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Abstract 

Interannual changes in abundance and distribution of jellyfish along the west coast of 

South Africa 

N. Parker 

MSc thesis, Department of Biodiversity and Conservation Biology, University of the Western 

Cape. 

 

Hydromedusae are mostly carnivorous planktivores that under ideal conditions can 

reproduce and accumulate to form dense masses of jellyfish, known as blooms. These jellyfish 

blooms may have various impacts on their surrounding biota and in severe cases have the 

potential to result in ecosystem-wide changes. This study investigated assemblages of 

hydromedusae within the southern Benguela ecosystem, between the years 2000 and 2006. The 

samples analyzed were collected as part of routine Spawner Biomass Surveys conducted by the 

Department of Environmental Affairs: Ocean and Coasts (previously Marine and Coastal 

Management) using Bongo nets. Two hundred and forty two of the samples collected during the 

spring months, October and November, were analyzed. Environmental variables including 

(amongst others) sea surface temperature (SST), sea surface salinity (SSS), sea surface oxygen 

(SSO) and fluorescence (as a proxy for Chlorophyll a concentration) were measured to observe 

their influence on medusoid assemblages, distribution, abundance and diversity. 
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Assemblages of hydromedusae were represented by 69 species and were dominated by 

Siphonophora and Leptomedusae. Mean abundance of hydromedusae were highest in 2005 (3.15 

ind.m
-3

, SD 3.21) and lowest in 2002 (0.50 ind.m
-3

, SD 0.70). Trends in abundance displayed a 

general bell-shaped curve relationship with SST. The random-effects meta-analysis model 

revealed, across all years and all medusaoid classes that SSS (R=0.469), latitude (R=0.223), 

bottom fluorescence (R=0.533), mean fluorescence (R=0.338) and volume filtered (R=-0.408) 

were all significant factors in driving medusoid abundance at p<0.05. Medusoid diversity 

displayed a positive correlation to both temperature and salinity. A BIOENV analysis was used to 

explore the environmental factors that best described the variation observed in the biological 

assemblages. The results from this analysis suggest that SSS and bottom oxygen (BO) are the 

environmental factors that most influence the composition of medusoid assemblages.   
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Chapter 1: Introduction 

 

1.1. Physical characteristics of the Benguela 

The west coast of southern Africa is dominated by a broad northward flowing current: the 

Benguela Current, which represents the eastern arm of the South Atlantic Gyre. The 

Benguela Current extends along the west coast of southern Africa from Cape Agulhas in 

the south to southern Angola in the north, before it is deflected westward into the South 

Atlantic Ocean (Shannon, 1985).  

 

The Benguela Current ecosystem is characterised by seasonal upwelling. This is a wind 

driven physical process whereby south-easterly coastal winds results in the Ekman 

transportation of surface waters offshore (Shannon, 1985). This displacement of surface 

waters allows for sub-surface waters to replace it. As long as the wind blows, this is a 

continuous process causing sediment and nutrients to be “churned” up to the surface, 

resulting in an isothermic, nutrient-rich water column (Shannon, 1985).  

 

The Benguela ecosystem is sub-divided into two regions, the northern Benguela and the 

southern Benguela upwelling ecosystems. The northern Benguela extends from the Orange 

River in the south (28°S, 16°E) to the Benguela-Angola Front (18
o
S) in the north, whilst 

the southern Benguela extends from the Orange River in the north to the Benguela-Agulhas 

(35
o
S) front in the south. The two systems are separated on arbitrary grounds at the 

political border between Namibia and South Africa, although the major internal boundary 
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to the two systems is actually at Lüderitiz (27
o
S). However, the two systems do differ from 

each other in a number of ways. The shelf off Namibia is generally broader than it is off 

South Africa, which means that the topographically steered upwelling currents are more 

pronounced in the latter than the former (Shannon, 1985). This is reflected in a greater 

residence time of water over the shelf in the north and a less dynamic hydrography, which 

in turn is reflected by differences in production and biomass. There are also differences in 

the seasonality of the winds, and hence upwelling. For the southern  region, peak upwelling 

is intensely pulsed and occurs during October and March whilst in the northern Benguela, 

peak upwelling takes place between July and November: upwelling at Lüderitz is perennial 

owing to the narrow nature of the continental shelf in that region and the extensive deserts 

to be found inland (Shannon, 1985). The intense warming of the land during the day serves 

as a thermal barrier for the prevailing winds, guiding them in a SE direction along the coast 

and favouring upwelling.   

 

1.2. Biological structure of southern Benguela 

The biological and trophic dynamics of the Benguela ecosystem are complex. Diversity on 

the west coast is much lower than that of the tropic-originating waters of the east coast of 

southern Africa, but the abundance of species on the west coast is substantially greater 

(Gibbons and Hutchings, 1996). This is as a result of the Benguela’s nutrient-rich 

properties and upwelling process where the high concentration of nutrients promotes 

phytoplankton blooms and increases productivity (Verheye et al., 1992). The high 

productivity experienced on the west coast of South Africa is able to sustain larger sized 

zooplankton and this allows for shorter food chains to be established. While on the east 
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coast where productivity is generally much lower, the zooplankton particles are much 

smaller and hence supports longer food chains (Hayward, 1980). Shorter food chains tend 

to support higher abundances but lower diversity while longer food chains display higher 

assemblage diversity but low abundances (Gibbons and Hutchings, 1996; Fréon et al., 

2009).  

 

Phytoplankton blooms are initially dominated by large diatoms (Pitcher et al., 1992) and as 

the upwelled water matures and moves NW under the influence of Ekman transport, the 

biomass of phytoplankton increases but then starts to decline owing to nutrient limitation 

and self-shading (Pitcher et al., 1992). As the biomass declines so the composition of the 

phytoplankton communities also change – from diatoms through to dinoflagellates to small, 

naked flagellates in the warmer, more stratified and nutrient-poor waters (Pitcher et al., 

1992).  The biomass of phytoplankton is generally higher in the northern than southern 

Benguela (Brown et al., 1991) owing to the greater residence time observed there, although 

production is generally lower because of increased self-shading (Brown et al., 1991). In the 

southern Benguela areas of high primary production are largely restricted to the shelf. 

North of Cape Columbine, where the shelf is relatively broad, there is a wide plankton-rich 

zone, whilst around Cape Point, where the coastal shelf narrows the plankton-rich zone 

narrows as well (Pitcher et al., 1992). This change in primary production reflects the 

influence of upwelling, as areas of active upwelling (narrow shelf) support a lower 

concentration of phytoplankton than downstream regions (Pitcher et al., 1992). 
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Zooplankton communities in the southern Benguela are dominated by copepods, 

euphausiids and thaliaceans (Hutchings et al., 1995). Standing stocks of zooplankton in the 

southern Benguela increase from south to north, with standing stocks south of Cape 

Columbine ~0.5-1.0 gC.m-2, while north of Cape Columbine standing stocks are estimated 

at ~0.5-2.5gC.m-2 (Verheye et al., 1992). Copepod biomass varies seasonally in response to 

primary production (Verheye et al., 1992), being greatest in December when upwelling is 

most prevalent (Verheye et al., 1991)  

 

Upwelling areas around the globe tend to support industrial fisheries (Jarre-Teichmann and 

Christensen, 1998) with often enormous yields of small pelagic fishes (anchovies and 

sardines). Such high fisheries yields can be supported because of the very short nature of 

the food-chains that lead to small pelagic fishes (Hayward, 1980). Sardines (Sardinops 

sagax) can consume phytoplankton directly if in high concentrations (Van der Lingen, 

1994), whilst both sardines and anchovies (Engraulis capensis) can eat zooplankton, such 

as copepods (Van der Lingen, 1994; James and Findlay, 1989), which mainly eat 

phytoplankton.  

 

1.3. Cnidarians and jellyfish biological structure 

Cnidarians are globally distributed, with the majority confined to marine habitats and a 

small number reported in freshwater environments (Jankowski et al., 2005; Smith and 

Alexander Jr., 2008). This phylum contains over 10 000 species (World Register of Marine 

Species, 2014) and displays great diversity in life history strategies (Fautin, 1992).  
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Cnidarians are characterized by their possession of nematocytes. These are cells containing 

organelles, known as cnidae, that are unique to this group and perform a locomotive, 

defensive and predatory function (Tardent and Holstein, 1982). They cell operates using 

high osmotic pressure to discharge the hook-containing organelle into its prey upon contact 

(Szczepanek et al., 2002). The cnida structure can be described as being a coiled up hollow 

tube with a ‘hook-like’ structure attached at the end. Once the cell is triggered, the hook 

end is discharged with the ‘hook’ penetrating the prey organism. Venom is then released 

and injected into the prey via the hollow thread component of the cnida. With hundreds of 

these nematocytes being triggered (Tardent and Holstein, 1982), the prey is immobilized 

and guided towards the mouth by means of its tentacles. 

 

Cnidarians are “primitive” animals that have simple body forms and basic system 

functioning: they lack true organs, a brain or a central nervous system (Arai, 1997). Their 

basic body structure consists of two epithelial tissue layers, an endodermis and ectodermis 

layer, separated by gelatinous connective tissue known as a mesoglea. This “jelly-like” 

substance is secreted by the epidermal cells and functions as a form of structural support 

and buoyancy (Arai, 1997). The two tissue layers form a sac-like structure, with a single 

opening, used for both ingestion and egestion. The mouth opening leads to the enclosed 

cavity which forms the organism’s stomach. Numerous tentacles surround the mouth 

region and these are densely equipped with nematocysts.  
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With no true organs, cnidarians operate at tissue level; with groups of cells having become 

specialized to perform various functions: the cells that surround the stomach are known as 

the gastrodermis and are responsible for secreting gastric acids for digestion. Similarly 

cells have become specialized to perform the functions of nerves and muscles. Contractile 

cells along with myofibrils function as muscles and in the case of medusae are seen as 

darkened bands. These can be longitudinal bands (radial canals) that run length-wise down 

the medusae as well as a circular band (ring canal), which is found along the base opening 

of the medusae (Arai, 1997). On the epidermal surface along the radial canals are receptor 

cells, detecting various stimuli from its environment, such as light. These cells 

communicate with the contractile cells causing the medusa to response (Arai, 1997). 

 

Cnidarians have two structural forms, a sessile polyp and a free-swimming medusa; species 

can experience either one or both forms within their life cycle. Polyps are sedentary, sac-

shaped organisms that normally occupy a benthic habitat. They may be either solitary, 

colonial or in clonal groups. The polyp stage tends to be the stage in which asexual 

reproduction occurs (Arai, 1997; Fautin, 1992), resulting in the budding off of either 

additional polyps or medusoids (Fautin, 1992; Collins, 2002). In the medusoid stage, 

individuals are solitary and bell-shaped, occupying mostly the pelagic waters where 

conditions are favourable. Medusae reproduce sexually; the fertilized eggs develop into a 

planula larva that settles on the sea-floor and moves by means of cilia-induced gliding. 

Once the planula has settled on the seabed it will develop into a polyp (Arai, 1997; Fautin, 

1992). The free-swimming medusa stage is commonly known as a jellyfish. This term also 

includes other free-swimming gelatinous organisms such as ctenophores.   
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There are five classes of cnidarians, each grouped according to their life cycle strategies 

and morphology. The class Anthozoa forms a sister group to the sub-phylum Medusozoa, 

which contains the remaining four classes-Staurozoa, Cubozoa, Schyphozoa and Hydrozoa, 

as described by Marques and Collins (2004). Anthozoans lack a medusoid phase in this life 

cycle expressing only a polipoid body-form. These include organisms such as corals and 

sea anemones. They are also structurally different when compared the remaining cnidarian 

groups, with anthozoans possessing a pharynx as well as distinctive cnidae (Arai, 1997).  

 

Medusozoans are characterized by the presence of a free-swimming medusoid stage at 

some point in their life cycle. Staurozoans, “stalked jellyfish”, were originally thought to be 

part of the class Schyphozoa. However, their genetic relationship with other medusiods 

suggests they are most likely a sister group to Cubozoa or the other medusozoans and could 

not have originated from one of the other classes (Collins, 2002). Staurozoa contains two 

orders, Stauromedusae and the extinct group, Conulatae (Marques and Collins, 2004). 

 

In the class Cubozoa, the medusae are more commonly known as the box jellyfish - so 

named and characterized by their tetramerous shape and the fact that the tentacles are 

arranged at each of the four ventral corners. Cubozoa are more closely related to the 

Scyphozoa than Hydrozoa in both behavioural and structural characteristics, as discussed 

by Arai (1997). Of all the medusozoans, cubozoans tend to possess toxins most lethal to 

humans (Arai, 1997).  
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Medusae, of the class Scyphozoa are generally much larger than those of Hydrozoa but, 

like the latter, feed on a variety of prey including copepods, other medusae, ctenophores, 

and fish larvae to name but a few. There has been research into the impacts of medusae 

feeding by Purcell (1992) and its effects on commercially important fish stocks (Purcell et 

al., 2007). The class, characterized by strobilation and ephyrae within its life cycle, consists 

of three orders, Coronatae, Semaeostomeae and Rhizostomeae (Marques and Collins, 

2004).Within this class we generally know more about the medusoid than polypoid stage, 

as they are much more conspicuous (Arai, 1997). They also tend to have a more direct 

impact on human, such as stings to beach-goers and negative effects on fisheries (Purcell et 

al., 2007; Richardson et al., 2009). Whilst the nematocysts of scyphomedusae are known to 

have toxins, these are generally not lethal to humans (Arai, 1997).   

