let V ∈ C2,1(R×R+;R). Then V (x(t), t) is an Itô process with the stochastic

differential given by

dV (x(t), t) =
[
Vt(x(t), t)+Vx(x(t), t) f (t)+

1
2

Vxx(x(t), t)g2(t)
]
dt

+Vx(x(t), t)g(t)dBt a.s.

Note: dtdt = 0,dBidt = 0,dBidBi = dt,dBidB j = 0 if i ̸= j.

For further reading, refer Mao, [36].

7.5 Stochastic stability

There are at least three different types of stochastic stability: stability in proba-

bility, moment stability and almost sure exponential stability. We highlight only

stability in probability and almost sure exponential stability.

Consider the general n-dimensional stochastic system

dX(t) = f (t,X(t))dt +g(t,X(t))dB(t) (7.1)

and assume that f (t,0) = g(t,0) = 0 for all t ≥ 0.
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7.5.1 Stable in probability

Definition 7.3 The trivial solution of the system (7.1) is said to be stochastically

stable or stable in probability if for every pair of numbers ε ∈ (0,1) and r > 0,

there exists a δ = δ (ε,r, t0)> 0 such that

P{| x(t; t0,x0) |< r f or all t ≥ t0} ≥ 1− ε

whenever | x0 |< δ . Otherwise, it is said to be stochastically unstable.

7.5.2 Almost sure exponential stability

Definition 7.4 The trivial solution of the system (7.1) is said to be almost surely

exponentially stable if

lim
t→∞

sup
1
t

log | x(t; t0,x0) |< 0

for all x0 ∈ Rd .

For further reading, see the text by Mao [36].

7.6 Differential operator

Define the differential operator L associated with the system (7.1) by

L =
∂
∂ t

+
d

∑
i=1

fi(x, t)
∂

∂xi
+

1
2

d

∑
i, j=1

[
g(x, t)gT (x, t)

]
i, j

∂ 2

∂xi∂x j
.

If L acts on a function V ∈C2,1(Sh ×R+;R+), then

LV (x, t) =Vt(x, t)+Vx(x, t) f (x, t)+
1
2

trace
[

gT (x, t)Vxx(x, t)g(x, t)
]
.
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where

Vt =
∂V
∂ t

,

Vx =

(
∂V
∂x1

, . . . ,
∂V
∂xd

)

Vxx =

(
∂ 2V

∂xi∂x j

)
d×d

=


∂ 2V

∂x1∂x1
· · · ∂ 2V

∂x1∂ xd
...

...
∂ 2V

∂xd∂x1
· · · ∂ 2V

∂xd∂xd

 .

For further reading, refer to Mao [36].
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Chapter 8

An HIV model with stochastic

perturbations

8.1 Introduction

The HIV/AIDS pandemic remains extremely dynamic, persistent, and volatile.

Travel and migration patterns, particularly when they involve mobility to higher

risk environments with higher levels of STD’s, have been related to increases in

risky sexual behaviours and increase in the transmission of HIV infection [39,

51, 62]. Within this context, HIV infection is subject to some random environ-

mental effects. These random effects have an influence on the spread of diseases

on a significant level and in particular the case of HIV transmission [63]. An

enormous amount of mathematical research has been carried out on modelling

the HIV transmission using ordinary differential equations (ODE’s). Usually ode

models do not take into account the inherent randomness that influences the HIV

transmission. ODE models like other deterministic models, work on averages of

effects. One can obtain more realistic results by including stochastic effects in

a more explicit way in the model. Thus, in this chapter we propose a system of
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stochastic differential equations (sde’s) to help us model the randomness that in-

fluences the HIV transmission. The concept of Brownian motion is helpful for

simulating this inherent randomness.

We proceed to introduce the stochastic perturbations into our proposed model

system (5.3). There is no unique way to introduce stochastic perturbation into

a compartmental model. It depends heavily on the particular item or parameter

which carries the randomness. This means that it is possible to either perturb a

specific variable or parameter of a model. This is seen, for example, in a model

of Witbooi [63] with only three of the four variables carrying stochastic pertur-

bations while the model of Dalal et al. [11] has only two of the four variables

perturbed. In our model, stochastic perturbation is introduced on all variables but

the susceptibles. We suppose that the susceptibles could be kept safe by their pos-

itive behavioral change stemming from direct impact of HIV/AIDS educational

awareness campaigns taking place in a community.

8.2 Model formulation

Let us assume having a filtered complete probability space (Ω,F ,{Ft}t≥t0 ,P).

