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Abstract 

 

End stage renal disease (ESRD), a more severe form of kidney disease, is considered to be a 

complex trait that may involve multiple processes which work together on a background of a 

significant genetic susceptibility. Black Africans have been shown to bear an unequal burden 

of this disease compared to white Europeans, Americans and Caucasians. Despite this, most 

of the genetic and epidemiological advances made in understanding the aetiology of kidney 

diseases have been done in other populations outside of sub-Saharan Africa (SSA).  Very 

little research has been undertaken to investigate key genetic factors that drive ESRD in 

Africans compared to patients from rest of world populations.  

Therefore, the primary aim of this Bioinformatics thesis was twofold: firstly, to develop and 

apply a whole exome sequencing (WES) analysis pipeline and use it to understand a genetic 

mechanism underlying ESRD in a South African population of mixed ancestry. As I 

hypothesized that the pipeline would enable the discovery of highly penetrate rare variants 

with large effect size, which are expected to explain an important fraction of the genetic 

aetiology and pathogenesis of ESRD in these African patients. Secondly, the aim was to 

develop and set up a multicenter clinical database that would capture a plethora of clinical 

data for patients with Lupus, one of the risk factors of ESRD.  

From WES of six family members (five cases and one control); a total of 23 196 SNVs, 1445 

insertions and 1340 deletions, overlapped amongst all affected family members. The variants 

were consistent with an autosomal dominant inheritance pattern inferred in this family. Of 

these, only 1550 SNVs, 67 insertions and 112 deletions were present in all affected family 

members but absent in the unaffected family member.  

Following detailed evaluation of evidence for variant implication and pathogenicity, only 3 

very rare heterozygous missense variants in 3 genes COL4A1 [p.R476W], ICAM1 

[p.P352L], COL16A1 [p.T116M] were considered potentially disease causing. 

Computational relatedness analysis revealed approximate amount of DNA shared by family 

members and confirmed reported relatedness. Genotyping for the Y chromosome was 

additionally performed to assist in sample identity. The clinical database has been designed 

and is being piloted at Groote Schuur medical Hospital at the University of Cape Town. 

Currently, about 290 patients have already been entered in the registry.  

The resources and methodologies developed in this thesis have the potential to contribute not 

only to the understanding of ESRD and its risk factors, but to the successful application of 
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WES in clinical practice. Importantly, it contributes significant information on the genetics of 

ESRD based on an African family and will also improve scientific infrastructure on the 

African continent. Clinical databasing will go a long way to enable clinicians to collect and 

store standardised clinical data for their patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Table of Contents 

DECLARATION .................................................................................................................................................. II 

ACKNOWLEDGMENTS .....................................................................................................................................III 

ABSTRACT ...................................................................................................................................................... IV 

TABLE OF CONTENTS ...................................................................................................................................... VI 

LIST OF TABLES ................................................................................................................................................ X 

LIST OF FIGURES ............................................................................................................................................. XI 

PUBLICATIONS ............................................................................................................................................. XIII 

CONFERENCES AND PRESENTATIONS ........................................................................................................... XIII 

COURSES ...................................................................................................................................................... XIV 

LIST OF ABBREVIATIONS ............................................................................................................................... XV 

1 LITERATURE REVIEW ............................................................................................................................... 1 

1.1 INTRODUCTION ............................................................................................................................................. 1 

1.2 KIDNEY DISEASE IN AFRICA .............................................................................................................................. 3 

1.2.1 Burden of kidney disease in African ................................................................................................ 4 

1.2.2 Epidemiological patterns of kidney disease in Africa compared to other populations .................. 6 

1.2.3 Risk factors of kidney disease in Africa ........................................................................................... 8 

1.3 DIAGNOSIS AND MANAGEMENT OF KIDNEY DISEASE ........................................................................................... 10 

1.3.1 Use of kidney biopsy ..................................................................................................................... 11 

1.3.2 Kidney disease management ........................................................................................................ 13 

1.4 CLINICAL DATABASING................................................................................................................................... 14 

1.5 GENETICS OF KIDNEY DISEASE ........................................................................................................................ 16 

1.5.1 Human genome ............................................................................................................................ 17 

1.5.2 Genes and disease association ..................................................................................................... 18 

1.5.3 Evidence for a genetic component to kidney disease ................................................................... 20 

1.6 DNA SEQUENCING ...................................................................................................................................... 23 

1.6.1 First generation sequencing technology ....................................................................................... 23 

1.6.2 Next generation sequencing25 1.6.2.1

 Roche 454 ........................................................................................................................................... 26 

1.6.2.2 Illumina ............................................................................................................................................... 27 

1.6.2.3 SOLiD ................................................................................................................................................... 28 

1.6.3 Whole exome sequencing ............................................................................................................. 29 

1.6.3.1 Challenges and limitations of exome sequencing ............................................................................... 31 

1.6.4 Whole exome sequencing analysis workflow ............................................................................... 32 

 

 

 

 



vii 

 

1.6.4.1 Library preparation ............................................................................................................................. 33 

1.6.4.2 Base calling and quality control .......................................................................................................... 35 

1.6.4.3 Read mapping and Alignment to reference genome .......................................................................... 36 

1.6.4.4 Variant calling and genotyping ............................................................................................................ 37 

1.6.4.5 Variant annotation .............................................................................................................................. 38 

1.6.4.6 Statistical prioritization and candidate gene identification ................................................................. 40 

1.6.4.7 Data visualization ................................................................................................................................ 41 

1.7 APPLICATION OF WHOLE EXOME SEQUENCING IN THE STUDY OF DISEASE GENETICS .................................................... 42 

1.7.1 Whole exome sequencing as a diagnostic tool in clinical settings ................................................ 45 

1.7.2 Potential of exome sequencing in kidney disease genetics .......................................................... 46 

1.8 THESIS RATIONALE AND OBJECTIVES ................................................................................................................. 48 

1.9 THESIS OVERVIEW ....................................................................................................................................... 49 

2 COMPUTATIONAL HIGH THROUGHPUT GENOMIC STUDY OF RARE FAMILIAL KIDNEY DISEASE IN AFRICA

 51 

2.1 BACKGROUND ............................................................................................................................................. 52 

2.2 MATERIALS AND METHODS ........................................................................................................................... 54 

2.2.1 Human Patients ............................................................................................................................. 55 

2.2.2 Blood collection and DNA extraction ............................................................................................ 56 

2.2.3 Whole exome capture and sequencing......................................................................................... 56 

2.2.4 Bioinformatics analysis of whole exome sequence data .............................................................. 56 

2.2.4.1 Mapping and alignment of exome reads to the human reference genome ........................................ 57 

2.2.4.2 Refinement of alignments from whole exome reads .......................................................................... 58 

2.2.4.3 Variant calling and statistical genotyping ............................................................................................ 60 

2.2.5 Functional Annotation of identified variants ................................................................................ 61 

2.3 RESULTS .................................................................................................................................................... 63 

2.3.1 Sequencing and quality control .................................................................................................... 63 

2.3.2 Distribution of variation across sequenced samples .................................................................... 66 

2.3.3 Functional variation shared by affected family members ............................................................. 67 

2.3.4 Variant prioritisation using Ingenuity variant analysis .................................................................. 68 

2.3.5 Prioritised variants and their possible effects ............................................................................... 69 

2.3.6 Structural variation inference from exome reads ......................................................................... 71 

2.3.7 Relatedness analysis using Whole exome data ............................................................................. 72 

2.4 DISCUSSION ............................................................................................................................................... 73 

2.5 CONCLUSION .............................................................................................................................................. 76 

3 FUNCTIONAL ANALYSIS AND CANDIDATE GENE PRIORITIZATION .......................................................... 77 

3.1 BACKGROUND ............................................................................................................................................. 78 

3.2 METHODS .................................................................................................................................................. 80 

3.2.1 Statistical probabilistic variant prioritization ................................................................................ 82 

 

 

 

 



viii 

 

3.2.2 Ingenuity Variant Analysis ............................................................................................................. 83 

3.2.3 VarElect ......................................................................................................................................... 84 

3.2.4 Pathway Analysis (IPA) .................................................................................................................. 85 

3.2.5 Protein-protein interaction and other networks (STRING) ........................................................... 86 

3.3 RESULTS .................................................................................................................................................... 86 

3.3.1 Beyond “the one hit theory” ......................................................................................................... 86 

3.3.2 IVA identifies novel and rare variants in affected family members .............................................. 87 

3.3.3 Statistical variant prioritisation identifies novel variants identical to IVA ..................................... 88 

3.3.4 Genes predicted to have a direct link to End-stage renal disease identified ................................ 89 

3.4 POTENTIAL DISEASE CAUSING GENES IDENTIFIED IN ALL AFFECTED FAMILY MEMBERS .................................................. 90 

3.4.1 Candidate genes are involved in increased glomerulus injury, renal damage and renal failure ... 92 

3.4.2 Candidate genes are involved in interstitial fibrosis ..................................................................... 93 

3.4.3 Candidate variants are conserved across species ......................................................................... 95 

3.4.4 Protein-protein interaction networks and gene co-expression analysis of candidate genes ........ 96 

3.5 PROTEIN STRUCTURE MODELLING ................................................................................................................... 99 

3.6 DISCUSSION ............................................................................................................................................. 100 

3.7 CONCLUSION ............................................................................................................................................ 104 

4 CLINICAL DATABASING ........................................................................................................................ 105 

4.1 INTRODUCTION ......................................................................................................................................... 105 

4.2 METHODS ................................................................................................................................................ 107 

4.2.1 Database construction ................................................................................................................ 107 

4.2.2 Data sourcing .............................................................................................................................. 111 

4.3 RESULTS .................................................................................................................................................. 113 

4.3.1 Database home page .................................................................................................................. 113 

4.3.2 Database access .......................................................................................................................... 113 

4.3.3 Database functions ..................................................................................................................... 115 

4.3.4 Real time data entry.................................................................................................................... 116 

4.4 DISCUSSION ............................................................................................................................................. 117 

4.5 LIMITATIONS ............................................................................................................................................. 118 

4.6 CONCLUSION ............................................................................................................................................ 119 

5 SUMMARY OF KEY FINDINGS AND FUTURE DIRECTION ...................................................................... 120 

5.1 MAJOR CONTRIBUTIONS OF THIS WORK ......................................................................................................... 121 

5.1.1 Clinical databasing ...................................................................................................................... 122 

5.1.2 Analysis of exome sequencing data based on African samples .................................................. 123 

5.1.3 Quality control of exome sequencing data using relatedness testing ........................................ 124 

5.1.4 Statistical probabilistic variant prioritization of exome sequencing data ................................... 125 

5.1.5 Multiple variants theory ............................................................................................................. 126 

 

 

 

 



ix 

 

5.1.6 Structural variation inference from exome reads ....................................................................... 127 

5.1.7 Genetics underlying rare complex renal phenotypes ................................................................. 128 

5.2 CONCLUDING REMARKS .............................................................................................................................. 130 

5.3 FUTURE DIRECTION .................................................................................................................................... 132 

APPENDIX A. SAMPLE QUALITY CONTROL INFORMATION. ...................................................................... 135 

APPENDIX B. FASTQ RESULTS FOR THE UNAFFECTED FAMILY MEMBER ................................................... 136 

APPENDIX C. PARAMETERS FOR VARIANT FILTRATION. ........................................................................... 137 

APPENDIX D. COL16A1 VARIANT VISUALISATION USING IGV ................................................................... 138 

APPENDIX E. 3D PROTEIN STRUCTURE FOR ICAM1 AND THE IDENTIFIED VARIANT .................................. 140 

6 REFERENCES........................................................................................................................................ 141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

List of tables 

 

Table 1.1 A comparison of NGS sequencing technologies. ..................................................... 29 

Table 1.2 Details of human exome capture techniques ............................................................ 35 

Table 2.1. Different file formats used in the analysis of next generation sequencing data. ..... 57 

Table 2.2 Description of exonic variants annotations used in this project. .............................. 62 

Table 2.3 Summary of mapping statistics for exome sequenced samples ............................... 64 

Table 2.4 Summary of variation obtained from 6 samples sequenced .................................... 66 

Table 2.5 Variation identified in affected patients absent in unaffected family members ....... 67 

Table 2.6 Stepwise variant and gene prioritisation process ..................................................... 68 

Table 2.7 A list of prioritised genes from IVA analysis ........................................................... 70 

Table 2.8 Copy number variants detected in sequenced samples. ........................................... 71 

Table 2.9 Amount of shared DNA amongst family members. ................................................. 72 

Table 3.1 General steps followed for implicating sequence variants in human disease .......... 81 

Table 3.2 Terms used to describe DNA sequence variation. .................................................... 82 

Table 3.3 Novel variants in genes located closely on the same chromosome ......................... 87 

Table 3.4 Novel variants identified using IVA ......................................................................... 88 

Table 3.5 Statistical variant prioritisation ................................................................................ 89 

Table 3.6 Genes predicted to have a direct link to End-stage renal disease ............................ 89 

Table 3.7 Prioritised potential disease causing genes .............................................................. 90 

Table 3.8 Molecular, cellular and System development functions enriched. ........................... 93 

 

 

 

 



xi 

 

List of figures 

 

Figure 1.1 The human kidney and its functional components ............................................... 3 

Figure 1.2 Workflow of the Sanger Sequencing method ..................................................... 25 

Figure 1.3 Principles of sequencing and imagin ...................................................................... 26 

Figure 1.4 Roche 454 machine ................................................................................................ 27 

Figure 1.5 Different Illumina machines ................................................................................... 28 

Figure 1.6 Pace of discovery of rare-disease causing genes using exome sequencing ............ 31 

Figure 1.7 Basic protocol for whole exome sequencing data analysis .................................... 33 

Figure 1.8 Principles of reference alignment of paired-end reads to a reference genome. ...... 37 

Figure 1.9 Filtering steps followed in variant prioritization of exome sequencing data ......... 41 

Figure 1.10 Gene identification approaches for different categories of rare diseases ............. 44 

Figure 2.1 Family pedigree ...................................................................................................... 55 

Figure 2.2 Basic workflow for WES data processing steps ..................................................... 59 

Figure 2.3 WES variant calling steps using GATK. ................................................................ 61 

Figure 2.4 Quality control results for one of the sequenced samples ...................................... 63 

Figure 2.5 Depth of coverage distributions across the targeted region .................................... 65 

Figure 2.6 Coding consequence were also fairly frequent ....................................................... 67 

Figure 3.1 VAAST search steps followed to identify potential candidate genes ..................... 83 

Figure 3.2 Steps followed in candidate gene identification using IVA. ................................... 84 

Figure 3.3 Steps followed in candidate gene prioritisation steps using VarElect .................... 85 

 

 

 

 



xii 

 

Figure 3.4 ICAM1 variant visualisation. ................................................................................. 91 

Figure 3.5 Human schematics of the distribution of COL4A1 mutations ............................... 91 

Figure 3.6 Pathways enriched from the prioritised candidate genes ....................................... 92 

Figure 3.7 Progression of renal interstitial fibrosis towards End stage renal disease .............. 94 

Figure 3.8 COL4A1 biosynthesis and interaction with extra cellular matrix components ...... 95 

Figure 3.9 Evolutionary conservation of mutations identified in affected family members ... 96 

Figure 3.10 COL4A1 co-expression analysis .......................................................................... 97 

Figure 3.11 Protein-protein interaction networks .................................................................... 98 

Figure 3.12 Col16A1 3D model with a variant introduced ..................................................... 99 

Figure 3.13 Molecular structure of the amino acid residues .................................................. 100 

Figure 4.1 Steps that are undertaken to design a clinical database ........................................ 108 

Figure 4.2 Data entry forms for database arms ...................................................................... 110 

Figure 4.3 Sample data entry form ........................................................................................ 111 

Figure 4.4 Clinical database home page. ............................................................................... 113 

Figure 4.5 Database access .................................................................................................... 114 

Figure 4.6 Database functionality .......................................................................................... 115 

Figure 4.7 Sample completed data entry form ....................................................................... 116 

Figure 4.8 Database comprehensive user rights assignment. ................................................ 117 

 

 

 

 

 

 

 

 

 



xiii 

 

Publications 

 

Publications arising from work in this thesis: 

Bridget Hodkinson, Darlington Mapiye, David Jayne, Nicki Tiffin, Ikechi Okpechi. The 

African Lupus Genetics Network (ALUGEN) registry: standardized, prospective follow-up 

studies in African patients with Systemic Lupus Erythematous. 

 

The candidate (Darlington S Mapiye) designed and implemented the clinical database and 

was involved in manuscript write-up. 

 

 

Conferences and presentations 

 

ISCB Africa and ASBCB conference. March 2015, Dar es Salaam, Tanzania 

Oral Presentation: 

Mapiye D, Galen Wright, Ikechi Okpechi. Computational genomic approaches for kidney 

diseases in Africa. 

 

National Institutes of health (NIH) Consortium meeting. May 2015, Livingston, Zambia. 

Poster Presentation: 

Mapiye D, Galen Wright, Ikechi Okpechi. Computational genomic approaches for kidney 

diseases in Africa. 

 

23rd International conference on intelligent systems molecular biology and14th 

European conference on molecular biology, July 2015, Dublin Ireland 

Poster Presentation: 

Mapiye D, Galen Wright, Ikechi Okpechi. Computational genomic approaches for kidney 

diseases in Africa. 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

 

Courses 

 

Working with the human genome: Welcome Trust funded training workshop in Blantyre 

Malawi, January 2015. 

 

Advanced Genome Wide Association (GWAS) modeling and simulation workshop. 

African Institutes of Mathematical Sciences, April 2015. 

 

Medical population genetics and GWAS for complex diseases. African Institutes of 

Mathematical Sciences, April 2015. 

 

Principles and Practice of Clinical Research. Medical Research Council and National 

Institutes of Health May 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

 

 

List of abbreviations 

As  Alport syndrome 

BAM   binary alignment map      

BWA   burrow-wheeler aligner   

CRF   case report forms   

CWES   clinical whole exome sequencing  

CGN   chronic glomerular nephritis  

CKD  chronic kidney disease  

CONIFER  copy number inference from exome reads 

CNV   copy number variant 

DNA   deoxy ribonucleic acid  

HER   electronic health records 

eGFR   estimated glomerular filtration rate 

ESRD  end stage renal disease 

FSGC  Focal segmental glomerular sclerosis  

GBM  glomerular basement membrane 

GATK  genome analysis tool kit 

GERP   genomic evolutionary rate profiling 

GWAS   genome wide association study 

IVA  ingenuity variant analysis 

IPA  ingenuity pathway analysis 

INDEL   insertion deletion 

JVC   joint variant calling 

MALD   mapping by admixture linkage disequilibrium 

MAF   minor allele frequency 

NGS   next generation sequencing 

POLYPHEN  polymorphism phenotyping 

RRT   renal replacement therapy 

REDCAP  research electronic data capture 

SAM   sequence alignment map 

SLE   systemic lupus erythematous  

SIFT  sorting intolerant from to tolerant 

SNP  single nucleotide polymorphism  

SNV   single nucleotide variant 

VEP   variant effect predictor 

VNTR  variant number tandem repeat  

WES  whole exome sequencing 

VCF    variant call file 

 

 

 

 



xvi 

 

WGS   whole genome sequencing

 

 

 

 



1 

 

1  Literature Review 

 

1.1  Introduction 

 

Amid rapid urbanisation, life style changes, and the increasing rates of non-

communicable diseases, the sub-Saharan population is increasingly becoming 

vulnerable to chronic kidney diseases (CKD) (Stanifer et al., 2014). CKD affects an 

approximately 10 -13 % of adults in Sub-Saharan Africa (SSA), of these about 5-10 % 

reach end stage renal disease (ESRD), a more severe form of kidney disease which 

requires renal replacement therapy (RRT) to treat (Martins et al., 2012; Odubanjo et 

al., 2011; Schieppati and Remuzzi, 2005; Stanifer et al., 2014; Sumaili et al., 2009). 

Yet, only approximately 2% of the patients with ESRD are able to access this life 

saving treatment (RRT), making ESRD a death sentence for most patients (Abu-Aisha 

and Elamin, 2010; Katz et al., 2010). 

 

ESRD is considered to be a complex trait that may involve multiple processes which 

work together on a background of a significant genetic susceptibility (Bowden, 2003). 

Black Africans have been shown to bear an unequal of this disease compared to white 

Europeans, Americans and Caucasians (Nugent et al., 2011). Despite this, most of the 

genetic and epidemiological advances made in the elucidation of the genetic aetiology 

of kidney diseases have been done in other populations outside of sub-Saharan Africa, 

mostly in African Americans and Europeans (Freedman et al., 1993; Genovese et al., 

2010; Schieppati and Remuzzi, 2005). In addition, few epidemiological studies have 

been undertaken to ascertain the incidence, prevalence and other causes of CKD in 

developing countries. Thus, in order to address some of the affliction of CKD in 

Africa, the epidemiology of kidney disease needs to be established. 

 

In collaboration with the Nephrology Unit at the Groote Schuur Teaching Hospital, 

Cape Town, South Africa. I have explored clinical applications of Bioinformatics 

tools, resources and research methodologies that can contribute to addressing the 

burden of ESRD in African populations. Two main applications were identified and 

explored further. The first problem I identified that can be addressed with 

Bioinformatics approaches is to understand the underlying disease mechanism, 
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especially in the case of unusual, idiopathic or extreme phenotypes. Very little 

research has been undertaken to investigate key genetic factors that drive ESRD in 

Africans compared to patients from rest of world populations. Omics approaches can 

be harnessed to better understand biological mechanisms that might be driving ESRD 

in African patients. In this study, I used whole exome sequencing to identify 

potentially causative variants for an unusual, difficult and severe autosomal dominant 

ESRD in a South African family of mixed ancestry, which is characterised by early 

onset elevated serum creatinine, and developmental defects, but with the absence of 

haematuria and proteinuria which are the commonly utilised clinical markers of renal 

insufficiency. Bioinformatics approaches were used to analyse and compare exome 

sequence data from six family members (5 affected and one unaffected). 

 

The second clear problem identified is the poor unstructured collection, storage, 

accessibility and or reliability of clinical data collected from patients with kidney 

disease. In order to demonstrate effective application of clinical databasing which will 

result in collection and storage of reliable structured patient data, which can be used 

for future genomic studies, a multicentre clinical database has been developed. 

 

Therefore, the primary aim of this Bioinformatics thesis was twofold: firstly, to 

develop and apply a whole exome sequencing (WES) analysis pipeline and use it to 

unravel and understand a genetic mechanism underlying ESRD in a South African 

population of mixed ancestry. As I hypothesised that the pipeline would enable the 

discovery of highly penetrate rare variants and other functional mutations with large 

effect size, which are expected to explain an important fraction of the genetic 

aetiology and pathogenesis of ESRD in these African patients; therefore, having a 

potential clinical interest. This would assist us to better understand the genetic 

mechanisms and disease pathogenesis of one form of ESRD based on an African 

population. Secondly, the aim is to develop and set up a multicentre registry that 

would capture a plethora of clinical data for patients with Lupus, one of the risk 

factors of ESRD. Lack of registries was identified as one of the major obstacles to 

obtaining reliable statistics about the prevalence and incidences of kidney diseases in 

many African countries, because registries offer an important source of information 

on multiple aspects of a disease. They are primarily useful in characterising disease 

population, describing the prevalence and incidences, trends in mortality and 
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investigating relationships among patient demographics, exposures, treatment 

modalities and morbidity. 

 

1.2 Kidney Disease in Africa 

 

The kidneys are vital excretory organs and central to fluid, electrolyte and acid-base 

homeostasis in humans (Figure 1.1). Damage of the kidneys has severe consequences 

for systemic functions, growth and survival. CKD is the presence of kidney damage, 

manifested by abnormal albumin excretion or deteriorated kidney function that lasts 

longer than three months as quantified by measured or estimated glomerular filtration 

rate (eGFR) (Kopple, 2001). Progressive renal disease usually leads to the common 

end point (ESRD), which is characterised by a shrunken, fibrotic kidney. CKD poses 

great challenges of a plethora of management modalities. 

 

 

Figure 1.1: The human kidney and its functional components . (Ellsworth and 

Howard, 1934). A human being has two kidneys that are located in the lower abdomen. The 

kidneys receive most of their blood directly from the heart via the renal artery and the blood 

leaves the kidney via the renal vein. The main functional unit of the kidney is the nephron. 

Each kidney has over a million nephrons that contribute to its proper function. Each nephron 

consists of the glomerulus which is located in the cortex and passes its filtrate into the 

proximal convoluted tubules. The proximal tubule then leads to the loop of Henle, which is 

located in the medulla and it’s mainly responsible for water reabsorption. This leads to the 

distal convoluted tubules that lead to the collecting duct. Blood for the nephron is supplied by 

afferent arteriole and leaves via the efferent arteriole. 

 

 

 

 

 

 



4 

 

1.2.1  Burden of kidney disease in African 

 

Rapid urbanisation is occurring in many parts of Sub-Saharan Africa (SSA), 

contributing to over-crowding and poverty. While infectious and parasitic diseases are 

still the leading cause of death in SSA, non-communicable diseases are increasingly 

being recognised (Naicker, 2010). In 2011 the United Nations General Assembly 

accepted a resolution recognising the imminent risk of the non-communicable 

diseases and their affliction (Mensah and Mayosi, 2013). According to the Word 

Health report of 2002 and Global Burden of Diseases project, kidney disease 

contributes to the burden of diseases, with an approximately 850,000 deaths every 

year and over 15 million disability adjusted life years (Schieppati and Remuzzi, 

2005).  

 

CKD is now acknowledged as a global public health problem (Murray and Lopez, 

1997; Stanifer et al., 2014). While the magnitude of CKD has been defined better in 

developed countries, growing evidence indicates that the burden of CKD is even 

greater in SSA than previously anticipated (Naicker, 2010). CKD and to a greater 

extent ESRD contribute substantially to the disparate burden of illness, disability and 

premature death across sex, age, race/ethnicity, socioeconomic status and geographic 

boundaries (Pugsley et al., 2009). Disadvantaged communities such as those in SSA, 

racial and ethnic minorities suffer from marked increases in incidences, prevalence 

and complications of CKD (Pugsley et al., 2009). 

 

It is projected that by 2030 more than 70% of patients with ESRD will be living in 

low income countries, such as SSA, where the gross domestic product per person on 

average is less than 1,500 United States dollars per year (Barsoum, 2005). In SSA, 

public health care systems receive only 0.4 - 4% of the gross domestic product (GDP) 

and this has to be shared between infectious diseases such as the HIV aids pandemic 

and the emerging threat of non-communicable disease (Jafar et al., 2006). CKD is one 

of the serious health conditions that disproportionately afflict low income 

communities (such as those in SSA), their health systems as well as financial 

infrastructures (Jafar et al., 2006). However, much of the economic burden of CKD 

can be attributed to direct medical expenses associated with expensive long-treatment 
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costs (Pakistani, 1994). 

 

A similar trend can be seen with ESRD management where developed countries 

dedicate more than 1% of the total health care budget to approximately 0.1% of 

population with ESRD, while in SSA ESRD management is too expensive and 

healthcare resources and budgets are unable to meet the burden of treatment (Hossain 

et al., 2009). For instance, in SSA, RRT costs are more than 10 times the annual per 

capita income and often health insurance coverage is low or non-existent for RRT 

treatment (Nugent et al., 2011). Thus, if the affected people do not receive RRT they 

will most likely die, creating another financial burden on the already resource limited 

countries, as their dependents would need to be taken care of, and their contributions 

to the economy are lost. 

 

These exorbitant costs and lack of access to RRT are the major reason why 

approximately less than 10% of patients in low income countries receive RRT 

(Pakistani, 1994). Financial changes, reduced savings, decreased investment potential, 

constrained educational attainment that families face due to the burden of CKD result 

in detrimental socioeconomic impacts. These effects are likely to translate into 

significant decreased economic growth, and compounded over time would adversely 

affect disease management and control, in already resource poor settings 

(Organization and others, 2005). 

 

Apart from the high costs of RRT, the pressure on national resources is further 

compounded by the high cardiovascular disease (CVD) burden observed in CKD 

patients. This is also exacerbated by the on-going brain drain of health workers, 

mainly physicians and nurses from Africa to more affluent regions. For instance, there 

are no nephrologists in many parts of SSA; the numbers vary from 0.5 per million 

populations (pmp) in Kenya to 0.7 pmp in Nigeria and 1.1 pmp in South Africa. This 

has a direct effect on availability of RRT as there will be no skilled personnel to 

oversee the therapy (Naicker, 2010). 

 

The accumulative prevalence and incidence of CKD presents a worrying health 

burden in SSA. The surge in CKD and progression to ESRD mainly results from 

rising diabetes and hypertension pandemics (Murray and Lopez, 1997). This is 
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creating pressure on the already burdened health care system. Furthermore, limited 

access to health care, lack of awareness and limited capacity of health care workers 

suggest that those in lowest socioeconomic brackets are often oblivious to the risk of 

CKD and this adversely affects the outcome of the disease (Naicker, 2010). Treatment 

of ESRD is low priority for the already overwhelmed public health infrastructure 

(Naicker, 2010). 

 

1.2.2 Epidemiological patterns of kidney disease in Africa compared 

to other populations 

 

Kidney disease is an escalating global epidemic that disproportionally affects the 

economic, social, and health outcomes of resource-poor and low income countries 

such as those in Africa (Beaglehole and Yach, 2003). While significant advances have 

ensued in the management of CDK/ESRD patients worldwide with substantial 

improvements in outcomes and clinical state, survival is still very poor in SSA where 

GDP per capita is low and budgetary allotment on health is inadequate (Stanifer et al., 

2014). 

 

The pattern of disease morbidity and mortality throughout the world is fluctuating 

both in the developed and the developing countries (Beaglehole and Yach, 2003). 