 

Members of the Class Hydrozoa tend to be much smaller than the other medusoid classes, 

as a rule, and they can form an important part of the plankton. Like other Cnidaria, they are 

predominantly carnivores with a few feeding on bacteria, protozoans, phytoplankton, algae 

and occasionally dissolved organic matter (Bouillon, 1999). Hydrozoa consists of two sub-

classes, Trachylina and Hydroidolina. The former sub-class contains the orders Actinulida, 

Trachymedusae and Narcomedusae, and the latter sub-class contains orders Leptothecata, 

Siphonophorae and Anthoathecata (Marques and Collins, 2004).The order Limnomedusae 

is an order within the class Hydrozoa and does not fall within either  of the two sub-classes 

mentioned (Marques and Collins, 2004). See Figure 1 for the illustration of the taxonomic 

tree of orders within Cnidaria extracted from Marques and Collins’ (2004) study. 

Hydrozoans may possess both polyp and medusoid stages in their life cycles, though in 
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various groups one or the other stage may be absent: species in the order Trachymedusae 

have lost their polypoid stage whilst species in the family Plumulariidae (Leptothecata) 

have lost their medusoid stage (Collins, 2002). In those hydrozoan taxa that have a polyp 

stage, the polyps tend to occur in colonies (clones) with their coelenteron interconnected 

with one another (Bouillon, 1999). This allows for various polyps to be functional 

specialists (feeding, defence, reproduction).  There are over 3500 species of hydromedusae 

known globally (World Register of Marine Species, 2014). 

 

1.4. Ecological importance and our understanding of jellyfish 

Jellyfish are known to aggregate in localised areas at high densities; this is referred to as a 

jellyfish “bloom” (Brierley et al., 2001). With the correct set of conditions which include 

warm sea surface temperatures and nutrient availability, medusae may thrive and aggregate 

together, resulting in sporadic blooms. It is usually a seasonal phenomenon owing to 

favourable conditions, but the intensity may vary between both regions and years (Purcell, 

2005). There are numerous reports, from various regions around the globe, that indicate 

these jelly-blooms are occurring a lot more frequently and at a greater intensity (Attrill et 

al., 2007; Hay, 2006; Mills, 1995; Brotz et al., 2012). Ecologically, this could lead to 

alterations in the food-web structure. They are an opportunistic group of species with a 

broad diet range and fast growth rate, allowing them to quickly thrive in favourable 

conditions and are strong competitors with pelagic fish (Bakun and Weeks, 2006). The 

increasing fishing pressure on pelagic fish provides jellyfish with an even further advantage 

to bloom (Lynam et al., 2006). Jellyfish blooms can have a number of negative impacts on 

humans and their use of the sea, including the closing of beaches (negative effect on 
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tourism), damage to commercial fishing nets and a contamination of commercial fish 

catches, blocking of coastal plant pipes and harm to aquaculture farms (Richardson et al., 

2009; Båmstedt et al., 1998, Purcell et al., 2007). A number of theories have been proposed 

to explain the increase in jellyfish blooms witnessed in recent times. Much of the evidence 

points towards a variety of environmental (Attrill et al., 2007) and biological (Arai, 2001; 

Lynam et al., 2006) factors that may influence their abundances, but what seems apparent 

is that many of the responses are a result of anthropogenic causes (Richardson et al., 2009; 

Purcell et al., 2012).  

 

Global climate change (GCC) has been suggested as one such cause (Purcell, 2005). 

Increased atmospheric temperature results in higher sea surface temperature and an 

increased stratification of the water column. Phytoplankton will thrive in these conditions 

until nutrients are exhausted even though sea surface temperatures remain high (Pitcher et 

al., 1992). A stratified water column gives microflagellates the advantage over larger 

diatoms (Pitcher et al., 1992), because their mobility allows them to move deeper into the 

water column and thereby access nutrients otherwise denied to non-motile phytoplankton 

taxa. Microflagellates are significantly smaller in size than diatoms and this increases the 

food chain across the affected system (Richardson et al., 2009). However, jellyfish are able 

to consume microflagellates (fish are not) and it has been suggested that this allows them to 

thrive in these altered systems.  
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Global climate change (GCC) will also alter the pH of sea surface waters (Hays et al., 

2005). Ocean carbonate concentrations are altered by the increase in atmospheric carbon 

dioxide, resulting in an increase in hydrogen ions in the ocean and thus decreasing its pH. 

The decrease in pH and increase in water acidity may curb calcification of organisms with 

calcified outer casings such as echinoderms, molluscs and various crustaceans. A study in 

the North Sea found a relationship between jellyfish abundance and pH in one small area: 

there was an increase in jellyfish as pH decreased (Attrill et al., 2007). Attrill et al. (2007) 

suggested that the lower pH has a negative impact on calcifying organisms that may 

promote non-calcifying organisms such as jellyfish. Attrill et al.’s (2007) findings were 

queried by Richardson and Gibbons (2008) and the data reinvestigated across the entire 

North Sea as well as the North Eastern Atlantic. The latter authors found that there was no 

direct relationship between pH and jellyfish abundance in any of the regions investigated 

and cautioned wider generalisations of Attrill et al.’s (2007) results. 

 

Eutrophication in the marine environment has also been invoked to explain the increase in 

jellyfish blooms over recent time (Arai, 2001). Higher nutrient concentrations (based on 

skewed nitrogen, phosphorous and silicate ratios), encourages blooms of non-diatomaceous 

phytoplankton. Although primary production increases (leading to increased turbidity), 

new biomass is not utilised by consumers at a fast enough rate (Arai, 2001). As a 

consequence, the excess phytoplankton sinks to the benthos and undergoes bacterial 

degradation that leads to reduced oxygen concentrations. Such conditions favour polyp and 

jellyfish propagation rather than fish thriving, this was noted in the study by Richardson et 

al. (2009). 
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Zooplanktivorous fish are both commercially and ecologically important. Fish, such as 

anchovies and sardines, have been subject to high fishing pressure over the last few 

decades and in various areas such as the Benguela, stock numbers have reduced drastically 

(Lynam et al., 2006). Small pelagic zooplanktivorous fish and jellyfish share the same 

dietary requirements and a decline in pelagic fish numbers lowers the competition pressure 

with jellyfish allowing them to take advantage of the opportunity (Lynam et al., 2006; 

Purcell et al., 2007). The combined effects of fishing pressure and climate change may 

promote jellyfish to thrive (Boero et al., 2008). This coupled with a decrease in nutrients, 

may restrain high energy food chains, such as with fish and whale, and may regress the 

pelagic environment, promoting medusae as the top predators (Boero et al., 2008). 

 

1.5. Jellyfish within the Benguela ecosystem 

The Benguela system is highly productive, with upwelling stimulating plankton blooms. 

This plankton biomass is then able to support an abundance of fish. This characteristic of 

highly productive regions, like the Benguela, makes it a key location for commercial 

fisheries.  Namibia, in the northern Benguela upwelling system, was renowned for its 

prosperous fishing industry (Heymans et al., 2004). Reports have shown a global decrease 

in fish stock due to over-fishing (Pauly et al., 1998). Pauly et al. (1998) describes how 

removal of top predatory fish from the system promotes invertebrates and smaller 

planktivorous fish. In the northern Benguela system this did not seem to be the case. 

During the 1980s and 1990s observations in an increase in jellyfish abundance were noted 

(Brierley et al., 2001; Heymans et al., 2004). It is suggested that they were able to 

dominate due to the excess food that was available as competition with fish had decreased 
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(Mills, 1995; Lynam et al., 2006). Jellyfish also tend to reduce fish propagation by feeding 

on their eggs and larvae (Arai, 1997). A combination of factors such as opened ecological 

space and the ability to expand their populations much faster than fish (Arai, 1997), makes 

jellyfish an opportunistic top predator in ecosystems. The southern Benguela is also 

characterized by upwelled nutrients and high productivity. Zooplankton in the southern 

Benguela appears to have increased over the past few decades as opposed to a general 

decrease along other eastern boundary current systems (Hugget et al., 2009; Verheye, 

2000). One of the reasons for this increase is thought to be a decline in small planktivorous 

fish (Verheye, 2000; Roux et al., 2013). 

 

Interannual variations in gelatinous zooplankton were studied by Buecher and Gibbons 

(2000). The study analysed 10 years of samples in the St Helena Bay region and found that 

species assemblages could be divided into two groups each year, those found in cool 

shallow water were dominated by meroplanktonic species and those found in warm deeper 

waters were dominated by holoplanktonic species. Species richness of meroplanktonic 

medusa was found to have a negative correlation to temperature and depth and a positive 

correlation to total chlorophyll a. Also, the abundance of meroplanktonic meduasae 

showed to be significantly negatively correlated with depth (Buecher and Gibbons, 2000). 

On the other hand species richness of holoplanktonic medusae displayed a positive 

correlation between temperature as well as depth, but a negative correlation to total 

chlorophyll a. The abundance of holoplanktonic medusae displayed a positive correlation 

with temperature but showed no correlations with depth or chlorophyll a (Buecher and 

Gibbons, 2000).  

 

 

 

 

http://etd.uwc.ac.za/



14 

 

Elsewhere, studies have discussed interannual variation in jellyfish abundance and factors 

closely linked to it. In the Ligurian Sea it was noted that prolonged environmental changes 

resulting in increased sea surface temperature promoted frequent jellyfish blooms at greater 

intensities (Molinero et al., 2008). Also, in the North Atlantic, the abundance of oceanic 

jellyfish was related to the abundance in zooplankton as well as increased temperature 

(Gibbons and Richardson, 2009). 

 

There are numerous theories and speculations for patterns in gelatinous zooplankton 

abundance, distribution and species assemblages. Most of the findings seem specific to 

location and particular environmental conditions. The aim of this study is to explore 

interannual patterns in community assemblages of hydromedusae along the west coast of 

South Africa subsequent to the year 2000 as well as link community responses to 

environmental fluctuations. .  
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Chapter 2: Materials and Methods 

 

Samples collected along the west coast of South Africa, between Cape Town and 

Hondeklip Bay were examined. These samples were collected by the former Marine and 

Coastal Management during their routine surveys. Two hundred and forty two samples 

were examined for copepods and hydromedusae and environmental measures were also 

collected at each station. The data were variously analyzed using Spearmans Rank 

correlations (explore relationships between environmental measures), and Multiple 

Regression analysis, Meta-analysis and BIOENV analysis (to explore relationships 

between the biota and environment).  

 

2.1. Field sampling 

The samples used in this study were collected between Cape Town (~34.3
o
S) and 

Hondeklip Bay (~30.4
o
S) on the south-west coast of South Africa during routine spawner 

biomass surveys conducted during October/November each year for the period between 

2000 and 2006, inclusive. These surveys were conducted by former Marine and Coastal 

Management (now divided between Department of Agriculture, Forestry and Fisheries 

(DAFF) and Department of Environmental Affairs (DEA)) and were annual acoustic 

surveys of pelagic fish during which zooplankton samples were collected within the upper 

200 m of the water column. The purpose of this, as a government mandate, is to understand 

the annual zooplankton and more particularly, copepod, assemblages that relate to food 

production for planktivorous fish, such as anchovy (Engraulis encrasicolus) and sardines 
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(Sardinops sagax) (Huggett et al., 2009). The full survey extends from Hondeklip Bay on 

the west coast and continues along the south of South Africa to about Port Elizabeth 

(Figure 2). This survey forms the “summer” portion of the zooplankton stock assessment 

that has been running since 1988 (Huggett et al., 2009). The exact set of stations sampled 

each year varies, but stations are generally 10 nautical miles apart from each other along 

transects orientated perpendicular to the coastline (Figure 2). 

 

Zooplankton samples were collected from each station using paired vertical bongo nets that 

were fished from 5 m above the seabed to the surface, to a maximum depth 200 m. The 

nets had a diameter of 0.57 m, were fitted with a 200 µm mesh (Huggett et al., 2009) and 

were equipped with a General Oceanics flow-meter (Huggett et al., 2009). The nets were 

hauled vertically at a rate of 1 m per second. Upon collection, the zooplankton samples 

were immediately preserved in a 5% buffered sea-water formalin for later examination in 

the laboratory. The volume of water filtered by each net was calculated using equation 1. 

 

Volume Filtered (m
3
) = Average Flow Rate (m/s) x Tow Duration (s) x Net Mouth Area 

(m) 

Equation 1 

 

At each station sampled, a Seabird model SBE 9 conductivity-temperature-depth (CTD) 

instrument was used to profile the water column, following standard techniques (e.g. 
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Buecher and Gibbons, 2000). The CTD was additionally equipped with an oxygen sensor 

and a fluorometer, so that vertical profiles of dissolved oxygen and fluorescence could be 

obtained. Water samples were collected for the determination of chlorophyll a 

concentration using Niskin bottles, that were triggered just below the surface, at 5 m above 

the bottom (or at a maximum of 200 m in deeper water), as well as at the fluorescence 

maximum.  

 

The CTD measured physical parameters throughout the water column: depth (m), sea 

temperature (oC), sea salinity (psu), sea oxygen (ml/l) and fluorescence (ug/l). Bottom 

depth (m), latitude and longitude were also recorded at each station. From the CTD the data 

were then transmitted to the SeaBird software computing console aboard the research 

vessel. Values for sea surface and bottom variables (temperature, salinity, oxygen and 

fluorescence) were obtained from the CTD reading closest to the surface and closest to the 

bottom respectively. The mean fluorescence and integrated fluorescence were both 

calculated from the fluorescence values obtained throughout the water column depth. 

Fluorescence was used as a proxy for chlorophyll a concentration (as e.g. Jesus et al., 

2006).  

