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Abstract 

The purpose of this study was to investigate the role of visualization in the conceptualisation and 

solution of problems in multivariate calculus and dynamical systems. The theoretical basis, and 

the visual and analytical aspects of evaluating multiple integrals, and the stability analysis of 

dynamical systems, were established. To address the research questions, a teaching experiment 

with activities to facilitate visualization of 3D objects and phase portraits of non-linear dynamic 

systems was conducted with an experimental class (n = 24)  which received six activity sessions 

in the computer Laboratory in addition to traditional lectures. The control class (n = 26) received 

traditional lectures and tutorial instruction. Both groups were lectured by the researcher using the 

same set of class notes, assignments, worksheets and tutorials. Additional support materials were 

posted on the Blackboard on Web-City. The activities included tasks in the computer laboratory 

that reinforced visualization and spatial ability factors such as surface features, nets, projections, 

cross-sections and rotation of 3D objects as well as phase portraits of systems of differential 

equations. 

The students were tested at several time points, and over both the short and long term to 

assess the impact on their visual and analytical solutions to problems in the two study domains. 

The pre-test on prior knowledge indicated no significant differences between the means of the 

experimental and control groups.  

Results indicate that there were no significant differences between the achievement of the 

two groups in Test 1 and Test 2 while the activities were ongoing, but towards the end of the 

semester significant differences in favour of the experimental group were recorded. A multiple 

linear regression analysis confirmed that in addition to prior knowledge as measured by the pre-

test, two of the spatial factors were significant predictors of achievement for the domains under 

investigation. Students had difficulties in visualising 3D regions of integration and in  
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switching the order of triple integrals. Very few (18%) recognised the need for split integrals to 

span the required area or volume.    

While students could find analytical solutions to systems of differential equations and 

describe the stability of individual equilibrium points using eigenvalues, they struggled with 

translating rates of change into slopes on the phase portraits, with the interpretation of the 

solutions and in describing the global behaviour of the system.  

Students had difficulties in visualizing the region of integration in R
3
, the stability of 

equilibrium points in the phase portraits, and in coordinating the treatments and conversions 

between the geometric, numerical, symbolic and algebraic registers. The tendency to work in the 

algebraic register to determine the limits of the integral was noted, and students opted to use  

analytic methods in conducting a stability analysis of the given dynamic system rather than the 

geometric method. 

This study adds to research on visualization in mathematics by examining how exposure 

to technologically enhanced representations complement and promote the conceptualisation of 

solutions to problems involving multiple integrals and systems of differential equations. 
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Chapter 1:  Introduction - Visualization in Mathematics 

 

1.0  Overview 

In this chapter, we define visualization, and look at the role it plays in the conception and solution 

of problems in multivariate calculus and dynamical systems.  We explain the purpose, the 

rationale and significance of the study. The strategies proposed to facilitate visualization in the 

learning and teaching of multiple integrals, and phase portrait analysis of dynamical systems are 

outlined. We end the chapter by defining the limitations of the study and give an outline of the 

chapters in the dissertation.  

1.1  Defining visualization and analytical thinking in mathematics 

Depending on the field of study, visualization has been defined in diverse and multiple ways. A 

comprehensive and all-embracing definition, that draws together the various aspects of 

visualization, and serves our purpose in mathematics education, is by Arcavi (2003,  p. 217):  

‘Visualization is the ability, the process and the product of creation, interpretation, use of , 

and reflection upon pictures, images, diagrams, in our minds, on paper or with 

technological tools, with the purpose of depicting and communicating information, 

thinking about and developing previously unknown ideas and advancing understandings’.  

In mathematics education, to ‘visualize’ means to construct, create, or make connections between 

an external mathematical object or its representation (a diagram, a table, or a picture) and a 

mental or internal construct or image and apply analytical methods to develop and advance 

understanding.  Interaction with the mental image can be through physical models, manipulatives, 

sketches, computer-based static outputs or animations such as simulations.  The ability to draw a 

simple figure to represent a mathematical problem, to interpret such figures with understanding, 

and to use such figures as an aid in problem solving are fundamental visualization skills. 
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The ‘thinking about and developing’ in Arcavi’s (2003, p. 217) definition is an important 

feature of visualization that distinguishes it from visual perception. Vision or visual perception 

provides direct access to the mathematical object and involves exploration of its physical 

properties such as number and geometry of faces, vertices, edges, angles, symmetry and so on. 

Vision is not visualization; to see or perceive is not necessarily to understand.  Duval (1999, p.7) 

refers to visualization as ‘operative apprehension’ which involves exploration and coordination of 

mental images that we construct and reconstruct as we reason or analyse what we see with the 

eyes.  

 Phillips, Norris and Macnab (2014 , p. 26) have made three important distinctions in 

types of visualization: 

1. ‘Visualization objects’ include physical objects, 3D representations, sketches, and pictures 

that can be viewed on paper, computer displays, slides etc. 

2. ‘Introspective visualization’: are mental images constructed through visual experiences. It 

does not necessarily involve physical objects  

3. ‘Interpretative visualizations’ involve making meaning by interpreting information from 

the objects or introspections. 

Guiterrez (1996, pp. 7  10) also has four main elements of visualization in his scheme, 

namely, external representations, mental images, processes of visualization and abilities of 

visualization.  Mental images include verbal or linguistic symbols as well as picture images. They 

are a tool for our own individual cognitive (mental thinking) processes. Mental imagery is the act 

of forming mental pictures of objects or events and does not necessarily involve the eyes. It 

serves as a kind of ‘mental blackboard’ where images can be recalled from memory and can 

assist in active and dynamic information processing. The visual image or entity, also known as a 

cognitive object, can be mentally recreated, explored and manipulated consciously or 

unconsciously during reasoning.  It is held in the working memory and can be recalled for 

comparison or manipulation or for creating new, simple or complex, visual images. This aspect of 
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mental imagery in visualization is being actively researched by cognitive psychologists. In 

mathematics education, we are concerned with the interaction of mental images with external 

visual representations like diagrams, pictures, and sketches that assist in analytical thinking and 

solutions to problems.  

Zazkis, Dautermann and Dubinsky (1996, p. 442) define an act of analysis or analytical 

thinking as ‘the mental manipulation of objects with or without the aid of symbols’. Here ‘object’ 

is defined in terms of the Action-Process-Object-Schemas (APOS) in Dubinsky’s (1991) 

framework. An action is a transformation of a mathematical object using explicit algorithms.  As 

students repeat and reflect on actions, they interiorize them into a process. When they become 

aware of the process as a whole, or encapsulate it, an object conception is constructed. A 

collection of action, process and object conceptions, constitute a mathematical schema, which are 

then synthesized to form mathematical structures. The processes involve reflection, abstraction, 

coordination, reversal and encapsulation that are essential elements of analysis. For the purpose 

of this research, we consider visualization and analysis as two interacting modes of thinking that 

support each other in developing understanding and problem solving. 

Visualization has an important role to play in the problem representation process (Kosslyn 

& Koenig, 1995). The value of visual representations, on paper or in the head, lies in its potential 

to facilitate and generate analytical thinking (mathematical thought) and can be an important aid 

to solving all sorts of problems, including problems in which nothing geometric is evident 

(Zimmermann & Cunningham, 1991).  

Visualization is based on the production of semiotic representations, which could be 1D 

or 2D geometrical shapes, Cartesian graphs, sketches, propositions or words and using them to 

solve problems. Semiotics refers to the signs and symbols used in writing and communicating 

mathematics.  We use a wide range of semiotic systems such as ‘natural’ language, numeric and 

algebraic notation, graphs and diagrams in mathematics. Semiotic systems allow different kinds 

of operations and have different potentials for meaning making (Duval, 2000 ; O'Halloran, 2005).  
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Stylianou (2002) investigated characteristics of visual representations that underlie  

problem solving across ages and levels of mathematics knowledge and concluded that successful 

understanding is related to selecting what needs to be visualized and verbalised and the 

oscillation between the visualized and verbalised components. We illustrate these ideas with two 

examples, adapted from Stylianou (2002, p. 308 & p. 314).  

Example 1: Will the given net fold into a closed cube?  

 

 

 

 

Figure 1.1  Visualizing the folding and unfolding of a cube and its net.  

Adapted from Stylianou (2002, p.308) 

 

This question involves seeing if the net in 2D, shown in Figure 1.1, will fold into the cube in 3D. 

The initial perceived figure in 2D, at first glance, perceptual apprehension, on Duval’s (1999) 

framework, shows six squares, essential figural units for the six faces of the cube.   

Next we look for various ways in which the arrangement of the units can be modified. By 

folding the net, we visualise a cube in 3D, as it forms, making sure we have no overlaps between 

the faces and that the faces are at right angles to each other.  Mentally we construct and de-

construct the cube by folding and unfolding, rotating, and matching the sides and marking them, 

if necessary. We may fold the four squares at the top to form a square tube and then the squares at 

the bottom. We conclude that the net will not give us a closed cube as the squares at the bottom 

overlap. This task involves spatial ability, an aspect of visualization dealing with objects in space. 

It also involves analytical thinking; matching sides, checking angles, folding, unfolding, marking 

sides that match.  The visualization is much easier if, in the past, we have done activities such as 

drawing, cutting and folding 2D nets and the 3D solids we get from them.  The process is 

reversible in that we could unfold the 3D solid to explore its net. 

Net                       Cube 
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Example 2: The second example is similar, but we now visualise unfolding a truncated cylinder 

into its net (See Figure 1.2). The question: Which of the three nets A, B or C is the net for the 

truncated cylinder? 

 

 

 

 

 

 

 

 

Figure 1.2  Which of A, B, C is the net for the truncated cylinder? Adapted from Stylianou (2002, p.314) 

 

The initial perceived figure (perceptual apprehension) reveals a circular base, an elliptical top, 

and a curved surface that make the sides of the truncated cylinder. Mathematically speaking, we 

have an oblique plane intersecting a cylinder. The intersection looks elliptical. Alternative A 

looks appealing but, will the ellipse at the top of the truncated cylinder give us the triangle, with 

straight edges, at the top of the net in A? What about B? Will folding/unfolding activities help?  

One way is to unfold a truncated cylinder and check its net. That has obvious limitations of 

accuracy. How do we show (analytically) that C is the correct solution? The analytical thinking is 

deeper and if we are to avoid guesswork, it involves changing from geometric to algebraic 

representation. 

This problem was posed to mathematics educators by Stylianou (2002, p. 314). After 

several visual-analytic steps, one mathematician in her research sample, arrived at the sketch 

similar to that shown in Figure 1.3(a), in which the cutting plane is represented by x + z = 1 and 

the cylinder by  x
2 

+ y
2 

= 1.  The cutting plane was moved down to intersect with the circular 

base, whose equation is x
2
 + y

2 
= 1.  Any point on the base has xy-coordinates (cos  , sin  ).  By 

moving around the base and checking how this movement affects the height, z, on the cutting 

edge of the cylinder, we arrive at the trigonometric expression z = 1 – cos .  The final step is to 

Truncated cylinder 

A 

 

B 
C 
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plot a graph of z with  and match points on the graph with corresponding points on the cutting 

edge. Note   is in radians, is measured anticlockwise from the x-axis, and runs from 0 to 2π. 

 

Figure 1.3 (a) Graphical representation of the truncated net problem        b) graph z vs  
  Adapted from Stylianou (2002, p. 314). 

 

A conversion from the geometric register to the algebraic enables an environment in 

which we can work with the critical variables more easily. Looking back at our definition of 

visualization, we note perceptual apprehension, abstraction, reflection, coordination of mental 

and external images, and acts of analysis. We note conversion from the geometric register to the 

algebraic, and finally, to the graphic register. We see treatments within algebraic and geometric 

registers. Prior learning plays an important part as sketches need to be drawn, variables selected, 

equations and formulae have to be recalled, manipulated and solved, and graphs need to drawn. 

On page 22, we look at the role of visualization and analysis in finding the volume of a 

truncated cylinder. This research is concerned about the role of visualization in the solution of 

problems such as these.  

In summary, in this section, we attempted to define visualization in mathematics 

education.  We note that the interaction, connection or reflection that a person makes between the 

mental construct (cognitive object) and the mathematical object (physical or virtual), or its 

representation (internal or external), constitutes an act of visualization.  Such a connection can be 

made in either of two directions. An act of visualization may consist of any mental construction 

,     x2 + y2 =1  

(cos  , sin ) 

, x + z = 1 
, z   = 1  x  = 1 – cos   

 

       x 

y 

   z 

 

z 
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of objects or processes that an individual associates with objects or events perceived by her or 

him as external. Alternatively, an act of visualization may consist of the construction, on some 

external medium such as paper, chalkboard or computer screen, of objects or events which the 

individual identifies with object(s) or process(es) in her or his mind. We stress that visualization 

is not just vision or visual perception or perceptual apprehension or visual representation.  

Mathematical visualization is the process of forming images (mentally, or with pencil and paper, 

or with the aid of technology) and using such images effectively for understanding, problem 

solving and mathematical discovery.  It involves what Duval (1999, p. 12), calls ‘operative 

apprehension’.  

1.2 Visualization in mathematics education 

Visualization has played an important role in the development of mathematics throughout history.  

Early Pythagoreans, who developed mathematics in the modern sense, used visual representations 

to study the properties of geometric figures and relationships among numbers.  Euclid’s elements 

and Book of Fallacies have numerous geometrical representations that punctuate the reasoning 

elaborated through the accompanying text. Descartes (as reported in Massironi, 2010,  p. 8) used 

numerous images and figures in geometrical thinking. The calculus of the seventeenth century 

had strong visual elements that interacted with geometrical and physical problems. However, 

paradoxes in the foundations of calculus created mistrust leading mathematicians to aggressively 

abandon visualization. This situation persisted into the 1980s and mathematics curricula were 

fairly devoid of visuals (Kaput, 1993). While visualization was considered an integral part of 

geometry, only recently have educators and researchers begun to explore its potential in calculus, 

algebra and statistics.  

  During the last two decades, there has been a renaissance in visualization driven by 

technological advances (Zimmermann and Cunningham, 1991a). Technology now provides 

greater access to multiple representations of mathematical concepts.   
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Arcavi (2003, p.221) highlights three powerful and complimentary roles of visualization: 

a) as a support for and illustration of symbolic results;  

b) as a way of resolving conflict between symbolic solutions and incorrect intuitions, and  

c) as a way to recover conceptual underpinnings which may be overlooked by formal solutions. 

Several mathematics education researchers have highlighted the need for interaction and active 

engagement of the learner and the importance of translation among mathematical representations. 

Duval (1999) emphasises that we learn about mathematical objects by transforming their 

representations. When we calculate, prove, sketch, solve and work with representations such as 

equations, functions, groups, fields, etc. and transform them from one register to another, for 

example, from algebraic to geometric or numerical, we learn and get to know the mathematical 

object better.  

We discuss representations in greater depth under Duval’s theory of semiotic 

representations under the research framework in Chapter 3, section 3.2. 

According to Piaget (1964) to know a mathematical object is to act on it, to modify it, to 

transform it and understand how it is constructed.  Artigue (2002, p.248) notes that we work with 

mathematical objects ‘through ostensive representations which can be very diverse in nature’ and 

include: discourse in natural language, schemas, drawings, symbolic representations, gestures, 

manipulatives. We also work with non-ostensive objects that we bring to mind when doing 

mathematics. 

The field of visualization is wide with specialists in psychology, radiography, geology, 

computer science and mathematics education using terms like spatial ability, visual reasoning, 

visual images, mental images and visual representations interchangeably. The proliferation of 

digital technologies such as the internet, the smart phone, I-pads, tablets, computers, 

programmable calculators and online learning systems have pushed the boundaries of visual 

learning and visual mathematics to new levels by making available powerful representation tools. 

While curriculum developers, teachers and textbook authors are paying more attention to 
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drawings, pictures, and images in their publications and, psychologists have developed detailed 

frameworks for their research, there is far less research in the field of mathematics education on 

visualization. Tertiary students use visual tools and technology, visual arguments and visual 

representations more, but there is little in the literature that informs when, why and for what 

purpose and how they interact with other modes of representation and thinking. Given that 

technology increasingly influences and impacts on workplace practices and the teaching and 

learning of mathematics in higher education, there is a need to investigate ways in which the 

potential of technology and media can be used to enhance and reinforce the conception and 

solution of problems in mathematics. This also opens the possibility of tackling more complex 

problems that are a feature of the workplace.  Kozma (1994) points out, that instead of asking 

questions about whether technology impacts learning, we should be looking at ways in which the 

new media impact and influence future learning. 

In the 1990’s, the debate over the role of visual versus analytical methods, intensified with 

some educational researchers (Gutierrez, 2012 ; Owens & Clements, 1998), claiming that visual  

representations (pictures, diagrams, graphs and images), whether they are imagined, drawn on 

paper or created using a technological tool, can aid conceptual understanding and be a resource 

for intuition and discovery. They see visualization as a key component of mathematical 

reasoning, modelling and problem solving. A good visual representation can serve to ‘concretize 

the referent’ (Presmeg , 1986,  p.44) and provide the mental scaffolding needed in establish the 

meaning of a problem, channel problem-solving approaches, and influence cognitive 

constructions (Owens & Clements, 1998). Visual representations can condense information, and 

suggest new results or potential approaches to essentially symbolic results.   

However, visualization in mathematics education also has its critics, who point out that 

the same objects can mean very different things, even to experts in the field. Learners may focus 

on aspects of a visual representation that experts consider distractions, irrelevant and dismissible. 

Other educators, for example, Tall (1994), claim that visualization has subtle aspects that can 
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deceive and that we should adhere to formal or analytical methods of solving problems in 

mathematics.  Hoz in Presmeg  (1985, p.295) describes the ‘rigidity’ that results when student 

conceptions are limited by the use of diagrams or mental images.  Presmeg (1986, p. 52) points 

out that a diagram may tie thought to irrelevant detail or may even introduce false data and 

induce inflexible thinking. Magidson (1989) noted that when Grade 7 students were asked to 

sketch graphs of  y = 2x +1,  y = 3 x +1, y = 4x +1 using software, few noticed that they all pass 

through (0, 1) and made mistakes in the intercept for the graph of  y = 5x +1.   

Presmeg (1986) reported that high achievers were almost always non-visualizers. 

Eisenbeg and Dreyfus (1991) and Vinner and Dreyfus (1989), report that students often face 

difficulties and are reluctant to use visual representations in solving problems.  

Eisenberg and Dreyfus (1991,  p. 2) identified three reasons to explain the observed 

reluctance of some students to visualize:    

a) cognitive (visual is more difficult),  

b) sociological (visual is harder to teach), and one related to 

c) beliefs about the nature of mathematics (visual is not mathematical).  

According to the cognitive load theory (Sweller, 1999), splitting attention between visual 

representations and text, can overload working memory capacity. The cognitive demand is high 

when learners face conceptually rich images or when there are intervening conceptual structures 

(Fishbein, 1993).  

1.3 Mathematical Representations  

Mathematics, by its very nature is abstract, and we can only access mathematical concepts 

through their representations. We learn about mathematical objects through their representations 

(for example, functions, direction fields, graphs, equations, 3D space figures, and groups) which 

undergo transformations such as calculating, proving, and solving.  

Representations are useful tools that support mathematical reasoning, enable 

mathematical communication and convey mathematical thought (Kilpatrick, Swafford & Findel, 

 

 

 

 



11 
 

2001). Calculus reform efforts have stressed the importance of using multiple representations to 

include analytic, numerical, graphic and symbolic in the solution of mathematics problems.  

Lesh, Landau, & Hamilton (1983, p. 265) identify five distinct types of representations 

(See Figure 1.4) that students use to solve problems.   These include (a) manipulative models 

such as nets (b) graphics, pictures, and diagrams (c) experiences that serve as context to describe 

and solve other problems (d) specialized forms of spoken languages, such as used by 

mathematicians  (e) spoken or written language as used in context by non-mathematicians and (f) 

written symbols and phrases—including algebraic symbols. Translations and transformations 

between the representations occur through student activities such as simplifying, generalizing and 

draw upon spatial, logical, linguistic, and numerical competences. 

 

 

 

 

 

 

 

Figure 1.4   Representations useful for understanding mathematics, Lesh, Landau, and 

Hamilton (1983, p. 265) 

 

The Lesh et al. (1983) model (See Figure 1.4), has particular relevance to our study and 

many similarities with Duval’s theory of semiotic representations with its symbolic, verbal, 

geometric, algebraic and numerical registers. Connections between the representations are made 

by translations and transformations in the Lesh, Landau and Hamilton model, whereas in Duval’s 

(1995) model we talk about treatments and conversions within and between the registers. We are 

interested in the difficulties and type of errors students make as they use representations and 

translate between representations when they solve problems in  Multivariable Calculus and 

Dynamical systems. 

Real world 
experiences 

3D 

manipulative 
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While different semiotic systems may appear to be used to refer to similar mathematical 

objects, it is important to recognise that a particular representation may have different meanings. 

For example, the verbal description, ‘paraboloid’ can be represented by an equation, z = x
2 

+ y
2
, 

or z = r
2
 (in cylindrical coordinates), a graph in 3D or  a table of numerical values. 

We distinguish between external and internal representations. External representations 

such as symbols, graphs, sketches,  textbook  illustrations, diagrams,  and geometric drawings 

may be examined, analysed, and processed by the perceptual system, as  means of amplifying 

cognition. They include interactive learning tools such as Geogebra, Matlab and CalcPlot3D that 

are useful for static diagrams as well as animations.  Internal representations or mental models 

represent knowledge and structures include schemas and propositions. 

In summary, while we take cognisance of the debate around the merits, or otherwise, of 

mathematical representations, there is consensus among educators that visual representations like  

2D and 3D sketches and diagrams, direction fields and phase portraits, can facilitate 

communication, conceptualisation, and function as a tool for thinking and intuition, as well as 

provide the inspiration for the operations necessary to solve problems in calculus and dynamical 

systems. The question we should be posing is not whether we should use visual representations, 

but how best we can facilitate learning and teaching of mathematics, analytical thinking and 

problem solving, through their use.  

There is paucity of empirical research done in understanding how transitions between 

different representations, or as Duval (1999), calls them, registers of representation, occur during 

problem solving in multivariable calculus and dynamical systems. The important research 

questions are: What factors assist in constructing, interpreting, transforming, and coordinating 

visual representations? What factors determine successful transition between multiple 

representations?  What strategies facilitate the connections between visual representations and 

analysis or analytical thinking? These are important questions to address if we want to enhance 

operative apprehension, which Duval (1999) identifies, is a key element of visualization.  
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In this study we draw on practical strategies such as drawing, cutting and folding nets of 

3D solids and computer generated images to engage the learner in the exploration and sketching 

of 3D space figures (sphere, cylinder, cone, polyhedron) and their cross-sections and 

intersections. We also use phase portraits in order to facilitate, reinforce and strengthen the 

connections between visual and analytical thinking in the conception and solution of problems in  

dynamical systems. 

1.4  Visualization and Spatial ability   

Spatial ability is the ability to visualize, that is, picture or mentally construct and manipulate 2D 

or 3D representations. The solution to problems in multiple integrals and systems of differential 

equations using phase portrait analysis depend to a large extent on spatial visualization and so in 

this section we define spatial visualization and spatial ability.  

Clements and Battista (1992, p. 423), defined spatial visualization as the ‘process of 

understanding and performing imagined movements of objects in two- and three- dimensional 

space’. 

Lohman (1999) defined spatial ability as the ability to generate, retain, and manipulate 

abstract visual images. 

Sherman (1979) reported that the spatial ability factor was one of the main factors 

significantly affecting student performance in mathematics and that the correlation between 

spatial ability and performance increases with the complexity of mathematical task. 

Linn and Petersen (1985) define spatial ability as the mental process used to perceive, 

store, recall, create, edit, and communicate spatial images.   

Spatial ability is not a single construct but a collection of attributes. McGee (1979) lists four 

attributes of spatial ability that are relevant to this study. These include the ability to: 

1. imagine the rotation of an object eg xy projection onto 3D object 

2. fold a net and unfold an object eg sector of a circle in 2D into a cone in 3D 
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3. imagine movements such as translations,  rotations, enlargements of 3D objects  

4. transform or manipulate spatial patterns into other arrangements eg object in rectangular 

to spherical or cylindrical coordinate systems. 

Several studies (Sorby, 2001; Piburn, Reynolds, McAuliffe, Leedy, and Johnson, 2005), have 

shown that practice tends to improve students’ spatial ability. Participation in courses, with 

occasional exposure to spatial exercises, seems to improve spatial ability. More directed 

interventions using software, hand-held objects, and mental imagery practice with computer 

generated images, also improve students’ spatial ability.  

Students entering tertiary institutions have difficulties in predicting the intersection of a 

cylinder, a sphere or a cone with a plane. They need to develop skills in spatial ability including 

constructing, interpreting, transforming, coordinating and sketching representations.   

In summary, in this section we looked at several attributes of spatial ability. Some of 

these have a direct bearing and inform the activities designed to focus on visualization in the 

subject domains selected for this research. These include: knowing surface features of 3D objects, 

folding and unfolding nets of 3D objects; identifying cross-sections and projections and 

translating and rotating 3D objects. It is our contention that these attributes of spatial ability have 

relevance to the conceptualisation and solution of problems involving multiple integrals and 

dynamical systems. 

1.5  The problem and its motivation 

The focus of this research is visualization enhanced by technology in the teaching and learning of 

multiple integrals, and dynamical systems to Mathematics 3 (Calculus 3) students in a university 

of technology.  Researchers (Orton ,1983 ;  Mahir , 2009 ;  Nguyen and Rebello, 2011), have 

indicated that visualising and sketching space figures and the transitions between graphical and 

algebraic representations in 3D is often the most difficult part of the solution to problems 

involving multiple integrals.  
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Multiple integrals have a wide range of applications in tertiary mathematics, including, 

finding plane areas, the mass, and centre of gravity of lamina, finding volumes, moments of 

inertia and surface areas of objects in 3D space.  Developing competencies in finding multiple 

integrals is both necessary and important. Setting up and transforming the integrals from 

rectangular to cylindrical or spherical coordinate systems involves visualization and, in particular, 

several attributes of spatial ability identified earlier.  

Students can typically evaluate a given integral using heuristics and techniques from 

earlier mathematics courses but struggle to visualize and set up the integral and transform it from 

rectangular to other coordinate systems. In R
2
 switching a double integral from  dx dy to 

  dy dx or transforming it to the polar coordinates system is often necessary. In R
3 

there are 6 

possible orders for writing down the rectangular integral      dx dy dz and visualising the 

Riemann sum for the volume of the 3D solid is conceptually challenging. To evaluate the triple 

integral, one often needs to move from rectangular to an appropriate coordinate system such as 

the polar, spherical or cylindrical system.  Both these depend on students’ ability to visualize 

regions in 2D and the space objects in 3D space. This study aims to engage students in their 

interactions with 3D mathematical objects and their 2D  nets, cross-sections and projections and 

seeks to answer the main question: How can the transformations, treatments and conversions in 

Duval’s (1995) framework,  be facilitated to enable students to solve problems involving double 

and triple integrals? What strategies will help students to visualise 3D objects? What role does 

technology play in developing skills that enable students to make connections and transitions 

between the registers of representations? 

 The second important domain of study that this research addresses is the solution to 

problems in dynamical systems, expressed in a set of first order differential equations. We 

explore the phase space, whose graphical depiction, the phase portrait, is a powerful tool for 

visualising the behaviour of the dynamical system. The phase space is the space of points that 

 

 

 

 



16 
 

completely specify the state of the system. We focus on applications in population dynamics and 

simple chemical reactions. An understanding of dynamical systems is dependent on students’ 

ability to assimilate the dynamic and static visualization involving rates of change as represented 

by slopes of trajectories or solution curves on phase portraits. Students have met a slope as the 

ratio between ‘change in y over the change in x’ or as ‘rise over run’. Slope fields and phase 

portraits give a concise visual summary of the dynamics of a system.   

In this study, we begin with solutions to single ODEs. Students are familiar with several 

analytical methods of solution including solutions by separation of variable, Laplace transform 

methods, and linear integrating factors. Laplace transform methods are used by students to solve 

the numerous differential equations that arise in thermodynamics, chemical kinetics as well as 

process control. The direction field is a useful tool to visualize the general solution of an ODE. It 

helps us read the long term behaviour of the quantity represented by the ODE. We then look at 

how two ‘quantities’ vary and interact with respect to each other in time. The relation could be 

linear or non-linear and the two ‘quantities’ could be two chemicals involved in a reaction, 

predator prey populations, the interaction of glucose and the hormone, insulin, in the body or the 

amplitude of the oscillations of  a pendulum under a varying force.  Most non-linear systems of 

ODEs do not have analytical solutions. We can get some idea of how non-linear systems behave 

by linearization near the critical or equilibrium points. Using technology and software we can 

plot phase portraits and solution curves and predict the long term behaviour of the system.  

In this study, the Lotka-Volterra model was used to introduce the basic concepts of non-

linear dynamical systems. It is the simplest known two-state model that exhibits sustained 

oscillations and has wide applications in fields ranging from chemistry, ecological systems, 

financial markets to power systems. For example, in population dynamics, we look at the 

interaction between number of predators and their prey by constructing visual representations 

called phase portraits. In marketing we look at the sales of a new product competing with an older 

product it is trying to replace. In chemical kinetics, we look at the interactions between the 
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reactants and products in a reaction as measured by their concentrations or pH. Under several 

simplifying assumptions, such as spatial homogeneity and a sufficiently large number of 

interacting species or molecules, the concentrations of the species can be modelled 

mathematically by a set of ordinary differential equations. It is known that complex balanced 

systems possess within each invariant space of the system a unique positive equilibrium 

concentration and that concentration is locally asymptotically stable. Although the models are 

simple, most cannot generally be solved analytically due to their non-linearity, and the potential 

behaviours are surprisingly robust—they can exhibit multi-stability, periodic behaviour, as well 

as oscillatory and chaotic behaviour. The Lotka-Volterra equation can be solved analytically and 

gives students an opportunity to compare the analytical solution with the graphical solution 

Many real world phenomena are modelled by ODEs.  ODEs represent phenomena that 

cannot otherwise be seen, touched, or sensed.  In chemistry, which are the research students’ 

majors, the reactions and processes involved demand a much more integrated understanding of 

dynamical systems and chemistry. This is complicated by the fact that much of chemical kinetics 

exists at the sub-microscopic level, well beyond the level of students’ experience and senses and, 

therefore, we depend on representations of reaction rates such as differential equations and phase 

portraits, to make sense of these environments. In addition, we have available technology and 

software which can easily give graphical solutions to non-linear systems of equations.  

To summarise:  This study seeks to contribute to the teaching and learning of multiple 

integrals and dynamical systems by designing activities that facilitate visualization. The focus is 

the complementary role of analytical thinking and visualization in the solution of the problems. 

We attempt to define the visual and the analytical steps in the solution using the Visualization- 

Analysis (VA) framework by Zazkis et al. (1996) in their study of dihedral groups. A growing 

number of researchers (Presmeg, 2001;  Haciomeroglu, Aspinwall, Shaw & Presmeg, 2010 ; 

Stylianou & Silver, 2004) are shifting from Krutetski’s earlier model that categorised learners as 
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visual, analytic or harmonic, towards the VA-model on the basis of the finding that most learners 

are harmonic and use both visual and analytical methods in problem solving. 

This study addresses the paucity of research on visualization in multiple integrals and 

dynamical systems. We note that constructing static representations in R
2
 and R

3
 is an essential 

first step in visualising and setting up the multiple integrals. Likewise, direction fields and phase 

portraits for systems of nonlinear differential equations are essential components of the graphical 

representations of solutions to problems involving dynamical systems.  

1.6.  Rationale for the study 

Researchers (Eisenberg and Dreyfus, 1991 ; Sweller, 1999 ; Winslow, 2000) have highlighted 

difficulties experienced by students in the use of visual representations and in particular in the 

transition between modes of representation. Among other causes, they have attributed the 

difficulties to the increased cognitive load that representations demand, to cultural beliefs where 

algebraic is preferred as opposed to visual, and to sociological difficulties.  

An important question that researchers (Presmeg, 1996 ; Habre, 2000; Zazkis  and 

Dubinsky, 1996) in the past have asked is: Given a choice, which approach the analytic (verbal-

logical) or graphical (visual-pictorial) do students prefer? The study by Habre (2004) found that 

analytical approach was preferred by students in solution of ODEs.  Zazkis and Dubinsky (1996) 

found that a combination of visual and analytical approaches were used on tasks requiring 

students to list and find the products of the elements of the dihedral group D4. Zandieh (2000) 

extended the visual analytical framework to include the kinaesthetic mode. Zazkis (2013) refined 

the Visual-Analytical model to include physical aspects as most problems are based in some real 

world context. This study extends the application of the VA model to multiple integrals and 

dynamical systems represented by systems of ordinary differential equations. 

Other research (Goldin , 2003 ; Fennel and Rowan, 2001) suggests that students often 

have difficulty in understanding, manipulating, and translating between various representational 
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forms. When used in conjunction with 2D sketches, concrete and virtual models have been shown 

to increase understanding of 2D and 3D representations and promote representational and 

diagrammatic competence. Hence, the need to identify and develop visualization tools and 

strategies so that students can explore interaction between surfaces, space curves, vector fields 

and 3D space figures.   

In the solution of systems of differential equations, a conceptual understanding of 

gradients and the qualitative theory for analysis of nonlinear systems is essential. Students’ 

understandings of the solutions of systems of ODEs, including analytical or algebraic, visual and 

graphic forms needs further exploration. In particular, the difficulties students experience in 

visualizing and interpreting phase portraits and solution curves and in the transition between 

visual-analytic modes, need further research. 

Mathematics education literature currently provides a sparse treatment of systems of 

ODEs, but there is a growing demand in higher education to understand and interpret the 

solutions and the graphs that accompany them. Educators need to explore alternative teaching 

strategies and provide students with more meaningful activities geared toward developing their 

mathematical understanding and reasoning skills (Rasmussen & Keynes, 2003).     

 

1.7  Illustrative examples  

The following examples illustrate the type of the problems this study will address. The focus is 

the conversions and transformations between registers of semiotic representation and the role of 

visualization and analysis or analytical thinking to support the solution of the problems.  

 

1.7.1 Problems involving double integrals 

Example 1: Find 
D

dA  , where D is defined by 1   x   5;  0  y  (x  1). 
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An essential first step is to sketch the region of integration. (See Figure 1.5). On Duval’s (1995) 

framework, this requires conversion from the algebraic to the graphical register. Some students 

may need to go through a table (a numerical register), to find points for the curves and plot them. 

This has been practised repeatedly in Mathematics 1 and 2, and is routine. Next, we visualize the 

Riemann sum for the region of integration by slicing horizontally or vertically depending on the 

choice of the order dxdy or dydx.  For  dxdy, we slice horizontally.  The left x-limit can be 

found by making x the subject of the equation,  y = 1x  , a treatment within the algebraic 

register,  to give x = y
2 

+ 1 and the right x limit is constant at x = 5 (See Figure 1.5). 