During the 20th century, infectious diseases were the major cause of death and 

disability. In this century, however, an epidemiological transition has occurred 

resulting in non-communicable, non-infectious diseases becoming the leading cause 

of mortality and morbidity around the world (Yach et al., 2004). This variation is 

echoed in the type of diseases causing CKD, their presentation and progression. To 

date, the main cause of ESRD is diabetes resulting from the global pandemic of type 2 

diabetes (Yach et al., 2004). Its rate of progression is extraordinary, and it is predicted 

that the number of patients with type 2 diabetes around the world will double in the 

next 25 years (Yach et al., 2004). Consequently, this will lead to a corresponding 

escalation in the number of patients with CKD and subsequently the number requiring 

RRT. 
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The epidemiology of kidney disease is strikingly different in SSA compared to 

developed countries (DuBose, 2007). While it predominately affects middle aged and 

elderly population in developed countries, in SSA it affects mostly young adults aged 

20-50 years in their prime and most economically productive years (Mabayoje et al., 

1992; Naicker, 1998). Other factors that may contribute include; poor access to health 

care, poor knowledge of the risk factors as well as detrimental socio-cultural practices 

(Arogundade et al., 2011). In contrast, the US prevalence of CKD escalates strongly 

with age (4% at age 29-39 y; 47% at age >70 y), with the most rapid growth in people 

aged 60 years or older (US, 1994). In the National Health and Nutrition Examination 

Survey (NHANES) study, the prevalence of stage 3 CKD in this age group rose from 

18.8% during 1988 ̶ 1994 to 24.5% from 2003-2006 (US, 1994). Throughout this 

same period, the prevalence of CKD in people aged 20-39 years remained consistently 

beneath 0.5 % and men and women showed similar prevalence (US, 1994). 

 

On the other hand, the progression of CKD to the more severe ESRD has been 

reported to be rapid in Africa as compared to the USA and Europe. Within the USA, 

the prevalence of early CKD is comparable across racial/ethnic categories but the 

progression to ESRD is far more rapid among minority populations, with ESRD rates 

nearly 4 fold higher among African Americans in comparison to US white (US, 1994). 

This occurs despite both population races having similar prevalence rates of early 

CKD. Important differences also exist in the frequency of specific causes of CKD 

among different races. In the Chronic Kidney Disease in Children (CKiD) Study, for 

example, glomerular disease was much more common among non-white persons 

(Furth et al., 2006). However, the rapid progression in African Americans can be 

attributed to lower socioeconomic status, lesser access to health care, excess exposure 

to environmental toxins and other disease risk factors (Martins et al., 2012). In 

Mexico, it is estimated that the prevalence of CKD is as high as 15.8% among high-

risk, poor populations, with similar demographics characteristics to Africans (Correa-

Rotter and Gonzalez-Michaca, 2005). 

 

The mortality rates associated with CKD are remarkable. After adjustment for age, 

gender, race, comorbidity, and prior hospitalizations, mortality in patients with CKD 

in 2009 was 56% greater than that in patients without CKD (Reyes-Bahamonde et al., 

2014). For patients with ESRD the adjusted mortality rate is 76% greater. Mortality 
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rates are consistently higher for men than for women and for black persons than for 

white individuals and patients of other races (Agnes et al., 2012). The highest 

mortality rate is within the first 6 months of initiating dialysis. Mortality then tends to 

improve over the next 6 months, before increasing progressively over the next 4 years. 

The 5-year survival rate for a patient undergoing long-term dialysis in the United 

States is approximately 35%, and approximately 25% in patients with diabetes 

(Herzog et al., 2002). 

 

In a study by Jaar, mortality risk was elevated in patients with ESRD and congestive 

heart failure who received peritoneal dialysis compared with those who received 

hemodialysis (Jaar et al., 2005). Their Median survival time was approximately 20 

months in patients receiving peritoneal dialysis as compared to 36.7 months in 

patients receiving hemodialysis. Compared with non-dialysis patients and individuals 

without kidney disease, patients with ESRD on dialysis have significantly increased 

mortality. 

 

A healthy person aged 60 years can expect to live for more than 20 years, whereas the 

life expectancy of a patient aged 60 years who is starting hemodialysis is closer to 4 

years (Jaar et al., 2005). Among patients aged 65 years or older who have ESRD, 

mortality rates are 6 times higher than in the general population (Rao et al., 2007). 

Puberty is often delayed among males and females with significant CKD (Seikaly et 

al., 2006). Female patients with advanced CKD commonly develop menstrual 

irregularities. Women with ESRD are typically amenorrheic and infertile 

(Anantharaman and Schmidt, 2007). However, pregnancy can occur and can be 

associated with accelerated renal decline, including in women with a kidney 

transplant in advanced CKD (Watnick, 2007). 

  

1.2.3 Risk factors of kidney disease in Africa 

 

Diabetes Mellitus has emerged as the major risk factor for CKD and the commonest 

cause of ESRD in developed countries, while chronic glomerulonephritis (CGN) and 

hypertension (HTN) are the major risk factors in SSA, reflecting the high prevalence 

of bacterial, viral and parasitic infections affecting the kidneys in Africa (Abboud et 
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al., 1989; Akinsola et al., 2004; Bamgboye, 2005; Matekole et al., 1993). However, 

with the prevalence of diabetes in developing countries( South Africa 14-20%, Egypt 

13%, Sudan 9%) rapidly approaching that of developed countries and an estimated 

366 million adults expected to have diabetes by year 2030, this presents as major risk 

for SSA (Martins et al., 2012). Several reports in Nigeria and other SSA countries 

have established that HTN and CGN are the leading causes of ESRD, but the 

prevalence of diabetic nephropathy is rising and toxic nephropathy also contribute 

significantly (Naicker, 2003). In South Africa, HTN affects approximately 25% of the 

adult population and is the leading cause of CKD in 21% of patience on RRT registry, 

and it was the major cause of ESRD in Black South Africans accounting for 

approximately 35% of the ESRD racial group (Veriava et al., 1990). In contrast, 

hypertension was reported to be the cause of ESRD in approximately 4% of the white 

South Africans, 20% Indians, clearly showing the risk that HTN poses on Black South 

Africans (Naicker, 2003). 

 

In contrast, type 2 diabetes has been shown to be the commonest cause of ESRD 

globally, accounting for up to 40% of new cases of the disease (Beulens et al., 2010). 

This is corresponding with the global increase in the prevalence of obesity. The 

prevalence of obesity and diabetes in South Africa has been described to be high and 

that mortality from diabetes is expected to increase by 38% in the period from 1995 to 

2006 with an even greater growth of 67% reported for mortality due to kidney 

diseases (Amos et al., 1997). Diabetic patients have been under-represented in registry 

data hence accurate data on the prevalence of diabetes in the South African ESRD 

population are lacking. A study in the Western Cape province indicated that less than 

20% of diabetic patients evaluated for RRT between 1988 and 2003 actually accessed 

RRT, consequently diabetic patients only comprised 6.2% of accepted patients overall 

(Veriava et al., 1990). 

 

CGN disease is also common in SSA and is a significant cause of ESRD. However, 

studies from different parts of SSA display differences in the prevalence patterns of 

glomerular injury. For example, in Nigeria children with the nephrotic syndrome, 

membraneproliferative patterns on biopsy dominate whereas in South Africa FSGS 

appears to be the commonest. Thus, glomerular disease in Africa is more prevalent 

and seems to be a more severe form than that found in developed countries and is 
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characterised by poor response to treatment and rapid progression to renal failure 

(ESRD) (Naicker, 2003). 

 

HIV is another emerging risk factor to kidney disease in Africa. Reported prevalence 

of kidney disease in HIV infected patients in SSA ranges from approximately 6% to 

just below 50%. Screening studies in South Africa reported HIV associated 

nephropathy in 55 -83% on biopsy (Naicker, 2003). 

 

Environmental pollution, pesticides, analgesic abuse, herbal medicines and 

unregulated food additives also contribute to the disproportionate burden of CKD in 

many African countries. This is also complemented by poor health infrastructure, lack 

of access to health care for those leaving in remote areas and the continuous brain 

drain of the much-needed medical personnel (Nugent et al., 2011). 

 

1.3 Diagnosis and Management of kidney disease 

 

According to the National Kidney Foundation Kidney Disease Outcomes Quality 

Initiative (KDOQI) guidelines, CKD is defined by the presence of renal damage or 

decreased function that persists longer than three months. The diagnosis of CKD may 

be undertaken by the use of blood or urine laboratory markers of kidney damage or 

abnormal renal function, or by demonstrating structural damage on imaging studies, 

or by pathologic change on renal biopsy. This includes: abnormalities of urinary 

sediment: red blood cell casts (glomerular injury), white cell casts (interstitial/tubular 

injury), unusual rate of albumin excretion (albuminuria) and/or reduced GFR, or 

radiographic imaging abnormalities: Change in size or contour of the kidneys, 

hydronephrosis, polycystic disease, papillary necrosis, and pathologic abnormalities 

on renal biopsy: Vascular disease, glomerulitis, tubulointerstitial damage (Kopple, 

2001). 

 

The simplest, most reliable and recognized technique used to identify renal damage is 

by testing for albuminuria. Excessive albumin excretion is a reflection of primary 

kidney disease or renal involvement by a systemic vascular disorder which may 

follow underlying diseases such as hypertension, diabetes, and atherosclerosis. In a 
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few patients, screening could be started by urinalysis dipstick testing for proteinuria, 

which if positive would need to be confirmed by some measure of the albumin 

excretion rate. Urinary albumin dipstick testing and the measurement of the urinary 

albumin-to-creatinine ratio can also be used to assess adults with CKD (Kopple, 

2001). 

 

Another alternative way to diagnose, detect and monitor abnormal kidney function is 

to measure or estimate GFR (Kopple, 2001). A determination of GFR ought to be 

done in all patients with renal disease or signs of impaired renal function. The GFR 

indicates extend of renal functional impairment, is a valuable guide to dosage 

adjustment of drugs cleared by the kidney, and can be used to follow the course of 

kidney disease and to assess the response to therapy. A GFR less than 60 mL/min/1.73 

m2 is diagnostic of CKD. 

 

Although the presence of CKD can be established on the basis of albuminuria and 

reduced GFR, proper diagnosis also includes identifying the underlying cause, as this 

may have important therapeutic and other management implications. A host of 

etiologies can be responsible for renal damage and diminished function, including 

hypertension, diabetes, autoimmune diseases, glomerulonephritis, drug-induced 

nephritis, and lower urinary tract obstructive disorders (Kopple, 2001). Therefore, 

alternative histological diagnosis methods such as kidney biopsy need to be sought 

and used. 

 

1.3.1 Use of kidney biopsy 

 

Lack of diagnosis consistency and reliability rendered on the basis of clinical features 

alone is making diagnosis of kidney disease problematic and perilous, underlining the 

need for kidney biopsy (Bihl et al., 2006; Gladman et al., 1989; Nossent et al., 1991). 

Kidney biopsy can be of paramount importance to those patients where disease 

classification is based on histological diagnosis and disease progression can be 

mitigated by treatment. 

 

In a study by Haider et al, it was established that early biopsy-guided commencement 
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of therapy had profound benefits for patients as it preserved kidney function (Haider 

et al., 2012). Importantly, it was also recognized that kidney biopsy should be 

considered for patients independent of their age (Haider et al., 2012). Renal biopsy 

has also become an important means of diagnosing, prognosticating and guiding 

treatment for CGN, one of the major causes of ESRD in Africa (Okpechi et al., 2010). 

The patterns of glomerular disease in America, Europe, and Asia are well known and 

published as compared to Africa, highlighting a lack of clinical data registries where 

such information might be stored (Covic et al., 2006; Okpechi et al., 2010; 

Swaminathan et al., 2006). 

 

FSGC is the most common cause of nephrotic syndrome in black patients, and IgA 

nephropathy, a common glomerular disease worldwide, may mimic lupus nephritis 

with disparate prognosis and management; neither of the diseases can be diagnosed on 

clinical grounds (Maisonneuve et al., 2000). Therefore, tissue diagnosis by kidney 

biopsy takes on even greater importance when considering these diagnoses. In order 

to attain such diagnostic success, it is clear that a kidney biopsy is essential in 

establishing not only the diagnosis, but the prognosis, as well treatment guidance 

(Dhaun et al., 2014). 

 

However, little is known about the patterns of renal disease in African countries, 

mainly due to nonexistent of renal biopsy registries or because renal biopsy as a tool 

for diagnosing renal disease is entirely unavailable (Okpechi et al., 2010). Thus, with 

the diverse renal histopathological findings possible in kidney disease patients, biopsy 

determines not only the diagnosis and prognosis, but also substantially guides the 

management of this complex disease. As the therapeutic armamentarium for kidney 

disease expands, it becomes even more imperative that the correct diagnosis be made 

prior to beginning therapy (Dhaun et al., 2014). 

 

In deciding whether to perform a biopsy, one must balance the risks of the biopsy 

procedure against the risks of limited diagnostic information, which may result in 

progression of potentially preventable renal disease or the unnecessary use of a 

possibly toxic therapy (Dhaun et al., 2014). Any consideration of the benefits of 

kidney biopsy must include knowledge of the risks of the procedure. With improved 

imaging and the use of semi-automated biopsy guns, complications are uncommon; 
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however, bleeding remains a foremost concern (Bihl et al., 2006; Dhaun et al., 2014). 

Major complications, those requiring blood transfusion or invasive intervention, have 

been reported in 0–6.4% of biopsies (Bihl et al., 2006; Dhaun et al., 2014). Predictors 

of complications have included low hematocrit and high creatinine. Thus, the use of 

renal biopsy and establishment of clinical registry is becoming increasingly 

imperative. 

 

1.3.2 Kidney disease management 

 

The management of CKD is manifold, encompassing a series of strategic measures 

designed to reduce the risk of further damage and slow the progression of kidney 

disease. Detecting and treating reversible causes should be considered in any patient 

with unfamiliar etiology of kidney disease. For instance, optimal control of glucose in 

diabetic patients, blood pressure control in those that are hypertensive and initiation of 

ACE-I or ARB therapy, are key to reducing disease progression (Stevens and Levin, 

2013). In diabetic patients or those receiving loop diuretics, nephrotoxic agents ought 

to be avoided at all costs. These include NSAIDs, aminoglycoside antibiotics, and 

radiographic contrast material. Other supplementary measures to protect the kidney 

and slow progression to ESRD include smoking cessation, statin therapy to control 

hyperlipidemia, dietary protein restriction, and satisfactory treatment of metabolic 

acidosis (Stevens and Levin, 2013). 

 

For cases of CKD that do progress to ESRD, it is imperative to anticipate and prepare 

patients for RRT (Kopple, 2001). For instance, patients with a GFR less than 30 

mL/min/1.73 m2 should prepare for imminent ESRD and eventually RRT (Kopple, 

2001). It is also essential to bear in mind that acute deteriorations in GFR are 

frequently due to reversible factors such as volume depletion, radiographic contrast or 

nephrotoxic drug use, and urinary tract obstruction. Efforts should therefore be 

undertaken to rectify these in order to properly address declines in GFR and ascertain 

if true progression of the disease has occurred (Kopple, 2001). 

 

In order to deal with the common risk factors of kidney diseases a rigorous 

multifactorial management approach is vital. The mainstays of treatment are 
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management of complications and/or comorbidities, lifestyle modification, and 

dialysis for patients with severe or ESRD. Some patients may be candidates for 

kidney transplant, although the wait for a non-related donor can be long. Psychosocial 

issues and patient education, primarily to ensure compliance with the established 

treatment plan is important. 

 

Given that so many different factors can contribute to so many different forms of 

CKD and ESRD, it is crucial to assemble as much information as possible about each 

case that presents in the clinic. Understanding the factors that contribute to effective 

diagnosis, disease aetiology, patient prognosis and therapeutic options is essential in 

order to ensure the best possible patient outcomes. 

 

1.4 Clinical databasing 

 

Despite the magnitude of problems caused by kidney disease in Sub-Saharan Africa 

(SSA), there is insufficient systematically collected clinical data on disease 

characteristics and long-term outcomes in patients with CKD (Jha et al., 2013). The 

lack of such systematically collected data presents a gap that needs to be urgently 

bridged as a crucial initial step towards confronting the burden of CKD and its risk 

factors, specifically in developing countries (Singh et al., 2012). Reliable data that can 

be drawn from these clinical registries might assist policy makers in low income 

countries to formulate strategies that can be used to improve diagnosis, treatment and 

management of kidney diseases, which may eventually lead to improved patient 

outcome (Okpechi et al., 2010). 

 

A clinical database is any systematic compilation of data for the purpose of health 

care planning, implementation and evaluation in a well-defined population. The data 

compiled are periodically published as statistical information to describe and analyse 

the state of the health of the population. For instance, an analysis of patterns of renal 

disease in South Africa based on a renal biopsy database provided further proof of 

HIV renal disease in SSA and a motive for prevention, early detection and aggressive 

treatment (Okpechi et al., 2010). Also, based on the analysis of data from renal biopsy 

registries, it was established that kidney biopsy at stages 1 or 2 and consecutive 
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therapy preserves kidney function and prevents disease progression through early 

initiation of treatment (Haider et al., 2012). An analysis of data from several renal 

registries in the Asia–Pacific region illustrated the wide application of registry data for 

planning dialysis services, for evaluating dialysis practices and health outcomes, with 

a view to improving the quality of dialysis care (LIM et al., 2008). This evidently 

highlights the important advances that can be drawn from well set up clinical 

databases. 

 

Clinical databases come in a variety of forms, differing by their target entities, 

population coverage, type of data collected and their principal uses. There are two 

main general types; firstly, patient registers which are organized systems that use 

observational study methods to collect uniform data to evaluate specified outcomes 

for a population defined by a particular disease or therapy (Gliklich and Dreyer, 

2010). Secondly, disease registers which are continuous, systematic collections of data 

on all cases of a disease occurring in a defined population with the purpose of 

assessing and controlling the impact of the disease in the community (Porta et al., 

2014). Disease registers are closely related to public health or disease surveillance 

(Porta et al., 2014). Disease registers compile individual case level data while disease 

surveillances obtain data on the target disease from a variety of sources in addition to 

individual cases (Porta et al., 2014). 

 

Clinical databases can be used to perform clinical research on disease presentation, 

prognosis, and treatment effectiveness to contrast with treatment efficacy in clinical 

trial (Singh et al., 2012). Also, epidemiology research such as studies on disease 

occurrence and distribution, disease risk or etiology and disease prevention can be 

done using data from clinical databases. Furthermore, health economic research to 

evaluate the cost effectiveness of health-care intervention can also be done using 

clinical registries data (Singh et al., 2012). 

 

Considering that one of the major risk factor of ESRD in SSA is CGN, a disease 

which requires histopathological diagnosis in order to be properly treated and 

managed (Arogundade et al., 2011) , it has become increasing imperative that a formal 

structured way of storing clinical data for patience with diseases such as CGN be 

sought. The application of clinical databasing as an alternative to alleviate or remedy 
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the situation then becomes vital. It has been noted that reliable statistics required to 

elucidate epidemiological patterns of kidney disease in SSA are difficult to obtain. 

Therefore, setting up of multicenter registries can go a long way in bridging the gap 

and provide such much needed data. Once data is available in a formally structured 

and secured datatabase then it becomes easier to analyze this data and provide 

valuable insights that may be used to inform allocation of resources, for example 

health workers and to also see which treatment regimens are working and for which 

patients. In other words, the establishment of these clinical registries is an area of 

clinical informatics research ought to be given some attention and this thesis 

addresses a part of this problem. 

 

1.5 Genetics of Kidney disease 

 

Throughout the past decades breakthroughs in molecular biology and genetics have 

set the stage for a revolution in medicine. Advances in gene cloning, gene mapping 

and mutation analysis have contributed to a massive explosion of new information 

regarding the fundamental biological and pathophysiological basis for hundreds of 

human diseases (Gonzalez-Angulo et al., 2010). Accompanying this wave of new 

evidence is the realisation that most human diseases are significantly impacted by 

genetic factors (Bowden, 2003). There is an amassed understanding of the impact of 

genetic variability on the development of CKD, which is becoming clearer and 

highlights the need to elucidate the genetic basis of renal disease and its complications 

(Bowden, 2003). This would enhance our understanding of the diverse phenotypes 

observed in kidney diseases and enable us to determine the genetic predisposition to 

terminal complications (Agrawal et al., 2010). 

 

In nephrology, a comprehensive range of clinical phenotypes can now be explained at 

a molecular level. The greatest strides have been made in defining genes responsible 

for a variety of inherited kidney diseases, including polcystic kidney disease, Alport 

syndrome and Bartter syndrome (Al-Bhalal and Akhtar, 2005; Hudson, 2004). Several 

obstacles still hinder the development of reliable, clinically useful molecular 

diagnostic assays for inherited kidney diseases. Two such issues which combine to 

make molecular diagnostic approaches highly challenging are genetic heterogeneity 
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and allelic heterogeneity. Understanding key genetic changes underlying the disease 

phenotype can lead to a broader understanding of the physiological mechanisms that 

cause the disease. In this way identifying mutations in individual patients and families 

can lead to a better understanding of disease mechanisms in general. However, 

knowing the precise molecular genetic basis for a disease in an individual patient has 

great clinical utility. Such information can be useful for diagnostic and prognostic 

evaluations and may soon be important for directing specific therapy (Bowden, 2003). 

Currently, clinically applicable molecular genetic tests are only available for a small 

fraction of diseases and more needs to be done so as to unleash the power of genetics 

to improve the lives of patients with kidney disease. To date most of these advances 

have been made possible by our understanding of the human genome (Consortium 

and others, 2011). 

 

1.5.1 Human genome 

 

The human genome is composed of approximately 3 billion nucleotide base pairs 

arranged into nearly 30,000 genes. Each gene contains both protein-coding and non-

coding regions. Coding regions (exons) contain information for the construction of the 

amino-acid sequence of the protein product and structural or regulatory RNA species. 

Non-coding regions include introns and the 3’- and 5’ regions of each gene and are 

generally not translated. Most variation in humans happens in the non-coding DNA 

regions and in degenerate positions in amino acid codons that do not change the 

envisioned identity of the corresponding amino acid. Humans differ on average 1 out 

of 100 nucleotides and most of these disparities occur often in the region with slight 

or no effect on protein function. As such, they are called polymorphisms. Mutations in 

the genetic sequence are more likely to have damaging effects if they result in a shift 

of the reading frame of the protein coding sequence, non-synonymous substitution of 

one amino acid for another (particularly amino acids with vastly different chemical 

properties), insertion of a premature stop codon resulting in a truncation of the protein 

product, or loss of a stop codon leading to an inappropriately extended protein 

product. Though protein-coding genes occupy approximately 1% of the genome, this 

region holds almost 85% of currently identified mutations with large effects on 

disease-related traits (Consortium and others, 2012). 
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1.5.2 Genes and disease association 

 

Connecting phenotype with genotype is the fundamental goal of genetics. 

Determining DNA sequence causes human disease remains difficult for genetics 

(Consortium, 2012). For most of the modern era of human genetics before the advent 

of whole genome and exome sequencing the principal method for the identification of 

disease-associated genes was linkage analysis (positional cloning) (Botstein et al., 

1980). This method is not reliant on any prior knowledge of biology or function, and 

is instead based purely on the inheritance of a trait in combination with the inheritance 

of chromosomal regions to identify the location of disease-related genes (Botstein et 

al., 1980). Using this method one or more pedigrees in which the trait of interest is 

observed to segregate are used. DNA from both affected and unaffected individuals 

are genotyped for polymorphic markers spread throughout the genome. Making use of 

the recombination that occurs in meiosis, one can identify a chromosomal region that 

shows segregation of a disease associated haplotype in affected individuals and non-

disease associated haplotype in unaffected individuals (Lathrop et al., 1985). The 

method typically identifies a genomic interval spanning 0.5-10 cM which could 

contain up to 300 genes. Classic examples of early successes of positional cloning in 

identifying disease-causing genes consist of hemochromatosis disease (MHC) and nail 

patella syndrome (LMX1B) (Dreyer et al., 1998; Feder et al., 1996)). Other successes 

included identifying genes underlying cystic fibrosis fanconi anemie (FACC) 

(Strathdee et al., 1992). In addition, genetics factors underlying pre-dispositioning to 

cancer such as retinoblastoma, breast cancer and polyposis colorectal cancer were also 

identified using this method (Nishisho et al., 1991; Wooster et al., 1995). Also, the 

gene for Huntington disease (HTT) was mapped using positional cloning (Andrew et 

al., 1993). 

 

In consanguineous families with suspected autosomal recessive traits a form of 

linkage analysis (homozygosity mapping) is used (Theis et al., 2011). This strategy 

can identify genomic regions in which candidate genes can be tested for the presence 

of pathogenic mutations. Homozygosity mapping has recently been used in 

combination with high-density mapping whole genome genotyping to identify disease 

 

 

 

 



19 

 

genes in patients in whom homozygosity by descent is suspected (Molho-Pessach et 

al., 2012). 

 

It is worth mentioning that although linkage analysis to ascertain the causal genes for 

Mendelian disorders is popular, other approaches are also possible. For example, the 

gene responsible for haemophilia A was determined based on rescue of the clotting 

function of blood by a “globulin” isolated from normal blood (Ingram, 1976). Also, a 

candidate gene list can be determined based on function instead of location (as with 

linkage analysis), and cases and controls sequenced directly for potential mutations. 

While many rare disorders are highly amenable to linkage analysis, however, some 

disorders present a challenge for these methods. First, those which are extremely rare 

have only a few affected individuals and families per disorder, which result in 

underpowered analyses and/or large regions under the linkage peak(s). Second, these 

disorders are rare because the causal mutations are of large effect and under strong 

negative selection. Therefore, these mutations are not often transmitted through many 

generations and are, in fact, likely to be new events. Since linkage analysis is 

completely inheritance-dependent, such events may not be ascertained at all 

(Brunham and Hayden, 2013). 

 

The biological and medical significance of these disease gene discoveries cannot be 

overstated. Once a disease gene has been identified, a massive volume of information 

about the biological function of that gene is provided by the phenotype of individuals 

in whom it is dysfunctional. Conversely, study of biological pathways that the gene 

product is involved in illuminates disease pathophysiology that can be informative for 

closely related disease phenotypes. From a clinical perspective, identification of a 

disease gene opens the door to diagnostics and predictive testing where appropriate 

(Tibben, 2007). The task of identifying genes associated with disease will henceforth 

rapidly accelerate as it is now tremendously facilitated by the sequencing of the 

human genome and the advert of next generation sequencing techniques (Lander, 

2011; Venter et al., 2001). 
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1.5.3 Evidence for a genetic component to kidney disease 

 

Knowledge of the primary cause of a disease is crucial for understanding its 

mechanisms and for adequate classification, prognosis, and treatment. Multiple lines 

of evidence suggest that the aetiologies and susceptibly to develop kidney disease has 

a significant genetic component (Bowden, 2003; George Jr and Neilson, 2000). These 

studies include familial aggregation studies, comparisons of incidence rates between 

different racial or ethnic populations, segregation analysis and advanced genome wide 

analysis studies. There is increasing understanding of the impact of genetic variability 

on the development of renal failure, which is becoming clearer and emphasises the 

need to elucidate the genetic basis for kidney diseases and its complications (Brunham 

and Hayden, 2013). This may perhaps lead to better understanding of the different 

phenotypes observed in renal diseases such as ESRD and would enable us to 

determine the genetic pre dispositioning to terminal complications. 

 

Using Mapping by Admixture linkage disequilibrium (MALD) a strong association 

between genetic variants in genes (MYH9 and APOL1) and kidney disease due to 

HTN and adult onset FSGS have been identified in African Americans (Freedman et 

al., 2010; Genovese et al., 2010; Iyengar et al., 2007; Kao et al., 2008). Furthermore, 

13 loci and nearly 20 variants have been linked with kidney disease, FSG and 

nephrotic syndrome in children (Boyer et al., 2011; Hildebrandt et al., 1997; Kottgen 

et al., 2008). A meta-analysis of GWAS data from four population-based cohorts in 

which 2400 people had CKD identified a highly significant association with variants 

within the UMOD gene (Kottgen et al., 2008; Okada et al., 2012). These results were 

replicated in an independent population. 

 

In the Framingham heart study, 16 candidate genes were identified (Kottgen et al., 

2008). Further analysis found a gene methenyltetrahydrofolate synthesis (MTHFS) to 

be significantly associated with CKD, indicating the possible involvement of this gene 

in CKD. These results were replicated in approximately 15,000 patients of the 

Atherosclerosis in communities study (ARIC) (Kottgen et al., 2008). In another study, 

evidence of the association of KLB1 gene was observed in African Americans 

families with multiple cases of ESRD (Yu et al., 2000). Further analysis in this gene 
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identified 12 allelic variants; of interest was C699A polymorphism in the coding 

sequence which was observed in 8 families but not found in the control samples (Yu 

et al., 2000). A genome-wide search for linkage to CKD was performed in 848 

Mexican Americans from 26 families. The results showed a linkage on chromosomal 

regions 2p25 and 9q21 to several parameters of renal function (creatinine clearance 

and eGFR) (Arar et al., 2008). The long arm of chromosome 7 was found to have 

strongest evidence of linkage in a study of 98 siblings with T2DM and renal failure. 

On the other hand, in a genome wide analysis study on 18 Turkish families with CKD, 

a strong linkage peak was observed on chromosome 18 (LOD score 6.6) (Sale and 

Freedman, 2006). Evaluation of this locus in Pima Indians showed evidence of 

confirmation. In 2006, a review conducted on 56 genes related to CKD identified 15 

genes which are related to immunity and defence, two of the key mechanisms 

involved in CKD (Imperatore et al., 1998). 