 

2.2. Laboratory analysis 

The copepods from each zooplankton sample were analyzed by colleagues at DEA 

following standard procedures (Verheye et al., 1998). In short, the zooplankton sample was 

re-suspended in a known volume of seawater (generally 10 x the settled volume), and three 
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subsamples of 2 ml each were removed using a Stempel Pipette (Hugget et al., 2009). All 

copepods were identified and counted from each sub-sample in a Bogorov Tray (Corner et 

al., 1976) under a stereo-microscope at various magnifications. Identification included 

species and stages, to the lowest possible taxonomic level. The data from each subsample 

were then pooled, and densities then calculated using knowledge of the volume filtered by 

each net, and the fraction of the sample represented by the subsamples counted. 

 

Following the estimation of copepod density, samples were stained with Rose Bengal for 

24 hrs. The medusae and siphonophores were then counted from each sample under a 

stereomicroscope between 10x and 40x magnification. Specimens were identified to the 

lowest taxonomic level where possible using Pagès et al. (1992), Bouillon (1999) and 

Bouillon et al. (2006). 

 

When medusae could not be identified to species they were described using a combination 

of morphological features (including bell and manubrium shape and size; number and 

shape of radial canals; bell consistency; number and form of tentacles, tentacular bulbs, 

statolyths and ocelli; mouth and lip shape; position of gonads as in Bouillon et al. (2006)), 

and unique morpho-types were assigned an identifier: voucher specimens were retained. In 

the case of siphonophores, specimens of Calycophorae were identified (and counted) on the 

basis of their anterior nectophores only (polygastric and eudoxid stages were counted 

separately). Physonect siphonophores were identified on the basis of nectophore 

morphology, and were counted based on the numbers of pneumatocysts: samples without 
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pneumaotcysts but with nectophores were assumed to contain a single individual. All 

counts of medusae per sample were converted to density by dividing the counts by the 

volume filtered. Species data were additionally categorized by Order (Leptothecata, 

Anthoathecata, and Trachy-, Narco- and Limno-medusae). 

 

2.3. Data handling and statistical analyses 

To visualize spatial patterns in the distribution of all measured variables each year, contour 

plots were generated using Surfer 9 software (as in e.g. Huggett et al., 2009). Average 

measures (+/- standard deviation) of each variable were also generated for each year and 

tabulated. The species richness and diversity measures of medusae were calculated for each 

sample based on the Shannon Index (Magurran and May, 1999) using PRIMER 6 (Clarke 

and Gorley, 2006). Further, the data for each year were pooled and the diversity of 

assemblages calculated for the entire study period (2000-2006). 

 

To explore the relationship between environmental variables, a matrix of Spearman Rank 

correlations was generated each year. The bottom fluorescence (BFL), integrated 

fluorescence and mean fluorescence variables were omitted from the analyses for 2000 

(only) owing to the paucity of data. The multiple testing nature of this analysis increases 

the chances of a Type I error (increases the likelihood of obtaining a false significant 

result), and so the Bonferroni Correction was applied to adjust the critical p-value (as 

Richardson and Verheye, 1998), following Quinn and Keough (2002). Scatter-plots were 

also generated between bottom depth and sea surface temperature (SST), sea surface 
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salinity (SSS), sea surface oxygen (SSO) and sea surface fluorescence (SSF) and between 

fluorescence and temperature as well as fluorescence with salinity. These were the only 

variables used in the scatter plots as they had a tendency to generally display strong 

relationships. 

 

In order to explore pattern in the multivariate environment, data were first log10 

transformed and normalized, and a resemblance matrix generated (Euclidean Distance) 

between samples (Clarke and Gorley, 2006). The matrices were subsequently used to 

construct dendrograms of percent similarity between the multivariate sample environments 

each year. The bottom depth of each sample was used a priori as a grouping factor in the 

dendrograms to provide a visual aid of how samples were clustered in relation to depth. 

 

To explore patterns in the structure of medusoid assemblages, jellyfish data for each year 

were square-root transformed to reduce the bias of dominant and rare species (Clarke and 

Gorley, 2006). This was followed by the production of a Bray Curtis resemblance matrix 

between samples, as this is an appropriate index for determining similarity between 

biological samples (Clarke and Gorley, 2006). The similarity matrix was subsequently used 

to construct dendrograms of percentage dissimilarity between samples each year. The 

bottom depth of each sample was used a priori as a grouping factor in the dendrograms, 

providing a visual aid of how samples were clustered in relation to depth. 
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To understand the diversity of medusoid assemblages at each station and for each year, the 

Shannon diversity index (H’) was calculated, using PRIMER 6 (Clarke and Gorley, 2006). 

The calculation also returned a measure for species eveness (J’), which corrects diversity 

for dominating species, and the number of species present in the sample (S’) (Magurran 

and May, 1999). 

 

In order to explore the relationships between the structure of medusoid assemblages and 

the multivariate environment, a BIOENV analysis was conducted in Primer 6 (Clarke and 

Gorley, 2006). This analysis indicates the environmental variables that most influences 

medusoid assemblages. The BIOENV analysis was conducted on assemblages each year 

and used the medusae resemblance matrix and the corresponding normalized 

environmental dataset. The model applied a Spearman correlation method and generated 99 

permutations to produce the test statistic. This test is more robust for unbalanced datasets 

and makes no assumptions about the dataset’s normality (Clarke and Gorley, 2006). 

 

In order to explore drivers of abundance (dependent variable) for each of the major 

medusoid orders across the time series, a backwards step-wise multiple regression analysis 

was first conducted with all environmental variables (log10 transformed) each year, using 

STATISTICA v7. A meta-analysis using partial correlations was then constructed 

following Worm and Myers (2003) and Worm et al. (2003). The model combines 

individual partial correlations between each order and each variable within each year to 

generate an overall correlation across all years. A random-effects model was used as 
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opposed to the fixed-effects model as it makes no assumptions that the effect size for each 

year’s correlation coefficient was identical. The random-effects model is also more 

conservative than the fixed-effects model (as in e.g. Gibbons et al., 2005).   
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Chapter 3: Results 

 

3.1. Environmental characteristics 

Caveat 

Although all measured environmental variables were used in all of the analyses, only those 

that displayed some significance were highlighted and discussed further. This was also 

done to avoid repetition, particularly in the case of the correlation matrix results. 

   

3.1.1.Sea Surface Temperature (SST) 

Generally SST tended to increase in an offshore direction (Figure 3), though localized 

minima were observed NW of Cape Columbine and between Lamberts Bay and Hondeklip 

Bay (Figure 3). SST was highest (on average) in 2001 (mean 15.82 
o
C, SD 0.88), and 

lowest in 2004 (13.37 
o
C, SD 1.75) (Figure 3b and 3e respectively, Table 1). In most years 

SST displayed a significant positive relationship with bottom depth and sea surface salinity 

(SSS) as well as with bottom oxygen (BO) (0.80) in 2006 (Table 2). By contrast, there was 

a significant negative correlation with bottom fluorescence (BFl) in 2003 (-0.87) and 

bottom temperature (BT) (-0.84) in 2005 (-0.80) and with bottom salinity (BS) (-0.87) in 

2004 (Table 2). 
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Across all years SST ranged between 10.08 
o
C and 19.23 

o
C. The scatter plots between 

SST and bottom depth revealed a general trend across all the years where temperature 

increased steeply until about 200 m. Thereafter it remained mostly constant as the depth 

increased (Figure 4a). This trend was displayed each year and at very similar gradients, 

with only the year 2001 portraying slightly higher SST values inshore.  

 

3.1.2. Sea Surface Salinity (SSS) 

Like SST, SSS also tended to increase in an offshore direction (Figure 5a-g) and with a 

mean of 35.10 was highest during 2001 (SD 0.23), 2002 (SD 0.30), 2003 (SD 0.20) and 

2005 (SD 0.24) and lowest during 2004 (34.82, SD 0.17) (Figure 5b and 5e, Table 1). 

Besides the positive relationship between SSS and SST and depth (Table 2), there was a 

strong negative correlation with BFl during 2002 (-0.83) (Table 2c), while in 2004 (Table 

2e) there was a strong negative correlation with BT (-0.88) and BS (-0.84).  

 

Across all years SSS ranged between 34.53 and 35.64. The positive relationship between 

SSS and depth was also observed in the scatter plots, where salinity initially increased 

gradually within the first 100 m then increased more steadily between 100 m and 300 m 

(Figure 4b). The salinity remained approximately constant at depths greater than 300 m. 

Unlike SST, there was some interannual variability where salinity was generally lower in 

the year 2000 and slightly higher in the year 2005. The inshore values also displayed less 

variability than the offshore values.  
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3.1.3.Sea Surface Oxygen (SSO) 

SSO displayed a relatively constant relationship with depth, fluctuating around 6 ml/l 

(Figure 4c). This stability was observed throughout most of the water column, except for 

the upper 50m where the variability was greatest.  Surface oxygen concentration was 

highest in 2000 (mean 6.60 ml/l, SD 1.28); the variance was also greatest during this year 

(Table 1). Surface oxygen concentration was lowest in 2005 (5.30 ml/l, SD 0.53) (Table 

1). Across all years SSO ranged between 2.72 ml/l and 10.76 ml/l. 

 

3.1.4.Sea surface fluorescence (SSF) 

In general, fluorescence was higher inshore than offshore and localised maxima were 

observed either downstream from the upwelling centres at Cape Point or Cape Columbine 

(2000, 2002, 2004) or near-shore in St Helena Bay (2003, 2005-6) (Figures 6). Highest 

surface fluorescence was observed in the year 2000 (mean 1.59 ug/l, SD 1.89), and it was 

lowest in 2001 (0.34 ug/l, SD 0.37) (Figure 7a, Table 1). In general, SSF did not display 

consistently strong correlations with any of the other environmental variables (Table 2 a-g). 

It was only in 2004 that there was a strong positive correlation between SSF and sea 

surface oxygen (0.81) (Table 2e). Slightly weaker negative correlations were observed in 

some of the years between SSF and bottom depth, SST and SSS, but these were less than -

0.80.  

 

Across all years SSF ranged between 0.07 ug/l and 11.96 ug/l. The scatter plots between 

SSF and SST indicated a dome-shaped relationship, where the relationship was positive 
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until it reached a peak thereafter exhibiting a negative relationship. At temperatures below 

13 
o
C, fluorescence was relatively low, then peaked between 14 

o
C – 16 

o
C and reduced 

again at temperatures beyond 16 
o
C (Figure 7b). This trend was generally observed for all 

years, but in the years 2001 and 2005 the fluorescence peaked at much lower 

concentrations. The relationship between SSF and SSS also displayed a dome-shaped 

curve, but with a very steep increase to 34.8 where salinity fluorescence peaked then 

gradually declining thereafter (Figure 7c). Interannually, the years 2000 and 2002 generally 

displayed slightly higher fluorescence concentrations. 

 

3.1.5.Copepod abundance 

With the exception of 2004, copepod abundance was generally higher inshore than offshore 

and it had a tendency to be highest in the core of St Helena Bay (Figure 8). Average 

abundance was highest in 2004 (mean 12763 ind.m
-3

, SD 23597) (Table 1), and lowest 

during 2005 (1485 ind.m-3, SD 2018) (Table 1). Across all years copepod abundance 

ranged between 0 and 233 9226.67 ind.m-3. In general, copepod densities had a tendency to 

be greatest at temperatures between 11 
o
C and 16 

o
C (Figure 9a), and at salinities between 

34.5 and 35 (Figure 9b). While a weak dome-shaped relation was observed between 

fluorescence and abundance (Figure 9c), abundance tended to decline exponentially with 

depth (Figure 9d).  
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3.2. Hydromedusoid patterns 

3.2.1.Abundance 

Unlike the patterns observed for the various environmental measures or for copepods, there 

was no consistent interannual pattern in the distribution of jellyfish in the region (Figure 

10). In some years, densities were highest inshore e.g. 2000 (Figure 10a), whilst in others 

they were most common offshore e.g. 2002 (Figure 10c). Jellyfish were most abundant in 

2005 (Table 1) when average densities of 3.15 ind.m
-3

 (SD 3.21) were recorded, and they 

were least abundant in 2002 when only 0.50 ind.m-3 (SD 0.70) were observed. Across all 

years hydromedusan abundance ranged between 0 and 62.87 ind.m
-3

. 

 

The results of the meta-analysis (Table 3) indicates significant positive correlations 

between overall medusae abundance and latitude, salinity, bottom fluorescence as well as 

mean fluorescence. There was also a significant negative correlation between overall 

medusae abundance and the volume of water filtered by the nets (Table 3). Across all years 

a weak dome-shaped relationship was observed between abundance and both SST and SSF 

(Figure 11). There was also a general decrease in abundance with increasing depth, 

although densities levelled off at depths greater than 200 m (Figure 11d). As supplemental 

data, the partial correlations that the meta-analysis was based on can be found in Table 4.  
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3.2.2.Diversity 

A total of 69 species of medusae were identified across the area over the study period 

(Table 5). With the exception of the year 2000, species richness was generally higher 

offshore than inshore (Figures 12).While the greatest number of species (40) was recorded 

in the year 2006, the year with the highest average diversity was 2002 (H’ = 0.82, Table 1). 

Both species richness and diversity were lowest in 2003, when only 18 species were 

recovered from the sampling region.  

 

There was a general positive relationship between jellyfish species richness and surface 

temperature as well as with surface salinity (Figure 13a and 13b), indicating that the 

number of species increased with temperature and salinity. Hydrozoan richness did not 

display any obvious relationship with sea surface fluorescence, but was generally higher 

when surface fluorescence was less than 1.5 ug/l (Figure 13c). Generally a positive 

relationship was observed between depth and richness. Most of the samples were collected 

within the 200 m water column, but those that were collected within a water column greater 

than 300 m generally displayed higher diversity (Figure 13d). 

