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                                                  ABSTRACT 

Population structure and demographics in Nigerian populations utilizing Y-chromosome 

markers 

                                               C. L. Cole-Showers 

           PhD Thesis, Department of Biotechnology, University of the Western Cape 

Nigeria is peopled by ethnically and linguistically diverse populations of which little were 

known until the last few millennial. The absence of major natural geographical barrier increases 

the possibility of the populations being affected by the same demographic events. The aim of 

this thesis was to ascertain the genetic variations and demographics in five major Nigerian 

populations using Y-markers. This was done by determining the genetic structures of the Afro-

asiatic speaking Hausa (n=78) of Northern Nigeria and the Niger Congo speaking populations 

of Igbo (n=119), Yoruba (n=238), Bini (n=13) and Ijaw (n=15) of Southern Nigeria all spread 

over 22 geographical origins and four (North, South east, south west and South south) 

geographical regions. They were compared with more than 2000 individuals from 46 

populations of 20 other African and Middle Eastern countries, in published literature. The 

Scientific Working Group on DNA Analysis Methods (SWGDAM) recommended Y-Short 

Tandem Repeats (STRs) and nine Y-Single Nucleotide Polymorphisms (SNPs) haplogroups 

were typed with multiplex Polymerase Chain Reaction (PCR), Restriction Fragment Length 

Polymorphisms (RFLP) and High Resolution Melting (HRM). Summary statistics and measures 

of diversity were determined. Population structure was assessed with Population Pairwise 

Differences, hierarchical Analysis of Molecular Variance, Multidimensional scaling and 

correspondence analysis plots. Mantel’s test was used to assess the correlation of genetic 

distances with geographic distances. Demographic inferences were assessed with lineage based 

Network reconstruction, Spatial autocorrelation plots, effective migrants per population and 

both Inter and Intra-lineages Times to the Most Recent Common Ancestor (TMRCA). The 

patterns of diversity of the Y-markers showed a North-South gradient and a notable sub-

structure among the Hausa populations. The Niger-Congo speakers displayed rare presence of 

haplogroups R and E1b1b but a preponderance of E1b1a7. Overall, the Y markers showed high 

diversities and significant genetic sub-structure within the Hausa populations of Nigeria with 

stronger linguistic than geographical bias. The demographic evaluations gave credence for 

genetic validation of both historical records and archeological findings among these Nigerian 

populations. These populations showed stronger affiliations with other sub-Saharan African 

populations rather than with North African or Middle Eastern populations, lacking evidence for 

the Middle Eastern origins of the male founders of these populations. Finally, the contribution 

of these Nigerian dataset would greatly enhance the Africa meta-population on the YHRD with 

more than 274 new haplotypes of forensic estimation significance. 
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1.0 CHAPTER ONE: INTRODUCTION 

The non-recombining part of the human Y chromosome (NRY) was widely used in 

human population (Underhill and Kivisild, 2007) and forensic genetics (Kayser, 2007) 

because it showed a male inheritance and substantial structuring in human populations 

(Karafet, et al., 2008). With its particular susceptibility to genetic drift caused by low 

effective population size (Jobling and Tyler-Smith, 2003) and the additional influence of 

patrilineal cultural practices (King and Jobling, 2009; Oota, et al., 2001; Seielstad, et al., 

1998) the NRY provides the strongest genetic differentiation over geographic distance 

when compared with other parts of the genome (Hammer and Zegura, 2002; Kayser, et 

al., 2000). This has made the NRY exceptionally valuable for the reconstruction of 

human population history (Kayser, et al., 2000; Underhill, et al., 2000) including 

estimation of demographic parameters (Shi, et al., 2010) as well as for genealogical 

relationships (Kayser, 2007) and male lineage determination in forensic applications 

(Kayser, et al., 2007; Dettlaff-Kakol and Pawlowski, 2002; Roewer, 2009).  

van Oven and others (van Oven, et al., 2014) also enumerated the uses of the largely non-

recombining portion of the human Y chromosome, to include, as molecular markers in 

fields like population history and evolutionary anthropology (Chiaroni, et al., 2009; 

Underhill and Kivisild, 2007), population structure (Larmuseau, et al., 2013; Ottoni, et 

al., 2011), genetic genealogy (King and Jobling, 2009; Larmuseau, et al., 2012), Forensic 
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genetics (Kayser, 2007); sex chromosome structure and evolution (Hallast, et al., 2013; 

Trombetta, et al., 2010) and medical genetics (Charchar, et al., 2012).   

The skeleton of a detailed phylogenetic tree of Y-chromosome was primarily based on 

binary polymorphisms (single nucleotides polymorphism (Y-SNP) and insertion/deletion 

polymorphisms) and specific branches are assigned to haplogroups following a 

hierarchical pattern (Figure 1.0 below). This was because apart from being bi-allelic, 

they are relatively stable (Xue, et al., 2009) and easy to genotype (van Oven, et al., 2011; 

2013).   

The Y chromosome tree consists of at least 20 major clades containing more than 311 

distinct haplogroups defined by more than 600 mutational events (Karafet, et al., 2008, 

Jobling, 2012; van Oven, et al., 2014). Furthermore, by typing Y-chromosome Short 

Tandem Repeats (Y-STRs), haplotypes are generated, which are then used for finer 

resolution within the haplogroups (Underhill and Kivisild, 2007). Prior to recent times, 

the two primary splits in the Y-chromosome tree leads to two branches, Haplogroups A 

and BT. The core Haplogroups A and B are associated with the distribution of ancient 

hunter-gatherer tribes before the expansions of pastoralists (Underhill, et al., 2001; 

Underhill and Kivisild, 2007; Tishkoff, et al., 2007; Pickrell, et al., 2013). The rest of the 

Y-chromosome tree was defined by the M168 mutation, which represented the most 

common African lineages (Haplogroup E) as well as all the non-African clades. 

Haplogroup A was defined by the M91 and P97 mutations and contained more than 12 
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branches determined by not less than 45 (internal) mutations (Karafet, et al., 2008; 

Batini, et al., 2011). A strict regional distribution was particularly pronounced for 

haplogroup A.  

Within Haplogroup A,  A1 was found in Mali and Morocco (Underhill, et al., 2000; 

Scozzari, et al., 2001), A3b2 was found in East Africa (Sudan, Ethiopia, Tanzania, 

Kenya) and in lower frequencies in northern Cameroon (Scozzari, et al., 1999; Underhill, 

et al., 2000; Cruciani, et al., 2002; Semino, et al., 2002; Knight, et al., 2003), while A3b1 

and A2 are found exclusively among the Khoe-San (Scozzari, et al., 1999; Underhill, et 

al., 2000).  

Haplogroup B was defined by four mutations (M60, M181, P85, and P90) and contained 

17 branches with 28 internal markers (Karafet, et al., 2008, Batini, et al., 2011). 

Haplogroup B occurred throughout Africa but have higher frequencies among Pygmies, 

Khoe-San and Hadza, with some lineages being restricted to them (Underhill, et al., 

2000; Cruciani, et al., 2002; Semino, et al., 2002; YCC, 2002; Knight, et al., 2003). 

There was a clear-cut difference between the B haplogroups associated with the Pygmies, 

Khoe-San and Hadza versus all the other African populations. Pygmies, Khoe-San and 

Hadza populations have mainly Haplogroup B haplotypes defined by the M112 mutation, 

while other populations have the M150 mutation. Within haplogroup B-M112, 

haplogroups B2b2, B2b3 and B2b4b were restricted to the Pygmy populations while 

B2b1 (P6) and B2b4a (P8) were restricted to Khoe-San groups. The B2b* ancestral 
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haplotype occurred in both Pygmy and Khoe-San groups (Underhill, et al., 2000; 

Cruciani, et al., 2002; Semino, et al., 2002; YCC, 2002; Knight, et al., 2003).  

Eighteen mutations currently define Haplogroup E. It was the most mutationally-diverse 

of all the major Y-chromosome clades and contained 83 polymorphisms that define 56 

distinct haplogroups (Karafet, et al., 2008). The E haplogroups are found at very high 

frequencies in Africa, moderate frequencies in the Middle East and southern Europe but 

scarce in Central and South Asia. Although Haplogroup E groups are widespread all over 

Africa, the distributions of the numerous distinctive haplogroups are not homogeneous 

across the continent (Hammer and Horai, 1995; Hammer, et al., 1998; Qamar, et al., 

1999; Bosch, et al., 2001; Hammer, et al., 2001a; Underhill et al., 2001; Cruciani, et al., 

2002; Cruciani, et al., 2004). Haplotypes carrying the mutations M75 (E2) and M33 

(E1a) are present at low frequencies across Africa but with different individual 

distributions. Haplogroups E1b1a and E1b1b are the most frequent and widespread of the 

E haplogroups (Hammer, et al., 2001a; Underhill, et al., 2001; Cruciani, et al., 2002; 

Cruciani, et al., 2004; Semino, et al., 2004). Haplogroup E1b1a, defined by M2 and 

seven other mutations was mainly limited to sub-Saharan populations and was associated 

with the expansion of Bantu-speaking populations (Hammer, et al., 1998; Passarino, et 

al., 1998; Scozzari, et al., 1999). The E1b1a subgroups have different distributions and 

frequencies. The M191 mutation defines the most frequent E-M2 subgroup and was an 

evidence of a founder effect that resulted from the Bantu-expansions (Hammer, et al., 
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2001a; Underhill, et al., 2001; Cruciani, et al., 2002; Cruciani, et al., 2004; Semino, et 

al., 2004).  

The non-African distribution of haplogroup E was associated with haplogroup E1b1b 

characterized by the M35 and M215 mutations (Hammer, et al., 1998; Semino, et al., 

2000; Underhill, et al., 2001; Semino, et al., 2004). This haplogroup, however, also have 

a widespread African representation (Hammer, et al., 2001a; Underhill, et al., 2001; 

Cruciani, et al., 2002; Cruciani, et al., 2004; Semino, et al., 2004). Compared to other E 

haplogroups, M35 occur at very low frequencies within Bantu speakers but is widely, 

though not uniformly, dispersed throughout Africa. Among the different lineages 

carrying the M35 mutation, haplotypes defined by M78 occurs in East Africa, North 

Africa, the Middle East and Europe. It is the E-M35 subgroup with the highest frequency 

and the widest distribution outside Africa. This marker has a northeastern African origin 

and multiple exodus routes out of Africa have been demonstrated (Cruciani, et al., 2007).  

Karafet and others (Karafet, et al., 2008) identified eight mutations: M207, M306, P224, 

P227, P229, P232, P280, and P285 which characterized haplogroup R. A total of 42 

mutations identified the 28 subclades nested in it. It has also been found in significant 

proportion in Central/West Africa (van Oven, et al., 2014), as R1b2-V88, a version of 

R1b (SNP V88 = rs 180946844), despite being preponderant among Europeans.  
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Figure 1.1: Skeleton of the human Y-chromosome phylogeny with basal haplogroup nomenclature (in bold) and defining Y-

SNP markers indicated on the branches. The most recent common patrilineal ancestor of all modern humans (Y-MRCA) is 

indicated at the top. The deep-rooting A and B clades (on the left) are specific to Africans thus supporting the African origin of 

modern humans (van Oven, et al., 2014) 

 

 

 

 

 



7 
 

The number of Y chromosome short tandem repeat (Y‐STR) loci available for use in 

human identity testing has increased considerably since the turn of the century. In the 

1990s only few Y STR markers were characterized and available for use. The first STR 

locus to be identified on the Y chromosome was DYS19 (Roewer, et al., 1992). A series 

of highly polymorphic Y‐specific microsatellites have been identified and tested on 

different population samples. These markers show high levels of heterogeneity within 

and between populations and thus very useful for population genetic, evolutionary and 

forensic applications (de Knijff, et al., 1997). 

A core set of Y‐STR loci was selected for human identity testing in 1997 that continue to 

serve as ‘minimal haplotype’ loci (Kayser, et al., 1997; Pascali, et al., 1998). The 

minimal haplotype was defined by the single copy Y‐STR loci DYS19, DYS389I, 

DYS389II, DYS390, DYS391, DYS392, DYS393, and highly polymorphic multi-copy 

loci DYS385 a/b (Schneider, et al., 1999). 

In 2004, the Scientific Working Group on DNA Analysis Methods (SWGDAM) voted to 

adopt 11 Y‐STR loci for forensic casework analysis. The decision was based on 

availability to the scientific community and the large amount of published performance 

and database information for most to these loci. The committee encourages further study 

of additional loci as to their suitability for forensic use. The first nine loci comprise the 
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minimal haplotype complement of markers, plus two other additional markers DYS 438 

and DYS 439 (Ayub, et al., 2000; Daniels, et al., 2004). 

The limitation of Y‐STRs compared with autosomal STRs was a reduced power of 

discrimination due to a lack of recombination throughout most of the Y‐chromosome 

(Mulero, et al., 2006). However the advantages of Y‐STR analysis over autosomal STRs 

include: a) male profile can be obtained in the presence of large amounts of female DNA; 

b) differential extraction of sperm and non‐sperm fraction is not necessary; c) analysis of 

azoospermic semen samples from vasectomized males is feasible; d) the number of male 

contributors often can be determined in multiple rape cases because of the haploid nature 

of the Y‐STRs; e) rapid exclusion of suspects can occur; f) interpretation is simplified 

due to single allele per locus profile; g) in deficient paternities and h) multigenerational 

male lineage studies can be performed (Roewer, 2009). 

Due to the duplicated, palindromic regions of the Y chromosome, some Y‐STR loci 

occur more than once and when amplified with a locus specific set of primers produce 

more than one PCR product. This fact can lead to confusion in terms of counting the 

number of loci present in a haplotype. A single set of primers can produce two 

amplicons, which may be thought of as ‘two loci’ for a Y chromosome haplotype. For 

example the Y‐STR locus DYS385 is present in two regions along the long arm of the Y 

chromosome. These duplicated regions are located about 40 kbp apart and can generate 
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two different alleles when amplified with a single set of primers. The two alleles are 

typically labeled ‘a’ and ‘b’ with ‘a’ designation going to the smaller sized allele. It is 

also possible to have both ‘a’ and ‘b’ alleles be the same size in which case only a single 

peak would appear in an electropherogram. Due to the presence of two alleles, this 

duplicated locus is usually referred to as DYS 385a/b. Two PCR products can also be 

generated at the locus DYS389I using a single set of primers resulting in DYS389II 

which is a subset of DYS389I (Butler, 2005). In some cases duplications or even 

triplications of Y‐STR locus have been reported, particularly for DYS 19 (Butler, 2005). 

It was important to keep this fact in mind so that two peaks at the DYS 19 locus are not 

automatically interpreted as coming from a mixture of two males. 

Both of these issues, mutations and duplications of loci, impact analysis and therefore 

confusing mixture interpretation, suggest that analysis of additional Y‐STR loci can be 

helpful in these circumstances (Butler, 2005). 

As of  May 2014, the Y Chromosome Haplotype Reference Database (YHRD) contains 

more than 126,000 haplotypes with information from various markers (DYS19, 

DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385, DYS438, 

DYS439, DYS437, DYS448, DYS456, DYS458, DYS635, and YGATAH4) as well as 

Y‐SNPs from 710 populations sampled worldwide and can accessed on the website 

http://www.yhrd.org. The website database has become an important tool for use in 
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comparing Y‐STRs from different populations across the world. The website standardizes 

Y‐STR nomenclature by ensuring the successful completion of a quality assurance 

exercise. All Y‐STR population data accepted are done with the understanding that a 

population is defined as a group of more than 50 individuals living in the same area. 

When using Y‐STRs, it is advisable to understand the data obtained with a look towards 

the origin of the population (Willuweit and Roewer, 2007). The Y-STRs are thus 

becoming routine and necessitating the development of international networks and 

databases for crime investigation. Their usefulness was attributable to their high 

discrimination capacity and haplotype diversities. However, not until recently have many 

undertaken to bridge the wide gap on populations data between Africa and the rest of the 

world (Alves, et al., 2003; Arroyo-Pardo, et al., 2004; Melo, et al., 2010; Rosa, et al., 

2007; Omran, et al., 2008; de-Filippo, et al., 2011; Coelho, et al., 2009; Berniel-Lee, et 

al., 2009; Brandt-Casadevall, et al., 2003; Gomes, et al., 2010 and Barbieri, et al., 2012).  