 

In studies of African Americans, family history of ESRD was determined, with the 

conclusion that the presence of a close relative with ESRD gave an African American 

an eight fold increased risk of developing ESRD (Freedman et al., 2010). In 

Caucasians the increased risk was 2.7-fold. Seaquist et al. published the first 

description of familial aggregation in renal disease, primarily studying Caucasian 

type1 diabetes (TIDM) families, and came to a conclusion that 83% of diabetic 

siblings of probands receiving kidney transplant had developed kidney disease 

(Seaquist et al., 1989). Similar results were obtained by Borch-Johnsen et al. in 

European study of TIDM families and American TIDM families. Familial clustering 

of kidney disease was also observed in the Diabetes control and complications trial 

(Borch-Johnsen et al., 1992). Kidney disease clustering in families has also been 

described in affected Pima Indians, African Americans and Causians with similar 

conclusions, that if a family member has renal disease then there is a higher risk of 

other family members getting the disease (Freedman et al., 2010; O’Dea et al., 1998; 

Pettitt et al., 1990). As it can be clearly seen, most of the genetics studies carried out 

to ascertain the genetic basis of CKD and ESRD are conducted in populations other 

than Africans, underlining the need to elucidate the genetic component of CKD based 

on an Africa population. 
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What makes it more interesting and potentially more informative to study the genetics 

underlying CKD and ESRD in an African population is that Africans are more 

genetically diverse and have the highest levels of genetic and phenotypic variation 

among all humans (Campbell and Tishkoff, 2008). As human populations migrated 

out of Africa, they carried with them part, but not all, of the ancestral genetic 

variation. As a result, genetic variation seen outside Africa tends to be just a subset of 

the genetic variants seen in Africa (Mboowa, 2014). Therefore, genetic diversity or 

heterogeneity is higher in Africa than the rest of the world (Gomez et al., 2014). 

Though Africa is more diverse genetically than the rest of the world, only few studies 

have been undertaken to infer genomic risk factors associated with disease in Africa 

(Mboowa, 2014). 

 

Characterizing human genetic variation and examining phenotypic variation in 

African populations is fundamental to the identification of genes that play a key role 

in function and disease susceptibility (Campbell and Tishkoff, 2008). The long 

demographic history and variability within and between African population means 

that there is more genetic variation to analyse in Africans than for example European 

populations (Mboowa, 2014). For instance, many Europeans may share a disease 

associated variant irrespective of where they are from (Campbell and Tishkoff, 2008). 

In contrast, the frequency of variation associated with a disease in Africans may 

depend on the country and ethnic group of an individual. 

 

When investigating the genetic basis of diseases, conserved variation seen in 

European populations mean that it is easier to identify genetic variants associated with 

disease risk or protection than in African populations (Gomez et al., 2014). Also, 

European populations are genetically very similar. To date, for other populations, it 

has been relatively straightforward to combine data from different studies to gain a 

large enough data set to perform powerful meta-analyses (Gomez et al., 2014). Thus, 

diversity both within and between African populations means that combining data 

from studies of these populations is more difficult. Therefore, the rich genomic 

diversity in African populations can offer new insights about disease susceptibility 

that could easily be overlooked using less-tailored analyses (Gomez et al., 2014). 
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Although Africa is critical for understanding genetic risk factors associated with 

diseases, it has been under-represented in human genetic studies (Gomez et al., 2014). 

That is why in this study I have sort to understand the genetics underlying 

CKD/ESRD based on an African population of mixed ancestry, targeting to harness 

and tap into this rich vein of genomic diversity and identify plausible genetic variation 

exclusively to African patients that may explain their ESRD. 

 

1.6 DNA sequencing 

 

Determining the DNA sequence is the most comprehensive way of attaining 

information about the genome of any living organism. Nucleic acid sequencing is a 

way to determine the exact order of the DNA bases (Lander, 2011; Venter et al., 

2001). Over the past decade, the usage of nucleic acid sequencing has become 

accessible for researchers. Massively parallel DNA sequencing platforms have 

become widely available, more than halving the cost of DNA sequencing and 

transforming the field by putting the sequencing capacity of major genome centers 

into the hands of individual investigators. These new technologies are rapidly 

evolving, and some of their challenges include the development of robust protocols 

for generating sequencing libraries, building effective new approaches to data-

analysis, and reconsidering and modifying experimental design. Next-generation 

DNA sequencing has the potential to radically accelerate biological and biomedical 

research, by enabling the comprehensive analysis of genomes, transcriptomes and to 

become inexpensive, and reducing their demanding significant production-scale 

efforts (Consortium and others, 2012). Also, DNA genome wide sequencing allows us 

to generate new hypotheses from genome wide data, whereas previously genetics 

studies were largely restricted to hypothesis testing. 

 

1.6.1 First generation sequencing technology 

 

Sanger sequencing method had become the gold standard for 30 years after its 

discovery in 1977. Sanger sequencing was used to obtain the first consensus sequence 

of the human genome in 2001 and the first individual human diploid sequence 

(Lander, 2011; Venter et al., 2001). This method uses DNA polymerase which makes 
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use of inhibitors that terminate the newly synthesized chains at specific residues. 

DNA to be sequenced can be prepared in two different ways, shotgun de novo 

sequencing or targeted re-sequencing. The output of both methods is an amplified 

template. Then, template denaturation, primer annealing, and primer extension are 

performed in cycle sequencing. With the help of fluorescently labeled ddNTPS, each 

round of primer extension is halted. Labeled ddNTPs in its current form are mixed 

with regular, non-labeled, and non-terminating nucleotides in a cycle sequencing 

reaction. The label on the terminating ddNTP of any fragment corresponds to the 

nucleotide identifying its terminal position. To separate sequences by length and to 

provide subsequent interrogation of the terminating base capillary electrophoresis is 

applied. The sequence is determined by high-resolution electrophoretic separation of 

the single-stranded, end-labeled extension products in a capillary based polymer gel. 

Laser excitation of fluorescent labels as fragments of discreet lengths exit the 

capillary, coupled to four-color detection of emission spectra, and provides the 

readout that is represented in a Sanger sequencing ‘trace’ (Figure 1.2). Software 

translates these traces into DNA sequence, while also generating error probabilities 

for each base-call (Metzker, 2010; Pettersson et al., 2009) 
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Figure 1.2: Workflow of the Sanger Sequencing method (Estevezj, 2012). 

 

1.6.2 Next generation sequencing 

 

After the accomplishment of the Human Genome Project, cheaper and faster 

sequencing methods were required in the field of biomedical research. This demand 

led to the development of next-generation sequencing (NGS) methods also known as 

massively parallel sequencing methods. NGS instruments provide higher throughput 

at an unprecedented speed by sequencing millions of short DNA fragments in parallel, 

and have become a fast, affordable approach to determine the underlying genetic 

causes of diseases (Metzker, 2010). Millions of fragments of DNA from a single 

sample can be sequenced in unison with NGS. With this technology an entire genome 

can be sequenced in less than ten days. In addition, the cost required for a whole 

human genome has decreased significantly with the use of NGS technology. It has 

also minimized the need for the fragment-cloning methods which are frequently used 

in Sanger sequencing. Currently, the three most commonly used platforms are Roche 
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454 (introduced in 2005), Illumina (launched in 2006) and ABI SOLiD (followed in 

2008) (Grada and Weinbrecht, 2013). All three platforms sequence DNA by 

measuring and analyzing signals, which are emitted during the creation of the second 

DNA strand but differ in how the second strand is generated. In order to produce 

detectable signals, template DNA is fragmented into small pieces, amplified and 

immobilized on a glass slide before sequencing (Figure 1.2). 

 

 

Figure 1.3 Principles of sequencing and imagin (Ansorge, 2009). Three different 

sequencing platforms are looked at. Illumina shows how single different bases are detected as 

they are added one after the other. This is done for each cluster amplified. Roche 454 shows 

how bases are added through sequencing by synthesis leading to the formation of the reads. 

SOLid shows fluorescently labelled di-base probes compete for ligation to the sequencing 

primer to produce the reads. 

 

1.6.2.1 Roche 454 

 

The first NGS technology was 454 pyrosequencing (Figure 1.4), which was also the 

first massively parallel sequencing technology to sequence a complete human 

genome, that of Dr. James D. Watson (Wheeler et al., 2008). Roche 454 implements 

pyrosequencing, which measures released pyrophosphates allowing the analysis of 
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read fragments up to a few hundred base pairs. This method is based on the 

"sequencing by synthesis principle" which means taking the single stranded DNA to 

be sequenced and sequencing its complementary strand in an enzymatic way. Using 

this method the activity of DNA polymerase is monitored by another enzyme, 

chemiluminescene. When the complementary nucleotide is bound by the single-

stranded sequenced DNA, light is emitted. Sequencing is accomplished by the 

produced chemiluminescent signals. Since this technique infers the number of 

incorporated nucleotides from the signal’s intensity, the system experiences problems 

when homopolymer stretches longer than 8 bp are sequenced (Grada and Weinbrecht, 

2013). This complicates identification of small insertions and deletions in same 

stretches of the same DNA template. 

 

 

Figure 1.4 Roche 454 machine (Ansorge, 2009). The machine implements 

pyrosequencing, which measures released pyrophosphates allowing the analysis of read 

fragments up to a few hundred base pairs. 

 

1.6.2.2  Illumina 

 

DNA sequence data used in this project is produced using Illumina machines and 

protocol. Illumina’s sequencing platform uses sequencing by synthesis (SBS) 

technology to generate exome data. The technology is able to detect single bases as 

 

 

 

 



28 

 

they are added to DNA strands, using a reversible terminator-based method. The 

fluorescent terminator is imaged as deoxyribonucleotide triphosphate (dNTP) is 

added, and then cleaved so that the next base can be added and imaged. Incorporation 

bias is minimized by competition, as all four reversible terminator-bound dNTPs are 

present during each sequencing cycle. SBS supports both single read and paired end 

libraries. The platform combines short-insert paired-end capabilities as well as long-

insert paired-end reads to fully characterize the genome being sequenced. Illumina 

avoids homopolymer calling problems at the cost of being capable of sequencing only 

shorter fragments (Grada and Weinbrecht, 2013). 

 

 

Figure 1.5: Different Illumina machines (Ansorge, 2009). Illumina sequencing 

machines use sequencing by synthesis (SBS) technology to generate genomic sequence data. 

The technology is able to detect single bases as they are added to DNA strands, using a 

reversible terminator-based method. 

 

1.6.2.3 SOLiD 

 

SOLiD sequencing platform stands for Sequencing by Oligonucleotide Ligation and 

Detection. Four fluorescently labelled di-base probes compete for ligation to the 

sequencing primer. Specificity for the di-base probe is done by interrogating every 

first and second base in each ligation reaction, and the eventual read length is 
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determined over multiple rounds of ligation, detection, and cleavage. Following a 

series of these ligation cycles, the extension product is removed and the template is 

reset with a primer complementary to the n-1 position for a second round of ligation 

cycles. Five rounds of primer reset are completed for each sequence tag. This allows 

nearly every base to be queried in two different ligation reactions by two different 

primers, improving the accuracy of nucleotide base calls. Variations from the 

reference sequence display as a fluorescent color change; sequencing errors would 

therefore show as one change while accurate calls would show two. Due to the nature 

of this approach, identified calls are not stored in nucleotide but in color space a 

property that needs to be considered in downstream analyses (Magi et al., 2010). 

 

Table 1.1: A comparison of NGS sequencing technologies (Ansorge, 2009). PacBio 

has the capability to produce longer reads and faster but it’s prone to a high error rate. 

Illumina paired end reads are currently the most used for exome sequencing data. 

Machine C a p a c i t y  Speed R e a d  Length Cost Per Base (€) 

454 Roche 35-700 Mb 10-23 hours 400-700 by 714/14285 x 10-8 

SOLiD 90-180 Gb 7-12 days 75 by 3 / 5  x  1 0 - 8   

Illumina 6-600 Gb 2-14 days 100-250 by 2/333 x 10-8  

Ion Torrent 20 Mb-1 Gb 4-5 hours 200 by 100/10000 x 10-8 

PacBio 1 Gb 30 minutes 3,000 by 60/80 x 10-8  

 

1.6.3 Whole exome sequencing 

 

One of the major endeavors of biomedical science is discovering the causal gene 

variants underlying human diseases. Previously, single-gene disorders were first 

analyzed based on Linkage analyses followed by positional cloning (Bamshad et al., 

2012). Homozygosity mapping was used to ascertain loci of autosomal recessive 

disorders (Hamosh et al., 2005). More complex forms of single-gene disorders, such 

as retinitis pigmentosa and hearing loss, with different inheritance modes have been 

reported based on SNP arrays (Grada and Weinbrecht, 2013; Pettersson et al., 2009). 

  

Despite this, there are still many rare genetic diseases for which causative genes 

remain unknown. There are also many people who may have genetic conditions but 

remain medical mysteries; not only that, but there are also patients receiving 

suboptimal treatment, or with incorrect diagnoses, yet traditional methods have been 
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unable to confirm the genetic cause of their disease. Drawbacks and limitations of 

these approaches that have hindered disease gene discovery need to be highlighted; 

there are families with small number of affected individuals, which do not meet the 

criteria required for classical gene-discovery methods. In addition, finding the causal 

genes in families fitting the criteria is very difficult in case of expression variability, 

locus and phenotypic heterogeneity, reduced penetrance or reduced fitness, because in 

these conditions, the causal effect could hardly be co-segregated with affected status 

within the family. With the advent of next-generation sequencing (NGS) technology, 

identification of genetic variations that underpin disease causality may be possible 

despite these obstacles. 

 

Indeed, WES using NGS technologies convey novel insights into unraveling the 

genetic basis of diseases. The exome is the protein-coding region constituting 

approximately 1% of the human genome, or 30 megabases (Mb), fragmented across 

approximately 180,000 exons (Ng et al., 2009b). WES involves selective capture and 

sequencing of these protein coding regions of the genome. WES using next-

generation DNA sequencing platforms has become widely available, reducing the cost 

of DNA sequencing by four orders of magnitude relative to Sanger sequencing (Grada 

and Weinbrecht, 2013; Pettersson et al., 2009). It is estimated that approximately 85% 

of known variation or mutations underlying disease traits occur in the exons (Choi et 

al., 2009b). Most of these functional variants include nonsense/missense variants, 

small insertion/deletions, splicing and regulatory mutations. As such, the exome 

represents a highly enriched subset of the genome in which to search for variants with 

large effect sizes which may be fundamental to unlocking the genetic basis underlying 

several human traits. 

 

Since the publication of the first WES proof-of-concept report in 2009, the discovery 

of disease-causing genes using WES has increased rapidly, with a marked jump from 

2011 to 2012 (Figure 1.6 ) (Ng et al., 2009b). Identification of disease causing genes 

may accelerate drug development by discovering disease pathways to target for new 

and effective treatments. In addition to gene identification, exome sequencing has also 

been used to correctly diagnose individuals who previously had no diagnosis or had a 

misdiagnosis. Also, targeted sequencing of the exome has the capacity to uncover 

causative genes in common disorders with complex genetic factors like cancer, 
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diabetes or Alzheimers disease (Chahrour et al., 2012). Sequencing of the exome also 

increases our current understanding of known medical disorders, like discovering 

relatedness of symptoms that were never before thought to be related, or discovering 

new information about metabolic pathways related to disease (Gibson et al., 2013). In 

particular, WES has been applied in characterisation of mutations in inherited 

disorders and rare syndromes (Gibson et al., 2013), understanding complex genetic 

disorders and disease risk, for example in autism, epilepsy and HTN (Chahrour et al., 

2012). WES has also been successfully applied in identifying cancer driver mutations, 

its diagnosis as well as treatment. 

 

 

Figure 1.6: Pace of discovery of novel rare-disease-causing genes using whole-

exome sequencing. Since the first WES proof-of-concept experiment in 2009, the discovery 

of disease-causing genes using WES has increased rapidly, with a marked jump from 2011 to 

2012 (Boycott et al., 2013). 

 

1.6.3.1 Challenges and limitations of exome sequencing 

 

One major limitation of exome sequencing is that it only analyzes approximately 1% 

of the entire genome (Bamshad et al., 2012). In addition, applying exome sequencing 

has been hampered by how best to define the set of targets that constitute the exome. 
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Considerable uncertainty remains regarding which sequences of the human genome 

are truly protein coding, as our knowledge of all truly protein-coding exons in the 

genome is still incomplete. As a result current capture probes can only target exons 

that have been identified thus far and exclude exons not yet identified. Also, WES 

misses intronic sequences, structural and DNA sequence variants that may have vital 

regulatory functions. In other words, these are areas which could affect gene function, 

and ultimately disease symptoms even though they may not code for proteins. Exome 

sequencing may also not be ideal for understanding structural variation in genomes 

despite numerous algorithms which apply read depth or read pair approach attempting 

to resolve this problem (Krumm et al., 2012). 

 

Other limitations and challenges with exome sequencing include genetic 

heterogeneity where several genes are associated with the same disorder, duplicated 

sequences throughout the genome and possible inadequate coverage of the gene 

sequence. When using exome sequencing in clinical genetics and medicine, limitation 

of the approach is evident and experimental design is needed to circumvent the 

problem. Genetic and phenotypic heterogeneity in different affected individuals can 

make exome sequencing data difficult to interpret. Patients with the same phenotype 

may not share the same causal variant; actually they may have distinct variants in a 

gene, in what is referred to as allelic heterogeneity. Intensive analyses of variant calls 

are important in exome sequencing. False-positive errors appear as sequencing errors 

related to mechanical and analytical errors. Also short reads generated by NGS would 

not align perfectly to the appropriate position as a result of paralogous and low copy 

repeats that may cause errors during calling (Liu and Leal, 2010). Some deleterious 

variations may be located in the non-coding regions, such as intronic or regulatory 

regions of the genome, which cannot be called by exome sequencing, or may be 

located in the region of the genome that may not be adequately covered. 

 

1.6.4  Whole exome sequencing analysis workflow 

 

Comprehensive NGS data analysis process is multifaceted, it comprises manifold 

analysis steps, and the process is reliant on a multitude of programs, databases and 

involves handling enormous amounts of heterogeneous data (Figure 1.7). It is 
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unsurprising that due to the enormous success of NGS projects, a deluge of tools have 

been created to support specific parts of the analysis workflow. It is apparent that the 

appropriate choice of tools is a not a trivial task and is dependent on several factors. 

 

 
Figure 1.7: Basic protocol for whole-exome sequencing data analysis. Image 

analysis and base calling is usually done at the core sequencing facilities. The reads produced 

are mapped to the human reference genome using various alignment softwares. The 

alignments are refined further by performing local realignment and recalibration of quality 

scores. Variant calling is undertaken on the aligned reads and variants are produced. The 

variants are also recalibrated to reduce errors 

 

1.6.4.1  Library preparation 

 

Appropriate material for sequence analysis is indispensable. This requires correct 

identification of the proband, making appropriate clinical diagnosis and the sample 

must be collected, identified, recorded and stored under quality controlled conditions 

suitable for diagnostic testing. For example, if a case has been identified as part of a 

research project it may be necessary to collect an additional sample. Genomic DNA 
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from peripheral white blood cells is the typical starting material. 

 

The major NGS platforms are Illumina, Roche, Solid and Agilent. Each of these 

platforms is compatible with the main commercial options for the first step of WES, 

which is enriching the exonic sequences. The sequencing platform kits tend to contain 

exons from the consensus coding sequence project, which currently comprises 

approximately 180,000 exons from roughly 18,409 genes, as well as additional 

sequences (Robinson et al., 2011). Each company also has developed its own exome 

enrichment platform (Agilent’s SureSelect Human All Exon 50Mb, 

Roche/Nimblegen’s SeqCap EZ Exome Library v.2.0, and Illumina’s TruSeq Exome 

Enrichment), which differ in design and experimental parameters that can affect 

variant discovery (Table 1.2). Clark et al. 2011 performed a systematic analysis of 

their differences (Clark et al., 2011). 

  

Nimblegen uses DNA for capturing targeted genomic sequences. The platform 

contains overlapping DNA baits that cover target bases multiple times, resulting in the 

highest density coverage of the three platforms. It covers a greater portion of miRNAs 

compared to other enrichment platforms. Agilent uses RNA for capture of targeted 

genomic sequences, where RNA baits reside immediately adjacent to each other  

across target exon intervals. It provides better coverage of genes in the Ensembl 

database; Whilst Illumina uses DNA for capture of targeted genomic sequences and 

relies on paired-end reads to extend outside bait sequences and fill gaps. The majority 

of targets unique to this platform cover untranslated regions (UTRs). 
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Table 1.2 Details of human exome capture techniques. The average targeted region 

for the exome is approximately 50Mb (50 million base pairs) covering an average of 180000 

exons. This targeted region enables one to interrogate more than 20000 genes simultaneously 

 Illumina Agilent sureSelect Roche Nimblegen 

 Exome Human all 

Exon 

50Mb 

Human all 

Exon V4 

Human all 

Exon V4 

+UTRs 

 Version 

2.0 

Version 3.0 

Targeted 

region size 

62 Mb 50 Mb 51 Mb 71 Mb 36.5Mb 64Mb 

Number of 

target 

genes 

20,794 20,718 20,956 20,965 30,000 24,685 

Number of 

target 

exons 

201,121 331,518 334,378 335,765 300,000 220,000 

 

1.6.4.2 Base calling and quality control 

 

In addition to sequence data, base calling produces quality scores for each base, which 

are estimates of the probability of the call being erroneous. After base calling, reads 

with indications of varied signals or other errors are filtered out. In addition, reads that 

do not start with a specific key sequence, which is part of the adapter, and reads which 

have a high number of off-peak signal intensities (indicative of homopolymer errors) 

are filtered out. This is a vital step that enables the discovery of anomalies that may 

have originated from the sequencer or library material used during the sequencing 

process, thereby averting error from proliferating and generating false variant calls in 

subsequent analysis. It also affords an opportunity to recover valuable data by 

trimming off the poor quality segments that generally occur at the 3’end of reads. 

Sequence reads are trimmed from the 3’ end primarily to remove adapter sequence 

and bases of low quality, which may have ascended from phasing/prephasing issues 

and loss of signal intensity. A common, broadly used tool for assessing the quality of 

sequence data is the FastQC software which reports distributions of base qualities, GC 

content, redundancy and over-representation of adapter or primer sequence 

(Bioinformatics, 2011). 
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1.6.4.3 Read mapping and Alignment to reference genome 

 

Alignment is the process of mapping short nucleotide reads to a reference genome 

(Figure 1.8). Each of the millions of short reads must be matched to the 3 billion 

possible positions within the human genome. This is a critical computational step for 

downstream analysis, especially variant calling. Different mapping tools assess the 

likely starting point of each read within the reference genome, a process which is 

complicated by the volume of short reads, unique versus non-unique mapping, and 

variation in base quality. This is a computationally challenging and time consuming 

undertaking (Day-Williams and Zeggini, 2011). It is also a vital step, as any errors in 

alignment to the reference genome will be carried through the rest of the analysis. The 

Sequence Alignment/Map (SAM) and Binary Alignment/ Map (BAM) formats are the 

standard file formats for storing NGS read alignments (R. Li et al., 2009). 

 

Short reads generated from NGS may both be single end reads or paired-end reads 

and vary from dozens to hundreds of base pairs (Ruffalo et al., 2011). These reads 

need to be aligned correctly to their appropriate location within the reference genome. 

The task is complicated by many factors, which include genetic variation in the 

population, sequencing error, short read length and the huge volume of short reads to 

be mapped. To date, numerous algorithms have been developed to overcome these 

challenges and have been made available to the scientific community as software 

packages. 

 

Alignment programs have different properties in terms of their ability to perform 

gapped alignment, how base qualities are used during alignment and how reads 

aligning to repeated regions are treated. Some aligners can handle data from any 

sequencing platform, whereas others are specific to one platform. To save 

computational time, the alignment is typically executed in two steps: a limited number 

of candidate positions are identified by fast heuristic approaches, and candidate 

positions are evaluated by more accurate methods, such as the Smith-Waterman 

algorithm (Li and Homer, 2010). Currently some of the available software packages 

for short read alignment include Bowtie (Langmead and Salzberg, 2012), SOAP (R. 

Li et al., 2009), BWA (Li and Durbin, 2009), and Novoalign (Novocraft (2010), 

http://www.novocraft.com/). Bowtie, BWA and SOAP align quickly but require 
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significant amounts of time to build an index of a genome. Novoalign, conversely, 

requires little indexing time and it has become quite popular in recent studies due to 

its accuracy and is a preferred aligner used in this project (Ruffalo et al., 2011). 

 

 
Figure 1.8 Principles of reference alignment of paired-end reads to a reference 

genome. Arrows with the same color indicate reads that belong to the same pair. Red arrows 

illustrate a normal pair, aligning with the expected orientation and distance. Green arrows 

illustrate a pair that aligns at a larger distance than expected due to a potential deletion in the 

sequenced genome. Orange arrows illustrate a pair that aligns to different chromosomes 

indicating a potential rearrangement in the sequenced genome. Blue arrows illustrate how 

paired-end reads can guide alignment if one of the reads aligns in a repeated (grey) region. 

The correctly aligned read will provide the correct alignment position for the misaligned read 

pair. 

 

1.6.4.4 Variant calling and genotyping 

 

Variant calling is the subsequent step taken after alignment of reads to the reference 

sequence. Since the reads are already aligned, the sample genome is compared to the 

reference genome so that variants can be identified. These variants may be responsible 

for disease, or they may simply be genomic noise without any functional effect or 

affecting non etiological characteristics. Variant call format (VCF) is the standardized 

generic format for storing sequence variation including SNPs, indels, larger structural 

variants and annotations (Consortium and others, 2010; Danecek et al., 2011; Via 

García et al., 2012). The major computational challenges in variant calling are due to 

the issues in identifying “true” variants as opposed to alignment and/or sequencing 

errors. Yet, the ability to detect SNPs with both high sensitivity and specificity is a 

vital step in identifying sequence variants associated with disease, detection of rare 

variants, and assessment of allele frequencies in populations. 

 

Variant calling is complicated by three factors: (1) the presence of indels, which 

represent a major source of false positive SNV identifications, especially if alignment 

algorithms do not perform gapped alignments, (2) errors from library preparation due 
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to PCR artifacts and (3) variable GC content in the short reads (Consortium and 

others, 2010; Danecek et al., 2011; Via García et al., 2012). Thus, the rate of false 

positive and false negative calls of SNVs and indels is a concern. It is therefore 

recommended that before the variant calling process is carried out additional quality 

control steps should be done. These include alignment refinement to improve the 

accuracy of the data by local realignment, removing PCR duplicates, and recalibrating 

variant quality scores (Consortium and others, 2010; Danecek et al., 2011; Via García 

et al., 2012). Even though these steps go a long way towards improving accuracy of 

variant calling other additional steps such as variant recalibration are also 

recommended (Consortium and others, 2010; Danecek et al., 2011; Via García et al., 

2012). 

 

One extensively used tool which utilizes most of these quality control steps is the 

Genome Analysis Toolkit (GATK) (McKenna et al., 2010). Developed by the Broad 

Institute, the Genome Analysis Toolkit (GATK) is one of the most popular methods 

for variant calling using aligned reads. It is designed in a modular way and is based on 

the MapReduce functional programming approach (McKenna et al., 2010). GATK 

may be used for single or multi sample variant calling for exome sequencing data. The 

package has been used for projects such as The Cancer Genome Atlas and the 1000 

Genomes Project (Consortium and others, 2010; Network and others, 2012). Other 

tools that are also useful for variant calling are CRISP (Bansal, 2010), SAMtools (R. Li et 

al., 2009), SNVer (Wei et al., 2011) and VarScan (Koboldt et al., 2012). 

  

1.6.4.5  Variant annotation 

 

After alignment and variant calling, a list of thousands of potential differences 

between the genome under study and the reference genome is generated. The next 

step is to determine which of these variants are likely to contribute to the pathological 

process under study. Many tools exist to examine relevant variants by referencing 

previously known information about their biological functions and inferring potential 

effects based on their genomic context. There are several tools available for use in this 

step and the ones that have gained wider use are:  

ANNOVAR is a tool used to perform up to date functional annotation of various 

genomes, supporting SNPs, INDELs, block substitutions as well as copy number 
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variants (CNVs). The tool offers a wide selection of diverse annotation techniques, 

structured in disparate categories such as gene-based, region-based and filter-based 

annotation. The tool depends on several databases, which need to be downloaded 

individually and updated constantly. The SeattleSeq Annotation server 

(http://snp.gs.washington.edu/SeattleSeqAnnotation) offers a web application for 

annotating human SNPs and INDELs. In contrast to most other web-based annotation 

services, SeattleSeq affords the opportunity to directly upload input files in various 

formats for batch analysis of multiple variants. As variant annotation is performed on 

a remote server, the tool might be helpful for research groups without committed 

hardware for data analysis. 

 

snpEff (Ge et al., 2011) is a popular variant annotation tool, which has also been 

integrated within Galaxy and GATK. In addition to SNPs, the package also supports 

analysis of INDELs and multiple-nucleotide polymorphisms. snpEff identifies 

numerous diverse effects, which are categorized into four classes (high, moderate, low 

and modifier) by their putative functional impact. 

Variant effect predictor (VEP) (Medina et al., 2012) is Ensembl’s own functional 

annotation tool, previously known as SNP effect predictor. The tool can be used either 

by a web interface, as command-line tool or via a Perl API. The web interface version 

is aimed at users analyzing smaller sets of variants, as it is only capable of processing 

approximately 750 variants per file. 

 

All annotation tools provide a set of broad attributes for each recognized mutation. 

These properties can be used to evaluate the plausible impact of each mutation. All 

tested applications provide links to one or more public databases of known mutations. 