 

 

Figure 1.5  Traversing the region with horizontal slices in the x-direction followed by stacking in the y-direction 

 

Next, we imagine the slices filling up (stacking) the region of integration. Our slices must start on  

 

the x-axis and go all the way to y = 2. The outer y limits run from y = 0 to y = 2. The double 

integral we set up is   


2

0

5

12y

dydx .    For dy dx, we slice vertically traversing the region in the    

y-direction, with limits  y = 0 to  y = 1x  and then sideways from x = 1 to x = 5. The    dydx 

is   
5

1

)1(

0

x

dydx . Both give answers of 5.33. 
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Figure 1.6  Visualizing slicing as we traverse the region to find dydx 

Example 2:  To find the area bounded by  y = x – 1 and y = 1x , using double integrals, we 

start with a sketch (See Figure 1.6).  We select the order,  dxdy or dydx. Of the two, dxdy is 

simpler and gives:  








2

1

1

12 2

9
y

y

dydx . The horizontal slices we make are always between the 

two curves, x = y
2
 – 1 and x = y + 1, and we stack the slices up from 1 to 2. Integration in the 

order dydx is visually challenging, even for capable students. The vertical slices are between the 

two curves only for positive x-values. Hence, we split the region into three (labelled A, B and C 

in Figure 1.6).  A is the region in the first and fourth quadrants between x = y
2
 – 1 and x  =  y  + 1,  

B is the region in the second quadrant and C, is a region in the third quadrant. We could use 

symmetry for B and C. Several conversions from the geometrical register to the algebraic 

register, explained more fully in Chapter 5, finally yields the area integral as:  

  

   







 











0

1

1

0

3

0

1

1

0

1

0

1

0

1

1

0

3

0

1

1

2

9
2

2

9

3

2

3

2

6

19

xx

x

x

xx

x

dydxdydx

or

dydxdydxdydx
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Note: Using single integration, the same area can be found by:






2

1

2

12 )1()1()( dyyydyxx  

Example 3: A third type of problem, involving double integrals, is over circular regions  (See 

Figure 1.7). Here a conversion from rectangular coordinates to polar coordinates makes the 

computation easier. For example, the integration of the region in the first quadrant defined by  

1  x
2
+ y

2
  4 is easier to visualise and set up in polar coordinates as   

2/

0

2

1



ddrr  than in 

rectangular coordinates. The slicing is now in sectors between radii r1=1 and r2 = 2 and angles 

1= 0 (x-axis) and 2 =  π/2 radians (y-axis). The Riemann sum applies. 

In Chapter 5, we shall look at the difficulties students experience in evaluating these 

integrals in detail using Duval’s (1995) and the Zazkis et al. (1996) theoretical frameworks.  

 

Figure 1.7   Region defined by   1  x
2
+ y

2
  4     , x  0,  y  0 

1.7.2  Problems involving triple integrals 

For a triple integral, the region of integration is a three-dimensional shape, which is usually not so 

easy to visualize.  We can reduce the ‘hard’ parts of setting up the limits of integration from 

three-dimensions (3D)  to two-dimensions (2D) by projecting the space figure in the xy,  yz and 

zx planes.  The main steps are: 

• Use the given equations to sketch projections in the xy, yz and the xz planes. 
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• Use the projections to sketch the 3D object  

• Find the limits of integration and,  

• Set up and evaluate the triple integral.   

We illustrate by finding the volume of the truncated cylinder we discussed earlier, see page 4.  

Example 4 : Find the volume of the truncated cylinder, defined by x
2  

+  y
2  

=  1, and the planes,   

z = 0  and  z = 2 – y.    

Solution 

In this research, we explore the main proposition that encouraging students to use technology and  

software will help in the conceptualization of the problem. Here, we have an object bounded by 

the three planes, x
2 

+ y
2 

=1 ,   z = 0 and  z = 2 – y.  To help students ‘see’ the object, we use 

Matlab, and offer different viewpoints, surface features, intersections and projections (See Figure 

1.8).  Students can rotate, zoom in and out, check out the intersections, project and look at cross-

sections in order to see clearly the region of integration.  

 
Figure.1.8  Space figure enclosed by the surfaces represented by  x

2
 + y

2 
=1 and z = 2 – y 
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Figure. 1.9  Projections in the yz and xy planes 

 

To find the limits of integration we visualize movements up and down for dz and as 

before between polar radii r1 and r2 and angles 1= 0 (x-axis) and 2 = 2π radians. Drawing the 

projections in the yz and xz planes helps to ‘see’ the limits clearly and easily. The limits in 

cylindrical coordinates are:   r   : the polar radius, from  0 to 1,       : the polar angle, from 0 to 

2  and   z : the height of the surface from 0  to 2  r sin . Setting up the integral in cylindrical 

coordinates gives :  
 

drdrdz

r

  
2

0

1

0

sin2

0

= 
3

32
.   

The integral and the limits in rectangular coordinates are:    










1

1

1

1

2

0

2

2

x

x

yz

z

dxdydz .  It is 

difficult to do this integration manually in rectangular coordinates.  

Acts of visualization interspersed with analytical thinking are essential features of the 

solution. We discuss the details of the visual-analytic steps fully in Chapter 4. Here we highlight 

the fact that visualization and analytical thinking are an essential part of the solution to the 

problem. We expect students to have built-in schemas for the mathematical objects that represent 

the algebraic functions:  f(x , y) = x
2
 + y

2  
and   g(x , y) = 2  y. These students can proceed 

directly to the conversions from the algebraic register to the geometric register.  

1.7.3  Problems in dynamical  systems 

The second area of research is non-linear dynamical systems. Details and worked examples are 

given in Chapter 5. We will be looking at the role of visualization in application domains such as 

population dynamics and chemical reactions. Here we briefly look at an example of non-linear 

differential equations (the Lotka-Volterra equations, LV) applied to Predator-Prey interactions. 

y 

z 

x 

y 

,   x2+ y2 = 1 ,     z = 2  y 

1 

1         2       1 
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Question: Given the predator-prey non- linear differential equations:  

xyy
dt

dy

xyx
dt

dx

00002.002.0

001.008.0





   Source: Lia Vas, Maths 320,  l.vas@usciences.edu 

where x represents the prey and y represents predators, we need to determine the number of 

equilibrium (fixed) points, their locations, and discuss their stability. The LV assumptions apply. 

We need to draw a phase-portrait which includes the trajectories that clearly indicate the possible 

outcomes as time evolves and discuss the coexistence of the species.  

Solution: We can address this problem in three ways. The analytical solution is found by setting 

the right hand side of both DEs equal to 0 and solving simultaneously to give us the equilibrium 

points (0 , 0) and  (1000 , 80).  Next, we use linearization by taking partial derivatives, and 

writing down the Jacobian matrix at each equilibrium point.   

The Jacobian matrix, whose entries are partial derivatives of each of the differential 

equations is:         J(x ; y) = 












xy

xy

00002.002.000002.0

001.0001.008.0
. 

Evaluating at (1000, 80) gives J(1000,80) = 






 

00016.0

10
 and the eigenvalues are 0.04i and  

– 0.04i. As the eigenvalues are purely imaginary, we conclude that the fixed point is the centre of 

an elliptical orbit (for details, see Chapter 5). Thus the predator prey populations move 

periodically about this equilibrium point and there is a balance or coexistence between the two 

populations near these population figures. 

The second approach is geometric or graphical and highly visual. We determine 

(analytically) and plot the equilibrium points. We work out the slopes dx/dt and dy/dt at various 

points in the coordinate plane, preferably in a table, and we sketch the trajectories and their flow 

directions. We notice the same features that we found analytically by linearization at the fixed 

points. i.e an unstable saddle point at (0,0) and an elliptical centre at (1000, 80). We notice that 
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all solutions are closed and circle the equilibrium point (1000, 80) regardless of the initial 

condition. We notice that both populations oscillate with time (which is a hidden variable, a 

parameter). This process is laborious and messy but gives students good practice in plotting 

slopes as vectors and finding their resultants. However, it is the only way students can sketch 

their phase portraits in examinations (where they do not have access to software).  

The third approach is to use software.  We simply type in the equations, tweak the scales 

and, lo and behold, we have the phase portrait. Right clicking with the mouse at convenient 

points gives us the trajectories passing through the points (See Figure 1.10).  

The interpretation of the phase portrait is important. It tests visual and analytical skills.  

We ‘see’ that the equilibrium point (1000, 80), is the centre of an elliptical orbit. We notice the 

predator prey populations move periodically about this equilibrium point, and we deduce that 

there is a balance or coexistence between the two populations near these population figures. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10 Phase portrait for the Predator- Prey equations 
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Phase portrait for x ' = .08 x - .001 x y  ;  y ' = - .02 y + .00002 x y
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Similarly, we ‘see’ that (0 , 0) is an unstable saddle point. As the trajectories approach  

 (0 , 0) they veer away sharply from (0 , 0). The extinction of the predator prey population is not 

likely, unless the prey population all die, in which case the predators will starve to death.  

Thus, near A on the phase portrait, the prey population is at its least and the predator 

population is falling. Near B, as there are few predators, the prey population is recovering. Near 

C the predator population begins to recover as there is abundant prey.  

To draw the x-t and y-t graphs we need the time for one cycle or oscillation (about 7 years 

in this case). Figure 1.11(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 a)  The orbit for  x = 400,  y = 100 ( see green dot) for predator prey and b) the x-t 

and y-t graphs showing time variation of predator prey populations 

 

Software can also churn out the predator-time and the prey- time graph (See Figure 1.11) 

shows the trajectory for initial values (400 , 100). See green dot. We can state the limits of the 
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oscillations in a cycle: For x, the limits are 460 to 2100 and for y the limits are between 40 and 

180.   

In conclusion, in this section we looked at four illustrative examples of the type of 

problems this research will attempt to answer.  Next, we outline the aim, research objectives and 

research questions for this study. 

1.8   Aim of the study 

The aim of this study is to investigate practical strategies, using technology, that can engage the 

learner in the exploration, visualization of 3D space figures (polyhedrons, sphere, cylinder, 

cones) and phase portraits in order to facilitate, reinforce and strengthen the connections between 

visual and analytical thinking in the conception and solution of problems in multivariate calculus 

and dynamical systems. 

1.9  Research objectives  

The objectives of the study are:    

1. To identify students’ needs and difficulties in visualization of  3D space figures, multiple 

integrals and phase portraits of non-linear dynamical systems.    

2. Design and conduct activities to address the needs identified in Objective 1. Some activities 

are planned with manipulatives eg. folding and unfolding nets, rotations with 3D objects, 

while other activities will be in the computer laboratory using software.  During the activities 

the key elements of visualization (perception, mental rotation, cross-sections, projections, 

sketching) are emphasised. The activities will include: 

a) Constructing nets and 3D wire or straw models of common mathematical objects 

eg pyramids, cylinder, 

b) Sketching 2D and 3D space figures given their algebraic representations in 

rectangular, cylindrical and spherical coordinate systems 

c) Sketching cross-sections and projections of 3D space figures  
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d) Setting up and evaluating volume integrals.  

Activities for dynamical systems include: 

a) Sketching  and interpreting slope fields for ODE’s 

b) Sketching and interpreting phase portraits for systems of ODE’s 

c) Conceptualising and interpreting phase portraits, trajectories, equilibria and 

stability of the system 

3. Use Duval’s (1995) semiotic representation theory and Zazkis et al.(1996) Visualization-

Analysis (VA) frameworks to analyse students’ solutions to problems. 

 4.   Highlight Teaching and Learning strategies educators can use to enhance visualization and 

analytical solutions to problems in multiple integrals and dynamical systems 

1.10  Research Questions  

The guiding research questions are: 

1. What are students’ needs and difficulties in conception and solution of problems in multiple 

integration and dynamical systems?    

2. Do the activities facilitate visualization and solution of problems in the two domains? 

3. What factors influence the effectiveness of the visualization?  

4. What Teaching and Learning strategies help in the conceptualization and solution of problems 

in multiple integrals and dynamical systems?  

1.11 Limitations of the study 

Multivariate calculus is a broad area of study. It includes the study of vectors, lines, curves and 

space figures as well as differentiation and integration of functions of several variables. In this 

study we restrict ourselves to the study of multiple integrals applied to finding volumes of space 

figures.  Likewise, in dynamical systems, we restrict ourselves to systems involving two variables 

with applications in population dynamics (predator- prey equations) and chemical reactions. Our 
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focus will be the role of visualization and analytical thinking in the solution of area and volume 

integrals. 

Many factors including socio-cultural, linguistic and affective and personality factors such 

as attitudes and motivation, as well as gender are known to impact on achievement in 

mathematics. In this study we restrict ourselves to six predictor variables and study their impact 

on achievement using multiple linear regression.  

1.12 Dissertation Outline 

In the first chapter we define visualization in mathematics and describe the purpose and the 

motivation for the study. We also situate the study with respect to current literature on visual and 

analytical thinking. The chapter concludes with the aims and objectives of the research and 

problems that the study seeks to address.  

The second chapter provides a literature review on the role of visualization in multivariate 

calculus and systems of differential equations. It ends with a review of studies where technology 

was used to enhance teaching and learning of multivariate calculus and dynamical systems.  

The third chapter discusses the research methodology, the theoretical and pedagogical 

frameworks, the design of the study, and development of the analytical tools. Duval’s (1995) 

semiotic representation theory, the Zazkis’ et al.  (1996) VA framework and the teaching 

experiment, with the type of activities students engage in, are explained. 

The fourth chapter looks at common 3D mathematical objects and the role of visualization 

in setting up single, double and triple integrals. Conceptual difficulties coordinating the 

treatments and conversions between rectangular, cylindrical and spherical coordinate systems are 

highlighted. 

The fifth chapter discusses the use of qualitative and analytic methods in the solution of 

dynamical systems. We look at plotting and interpreting direction fields and phase portraits with 
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a focus on the Lotka-Volterra system, which has wide applications in business, economics, 

science and chemistry.  

Chapter six presents the results of the comparisons with t-tests and ANOVA, and the 

findings from the multiple regression analysis. Using Duval’s(1996) and Zazkis’ et al. (1996) 

frameworks, we analyse difficulties students experience in multiple integration and dynamical 

systems. 

The final chapter presents a summary of the findings, discusses the implications of this 

research and recommends future directions for research on visualization in Mathematics. 

1.13 Chapter Summary 

In this chapter, we noted that the definition and characteristics of visualization vary widely from 

field to field, and we began with a definition of visualization in mathematics education as used in 

this dissertation. Visualization involves making connections between external or internal 

representations in order to communicate information and advance mathematical thinking and 

understanding.  We note that analytical skills such as abstracting surface features, sketching 

projections, cross-sections and 3D solids, coordinating rates of change, and covariational 

reasoning are interwoven with visualization and are associated with successful performance in 

multiple integrals and dynamical systems.  We note that computer technology enables static and 

interactive visualization and we gave illustrative examples of problems in multiple integration 

and dynamical systems involving visualization that this study seeks to address. Finally, we stated 

the aims, objectives and research questions and mentioned briefly the frameworks within which 

we operate.  

In chapter 2, we conduct a review of literature that informs us about the status of research 

in visualization and we situate our study in the work of other researchers with the aim of 

extending the boundaries of our knowledge.  
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Chapter 2:  Review of literature on visualization  

in mathematics 

2.0 Overview  

This chapter begins with a review of literature on research on visualization in mathematics 

education, its classifications, its strengths and weaknesses. The second section outlines literature 

on visualization in multivariate calculus, followed by a review of visualization in the conception 

of solutions to systems of differential equations.  The final section reports on the role of 

technology in enhancing visualization and sets the scene for the theoretical framework for the 

research. 

 2.1  Visualization in mathematics  

Visualization in mathematics has a long history – pre-dating the use of diagrams in geometry by 

Greek, Indian and Chinese mathematicians – and has played an important role in the development 

of mathematics. For the Pythagoreans, visualization was an integral part of mathematics. 

Descartes (1596 – 1650), as reported in Massironi (2010), used a wide range of graphical 

representations including geometric patterns to explain dioptrics, and abstract images to explain 

his theory of vortices and magnetism. He strongly emphasised the different roles of sketches, 

figures and images in mathematical thinking and reasoning.  Calculus in the 17
th

 Century had a 

very strong visual element with constant interaction with geometrical and physical problems.  

Visualization research started slowly in the 1980s with mathematics educators probing the 

difficulties and strengths associated with visual mathematical thinking.  Sommer (1978, p. 149) 

saw visual thinking as a kind of code switching whose goal should be ‘development of capacity 

to switch back and forth between different modes of thinking as needed’ and  that our educational 

system is to blame for the lack of emphasis on visualization and visual thinking skills. He asserts:  
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‘School more than any other institution, is responsible for the downgrading of visual 

thinking. Most educators are not only disinterested in visualization, they are hostile 

toward it. They regard it as childish, primitive, and prelogical. Classes in mechanical 

drawing and the arts, in which spatial thinking still plays a role, are considered second-

rate intellectual activities’. 

In the 1990’s technology and in particular computer software, began to influence teaching 

and learning, pedagogy and curricula in school mathematics. The importance of visual processing 

in mathematics, which has diagrams, tables and graphs, spatial arrangements of symbols and 

representations, was increasingly recognized. More recently digital media including computers, 

the internet and Ipads, tablets and cellphones have had a profound influence on the learning styles 

of students. The scope of the research widened in the 2000’s to semiotic aspects of visualization 

and currently is focused on pedagogy to enhance the use and power of visualization.  

Visualization in mathematics is being actively researched.   

 Arcavi and Nachmias (1989) investigated the use of linear functions in getting adults to 

visualize the notion of slopes.  

  Mariottii and Pesci (1994, p.22) investigated inverse problems and acknowledge 

visualization occurring when 'thinking is spontaneously accompanied and supported by 

images' and imagery as 'the power to imagine the possible and the impossible'. 

 Gutierrez (1996), Kwon, Kim and Kim (2001) and Pinkernell (2000) investigated the role of 

visualization in space geometry.  

 Owens (1999) and Lawrie, Pegg and Guitierrez (2002) looked at reasoning processes in 

visualization and Murray (2001) and Littler (2002) investigated the relation between 

visualization and students’ knowledge and ways of learning.  

Other researchers are investigating the relationship between visualization and the use of 

software (Kwon, Kim and Kim, 2001), problem solving (Lampen and Murray, 2001;  Stylianou, 
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Leikin and Silver, 1999), and theories framing research and curriculum development (Gutierrez, 

1996; Owens, 1999). 

Ferguson (1992) claims that the engineering education of today has diverged too much 

from its artistic, visual beginnings, and that our curriculum relies too heavily on analytical 

methods, with little attention paid to tactile and visual perception. 

Dreyfus(1991, p. 37) suggested in a Plenary paper that  the status of visualization be 

upgraded from that of a helping learning aid to that of a fully recognised tool for learning.  He 

calls for integration across algebraic, visual and verbal abilities. 

 Nixon (2002) conducted a teaching experiment in sequences and series with six higher 

grade matriculants of mixed gender. The main emphasis was visualization, exploring patterns and 

generalization. She reported that the strategies made a positive contribution towards progress 

through the van Hiele’s geometric levels.  

Kosslyn (1983, p.191),  highlighted five important aspects of visualization. These are:   

a) image generation which is the ability to form visual images, requires activating stored 

visual information and using it to create a pattern in a spatial short-term memory structure 

called the "visual buffer"  

b) image maintenance, is the ability to retain images over time; such processing is 

necessary because the visual buffer retains information very briefly, and images are 

maintained only by continual effort.  

c) image inspection is the ability to interpret a pattern in the visual buffer as depicting an 

object or part of the object. 

d) Image scanning the systematic shifting of attention over an imaged pattern, plays a 

critical role in this ability.  

e) image transformation is the ability to rotate or otherwise alter an imaged pattern.  

Kosslyn also noted that students are relatively poor at scanning, rotating, and generating objects 

in images. 

 

 

 

 



35 
 

In 1985, Presmeg conducted her doctoral investigation on the role of visually mediated 

processes in high school mathematics. Her findings (in Thornton 2000, p.254) were that five types 

of visual-spatial representations were used by high school students while solving mathematical 

word problems. These were:  

1.  concrete imagery -  having a clear picture in the mind of the problem.   

2.  pattern imagery – looking purely at relations stripped of concrete details.  

3.  kinaesthetic imagery -  involving physical movements.   

4.  memory images eg of quadratic formula, complex number forms, and  

5. dynamic imagery, involving transformation or movement of image. 

Concrete imagery (pictures in the mind) was most prevalent followed by memory images 

of formulae, pattern imagery and kinaesthetic imagery. Dynamic imagery was rarely used and all 

students in her sample experienced problems with abstraction and generalization of information 

from the visual representations they constructed. 

She concluded that most gifted math students are non-visualizers and that the practice of 

procedures and formulas in mathematics leads to habituation, which takes a learner away from 

the visual method.  Presmeg (1997) cautioned that concrete imagery needs to be coupled with 

analytical thought processes. 

Gutiérrez (1996) explored the role that geometry software plays in the development of 

visualization and spatial ability. Based on a literature survey of relevant psychological and 

educational literature, Gutiérrez  concluded that there is no general agreement about the 

terminology used and defines visualization as ‘the kind of reasoning activity based on the use of 

visual and spatial elements, either mental or physical, performed to solve problems or prove 

properties’ (p.9). He reconciles the varying theoretical approaches to understanding visualization, 

and finds that many of these seemingly different perspectives actually share a lot of common 

ground. He suggests the following main elements unify visualization: 

 

 

 

 



36 
 

 Mental Images – any kind of cognitive representation of a mathematical concept or property 

perceived by means of visual or spatial elements. Mental images include kinaesthetic images, 

which are created, transformed or communicated with the help of physical movements, and 

dynamic images – those images with movement in the mind.  

 External Representations – any kind of verbal or graphical representation of concepts or 

properties including pictures, drawings, diagrams, etc. that helps to create or transform mental 

images and to do visual reasoning.  

 Process of Visualization – a mental or physical action where mental images are involved. 

There are two central processes of visualization – visual interpretation of information (used in 

creating mental images), and interpretation of mental images (used to generate information).  

The nature of the specific mental images necessary for a given problem is dependent on the 

specific characteristics of the problem being solved, but Gutiérrez (1996, p.10) identifies the main 

abilities as being: 

1. Figure-ground perception – the ability to identify and isolate a specific figure out of a 

complex background  

2. Perceptual constancy – the ability to realize that some characteristics of an object are 

independent of ‘size, colour, texture, or position’. 

3. Mental rotation – the ability to produce dynamic mental images and to visualize a 

configuration in movement.  

4. Perception of spatial positions – the ability to relate figures (object, picture, or mental 

image) to oneself.  

5. Perception of spatial relationships – the ability to relate several figures (as above) to “each 

other, or simultaneously to oneself 

6. Visual Discrimination – the ability to compare several figures and to determine how they are 

similar or different.  
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Visualization is a significant aspect of all branches of mathematics and not merely of 

obviously visual branches, such as geometry.  Symbolism may, in and of itself, entail spatial 

characteristics, thereby implicating visualization.  

Researchers’ Comments 

This brief overview has established that visualization is being actively researched in various 

domains in mathematics. Our attempts at identifying the characteristic components or attributes 

of visualization have resulted in a wide range of abilities including images (generation, 

maintenance, inspection, transformation), imagery (concrete, pattern, mental, dynamic), 

perception (figure-ground, visual, surface features, rotations, projections, cross-sections), and 

spatial ability (spatial relations, positions). Many of these attributes apply to our problems in 

multiple integrals and dynamical systems.  There is a clear need to define and delimit the relevant 

components for the current research to align with the topic or domain under consideration. Next, 

we look at visualization in calculus. 

2.2  Research on visualization in Multivariate Calculus 

The role of visualization and visual thinking in the teaching and learning of calculus has been 

recognised during the past two decades and given further emphasis by reform calculus textbooks. 

Hughes-Hallett (1991, p.125) advocates a balance between the graphical, the numerical, and the 

analytical: ‘A balance is required because it’s seeing the links between various approaches that 

constitutes understanding’ .  

Sevimli and Delice (2010) did a case study on 45 mathematics teachers to investigate the 

influence of spatial visualization ability in representations used in definite integrals. Tests, 

document analysis and semi-structured interviews were the research instruments.  The proportion 

of teachers using algebraic representation was 46% and the graphical representation was 17%.  

The least preferred type of representation was numerical representation. Analysis of the data 
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showed that focussing on spatial visualization ability of the teacher candidates improved the 

performance on solving definite integral problems. 

Martínez-Planell and Trigueros (2009) investigated  students’ understanding of functions 

of two variables and identified difficulties students have in the transition from one variable to 

two-variable functions. Using APOS theory, they related these difficulties to specific 

coordination that students need to make among the one variable function, and R
3
 schemata.  

In a study about geometric aspects of two variable functions, Trigueros and Martínez-

Planell (2010) found that students had difficulties intersecting fundamental planes (that is, planes 

of the form x = c, y = c , or z =  c where c is a constant) with surfaces given in different 

representational formats. Hence, their difficulties with transversal sections, contour curves, and 

projections.  

Trigueros and Martínez- Planell (2011) designed and used four activity sets to help students 

make those constructions found to be needed to understand  functions of two variables: (a) 

fundamental planes and surfaces, (b) cylinders, (c) graphs of functions, and (d) contour maps. 

Constructions and coordinations found to be missing in studies of students’ construction of graphs of 

two-variable functions can be addressed with activities specifically designed to foster those 

constructions..  

 In a large longitudinal study involving senior high school students, Sherman (1979) after 

careful analysis, in which mathematical performance was related with a number of other 

cognitive and affective variables controlled, reported that the spatial ability factor was one of the 

main factors which significantly affected mathematical performance.  

Meadows (2008) conducted a qualitative case study of a calculus III class in order to 

obtain descriptive data on students’ visual and analytical understanding of surface areas of 

familiar shapes of spheres, cylinders, prisms, and pyramids in the context of multivariate 

calculus. Specifically, her research focused on application of the surface area formula of surfaces 

described by a function of two variables. The best demonstrated understanding was observed in 
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the case of students with mathematical visualization preference and above average mathematical 

accuracy. Analytical thinkers struggled with graphing and geometric thinkers, with below-

average mathematical accuracy, showed deviations from traditional understanding of basic 

shapes. 

Schlatter (1999) used MatLab to help students in visualizing objects and surfaces 

encountered in the multivariate course and observed positive students’ responses on post- tests.  

Schlatter (2002) used multiple choice, thought-provoking  ‘concept tests’ with questions 

involving visualization to generate discussions during lectures. He reported greater active student 

involvement and positive results on the visual enhancement and concept tests. 

Habre (1999) exposed 26 students in a university calculus class to both analytical and 

visual methods of solving problems using computer software and noted that even with instructor 

emphasis on visualization, most students preferred the analytical approach. He concluded that  

this was likely because many students came from traditional schools of mathematical instruction 

where the view of mathematics was entirely algebraic. 

In a second study, Habre (2001), students used computers software to explore quadric 

surfaces, parametric equations, surfaces in spherical coordinates, vector fields and differential 

equations. He points to the void in understanding students’ learning of visual concepts and calls 

for more attention to research in multivariable calculus.  

Stylianou (2002) was interested in the interplay between visualization and analytical 

thinking as mathematics educators solved problems using the VA model. The model assumes that 

visualization and analysis, although distinct forms of thinking, inform one another and work 

together in the process of mathematical problem solving. The study suggests that mathematicians 

build the visual representation in steps which are clearly separated by a few moments, during 

which they attempt to analyse the visual representation with respect to the problem situation. This 

analysis consists of some well-structured processes which involve four types of actions: inferring 

additional consequences, elaborating on the new mathematical information, stating a new goal, 
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and monitoring their problem-solving process.  Each time a mathematician either constructed a 

new diagram or modified a previously constructed one, he/she took a few seconds to ‘extract’ any 

additional information and to understand any possible implications. Davis (1984,  p.35) calls the 

phenomenon a ‘visually moderated sequence’ which is more or less ‘look,  ponder, write,  look, 

ponder…’. 

In conclusion, most of the research findings on the role of visualization are promising. 

Activities designed to focus on spatial visualization factors like projections, rotations, contours as 

well as cross-sections seem to yield positive results on performance and attitudes towards 

mathematics. Several studies (Sherman, 1979 ; Sorby, 2001;  Cohen & Hegarty, 2012) reported 

strong correlations between spatial ability factors and achievement in mathematics and that 

spatial ability can be improved by training.  

2.3 Research on visualization of solutions to systems of ODE’s 

The analysis of nonlinear systems is a subject of much recent interest.  Some dynamical systems, 

such as are found in biology or chemical kinetics, are dominated by nonlinear behaviour.  In this 

study we use linearization, a well-established approach to analysis, which gives results that are 

always, at best, local.  

Research on students’ understandings of solutions to differential equations is also scarce 

with fewer than 10 studies reported during the last decade.  The proliferation of differential 

equations software has made it possible to switch attention from laborious algebraic solutions to 

interpretation of solutions presented in multiple forms. Research on investigations of 

understandings of solutions to differential equations has been reported by the following:  

Habre (2000) explored strategies that students use to solve ordinary differential equations.  

Using a research sample of 9 students who were interviewed, he found that most students 

attempted to solve the differential equations using quantitative methods.  Only two students were 

successful in drawing the solutions on slope fields and reading graphical information from the 
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solutions. None of the students were successful in switching between the visual and algebraic 

aspects of the solution. Habre  (2000, p.14) concludes that ‘idea of solving has remained purely 

algebraic in the minds of all students’ and ‘integrating software programs is not always a 

complete success’ as students have first got to learn the syntax that will produce the graphical 

solution. Habre recommends that the analytic and graphic-visual approaches go hand in hand and 

students be given time to develop visualization. 

Trigueros (2000) interviewed 18 university students about their solutions to ordinary 

differential equations. Students' understandings of parametric functions and variation were found 

to conflict with their understanding of phase space representations and notions of solutions and 

equilibrium. Analysis of the interviews revealed that some students had problems interpreting the 

meaning of equilibrium, interpreting the meaning of a point in phase space, and seeing the 

dependence of time in the phase space. Students in her study also showed a tendency to focus on 

just part of the information provided by phase portraits. Only a few students analyzed long-term 

behaviour of solutions in relation to equilibrium solutions.   

  Trigeuros (2004) studied  12 students’ understanding of straight line solutions to a linear 

system of differential equations. She reported that only one had a complete understanding of 

straight line solutions as analysed using a framework that categorized the solutions as  inter, intra, 

and trans modes of understanding. Her primary conclusion was that few students exhibit a strong 

understanding of solutions to differential equations. 

Klein (1993) compared the effectiveness of instructions in differential equations with and 

without a computer algebra system (CAS). Two classes worked with CAS and the other two 

without CAS. On a common post-test, Klein found no significant differences in student ability to 

find the analytical solution to the differential equations. However, CAS classes showed a 

significantly more positive attitude.    

Artigue (1992) explored the teaching of qualitative solutions of ordinary differential 

equations. Lecture sessions were supplemented with exercises using computers. She found that 
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students used criteria such as signs of dy/dx, monotonicity, zeroes of f, and slopes at various 

points to correctly match several ordinary differential equations with their solution curves.  

Rasmussen (1999) found that students often had incorrect conceptions of equilibrium 

solutions arising from the difficulty of treating the solution as a function. For example, given the 

non autonomous equations dy/dt = t + 1, students tended to reason that  t = 1 was an equilibrium 

solution. 

Rasmussen (2001) conducted semi-structured interviews with one student (Amy B.) to 

explore her understanding of qualitative solutions of first order differential equations. He found 

that Amy drew strongly on her work on modelling physical phenomenon, her conceptual 

understanding of the derivative as slope, and her work in Mathematica to infer properties of the 

differential equation, such as direction fields, slopes, solution curves, equilibrium solutions and 

rates of change in populations. 

Zandieh and McDonald (1999) also found that 7 of the 23 students in their study 

generalized incorrectly the idea of equilibrium solutions to non- autonomous differential 

equations.  

Rasmussen (2001) examined the connections students make between graphical and 

algebraic representations by providing students with the autonomous differential equation  

dN/dt = − 4N (1 –N/ 3)(1 –N/ 6)  and the corresponding  graph of  dN/dt vs. N.  While students 

could state the equilibrium solutions and the stability values they were unable to find the limiting 

populations N(2) , N(7). Questioning revealed that the graphs did not carry the intended 

conceptual meaning.    

Allen (2006) investigated how students develop and use parametric reasoning as one basis 

for understanding dynamical systems of differential equations in an inquiry-oriented differential 

equations class. She found that students already have understandings of time and rate from earlier 

experience and from their instruction covering solutions to single ordinary differential equations 

and they use this to build their conceptions and understandings of solutions to systems of 
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differential equations.  The study also provides case studies of two students’ mathematical 

activity as they learn systems of differential equations.  Finally, the study uses a new construct of 

“advancing mathematical activity” and the mathematical practices of symbolizing, 

algorithmatizing, justifying, and experimenting to document how students enculturate into the 

larger mathematical community. 

In summary, a definite shift in the orientation of the ODE courses towards multiple 

representation of solutions is noticeable. There appears to be more emphasis on general principles 

and concepts, on the use of computer tools, on graphical representations, and on numerical 

approximations. There is less emphasis on analytical solutions through use of algebraic 

algorithms that took up almost all the time and effort of the students in traditional courses on 

differential equations.  However, although more emphasis has been placed on the graphical 

solutions graphing may not necessarily develop better conceptualizations.  

 

2.4 Role of  Technology in visualization 

Technology offers mathematics educators a unique opportunity to generate, manipulate and 

present visual images in order to understand and address the problem.  The power of technology 

helps transcend the limitations of the mind in thinking, learning and problem solving activities 

and facilitate the visualization of three-dimensional objects.   

Pea (1987) distinguishes between the use of digital technology as an amplifier, doing 

tedious calculations, and as a reorganiser by producing dynamic interactive novel representations.  

 Gutiérrez (1996) reported that not much research has been done into the role of 

visualization in the learning and teaching of 3D geometry. While some research highlights 

students’ difficulties in moving between 3D objects and their 2D representations, Gutiérrez 

(1996) claims that research needs to look into the potential of computer software to enhance 

students’ visualization skills. Gutiérrez believes that the plethora of different representational 
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positions possible with computer software create a rich spatial experience for the teaching and 

learning of visualization.  

Seeburg (2005) investigated the role of software (CalcPlot3D) for the teaching of 

multivariable calculus. In his program student activities are designed to be intuitive and allow 

various geometric interactions between surfaces, space curves, vectors, vector fields, points, and 

other calculus -related objects to be dynamically and visually explored and manipulated. Surfaces 

and space curves can be easily rotated to gain a 3D perspective. Intersections between surfaces 

can be verified visually. The motion of a particle can be animated along a space curve, showing 

position, velocity, and acceleration vectors at each point. Contour plots can be displayed and then 

rotated into three-dimensions to see how they fit on the corresponding surface. A progression of 

level surfaces can be shown as a ‘movie’ by varying the value of a constant over a specified range 

and number of steps (or frames). Complex, even discontinuous, surfaces can be investigated 

easily and intuitively. It is easy to zoom in or out, make surfaces transparent or opaque, hide 

edges or faces, change viewpoint, focus, window size, and rescale the illustration. 

Cretchley, Harman, Ellerton, and Fogarty (2004) showed that with the use of software 

(MATLAB), students were able to compare, classify, analyze errors, and support the students 

who struggled with solving problems. The study showed that the software improved students’ 

attitude and confidence in mathematics. 