We consider a 5-dimensional Wiener process W(t) denoted by

W (t) = (W1(t),W2(t),W3(t),W4(t),W5(t))

defined on the filtered probability space.

With the model of Bhunu et al. [6] as a basis, we introduce stochastic perturba-

tions to form a perturbed model as follows.

Let σ1, σ2, σ3, σ4, and σ5 denote positive constants serving as the intensities of
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the stochastic perturbations in the following sde model system:



dS = ((1−h)Λ − (λ +µ)S)dt

dI1 = [h1Λ +λS− (µ +θ +δ )I1]dt +σ1I1dW1

dI2 = [h2Λ + f δ I1 − (µ +θ +ρ)I2]dt +σ2I2dW2

dI3 = [h3Λ +(1− f )δ I1 − (µ +θ +ρ)I3]dt +σ3I3dW3

dI4 = [h4Λ +θ(I2 + I3)− (µ +ρ)I4]dt +σ4I4dW4

dI5 = [ρ(I2 + I3 + I3 + I4)− (µ +ν)I5]dt +σI5I5dW5

(8.1)

8.3 Positivity of solutions

In order for our model to be realistic, its solutions will have to be positive. Let us

denote a solution (S(t), I1(t), I2(t), I3(t), I4(t), I5(t)) of the system (8.1) by X(t).

Then system (8.1) can be written in the form:

dX(t) = F(X(t))dt +G(X(t))dW (8.2)

F(X(t)) and G(X(t)) being 6× 6 matrices. In our quest for feasible solutions

we shall let Ω1 be the subset of paths in Ω for which the system (8.1) has a

nonnegative solution over the interval (0,∞). Therefore,

Ω1 =
{

w ∈ Ω|X(t,w(t)),∈ R6
+

}
. (8.3)

We illustrate that when we restrict to Ω1, then the disease free equilibrium point

is almost surely exponentially stable. Towards the proof we note the following
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remark.

Remark 8.1 We observe that the coefficients of the matrices F and G are all

locally Lipschitz. Therefore by [30, 36], equation (8.1) has a solution X(t,w(t))

over an interval on t ∈ [0,τe], where τe is the explosion time. The explosion time

refers to the maximum stopping time up to which a solution of the equation can

be defined. A stopping time is a random variable that describes a rule that is used

to decide to stop. The idea is now to prove that τe = ∞, a.s., which means that the

solution is global a.s. A crucial ingredient of towards proving that τe = ∞, is to

show that there is a certain boundedness.

For the purpose of the following result, Proposition 8.1, we define the following

stochastic process:

R =− ln(SI1I2I3I4I5) .

Proposition 8.1 For any stopping time τ , the expectation E[R(X(τ,w(τ))] is bounded

above.

Proof. Let us write R in the form:

R =− lnS−
5

∑
j=1

ln I j.

Then

dR =−1
S

dS−
5

∑
j=1

1
I j

dI j +
1
2

5

∑
j=1

1
I j

2

(
σ jI j

)2 dt.

The latter sde can be expressed as

dR = Qdt +
5

∑
j=1

σ jI j

I j
dW j,

with
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Q =−1
S

[
((1−h)Λ − (λ +µ)S)

]
− 1

I1

[
(h1Λ +λS− (µ +θ +δ )I1)

]
− 1

I2

[
(h2Λ + f δ I1 − (µ +θ +ρ)I2)

]
− 1

I3

[
(h3Λ +(1− f )δ I1 − (µ +θ +ρ)I3)

]
− 1

I4

[
(h4Λ +θ(I2 + I3)− (µ +ρ)I4)

]
− 1

I5

[
(ρ(I2 + I3 + I3 + I4)− (µ +ν)I5)

]
+

1
2

5

∑
j=1

σ2
j .

Now we find an upper bound for Q. Among other things, we remove the negative

terms towards finding an upper bound.

We proceed as follows:

Q ≤ 1
S
(λ +µ)S+

1
I1
(µ +θ +δ ) I1 +

1
I2
(µ +θ +ρ) I2

+
1
I3
(µ +θ +ρ) I3 +

1
I4
(µ +ρ) I4 +

1
I5
(µ +ν) I5 +

1
2

5

∑
j=1

σ2
j

= (λ +µ)+(µ +θ +δ )+(µ +θ +ρ)+(µ +θ +ρ)

+(µ +ρ)+(µ +ν)+
1
2

5

∑
j=1

σ2
j

= Q0

Next we observe that for each j, by the martingale property,

E
[∫ τ

0
σ jI jdW j

]
= 0.