ANNOVAR uses six different scores: GERP (Davydov et al., 2010), LRT (Chun and 

Fay, 2009), MutationTaster (Schwarz et al., 2010), PolyPhen (Adzhubei et al., 2013), 

PhyloP conservation (Pollard et al., 2010) and SIFT (Kumar, 2013). SeattleSeq 

supplies four scores: GERP, Grantham, phastCons (Langmead and Salzberg, 2012) 

and PolyPhen. NGS–SNP and VEP provide three scores: Condel (Gonzalez-Angulo et 

al., 2010), PolyPhen and SIFT. These scores are computed based on various different 

approaches, such as sequence homology, evolutionary conservation, protein structure 

or statistical prediction based on known mutations. 
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1.6.4.6  Statistical prioritization and candidate gene identification 

 

The advance of exome and genomic sequencing is yielding new information about an 

extensive number of human genetic variants. A number of candidates disease-

associated SNVs can be identified following alignment and variant calling. Unlike 

nonsense and frameshift mutations, which often result in a loss of protein function, 

pinpointing disease-causal variants among numerous SNVs has become one of the 

major challenges. For instance, approximately 1,300 loci are shown to be associated 

with roughly 200 diseases by GWAS but only a few of these loci have been identified 

as disease-causing (Lander, 2011). Exome sequencing enables the identification of 

more novel genetic variants than previously imaginable, but it still requires 

computational and experimental approaches to predict whether a variant is 

deleterious. To this end, several approaches have been developed to identify rare, non-

synonymous SNPs that cause amino acid substitution (AAS) in the coding region. 

These include SIFT, PolyPhen, GERP and MutationTaster (Schwarz et al., 2010) amongst 

others. 

 

However, a challenge that remains is one of narrowing down the list of candidate 

variants and interpreting retained variants within a biological context (De Baets et al., 

2011). A widely used approach to substantially reduce the candidate list is to exclude 

known variants which are present in public SNP databases, published studies or in-

house databases as it is assumed that common variants represent harmless variations 

(Wang et al., 2010). Various tools are used for variant prioritization and candidate 

gene identification such as The Variant Analysis Tool (VAT), The Variant Annotation, 

Analysis and Search Tool (VAAST) and Ingenuity variant analyzer (IVA). In this 

project VAAST and IVA were used. VAAST identifies damaged genes and deleterious 

variants in personal genome sequences using a probabilistic search method (Yandell et 

al., 2011). The tool utilizes both existing amino acid substitution and aggregative 

approaches to variant prioritization and combines them into a single unified likelihood 

framework. The method increases the accuracy with which disease causing variants 

are identified. VAAST scores coding and noncoding, rare and common variants 

simultaneously and aggregates this information to identify disease causing variants. 

IVA ccombines analytical tools and integrated content to help rapidly identify and 

prioritize variants by narrowing down to a small, targeted subset of compelling 
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variants based both upon published biological evidence and knowledge of disease 

biology. With IVA, variants can be interrogated from multiple biological perspectives; 

the program will explore different biological hypotheses and identify the most 

promising variants for follow-up. 

 

 

Figure 1.9 Filtering steps followed in variant prioritization of exome sequencing 

data. From the total variants identified in each individual exome, only splice site and exonic 

variants are kept, discarding intron and other variants which may be identified. Only rare 

variants that are expected to have an effect on the protein coding are kept. Filtering further 

will retain variants predicted to be involved in the disease of interest as well as considering 

the inheritance pattern (keep only heterozygous variants for a suspected autosomal dominant 

inherited disease. The remaining list will contain potentially causative variants. 

 

1.6.4.7 Data visualization 

  

Genome browsers (GB) can be classified into two main categories, namely web-based 

applications and stand-alone tools. GBs contain information about the reference 

genome, the transcriptome, aligned reads, found mutations, annotations collected from 

public data sources or other data types important for the correct interpretation of 

results (Loraine and Helt, 2002). 
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1.7 Application of whole exome sequencing in the study of disease 

genetics 

 

The development of massively parallel sequencing technology has led to a dramatic 

acceleration in the pace of genetic discovery. NGS has improved our understanding of 

the genetic pathology of many diseases. Understanding the pathogenic mechanism of 

a disease mostly depends on finding the causative gene and variants associated with 

the phenotype, and analyzing the functional effect of the pathogenic variant. NGS 

technologies have enabled two major advances of relevance to the discovery of 

disease associated genes. The first is the ability to readily sequence the genome of a 

single person, thus allowing the identification of mutations that are specific to that 

individual (Figure 1.10). The second is the application of NGS to sequence the entire 

exome (WES), enabling the identification of mutations that result in changes to amino 

acid sequence of encoded proteins while substantially reducing both the cost and the 

computational requirements associated with analysing the resulting data. WES is also 

used in identifying rare, novel, as well as common genetic variants in coding regions 

associated within complex and common traits. Genomic regions identified by GWAS 

are then deep sequenced to identify causative variants. 

 

Sequencing of human exomes was first reported by Ng et al 2009 (Ng et al., 2009b). 

The author reported the targeted capture and massively parallel sequencing of 12 

human exomes including eight individuals previously characterized by HapMap and 

Human Genome Structural Variation project and four unrelated individuals affected 

by an inherited disorder called Freeman-Sheldon (FSS). FSS is a rare autosomal 

dominant disorder for which the associated gene, MYH3, was earlier identified using 

other methods. This study established that exome sequencing could be used to identify 

causes of rare disorders using few affected individuals. It also demonstrated that 

exome sequencing was cost-effective, reproducible and a robust approach for the 

identification of medically significant genetic changes. This study was effective in 

ascertaining causative mutation in MYH3 gene and also confirmed the utility of 

exome sequencing in uncovering the genetic basis of genetic disorders. 
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Soon after, WES was performed on four patients with Miller Syndrome. Two 

previously unknown variants in each of the four individuals identified a single 

candidate gene, DHODH. Sanger sequencing confirmed the presence of DHODH 

mutations in three additional families with Miller Syndrome (MS) but the mutation 

was absent in the matched control samples (Ng et al., 2009b). Up until that point, the 

gene that caused MS was completely unknown. This research emphasized the 

efficiency and value of exome sequencing in identifying causative genes in rare 

genetic disorders with clear definitive phenotypes, which typically affect only a small 

number of people worldwide. Similarly, using targeted exome sequencing, mutations 

identified implicated MLL2 as a causative gene for Kabuki syndrome (Ng et al., 

2010). Sequencing of the exome was undertaken in a small family with consanguinity 

brain malformations of cortical development (MCD), a condition with wide spectra of 

symptoms. Researchers discovered two copies of the same mutation in the WDR62 

gene in two affected family members. These findings strongly implicated WDR62 in 

the cause of cortical abnormalities (Bilgüvar et al., 2010). This research brought to the 

fore exome sequencing’s capability to detect a single gene associated with a medical 

condition that has several symptoms and other genetic factors. 

 

Exome sequencing using NGS technology was performed on two siblings who had 

diamond blackfan anemia (DBA). A mutation in the gene encoding the hematopoietic 

transcription factor GATA1 was identified. This mutation was replicated in an 

additional patient carrying a distinct mutation at the same splice site of the GATA1 

gene. These findings provided insight into the pathogenesis of DBA (Sankaran et al., 

2012). 

 

In 2013, targeted capture and WES using NGS technology was used to resolve 

apparent incidental findings and revealed further complexity of SH3TC2 variant 

alleles causing Charcot-Marie-Tooth neuropathy. An additional SH3TC2 variant that 

plausibly contributes to the phenotype was identified (Lupski et al., 2013). WES 

identified mutations in the MYO15A gene as a plausible cause of autosomal recessive 

non syndromic hearing (ARNH). This was an interesting study as ARNH is a genetic 

heterogeneous disorder for which it is difficult to ascertain a genetic diagnosis using 

other methods (Woo et al., 2013). In a large pedigree with Familial Dilated 

Cardiomyopathy (FDC), a complex disease, application of WES identified causative 
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mutations in the RBM20 gene (Wells et al., 2013), illustrating further the utility of 

exome sequencing in the study of genetics underlying complex diseases. Targeted 

exome sequencing can also be used in combination with other traditional candidate 

gene identification methods. Thus, by using exome sequencing and linkage analysis in 

a five-generation Chinese family with non-syndromic Hearing Loss, novel Tenascin-C 

(TNC) was implicated as a causative gene (Zhao et al., 2013). Overall, understanding 

the genetic basis of rare and extreme phenotypes leads to a better understanding of the 

disease mechanism and physiology, which obviously helps families, patients and 

health care providers in managing and treating the disease. 

  

 

Figure 1.10 Gene identification approaches for different categories of rare 

diseases. Representative family structures are indicated by the pedigrees for each type of 

mutation (Boycott et al., 2013). The far right corner shows an autosomal dominant inherited 

disease and illustrates that for such a disease heterozygous variants in the affected family 

members that are absent in in the unaffected family members are prioritised. For an autosomal 

recessive inherited disease the variants sought are those that are shared by both affected and 

unaffected and this is usually a smaller number than those for an autosomal dominant disease 
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1.7.1 Whole exome sequencing as a diagnostic tool in clinical settings 

 

The aim of WES in modern medicine is to provide an efficient and effective genetic 

method that can be used to implement best treatment, particularly accurate, fast and 

cost-effective diagnosis of the patients. The first report that pinpointed an exact 

diagnosis ascertained by WES was published by Choi et al. (Choi et al., 2009b). WES 

performed on a patient referred with Bartter syndrome, a rare inherited disorder 

characterized by hypokalemia. Additional analysis showed that the patient had a novel 

homozygous mutation in SLC26A3 gene. Mutations in this gene have been known to 

cause congenital chloride-losing diarrhea (CLD). Clinical re-evaluation of the patients 

who were misdiagnosed as Bartter syndrome determined the correct diagnosis as 

CLD. This study demonstrated that exome sequencing could be used to provide a 

correct diagnosis, alter medical management and augment current understanding of a 

medical disorder (Choi et al., 2009b). In another study WES helped in the diagnosis of 

a patient with Leber congenital amaurosis that had mutation in PEX1 gene associated 

with peroxisome biogenesis disorders (Majewski et al., 2011). 

 

A 15-month-old boy with an immune deficiency disorder was exome sequenced. 

Analysis of the data resulted in the diagnosis of Crohn disease being made. This was 

owing to the identification of a mutation in the X-linked inhibitor of apoptosis gene 

(Worthey et al., 2010). After being properly diagnosed, he was able to receive targeted 

medical treatment to prevent the development of life-threatening illness, 

demonstrating how exome sequencing has the ability to find a correct diagnosis in an 

individual who has challenging to clinically disease presentation, thus making 

effective treatment plausible. 

 

Again, WES was applied for neonatal screening of diabetes mellitus (NDM). It was 

established that patients carrying a mutation in KCNJ11 or ABCC8 genes should be 

given oral treatment with sulfonylurea drugs instead of insulin. In cancer studies WES 

identified a spectrum of mutation frequencies in advanced and lethal prostate cancers 

(Kumar et al., 2011). 
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The clinical utility of WES was also demonstrated in a study carried out by Stitziel et 

al. where sequencing of the exome in combination with directed clinical phenotyping 

was used to make a primary definitive diagnose of cholesterol ester storage disease 

which initially presented as Autosomal Recessive Hypercholesterolemia (Stitziel et 

al., 2013). Thus, making effective corrective diagnosis where primary first line 

clinical diagnosis would have erred. In another study, a novel frameshift homozygous 

variant was identified in the SACS gene, which resulted in a successful diagnosis of 

autosomal recessive spastic ataxia of Charlevoix-Saguenay in a single pediatric case 

(Liew et al., 2013). (Pangrazio et al., 2014) identified a homozygous variant in the 

CTSK gene, implicating it as a possible causative gene in two siblings with 

Autosomal Recessive Osteoporosis, initially thought to be affected by intermediate 

osteoporosis (Pangrazio et al., 2014). In a trio based study, WES was successfully 

applied to accurately diagnose 73% of children with Neurodevelopmental disorders. 

In the same study it was established that had WES been performed at symptom onset, 

genomic diagnoses may have been made 77 months earlier than the time it occurred 

(Soden et al., 2014). 

 

1.7.2 Potential of exome sequencing in kidney disease genetics 

 

Exome sequencing has been applied rapidly for variant discovery in research settings. 

The recent improvement in its accuracy has enabled development of clinical exome 

sequencing for mutation identification in patients with suspected genetic diseases. 

WES is a comprehensive method that can be used in the molecular diagnosis of 

patients with undiagnosed disorders despite having exhausted other primary 

diagnostics methods (Biesecker and Green, 2014; Dixon-Salazar et al., 2012; Green et 

al., 2013; Need et al., 2012) 

 

In a study by Gibson et al. exome sequencing was successfully applied to resolve 

differential diagnosis of familial kidney disease. Initially, pathological examination 

was carried out on patients who presented with hematuria and proteinuria which 

eventually led to ESRD. A diagnosis of focal segmental glomerulosclerosis (FSGS) 

was made. However, when WES was applied, a mutation in COL4A5 a gene known 

to cause Alport syndrome was discovered. The mutation in the gene segregated with 
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the disease in this family. As a result, a new diagnosis of Alport syndrome was 

confirmed (Gibson et al., 2013). 

 

In another study, WES was used to diagnose and distinguish cystic kidney diseases 

from phenocopies of renal ciliopathies in rare, genetically heterogeneous cases of 

CKD in children (Gee et al., 2013). Mutations in the known CKD causing genes 

SLC4A1 and AGXT were identified. The study established that for individuals with 

early onset renal failure, histological examination may represent a relatively blunt 

diagnostic tool, which can be incapable of establishing the correct diagnosis. Targeted 

exome capture of COL4A3/COL4A4/COL4A5 followed by NGS has also been used 

clinically to screen suspected AS patients (Fallerini et al., 2014; Morinière et al., 

2014). 

 

WES was applied in three families with unexplained inherited kidney disease. Novel 

COL4A3 and COL4A4 mutations were identified. The results resolved diagnostic 

confusion arising from atypical or incomplete clinical and histological findings which 

resulted in appropriate genetic counselling and treatment advice being given 

accordingly (Lin et al., 2014). Again, using exome sequencing rare hereditary variants 

in COL4A3 and COL4A4 genes were identified in patients with FSGC (Malone et al., 

2014). One of the clinical significance of this discovery is that there is an overlap 

between phenotypes induced by COL4A3 and COL4A4 variants and familial FSGS 

genes. Therefore, screening for rare variants/mutations in these genes in families 

referred with a diagnosis of familial FSGS is warranted for better disease definition 

and treatment to be attained. Furthermore, exclusion of variants in these genes should 

be considered as part of a filtering process in the analysis of WES data in familial 

FSGS. 

 

Using exome sequencing a novel COL4A5 Mutation was identified in family 

members who were diagnosed with Alport syndrome (AS). This discovery broadened 

the mutation spectrum in the COL4A5 gene associated with AS, which may also shed 

new light on genetic counseling for AS patients (Xiu et al., 2014). In another study, a 

novel mutation in the LMX1B gene was discovered in patients diagnosed with end-

stage renal disease (ESRD) of unknown cause presenting in a familial autosomal 

dominant pattern. Such a molecular genetic diagnosis of LMX1B nephropathy may 
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provide a definitive diagnosis preventing the need to undertake risky procedures such 

as renal biopsies, and also allows family members at risk to be screened (Edwards et 

al., 2014). Based on the studies reviewed, the utility of exome sequencing using NGS 

techniques to study the genetics underlying rare and complex kidney phenotypes 

cannot be over emphasised. As such this approach is also adopted in this thesis. 

 

1.8  Thesis rationale and objectives 

 

Sub Saharan Africa (SSA) bears approximately 11% of the world population and 24% 

of the global disease burden but has only approximately 3% of the health work force 

and infrastructure (Mensah and Mayosi, 2013; Pugsley et al., 2009; Schieppati and 

Remuzzi, 2005; Stanifer et al., 2014). Particularly, in SSA the infrastructure for 

human genetics research is beyond scarce. Although lack of infrastructure that 

includes bio-specimen repositories is a major concern, the scant representation of SSA 

in human genomics research is also hugely attributed to lack of well-defined and 

phenotypically well-characterised disease cohorts. Such essential information may be 

collected and kept in well-structured and organised clinical databases. Although there 

are several hospital and community based epidemiological studies of kidney diseases 

and its risk factors (such as Lupus) from African countries, most of the studies are 

generally retrospective with insufficient information on risk factors, treatment 

parameters, important clinical outcomes and mortality. One of the major difficulties 

recognised for this is lack of/non-existence of clinical databases which may contain 

such worthwhile data. Yet, the potential of genomics research to yield valuable 

insights into the biology of diseases is dependent upon accurate definition of disease 

phenotype and a comprehensive understanding of environmental factors. In light of 

this, the primary aims of this bioinformatics thesis are: 

 

(1) Develop an exome sequencing analysis pipeline using next-generation sequencing 

technology and apply it on a rare and difficult familial autosomal dominant form of 

kidney disease. The patients were identified at Groote Schuur hospital, Western Cape, 

South Africa. Though this is a single familial study, it illustrates the plethora of 

genetics studies that can be undertaken with a cohort of well-defined, phenotypically 

well characterised, collected and kept in a standardised clinical patient database as 
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alluded above. I intend to answer the following questions: 

(a) What are of the genetic variants likely to be underlying kidney disease in this 

South African family? 

(b) What gene regulatory pathways are involved in kidney disease in this family, in 

the context of ESRD and in the broader patient population? 

(c) How can we use computational characterization of pathways and gene regulatory 

networks analysis using a range of computational tools, to identify fundamental 

similarities and differences between ESRD in the South African affected family, and 

the wider knowledgebase about genetics underlying ESRD? 

(2) To create a holistic new paradigm which intends to increase the capacity of 

genomics research in SSA by developing and setting up a multicentre registry of 

Lupus patients (African Lupus Genetics Network), facilitating the examination of 

hypotheses concerning disease genetics, aetiology and health outcomes of patients. 

Lupus is one of the major risk factors of ESRD that is prevalent amongst CKD 

patients that are treated at Groote Schuur Hospital in the Western Cape, South Africa. 

The clinical database will enable researchers to establish a disease cohort with an 

ample sample size for genomic research to be embarked on and will provide a 

platform for other translational research of kidney disease related conditions. Access 

to comprehensive, standardised and precise phenotypic data from well characterised 

research participants is an essential complimentary tool to genomics research which 

may provide means to identify risk factors, treatments administered and disease 

outcome. This database will act as a prototype and pilot study for developing future 

pan African clinical databasing resources. 

 

 

 

 

 

 

1.9  Thesis Overview 

 

Chapter 1: Reviews in detail the literature underpinning research undertaken in this 

thesis. 
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Chapter 2: Details a Bioinformatics pipeline, a plethora of tools and techniques 

utilised to process and analyse WES data; and applies these tools to 5 family members 

affected by a rare familial kidney disease and one unaffected family member, leading 

to the high quality variant calling and genotyping. A detailed analysis of the variation 

identified as well functional annotation and variant prioritisation is also provided 

 

Chapter 3: Provides comprehensive details of painstaking functional analysis 

methods undertaken to assess the true significance of identified variants, and 

implicate potential causative variant(s) and identify candidate gene (s). 

 

Chapter 4: Unpacks the utility of clinical databasing in addressing some challenges 

presented by risk factors of kidney diseases in African populations. 

 

Chapter 5: Summaries key findings of this Bioinformatics thesis and highlights 

potential future direction of this research. 
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2 Computational high throughput genomic study of rare 

familial kidney disease in Africa 

 

Abstract 

Background: End-stage renal disease (ESRD) is a complex trait that may involve 

multiple processes which work together in the background of a significant genetic 

susceptibility. Black Africans have been shown to bear an unequal burden of this 

disease compared to their Caucasian counterparts. Whole exome sequencing (WES) is 

the application of next generation sequencing technology to determine all genetic 

variation in the coding regions. It is particularly effective for the unbiased discovery 

of highly penetrant rare variants and other functional mutations with large effect size, 

which are expected to explain an important fraction of the genetic etiology and 

pathogenesis of human disease. 

Methods: To elucidate the genetic factors and the mechanism underlying ESRD, WES 

was performed on six individuals (five cases and one control) from a large South 

African family of mixed ancestry with an autosomal dominant phenotype of adult-

onset nephropathy characterized by early onset abnormal serum creatinine and in 

some cases developmental defects affecting the kidneys. Samtools, Novoalign, 

Picard, Genome analysis tool kit (GATK), Variant annotation analysis and selection 

tool (VAAST) and Ingenuity variant analysis (IVA) were applied for bioinformatics 

analysis. 

Results: From WES data of six family members; a total of 23 196 SNVs (missense, 

nonsense, splice site variants), 1445 insertions and 1340 deletions all of them 

heterozygous variants in keeping with an autosomal dominant phenotype, overlapped 

amongst all affected family members. Of these, only 1550 SNVs, 67 insertions and 

112 deletions were present in all affected family members but absent in the unaffected 

family member. Further variant prioritisation based on biological parameters yielded a 

list of 40 variants in 35 genes, 4 novel and 6 without MAF number based on the 1000 

genomes data. Copy number variants loci and Variable number tandem repeat 

identified did not segregate with disease in affected family members. Computational 

relatedness analysis revealed approximate amount of DNA shared by family members 

and confirmed reported relatedness. Genotyping for the Y chromosome was 

additionally performed to assist in sample identity. 

Conclusion: Next generation sequencing of five affected and one control individual 

from this family is sufficient to generate a list of 40 candidate etiological variants for 

the disease phenotype. This work clearly shows the successful application of WES for 

the identification of pathogenic mutations that may explain complex renal 

phenotypes. 
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2.1 Background 

 

The precise delineation of causal variants that alter human phenotypes, predominantly 

diseases, is a fundamental goal of human genetics, providing crucial insights into the 

biology connecting genotype and phenotype and potentially facilitating the prediction 

of disease onset, better understanding of disease mechanism and prognosis, and new 

therapeutic targets. Elucidating the genetic basis of human diseases and other health-

related traits has commonly relied on the oversimplified but nevertheless useful 

dichotomy between monogenic-simple and rare, and multigenic-complex and 

common diseases. Genetic variation plays a major role in both Mendelian and non-

Mendialian diseases. Among approximately 2700 Mendelian diseases for which 

underlying genetic causes have been resolved, the overwhelming majority are caused 

by rare mutations that disrupt the proper function of their individual proteins. 

However, a substantial gap still exists in our knowledge of the relationship that exists 

between genotype and phenotype, and how this affects disease and other traits. 

 

The advent of next-generation DNA sequencing has provided a means to define nearly 

comprehensive maps of genetic variation, including several million single nucleotide 

variants (SNVs), thousands of small insertion or deletion events and thousands of 

structural variants which are typical found in human genomes (Bentley et al., 2008; 

Metzker, 2010; Shendure and Ji, 2008). Most of these are common, but individual 

genomes also contain many thousands of rare and effectively private genetic variants 

(Consortium and others, 2010). Despite the existence of new methods to 

comprehensively catalogue human genetic variation, the identification of variants that 

are causal for disease or other traits remains a difficult challenge. 

 

Although traditional gene mapping approaches such as karyotyping, linkage analysis, 

homozygosity mapping and gene panels have led to great insights into disease gene 

identification over the past few decades, they are, yet, unable to detect all forms of 

genomic variation (Kerem et al., 1989; Lander, 2011; Lander and Botstein, 1987). The 

application of these approaches is dependent on whether the disease is, for example, 

caused by single nucleotide mutations or by CNVs, which is difficult to predict in 

advance. In addition, mapping approaches often do not reduce the number of 
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candidate genes sufficiently for straightforward follow-up by Sanger sequencing. 

Also, the availability of only a small number of cases or families to study, reduced 

penetrance, locus heterogeneity and substantially diminished reproductive fitness are 

some of their drawbacks. 

 

NGS transcends these issues and has tremendously changed the landscape of rare 

genetic disease research, with causative genes being identified at an accelerated rate 

(Kelly et al., 2015). NGS techniques have transformed genetic research, enabling 

rapid increases in the discovery of new functional variants in syndromic and common 

diseases (Gonzaga-Jauregui et al., 2012). NGS has been widely adopted by the 

research community and is fast being implemented clinically, motivated by 

recognition of its diagnostic utility and improvements in quality and speed of data 

attainment as well as rapidly decreasing costs (Mardis, 2011). Also, NGS methods 

have the potential to identify all kinds of genetic variation at a base pair resolution 

throughout the human genome, in a single experiment. Although WGS is still 

considered cost prohibitive, the application of WES using enrichment methods (Choi 

et al., 2009a, 2009b) has the ability to capture a highly enriched subset of the genome 

in which variants with large effect size, that is those that affect protein structure can 

be interrogated. This technique has opened cost-effective and interesting new avenues 

in identifying disease-associated mutations. 

 

WES provides an unbiased and comprehensive assessment of the coding genetic 

variation of an individual and has been applied successfully in studies of monogenic 

disorders with small sample sizes (Choi et al., 2009a, 2009b). In a widely publicized 

case in 2011, a single exome of an affected child was used to identify a single base 

aetiological variant with a large phenotypic impact (Worthey et al., 2010). Also, WES has 

been undertaken to ascertain the genetics underlying rare complex disorders (Seidman 

and Seidman, 2001). Another impact of WES is to provide molecular insights into 

understanding the mechanisms controlling blood pressure in hypertensive patients, a 

common disease (Austin et al., 2012). WES has also been utilized to highlight novel 

insights into cancer mechanisms, by comparison of germline and somatic mutations 

that predispose to cancer development (Yan et al., 2011). 

 

 

 

 

 

 



54 

 

As highlighted, the potential of WES in identifying causative genes for rare and 

complex genetic disorders is enormous. In light of that, a similar approach was 

adopted in this thesis; WES was performed on a large South African family of mixed 

ancestry with a rare and difficult autosomal dominant phenotype of adult-onset 

nephropathy characterized by early onset abnormal serum creatinine and in some 

cases, developmental defects affecting the kidneys and progressing rapidly to ESRD. 

In this family the disease is also characterised by recurring kidney failure after 

transplantation. Renal biopsies performed were not very informative and failed to 

offer a conclusive plausible underlying cause of ESRD in this family. Therefore, WES 

was utilized in order to gain better insight into the underlying genetics of ESRD in 

this particular family. The discovery of highly penetrate rare variants and other 

functional mutations with large effect size, which may explain an important fraction 

of the genetic aetiology and pathogenesis of ESRD in this family, was sought. 

 

Since some affected family members have progressed to ESRD and are experiencing 

multiple recurring kidney transplant failures, precise molecular diagnosis is clinically 

valuable as it may make it possible to offer genetic counseling and enable predictive 

testing to be offered to relatives. Perhaps it may also aid therapeutic decision-making 

and allow more accurate prognostic advice to be given. The utility of WES in 

unravelling the genetics of kidney diseases has been explored elsewhere (Choi et al., 

2009a; Edwards et al., 2014; Xiu et al., 2014). Its application, however, to rare and 

difficulty familial kidney disease from African patients has been limited. To date and 

to our knowledge this is the only study using NGS techniques that has sought to 

explore and uncover the genetic basis of a rare ESRD and establish its pathogenesis in 

an African family. Because of the unexplored genetic diversity found in African 

patients, this may offer some novel insights into the aetiology of this kidney disease 

phenotype. 

 

2.2 Materials and Methods 

 

Ethics clearance for the study was obtained from both the University of Cape Town 

(HREC 521/2009) and the University of the Western Cape, and written informed 

consent was obtained from each participant. 
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2.2.1 Human Patients 

 

Six related individuals from a South African family of mixed ancestry were enrolled 

in the study (Figure 2.1). The family members chosen were the ones who consented to 

the study, unfortunately other family members had passed away before the 

commencement of the study. 

 

 

Figure 2.1 Family pedigree. Shaded black icons indicate family members affected by 

ESRD. Grey shaded icons indicate family members in whom disease phenotype cannot yet be 

determined. Crossed icons indicate family members who passed away. Unaffected people are 

shown by colourless circles. Squares represent male family members and circles represent 

female family members. 

 

All affected family members underwent urinalysis and renal function evaluation; all 

of them presented with elevated serum creatinine levels as a marker of renal 

insufficiency however, none of them presented with any hematuria and proteinuria 

which was an unusual and striking finding. Two of them had kidney transplant with 2 

having had at least one failed transplant. Kidney biopsy performed on one of patients 

showed interstitial fibrosis. After primary clinical diagnostic methods had failed to 

provide a clear pathogenesis of ESRD in this family an alternative approach was then 

sought to try and uncover the cause of the disease in this family. As a result WES was 

undertaken. 
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2.2.2 Blood collection and DNA extraction 

 

DNA was isolated from peripheral blood lymphocytes using the salt-out method, and 

suspended in TE buffer. All samples underwent quality control assessment before 

sequencing. 

 

2.2.3 Whole exome capture and sequencing 

 

WES was undertaken for 6 samples obtained. Sequencing was done by a commercial 

company in the USA (www.otogenetics.com). DNA target enrichment was performed 

using Agilent SureSelect Human All Exon V4, according to the manufacture’s 

protocol. Agilent SureSelect enrichment techniques enable the capture of genomic 

targets using long 120 nucleotide RNA baits which allow for efficient enrichment of 

regions of interest facilitating confident variant calling. Its comprehensive design 

targets coding regions of genes included in major databases. Enriched exome 

fragments were sequenced using the HiSeq 2000 platform (Illumina, San Diego, CA, 

USA) to get 100bp paired-end reads. Mean exome coverage of approximately 65.65× 

was obtained to accurately call variants at 99.41% of the targeted region. Additional 

quality control assessment was done on FASTQ files using FASTQC. Most of the 

reads had bases with Phred quality score above 20 as a result no further trimming was 

performed on the reads. 

 

2.2.4  Bioinformatics analysis of whole exome sequence data 

 

Analysis of WES data is multifaceted involving several essential steps which must be 

followed meticulously. In this project it was accomplished in four phases each 

incorporating various aspects which were carefully chosen to ensure that variant calls 

of highest quality were called and only good candidates were identified. These four 

phases are described in detail below, namely: (a) The mapping, alignment and local 

realignment of each exome to the human reference genome, (b) Variant and genotype 

calling using GATK, (c) Annotation of functional variants using VEP, ANNOVAR and 

(d) Probabilistic and non-probabilistic variant prioritization using VAAST and IVA 

respectively. 