Operating under the Realistic Mathematics Education instructional design heuristics of 

emergent models, Rasmussen and Bloomenfeld  (2007), analysed student reasoning with analytic 

expressions, as they reinvented solutions to systems of two linear, homogeneous, differential 

equations with constant coefficients. The data comes from the inquiry-oriented differential 

equations project. The study offers teachers insight into student thinking by highlighting 

qualitatively different ways that students reason proportionally. 

Palais (1999) discussed and encouraged mathematical visualization as well as the 

integration of computer graphics in the math classroom. He found that ‘applied mathematicians 
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find that the highly interactive nature of the images produced by recent mathematical 

visualization software allows them to do mathematical experiments with an ease never before 

possible’ Palais (1999, p.652). 

Hennessy, Fung and Scanlon (2001) argue that over-reliance on computer programs can be a 

problem for the students. Computer-aided software programs can be used mechanically, and 

student’ understanding might prove superficial in even simple mathematical domains. 

Camacho-Machin, Perdomo Diaz and Santos-Trigo (2012) investigated types of 

mathematical concepts and representations students use in dealing with ODE’s.  Their findings 

were similar to Habre’s; that students do not use graphical representations or concept of 

derivative to explore meanings and mathematical relations inherent in the ODE’s. To check if a 

function is a solution of a DE, they substitute the function or solve directly the given equation. 

Also they tend to search for an algorithm to solve particular groups of equations. 

Researcher’s comments 

We note the potential benefits of using technology to enhance visualization of 3D objects and 

solutions to systems of DE’s. We also note the impact of visualization on the  motivation, 

interest, engagement and enthusiasm of the students. Some researchers (for example, Hennessy et 

al. 2001 and Rasmussen, 2001)  noted the lack of conceptual understanding of graphical solutions 

and we find that few studies indicate which features of CAS provide the most leverage for 

enhancing understanding.  

2.5  Chapter  Summary  

In summary, the review of  literature reported on studies that conducted research in visualization 

and its impact on performance in MVC and solutions to dynamical systems. We found that 

visualization is being actively researched in all branches and domains of mathematics. We 

identified classification schemes being used for attributes or characteristics of visualization and 

spatial ability and the  range of methods used including case studies, think aloud sessions, pre and 
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post-tests, experiments, as well as assessments. We note that there has been a large push to 

incorporate more visualization into mathematics curricula  (Hughes-Hallet ,1991 ; NCTM , 2004) 

and that fluency and the ability to translate between representations is an important aspect of 

problem solving in calculus. We also note some research (Aspinwall, Shaw and Presmeg ,1997) 

has shown that the effects of visualization on student reasoning are not always positive.   

We note that previous research on differential equations has focussed mainly on first 

order ODE’s (Klein, 1993; Trigeuros, 2004 ; Camacho-Machin et al., 2012) and that attention is 

slowly shifting to non-linear systems of ODE’s ( Allen , 2006 ;  Rassmussen, 2006  ; Habre, 

2002). There is a paucity of research on teaching and learning of multiple integrals as well as 

dynamical systems, which have been recognised as areas with a wide range of applications to real 

world phenomenon. Several studies (Palais, 1999 ; Hennessy et al., 2001) have examined the role 

of technology, in shifting the focus from analytical solutions to numerical and geometric 

solutions of systems of differential equations. 

 In Chapter 3 we focus on the theoretical framework, the research methodology , the 

instructional design and the choice of activities for the computer laboratory sessions. 
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Chapter 3 :   Research framework, Design and 

Methodology 

 

3.0 Overview  

This chapter presents the theoretical and pedagogical frameworks used in the teaching and 

learning of multiple integrals and dynamical systems and relates them to the design and 

methodology deployed in the research. We begin with a recapitulation of the aims and objectives 

of the study.  

The main research problem this study seeks to address is to facilitate visualization in the 

solution of problems in multiple integration and dynamical systems. The focus of the research is 

volume integrals in rectangular, cylindrical and spherical coordinate systems. The topics are rich 

in visual representations and the solution of problems need frequent conversions between 

registers on Duval’s (1995, 1996) framework, outlined in section 3.2.1 of this chapter. The 

mathematics laboratory activities engage students in the exploration of 3D objects through 

investigations of surface properties, rotations, zooming in and out, planar projections, cross-

sections, and sketching. The theoretical foundations of this are set out in section 3.6. 

The second important area of the research is to identify strategies that could be used to 

enhance the conception and visualization of solutions to systems of ODEs. The interpretation of 

phase portrait solutions to systems of nonlinear differential equations is complex.  It involves the 

integration of knowledge from different domains of mathematics and the use of multiple 

representation tools.  This complexity makes the analysis of students' conceptions of solutions a 

challenging task.  The theoretical foundations are laid out in Chapter 5. 
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In Chapter 2, section 2.4, we saw that computers offer educators an opportunity to 

generate, manipulate and present visual images of all kinds in two or three dimensions including 

curves and surfaces, direction fields, and contour plots. The images may be dynamic or 

interactive.  In particular, we want to take advantage of the power of digital technologies to 

facilitate the visualization of 3D mathematical objects and phase portraits.  The ability to draw a  

figure to represent a mathematical problem, to interpret the figure with understanding, and to use 

the figure as an aid in problem solving are fundamental visualization skills. Pea (1987) highlights 

several applications of digital technologies including their use as an amplifier, in doing tedious 

calculations, and as a reorganiser by producing dynamic interactive novel representations. We 

exploit these applications of digital technology in the teaching experiment.  

3.1 Rationale for choice of MVC and dynamical systems 

Multivariate calculus (MVC) depends to a large extent on the visual representational skills that 

students bring with them from single variable calculus. Problems involving double and triple 

integration have a strong visual element that involves projecting, seeing cross-sections and 

sketching. These are necessary to identify and sketch the bounding surfaces and find the limits of 

integration for the volume integrals. The analytical solution often follows a set of routine 

procedures.  

Traditional instructional methods offer MVC concepts through the use of transparencies, 

three-dimensional models, and demonstrations using freehand sketches on whiteboards or 

chalkboards. Attempts are made to develop or enhance students’ visualization skills through a 

series of drawing exercises. Two- and three-coordinate drawing, rotation of objects, and cross-

sections of solids are highlighted using paper and pencil sketching.  

Digital technologies offer several aids to visualization in MVC and dynamical systems. 

Concepts involving surfaces and solids of revolution and the intersection of solids can be 

developed through the use of software.  The first basic concepts of projection are explained and 
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practiced using simple, solid objects with surfaces such as rectangles, triangles, cylinders, and 

cones. 

Advances in technology, together with an increased interest in dynamical systems, and 

modelling with nonlinear differential equations, have shifted the emphasis from analytical 

solutions to qualitative, numerical and graphical solutions. Analytical methods of solution are 

important but they are no longer the sole focus.  There is a need for students to move flexibly 

between algebraic, graphical and numerical solutions and interpret and predict the long term 

behaviour of the system. Habre (2000), points out that students conceptions of solutions to DEs 

are analytic and highly resistant to change and the move to a graphical setting is extremely 

difficult. Students in his study were able to draw trajectories given the phase portrait to the 

equations: yxyyxx  3,4   and also plot the x-t and y-t graphs.  Trigueros (2000) 

found that students in her study had problems interpreting equilibrium solutions and showed a 

tendency to focus on part of the phase portrait neglecting the long term behaviour of the 

solutions. In the Rassmussen (2001) study, students had great difficulties in interpreting graphs 

they had generated using Mathematica for solutions to the undamped linear model 0 xx  and 

the damped nonlinear model 0sin  xx  of an oscillating pendulum. These studies emphasise a 

need for using a computer algebra system to reinforce student’s visual understanding of phase 

portraits, slope fields and solution trajectories of DEs.  

3.2 Theoretical framework for the study 

In this section we discuss the theoretical framework that will be used for the analysis of student 

solutions to problems in multiple integrals and dynamical systems. Two conceptual frameworks   

inform the theoretical basis used in this study. Duval’s (1996) semiotic representation theory 

provides the conceptual tools to analyse flexibility in the use of representations. The 

Visualization-Analysis framework, by Zazkis et al.(1996), highlights the visual and analytical 

steps used in the solution. 

 

 

 

 



50 
 

3.2.1 Duval’s semiotic representation theory 

According to Duval (1995, 1996, 2006), thinking processes in mathematics require not only 

the use of representation systems, but also their cognitive coordination.  Duval (2006, p.106) 

maintains that ‘semiotic representations are not only a means to externalise mental 

representations in order to communicate, but they are also essential for the cognitive activity of 

thinking’. He elaborates further that ‘mathematical processing always involves substituting some 

semiotic representation for another’ (p.107). Semiotics is the study of human sign systems.  Signs 

culturally mediate activity and direct the individual’s attention towards the mathematical object. 

The cognitive activities that play a role in representations are: 

1. Formation of representations in a particular semiotic register either to express a mental 

representation or to recall a 'real' object. 

2. Treatment - a transformation within the register. Treatments are transformations inside a 

semiotic system such as writing the equation of a sphere as x
2  

+ y
2
 + (z  2)

2
 = 4 which is in 

rectangular coordinates as  = 2 sin  in spherical coordinates. 

3. Conversion - a transformation that results in a representation in another register. 

                                                            Concept (math object)   

                

 

Cognitive obstacle 

                         Register A                                                                    Register B  

         Treatment                                         conversion                        Treatment 

Figure 3.1 :  Transformative processes: treatments are transformations within the same register;  

conversions occur across registers without changing the mathematical object. Adapted from Duval (2006). 

 

As we noted in the studies reported in the rationale (section 3.2), students often have 

problems with conversions, particularly if this change of representational form does not include a 
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set of steps or algorithms for translating parts of representation in the starting register to parts of 

the representation in the target register. For example, a change from a plot of a function (a graph) 

to an algebraic formula is difficult, whereas the other way (from formula to graph) is 

conceptually simple, since creating a table of (x, f(x)) values in principle constitutes a set 

procedure.  Although a transformation of semiotic representations can be difficult much of the 

creative potential in mathematics stems from these transformations. Digital technology has an 

important role to play in these conversions. Computer Algebra Systems (CAS) support multiple 

forms of representations, where a number of mathematical registers can be activated 

simultaneously using visual and diagrammatic types of semiotic representations. These enable 

conversion from one representation to another and facilitate accessibility of the mathematical 

object (See Figure 3.1). 

In this research, the computer laboratory activities promote the use of several systems of 

representations and the reflective use of technology that allows the student to find meaning for 

the mathematical concepts and notions he/she is learning. For example, in the algebraic register, 

the equation of a sphere, radius 2,  can be expressed as :  x
2
 +  y

2 
+ z

2 
= 4  in Rectangular 

Coordinates, as  r
2 

+  z
2 

= 4 , in Cylindrical Coordinates and as   = 2  in Spherical Coordinates. 

The symbolic register (software code) has its own semiotic system. The three semiotic 

representations (Figure 3.2) can be obtained from each other by transformations that preserve 

their (common) object, the sphere. However, given the rectangular representation in the algebraic 

register, conversion to the geometric register requires several treatments.   

The activities are used to reinforce the analytical processes that students will use in 

solving the problems. Computer software provides immediate feedback by giving students the 

solution to a complex triple integral or a system of differential equations.  This can take a student 

at least 10 minutes to work out by hand.  

Duval’s semiotic registers have been used by McGee and (2014), for studying the 

development of the definite integral of 2 and 3 variables. His main findings were that 3 semiotic 
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registers, namely, the geometric, the numerical and the expanded sum notation, (a sum in the 

sigma notation) and a definite integral were in use in teaching. He noted that it was rare for 

textbooks as well as tutors to use the numerical or the expanded sum representations.  

   Four types of apprehension of a representation were proposed by Duval (1999). These are  

1. perceptive apprehension, which enables recognition of the form of the mathematical object.   

a. discursive apprehension, the representation is seen according to a verbal description.  

2. sequential apprehension: we look at the steps, and their order, according to which a 

representation must be constructed. Finally,  

3. the operative apprehension is the most complicated. It is supposed to show the ‘idea’ of the 

solution of a problem.  

 

Figure 3.2 .A sphere centre (0 , 0,  0) , radius 2 units  a) Algebraic representations in rectangular, 

cylindrical and spherical coordinates b) Symbolic representation in Matlab and   c) the geometric 

representations  

 

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

sph2cart Example

y

z

a) Algebraic representations:

x
2
 + y

2
 + z

2
 = 4  , Rectangular Coordinates

 r
2
 + z

2
= 4  , Cylindrical Coordinates and  

� =2  Spherical Coordinates

b) Symbolic representations:
clear all
theta=linspace(0,2*pi); 
phi=linspace(-pi/2,pi/2);
[t,p]= meshgrid(theta, phi);
rho = 2+0*t;
[x,y,z]=sph2cart(t,p,rho);
mesh(x,y,z)
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3.2.2 Visualization-Analysis (VA) framework 

The second theoretical framework is the visualizationanalysis (V-A) model proposed by Zazkis’ 

et al.’(1996) to account for flexibility and links between acts of visualization and analysis or 

analytical thinking in mathematical performance. The model views visual and analytical 

reasoning as complementing each other in the solution of mathematical problems. It has been 

used by Nilsson and Juter (2011),  to account for processes and flexibility and links between acts 

of visualization and acts of analysis in 3D pattern generalization. It was extended and used by 

Zazkis (2013) in her doctoral thesis to the V-A-P model, where P refers to the  physical situation 

of the problem. The model assumes that visualization and analysis are distinct forms of thinking 

and work together and inform each other during problem solving.  Stylianou (2002, p. 306) 

clarifies this:  

“The thinking, as it is described by the VA model, begins with an act of 

visualization, V1 which is defined as an act in which the individual establishes a strong 

connection between an internal construct and the actual drawing of a picture, or the 

expression of a mental image. This is followed by an act of analysis, A1, in which the 

person does logical analysis and reasons about what was visualized in V1. Thus analysis 

involves mental manipulation of the objects or processes with or without the aid of 

symbols. It includes logical reasoning and naming of parts or processes and reflections on 

the mathematical process. It may lead to a revised visual representation.  Then follows a 

second visualization step V2, enriched as a result of A1….”  

 

The model proposes a series of switches between repeated acts of visualization V1, V2, 

V3, interspersed with acts of analysis A1, A2, A3…. following a spiral of steps,  Each act of 

analysis leads to a better and richer visual representation followed by more sophisticated 

analyses. Figure 3.3, shows the V-A model as presented by Zaskiz, (1996, p447). The top of the 

V-A spiral represents a solution which may be an algebraic or numerical expression. The 
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relevance of the VA model to solutions of problems in 2D and 3D will be established when we 

look at the type of problems the study will engage in (sections 3.7 and 3.8). 

             The VA model has been refined by Stylianou (2002), following the coding of 

mathematical problem solving processes, and elaborates on the nature of activities during the 

analysis steps.  These include: 

a) inferring additional consequences from the visual representation,  

b) engaging in elaboration and further investigation for additional consequences,  

c) setting new goals with respect to the visual representation and  

d) monitoring the outcomes of earlier analysis.  

Thus, logical analysis and reasoning, and reflections are an integral part of the V-A model. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3  The Visualization-Analysis model for probing student thinking  Source: Zazkis’ et al.  (1996, p. 447) 

 

3.3 Pedagogical  framework 

Inquiry oriented teaching (IOT) using constructivism, provides a framework for researchers 

probing the construction of mental representations, and addresses the learner’s role in the learning 

process (Ashcraft, 1989).  IOT has been implemented in reform calculus curricula as a 
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pedagogical framework and is informed by Hughes-Hallets’ (1994) rule of three, (often called the 

rule of four, if we include physical/kinaesthetic considerations). Three sub-processes have been 

highlighted within the constructive process. These are organisation of concepts within the 

existing prior knowledge, the selection of concepts based on their importance and relevance to 

the activity and the connection of concepts through inferences or elaborations. The learner uses 

multiple senses (vision, hearing, haptic, olfactory) to participate in the learning experiences. IOT 

uses critical thinking and involves the students by questioning, reflecting, predicting and 

explaining ideas. It has been used by Allen (2007) in the student understanding of ODEs.  

The review of literature, Chapter 2, informed the design of the present study. We chose 

activities and maths laboratory sessions with manipulatives (wire models and manila cardboard) 

to concretise 3D models, their nets, cross-sections etc. We used software to generate and 

manipulate visual images of 3D objects and phase portraits for DE systems. We conducted 

computer laboratory sessions using worksheets, assignments, hand-outs, and sketches. 

3.4  Methodology 

3.4.1  Pilot Study 

In the first semester of 2013, a pilot study was conducted with a sample of  31 students enrolled 

for a semester course in Calculus 3 (MAT300S). The students had a similar background 

(completed Calculus 1 and 2) and followed the same course  as in the main study. The topics 

covered included MVC and dynamical systems and in addition we tried out the lab activities.  

Data gathered from students’ assignments, lab worksheets and tests was used to formulate the 

hypothesis and finalize the activities and test items as well as decide on the variables in the 

regression study.  We found that students had difficulties with solving equations, integration  and 

differentiation and errors stemming from poor mastery of  fundamental concepts in univariate 

calculus were common. One implication was that mastery of  basic  mathematics and univariate 

calculus ( solving equations, sketching 2D graphs of functions and differentiating and integrating) 
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were an essential pre-requisite before delving into multivariate calculus. We drew up review 

problems and a pre-test to check on prior knowledge for the main study. The second part of the 

pilot study focussed on modelling a non- linear pollution problem and a system of ODE 

equations. In the pollution problem students found the analytical solutions of the ODE using 

Laplace transform methods. The coupled non-linear equations were solved analytically using 

linearization as well as phase portrait analysis. Students found the critical (equilibrium) points 

and decided on the stability of the system by setting up the Jacobian matrix and working out the 

eigenvalues. 

3.4.2 The main study 

The main study  was conducted with 2 groups of students at a university of technology following 

the Calculus 3 (Mathematics 3) syllabus in the first semester of 2014. The students could not be 

assigned randomly to treatments and therefore, the non-equivalent control group design was 

chosen from the quasi-experimental design choices.  

All of the participants had taken and passed semester courses equivalent to calculus 1 and 

calculus 2 in the previous years. Lectures for both groups were recitation and included 

chalkboard, overhead projectors and transparencies. All students had access to the Webcity where 

supplementary materials, assignments and tutorials were posted. 

3.5  Research  and  instructional  design 

The experimental group ( n = 22) attended full time, receiving their lectures on Wednesday and 

Thursday (1.45 pm to 3.30 pm.) and in addition participated in computer laboratory activities on 

Fridays (11.30 am to 1.00 pm), working in pairs on computers and worksheets. The control group 

(n=26) were part time students who attended on Wednesday evening (5 pm to 8 pm) and 

Saturday (10 am to 12.00 noon). Most of these students were working in the petro-chemical 

industry as operatives or controllers. The amount of class time dedicated to integration using four 

coordinate systems (rectangular, polar, cylindrical and spherical) and dynamical systems was the 
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same for the experimental and control groups. They used the same notes and the assignments were the 

same for the two groups.  The only differences were the additional computer laboratory activities for 

the experimental group supplemented by suitable  problems on worksheets. 

To reduce the effects of selection bias, the researcher administered pre-tests to both the 

control and the experimental group. Small tests and assignments were administered to both the 

groups at regular intervals during the semester course and major examination-like assessments 

labelled T1, T2, T3 on dates determined by the Department of Mathematics and Physics. The 

design of the study is shown in Figure 3.4. 

 

 

Figure 3.4  Design of the study 

The first week was spent on reviewing work from Mathematics 100 and 200, which are 

semester courses equivalent to Calculus 1 and 2 at a university (see Appendix 3). A pre-test, 

assessing prior knowledge was administered at the beginning of the study (week 2) to both 

groups (Appendix 4.1). The pre-test scores were taken as a measure of students’ prior knowledge. 

To check for differences between the two groups on prior knowledge the following hypotheses 

were formulated: 

 Null hypothesis: Ho  There are no differences between the scores of the control and 

experimental groups on the pre-tests.  

Alternative: H1  There are significant differences between the scores of the control and 

experimental groups on the pre-tests.   

Intervention:  Lab Activity sessions  

Control  Group 
n = 26 

Experimental 
Group , n = 22 

T3 
Final 

Integrated 
assessment 

T1   T2 

T1 T2 

 

 

 

 



58 
 

During the examinations and tests, students did not have access to software and all 3D 

sketches as well as phase portraits were sketched by hand.  The Laboratory sessions ran for six 

weeks during February and March 2014.  The performance of classes was compared through 

post-intervention tests (T1 in March, T2 in April and T3 in June). These tests covered a range of 

topics in multivariate calculus including vector analysis, and partial differential equations, but for 

this research, only the performance on integration and dynamical systems is reported. 

 

3.6  Design of mathematics laboratory  activities:  Interventions 

 The laboratory activities involved the use of software (Matlab) to construct, explore and sketch 

2D and 3D representations of various mathematical objects and phase portraits for differential 

equations. Students could use MESH ( to produce a transparent 3D object) or SURF (to  get an 

opaque shaded surface of the 3D object). They could change the view angle to see the 3D object 

in different perspectives, rotate the solid to examine surface features, view intersections and 

cross-sections and sketch the projections in the xy, yz, and xz planes ( See Figures 3.5 and 3.6). 

The worksheets had spaces for drawing projections and cross-sections and the 3D solid. See 

completed worksheets in Chapter 7.  

Using the symbolic toolbox in Matlab, students could check the results of their  

integration for each set of triple integrals they set up and change the  order of integration.  

Students were also encouraged to do hand calculations. Immediate feedback came from the 

software as answers could be checked and changes made to correct errors. 

 

Lab Session 1:  Visual exploration and sketching of 3D objects (ellipsoid, sphere, cylinder, 

cones) given in the algebraic registers: Rotation, translation, Zooming in Out, from different 

viewpoints (See Figures. 3.5 and 3.6). 
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Figure 3.5 Exploring 3D objects in MatLab 
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Figure 3.6  Exploring  3D objects in CalcPlot3D an applet available on the Internet 

 

Figure 3.7  Intersections : Cone and sphere     

Lab Session 2 :  Identifying and sketching intersections between planes and 3D objects 

The goal of this activity was for students to explore the varied intersections of 3D shape with a 

plane and to describe the attributes of the intersection with algebraic equations. (See Figure 3.7 

and Figure 3.8a) 

Lab Session 3: Riemann Sums by increasing the number of subintervals, the difference between 

the lower and upper sums can be made to decrease, suggesting that the lower and upper limits 
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eventually coincide with the value of the definite integral.  Single and double integrals using  

Matlab.(See Figure 3.8 b) 

       

 
(a)                                                             (b)                                        

 

Figure 3.8 a) Plane cone intersections   b)  Riemann Sum: Using rectangular prisms to 

approximate the volume of the solid region between f(x,y) = 4−2x
 
+ y and  the xy-plane in the 

first octant 

Lab Session 4  Triple integrals. Sketching level curves and projections in xy, yz and xz planes.  

Sketching contours (See  Figures 3.9 for examples).   

Lab session 5: Plotting direction fields.  Identifying equilibrium points, solution curves isoclines, 

nullclines and interpreting long term trends  

a) Direction fields:  Type in the Matlab codes. See Figure 3.10. 

b) Phase portraits – Lotka-Volterra Equation 

Lab session 6: Sketching phase portraits and identifying equilibrium points. Stability analysis.  

Using eigenvalues.  Describing the stability.  Figure 3.11 shows a completed worksheet. 

We hypothesize that the visualization of the solution to problems involving 2D and 3D 

objects and directions fields and phase portraits can be enhanced by the Laboratory activities and also 

that the interaction with the mathematical objects and their representations in the algebraic and 

geometric registers can promote the perceptual, sequential, discursive and operative apprehension in 
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(a)                                                       (b) 

 

 

Figure 3.9   a)   Paraboloid     

                      z = 2x
2 

+3y
2
   

(b) level sets for z = 2x
2
 +3y

2
   

(c)  contour diagram 
 

                                                                    (c) 

Duval’s (1996) framework. By changing the values of the parameter a student can see the effect on 

the 2D as well as 3D drawings. An example of this is the introduction of small perturbations in the 

Lotka Volterra equations discussed on pages 119- 120. Encouraging students to solve the problem 

analytically and at the same time verifying the solution on the software provides immediate feedback.  

  

Figure 3.10 a) Direction field for dy/dt = cos(2t)  y/t    b) Phase portrait for x’=  x and y’= y  y2 
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Figure 3.11 Example of a differential equations Lab worksheet used in the computer sessions 
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3.7 Ethical  Issues 

Before the beginning of the research study, ethical approval was obtained from the Cape 

Peninsula University of Technology and the University of Western Cape Higher degrees 

Research committees (See Appendix 1, p.190).  Ethics were approved based on the researcher 

following particular conditions as were laid out in the ethics application form. These included:  

a)  Providing participants with a participant information sheet (See Appendix 2) which included 

what the purpose of the investigation was, what their participation involved and how they would 

benefit from the investigation.  

b) Providing participants with a participant consent form, which confirmed they were willing to 

participate in the study.  

c)  Confidentiality of the participants was guaranteed by not releasing names or student numbers 

of the participants and by only allowing the investigator access to the data.  

  

3.8  Data Sources   

Data was collected from two groups (Control and Experimental) who were registered for a 

Bachelor of Technology degree in chemical Engineering following Mathematics 3 in the first 

semester of  2014.  In addition to theoretical work the experimental group attended six laboratory 

sessions where they were exposed to activities in Matlab as described in section 3.6. Instructions 

and questions were given on worksheets. At the end of the Lab sessions students submitted the 

completed worksheets. Data was also collected through student Tests  (T1, T2 and T3), 

assignments and interviews with selected students. 

a. Pretest   This consisted of  9 items and  its purpose was to see if there were any differences 

between the control and experimental groups and to  identify difficulties and obstacles students 

experienced with functions, 2D curves, differentiation, integration and DEs.  
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b. Assignments Two major assignments were set, one on double and triple integration and 

another on solutions to systems of non- linear Differential Equations.   

c. Laboratory worksheets: Designed mainly to reinforce visualization of 3D objects and phase 

portraits. See Chapter 7.  Students plotted the 3D shape and viewed the projections. These were 

then used to find the limits of integration.   

d.  Observations and oral interviews: Oral interviews were conducted at the end of the semester 

with four students from the experimental group selected on the basis of their work as presented in 

test scripts.  The goal of these interviews was twofold :  first to clarify the visualization of the 

required region and second to follow up on errors they made in finding the limits of integration 

and their interpretation of the phase portraits. The interviews were audiotaped, semi-structured 

and lasted between 10 minutes for the short questions on double integrals to half an hour for the 

phase portraits and accompanying graphs.  During the interview, the participants were given their 

scripts and asked to go over their solutions explaining how they arrived at the limits . If 

participants said something that was unclear or interesting, they were  asked to clarify expand on 

these issues. The  interviews were conducted with students after class and audio recorded. 

Transcripts of the interviews are presented in Chapter 6 as interview excerpts. 

e. End of semester evaluation: An end of semester lecturer evaluation where students ranked 

variables such as clarity of notes, visuals, lectures, appropriateness of laboratory  sessions, 

worked examples, and use of software on a scale of 1 to 5 was conducted at the end of the 

semester. This provided feedback on different aspects of the research.  

 

3.9 Research Validity 

A key criterion in research is validity. Research validity is concerned with construct validity, 

internal and external validity as well as statistical conclusions validity. Our concern is the 

appropriateness of the inferences drawn from the data.  

 

 

 

 



66 
 

The researcher conducted a thorough literature search to identify the constructs defining 

visualization as they apply to multiple integration and dynamical systems. The preoperational 

explication of the constructs was based on the results of a conceptual analysis of visualization 

using Duval’s (1995, 1996) semiotic representation theory and Zazkis’ et al. (1996) V-A 

frameworks.  In addition to the semiotic registers the perceptual, sequential, discursive, and 

operational apprehension stages in Duval’s framework adequately captured student thinking and 

understandings in the two subject domains. There were no confounding levels of constructs or 

need for additional levels. 

Internal validity deals with issues such as dropouts, absentees, diffusion of treatment 

between control and experimental groups and so on. Student dropouts occurred for various 

reasons including reasons to do with employment. Some had night time shifts and found it 

difficult to attend all sessions. Other reasons included financial and personal reasons (pregnancy) 

and inability to cope with the demands of work and study. However, as this affected both groups 

it is unlikely to confound the findings or bias the results of the study in any way.  Students who 

missed a test were given an equivalent test on the same topics. Students who missed the computer 

laboratory sessions had an opportunity to schedule another session when the laboratory was free 

but this was discouraged. This was not possible for the regression study as the researcher did not 

have alternative versions of the tests. These students were excluded from the regression study 

leaving 21 students out of 28 with complete data for the regression analysis.  

It was not possible to prevent communication between the control and experimental 

groups and as such diffusion of treatment between the groups may be a confounding factor 

affecting the results of the study. In particular, assignments and worksheets were completed 

collaboratively outside lecture time. 

As far as external validity is concerned, the researcher worked with two classes doing 

Mathematics 3 (Calculus 3) in a university of technology and the findings can only be generalised 

to tertiary students doing similar courses at this level after having completed Calculus 1 and 2. 
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Random assignment to experimental and control groups was not possible. The choice of the 

topics was based on what was in the syllabus and the findings of the study do not necessarily 

apply to other content domains or branches of mathematics.  

The violations of assumptions for the ANOVA and multiple regression analysis are 

discussed with the results of the data analysis in Chapter 6.  Preliminary data analysis was done 

using Excel followed by a more thorough analysis in the statistical software package, SAS.  

The choice of the variables and the reliability of the test items for the dependent and 

independent variables for the regression study and pretest are discussed in the following section. 

The pilot study, conducted in the first semester of 2013 and the reliability coefficients of the 

testing instruments determined using the split half method, were found to lie between 0.58 and 

0.67.  The surface features test was found too easy (𝑋̅ = 68.57;  𝑆𝐷 = 26) while the Nets most 

difficult (𝑋̅ = 51.86 ;  𝑆𝐷 = 21.57).     

3.10  Data Analysis  

As this study compared the groups, each with two levels, men and women, for the characteristics 

identified, a two way unbalanced analysis of variance was run to check for significant differences 

between the control and experimental groups as well gender differences. The distribution of the 

number of students in the control and experimental groups by gender are shown in Table 1.  

 

Table 1 Distribution of students in the study by group and gender 

 CONTROL EXPERIMENTAL Totals 

Male 18 10 28 

Female 8 14 22 

Totals 26 24 50 

 

In the regression analysis, complete data on all independent variables was available for only 21 

students in the experimental group. The control group did not participate in the laboratory 

activities as they attended part-time after hours when the laboratories were out of bounds.  
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3.11 Multiple Linear Regression Analysis 

Multiple regression analysis is a statistical technique used to predict or explain the variation in 

the dependent variable ŷ   in terms of independent variables,  x1, x2, …, xk.   We applied multiple 

linear regression of y on x1, x2, …, xk based on the equation:  

,  ŷ   = b0 + b1 x1 + b2 x2 + ………+ bk xk +  (linear) 

Where ŷ stands for the predicted y value, bo is the intercept, the value of y when all the x’s are 

zero. Here b1, b2, b3, …, bk are analogous to the slope in linear regression equation and are called 

regression coefficients. They can be interpreted the same way as slope. Thus  bi = 2.5,  indicates 

that y will increase by 2.5 units if  xi increases by 1 unit. The conditions for estimation and 

inference in a multiple linear regression are: 

1. The errors are normally distributed 

2. The mean of the errors is zeroe 

3. Errors have a constant variance 

4. The model errors are independent 

Violations of the assumptions are checked using standardised residual plots, i.e residuals divided 

by their standard deviations. 

The appropriateness of the multiple regression model as a whole can be verified by the  

F-test in the ANOVA table. A significant F indicates a linear relationship between y and at least 

one of the independent variables. 

 Once a multiple regression equation has been constructed, one can check how good it is 

(in terms of predictive ability) by examining the coefficient of determination (R
2
).  R

2
 always lies 

between 0 and 1 and is often expressed as a percentage.  

A related question is whether the independent variables individually influence the 

dependent variable significantly. Statistically, it is equivalent to testing the null hypothesis that 

the relevant regression coefficient is zero.  
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     When two variables are highly correlated, they are basically measuring the same 

phenomenon. When one enters into the regression equation, it tends to explain most of the 

variance in the dependent variable that is related to that phenomenon. If a correlation coefficient 

matrix with all the independent variables indicates correlations of 0.75 or higher, then there may 

be a problem with multi-collinearity in the model. If multi-collinearity is discovered, the 

researcher may drop one of the two variables that are highly correlated with the dependent 

variable. 

A dependent variable is defined as ‘the measured outcome of interest’.  The measured 

characteristics of the dependent variable were mathematics achievement scores on Test 2 (on 

multiple integrals and ODE systems), for each student.  A treatment variable is one whose value 

defines group membership (i.e Experimental or Control Groups) . The review of literature helped 

to identify six independent variables. One of these was Pre-test scores (prior knowledge) and the 

other five are described in Table 2. 

Table 2  Description of variables used in the regression study 

Variable Description 

1.Surface features of 3D objects 

(SURF) 

Students count edges, faces and vertices of 3D objects 

Perceive and describe the figures' properties by their 

similarities and differences, recognize the regularity or 

irregularity of the shapes 

2. Net and solid matching 

(NET) 

 

Students match net to solid obtained on folding net 

Students match edges on folding nets to edges on 3D sketch 

of solid and draw their nets. 

3. Projections  

(PROJ) 

Students sketch projections of 3D object in the xy, yz and xz 

planes 

4. Cross-sections  

(XSECT)  

Students sketch the cross-sections when solid is intersected 

by vertical, oblique or horizontal cutting planes 

 

5. Solids and Rotations  

(ROTNS) 

 

Students match solid after rotation 
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Test items for each of the independent variables in the regression model were selected from 

various standardised tests. Examples of items used for each independent variable follow. 

1. Surface features  
 

Given the 3D solid situated in the first octant (Figure 3.12) : 

a) How many plane faces are there?   

b) How many vertices does the 3D solid have?   

c) How many edges does the 3D solid have?  

                                                      

                                                          Figure.3.12  3D solid 

2. Identifying and sketching Projections   

Given the 3D solid  (Figure. 3.12) , sketch     

a)  xy projection      b) yz projection         c) xz projection 

 

 

3. Nets and solids:   

 

a) Which of the nets A, B, C shown fold into the pyramid on the left? 

 

 

 

 

 

A B C 

 

 

b) Which two of the nets shown fold into the same box? 
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4. Drawing cross-sections of given solids. If you look in the direction of the arrow what do you 

see in the cutting plane. 

 

 
Source: Math Online, Glenco.com, p.3 

 

5. Identifying solid after rotations: Which of the solids A,B,C, D, E will you get after rotating 

the solid in the first block on the left.   

 

  
    

 A B C D E 

Source: Source: Alaskan Spatial Test Battery  

 

3.12 Chapter Summary 

In chapter 3, we discussed the research methodology and the theoretical and pedagogical 

frameworks for the study. Duval’s (1995, 1996) semiotic representation framework, the Zazkis’ 

et al. (1996) visualization-analysis framework and the teaching experiment with the type of 

activities students engaged in were outlined. We also looked at the design of the study, 

development of the analytical tools, and testing their reliability and validity. The teaching 

experiment and the activities in the computer laboratory were outlined. The data sources were 

identified and methods of analysis include a 2 by 2 unbalanced ANOVA and multiple regression 

analysis. The chapter ended by giving examples of test items for each of the independent 

variables used in the multiple regression. 