 

3.2.3. Analysis by order 

The abundance of medusae in each order was mapped out individually for each year. In 

general, communities were dominated by siphonophores, although there were occasions 

(e.g. 2000 and 2004) when leptothecate medusae were most abundant (Table 1)). 

Narcomedusae were the least common group. In general, the orders Anthoathecata, 
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Leptothecata and Limnomedusae were distributed near the coast, whilst Narcomedusae, 

Trachymedusae and Siphonophorae were (with some exceptions) distributed further 

offshore (Figure 14).  

 

3.2.3.i. Anthoathecata 

In the years 2000 (Figure 15a) and 2005 (Figure 15f) medusae displayed similar 

distribution patterns: highest concentrations were found around Lamberts Bay.  In the years 

2001 (Figure 15b), 2002 (Figure 15c) and 2006 (Figure 15g), peak numbers were found 

near St Helena Bay, whilst in 2003 (Figure 15d) they were concentrated around 

Yzerfontein. Across all years Anthoathecata medusan abundance ranged between 0 and 

8.45 ind.m
-3

. The results of the meta-analysis indicated that the only predictor influencing 

abundance across the time series was the volume of water filtered by the nets with a 

positive relationship (Table 3). 

 

3.2.3.ii. Leptothecata 

Medusae from this order appeared to be well represented along the coast in the region north 

of 32oS (Figure 16) each year, although in some years they extended further (north and 

south). During the years 2001 and 2003 (figure 16b and 16d respectively) low densities 

were observed along most of the coast, although in 2001 an offshore distribution was 

observed as well. Also, in the year 2001, medusae displayed a slightly different pattern, and 

high concentrations were found south of 32
o
S (off St Helena Bay). In the years 2000 

(Figure 16a), 2002 (Figure 16c) and 2006 (Figure 16g) high concentrations of these 
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Hydrozoa were found near Hondeklip Bay. In 2003 and 2005 (Figure 16f) peak 

concentrations were observed near Doring Bay. Across all years Leptothecata medusan 

abundance ranged between 0 and 62.23 ind.m
-3

with maximum abundances observed in 

2004. Results of the meta-analysis revealed that there was a significant positive correlation 

with bottom fluorescence and a negative correlation with integrated fluorescence (Table 3).  

 

3.2.3.iii. Limnomedusae 

This order displayed a fairly constant distribution pattern across all years. The main regions 

where the abundance of Limnomedusae peaked each year were along the coast in the St 

Helena Bay region (approximately between 32
o
S and 33

o
S) and near Hondeklip Bay (north 

of 31
o
S) (Figure 17). In the years 2000 (Figure 17a), 2004 (Figure 17e) and 2005 (Figure 

17f) distributions were only observed in the St Helena Bay region, while in the years 2001 

(Figure 17b), 2002 (Figure 17c), 2003 (Figure 17d) and 2006 (Figure 17g) they were also 

common close to Hondeklip Bay. Across all years Limnomedusan abundance ranged 

between 0 and 3.33 ind.m-3.The only environmental variable that was significantly related 

(negative) to the abundance was bottom oxygen (Table 3). 

 

3.2.3.iv. Trachymedusae 

Trachymedusae displayed an offshore distribution across all years, with highest 

concentrations of medusae found in the water column with depth greater than 200 m 

(Figure 18). Their latitudinal range was also widespread as they were observed all along 

the study area (30
o
S-34.5

o
S). These patterns were consistent for all years except 2003 
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(Figure 18d) where peak abundances of Trachymedusae were found along the coast north 

of Doring Bay (31
o
S-32

o
S) and near Cape Town. Across all years Trachymedusan 

abundance ranged between 0 and 3.40 ind.m
-3

. There was a significant positive correlation 

with volume filtered and with sea surface salinity variables (Table 3).  

 

3.2.3.v. Narcomedusae 

This order of hydrozoa was absent in two of the years under study, namely 2000 and 2003. 

In the years where they were present their distributions were mostly offshore and 

widespread across the survey area (Figure 19). Although in 2004 (Figure 19c) and 2005 

(Figure 19d) their distributions were isolated to smaller ranges. Distribution patterns in 

2001 (Figure 19a) and 2006 (Figure 19e) were similar, and the abundance of medusae 

increased from north to south and decreased closer to the coast. In 2002 (Figure 19b) the 

densities of Narcomedusae were generally evenly distributed across the latitudinal range 

and had also decreased along the coast. Across all years Narcomedusan abundance ranged 

between 0 and 2 ind.m-3. From the data that was analyzed there was an overall positive 

significant correlation with sea surface oxygen and a significant negative correlation with 

longitude and with total copepods (Table 3). 

 

3.2.3.vi. Siphonophorae 

Distribution patterns for Siphonophorae were diverse, some years displayed peak coastal 

abundances while other years had higher densities offshore (Figure 20). During 2001 

(Figure 20b), 2003 (Figure 20d), 2005 (Figure 20f) and 2006 (Figure 20g) siphonophores 
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were concentrated along the coast, where densities were greatest between Saldanha Bay 

and Cape Town, and occurred at much lower densities offshore. In the years 2000 (Figure 

20a), 2002 (Figure 20c) and 2004 (Figure 20e) siphonophores were predominantly 

concentrated offshore. Across all years Siphonophorae abundance ranged between 0 and 

15.57 ind.m-3. The only environmental variable that displayed a significant relationship 

with Siphonophorae was sea surface salinity, with a positive correlation (Table 3).  

 

3.3. Cluster Analysis 

3.3.1.Environmental data 

In most years there was a general clustering according to sample depth and these could be 

divided into three groups (Figure 21). Inshore samples collected within 100 m were 

grouped together; offshore samples collected at depths deeper than 200 m displayed a high 

level of similarity and clustered together. Samples collected over the shelf area (between 

100 m and 200 m) were not clearly separate and rather tended to cluster variously with the 

inshore or offshore samples. In some years a few samples were taken at greater depths 

(>300 m), and although these did not cluster together, they were clustered with the balance 

of deeper-water samples, as seen in the years 2000 (Figure 21a) and 2006 (Figure 21g). 

 

3.3.2.Hydrozoan assemblages 

Just as observed with the environmental data, hydrozoan assemblages also displayed 

clustering according to the depths they were collected at. Overall, distinct assemblages 
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could be identified each year by inshore (< 100 m) and offshore (>200 m) sample groups 

(Figure 22), with mid-shelf samples (100 – 200 m) tending to be part of either former 

group. In 2000 (Figure 22a), 2001 (Figure 22b) and 2002 (Figure 22c) assemblage were 

grouped at a similarity level of approximately 30%. In each of these years most of the 

inshore samples were grouped together, while a few samples displayed greater similarity to 

either shelf or offshore groupings.  

 

In the years 2003 (Figure 22d) and 2004 (Figure 22e), a higher level of similarity was 

observed between inshore and offshore samples (60-70%) than in the previous years. In the 

case of the year 2003 (Figure 22d) a number of outlying samples were noted, but most of 

the offshore and shelf samples formed distinct clusters. In the year 2004 (Figure 22e), two 

main clusters were seen, one that contained only offshore and shelf samples and the other 

contained two shelf samples, an inshore and an offshore sample. The other inshore samples 

were outliers. 

 

In the year 2005 (Figure 22f) most of the samples formed offshore and shelf clusters. The 

inshore samples either displayed greater similarity to the offshore or shelf clusters or they 

formed outlying groups. In the year 2006 (Figure 22g), the shelf and offshore samples 

display greater similarity to one another, while inshore samples generally clustered close to 

the shelf samples. 
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3.4. BIOENV analysis 

The results from the BIOENV analyses between environmental variables and 

hydromedusae assemblages (Table 6) suggest that sea surface salinity (SSS) and bottom 

oxygen (BO) play a strong role in influencing the multi-species structure of assemblages. 

SSS was found to be significant in the years 2001, 2002, 2005 and 2006, while BO was 

important in the years 2001, 2002, 2004 and 2005. The strongest correlation was noted in 

the year 2001 (0.716) linking SSS, BO and mean fluorescence as significant environmental 

variables. The weakest correlation factor was observed in the year 2003 (0.478) linking 

latitude, surface temperature (SST), bottom salinity (BS) and bottom fluorescence (BFl). 

BFl was noted to be significant in three years (2002, 2003 and 2005). 

 

 

 

 

http://etd.uwc.ac.za/



35 

 

Chapter 4: Discussion 

 

4.1. Environmental trends 

4.1.1. Physico-chemical 

The individual environmental and chemical factors that structure the habitat for biotic 

communities play an important role in influencing organism abundance and distribution by 

either promoting or inhibiting a species success (Huggett et al., 2009; Overland et al., 

2010; Palma et al., 2011). Usually, the environmental factors vary together (positively or 

negatively) to create a general set of conditions within particular regions (Shannon, 1985): 

for example the relationship between SST and depth. The results from the cluster analysis 

indicated that the environment could be separated into inshore, shelf and offshore areas, 

displaying similar environmental attributes according to their depth range (Figure 21). This 

was most likely due to the wind driven process of upwelling, as during the process an 

isothermic water column becomes established. As a result, the inshore area was 

characterised by low surface temperatures and low surface salinities (Shannon, 1985) as 

well as other environmental characteristics that are influenced by these two properties.  

 

Within the study region SST generally increased with increasing bottom depth to about 300 

m, whereafter it started to level off (Figure 4a). The cooler coastal waters is an indication 

of coastal upwelling, with the cold sub-surface upwelled water warming up as it is moved 

offshore by Ekman transport (Shannon, 1985). The upwelling intensity is reflected by the 

extent of cooler coastal water (Shannon, 1985). For example, in 2002 (Figure 3c) the extent 
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of the cooler water covered most of the region shallower than 100 m, whereas in 2005 

(Figure 3f) the cooler region was much reduced. This suggests that recent upwelling may 

have occurred at the time of the 2002 sampling cruise. Throughout the years observed, the 

regions south of Hondeklip Bay consistently had cooler temperatures along the coast than 

the other regions. The coastal regions near Lamberts Bay also frequently displayed cooler 

temperatures. These persistently cooler regions indicate areas that tend to experience 

consistent coastal upwelling each year (Shannon 1985). Regions such as Cape Columbine, 

which is an upwelling centre exhibit highly variable temperatures, particularly in the 

summer months, which is mainly wind-driven (Blanke et al., 2002). 

 

Sea surface temperature (SST) also displayed a strong negative correlation with bottom 

fluorescence (in 2003 and 2005), indicating that BFl decreases offshoreward. As SST and 

depth both increased offshore, the water column becomes stratified and at greater depths 

less light is able to penetrate reducing solar heating and bottom temperature (Shannon, 

1985).The low chlorophyll content of source water reflects the reduced bottom 

fluorescence due to limited light and as well as bottom salinity (Shannon, 1985). These 

conditions were reflected in the correlations between SST and bottom temperature (BT) 

and bottom salinity (BS) in the year 2004 and a positive correlation with bottom oxygen 

(BO) in 2006. The increase in BO may be due to the improved solubility of oxygen at 

lower temperatures and higher oxygen content of source water (Shannon and Nelson, 

1996). 
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For most of the years, sea surface salinity (SSS) displayed a strong positive correlation to 

both depth and SST, exhibiting low salinities in cool, nearshore waters. This reflects the 

process of upwelling (Shannon, 1985) as the source water has a comparatively low salinity 

(Chapman and Shannon, 1985). As the surface water layer is displaced offshore it is subject 

to solar heating and evaporation and the SSS increases (Shannon, 1985; Verheye et al., 

1991). Due to the positive relationship between SSS and SST and bottom depth, the 

correlations with other variables were similar to those observed with SST. Hence BFl, BT 

and BS were observed to decrease at higher SSS, while BO increased.  

 

Sea surface oxygen (SSO) did not display any strong correlations with the other 

environmental variables. There was a moderate negative correlation between SSO and 

depth: warmer, offshore waters generally have lower concentrations of dissolved oxygen 

than cooler upwelled waters as solubility decreases with increasing temperature (Shannon 

and Nelson, 1996). This was true for all years expect during 2004, where a very weak 

positive correlation was observed (Table 2e), which may be explained by the strong 

positive correlation with sea surface fluorescence (SSF) then, as an increase in primary 

production may result in elevated levels of oxygen (during the day) (Chapman and 

Shannon, 1987).  

 

4.1.2. Fluorescence 

Fluorescence was highest along the coast, where upwelling occurred and lowest offshore 

where the water column begins to stratify and nutrients become depleted in the surface 
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layers (Pitcher et al., 1992). Sea surface fluorescence (SSF) shows a general trend to peak 

between temperatures 14 
o
C and 16 

o
C with lower concentrations on either side of this 

range. Actively upwelled water, where SST ranges between 10 
o
C and 12 

o
C (Verheye et 

al., 1992) is nutrient rich, is moved offshore and this surface layer of water is exposed to 

solar heating, allowing phytoplankton to flourish. As the water moves further offshore the 

nutrients become exhausted and phytoplankton concentrations cannot be sustained and are 

eventually reduced (Pitcher et al., 1992). The only strong correlation between SSF and any 

of the other measured environmental variables was with mean fluorescence (positive), 

indicating that mean fluorescence increases as SSF increases, which is expected. 