 

 

 

 



57 

 

 

 

 

 

 

 

Table 2.1. Different file formats that are used in the analysis of next generation 

sequencing data. FASTQ file contains reads of original samples sequenced, which is 

usually provided by the core sequencing facility. SAM, BAM and VCF are the main file 

formats used for the bioinformatics analysis. 

File Format Description 

FASTQ It is a plain text format, where each single 

read occupies four consecutive lines: (1) The 

name/ID of the read, preceded by an "@"sign 

(2) The sequence of the read (3) A "+" sign 

(4) The quality scores of the bases encoded 

as ASCII. 

SAM 
Sequence Alignment/Map format. It is a 

TAB-delimited text format consisting of 

header lines which start with @ and 

alignment lines. 

BAM Binary Alignment/Map is a compact and 

indexable representation of nucleotide 

sequence alignments. The file is a 

compressed binary version of the SAM 

VCF 
Variant Call Format (VCF) specifies the 

format of a text file used for storing gene 

sequence variations. It contains meta-

information lines, a header line, and then data 

lines containing information about a position 

in the genome. The format also has the ability 

to contain genotype information on samples 

for each position. 

BED This is a text file that contains genomic 

regions of interest and is useful for 

calculations such as coverage. 

 

2.2.4.1  Mapping and alignment of exome reads to the human reference genome 

 

Once generated, sequence base call files were converted to a standard file format 

FASTQ. FASTQ files contain millions of reads with base-associated quality scores for 
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each exome. The initial alignment process involves mapping reads to a best-fit 

location on the reference sequence. This step also associates each read with another 

quality score, called the mapping quality score. In this project, sequence reads were 

aligned to the human reference genome obtained from UCSC database 

(http://genome.ucsc.edu/), version hg19 (build 37.1), using a short read aligner 

program known as Novoalign (www.novocraft.com). Before use the human genome 

was indexed using Novoindex (Table 2.1). Mapped reads were stored in a sequence 

alignment map format (SAM) which was later converted to binary alignment map 

format (BAM) using SamTools (H. Li et al., 2009). 

 

2.2.4.2 Refinement of alignments from whole exome reads 

 

The first step to alignment refinement is removal of polymerase chain reaction (PCR) 

duplicates, which are reads that have the same start and end points. Duplicates arise 

from sequencing of identical fragments generated by PCR during library preparation. 

PCR errors can be introduced and propagated through unequal amplification of the 

library fragment template, which can lead to false positives or incorrect variant 

zygosity calling. In this project removal of PCR duplicates was performed using 

command line tools PICARD and SAMtools (Carneiro et al., 2012). 

 

Secondly, alignment and mapping accuracy differ between algorithms. A trade-off 

exists between computational speed and mapping accuracy, which can lead to 

alignments with false positive and false negative variants. WES short reads produced 

by NGS instruments are difficult to map when reads contain indels, which are a 

significant source of false positives and false negatives variants (DePristo et al., 

2011). Local realignment is performed to correct for potential alignment errors around 

indels. Mapping of reads around the edges of indels often results in misaligned bases 

creating false positive SNP calls. Local realignment algorithms use these mismatching 

bases to determine if a site should be realigned, and apply a computationally intensive 

algorithm to determine the most consistent placement of the reads with respect to the 

indel, whilst removing misalignment artifacts (Figure 2.2). To achieve this, the 

algorithm for indel realignment implemented in the GATK toolkit was used 

(McKenna et al., 2010) (Figure 2.2). 
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A third aspect to refining alignments is recalibrating base quality scores (BSQR). The 

raw Phred-scaled quality scores produced by base calling algorithms may not 

accurately reflect the true base calling error rates (Brockman et al., 2008). In such a 

case, the raw quality scores need to be recalibrated so that a Phred score more 

accurately correspond to error rates. Obtaining well calibrated quality scores is an 

important step, as SNP and genotype calling at a specific genomic position relies on 

both the base calls and the per base quality scores of the reads overlapping that 

position. Using SOAPsnp, per base quality scores are recalibrated by comparing a 

sequenced genome to the reference genome at sites with no known SNPs (R. Li et al., 

2009). GATK takes into account several covariates such as machine cycle and 

dinucleotide context when inferring the recalibration model. Recalibrated quality 

scores are then estimated by adding to the raw quality scores the residual differences 

between empirical quality scores and the mismatch rates implied by the raw quality 

scores. The 1000 Genomes project adopted the same recalibrated algorithm. 

 

 

Figure 2.2 Basic workflow for WES data processing steps. The workflow shows a 

step-by-step breakdown of the processes involved from DNA extraction, DNA sequencing 

and bioinformatics analysis leading to the generation of a VCF file with ready for analysis 

variants. 
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2.2.4.3 Variant calling and statistical genotyping 

 

Variant calling is a process of determining at which positions at least one of the bases 

differ from a reference sequence. In this project, multi-sample variant calling was 

performed using the Haplotype caller, a statistical probabilistic algorithm incorporated 

in the GATK (Box 2.1). Re-aligned and re-calibrated BAM files were used as input 

files and the output was a multiple sample variant call file (VCF). An additional 

strategy to reduce the number of false positive variant calls was performed using the 

“variant quality recalibration” in GATK. This produced a filtered and calibrated VCF 

that was used for variant annotation and candidate gene prioritisation. 

 

Accessing GATK and memory assignment: Genome Analysis Tool Kit  

Loading the variant caller track: Haplotype Caller  

Loading the reference human genome: ucsc.hg19.fasta  

Uploading all refined bam files one after the other: 999.bam……., 000.bam  

 Adding resources with known variants: 

dbsnp_137.hg19.excluding_sites_after_129.vcf  

Add Confidence call parameter 1: conf 50.0  

Add Confidence call parameter 2: conf 10.0  

 Add a list of the targeted genomic positions: AllTracks.bed 

Output variants in a VCF: output.vcf 

Box 2.1: GATK’s Multi sample variant calling algorithm performed in UNIX. 
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Figure 2.3 WES variant calling steps using GATK. Successive steps required to 

generate a list of variants from calibrated and realigned bam files. 

 

2.2.5  Functional Annotation of identified variants 

 

Ensembl’s variant effect predictor (VEP) (Overduin, 2011) was used to annotate 

variants obtained from GATK (McKenna et al., 2010). The VEP determines the effect 

of variants on genes, transcripts, protein sequence and regulatory regions. Also, 

variants were prioritized further based on their genomic location; intronic, splice site, 

exonic as well as the type of variant, that is: SNPs, insertions, deletions, stop-loss or 

gain variants and whether the identified variant is known or novel using public 

databases namely dbSNP and 1000 genomes. ANNOVAR (Wang et al., 2010) and 

Seattleseq (http://snp.gs.washington.edu) were also used as additional annotation 

tools. 
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Table 2.2 Description of exonic variants annotations used in this project. 

Annotation Variant Explanation 

frameshift insertion An insertion of one or more nucleotides that 

cause frameshift changes in protein coding 

sequence. 

frameshift deletion A deletion of one or more nucleotides that 

cause frameshift changes in protein coding 

sequence. 

frameshift block substitution a block substitution of one or more 

nucleotides that cause frameshift changes in 

protein coding sequence 

Stopgain A nonsynonymous SNV, frameshift 

insertion/deletion, nonframeshift 

insertion/deletion or block substitution that 

lead to the immediate creation of stop codon 

at the variant site. For frameshift mutations, 

the creation of stop codon downstream of the 

variant will not be counted as stopgain. 

Stoploss a nonsynonymous SNV, frameshift 

insertion/deletion, nonframeshift 

insertion/deletion or block substitution that 

lead to the immediate elimination of stop 

codon at the variant site 

nonframeshift insertion An insertion of 3 or multiples of 3 

nucleotides that do not cause frameshift 

changes in protein coding sequence. 

nonframeshift deletion A deletion of 3 or multiples of 3 nucleotides 

that do not cause frameshift changes in 

protein coding sequence. 

nonframeshift block substitution A block substitution of one or more 

nucleotides that do not cause frameshift 

changes in protein coding sequence. 

nonsynonymous SNV A single nucleotide change that cause an 

amino acid change. 

synonymous SNV A single nucleotide change that does not 

cause an amino acid change. 

Unknown Unknown function (due to uncertainty or 

errors in the gene structure definition in the 

database file). 
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2.3 Results 

 

2.3.1  Sequencing and quality control 

 

The average per base phred scale quality score of each sample sequenced was above 

20. This is an acceptable cut-off required for analysis in subsequent steps. The reads 

were considered to be of high quality. No further trimming of low quality bases was 

required. 

 

 

Figure 2.4 Quality control results for one of the sequenced samples (666). The 

quality scores show per base quality for each sequenced base position across all reads in this 

sample. As expected the quality of the bases was high in the middle positions of the reads and 

decreased towards the end as well as the beginning of the reads. Overall, per- base quality was 

high indicating good quality data. 
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Table 2.3 Summary of mapping statistics for exome sequenced samples. The 

mapped data is the sum of read bases that aligned to the target region. Reads that did not map 

to the target region were considered not mapped. Mapping and indexing of the reference 

genome was performed using Novoalign. 

Sam

ple 

Gende

r 

Status Total reads Mapped 

reads 

(%) 

Mapped 

confidently 

(%) 

Not 

mapped 

(%) 

Mapped 

repetitivel

y (%) 

222 M Affected 55 629 258 97.13 96.60 2.87 0.52 

555 M Affected 49 177 820 97.01 96.48 2.99 0.53 

666 F Affected 59 570 612 97.15 97.25 2.49 0.52 

777 M Affected 59 456 794 97.25 96.71 2.25 0.55 

888 M Affected 50 135 248 97.32 96.81 2.68 0.50 

000 F Normal 52 168 349 97.43 96.98 2.51 0.54 

 

Targeted DNA sequencing of 6 individuals was performed; 4 affected males, 1 

affected and 1 unaffected females. A total of 325 million (60 GB) high quality raw 

reads were obtained with an estimated average of 54 million raw reads per sample 

(Table 2.3). Approximately 97% of the reads mapped to the targeted regions of which 

~ 96% mapped with high confidence, with a per base mismatch rate of less than 3%. 

There was minimal repetitive mapping averaging less than 0.5%, which may be 

attributed to recent methodological improvements in the hybrid capture methods and 

sequencing techniques. Overall, the data was of good quality. 
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Figure 2.5 Depth of coverage distributions across the targeted region. The 

coverage was calculated for all mapped reads across the target region. Coverage was 

calculated using the Depth of Coverage tool from GATK and it was done for all sequenced 

exomes. The different colors show different individual exomes sequenced for which coverage 

was calculated. 

 

To calculate the depth of coverage, target regions were split into 100bp non-

overlapping tiles, with small tiles at target region edges. Difficult target regions were 

defined as those tiles with fewer than 50% of their bases covered at least 15X in the 

full alignments, while easy target region tiles were those with all their bases covered 

at least 15X in the full alignments. Overall, coverage depth for all samples averaged 

between 50-68× (Figure 2.5). More than 90% of targeted bases had greater than 50× 

coverage. This was sufficient to call SNPs and INDELs in the targeted region with 

high accuracy, specificity and sensitivity. 
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2.3.2 Distribution of variation across sequenced samples 

 

Table 2.4 Summary of variation obtained from 6 samples sequenced. The variants 

were obtained from joint variant calling producing a multi-sample VCF. The multi-sample 

VCF file was then annotated using VEP. The list also includes intronic/UTR variants. 

    Sample 

Name 

   

 222 555 666 777 888 000 

Non Synonymous       

Missense 10413 9982 9972 9976 9965 10082 

Stopgain 124 115 123 113 117 118 

Splicing 156 147 144 155 152 133 

frameshift truncation 147 148 141 162 150 158 

frameshift elongation 149 136 135 137 138 146 

frameshift substitution 7 7 7 6 5 6 

In-frame deletion 160 145 155 158 162 153 

In-frame insertion 129 121 126 118 123 126 

In-frame substitution 0 1 1 1 0 0 

Stoploss 35 35 29 28 31 33 

frameshift duplication 9 10 9 10 10 12 

In-frame duplication 3 3 3 3 4 3 

Synonymous 9108 8710 8691 8688 8713 8813 

 

Based on WES analysis of five affected and one unaffected family member, a total of 

approximately 100 000 variants were identified. Table 2.4 provides a summary of 

variation identified for each sequenced sample, broken down by the type of variation. 

Synonymous and non-synonymous single nucleotide substitutions were the most 

common with missense variants dominating averaging ~9950 per sample. Nonsense 

and canonical splice site single nucleotide substitutions as well as insertion/deletions 

were far less common amongst sequenced samples. These were composed mainly of 

stoploss substitution, frameshift substitution and in-frame substitutions, all combined 

were ~100 variants in total (Table 2.4). However, despite having smaller numbers, 

insertions/deletions rather than substitutions had a larger percentage of novel variants. 

 

Since the variation in Table 2.4 also included intronic/UTRs, variants were further 

filtered to include only those variants in the exonic regions. As a result a total of 67 % 

non-synonymous SNV, 27 % synonymous SNV were obtained. Also, 6% frameshift 

variants were identified, 2% of them stop gain, 2 % stop loss, 1 % non-frameshift 

deletions and 1 % non-frame shift insertions were identified (Figure 2.6). 
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Interestingly, 470 exonic variants in ~400 genes were classified as variation of 

“unknown significance”. Overall, ~14 373 were heterozygous while ~7 170 

homozygous. Of the exonic variants a total of ~ 19 000 had rs SNP ids while ~1000 

were novel. 

  

 

Figure 2.6 Coding consequence. Missense variants were the most common type of 

variation identified in the targeted region, followed by synonymous mutations. Frameshift 

variants were also fairly frequent. Stop loss and gain variants were the other types of variants 

identified.  

 

2.3.3 Functional variation shared by affected family members 

 

Table 2.5 Variation identified in affected patients but not present in unaffected 

family members. Approximately 24 000 variants are shared by all affected family members 

and these range from missense, nonsense and splice-site variants to insertions and deletion 

variants. 

Variation type Shared by all affected family 

members  

Shared by all affected family 

members and absent in the 

unaffected family member 

Single nucleotide variants 

(missense, nonsense, splice 

variants) 

23 196 1550 

Insertions 1445 67 

Deletions 1340 112 

 

Since the inheritance model of the disease in this family is suspected to be autosomal 

dominant, it was imperative to look at how much variation was shared by the affected 

family members only, and also infer how much of this variation was not present in the 

unaffected family member. This was premised on the understanding that if the disease 

is full penetrance as we hypothesised then the causative variant can only be found in 
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all affected family members, and absent in the unaffected family member. 

 

All affected family members were found to share a lot of functional variants ~ 23 196 

SNVs, 1441 insertions and 1340 deletions (Table 2.5). Of the SNVs identified, ~4511 

were non synonymous, 5157 synonymous, and there were 1000 splice site variants. 

 

The variants were further analysed to identify only variants that are in the all affected 

family members, as already identified, but in addition are not present in the unaffected 

family member. ~1550 SNVs, 67 insertions and 112 deletions were thus identified 

(Table 2.5). The SNVs were composed of 311 non- synonymous variants, 647 

synonymous variants, 73 splice variants and ~ 20 stop gain and loss variants. Overall, 

these were regarded as the major variants of interest. 

 

2.3.4 Variant prioritisation using Ingenuity variant analysis 

 

Table 2.6 Stepwise variant and gene prioritisation process. Heuristic variant filtering 

was performed in IVA. Common variants, predicted deleterious, genetics and biological 

analysis were the different filters applied to reduce the number of variants in the list to 41 in 

35 genes. 

Filter Type Number of 

variants 

Genes 

Common filter 

(MAF<5% 1000 genomes, <5% dBsnp,<5% NHLBI) 

 

17 189 8490 

Predicted Deleterious 

(pathogenic, evolutionary conservation) 

 

7 445 5077 

Genetic analysis 

(heterozygous variants, present in All Affected and 

absent unaffected) 

 

80 70 

Biological analysis 

(keep only variants known or predicted to affect the 

disease) 

41 35 

 

In order to reduce the search space and prioritise potential causative variant(s), IVA a 
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non-statistical prioritisation method was used (Table 2.6). A cautious, well defined 

heuristic variant filtration process was undertaken. All variants shared by the affected 

members were compared to public databases and variants with MAF< 5% were kept 

for further analysis. This was based on the assertion that the causative variant is not 

common in the population; as such a very rare or novel variant was sought. This 

resulted in the number of variants reduced to 17 189 and these variants were found in 

8490 genes (Table 2.6). Another filter of predicted deleteriousness was applied. This 

filter looks at pathogencity and evolutionary conservation to prioritise variants, further 

halving the number of variants to 7445 in 5077 genes. Even at this point the number 

of potential causative genes was still large and required further prioritisation to zero in 

on the probable candidate. 

 

The genetic analysis filter was then applied. The filter prioritises variants based on 

zygosity and it was at this point that variants found in the unaffected family member 

were removed, with the remaining variation found only in affected family members. 

Using this filter the number of variants reduced drastically to 80 variants in 70 genes. 

The remaining variants were further prioritised using the biological filter resulting in 

40 variants in 35 genes being prioritised (Table 2.6). These remaining variants needed 

to be prioritised further using a plethora of functional analysis techniques to determine 

the potential candidate gene. 

  

2.3.5 Prioritised variants and their possible effects 

 

After a comprehensive stepwise filtering using Ingenuity Variant analysis (IVA), a list 

of variants was generated (Table 2.7). Most of the variants obtained were single 

nucleotide variants, the majority of them being missense (15). Insertions (in frame (2), 

frameshift (2)), splice site loss (2) and synonymous (8) mutations were the other types 

of variants identified. The majority of variants identified had rs dbSNP ids with very 

low minor allele frequencies (1000 genomes minor allele frequency). About 3 novel 

variants were identified, these were determined based on their presence or absence 

from a public database dbSNP. The minor allele frequency was also considered. 

 

Given a huge number of variants still remaining after application of the biological 
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filter in IVA (Table 2.7), and the importance attached to the results as they would be 

required for application in clinical settings, additional prioritisation methods needed 

to be sought in order to reduce the list to manageable set supported by a wide pool of 

biological evidence. Variant prioritisation and candidate gene identification is not a 

trivial task. The process needs to be undertaken meticulously. Therefore, a range of 

functional analysis and variant prioritisation tools were applied and this work is 

explained in more detail in chapter 4. 

 

Table 2.7 A list of prioritised genes from IVA analysis. The variants were prioritised 

following a stepwise filtering process that involved the removal of common variants, 

retaining those predicted to be deleterious and also predicted to be involved in kidney disease. 

Chr Chr position Gene Variation type Translation 

impact 

Protein variant dbSNP rs Id MAF 

1 32164127 COL16A1 SNV Missense p.T116M rs34091659 0.0056 

1 32204991 BAI2 SNV Missense p.P805T Novel 0 

1 32670637 CCDC28B SNV Missense p.G2822G rs7543181 0.0116 

1 34015796 CSMD2 SNV Missense p.G2966G rs61734268 0.0194 

1 35575933 ZMYM1 SNV Synonymous p.P282P rs374134267 0 

1 35863125 ZMYM4 Insertion in-frame p.K1060 Novel 0 

1 43919081 HYI SNV Splice Site Loss p.Y96C rs14236920 0.00082 

1 100347219 AGL SNV Missense p.S743S rs373513564 0.0012 

1 109325118 STXBP3 SNV Missense p.R295Q rs2275344 0.0184 

1 153748132 SLC27A3 SNV Synonymous p.A100A rs373105501 0.0022 

1 154842199 KCNN3 Insertion in-frame p.Q77_Q80dup Novel 0 

2 37450350 CEBPZ SNV Missense p.A615V rs34983085 0.0018 

5 140773738 PCDHGB1 SNV Missense p.P453L rs115102808 0.0036 

6 151670287 AKAP12 SNV Missense 

 

p.P254L rs73780648 0.0172 

6 151917596 CCDC170 SNV Missense p.H532Y rs201625561 0.0007 

6 152469200 SYNE1 SNV Missense R8319Q rs148008634 0.0006 

6 152749340 SYNE1 SNV Splice loss p.R1666K rs111428582 0 

11 131240728 NTM SNV Synonymous p.H9H Novel 0 

13 35923326 NBEA SNV Synonymous p.E1995E rs151318906 0.0034 

13 110845216 COL4A1 SNV Missense p.R476W rs369960952 0.0002 

16 75269325 BCAR1 SNV Missense p.R281H rs16957558 0.296 

16 77246091 SYCE1L Insertion Frameshift p.E164fs rs371551639 0.0018 

19 4311942 FSD1 SNV Synonymous p.Y198Y rs34953789 0.0092 

19 6222552 MLLT1 SNV Synonymous p.S230S rs139655596 0.0128 

19 8145928 FBN3 SNV Missense p.R2471H rs3848570 0.0222 

19 10395208 ICAM1 SNV Missense p.P352L rs1801714 0.00072 
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2.3.6 Structural variation inference from exome reads 

 

WES data was also used to investigate co-segregation of copy number duplication or 

deletion using copy number inference from exome reads (CONIFER) (Krumm et al., 

2012). Table 2.8 shows CNVs identified although none of the copy number variants 

co-segregated with affected members. Following the work of (Kirby et al., 2013), who 

investigated the genetics of a rare kidney disease MCKD1, a condition that rapidly 

progresses to ESRD ultimately requiring renal transplantation for affected patients. 

After painstaking work the researchers identified and implicated variable number 

tandem repeats (VNTRs) in the MUC1 gene as causative for the disease. A similar 

approach was adopted in this study and the entire targeted region was scanned. Any 

tandem repeats that might segregate with the disease in this family were sought. A 

short tandem repeat profiler for personal genomes (lobSTR) was utilized. None of the 

identified tandem repeats segregated with affected family members. 

 

Despite the drawbacks of computational tools in identifying structural variation from 

WES data, the meticulous way that it was undertaken in this project led to the 

conclusion that although structural variation maybe important in elucidating the 

genetics of rare diseases, in these particular patients it may not be the case. This 

exploration of CNV has added weight to our hypothesis that a rare or novel fully 

penetrant SNV or small INDEL most likely to be implicated as disease-causing in this 

family. 

 

Table 2.8 Copy number variants detected in sequenced samples. CNVs identified 

were computationally inferred. None segregated with the disease in affected individuals. 

Sample Id Chromosome Chromosome position CNV type 

222 4 69342036-69417736 Deletion 

222 16 3705885-3712955 Deletion 

222 16 2223808-2224650 Duplication 

666 11 8706408-8715717 Duplication 

777 8 39311494-39332289 Deletion 
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2.3.7 Relatedness analysis using Whole exome data 

 

Table 2.9 Amount of shared DNA amongst family members. The analysis was 

performed using Plink a tool widely using for Genome wide analysis (GWAS). A multi 

sample VCF file obtained from variant calling was used as in put for the analysis. 

Sample ids Relationship Amount of DNA shared 

555 – 777 Parent/child 0.5000 

555 – 888 Parent/child 0.5000 

777 – 888 Siblings 0.5290 

666 – 222 Parent/child 0.5000 

555 – 999 Siblings  0.5103 

666 – 999 Siblings 0.5000 

999– 777 Aunt/Nephew  0.3331 

999 – 888 Aunt/Nephew 0.3119 

999 – 222 Aunt/Nephew 0.3209 

555 – 222 Aunt/Nephew 0.2194 

666 – 777 Aunt/Nephew 0.3081 

666 – 888 Aunt/Nephew 0.2835 

777 – 222 Cousin 0.2390 

222 – 888 Cousin 0.2200 

555 – 666 Siblings 0.5000 

 

In order to assess the amount of DNA shared by family members a multi sample VCF 

file obtained from GATK’s haplotype caller was used as an input to Plink 

(http://pngu.mgh.harvard.edu/purcell/plink/), which is a widely used tool for GWAS 

data analysis (Purcell et al., 2007). The father 555 shared approximately 50% of DNA 

with his sons 777 and 888 (Table 2.9). Similarly, 666 shared approximately 50% of 

DNA with her son 222. Overall, brothers and sisters shared approximately 50% of 

their DNA as is expected and first generation cousins shared approximately 30% 

DNA. Relatedness analysis is important to perform since an inherited genetic disorder 

was being studied: absolute certainty is required to establish true paternity, and to 

confirm the relatedness self-reported by family members. This is important when it 

comes to segregation analysis and validation of candidate variants. In the family under 
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study reported relatedness was confirmed by genetic relatedness. 

2.4 Discussion 

 

The cost of sequencing DNA has declined steeply since the advent of next-generation 

short read technologies (Wetterstrand, 2013). It is now at the point where realistically 

large cohorts of whole human genomes can be sequenced for further analysis. 

Currently, investigations of disease-causing variation continue to focus on the protein-

coding exome, which is a small fraction of the whole genome (Meynert et al., 2014). 

It contains fewer repetitive elements than non-coding regions and contains most of the 

causal disease variants identified to date (Goldstein et al., 2001; Ng et al., 2008). 

Additionally, experimental approaches to determine the function of candidate disease 

variants at protein coding or transcript splice sites are well developed, recognized and 

accepted by the research community (Meynert et al., 2014). For these reasons, exome 

centric analysis will remain common in research and is increasingly used in clinical 

genetic settings (Yang et al., 2013). 

  

The targeted capture followed by sequencing of specific regions, such as the human 

exome (WES), has proven to be a cost-effective and productive strategy for the 

identification of single nucleotide polymorphisms (SNPs), small insertions and 

deletions in this rich vein of the genome. Genetic variation in protein-coding portion 

of the genome is of significant interest in the study of human health. The focus on 

coding exons is due largely to the common credence that the exome harbors the most 

functional variation (Botstein and Risch, 2003; Stenson et al., 2014). This is based on 

the observation that mutations that cause Mendelian diseases occur primarily in genes 

and result in altered protein function (Botstein and Risch, 2003; Stenson et al., 2014). 

Mutations that cause amino acid substitutions, including changes to nonsense codons, 

in their respective genes are the most frequent type of disease mutation (Botstein and 

Risch, 2003; Stenson et al., 2014). In addition, small indels in genes account for 

almost a quarter of the mutations in rare diseases identified to date (Botstein and 

Risch, 2003; Stenson et al., 2014). Our understanding of functional variation is an 

important step towards an era of precision medicine, where a physician can inform 

patients of their disease susceptibilities or aetiology based on their genome sequences. 

Consequently, if the exome harbors much of the functional variation responsible for a 
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person’s phenotype, then identification and characterization of the individual’s 

variation in the exome could enable individualized genomics and personalized 

medicine. 

 

Clinical whole exome sequencing (CWES) is rapidly becoming an essential part of 

the clinical approach for individuals with rare diseases, and is being applied to a wide 

range of clinical presentations that require a broad search for causal variants across 

the spectrum of genetically heterogeneous disorders (Lee et al., 2014). However, a 

major challenge of undertaking CES is the interpretation of the variants in the context 

of the phenotypic data provided. Currently, available options for genetic testing 

include Sanger sequencing of candidate gene(s), next generation sequencing of a 

selected panel of candidate genes. Application of WES, however, yields data on a far 

greater number of genes, including those not initially considered candidates for the 

phenotype being investigated. For instance, this allows a diagnosis to be made where 

detailed phenotype data such as a kidney biopsy are lacking or are inconclusive, but 

variants may be detected that predict disease pathogenesis. 

 

Thus, in patients who are suspected of having an inherited renal disease, genetic 

investigations may provide a more definitive diagnosis than renal biopsies (Adam et 

al., 2013). Previously, genetic diagnosis in kidney disease has been limited to patients 

and families, where clinical or histological data display distinctive features that 

suggest one or a small number of candidate genes that can be sequenced individually. 

However, with the advent of massively parallel next-generation sequencing, a large 

number of genes can now be investigated in a single patient and/ family at a cost that 

can reasonably be covered by healthcare providers. The benefit of this approach is 

that it allows a precise molecular diagnosis to be made even in patients where clinical 

data are lacking or non-specific, and can sometimes avert the need for invasive tests 

such as a kidney biopsy. 

 

In this study, WES was performed using NGS techniques to interrogate approximately 

1% of the entire human genome, the exome. The overarching aim was to identify rare 

or novel functional variation that could assist in unraveling and elucidating the genetic 

basis, and help explain disease pathogenesis in a rare familial clustered kidney 

disease. The disease in this family is characterized by a rapid progression to ESRD, 
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which ultimately requires lifesaving RRT. However, despite accessing RRT, the 

affected family members who have undergone kidney transplantation experience 

recurring kidney transplant failures. After a thorough, well-designed bioinformatics 

analysis process undertaken to call variants in all the samples sequenced it was found 

that, interestingly, all the affected family members shared a glut of functional 

variation, in excess of 20 000 variants (Table 2.5). Even though common variation is 

expected by virtue of relatedness in the amount of DNA shared (Table 2.9), however, 

some variation shared may co-segregate with the disease and these variants form the 

set of candidate aetiological variants for the disease. 

 

Careful, painstaking filtering of these variants using IVA and different filtering 

strategies, including removal of variants that are shared by both affected and 

unaffected (Table 2.6) and biological parameters, yielded a reduced list, with 41 

variants in 35 genes. Of interest, we observed multiple variants in some single genes 

for al1 affected family members, which could mean that in each affected individual 

several different variants may possibly work in combination to cause the phenotype, a 

potential scenario that requires careful attention. 

 

Utilization of various tools to identify structural variation that co-segregates with 

affected status in this family showed that none of the copy number duplication/ 

deletions and tandem repeats that were identified segregated with disease status. Thus, 

while WES may provide a method to identify CNV and tandem repeats regions, 

determining these regions with high sensitivity, specificity and accuracy can prove 

difficult (Krumm et al., 2012; Tan et al., 2014; Yoon et al., 2009). The reasons and 

remedies for this are currently an active area of research (Robinson et al., 2011) and 

are beyond the scope of this thesis. 