Therefore,

E
[
R(τ)−R(0)

]
= E

[∫ τ

0
Qdt +

∫ τ

0
σ jI jdW j

]
≤ Q0.

This completes the proof.
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Remark 8.2 Using R(X(τ,w(τ))) above, by means of Lyapunov method that was

also used in [36, 30], one can check whether the solution of (8.1) is global. We

assume that the set Ω1, of all paths for which there are global unique positive

solutions, is of measure 1.

8.4 Almost sure stability

Theorem 8.3 Assume that h1 = h2 = h3 = h4 = 0, and only consider paths w ∈

Ω1. If RA < 1, then the point (I1(t), I2(t), I3(t), I4(t), I5(t)) almost surely con-

verges to 0.

Proof. Similarly as in the proof of Proposition 5.5, let a1, a2, a3, a4,

and a5 be positive constants as below:

a1 = 1

a2 =
1

m2
(βcϕ1 +ρb(1+ 2θ

µ+ρ )

a3 =
1

m2
(βcϕ2 +ρb(1+ 2θ

µ+ρ )

a4 =
2bρ
µ+ρ

a5 =
1
2ρ−1m1(1−RA)[1+ δ

m2
(1+ 2θ

µ+ρ )]
−1.

We consider the stochastic process,

z = a1I1(t)+a2I2(t)+a3I3(t)+a4I4(t)+a5I5(t), (8.4)

and we note that it suffices to prove that z(t)→ 0, almost surely exponential sta-

bility, as t → 0.

Let

Y (t) = lnz(t). (8.5)
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Then for w ∈ Ω1, z(t,w(t))> 0 and therefore Y (t,w(t)) is well-defined. We prove

that z(t) converges exponentially to 0 as t → ∞. We start by calculating the differ-

ential dY , using the Itô formula.

dY =
a1

z

[
λS− (µ +θ +δ )I1

]
dt +

a1

z
σ1I1dW1 −

a1
2

2z2 σ1
2I1

2dt

+
a2

z

[
f δ I1 − (µ +θ +ρ)I2

]
dt +

a2

z
σ2I2dW2 −

a2
2

2z2 σ2
2I2

2dt

+
a3

z

[
(1− f )δ I1 − (µ +θ +ρ)I3

]
dt +

a3

z
σ3I3dW3 −

a3
2

2z2 σ3
2I3

2dt

+
a4

z

[
θ(I2 + I3)− (µ +ρ)I4

]
dt +

a4

z
σ4I4dW4 −

a4
2

2z2 σ4
2I4

2dt

+
a5

z

[
ρ(I2 + I3 + I3 + I4)− (µ +ν)A

]
dt +

a5

z
σ5I5dW5 −

a5
2

2z2 σ5
2I5

2dt

(8.6)

Using simplifications similarly as in the proof of 5.5 we arrive at :

dY =
5

∑
i=1

1
z

KiIidt −
5

∑
i=1

ai
2σi

2Ii
2

2z2 dt +
n

∑
i=1

aiσiIi

z
dWi (8.7)

with

K1 = cβ
S(t)
N(t)

−m1 +δ f a2 −δ (1− f )a3 +ρb

K2 = ϕ1cβ
S(t)
N(t)

−m2a2 −θa4 +ρb

K3 = ϕ2cβ
S(t

N(t)
−m2a3 −a4θ +ρb

K4 =−(µ +ρ)a4 +ρb

K5 =−(µ +ν)b

We note that the term

−
5

∑
i=1

ai
2σi

2Ii
2

2z2 dt
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is negative. Thus we can write

dY ≤ 1
z
(

5

∑
i=1

KiIi)dt +
5

∑
i=1

aiσiIi

z
dWi (8.8)

We further observe that for each i, aiIi
z ≤ 1. Now we note that very much as in

Remark 3.6 of [63], we find that for each i,

limsup
t→∞

1
t

∫ t

t0

aiσiIi

z
dWi = 0. (8.9)

Also Y (t0) is a constant, and so

limsup
t→∞

Y (t0)
t

= 0. (8.10)

Therefore

limsup
t→∞

1
t
Y (t)≤ limsup

t→∞

1
t

∫ t

t0

5

∑
i=1

1
z(s)

KiIi(s)ds. (8.11)

We can deduce that when RA < 1, then

∫ t

t0

[ 5

∑
i=1

Ki
aiIi(s)
z(s)

]
ds < 0.