The purpose of the thesis was to investigate in more detail, the combined Y-chromosomal 

variation of bi-allelic and microsatellite markers in Nigeria to gain insights into pre-

historic population movements in this part of West Africa. It was also to analyze the 

demographics of the Nigerian populations Y-chromosome differentiation and to evaluate 

the correlation of the regional differentiation. 
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The thesis would explore the genetic differentiations among five Nigerian populations as 

revealed by Y-Chromosome analysis by asking the following questions: was there any 

structure in the genetic variation on the non-recombining region of the Y-Chromosome 

(NRY) of the major Nigerian populations? Based on the answer to the above question, 

what factors drove this? Are there correlations between genetic distances and 

geographical distances in the Nigerian populations? Was inter-haplogroup STR profile 

sharing a common or rare occurrence in this Nigerian dataset? It would also discuss the 

forensic significance of this Nigerian data set and its potential enhancement of the Africa 

meta-population on the Y-chromosome haplotype reference database (YHRD). It would 

then explore how genetic analysis seems to validate the demographic history of some 

Nigerian populations by providing insights on how genetic evidences corroborate the 

historical and archeological pre-existence of the Nigerian populations in their current 

geographical locations and the nature of the associations among the STR haplotypes in 

the Nigerian lineages.  

The chapters (two to five) that follow would then present the sequential order of the 

experiments and emphasize the principles surrounding the use of the different analytical 

tools employed in the thesis. This would be followed by a chapter (three) summarizing 

the key results of these experiments and then a chapter (four) discussing their overall 

importance to the set aims and objectives of the thesis. Finally, this would be followed by 
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a chapter (five) highlighting the key contributions of the thesis to knowledge and some 

recommendations for future investigations arising from the limited scope of the thesis.   
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CHAPTER TWO: MATERIALS AND METHODS 

2.1 Nigeria populations sampling and comparative data from the literature 

Buccal swabs from a total of 463 adult males, unrelated at the grandfather level, were 

collected between December 2008 and February 2009 and also between December 2009 

and January 2010 in Lagos, southwest Nigeria with informed consent. Their self-

described ancestries represent five (5) distinct ethnic groups (Hausa, Igbo, Yoruba, Bini 

and Ijaw) and four (4) geographical regions (North, South East, South West and South 

South) with twenty-two geographical origins (States of the Nigerian Federation) and two 

linguistic groups (Afro-asiatic and Niger-Congo). Some samples were merged because 

they are very few (i.e. less than five) and mostly from the same geographical region. 

These include the Hausa populations from Niger (7) with Benue (2), Plateau (2), Kogi 

(1), Bauchi (1) and Adamawa (1); The Hausa populations from Kebbi (5) with Zamfara 

(2); The Hausa populations from Kaduna (3) with Katsina (6); The Yoruba populations 

between Ondo (21) with Edo (3); The Igbo populations from Delta (7) with Rivers (1) 

and finally the Ijaw populations from Bayelsa (7) with Delta (4), Ondo (3) and Rivers (1). 

The summary of the sampling are on Table 2.1 and Figure 2.1 below. The swabs were 

immediately stored on Ice and transported to a -20⁰C freezer for long term storage. 

The comparative data from the literature were such that have the full complements of the 

Y Chromosome Short Tandem Repeats (STR) loci of the Scientific Working Group on 

DNA methods (SWGDAM) or more. Some of the sample sizes were very small (See 
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Namibian SAN and South African Bantu populations in Table 2.2) but it was discovered 

that these were still able to be substantially differentiated from other larger populations. 

Throughout this report, Bonferroni correction was implemented by dividing the statistical 

significant P- value 0.05 by the number of pairwise comparisons. Also, four of the five 

major linguistic groups found in Africa were represented namely, Khoisan, Afro-Asiatic, 

Niger Congo and Nilo-Saharan languages. In cases were the language of the populations 

were not defined in the literature, the linguistic characterization was left vacant. A non-

African population (Arabs from Saudi Arabia) was included to confirm its proximity to 

the North African Populations and utilized to resolve some questions. Overall, Five 

Geographical regions of Africa were represented namely: North Africa, West Africa, 

Central Africa, East Africa and Southern Africa by more than 2200 male subjects from 

21 Countries.  
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Table 2.1:  The Nigerian populations  studied 

    

S/No Region Geographical origin Abbreviation 

Geographical Latitude , 

longitude Linguistic group Ethnicity 

Total 

sampled 

No1 North  Niger NG 10.2155388, 5.3939551 Afro-asiatic Hausa 14 

No2 North Jigawa JG 12.4460001, 9.7232673 Afro-asiatic Hausa 6 

No3 North Kaduna KD 10.1589593, 8.133855 Afro-asiatic Hausa 9 

No4 North Kano KN 11.7574188, 7.6114217 Afro-asiatic Hausa 10 

No5 North Kebbi KB 11.6781241, 4.0695454 Afro-asiatic Hausa 7 

No6 North Sokoto SK 13.1177202, 5.3939551 Afro-asiatic Hausa 32 

No7 South east Abia AB 5.4308, 7.5247 Niger-congo Igbo 19 

No8 South east Anambra AN 6.2757656, 7.0068393 Niger-congo Igbo 23 

No9 

South 

south Delta DT 5.5324624, 5.8987139 Niger-congo Igbo 8 

No10 South east Ebonyi EB 6.177973, 7.9592863 Niger-congo Igbo 5 

No11 South east Enugu EN 6.6095187, 7.351658 Niger-congo Igbo 12 

No12 South east Imo IM 5.5214533, 6.9209135 Niger-congo Igbo 52 

No13 North  Kogi KG 7.561891, 6.5783387 Niger-congo Yoruba 7 

No14 North  Kwara KW 8.9847995, 4.5624426 Niger-congo Yoruba 22 

No15 

South 

west Ekiti EK 7.6655813, 5.3102505 Niger-congo Yoruba 24 

No16 

South 

west Lagos LA 6.5232765, 3.5407909 Niger-congo Yoruba 48 

No17 

South 

west Ogun OG 6.9098333, 3.2583626 Niger-congo Yoruba 38 

No18 

South 

west Ondo ON 6.8959293, 4.8935627 Niger-congo Yoruba 24 

No19 

South 

west Osun OS 7.5875843, 4.5624426 Niger-congo Yoruba 35 

No20 

South 

west Oyo OY 8.119567, 3.4195527 Niger-congo Yoruba 40 

No21 

South 

south Edo ED 6.5438101, 5.8987139 Niger-congo Bini 13 

No22 

South 

south Bayelsa BY 4.86777767, 5.8987139 Niger-congo Ijaw 15 
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Figure 2.1: Map showing the 22 geographical origins of sampled Nigerian populations 
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Table 2.2: Data from published literature used for comparative analysis    

Serial 

No. 

Country Population(Size) Population 

Code 

Linguistic 

Affiliation 

Continental 

region 

References 

1 Nigeria Hausa (78) NIG-H Afro-

Asiatic 

West Africa This Thesis 

  Igbo (119) NIG-IG Niger-

Congo 

West Africa This Thesis 

  Yoruba (214) NIG-Y Niger-

Congo 

West Africa This Thesis 

  Bini(13) NIG-B Niger-

Congo 

West Africa This Thesis 

  Ijaw(15) NIG-IJ Niger-

Congo 

West Africa This Thesis 

2 Burkina Faso Kassena (33) BFKSN Niger-

Congo 

West Africa De Filippo, et al., 2011 

  Marka(33) BFMRK Niger-

Congo 

West Africa De Filippo, et al., 2011 

  Lyela(38) BFLYL Niger-

Congo 

West Africa De Filippo, et al., 2011 

  Mossi(36) BFMSS Niger-

Congo 

West Africa De Filippo, et al., 2011 

  Nuna(29) BFNN Niger-

Congo 

West Africa De Filippo, et al., 2011 

  Pana(24) BFPN Niger-

Congo 

West Africa De Filippo, et al., 2011 

  Samo-North(34) BFSN Niger-

Congo 

West Africa De Filippo, et al., 2011 

  Samo-South(41) BFSS Niger-

Congo 

West Africa De Filippo, et al., 2011 

  Samoya(14) BFSMY Niger-

Congo 

West Africa De Filippo, et al., 2011 

3 Guinea Bissau Mixed(161) GBIS Niger-

Congo 

West Africa Rosa, et al., 2006 

4 Senegal Mandeka(15) SENMDK Niger-

Congo 

West Africa De Filippo, et al., 2011 

5 Saudi Arabia Arab(48) S,ARBI Arabic Middle east Abu-Amero, et al., 2009 

6 Morocco Bedoin(166) MRCO Afro-

Asiatic 

North Africa Laouina, et al., 2011 

7 Tunisia Bedoin(100) TUNs Afro-

Asiatic 

North Africa Brandt-Casadevall, et al., 

2003 

8 Algeria Mozabite(20) ALGMZ Afro-

Asiatic 

North Africa De Filippo, et al., 2011 

  Afroasiatic(99) ALGAA Afro-

Asiatic 

North Africa  

9 Equatorial 

Guinea 

Mixed(194) EGUI Niger-

Congo 

Central 

Africa 

Arroyo-Pardo et al., 2004 

10 Cameroon Bakola(25) CAMBK Niger-

Congo 

Central 

Africa 

Berniel-Lee, et al., 2009 

  Ngumba(24) CAMNGMB Niger-

Congo 

Central 

Africa 

Berniel-Lee, et al., 2009 
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11 Central African 

Republic(CAR) 

Biaka(24) CARBIK Niger-

Congo 

Central 

Africa 

De Filippo, et al., 2011 

12 Democratic 

Republic of 

Congo (DRC) 

Mbala(10) DRCMBL Niger-

Congo 

Central 

Africa 

De Filippo, et al., 2011 

  Mbuti(10) DRCMBT Niger-

Congo 

Central 

Africa 

De Filippo, et al., 2011 

  Mbun(9) DRCMBN Niger-

Congo 

Central 

Africa 

De Filippo, et al., 2011 

  Pende(10) DRCPD Niger-

Congo 

Central 

Africa 

De Filippo, et al., 2011 

  Yansi(15) DRCYNS Niger-

Congo 

Central 

Africa 

De Filippo, et al., 2011 

13 Gabon Akele(50) GBAKL Niger-

Congo 

Central 

Africa 

Berniel-Lee, et al., 2009 

  Bekwil(32) GBBK Niger-

Congo 

Central 

Africa 

Berniel-Lee, et al., 2009 

  Benga(47) GBBG Niger-

Congo 

Central 

Africa 

Berniel-Lee, et al., 2009 

  Duma(45) GBDM Niger-

Congo 

Central 

Africa 

Berniel-Lee, et al., 2009 

14 Angola Bantu(27) ANGBNT Niger-

Congo 

Southern 

Africa 

Coel, et al., 2009 

  Kuvale(25) ANGKVL Niger-

Congo 

Southern 

Africa 

Coel, et al., 2009 

  Nyaneka 

Nkhumbi(74) 

ANGNYK Niger-

Congo 

Southern 

Africa 

Coel, et al., 2009 

  Umbundu(93) ANGUBD Niger-

Congo 

Southern 

Africa 

Coel, et al., 2009 

15 Namibia San(4) NAMSAN Khoisan Southern 

Africa 

De Filippo, et al., 2011 

16 South Africa Bantu south(8) SABAS Niger-

Congo 

Southern 

Africa 

De Filippo, et al., 2011 

17 Botswana Kalanga(20) BOTKLG Niger-

Congo 

Southern 

Africa 

De Filippo, et al., 2011 

  Tswana(19) BOTTSW Niger-

Congo 

Southern 

Africa 

De Filippo, et al., 2011 

18 Zambia Luyana(60) ZAMLYN Niger-

Congo 

Southern 

Africa 

De Filippo, et al., 2011 

  Kwamashi(26) ZAMKWS Niger-

Congo 

Southern 

Africa 

De Filippo, et al., 2011 

  Lozi(94) ZAMLZ Niger-

Congo 

Southern 

Africa 

De Filippo, et al., 2011 

  Bisa(34) ZAMBS Niger-

Congo 

Southern 

Africa 

De Filippo, et al., 2011 

19 Ethiopia Omo Valley(65) ETHOV Nilo-

Saharan 

East Africa De Filippo, et al., 2011 

20 Kenya Bantu(10) KENBNT Niger-

Congo 

East Africa De Filippo, et al., 2011 

  Masai(44) KENMSI Afro-

Asiatic 

East Africa De Filippo, et al., 2011 

21 Uganda Nilo-saharan(118) UGDNS Nilo-

Saharan 

East Africa De Filippo, et al., 2011 
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2.2 DNA extraction and quantification 

Genomic DNA was extracted using a modification of the salt extraction protocols 

of Medrano et al., 1990. The principle was essentially to recover nuclei material 

after disrupting cell membrane using detergent and then salting out proteins and 

finally precipitating out genomic DNA. Specifically, the swabs were placed in 

separate Eppendorf tubes and digested in a lysis buffer containing 10mM NaCl, 10 

mM Tris HCl, pH 8.0, 0.5% SDS and 0.1mg/ml Proteinase K and incubated at 

56°C overnight. The digested content was further treated with 0.3volume 4.5M 

NaCl and shaken vigorously for 15 seconds. The content was spun at 5,000rpm and 

the supernatant was precipitated with ice cold Isopropanol at  -80°C for 30 

minutes. The content was spun at 15,000rpm for 30 minutes. The precipitate was 

washed with 70% ethanol and then dissolved in 30μl double distilled water. The 

DNA solution obtained was quantified on a Nanodrop ND100 Spectrophotometer 

(Applied Biosystem) and had an average of 80ng/µl from which a serial dilution of 

5ng/μl was prepared for Y chromosome marker typing. The Nanodrop gave 

readings for both the concentration of DNA and the ratio of its purity given as the 

ratio of Absorbance reading at 260nm against absorbance reading at 280nm. The 

acceptable value for further utilization was 1.80, as recommended in Molecular 

Cloning – A laboratory manual (Sambrook, Fritsch and Maniatis, 1989).  
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2.3 Primers design 

 Most of the primers utilized in this report have been reported in the literature 

(Butler, et al., 2002). However, the primer pairs were re-designed for the Y Short 

Tandem Repeat (STR) DYS390. This was done with Oligo v1.4 (Rychlick and 

Rhoads, 1989) and melting temperature Tm was determined according to the 

nearest neighbour method. The possibility of these primers matching the human 

genome elsewhere but the Y-chromosome was tested with BLAT 

(http://genome.ucsc.edu/cgi-bin/hgBlat) and BLAST (http://blast.ncbi.nlm.nih.gov) 

with BLASTN 2.2.18 (Altschul, et al., 1997).  Self and heterodimers, potential 

hairpins and secondary structures were checked using Oligo Analyzer software 

(Rychlick and Rhoads, 1989). 

  

2.4 Y-STR Typing 

The 11 loci STR recommended by the Scientific Working Group on DNA Analysis 

Methods SWGDAM, were typed using some modification of Butler and others 

method (Butler, et al., 2002) which was optimized for Capillary Electrophoresis 

(CE). The 20-plex PCR protocol of Butler and others (Butler, et al., 2002) was 

substantially modified as follows:   
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1.) The DYS390 primers were redesigned with the Forward primer: PET-Labeled 

TGA CAG TAA AAT GAA AAC ATT GC and the reverse primer: CCC GGG 

TTT TTA CAC ATT TTA TA.   

2.) The primer concentrations were reduced with none exceeding 1.0μM.   

3.) The annealing temperature was increased to 58.0°C.   

4.) The cycle number was increased to 32.   

5.) Only 9 pairs of primers were multiplexed.  

6.)  5ng genomic DNA was used for amplification.  

7.)  Electrophoresis was run on Slab-based electrophoresis.  

All remaining components in the PCR amplification cocktail were as described by 

Butler and others (Butler, et al, 2002). 
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Table 2.3: The 11-loci SWGDAM primers used for Y-STR typing. 