 

Various regions along the coast displayed a higher tendency to concentrate phytoplankton 

(Figures 6a, 6c and 6e). These areas were generally near Saldanha Bay, St. Helena Bay and 

Hondeklip Bay. According to Shannon and Nelson (1996) Cape Columbine and Cape Point 

are all regions that demonstrate a greater upwelling intensity. The constant influx of 

nutrients within these regions was able to sustain the phytoplankton biomass noted 

downstream (Pitcher et al., 1992). Further, St. Helena Bay is also influenced by cyclonic 

eddies that promote a semi-closed circulation system (Holden, 1985), which results in 

enhanced chlorophyll biomass following retention (Hutchings et al., 2009). 

 

4.1.3. Copepod abundance 

Copepods were more abundant inshore, rapidly declining with offshore distance. In most 

years the densities start to decrease beyond the shelf region (depth greater than 200 m) 
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(Figure 8 and Figure 9d). Copepod numbers are known to increase with elevated levels of 

phytoplankton biomass, which in turn is a response to upwelling. Therefore during the peak 

upwelling season when phytoplankton biomass is higher, between October and March, the 

abundance of copepods is expected to be higher than during the seasons with little or no 

upwelling (Verheye et al., 1991). In most years copepod abundances were higher 

downstream of active upwelling, in areas such as Lamberts Bay, Hondeklip Bay and St 

Helena Bay, wherein they may have been trapped by cyclonic eddies and coastal gyres 

(Holden, 1985). The increase in primary production, as a result of the entrapped 

phytoplankton within the enclosed circulation enhances the developmental rates of 

copepods, which are mostly herbivorous planktivores (Verheye et al., 1992). Verheye et al. 

(1991) also explain that larger copepods are more commonly found near the coast, while 

the smaller juvenile stages tend to be offshore. The juvenile stages occupy the upper layers 

of the water column (Verheye et al., 1991) and possess limited vertical mobility making 

them prone to offshore Ekman transportation during active upwelling (Verheye et al., 

1991; Shannon, 1985). As the adult copepods accumulated inshore, resulting in greater 

densities inshore rather than offshore and this was also reflected in the results.  

 

Copepod abundance displayed high interannual variability, ranging from an annual mean of 

12 763 ind.m
-3

 in 2004 to 1 485 ind.m
-3 

in 2005 and a dome-shaped relationship with 

temperature, salinity and fluorescence was observed. The abundance peaked between 12 
o
C 

and 14 
o
C (Figure 9a) and at 1.5 ug/l for fluorescence, while salinity displayed a steep peak 

in abundances around 34.5 with a sharp decline with higher SSS (Figure 9b). These 

relationships partly reflect the variables (SST, SSS and SSF) correlation with bottom depth 
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(Table 2). Hence in coastal waters, where temperature and salinity were lower, copepod 

abundances peaked, while offshoreward where temperatures and salinities increased, 

copepod abundances decreased. This also indicates the link to upwelling and primary 

production that is present along the coast, as certain species of copepod, such as 

Calanoides carinatus, are upwelling specialists and may dominate assemblages (Verheye, 

2000).    

 

4.2. Medusae 

4.2.1. Abundance and assemblage structure 

Hydromedusae generally occur at much lower abundances than copepods, which have been 

observed in this study. When comparing the two biota, the highest annual mean for 

medusae was <3.5 ind.m
-3 

in 2005 (Table 1), while copepods had a maximum annual mean 

of 12 763 ind.m
-3 

in 2004 (Table 1). This difference in abundance was expected as they 

occupy different trophic levels. Copepods are generally herbivorous or omnivorous 

planktivores that occupy a lower level down on the food chain and occur at higher 

abundances than medusoids, which are carnivorous. Generally, the lower trophic levels are 

found in greater abundances as they supply food and energy to the trophic level above it 

(Shannon et al., 2003).   

 

The abundance of medusae generally peaked near or downstream of upwelling centres and 

densities were higher along the coast than offshore (Figure 10). This was also observed in 

the scatter plot between the abundance of medusae and depth, where there was a peak very 
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close to the coast, within the 100 m bottom depth (Figure 11d). Although the coastal 

assemblages were more abundant, previous studies note that hydromedusae form two types 

of assemblages, either coastal or offshore (Pagès and Gili, 1992; Gibbons et al., 2010) and 

offshore assemblages of trachymedusae and narcomedusae were present as well. This 

assemblage structure was also supported by the cluster analysis where samples displayed a 

similarity in their species composition and abundance based on their distance from the 

coast (Figure 22) forming inshore, shelf and offshore assemblages. The higher coastal 

abundances were mostly due to the dominating siphonophore species, which occurred at 

high densities during most years. In the years 2002 (Figure 10c) and 2005 (Figure 10f) a 

general offshore dominated assemblage was observed and although siphonophores still 

dominated during those years their distribution displayed greater offshore dispersal than in 

other years. Siphonophores occupy the surface waters and posses limited mobility, this 

subjects them to offshore Ekman transport after upwelling once the upwelled water had 

matured (Pagès et al., 1991). It is possible that in those two years samples were collected 

post an upwelling event, resulting in the dominant siphonophores being part of the offshore 

medusae assemblages. 

In the study by Beucher and Gibbons (2000) it was noted that the Leptothecata medusa 

Mitrocomella millardae occurred every year and was also the most abundant species 

observed at St Helena Bay. In comparison, this study only noted the species at a total of 

three stations during 2002 and 2005 (Table 5). Some of the more common species observed 

every year were Leuckartiara octon, Obelia sp., Proboscidactyla menoni, Persa incolorata, 

Dimophyes arctica and Muggiaea atlantica, which were also observed every year in the 

study by Beucher and Gibbons (2000). The samples collected by Beucher and Gibbons 

(2000) were winter samples while the ones collected in this study were spring samples and 
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not limited to St Helena Bay alone. These factors may explain the differences notes in 

species assemblages.  

 

There was a dome-shaped relationship between the abundance of medusae and 

temperature, indicating that there was an optimal thermal window between 12 – 16 
o
C 

(Figure 11a). With higher temperatures certain species have been reported to respond 

favourably, such as Liriope tetraphylla, which displayed an increase in abundance at higher 

temperature in the Mediterranean Sea (Buecher et al., 1997). Similar positive responses of 

the same species were noted for salinity increases (Pagès and Gili, 1992; Buecher et al., 

1997). The results collected here indicate that although hydromedusae were found in 

approximately the same salinity range as copepods they occurred at relatively higher 

abundances towards the higher end of the salinity range (figure 11b).  

 

In the years 2000, 2004 and 2005 the abundance of hydromedusae all displayed similarly 

high annual means. This mostly mirrors the trend observed in copepod abundance, which 

peaked in 2000, 2004 and 2006 (the latter being the only inconsistent year). While 2005 

had the highest annual mean for medusae it was also the lowest annual mean for copepods. 

2005 was also the year where assemblages were dominated by siphonophores. The 

assemblages in 2000 and 2004 had, in contrast, been dominated by Leptomedusae. These 

two orders of medusae did not exist at equal abundances, the one always dominated over 

the other. Siphonophores, such as Muggiaea atlantica, which was also the most common 

siphonophore observed, prefer to feed on smaller crustaceans such as copepods (Purcell, 
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1982). This suggesting that they may have had an impact on copepod densities as the years 

with siphonophore dominance displayed much lower copepod densities, with the exception 

in 2006. Muggiaea atlantica is considered a cold-water species that thrives in upwelling 

areas (Pagès et al., 1991; Thibault-Botha et al., 2004), and may dominate assemblages 

along the south east coast of South Africa, where waters can occasionally be cool and 

productive (Thibault-Botha et al., 2004). Further north along the east coast, where waters 

are more characteristic of the Agulhas Current, higher temperatures and low productivity, 

siphonophores if present were in low numbers (Thibault-Botha et al., 2004).  

 

There was also an evident trend where siphonophores generally dominated the gelatinous 

assemblages when salinity was higher. This was seen in 2001-2003 and 2005 (Table 1), all 

years with higher salinities. The only exception was in 2006 and although salinity levels 

were low, siphonopores still dominated the assemblage (Table 1). In general, medusae 

displayed a peak in abundance around 15-16 
o
C and decreased moving away from this 

temperature. Although many studies have concluded that gelatinous zooplankton increase 

in abundance with the rise in temperature, Buecher and Gibbons (2000) explain that 

holoplankton (typically offshore species such as Liriope tetraphylla) increase during 

warmer years, while meroplankton (typically coastal species such as Leuckartiara octona) 

decrease during warmer years. 

 

Narcomedusae, part of the offshore assemblages and occurring at very low densities 

displayed a negative relationship with copepods, longitude and surface oxygen (Table 3). 
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The negative relationship with copepods indicates that as the abundance of narcomedusae 

increased offshoreward, copepod abundance decreased. This relationship was expected as 

copepod densities were higher along the coast. The negative relation with longitude and 

positive relationship with surface oxygen were a bit unclear, but this may be due to the low 

number and patchiness of narcomedusae collected. Leptothecata displayed a positive 

relationship with bottom fluorescence, indicating that abundances are higher with higher 

concentrations of bottom fluorescence. Bottom fluorescence would be higher inshore in the 

shallower nutrient –rich waters as opposed to offshore where the water column is nutrient-

poor and light penetration in weaker at greater depths. Hence the relationship indicates that 

the abundance of Leptothecata medusae were higher inshore, which corresponds to them 

being an inshore group. There was a positive relationship between Anthoathecata medusae 

and the volume filtered by the nets, indicating that the greater the volume of water filtered 

by the nets the higher the number of medusae collected. This may suggest an aggregation 

of Anthoathecata medusae at the time samples were collected.  

 

General trends across all years and orders displayed that the abundance of medusae shared 

significant correlations with latitude, volume of water filtered by the nets, mean 

fluorescence, bottom fluorescence and sea surface salinity (Table 3). While surface 

temperature did not display an overall significance in the meta-anaysis, even though a one 

was expected, this may have been due to the conflicting relationships between SST and the 

difference medusae orders. The inshore orders resulted in a negative relationship with SST 

while offshore orders were positive; this may possibly have resulting in an overall non 

significant result.  
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4.2.2. Diversity 

A total of 35 hydromedusae and 33 siphonophorae species were found. Beucher and 

Gibbons (2000) reported 50 hydromedusae species near St Helena Bay and Pagés et al., 

(1992) found 54 hydromedusae and 52 siphonophorae species within the south eastern 

Atlantic. This indicates that there were still quite a few species that were not observed, for 

example Ectopleura dumortieri and Mitrocomella grandis (Beucher and Gibbons, 2002). 

Assemblages of hydromedusae displayed a general trend where species diversity increased 

in an offshore direction and scatter plots indicated a positive relationship between 

temperature and diversity (Figure 13a). This indicated that medusae diversity was higher in 

warmer offshore waters rather than cooler waters in the shelf region. Similar trends in 

general zooplankton diversity were also observed by Gibbons and Hutchings (1996), where 

the zooplankton included species of hydromedusae. Buecher and Gibbons (2000) also 

observed these trends and attributed them to the addition of offshore species of Trachy- and 

Narco- medusa. Diversity would also be lower inshore as upwelling allows for a higher 

biomass of organisms resulting in certain specialists species, like Anthoathecata and 

Leptothecata, to dominate the assemblages (Pagès et al., 1991; Thibault-Botha et al., 2004). 

 

Unlike the abundance of medusae there was a general positive association between 

diversity and temperature, instead of a domed-shamed one. However, diversity displayed a 

decline with increasing fluorescence concentration. These results were in agreement with 

Buecher and Gibbons (2000), where they found that offshore holoplanktonic species 
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became more diverse with the increase in temperature and decrease in fluorescence 

concentration. The relationship between diversity and fluorescence is in contrast with 

Gibbons and Hutchings (1996), where it is described that there is no particular connection 

between variables; although that study looked at a variety of zooplankton and was not 

limited to medusae.  
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Chapter 5: Conclusion 

 

The west coast off South Africa is environmentally highly variable, with influences from 

the Benguela Current, upwelling processes and the Agulhas Current all impacting the 

physical, chemical and biological status of the region (Shannon, 1985). In this unstable, but 

productive environment certain species are able to dominate, for example the siphonopore 

M. atlantica. Diversity on the other hand tends to be low compared to other coastal systems 

such as the South Africa’s east coast (De Decker, 1984; Gibbons et al., 2010). With 69 

species of medusa observed over the study, the diversity of hydromedusae tended to 

increase offshore and also at higher temperatures.   

 

As the environmental conditions influence each other, samples tend to form similar groups. 

These groups were based on the sample’s depth range, so that inshore, shelf and offshore 

samples shared resemblances. The study region can be described as having nutrient –rich 

productive waters with low temperatures, low salinities and moderate fluorescence along 

the coast. Surface temperature and salinities increase offshoreward; fluorescence also 

increases but as the stratified water column becomes nutrient depleted the chlorophyll 

concentration decreases.  

 

Copepod abundance was closely linked to upwelling, with a dome-shaped relationship to 

temperature and negative relation to salinity. Although these results were seen overall after 

collating each year’s data, the relationship between these variables and copepods 
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abundance were less conspicuous when comparing the data of each year to each other. For 

example, inter-annually, temperature did not display as strong a correlation between 

temperature and abundance; so that the warmest temperature did not necessarily have the 

highest abundance in copepods.  

 

Hydromedusae have recently become the focus of much research with the reported 

increases in blooms and their intensity, although much earlier work done on this group 

remains limited (Hosia and Bamstedt, 2008). This also means that long term abundance 

data are rare and understanding their long term trends remains inconsistent. The abundance 

of medusa reflected similar clustering to the environmental variables, where samples 

formed inshore, shelf and offshore groups, indicating the inshore assemblages composed of 

Anthoathecata, Leptothecata, Limnomedusae and Siphonophores and offshore assemblages 

composed of Trachy- and Narco- medusae orders. In general abundance displayed a 

significantly positive correlation with surface salinity and although temperature was 

expected to reflect some significance (Buecher and Gibbons, 2000), this was not observed. 