 Chapter 4 focusses on the theoretical foundations of multiple integration with a focus on 

the role of visualization in solving problems involving single, double and triple integrals.  
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Chapter 4  :  The role of visualization in evaluating 

multiple integrals 

 

 

4.0  Overview  

The motivation for research in the teaching and learning of multiple integrals is the numerous real 

world applications of integration in science and engineering. We use single integrals to find the 

planar area under a curve f(x)dx, to find the work done when a force F displaces an object  F.dr, 

to find the energy changes when a gas expands  p dV  and so on. We use double integrals when 

we want to find the planar area, moments of inertia and centre of gravity of laminae, volume and 

mass enclosed under a surface. Triple integrals are useful to compute volumes, masses, centres of 

gravity, moments of inertia of space figures and solid objects in R
3
. They are fundamental to the 

study of fluid flow and heat and mass transfer. 

In this chapter, we review single integrals in section 4.11 and introduce the double 

integral  
D

dydxyxf ),(  where D is the plane area in R
2
. We look at areas in rectangular 

coordinates using the Riemann sum dxdy and extend these to polar coordinates (sections 4.2 and 

4.3).  In section 4.7, we look at triple integrals   
R

dV)z,y,x(f   where R is in 3D. We discuss 

setting up the integral in rectangular coordinates in different orders and we extend this to 

cylindrical coordinates for regions which are circular.  Finally, in section 4.8 we look at using 

spherical coordinates for conical and spherical regions. We unpack the visual elements in each of 

these domains. 
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4.1 Visualising integration of single variable functions 

     

 

 

 

 

 

 

 

Figure 4.1. Single integral: Planar area under f(x) by slicing  

Consider a single variable function f(x)  0 plotted against x as shown in Figure 4.1. Given f(x) is 

continuous over [a ; b],  we can divide [a : b] into rectangular subintervals of equal width, x and 

height, f(x). The height is taken as the value of f(x) in the middle of xi.  We can approximate the 

area of the region under f(x) and the x-axis by summing the areas of the rectangles f(xi)xi over all 

the rectangles taking the limit as  xi  0. The definite integral of this function f(x) over a range 

[a, b] is: 

      



b

a axbx
i

ii
x

xgxgxxfdxxf
i

)()()(lim)(
0

 

where xi and xi is the position and the width of the i-th rectangle respectively. The function f(x) 

is called the integrating function or the integrand and the range [a, b] is called the integrating 

region with limits a and b. The definite integral is equal to the area bounded by the curve y = f(x) 

and the x-axis.  

 The indefinite integral of this function is defined as the inverse of the derivative, i.e. 

   Cxgdxxf )()(    where )(xf
dx

dg
  and C is an arbitrary constant.  

a               xi           b                 x 

 y= f(x)          f(x) 
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The physical interpretation depends on what f(x) and x represent. If the integrand f(x) is the linear 

density (x) of a wire (i.e. mass per unit length) at position x, then the definite integral:   

  


b

a
i

i
mi

i

ii
x

mxxdxx
i 00

lim)(lim)(   represents the total mass of the wire as (xi)xi = 

mi is the mass of the i-th partition of the wire. 

Similarly, if the integrand is the velocity function v(t) of a particle at time t, then the definite 

integral is the total distance travelled between the time interval t = a and t = b , that is, 

  


b

a
i

ii
t

ttvdttv
i

)(lim)(
0

 as v(ti)ti is the distance travelled in the i-th time interval.  

4.2  Visualizing double integrals in rectangular coordinates 

In the case of double integral of a two variable function, the integrating function f(x, y), is a two 

variable function and the integrating region D, is in the xy plane.  If the function f(x, y) is plotted 

as the z-axis, then z = f(x, y) is a surface over the integrating region R. Figure 4,2. 

 

 

Figure 4.2  Double integrals for areas and volumes 

 The integrating region D is partitioned into small rectangles Rij centered at (xi, yj) with area 

of Aij. The double integral of the function f(x, y) over the region R is defined as: 

 


ji

ijji
A

DD

AyxfdAyxfdxdyyxf
ij ,

0
),(lim),(),(  

D 

  

    R 

,z = f(x,y) 

x 

z 

    y 

   X1              X2                     X 

 , y 

 

Y2 

y1 

 

D 

Partition Rij at position 

of (xi, yJ) with area dAij 

= x y  
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For each of the small rectangle Rij centered at (xi, yj), the term Aij f(xi, yj) represents the volume 

bounded by the surface z = f(x, y) and the small rectangle Rij.  Thus, the double integral, defined 

by the summation of the  Aij f(xi, yj) terms over the integrating region R, is the volume bounded 

by the surface z = f(x, y) and the integrating region R. 

 

 

 

 

 

 

 

 

Figure 4.3 Finding the volume between f(x, y) and the xy-plane 

Physical interpretations of the double integral depend on the functions f(x, y). If the integrating 

function f(x, y) is unity i.e. f(x, y) = 1, in the whole integrating region, then the term   f(xi, yj)Aij = 

Aij, is the area of the partition Rij and the double integral  
 ji ij

ARR
AdAdAyxf

ij
,0

lim),(  

is the total area of the region R. 

If f(x, y) is the height from the (x, y)-plane, then  
 ji ijji

AR
AyxfdAyxf

ij
,0

),(lim),(  is the 

volume between f(x, y) and the xy-plane, bounded by region D. 

Note that we can span the region by fixing xi and summing over all possible yi to give the volume:

.),(),(
2

1

xdyyxfyxyxfdV
j

y

y
ijii 





  The total volume bounded by the surface z = f(x, y) 

and the region R can be obtained by summing dVi over all possible xi, i.e. 

Partition Rij at position of (xi, yJ) 

with area dAij = x y  
 

x 

y 

z 

  ,  f(x, y) 

App. Volume of cuboid  

        = Aijf(xi,yi) 
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    











2

1

2

1

2

1

),(),(
x

x

y

y
i

y

y
i

i

i dxdyyxfxdyyxfdVV . 

If y is temporarily fixed at yj first, then the volume is given by:  .),(
2

1

2

1
  





y

y

x

x
dydxyxfV  

In general: .),(),(),(
2

1

2

1

2

1

2

1

dydxyxfdxdyyxfdxdyyxf
y

y

x

x

x

x

y

yR    









  

4.3 Double integrals in polar coordinates 

If the integrating region R is given in polar coordinates (r , ), the whole region  is partitioned 

into some small area Aij as shown in Figure 4.4. The area of the small partition Aij is r r and 

the volume enclosed by the surface z = f(x, y) and the small partition Aij is dV = f(x, y) r r. 

Therefore, the volume bounded by the surface z = f(x, y) and the region Aij is given by the double 

integral: 


  ddrrrrfdydxyxf
R

)sin,cos(),( .  

 

Figure 4.4 Area element in polar coordinates 

4.4   Illustrative examples on double integrals 

To find the area of the region in R
2 

, bounded by the curves y =  ln (x),  y = 2 and the coordinate 

axes, we draw a  sketch and identify the region (See Figure. 4.5). To find the limits of the 

integrals we slice the region in the x- or  y- directions into rectangles. In this example, the 
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required region can be sliced (traversed or spanned) more easily in the x-direction and then the   

y-direction.  We find left x-limit is x = 0.  To find the right x-limit we need to make x the subject 

of the equation ).(xny   This gives x = e
y
, and our inner limits for x run from x = 0 to  x = e

y
. 

The y limits run from y = 0 to y = 2. And the double integral set up is  
2

0

^

0

ye

dxdy .  

 

Figure. 4.5  Horizontal slicing of required area defined by  y = ln(x),  y = 2 and the x and y axes 

 

Figure 4.6 Vertical slicing of required area defined by y = ln(x),  y = 2 and the x and y axes 

Slicing (spanning or traversing) the region in the y-direction we need a split integral: to give the 

area of the rectangle A, between x = 0, y = 2 and x = 1 and then the area B, between x = 1 and the 

curve x = e
y
.  The split integrals we set up are:     

2^

1

2

ln

1

0

2

0

e

x

dydxdydx . While the first part of the 

split integral is easy to set up, for most students visualizing the second part is challenging. 

Evaluating the second integral without software is also difficult.   In Chapter 6, we  look more 
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closely at the difficulties students experience in evaluating these integrals using the theoretical 

frameworks.  

4.5  Visualizing triple integrals 

If )z;y;x(f is an integrable function over a region R, then the triple integral of )z;y;x(f  over R 

is 
R

dV)z;y;x(f . If )z;y;x(f =1 then 
R

dV gives the volume. 

Definition: For a region R, a partition into n pieces, is a list of disjoint rectangular boxes inside 

R, where the k th rectangle contains the point (xi; yj; zk), has length xi, width yj, height zk, and  

volume Vijk = zk yj xi.  

Definition: For f(x; y; z) a continuous function and P a partition of the region D, we define the 

Riemann sum of f(x; y; z) on D corresponding to P to be  f(xi; yj; zk)Vijk.   

 Consider the integrating region R, in this case a parallelepiped as shown in Figure 4.7. It is 

partitioned equally into a number of small cubes. We label the cubes so that the cube Rijk is 

located at (xi, yj, zk) with lengths of xi, yj and zk  in the x, y and z directions respectively. The 

volume of each small partition Rijk is xiyjzk. Therefore, the triple integral of the function f(x, y, 

z) over the integrating region R is defined as: 

             


kji

ijkkji
V

RR

VzyxfdVzyxfdxdydzzyxf
ijk ,,

0
),,(lim),,(),,(  

 

 

              

 

 

Figure 4.7 Conceptualising Riemann sum for triple integrals  

Partition Rijk at 
position of (xi, 
yj, zk) having 
volume of dVijk 

= xyz 

z 

      

y 
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 If the integrating function is the constant function whose value is one, i.e. f(x, y, z) = 1, then 

the term f(xi, yj, zk) Vijk = Vijk  will be the volume of the partition Rijk. Thus the limit of the 

summation over all the partitions will give the total volume of the integrating region R, which is 

the triple integral in this case. 

4.5.1 Triple Integrals over Rectangular Integrating Regions 

Suppose the integrating region R is a rectangular box. (See Figure 4.7). If R is enclosed by the 

planes x = x1, x = x2, y = y1, y = y2, z = z1 and z = z2, i.e. R = {(x, y, z): x1  x  x2, y1  y  y2 and z1 

 z  z2}, the triple integral over R is given by the expression: 

.),,(),,(),,(
2

1

2

1

2

1

2

1

2

1

2

1
     




























x

x

x

x

z

z

y

y

y

y

z

z
R

dzdyzyxfdxdydzzyxfdVzyxf  

4.5.2 Triple Integrals over Non-rectangular Integrating Regions 

To evaluate a triple integral over a non-rectangular region, we can first integrate with respect to z, 

then with respect to y, and finally with x. Thus the triple integral over the region R = {(x, y, z): x1 

 x  x2, g1(x)  y  g2(x) and h1(x, y)  z  h2(x, y)} is given by the expression:      

   













2

1

2

1

2

1

)(

)(

),(

),(
),,(),,(

x

x

xg

xg

yxh

yxh
R

dxdydzzyxfdVzyxf  

If the order of integration is switched, the integral would be given by a similar expression 

Using Fubini’s theorem, multi-dimensional integrals may be reduced to iterated integrals.  

Depending on the integrand and the shape of the region it may be necessary to change the order 

of the variables or use a different coordinate system most commonly polar, cylindrical or 

spherical coordinates.  

The difficulty in setting up triple integrals is converting the description of the region into 

explicit bounds of integration. To do this, we choose an order of integration, and then slice up the 

region of integration accordingly. Two methods for determining bounds are the  shadow or 

projection method and the cross-section method 
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Fubini's Theorem guarantees that the order of integration does not matter as long as the 

function is continuous.   

Theorem (Fubini's Theorem 2). Given f(x; y; z) is continuous on R = f(x; y; z) : a  x  b; g1(x) 

 y  g2(x); h1(x; y)  z  h2(x; ,y)},  then the triple integral can be computed using iterated 

integrals,    
R

b

a

)x(g

)x(g

)y,x(h

)y,x(h

dxdydz)z,y,x(fdV)z,y,x(f
2

1

2

1

.  And the iteration can be done in any 

one of six orders. All orders of integration will also yield the same value. 

We note that the bounds for the outer variable must be constants, the bounds for the 

middle variable can only depend on the outer variable, and the bounds for the inner variable can 

depend on both of the others. 

In effect, we have simplified calculating a triple integral to calculating three single 

integrals, where each of the integrand is a one-dimensional integral in the x, y and z directions. In 

this case, we need first to calculate the inner integral with respect to the variable z, and then the 

integrals with respect to the variables y and x. 

Physical interpretations of the triple integral depend on what the integrating function f(x,y,z) 

represents. If the integrating function is density (x, y, z) (i.e. mass per unit volume) of a solid 

and the integrating region R is the solid, then the term (xi, yj, zk) Vijk represents the mass of the 

cube Rijk. The limit of the summation over all the partitions will give the total mass of the solid. 

4.6 Triple integrals in rectangular coordinates - Illustrative Examples 

Example  1  :  Use a triple integral to find the volume of a tetrahedron enclosed by the plane 

 z = 4  2x  y in the first octant i.e   x, y, z  0.   

  To sketch the solid we find the traces or projections in the xy, yz and xz planes. As discussed 

earlier, in our theoretical framework analysis, treatments and conversions are necessary. For 

example to get the trace in the xy plane we let z = 0 in  z = 4  2x  y to give y + 2x = 4, which is 

the equation of a straight line. We record the traces as shown in Table 3 for each plane. 
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Table 3 Projection of  z = 4 – 2x – y in the xy, yz and zx planes 

Plane Equation Description  Sketch of trace 

Let z = 0,    xy plane  ,  2x + y = 4 Straight  line 

 

Let y =0,    xz plane ,  z = 4  2x Straight line 

 
Let x =0,    zy plane ,  z = 4  y 

 

Straight line 

 
 

Combining the traces gives us the sketch shown in Figure  4.8. Next we set up the volume 

integral. We find the limits of triple integration.  We work on the innermost limit first which 

corresponds with the variable ‘z’.  Think of standing anywhere in R vertically with the feet on the 

lower limit and head touching the higher limit.  The lower limit, anywhere in the xy-plane, is  

z  =  0.  The upper limit is the plane  z = 4  2x  y. 

 

Figure  4.8 The plane z = 4 – 2x – y in Matlab and its sketch 

    (0, 0, 4) 

x 

,  z = 4  2x  y 

2x+y=4 
(2, 0, 0) 

        (0, 4, 0) 
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Solving for z, we get   z  =  4  2x  y.  We let z run from z = 0  to the plane z = 4 2x  y. The x 

and y coordinates are in the projection of z = 4  2x  y on the xy-plane, bounded by the x and y 

axes and the line 2x + y = 4. See Fig 4.2 (b). 

 

Figure. 4.9 Finding limits for  y using the  

xy-projection 

 

 

Now we work on the middle limits that correspond to the variable ‘y’.  We look at the projection 

of the surface in the xy-plane (see Figure  4.9). The lower limit is just  y  =  0  and the upper limit 

is found by setting  z  = 0 and solving for y. We get for the upper limit as  y  =  4 2x. 

Finally, we find the outer limits, corresponding to the variable ‘x’.  The lowest x gets is 0 

and highest x gets is 2.  Hence     0  <  x  <  2.  The triple integral is thus    
 2

0

24

0

24

0

x yx

dxdydz . 

An alternative approach used by some authors is to obtain the limits of integration in the 

order dz dy dx is to begin on the outer integral and find the range of x: we see x runs from 0 to 2.  

We then slice the region into cross-sections parallel to the x-axis. Each cross-sections is a triangle 

with length in y direction equal to 4  2x.  Finally we fix x and y and determine the bounds on z.  

These run from 0 to 4 2x  y. 

The volume integral could have been set up in 6 different ways, depending on the 

coordinate plane where z = 4 – 2x  y  is projected. We looked at the projection in the xy plane. 

The same projection can be used to set up the integral with dydx interchanged. The limits along z 

remain unchanged but we need to solve for x in y = 4  2x. So the x limits run from x = 0 to x = 

(4y)/2 and the y limits run from 0 to 4. The projections and the 6 permutations are shown in the 

Table. 4. 

4 

  2 x 

, y = 4  2x 
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Table 4  Projections and the six permutations of dxdydz for volume of tetrahedron  

 

We discuss another example. We require the volume in the first octant bounded by the surfaces, x 

= 0,  z = 1 y  and  y = x .  We sketch the region, find the limits of integration and set up an 

appropriate integral. Computer software can help us sketch the figure and identify the projections 

and the required volume.  See Figure 4.10. 

We place our volume element dz dy dx in the required volume and visualise the element 

growing into a column from the floor to the roof in the z direction, then a wall parallel to the y 

axis, and finally look at the limits for x as the wall is stretched in the x direction. See Table 5.  

Table 5  Projections and the limits of dxdydz for volume enclosed by z= 1 y  and  y = x .   

Projection in xy plane Projection in yz plane  Projection in xz plane 

 
Projection in xy plane 

a) y runs from  y = x  to 1 

b) x runs from 0 to  x = y
2 

 

 
Projection in yz plane 

a) z runs from 0 to 1  y 

b) y runs from 0 to 1  z 

 

 
 

Projection in xz plane 

a) z runs from 0 to x1  

b) x runs from 0 to (1 z)
2
 

 

 

Projection xy plane Projection zy plane Projection xz plane 

 
  

  
 2
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Figure 4.10 The R
3
 solid bound by the surfaces x = 0,  z = 1 y  and  y = x .   

The limits for z are: from z = 0 to  z = 1  y, the limits for y are from y = x  to  y =1 and 

the limits for x run from 0 to 1. Our integral is    
1

0

1 1

0x

y

dxdydz . Table 6 shows the rest of the 

permutations for dxdydz 

Table 6. The six permutations of dxdydz for volume bound by x = 0,  z = 1  y  and  y = x .   

  
1

0 0

1

0

2y y

dydxdz    
1

0

1

0 0

2
z y

dxdydz    
1

0

1

0

1
2)z(

x

dydxdz  

  
1

0

1 1

0x

y

dxdydz    
1

0

1

0 0

2y y

dydzdx    
1

0

1

0

1x

x

dxdzdy  

 

Another approach to this problem is to use cross-sections.  In determining the limits for 

integration in the order:    
1

0 0

1

0

2y y

dydxdz ,  the outer limits for y range from 0 to 1. Slicing the 

region into cross-sections along the y-axis gives triangular cross-sections with length in the x 

direction ranging from 0 to y
2
. Fixing x and y, gives the bounds on z which are 0 to 1  y.   

 

We end this section, with a final example on integration in rectangular coordinates. We 

need the volume of the solid polar cap bounded by the sphere x
2
 + y

2
 + z

2
 = 9.  

x 

y 

z  
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x

sphere cut by plane z =2

y

z

Example:  Find the volume of the cap cut by the plane z =2 from the sphere given by r
2
 +z

2
 =9.  

The lower boundary of the region is the plane z = 2 and the upper boundary is the portion of the 

sphere on which z  = 
229 yx  (See Figure 4.11).  These are the inner limits of the triple 

integral   




229

2

yx

z

dzdydx . For the middle and outer limits we look at the projection of R in the xy 

plane.  To find the intersection of the sphere x
2
 + y

2
 + z

2
 = 9  and the plane z = 2 we substitute  z = 

2 in x
2
 + y

2
 + z

2
 = 9. This gives the intersection,  x

2
 + y

2
 = 5.  This is a circle of radius 5. The 

projection on the xy plane is also the circle, x
2 

+ y
2
 = 5. Thus the limits for the integration are : 

                                        










5

5

5

5

9

2

2

2

22
xy

xy

yx

z

dxdydz . 

If the inner integration is done with respect to y the left boundary of the cap is given by  

229 zxy    and the right boundary by 
229 zxy  . The projection of the cap in the 

xz plane is bounded by  z = 2 and the circle x
2
 + z

2
= 9. Therefore the integrals are:   
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Figure 4.11 Plane z = 2 cutting sphere  
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Finally the integration with the inner integral as dx gives   









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2 22
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dydzdx    and  

  

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Figure 4.12 Projections of the cap in the xy and yz planes 

These integral expressions are difficult to compute without parametrization and in the following 

section we consider cylindrical and spherical coordinates systems. 

4.7 Visualising space figures in cylindrical coordinates  

In this section we look at visualising space figures in the cylindrical coordinate systems, useful 

for space figures like cones, spheres and cylinders that have line and plane symmetry. It is 

coordinate systems (rectangular, cylindrical, and spherical) as working in the appropriate 

coordinate system, reduces the number of variables in expressions from three to one or two, 

eliminating much of the computational complexity.  

Cylindrical coordinates ( r, , z) and the Jacobian 

To define cylindrical coordinates of a point P we need : the polar coordinates (r, ) of the 

projection of OP on the xy plane, and the z coordinate of the point, that is, we need the 3 

coordinates (r, , z). The dimensions of r and z are units of length and   is measured in radians 

     













x

y

y^2 + z^2 = 5

z = 2

x = sqrt (5)
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anticlockwise from the positive x-axis (See Figure 4.14).To transform from rectangular to 

cylindrical coordinates we use the relationships:  x = r cos  ; y = r sin , z = z.   

In cylindrical coordinates r = c, traces vertical cylinders of radius c, centred in the z axis.  

Also  = c generates vertical planes about the z-axis, and z = c generates a horizontal plane (See 

Figure 4.13 (a), (b) and (c) respectively. 

 

Figure  4.13  Surfaces in cylindrical coordinates 

 

Figure. 4.14 Coordinates of a point in cylindrical coordinates 

Constant  r 
generates 
a cylinder 

Constant  
generates a 
vertical plane 
surface 

Constant z 

surface 

r  

z 

,       P( r ,  ,  z) 

x      
  r 

    x 

y 

In cylindrical coordinates: 

r is the distance of P from the z-axis.  

θ is the angle from the x-axis to the  

projection of  r on the x-axis    θ [0,  2π). 

z is  same as in rectangular coordinates.  

  x= r cos  ;  

y = r sin , 

 z = z 

dV = rdr dz d 

(a) (b) (c) 
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Figure 4.15 Volume element r dr d dz  

Consider the partitioned small volume as shown in Figure.4.15. The volume of this small 

partition is dV = (rd)(dr)(dz). We again have  6 ways of ordering our variables i.e r dr d dz,       

r dr dz d ,   dz r dr d,    dz d r dr  ,  d dz r dr  and d r dr dz. 

Therefore, the triple integral of the function f(x, y, z) over the region R is equal to:  

 
zrR

dzrdrdzrrfdVzyxf
,,

),sin,cos(),,(


  and the Jacobian of transformation from 

Cartesian to cylindrical coordinates is 

0

100

0cossin

0sincos

///

///

///

),,( 











 rr

r

zzzrz

zyydry

zxxrx

zrJ 









  

If the integrating function is already given in cylindrical coordinate, then 

 
R zr

dzrdrdzrffdV
,,

),,(


  

Example 

We will integrate over the solid S formed under the paraboloid z = 4  x
2
  y

2 
 , z  0, using 

cylindrical coordinates.  

Integration using the order dz dθ dr 

To determine the limits of integration, we take the outermost variable and work inward. The 

integral will have the general form 

  




2

1

1

1

2

1

r

r

)r(

)r(

),r(fz

),r(fz

drddzr)z,,r(f









  
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Graph of  z =  4 –  x
2
 – y

2
 

 

Horizontal slice, radius, r  depends on z  

 

Projection xy- plane  

Figure 4.16  Paraboloid  z = 4  x
2
  y

2 
 , z  0,  

The outermost variable is r. We determine the maximum and minimum values of the outermost 

variable, r. These will be the limits of integration on the first (outer) integral. In our projection on 

the xy plane we see r runs from 0 to 2 and enter these as limits for r. 

  

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
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)r(

),r(fz
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drddzr)z,,r(f









  

Next we take a slice formed by keeping the outermost variable r, constant. Now determine the 

maximum and minimum values of the middle variable, . This gives the limits of integration for 

the middle integral.  θ is between 0 and 2π and doesn't depend on z.  Thus the limits of the middle 

integral are 0 and 2π. 
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Finally, we determine the range of the innermost variable in terms of the other two variables. z 

runs  between 0 and 4  r
2
.  The final integral is as follows:  

  












2

0

2

0

4

0

2

1

2
2

1

r

r

rz

z

drddzr)z,,r(f





 . To find the volume we set  f(r, , z) = 1. 

As in the case of rectangular coordinates there are 6 permutations of drdzd  for 

integration in cylindrical coordinates. We have discussed the integration in the order dz d dr 

using the projection of z = 4 – x
2
 y

2
 on the r -  or xy plane. Using the same projection we can 

write the integral for dz dr d. The limits for the outer variable  are independent of r and z, so  

runs from 0 to 2, as before.  The limits for the middle variable r run are the same as before; r 

runs from 0 to 2π : z depends on r and runs from 0 to 4  r
2
.  Hence the integral is 

  

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ddrdzr)z,,r(f . To set up the integration    
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r

dzdrdr)z,,r(f





 we start 

with the outermost variable, dz. The minimum value of z is 0, maximum value of z is 4, so the 

outer limits are 0 to 4. Next we keep z constant and look at r.  

We notice that r runs from 0 to z4 . We enter this in our integral: Finally keeping 

variables z and r constant we  find the range for  is 0 to 2. 
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  

Problem : Find the volume of the space figure enclosed by the surfaces represented by  

f(x , y) = x
2
 + y

2
 and g(x ,  y) = 6  

22 yx   . 

Next we set up the volume integral.  By reference to the projections, limits in the x, y and z 

directions are established. However, the limits for x and y are in the plane of intersection of the 

space figures.  Not everyone can visualise the plane of intersection of the cone and the paraboloid 

easily or see the cross-sections clearly.  

The algebraic equation for the intersection can be found by analysis:  Thus :    
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z =  6  
22 yx  =  x

2
 +  y

2
.  An easy way to solve this is to use the polar relation x

2
 + y

2
 = r

2
.  

Therefore,  6  r = r
2   
  (r + 3) ( r  2) = 0  and r = 2 or 3.  

 

Figure.4.17 The space figure f(x;y) = x
2
 + y

2  
and   g(x;y) = 6  22 yx   

,  xy projection ,  yz projection ,  xz projection 

 

 

 

Radius =2 

 

 

 

 

Figure 4.18. Projections in the xy, yz and zx planes 

The integral and the limits in rectangular coordinates drawn by reference to the sketches and 

projections are:   



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dzdydx  

It is difficult to do this integration in rectangular coordinates manually and so we 

transform. Inspection of the 3D representation shows line symmetry and so the limits in 

cylindrical coordinates are:   r   : from  0 to 2,         : from 0 to 2  and        z : from r
2
 to 6  r.  

Setting the integral in cylindrical coordinates gives:    
2
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Looking back at the solution, and the VA framework, we find acts of visualization 

interspersed with analytical thinking. We list these acts in Table 7. We do not expect all students 

to take each step in the same order.  We expect some students to already have well-built schemas 

for the mathematical objects. These students would proceed directly to the visual representations 

of the functions without going through the process of detailed projections. 

The difficulty of visualizing the projections of 3D solids is one of the reasons that students 

find multiple integrals challenging.  Close scrutiny of the solution indicates a need for constant 

transition between analysis (finding equations of projections, intersections) and visualization 

(sketching the space figures).  

 

Table 7  Acts of visualization and analytical thinking used to find the volume enclosed by 

f(x ; y) = x
2
 + y

2
 and g(x ; y) = 6  

22 yx   . 

Analysis Visualization 

A1: Algebraic register: Finding equations for 

traces/projections eg  Let x =0,  f(x ; y) = y
2
 

A2: Coordinating projections mentally 

A3: Assembling solid in 3D mentally 

Geometric register  

V1: Sketching projections and traces 

V2: Sketching cross-sections 

V3: Sketching  the solid  z = f(x ; y) = x
2
 +y

2
 

 

A3:  Finding traces/projections algebraically 

for z = f(x ; y) = 6  22 yx      

A4: Putting together the projections 

 

V4:  Sketching    z = f(x ; y) = 6  22 yx      

V5: Drawing projections and traces 

V6: Drawing cross-sections 

A5: Determining plane of intersection: 

substitution  f(x ; y) = x
2
 + y

2  
 = 6  22 yx  . 

A6:  Solving to give x
2
 + y

2  
 = 4. 

V7:  Visualizing need for intersection 

V8:  Reassembling sketch 

A7. Selecting appropriate coordinate system 

A8. Choosing an order of integration 

A9: Evaluating the integral 

V9. Visualizing rectangular, cylindrical , 

spherical coordinate systems 

V10. Finding limits by slicing/spanning 
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4.8 Triple integrals using spherical coordinates 

 
We have looked at integration in rectangular and cylindrical coordinates. Next we discuss 

integration in spherical coordinates. We use spherical coordinates when we are dealing with 

objects that are parts of spheres and cones i.e when there is point/line symmetry. We establish 

that  
2
sin  as the Jacobian for integration in spherical coordinates. 

To define spherical coordinates, we choose a ray OP originating at the origin, O and 

terminating in P(x,y,z). The spherical coordinates of the point P are: the distance  from P to the 

origin; the angle   between the line OP and the positive Z- axis; and the angle  between the 

initial ray and the projection of OP on the xy plane ( See Figure 4.19). 

In the spherical coordinate system:    

  is the distance from the point to the origin. ρ cannot be negative. 

θ  same as in cylindrical coordinates ,  θ must be in the interval [0,2π). 

 is the angle between the vector OP and the z-axis.    must be in the interval [0,π]. 

Geometrically we can establish the following relations between rectangular coordinates, x, y and 

z and the spherical coordinates , , : 

222

222222

costan

sinsin

cossin

zyx

z
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zyxzr

y

x


















 

The volume element is 

 dddsindV 2 . 

Note:   0,   0       and 0    2 

 

 

 

 

 

 

Figure 4.19  Variables in spherical coordinate system 
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The Jacobian of transformation from Cartesian to spherical coordinates is found as 

follows: 

 

 

 

 

Hence, the formula of change of variables for this transformation is 

 
V V

dddsin)cos,sinsin,sincos(fdzdydx)z,y,x(f  2
 

Or if the integrating function is already given in the spherical coordinate, then 

 



,,

2 sin),,( dddfVdf
R

 

It is easier to calculate triple integrals in spherical coordinates when the region of integration U is 

a sphere (or some portion of it) and/or when the integrand is a kind of   f (x
2
 + y

2
 + z

2
). 

Again there are 6 possible permutations of the variables dρ dθ d. We look at an example. 

Example 

 Find the volume of the solid bound by 
22 yxz   and the sphere x

2
 + y

2 
+ z

2
 = 4.   

Solution: See sketches Figure 4.18.  We begin with the outermost variable and work inward. The 

integral will have the general form 

  
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1. We find the maximum and minimum values of the outermost variable, .   runs from 0 to 2 

radians and we enter these in the outer integral: 
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Figure. 4.20 Intersection 
22 yxz   and the sphere x

2
 + y

2 
+ z

2
 = 4 

 

 

      

 

 

 

Figure 4.21 Sketch of intersection 
22 yxz   and the sphere x

2
 + y

2 
+ z

2
 = 4 

2. We  keep  constant and determine the maximum and minimum values of the middle variable 

 in  terms of the outermost variable. This will give the limits of integration for the middle 

integral.   runs from 0 to /2:   




  




2

0

2

0

2

1

2

/

dddsin  

3. Finally we substitute the limits for ρ:  ρ runs from 0 to 2. And we integrate: 

             

        r 
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We outline the general process for setting up and evaluating triple integrals: 

Step 1: Sketch and determine the region of integration. 

Step 2: Determine the projection in the xy, yz and xz coordinate planes. Sketch and label the 

curves on the projections. If necessary determine the intersections of the bounding surfaces. Slice 

up the region according to the chosen order: first slice into 2-dimensional cross-sections 

perpendicular to the outer variable. Then further slice up each 2-dimensional cross-section using 

the procedure for double integrals. 

Step 3: Determine the limits of integration one at a time, starting with the outer variable, then the 

middle variable, then the inner variable.  

Step 4: Evaluate each iterated integral as a single-variable integral in the appropriate variable. 

Remember that all variables except the current variable of integration are to be treated as 

constants. 

4.9  Chapter Summary 

This chapter provides the theoretical background and examples of problems in integration that 

students are expected to solve. The approach to single and double integrals for finding areas was 

outlined and the strategies for visualizing the switch of variables highlighted. The need for polar 

coordinates was explained. This was extended to triple integrals in cylindrical and spherical 

coordinates where the problems of switching are compounded. The teaching method emphasized 

using projections and cross-sections for setting up the volume integrals. The VA framework was 

applied to look at the analytical and visual aspects of solutions. 
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Chapter 5  : Stability analysis of dynamical  

   systems 

 

5.0 Overview  

In this chapter, we look at the role of visualization in the solution of dynamical systems defined 

by systems of ODES. Our focus is the use of visual representations such as direction fields and 

phase portraits to graphically display the solutions. We seek answers to questions such as what 

difficulties do students encounter in visualising, constructing and interpreting solutions to ODEs? 

What is the relationship between visual and analytical strategies in solving systems of DEs? 

A dynamical system describes how two or more quantities evolve over time. The 

quantities we look at are interdependent entities, such as the population sizes of plant and animal 

species and their interactions in an ecosystem, the positions and velocities of celestial bodies in 

the solar system, and the concentrations of  reactants in a chemical reaction. There are many other 

examples of phenomena or processes that can be described by dynamical systems in science, 

business and engineering.  

We begin by defining terms used in the study of dynamical systems and distinguish 

between systems represented first by linear and then by non-linear ODEs. Dynamical systems are 

deterministically causal, in that a given initial condition, determines the state of the system at 

every future time. In general, the stability of linear systems can be described completely in terms 

of the eigenvalues and eigenvectors of the system. We extract the characteristic trajectories 

around equilibrium points and critical elements such as limit cycles and describe the long term 

behaviour of the solution curves. We then extend our analysis to nonlinear systems. 

It is usually not possible to find a closed form explicit solution for most nonlinear 

differential equations. The behaviour of nonlinear systems may be studied using phase plane 

analysis. The goal will not be that of finding analytical solutions to the equations, but rather that 
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of determining the possible geometric configurations of the solution curves. The solution curves 

will be studied in the xy-plane with the independent variable t treated as a parameter.  

5.1  Visualizing ODE solutions using direction fields 

A differential equation is simply an equation that relates quantities with their rates of change. For 

example, given dx/dt = g, we see that the amount by which x changes, dx, in some small amount 

of time, dt, is equal to a constant, g. The solution to the differential equation is a function x(t) = 

gt + c.  It is a general solution. We can find particular solutions by substituting initial or 

boundary conditions.  

A direction or slope field is a graphical representation of a differential equation. It is a 

graph of short line segments whose slope is determined by evaluating the derivative at the mid-

point of the line segments.  Figure 5.1 shows the slope field for dx/dt = 0.5. The slopes of all the 

line segments are 0.5. Analytically, the solution is x(t) = 0.5 t + c.  