Locus Dye Sequence [Primer] Length  

DYS19 NED F 5’ACT ACT GAG TTT CTG TTA TAG TGT TTT T 3’ 1.0µM 28  

  

R 5’ GTC AAT CTC TGC ACC TGG AAA T 3’ 1.0µM 22  

     

 

DYS389 FAM F 5’ CCA ACT CTC ATC TGT ATT ATC TAT G 3’ 0.4µM 25  

  

R 5’ GTT ATC CCT GAG TAG TAG AAG AAT G 3’ 0.4µM 25  

     

 

DYS390 PET F 5’ CAA TGT GTA TAC TCA GAA ACA AGG 3’ 0.8µM 24  

  

R 5’ CAC ATA TAT TTT ACA CAT TTT TGG G 3’ 0.8µM 25  

     

 

DYS391 FAM F 5’ TTC AAT CAT ACA CCC ATA TCT GTC 3’ 0.2µM 24  

  

R 5’ GAT AGA GGG ATA GGT AGG CAG GC 3’ 0.2µM 23  

     

 

DYS392 NED F 5’ TAG AGG CAG TCA TCG CAG TG 3’ 0.6µM 20  

  

R 5’ GAC CTA CCA ATC CCA TTC CTT 3’ 0.6µM 21  

     

 

DYS393 VIC F 5’ GTG GTC TTC TAC TTG TGT CAA TAC 3’ 0.25µM 24  

  

R 5’ GAA CTC AAG TCC AAA AAA TGA GG 3’ 0.25µM 23  

     

 

DYS438 FAM F 5’ CCA AAA TTA GTG GGG AAT AGT TG 3’ 0.25µM 23  

  

R 5’ GAT CAC CCA GGG TCT GGA GTT 3’ 0.25µM 21  

     

 

DYS439 FAM F 5’ TCG AGT TGT TAT GGT TTT AGG TCT 3’ 0.18µM 24  

  

R 5’ GTG GCT TGG AAT TCT TTT ACC C 3’ 0.18µM 22  

     

 

DYS385 VIC F 5’ AGC ATG GGT GAC AGA GCT A 3’ 0.2µM 19  

  

R 5’ GCC AAT TAC ATA GTC CTC CTT TC 3’ 0.2µM 23  
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2.5 Multiplex PCR cycling conditions for Y- STR amplification 

All the 11 loci STRs were amplified in a single multiplex reaction of 10μl reaction 

volume. The reaction mixture comprised of 0.5μL SuperTherm Gold brand 

Thermophilus aquaticus (Taq) (5units/μL) (MEDOX (PTY) Ltd), 5ng genomic 

DNA, 1.5mM Magnesium Chloride buffer, 200µM of each dNTP (Roche), sterile 

water, 1.6mg/ml BSA, and 0.5% glycerol. Amplification was performed in a 

GeneAmp 2720 Thermal cycler (Applied Biosystems), under the following cyclic 

conditions: 1 cycle of  enzyme activation at 95°C for 10 minutes; 32 cycles of  

denaturation  at 94°C for 30 seconds,  primer annealing at 58°C for 1 minute and 

elongation at 72°C for 1minute,  and final extension of 1cycle at 68°C for 75 

minute then a hold at  15°C until the samples were removed from the thermal 

cycler and stored in the fridge at 4°C.  

2.6 Detection of PCR products and scoring of alleles 

Analysis of amplified products was performed by mixing 1μL of amplified product 

with 1μL of loading mix which consisted of de–ionized formamide; Dextran Blue 

dye (Applied Biosystems) and LIZ500 size standard (Applied Biosystems) in a ratio 

of 5:2:1 (μl). The mixture was then denatured using GeneAmp 2720 Thermal 

cycler PCR System set at 95 °C for 5 minutes. Immediately after denaturation, the 

samples were placed sharply on ice and loaded on 4% Poly Acrylamide Gel slab 

and ran for two and half hours on the ABI 377 Sequencer (Applied Biosystems). 
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The protocols for the preparation of this gel and associated solutions are included 

in the appendix. The outputs of the run were analyzed with the associated software 

Gel processor (Applied Biosystems), Genescan 3.0.0 (Applied Biosystems) and 

Genotyper 3.7 (Applied Biosystems). The Genotyper macros for allele calling were 

validated with the National Institute for Standards and Technology reference 

sample SRM 2395.  The STR profiles derived from the above protocols for 

Nigerian populations were contrasted with published results for Tunisia (Brandt-

Casadevall, et al., 2003), Angola (Coelho, et al., 2009), Uganda (Gomes et al., 

2010), Cameroon (Berniel-Lee, et al., 2009) and Burkina Faso (De-Filippo, et al., 

2011). A more comprehensive analysis with all the comparative dataset in Table 

2.2 is shown in the Rst distance and P value matrix in Supplementary Table 3 of 

this report. 

 

2.7 Y- SNPs Typing 

The Y-SNP typed were M60 for Haplogroup B, Y chromosome Alu  

polymorphism YAP for Haplogroup DE, SRY4064 for Haplogroup E, M2 for 

E1b1a, M9 for haplogroup KR, M207 for Haplogroup R, U175 for Haplogroup 

E1b1a8, U186 for Haplogroup E1b1a7 and M215 for E1b1b. The first 6 were done 

with Restriction Fragment Length Polymorphism (RFLP) analysis while the last 
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three were carried out with High Resolution Melting (HRM) analysis. The 

phylogenetic relationship among the SNPs tested was shown in Figure 2.2 below. 

 

 

Figure 2.2: The Tree of Y-SNPs evaluated in this thesis. 
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2.8 Restriction Fragment Length Polymorphisms (RFLPs)  

In principle, RFLP was considered to be the simplest and earliest method to detect 

SNPs. SNP-RFLP made use of the many different restriction endonucleases and 

their high affinity to unique and specific restriction sites. By performing a 

digestion on a genomic sample and determining fragment lengths through a gel 

assay it was possible to ascertain whether or not the enzymes cut the expected 

restriction sites. A failure to cut the genomic sample results in an identifiably larger 

than expected fragment implying that there was a mutation at the point of the 

restriction site which rendered it protected from nuclease activity. Unfortunately, 

the combined factors of the high complexity of most eukaryotic genomes, the 

requirement for specific endonucleases, the fact that the exact mutation cannot be 

necessarily resolved in a single experiment and the slow nature of gel assays make 

RFLP a poor choice for high throughput analysis. However, the Y SNPs evaluated 

in this thesis had Restriction Enzymes that specifically or indirectly resolved them 

as shown in the Table 2.4 below as modified from Thomas and others method 

(Thomas, et al., 1999). Three primer pairs were retained from the methodology 

namely M2, SRY4064 and YAP. The remaining SNP primers were designed as 

described in the primer design section above (Table 2.3).   
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Specifically, two experiments were carried out namely a multiplex PCR with 

fluorescently labeled primers and secondly, both a tetraplex and a singleplex 

restriction enzyme digest. 

 The 10.0µl multiplex PCR reactions consisted of the stated concentrations of both 

forward and reverse SNP primers (New England Biolabs), in Table 2.4 in addition 

to 1.5mM Magnesium Chloride, 200µl dNTPs, 1.6µg of acetylated Bovine Serum 

Albumin (BSA), 1Unit Taq polymerase (MEDOX (PTY) Ltd) and 5ng of genomic 

DNA and finally with distilled water to make the volume. This was subjected to the 

following cyclic conditions: 1 cycle at 95⁰C for 10 minutes, followed by 33 cycles 

of 94⁰C for 1 minute, 60⁰C for 1 minute and 72⁰C for 1 minute then a third and 

final cycle at 68⁰C for 75 minutes and a hold at 15⁰C for ∞. 

 

2.9 Restriction Enzyme Digest of PCR products 

Digestions were performed in a 10.0µl PCR tube in a final volume of 8 µl. Each 

reaction contained 2 µl of PCR product, NEB buffer 4 (New England Biolabs) to 

1x concentration, 0.16 mg/ml acetylated BSA, 0.3 U BsrBI, 0.5 U Bsm I, 0.3 U 

NlaIII and 0.5 U Mbo I. This was incubated at 37°C for 10 hours and later re-

incubated at 65⁰C for another 10 hours as Bsm I is activated at the higher 

temperature which also inactivated the other Restriction Enzymes (RE) in the tube. 

The digestion was however terminated by incubating again at 85⁰C for 20 minutes 
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to inactivate the Bsm I.  Predicted sizes and associated polymorphic status for each 

dye-labeled PCR product was as given in Table 2.4. The samples that were 

‘derived’ for SNP M9, were subjected to a single RE digest with 0.3 U Dra I to 

determine if they belong to Haplogroup R in a reaction only differing in the 

number of RE included 

 

2.10 SNP resolution by High Resolution Melting  

 In principle (Liew, et al., 2004; Zuccarelli, et al., 2011), the same thermodynamic 

properties that allowed for the ingeniously crafted gel techniques to work apply 

here, and in real-time. A fluorimeter monitors the post-PCR denaturation of the 

entire double stranded DNA amplicon.  Primers were designed around the specific 

site of the SNP of interest to produce amplicon of not more than 150 base pairs. 

The amplicon integrates with a double-strand specific dye, included in the PCR 

mix, in the process making the entire amplicon a probe. The melting temperature 

(Tm) of the entire amplicon was determined and the SNPs had sufficiently 

different melting temperature (Tm) to genotype.   

Specifically, Type-it ®HRM® kit was purchased from QIAGEN and utilized as 

recommended by the manufacturer. The HRM cyclic conditions were implemented 

on the Rotor Gene Q Real Time PCR machine with in-built HRM capabilities. In 

order to obtain broader divergence between melting profiles and increase peak 
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resolution, Amplicon’s length was less than 125 base pairs in all cases. The HRM 

primers are listed in Table 2.5. All the three SNPs evaluated are Class 1 SNP, that 

is, Guanine/Adenine base change, guaranteeing sufficiently different Tm 

http://www.appliedbiosystems.com/etc/medialib/appliedbio-media-

library/documents/application-and-technology/real-timepcr/hrm.par.73223.file.pdf. 

While E1b1a7 and E1b1a8 were optimized for a duplex, E1b1b was done as a 

single PCR. 

Samples used as controls for Y-SNPs were confirmed by sequencing analysis of Y-

chromosome loci rs169808588 (U175), rs16980370 (U186) and rs2032654 

(M215). Sequences were manually aligned and edited using BioEdit vs. 7.0.5.2. 

Three hundred and ninety-six (396) samples earlier determined to be positive for 

SNP M2 mutation by RFLP were further resolved with HRM. 
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Table 2.4: Restriction Fragment Length Polymorphism (RFLP) primers 

 SNP Hg F or R Primer sequence 5'-3' µM DRE NDRE PDT Ancestral Derived 

 M2 E1b1a F-VIC ATG GGA GAA GAA CGG AAG GA 0.05 Nla III 

 

142 105 142 

 

  

R TGG AAA ATA CAG CTC CCC CTT 0.05 

      SRY4064 E F CCA CGC CCA GCT AAT TTT TTG T 0.15 

      

  

R-PET CAT TTC AGT AAA TGC CAC ACA AG 0.15 Bsr BI MboI 180 90 104 

 M9 KR F-PET GTG CGG CGT CTT TGA TCT C 0.05 Bsm I Nla III 324 241 268 

 

  

R GAA GTA AGC GCT ACC TTA CTT AC 0.05 

      YAP DE F-FAM CAG GGC CAA CTC CAA CCA AG 0.05 

      

  

R GGA CTA GCA ATA GCA GGG GAA G 0.05 

  

88/413 88 413 

 M60 B F CCA ACA CTG AGC CCT GAT G 0.05 

      

  

R-FAM GAG AAG GTG GGT GGT CAA GA 0.05 Mbo I Nla III 216 100 108 

 M207 R F-NED CAC ATC TCT ATT TAG TCT AAA TTC 0.3 Dra I 

 

233 141 233 

     R GAA GGA AAA GTG GAG TCT GAC 0.3           

 F or R is Forward or Reverse primer 

       M.wt is Molecular weight       

        DRE is Discriminating Restriction enzyme 

       NDRE is Non-Discriminating restriction Enzyme 

       (A), (G), (C ) and (-) are nucleotides at the site cut by Restriction Enzyme. The dash "-" indicates an indel. 

  VIC, PET, FAM and NED are fluorescent dyes attached at the 5' ends of primers. 
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Table 2.5: Primers for the High Resolution Melting (HRM) Experiments 

 Primers for HRM analysis of Y SNPs 

       

SNP UEP Forward Primer 5'-3' Reverse Primers 5'-3'     

PCR 

Product Mutation 

E1b1b M215 

AAA GAA ATA TTC 

TCA AAC TGT TGG 

TCC AGC ACA GAA 

GCA TCA G 108 A>G 

E1b1a8 U175 

GCT TAT ACT GGT 

CAC ACT AAG GC 

TCT AAT GAC CAG 

GAG AAG TCA AG 106 G>A 

E1b1a7 U186 

CCT TCT CGT AAG 

GGG CTG 

CTG GAT AAG AGT 

CCT TGG AG 73 A>G 

                              

          Primers for Sequencing of Y SNPs     

     

SNP UEP Forward Primer 5'-3' Reverse Primer 5'-3'     

PCR 

Product Mutation 

E1b1b M215 TCC CAT GAA ATA 

TAC ACA GAA AC 

CGT TCA TTA GGA ATC 

ACT GTC T 401 A>G 

E1b1a7 U186 ACA GAT GTT GCT 

GGA TGA AAA GTG 

ATC CCT GGG CTT GTG 

GTT ATA TC 430 G>A 

E1b1ba8 U175 CAC ATT CCA TAA 

CCT TTA ACA CAC 

AGG AAT CAG TGG TTT 

GTT TGA G 411 A>G 
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(a) 

 

(b) 

 

(c) 

 

Figure 2.3: Derivative HRM plots of (a) E1b1a7, (b) E1b1a8 and (c) E1b1b YSNP 

haplogroups. “A” and “D” represented the Ancestral and Derived versions of the 

haplogroups 

 

 

 

 



33 
 

2.11 Statistical analysis 

Allelic frequencies (AF), Gene Diversity (GD), Haplotype frequencies (including both 

Unique and shared haplotypes), Genetic diversity measures (i) number of haplotypes and 

haplogroups with (ii) haplotypes and haplogroup diversity and (iii) Mean Pairwise 

Differences were calculated using the software package Arlequin 3.11 (Excoffier, et al.,  

2005).  Apart from the frequencies and relative frequencies which were calculated by 

mere counting and dividing individual count against overall in populations, the diversity 

parameters were calculated using the equation D= (n/n-1)(1-Pi
2) where Diversity is D, n 

is sample size and Pi is the relative frequency of the ith allele of the haplotype or 

haplogroup respectively. Mann-Whitney U test was used to compare the differences in 

the mean values of the three major ethnic populations (Hausa, Igbo and Yoruba) to 

ascertain their closeness or distinctions.  

Inter population distances and their associated P values were calculated by generating (a) 

Rst (Slatkin, 1995) distance matrices for STR haplotypes, and (b) Fst distance matrices for 

SNP haplogroups calculated in Arlequin v3.11 (Excoffier, et al., 2005). Rst was based on 

allele sizes and compared to the corresponding F-statistics estimated following Weir and 

Cockerham (1984), (Michalakis and Excoffier, 1996). Bonferroni correction was given as 

P=α/n where α is 0.05 and n is the number of non-independent tests.  
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At the level of the 51 Africa populations, phylogenetic tree was constructed using genetic 

distance matrices based on Goldstein and others (Goldstein, et al., 1995a) δμ2 pairwise 

distance measure and 1,000 bootstrap datasets were created for internal node confidence 

value using the Neighbor-Joining (NJ) algorithm. This clustering approach was used 

because it does not assume an evolutionary clock and produces more accurate results 

when closely related populations, such as human groups, are analyzed (Saitou and Nei 

1987). The basic principle of the NJ method was to minimize the total evolutionary 

distance in the tree (Hartl and Clark 1997).  The NJ phylogeny was constructed using 

PAST v.1.54 (Hammer et al., 2001b). 

The Multidimensional scaling (MDS) distance coordinates were plotted using PAST 

v.1.54 (Hammer et al., 2001b) based on (a) the microsatellite pairwise Rst and (b) 

pairwise Fst of SNP haplogroups to access the spatial differentiation of the populations. 

These two plots were reported for (i) the different Nigerian populations across the 22 

geographical locations, (ii) five ethnic pooled populations and finally (iii) with some 

comparative data from the literature for some representative African Countries based 

comparison. This multivariate method defines for each population coordinates so that the 

distances among them are as close as possible to the original genetic distances. The stress 

was a measure of “goodness of fit” that indicates how similar was the distance matrix 

based on the new coordinates to the original genetic distance matrix and it was actually 

smaller for better fits. 
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A correspondence analysis was performed with the frequencies of the Y-SNP 

haplogroups by means of the PAST software. This multivariate method plots in the same 

graphical representation both columns and rows of a contingence table (in this case, 

populations and haplogroups based on Y-SNPs). By plotting both populations and 

haplogroups in the same graphical representation opens the possibility to assess, which 

haplogroups are contributing to the distribution and differentiation of the populations in 

the plot.  

Population genetic structure was estimated using hierarchical Analysis of Molecular 

Variance (AMOVA) (Excoffier, et. al., 1992) based on a particular mutation model to 

generate a single Fixation Index statistic, Fst, when a simple structure of populations 

within a single group was defined. Also, three other Fixation Indices, Fst (the within-

population Fixation Index), Fsc (the among-populations within-group Fixation Index) and 

Fct (the among-group Fixation Index), could be defined for a more complex structure of 

populations within multiple groups. Significances of Fixation Indices are assessed by 

randomly permuting individuals (given that only haploid systems are considered) among 

populations or groups of populations, depending on the Fixation Index being tested and 

after every round of permutations, of which 10,000 were performed, Fixation Indices are 

recalculated to create a null distribution. Population pairwise genetic distances were 

estimated from Analysis of Molecular Variance. Hierarchical analysis was assessed based 
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on the (a) five ethnic, (b) four geographical regions and (c) 2 linguistic classifications 

shown in Table 2.1, to determine the major driving force of the population structure. 