Therefore

limsup
t→∞

1
t
Y (t)< 0

This completes the proof.
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8.5 Numerical simulations

In order to illustrate Theorem 8.3, the system (8.1) are simulated for various sets

of parameters similar as in the paper by Bhunu et al. [6].

µ = 0.02, δ = 0.1, ϕ1 = 0.2, ϕ2 = 2.01, f = 0.8, ν = 0.35, θ = 0.00419, ρ = 0.1

The infective individuals (I1, I2, I3, I4) is plotted against the susceptible individuals

(S).

We assume the proportion of influx of infecteds to be h1 = 0.0030, h2 = 0.0073,

h3 = 0.0061 and h4 = 0.0081, and initial conditions (in units of millions) are taken

as follows:

S(0) = 80.0, I1(0) = 20.0, I2(0) = 25.0, I3(0) = 18.0, I4(0) = 30.0, I5(0) = 40.0,

N(0) = 213.

The simulations of S(t), I1(t), I2(t), I3(t), I4(t), I5(t), run over different time hori-

zons as indicated on the graphs. Fig. 8.1 illustrates that the dynamical behaviour

described by the deterministic system (5.3), stabilizes at the disease free equilib-

rium, whenever RA = 0.891< 1 (i.e., with σ1 = σ2 = σ3 = σ4 = σ5 = 0). Fig. 8.2

also described by the deterministic system (5.3), stabilizes at the endemic level,

whenever RA = 1.05 > 1 (i.e., with σ1 = σ2 = σ3 = σ4 = σ5 = 0).

The Fig’s. 8.3 - 8.5, illustrate the cases, where the intensity of the white noise

(σ1,σ2,σ3,σ4,σ5) verified the conditions of the Theorem (8.3) in cases where

RA < 1 and RA > 1. Fig. 8.3 supports Theorem (8.3) which asserts that the

system (8.1) converges to E0 only with the condition RA = 0.865 < 1. In this

case, we consider the situation when all the immigrants are susceptible without

direct inflow of HIV infectives (i.e. h1 = h2 = h3 = h4 = 0) and the individuals
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in pre-AIDS (I4) class do not take part in sexual interaction as they may either be

aware of their infection or sexually inactive. As a result of absence of infective

immigrants into the community, the susceptible individuals ultimately increases.

Furthermore, the variation of HIV infected individuals (I1, I2, I3, I4) and that of

AIDS patients (I5) individuals is shown for different rates of inflow of infectives

and contact rates of pre-AIDS patients. It is clear that when the pre-AIDS patients

do not take part in sexual interaction and the direct inflow of infectives is also re-

stricted (i.e. h1 = h2 = h3 = h4 = 0), the number of infectives decreases, leading

to decline in AIDS population. We can see that when the noise (σ1,σ2,σ3,σ4,σ5)

is kept sufficiently small, the disease-free equilibrium state E0 is stochastically

stable. Whenever the intensity gets larger, the endemic equilibrium becomes un-

stable and the solution of the system (8.1) rapidly converges to E0, as shown in

Fig. 8.5.
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Figure 8.1: Deterministic trajectories of epidemic model (8.1) with parameter

values: β = 0.135, σ1 = σ2 = σ3 = σ4 = σ5 = 0.
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Figure 8.2: Deterministic trajectories of epidemic model (8.1) with parameter

values: β = 0.1595, σ1 = σ2 = σ3 = σ4 = σ5 = 0.
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Figure 8.3: Stochastic trajectories of epidemic model (8.1) with parameter values:

β = 0.131, h1 = h2 = h3 = h4 = 0,σ1 = 0.1637, σ2 = 0.1286, σ3 = 0.1525, σ4 =

0.1587, σ5 = 0.1922.
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Figure 8.4: Stochastic trajectories of epidemic model (8.1) with parameter values:

β = 0.25, σ1 = 0.2327, σ2 = 0.2864, σ3 = 0.2256, σ4 = 0.2487, σ5 = 0.2185.
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Chapter 9

Conclusion

In this dissertation, a mathematical model to study the escalation of HIV/AIDS

with recruitment of infecteds in a population is proposed and analyzed. We as-

sumed that susceptible individuals become infected through sexual engagement

with those infected by HIV virus. We studied the impact of public health educa-

tion awareness campaigns on HIV/AIDS epidemic.

In Chapter 5, we studied the existence and other basic properties of the solutions

of the model system (5.3). Using an approach described in papers [15, 45], we

establish the positivity and the boundedness of solutions of model system (5.3).