 
Figure 5.1 Direction field for dx/dt = 0.5 – All solution curves have slope 0,5. Chosen initial  

values are (0, 0)  (0,1) and (0,2) 

 

Slope fields provide two types of information about the Differential Equation 

1. Sketch of solutions. The line segments in the direction fields are tangents to the actual solution 

of the differential equation. We can use these as guides to sketch the graphs of solutions to the 

differential equation. In Fig. 5.1 the solution curves are all straight lines with slope 0,5 
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2. Long Term Behaviour. Slope fields can tell us how the solution behaves as time, t increases. 

This can be used to predict the long term behaviour of the solution. 

An equilibrium solution of a dynamical system is a solution value that does not change 

with time. This means if the system starts at equilibrium, the state will remain at the equilibrium.  

In a continuous dynamical system, such as dx/dt = f(x), we can find the equilibrium solution by 

setting dx/dt = 0, that is, we solve the equation f(xe) = 0  . 

A fixed point is either stable or unstable depending on the behaviour of the trajectories in 

a neighbourhood of the fixed point.  If all the trajectories remain near the fixed point, then the 

point is considered stable, and if any of these trajectories do not remain in a neighbourhood of the 

fixed point, the fixed point is considered unstable.   

Example 2.  Sketch the direction field and a set of solution curves for the autonomous DE:  

x = (x1)(x3). Determine how the solutions behave as t → ∞ and if this behaviour depends on 

the value of x(0). 

 

Figure 5.2  (a) Direction field for the DE: x = (x 1)(x 3)    b) equilibrium solutions (nullclines)  x = 1 and x =3    

c) some trajectories (solution curves) for initial values are shown 
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The equilibrium solutions can be found by setting the function on the right hand side of the 

differential equation equal to 0.  Thus, (x  1)(x  3) = 0  gives the solutions x = 1, x = 3. These 

are the equilibrium solutions (slope = 0).  The long term behaviour depends on x. The direction 

field is shown in Figure 5.2. It confirms our analytical solution, obtained using MATLAB or by 

separation of variables. Using Matlab the solutions are: 

>> dsolve('Dx = (x1)*(x 3)','t') 

ans = 

x =    3  ,  x =  1,      x = 1  2/(exp(C1 + 2*t)  1) 

The equilibrium solutions are xe1 = 1, xe2 = 3 .  The long term behaviour in this case 

depends on the value of  x at  t = 0.  As t  ,  for x(0) < 1 , x 1,   for  1 < x(0) < 3,  x  1 and 

for x(0)  > 3,   x   . Therefore xe =1 is a stable solution, whereas xe = 3 is an unstable solution. 

For an ODE system, nullclines are the geometric shape in the x-t plane for which dx/dt = 0 for 

any t.  They are boundaries for determining the direction of the motion along the trajectories.  

They split the phase plane into regions of similar flow. The intersection point of all the nullclines 

is an equilibrium point of the system. The analytical solution can be found easily by separating 

the variables. The initial values determine the unique solution trajectories. For example, the 

solution through x(0) = 2 is  x(t) = t

t

e

e
2

2

1

3




 . This solution curve is shown on the direction field in 

red (See Figure 5.2). 

5.2  Linear dynamical systems 

In this section we discuss some of the terms relevant to dynamical system analysis. We also look 

at some methods for analysing the behaviour of dynamical systems. We consider parameters,  

variables, equilibrium points, stability, and other key concepts in understanding the dynamical 

behaviour of the system.  
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 Linear systems obey two properties, superposition and homogeneity. The principle of 

superposition states that for two different inputs, x and y, in the domain of the function f,   f(x+y) 

= f(x) + f(y). This principle enables us to split a system of equations into parts that are easier to 

solve. The whole solution is the sum of the partial solutions. By applying the principle of 

superposition, we can find exact, predictive solutions for most linear systems. 

The property of homogeneity states that for a given input,  x, in the domain of the function 

f, and for any real number k,  f(kx) = k f(x). 

A function that does not satisfy superposition and homogeneity is nonlinear.  

For most linear systems, it is relatively easy to find exact solutions that we can use 

to predict the future behaviour within the system. In general, the variables that describe the 

state of linear systems can: 

1. Grow or decay exponentially. An example is where the rate of growth or decay dN/dt 

is proportional to the number present at any instant, N  i.e dN/dt  N.  Inserting the 

constant of proportionality k gives dN/dt = k N . The solution N = c e
kt
 where c 

represents the initial number No and the sign of k determines whether there is growth or 

decay. 

a) When k > 0 there is growth. An example of this occurs when bacteria are allowed to 

grow with unlimited resources.  

b) When k < 0 there is exponential decay, with N heading toward zero. A common 

example is the decay of radioactive materials. 

c) When k = 0 , N is constant. (We met this case in section 5.1). 

2. Cycle periodically, forever oscillating between values. An example is a harmonic 

oscillator such as a pendulum oscillating in the absence of friction. 

3. Exhibit any combination of the above behaviours. The pendulum in air (with friction) 

oscillates, but each cycle is shorter than the preceding one until the mass stops moving.  

All of these behaviours are nice and predictable in the linear view.  
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The analytical approach to stability relies on analysing the effects of small 

perturbations. We say that the equilibrium point (xe, ye) is locally stable if the system returns to 

(xe; ye) after a small perturbation, and unstable otherwise. Mathematically, we can analyse this by 

linearizing the right-hand side of each of the differential equations about the equilibrium point.  

Consider the linear system:    

x = ax +by   

y = cx +dy      

By letting f(x , y) = ax + by and g(x , y) = cx + dy, the system can be written in matrix form 

  

















),(

),(

)(

)(

yxg

yxf

ty

tx

dt

d
 

where the right-hand side is a vector-valued function that maps a point in R
2
 (the two-

dimensional real plane) into a point in R
2
. To linearize a vector-valued function, we need to 

linearize each component separately. Linearizing a function of two variables about a specific 

point is equivalent to finding the tangent plane at this point.  The equation of a tangent plane of  

f(x, y) about (xe , ye) is given by 

  )(
),(

)(
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ee

e
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We thus find for the linearization of the vector-valued function 
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Letting the perturbations,  xx ˆ   and yy ˆ  ,  with 0)ˆ,ˆ( yxf  and 0)ˆ,ˆ( yxg , we find 
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The matrix 


























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







y

yxg

x

yxg
y

yxf

x

yxf

yxJ
),(),(

),(),(

),(    is called the Jacobian. The system is a linear 

system of two equations, and we can use the results from linear systems of two differential 

equations to determine the stability of the equilibria, namely: 

 The equilibrium is a node if both eigenvalues of the Jacobian evaluated at the equilibrium are 

real, distinct, nonzero, and are of the same sign. The node is locally stable if the eigenvalues 

are negative, and unstable if the eigenvalues are positive. 

 The equilibrium is a saddle if both eigenvalues of the Jacobian evaluated at the equilibrium 

are real and nonzero but have opposite signs. A saddle is an unstable equilibrium point.. 

 The equilibrium is a spiral if both eigenvalues of the Jacobian evaluated at the equilibrium 

are complex conjugates with nonzero real parts. The spiral is locally stable if the real parts of 

the eigenvalues are negative, and unstable if the real parts of the eigenvalues are positive. 

 

To summarise, analytically, we can solve a linear system defined by the two ODEs  

 dx/dt = ax +by   and dy/dt = cx +dy  where a, b, c and d  are constants by determining the 

equilibrium points, finding the general Jacobian J(x . y), the eigenvalues at the equilibrium points 

and eigen-vectors. These provide enough information about the stability of the equilibrium 

points. 

Consider a pair of coupled linear homogenous 2D system of ordinary differential 

equations:   x = ax +by ,   y = cx +d y , where the differentials x and y are with respect to time, 

t and a, b, c, d are constants. We can find a formula for the general solutions using eigenvalues. 

We write the system in matrix form as : AX = X  where lambdas are the eigenvalues for which 

non-zero solutions exist and X = 








y

x
 and  A is the matrix 









dc

ba
.  Rewriting the equation as  
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AX    I = (AI )X  = 0 we have X
dc

ba
















= 0 where , I is the 2  2 identity matrix. 

For non-zero solutions the determinant | AI | must equal 0.  Therefore,  

| AI | = 
2
  (a + d)   (ad – bc) = 0.  

This equation, also called the Characteristic Equation, is central to the theory that establishes that 

trajectory behaviour is dependent on the eigenvalues. Each eigenvalue has associated 

eigenvectors, V,  that specify lines which are invariant under the transformation. The way such a 

line itself is transformed is given by the corresponding eigenvalue. Knowledge of eigenvalues 

and eigenvectors is sufficient to describe the qualitative behaviour of the linear system. 

Thus, if  V1 and V2 are the eigenvectors associated with the eigenvalues then the general 

solution can be expressed as :  
tt eVceVctX 2

22

1

11)(    , where c1 and c2 are constants of 

integration. 

Next, we look at some cases of  qualitative solutions of linear dynamical systems and use 

trajectories to describe their stability. 

5.3  Visualizing phase portraits of linear systems 

A phase portrait is a graphical tool to visualize the solutions of a given system of differential 

equations. We can use it to interpret the behaviour of the system in the long run.   It has a 

representative sample of trajectories. A trajectory is a directed path traced by a solution. The  

xy-plane is called the phase plane because a point in it represents the state or phase of the system.  

The phase portrait method is often the only method available for nonlinear ODEs. 

Case 1:  Distinct real roots: System Equations: Example:   dx/dt = x and dy/dt = 2y 

Characteristics Equations:    
2 
 3  +2 = 0;   

Eigenvalues  = 1;    = 2   ;     Stability: Unstable node 

System dx/dt = x and dy/dt = 2y has solutions  x = c1e
t
 and y = c2e

2t
 easily found by separation of 

variables. Dividing the second equation, dy/dt = 2y by the first, dx/dt = x, and solving for y in terms 
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of x gives dy/dx = 2y/x. Separate the variables and integrate to give the solution  y = cx
2
. Figure 

5.3 shows the phase portrait.  On the phase portrait the trajectories have the opposite direction 

depending on c. Thus, if c is positive, x  1 and y  1 when t  1.   In this case (0 , 0) is an 

unstable node.  The variation of x and y against t are also of interest. These are shown in  Figure 

5.4.  As t     x    and y  . 

 

Figure 5.3  Phase portrait showing  y Vs x.  (0 ; 0)is an unstable node.  All solutions move away from (0 ; 0). All 

trajectories are parabolas. 

 

 

Figure 5.4 All solutions tend to ; (0;0) is an unstable node 

Case 2 : Distinct real roots . Both eigenvalues are negative 

Differential Equations:    dx/dt = x ,     dy/dt = 2y 

Characteristic equation:  
2 

+ 3 + 2 = 0 has distinct real roots.   
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Eigenvalues = 2 ;  = 1   ;          Solution :   x = c1 e
t

,  y = c2 e 
2t

 

Equilibrium Point: (0 ; 0) is a stable node      Analytical Solution  y = cx
2
.   

Trajectories:  dy/dx = y/x:  All trajectories tend to (0 ; 0) Thus, the node (0,0) is asymptotically 

stable. 

 

Figure 5.5 Phase portrait for the linear DE system, dx/dt =  x ; dy/dt =  2y 

 

 

Figure 5.6  All solutions tend to 0.  (0 , 0) is a stable node 

Case 3 :  Consider the system : dx/dt = x + y and dy/dt = x  y. The system has just one 

equilibrium point (0 , 0). Eigenvalues are 0 and 2.  The  solutions using dsolve in Matlab are  x 

= c1e
t

 cos t + c2e
t

 sin t and  y =   c1e
t

 sin t + c2e
t

 cos t .  The spiral point (0,0) is 

asymptotically stable. All trajectories go clockwise, in spirals to (0,0). 

Phase portrait : x ' = - x    y ' = - 2 y
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Figure 5.7  Dynamical system has one equilibrium point (0 , 0) which is a spiral sink and is asymptotically 

stable. 

 

 

 
 

Figure 5.8 Spiral sink. All solutions tend to 0 as t   
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Case 4 :  Differential Equations:   x = x  y ,   y = x   y 

Characteristic Equation:  
2  

 + 2 +2 = 0 has complex roots,    1 = 1+ i  and  2 =  1 i    

The critical point (0 ; 0) is a stable focus. Spiral sink  counterclockwise.  

Case 5: Differential Equations:   x = x  y  ,   y = x +  y    

CE : 
2  

 + 2 +2 = 0 has complex roots 1 = 1 +  i  and 2  =  1   i    

The critical point (0 , 0) is a stable focus  (spiral sink)  

Case 6:  The system dx/dt =  x  y and dy/dt =  x + y has one equilibrium point (0 , 0). The 

solutions are linear combinations of  e
2t 

and e
2t

 .  The graphs of solutions are hyperbolas. The 

point (0 ; 0) is called a saddle point.  See Figure. 5.9  

 

Figure 5.9   Phase portrait for the system:   dx/dt =  x  y and dy/dt =  x + y.  Equilibrium point (0 , 0) is 

a saddle point. 

phase portrait for x ' = - x - y  ;  y ' = - x + y
 

 

 

 

 

 

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

saddle point (unstable)

 

 

 

 



109 
 

 

Figure 5.10  Phase portrait shows a stable equilibrium point,  a centre 

Differential Equations:  x=2x + 2y ;   y=  4x  2y 

Characteristic Equation:  
2  

 + 4 = 0 has complex roots 1= +2 i  and 2 =  2 i    

The critical point (0 , 0) is a stable centre. 

Consider now the system dx/dt = y and dy/dt = x: Its only equilibrium point is (0,0). The 

solutions are linear combinations of cos t and sin t.  So, the solutions  are circles with the centre at 

(0,0). In this case (or similar case when the solutions are ellipses), the equilibrium point is called 

a centre. 

 

Figure 5.11 Critical point (0;0), a stable centre 
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We summarise the behaviour of linear dynamical systems:  

1. The system is asymptotically stable if all solutions converge to (0;0) as t  . The eigen 

values are real and both negative  (nodal sink) or have negative real parts (spiral sink) 

2. The system is unstable if the solutions near the origin stay near the origin for all times and 

the eigen values are purely complex or one is 0 and the other negative (ellipse) 

3. The system is unstable if it is neither of  the above two cases : At least one trajectory 

leaves the vicinity of the origin.  

Table 8 gives a summary of the stability corresponding to each type of eigenvalue. 

 

Table 8.  Summary of stability that the eigenvalues represent. 

 

The Determinant-Trace method diagram is often  used to establish the stability of a linear 

dynamic system.  In the Characteristic Equation  
2
  (a + d) + (ad – bc) = 0 the sum of the 

diagonal elements,     (a + d ) is called the trace, T  and the difference of the products of  the main 

diagonal and the off diagonal elements, ad – bc  is the determinant, D of matrix A.  

Figure 5.12 shows the equilibrium point can be one of six types: A stable node, an unstable 

node, a stable focus, an unstable focus, a centre, and a saddle point. 

 

Eigenvalue Type Stability 
Oscillatory 

Behaviour 
Notation 

All Real and + Unstable None Unstable Node; source or repeller 

All Real and    ve Stable None Stable Node; sink or attractor 

Mixed + &  Real Unstable None Unstable saddle point 

+a + bi Unstable Undamped Unstable spiral 

a + bi Stable Damped Stable spiral 

0 + bi Unstable Undamped Circle  : Focus or centre 

Repeated values Depends on orthogonality of eigenvectors 
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Figure 5.12 Determinant-Trace diagram to establish nature of Equilibrium points 

If the determinant is negative we have exponential growth in one direction and exponential 

decay in another direction giving rise to a saddle point. If the determinant is positive and the trace 

is positive we have exponential growth with or without oscillations. If the determinant is positive 

and the trace is negative we have exponential decay with or without oscillations.  

These findings are summarised here pointwise: 

1. If D is negative then the fixed point is a saddle point.  

2. If D is positive and T is positive then the fixed point is unstable.  

3. If D is positive and T is negative then the fixed point is stable.  

4. If D is positive and T = 0 then the fixed point is a centre.  

5. If D is positive and T
2 
 4D is positive then the fixed point is a node.  

6. If D is positive and T
2 
 4D is negative then the fixed point is a focus. 
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5.4 Non-linear dynamical systems  

Non-linear systems are common in science and engineering.  Unlike linear differential equations, 

there are few analytic techniques available for solving non-linear systems.  We approximate these 

systems with a linear system in a neighbourhood of each equilibrium solution.   We then use 

matrices to solve for the eigenvalues of the linearized system at each equilibrium point. These 

indicate the type of stability and characteristics of the steady states near equilibrium points. The 

stability of an equilibrium point depends on what happens to solutions near the equilibrium. The 

linear approximation is a good approximation to the function f  for points close to the 

equilibrium. The linearized ODEs indicate exactly how far from steady state a given process 

deviates. Nonlinear, autonomous systems of ordinary differential equations are of the form  

 

 

 nn
n

n

n

xxxf
dt

dx

xxxf
dt

dx

xxxf
dt

dx

,,,

,,,

,,,

21

212
2

211
1















 

where each of the functions fi on the right-hand side are real-valued functions in n variables.  

Examples of non-linear equations include: 43

2









y

dt

dy
  which has a derivative raised to 

power 2 and 43  yln
dt

dy
 which has yln a non- linear function of y. 

The solution of non linear systems can be approximated using our knowledge of linear systems. 

Often the behaviour of the full non-linear system is like that of the linearised system. We start by 

finding the equilibrium or fixed points. We linearize the system using the Jacobian at each fixed 

point, determine the eigenvalues and the nature of stability of the fixed points and we deduce the 

rest of the phase portrait from this information. 
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The principle of superposition does not apply for solutions to nonlinear differential equations and 

analytical methods such as Fourier transform and Laplace transform cannot be applied. 

The Lotka-Volterra (LV) Model 

The LV predator-prey model has been used to represent changes in variables in a wide range of 

fields. In a simple ecological model, one species, the predator, feeds on the other one, the prey, 

while the prey feeds on something else (vegetation) already in the environment. One example, 

would be lynx and hare in a forest, where the lynx (predator) eat the hare (prey) and the hare eat 

natural vegetation. In a study by Ahmadian (2008), the  Lotka-Volterra competition equations 

were used to describe how a new technology (such as new transportation fuel or solar electricity 

run vehicle) grows in a system dominated by an old technology (such as internal combustion 

engine).  In a model in economics, employment rate was used as the prey, the wage bill was 

predator. It has important dynamical concepts that can be useful to illustrate the stability of 

chemical reactions in which x is concentration of one reactant and y is the concentration of a 

product.   The LV  system  is given by: 

dx / dt = f(x, y) = a  x  b  xy,     

dy / dt = g(x, y) =  c  y + d  xy    

where x represent the prey (old technology, employment, hare, etc.)  and y represent the predator 

 ( new technology, reactant, foxes, lynx, etc. ).  In this set of equations a, b, represent the growth 

constants and proportionality constants for prey and c  and d represent the growth and 

proportionality constant for predators. In the absence of predator, y = 0, the prey population 

grows exponentially as dx/dt = ax.   In the absence of prey, x = 0, the predator population will 

decay or perish (due for example, to unavailability of food) and dy/dt =  cy . When both 

predator and prey are present, the intensity of interaction is proportional to population sizes. The 

proportionality constants d and b, increase the predator population (+ dxy) and decrease the prey 

population ( – bxy) respectively.   The equilibrium points satisfy: 
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f(x, y) = a x  b x  y = 0, 

g(x, y) =  c y + d x y = 0. 

Solving simultaneously, gives the equilibrium points of the system as (0, 0), and  (c / d ,  a / b). 

The Jacobian Matrix is  













dxcdy

bxbya
yxJ );(  

The trivial fixed point (0 ; 0) is a hyperbolic saddle point. At the second equilibrium point  

(c / d,  a / b), the eigenvalues are purely imaginary, nonzero, and complex conjugate. The fixed 

point is neutrally stable. An example and phase portraits follow in section 5.6. 

Second order nonlinear differential equations can be studied in the phase plane by setting 

up two ordinary differential equations and analysis of the system singular points using the 

eigenvalue approach. In many cases the behaviour of the nonlinear system is similar to an 

approximating linear system near the singular points. 

5.5   Illustrative examples on dynamical  systems 

The following system of non-linear ODEs model a simple chemical reaction:  

2

2

26

4

yxyy
dt

dy

xyxx
dt

dx




  where x and y represent the concentrations of two reactants. 

We need to find the equilibria of the model, evaluate the Jacobian at each equilibrium point and 

determine the stability of the system.  

Solution   

As outlined above, two approaches are available, a purely analytical approach and a graphical 

approach. We present and discuss these separately. 

Analytical Solution:  Given the nonlinear system of differential equations;  x′ = 4x x
2
  xy and 

 y′  = 6y  2xy  y
2  

we introduce functions f(x ; y)  and g(x ; y)  to represent the right hand side of 

the differential equations.  
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x′ = f(x , y) = 4x x
2
  xy 

y′ = g(x , y) = 6y  2xy  y
2
 

a) To find the critical (equilibrium or fixed points) we set f(x , y) and g(x , y) to 0 and solve 

simultaneously for x and y. The point (x , y) is in equilibrium if and only if    

4x  x2
 xy = 0 and 6y  y2

  2xy = 0.  We factorise and solve simultaneously:  

x(4 x y) =0  x = 0,    x + y = 4 

y(6y2x) =0  y = 0,   2x + y = 6 

 to give the 4 critical fixed points  :  (0 , 0)   (4 , 0)  (0 , 6)   (2 , 2) 

b) Next we find the Jacobian Matrix J(x ,  y) and use it to find the eigen-values and eigen-vectors 

at each of the critical points.  J(x ; y) = 





















xyy

xyx

gg

ff

yx

yx

2262

24
 

Table 9 presents a summary of the results for each equilibrium point.  

Table 9.  Stability of equilibrium points for x′ = 4x x
2
  xy ;  y′ = 6y  2xy  y

2
 

Equilibrium 

Points 

A Eigen Value Eigen vector Stability type 

(0;0) 










60

04
 

1= 4 and  

2= 6 

V1 = 









0

2  

V2 = 








 2

0  

s both real and +ve   

unstable nodal point 

(0;6) 














28

02
 

1= 2 and 

2= 6 

V1 = 









0

0  

V2 = 








0

0  

 

s both real and ve   

stable nodal point 

(4;0) 














20

34
 

1= 2 and 

2= 4 

V1 = 









 2

3  

V2 = 








0

3
 

s both real and ve   

stable nodal point 

(2;2) 














24

22
 

1, =2 +8 

=1.82 

1, = 2 8 

=  4.82 

V1 = 









2

2  

V2= 








82

2

,
 

s both real and with 

opposite signs   

saddle  point 
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We draw in the eigenvectors at the critical points with arrowheads indicating direction of motion 

into the critical point if  < 0, away from critical point if   > 0 and add in nearby trajectories. We 

then guess at some other trajectories compatible with these. Further information can be obtained 

by considering the associated first-order ODE in x and y.   

 

Figure 5.13. Phase portrait for  x′ = 4x x
2
  xy ;  y′ = 6y  2xy  y

2
 shows the four equilibrium points 

Graphical Method 

The alternative to the analytical method is the graphical method.  It relies on the fact that in the 

phase plane there is a unique solution curve (trajectory) and no two trajectories can intersect.  As 

before, the equilibrium solutions can be found by setting dx/dt and dy/dt to 0.  The process is 

outlined in the following steps.  

1.  We identify and draw dx/dt = 0 null-clines using vertical hashes 

x ' = 4 x - x
2
 - x y         y ' = 6 y - 2 x y - y

2 
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2. We identify and draw dy/dt = 0 null-clines using horizontal hashes 

3. The intersection in 1 and 2 gives equilibrium or fixed points.  

4. We determine the direction of the trajectories on either side of the equilibrium points 

5. We orient all nullclines - showing the direction of the vector field on the nullclines 

 

 

 , dx/dt , dy/dt 

(3, 3) 6 9 

(4, 3) 12 15 

(1, 2) 1 4 

(1, 1) 2 3 

(0, 5) 0 5 

(6, 0) 8 0 

   

 

Figure  5.14   Plotting a phase portrait by hand 

6. We orient regions by looking at points and evaluating x and y .  We can find the directions 

using the following rule: if f (x,y) > 0 the x component is directed as  ,  if f (x,y) < 0 it is 

directed as ; if g(x,y) > 0 the y-component is directed as  , g(x,y) < 0 it is directed as . 

7. In the xy-plane, we mark the critical points and sketch the trajectories in the immediate 

neighbourhood of the equilibrium points, including the direction of motion.  

8. Finally, we sketch in a few more trajectories to fill out the phase portrait, making them 

compatible with the behaviour of the trajectories already sketched near the fixed points. Mark 

with an arrowhead the direction of motion of each trajectory. 
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The graphical approach is highly visual and depends to a large extent on an understanding of 

slopes dx/dt and dy/dt. For example the slopes at (1 , 1) are dx/dt = 2; dy/dt = 3;   We draw 

vectors  of length 2 and 3 respectively in the x and y directions and find their resultant. The 

resultant gives the direction of the tangent to the trajectory at (1 , 1). Figure 5.15. 

 

 

 

 

 

 

Figure 5.15 Finding the direction of the trajectory 

 

To summarise, we began with analytical reasoning which gave us the equilibrium points. 

We calculated the Jacobian matrix at each equilibrium point. We solved to find the eigen-values 

and eigen-vectors using algebraic methods. Further analysis was used to determine the nature of 

stability of each of the equilibrium points and the system as a whole.   

In the graphical approach we determined the fixed points by plotting the equilibrium 

solutions and used the slopes dx/dt and dy/dt to plot the trajectories and their flow directions. 

Both analytical and visual thinking are necessary in order to sketch the phase portrait.  

It is equally important to be able to interpret the phase portrait analysis in terms of the 

physical situation it represents. In this case the negative real eigenvalues for (0 , 6) and (4 , 0) are 

indicative of desirable concentrations for the two variables and imply stable reactions in the 

Continuous Stirred Tank Reactor (CSTR).  Any perturbations around these points will bring the 

system back into stability.  

 

 

Resultant 

Vector, length 2 

Vector,  
length 3 
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Example 2: Lotka-Volterra (LV) model  

In this example we arbitrarily choose   a = 3, b = 2, c = 3, and d = 2, for the LV nonlinear system 

and introduce a parameter k to study the effect of small perturbations in the system. The system 

equations are:  

dx / dt = f(x, y) = 3 x  2 x y,                

 

dy / dt = g(x, y) = 3 y + 2 x * y  k y
2
. 

 

Taking partial derivatives, the Jacobian matrix is: 













kyxy

xy
yxJ

2232

222
);( .     

 

With k = 0  we have real positive eigenvalues giving rise to a stable centre at (1.5, 1.5) and  

represented by the phase portrait in Figure  5.16. We also have an unstable saddle at (0 , 0). 

Trajectories approaching (0 , 0) veer away sharply. The populations are unlikely to be driven to 

extinction. 

 

Figure 5.16  Phase portrait for  dx / dt = f(x, y) = 3 x  2 x y,      dy / dt = g(x, y) = 3 y + 2 x * y  k y
2
,   

k = 0. 

x ' = 3 x - 2 x y  

y ' = - 3 y + 2 x y
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When parameter k  >  0, say +0.5, the equilibrium point is a hyperbolic, repeller. All trajectories 

spiral out from the new unstable equilibrium point. (See  Figure 5.17).  

 
Figure 5.17  Phase portrait for  dx / dt = f(x, y) = 3 x  2 x y,   dy / dt = g(x, y) = 3 y + 2 x * y  k y

2
,   

k = 0.5.The point  (1.2 , 1.6)  is an unstable spiral point  and (0 , 0) is an unstable saddle 

 

With k < 0, say 0,5 , we have a a hyperbolic, attractor fixed point (See Figure 5.18). Both 

populations spiral in towards the fixed point. 

 
Figure 5.18  Phase portrait for  dx / dt = f(x, y) = 3 x  2 x y,      dy / dt = g(x, y) = 3 y + 2 x * y  k y

2
,  k = 

0.5.   The point (1.8 , 1.5) is a stable spiral point and (0;0) is an unstable saddle 

x ' = 3 x - 2 x y           

y ' = - 3 y + 2 x y + .5 y y
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Note: For the Lotka Volterra equations, explicit solutions cannot be found. Implicit solution, by 

separation of variables, gives an expression of the form: 3 ln y + 3 ln x = 2 y + 2 x + c. The 

graphs are like Figure 5.16 when c = 4, 5,..  6 . 

 

5.6  Chapter summary 

In this chapter we looked at the theoretical background to differential equations and gave 

examples of  problems in ODES and systems of differential equations that students are expected 

to solve. The approach to finding analytical solutions and direction fields was outlined and the 

problems with visualization of equilibrium solutions, and stability were highlighted.  This was 

extended to systems of  linear differential equations and the nature and stability of the 

equilibrium points discussed. We used the slopes dx/dt and dy/dt to plot the trajectories and their 

flow directions on the phase portrait. Finally we looked at non-linear systems using linearization 

of the differential equations near the equilibrium points.  By performing a local analysis of the 

system near the equilibrium points and the Jacobian matrix we were able to predict the global 

behaviour of system.   
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Chapter 6 :  Data Analysis.  Impact of  

visualization 
 

6.0 : Overview  

This chapter presents the findings of the study based on the analysis of data collected from the 

tests, assignments, interviews and worksheets administered during the first semester when the 

course Math300S (Calc3) was taught. The chapter is organised in the order of the research 

questions, reproduced in section 6.1 for ease of reference. 

The aim of the study is to investigate practical strategies that can engage the learner in the 

exploration of 3D space figures and phase portraits in order to facilitate, reinforce and strengthen 

the connections between visual and analytical thinking in the conception and solution of 

problems in multiple integrals and dynamical systems. We conducted a teaching experiment 

using Matlab to enhance visualization and support student conceptualisation of double and triple 

integrals and phase portraits of dynamical systems.  

  In Chapter 2, the review of literature, we identified important attributes of visualization 

that we expect to relate to achievement in problems involving 3D objects and dynamical systems.  

We use multiple linear regression to explore this relationship and determine which of the selected 

factors are significant predictors of achievement in the domains under study and mathematics 

achievement at calculus 3 level. 

We use Duval’s (1995, 1996) semiotic representation framework, outlined in section 

3.2.1, and Zazkis et al. (1996) visualization-analysis (VA) framework, outlined in section 3.2.2, 

to evaluate the impact of the laboratory activities on students’ solutions to problems in multiple 

integration and dynamical systems.  

Knowing the rules, conventions and symbols of each type of representation allows 

understanding the meaning of a representation. Under Duval’s (1995, 1996) framework, these 
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representations may undergo two types of transformations: a treatment within the semiotic system 

and a conversion from one system to another. Perceptual, sequential and discursive apprehension 

impact on operative apprehension, a higher level of visual processing, that occurs when a 

geometric figure is modified.  

6.1  Research questions 

The guiding research questions of this study were: 

1. What are students’ needs and difficulties in conception and solution of problems in multiple 

integrals and dynamical systems?    

2. Do the activities facilitate visualization and solution of problems in the two domains?  

3. What factors influence the effectiveness of the visualization?  

4. What Teaching and Learning strategies help in the conceptualization and solution of problems 

in multiple integrals and dynamical systems?  

6.2  The teaching experiment  

Two groups of students, the experimental (n = 24) and the control (n = 26)  participated in the 

study. The experimental group were registered as full time students,  received four 50 minute 

lectures from the researcher each week and in addition, participated in computer laboratory 

activities once a week, working in pairs on worksheets designed by the researcher. Tutorial 

sessions were held as the need arose.  The control group were part time students who attended on 

Wednesday evening (5 pm to 8 pm) and Saturday (10 am to 12 noon).  Spot tests and assignments 

were given to both the groups at regular intervals during the semester course and major 

examination-like assessments labelled T1, T2, T3 on dates determined by the Department of 

Mathematics and Physics.  

In both groups, the first week was spent on reviewing work from Mathematics 1 and 2, 

which are semester courses equivalent to Calculus 1 and 2 at a university. The review worksheet 

is attached in Appendix 3. A pre-test (see Appendix 4.1)  assessing prior knowledge from 
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Mathematics 1 and 2 was administered at the beginning of the study (week 2) to both groups. The 

aim of the pre-test was to check if there were significant differences between the two groups 

initially. The pre-test scores were taken as a measure of students’ prior knowledge. In order to 

check if there were significant differences between the control and experimental groups on prior 

knowledge, the following hypotheses were tested: 

 Null hypothesis: Ho: There are no differences between the mean scores of the control and 

experimental groups on the pre-tests.  

Alternative, H1: There are significant differences between the mean scores of control and 

experimental groups on the pre-tests.  

Table 10 gives a summary of the pre-tests results: 

Table 10 Summary of the pre-tests results 

  Experimental Control 

Number 22 26 

Mean 54.636 51.296 

SD 18.293 18.563 

t-test, calc 0.657 df = 46 

,   

Findings:   On the day the pretest was given, 22 students from the experimental group were 

present, while all 26 students in the control group sat the pretest. The critical t-value is 1.645 and 

we reject the alternative hypothesis at 5% level of significance (t = 0.657 at p = 0.05, 2 tail test, 

df = 46). We conclude that the mean pre-test score of the experimental group ( x  = 54.64, SD 

=18.29,  n = 22 ) is not  significantly different from that of control group ( x  = 51.30, SD = 18.56,   

n = 26).  

 

Note: The part-time students were working mostly in the chemical industry and often on shifts 

which were not easy to move. The numbers sitting any test varies. The regression analysis was 

carried out with 21 students out of 24 in the experimental group who had complete data for all 

variables.  
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6.3  Pre-test Item Analysis    

During the first week of the course we reviewed Maths 1 and 2 topics including functions, 

matrices, differentiation, integration and differential equations. This was necessary as most of the 

students, especially the part-time students who were working in the chemical industry after 

graduating with their National Diplomas, had been out of the education system for some time. 

This review helped them to revise some of the earlier work.   

Problem areas were identified and an attempt was made to correct them. Overall, most  

students (67%) could match equations like xy = 4, 1 xy  , y =  (x  1)
2
  to  their graphs 

while fewer (59%) could match 
2

2




x
y and 9x

2
 + 4y

2
 = 36 to their graphs. Nearly 30% of the 

students did not recognize y = 2 + x – x
2   

as a quadratic equation or the
 
equation representing a 

parabola. Several looked for points to plot the graph and ended up with a straight line. Errors 

included finding turning points, lines of symmetry, and intercepts.  

Nearly half  of the students struggled with the questions on quadratic equation 

 (question 1), finding gradients using differentiation (question 2(a), solving the differential 

equation 1 y
dx

dy
 (question 6) and finding areas using single integration (question 8). 

Question 8 required students to find the area under the graph of  y = x
2
 + 1 for 1  x   3. Overall, 

42% of the students could tackle this. Supplementary practice worksheets were posted on the 

webCT and tutorial support was made available to those in need. The pre-test served to make 

students aware of their knowledge gaps and misconceptions and also informed the researcher 

about the type of background knowledge to expect during the laboratory sessions. 