 

The list of genes in Table 2.7 contains genes such as COLA4, COLA16, FBN3 and 

ICAM1, which have been implicated in rare kidney diseases (Genovese et al., 2014; 

Lin et al., 2014; Malone et al., 2014; Xiu et al., 2014). In WES analysis because a 

large number of genes are tested simultaneously, the prior probability that any one of 

the genes or variants identified is responsible for disease is low. While variants known 

to be common in the healthy population can usually be excluded from consideration, 

it is not always possible to determine whether a rare or novel variant identified in a 
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patient is actually pathogenic. This is because, even where variants lead to a change in 

the amino acid sequence of a protein, there is no guarantee that the change in protein 

function will eventually cause a disease. Typically, several lines of evidence including 

linkage data, co-segregation analysis, comparison with mutation databases and 

functional and structural data about the protein are needed to make a diagnosis 

confidently (Park et al., 2013). Over time, as more extensive sequence databases, 

incorporating data from larger numbers of patients and healthy individuals, become 

available to researchers and clinicians, the power of WES approaches is likely to 

increase. 

 

Results obtained in this study highlight the need to have better means to define the 

significance of variants obtained. For instance, about 450 variants of unknown 

significance were identified in approximately 300 genes. While this cannot entirely 

rule out the possibility of pathogenic involvement of these variants, only “functional 

studies” can truly assess the significance of these variants. This is also complicated 

further by the fact that all affected family members have plausible disease-causing 

variants in multiple genes (Table 2.7). In other words, detailed functional analysis 

process to assess the significance and identify highly plausible disease causative 

variants is warranted and this is undertaken in Chapter 3. 

 

2.5 Conclusion 

 

Based on our findings, several conclusions can be drawn: firstly, WES data analysis 

offers a viable, noninvasive approach that can be utilized to expedite the discovery of 

disease causing variants that may be used for molecular diagnosis of rare inherited 

genetic diseases. Secondly, in our study, WES of 1 unaffected and 5 affected family 

members, combined with a stepwise variant filtering strategy, led us to prioritize 41 

variants in 35 genes. To reduce the multitude of variants generated by WES in-order 

to identify plausible causative variants additional functional analysis is required.  
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3 Functional analysis and candidate gene prioritization 

 

Abstract 

 

Background: Pinpointing precisely the genomic variation in human genomes that 

causes disease in the era of next generation high-throughput sequencing is a major 

challenge of genetic diagnosis. Refining our ability to interpret variation responsible 

for Mendelian and complex disorders provides an opportunity to resolve elusive 

genetic disorders. Without rigorous evaluation of potential causative variation, the 

number of false positive reports of causality may increase. This would hamper the 

translation of genomic research findings into the clinical diagnostic setting. Therefore, 

a multi-factorial approach is required to integrate gene and variant level information 

to support any proposed causality. 

 

Methods: After exome sequencing was performed and a list of variants produced, 

variants were assessed further with respect to their plausible involvement in ESRD. A 

combination of tools was used to identify potential causative variant(s) and candidate 

gene(s). A heuristic step-wise analysis in Ingenuity variant analysis (IVA) was 

utilised, this filtered variants based on careful chosen predefined filters. A statistical 

probabilistic framework implemented in Variant Annotation Analysis and Selection 

Tool (VAAST) was also used and its results were compared to those of IVA. VarElec 

was utilised to infer if potential candidate genes had direct or in direct links to ESRD. 

Ingenuity Pathway Analysis (IPA) was undertaken to infer functional and toxic 

pathways that are significant. Protein-protein interaction networks were inferred using 

STRING and evolutionary conservation analysis was undertaken using the UCSC 

browser. Potential causative variants were visualised using integrated genomic viewer 

IGV. 

 

Results: From a total of more than 85 000 variants, I prioritised 3 novel indels and 16 

missense variants in 10 genes (FBXL21, SYCE1L, KCNN3, COL4A1, ICAM1, 

COL16A1, ZMYM1, STXBP3, ANXA9, and CEBPZ). These were identified in all 

affected family members and were consistent with autosomal dominant inheritance. 

Of these, only 3 very rare heterozygous missense variants in 3 genes COL4A1 

[p.R476W], ICAM1 [p.P352L], COL16A1 [p.T116M] were considered potentially 

disease causing. These variants segregated with the disease in all affected family 

members and none of them were detected in the unaffected family member. 

 

Conclusion: The findings show a successful application of WES with extensive 

variant filtering for the identification of plausible pathogenic mutations, illustrating 

the power of molecular genetic diagnostics techniques that may explain complex renal 

phenotypes. 
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3.1 Background 

 

With the costs of sequencing plummeting, whole exome sequencing is being widely 

used in the identification of pathogenic variants for Mendelian diseases and the 

discovery of susceptibility loci for complex diseases (Girard et al., 2011). High-

throughput exome sequencing can generate detailed catalogues of genetic variation in 

both disease patients and the population in general (Sadee et al., 2014). However, for 

this technique to have a huge medical impact, candidate disease-causing or disease-

associated genetic variants must be reliably delineated from the broader background 

of variants present in all human genomes that are rare, potentially functional, but may 

not actually be pathogenic for the disease or phenotype under investigation (Cooper 

and Shendure, 2011; Sadee et al., 2014). Identification and accurate assessment of 

disease-causing variants from a long list of candidates is crucial for clinical 

applications such as diagnosis, newborn screening, carrier screening, selection for 

mutation-specific therapy, and association between genes and rare familial diseases 

(Bamshad et al., 2012; Ng et al., 2008, 2009b). 

 

Pinpointing genetic variants underlying human inherited diseases is the primary step 

towards understanding the pathogenesis of human diseases (Cooper and Shendure, 

2011). The majority of genetic variants captured by exome sequencing are non-

synonymous, single nucleotide variants (SNVs) whose effect may change protein-

coding sequences, thereby affecting their function and plausibly causing diseases 

(Bamshad et al., 2012). Unfortunately, our ability to interpret the impact of individual 

variants on diseases phenotype has not kept pace with the ease with which they are 

identified (Bell et al., 2011). It has been demonstrated that among the large number of 

variants obtained, the alteration of the function of a gene hosting a variant does not 

necessarily mean that the variant is pathogenic for the disease being investigated 

(Bodmer and Bonilla, 2008; Wu and Jiang, 2013). 

 

An analysis of 406 published severe disease mutations observed in 104 newly 

sequenced individuals reported that 27% of these were either common polymorphisms 

or lacked direct evidence for pathogenicity (Bell et al., 2011). Other studies have 

identified numerous alleged disease-causing variants in the genomes of population 
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controls (Norton et al., 2012; Xue et al., 2012). In other cases, follow-up studies of 

high profile reported mutations have cast serious doubts on initial reports assigning 

disease causality to sequence variants (Hunt et al., 2012; Weng et al., 2005). As the 

volume of patient sequencing data increases it is critical that candidate variants are 

subjected to rigorous evaluation to prevent further miss-annotation of their 

pathogenicity. 

 

Several lines of evidence are required to implicate a variant as disease causing (Taylor 

et al., 2015). Evidence implicating a variant as disease causing must be assessed 

thoroughly. For instance, healthy individuals carry many rare protein disrupting 

variants, and about half carry at least one de-novo protein-altering mutation (Hansen 

et al., 2015; Tennessen et al., 2012). Such variants are, therefore, not typically 

sufficient proof of causality when observed in a disease case, even if present in well-

established disease genes (Cooper and Shendure, 2011; Gayà-Vidal and Albà, 2014). 

With both established and newly implicated disease genes, researchers should 

evaluate the statistical support for association. Also, in family-based studies co-

segregation of candidate variants with disease status must be evaluated (Gayà-Vidal 

and Albà, 2014). Given that a separate, unobserved pathogenic mutation may lie on 

the same haplotype as the candidate variant, segregation analysis alone cannot 

definitively implicate a specific variant as pathogenic, but at least under an 

assumption of complete penetrance, lack of segregation can exclude non-pathogenic 

variants from further consideration (Gayà-Vidal and Albà, 2014). Measures of 

evolutionary sequence conservation have demonstrated value in prioritizing candidate 

variants and are utilized widely as indicators of deleteriousness for both protein-

coding and non-coding variation (Cooper and Shendure, 2011). Some classes of 

variation, such as truncating or splice-site disrupting variants are more likely to be 

damaging than others, such variants are also enriched for sequencing and annotation 

errors and need to be thoroughly interrogated prior to assigning pathogenicity 

(MacArthur et al., 2012). 

 

Therefore, extra care should be taken when returning genetic results back to the 

participants, and consider the serious implications of naming a variant as disease-

causing to a family who may want to use the information for diagnostic and 

prognostic purposes; and even for some severe diseases in prenatal diagnostics which 

 

 

 

 



80 

 

could affect decisions of parents to terminate pregnancies. It is therefore from an 

ethical perspective an extremely large responsibility to do as much as possible to 

ensure that the identified variants are highly likely to be related to the disease. 

 

Hence, in order to access whether a variant is causative for a disease, it is not enough 

to only predict the functional damaging effects of the variant. Detailed evaluation of 

evidence for variant implication should also focus on the statistical evidence from 

both genetic and functional analysis. Furthermore, a combined assessment of the 

genetic, experimental and informatics support for individual candidate variants should 

be performed. Such assessments should be performed even if the genes or variants 

have been previously reported. Prior evidence should be continuously re-evaluated 

with newly available information. As highlighted above, assigning pathogenicity and 

implicating a variant as truly causal for a disease is a complex, multifaceted 

undertaking. The previous Chapter provided a detailed step by step analysis of the 

exome sequencing data leading to a list of variants. This Chapter provides a detailed 

description of a combinatorial analysis utilized to evaluate the evidence supporting 

confident identification of potential disease causing variants(s) from a list of 

prioritized variants detected in this family. 

 

3.2 Methods 

 

Once a list of variants has been generated, as described in Chapter 2, a process of 

identifying candidate gene(s) begins. In this project, given the difficult diagnosis and 

rarity of the disease whose genetic basis was being investigated, a combination of 

tools was used. Lack of clarity in the terms used to define types of sequence variants 

is another cradle of contention in human genetics. In Table 3.2 is a description of the 

terminology followed in assigning pathogenicity in this project. 

 

Guidelines for establishing the significance of variation exists and these can be 

separated into several disparate categories (Table 3.2). 
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Table 3.1 General steps that may be followed for implicating sequence variants in 

human disease. These guidelines were followed in this study to identify potential causative 

variant(s) (MacArthur et al., 2014). 

General guidelines Assessment of evidence for 

candidate disease genes 

Assessment of evidence for 

candidate pathogenic variants 

Describe and assess clearly the 

available evidence supporting prior 

reports of a gene or variant 

implication. 

Evaluate genes previously 

implicated in similar phenotypes 

before exploring potential new 

genes. 

Investigate gene products which 

interact with proteins previously 

implicated in the disease of 

interest. 

 

Investigate if the gene and/or gene 

product function is demonstrably 

altered in patients carrying 

candidate mutations. 

 

Evaluate if a variant is co-inherited 

with disease status within affected 

families. 

 

Avoid assuming that implicated 

variants are completely 

explanatory in any specific disease 

case. 

  

Recognize that strong evidence that 

a variant is deleterious is not 

sufficient to implicate a variant as 

causal for a disease. 

Take advantage of public data sets 

of genomic variation, functional 

genomic data and model-organism 

phenotypes. 

Report a new gene as confidently 

implicated only when variants in 

the same gene and similar clinical 

presentations have been 

confidently implicated in multiple 

unrelated individuals 

 

Where possible use non-human 

animal models with a similarly 

disrupted copy of the affected gene 

and see if a phenotype consistent 

with human disease state is seen. 

Predict variant deleteriousness with 

comparative genomics approaches, 

but avoid considering any single 

method as definitive. 

 

 

 

Use multiple methods as 

independent lines of evidence for 

implication of a potential causative 

variant. 

Check if the variant is found at low 

frequency and consistent with the 

proposed inheritance model. 

 Check if the variant is found at the 

location within the protein 

predicted to cause functional 

disruption. 

 

Guidelines for establishing the significance of variation exists and these can be 

separated into several disparate categories (Table 3.2). 
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Table 3.2 Terms used to describe DNA sequence variation. 

Term Description 

Pathogenic 
A variant that contributes to a disease, but is not 

necessarily fully penetrant (i.e., may not be sufficient 

in isolation to cause disease). 

 

Implicated  
A variant that possesses evidence consistent with a 

pathogenic role with a defined level of confidence. 

 

Associated 
Variant that is significantly enriched in disease cases 

compared to matched control cases. 

 

Damaging 

 

A variant that alters the normal levels or biochemical 

function of a gene or a gene product. 

Deleterious 

 

A variant that reduces the reproductive fitness of 

carriers. 

 

3.2.1 Statistical probabilistic variant prioritization 

 

While heuristic, stepwise filtering has proven successful in identifying candidate 

causative genes in a number of disorders (Choi et al., 2009a; Kumar et al., 2011) these 

methods are limited in that they do not provide any measure of statistical uncertainty 

for a given candidate variant identified. Using custom scripts, I applied VAAST, a 

new tool that uses multi-parameter likelihood equations to compare allele frequencies 

between affected and unaffected in combination with modelling variant severity by an 

amino acid substitution analysis to provide a top hit list of variants (Yandell et al., 

2011). Each variant will have an associated VAAST ranking score and a P-value. The 

P-value is a measure of the probability that a variant is statistically significant in 

affected compared to the unaffected individuals. 
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Figure 3.1 VAAST search steps followed to identify potential candidate genes. A 

multi-sample VCF was provided as input. An in-house script was utilised to separate variants 

identified in affected only and absent in the normal sample as well as implementing the 

probabilistic model used. 

 

3.2.2 Ingenuity Variant Analysis 

 

IVA was also used to identify causative variants from WES data (Ingenuity Variant 

analysis ™ software (www. qiagen.com/ingenuity)). IVA annotates and interactively 

filters data using several filters such as biological context, statistical association, 

genetic analysis, common and high confidence variants (Figure 3.2). Using the 

confidence filter IVA excludes all variants that do not pass a particular threshold, for 

instance a Fred quality score of 20. Thus, all variants whose quality score is below 20 

are removed from further analysis. Secondly, the common variant filter looks at MAF: 
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since rare variants were sought, a MAF cut-off of more than 5% was used to exclude 

common variants. The predicted deleterious filter includes only those variants that are 

predicted to be pathogenic. The filter also takes evolutionary conservation into 

account. The genetic filter uses zygosity to exclude variants. For instance, if a disease 

is hypothesised to follow an autosomal dominant inheritance pattern, homozygous 

variants are excluded from further analysis as a heterozygous variant maybe sought. 

Finally, the biological filter keeps only those variants that are known and/or predicted 

to be involved in the disease of interest.  

 

 

Figure 3.2. Workflow showing steps followed in candidate gene identification 

using IVA. VCFs files for each sample as well as a pedigree file were used as input. The 

variants were filtered in such a way that only variants present in affected family members 

only and absent in the unaffected family were prioritised (Ingenuity Variant analysis ™ 

software (www. qiagen.com/ingenuity). 

 

3.2.3 VarElect 

 

VarElect is a rapid prioritization of variant genes based on disease/phenotype of 

interest (Belinky et al., 2015). It provides a robust algorithm for ranking genes and 

predicting their likelihood to be related to a disease. To identify potential disease-

causing genes the algorithm leverages the rich information within a leading human 

gene database (GeneCards, http://www.genecards.org/), the human disease database 
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(MalaCards, http://www.malacards.org/) and the unified human biological pathways 

database (PathCards, http://pathcards.genecards.org). Using VarElect, an input list of 

genes with variants can be narrowed down to the top 1-10 genes that are potentially 

associated with a particular disease. The algorithm acts jointly on the gene list and 

phenotype/disease keywords, and produces a list of prioritized, scored, and 

contextually annotated genes, whilst providing direct links to supporting evidence and 

further information. The degree of mutual linking is quantified via endogenous search 

scores. 

 

 

Figure 3.3 Steps followed in candidate gene prioritisation steps using VarElect. A 

list of genes with potential causative variants is provided as an input into VarElect (Belinky et 

al., 2015). The variants are inferred for their plausible direct involvement to kidney disease. A 

list of genes showing their evidence to disease phenotype and a classifying score showing the 

strength of this relationship is provided. 

 

3.2.4 Pathway Analysis (IPA) 

 

IPA is an application used for analysis, integration, and interpretation of data obtained 

from experiments, such as NGS. The analysis and search tools uncover the 

significance of variants and identify new targets or candidate genes within the context 

of biological systems. Powerful algorithms are utilized to predict downstream effects 

on biological and disease processes, identify regulators, mechanisms, functions, and 

pathways relevant to analyzed genes (IPA® QIAGEN Redwood City, 

www.qiagen.com/ingenuity). 
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3.2.5  Protein-protein interaction and other networks (STRING) 

 

STRING is a database of known and predicted protein interactions. Protein-protein 

interaction networks are useful for the system-level, or mechanistic understanding of 

cellular processes. Such networks can be used for filtering and evaluating functional 

genomics data and for providing an intuitive platform for annotating structural, 

functional and evolutionary properties of proteins. The interactions include direct 

physical and indirect functional associations. They are derived from four sources, 

genomic context, high throughput experiments, conserved experiments and previous 

knowledge (http://string-db.org/). 

 

3.3 Results 

 

3.3.1 Beyond “the one hit theory” 

 

Table 3.3 shows a striking pattern of variation that was observed in this family. As 

hypothesised and also based on the rarity of the phenotype, a high impact variant 

probably in a single gene was sought. But a number of variants located closely 

together on the same chromosome were identified. Four genes; COL16A1, BAI2, 

ZMYM1 and ZMYM4 were positioned adjacent to each other on chromosome 1 

(Table 3.3). Two of these variants are novel, another had no MAF reported and the 

remaining two are very rare variants (Table 3.3). Considering the variant filtering 

strategies utilized in this project, these variants were only identified in the affected 

family members and absent in the unaffected. Given the close proximity of the genes 

the probability of recombination occurring across different generations is very low. 

Thus, a haplotype rather than a single variant could be inferred to be potentially 

segregating with disease status in this family. Also, two different variants were 

identified in the gene SYNE1 (Table 3.3). One variant is novel and the other is very 

rare (MAF of 0.00006). A possible explanation is that maybe the disease in this family 

is not caused by a ‘one hit’ variant but rather a combination of variants. Perhaps if 

variation does not occur in all closely linked genes, plausibly a less severe phenotype 

may be observed, an occurrence that warrants further investigation. 
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Table 3.3 Novel variants in genes located closely on the same chromosome. 
Variants were identified in all affected family members and absent in the unaffected one. 

Chr Chr position Gene Variation type Translation 
impact 

Protein variant dbSNP rs Id MAF 

1 32164127 COL16A1 SNV Missense p.T116M rs34091659 0.0056 

1 32204991 BAI2 SNV Missense p.P805T Novel - 

1 35575933 ZMYM1 SNV Synonymous p.P282P rs374134267 - 

1 35863125 ZMYM4 Insertion in-frame p.K1060 Novel - 

6 151917596 CCDC170 SNV Missense p.H532Y rs201625561 0.0007 

6 152469200 SYNE1 SNV Missense R8319Q rs148008634 0.0006 

6 152749340 SYNE1 SNV Splice loss p.R1666K rs111428582 - 

 

3.3.2 IVA identifies novel and rare variants in affected family 

members 

 

Heterozygous non-synonymous SNVs, insertion/deletions and splice-site variants that 

were detected in the affected family members and absent in the unaffected member as 

well as predicted to damaging using SIFT (Ng and Henikoff, 2003), Poly-phen 

(Adzhubei et al., 2013), Mutation tester (Schwarz et al., 2010) and Snpeff (Cingolani 

et al., 2012) were prioritised. This reduced the number of plausible candidate 

pathological variants to 13 in 12 genes (Table 3.4). Of these 3 were novel variants 

(BAI2 [p.P805T], ZMYM [4p.K1060], KCNN3 [p.Q77_Q80dup]). Of the novel 

variants, 2 were insertion mutations and one was a SNV. Interestingly, of the 2 splice-

site mutations ([p.R1666K, [p.Y96C]) identified, one of them had no MAF reported 

even though it had a reported snp-id number. The remaining mutations were rare 

SNVs with MAF < 1%. 
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Table 3.4 Novel variants identified using IVA. Variants were identified following 

heuristic filtering as outlined in section 3.2.2. 

Chr Chr 

position 

Gene Variation 

type 

Translation 

impact 

Protein variant dbSNP rs Id MAF 

1 32164127 COL16A1 SNV Missense p.T116M rs34091659 0.0056 

1 32204991 BAI2 SNV Missense p.P805T Novel - 

1 35863125 ZMYM4 Insertion in-frame p.K1060 Novel - 

1 43919081 HYI SNV Splice Loss p.Y96C rs14236920 0.00082 

1 154842199 KCNN3 Insertion in-frame p.Q77_Q80dup  Novel - 

6 152469200 SYNE1 SNV Missense R8319Q rs148008634 0.0006 

6 152749340 SYNE1 SNV Splice loss p.R1666K rs111428582 - 

13 110845216 COL4A1 SNV Missense p.R476W rs369960952 0.0002 

16 75269325 BCAR1 SNV Missense p.R281H rs16957558 0.296 

16 77246091 SYCE1L Insertion Frameshift p.E164fs rs371551639 0.0018 

19 8145928 FBN3 SNV Missense p.R2471H rs3848570 0.0222 

19 10395208 ICAM1 SNV Missense p.P352L rs1801714 0.00072 

        

 

3.3.3 Statistical variant prioritisation identifies novel variants 

identical to IVA 

 

To evaluate the probability that a variant is statistically significant in affected 

compared to unaffected individuals, an analysis using all variants identified in this 

family was undertaken using VAAST. Interestingly, all variants that were prioritised in 

IVA were identified in the top 30 genes that were also significant. In fact, BAI1 with a 

score of 69.14 was ranked first overall, followed by COL4A1 which was assigned a 

score of 62.50 and BCAR1 with a score of 52.71 were both ranked in the top 5 of 

VAAST's prioritised hits (Table 3.5). A significant overlap in the genes prioritised 

using IVA and the top 30 hits from VAAST provided more evidence that a potential 

causative gene (s) was likely to be amongst these genes. 
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Table 3.5 Statistical variant prioritisation. Variants that are shared by affected family 

members and absent in the unaffected family member were sought. 

Chr 

Number 

Chr position Gene Score Adjusted p-value Protein 

variant 

1 32164127 BAI2 69.14 3.73e-16 p.P805T 

13 32204991 COL4A1 62.50 3.70e-16 p.R476W 

16 75269325 BCAR1 52.71 3.70e-16 p.R281H 

19 8145928 FBN3 38.14 0.0056 p.R2471H 

1 32164127 COL16A1 31.52 0.001 p.T116M 

6 151670287 AKAP12 26.207 0.0052 p.P254L 

19 10395208 ICAM1 25.34 0.0004 p.P352L 

1 43919081 HYI 25.16 0.000686 p.Y96C 

6 152469200 SYNE1 25.06 0.00000762 R8319Q 

 

3.3.4 Genes predicted to have a direct link to End-stage renal disease 

identified 

 

VarElect was utilised to establish if there are any links between the prioritised genes 

and the disease of interest. End-stage renal disease, kidney and renal disease were the 

three terms used to infer the links. 

 

Table 3.6 Genes predicted to have a direct link to End-stage renal disease. The 

score shows the gene that has more evidence connecting it to renal disease. 

Gene  Score 

ICAM1 9.07 

COL4A1 8.44 

COL16A1 8.80 

SYNE1 7.77 

 

Four genes were predicted to have direct links to ESRD and all of them had scores 

above 5.00 (Table 3.6). These were prioritised as genes of interesting genes. 

 

 

 

 

 

 

 

 

 



90 

 

3.4 Potential disease causing genes identified in all affected family 

members 

 

Table 3.7 Prioritised potential disease causing genes. Variants in these genes 

segregated with disease in all affected family members and were absent from one unaffected 

family member. The variants were prioritised using a combination of heuristic filtering and 

statistical probabilistic variant analysis. 

Chr Chr 

position 

Gene Protein 

variant 

dbSNP rs Id Translation 

impact 

MAF Polyphen Ger

p  

SIFT 

 Prediction 

13 110845216 COL4A1 p.R476W rs369960952 Missense 0.0002 0.996 4.87 Damaging 

1 32164127 COL16A1 p.T116M rs34091659 Missense 0.0056 1.000 3.06 Damaging 

19 10395208 ICAM1 p.P352L rs1801714 Missense 0.0007 0.997 3.78 Damaging 

*PolyPhen2 score >0.85 the variant is predicted to be damaging. 

 * GERP score is a measure of evolutionary conservation and a score > 2.5 is conserved. 

 * MAF <0.1% was considered very rare 
 

Table 3.7 shows a list of high impact variants identified using a combinatorial 

approach to variant prioritisation. To infer potential functional significance of 

prioritised variants, I applied a protein variation effect analyzer PROVEAN v1.1.3 

(http://provean.jcvi.org). PROVEAN human genome variants tool provides 

predictions for a given list of human genome variants as well as accessory information 

(dbSNP rs IDs, gene description, PFAM domain, GO terms, etc.) and is able to make 

predictions for any type of protein sequence alteration, including single or multiple 

amino acid substitutions, deletions, and insertions. Also, the 3 missense variants were 

all predicted to be damaging using both SIFT and PolyPhen (Table 3.7). The variants 

also occurred in conserved genomic locations across a number of vertebrate species 

inferred with a GERP score greater than 2.5 (Table 3.7). All variants were very rare 

with a MAF< 0.1 % (Table 3.7). The same variants had a VAAST score greater than 

25 and a p-value less than 5% (Table 3.5). Also, these variants had an endogenous 

score greater than 5 linking them to ESRD (Table 3.6). To illustrate the potential 

involvement of these genes in renal diseases (Table 3.7), rigorous functional analyses 

were undertaken. Subsequent sections provide more detail of the plausible 

mechanisms and functions these genes are involved in and how they relate to the 

phenotype under investigation. 
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Figure 3.4 ICAM1 [p.P352L] variant visualisation. The C>T allele change in ICAM1 is 

seen all the 5 affected family members. 

 

COL4A1 one of the genes identified as disease causing (Table 3.7) has three major 

domains: an amino-terminal 7S domain, a central triple-helix-forming (collagenous) 

domain and a carboxyterminal non-collagenous (NC1) domain (Figure 3.5). The 7S 

domain participates in inter-molecular cross-linking and macromolecular 

organization. The collagenous domain constitutes the majority of the protein and 

consists of long stretches of glycine repeats. The NC1 domains are globular domains 

responsible for the initiation of heterotrimers assembly (Figure 3.7). 

 

 

Figure 3.5 Human schematics of the distribution of COL4A1 mutations. Hereditary 

angiopathy with nephropathy, aneurysms and muscle cramps mutations are shown in red. 
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3.4.1 Candidate genes are involved in increased glomerulus injury, 

renal damage and renal failure 

 

Ingenuity pathway analysis was carried out to infer if the prioritised genes are 

involved in any pathways related to kidney disease. 

 

 

Figure 3.6 Pathways enriched from the prioritised candidate genes. The pathways 

were generated using a list of variants prioritised using Ingenuity pathway analysis. 

 

Figure 3.6 shows increased glomerular injury, increased renal damage and acute renal 

failure as some of the enriched toxic pathways. Three genes, COL4A1, COL16A1 and 

ICAM1 are involved in these kidney disease related pathways. The same 3 genes were 

identified as being directly linked to End-stage renal disease in Table 3.6. Also, 

COL4A1 was amongst the top 5 hits from VAAST analysis (Table 3.5). The toxicity 

pathways identified were all statistically significant; chronic allograft nephropathy (p-

value 0.0000281), Hepatic fibrosis (p-value 0.000739), increased glomerular injury 

(p-value 0.00626) and Acute renal failure (p-value 0.00192) (Table 3.8). Further 
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functional analysis of potential candidate genes identified embryonic development, 

tissue development, cell to cell signalling interaction and cell morphology as some of 

the enriched functions (Table 3.8). 

 

Table 3.8 Molecular, cellular and System development functions enriched. 

Function P-value 

Physiological System Development and Function  

Embryonic Development 0.00014 

Hematological System Development and Function 0.00014 

Organismal Functions 0.00399 

Tissue Development 0.00070 

Molecular and Cellular Functions  

Cell Death and Survival 0.00392 

Cell Morphology 0.00040 

Cell-To-Cell Signaling and Interaction 0.00040 

Cellular Assembly and Organization 0.0040 

Cellular Compromise 0.0042 

 

3.4.2 Candidate genes are involved in interstitial fibrosis 

 

A kidney biopsy that was done on one of the affected family members showed 

interstitial fibrosis. Based on the findings of this kidney biopsy, I investigated if any 

of the potential causative genes are involved at any stage of interstitial fibrosis. 

 

 

 

. 
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Figure 3.7 Progression of renal interstitial fibrosis towards End stage renal 

disease. Fibrogenesis starts with an initial tissue injury that causes inflammation as the 

physiological host defense response. When this response becomes uncontrolled and sustains 

itself with continuous production of chemotactic cytokines, inflammation does not resolve 

and can create the optimal microenvironment for tissue fibrogenesis. ICAM1 and COL4A1 

are involved in stage 1, 3 and 4 of interstitial fibrosis progression (Genovese et al., 2014b). 

 

ICAM1 and COL4A1 are involved in different stages of renal interstitial fibrosis 

progressing towards end stage renal disease (Figure 3.7). ICAM1 is involved in the 

activation phase of fibrogenesis while COL4A1 is involved in the accumulation phase 

and the more severe renal destruction phase. Figure 3.8 shows the plausible 

mechanism through which COL4A1 interact with extra cellular matrix components 

(ECM) that are involved in interstitial fibrosis. 
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Figure 3.8 Schematic representation of COL4A1 biosynthesis and interaction with extra 

cellular matrix components. (A) Collagen proteins undergo extensive post-translational 

modifications and assemble into heterotrimers for secretion into the ECM where they 

polymerize into a network and interact with other extracellular and membrane bound 

molecules such as lysyl hydroxylase, prolyl hydroxylase and protein disulphide isomerase (B) 

shows COL4A1 mutations of which 25% of heterotrimers formed will be normal, 50% will 

incorporate one mutant COL4A1 protein and the remaining 25% will incorporate two mutant 

COL4A1 proteins. The mutations could directly or indirectly alter interactions with signaling 

molecules such as BMPs (represented as blue circles) or cell-surface receptors such as 

integrins (represented as grey structures), which can in turn lead to intracellular signaling 

defects (Kuo et al., 2012). 