The reason for this may be the conflicting positive and negative correlations that offshore 

and inshore assemblages had with temperature, respectively, resulting in an overall 

insignificant correlation.   

 

In general the diversity and abundance of hydromedusae displayed strong links to their 

environmental conditions, for example inshore conditions favour certain medusa orders 

while offshore conditions favour others. As a group they are dynamic with quick responses 
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to changes within their environment, it is therefore beneficial to understand their 

environmental cues and observe regular monitoring.  
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Summary Table 
 

  2000 2001 2002 2003 2004 2005 2006 

N #of samples 44 24 38 30 29 26 43 

Mean Sea Surface Temperature (
o
C) 14.50 15.80 14.30 15.20 13.40 14.70 14.90 

SD 1.93 0.88 2.30 1.63 1.75 1.65 1.60 

Mean Sea Surface Salinity (psu) 35.00 35.10 35.10 35.10 34.80 35.10 35.00 

SD 0.31 0.23 0.30 0.20 0.17 0.24 0.21 

Mean Sea Ssurface Oxygen (ml/l) 6.60 6.30 5.60 5.90 5.70 5.30 6.40 

SD 1.28 0.84 1.08 0.83 1.06 0.53 1.06 

Mean Sea Surface Fluorescence (ug/l) 1.59 0.34 1.08 1.26 1.17 0.47 1.03 

SD 1.89 0.37 1.10 1.21 0.69 0.43 0.74 

Mean Bottom Temperature (
o
C) 9.17 10.07 8.35 8.61 8.07 9.29 8.71 

SD 1.66 2.45 1.39 0.89 1.01 0.87 1.25 

Mean Bottom Salinity (psu) 34.70 34.80 34.62 34.63 34.56 34.71 34.62 

SD 0.17 0.25 0.11 0.09 0.10 0.09 0.13 

Mean Bottom Oxygen (ml/l) 3.81 3.67 3.65 3.49 3.27 3.77 3.62 

SD 1.05 1.50 1.23 0.85 1.51 1.04 1.27 

Mean Bottom Fluorescence (ug/l) - 0.08 0.03 0.05 0.04 0.07 0.03 

SD - 0.03 0.02 0.06 0.03 0.07 0.03 

Intergrated Fluorescence 37.47 13.89 37.54 37.57 32.43 18.83 32.55 

 SD 39.07 5.04 22.83 23.37 15.30 10.54 17.14 

Mean Fluorescence (ug/l) 1.35 0.17 0.31 0.34 0.32 0.20 0.27 

 SD 0.94 0.19 0.28 0.31 0.37 0.18 0.28 

Mean Copepod abundance (ind.m
-3
) 5390 3302 2109 1701 12763 1485 5458 

SD 6783 3716 2835 1816 23597 2018 9575 

Mean Anthomedusae abundance (ind.m
-3
) 0.39 0.18 0.05 0.02 0.01 0.15 0.13 

SD 1.43 0.45 0.12 0.06 0.02 0.46 0.40 

Mean Leptomedusae abundance (ind.m
-3
) 1.13 0.13 0.01 0.01 1.89 0.15 0.22 

SD 6.70 0.24 0.03 0.0 10.83 0.46 1.31 

Mean Limnomedusae abundance (ind.m
-

3
) 0.19 0.14 0.02 0.03 0.04 0.01 0.01 

SD 0.62 0.31 0.04 0.07 0.19 0.05 0.02 

Mean Trachymedusae abundance (ind.m
-

3
) 0.07 0.16 0.04 0.02 0.03 0.57 0.08 

SD 0.17 0.32 0.10 0.04 0.14 0.94 0.16 

Mean Narcomedusae abundance (ind.m
-3
) 0.00 0.01 0.00 0.00 0.00 0.01 0.00 

SD 0.00 0.04 0.01 0.00 0.00 0.03 0.01 

Mean Siphonophores abundance (ind.m
-3
) 0.03 1.24 0.39 0.61 0.15 2.26 0.74 

SD 0.08 2.54 0.62 2.84 0.30 2.93 1.32 

Mean Hydromedusae abundance (ind.m
-3
) 1.81 1.86 0.50 0.69 2.14 3.15 1.18 

SD 7.21 2.67 0.70 2.92 10.92 3.21 1.84 
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Table 1 continue 

Jellyfish species richness (S') 29 32 31 18 25 38 40 

Jellyfish Diversity (H') 0.80 0.69 0.82 0.29 0.30 0.73 0.78 

Jellyfish Evenness (J') 0.24 0.20 0.24 0.10 0.09 0.20 0.21 

 

Table 1: A summary table providing annual means and standard deviations for measured 

variables collected during the period 2000 to 2006: details regarding medusoid diversity and 

orders were also included. 
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 2000 Sounding SST SSS SSO SSF BT BS BO 

Sounding                 

SST 0.86   

SSS 0.71 0.84   

SSO -0.12 0.03 0.01   

SSF -0.29 -0.14 -0.18 0.07   

BT -0.57 -0.40 -0.31 -0.23 0.14   

BS -0.57 -0.36 -0.19 -0.19 0.11 0.96   

BO 0.55 0.65 0.58 0.01 0.06 -0.09 -0.13   

         

 

2001 Sounding SST SSS SSO SSF BT BS BO BFl 

Integrated 

Fluoresc. 

Mean 

Fluoresc. 

Sounding                       

SST 0.50   

SSS 0.83 0.55   

SSO -0.71 -0.40 -0.56   

SSF -0.54 -0.46 -0.36 0.68   

BT -0.19 -0.02 0.06 0.11 0.48   

BS -0.11 0.04 0.15 0.03 0.41 0.98   

BO 0.58 0.07 0.73 -0.27 0.01 0.35 0.35   

BFl -0.62 -0.25 -0.29 0.60 0.57 0.37 0.29 -0.15   

Integrated 

Fluoresc. 0.40 0.02 0.27 0.08 -0.05 -0.50 -0.54 0.36 -0.26   

Mean 

Fluoresc. -0.73 -0.33 -0.46 0.78 0.85 0.47 0.38 -0.17 0.67 -0.15   

2002 Sounding SST SSS SSO SSF BT BS BO BFl 

Integrated 

Fluoresc. 

Mean 

Fluoresc. 

Sounding                       

SST 0.92   

SSS 0.96 0.94   

SSO 0.36 0.44 0.33   

SSF -0.51 -0.41 -0.49 0.25   

BT -0.15 -0.06 -0.19 -0.16 0.14   

BS -0.14 -0.05 -0.18 -0.15 0.14 1.00   

BO 0.76 0.68 0.75 0.18 -0.47 -0.32 -0.32   

BFl -0.87 -0.75 -0.83 -0.19 0.55 0.32 0.31 -0.93   

Integrated 

Fluoresc. -0.01 0.01 0.00 0.50 0.76 -0.02 -0.02 -0.11 0.11   

Mean 

Fluoresc. -0.66 -0.54 -0.64 0.00 0.90 0.27 0.27 -0.53 0.63 0.65   

 

Table 2: Spearman Rank correlations between the measured environmental variables each 
year: a) 2000, b) 2001, c) 2002, d) 2003, e) 2004, f) 2005 and g) 2006. Significant correlations 

are indicated in bold. 
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2003 Sounding SST SSS SSO SSF BT BS BO BFl 

Integrated 

Fluoresc. 

Mean 

Fluoresc. 

Sounding                       

SST 0.89   

SSS 0.64 0.71   

SSO -0.63 -0.50 -0.38   

SSF -0.72 -0.78 -0.77 0.57   

BT -0.82 -0.66 -0.54 0.56 0.62   

BS -0.86 -0.69 -0.53 0.57 0.64 0.99   

BO 0.62 0.62 0.76 -0.23 -0.59 -0.36 -0.41   

BFl -0.94 -0.87 -0.70 0.55 0.73 0.73 0.77 -0.67   

Integrated 

Fluoresc. -0.55 -0.56 -0.53 0.61 0.87 0.38 0.40 -0.43 0.55   

Mean 

Fluoresc. -0.92 -0.82 -0.68 0.75 0.84 0.81 0.83 -0.61 0.90 0.75   

2004 Sounding SST SSS SSO SSF BT BS BO BFl 

Integrated 

Fluoresc. 

Mean 

Fluoresc. 

Sounding                       

SST 0,87   

SSS 0,87 0,86   

SSO 0,11 0,09 0,06   

SSF -0,25 -0,32 -0,37 0,81   

BT -0,87 -0,84 -0,88 -0,07 0,37   

BS -0,88 -0,87 -0,84 -0,07 0,35 0,98   

BO 0,76 0,79 0,74 0,14 -0,36 -0,88 -0,88   

BFl -0,66 -0,77 -0,66 -0,17 0,26 0,74 0,73 -0,89   

Integrated 

Fluoresc. 0,33 0,12 0,12 0,45 0,53 -0,16 -0,17 -0,06 0,09   

Mean 

Fluoresc. -0,41 -0,45 -0,53 0,42 0,79 0,53 0,48 -0,55 0,47 0,57   

 

Table 2: Spearman Rank correlations between the measured environmental variables each 

year: a) 2000, b) 2001, c) 2002, d) 2003, e) 2004, f) 2005 and g) 2006. Significant correlations 

are indicated in bold.   
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2005 Sounding SST SSS SSO SSF BT BS BO BFl 

Integrated 

Fluoresc. 

Mean 

Fluoresc. 

Sounding                       

SST 0,82 

SSS 0,83 0,93 

SSO -0,22 -0,14 -0,26 

SSF -0,67 -0,69 -0,78 0,41 

BT -0,05 -0,03 0,17 -0,37 -0,22 

BS -0,05 -0,02 0,18 -0,37 -0,19 1,00 

BO 0,72 0,69 0,79 -0,01 -0,64 0,24 0,25 

BFl -0,88 -0,80 -0,79 0,19 0,59 0,01 0,00 -0,58 

Integrated 

Fluoresc. 0,08 0,00 -0,05 0,46 0,41 -0,26 -0,20 -0,05 -0,07 

Mean 

Fluoresc. -0,76 -0,70 -0,70 0,36 0,78 0,17 0,19 -0,64 0,65 0,42 

2006 Sounding SST SSS SSO SSF BT BS BO BFl 

Integrated 

Fluoresc. 

Mean 

Fluoresc. 

Sounding                       

SST 0,84   

SSS 0,93 0,91   

SSO -0,21 -0,22 -0,27   

SSF -0,58 -0,65 -0,61 0,48   

BT -0,02 0,13 -0,03 -0,34 -0,15   

BS -0,03 0,12 -0,04 -0,34 -0,14 1,00   

BO 0,85 0,80 0,87 -0,14 -0,58 0,04 0,02   

BFl -0,84 -0,67 -0,76 0,14 0,52 0,01 0,03 -0,80   

Integrated 

Fluoresc. -0,14 -0,23 -0,18 0,62 0,63 -0,45 -0,45 -0,23 0,08   

Mean 

Fluoresc. -0,69 -0,62 -0,69 0,45 0,80 -0,05 -0,04 -0,63 0,55 0,64   

 

Table 2: Spearman Rank correlations between the measured environmental variables each 

year: a) 2000, b) 2001, c) 2002, d) 2003, e) 2004, f) 2005 and g) 2006. Significant correlations 

are indicated in bold.   
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Variable  Overall R Anthoathecata Leptothecata 
Limno-

medusae 

Trachy-

medusae 

Narco-

medusae 
Siphonophorae 

All 

medusae 

Volume 

Filtered 

Lower CI 0.018 -0.433 -0.375 -0.385 -0.274 -0.396 -0.615 

R 
bar
 0.111 -0.212 -0.128 -0.202 -0.060 -0.165 -0.408 

Upper CI 0.202 0.033 0.136 -0.004 0.160 0.085 -0.147 

Total 

copepods 

Lower CI -0.052 -0.224 -0.224 -0.084 -0.190  -0.121 -0.274 

R 
bar
 0.137 -0.080 -0.068 0.090 -0.102 0.039 0.116 

Upper CI 0.317 0.068 0.091 0.258  -0.011 0.198 0.474 

Bottom 

depth 

Lower CI -0.274 -0.204 -0.306 -0.030 -0.244 -0.289 -0.284 

R 
bar
 -0.053 -0.011 -0.058 0.360 -0.027 -0.046 0.043 

Upper CI 0.173 0.181 0.198 0.654 0.192 0.204 0.361 

Latitude 

Lower CI -0.200 -0.393 -0.064 -0.176 -0.386 -0.113 0.045 

R 
bar
 0.148 -0.189 0.181 0.053 0.083 0.245 0.223 

Upper CI 0.462 0.032 0.406 0.277 0.519 0.546 0.388 

Longitude 

Lower CI -0.440 -0.238 -0.296 -0.275 -0.527 -0.282 -0.180 

R 
bar
 -0.197 0.002 -0.092 -0.056 -0.290 -0.088 0.025 

Upper CI 0.074 0.242 0.121 0.167 -0.012 0.112 0.228 

SST 

Lower CI -0.021 -0.426 -0.322 -0.093 -0.159 -0.273 -0.057 

R 
bar
 0.217 -0.159 -0.006 0.019 0.070 0.101 0.105 

Upper CI 0.431 0.133 0.311 0.131 0.291 0.449 0.262 

SSS 

Lower CI -0.196 -0.115 -0.132 0.200 -0.162 0.288 0.107 

R 
bar
 0.026 0.156 0.071 0.454 0.162 0.506 0.469 

Upper CI 0.245 0.405 0.268 0.651 0.456 0.674 0.722 

SSO 

Lower CI -0.710 -0.269 -0.624 -0.100 0.118 -0.265 -0.234 

R 
bar
 -0.353 -0.131 -0.312 0.023 0.223 0.045 0.113 

Upper CI 0.147 0.012 0.086 0.145 0.323 0.347 0.434 

SSF 

Lower CI -0.096 -0.154 -0.122 -0.118 -0.225 -0.296 -0.086 

R 
bar
 0.233 -0.053 0.177 -0.015 -0.024 -0.073 -0.007 

Upper CI 0.516 0.050 0.446 0.089 0.179 0.158 0.072 

BT 

Lower CI -0.238 -0.172 -0.112 -0.461 -0.971 -0.117 -0.231 

R 
bar
 0.105 -0.044 0.019 -0.191 -0.581 0.014 0.060 

Upper CI 0.424 0.085 0.150 0.112 0.649 0.145 0.340 

BS 

Lower CI -0.425 -0.169 -0.109 -0.003 -0.540 -0.027 -0.380 

R 
bar
 -0.153 -0.026 0.023 0.330 0.537 0.081 -0.067 

Upper CI 0.144 0.117 0.154 0.597 0.947 0.186 0.259 

BO 

Lower CI -0.642 -0.269 -0.582 -0.049 -0.228 -0.236 -0.277 

R 
bar
 -0.351 -0.087 -0.371 0.070 -0.069 0.085 0.089 

Upper CI 0.029 0.101 -0.114 0.187 0.094 0.389 0.432 

BFl 

Lower CI -0.301 0.226 -0.332 -0.176 -0.127 -0.287 0.041 

R 
bar
 0.359 0.545 0.072 -0.003 0.055 0.311 0.533 

Upper CI 0.787 0.758 0.455 0.169 0.234 0.734 0.817 
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Table 3 continue 