The degree of genetic differentiation between populations was quantified by means of the 

analysis of molecular variance (AMOVA) using the Arlequin 3.11 package (Excoffier, et 

al. 2005). This method allows us to define the percentage of the genetic variation that is 

explained by (1) among groups of population defined a priori, (2) between the 

populations of the same group, and (3) within the populations. Making Bonferroni 

correction, significant p was < 0.005, <0.0083 and 0.05 for 5, 4 and 2 groupings 

respectively. 

The geographical location of putative genetic barriers was analysed by means of the 

barrier version 2.2 program (Manni, et al., 2004). This program computes Monmonier’s 

algorithm to detect a spatial abrupt rate of change in terms of the genetic differentiation 

between geographically neighbouring populations. This was evaluated separately for both 

haplotypes and haplogroups data of the sampled Nigerian populations. 

Mantel test were performed between Rst or Fst genetic distances and geographic distances 

matrices using the software SPAGeDi v. 1.3 (Hardy and Vekemans, 2002). Significance 

was assessed by permuting the rows and columns of the matrices 1,000 times and 

determined to be <0.0002. Geographic distances were Great Circle distances estimated 

from latitude and longitude data. The Mantel test was a method for testing the 
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significance of the correlation between two or more matrices, and was used in this study 

to investigate the relationship between genetic and geographic distances of the Nigerian 

populations Y-STR haplotype and Y-SNP haplogroup data sets. 

A general limitation of all relevant analyses dealing with patterns of genetic marker 

frequencies should be noted here: frequencies of different genetic markers are not 

independent from each other in the way that a high frequency of one marker in a 

population consequently leads to a lower frequency of one (or more) different marker(s) 

in that same population.  

Genetic relationships between haplotypes inside of specific haplogroups were analyzed 

using Network 4.5.0.0 software. Networks of STR haplotypes on the background of Y 

SNP haplogroup lineages B, E(xE1b1a), E1b1a(xE1b1a7, xE1b1a8), E1b1a7, E1b1a8 

and R with the respective mutations M60, SRY4064, M2, U186, U175 and M207 with the 

Y STR loci DYS19, DYS389I, DYS389c, DYS390, DYS391, DYS392, DYS393, 

DYS385, DYS438 and DYS439 were constructed using the Median Joining (MJ) 

algorithm (Bandelt, et al., 1999) of Network v4.5.0.0 (Fluxus-engineering, 2008). 

DYS389c was obtained by subtracting the value of DYS389I from DYS389II. DYS385ab 

were added together to obtain a new DYS385. The advantage of this type of cluster 

analysis was it allows for cycles or reticulations within evolutionary pathways in order to 

accommodate the elevated mutation rates and corresponding homoplasy of particular 

genetic systems such as Y-STR loci (Kayser, et al., 2000). The MJ networks presented in 
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this study were subjected to maximum parsimony post-analysis using the Steiner 

maximum parsimony (MP) algorithm (Polzin and Daneshmand, 2003) within Network 

4.5.0.0. All the STRs used were weighted equally. 

The spatial distribution of Y-SNP haplogroups were analyzed by means of spatial 

autocorrelation analysis (Sokal and Oden 1978) using the PAST program. The spatial 

autocorrelation analysis computes the level of autocorrelation between pairs of points that 

are within a certain geographic distance. The plot of the level of autocorrelation in 

relation to increasing geographic distance classes gives information about the spatial 

pattern of the data. In the case of a clinal pattern of the data, it is expected that the shape 

of the autocorrelogram will decrease from positive autocorrelation values for the closest 

geographical distances to negative values for the longest geographic distance classes 

(Barbujani, 2000). This was constructed for the three most common haplogroups among 

the Nigeria populations namely Haplogroup B, Haplogroup E1b1a7 and Haplogroup 

E1b1a8, to assess the presence of any serial founder effect.  

The Nƿ parameter (denoting effective migrants per population) incorporates effective 

population size, migration rate and mutation rate and was calculated by application of the 

formula Nƿ= (1/Fst)-1, according to the island model of migration for haploid systems 

(Cavalli-Sforza and Bodmer, 1971; Destro-Bisol, et al., 2004; Hassan, et al., 2008). 

Where N is the effective population size and ƿ is the sum of migration (m) and mutation 

rate (µ); more precisely ƿ=m+µ-mµ (Cavalli-Sforza and Bodmer, 1971). The contribution 
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of mutation rate to the Nƿ parameter in the genetic systems used in this thesis (the 

SWGDAM Y-STR loci) may be considered constant (Destro-Bisol, et al., 2004) and that 

the fluctuations of Nƿ values can be effectively assumed to be the results of differences in 

migration rate and effective population size among populations (Wjisman, 1984; 

Seielstad, Minch and Cavalli-Sforza, 1998).  

Average Squared Distance (ASD) (Goldstein, et al., 1995b; Goldstein and Pollock, 1997), 

as employed in Populations v.1.2.30 (Langella, 2002), were determined among specific 

lineages for the estimation of time to the most recent common ancestors (TMRCA). This 

was estimated as T =ASD/2µ (Batini, et al., 2011) for inter-haplogroup and T=ASD/µ for 

intra-haplogroups (Batini, et al., 2011; de Filippo, et al., 2011). Where µ is the STR 

mutation rates averaged among the 11 STRs and T is “Generations ago” since the 

common ancestor. It was converted to “years ago”, by multiplying by the generation 

time. For all inter-haplogroup estimates, a generation time of 31 years was used 

(Helgason, et al., 2003; Batini, et al., 2011). The mutation rate used for the dating 

estimates was calculated to be 0.0024 (0.0016-0.0031) mutations per locus per generation 

based on the 11 set of STR markers used from the mutation rates reported in the Y-

chromosome Haplotype Reference Database (http://www.yhrd.org). This value was not 

substantially different from other estimates based on pedigree data, and was 

approximately 3 times faster than the more general and non-locus specific ‘evolutionary’ 

rate (0.00069 ± 0.00057) mutations per locus per generation (Ravid-Amir and Rosset, 
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2010; Zhivotovsky, et al., 2004). The TMRCA of a clade was estimated by calculating 

the ASD between all chromosomes in a lineage, and the founder haplotype, which was 

reconstructed by combining the modal alleles at every single STR locus in the haplotypes 

in the lineage (Thomas, et al., 1998, Batini, et al., 2011). This was computed from the Y 

TMRCA calculator using pedigree mutation rates that excluded DYS385 value from the 

website http://ehelix.pythonanywhere.com/init/default/instructions. 
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3.0   CHAPTER THREE:   RESULTS 

3.1 Summary of Y-SNP and Y-STR diversities in Nigerian Populations 

 

Table 3.1:  Y-Chromosome Y-STR and Y-SNP diversity in the Nigerian Populations studied 
Population Geographical 

location/ 

region 

# of 

subjects/ 

Haplotypes 

Haplotype 

diversity 

Mean Pairwise 

Differences 

(Haplotypes) 

#. of 

Haplogroups 

(HGP) 

HGP 

Diversities 

Hausa Niger 14(14) 1.000000 7.560440±3.734862 4 0.6709 

Hausa Jigawa 6(6) 1,000000 

 
 

7.133333±3.844590 4 0.9331 

Hausa Kano 9(9) 1.000000 6.800000±3.473038 4 0.8062 

Hausa Kaduna 10(10) 1.000000 7.194940±3.692061 5 0.8000 

Hausa Kebbi 7(7) 1.000000 7.333333±3.864546 5 0.8565 

Hausa Sokoto 32(30) 0.993952 7.935484±3.779179 5 0.8344 

Hausa 

overall 

North 78(75) 0.998009 7.680986±3.615490 7 0.8298 

Igbo Abia 19(19) 0.999999 5.526316±2.768115 5 0.4442 

Igbo Anambra 23(22) 0.996048 4.636363±2.351883 5 0.3864 

Igbo Delta 8(8) 1.000000 5.500000±2.929858 4 1.0000 

Igbo Ebonyi 5(5) 1.000000 4.300000±2.619363 3 0.7000 

Igbo Enugu 12(12) 1.000000 5.609642±2.875806 4 0.4393 

Igbo Imo 52(48) 0.996983 5.291101±2.593475 6 0.3382 

Igbo 

overall 

South East 119(103) 0.998150 5.208375±2.536377 6 0.3598 

Yoruba Ekiti 24(24) 1.000000 6.190476±3.311041 3 0.8088 

Yoruba Kogi 7(7) 0.999999 6.056277±2.987899 6 0.5021 

Yoruba Kwara 22(22) 0.999999 5.028986±2.523037 7 0.4347 

Yoruba Lagos 48(43) 0.996299 5.370028±2.632036 3 0.4663 

Yoruba Ogun 38(37) 0.998577 5.914651±2.880960 3 0.5905 

Yoruba Ondo 24(24) 1.000000 5.797721±2.853696 3 0.4716 

Yoruba Osun 35(34) 0.998320 5.492437±2.700743 5 0.5896 

Yoruba Oyo 40(40) 1.000000 5.719231±2.792509 6 0.4713 

Yoruba 

overall 

South West 238(214) 0.99883 5.622490±2.706762 8 0.5209 

Bini Edo 13(13) 0.999999 5.692308±2.842048 4 0.5256 

Ijaw Bayelsa 15(14) 0.99048 5.619048±2.842048 3 0.3620 
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The three major populations (Hausa, Yoruba and Igbo) spread across 20 geographical 

origins were contrasted to observe the most diverse. The Mann-Whitney U test did not 

reveal any significant difference when the six Hausa populations’ haplotype diversities 

were compared with those of the six Igbo or the eight Yoruba populations i.e. z= -0.6368, 

p= 0.5243 and z= -0.8187, p= 0.413 respectively. The six Igbo and eight Yoruba 

populations haplotype diversities were also not significantly different, z= -0.06542, p= 

0.9478. However, at the level of comparison of the Mean STR Pairwise Differences 

(MPD) within each population, there were significant differences among the populations 

with the Hausa most diverse, followed by the Yoruba. For comparison between Hausa 

(range 6.800000- 7.935484, pooled 7.680986) and Igbo (range 4.300000-5.609642, 

pooled 5.208375) was z= -3.067, p= 0.002165. The Hausa with the Yoruba (range 

5.028968- 6.190476, pooled 5.622490) was the same as for the Igbo. However, the 

Mann-Whitney U test between the Igbo and Yoruba MPD was z= -2.044 and p= 0.04091. 

The Bini and Ijaw were represented by single population each unlike the Hausa, Igbo and 

Yoruba, hence were not contrasted. 

On the background of Haplogroup diversities also, the Mann-Whitney U comparison of 

the three major populations of Hausa, Yoruba and Igbo showed that while the six Hausa 

populations (HGD range 0.6709- 0.9331, pooled 0.8298) could be distinguished from the 

six Igbo populations (HGD range 0.3382-1.000, pooled 0.3598) z = -2.044 and p = 

0.04091, and the eight Yoruba populations (HGD range 0.4347- 0.8088, pooled 0.5209) z 
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=-2.683and p =0.00729 both the six Igbo and eight Yoruba populations are not 

distinguishable (z = -1.15, p = 0.2502). This result seems to suggest that the distinction 

among the major populations was language dependent on the basis that the Hausa 

populations being Afro-Asiatic language speakers while both Igbo and Yoruba are both 

non-Bantu Niger-Congo language speakers. The inference from both STR and SNP data 

set was that there were some distinctions between recent events and pre-historic events 

affecting the genetic diversities in the Nigerian populations especially among the Niger 

Congo language speakers. This inference was undetectable with haplotype diversities but 

fairly discernable with both MPD and haplogroup diversities among the populations.
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Table 3.2: The Nigeria ethnic populations’ relative haplogroup frequencies across their 

geographical origins. The * is not a geographical location. The Hausa populations are  

represented with Red, The Igbo with blue, The Yoruba with yellow, The Bini with Cyan and 

the Ijaw with Purple colour. The Haplogroup “Others” were not resolved. 

           

Geographical 

Location 

B E 

(xE1b1a 

xE1b1b) 

E1b1a 

(xE1b1a7, 

xE1b1a8) 

E1b1a7 E1b1a8 E1b1b R Others 

Niger 0.071 0.143 0.000 0.571 0.071 0.000 0.143 0.000 

Jigawa 0.000 0.167 0.167 0.333 0.000 0.167 0.167 0.000 

Kaduna 0.222 0.333 0.111 0.000 0.000 0.000 0.333 0.000 

Kano 0.000 0.000 0.000 0.200 0.200 0.200 0.400 0.000 

Kebbi 0.143 0.143 0.143 0.143 0.429 0.000 0.000 0.000 

Sokoto 0.094 0.281 0.063 0.219 0.188 0.031 0.125 0.000 

All Hausa* 0.090 0.210 0.060 0.260 0.150 0.050 0.180 0.000 

Abia 0.053 0.000 0.000 0.737 0.158 0.000 0.000 0.053 

Anambra 0.000 0.045 0.000 0.772 0.182 0.000 0.000 0.000 

Delta 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

Ebonyi 0.000 0.000 0.200 0.600 0.200 0.000 0.000 0.000 

Enugu 0.000 0.083 0.000 0.750 0.167 0.000 0.000 0.000 

Imo 0.038 0.019 0.019 0.808 0.115 0.000 0.000 0.000 

All Igbo* 0.030 0.030 0.020 0.790 0.130 0.000 0.000 0.008 

Kogi 0.000 0.143 0.143 0.429 0.286 0.000 0.000 0.000 

Kwara 0.045 0.000 0.045 0.682 0.227 0.000 0.000 0.000 

Ekiti 0.042 0.000 0.000 0.750 0.125 0.042 0.042 0.000 

Lagos 0.021 0.042 0.042 0.710 0.188 0.000 0.000 0.000 

Ogun 0.105 0.026 0.026 0.605 0.211 0.000 0.000 0.026 

Ondo 0.042 0.042 0.000 0.708 0.208 0.000 0.000 0.000 

Osun 0.086 0.000 0.086 0.600 0.229 0.000 0.000 0.028 

Oyo 0.050 0.050 0.025 0.650 0.200 0.000 0.000 0.025 

All Yoruba* 0.050 0.004 0.004 0.660 0.200 0.000 0.000 0.013 

Edo 0.000 0.077 0.000 0.692 0.154 0.077 0.000 0.000 

Bayelsa 0.000 0.000 0.133 0.800 0.067 0.000 0.000 0.000 

All Nigeria* 0.050  0.060 0.040  0.630 0.190  0.010 0.030 0.009  
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The five ethnic populations were resolved into eight haplogroups (Table 3.2) based on 

Karafet and others nomenclature (Karafet, et al., 2008). The Hausa populations had the 

highest pooled diversity (0.8298) and the greatest number of haplogroups (7). Among the 

six Hausa populations, Jigawa Hausa (JG) was the most diverse while Niger Hausa was 

the least. While Haplogroup E1b1a7 and E1b1a8 were prevalent in the entire Country, 

they were not noticed in the Kaduna Hausa (KD) populations. Even though Haplogroup 

E1b1b has been suggested as the signature Afro-Asiatic language haplogroup in the 

broader African context (De Filippo, et al., 2011), it was only found in 5% of the entire 

Afro-Asiatic speaking Hausa of Nigeria. There was however a significant proportion of 

haplogroup R (18% found among these Hausa populations) suggested to be mainly found 

in Central Africa (Hassan, et al., 2008). This was the third most abundant haplogroup 

among the entire Hausa Populations and its preponderance was between 12.5% in Sokoto 

Hausa (SO) to 40% in Kano Hausa (KN) but was not observed in the Westernmost Kebbi 

Hausa (KB). Haplogroup R was almost exclusively found among the Hausas where it 

represented more than 90% of the entire Haplogroup in the Country (i.e. 15 in 16 

subjects). On the background of the M2 mutation (i.e. pooling E1b1a with all E1b1a7 and 

E1b1a8), this was found in less than 50% of the Hausa populations of Nigeria despite its 

been represented not less than 90% in the four different Southern Nigeria populations 

(Igbo – 94%, Yoruba –90%, Bini -92% and Ijaw 100%). These were not substantially 

different from the reported observations in some recent publications (Montano, et al., 

 

 

 

 



46 
 

2011; Barbieri, et al., 2012). However when those not found to be E1b1a7 and E1b1a8 

were excluded, as new haplogroups, E1b1a (xE1b1a7, xE1b1a8) was generally low 

among all the Nigerian populations. Another significant observation was the 

preponderance of Haplogroup E, not including Haplogroups E1b1a and E1b1b. This very 

broad Haplogroup was observed in more than 20% of the Hausa population and ranged 

from 14% to 33% except in Kano Hausa were it was not observed at all. These two 

haplogroups (E and R) could easily , with their unresolved sub-clades, have contributed 

to the high Haplogroup Diversities  of the Hausa populations as they were both found in 

less than 10% of each of the four different Southern Nigerian populations ( Igbo – 3% 

and 0%, Yoruba -4% and 0.4%, Bini -  8% and 0% and Ijaw – 0% and 0% respectively). 