 

3.4.3 Candidate variants are conserved across species 

 

Evolutionary conservation analysis was undertaken to establish if candidate variants 

occur in conserved genomic locations across a number of species. If a variant occurs 

in the conserved region it is likely to have a functional impact that might be 

deleterious. 
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Figure 3.9 Evolutionary conservation of mutation identified in affected 

family members. Multi-species sequence alignment shows that COL4A1, ICAM1 

and COL16a1 mutations are highly conserved across species (a) Shows the 

evolutionary conservation a p.Arg476Trp missense variant in COL4A1 gene (b) 

Evolutionary conservation of a p.Thr116Met missense variant in COL16A1 gene (c) 

Shows the evolutionary conservation of a p.Pro352Leu missense ICAM1 gene. 

 

A p.Pro352Leu amino acid substitution was identified at position 476 in the COL4A1 

gene. This is an N-acetylmuramoyl-L-alanine amidase glycosylation site. This 

position is is a highly conserved among different species from a dog to human, 

suggesting its structural and functional importance across many species. It also has a 

low probability of substitution with BLOSUM score 3. In COLl16A1 a p.Thr116Met 

amino acid substitution was identified at position 116. This site was also found to be 

highly conserved across many species. Similarly, a p.Arg476Trp amino acid 

substitution was observed in the conserved site of the ICAM1 gene. 

  

3.4.4 Protein-protein interaction networks and gene co-expression 

analysis of candidate genes  

 

A gene co-expression network was constructed for each candidate gene by looking for 

genes which show a similar expression pattern across all affected family members. 

Identifying genes that are co-expressed is of biological interest as co-expressed genes 

may be controlled by the same transcriptional regulatory mechanism, are functionally 
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related, or the genes are members of the same pathway.  

 

 

Figure 3.10 COL4A1 co-expression analysis. The analysis was performed for co-

expression in the basement membrane. 

 

Figure 3.10 shows that in the basement membrane COL4A1 co-expresses 

predominantly with other collagen genes (col3a1, col4a2, col15a1, col15a2). This 

pattern is also consistent with the protein-protein interaction network (Figure 3.11) 

which shows that most collagen proteins interact, highlighting the fact that collagen 

genes together are important for the basement membrane function and organisation. 

Also, NID1and ITGB1 are observed in both the gene co-expression analysis (Figure 

3.10) and protein- protein interaction analysis (Figure 3.11).  
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Figure 3.11 Protein-protein interaction networks. . This analysis was done using 

STRING. COL4A1 was used as an input and a list of genes whose proteins interact with this 

gene were shown. Different colours indicate the strength of the interaction 

 

Collagen, type IV, alpha 1 is the major structural component of the glomerular 

basement membranes (GBM) which form a key filtration mechanism of the kidneys. 

COL4A1 proteins interact significantly with other collagen proteins for example 

COL4A6 and COL8A1, illustrating the importance of these proteins in the structural 

make-up of the glomerulus. Interestingly, COL4A1 proteins interact directly with 

COL16A1 proteins (Figure 3.11). COL16A1 is one of the genes that were implicated 

as potentially disease causing (Table 3.7). The same two genes were involved in 

glomerulus injury (Figure 3.6). Also, other genes such as ITGA1 and PTK2 form 

protein products that interact directly with COL4A1 and COL16A1. Thus, the 

collagens genes are interesting to follow up as they form are integral structural 

components of the glomerulus. 
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3.5  Protein structure modelling 

 

 

Figure 3.12. Col16A1 3D model with a p.T116M variant introduced. The green 

colour shows the beta sheet while the blue and orange are the alpha helix structures. The red 

shows the position of the variant on the beta sheet.  

  

The 3D structure of the plausible causative genes was modelled using Swiss modeller 

(Schwede et al., 2003). Also, Pymol (www.pymol.org) was used to introduce the 

mutation and visualise it (Figure 3.12). The p.T116M mutation in Col16a1 occurs in 

the ankyrin repeat domain which results in the change from Threonine (T) to 

Methionine (Met) amino acid residue at position 116. This is a change from medium 

size hydrophilic amino acid (Ther) to medium size and hydrophobic (Met) (Figure 

3.13). The beta sheet and the alpha form a very complex structure and any mutation 

that occurs in this region of the protein may result in adverse consequences such as 

loss of interaction with other residues in the region, can cause other residues in that 

region to be invisible and may alter the overall structure of the protein. Given that the 

mutation occurs in the conserved region (Figure 3.9), further studies which are 

beyond the scope of this thesis needs to carried out to investigate if the mutation 

occurs in a binding pocket and the extent to which the mutation alters the overall 

structure of the protein. Also, the two amino acids have different molecular weights 
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(MW) with Ther having a MW of 101.11 and met a MW of 131.19. The 3D structure 

of ICAM1 with a p.P352L amino acid change is shown in appendix F. The Col4a1 

structure could not be modelled as there was no suitable template to perform the 

modelling. 

 

 

Figure 3.13.Molecular structure of the amino acid residues. The molecular weight of 

M is 131.19 while that of T 101.11. 

 

3.6 Discussion 

 

Options currently available for clinical genetic testing include next generation 

sequencing of a selected panel of candidate genes, WES, and whole genome 

sequencing (Liew et al., 2013; Stitziel et al., 2013; Worthey et al., 2010). In clinical 

settings, targeted panels are being leveraged because of their relatively modest cost 

and the detail with which the targeted regions are analyzed which allow reliable copy 

number and microsatellite estimation. A major drawback of this approach is that if the 

panel used does not include the gene responsible in an affected person, the variant will 

not be detected (Taylor et al., 2015). This is a significant problem in the current era 

where new genes are being implicated in mendelian kidney diseases each year. 

 

On the other hand, WES yields data on almost all known genes, including those not 

initially considered candidates for the phenotype being investigated. This allows the 

possibility for a molecular or genetic diagnosis to be made where detailed phenotype 

data such as kidney biopsy are lacking, and variants that predict disease may be 
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implicated. In this study, 5 affected family members posed a diagnostic challenge in 

kidney disease, presenting with elevated serum creatinine with rare and surprising 

absence of proteinuria and hematuria. Also, all affected family members rapidly 

progress to early onset ESRD, requiring kidney dialysis or transplantation. Thus, the 

genetics underlying ESRD in this family were investigated. Sequencing 5 affected and 

one unaffected family member using WES, followed by a stepwise variant filtering 

strategy and probability variant prioritization, we identified 3 strong candidate 

disease-causing variants: p.Arg476Trp in collagen IV (COL4a1), p.Thr116Met in 

collagen 16 (COL16a1) and p.Pro352Leu ICAMA1 gene (Table 3.6). 

 

Two of the high impact variants prioritized were in the collagen genes (Table 3.7). 

Collagen type IV is composed of alpha (α) chains that fold in a triple helix and, by 

binding with other collagen type IV molecules form the meshwork conformation 

typical of the basement membrane. The α chains are the most expressed in the adult 

glomerular basement membrane GBM (Genovese et al., 2014b). Large indels, 

rearrangements, splicing and nonsense mutations in collagen IV gene have been 

previously associated with severe consequences of ESRD occurring in some cases 

before the age of 20, whereas missense mutations involving the collagenous domain 

are responsible for renal diseases such as Alport Syndrome (Gross et al., 2002; Yao et 

al., 2012). Dysfunction of the collagen IV genes disrupts proper heterotrimer 

formation causing a failure to deposit normal collagen matrix in the glomerular 

basement membrane resulting in the disruption of the kidney filtration barrier (Figure 

3.7). In these cases, glomerular dysfunction is the common cause of end stage renal 

disease (Gipson et al., 2006). In the list of prioritized genes, pathway analysis 

performed in IPA identified COL4A1 and COL16A1 as genes involved in increased 

glomerular injury, increased renal damage and acute renal failure (Figure 3.6). This 

shows the importance of the collagen genes in forming the main structural 

components of the glomerulus, which is a key filtration component of the kidney. 

 

Based on a kidney biopsy for one of the affected family members, interstitial fibrosis 

was observed. Interstitial fibrosis is the common endpoint of end-stage kidney disease 

leading to kidney failure (Genovese et al., 2014). Interstitial fibrosis is the strongest 

indicator of disease progression, even when the primary disease is of unknown 

etiology (Genovese et al., 2014). The development of novel, non-invasive, fibrosis-
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specific biomarkers, reflecting morphological tissue changes at early stages and 

predicting the evolution of renal fibrosis, would be of vital importance to delay 

progression of renal disease to ESRD, which is a more severe form of kidney disease 

(Genovese et al., 2014). COL4A1 and ICAM1, two genes identified as potentially 

disease-causing, are involved in different stages of interstitial fibrosis (Figure 3.7). 

Collagens constitute the main structural element of the interstitial extra cellular 

molecules, providing tensile strength, regulating cell adhesion, support, cell migration 

and tissue development (Rozario and DeSimone, 2010). Elevated Collagen IV levels 

in patients with various nephropathies have been found to correlate with the extent of 

interstitial fibrosis in kidney biopsies (Soylemezoglu et al., 1997). Also, collagen IV 

levels evaluated in kidney transplant patients correlated with the extent of interstitial 

fibrosis (Teppo et al., 2003). 

 

Furthermore, in another study of patients with different chronic kidney disease stages 

subjected to kidney biopsy, collagen IV levels correlated with elevated serum 

creatinine and eGFR. Similarly, all sequenced affected family members in this study 

presented with elevated serum creatinine (Ghoul et al., 2010). Providing more 

functional evidence to corroborate the implication of COL4A1 as a potentially disease 

causing gene. Thus, by profiling these collagen genes, one may plausibly understand 

mechanisms underlying rapid progression of chronic renal disease to ESRD in this 

family. 

  

Studies using targeted panels of COL4A3/A4/A5 for the genetic diagnosis in patients 

suspected of having a Type IV collagen-related nephropathy identified a likely 

pathogenic mutation in 55% and 83.2% patients tested (Fallerini et al., 2014; 

Morinière et al., 2014). Mutations in genes encoding 𝛼 chain of type IV collagen 

could lead to dysfunction of glomerular basement membrane (BM) leading to the 

development of human disease in the eye, kidney and ear (Deltas et al., 2013) . Once 

the 𝛼 chain is missing, the formation of the normal collagen IV is disrupted in BM of 

glomerulus, ear, eye, and lung, which could lead to structural and functional defects 

(Frasca et al., 2004). This is supported by the immunohistochemical finding of 

frequent loss of 𝛼3, 𝛼4, and 𝛼5 signals in the GBM of Alport syndrome patients 

(Gross et al., 2002; Yao et al., 2012). Unfortunately, no formal testing was undertaken 
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in this family to establish clinical features of either sensorineural hearing loss or 

related ocular abnormalities (although the proband, now deceased, did present with 

intermittent periods of impaired vision). This would have added vital information 

since the mutations identified in collagen genes may have potential involvement in the 

eyes and ears. Collagen IV genes have been implicated in several studies seeking to 

establish the genetics underlying rare renal phenoptyes (Chatterjee et al., 2013; 

Pierides et al., 2009). 

 

Another gene that was prioritized in this study is ICAM1. Intercellular adhesion 

molecule ICAM plays a crucial role in the pathogenesis of primary kidney disease and 

progression to end-stage renal disease (ESRD) (Khazen et al., 2007; Ong and Fine, 

1994; Vleming et al., 1999). Intercellular adhesion molecule-1 (ICAM1) is a 

leukocyte adhesion molecule, which is expressed at high levels in the kidney on the 

endothelial cells and interacts with integrins (Mclaren et al., 1999). It is involved in 

leukocyte adhesion, recruitment and also enhances the activation of T helper cells 

(Mclaren et al., 1999). The recruited leukocytes in turn release cytokines, such as 

platelet-derived growth factors. These transform growth factors and fibroblast growth 

factors, which stimulate extracellular matrix production by interstitial cells such as 

fibroblasts causing interstitial fibrosis (Figure 3.7). Adhesion molecules provide 

signals for activation and recruitment of effector cells, leading to graft infiltration by 

host T-cells, which are important to allograft rejection (Khazen et al., 2007). Several 

polymorphisms in ICAM1 have been discovered to be associated with diseases such 

as acute renal allograft rejection (Khazen et al., 2007; Mclaren et al., 1999). 

Interestingly, some of the family members sequenced have experienced kidney 

transplant failure and results obtained from pathway analysis showed increased 

glomerular injury and chronic allograft failure as some of the enriched toxic pathway 

(Figure 3.4). In a study conducted on 258 ESRD patients and 569 ethnically matched 

controls (Ranganath et al., 2009). ICAM1 polymorphisms investigated were found to 

be significantly different in ESRD patients when compared with controls (P ¼ 0.0001; 

OR ¼ 5.5, 95% CI ¼ 3.9–7.7 and P < 0.0001; OR ¼ 3.8, 95% CI ¼ 3.1–4.7) 

(Ranganath et al., 2009). These results demonstrated that various SNPs in the ICAM1 

gene may be considered as genetic variants that influence susceptibility to ESRD 

(Ranganath et al., 2009). 
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This study showed that exome sequencing is a fast, sensitive, and relatively low-cost 

method of identifying gene(s) responsible for rare familial end stage renal disease. 

The identified COL4A1 and COL16A1 genes broaden the genotypic spectrum of 

collagen mutations associated with renal diseases and have implications for genetic 

diagnosis, therapy, and genetic counseling in this family. Also, this study emphasizes 

the role of molecular diagnosis in aiding the phenotypic characterization of different 

kidney diseases and selection of appropriate treatment modalities. Finally, the results 

show that WES is a powerful diagnostic tool that can complement invasive 

procedures such as renal biopsy and provide a diagnosis in patients with familial 

kidney disease, particularly when clinical information is limited or non-specific. 

 

3.7 Conclusion  

 

Next generation sequencing techniques and bioinformatics approaches applied in this 

study identified 3 very rare pathogenic missense variants in COL4A1, COL16A1 and 

ICAM1 segregating with an unexplained inherited kidney disease in 5 affected family 

members. These findings highlight the clinical range of collagen related nephropathies 

and may resolve diagnostic difficulties arising from lack of and uninformative clinical 

and histological findings, allowing appropriate treatment advice to be given. To our 

knowledge this is the first application of this approach to unravel the genetics 

underlying familial ESRD in a South African population and highlights the need to 

study further the genetics of ESRD in African populations. 
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4 Clinical databasing 

 

Abstract 

 

Lack of systematically collected clinical data on disease characteristics and long-term 

outcomes in patients with CKD and its risk factors is one of the major problems 

which hamper the fight against CKD and subsequently ESRD. To help address this 

problem, in collaboration with clinicians at Groote Schuur hospital, Cape Town, South 

Africa, we have set up a multicentre clinical registry. The clinical registry will collate 

demographic, epidemiological and basic clinical data of patients. This information can 

broaden our knowledge on patient diagnosis, treatment, clinical patterns and 

outcomes. Overall, the clinical registry establishes a platform to provide resources for 

future clinical and genomic studies in Africa. 

 

4.1 Introduction 

 

In collaboration with nephrologists at University of Cape Town Medical School 

(Groote Schuur Hospital), we identified a lack of systematically collected clinical data 

on disease characteristics and long-term outcomes in patients with CKD and its risk 

factors as one of the major problems in the fight against CKD and subsequently 

ESRD. The lack of such systematically collected data presents a gap that needs to be 

urgently bridged as a crucial initial step towards confronting the burden of CKD and 

its risk factors, especially in SSA (Singh et al., 2012). Reliable data that can be drawn 

from these clinical databases might assist policy makers in low income countries to 

formulate strategies and interventions that can be used to improve diagnosis, 

treatment and management of CKD and its risk factors, which may eventually lead to 

improved patient outcome (Okpechi et al., 2010). 

 

A clinical database is any systematic compilation of data for the purpose of health 

care planning, implementation and evaluation in a well-defined population. Clinical 

databases may contain a large variety of data from different domains, such as patient 

visits, test results, laboratory reports, diagnoses, therapy, medication, and procedure 

(Sam Lim et al., 2009). Also, they may have different purposes which may include 

patient management, electronic patient records, clinical research, and quality control 

(Saghir et al., 2007). Clinical databases are also a valuable complement to randomized 
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controlled trials in determining real-world outcomes in the practice of medicine 

(Brooke and others, 1974). They do not generally have a lot of restrictive inclusion-

exclusion criteria; neither do they specify what therapy the health care provider must 

adhere to. Clinical databases can be used to evaluate outcomes ranging from the 

history of a disease, to disease presentation, prognosis, to the safety of drugs and 

effectiveness of therapies (Singh et al., 2012). Also, epidemiological research on 

disease occurrence and distribution, disease risk or etiology and disease prevention 

can be done using data from clinical databases (Sam Lim et al., 2009). 

 

In this Chapter, I report a clinical database that I designed for Systemic Lupus 

Erythematosus (SLE), one of the major risk factors for ESRD in SSA. The choice of 

SLE was motivated by the fact that the prevalence of this disease is high amongst 

CKD patients that are being treated by Nephrologists at Groote Schuur Hospital in 

Cape Town, South Africa. SLE is a disease which requires histopathological diagnosis 

in order to treat properly and manage (Arogundade et al., 2011); however, reliable 

statistics that are required to elucidate epidemiological patterns of SLE in SSA are 

difficult to obtain and are largely undetermined (Tiffin et al., 2013). On the other 

hand, the observed low incidence rate of SLE in Africa may be attributed to under 

diagnosis, low disease recognition within primary health care facilities but more 

importantly the often neglected limited access to diagnostic tools of which clinical 

databases are an essential part. In contrast, incidences of SLE have been studied 

comprehensively in European, Asian, African-American, Hispanic and Caribbean 

populations (Danchenko et al., 2006). Therefore, it has become increasingly 

imperative that a formal structured way of storing clinical data for patience with SLE 

be sought in order to better understand the presentation, diagnosis, prognosis, 

therapies and treatment outcome of SLE patients (Tiffin et al., 2013). Hence, setting 

up of a clinical database can go a long way in bridging the gap and provide the much 

needed data (Lu et al., 2010). Going forward, such a valuable clinical research 

resource will also become important in African genomic studies for both hypothesis-

led and hypothesis-generating research approaches that maybe undertaken to better 

understand the causes, prognosis, management and outcomes of SLE (Villa-Blanco 

and Calvo-Alén, 2012). Importantly, once data is available in a formally structured 

and secured database then it becomes easier to analyze this data and provide valuable 

insights that may also be used to inform allocation of resources, for example health 
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workers and to also see which treatment regimens are working and for which patients 

(Villa-Blanco and Calvo-Alén, 2012) . Designing of clinical databases is an area of 

clinical informatics research which ought to be given some attention and this thesis 

addresses a part of this problem. 

 

4.2 Methods 

 

Critical factors to consider when designing a clinical database include defining the 

population to which the findings are meant to apply, formulating a research question, 

choosing a study design, translating questions of clinical interest into measurable 

exposures and outcomes, choosing patients for study, determining where data can be 

found and for how long patients will be followed up. The number of study subjects 

desired and length of follow-up should be planned in accordance with the overall 

purpose of the clinical database. The desired study size can be determined by 

specifying the magnitude of an expected clinically meaningful effect or the desired 

precision of effect estimates. Study size determinants are also affected by practicality 

and cost. Once these key design items have been determined, the database design 

should be reviewed to evaluate potential sources of bias and these should be addressed 

to the extent that is practical and achievable. 

 

4.2.1  Database construction 

 

The clinical database was designed as a longitudinal multi-center database; we 

envisaged this being used as a Pan-African clinical registry for SLE patients. The 

clinical database will be utilized under the African Lupus Genetics Network 

(ALUGEN), a network of clinicians and researchers in Africa who have an interest in 

SLE. Given that SSA is a resource limited region, cost effective methods for 

designing a clinical database were sought. Research electronic data capture 

(REDCap), a secure, web-based application designed to support standardized 

collection of research data was utilized in designing the clinical database (Harris et al., 

2009). REDCap uses PHP, JavaScript programming and MySQL database engine for 

data storage and manipulation (Hillyer, 2010; MySQL, 1997; Severance, 2012). 

REDCap’s software and hardware requirements are minimal as it can be run on 
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Windows, Linux machines and Apache web server environments. The clinical 

database will be centrally stored and backed up daily and is supported by an 

experienced team of software developers and statisticians at SANBI. 

 

 

Figure 4.1 A series of steps that are undertaken to design a clinical database 

using REDCap. The metadata is composed mainly of CRFs that are used for the 

development phase to create the database tables. Once finished the database prototype is 

tested to ensure that it adheres to all quality control and security checks. After testing the 

database can either be redesigned as illustrated by the red arrow or migrated to production 

mode shown by the green arrow where it can be fully functional. 

 

In a database, an entity is a single person, or place, for example, a patient or a 

diagnostic test about which data can be stored. In relational database design, each 

entity is mapped to one or more tables using values of one or more rows to uniquely 

identify each record. That means that for each entity there exists at least one table. To 

give users access to the new tables, new forms must be designed and links to these 

forms must be provided in the user interface. If a table that is already in the database 

needs to be modified care must be taken not to destroy existing data and not to break 

any constraints. 

 

Accordingly, user-interface forms must be redesigned to reflect changes e.g., fields 

that have been added or removed in existing tables. Hence, the database was designed 

to reflect exactly the information that is on the case report forms (CRFs), as defined 
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by the research team (Figure 4.1). The CRFs are used to create tables which are stored 

in a single MySQL database (Figure 4.1). The users of the database will access the 

database through a web browser and they will only have access to the data entry forms 

(Figure 4.2). Figure 4.1 shows in detail the steps that are followed in designing a 

clinical database using REDCap. The database was designed to have two arms: the 

first arm captures baseline and enrollment patient data. The second arm captures data 

for follow-up visits. Data collection instruments were assigned according to which 

arm of the registry they belonged to and this means that the data collection instrument 

will only be accessible to that arm. 
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Figure 4.2 Allocating data entry forms for database arms. Green ticks show the data 

entry forms to be completed for a baseline visit only. 

 

The user of the clinical database will enter their data through an intuitive secure and 

accurate user interface (Figure 4.3). Only users with sufficiently assigned privileges 

will have access to the database and subsequently the data entry forms (Figure 4.2). 

To ensure high quality and data integrity, each form contains real time field-specific 

validation. To safeguard against omission of important clinical data during data entry, 

mandatory fields were set up in the database and upon entry users will be alerted if 

they did not complete a required field. To improve further the quality of data 

collection, data fields were populated with drop down and radio boxes (Figure 4.3). 

 

 

 

 



111 

 

Similarly, additional quality control measures were implemented that would flag the 

user if a value that is out of range is entered for a customized field. Also, the clinical 

database has a data export facility that allows users to export their data for external 

analysis. This allows the database users to export data to a variety of widely used 

statistical analysis software such as SAS, SPSS, STATA and R. Since it’s a multi-

center-user clinical database, the data will be stored in such a way that users will only 

access data for their own group, unless an arrangement is made for extended group 

access and data sharing, of which prior approval and memorandum of understanding 

needs to signed. This is meant to ensure that each group returns sole and secure 

ownership of their clinical data. This system also ensures that ethical constraints that 

are centre-specific are not violated by users from other centers. 

 

 

Figure 4.3 Sample data entry form. The registry number is a unique patient number 

assigned to each participant. This form is completed at a baseline visit (as highlighted in red). 

This form also allows incomplete information to be entered, saved and highlighted as 

“Incomplete” which allows the user to return to the form once the information is available.  

 

4.2.2  Data sourcing 

 

The manner in which data is collected, verified or validated will help shape their use 

in a database. The selection of data elements to capture in the clinical database 

requires balancing of factors such as the importance of a particular data item for the 
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integrity of the database and for the overall analysis of primary patient outcomes, the 

reliability of the collected data, and the incremental costs associated with their 

collection. Specific data elements are selected with consideration for established 

clinical data standards and common data definitions. It is important to determine 

which data elements are absolutely necessary and which are desirable but not 

essential. In choosing measurement scales for assessing patient-reported outcomes, it 

is preferable to use scales that have been appropriately validated, only when such 

tools exist.  

 

Patients entered in the clinical database will be recruited from participating hospitals, 

based on the exclusion-inclusion clinical criteria that will be specified by participating 

clinicians. Since the clinical database is set-up as a longitudinal database, patients will 

be followed up for a period not less than five years and in some cases where possible 

for ten years or more. Detailed patient data will be collected at presentation and at 

annual reviews. Currently, the clinical database has been initiated for a project in the 

Western Cape, South Africa at Groote Schuur Hospital where 250 patients have been 

enrolled since 2012 and are currently being entered into the database. Other centers in 

South Africa as well as in Nigeria, Ghana, Senegal, Morocco, Guinea and Kenya have 

indicated interest in joining the clinical database. Since the database is going to 

capture patient data, ethics approval will be needed for each participating center, 

according to their rules and regulations. Therefore, signed consent will be obtained 

from all participants before entry into the database. Importantly, patient 

confidentiality will be maintained at all times throughout the entire period that clinical 

data will be kept in the database.  

 

As the database goes live, it will be very useful to collect some metrics. For instance, 

metrics should be collected on how long it takes to complete a CRF, for example, 

patient demographics. The time taken to complete the CRF will be correlated with the 

accuracy of the information that is paper based in the clinical notes. Also, other 

clinical researcher will be invited to go through the database to evaluate the usefulness 

of the database in disease cohort standardisation, characterisation and potential for 

scaling up. 
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4.3 Results 

 

4.3.1  Database home page 

 

The home page provides a brief introduction and overview of the REDCap system 

(Figure 4.4). It also shows different tabs that one can use to access the database, the 

control center which is only accessed by a designated systems administrator and a tab 

that is used to create different projects (Figure 4.4). Importantly, the home page shows 

a link that can be used to create a new database (Figure 4.4). 

 

 

Figure 4.4 Clinical database home page. Once access to REDCap is granted this is the 

first page accessible to the user. Depending on the assigned privileges some of the tabs such 

as the “control center” and “Create New Project” will not appear on this page. The “My 

Projects” tab will contain a list of databases accessible to the user. 

 

4.3.2 Database access 

 

The clinical database is accessed through “My projects tab” (Figure 4.5). Although it 
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possible to have many databases set-up under “My projects” users will only access the 

database for which access privileges have been assigned and they will not be able to 

view any other databases. 

 

 

Figure 4.5 Database access. In blue is the ALUGEN FINAL clinical database that has 

been created and already contains 70 patient records. 
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4.3.3 Database functions 

 

 

Figure 4.6 Database functionality. Once logged into the database the user will access the 

“Project Home” tab where data entry can begin. The data collection dash board and the 

applications tabs will also be accessible to the user and these are useful during data 

management. 

 

Once a user has logged into the clinical database, they will access the “Project Home” 

tab where they can begin to enter patient data (Figure 4.6). The clinical database is 

designed with two different arms the “Baseline arm” and the “follow-up arm”. The 

user will then chose the correct arm according to the patient data they want to enter. 

Data collection forms can easily be accessed through the “data collection” dash board 

(Figure 4.6). Also, the user will have access to “Applications” dashboard, which is 

useful for data management as the user can generate simple reports, store clinical 

protocol documents and produce a few statistics. The applications are, however, not 

designed to perform detailed statistical analysis. This is, however, possible by 

exporting the dataset in the format required for the statistical package of choice. 
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4.3.4  Real time data entry 

 

 

Figure 4.7 Sample completed data entry form. The data entry form was completed for 

a baseline patient visit. Data entry was performed using an intuitive user interface.  

 

Once data entry has been completed the form is marked as “complete” (Figure 4.7). 

Important records can also be locked and be accessible only to those people with high 

level security privileges. This is important as sensitive clinical information can be 

kept from being edited by unauthorised personnel. Such security assignments are 

detailed in Figure 4.8.  
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Figure 4.8 Database comprehensive user rights assignment. User privileges are 

assigned by a designated database administrator. Green ticks highlights functions for which a 

user has been granted access while the Red Cross shows utilities that a user will not be able to 

access.  

 

4.4 Discussion 

 

In studies of CKD and its risk factors (e.g. SLE), clinical databases can be a powerful 

tool that may be utilised to observe the course of a disease, to understand variations in 

treatment and outcomes, to examine factors that influence prognosis and quality of 

life, to assess level of patient care including effectiveness, appropriateness, disparities 

and diversity of patient therapies (Lu et al., 2010; Sam Lim et al., 2009; Villa-Blanco 

and Calvo-Alén, 2012). Also, data from clinical databases can be of great use to 

analyze the magnitude and distribution of disease manifestations thus, increasing 

knowledge on the burden of a disease which can contribute significantly to improving 

health planning (Sam Lim et al., 2009). 

 

The paucity of prospective longitudinal cohort studies of SLE patients in SSA, and the 

difficult in diagnosing and managing the disease makes multi-center clinical 

databasing imperative (Tiffin et al., 2013). Clinical research in SLE at individual 

centers is complicated by the difficulty of accruing enough patient numbers (Tiffin et 

al., 2013). In this context, the development of a multi-center clinical database will 

allow the recruitment and pulling together of patient cohorts from different 

geographical locations and the collection of standardised, compatible datasets which 

has the potential to increase our knowledge regarding the clinical course and 

management of the disease (Villa-Blanco and Calvo-Alén, 2012). By including 

patients from different ethnic and geographic backgrounds investigators are likely to 

enhance our understanding of inter-ethnic and regional variations in disease 

 

 

 

 



118 

 

expression, and will be able to explore the role of genetic factors in predisposition and 

disease expression (Sam Lim et al., 2009). 