6.4  Comparison of Overall achievement between control and experimental 

groups 
During the semester, three major tests, T1, T2 and T3 were given to each group. The content 

distribution of the tests is shown in Table 11. Test 1 had questions on double and triple integrals  
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in rectangular coordinates and Test 2 covered questions on multiple integrals (in rectangular 

coordinates, cylindrical coordinates and spherical coordinates) as well as systems of differential 

equations. The tests were marked and results converted to percentages. It was hypothesised that 

the treatment (Lab interventions) would enhance the performance of the experimental group on 

all tests.  

Table 11  Content of the tests students sat during the semester 

Test Content   

T1 

Vector analysis, Lines, planes, gradient function, Directional derivatives, 

Rectangular coordinate systems, Polar coordinates, and Double integration 

T2 

Integration in rectangular, cylindrical and spherical coordinate systems, Dynamical 

Systems. Fourier Series 

T3 

Summative Test includes vectors, coordinate systems, Fourier Series and Partial 

Differential Equations 

 

Two way ANOVA were conducted in SAS to see if there were significant differences in the 

performance between the control and experimental groups on each of the tests. Details of the SAS 

analysis are presented in Appendix 5.  Here we present and discuss the main findings. 

Results 

Test 1:   A two-way ANOVA of test results with treatment group (control Vs experimental) and 

gender (male vs female) revealed no significant differences in student performance. The main 

effect of treatments was not significant (F(1 , 46) = 1.10,  p > 0.30) , while  gender differences 

were also  not significant ( F(1,46) = 0.17,  p > 0.87). Treatments vs gender interactions also 

showed the same lack of effect, [F(1,46) = 0.006,  p > 0.811].   

Test 2: A two-way ANOVA of test results with treatment group (control Vs experimental) and 

gender (male vs female) also revealed no significant differences in student performance. The 

main effect of treatments was  not significant (F(1 , 46) = 0.01,  p > 0.925) , gender differences 

were also  not significant ( F(1,46) = 0.92,  p > 0.344) and treatment-gender interactions were  

not significant [F(1,46) = 1.45,  p < 0.235] . 
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Test 3: There were significant differences between the two groups on test 3, [F(1, 46) = 4.1,  p = 

0.048)] in favour of the experimental group. However, the gender differences were  not 

significant, [F(1, 46) = 1.04,  p < 0.313] and treatment-gender interactions were  not significant 

[F(1, 46) = 2.47,  p < 0.1226].   

In conclusion, the laboratory activities did not translate into significant gains for the 

experimental group while the activities were on-going  (Test 1 and Test 2), but towards the end of 

the semester there were gains in favour of the experimental group on Test 3.  A detailed analysis 

by questions and topics relevant to this study follows. 

6.5 Difficulties in visualising double integrals 

In this section, we look at students’ solutions to questions on double integration with the aim of 

highlighting the underlying difficulties in visualization and analytical thinking. We apply Duval’s  

(1995, 1996) semiotic representation framework and the Visualization-Analysis (VA) framework 

to analyse the solutions. According to Duval (1996),  we can only try to gain access to concepts 

through semiotic representations used to deal with them. Students’ use of these representations 

provide useful information about the difficulties they are facing. However, students’ internal 

representations are not directly accessible but the way in which ‘a student generates or relates to 

an external representation reveals information about how he or she has represented the 

information internally’ Camacho-Machin, Perdomo-Diaz and Santos-Trigo (2012,  p. 5 ). The 

students’ solutions presented here represent their answers to questions under examination 

conditions without the aid of computers or assistance from the tutor or peers. After the solutions 

were marked, four students, (two from each group) were interviewed to clarify their responses 

with a focus on underlying thinking especially for answers that were incorrect. These were 

recorded and transcribed and four of these are presented here as interview excerpts. The analysis 

enabled the researcher to pinpoint the source of the difficulty in the solution of the problem. The 

students are named ST1, ST2, etc. and the interviewer is INT.  
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Question 3: T1 (Test 1).  This question looks at students’ understanding of single and double 

integrals in terms of the VA framework. The question is reproduced first and then the student’s 

solution, followed by the VA analysis. 

Question 

The graph shows the region between the curves  

1 xy  , y = 0,  x = 0 and x =3.  

3.1 Write down a single integral for the area of the region.  

Evaluate the integral. 

3.2 Write down a double integral for the area in the order: 

a) dydx       b)  dxdy  

3.3 Sketch and write down a double integral for the area 

enclosed by y = 4 – x
2
 ; y = 0 and x = 0 in the order 

a) dydx           b)  dxdy  

 

 

The work presented by student, ST1 is shown in Figure. 6.1. The interview excerpt was a 

follow up exercise to seek clarity about the thinking and steps used in the solution. We use V for 

visualization or visual steps and A refers to analytical thinking or analysis.  

 

Figure 6.1 ST1’s solution to question on single and double integrals 

We note that visualization and analysis serve as two mutually supporting and interacting 

modes of thinking. The student, ST1, starts with visual steps V1 and V2 which gives the limits of 
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integration. With the exception of Question 3.2 (b), where ST1 has been unable to convert from 

the geometric register to the algebraic register, all other treatments and conversions were 

successful. There is evidence of perceptual apprehension (notes function, reads limits) as well as 

sequential apprehension (correct steps in calculations, sketches). On the VA framework our 

analysis of the solution presented by ST1 is shown in Table 12. 

Table 12 Visual Analytical steps in the solution by ST1 to question on single and double integrals 

   Q 3,1   Single integral  

Visual Steps 

 

Analysis 

Conversion: From the 2D graphical register to 

algebraic register 

V1. Checks figure.  Notes functions.  

V2: Reads limits  

V3: Writes single integral.   

V4: Vertical slicing-  

A1 Read and record limits x =0 and x = 3 on 

integral  

A2: Integrates x      A3 Integrates 1 dx         

A4: Substitutes upper and lower limits  

 A5: Calculation error.  

A6 :  Incorrect final answer 

Q 3.2  (a) Double integral order dy dx  

Visual steps 

Sketch shows movement along arrows. No 

vertical slices.  

V5:  Reads limits for dy from sketch 

V6  Reads and  enters correct limits for dx  

Analysis 

A7: Records y limits from 0 to x +1 

A8 Records x-limits from 0 to 3 

Q3,2 (b) Double integral order dxdy  

Visual Steps 

Sketch shows arrows indicating movements 

No indication or attempt at slicing.  

V7:  Working only in the upper region of the 

integral under the curve 

V8 Error reading lower x limit. 

Unable to perform conversion. 

Analysis  

Does not see need for split integral 

A9: Error.  Takes lower x limit as x +1 

A10: Reads correct upper limit for x as x = 3  

A11: Uses y = x +1 to find upper y-limit. 

A12: Incorrect double integral in order dxdy    

Question 3.3   (a)  Double integral order dy dx  

Visual steps  

V9:. Numerical register: Finds coordinate points 

for drawing the graph of y = 4  x
2
. Correct 

sketch y = 4 – x
2
 

V10:  Geometric register: correct graph.  

V11 Shades required region.  

V12:  Vertical Slicing and reading limits 

Algebraic register:  

A13  Double integral.,  limits for dy then dx. 

A14:  Reads and enters correct limits for y : 

0 to 4 – x
2
 

A15:  Reads and enters correct limits for x : 

0 to 2  
 

Question 3.3 (b)  Double integral order dx dy Algebraic register.  

 

V13:  Same graph.  

V14: Horizontal slicing 
 

A16 Makes x the subject of the equation. 

A17: Records x limits as 0 to (4 – y)  

A18:  Reads correct y limits 

A19:  Correct switch 
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However, visualizing the slices and using a split integral is an important step that the student 

ignored or missed and so was unable to switch the double integral. 

Interview Excerpt 1 ( ST1 ) 

In Q3.2a the student successfully found the limits for dydx. The purpose of the interview was to 

find out what student thinking about dxdy was. The student was shown his/her solution, given 

time to go over the solution, and asked questions: 

INT: In Q3.2 b what were you thinking when you wrote down the limits for dxdy. How did you 

arrive at these limits? 

ST1: I moved horizontally first. I started at x = 0, and moved to x = 3. I couldn’t turn the integral 

round.  

INT: In terms of movements on the sketch, what would you be doing? What did you do? 

ST1:  I moved from the line at 0 (the y-axis) to the line x = 3. (Points at lines) 

INT:  If you are on the curve and you go horizontally would you still start at x = 0. What should 

you be doing? 

ST1: I ..I am not sure.  Start at the curve?  

INT:   Did you think about slicing horizontally using thin rectangles? Did you slice the region 

horizontally. 

ST1:  I didn’t think about slicing .. I forgot about slicing. 

INT: So if you slice horizontally what would your slices look like. Remember you must stay 

within the region of integration 

ST1: Draws slices on the sketch.   

INT:  Watch the slices.  Are your slices always from 0 to 3? 

ST1: No, only  up to y =1. Then they are from the curve to 3. Does that mean we take an x on the 

curve to x = 3 for this part. 

INT : Your lower x limit for the upper part should start x =…. And you need to split the integral 

into two. 

Slicing the region of integration was necessary to define the limits of integration in 

Question 3.2 (b). We find the student worked with given equations, turned them around, and used 

these as limits without checking the diagram. Although the student could set up single and double 

integrals, switching was incorrect. We note that the student has problems with visualizing the 

region of integration as a Riemann Sum, and with the switch, which requires a split integral to 

span the sliced area. This difficulty is highlighted in Figure 6.2. In Figure 6.2(a) the vertical slices 

(rectangles) have height 1 xy  and width x. So the area of each rectangle is 

A = ( 1x )x.  Taking limits and summing up gives the total area expressed as single integral 

as  

3

0

)1( dxx  or as a double integral as  
3

0

1

0

x

dydx .    
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a)  Slicing the region parallel to the y-axis 

first and then in the x direction gives the 

integral:  
3

0

1

0

x

dydx  

 

 

b) Slicing parallel to the x-axis first and then 

in the y direction needs a split integral.: 

For   A:  
1

0

3

0

dxdy       For B:   




13

1

3

)1( 2y

dxdy  

Figure 6.2  a) Vertical slicing and     b) horizontal slicing of the region under 1 xy ,   0  x  3 

Figure 6.2 (b) shows horizontal slicing. The region of integration is split into A and B, each 

requiring a separate area integral. On Duval’s framework we note that conceptualising the 

Riemann sum through slicing/spanning is missing in the work presented by ST1. Operational 

apprehension is lacking and we have a breakdown in visualization.  

In Question 3.3, students had to set up a double integral to find the area under y = 4  x
2
,   

x  > 0,  y > 0.  We note once again the absence of horizontal or vertical slicing. The student 

identified the region of integration by cross-hatched shading. Figure 6.3 shows sloping slices and 

it is clear that iteration in the reversed order dxdy was not done with horizontal slices. ST2 does 

not see a need to find x in terms of  y   i.e   yx  4  . On Duval’s (1995)  framework, the 

difficulty experienced by the students can be attributed to a lack of coordination among 

representational registers. An important visual step was missed as the student did not see that the 

lower limit in the x direction changes from x =  0 to x = y4  . 

In the next example, we see that the coordination of the visual (geometric) and algebraic 

registers by ST3, led to a better understanding and solution of the problem. The mobilization of 

both registers is accompanied by reflection, slicing and spanning the required region with little 

squares. Duval (2006, p.126 ) proposes that comprehension in mathematics assumes  

  







x

y

A

B

B 

A  
  

,  x = (y – 1)2 ,y = x + 1 
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Figure 6.3 Student ST2’s solution to find the area under y = 4 – x
2 
for 0  x 2 

the simultaneous awareness and coordination of at least two registers of semiotic representation 

and further that this evolves into a synergy of the registers of representation.  The VA analysis of 

the student’s solution follows in Table 13. 

 

Figure 6.4. Solution by ST3. Slicing horizontally with squares first to fill the region of integration. 

 

The Visual-analytic steps are shown in the Table. 13. Switching the region of integration horizontally 

along y gives the limits  y = 0 to  y =
21 x  and then in the  x- direction to give the limits 1 to 

1. The switched integral is  


1

1

1

0

2x

dxdy . ST3 shows clear understanding of the process involved. 

Each little square has area dxdy.  Reading the limits of the given integral helped to identify the 

limits of integration.  Switching for this student was fairly simple. Several simultaneous 
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conversions between the geometric and algebraic registers are evident. Operational apprehension 

and visualization as well as analysis were evident. 

Table 13 Visual Analytical steps for switching the double integral  






1

1

1

1

2

2

y

y

dxdy  

   Q1. Switch the order of integration  






1

1

1

1

2

2

y

y

dxdy . See ST3’s solution in Figure 6.4 

Visual Steps 

V1: Conversion from algebraic to geometrical register:  

V2:  ST3 recognises equation of circle x
2
 + y

2
 =1, and 

draws circle, radius 1 centre (0 ; 0).   

V3: ST3 identifies and fills region of integration with 

squares.  Spanning horizontally parallel to x axis. 

V4:  Reads and  enters correct  limits for  y  

V5 Reads and  enters correct  limits for x 

Analysis 

A1:  Treatment in algebraic register. 

Squares both sides of 
21 xy     

A2:  Simplifies  to give x
2
 + y

2
 =1. 

A3: Records y limits from 0 to 

21 xy   

A4:  Records x-limits from 0 to 1 

 

6.6 Difficulties in visualising triple integrals in rectangular coordinates 

The question was set in Test 1, in rectangular coordinates and required students to sketch and find 

the volume of  the region in the first octant bounded by  y + z = 2, x = 4 – y
2
. We look at the work 

of two students ST4 in Figure 6.5,  ST5 in Figure 6.6 and list the VA steps in Table 14 for ST4. 

Discussion 

On the Visualization-Analysis framework, we see numerous instances of visual and analytical 

thinking in the solutions by the two students ST4 and ST5. The first few steps involve analysis of 

the given equations. Both students work in the xz, yz and yx planes and draw correct projections 

in 2D. An important next step is to put the projections together to assemble the solid. ST4 draws 

the projections and assembles them into the 3D object easily. This requires coordination of the 

projections, and moving and positioning them on the 3D sketch. The intersection is a curve sitting 

in 3D space. See Figure 6.5.  

ST5 couldn’t figure out where the planes y + z = 2 and x = 4 – y
2
  intersect.  We see an 

incomplete 3D solid (See Figure 6.6). Next they need to set up the limits of the triple integrals. 

Whereas ST5 got the correct limits in the order dzdydx both students had problems finding the 
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Figure 6.5 Solution by ST4 region of integration bounded by y + z = 2 , x = 4 – y
2
 in the first octant 
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Figure 6.6 Solution to finding the volume bounded by  y + z = 2 and x = 4 – y
2
  in the first octant by ST5. 

Although the student has drawn the projections he/she is unable to visualise the intersection of  y + z  = 2 

and x = 4 – y
2
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Table 14  Visual Analytical steps in finding volume of solid bounded by  y + z = 2, x = 4 – y
2
 for ST4 

   Q 4.1 Volume of solid defined by y + z = 2 , x = 4 – y
2
 in the first octant. ( See Figure 6.5) 

Visual Steps    

Plotting the projections  

V1: xy, projection Correct plot of x = 4 – y
2
.   

V2: Plots xz  projections using yz planes. 

V3: Plots yz projection using  y + z = 2 

V4: Assembles the projections into solid 

Analysis:  
Conversion from algebraic to geometric 

registers.  

A1: For xy projection selects x = 4 – y
2
.  

A2: For yz projection selects y + z = 2 

A3. The xz projection at x =4 and z = 2 

Q4.2  (a)Triple integral in the order dzdydx  

Visual steps 

V4:  Vertical span from z = 0 to z = 2 - y    

V5  Uses xy projection, slicing up to find limits for y  . 

Incorrect y-limits 

V6  Uses xy projection  to find limits for  x 

Analysis 

A1: Records z limits from 0 to 2 - y 

A2 Records y-limits from 0 to 2. Error in 

this step 

A3: Records correct x limits : 0 to 4 

Q4.2 (b) Triple integral in the order dydzdx  

Visual Steps 

V1:  Spans across in y direction but stays only in the y + z 

= 2 . Does not see that moving parallel to axis may also 

take him to x = 4 – y
2
. 

V2 Working with xz projection. Avoids using y + z =2 

giving him incorrect limit for z  

V3 Working with xz projection: Correct limit for x: 0 to 4 

Analysis  

A1: Does not see need for split integral 

A2: Reads incorrect upper limit for z from 

the xz projection 

Q4.2 (c) Triple integral in the order dxdydz Analysis 

Visual steps: All three limits read correctly using the 3D 

solid and the yz projections 

 Reads and records correct limits  

Performs the first integration correctly. 

 

4.3 Evaluating the integral 

Appears confused. Not sure how to 

integrate (z - y)dy. Circles and cancels zdy.  

Incorrect final answer. 
 

limits for the integral in the order dydzdx.  Here, again we need to split the region of integration 

as the integral along dy is partly under x = 4  y
2
 and also under y = 2 – z, an extremely difficult 

visual step under a solid whose shape and form is unclear to ST5. The intersection of  y + z =  2 

and x  = 4 – y
2
 is xz  42  . It forms the boundary between the two split integrals as shown 

in  Figure 6.7.   The final split integrals are: 

  
 4

0

42

0

4

0

x x

dxdzdy  +   


4

0

2

42

4

0x

x

dxdzdy  = 2,667 + 4 = 6,67 

Both students missed to see the need for a split integral. Only 3 out of 21 students got this right. 

The integrals are not easy to do without Matlab.  
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Interview  Excerpt 2 (student ST5) 

ST5 was shown a copy of her solution (See Figure 6.6). .  

INT: This is your solution to find the volume of  the region in the first octant  bounded by  y + z 

= 2, x = 4 – y
2
. Take us through the solution. What did you do? 

ST5: I did the projections but I wasn’t sure what this drawing was like. (Points to 3D sketch. 

Figure 6.6). I couldn’t see the object.  

INT:  After you draw the projections, do you go to the projection or the 3D solid for the limits? 

ST4:  Sir,  I go to the equations. I just check the equation with z in it and find z.  

INT: You obviously couldn’t use a 3D sketch that is incomplete. So you went to the equations.  

ST4:  Yes Sir. But if I have a 3D sketch, I start at the bottom (xy plane) and I go up. 

INT:  How did you get the limits for the order dydzdx? You got the first y limits right! 

ST4:  I used the xy projection. I had to turn x = 4 – y
2
 round. That gave me y = (4 – x).   

For the y-limits I used the ….I think something is wrong. We need more examples, like this in 

tuts (tutorials), where we need to split.  

INT:   Once you have done the inner x limits, you should go to the yz projections. So what would 

the y-limits be? 

ST4:  Looks in the yz projection. Going y first gives me  the limits y = 0 to y = 2 – z. 

INT:  And the z limits. 

ST4:  Then z runs from z = 0 to z =2 

 

Discussion:  It is interesting to note from the interview that even when the students have drawn 

projections and a 3D sketch they are reluctant to use them. Students are more comfortable 

working with the equations to find limits of integration. We also note that selecting, moving and 

coordination between several projections is problematic. Several research studies, Habre (2002) 

and Trigueros (2004), for example, mention reluctance by students to work in the geometric 

register, and others eg Sweller (1999), have mentioned the cognitive overload that students face 

when they are dealing with visual representations. We note that the three dimensional solid in R
3
 

is represented by algebraic equations in two-dimensions, R
2
. These need conversion to the 

geometric register and are then depicted by two-dimensional projections which are reassembled 

to give us the three dimensional solid. This is a complex task, a conversion between registers as 

well as two types of representations requiring the spatial orientation,  rotation and translation of 

geometric figures using mental visualization. Finally, the solid must be represented by a triple 

integral in the algebraic register – a task that requires visualization, spanning and slicing within 

the 3D solid in order to arrive at the limits of integration.  
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On Duval’s (1995, 1996) framework, the initial conversion from the algebraic to the 

geometric register was successful for ST5, following a chain of treatments and conversions, but 

we find that students have not moved beyond perceptual apprehension, where the surface features 

are recognised in the form of 2D representations that the students have drawn. There is evidence 

of sequential apprehension as students systematically follow the heuristic steps in the 

construction of the projections and the 3D objects, but operative apprehension is lacking as 

students abandon their drawings and go back to the equations to get their limits for the integrals.  

While this works for one or two orders of integration with inner variables dz, they run into 

problems with the other orders as the Riemann process of summing over the entire region of 

integration is incomplete. We note that there are 6 permutations of dydxdz, each requiring its own 

manoeuvres within the object  to determine the limits, and the easier of these is integration in the 

order dzdydx.  

We note that the region of integration may need to be split and visualization is necessary 

to keep track of the surfaces and their equations. Most students (75%  in the Experimental, 90% 

in the Control groups ) did not recognise the need for a split integral. In class demonstrations, 

students were shown that to find the innermost limits they should use the 3D solid they had 

drawn and span upwards for dz, parallel to the y axis for dy and parallel to the x axis for the inner 

x-limits. Figure 6.7 shows the spanning process for dzdydx and for dydzdx.  Moving in the y- 

direction takes us to different surfaces and hence the need for splitting the integral. After 

spanning in the 3D sketch we move to the xz-projections and use these for the remaining limits 

ie, the dzdx limits. Needless to say, if students cannot split a planar region of integration in R
2
 for 

double integrals, they are going to struggle with splitting volumes in R
3
 for triple integrals. Figure 

6.8 shows the slicing and stacking for  dxdydz . We only need a single triple integral to span the 

volume. In conclusion, inability to visualize the Riemann process makes it difficult to move 

between the geometrical and algebraic registers as students cannot identify and transfer limits 

from their 3D sketch to the triple integrals. 
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(a) To find the volume enclosed by x = 4  y
2
 and  y + z = 

2 in the first octant in the order     dydxdz  we only 

need a single triple integral as the inner z always runs from 

z = 0 to z = 2 – y. The dxdy limits come from the xy 

projections.  
 

    

   
3

20
2

0

4

0

2

0

2

  
 y y

dydxdz               
3

20
4

0

4

0

2

0

  
 x y

dxdydz  

 

 

Check in Matlab: 
syms x y z f  

f = 1 

int(int(int(f,z,0,2-y),y,0,sqrt(4-x)) 

,x,0,4)  =  20/3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)The volume integral in the order     dzdxdy   needs to 

split into two, an upper and lower integral. The dxdz limits are 

taken from the  xz projection. 

 

i) Top inner integral for dy runs from y = 0 to y = 2 – z.  

4

2

0

)2(4

0

2

0

2

  
 z z

dzdxdy  

 

ii)  Lower volume integral for dy runs from y = 0 to 

      y = sqrt (4 – x).  

3

8
2

0

4

)2(4

4

02

  




z

x

dzdxdy  

 

The lower integral (ii) is too complicated to evaluate. So you 

may need to turn dxdy around 

 
int(int(int(f,y,0,2-z),x,0,4-(2-

z)^2),z,0,2)  = 4 

int(int(int(f,y,0,sqrt(4-x)),z,0,2-

sqrt(4-x)),x,0,4)   =  8/3 

 

Figure 6.7   Visualizing the slicing and stacking for       a) dzdxdy          b) dydxdz          

, x = 4 y2
 

x 

x 

,  z = 2  y 

y 

Y 

4 

,  x = 4  y2 

2      y 

x 
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The volume integral    dzdydx is the easier of the 

integrals to set up. We only need a single triple integral as the 

inner z always runs from x = 0 to x = 4 – y
2
. The dydz limits 

are taken from the yz projections.  

3

20
2

0

2

0

4

0

2

  
 z y

dzdydx   

 

 

            

3

20
2

0

2

0

4

0

2

  
 y y

dydzdx  

 

 

Check in Matlab: 
int(int(int(f,x,0,4-y^2),y,0,2-z),z,0,2) 

=20/3 

int(int(int(f,x,0,4-y^2),z,0,2-y),y,0,2) 

=20/3 

 

 

Figure 6.8  Visualizing the slicing and stacking for  dxdydz 

 

 

In the end of term test (T3) the question involving triple integrals in rectangular coordinates 

asked students to find the volume of the region in the first quadrant enclosed by  the surfaces 

represented by the equations: z = 4  y
2
 and x + y =3.  Only 6 students out of 48 (about 13% ) 

could sketch the 3D solid. The problems with identifying the intersection and recognising when 

to split the integral persisted throughout the semester.  

Figure 6.9 shows the attempt by ST5 was nearly successful. ST5 has sketched the 3D 

solid and recognized the need to split the integral. Earlier in Test 2, ST5  struggled with the 

visualization  and could not find the intersection of the surfaces (see Figure 6.6 ). However, she 

realized the need for a split integral and with the exception of the sign error in the limits for y 

most of the solution is correct.   

 

4 

X 

z 

,  x = 4 y2 

 

  y +  z = 2 
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 Figure 6.9 ST5’s solution to finding volume enclosed by : z = 4  y
2
 and  x + y =3 
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6.7  Volume integrals in spherical and cylindrical coordinates 

This question asked students to calculate the volume of the region bound by the cone 

22 yxz   and the sphere x
2
 + y

2
 + z

2
 = 6. In answer to this question, ST6, realised the need to 

change the coordinate system: We analyse the student ST6’s solution, presented in Figure 6.10, 

using the V-A framework (See Table 15). 

Table 15. Visual Analytical steps in finding volume of solid bound by 
22 yxz   and the 

sphere x
2
 + y

2
 + z

2
 = 6 by ST6 

Q 4.1 Volume of solid defined by 
22 yxz   and the sphere x

2
 + y

2
 + z

2
 = 6. See Figure 6.10  

Analysis 

Works from a table of traces: 

A1:  For xy projection, lets z = 0, gets  

        point (0;0).  

A2: For yz projection., lets x = 0, gets  

       trace z     = y 

A3. For the xz projection lets y = 0 gets z = x 

A4: Calculates radius of circle but makes an 

error, writes r = 3 instead of r = 3 

 

Visual Steps 

V1: Correct 3D representation of solid. 

V2 : Clearly labelled diagram. 

V3: Plots trace  in the xy plane. Circle but 

incorrect radius. 

V4: Plots incomplete yz and xz projections  

V5: Correct sketch of solid in 3D 

 

 For integral in cylindrical coordinates:   

A5: Enters correct  limits for z:  

A6: Enters correct limits for r 

A7: Enters correct limits for   

A8.  Enters the Jacobian dV = rdzdrd 

V6: Reads correct  limits for z:  

V7: Reads correct limits for r 

V8: Reads correct limits for   

V9.  Reads the Jacobian dV = rdzdrd 

V10: All limits read from 3D representation 

A9: For spherical coordinates: 

A10: Calculates , the radius of sphere 

A11: Calculates ,  

A12: Checks  = 2π 

A13: Correct triple integral in spherical 

coordinates and Jacobian. 

 

V11: Refers to 3D representation for  

         , ,  

 

ST6  has used projections to sketch the 3D solid. See Figure 6.10.  Some traces were not 

necessary. ST6  recognises the circular intersection and calculates its radius r = 3 correctly.  The 

projections in the xz and yz planes are incomplete (missing the spherical top), both integrals in the 

cylindrical and the spherical coordinate systems are correct. The only error is in the limits for the 

inner integral, dz, in cylindrical coordinates, which should run from the slanting edge of the cone 

z = r to the sphere 
26 rz  . Several treatments within registers were necessary and ST6 has 
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shown the working for  ,   and   clearly. The limits for the spherical coordinates integrals were 

determined using algebraic equations for conversions between the coordinate systems. The same 

comment applies to limits for   and . Overall, treatments and conversions were efficiently 

coordinated and performed, and the triple integrals in cylindrical and spherical coordinates were 

established with correct limits.  

 

Figure 6.10 Solution by ST6 to find the volume of solid defined by 
22 yxz   and  

the sphere x
2
 + y

2
 + z

2
 = 6. 
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6.8  Visualizing direction fields 

Figure 6.11 shows the analytical solution and the direction field presented by ST7 for the 

ordinary differential equation ty
dt

dy
 .  

 

 

Figure 6.11   a) Analytical solution for dy/dt = y  t  and   b) the direction field with trajectories through 

(1;0); (0;0) and (0 ;1) by ST7 

 

Table 16. Visual analytical steps in the solution by ST7 for the DE dy/dt = y  t 

(See Figure 6.11). 

Analytical  solution Visual  steps 
A1: Recognises the equation as a linear DE. Recalls 

the general form: Qpy
dt

dy
  .  

A2: In the algebraic register. Rearranges the DE to fit 

the general form.  

A3: Algebraic register: Finds the Integrating factor, 

IF: Multiplies both sides of the DE by the IF. 

Collapses the left hand side into a single expression 

and integrates. 

A4: Uses integration by parts on the Right hand side. 

A5: Divides both sides by te  and writes down the 

general solution, 
tcety  1 . 

 

A perfect analytical solution without any errors. 

 

On the direction field which was supplied: 

V1: Draws solution curves  through initial 

values (0;0),  (0;1) and (0 ; 1). 

 

V2: To find the solution through (0 ; 0) he 

finds c by substitution and writes y = t +1. 

 

V3: Verifies on the direction field that this is 

correct. 
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Discussion:  

 ST7 has shown operational apprehension of the analytical solution process, drawing on prior 

knowledge and resources like integration, differentiation and sketching graphs where necessary. 

ST7 moves between the algebraic and the geometric registers easily. On the other hand, the 

direction field presented by ST8 in Figure 6.12(a) is far from satisfactory. The solution curves do 

not follow the slope segments.  ST8 is aware that the solution curves cannot cross and has gone 

out of the way to prevent that from happening in the second and third quadrants. The correct 

solution with  c = 1 is y = t + 1 + e
t
 shown in Fig 6.12(b). Solution for c = 2 is also incorrect. 

 

 

Figure 6.12 (a) Direction field for dy/dt= y –t with solution curves by ST8 and (b) a plot of the  

correct solutions  

6.9  Visualizing phase portraits 

In this section, we look at the difficulties students have in visualising and sketching solutions to 

dynamical systems given by the set of non-linear differential equations: )2( yxx  and 

)3(  xyy .  This is a set of predator prey Lotka-Volterra (LV) equations. Students were asked 

to sketch the phase portrait and describe the long term behaviour of the system.   

In lectures, two methods were presented: a qualitative method using slopes to plot the 

phase portrait near the equilibrium points and an analytical method using eigen-values to identify 

the stability of the equilibrium points.  
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The work presented by ST9 is shown in Figures 6.12 and 6.13. The eigen-pair calculations for the 

other equilibrium points are similar and have not been shown in Figure 6.12 

 

Figure 6.13 Solution to the LV system )3(;)2(  xyyyxx  by ST9 

 

Table 17. Visual Analytical steps in solution of ).x(yy;)y(xx 32   

Q5: Phase portrait and Analytical solution to ).x(yy;)y(xx 32    See Figure 6.13 

Analytical Steps   

A1:Starts by finding the equilibrium points. 

The points (0 ; 2) and ( 3 ; 0) do not satisfy the 

equations simultaneously and cannot be 

equilibrium points 

A2  Finds the Jacobian matrix and the eigen-

value pairs.  

A3:  Finds the partial derivatives. fy  introduces 

another error with the consequence that the 

eigen-pairs have an error.  

A3: Calculates the slopes at 4 points. Fig 6.13 

Visual steps 

V1: Uses vector addition to find the resultants. 

For example at (2 ; 1) the slopes are x’=2 and 

y’=  1.  The resultant vector diagram gives the 

direction of the trajectory at (2 ; 1). This is 

clearly shown on the phase portrait.  

V2. In the qualitative solution, appears to have 

corrected the error in the equilibrium points as 

(0 ; 2) and (3 ; 0) are not shown on the phase 

portrait. 

V3: Draws the phase portrait 
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Figure 6.14 Hand drawn phase portrait for ).x(yy;)y(xx 32   by ST9  

Discussion 

We note that ST9, worked entirely in the algebraic register using the analytical method to find the 

equilibrium points and the eigen-pair values at each point. Errors were made in finding he 

equilibrium points and calculating eigenvalues.  In the graphical register,  ST9 used slopes at 

various points to sketch the phase portrait. Calculation errors in the analytical solutions were 

corrected in the phase portrait. (See Figure 6.14). Overall, the student has a good grasp of the 

analytical method and has visualised the phase portrait correctly. In fact, the phase portrait served 

as a check on the analytical calculations, as the ‘extra’ equilibrium points are not shown. 

 

 

 

 



148 
 

Figures 6.15,  shows ST10’s interpretation of the Predator-Prey phase portrait. The 

species involved are shark (Predators) and fish (prey). The student has made an error in the 

eigenvalue calculations giving a spiral source at (0, 0).  In the interpretation, the student was not 

specific as to which section of the phase portrait shows growth of prey or predators. The student 

refers to the populations oscillating without reference to the diagram or to the populations of 

predators and prey. There is no indication of cohabitation populations and numbers.  

 

Figure 6.15   Student, ST10’s interpretation of the Lotka-Volterra phase portrait. 

The student ST10 was interviewed and the interview excerpt follows.  ST10 was shown the 

marked solution and the system of equations:  ).x(yy;)y(xx 32   
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Interview Excerpts 3  (Student ST10)  

INT:  Look at the phase portrait that you drew. We started with two equations. The first,  dx/dt = 2x – xy  

is the equation for prey, (fish in thousands) and the second dy/dt =  xy - 3y is the equation for predators, 

(sharks in hundreds). The usual assumptions apply i.e Sharks depend only on fish. Fish have unlimited 

food supply. There are no other threats to both. You found the equilibrium points (0 , 0) and (3 , 2).  Can 

you take us through what you did to draw the phase portrait.  

ST9: What did I do?  I took points in the plane like (1, 1) and found the slopes dx/dt =1 and dy/dt =2 by 

substitution.  I used the slopes to draw vectors in the x and y directions and I found the resultant. I drew 

the resultants on the phase portrait at each point. (Illustrates by drawing    and resultant ). 

 

 
 

Figure 6.16 Phase portrait for Fish (in ’000s) and sharks ( in ’100s)  
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INT: Take the phase portrait you have drawn (Figure 6.15). I have done another sketch for you with labels 

A,B, C and D.  (INT shows Figure 6.16). I want you to go along the solution curve (the blue curve) and 

tell me what is happening. Let’s follow this trajectory along AB. What is happening? Think in terms of 

number of  fish, x  and  number of  sharks, y. 

ST10: Along AB, shark population is dropping.  Fish population also drops a little. 

INT: Why would shark population drop?  

ST10: There are few fish around. No food for sharks. 

INT: What is happening at B? 

ST10: Yes fish population in the cycle is smallest along AB. Near B shark population has also dropped to 

low numbers.  

INT: So what is the effect on fish? 

ST10: Population of fish starts to grow. Shark numbers are constant. Plenty of fish near C 

INT:  Nearly constant. Carry on, what is happening between CD?  

ST10: Plenty of  fish . Shark have  more food. Shark  population  is growing.  (recovering) 

INT: In your answer you mention oscillations. Between what values do shark numbers oscillate? 

ST10: Reads figures from Figure 6.15 by extrapolating to the y-axis. Between 0.8 and 4.5.  

INT: Remember the axes are scaled 1: 100 for sharks and 1: 1000 for fish.  

ST10: Between 80 and 4500  

INT:  And the fish? 

ST10.  Looks along the  x-axis. Between 1200 and 6000. 

INT: You also mention cohabitation. You said certain equilibria are ideal for cohabitation. On this phase 

portrait which equilibrium point is that? 