Mean 

Fluorescence 

Lower CI -0.355 -0.259 -0.034 -0.195 -0.210 -0.155 0.021 

R 
bar
 0.197 -0.006 0.258 0.164 -0.047 0.088 0.338 

Upper CI 0.647 0.248 0.510 0.485 0.119 0.322 0.593 

Integrated 

Fluorescence 

Lower CI -0.490 -0.439 -0.168 -0.536 -0.203 -0.137 -0.661 

R 
bar
 -0.118 -0.285 0.002 -0.186 -0.064 -0.015 -0.363 

Upper CI 0.290 -0.115 0.172 0.218 0.078 0.107 0.033 

 

 

Table 3: Results of the random-effects meta-analysis conducted on partial correlations 

between environmental predictors and the abundance of different pelagic Hydrozoa. Upper 

and lower confidence intervals around R also shown: data highlighted in grey significant at 

the 0.05 level. 
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Anthoathecata 

Variables 2000 2001 2002 2003 2004 2005 2006 

Bottom Fluorescence  0.089 -0.010 0.937 0.301 0.685 -0.583 

Bottom Oxygen 0.253 -0.872 -0.311 -0.104 -0.330 0.070 -0.673 

Bottom Salinity -0.681 0.358 0.021 -0.229 -0.117 0.149 -0.329 

Bottom Temperature 0.726 0.289 -0.031 -0.186 -0.137 0.147 -0.287 

Integrated  Fluorescence  -0.098 0.070 0.660 -0.452 -0.374 -0.535 

Latitude 0.081 0.379 -0.161 -0.304 -0.224 0.284 0.741 

Longitude -0.050 -0.009 -0.153 -0.235 -0.269 0.261 -0.697 

Mean Fluorescence  0.031 0.617 -0.677 -0.401 0.735 0.622 

Sounding 0.120 0.139 0.202 0.192 -0.554 -0.109 -0.318 

Sea S surface Fluorescence 0.167 0.109 0.134 0.124 -0.493 0.789 0.522 

Sea Surface Oxygen 0.324 -0.019 -0.656 -0.066 -0.487 -0.940 0.180 

Sea Surface Salinity 0.259 0.327 0.124 -0.120 0.298 -0.326 -0.348 

Sea Surface Temperature 0.319 -0.055 0.203 0.276 0.104 0.707 -0.169 

Total copepods -0.018 0.106 0.005 0.234 0.039 -0.078 0.538 

Volume Filtered 0.131 -0.022 0.192 0.281 0.073 -0.161 0.096 

 

Leptothecata 

Variables 2000 2001 2002 2003 2004 2005 2006 

Bottom Fluorescence  0.370 0.259 0.827 0.626 0.797 0.055 

Bottom Oxygen 0.074 -0.563 -0.161 0.272 -0.058 -0.067 -0.124 

Bottom Salinity 0.021 0.097 0.170 -0.158 -0.363 0.185 -0.140 

Bottom Temperature -0.051 0.193 0.017 -0.122 -0.341 0.208 -0.127 

Integrated  Fluorescence  -0.162 -0.168 -0.227 -0.058 -0.382 -0.555 

Latitude -0.162 0.148 -0.638 -0.129 0.124 -0.255 -0.201 

Longitude -0.303 0.127 0.517 -0.140 0.068 -0.328 0.027 

Mean Fluorescence  0.436 -0.063 -0.279 -0.025 -0.403 0.278 

Sounding 0.265 -0.376 -0.042 0.069 0.042 0.265 -0.307 

Sea S surface Fluorescence -0.144 0.131 -0.043 -0.178 -0.071 -0.245 0.131 

Sea Surface Oxygen -0.276 0.133 -0.248 -0.022 -0.087 -0.401 0.058 

Sea Surface Salinity 0.182 0.057 0.661 0.041 0.176 0.155 -0.310 

Sea Surface Temperature -0.012 0.154 -0.718 -0.094 0.168 0.045 -0.378 

Total copepods -0.337 0.176 -0.025 -0.122 -0.275 0.158 0.005 

Volume Filtered -0.619 -0.482 -0.248 0.006 0.147 0.138 -0.217 

 

Table 4: Partial correlations between each order and environmental variables for each year- 

a) Anthoathecata, b) Leptothecata, c) Limnomedusae, d) Trachymedusae, e) Narcomedusae, 

f) Siphonophorae and g) All orders. 

 

b) 
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Limnomedusae 

Variables 2000 2001 2002 2003 2004 2005 2006 

Bottom Fluorescence  0.172 0.610 -0.202 -0.089 0.426 -0.532 

Bottom Oxygen -0.176 -0.809 -0.199 -0.262 -0.611 0.154 -0.436 

Bottom Salinity 0.037 0.294 0.077 -0.091 -0.325 0.184 0.002 

Bottom Temperature 0.027 0.307 0.041 -0.067 -0.317 0.200 -0.012 

Integrated  Fluorescence  -0.399 -0.026 -0.008 0.311 0.048 0.054 

Latitude 0.159 0.360 -0.259 -0.243 0.349 0.371 0.493 

Longitude -0.002 0.005 -0.184 -0.260 0.258 0.205 -0.498 

Mean Fluorescence  0.756 -0.071 0.101 0.464 0.106 0.051 

Sounding 0.077 0.076 0.101 0.111 0.007 0.028 -0.631 

Sea S surface Fluorescence 0.057 -0.399 -0.003 0.004 0.356 0.785 0.198 

Sea Surface Oxygen 0.060 -0.407 -0.718 -0.040 0.270 -0.853 0.024 

Sea Surface Salinity 0.035 0.507 0.007 0.024 0.205 0.189 -0.349 

Sea Surface Temperature 0.304 0.358 0.027 -0.743 0.180 0.187 -0.151 

Total copepods 0.155 -0.384 -0.089 -0.020 -0.255 -0.253 0.158 

Volume Filtered -0.649 -0.297 0.091 0.117 -0.017 0.020 0.010 

 

Trachymedusae 

Variables 2000 2001 2002 2003 2004 2005 2006 

Bottom Fluorescence  -0.087 -0.226 0.008 0.412 -0.077 0.001 

Bottom Oxygen -0.014 -0.068 0.359 -0.006 0.116 -0.089 0.065 

Bottom Salinity -0.009 -0.130 0.497 0.186 -0.042 0.641 0.779 

Bottom Temperature 0.010 -0.052 -0.139 0.194 -0.098 -0.248 -0.748 

Integrated  Fluorescence  0.074 -0.234 0.126 -0.854 0.044 0.112 

Lattitude 0.172 -0.161 0.449 0.104 0.307 -0.392 -0.186 

Longitude -0.143 -0.238 0.298 0.231 0.214 -0.446 -0.296 

Mean Fluorescence  -0.013 -0.153 0.179 0.810 -0.091 -0.019 

Sounding 0.118 0.002 0.753 -0.207 0.877 0.229 0.150 

Sea S surface Fluorescence -0.169 0.039 -0.184 0.110 0.046 0.052 0.153 

Sea Ssurface Oxygen -0.231 -0.035 -0.001 0.114 0.262 0.052 0.141 

Sea Surface Salinity 0.585 0.593 0.088 -0.073 0.290 0.774 0.634 

Sea Surface Temperature 0.170 0.160 -0.131 -0.142 0.228 0.012 -0.080 

Total copepods -0.072 0.178 0.424 0.139 -0.056 0.223 -0.179 

Volume Filtered -0.020 -0.109 -0.599 -0.194 -0.370 -0.006 -0.019 

 

 

Table 4: Partial correlations between each order and environmental variables for each year- 

a) Anthoathecata, b) Leptothecata, c) Limnomedusae, d) Trachymedusae, e) Narcomedusae, 

f) Siphonophorae and g) All orders. 

 

 

c) 

d) 
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Narcomedusae 

Variables 2000 2001 2002 2004 2005 2006 

Bottom Fluorescence   0.250 -0.052 -0.190 0.090 

Bottom Oxygen   -0.240 0.131 0.075 -0.099 

Bottom Salinity   0.982 -0.197 -0.024 0.257 

Bottom Temperature   -0.991 -0.178 -0.028 0.239 

Integrated  Fluorescence   0.077 0.045 -0.069 -0.223 

Latitude   -0.348 0.157 -0.153 0.590 

Longitude   -0.101 -0.013 -0.403 -0.548 

Mean Fluorescence   0.167 -0.148 -0.217 -0.086 

Sounding   -0.278 0.180 0.186 -0.087 

Sea Surface Fluorescence   0.175 -0.232 -0.233 0.075 

Sea Surface Oxygen   -0.030 -0.025 -0.131 -0.179 

Sea Surface Salinity   -0.271 0.445 0.341 0.159 

Sea Surface Temperature   -0.144 0.304 0.286 -0.068 

Total copepods   -0.137 -0.052 0.047 -0.141 

Volume Filtered   -0.153 0.148 0.171 -0.276 

 

Siphonophorae 

Variables 2000 2001 2002 2003 2004 2005 2006 

Bottom Fluorescence  -0.502 0.059 0.948 0.303 0.223 0.063 

Bottom Oxygen 0.018 -0.197 -0.041 0.748 -0.506 0.256 0.124 

Bottom Salinity -0.049 -0.218 0.183 0.125 0.052 0.235 0.172 

Bottom Temperature -0.106 -0.307 -0.064 0.100 0.029 0.244 0.180 

Integrated  Fluorescence  -0.090 -0.138 0.208 -0.063 0.205 -0.087 

Latitude -0.383 0.079 0.593 0.162 0.009 0.294 0.712 

Longitude -0.413 -0.061 -0.336 0.080 0.271 0.175 -0.142 

Mean Fluorescence  -0.399 -0.153 0.224 0.400 0.377 0.076 

Sounding 0.128 0.068 0.288 0.096 -0.249 -0.662 0.047 

Sea S surface 

Fluorescence 

-0.085 -0.668 -0.037 0.130 0.234 0.210 -0.179 

Sea Surface Oxygen -0.217 0.680 -0.533 0.296 -0.014 0.151 -0.043 

Sea Surface Salinity 0.244 0.760 0.369 0.294 0.637 0.803 0.241 

Sea Surface Temperature 0.147 -0.657 0.743 0.343 -0.234 -0.006 0.200 

Total copepods -0.245 0.328 0.099 0.178 0.232 0.036 -0.154 

Volume Filtered 0.144 -0.703 -0.048 0.028 -0.478 -0.051 0.019 

 

Table 4: Partial correlations between each order and environmental variables for each year- 

a) Anthoathecata, b) Leptothecata, c) Limnomedusae, d) Trachymedusae, e) Narcomedusae, 

f) Siphonophorae and g) All orders. 

 

f) 

e) 
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All medusae 

Variables 2000 2001 2002 2003 2004 2005 2006 

Bottom Fluorescence  0.232 0.013 0.947 0.733 0.449 0.110 

Bottom Oxygen 0.235 0.425 0.013 0.635 -0.732 0.305 -0.208 

Bottom Salinity 0.048 -0.405 0.260 0.198 -0.765 0.040 0.318 

Bottom Temperature 0.032 -0.730 0.308 0.172 0.324 0.077 0.318 

Integrated  Fluorescence  -0.801 -0.060 0.197 0.065 -0.759 -0.404 

Latitude -0.025 0.201 0.470 0.100 0.105 0.073 0.496 

Longitude -0.349 0.030 0.442 0.116 -0.049 -0.022 0.007 

Mean Fluorescence  0.401 0.022 0.305 0.135 0.829 0.088 

Sounding 0.354 -0.514 0.667 -0.090 -0.004 -0.048 -0.232 

Sea Surface Fluorescence -0.013 0.119 0.012 0.183 0.024 0.139 -0.161 

Sea Ssurface Oxygen -0.121 0.729 -0.491 0.275 0.209 0.409 -0.289 

Sea Surface Salinity 0.346 0.843 0.457 0.142 -0.031 0.892 -0.009 

Sea Surface Temperature 0.382 -0.189 0.258 0.117 0.102 0.056 -0.127 

Total copepods -0.318 0.770 0.461 0.252 -0.638 0.260 -0.108 

Volume Filtered -0.787 -0.588 -0.507 -0.145 -0.020 -0.245 -0.252 

 

Table 4: Partial correlations between each order and environmental variables for each year- 

a) Anthoathecata, b) Leptothecata, c) Limnomedusae, d) Trachymedusae, e) Narcomedusae, 

f) Siphonophorae and g) All orders. 