 

Furthermore, identification and analysis of patients with SLE at different participating 

sites may assist to estimate incidence and prevalence rates which will greatly improve 

our understanding of SLE, its public health burden, and implications for health care 

planning. The large number of SLE patient data to be collected and stored in the 

database will allow for greater power to look at differences in disease presentation, 

progression and outcome across different sex, ethnicity and age groups (childhood 

onset versus adult onset) of patients in different geographical areas (Lu et al., 2010; 

Sam Lim et al., 2009; Villa-Blanco and Calvo-Alén, 2012). Also, a multi-center 

clinical database that pulls together patient data from different geographical locations 

can be utilized to develop statistical models to predict outcome based on prognostic 

and treatment factors that may be appropriate for resource limited areas such as SSA. 

Going forward this multi-center clinical database will enable participating centers to 

formulate and answer their own research questions, expand African research 

infrastructures and increase support for upcoming researchers. Importantly, it will also 

provide a clearly well-defined and phenotypically well characterized cohort which can 

be used to undertake future large scale genomic studies of SLE in Africa. The 

extension of use of this database to other African researchers and clinicians working 

in SLE will increase collaboration and an integrated pan-African initiative towards 

addressing SLE in African patients. 

 

4.5 Limitations 

 

Despite rigorous efforts to minimize poor quality of data entered, the clinical database 

has some other limitations. The database can be affected by selection bias related to 

the method of choice for participating centers. Another limitation emanates from 

differences in referral to identify potential patients depending on various factors such 

as the level of care or the presence of certain organ-specific manifestations that 

encourage referral to other specialties. Also, incomplete follow-up data which may be 

caused by the delay in disease diagnosis is another limitation. For complex, non-

communicable diseases such as SLE, some relevant patients may fail to be captured. 
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To mitigate this risk, a comprehensive, active surveillance system with numerous 

patient-finding sources needs to be designed. Also, patients may migrate in and out of 

the catchment area for medical care or residency and this makes it difficult for them to 

be followed up. 

 

4.6 Conclusion 

 

Clinical databases can be used for much more than estimating incidence and 

prevalence of a disease. They also allow a cross-sectional assessment of the 

association of a variety of factors, including socioeconomic factors and patient 

outcomes not systematically incorporated in other studies. Once completed, the 

clinical database will provide a well-defined cohort that will be prospectively 

followed over time to address important issues with respect to disease progression and 

management. Clinical databases can be integrated with electronic health records 

(EHRs) to directly support evaluation of care delivery and patient outcomes and also 

broaden knowledge of clinical service patterns and processes. Although the inferences 

that can be drawn from observational data may be limited by selection bias, clinical 

databases are valuable tools in planning clinical research. In an era where much 

research funding is directed at hypothesis-driven research, the importance of clinical 

databases in developing clinical research hypotheses should be seriously considered. 
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5 Summary of key findings and future direction 

 

The human genome comprises 3 billion base pairs. Approximately 85% of disease-

causing mutations have been found in the exonic regions. To date, there are 

approximately 180,000 known exons, which constitute about 1.5% of the human 

genome, or approximately 30 million base pairs. Mutations in the exonic sequences 

are predicted to be more likely to have severe consequences than those in the non-

coding regions of the genome (Choi et al., 2009b; Ng et al., 2009a). Therefore, the 

goal of sequencing the exome is to identify genetic variation responsible for human 

diseases without incurring the high costs associated with whole-genome sequencing 

(Ng et al., 2009a). 

 

Advances in sequencing technologies are making previously intractable genetic 

analyses now possible (Choi et al., 2009b; Ng et al., 2009a). Utilizing such 

technologies to make precise genetic diagnoses may not only help distinguish 

between diseases with related phenotypic and histopathologic patterns, but also permit 

researchers to draw conclusions from analyses performed on a small number of 

individuals within a single family. Technologies such as massively parallel DNA 

sequencing can increase the affordability, efficiency, accuracy, and speed of diagnosis 

(Choi et al., 2009b; Ng et al., 2009a). These technologies are becoming more readily 

available to assist in the accurate diagnosis of many genetic disorders including 

genetic disorders of the kidney (Malone et al., 2014). 

 

Many disorders of the kidney can present as unclear collections of overlapping and 

non-specific phenotypes (Malone et al., 2014). Genetic analysis of disease-causing 

variation in disorders that are caused by single-gene defects, as is the case in many 

kidney disorders, is the most robust diagnostic approach for accurate diagnosis 

(Edwards et al., 2014; Malone et al., 2014; Xiu et al., 2014). In this work I describe a 

South African family in which individuals presented with ESRD, although clinical 

and histological presentations were not helpful in elucidating the cause of the disease. 

Therefore, I considered alternative diagnostic methods that are based on performing 

genomic evaluation to explore the primary causes of the disease in this family. In 
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families where there is evidence of a familial inheritance pattern, genetic analysis may 

provide the simplest and most efficient method for making an accurate etiological 

diagnosis. In this thesis, emphasis is put on the importance of the use of next 

generation sequencing technologies on samples from patients and their families, 

particularly when meticulous clinical and histopathological information is lacking. 

Going forward high-throughput genetic tools are becoming increasingly important 

diagnostic methods. 

 

5.1 Major contributions of this work 

 

Apart from unpacking plausible genetic mechanisms underlying a rare and atypical 

familial kidney disease of unknown aetiology in an African family using high-

throughput sequencing technology, this thesis also provides a robust and well-

designed, reusable computational pipeline for analysis of human exonic data. 

Importantly, the project addresses in detail a current active area of research which 

deals with annotation of human genomic variation and candidate gene identification. 

Therefore, this work contributes significantly to the literature on gene discovery for 

complex renal phenotypes and computational analysis of composite high throughput 

genetic data. 

 

In addition, the thesis also proffers a solution to the problem that is currently faced by 

many clinicians in sub-Saharan Africa, of lacking standardised methodologies for 

collection of clinical data. Collection of standardised patient data is a very crucial first 

step towards advancement of genomic studies in Africa especially in the era of 

declining sequencing cost, which allows research to sequence the entire human 

genome and begin to unravel genetic variation that is associated with, causes and 

predisposes people to certain diseases. The collection of standardised clinical data will 

become increasingly important as researchers and clinicians venture into the area of 

precision medicine and also try to understand and integrate additional data about 

environmental factors that are associated with diseases. Briefly detailed below is an 

outline of the major contributions of this thesis. 
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5.1.1 Clinical databasing 

 

Lack of phenotypically well characterised disease cohorts is one of the major things 

that hamper the successful undertaking of genomic research in resource limited 

countries. To help alleviate this caveat clinical databasing once implemented 

effectively and efficiently will enable the collection and storage of well-structured 

clinical data. Given that genomic studies of rare complex diseases often fail because 

of lack of or limited availability of patient samples, multicentre clinical registries 

would enable pooling together of samples from different researcher to increase sample 

sizes, conduct research to understand the environmental factors that are associated 

with diseases in different geographical areas and in the process increase the possibility 

of scientists collaborating, sharing expertise and increasing research capacity. 

Importantly, a clinical database would help to identify and stratify appropriate 

individuals for future genetic/genomic studies based on a full and standardised 

phenotype. The individuals enrolled will be from different geographic locations and 

diverse bare grounds establishing a basis to also study the effect of environmental 

factors on Lupus.  The clinical database has an underlying SQL relational database 

that could be joined to a genomic/genetic database through identifiers such as a 

patient hospital number. A graphics user interface can then be built to query both 

database and leverage the use of integrated clinical and genomic data for a patient, 

providing a holistic view of a patient. This will become more important as clinical 

medicine moves towards precision patient care with effective treatment plans being 

designed for each patient based on their genetic profile and clinical parameters, 

similar to the approach used by BioMart. 

 

Once properly implemented clinical databases can be used to evaluate outcomes 

ranging from disease presentation, to prognosis, to the safety of drugs and 

effectiveness of therapies (Singh et al., 2012). Also, epidemiological research on 

disease occurrence and distribution, disease risk or etiology and disease prevention 

can be done using data from clinical databases (Sam Lim et al., 2009). Furthermore, 

data from clinical registries can be compiled for the purpose of health care planning, 

implementation and evaluation in a well-defined population. Importantly, data from 

clinical databases can be used in African genomic studies for generating research 
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hypothesis that maybe undertaken to better understand the causes, prognosis, 

management and outcomes of diseases. 

 

5.1.2 Analysis of exome sequencing data based on African samples 

 

To date and to our knowledge, this is the first study that sought to understand the 

genetics of rare familial clustered end stage renal disease in a South African family, 

where primary clinical diagnosis and histological analysis lacked enough information 

to provide a conclusive cause of the disease. Thus, the genetics basis of the disease in 

this family was investigated. Given the genetic diversity in the Africa population, this 

study contributes significantly to understanding genetic mechanisms that may 

underlie ESRD in African populations, especially considering that most studies that 

seek to unpack the genetics of complex familial clustered renal phenotypes have been 

undertaken in other populations. By understanding the genetic mechanism underlying 

this rare and atypical ESRD phenotype in African patients, we gain more general 

insights into mechanisms of dysregulation of kidney function that may also be 

relevant for other forms of the ESRD. 

 

The pipeline implemented for this project utilised joint variant-calling (JVC). JVC has 

two major advantages. Firstly, the JVC algorithm considers the alignments of all 

samples simultaneously to estimate the probability that a given locus is variable in the 

population, resulting in more accurate variant calls for each individual sample 

considered. Second, JVC such as GATK Haplotype caller provides missing 

genotypes. Most variant callers by default will not produce a variant call for missing 

genotypes. Thus, homozygous reference sites are indistinguishable from sites where 

no genotype information is available, for example, due to poor sequence quality or 

low depth of coverage. When both affected and unaffected family members are 

processed through JVC algorithms, all variant sites in all samples are consistently 

called for missing genotypes. 

 

In addition, a reusable computational pipeline for analysis of exome sequencing data 

was designed. The pipeline also addressed a key issue of high levels of genotyping 

errors that are associated with whole exome sequencing analysis. A probabilistic 
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recalibration model, which calibrated SNPs and Indels separately, was implemented to 

improve the quality of genotype calls. The algorithm used was developed to create a 

model of true-positive variants trained on accurate variant calls using for example, 

HapMap and other highly validated variant sites. This was followed by stringent 

filtering parameters to improve further the accuracy of genotypes. Currently, the 

pipeline is being implemented by other researchers within the institute to analyze 

exome sequencing data. Also, the analysis pipeline incorporated structural variation 

analysis of exome reads, this included copy number variants (CNV) and variant 

number tandem repeats (VNTR), which is a current area of active research. 

 

In this work, I have also demonstrated that it is indeed possible to sequence only a 

few family members where the cause of the disease is suspected to have a significant 

genetic basis and still be able to uncover the plausible genetic mechanisms driving the 

disease in the family.  

5.1.3 Quality control of exome sequencing data using relatedness 

testing 

 

In genetic analyses, knowledge of relatedness may be used to estimate genetic 

parameters such as heritability and genetic correlations. When a family pedigree is 

known, genetic relatedness between individuals can be calculated from the pedigree 

and can be used to estimate how much DNA is shared amongst family members and 

infer if this is consistent with the relationships described in the family pedigree. This 

is particularly important when one is investigating the plausible genetic cause of a 

familial disease and “TRUE” paternity and relations are sought. In this work, family 

relatedness using exome sequencing data were performed using a linear mixed model 

approach implemented in PLINK. In each case I used a full set of SNPs to perform the 

relatedness calculations, using VCFtools and PLINK. 

 

Also, using relatedness analysis in order to ensure that samples were related as 

reported, I was able to discover a sample aliquot that was duplicated and sequenced as 

two separate samples. For instance, in the initial relatedness analysis 999 (control 

sample-Aunt) and 888 (affected Nephew) were identified to share approximately 99% 

of their DNA. This raised a flag as an Aunt and Nephew are expected to share 
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approximately 30% of their DNA. Further investigation revealed that 999 had been 

sequenced twice, once as the Aunt and the other as the Nephew. These computational 

results were confirmed by PCR sex check on the samples. At this point, had 

computational relatedness analysis not been done I might not have identified this 

anomaly. All samples were then double-checked and where necessary sequenced 

again. This illustrates the importance of incorporating computational relatedness 

analysis as a step in the analysis of familial exome sequencing data, to ensure validity 

of findings. 

 

 

 

 

5.1.4 Statistical probabilistic variant prioritization of exome 

sequencing data 

 

A lot of systematic technical differences exist in variant calls identified between 

affected and unaffected samples. This can be a major source of false-positives when 

variants are prioritised in the analysis of exome sequencing data for familial studies. 

Thus, a number of steps were performed in order to improve variant prioritisation to 

reduce such technical artefacts. 

 

A major weakness of many variant prioritization tools is that they can only prioritize 

variants within phylogenetically conserved coding regions. Thus, these algorithms 

have poor coverage across the genome. For example, SIFT, MUTATION tester and 

PolyPhen can score only 60% and 81% of the human proteome, respectively 

(Adzhubei et al., 2010b). Another weakness of these approaches is that they make no 

use of allele frequency information. It has been demonstrated that minor allele 

frequency (MAF) is negatively correlated with purifying selection pressure. 

 

In this work, I have demonstrated that it is indeed possible to utilise probabilistic 

statistical models to prioritise variants using only exome sequencing data obtained 

from merely a few sequenced family members. The probabilistic model applied in this 

project combines both amino acid substitution (AAS) information with variant 
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frequency information to prioritise variants, allowing it to score all variants with more 

accuracy no matter where they lie in the genome. Also, the model makes use of 

missing genotype information, which substantially improves the signal-to-noise ratio 

in variant prioritisation. A lack of missing genotype data in affected or unaffected 

individuals can be a significant source of error for all downstream analyses and 

interpretations. Importantly the model also supports analysis of small insertion and 

deletion (indel) variants. 

 

 

 

 

5.1.5 Multiple variants theory 

 

Most Mendelian diseases are caused by a single highly penetrant rare or novel variant. 

The first successful study to unravel the genetic cause of a rare disease using NGS 

techniques implicated a single variant in a single gene (Choi et al., 2009b). Given this 

success most researchers that have sought to unravel the genetics underlying rare 

diseases using NGS methods in most cases have identified a single variant in a single 

gene (Ng et al., 2010a). This also has become the norm in most studies that have been 

published (Bilgüvar et al., 2010; Sankaran et al., 2012; Woo et al., 2013; Worthey et 

al., 2010). 

 

In this work, however, I have observed that this may not necessarily be the case. For 

instance, a striking pattern where a number of novel and rare variants were identified 

in genes that are located on the same chromosome and very close to each other was 

observed. One hypothesis that can be postulated is that possibly the disease is not 

caused by a single defective gene but rather a combination of variants in different but 

closely located genes, whose combined effect may result in the observed disease 

phenotype. Further analysis would then be required to establish if these variants are in 

perfect linkage disequilibrium. Another way of looking at this pattern is that, maybe 

there is a combination or a single haplotype segregating with the disease in this 

particular family. These are all hypotheses that could potentially be supported by the 

results obtained in this work. Clearly, given the “Narrative potential of the human 
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genome” it can be seen that focusing solely on finding a single novel or rare variant as 

causal for a genetic disease may result in loss of valuable information that may in 

reality explain important disease mechanism and etiology. 

 

Similarly, a novel and a rare variant were identified in the same gene. Though it is one 

gene that is affected, it maybe that only the presence of the two variants in the gene 

will result in the affected person having a severe form of the disease or that only when 

the two variants are present will an individual develop the phenotype. Therefore, it’s 

not always the case that extreme phenotypes are caused by a single very rare or novel 

variant. It might be that the presence of both variants will trigger the disease but the 

inheritance pattern appears that of a Mendelian single mutation because the variants 

lie so closely together on the genome. Overall, the results obtained in this work have 

opened us to other ways of unpacking genetic bases of rare complex renal phenotypes 

and other idiopathic diseases in general. 

 

5.1.6 Structural variation inference from exome reads 

 

The first type of structural variation investigated in this work is the short tandem 

repeats (STR). STRs, also known as microsatellites, are a class of genetic variation 

with repetitive elements of 2–6 nucleotides that consist of approximately a quarter 

million loci in the human genome. STR expansions have been implicated in the 

aetiology of a number of genetic disorders, such as Huntingon’s Disease and Fragile-

X Syndrome. STR variations are, however, not routinely analysed in exome 

sequencing studies mainly due to a lack of adequate computational tools (Treangen 

and Salzberg 2011). STRs pose a significant challenge to high through put sequence 

analysis. First, not all reads that align to an STR locus are informative. Second, 

mainstream aligners, such as BWA, generally exhibit a trade-off between run time and 

tolerance to insertions/deletions (indels) (Li and Homer 2010). Thus, profiling STR 

variations even for an expansion of three repeats in a trinucleotide STR would require 

a cumbersome gapped alignment step and lengthy processing times. Despite these 

difficulties, STRs were profiled in all the exomes of the sequenced family members 

using LobSTR (Gymrek et al., 2012). The algorithm scans genomic libraries, flags 

informative reads that fully encompass STR loci, and characterizes their STR 
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sequence. This was a computationally intensive analysis that was optimised at 

different stages of the analysis. Despite none of the STRs segregating with disease 

status in this family, the analysis has demonstrated and illustrated an efficient 

bioinformatics process of computational profiling of STRs using only exome reads 

obtained from a few family members. Statistical and bioinformatics methods for 

inferring STRs are an active area of research currently. Also, the analysis highlighted 

the need for having enough data storage capacity in order to optimise the 

computational process. 

 

The second type of structural variation investigated in this work is copy number 

variation (CNV). In contrast to whole-genome sequencing data, exome sequencing 

results in non-uniform read depth between captured regions and strong systematic 

biases between batches of samples sequenced. These biases make exome sequencing 

unsuitable for CNV detection algorithms. In this study, I combined read-depth data 

from exome sequencing with singular value decomposition (SVD) methods to 

discover rare CNVs that may segregate with disease status in this family. Therefore, I 

was able to demonstrate that it is indeed possible to use exome sequencing data from 

a few family members to scan the coding region of the genome for CNVs that may 

segregate with disease. This sets the platform for developing further computational 

algorithms for detecting CNVs from exome sequences. 

 

5.1.7 Genetics underlying rare complex renal phenotypes 

 

Even though routine analysis of urine samples can be helpful to indicate the origin of 

some kidney disorders, the assessment of kidney disease activity and progression is 

still mainly based on crude markers such as serum creatinine and 

haematuria/proteinuria. The descriptive assessment of kidney biopsy specimens with 

use of light and electron microscopy, supplemented by a small set of immunological 

marker proteins, is still the diagnostic gold standard. Accurate diagnosis of the 

primary cause of an individual’s kidney disease is essential for proper management. 

 

Many rare kidney diseases have a different prevalence in different populations and 

have substantial clinical heterogeneity in presence, age of onset, severity, and 
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progression of symptoms. Most of the studies undertaken to ascertain these have been 

performed in other populations outside of Africa. Therefore, different incidence rates 

in populations provide support to a role for genetics in understanding the pathogenesis 

of kidney disease especially in African populations where there are limited studies 

done. Over the years, an increasing number of rare kidney diseases that were 

previously considered to be single disorders have been shown to be aetiologically 

heterogeneous. What is usually observed is that different underlying genetic 

abnormalities can affect the same biological pathways and give rise to similar clinical, 

biochemical, and histopathological features. The imperfect diagnosis made by 

traditional methods is largely explained by their inability to elucidate underlying 

molecular disease mechanisms. 

 

The advent of next-generation sequencing techniques has ushered in a new era of 

diagnostic capability that will improve diagnosis efficiency for genetic renal diseases 

through simultaneous investigation of all relevant genes for a given kidney phenotype 

at much reduced cost and turn-around time. In this work, I have successfully applied 

next-generation sequencing techniques to complement primary diagnostic methods in 

order to understand the cause of ESRD in a South African family. Dysregulated 

COL4a1 and COL16a1 proteins were implicated as potential causes of the disease in 

this particular family. Collagen genes are interesting candidates for ESRD, as a 

number of exome sequencing studies implicated these genes in rare complex renal 

phenotypes. 

 

In a Chinese Hans family spanning over 5 generations, four patients presented with 

heterogeneous clinical phenotypes of glomerosclerosis, while none of them showed 

any clinical features of either sensorineural hearing loss or typical ocular 

abnormalities, clinical diagnosis failed to provide a conclusive cause of the disease in 

this family. Exome sequencing was undertaken and a novel COL4a5 mutation was 

identified (Xiu et al., 2014) (Xiu et al., 2014). Exome sequencing was undertaken in 

three families who presented with similar clinical features as the family we have 

studied where renal biopsies at that time were inconclusive. A novel variant in 

COL3A3 gene and a missense mutation COL4A3 were implicated (Lin et al., 2014). 

Similarly, in the South African family I have also identified rare variants in Collagen 

genes. In another study a girl aged 6 presented with haematuria and her sister aged 5 
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presented with haematuria and proteinuria. Family history showed multiple 

individuals suffering from end stage renal failure from the paternal side of the 

pedigree. Exome sequencing was undertaken, a mutation in COL4A5, a gene known 

to cause Alport syndrome was identified (Gibson et al., 2013). This led to the 

diagnosis of the girls being resolved to Alport syndrome. COL4A3 and COL4A4 

variants were identified using exome sequencing in cohort of 70 families with 

complex renal phenotypes (Malone et al., 2014). 

 

As illustrated above, this study contributes significantly to the growing spectrum of 

the “collagen genes” and their potential role in rare complex renal phenotypes. This is 

important as comparisons can now be drawn regarding the genetics of kidney diseases 

in African populations with other populations, as this study is based on an African 

Family. Thus, clearly we have contributed significant to the overall knowledge base of 

kidney diseases by showing that some African renal diseases follow similar disease 

mechanisms to those in well studied populations and that some rare renal diseases 

have overlapping histopathological features despite being caused by defects in 

different genes. 

 

5.2 Concluding remarks 

 

Beyond sequencing disease specific gene panels, exome sequencing will soon become 

part of routine molecular diagnostics, improving further disease diagnostics. 

Sequencing based technologies are also increasingly being applied to individual cells, 

with the aim to integrate genomics, transcriptomics, epigenomics, and proteomics for 

multilevel analysis of cellular mechanisms. These analyses will need robust single-

cell isolation, a potentially challenging task for a heterogeneous tissue such as kidney. 

In this work, WES identified 3 pathogenic variants in COL4A1, COL16A1 and 

ICAM1 in 5 African family members with previously unexplained inherited kidney 

disease. These findings highlight the clinical range of collagen related nephropathies 

and will help resolve diagnostic confusion arising from incomplete clinical and 

histological findings, allowing appropriate counselling and treatment advice to be 

given. Despite progress in understanding of molecular causes of rare inherited kidney 

diseases, the pathways for most inherited nephropathies still need to be explored. Poor 
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appreciation of genetic studies by health-care providers is of concern. Even for well-

defined disorders the use of genetic testing remains rare, mainly because of high cost 

and long turnaround times for conventional genetic screening, the preconception that 

a genetic diagnosis will not affect clinical management, insufficient genetic literacy, 

and differences in access to genetic tests.  

 

Clinical databasing will go a long way to enable clinicians to collect and store 

standardised clinical data for their patients. This will allow accurate phenotyping to be 

done, which is a key necessity for undertaking successful genetics analysis. Providing 

this important resource for clinicians creates an important platform for genetic 

diagnostics to be used effectively and implemented in resource limited countries as an 

important part of disease diagnosis where primary diagnosis lacks useful information 

to aid clinical management of diseases. Therefore, limitations notwithstanding, this 

work addressed in detail the following: 

(a) The literature on kidney disease in African population has been 

reviewed intensively and clearly highlights the gap that exists between Africa 

and other developing countries in tackling the scourge of non-communicable 

disease like ESRD. 

(b)  The problem of collecting standardised clinical data that is crucial for 

carrying out genetic analysis based on Africa populations has been addressed. 

A database was designed and this work has been accepted for publication in 

Lupus (Hodkinson et al., 2015). This database will be the first Pan-African 

database intended for the collection of standardised patient data across 

different Africa countries. This will allow examination of hypothesis 

concerning disease genetics, aetiology and health outcomes of patients. 

(c)  I have demonstrated that it is indeed possible to undertake a high 

throughput genomic study to investigate causes of disease in an African 

family. To my knowledge, this is the first study performed to understand the 

genetics underlying familial clustered ESRD in an African family. 

(d)  A clearly designed pipeline for analysis of exome sequencing data was 

designed and implemented in this study. The pipeline also included 

probabilistic statistical models to help analyse the data. 
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(e)  Novel and rare genetic variants underlying ESRD in this South 

African family were identified. This adds to the pool of variants that have been 

implicated in patients with familial clustered ESRD. 

(f) Pathway and functional analysis identified cellular and molecular 

regulatory mechanisms that are related to kidney disease, in which prioritised 

genes were enriched. 

(g) I have shown that is possible to computationally infer structure 

variation such as Copy Number Variation and Short Tandem Repeats using 

exome sequencing data from a few family members. 

(h) Importantly, this work has contributed significantly to the wider 

spectrum of collagen genes and their potential involvement in rare complex 

renal phenotypes. This adds more evidence to the crucial role that these 

structural proteins may have in the pathogenesis of ESRD. 

5.3 Future direction 

 

The abundance of genetic and molecular information generated by next-generation 

sequencing poses a new challenge because bioinformatics capacities and analysis 

methods need development. The characterisation of candidate disease genes and 

individual mutations needs to be studied further. In this family no formal testing was 

undertaken to establish clinical features of either sensorineural hearing loss or related 

ocular abnormalities something that is going to be pursued with the clinicians. 

Collagen genes implicated in this study have also been implicated in patients with 

Alport syndrome, hearing loss and ocular abnormalities are some of the key 

symptoms of this disease. At least two renal biopsies need to be performed in order to 

determine the primary cells of the kidneys that are affected. This is important as one 

may then investigate the expression levels of implicated genes in these cells and begin 

to unpack the probable disease mechanism. Also, information from the renal biopsy 

combined with functional analysis of implicated genes might help explain a plausible 

disease mechanism in this family. Variants identified in this family will be genotyped 

in more unaffected people to investigate their frequency in the general South African 

population, to confirm whether they are truly rare alleles or whether they are present 

more frequently specifically in Africans/South Africans. These results will be further 

validated using Sanger sequencing. Going forward instead of sequencing the entire 
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exome for the family members a quick PCR can be performed to identify these 

mutations. Importantly, this can be done over several generations in this family and 

the variants identified by WES can then be concluded as truly causative for this 

family. This is one of the biggest advantages gained by undertaking WES in familial 

study and that opportunity exists to extend the results to other family members with 

minimum cost. 

 

In light of the numbers of exomes anticipated to be sequenced and analysed in the 

near future, I believe that computational methods developed in this thesis will have 

widespread application for the discovery of both rare and novel single nucleotide 

polymorphisms as well as copy number variation and short tandem repeats in disease. 

 

 

Increasing access to internet, computational facilities, and genetic analysis means that 

more clinicians can collect data for African diseases and the clinical database is a 

great prototype to help us, going forward, to understand effective ways to assist with 

clinical research databasing on the continent. Effective clinical databasing as I have 

demonstrated with nephrologists dealing with lupus nephritis patients is a first step 

towards improving awareness, quality and quantity of patient clinical data that 

clinicians within Africa capture. Going forward such an invaluable clinical research 

resource will become important in African genomic studies for both hypothesis-led 

and hypothesis-generating research approaches that maybe undertaken to better 

understand the causes, prognosis, management and outcomes of diseases. The clinical 

database I have designed has already raised interest as a blueprint for a similar type of 

Pan-African database for sickle cell anaemia.  
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 Appendix A. Sample quality control information. The quality control was done 

at the core sequencing facility before sequencing was done. All 

samples passed the accessed quality control steps. Library 

preparation was done using Agilent SureSelect Human All Exon 

Version 4. Sequencing was performed using the Illumina hiseq2000 

machine. 

 

Position 

in Gel 
 

 

Sample 

name 

 

Nanodrop 

Measurement 

(ng/μl) 
 

 

OD 

260/280 
 

 

Vol. 

Loaded 

(μl) 
 

 

Mass 

(μg) 
 

QC 

results 

1 222 70.2 1.86 2 1.4 Pass 

2 555 182.3 1.87 2 3.6 Pass 

3 666 102.2 1.82 2 2 Pass 

4 777 144.1 1.84 2 2.8 Pass 

5 888 192 1.86 2 3.8 Pass 

6 999 109.2 1.86 2 2.1 Pass 
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 Appendix B. FASTQ results for the unaffected family member. Fhred score 

quality control scores where reported for each base position in the 

100base paired reads. The quality scores were reported for paired 

end reads. The analysis was performed using FASTQC. 
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 Appendix C.  Parameters for variant filtration using recalibration model. The 

parameters were used to calibrate variants to ensure that only 

variants of high quality are retained for further analysis.  

--filter Expression "MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)" 

--filter Name "HARD_TO_VALIDATE" 

--filter Expression "DP < 5” 

--filter Name "Low Coverage" 

--filter Expression "QUAL < 30.0” 

--filter Name "Very Low Qual" 

--filter Expression "QUAL > 30.0 && QUAL < 50.0” 

--filter Name "Low Qual" 

--filter Expression "QD < 1.5” 

--filter Name "Low QD" 

--filter Expression "FS > 150.0” 

--filter Name "Strand Bias" 
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 Appendix D. COL16A1 [p.T116M] variant visualisation using IGV. The 

variant is shown in green and it is present in all 5 affected family 

members while absent in the unaffected family member. 
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 Appendix E. 3D protein structure for ICAM1 and the identified variant. 
The modelled protein structure shows the location of the variant 
on the protein. The position of the variant on the protein is 
shown in red. 
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