We proved the global stability of the disease free equilibrium (E0) using Lya-

punov method. Furthermore, we carried out a numerical study of the model (5.3)

to see the effects of certain key parameters on the spread of the disease. We

performed the sensitivity analysis of basic reproduction number, RA, using Math-

ematica software tool to determine the robustness of RA to the model parameter

values. That is, to help us identify the parameters that have high impact on RA .

In Chapter 6, we used the optimal control theory to identify the effort of public

health education, that is being rolled-out to control the HIV/AIDS. The aim was

to maximize the use of public health education campaigns on the infecteds and
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susceptible individuals. In this regard, we used Pontryagin’s maximum principle

to characterize the control and derive the optimal system. A comparison between

optimal control and no control is presented. We can see that the optimal education

campaign is much more effective for reducing the number of infected individu-

als. Observations from numerical simulations on the resulting optimality system,

showed that educational programs regarding HIV/AIDS may have a positive im-

pact on the HIV/AIDS epidemic. Educating those infected with HIV/AIDS to

increase the awareness about the disease and the protection techniques may cause

behavioural changes that can, in turn, reduce HIV/AIDS infections. In order to

show the picture of the epidemic, the numbers of susceptible and infected individ-

uals under the optimal control and no control are shown in simulations.

In Chapter 8, we explored a stochastic differential model describing the population

dynamics of an HIV/AIDS epidemic. We perturbed the deterministic compart-

mental model (5.3) by introducing a mutually independent white noise terms into

the model. We established the positivity of solutions of the perturbed model (8.1).

We proved the almost sure exponential stability of the system (8.1) under suitable

conditions of Theorem 8.3. Numerical simulations of the perturbed model (8.1)

supported the Theorem 8.3 which asserts that the system (8.1) converges to E0

only with the condition RA < 1. Whenever the intensity gets larger, the solution

of the system (8.1) converges to E0 even more rapidly.

To determine the role of recruitment of infecteds in the HIV/AIDS epidemic, we

started with a qualitative investigation of the long-term transmission dynamic be-

haviour of HIV/AIDS in host areas with large influx of infecteds into a population.

Our primary finding is that migration does contribute drastically on the overall epi-

demiology of HIV/AIDS, which has also been confirmed by the simulations with

the model.
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Literature on public health indicates that migration is increasingly becoming a

major factor in the dissemination of HIV. Lack of knowledge and current myths

on the disease in both developed and developing countries is a big challenge.

These factors exacerbate the HIV/AIDS stigma. Historically, visitors living with

HIV infection are usually regarded or treated as a threat to hosting countries. For

instance, since 1993, people living with HIV/AIDS were prohibited from visiting

or immigrating to the United States. Under the ban which was based on fear

rather than fact, visitors or immigrants who were seeking a new residency visa or

the renewal of the existing one were forcefully subjected to mandatory HIV/AIDS

testing. Those applicants found to be HIV positive were denied the residency visa

and were immediately deported. In all these years, only five years ago, Barack

Obama, the current president of the U.S.A. instituted a new policy rule to eliminate

this travel ban, quote, “Now, we talk about reducing the stigma of this disease,

yet we’ve treated a visitor living with it as a threat” [73]. The consequences of

stigma and discrimination are everywhere. To mention just a few, some people

are rejected by family, peers and the wider community, while others face poor

treatment in healthcare and education settings and so forth. These all limit access

to HIV testing, treatment and other available HIV preventive services. In order

to combat HIV/AIDS pandemic, we need to reduce its stigma. More research

on collaborative evidence-based interventions in terms of public health awareness

campaigns aimed at reducing the stigma to prevent the infection is needed. This

will encourage everyone, immigrant or not to get tested and receive a treatment

and preventive services. It is likely that this may also improve the overall rate of

HIV diagnosis especially among minority populations.

Our proposed model serves as an important tool that can help quantify these afore-

mentioned factors which influence the spread of HIV infection. In this regard, this

model provides an appropriate optimal control strategy aimed at optimizing HIV
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testing, prevention, and public health education roll-out intervention programs,

at a least cost possible for the nations experiencing high volumes of infecteds.

Numerical results are provided. Considering the subjectivity of HIV infection to

some other random environmental factors, our proposed model have also included

the stochastic perturbations to provide a better understanding of the disease and

predictions about the disease behaviour. Numerical simulations illustrating these

predictions are also presented. As a follow-up on this work, it will also be helpful

to bring about a good parameter estimate that can be used to characterize an HIV

stigma to help to curb the further spread of the disease on a population as a whole.
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