ST10: There is (0 ,0) but at (0 , 0) both populations have died. Then there is (3, 2). So 3000 shark and 200 

fish.  

INT: Look at the vector arrows  (trajectories) around ( 0 ; 0). Are there arrows (trajectories) going into  

(0, 0)? 

ST10: Puzzled. No arrows enter (0, 0).  

INT: So how can you say the shark and fish die? 

Draws sketch graphs labelled Fish and shark Vs time.  See  Figure.6.16. 

INT: This graph shows how the fish and shark populations change with time. What is happening to the 

fish population? 

ST10: Fish population is small to begin with, increases and then drops back to same values.  

INT : So which points on the phase portrait (Points at Figure. 6.15) correspond to points on the time 

graph in. Figure 6.16? 

ST10: Mmm… I really can’t see. How we get this graph from the phase portrait. There is no time on the 

phase portrait. Also what is the time scale?  
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Figure  6.17 Variation in predator prey numbers Vs time 

 

INT: Both graphs are showing one cycle.  On the phase portrait, when are the fish numbers least? 

ST10: During AB. Least at B.   So AB must correspond to these points (Indicates R). 

INT: And the sharks.  Which points correspond? When is shark population least? 

ST10:   Midway between B and C. 

INT: And on the time graph? 

ST10: Shows bottom of sharks graph near R. 

INT: And the peaks for fish and Shark? 

ST110: Peak for fish is between C and D. Peaks for shark is the same.  

INT: Are you sure?   

ST10: Yes 

INT: Let us look at the predator-time and the prey–time graphs more closely. Points  to  Figure 6.18. The 

predator is in green and the scale is 1:100 while the prey graph is in red on a scale of 1:1000.. What point 

on the phase-portrait ( Figure 6.16) corresponds to P on this graph?  

ST10: Ok We comparing the blue graph and the red graph. Points to A on the phase portrait. 

A is near the peak.  

INT: Are you sure. Check again? What about Q? Which points correspond?  

ST10: Q and B.  

INT: How long in time is a cycle? 

ST10: A cycle is from P to R. About 11 minus 4 = 7 years 

INT:  At P the prey numbers are high. What happens to predators? 

ST10: Predator population is dropping. 

INT. Look again. 

END  
 

Several points are noteworthy.  

 

1. The student ST9 (See Figure 6. 13),  found more equilibrium points than exist. This could 

have been checked by substitution. ST9 could find the slopes in x- and y-directions. Plotting 

the resultants was arbitrary. Sketching the trajectories was messy.(See Figure 6.14).  With 

software readily available, not many students see the point of the exercise and often express 

annoyance at having to do this manually.   

P 

Q 

R 
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Figure 6.18 Predator and prey vs time graphs for the fish and shark dynamic system 

 

2. Interpreting and transforming the phase portrait was not easy.  The need to constantly switch 

between the axes of two variables (shark and fish) was a challenge. The student’s 

interpretation of the equilibrium point (0 , 0) was ambiguous and was fixed on extinction and 

cohabitation. The direction of trajectories around (0 , 0) was misinterpreted. On Duval’s 

framework discursive apprehension was lacking. The description of events around the blue 

curve and the description of the equilibrium points is vague.  

3. Converting the phase portrait to the time graph was conceptually challenging. What would 

have helped is to make the transformation through a numerical register. We found that many 

number (13 out of 21 , 63%)  students have difficulty extracting information from these 

representations.  Time is a hidden parameter and the connections between the phase portrait 

and the time graphs were hard to see. Getting students to relate the rates of change in the 

interacting species is conceptually challenging. 

4. The different scales used in the graph for fish and shark added to the confusion.  
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6.10 Comparison between treatment groups by questions 

As we have seen in section 6.4, the results of the ANOVA showed that there were significant 

differences on test 3 between the Treatments (experimental and control) but not on gender (Male 

Vs female) or the treatment-gender interactions. The differences between the achievement scores 

of the groups in Tests 1 and Test 2 were not significant. Here, we investigate if there are 

differences by type of questions. The three types of questions we addressed in integration were  

a. single  integrals  

b. double integrals and 

c. triple integrals.  

Table  18 shows the percentage of students categorised by groups who had correct answers for 

each type of questions: 

Table 18  Percentage of correct responses by type of question and groups 

Integral 
Experimental n=24 Control  n =26 

1. single  75% 73% 

2 Double a) dydx 

b)   limits for  dxdy 

91% (no split)        23%(split)      

63 ( no split)           6% (split) 

88% (no split)     0 %split  

 56%                     18%     

3.Triple Integrals 

a) Projections + sketch 

 

61,7% 

 

46,1% 

b)limits for dzdydx (split) 25% 11,1% 

c)limits for dydzdx (no 

split) 

52% 32% 

d)limits for  dxdydz  (no 

split) 

75% 58,3% 

 

We observe that there were no differences between the groups on  a) single integrals and b) 

double integrals where the integral did not need splitting. There are significant differences 

between the control and experimental groups on questions requiring the splitting of  double or 

triple integrals. Overall students in the experimental group did significantly better on the triple 
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integral questions with better performance (61.7 % vs 46.1%) on the projections and split 

integrals (25% Vs 11.1%). 

6. 11  Factors impacting on visualization -  Regression analysis       

As we reported in Chapter 3, several research studies (Hegarty, 1999; Battista,1990, McGee, 

1979) have reported that the spatial ability factor was one of the main factors significantly 

affecting mathematical performance. Kaufmann (1990) noted that the correlation increases with 

the complexity of the mathematical task. Among the factors identified are previous experiences 

with 3D objects, prior knowledge, attitudes, motivation, social and cultural factors.   Rather than 

meander along on an unfocussed path, testing all possible variables, for this research, we decided 

to narrow the focus to a subset of the factors identified by Kosslyn (1995). These do not exhaust 

the whole spectrum that one encounters in the literature, but we argue that it sufficiently captures 

the rationale of the research which deals specifically with multiple integrals and solutions to 

systems of differential equations. For an overview, see Hegarty and Waller (2005).  The variables 

we identified were the pretest scores (Prior knowledge), surface features of 3D objects, rotations, 

cross-sections, projections, and nets of 3D objects as independent variables. These were variables 

that we could reinforce through the activities in the computer laboratory sessions and, that we 

could measure with reliable tests. Next we performed a multiple regression analysis using Test 2 

marks  (on multiple integration  and dynamic systems) as the dependent variable and scores on 

surface features (SURF), projections (PROJ), nets (NETS), cross-sections (XSECT), rotations 

(ROTN) and prior knowledge scores (PRIOR) as the  independent variables. See chapter 3, page 

69, for a description of each of the variables. 

Test items for each of the variables were selected from standard tests used in research. See 

page 70 for the sample test items. For example, the test items on rotation were obtained from the 

Alaskan Rotation Test inventory.  

The proposed multiple regression model was:  
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PRIOR*ROTN*XSECT*NETS*PROJ*SURF*oŷ 654321     

where ŷ is the Test 2 mark (Multiple Integration and Dynamic systems) , the variables SURF, 

NETS etc. are as defined in the table on page  and the 1, 2 …s are the multiple regression 

coefficients. 

The null and alternative hypotheses for the model are: 

Ho: 0654321    

H1: One or more of the parameters 0 . At least one independent variable is a 

significant predictor of mathematics achievement.  

The following assumptions were validated: 

a) The relationship between the dependent variable (BT2 score) and the independent variables is 

linear. See Appendix 5.4. Table of Results from SAS. 

b) The independent variables are not overly correlated (see correlation table, Table 19). 

c) The variances are equal. (Variance inflation factor less than 5 (See Table 20). 

d) The variables are normally distributed. (See graphs in Appendix 5.4, page 212). 

The correlation matrix reveals that except for the pretest scores, all the independent variables 

have a correlation coefficient below 0.7.  

Correlation and multiple regression analyses were conducted to examine the relationship 

between achievement and the potential predictor factors. Tables 19 and 20 summarize the 

descriptive statistics and regression analysis results obtained from SAS. A detailed output with 

graphs is attached in Appendix 5. 

The findings: 

1) Overall the model is valid and there is a significant relation between the dependent variable 

(maths achievement scores on multiple integration and dynamical systems) and the dependent 

variables at 0.05 sig level, F = 9.67. The six predictor model was able to account for 72,2% of 
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the variance in maths achievement, F(6, 14) = 9,67,  p < .001, R
2
 = 0.806, 90% CI [0.35,0 

.72]. 

Table 19.  Means,  S.D. and correlation coefficients for the six predictor variables 

  Surface Proj Nets xsect Rotns Pretest BT2 

Surface 1             

Proj 0.141 1.000           

Nets 0.473 0.109 1.000         

xsect 0.270 0.071 0.387 1.000       

Rotns 0.518 0.029 0.575 0.516 1.000     

Pretest 0.437 0.213 0.459 0.677 0.416 1.000   

BT2 0.653 0.058 0.538 0.693 0.535 0.781 1 

Mean 68.57 57.52 51.86 59.90 54.90 54.86 58.38 

SD 26.00 17.03 21.57 10.37 22.70 14.62 17.18 

 

Table 20 Output of the Results of the Multiple Regression analysis in SAS. 

    Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 6 4753.565 792.261 9.67 0.0003 
Error 14 1147.387 81.956   
Corrected Total 20 5900.952    

 
 

Root MSE 9.05297 R-Square 0.8056 
Dependent Mean 58.38095 Adj R-Sq 0.7222 
Coeff Var 15.50672   

 
 

 

 

 

 

 

 

2. The model passed the heteroscedasticity (constant variance) test. The residuals do not really 

look normally distributed, but linear regression models are not very sensitive to violations of 

the normality assumption unless the sample size is extremely small. Also multi-collinearity 

does not seem to be a problem since all the variance inflation factors are less than 5.   

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Variance 
Inflation 

Intercept 1 –9.11499 14.45827 –0.63 0.5386 0 

Surface 1 0.22226 0.10262 2.17 0.0481 1.73784 

Proj 1 –0.13638 0.12826 –1.06 0.3056 1.16443 

Nets 1 0.08021 0.12320 0.65 0.5255 1.72356 

xsect 1 0.49775 0.29200 1.70 0.1103 2.23864 

Rotns 1 –0.02538 0.12655 –0.20 0.8439 2.01359 

Pretest 1 0.50161 0.21530 2.33 0.0353 2.41776 
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3. The adjusted R-square value of 0.722 tells us that 72.2% of the variation in the scores on 

multiple integration and dynamical systems is accounted for by the independent variables. 

4. The regression analysis shows that prior knowledge (Pretest) had the largest influence in 

predicting the achievement scores. 

5. The pretest (Prior knowledge) and  surface feature scores had significant positive regression 

weights, indicating students with higher scores on these variables were expected to have higher 

achievement scores on Multiple integrals and Dynamical Systems after controlling for the other 

variables in the model. The projections, and rotations have negative regression weights, 

indicating that after accounting for Prior knowledge and surface features, those students with 

higher achievement scores in  Proj, Nets and Rotation were expected to have lower scores in 

Multiple integration and Dynamical Systems  (a suppressor effect).  

6. A step wise regression analysis with inclusion exclusion significance levels set at 0.15 

confirmed that pretest, surface features, as well as cross-sections are significant predictors. Note 

the p level is different from the main regression analysis. 

7. Based on the regression results the best model for predicting achievement on multiple 

integration appears to be: PRIORXSECTSURFY *5016.0*498.0*222.0115.9ˆ   

8. The regression analysis was repeated without the Pretest scores. We find the model as a whole 

is significant , F(5, 15) = 8,812  , p < 0.0007, adj R
2
= 0,73  with surface features  (p  < 0,013) and 

cross-sections (p  <  0,0033) as significant predictors. 

 

6.12 Chapter summary 

In this chapter we reported the findings of the analysis of the data from the teaching experiment.  

We successfully applied  Duval’s (1995, 1996) semiotic representation theory and Zazkis’s 

(1996)  VA frameworks to analyse students’ solutions. Overall we found no differences between 

the achievement of students in the control and the experimental groups on test 1 and 2. However 
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a question by question analysis showed improved performance by the experimental group, which 

also performed significantly better on Test 3. The main problems experienced in dynamical 

systems were the interpretation of the phase portraits to predict the long term behaviour of the 

solutions.  A multiple regression analysis was performed utilizing mathematics achievement as 

the dependent variable and six predictor variables. The regression analysis was found to be 

statistically significant F(20) = 9,67,  p < .001.  The multiple regression accounted for 72,2% of 

the variability, as indexed by the adjusted R
2
 statistic.  At p = 0,05 level of significance, the 

regression equation for predicting mathematics achievement was found to be Y = .5061* Prior + 

0.498* SURF – 9.115.  The variable of prior knowledge, as indexed by its β value of 0.5016, was 

shown to have the strongest relationship to achievement. At p = 0,15 and using inclusion- 

exclusion stepwise regression, of the six independent variables identified,  three were found to be 

significant predictors of achievement scores on multiple integration and dynamical systems. 

These were prior knowledge, knowledge of surface features and cross-sections of 3D objects. 
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Chapter 7: Conclusions  

7.0 Overview  

In this chapter, we discuss the results of the research and its implications for mathematics 

education. This research study was an attempt at using technology and computers to enhance the 

teaching and learning of multiple integrals and dynamical systems with emphasis on analytical 

thinking and visualization of 3D space figures, direction fields and phase portraits. The emphasis 

in the experimental class was facilitating simultaneous connections between the algebraic, 

numerical and geometric or graphic registers. Duval’s semiotic representation theory (1996) 

Duval’s cognitive apprehension levels for geometric thinking (1996) and the Zazkís’ et al. (1996)  

Visualization-Analysis frameworks were used to examine student solutions in the two domains 

under study.  We revisit the teaching experiment and look at the role of enhanced visualization, 

using software in the Teaching and Learning of multiple integrals  and  dynamical systems. We 

look at some of the limitations of the study and discuss contributions in the field of mathematics 

education. Finally, we conclude with remarks about pedagogical considerations in teaching these 

domains and give directions for future research. 

7.1 Research questions   

The research questions and strategies that guided this work are: 

1) What are students’ needs and difficulties in visualization and solution of problems in multiple 

integration and dynamical systems?    

2) Do the activities and laboratory sessions facilitate visualization and solution of problems in 

the two domains?  

3) What factors influence the effectiveness of the visualization?  

4)  What Teaching and Learning strategies help in the conceptualization and solution of 

problems in multiple integrals and dynamical systems?   
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7.2.  The teaching experiment 

 This comprised two parts, the activities and the computer laboratory sessions conducted with the 

experimental class (n = 24).  The activities were described in Chapter 3.  They were designed to 

target skills such as recognising surface features and properties of 3D objects, generating, rotating 

and sketching 3D objects and their projections, and folding and unfolding nets. 

The laboratory sessions targeted visualization of 2D and  3D space figures and phase 

portraits of systems of the Lotka Volterra differential equations. The students in the experimental 

group had sessions in Matlab. All students had access to CalcPlot 3D and Mathematics 

Visualization Toolbox (MVT) on the Internet.  Data was collected through written tests, 

interviews, assignments, and laboratory worksheets.  

7.3 Summary of findings 

7.3.1  Difficulties with integrals 

The first research question was addressed using  Duval’s (1995, 1996) semiotic representation 

theory and Visualization-Analysis  (VA) framework. which is is a tool for diagramming the 

transitions between the two interacting and complimentary, visual and analytical modes of 

thinking.  After marking the solutions to the test items, the steps in students’ solutions were 

categorised as visual or analytical. It was noted that the dichotomy between visual and analytic 

thinking was not always clear cut in all cases especially at a micro-level. For example, in 

determining or reading the limits of the integration from the projections or 3D sketches, several 

actions and processes occur simultaneously. One has the visual representation in mind, or on the 

‘mental blackboard’ and you imagine spanning between the surfaces. You then record the limits. 

The mental action is hard to see even with the students verbalising their thinking but the outcome, 

writing down the limits, is visible.  These steps were categorised as largely visual as they required 

students to refer to the visual representation (mentally or externally on paper) and move between 

the curves and surfaces on their sketches to find the limits of integration. The mental actions 
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happen more rapidly than the oral articulation. According to our definition in chapter 1, section 

1.2,  these actions classify as visualization.  Duval’s semiotic representation framework provided 

us with a tool to look at the representational mode, namely, tabular or numerical, algebraic, 

geometric and symbolic. In this research symbolic is used to distinguish between the software 

command syntax (codes) from the algebraic symbols in mathematics. 

For problems in single integration, we found that the majority of students were able to 

move between registers and do treatments in just about any order that was requested. However, 

the tendency to rush into the analytical solution, skipping visual aspects, lead to errors in single 

integrals such as   2
1

11 1

1

1

2



 



 xdx
x

. In the symbolic toolbox, Matlab gives the solutions as  

‘int (1/(x^2), x, 1,1) =  Inf’.  A simple sketch shows that the function is undefined at x = 0, and 

we need to split the integral 1 to a and b to 1 and take limits as a and  b  0 . (See Figure 7.1) 
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which is divergent 

Figure 7.1 Integrating the discontinuous function f(x) = 1/x
2
 

 We used the ‘regular’ definition of Riemann sum by introducing a , b , to give us a finite 

interval. Then taking the limit as a, b  tend to 0, and integrating, we find that the integral from 1 

to a and b  to 1 are divergent. Therefore, the integral is divergent.  

 Likewise, we found that students could move between the registers and do the necessary 

treatments and evaluate double integrals easily when they were set up in the order  dy dx. 

Difficulties in visualization became apparent when the order of integration needed switching 

 a                       
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from dy dx to  dx dy, and, in particular, when two split integrals were required to span the 

region of integration. 

In 3D, sketching and translating among different representations of the same 

mathematical object proved to be difficult. While most students were able to recognise and sketch 

the projections in the xy, xz and yz planes, they found it difficult to assemble the projections into a 

coherent object. The mathematical object was difficult to visualise when it sat between two or 

more surfaces and the intersecting planes were hard to identify. This compounded the difficulties 

of setting the limits of integration in multiple integrals. We note that there are 6 permutations of 

dxdydz and the dzdydx triple integral was easier to set up but changing the order of integration 

was not easily accomplished and most students did not know how and when to split the integral 

into two. We hypothesise that this can be attributed to a poor conceptualisation of the Riemann 

process and spatial visualization in filling up the required area or volume. In her interview one 

student (ST2) admitted she forgot about slicing and she went straight to the equations to find the 

limits of integration. Somehow, even at this late and final stage of their study of calculus in a 

university of technology, the tendency to stay in the algebraic register predominates and there is 

reluctance to use information that is sitting in the visual representations students have sketched 

correctly. The Riemann Sum process certainly needs reinforcement when dealing with double 

and triple integrals and views of the object from all angles, cross-sections and projections need to 

be reinforced. 

  Students met the 3D rectangular, spherical and cylindrical coordinate systems for the first 

time in this course and conversions and treatments within these systems were hard to visualize. 

There was often confusion between , the angle between the z axis and , the distance of the 

point from the origin. Similarly  , the polar angle in the xy- plane between the x-axis and the 

polar radius, r, were confused. Part of reason for the confusion between  and  is that different 

notations are used in textbooks: Some authors give spherical coordinates of a point in the order 
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(, ,    ) while others use  (, , ). There was also confusion between the polar radius, r and . 

Often r was difficult to find as treatments within the algebraic registers were problematic. For 

example, students found it difficult to find r needed for cylindrical integrals given the bounding 

surfaces z = 
22 yx   and   

222 zyx  = 7. Similarly, objects such as  = /3,   = 2 , given in 

cylindrical and spherical coordinates, were not easily recognised, except through the lengthy 

process of conversion to rectangular coordinates, sketching projections and assembling the 3D 

solid (See Figure 7.7). 

7.3.2  Difficulties with differential equations 

In this section we summarise our findings on the second domain of the study. The purpose of the 

differential equations course for the students, who were registered for a Bachelor in Technology  

in Chemical engineering, is to solve the numerous DEs that they meet in diverse areas such as 

chemical kinetics, thermodynamics, process control and design. Often the teaching of DEs is 

exclusively reduced to finding algebraic/analytical solutions to the differential equations and 

graphing the solution. The current research attempted to extend this to simple applications such 

as mixing problems and modelling chemical reactions using the Lotka Volterra equations which 

have wide applications in chemistry, economics, population dynamics, etc. The teaching 

experiment stressed qualitative solutions of systems of  DE’s. The approach covered direction 

fields, and phase portraits of systems of differential equations. 

A direction field is a visual display of gradients or slope vectors at different points in 

space drawn with Cartesian axes as the state variables. It has an infinite number of solution 

curves or trajectories. Depending on what initial values we take, the qualitative behaviour of the 

DE can be determined by focusing on a few selected trajectories. In the geometric approach, the 

students found the trajectories by selecting and plotting the gradients at various points in the field. 

A phase portrait is a visual display of a sampling of the trajectories of the systems of 

differential equations. It shows the behaviour of the system as the state variables vary with time. 
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In this study, students sketched phase portraits manually, by finding the equilibrium points by 

setting the Right Hand Sides of the DEs to zero and solving the resulting simultaneous equations. 

Equilibrium points are an important feature of a dynamical system since they define the states 

corresponding to constant operating conditions. For linear systems, the equilibrium point is the 

origin (0 , 0).  There are two gradients dx/dt and dy/dt to consider in determining the trajectory at 

any space point in the phase portrait. Vector addition gave them the resultant of the two gradients. 

This is plotted on the phase portrait and a few selected trajectories then indicate the nature and 

stability of the equilibrium point. This was the qualitative or geometric approach used by the 

students in plotting the phase portrait. 

In the analytic method, the equilibrium points were found by solving the simultaneous 

equations with their right hand side set to zero. The method of linearization using the Jacobian 

matrix at each equilibrium point yields the eigen-values. Using these students were able to 

determine the nature of stability of the equilibrium points.   

Of the two approaches, the geometric approach was found tedious and, students expressed 

annoyance when required to go through the intensive chore of plotting slopes. We note 

limitations in some students’ understanding and plotting of slopes and the connection between the 

slopes and the differential equation was not always clear. Also, the focus in the chemistry lectures 

was mainly analytical solutions and this influenced the importance students attached to 

qualitative solutions.    

Surprisingly, students experienced difficulties in solving the simultaneous equations that 

they set up and often missed one or two equilibrium points in the system. At times they found 

more equilibrium points than were there especially with the non-linear systems.  

Once they had the phase portrait, in terms of Duval’s framework, discursive and global 

apprehension did not happen for most students, and as such the long term behaviour of the system 

was often missed. Interpretation of the phase portraits in terms of the real world situation, the 

cyclical oscillations and time, the hidden parameter, also proved conceptually difficult and 
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elusive. A typical example is the Lotka-Volterra phase portrait where the interacting species were 

shark and fish. Visualizing covariation, that is, two quantities changing in relation to each other 

was not easy. Working simultaneously in two graphical registers was difficult. The phase portrait 

is one graphical representation and the time graph, showing numbers of fish and shark is another 

graphical representation of the same information. Both show one cycle. Students found that the 

connections within geometric or graphical registers between the two graphs were easier to 

understand through the numerical register used as an intervening medium (See Figure 7.2). This 

supports the dual emphasis between visualization and analytical thinking and flexibility in the 

coordination with other representations in the same or different registers.  

Graphical register Numerical register Graphical register 

 
a) Phase portrait: Fish Vs 

Shark  

 Fish 

‘000 

Shark 

‘00 
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1,5 

0,5 
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up 

CD 65 1  4 Sharks 

up 

DA 53 4 5 Fish 
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b) Table showing how the 

number of fish and shark 

fluctuate 

 

  

 

 

 

 

 

 

 

 

 

c) Fish and shark vs 

time Graph 

 

Figure 7.2 Using the numerical register as an intervening medium to foster connections 

between two graphs  the graphical register 

 

The second research question is whether the activities enhance visualization and 

solution of problems in the two domains. In seeking answers to this question, a teaching 

experiment was conducted using two groups of students following the same mathematics course 

at the university of technology.  The control group comprised 26 students, 8 female and 18 male, 

and the experimental group comprised 24 students, 14 female and 10 male. The differences in 

average age of students, on group and gender comparisons, were considered to be of insufficient  
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size to bias the study in any way.  Pre-tests covering Mathematics (Calculus) 1 and 2 work, were 

administered to both groups and the mean group scores of 47.4 (SD = 5.6) and 45.7 (SD = 4.8) 

confirmed insignificant differences in mathematics ability of the two groups. 

The lecturer presented his lectures with the aid of a chalkboard and an Overhead Projector 

using the same set of slides to both the groups. The control group received take home 

assignments whereas the experimental group worked on similar assignments called worksheet 

activities in a computer laboratory (See Figures 7.3, 7.4 and 7.6 for examples of students’ work in 

the mathematics laboratory). The software package, Matlab, used in the laboratory for activities 

was chosen, principally, because the department of mathematics had installed it in the laboratory 

in 2010. Matlab has a large library of visualization tools and can do computations of complex 

double and triple integrals as well as solve differential equations and display their solutions. 

Other software that students could use were Maths Visualization Toolbox (MVT) and 

CalcPlot3D, an applet by Seeburger (2007) available on the internet. Prior to this study, the 

students had some exposure to Matlab but none with the computer software, MVT or the applet 

CalcPlot3D. A second factor in selecting the software packages was access. Students had free 

access to CalcPlot3D and MVT outside laboratory time on the internet.  Structured laboratory 

orientation sessions were conducted to familiarise everyone with the basics of the software 

packages needed for the activities. The software provided access to 3D mathematical objects and 

phase portraits, the subject of this research.  

Six activity sessions were designed with questions, instructions and software codes to 

help students see and manipulate the 3D solids and phase portraits, and record their observations 

in the spaces provided on the worksheets. In the Mathematics laboratory session, students typed 

in the Matlab code and viewed, orientated, and sketched the 3D solid, and evaluated the integral 

using the software as well as manually. Figure 7.3 shows an example. 
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Figure 7.3 Worksheet activity: Sketching3D solids and double and triple integration using  Matlab 

The second worksheet focused on intersections between planes and 3D objects. Figure 7.4 

is an example of a student’s work showing the intersection of a plane with a cone. This was 

extended to other 3D solids like spheres and cylinders. The top left corner shows the Matlab 

codes with a built in parameter to change the angle of the plane.  

Figure 7.6 is a worksheet on sketching 3D solids with their projections, and evaluating 

double and triple integrals manually as well as using the software. 

The last two activity sets focussed on differential equations emphasising the link between 

the analytical and qualitative solutions including direction fields and phase portraits. Figure 3.10, 

chapter 3, is an example of a DE worksheet. 

Our findings were that there are no significant differences between the achievement of 

students who used computers and went through the activities and the achievement of students 

using the traditional approach with pen and paper on tests T1 and T2. A two-way ANOVA of test 
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Figure 7.4  Intersections of planes and solids: conic sections 

results with group (Control Vs experimental) and gender (male vs female) revealed no significant 

differences in student performance. The main effect of treatments was not significant while 

gender differences were also  not significant.   However, significant differences between 

treatments were found on Test 3 at the end of the semester in favour of the experimental group. 

An end of semester questionnaire was completed by the experimental group ( n= 24) 

comprised seven questions answered on a scale of 1 to 5, where 1 was poor and 5 was excellent. 

It revealed that the computer-enriched sessions provided a positive learning experience for the 

students, who recommended more sessions and time allocation in future. The Laboratory sessions 

and worksheets were rated 3.8 , and the work on double and triple integrals was rated 4.2.  The 

preference for computer-assisted learning is not surprising, considering the generally positive 

attitudes towards computers. The visuals used in lectures were rated ‘clear’ by 15 students (63%) 

while 9 (37%) said visuals needed improvement. Everyone found the worksheets helpful. 

There were some negative comments as well. A number of students who did the activities 

suggested that they were actually learning about two things, the activities and how to use the 

software program. The codes had to be typed in, the display adjusted, and the sketches drawn. 
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Also the way the mathematical objects were sketched and presented in lectures was not the same 

as on the computer. Some adjustment, rescalings and reorientation was necessary to get the axes 

aligned to give a suitable display.  

Our expectations and intention were that the lab activities would provide a higher degree 

of semiotic flexibility, by facilitating processing and plotting, which is a conversion. On the 

contrary, as Winslow (2000; p. 278) points out we have an extra medium (the computer), an 

additional special code (Matlab) for semiotic activity, and a kind of  automatic semiotic agent that 

presents a final output whether it is the result of a computation or a 3D graph.   The software 

tends to leave out several intermediate steps that may, or may not, be made explicit, an effect 

known as the ‘black box effect’ (opus cit., p281). For example, one does not see the intermediate 

steps in the computation of a double integrals or the analytical solution of a differential equation. 

At times the outputs were difficult to decipher. To illustrate, Figure 7.5 shows the code required 

to solve the ODEs: dx/dt = 2x  y and dy/dt = 3x – 2y and plot the solutions. 

 

 

 
syms x y t 

dsolve(’Dx=2*x-y’,’Dy=3*x-2*y’; 
x = exp(-t)*(3*exp(2*t)/2 + 

3/2)/3; 
y = exp(-t)*(exp(2*t)/2 + 3/2); 
ezplot(x, [-1,5]); 
hold on 
ezplot(y, [-1,5]); 
hold off 

 

 

Figure 7.5  Code required to solve and plot graph of solutions to dx/dt = 2x  y and dy/dt = 3x – 2y  in 

Matlab 

 

CalcPlot 3D was found easier to work with and gave excellent visuals that could be easily 

manipulated. However, CalcPlot 3D  does not have any facilities for differential equations or for 

computation.  
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Figure 7.6 Sketching projections, 3D solids and switching the order in double and triple integrals  
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What is clear is that transition from 2D to 3D and understanding of graphs of functions of 

two variables is not easy for students. The difficulties stem mainly in generalising from 2D to 3D. 

One assumes thorough familiarity with graphs in 2D such as y = 3x + 4, z = 4  x
2
 that define a 

line and a parabola. In 3D, the same equations define a plane and a parabolic cylinder 

respectively. In spherical coordinates, 
2 
 2cos  = 8 defines a sphere, radius 3, centre (0,0,3). 

In cylindrical coordinates,  r
2 

+ (z  1)
2 
= 9 defines the same sphere. In rectangular coordinates 

the equation is: x
2
 + y

2
 + z

2
 2z = 8. Often students converted from spherical to rectangular 

coordinates in order to “see” the object and to sketch it.  Figure 7.7  shows an attempt by a 

student to sketch = 4 cos , in Test 3. The intersection of surfaces with planes, and predicting 

the result of this intersection plays a fundamental role in setting up the integrals and was 

particularly difficult for students.    

 

Figure 7. 7    Student’s attempt to sketch = 4 cos , Student converts to rectangular coordinates, 

recognises the mathematical object as a sphere, centre (0, 0, 2), radius 2. The 2D sketch in the yz plane is 

not accurate and the 3D sketch is missing 
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The third research question was what factors influence visualization and spatial ability in 

particular. The review of literature identified a large number of factors impacting on spatial 

ability such as spatial orientation, surface features, recognising rotated figures, opening and 

folding nets, mental manipulation of objects, reflection and symmetry , etc. The 3D objects that 

our students would be dealing with were cylinders, spheres, cones, pyramids, cuboids, and 

hyperboloids. We made manila cardboard and wire models of some of these so students could 

look at the surface features (circles, triangles, sectors of cones, vertices and edges) and examine 

their nets by folding or unfolding. The 3D objects could be viewed, projected and sketched from 

different perspectives and orientations. The objects could be combined, eg cone on cylinder.  We 

chose 6 factors that we felt would have most impact on achievement in the type of problems we 

were attempting in multiple integration. These factors were surface features (names, faces, 

vertices), rotation (turning an object about a point or axis), cross sections (with horizontal and 

vertical or oblique cutting planes), Nets (folding/unfolding to give 3D object) and prior 

knowledge. Prior knowledge tested their knowledge of functions, roots, differentiation, 

integration and differential equations that were covered in Maths 1 and 2. The test for prior 

knowledge had been constructed and tested over several years. Reliable test items were available 

for each of the other factors. We then performed a multiple linear regression with achievement 

scores in Test 2 as the dependent variable and the six factors as independent variables. 

The regression analysis was found to be statistically significant F(20) = 9,67, p < .01.  

The multiple regression accounted for 72,2% of the variability, as indexed by the adjusted R
2
 

statistic.   

The regression equation for predicting maths achievement was found to be Y = .5061* 

Prior + 0.498* SURF – 9.115.  The variable of prior knowledge, as indexed by its β value of  

0.5016, was shown to have the strongest relationship with  achievement in test 2. 
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A step wise regression analysis with inclusion exclusion significance levels set at 0,15 

confirmed that pretest, surface features, as well as cross-sections are significant predictors of 

achievement on multiple integrals and dynamical systems. 

We decided to repeat the regression analysis using the examination scores at the end of 

the semester as the dependent variable. We found that none of the variables were significant 

predictors of achievement on the examination.  

Our conclusion is in line with the findings of other researchers (eg  Hegarty and Cohen, 

2012 )  that training in specific spatial skills (projections, cross-sections, nets) correlates and 

transfers well with problems in multiple integrals that utilise those skills. Prior knowledge had the 

largest influence on achievement. 

The fourth research question looks at Teaching and Learning strategies that help in the 

conceptualization and solution of problems in multiple integrals and dynamical systems.   

The analysis of students’ solutions highlight several challenges in the Teaching and Learning of 

multiple integration and dynamical systems. We identified visualising mathematical objects in 

three dimensions as one of the difficulties. Students faced difficulties in setting up and switching 

the order of double and triple integrals.   

The software promoted a combination of visual and non-visual reasoning essential to 

problem solving and promoting visual and analytical thinking.  From a didactical point of view 

the software acted as a pedagogically appropriate mathematics construction and exploration tool, 

reducing the cognitive load that hampers mathematical activities. It embraces all four components 

of visual thinking that Koslyn (1983) proposed, namely: image generation, inspection, 

manipulation and maintenance. Visualization is therefore, in many cases, facilitated by computer 

rendered images and relies on the power of the human visual sense to analyse the content of 

images. 

In addition the software enabled quick and easy conversions between the geometric and 

algebraic registers. The outcome was improved simultaneous coordination (synergy) between the 
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numerical, algebraic, graphic and symbolic registers. At the same time, we could realise some 

benefits of using visualization in the instructional process listed by Dwyer (1988), among them : 

1. visualization increases learner interest and concentration  

 2. visualization illustrates, emphasises and reinforces oral and printed instructions and 

 3. visualization develops discrimination and clarity of thought. 

Important implications for Teaching and Learning emerge from this study. Mathematics 

educators need to pay careful attention to the use of visual representations, space figures in 3D 

and phase portraits in 2D, their construction, sketching, and interpretation. They need to 

encourage students to use their visualization skills to better conceptualise, represent and solve 

problems.  Students should be encouraged to imagine and visualise the solutions to differential 

equations by sketching graphs. Often visual representations drawn by students in answer to 

problems are viewed as scratch work and ignored by lecturers. Tutors can stress their importance 

and include them in the marking rubric.  