Haplogroup B had its highest frequency among the Hausa in contrast with the four 

Southern Nigerian populations.  

In the overall Nigerian pooled population, on the background of M2 mutation, Nigeria 

had 84% (E1b1a (xE1b1a7, E1b1a8) =4%, E1b1a7 =63% and E1b1a8 =19%) of this 

mutation which was comparable to earlier report of Veeramah et al. (Veeramah, et al., 

2010) which reported more than 90% for Cross Rivers Nigerian populations. 

Haplogroups E1b1b and R were found in about 1% and 3% respectively while both 

haplogroup B and E (xE1b1a, E1b1b) were found in about 5% and 6% respectively. Only 

four individuals (<1%) could not be resolved and are grouped as others. 

 

 

 

 



47 
 

Table 3.3a: Matrix of Rst distances based on Y-STR data among the Five Nigerian ethnic 

populations. Rst values are below diagonal while P values are above diagonal. Significant 

P<0.005 are represented in blue coloured print.  

 

Hausa Igbo Yoruba Bini Ijaw 

Hausa 

 

0.000 0.000 0.000 0.000 

Igbo 0.076 

 

0.009 0.054 0.162 

Yoruba 0.060 0.006 

 

0.018 0.459 

Bini 0.053 0.021 0.026 

 

0.261 

Ijaw 0.053 0.011 0.000 0.007 

  

 

 

 

Table 3.3b: Matrix of Fst distances based on Y-SNP data among the Five Nigerian ethnic 

populations. Fst values are below diagonal while P values are above diagonal. Significant 

P<0.005 are represented in blue coloured print.  

 

 

 

 

 

 

Hausa Igbo Yoruba Bini Ijaw 

Hausa 

 

0.000 0.000 0.000 0.000 

Igbo 0.241 

 

0.036 0.793 0.405 

Yoruba 0.154 0.018 

 

0.405 0.279 

Bini 0.153 -0.032 -0.016 

 

0.676 

Ijaw 0.180 -0.010 0.015 -0.031 
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Tables 3.3a and 3.3b above, revealed the distinctions of the Northern Nigeria Afro-

Asiatic Hausa populations from the four Niger Congo language speaking populations of 

Igbo, Yoruba, Bini and Ijaw in Southern Nigeria. Both the Rst and Fst distances showed 

similar pattern. The farthest population from the Hausa population was the Igbo 

population in both cases. There were no statistically significant differences among all the 

southern Nigeria populations.  

This pattern was found to be consistent even when the Nigerian populations were 

resolved along the 22 different geographical origins (Supplementary Tables 1 and 2 

which represented Rst and Fst distances of STR and SNP variations respectively). Most 

STR haplotypes manifest Continental and sometimes Country based sub-structure but not 

sub-structuring within populations. 

All the major populations (Hausa, Yoruba and Igbo) were homogenous based on Rst 

distances but Fst distances showed that the Hausa populations were not homogenous 

(supplementary Table 2). 
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Table 3.4a: Matrix of Pairwise Rst distances of Y-STR data and P values of Nigerian 

pooled population and regionally representative African Countries. Significant P<0.003 is 

presented in blue colour print. Rst values are below diagonal while P values are above 

diagonal. The regions represented are North Africa (Tunisia), Southern Africa (Angola), 

West Africa (Burkina Faso), East Africa (Uganda) and Central Africa (Cameroon). 

Nigeria is also from West Africa  

 

Tunisia Angola  Burkina Faso  Uganda  Cameroon  Nigeria  

Tunisia    0.000 0.000 0.000 0.000 0.000 

Angola  0.338    0.000 0.000 0.000 0.000 

Burkina Faso  0.283 0.043    0.000 0.000 0.000 

Uganda  0.174 0.145 0.123    0.000 0.000 

Cameroon  0.265 0.089 0.057 0.099    0.000 

Nigeria  0.286 0.046 0.019 0.139 0.031    

 

Table 3.4b: Matrix of Pairwise Fst distances of Y-SNP data and P values of Nigerian 

pooled population and regionally representative African Countries. Significant P<0.003 is 

presented in blue colour print. Fst values are below diagonal while P values are above 

diagonal. The regions represented are North Africa (Algeria), Southern Africa (Zambia), 

West Africa (Burkina Faso), East Africa (Uganda) and Central Africa (Democratic 

Republic of Congo). Nigeria is also from West Africa  

 

 

 
Nigeria Algeria 

Burkina 

Faso 

Democratic 

Republic of 

Congo Ethiopia Zambia 

Nigeria 

 

0.000 0.000 0.009 0.000 0.000 

Algeria 0.4763 

 

0.000 0.000 0.000 0.000 

Burkina Faso 0.1888 0.346 

 

0.000 0.000 0.000 

Democratic 

Republic of 

Congo 0.109 0.410 0.094 

 

0.000 0.000 

Ethiopia 0.361 0.186 0.228 0.267 

 

0.000 

Zambia 0.211 0.420 0.109 0.028 0.324 
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Tables 3.4a and 3.4b revealed the genetic distinction of Nigeria in West Africa with other 

populations in West Africa (Burkina Faso) and Central Africa (Cameroon and 

Democratic Republic of Congo) followed by Southern Africa (Angola and Zambia). The 

farthest distinctions are those of North Africa (Tunisia and Algeria) and East Africa 

(Uganda and Ethiopia). Considering the time depth measured by two genetic markers 

(recent and pre-historic events by STR and SNP respectively) the inference seemed to 

suggest that structure since pre-historical times have persisted till present or that recent 

events has obliterated pre-historical structure. 

While all the pooled populations are significantly distinct (P<0.003), however, some 

Nigerian populations seem not to be distinguishable from some from the Democratic 

Republic of Congo (Table 3.4b and Supplementary Table 3). The influence of the historic 

Bantu expansion can be detected from some of the relatively shorter Rst and Fst distances 

in the regional representative population from West Africa through Central Africa to 

Southern Africa especially, which was more geographically distant than both East Africa 

and North Africa from West Africa. However, the Fst distances showed more 

distinctiveness than Rst distances apparently because of their different mutation rates with 

the SNP rates slower than STR rates. 

Supplementary Table 3 showed the comprehensive pairwise Rst distances (p<0.000043) 

among the comparative data of African and Middle Eastern populations from published 

literature.  A break down showed that 12 West African populations from Guinea Bissau 
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(1), Senegal (1), and Burkina Faso (10) were included. 13 Central African populations 

from Equatorial Guinea (1), Cameroon (2), Central African Republic CAR (1), 

Democratic Republic of Congo DRC (5) and Gabon (4) were included. Five North Africa 

/ Middle East populations include Algeria (2), Tunisia (1), Morocco (1) and Saudi Arabia 

(1) which were all Afro-asiatic language speakers. Four East African populations 

including Ethiopia (1), Uganda (1) and Kenya (2) were all Nilo-Saharan language 

speakers except a Kenyan Bantu population. Finally the 12 Southern African populations 

included Angola (4), South Africa (1), Namibia (1), Botswana (2) and Zambia (4). 

Of these, the Ijaw population of Nigeria was not distinguishable from 9 West African, 12 

Central African, 1 East African and 6 Southern African populations (Supplementary 

Table 3). The Bini population was not distinguishable from 3 West African, 9 central 

African, one east African and 4 southern African populations. The Hausas are not 

distinguishable   from 2 West African, 5 Central African, one east African and 3 southern 

African populations. The Igbo population was not distinguishable from 4 Central African, 

one east African and four southern African populations. The Yoruba population was not 

distinguishable from 1 West African, 4 central African, one east African and four 

southern African populations. 

It is noteworthy that based on this experiment; there was not one Nigerian population that 

was NOT distinguishable from the five North African / Middle Eastern populations 

(Supplementary Table 3). 
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3.2 Significant Forensic Parameters 

Tables 3.5a, 3.5b and 3.5c summarized the allelic frequencies and genetic diversities of 

the 11-loci SWGDAM recommended Y-STRs in the major Nigerian populations of 

Hausa, Igbo and Yoruba respectively. The results for both the Bini (Table 3.5d) and the 

Ijaw (Table 3.5e) where included even though their sample sizes were much smaller than 

the other three which were in a ratio of 1:1.5:3. This was to have a rough idea of the 

heterogeneity of the overall Nigerian population and most importantly, to enrich the 

Nigerian dataset. This is very useful when considering that these Bini and Ijaw 

populations could be useful in explaining the sub-structuring along geographical 

locations and linguistics and might be useful in assessing the impact of population 

admixture in the two large southern Nigerian populations of Igbo and Yoruba 

respectively. Taking all these five tables together, it was observed that DYS19 revealed 

three patterns. The Yoruba and Igbo populations had Alleles 15 and 17 as the two most 

common in that order. The Bini and Ijaw had the reverse that is, 17 and 15, to that of the 

Yoruba and Igbo. The Hausa had the third pattern which showed a descent from 15 

through 16 to 17. On the DYS389I and DYS389II loci, the most common in all the five 

populations are alleles 13 and 30 respectively. Considering that the DYS389II already 

incorporated DYS389I values, subtracting DYS389I values from those of DYS389II, the 

most common allele difference was Allele 17. The most common alleles among DYS390, 

DYS391 and DYS392 were alleles 21, 10 and 11 respectively, among all the five 
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populations. Different patterns were noticed with respect to locus DYS393 also among 

the five populations. The Hausa, Igbo and Yoruba had predominantly allele 13 (54%, 

39% and 48% respectively) while the Bini and Ijaw had allele 15 at a prevalence of 47% 

and 54% respectively. All the five populations had allele 11 as the most common for 

locus DYS438 and 12 for locus DYS439. The Yoruba population showed an intermediate 

level of gene diversities across most of the 11 loci STRs except DYS19 and DYS439 

where it was the least with values of 68% and 58% respectively. On the other hand, the 

Hausa generally showed the most diversities at most loci ranging 44% (DYS391) to 94% 

(DYS385ab) suggesting their very high heterogeneity among their population. This 

observation about the Hausa populations were confirmed by the Mann-Whitney U test 

which revealed a significant difference between the gene diversities of the Hausa and 

Igbo populations with a z and p values of -2.23 and 0.02575 respectively. However in 

contrast with other southern populations of Yoruba, Bini or Ijaw, these were not 

significant as the z and p values showed -1.701, 0.08897; -1.399, 0.1618 and -0.8696, 

0.3845 for the Yoruba, Bini and Ijaw populations respectively. All the comparisons of 

individual southern Nigerian populations with each other were not significantly different.  
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Table 3.5a: Nigerian Hausa Population Allelic Frequencies And Gene Diversities (N=78)   

Alleles DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS438 DYS439 

DYS385ab 

Haplotypes 

DYS385ab 

freqs 

6 

         

11,12 0.02564 

7 

         

12,12 0.01282 

8 

    

0.01282 0.01282 

 

0.03846 

 

11,13 0.02564 

9 

    

0.03846 

  

0.01282 

 

12,13 0.02564 

10 

    

0.74359 0.08974 

 

0.15385 0.02564 13,13 0.07692 

11 

 

0.02564 

  

0.08974 0.53846 0.01282 0.57692 0.32051 12,14 0.01282 

12 0.01282 0.16667 

  

0.0641 0.10256 0.0641 0.14103 0.39744 13,14 0.02564 

13 0.07692 0.44872 

  

0.05128 0.11538 0.53846 0.07692 0.16667 14,14 0.02564 

14 0.0641 0.30769 

   

0.12821 0.23077 

 

0.08974 13,15 0.0641 

15 0.42308 0.01282 

   

0.01282 0.10256 

  

14,15 0.01282 

16 0.21795 0.02564 

    

0.05128 

  

12,16 0.01282 

17 0.20513 0.01282 

       

14,16 0.01282 

18 

   

0.02564 

     

15,16 0.03846 

19 

         

16,16 0.03846 

20 

   

0.02564 

     

15,17 0.05128 

21 

   

0.44872 

     

16,17 0.08974 

22 

   

0.12821 

     

14,18 0.01282 

23 

   

0.05128 

     

16,18 0.17949 

24 

   

0.29487 

     

17,18 0.08974 

25 

   

0.01282 

     

17,19 0.02564 

26 

   

0.01282 

     

19,19 0.01282 

27 

  

0.05128 

      

15,20 0.03846 

28 

  

0.01282 

      

18,20 0.02564 

29 

  

0.15385 

      

20,21 0.03846 

30 

  

0.38462 

      

22,22 0.01282 

31 

  

0.14103 

      

22,23 0.01282 

32 

  

0.21795 

        33 

  

0.03846 

        GD 0.7342 0.68754 0.76972 0.70598 0.44363 0.6744 0.6524 0.62903 0.71581 

 

0.94079 
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Table 3.5b: Nigerian Igbo Population Allelic Frequencies And Gene Diversities (N=119) 

ALLELES DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS438 DYS439 

DYS385ab 

Haplotypes 

DYS385ab 

Freqs 

8 

       

0.0084 

 

11,11 0.0084 

9 

    

0.03361 

  

0.01681 

 

11,12 0.01681 

10 

    

0.85714 

  

0.01681 0.0251 13,15 0.0084 

11 

 

0.0084 

  

0.10084 0.93277 0.0084 0.92437 0.30252 15,15 0.0084 

12 

 

0.11765 

  

0.0084 0.05042 0.05042 0.02521 0.5042 13,16 0.0084 

13 

 

0.7563 

   

0.0084 0.0084 0.0084 0.15966 14,16 0.0084 

14 0.05042 0.11765 

   

0.0084 0.0084 

 

0.0084 15,16 0.02521 

15 0.36134 

        

16,16 0.02521 

16 0.27731 

        

14,17 0.0084 

17 0.31092 

        

15,17 0.06722 

18 

         

16,17 0.11765 

19 

         

17,17 0.10924 

20 

   

0.01681 

     

14,18 0.0084 

21 

   

0.89076 

     

15,18 0.0084 

22 

   

0.06723 

     

16,18 0.09247 

23 

         

17,18 0.2353 

24 

   

0.01681 

     

18,18 0.07563 

25 

   

0.0084 

     

16,19 0.0084 

26 

         

17,19 0.10924 

27 

  

0.0084 

      

18,19 0.0084 

28 

  

0.01681 

      

15,20 0.0084 

29 

  

0.09244 

      

17,20 0.01681 

30 

  

0.5042 

      

15,21 0.0084 

31 

  

0.28571 

      

16,21 0.0084 

32 

  

0.08403 

        33 

  

0.0084 

        34 

           GD 0.7018 0.40873 0.6566 0.20987 0.26242 0.13573 0.5151 0.1527 0.6365 

 

0.89939 
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Table 3.5c: Nigerian Yoruba Populations Allelic Frequencies and Gene Diversities (N=238) 

   

ALLELE DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS438 DYS439 

DYS385ab 

Haplotype Freq. 

DYS385ab 

Haplotype Freq. 

8 

       

0.0126 

 

11,11 0.0084 16,20 0.0084 

9 

    

0.0462 

  

0.0252 

 

12,12 0.0126 17,20 0.0168 

10 

    

0.8487 0.0378 0.0042 0.0714 0.0126 11,13 0.0042 18,20 0.0042 

11 

 

0.0042 

  

0.0882 0.8824 

 

0.8361 0.2395 13,13 0.0042 19,20 0.0042 

12 

 

0.1387 

  

0.0126 0.0588 0.0462 0.0336 0.5966 11,14 0.0042 17,21 0.0084 

13 0.0168 0.6933 

  

0.0042 0.0168 0.3908 0.021 0.1092 13,14 0.0042 19,21 0.0042 

14 0.042 0.1513 

   

0.0042 0.3403 

 

0.042 14,14 0.0126 17,22 0.0042 

15 0.4496 0.0042 

    

0.1765 

  

13,15 0.0042 20,22 0.0084 

16 0.2101 0.0084 

    

0.042 

  

15,15 0.0084 21,22 0.0042 

17 0.2731 

        

13,16 0.0084 

  18 0.0084 

        

14,16 0.0084 

  19 

   

0.0042 

     

15,16 0.03357 

  20 

   

0.0084 

     

16,16 0.04205 

  21 

   

0.8697 

     

14,17 0.021 

  22 

   

0.0714 

     

15,17 0.0042 

  23 

         

16,17 0.18642 

  24 

   

0.0294 

     

17,17 0.10084 

  25 

   

0.0042 

     

14,18 0.0126 

  26 

   

0.0084 

     

15,18 0.0168 

  27 

  

0.0084 0.0042 

     

16,18 0.0126 

  28 

  

0.021 

      

17,18 0.15546 

  29 

  

0.0882 

      

18,18 0.05042 

  30 

  

0.4202 

      

15,19 0.0042 

  31 

  

0.2647 

      

16,19 0.0252 

  32 

  

0.1639 

      

17,19 0.02016 

  33 

  

0.021 

      

18,19 0.0084 

  34 

  

0.0126 

      

19,19 0.0042 

  GD 0.68 0.47917 0.72067 0.2384 0.271 0.2172 0.6994 0.2947 0.5752 

   

0.92653 
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Table 3.5d:  Nigerian Bini Population Relative Allelic frequencies and Gene Diversities (N=13) 

 

ALLELES DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS438 DYS439 

DYS385ab 

Haplotypes 

DYS385ab 

Freqs 

9 

    

0.07692 

    

16,17 0.15385 

10 

    

0.76923 

  

0.07692 

 

16,18 0.07692 

11 

    

0.07692 0.76923 

 

0.76923 

 

17,18 0.23077 

12 

 

0.07692 

   

0.15385 

 

0.07692 0.76923 18,18 0.07692 

13 

 

0.84615 

  

0.07692 0.07692 0.23077 0.07692 0.15385 17,19 0.07692 

14 0.0769 0.07692 

    

0.15385 

 

0.07692 18,19 0.23077 

15 0.2308 

     

0.53846 

  

19,20 0.07692 

16 0.3077 

        

17,21 0.07692 

17 0.3846 

          18 

           19 

           20 

           21 

   

0.92308 

       22 

           23 

   

0.07692 

       24 

           25 

           26 

           27 

           28 

           29 

  

0.07692 

        30 

  

0.61538 

        31 

  

0.23077 

        32 

           33 

  

0.07692 

        34 

           GD 0.782 0.35553 0.63955 0.2253 0.4739 0.462 0.7165 0.4739 0.6188 

 

0.92357 
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Table 3.5e:   Nigerian Ijaw Population Allelic Frequencies and Gene Diversities (N=15) 

 

ALLELE DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS438 DYS439 

DYS385ab 

haplotypes 

DYS385ab 

freqs. 