 

 

g) 

 

 

 

 

http://etd.uwc.ac.za/



73 

 

 

Order Species 2000 2001 2002 2003 2004 2005 2006 

N 

 

44 24 38 30 29 26 43 

Anthoathecata Bougainvillia macloviana 3 1 1 0 1 2 1 

  Euphysa aurata 5 3 4 3 1 0 0 

  Euphysa spA 1 0 0 0 0 0 0 

  Leuckartiara octona 26 9 10 4 2 5 26 

  Pandae spA 0 1 0 0 1 0 2 

  Specimen O 0 0 0 1 0 0 2 

  Velella velella 0 0 0 0 0 0 1 

Leptothecata Clytia hemisphaerica 2 2 0 0 0 2 2 

  Clytia simplex 8 3 0 0 0 2 0 

  Mitrocomella millardae 0 0 2 0 0 1 0 

  Obelia sp. 5 6 1 2 1 3 4 

  Specimen I 0 1 0 0 0 0 0 

  Specimen A 1 1 0 0 1 0 0 

  Specimen B 1 0 0 0 0 0 0 

  Specimen D 1 1 0 0 0 4 3 

  Specimen G 0 2 0 0 0 1 1 

  Specimen H 0 9 0 0 0 0 1 

  Specimen L 0 0 1 0 1 1 0 

  Specimen M 0 0 0 0 0 0 1 

  Specimen N 0 0 0 0 0 0 1 

  Specimen Q 0 0 0 0 0 1 0 

Limnomedusae Aglauropsis edwardsii 2 1 0 0 2 0 0 

  Proboscidactyla menoni 21 10 9 8 4 3 6 

  Proboscidactyla stellata 0 0 0 1 0 0 0 

Trachymedusae Acrtapodema ampla 0 0 0 0 0 0 1 

  Aglaura hemistoma 9 6 8 4 6 10 12 

  Liriope tetraphylla 4 0 6 0 0 13 8 

  Persa incolorata 12 11 5 4 5 10 23 

  Rhopalonema velatum 6 3 1 0 1 2 3 

  Rhopalonematidae spA 0 0 1 1 0 0 0 

  Specimen C 3 2 4 0 3 2 5 

Narcomedusae Cunina globosa 0 0 1 0 0 0 0 

  Solmissus marshalli 0 0 0 0 0 0 1 

  Solmundella bitenticulata 0 1 1 0 1 4 9 

  Tetraplatia volitans 2 0 0 0 0 0 0 

Siphonophorae Abylopsis eschscholtzi 1 0 0 0 0 0 0 

  Agalma elegans 0 0 0 0 0 1 0 

  Agalma okeni 0 0 0 0 0 1 0 

  Aphicaryon acule 0 0 0 0 0 0 0 
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Table 5 continue 

Order Species 2000 2001 2002 2003 2004 2005 2006 

N 44 24 38 30 29 26 43 

  Chelophyes appendiculata 0 0 0 0 0 1 1 

  Chelophyes contorta 0 0 1 0 0 0 0 

  Cordagalma cordiformis 0 0 0 0 0 1 0 

  Dimophyes arctica 4 7 17 4 10 13 21 

  Diphyes bojani 0 0 1 0 0 0 1 

  Diphyes dispar 0 0 0 0 0 0 1 

  Eudoxoides mitra 0 3 3 1 0 1 1 

  Eudoxoides spiralis 1 3 6 5 1 8 6 

  Forskalia leuckarti 0 0 0 0 2 1 3 

  Halistem marubrum 1 1 4 0 0 2 0 

  Hippopodius hippopus 0 0 0 0 0 0 0 

  Lensia companella 0 0 1 0 0 0 0 

  Lensia conoidea 0 1 0 0 0 2 1 

  Lensia hardy 3 2 8 2 2 8 11 

  Lensia hotspur 0 5 9 2 6 9 8 

  Lensia meteori 0 0 3 0 1 3 3 

  Lensia multicristata 2 3 6 1 3 2 10 

  Lensia subtilis 0 4 6 0 1 5 9 

  Muggiaea atlantica 5 23 24 13 9 17 29 

  Nanomia bijuga 2 6 6 1 0 7 4 

  Praya reticulata 1 0 1 0 0 0 0 

  Rhizophysaeysen hardtii 0 0 0 0 1 0 0 

  Rosacea sp 0 0 0 1 0 0 2 

  Sphaerontectes gracilis 0 2 0 0 0 1 1 

  Sulculeolaria chuni 0 0 2 0 0 0 1 

  Vogtia glabra 0 0 0 0 0 2 0 

  Specimen F 1 1 0 0 0 0 0 

  Specimen K 0 0 0 0 0 2 0 

  Specimen P 0 0 0 0 0 0 1 

Semaeostomeae Chrysaora fulgida 12 0 0 0 4 1 0 

 

Table 5: Number of stations occupied by pelagic Hydrozoa each year over the period 2000-

2006. Total number of samples collected (N) also shown. 
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BIOENV correlations between environmental variables and hydromedusae 

assemblages 

Variable 2000 2001 2002 2003 2004 2005 2006 

Latitude    *   * 

Longitude        

Sounding *       

Sea surface temperature (SST)    *    

Sea surface salinity (SSS)  * *   * * 

Sea surface oxygen (SSO)       * 

Sea surface fluorescence (SSF)      *  

Bottom temperature (BT)      *  

Bottom salinity (BS)    *    

Bottom oxygen (BO)  * *  * *  

Bottom fluorescence (BFl)   * *  *  

Mean fluorescence  *      

Global R 0.589 0.716 0.623 0.478 0.65 0.549 0.555 

 

Table 6: Harmonic correlations between environmental parameters which, either singularly 

or in combination, were significantly correlated (p<0.05) with the structure of medusae 

assemblages identified by the cluster analysis for each year (2000-2006). The analysis was 

conducted using BIOENV procedure in PRIMER. 
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Figure 1: Cnidarian classification as presented by Marques and Collins (2004) that were also 

consistent with phylogenetic hypotheses. 
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Figure 2: The map above shows the sampling regions with coastal city landmarks and an 

example of how the stations were positioned. 
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Sea Surface Temperature 

2000 2001 2002 

2003 2004 2005 

2006 

Figure 3: Contour plots showing sea surface temperature across the study area for each year, 

from 2000 to 2006 (a-g). The plots are mapped along the west coast of South Africa, between 

Cape Town and Hondeklip Bay. 

a) b) c) 

d) e) f) 

g) 

 

 

 

 

http://etd.uwc.ac.za/



79 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Scatter plots illustrating the relationship between bottom depth and (a) sea surface 

temperature, (b) sea surface salinity and (c) sea surface oxygen for each year.

a) 

b) 

c) 
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Sea Surface Salinity 

2000 2001 2002 

2003 2004 2005 

2006 

Figure 5: Contour plots illustrating sea surface salinity across the study area for each year, 

from 2000 to 2006 (a-g). The plots are mapped along the west coast of South Africa, 

between Cape Town and Hondeklip Bay. 

a) b) c) 

d) e) f) 

g) 
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Sea Surface Fluorescence 

2000 2001 2002 

2003 2004 2005 

2006 

Figure 6: Contour plots illustrating sea surface fluorescence across the study area for 

each year, from 2000 to 2006 (a-g). The plots are mapped along the west coast of South 

Africa, between Cape Town and Hondeklip Bay. Note that the scale for the year 2000 is 

different. 

a) b) 
c) 

d) e) f) 

g) 
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Figure 7: Graphs illustrate (a) annual means for sea surface fluorescence and relationship 

scatter plots between surface fluorescence and (b) temperature and (c) salinity. 

a) 

b) 

c) 
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 Copepod Abundance  

2000 2001 2002 

2003 2004 2005 

2006 

Figure 8: Contour plots illustrating copepod abundance across the study area for each year, 

from 2000 to 2006 (a-g). The plots are mapped along the west coast of South Africa, between 

Cape Town and Hondeklip Bay. Note that the scales are different for years 2000, 2004 and 2006. 

a) b) c) 

d) e) f) 

g) 

 

 

 

 

http://etd.uwc.ac.za/



84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Scatter plot graphs illustrating the relationship between copepod abundance and 

environmental factors a) sea surface temperature, b) sea surface salinity, c) sea surface 

fluorescence and d) depth.

a) 

b) 
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Figure 9: Scatter plot graphs illustrating the relationship between copepod abundance and 

environmental factors a) sea surface temperature, b) sea surface salinity, c) sea surface 

fluorescence and d) depth.

c) 

d) 
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Jellyfish Abundance 

 
2000 2001 2002 

2003 2004 2005 

2006 

Figure 10: Contour plots illustrating jellyfish abundance across the study area for each year, 

from 2000 to 2006 (a-g). The plots are mapped along the west coast of South Africa, between Cape 

Town and Hondeklip Bay. Note that the scales are different for years 2000, 2002 and 2004. 

a) b) c) 

d) e) 
f) 

g) 
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Relationship between hydromedusae abundance and 

temperature
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Figure 11: Scatter plot graphs illustrating the relationship between hydromedusae abundance 

and environmental factors a) sea surface temperature, b) sea surface salinity, c) sea surface 

fluorescence and d) depth. 

a) 

b) 
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Figure 11: Scatter plot graphs illustrating the relationship between hydromedusae abundance 

and environmental factors a) sea surface temperature, b) sea surface salinity, c) sea surface 

fluorescence and d) depth.
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Jellyfish Species Richness 
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Figure 12: Contour plots illustrating species richness of jellyfish  across the study area for each 

year, from 2000 to 2006 (a-g). The plots are mapped along the west coast of South Africa, 

between Cape Town and Hondeklip Bay. 
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Figure 13: Scatter plot graphs illustrating the relationship between hydromedusae species 

richness a) sea surface temperature and b) sea surface salinity, c) sea surface fluorescence and 

d) depth. 
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Figure 13: Scatter plot graphs illustrating the relationship between hydromedusae species 

richness and a) sea surface temperature and b) sea surface salinity, c) sea surface fluorescence 

and d) depth. 
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Figure 14: Bar graph illustrating accumulative hydromedusae abundance within each order 

across the time series and the depth range at which they were found.  
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Anthoathecata 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Contour plots illustrating Anthoathecata medusae across the study area for each 

year, from 2000 to 2006 (a-g). The plots are mapped along the west coast of South Africa, 

between Cape Town and Hondeklip Bay. Note that the scales are different. 
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 Leptothecata 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Contour plots illustrating Leptothecata medusae abundance across the study area 

for each year, from 2000 to 2006 (a-g). The plots are mapped along the west coast of South 

Africa, between Cape Town and Hondeklip Bay. Note that the scales are different. 
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Limnomedusae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Contour plots illustrating Limnomedusae abundance across the study area for 

each year, from 2000 to 2006 (a-g). The plots are mapped along the west coast of South 

Africa, between Cape Town and Hondeklip Bay. Note that the scales are different. 
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Trachymedusae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 18: Contour plots illustrating Trachymedusae abundance across the study area for 

each year, from 2000 to 2006 (a-g). The plots are mapped along the west coast of South 

Africa, between Cape Town and Hondeklip Bay. Note that the scales are different for the 

years 2003 and 2005. 
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Narcomedusae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Contour plots illustrating Narcomedusae abundance across the study area for each 

year, from 2000 to 2006 (a-e). The plots are mapped along the west coast of South Africa, 

between Cape Town and Hondeklip Bay. Note that the scales for years 2001 and 2005 are 

different. 
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Siphonophorae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Contour plots illustrating Siphonophorae abundance across the study area for 

each year, from 2000 to 2006 (a-g). The plots are mapped along the west coast of South 

Africa, between Cape Town and Hondeklip Bay. Note that the scales are different. 
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Figure 21: The cluster diagram for the year 2000 -2006 (a-g) presented the similarity between 

samples with regards to environmental variables. The diagram also displayed how samples 

were grouped according to depth. 
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Figure 21: The cluster diagram for the year 2000 -2006 (a-g) presented the similarity between 

samples with regard to environmental variables. The diagram also displayed how samples 

were grouped according to depth. 
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Figure 21: The cluster diagram for the year 2000 -2006 (a-g) presented the similarity between 

samples with regard to environmental variables. The diagram also displayed how samples 

were grouped according to depth. 
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Figure 22: The cluster diagram for the year 2000-2006 (a-g) presented the similarity between 

samples with regard to medusa assemblages. The diagram also displayed how samples were 

grouped according to depth. 
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Figure 22: The cluster diagram for the year 2000-2006 (a-g) presented the similarity between 

samples with regard to medusa assemblages. The diagram also displayed how samples were 

grouped according to depth. 

 

e) 

d) 

2003 

2004 

 

 

 

 

http://etd.uwc.ac.za/



104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: The cluster diagram for the year 2000-2006 (a-g) presented the similarity between 

samples with regard to medusa assemblages. The diagram also displayed how samples were 

grouped according to depth. 
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