Given the increasing availability and use of technology, more research is needed on 

technology-enhanced techniques that aid with visualization and representations, and the 

conditions under which they are effective.  Integration of technology into mathematics, by 

modifying existing curricula, is a viable and effective method for curriculum development at the 

tertiary level. To avoid the ‘black box’ effect students should check that the solutions which 

software offers are reasonable. Do the functions satisfy the DEs? What steps did the program use 

to give the answer to the double integral and to solve the DE? 

Individual differences became apparent in spatial visualization of objects in 3D. While 

there was some familiarity with mathematical objects like planes, lines and curves, cones, 

cylinders, pyramids, and spheres, most students found it difficult to visualise their projections, 

intersections and cross-sections, that are necessary in triple integration. The study found that the 

use of manipulatives is not out of place even at this stage. Models of cones, spheres, cuboids, 

ellipsoids help in the concept development, visualization and problem solving. The power of 
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manipulatives is in helping to move between the concrete representations to abstract ideas, and 

helping students to visualise and internalise abstract concepts. Drawing nets for solids and folding 

to assemble the 3D object, is an important strategy to draw attention to the surface properties like 

faces, edges and vertices that sit together or are parallel or perpendicular to each other.  Well-

designed activities can strengthen spatial visualization which, as other researchers, eg McGee 

(1979) have pointed out, is a potential indicator of success in mathematics. The use of 

manipulatives is similar to modelling and simulation that mathematicians apply to conceptualise 

and solve problems. 

In dynamical systems, the concept of slope or gradient challenged many students who 

struggled with their direction fields and in sketching and interpreting phase portraits. These 

concepts need to be linked to their definitions, change in y over change in x, rise over run, and 

rates of change. The implications are that mathematics educators need to expand their repertoire 

of skills and tools beyond chalk talk and challenge students to make connections between 

physical, geometric, algebraic, numerical, symbolic and verbal representations. They need to 

incorporate activities including nets and folding activities, composition and decomposition, 

rotation of 3D figures, sketching cross-sections, projections of  3D objects. 

However, at the same time, we need to be aware of the shortcomings. According to 

cognitive load theory (Sweller, 1999), when learners split their attention between visually 

presented text and graphics, it overloads working memory capacity. Time used in typing in the 

codes, getting to know the programme and symbolic codes for the software, and sketching 

projections increases the cognitive load at times to a point where students switch to the algebraic 

equations and use them to write the limits of the integrals, thus defeating the purpose of the 

activities.  
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7.4 Recommendations 

This study showed that students have difficulty constructing, using, interpreting  and applying 3D 

geometric representations, direction fields, and phase portraits and can benefit from 

technologically enhanced activities focussed on visualization and analytical thiking. The majority 

of students were at the perceptual apprehension level when it came to setting up triple integrals in 

orders other than dzdxdy.  We observed that students have difficulty relating and translating 

among different representations of the same entity within a register eg  between cylindrical and 

spherical or rectangular systems as well as conversions from algebraic to graphical and verbal 

modes. The scope of the activities and interventions using worksheets was limited. Additional 

support for students struggling with spatial relations and 3D visualization must be 

accommodated. The use of computers and technology needs to be timetabled, and should form an 

integral part of the mathematics courses. 

  In dynamical systems extracting information from graphical representations, and 

describing the long term behaviour of solution curves hinges on visualization and students’ 

facility with language. More attention needs to be paid to discursive, sequential and operational 

apprehension, that is, moving beyond the representation of dynamical systems in phase portraits 

to interpretation and prediction of the long term behaviour of solutions.  In particular, the hidden 

parameter ‘time’ in phase portraits needs to be unpacked carefully. 

The results of the study show that with computer enhanced static images, non-linear 

dynamical systems can be handled easily at this level. However the curriculum, the examination 

structure and assessments and evaluations need to be revised to accommodate a qualitative 

approach to systems of differential equations. This research focussed mainly on student 

interactions with static visualization.  Further research is necessary to assess the effect of 

dynamic and interactive visualization. 
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7.5 Contributions   

Business, science and industry increasingly use computer visualization to solve complex 

problems and to optimise and monitor processes and production in the workplace. Many 

disciplines and professions such as data science, engineering, radiography, geographical 

information systems and digital animation and simulation depend on visualization.  

This research provides empirically based evidence that guides the design of activities that 

can enhance visualization of functions of two variables. It looks at the role of visualization 

complementing analytical thinking in two main areas in mathematics; namely multiple integrals 

and systems of differential equations.  It reinforces the need to shift the emphasis from a purely 

analytical and algebraic approach towards a technologically enhanced setting where the emphasis 

is on building connections between algebraic, graphic and numerical representations, on 

visualization as well as analytical thinking.  

 Duval’s semiotic representation framework and the VA-framework gave useful insight 

into students’ cognitive difficulties as students moved back and forth between various registers. 

This research showed that it is possible to go beyond the semiotic representation approach and 

incorporate software, and activities in the collaborative learning and teaching of multiple 

integrals and dynamical systems.  

Finally, the research made useful recommendations for the teaching and learning of the 

topics through visual mediation by focussing on pedagogical principles, learning strategies and 

mathematical achievement into a unified whole. On a personal level, the teaching experiment 

helped to break down the barrier between the lecturer and the students enabling one on one 

interaction. The lecturer could listen to the students’ utterances and note their actions, scaffolding 

and providing support where necessary. It endorsed the findings of other researchers that the use 

of technologically enhanced visualization of multiple representations can facilitate and promote 

learning. 
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7.6  Extending the scope of the study 

This study followed two small groups of students, one receiving traditional lectures, and the other 

had their lectures supplemented by computer Laboratory activities. The findings are specific to 

the small group of students from mainly disadvantaged backgrounds. The teaching experiment 

needs to be replicated with larger groups, and in a broader range of mathematical domains using 

students with diverse backgrounds. 

The regression model used six predictor variables in assessing their relation with 

achievement on multiple integrals and two were significantly related to achievement. Other 

important variables such as affective factors (attitudes and motivation), gender, study styles, 

socio-cultural factors need to be investigated and included in the model. 

Visualization creates a bridge between the real world and the abstract world of reasoning 

and thinking in mathematics. Mathematical objects such as a point, a line, a plane, a number are 

abstract entities that can only be ‘seen’ through their representations. Differential equations 

represent abstract phenomenon and processes in the real world involving rates of change. In the 

differential equations course, the problems tackled were based on applications in population 

dynamics and chemistry.  In multiple integrals the area of application was volumes of familiar 

objects such as a cone, a cylinder, a sphere in three coordinate systems.  We need to look at the 

role of visualization in other areas and applications of mathematics such as surface areas of 3D 

objects, topology etc.   

7.7   Future directions 

The field of visualization is on an ever changing landscape with new horizons opening up as 

technology develops. Even the definition of visualization has seen several changes. Linn (2010, 

p. 732.) defined visualization as ‘interactive computer based animations such as models’, 

simulations, and virtual experiments of phenomenon”. Simulations are computer models of real 

phenomenon that allow users to change parameters and explore the implications on the state 
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variables. Visual mathematics refers to learning of mathematics using a variety of representations 

(diagrams, graphs, 3D sketches) that aid in the exploration and visualization of mathematics 

concepts usually in cyber-learning environments such as networks, WebCity (Howse and 

Stapleton, 2008).  The ubiquity and accessibility of the internet and Web and increasing adoption 

of portable devices (smart phones, tablets, computers, iPads, etc), have contributed to and are 

driving the demand for visual tools.  Visual calculus, visual group theory, PDEs; a visual 

approach, and data visualization are some of the domains that are turning to visualization to 

improve pedagogical practices.  

Tools such as MVT and CalcPlot3D enable integration of visualization with instructional 

scaffolds. While there has been much research devoted to the successful design of pedagogically 

impactful learning environments in which to embed visualizations, the body of literature 

addressing the design and evaluation of didactic visualizations is relatively underdeveloped.  This 

needs further research. 

  There has been a tremendous growth in the availability of tools for teaching, learning, and 

research in visualization. The learning styles and behaviours of students in the current generation 

(also called the Net Generation) are influenced by the digital media and technologies and are 

highly visual and perceptual. Their thinking and learning is influenced by technologies such as 

the computer, the internet and smart phones and games, simulations and applets. Educators need 

to look at the potential of these for enhanced teaching and learning. Games have the advantage of 

immediate feedback and help the learners monitor their own progress towards their goals.  As 

Zimmermann and Cunningham (1991) note we have a visualization renaissance driven by 

technology on our hands. The early days of the renaissance were static visuals with hand held 

scientific and graphic calculators. The emphasis now is on dynamic and interactive visualization, 

internet connectivity, communication and information-sharing resources, and photo and video 

capture capabilities.  The effective adoption and successful integration of digitals tools in 

teaching and learning of mathematics need further research. 
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Figure 7.8 Students inside the Mathematics Laboratory, CPUT 
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decide it is important that you understand why the study is being done and what it involves. 
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application is to plot the solution of simultaneous differential equations so that you can see 

clearly how the solution curves change with time. This is used in stability analysis of chemical 
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mailto:sheikht@cput.ac.za


193 
 

 

2. What will happen to me if I take part? 

You will be shown how to use the programs and apply them to sketch the solids and their 

projections as well as phase portraits for systems of differential equations. You then participate in 

some lab activities with similar problems. These should help you answer multivariate questions 

and questions on phase portraits better than without these aids. At the end of the semester you 

will be asked questions about the program, the visuals and their usefulness in solving problems in 

Calculus or differential equations.  

3. Are there any risks / benefits involved? 

There are no risks involved. The programs are small (5 MB) and will fit on your flashdrive. You 

can work with them on any computer anywhere.  The use of the program should help you solve 

problems in 3D calculus and systems of differential equations. The benefits are mainly to 

students who do maths. l  

4. Do I have to take part? 

 It is up to you to decide whether or not to take part. You are free to withdraw at any time and 
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No. You will not be paid to take part in this study and there are no costs involved in the 

participation. 

6. Will my taking part in the study be kept confidential? 

All the information obtained will be kept confidential.  You will receive a participant number and 

remain anonymous.  The information obtained will be summarised and used in a dissertation and 

for publishing a research article. 

7. What will your responsibilities be? 

You should attend the lab sessions explaining the programs. You then try problems similar to the 

ones you did in the lab sessions on your own. Extra help sessions will be held if required.  At the 

end of the semester you will be asked to answer 2 problems using the programs and whether you 

found the programs useful. 

8.  When do I start? 

You indicate your willingness to take part by signing the declaration to participate. The 

researcher will obtain clearance from the Applied Sciences Research Ethics Committee and the 

first computer lab session will be held at a time convenient to everyone participating after the 

clearance has been granted.  
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 I explained the information in this leaflet to the participant 

 

 I encouraged her/him to ask questions and took time to answer them 

 

 I am satisfied that he/she understands the study, as discussed above 
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……………………………………………………………………… 
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Appendix   3  Review of  Mathematics 1 and 2    
     

Topics Questions for you to try  

1. Algebra: Identities 

Eg: (x  y)
2
 = x

2
  2xy + y

2
 

       (x  y)
3
 = x

3
  3x

2
y + 3xy

2
  y

3
 

)()()(

)())((

)(

22

22

cx

EDx

bx

C

bx

B

ax

A

cxbxax

xf















  

1) Solve: 2x
2 

+ 5x − 4= 0 
 

2) Solve:  x
3 

+x
2 

−4x −4=0 

3) Split :  
23

3
2

2





xx

x   (partial fractions): 

4) Simplify: 
)(

33

yx

yx




 

2. Functions : graphs Curves 
(a) straight lines y=mx+c 

b) quadratic –parabolas y=ax
2
+bx+c 

c) hyperbolas xy=12 
d) circle:x

2
+y

2
=9  (e) ellipse: ax

2
+by

2
=c 

Sketch the graphs of  

1)  y = 3 –  2x                 2)  y = x
2 

+3x –2                  3)  xy=8 

4)  y = 2
–x

                        5)   x
2
+y

2
 = 6                      6) 1

94

22


yx  

7) 4x
2 

+ 9y
2
 = 36             8)  4x

2
–9y

2
 = 36                  9)  x/2+y/3=1  

3. Limits of functions 

Find the limits if they exist 

(a) substitution   

(b) cancel common factor   

(c ) rationalize   

(d) L`hopital   

(e)graph 

 

(a)
1

2
lim

2  x

x

x
 

 

 

(b)
2

4
lim

2  x

x

x

 

 

 

(c) 
xx

x
xf






2

2 1
)(    Find )(lim xf as 

(i) x0,       (ii) x1      (iii ) x 

(d)
x

xn

x

)1(
lim

0





  (e) 
2

2

0

2
lim

x

xn

x




 (f) xx
x

3costanlim
2/

  (g) 
xe

xn
xx cos

)1
lim

2

0 






 

 

4. Continuity: The function f(x) is continuous at a if  

)()(lim afx
ax




. If a function has a derivative at a point 

then it is also continuous at the point.  However the 

converse is not necessarily true.  

4.Discuss the continuity of 

1

1

1

45

4)(
3 

















xif

xif

xif

x

x

xf  

b. What values of a and b 

make f(x) differentiable 

everywhere? 










1

13
)(

2

xifbax

xifx
xf  

5. Mensuration Formulae 

Cylinder: Across =r
2
      Vcyl = r

2
 h            

Surface Area  (SA) =2 r h 

Sphere:   

SA= 4r
2
    V = 

4
/3  r

3
 

 

5. How many m
3
 will each hold?                  Top   R2=0,6 m        

                                                      

 

 

                                                   h =3,5 m 

  Trough                             Cylinder                                                    

L =2 

m 
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6. Differentiation:  
(a) Product   

(b) Quotient   

(c) Chain  

(d) Log   

(e) implicit   

6. Differentiate the following:  

(a) y = x
3 

+5 1x                                           (b) y = 5 3 )12( x       

(c) y = sin( tan
−1

(2t))                                         (d)  5
2t

 ln (3t)          

(e)      y = 








13

2tan

x

xe x

                                   (f) e 
x y 

+ y
2 

= cos x    

7. Functions: Partial Differentiation 
 

  Notation:  
x

f
f x




      


















x

f

y
f xy

 

Total differential: dy
y

f
dx

x

f
df









  

eg: P(V;R) =V
2
/R then PVV=

RV

P 2
2

2




  

7.   If   f( x ; y) = 3x
2 

+ 4xy −2y
2
    find   (a) f(2;−3) 

(b) fx(2 ; −3)           (c) fy(2 ; −3)         (d) fxx(2 ; −3)         (e) fyx(2;−3) 

7.1 If P(V;R) = 
R

V 2

what is  (a) PR  (b) PVR  (c ) PRV 

7.2.  If  f(x;y) = e 
y
 cosh 2x what is the differential df ? 

7.3  Find the rate of change with respect to y of 1222  zyx  at 

 
3

2,
3

1,
3

2P . 

8. Total differential: 

a) Suppose 22),( yxyxf  . Use the total differential to approximate the change of  f as (x, y) varies 

from (3, 4) to (3,04, 3,98). 
 

b) Suppose the radius of a right cylinder is measured with a 2% error, while the height is measured with an 
error of 4%. What is the maximum relative error in V, the volume of that cylinder. 

 

9. Integration Techniques :  
(a) direct integration  (b) 
Substitution    (c) Parts     (d) Partial 
fractions  (e) Completing the 
square 

9. (a)   dx
x

xx )
1

2( 3     (b)    dxxx 42 )53(2      (c) xe x sin2

  dx   

           

 (d)  dx
x

x
 

3

1

2 2
      (e)   241 x    (f)  

3

2

2 43

2

xx
dx         (g)   522 xx

dx
 

 

10.  Integration applications  Areas 
Volumes 

10. Sketch the curve given by xny  and find  

(a) the plane area enclosed between the curve and the x-axis for 1 <  x < 4    

(b) the volume of the solid of rotation as the curve rotates about the x-axis 

11. Matrices.  operations.  
Determinant      inverse     
cramers rule 

 

11. Solve:   

132

223

932







zyx

zyx

zyx

     for x, y and z  

12. Differential Equations:  
Solve by:  a) Separation  

b) Homogeneous   c) Linear IF 

12.  Solve the following ODEs : 
 
(a)  (5x − 2y) dx = (2x − y)dy                (b) x dy +y dx = e

x
 dx 

 

( c)  2x
2
y − xy = y                                 ( d) x dy = (x + 2y)dx     
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Appendix 4  Tests 

4.1  Pretest  Math 3 

1. Solve : 2x
2 

+3x  2 = 0   

 

2. Sketch the graph of  y = 2 + x   x
2
 

a) What is the gradient of the curve at x = 1? 

b) What is the equation of the line of symmetry? 

c) For what values of x is 2 + x   x
2
 0? 

 

3. You are given 6 equations 1,2…6  and 6 graphs, A, B, C…..  F. Match the equation to its 

graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  

B  

 

 

C  

D  

E  F   

1. xy = 4            

          

2.   y = 1x  

 

3  1
32


yx
    

            

4  1
94

22


yx

 

 

5  (x  1)
2
 + y

2
 = 1     

 

6  y = 
2

2

x
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5. a) Given P (V;R) = 
2R

V
  what is  

R

P




?     (3) 

b) Find 
dx

dy
given: a) y = 

2

3

x
                                b) y = 32 x           (3+3) 

6. Solve the differential equation:  1 y
dx

dy
  given y = 1 when x = 0 

7.  Integrate: a) dxx 14                        b) dx
x

x
 12  

8. What is the area in the first quadrant enclosed by  y = x
2 

+ 1   and 0  x  2? 

4.2  Test 1   (BT1) 

Question 3 Double Triple Integration in rectangular coordinates 

The shaded region on the graph shows the area between the curves:   

0031  y;x;x;xy  

3.1 Write down the single integral for the area of 

the region   dxy .   Do not evaluate    (4) 

3.2 Write down a double integral for the area  

in the order 

a)    dxdy               

b)   dydx           (6) 

3.3. Sketch and write down a double integral for 

the area enclosed by y = 4 – x
2
 ; y = 0 and  

x = 0.  in the order: 

a)    dxdy                b)   dydx           (8) 

 

     











x

y

y=sqrt(x)+1
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Question 4   

Given the solid in the first octant bounded by the surface x = 4 – y
2
 and the plane y + z = 2: 

4.1 Sketch the solid and its projections in the xy-, xz and yz planes;         

4.2  Write down the triple integral for the volume R in the order: 

a)     dzdydx            

b)     dydzdx              

c)    dxdydz                                  

4.3  Evaluate one of the integrals.              

4.3  Test 2   (BT2) 

1.1 Sketch the following 3D solids given by the algebraic equation in the coordinate system 

stated. 

a)   
22 yxz   ,     0 < z  < 2     Rectangular coordinates 

b)    cos4      Spherical coordinates 

c)    sinr 3    Cylindrical coordinates    (10)                

1.2.   A solid D,  lies within the cylinder x
2
 + y

2
 = 1 , below the plane 

 z = 4  and  above the paraboloid  z = 1 – x
2
 – y

2
.  See diagram.     

a) Set up a triple integral in cylindrical coordinates for the volume of the 

solid.                                               (4) 

 

b) Write down an equivalent volume integral for D in rectangular 

coordinates is:     dxdydz                (4) 

c) Evaluate one of the integrals you set up.          (6)       [20] 
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2.  You are required to find the volume of the solid enclosed above by the  

surface represented by  x
2 

+ y
2
 + z

2
 = 8  and below by the surface   z = 

22 yx    .  

a) Sketch the surfaces and the solid                                                                            (4) 

 

b) Sketch the xy and the yz projections of the solid                                                   (4) 

 

c) Set up a triple integral in cylindrical coordinates for the volume of the solid.       (4) 

 

d) Set up the triple integral in spherical coordinates for the volume of the solid.      (4) 

 

e) Evaluate one of the integrals that you set up.                                                        (6)    [22] 

    

 

 

 

TEST 2  (BT2 Continued)  Dynamical  Systems 

4.1 Given the linear system of DEs:                    

20

302





)(yy
dt

dy

)(xx
dt

dx

    

 

a) Find the equilibrium point         (2) 

 

b) Find the particular solutions x(t) and y(t) of the DEs     (4) 

 

c)  Sketch x-t and y-t graphs of the solutions      (4) 

 

d) Use eigen-pairs to determine the stability of the system    (4) 

 

e)  Sketch the phase plane        (4) 

 

f) Find the y(x) solution of the system       (4)  

           [22] 

5. Given the non-linear system of DEs:  

 

)x(y
dt

dy

yx
dt

dx

3

2





 

a) Find the equilibrium points         (2) 

 

b) Use eigen-values at each equilibrium point to confirm the stability of the equilibrium  

points in the system.                 (5) 
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c)  Sketch the phase plane and trajectories (with arrows) on the phase plane to show the type of 

stability of each equilibrium point in the system.       (4) 

 

 

d) Find the y(x) analytical solution for the system     (5)     [14]  

 

 

 

 

 

Test 3  (BT3) 

 

 

Question 2   Double and Triple Integration  

2.1  a) Sketch the region represented by the double integral  :   dydxx

y

  

16

0

4

3 1      (3) 

 

b) Switch the order of integration and evaluate the integral.         (7) 

 

 

2.2  Sketch and find the volume of the solid in the first octant bounded by the surfaces  

represented by  z = 4 – y
2
  ,   x + y = 3 and the coordinate axes.     

 (10) 

 

 

 

Assignment  

 

1. You are required to find the volume of the solid bounded above by the  

surface represented by  x
2 

+ y
2
 + z = 6  and below by the surface   z = 

22 yx    .  

a) Sketch the surfaces and the solid                                                                            (4) 

 

 

b) Sketch the xy and the yz projections of the solid                                                   (4) 

 

 

c) Set up a triple integral in cylindrical coordinates for the volume of the solid.       (4) 

 

d) Set up the triple integral in spherical coordinates for the volume of the solid.       (4) 

 

 

e) Evaluate one of the integrals that you set up.                                                        (4)    [20] 
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Appendix 5   Statistical Analysis    

5.1  Two Way ANOVA for BT1 with Gender and Group as Factors 

     The GLM Procedure 

 

Dependent Variable: BT1 

 

 

Class Level Information 

Class Levels Values 

Group 2 Control Experimental 

Gender 2 Female Male 

 

 

Number of Observations Read 50 

Number of Observations Used 50 

 

 

Source DF 

Sum of 

Squares Mean Square F Value Pr > F 

Model 3 379.16532 126.38844 0.56 0.6435 

Error 46 10364.51468 225.31554   

Corrected Total 49 10743.68000    

 

 

 

R-Square Coeff Var Root MSE BT1 Mean 

0.035292 27.75613 15.01051 54.08000 

 

 

 

Source DF Type II SS Mean Square F Value Pr > F 

Group 1 247.5664944 247.5664944 1.10 0.3000 

Gender 1 37.2333276 37.2333276 0.17 0.6863 

Group*Gender 1 12.9058361 12.9058361 0.06 0.8119 
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Two Way ANOVA for BT1 with Gender and Group as Factors 

 

The GLM Procedure 

 

Dependent Variable: BT1 
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5.2  Two Way ANOVA for BT2 with Gender and Group as Factors 

 
The GLM Procedure 

 

Dependent Variable: BT2 

 

 

Class Level Information 

Class Levels Values 

Group 2 Control Experimental 

Gender 2 Female Male 

 

 

Number of Observations Read 50 

Number of Observations Used 50 

 

 

Source DF 

Sum of 

Squares Mean Square F Value Pr > F 

Model 3 548.66571 182.88857 0.80 0.5008 

Error 46 10529.81429 228.90901   

Corrected Total 49 11078.48000    

 

 

R-Square Coeff Var Root MSE BT2 Mean 

0.049525 26.78778 15.12974 56.48000 

 

 

Source DF Type II SS Mean Square F Value Pr > F 

Group 1 2.0699571 2.0699571 0.01 0.9247 

Gender 1 209.6475046 209.6475046 0.92 0.3436 

Group*Gender 1 331.8170559 331.8170559 1.45 0.2348 
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Two Way ANOVA for BT2 with Gender and Group as Factors 

 

The GLM Procedure 

 

Dependent Variable: BT2 
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5.3 Two Way ANOVA for BT3 with Gender and Group as Factors 

 

The GLM Procedure 

Least Squares Means 

Adjustment for Multiple Comparisons: Bonferroni 
 

 

 

Class Level Information 

Class Levels Values 

Group 2 Control Experimental 

Gender 2 Female Male 

 

 

Number of Observations Read 50 

Number of Observations Used 50 

 

Source DF 

Sum of 

Squares Mean Square F Value Pr > F 

Model 3 1256.035556 418.678519 3.09 0.0360 

Error 46 6224.044444 135.305314   

Corrected Total 49 7480.080000    

 

R-Square Coeff Var Root MSE BT3 Mean 

0.167917 20.50790 11.63208 56.72000 

 

Source DF Type II SS Mean Square F Value Pr > F 

Group 1 555.1297420 555.1297420 4.10 0.0486 

Gender 1 140.3384500 140.3384500 1.04 0.3138 

Group*Gender 1 334.7965928 334.7965928 2.47 0.1226 

 

Group BT3 LSMEAN 

H0:LSMean1=LSMean2 

Pr > |t| 

Control 52.5277778 0.0333 

Experimental 60.1000000  
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Two Way ANOVA for BT3 with Gender and Group as Factors 

 

The GLM Procedure 

Least Squares Means 

Adjustment for Multiple Comparisons: Bonferroni 

 

 

 

 

Least Squares Means for Effect Group 

i j 

Difference 

Between 

Means 

Simultaneous 95% 

Confidence Limits for 

LSMean(i)-LSMean(j) 

1 2 -7.572222 -14.517829 -0.626615 

 

 

Gender BT3 LSMEAN 

H0:LSMean1=LSMean2 

Pr > |t| 

Female 58.0000000 0.3335 

Male 54.6277778  

 

 

Gender BT3 LSMEAN 

95% Confidence 

Limits 

Female 58.000000 52.811390 63.188610 

Male 54.627778 50.010442 59.245113 

 

 

 

Least Squares Means for Effect Gender 

i j 

Difference 

Between 

Means 

Simultaneous 95% 

Confidence Limits for 

LSMean(i)-LSMean(j) 

1 2 3.372222 -3.573385 10.317829 

 

 

 

 

 

 

 

 

 

 

Group BT3 LSMEAN 

95% Confidence 

Limits 

Control 52.527778 47.553224 57.502331 

Experimental 60.100000 55.252807 64.947193 
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Two Way ANOVA for BT3 with Gender and Group as Factors 

 

The GLM Procedure 

Least Squares Means 

Adjustment for Multiple Comparisons: Bonferroni 

 

 

 

Group Gender BT3 LSMEAN 

95% Confidence 

Limits 

Control Female 51.500000 43.221843 59.778157 

Control Male 53.555556 48.036784 59.074327 

Experimental Female 64.500000 58.242301 70.757699 

Experimental Male 55.700000 48.295791 63.104209 

 

Least Squares Means for Effect Group*Gender 

i j 

Difference 

Between 

Means 

Simultaneous 95% 

Confidence Limits for 

LSMean(i)-LSMean(j) 

1 2 -2.055556 -15.683399 11.572288 

1 3 -13.000000 -27.214253 1.214253 

1 4 -4.200000 -19.412934 11.012934 

2 3 -10.944444 -22.373134 0.484245 

2 4 -2.144444 -14.793686 10.504797 

3 4 8.800000 -4.478937 22.078937 
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Two Way ANOVA for BT3 with Gender and Group as Factors 
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5.4  Linear Regression Results 

The REG Procedure 

Model: Linear_Regression_Model 

Dependent Variable: BT2 

 

Number of Observations Read 21 

Number of Observations Used 21 

 

Analysis of Variance 

Source DF 

Sum of 

Squares 

Mean 

Square F Value Pr > F 

Model 6 4753.56478 792.26080 9.67 0.0003 

Error 14 1147.38761 81.95626   

Corrected Total 20 5900.95238    

 

Root MSE 9.05297 R-Square 0.8056 

Dependent Mean 58.38095 Adj R-Sq 0.7222 

Coeff Var 15.50672   

 

Parameter Estimates 

Variable DF 

Parameter 

Estimate 

Standard 

Error t Value Pr > |t| 

Variance 

Inflation 

95% Confidence 

Limits 

Intercept 1 -9.11499 14.45827 -0.63 0.5386 0 -40.12489 21.89491 

Surface 1 0.22226 0.10262 2.17 0.0481 1.73784 0.00217 0.44236 

Proj 1 -0.13638 0.12826 -1.06 0.3056 1.16443 -0.41146 0.13871 

Nets 1 0.08021 0.12320 0.65 0.5255 1.72356 -0.18403 0.34445 

xsect 1 0.49775 0.29200 1.70 0.1103 2.23864 -0.12853 1.12402 

Rotns 1 -0.02538 0.12655 -0.20 0.8439 2.01359 -0.29682 0.24605 

Pretest 1 0.50161 0.21530 2.33 0.0353 2.41776 0.03983 0.96339 

 

 

Test of First and Second Moment 

Specification 

DF Chi-Square Pr > ChiSq 

20 16.71 0.6716 
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The REG 

Procedure 

Model: Linear_Regression_Model 

Dependent Variable: BT2 
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5.5  Stepwise Linear Regression Results 

 

The REG Procedure 

Model: Linear_Regression_Model 

Dependent Variable: BT2 

 

Number of Observations Read 21 

Number of Observations Used 21 

 

Stepwise Selection: Step 1 

Variable Pretest Entered: R-Square = 0.6099 and C(p) = 11.0904 

 

Analysis of Variance 

Source DF 

Sum of 

Squares 

Mean 

Square F Value Pr > F 

Model 1 3598.77121 3598.77121 29.70 <.0001 

Error 19 2302.18117 121.16743   

Corrected Total 20 5900.95238    

 

Variable 

Parameter 

Estimate 

Standard 

Error Type II SS F Value Pr > F 

Intercept 8.04665 9.54316 86.14536 0.71 0.4096 

Pretest 0.91755 0.16836 3598.77121 29.70 <.0001 

 

Bounds on condition number: 1, 1 

 

Stepwise Selection: Step 2 

Variable Surface Entered: R-Square = 0.7303 and C(p) = 4.4187 

 

Analysis of Variance 

Source DF 

Sum of 

Squares 

Mean 

Square F Value Pr > F 

Model 2 4309.46549 2154.73274 24.37 <.0001 

Error 18 1591.48689 88.41594   

Corrected Total 20 5900.95238    

 

 

Variable 

Parameter 

Estimate 

Standard 

Error Type II SS F Value Pr > F 

Intercept 1.43841 8.47868 2.54472 0.03 0.8672 

Surface 0.25485 0.08989 710.69428 8.04 0.0110 

Pretest 0.71945 0.15990 1790.04128 20.25 0.0003 

 

Bounds on condition number: 1.236, 4.9442 
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Stepwise Selection: Step 3 

 

Variable xsect Entered: R-Square = 0.7862 and C(p) = 2.3950 

 

Analysis of Variance 

Source DF 

Sum of 

Squares 

Mean 

Square F Value Pr > F 

Model 3 4639.23898 1546.41299 20.84 <.0001 

Error 17 1261.71340 74.21844   

Corrected Total 20 5900.95238    

 

 

Variable 

Parameter 

Estimate 

Standard 

Error Type II SS F Value Pr > F 

Intercept -16.60226 11.55827 153.13029 2.06 0.1690 

Surface 0.26172 0.08242 748.37161 10.08 0.0055 

xsect 0.53243 0.25259 329.77349 4.44 0.0502 

Pretest 0.45830 0.19186 423.49556 5.71 0.0288 

 

Bounds on condition number: 2.12, 15.623 

 

 

No other variable met the 0.1500 significance level for entry into the model. 

 

 

All variables left in the model are significant at the 0.1500 level. 

 

Summary of Stepwise Selection 

Step 

Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square C(p) F Value Pr > F 

1 Pretest  1 0.6099 0.6099 11.0904 29.70 <.0001 

2 Surface  2 0.1204 0.7303 4.4187 8.04 0.0110 

3 xsect  3 0.0559 0.7862 2.3950 4.44 0.0502 

 

 

Number of Observations Read 21 

Number of Observations Used 21 

 

Analysis of Variance 

Source DF 

Sum of 

Squares 

Mean 

Square F Value Pr > F 

Model 3 4639.23898 1546.41299 20.84 <.0001 

Error 17 1261.71340 74.21844   

Corrected Total 20 5900.95238    
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Root MSE 8.61501 R-Square 0.7862 

Dependent Mean 58.38095 Adj R-Sq 0.7485 

Coeff Var 14.75655   
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Parameter Estimates 

Variable DF 

Parameter 

Estimate 

Standard 

Error t Value Pr > |t| 

Variance 

Inflation 

95% Confidence 

Limits 

Intercept 1 -16.60226 11.55827 -1.44 0.1690 0 -40.98807 7.78354 

Surface 1 0.26172 0.08242 3.18 0.0055 1.23798 0.08783 0.43562 

xsect 1 0.53243 0.25259 2.11 0.0502 1.84978 -0.00048144 1.06535 

Pretest 1 0.45830 0.19186 2.39 0.0288 2.12005 0.05351 0.86309 

 

 

BT2 predicted_BT2 residual_BT2 student_BT2 rstudent_BT2 lcl_BT2 lclm_BT2 ucl_BT2 uclm_BT2 

73 64.5234 8.4766 1.04570 1.04877 45.3337 58.3693 83.713 70.677 

37 43.1417 -6.1417 -0.87522 -0.86888 22.1287 32.5978 64.155 53.686 

97 91.5788 5.4212 0.75362 0.74364 70.8329 81.5777 112.325 101.580 

49 62.6857 -13.6857 -1.73458 -1.85493 43.0988 55.3868 82.273 69.985 

62 58.0859 3.9141 0.46562 0.45463 39.4797 54.1085 76.692 62.063 

78 75.2552 2.7448 0.34822 0.33903 55.6550 67.9205 94.855 82.590 

63 69.3108 -6.3108 -0.79292 -0.78388 49.8487 62.3536 88.773 76.268 

81 75.8888 5.1112 0.68095 0.66982 55.6415 66.9680 96.136 84.810 

46 57.1828 -11.1828 -1.38215 -1.42323 37.9643 50.9395 76.401 63.426 

36 52.4830 -16.4830 -2.46907 -2.99094 30.9803 40.9942 73.986 63.972 

81 78.9216 2.0784 0.26086 0.25358 59.4749 72.0075 98.368 85.836 

68 68.0977 -0.0977 -0.01214 -0.01177 48.7964 61.6039 87.399 74.591 

34 41.3040 -7.3040 -0.96329 -0.96113 21.1836 32.6751 61.424 49.933 

50 52.1279 -2.1279 -0.26448 -0.25711 32.8255 45.6307 71.430 58.625 

48 39.6461 8.3539 1.11456 1.12310 19.3811 30.6850 59.911 48.607 

43 34.2386 8.7614 1.12559 1.13510 14.4637 26.4493 54.013 42.028 

55 54.1847 0.8153 0.11005 0.10680 33.7787 44.9091 74.591 63.460 

55 44.3201 10.6799 1.36955 1.40864 24.5703 36.5947 64.070 52.045 

71 63.0407 7.9593 0.96842 0.96655 44.0655 57.5923 82.016 68.489 

42 36.8974 5.1026 0.67667 0.66549 16.7077 28.1081 57.087 45.687 

57 63.0856 -6.0856 -0.76720 -0.75752 43.5750 55.9938 82.596 70.177 
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