9 

    

  

  

0.06667 

 

14,15 0.06667 

10 

    

0.93333 

  

0.06667 

 

14,16 0.06667 

11 

    

0.06667 0.93333 

 

0.8 0.33333 15,16 0.06667 

12 

 

0.13333 

     

0.06667 0.46667 16,17 0.33333 

13 0.06667 0.73333 

   

0.06667 0.2 

 

0.2 17,17 0.13333 

14 0.06667 0.13333 

    

0.2667 

  

17,18 0.13333 

15 0.33333 

     

0.4667 

  

16,21 0.06667 

16 0.13333 

     

0.06667 

  

20,22 0.06667 

17 0.4 

        

21,22 0.06667 

18 

           19 

           20 

           21 

   

0.93333 

       22 

   

0.06667 

       23 

           24 

           25 

           26 

           27 

           28 

           29 

  

0.13333 

        30 

  

0.53333 

        31 

  

0.2 

        32 

           33 

  

0.13333 

        34 

           GD 0.77365 0.4981 0.71143 0.1959 0.1959 0.19588 0.7762 0.3714 0.6762   0.8981 
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Figure 3.1: Comparative gene diversities of the five major Nigerian populations with the 

overall Nigerian population. 

The Figure 3.1 above, showed a graphical contrast of the gene diversities of the major 

Nigerian populations both among themselves and also with the overall Nigerian pooled 

population. This plot also confirmed the outstanding heterogeneity of the Y-STRs among 
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the Hausa, even when the southern Nigerian populations showed relatively lower 

diversities for DYS 390 and DYS 392. 

 

Table 3.6a: Forensically significant data from the five Nigerian populations based on the  

11-loci SWGDAM recommended Y-STRs. N is sample size, K is the number of Haplotypes, 

HD is Haplotype diversity and RMP is the Random Match Probability and UH is Unique 

Haplotypes 

 Population N K UH DC HD RMP 

  Hausa 78 75 74 0.962 0.999167 0.000833 

  Igbo 119 108 99 0.908 0.99815 0.00185 

  Yoruba 238 214 193 0.899 0.998834 0.001166 

  Bini 13 13 13 1 1 0.000000 

  Ijaw 15 14 13 0.933 0.990471 0.009529 

             

 

Table 3.6b: Forensic parameters based on SWGDAM recommended Y STRs of representative African 

Countries. N is sample size, K is the number of Haplotypes, HD is Haplotype diversity and RMP is the 

Random Match Probability and UH is Unique Haplotypes  

 

 

 

 

 

 

 

 

Country  N K DC HD RMP 

Tunisia  100 71 0.71 0.9764 0.0236 

Angola  230 165 0.7174 0.9929 0.0071 

Burkina Faso  322 242 0.7516 0.9957 0.0043 

Uganda  118 73 0.6186 0.9929 0.0071 

Cameroon  53 44 0.8302 0.992 0.008 

Nigeria  463 394 0.851 0.999 0.001 
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Table 3.7: Discrimination Capacity (DC) of the 11 loci Y-STR extended haplotype 

compared with more African countries. The table compares several African countries Y-

STRs. Most were modified to represent 10 STRs or 11 loci while others 11 STRs or 12 

locia and 16 STRs or 17 locib since the DYS 385 is a duplicated STR. 

CONTINENTAL 
REGION 

COUNTRY NUMBER OF 
INDIVIDUALS 

SAMPLED 

NUMBER OF 
HAPLOTYPES 
OBSERVED 

DISCRIMINATION 
CAPACITY 

REFERENCE 

West Africa Nigeria 463 394 0.850972 This report 

West Africa Burkina Faso 334 253 0.757485 De Filippo et al. 
(2011) 

West Africa Guinea Bissaua 161 154 0.956522 Rosa et al. (2006) 

Central Africa Equatorial 
Guineab 

101 94 0.930693 Arroyo-Prado et al. 
(2005) 

Central Africa Democratic 
Republic of 

Congo 

62 54 0.870968 De Filippo et al. 
(2010) 

Central Africa Gabon 828 552 0.666667 Berniel-Lee et al. 
(2009) 

Central Africa Cameroon 55 46 0.836363 Berniel-Lee et al. 
(2009) 

East Africa Ethiopia 69 48 0.695652 De Filippo et al. 
(2011) 

East Africa Uganda 118 73 0.618644 Gomes et al. (2009) 

East Africa Kenya 61 52 0.852459 De Filippo et al. 
(2011) 

East Africa Somaliaa 201 96 0.477612 Hallenberg et al. 
2005 

Southern 
Africa 

Zambia 546 380 0.695971 De Filippo et al. 
(2011) 

Southern 
Africa 

 Mozambiqueb 112 101 0.901786 Alves et. al (2003) 

Southern 
Africa 

Angola a 166 138 0.831325 Melo(2010),Coelho  
et al. (2009) 

North Africa Egyptb 208 204 0.980769 Omran et al. (2008) 

North Africa Moroccob 166 164 0.987952 Laouina  et al. 
(2011) 

North Africa Tunisiaa 100 71 0.71 Brandt-Casadevall 
et al. (2003) 

North Africa Algeria 20 16 0.8 De Filippo et al. 
(2011) 
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Tables 3.6a and 3.6b summarized the forensically significant parameters based on the 

SWGDAM Y-STRs for the Nigerian major populations and overall on one hand and a 

comparison with representative African Countries on the other hand. The countries were 

selected to represent North Africa (Tunisia), Southern Africa (Angola), West Africa 

(Burkina Faso), East Africa (Uganda) and Central Africa (Cameroon) specifically. 

Even though the Bini and the Ijaw populations were apparently under represented among 

the Nigerian populations, their capability to enrich the overall Nigerian dataset cannot be 

overlooked especially as when one observes that these two populations showed 

apparently greater discrimination capacities than their two major southern populations of 

Igbo and Yoruba. Even the relatively fewer Hausa populations revealed a greater 

discrimination capacity than the Igbo and Yoruba populations. These apparently lower 

discrimination capacities among the Yoruba and Igbo were only observed when the two 

different populations were pooled across several geographical locations but not within 

each sampling location. This suggested a substantial admixture or haplotype sharing 

among the peoples of these two populations which was not observed among the Hausa 

populations of Northern Nigeria (see Table 3.6a). From Table 3.6a, there was apparent 

haplotype sharing which could be mere coincidence due to apparently high mutation rates 

of STRs generally or slight hint of admixture among the populations. A look at Y SNP 

might assist to resolve this conclusively. The later suggestion with respect to the 

haplotype sharing might be very likely among the people that speak the same language 
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but for those that speak different languages it might be necessary to analyze the structure 

behind this observation and the forces driving it. However, it was not absolutely out of 

place for there to be admixture considering the relatively recent history of the current 

Nigerian populations of slavery and slave integration and free human migration and 

relocation for economic reasons allowing people to learn the languages of neighbouring 

tribes and thus facilitate the possibilities of inter-ethnic marriages. This might affect the 

ethnic distinctions over time. In actual fact, the YHRD anticipated this when it introduced 

the concept of meta-population groups like the African metapopulation. It was left to be 

proven if there was absolutely justified for the African populations where the SWGDAM 

loci showed substantially lower discrimination capacities (<0.85) within the respective 

countries (Table 3.6b). Obviously, increasing the number of loci analyzed will definitely 

increase the discrimination capacity as shown among data from some African Countries 

(Table 3.7). But it must be stressed that the SWGDAM loci has relatively low haplotype 

diversities and discrimination capacities among the countries of Africa examined in this 

thesis.  

One of the weaknesses of Y-STRs is their generally high Random Match Probabilities 

(RMPs) when compared with autosomal STRs which have been observed to have RMP 

in the range of 10-18. These high RMPs were observed for individual populations as well 

as at country level (Tables 3.6a and 3.6b) respectively. It must be noted that 

comparatively speaking, Nigeria has relatively greater DC, HD and lower RMP than the 
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other African countries in this thesis (Table 3.6b). Also, it must be noted than even 

though the Bini Population had relatively small sample size, it had notably significant 

DC, HD and RMP in the Nigerian population. The Hausa population, among the three 

major populations of Nigeria, has the most heterogeneity, DC and RMP, followed by the 

Yoruba before the Igbo. Overall, the Nigerian population has close to 75% unique 

haplotypes, a testament to its heterogeneity. 

Searches of the 394 STR haplotypes of the Nigerian populations on the YHRD revealed 

that 120 haplotypes appeared at least once while 274 have never been reported. Among 

the Nigerian populations alone, 49 haplotypes were shared among the five populations 

while 345 were unique. On respective populations, 74, 99, 193, 13 and 13 haplotypes 

were unique to the Hausa, Igbo, Yoruba, Bini and Ijaw populations respectively. The two 

most common haplotypes found in the overall population were shared by 6 individuals 

each (Table 3.8 below), cutting across at least two different populations.   

The inclusion of the Nigerian data set has the potential of enriching the African meta-

population of the YHRD with more than 270 new SWGDAM haplotypes and increasing 

the sampled populations by five, and total haplotypes by 393. Until date (May 2014), the 

YHRD had 126, 931 haplotypes with Africa contributing a little above 5% despite the 

relative recent increased contributions of African data 
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Table 3.8: The most common SWGDAM-STR based haplotypes shared among the  Nigerian populations and their matches numbers on the YHRD 

Haplotypes DYS19 

DYS

389I 

DYS

389II DYS390 DYS391 DYS392 DYS393 

DYS

385a 

DYS

385b DYS438 DYS439 Frequency 

YHRD 

MATCHES 

N001 17 13 30 21 10 11 14 17 18 11 12 6 18 

N002 15 13 31 21 10 11 13 16 17 11 12 6 13 

N003 17 13 30 21 10 11 13 17 18 11 12 4 9 

N004 15 13 31 21 10 11 14 16 16 11 12 4 3 

N005 15 13 32 21 10 10 13 16 18 11 11 4 0 

N006 15 13 30 21 10 11 13 16 18 11 12 4 4 

N007 17 13 30 21 10 11 14 18 18 11 12 3 9 

N008 16 13 31 21 10 11 13 16 17 11 12 3 2 

N009 15 13 30 21 10 11 14 17 18 11 12 3 3 

N010 17 13 30 21 10 11 14 17 17 11 12 3 18 

N011 16 13 30 21 10 11 13 16 18 11 11 3 0 

N012 15 13 30 21 10 11 13 17 18 11 12 3 1 

N013 16 13 30 21 10 11 13 17 18 11 12 3 8 

N014 17 13 30 21 10 11 13 18 18 11 12 3 8 

N015 15 13 30 21 10 11 15 17 18 11 12 3 5 

N016 17 13 30 21 10 11 14 16 17 11 12 3 6 

N017 15 13 32 21 10 11 13 16 17 11 11 3 3 
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3.3 Further assessment of Genetic Structure in the Nigerian Populations 

Figure 3.2 below was the Neighbour Joining tree showing how the five ethnic 

populations clustered with other African populations. While the Yoruba, Igbo and Ijaw 

populations clustered with only populations from Central and West African populations, 

The Hausa population clustered with Central, West and Southern African populations. 

Again, not a single Nigerian population clustered with populations from North or East 

Africa! All the North African populations clustered together. The East African population 

of Ethiopia and other East African populations like Uganda and Kenya also clustered 

differently despite their geographical proximity.  

This tree, even though limited to genetic variations, does not seem to reveal any linguistic 

affinity among clustering populations except among the North African populations. This 

however, suggested the possibility of significant gene flow across linguistic groups 

(Bantu and Non Bantu populations) and regional (West, Central and Southern African) 

populations 
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Figure 3.2: Neighbour joining tree of 46 African populations (five populations with samples sizes less than 10 from Tables 2.2 

were excluded). The Nigerian populations were represented in red and other country-based populations were represented in 

unique country colours. The population codes are as described in Table 2.2.
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Figure 3.3a: The multidimensional scaling (MDS) plot of Rst distances based on Y-STR 

data of the five Nigerian ethnic populations (stress 0). The Hausa, Igbo, Yoruba, Bini and 

Ijaw populations were represented with red, blue, green, cyan and pink dots respectively. 
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Figure 3.3b: The Multidimensional Scaling (MDS) plot based on Fst distances of Y-SNP 

data of the five Nigerian ethnic populations. The Hausa, Igbo, Yoruba, Bini and Ijaw 

populations were represented with red, blue, green, cyan and pink dots respectively. 

 

Although Figures 3.3a and 3.3b presented genetic distances measured at different time 

depth (Rst (for STR) for recent events and Fst (for SNP) for pre-historical events), they 

shared some similarities that the Afro-asiatic language speaking Hausa population of 
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Northern Nigeria are spatially distinct from the four Niger Congo speaking Igbo, Yoruba, 

Bini and Ijaw populations of Southern Nigeria. The apparent distinction of the Bini 

population in Figure 3.3a apparently was a result of some stochastic effects of the sample 

peculiarities. However, very clearly revealed here was that both the Igbo and Yoruba 

populations are spatially close as they clustered together in both plots. 

When these samples of ethnic populations were sub-divided into their respective 

geographical origins (Figures 3.4a and 3.4b respectively as shown below), The Igbo, 

Yoruba, Bini and Ijaw clustered together. The Hausa populations were observed to have 

three distinct groupings: (i) The Niger Hausa clustered with the Southern Nigeria 

populations, (ii) The Kaduna Hausa was an outlier and (iii) The remaining four Hausa 

populations of Jigawa, Kano, Kebbi and Sokoto formed a third and intermediate cluster 

between the Niger and Kaduna populations. 

As these four MDS plots (Figures 3.3a, 3.3b, 3.4a and 3.4b) only showed the spatial 

representation of the populations in different contexts, they do not reveal the level of 

significance of the populations’ differences as clearly as Tables 3.3a, 3.3b, 3.4a and 3.4b 

summarized earlier above. However, these figures confirmed that (i) Most Southern 

Nigerian populations are not distinguishable, (ii) The Hausa populations are distinct from 

the Southern Nigerian populations and (iii) The Hausa populations are not homogenous.   
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Figure 3.4a: The multidimensional scaling (MDS) plot of Rst distances of Y-STR data of 

the Nigerian populations across the 22 geographical origins (stress 0.0902). The 

populations were represented with numbers where 1-6 are the Hausa populations (red dot) 

from Niger, Jigawa, Kaduna, Kano, Kebbi and Sokoto respectively; 7-12 are the Igbo 

populations (blue dot) from Abia, Anambra, Delta, Ebonyi, Enugu and Imo respectively, 

13-20 are the Yoruba populations (green dots) from Ekiti, Kogi, Kwara, Lagos, Ogun, 

Ondo, Osun and Oyo respectively and 21 and 22 are the Bini (cyan dot) and Ijaw (pink 

dot) populations from Edo and Bayelsa respectively. 

 

 

 

 

 



72 
 

 

Figure 3.4b: The multidimensional scaling (MDS) plot of Fst distances of the Y-SNP data 

of Nigerian populations along 22 geographical locations (Stress 0.032). The populations 

were represented with numbers where 1-6 are the Hausa populations (red dot) from Niger, 

Jigawa, Kaduna, Kano, Kebbi and Sokoto respectively; 7-12 are the Igbo populations 

(blue dot) from Abia, Anambra, Delta, Ebonyi, Enugu and Imo respectively, 13-20 are the 

Yoruba populations (green dots) from Ekiti, Kogi, Kwara, Lagos, Ogun, Ondo, Osun and 

Oyo respectively and 21 and 22 are the Bini (cyan dot) and Ijaw (pink dot) populations 

from Edo and Bayelsa respectively. 
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Figure 3.5a: The multidimensional scaling (MDS) plot of Rst distances of Y-STR data of 

the pooled Nigerian and five regionally representative African Countries (stress 0). The 

North Africa, West Africa, Central Africa, East Africa and Southern Africa regions were 

represented by Tunisia (TUN), Burkina Faso (BFA), Cameroon (CAM), Uganda (UGD) 

and Angola (ANG) respectively. 
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Figure 3.5a above confirmed some distinctively geographical region and broad linguistic 

differentiations among the contrasted African populations Rst distances. North African 

Afro-asiatic language speaking Tunisian population was distinct from the other sub-

Saharan Africa populations as shown from left to right of the plot. The sub-Saharan 

countries are also distinguished along linguistic groupings with Nilo-Saharan language 

speaking Uganda of East Africa (upper part of the plot) and the majorly Niger Congo 

language speaking Burkina Faso (West Africa) and Angola (Southern Africa) with 

Cameroon (Central Africa) intermediate of these, to the middle of the plot. The Nigerian 

population clustered with the West African and Southern African Countries. 

The MDS plot (Figure 3.5b) below comparing the Nigerian population Fst distances with 

some mostly new set of African populations (whose SNP haplogroups were accurately, 

not speculatively reported) also showed similar pattern to that of the Rst distances among 

the other African countries above. The differentiation of Algeria (ALG) and Ethiopia 

(ETH) from the others on the left and right side of the plot along the linguistic and 

geographic divide of Afro-Asiatic/Nilo-Saharan and Niger Congo languages with 

North/East Africa and West/Central/Southern Africa countries respectively was evident. 

The Niger Congo bantu speaking populations of Central (Democratic Republic of Congo, 

DRC) and Southern Africa (Zambia, ZAM) clustered together with the non Bantu Burkina 

Faso (BFA) population but spatially distinct from the Nigeria (NIG) population, her non-

bantu Western African neighbour with which they shared much geographical proximity. 

 

 

 

 



75 
 

 

 

Figure 3.5b: The multidimensional scaling (MDS) plot of Fst distances Y-SNP data of the 

pooled Nigerian and five regionally representative African Countries (stress 0). The 

North Africa, West Africa, Central Africa, East Africa and Southern Africa regions were 

represented by Algeria (Algeria), Burkina Faso (BFA), Democratic Republic of Congo 

(DRC), Ethiopia (Algeria) and Zambia (ZAM) respectively.  
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Figure 3.6a: The Correspondence plot of relative haplogroup frequencies and the five 

Nigerian ethnic populations. The haplogroups were represented with blue dots and 

named. The Hausa, Igbo, Yoruba, Bini and Ijaw populations were represented with Red, 

Green, Yellow, Cyan and Pink dots respectively. 

 

 

Figure 3.6a above revealed the significant influence of haplogroup E1b1a7 on both the 

Yoruba (Yellow dot) population and the Igbo (Green dot) populations. The Hausa (Red 

dot) population was influenced majorly by three other haplogroups namely B, R and 

E(xE1b1a and E1b1b). The genetic proximity of the Igbo population was also obvious 

from their overlapping with one another. The Ijaw (Pink dot) and the Bini (Cyan dot) 
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populations were influenced by E1b1a7 and to a lesser extent, E1b1a (xE1b1a7, E1b1a8) 

and E1b1b respectively. The most influential haplogroups in the Nigerian populations 

generally speaking are in descending order E1b1a7, E1b1a8 and B. It must be noted that 

“Others” in this plot and Figure 2.3.5b below, referred to the non-specific haplogroups of 

the individuals that were not resolved into the seven specific haplogroups observed in this 

report.  

When the sampled populations were resolved based on their different geographical 

locations (#1-22) in Figure 3.6b below, the influences of haplogroups E1b1a7 and 

E1b1a8 on the Southern Nigerian populations, especially, became more obvious (see 

clustering around the equator in the plot). Also very significant from this Figure was the 

obvious influences of different haplogroups on the different Hausa populations (#1-6) 

confirming the genetic structure within this population. Specifically the Kano (#4) Hausa 

population was influenced by haplogroup E1b1b, Jigawa (#2) Hausa population by 

haplogroup R, Niger (#1) Hausa population by E1b1a7 and probably E1b1a8, Kaduna 

(#3) Hausa population by haplogroup E (xE1b1a, E1b1b), Sokoto (#6) Hausa population 

by haplogroup E1b1a (xE1b1a7, xE1b1a8) and Kebbi (#5) Hausa population by 

haplogroup B. 
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Figure 3.6b: The Correspondence plot relative haplogroup frequencies and Nigeria 

populations across the 22 different geographical origins. The haplogroups in blue dots 

were named while the geographical location specific populations represented with the 

numbers (#). The numbers1-6 were the Hausa populations from Niger, Jigawa, Kaduna, 

Kano, Kebbi and Sokoto respectively; 7-12 were the Igbo populations from Abia, 

Anambra, Delta, Ebonyi, Enugu and Imo respectively, 13-20 were the Yoruba 

populations from Ekiti, Kogi, Kwara, Lagos, Ogun, Ondo, Osun and Oyo respectively 

and 21 and 22 were the Bini and Ijaw populations from Edo and Bayelsa respectively. 
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Figure 3.6c: The Correspondence plot 

of pooled Nigerian populations with 

five regionally representative African 

Countries and their relative 

haplogroup frequencies. Blue dots are 

the haplogroups labeled in bold. The 

Countries are Algeria (Blue Square), 

Ethiopia (Lemon Diamond), Nigeria 

(Red Cross), Burkina Faso (Green 

Cross), Zambia (Pink Square) and the 

Democratic Republic of Congo 

(Purple Circle) 

 

When the pooled Nigerian populations were assessed with their African neighbours in 

Figure 3.6c above, there was a very clear clustering of the Niger Congo Bantu and Non 

Bantu speaking populations in the center influenced by haplogroup E1b1a and its sub-

haplogroups E1b1a7 and E1b1a8. The Afro-Asiatic Ethiopia population was strongly 

influenced by the presence of both haplogroups A and J especially confirming that 

haplogroup J is “Easternly” distributed in Africa. Also, the North Africa population of 

Algeria was mostly influenced by the suggested Afro-Asiatic signature haplogroup 

E1b1b. 
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Table 3.9: The AMOVA F-statistics with significant groupings 

    Y-STR (Rst)   Y-SNP (Fst) 

Ethnic 

grouping(5) 

     Fst 

 

0.03947 P<0.000001 

 

0.07801 P<0.000001 

Fsc 

 

0.00727 P=0.07918 

 

0.00906 P=0.18573 

Fct 

 

0.03244 P<0.000001 

 

0.06957 P<0.000001 

Geographic 

region(4) 

     Fst 

 

0.03665 P<0.000001 

 

0.08279 P<0.000001 

Fsc 

 

0.00659 P=0.12317 

 

0.01421 P=0.13587 

Fct 

 

0.03026 P<0.000001 

 

0.06957 P<0.000001 

Linguistic 

grouping(2) 

     Fst 

 

0.073 P<0.00001 

 

0.15772 P<0.000001 

Fsc 

 

0.00965 P=0.01369 

 

0.01433 P=0.08798 

Fct   0.06347 P<0.00001   0.14548 P<0.000001 

 

Significant P value was calculated to be <0.005, <0.0083 and <0.05 for the three 

groupings respectively. The Fst, Fsc, Fct are the fixation indices for within population, 

among populations within group, and among groups respectively. 
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Table 3.9 and Table 3.10 were results of AMOVA utilizing two different parameters. The 

first used F-Statistics and the later relied on the percentage of total genetic variations in 

experiments. The significant revelations from both are that: (i) Ethnicity, Geography and 

language all contributed significantly to genetic variations among the Nigerian 

populations; (ii) Language was the strongest factor among these three, affecting these 

genetic variations; and thirdly both ethnicity and geography have similar effects on 

genetic variation suggesting that the populations of Nigeria are ethnically structured 

along specific geographical regions. 

Based on Wright’s (1978) suggestion on interpreting Fst values, Y-SNP based Fst 

distance measure ranged from moderate to very great genetic variations while based on 

Y-STR based Rst distance measure, the Fst values ranged from little to moderate genetic 

variations.  In both cases however, all the Fst values are significant (P<0.000001) with 

the values for linguistic grouping being double that of either ethnic or geographical 

groupings. 

Based on the percentage of total variation in an hierarchical experiment also, even though 

the percentages of total variation were relatively small (between 3.03% and 6.4 % for Rst 

measure and between 6.96% and 14.6% for Fst distance measure) among groups for both 

marker (Y-STR and Y-SNP) systems, language grouping doubled those of ethnic and 

geographical groupings- a pattern observed for F-Statistics.    
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Another inference from these Tables is that based on the strong correlation of the two 

genetic markers (r=0.9623; p=0.00016534), it was either the present genetic structure has 

been retained from pre-historical times till present or that some more recent demographic 

events had completely obliterated the signatures from pre-historical times in the regions 

of modern Nigeria. 

 

Table 3.10:  The AMOVA percentage of variation with significant groupings 

Source of variation Percentage of variation 
     Y-STRs(Rst) Y-SNPs(Fst) 

 Ethnic grouping (n=5) 

     Among Groups 

 

3.24 

 

6.96 

  
Among populations within groups 0.07 

 

0.84 

  
Within populations 96.05 

 

92.2 

  
Geographical grouping (n=4) 

     Among Groups 

 

3.03 

 

6.96 

  Among populations within groups 0.64 

 

1.32 

  
Within populations 96.33 

 

91.72 

  
Linguistic grouping (n=2) 

     Among Groups 

 

6.4 

 

14.55 

  
Among populations within groups 0.9 

 

1.22 

  Within populations 92.7   84.23   
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Figure 3.7a Plot of putative genetic barrier across the geographical locations of Nigerian 

population based on the Rst distances Y-STR data of the Nigerian populations. K was set 

at K=5 which revealed a Northern/Southern Nigerian populations divide. Hausa, Igbo, 

Yoruba, Bini and Ijaw populations were labeled with red, blue, yellow, green and pink 

colours respectively. Italics letters are the location of the genetic barrier while the bold 

red arrows are the barrier path. 
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Figure 3.7a above showed the putative spatial genetic barrier constructed to further test 

for geographical population sub-structure. This was done be performing Monmonier’s 

analysis for detecting presence of genetic barrier given the spatial distribution of the 

populations using Y-STR-based Rst value. Based on this data, the fifth barrier revealed a 

clear north–south divide of the Nigerian populations with the Northern group 

incorporating the two Yoruba populations of Kogi and Kwara that are the transition s 

between the Northern Hausa and the Southern Nigerian populations analyzed in this 

report. The first 4 genetic barriers were found among the Hausa populations of northern 

Nigeria, corroborating earlier suggestions that the Hausa populations are not 

homogenous. 

Figure 3.7b below showed the first seven putative genetic barriers in the Nigerian 

population on the background of the Y SNP haplogroups. These are (a) barrier between 

Jigawa Hausa (JG) and other Hausas in Northern Nigeria, (b) barrier between Anambra 

Igbo (AN) and Other Igbos in South eastern Nigeria, (c) barrier between Sokoto Hausa 

(SK), Kano Hausa (KN) and Jigawa Hausa (JG) and other Hausas population in northern 

Nigeria, (d) barrier between Kogi Yoruba (KO) in North Central Nigeria and their 

Northern, Western and eastern Neighbours, (e) barrier within the third barrier 

distinguishing Kano Hausa (KN) from both Sokoto Hausa (SK) and Jigawa Hausa (JG) in 

Northern Nigeria, (f) the barrier between the Oyo Yoruba (OY) and other Yoruba in 

South West Nigeria, and (g) the barrier distinguishing Ebonyi Igbo (EB) from other Igbo 
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populations in South East Nigeria. This suggested that there were differences within the 

three major ethnic populations of Nigeria- Hausa, Yoruba and Igbo that was deep rooted 

in their history. That these signals have persisted into the present despite the absence of 

major geographical and linguistic barrier was quite revealing.  

 

 

Figure 3.7b: Plot of putative genetic barrier across the geographical locations of Nigerian 

population based on the Fst distances Y-SNP data of the Nigerian populations. K was 

explored from 2 to 7. Hausa, Igbo, Yoruba, Bini and Ijaw populations were labeled with 

red, blue, yellow, green and pink colours respectively. Italics letters are the location of 

the genetic barrier while the bold red arrows are the barrier path. 

 

 

 

 



86 
 

However, the Barrier software, revealing the most likely areas to explore for genetic 

structure is rather speculative. This was because the level of significance of the presumed 

structure was not determined unlike the other software employed in this thesis. Its value 

is therefore useful in the preliminary evaluation of genetic and geographic data. More 

definitive assertions are made with more advanced software like Allele-In-Space (AIS), 

not used in this thesis.  

 

Table 3.11: Mantel’s test of correlation of genetic and geographic distances in the 

Nigerian populations (significant p<0.0002).  

Marker Measure of Distance r p value 

11 STR Rst 0.2034 0.005 

SNP Fst 0.4626 0.0001 

  

Mantel’s test was carried out to compare the genetic matrices from population pairwise 

Y-STR-based Rst analysis and population pairwise Y-SNP based Fst distance populations 

in order to test for correlation with the geographical distance. Significantly positive 

correlation (r=0.4626, P=0.0001) of the Y-SNP systems was observed (Table 3.11).  
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3.4 Network reconstructions  

Network reconstruction was made for the six lineages (B, E (xE1b1a), E1b1a (xE1b1a7, 

E1b1a8), E1b1a7, E1b1a8 and R) represented by more than 10 individual per lineage 

(Figures 3.8a-f). The haplogroup E1b1b has been incorporated with haplogroup E 

(xE1b1a). Y-DNA network analysis of Y-STR haplotypes showing a non-star cluster was 

understood to indicate Y-STR variability due to multiple founding individuals, while that 

yielding a star cluster was regarded as a population descending from a single ancestor. 

Haplogroup B (Figure 3.8a) showed three (3) branches, two (2) of which have only four 

(4) individuals each while the most extensive branch has more than 8 individuals. The 

predominant Haplogroup B sub-clade in central and western Africa has been reported to 

be Haplogroup B2b (Batini, et al., 2011). This was not evaluated in this thesis. 

Haplogroup E (xE1b1a) network (Figure 3.8b) showed two distinct branches which were 

also observed to have two branches each. As the E1b1b populations were incorporated in 

this network, their contribution could be seen towards the center of the network.  

Haplogroup E1b1a (xE1b1a7, xE1b1a8) network (Figure 3.8c). This haplogroup was 

known to possess at least nine branches but, having excluded both E1b1a7 and E1b1a8, 

seven were expected. The network however revealed two distinct branches apart from the 

reticulation. The inference from this network was that apart from the E1b1a7 and E1b1a8 

haplogroups, Nigerian populations has at least two more sub-clades of E1b1a that could 

be investigated in future work.  
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Haplogroup E1b1a7 network (Figure 3.8d) showed high levels of reticulations with no 

clear structure. This was the most common haplogroup in the Nigerian populations. The 

network was consistent with what would be expected from lineages with relatively short 

evolutionary history, associated with ‘recent’ demographic expansions. Veeramah and 

others (Veeramah, et al., 2010) observed a similar pattern among populations of Cross 

rivers region of Nigeria on the background of this lineage. Seven subclades have been 

detected in this haplogroup (Karafet, et al., 2008) but the most commonly found among 

the Yoruba  reported was E1b1a7a (Barbieri, et al., 2012). Montano and other workers 

(Montano, et al., 2011) working with some Tiv, Igala and Idoma populations from central 

Nigeria also revealed some E1b1a7a1, E1b1a7a2 and E1b1a7a3 in those populations.  

Haplogroup E1b1a8 network (Figure 3.8e) also showed many reticulations but no clear 

structure. It has been reported to have at least six sub-clades (Karafet, et al., 2008) which 

could not be inferred from the network. Montano and other workers (Montano, et al., 

2011) reportedly observed E1b1a8a and E1b1a8a1 among some Tiv, Igala and Idoma 

populations from Central Nigeria. 

Haplogroup R network (Figure 3.8f) revealed two branches. The network was made up of 

mostly singleton nodes from the Hausa population. The most common R haplogroup 

reportedly found in West/Central Africa was the R1b2 variant on the V88 SNP (van 

Oven, et al., 2014; Hassan, et al., 2008) which was not evaluated in this thesis. 
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Figure 3.8a:  Network reconstruction of the M60 mutation for haplogroup B in the 

Nigerian populations based on the SWGDAM Y-STR loci. The Hausa populations were 

represented with red, Igbos with blue and Yoruba with Yellow. The circle size is 

equivalent to the number of haplotypes. 
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Figure 3.8b: Network reconstruction of the SRY4064 mutation for haplogroup E (xE1b1a) 

in the Nigerian populations based on the SWGDAM Y-STR loci. The Hausa populations 

were represented with red, Igbo with blue, Yoruba with yellow and Bini with lemon. The 

circle size is equivalent to the number of haplotypes 
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Figure 3.8c: Network reconstruction of the M2 mutation for haplogroup E1b1a 

(xE1b1a7, xE1b1a8) in the Nigerian populations based on the SWGDAM Y-STR loci. 

The Hausa were represented with red, Igbos with blue, Yoruba with Yellow and Bini 

with Lemon. The circle size is equivalent to the number of haplotypes. 
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Figure 3.8d: Network reconstruction of the U186 mutation for haplogroups E1b1a7 in 

the Nigerian populations based on the SWGDAM Y-STR loci. The Hausa populations 

were represented with red, Igbo with blue, Yoruba with Yellow, Bini with Lemon and 

Ijaw with purple. The circle size is equivalent to the number of haplotypes. 

 

 

 

 

 

 



93 
 

  

Figure 3.8e: Network reconstruction of the U175 mutation for haplogroup E1b1a8 in the 

Nigerian populations based on the SWGDAM Y-STR loci. The Hausa populations were 

represented with red, Igbo with blue, Yoruba with Yellow, Bini with lemon and Ijaw with 

purple. The circle size is equivalent to the number of haplotypes 
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Figure 3.8f: Network reconstruction of the M207 mutation for haplogroup R in the 

Nigerian populations based on the SWGDAM Y-STR loci. The Hausa populations were 

represented with red and Yoruba with Yellow. The circle size is equivalent to the number 

of haplotypes. 
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3.5 Spatial Autocorrelation Plots  

The three most common haplogroups found among the Nigerian populations were B, 

E1b1a8 and E1b1a7 in that increasing order.  These were explored to determine whether 

any or all of these had clinal distribution in the Nigerian populations. The results shown 

in Figures 3.9a, 3.9b and 3.9c for Haplogroups B, E1b1a7 and E1b1a8 respectively 

showed that the spatial patterns deviated from pattern expected from haplogroup that 

showed clinal distribution from the literature (Kayser, et al., 2005; Barbujani, 2000). 
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Figure 3.9a: The spatial autocorrelations for Haplogroup B relative frequencies among 

the Nigerian populations. The Y axis was the Moran Index, I while the X axis was the 

distance classes computed from the coordinates of the longitude and latitude of the 

geographical sampling locations.  
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Figure 3.9b: The spatial autocorrelations for Haplogroup E1b1a7 relative frequencies 

among the Nigerian populations. The Y axis was the Moran Index, I while the X axis was 

the distance classes computed from the coordinates of the longitude and latitude of the 

geographical sampling locations.  
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Figure 3.9c: The spatial autocorrelations for Haplogroup E1b1a8 relative frequencies 

among the Nigerian populations. The Y axis was the Moran Index, I while the X axis was 

the distance classes computed from the coordinates of the longitude and latitude of the 

geographical sampling locations.  
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 Table 3.12 FST and NV estimates of the five ethnic populations of Nigeria. 

Population FST Nv 
    Hausa 0.02468 40 
    Igbo 0.03122 31 
    Yoruba 0.03001 32 
    Bini 0.03097 31 
    Ijaw 0.031 31 
    FST is a measure of inter-population variability, whereas Nv is the effective 

  number of migrants. 

 

 

 

Table 3.12 revealed that the Afro-asiatic Hausa population of Northern 

Nigeria has relatively more effective migrants than the four Niger-

Congo speaking populations of southern Nigeria. 
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Table 3.13: Ancestral haplotypes of the Haplogroups in the Nigerian lineages* 

 

 

 

 

 

 

*Haplotypes are in the order of DYS19, DYS389I, DYS389II, DYS390, DYS391, 

DYS392, DYS393, DYS 385a, DYS385b, DYS438 and DYS439 respectively. 

Only haplogroup E1b1a7 still had the ancestral haplotype represented in two individuals, 

the rest of the haplogroups do not currently retain these haplotypes. 

 

 

 

 

 

 

 

 

 

 

 

Haplogroup Haplotype 

B 15, 13, 30, 21, 10, 11, 13, 11, 12, 10, 12 

E(xE1b1a,E1b1b) 17, 13, 30, 22, 10, 11, 13, 14, 16, 11, 12 

E1b1a(xE1b1a7, E1b1a8) 15, 13, 30, 21, 10, 11, 13, 15, 17, 11, 12 

E1b1a7 17, 13, 30, 21, 10, 11, 14, 17, 18, 11, 12 

E1b1a8 15, 13, 31, 21, 10, 11, 13, 16, 17, 11, 11 

E1b1b 13, 14, 31, 24, 10, 11, 13, 17, 18, 11, 11 

R 15, 14, 30, 24, 10, 13, 13, 13, 13, 11, 12 
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Table 3.14: Y-STR mutation rates as obtained from the YHRD fact sheets. 

Y-STR Mutation rates (95% confidence interval)  

DYS19 0.0022 (0.0016-0.0032)  

DYS389I 0.0029(0.0018-0.0035)  

DYS389II 0.0041(0.0032-0.0053)  

DYS390 0.0021(0.0013-0.0034)  

DYS391 0.0025(0.0018-0.0036)  

DYS392 0.0005(0.0002-0.0009)  

DYS393 0.0011(0.0006-0.0018)  

DYS385 0.0024(0.0017-0.0034)  

DYS438 0.0004(0.0001-0.0009)  

DYS439 0.0054(0.0039-0.0069)  

 

Average mutation rate µ was calculated to be 0.0024 (0.0016-0.0031) 

 

 

Table 3.14 revealed that DYS392 and DYS438 have very low mutation rates while 

DYS439 has fastest rate but the remaining are moderate according to the scale reported 

by Bird (Bird, 2012) that may have a significant effect on the average rate computed here 

and the overall application in TMRCA computation. 
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Table 3.15: Intra-lineage Time to the Most Recent Common Ancestors (TMRCA) 

TMRCA was calculated from (ASD/µ) multiplied by 31 (years ago).  

Haplogroup 

Generations 

ago TMRCA* (Years ago) 

All B 808                   25,048  

All E 469                   14,539 

All E1b1a 328                   10,168  

All E1b1b 287                     8,897  

All R 788                   24,428 

*Values represented Mean. 
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Table 3.16: Inter-Haplogroups E1b1a7 with E1b1a8. TMRCA was calculated from 

(ASD/2µ) multiplied by 31 (years ago). µ was computed to be 0.0024 from Table 3.14 

above. 

Inter-Haplogroups Generations ago TMRCA* (Years ago) 

E1b1a7 versus E1b1a8 260 8,060  

*Values represent Mean  
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3.6 Inter-lineages and intra-lineage time to the most recent common ancestor 

(TMRCA) 

The general pattern of intra-lineage TMRCA (Table 3.15) above revealed that haplogroup 

B was older than haplogroup E which was also significantly older than its sub-lineages 

E1b1a and E1b1b in the Nigerian population. It also revealed that the TMRCA for 

haplogroup R was comparable with that from the literature (Karafet, et al., 2008). It 

confirmed that E1b1a7 and E1b1a8 are relatively younger. However, considering the 

ages of E1b1a7 and E1b1a8, it gives room for the possibilities of them having sub-

lineages of their own, which have been confirmed elsewhere. E1b1a7 was now known to 

have at least seven sub-lineages while E1b1a8 had at least six sub-lineages (Karafet, et 

al., 2008; Montano, et al., 2011 and Trombetta, et al., 2011) none of which were further 

evaluated in this thesis.  

Because the other lineages were not fully represented in all the Nigeria populations, inter 

lineage TMRCA splits were calculated for only E1b1a7 with E1b1a8 (Table 3.16) 

because they were the most common in the Nigerian populations.  

On the basis of E1ba7 lineage, the network of E1b1a7 (Figure 3.8d) showed no structure 

thus providing support that haplogroup E1b1a7 was in rapid expansion, in no particular 

pattern. 
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Overall, this inter-haplogroups TMRCA might be suggesting that the pre-historical 

demography of these major populations were significantly influenced by the lineages B 

and E1b1a7 to a greater and perhaps E1b1a8 to a lesser extent. 
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4.0                           CHAPTER FOUR: DISCUSSION  

 

4.1 Was there any structure in the genetic variation on the non-recombining region 

of the Y-Chromosome (NRY) of the major Nigerian populations?  

Based on the plethora of evidence presented earlier in this thesis, the unequivocal 

response in answer to this question was yes.  

Looking at Tables 3.1, 3.2a, 3.2b with Supplementary Tables 1 and 2, which showed the 

mean pairwise differences of STR haplotype and haplogroup diversities, Rst and Fst 

distances at the level of the five ethnic populations with the Rst and Fst distances at the 

levels of the populations across their geographical locations respectively, the obvious 

structure between the Hausa populations and the other four populations was very clear. 

These tables were supported with the graphics shown through the MDS plots at the five 

ethnic groups’ level, at the geographical origins level for both Rst and Fst distances 

(Figures 3.2a, 3.2b and 3.3a, 3.3b respectively. The correspondence plots in Figures 3.5a 

and 3.5b at the five ethnic and 22 geographical origins level respectively also confirmed 

this. Finally, the Genetic barriers for both Rst and Fst distances also confirmed that there 

were structures between the Hausa population and the other four southern Nigeria 

populations. Considering the distinct geographical locations and linguistic groups that are 

represented, this revealed both a North/South geographical and Afro-asiatic and Niger-

Congo linguistic divide.  
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A closer look at these results seemed to corroborate the findings of Veeramah and others 

that there was very little genetic differentiation among people of the same or proximate 

geographical locations despite their language differences (Veeramah, et al., 2010). Their 

inferred language differences perhaps was not across major linguistic groups as shown 

between Afro-asiatic and Niger Congo here but within the same broad classifications. 

This thesis too, could not differentiate among the four Niger Congo populations of 

Southern Nigeria namely Igbo, Yoruba, Bini and Ijaw at the very low level of 

significance threshold (P<0.0005). Even the seemingly within individual ethnic 

population obvious from the barrier plots and some of the MDS plots across geographical 

locations mostly disappear at this threshold. There was however significant within 

population genetic differentiation within only the Hausa populations based on Fst 

distances (Table 3.2b; Supplementary Table 2). 

4.2 What factors drove the structure in the genetic variation on the non-

recombining region of the Y-Chromosome (NRY) of the major Nigerian 

populations?  

To answer this question, hierarchical AMOVA experiments were carried out along the 

five ethnic populations, 22 geographical origins and two linguistic differences suggested 

by the observations above. The AMOVA results revealed that most Fst differences were 

noticed among groups and that three factors contributed to the genetic differentiations 

among the Nigerian populations. A significant finding was that while both ethnicity and 
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geography had comparable impacts, the linguistic effect was more than double each of 

these (Table 3.9 and Table 3.10). 

Campbell and Tishkoff had suggested that in addition to the three factors observed in this 

thesis, climatic and ecological factors also affect the genetic differentiations among sub-

Saharan African populations (Campbell and Tishkoff, 2008). However, Veeramah and 

others (Veeramah, et al., 2010) did not observe a similar trend to this thesis while 

working on populations from Cross Rivers region in Southern Nigeria.  Apparently the 

different geographical span covered by our two different results could be the reasons for 

this difference in conclusions, as their contrasted populations were geographically closer 

than the ones evaluated in this thesis. Unfortunately these two reports, (theirs and this 

thesis) are the only reports to date on extensive genetic analysis of Nigerian populations 

Y-STRs and Y-SNPs. Montano and others (Montano, et al., 2011) who also worked with 

some other Nigerian populations, did not utilize any of the populations in these other 

reports (Veeramah and this thesis) but focused on the Tiv, Igala and Idoma populations 

from Central Nigeria with the intent to resolve the guiding hypothesis of the Bantu 

expansion.  

The fact that these factors (ethnicity, geography and language) had the same magnitude in 

the different genetic markers, Y-STR and Y-SNP which measured different time depth of 

mutations, also suggested the concordance of pre-historical genetic structure with modern 

time’s observations. This, though consistent with other results in this thesis was however 
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surprising considering the massive impacts of past historical events and causes of human 

migrations within the Nigerian area in the last two millennial, especially the impact of the 

Trans-Sahara slave trade. 

Although some of the myths of origins of the present Nigerian populations seem 

exaggerated (Yoruba from Mecca, Hausa from Baghdad, Igbo from Israel), strong links 

among peoples around the Niger-Benue confluence have been observed (Ehgosa, 2002). 

The links in origin among Borgu (in present day Republic of Benin and Togo), Oyo and 

Nupe; Yoruba and Edo (Bini was used in the discussion of this thesis to distinguish their 

geographical location from the people, as the two are interchangeable); Edo, Igala and 

Nupe; Edo, Onitsha, Igala and Nri; Jukun, Idoma and Igala are quite established. Modern 

day Nigeria region is a compact geographical zone. The close link among the peoples 

was apparently due to the basin of the lower Niger with its tributaries, compactness and 

most importantly, the absence of any major barrier within the geographical space, 

encouraging more migration and interaction within rather than with people outside 

(Falola and Heaton, 2008). The exact number of ethnic groups in the country was not 

known (Ehgosa, 2002; Blench, 2011). This was principally because different criteria have 

been used to estimate the number of groups. Classification based on languages can be 

problematic because most languages have dialects and sub-languages that may 

ambiguously be regarded as ethnic group. Among the Yoruba populations in South 

western Nigeria, they have dialects like Ijebu, Ekiti, Ikale, Owo, Oyo and so on while 
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among the Igbo populations of South eastern Nigeria, they have dialects like Onitsha, 

Ika, Erei, Effium, Izi, Ikwo, Mtezi, Okpoto and other dialects (Blench, 2011). Another 

problem was because many ethnic groups are spread across and beyond certain regional 

boundaries. The Yoruba populations spread across South-west, South-south and North-

central Nigeria. The Igbo populations spread across South-east, South-south and North-

central Nigeria too. The Ijaw populations are spread around the coastal swamps of the 

South-south and South-west. The Hausa populations spread over the vast expanse of the 

entire Northern zones. These four (4) ethnic populations are the largest homogenous 

ethnic groups although the population censors do not distinguish the populations along 

this line but simply by places of residence (Falola and Heaton, 2008).  Another problem 

with classification was that some names by which some groups which are essentially the 

same are known changed from location to another, especially among clusters of minority 

groups in Benue, Kogi, Kwara and Nasarawa States like the Eggon, Alago and Etulo 

which claim their origins from Igala and Ebirra and speak dialects of these languages 

(Blench, 2011). Several ethnic groups are linked by myth of origin and shared common 

cultural practices. To resolve these conceptual problems, the use of combined criteria of 

language, name, core territory, culture and myth of origin rather than a single criterion 

like language was employed. Estimates of ethnic groups based mainly on languages 

spoken have ranged from 248 (Coleman, 1958) to 374 (Otite, 1990) and 550-610 (Wente-

Lukas and Jones, 1985; Blench, 2011). The Hausa and Fulani are found all-over Northern 
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States (19 States of the entire 36 in Nigeria). Kanuri populations are found in Borno, 

Yobe, Kano, Niger, Nasarawa and Adamawa States of Nigeria; Tiv populations are found 

in Benue, Taraba and Nasarawa States; Jukun populations are in Benue, Nasarawa, 

Taraba and Bauchi States; Bassa populations are found in Niger, Benue, Kaduna, Kwara, 

Nasarawa States and the FTC Abuja; Angas populations are found in Plateau, Bauchi and 

Kano; Gwari populations are found in the FTC, Niger, Kaduna and Nasarawa States; 

Uncinda populations are in Niger, Kaduna and Sokoto States; Kambari populations are 

found in Niger, Kwara and Sokoto States; Yoruba in the  six (6) South-west States and 

Kwara and Kogi in North-central; Igbo are spread across the five (5) South-east states, 

Delta, Cross rivers and Rivers States in the South-south and Benue State in the North-

central region; Ijaw populations are in Bayelsa, Rivers, Edo  and Delta in the South-south 

and Ondo in the South-west; Mbembe populations are found in Cross Rivers and 

Anambra States. The highest cluster of ethnic groups with the greatest heterogeneity was 

found in the Gongola cluster of Adamawa and Taraba states with 113 ethnic groups 

(Otite, 1990).  Other states with enormous heterogeneity are Kaduna, Bauchi, Benue, 

Borno, Cross River, Kwara, Niger, Plateau and Nasarawa. By contrast, most homogenous 

states include the Igbo-speaking states of Anambra, Abia and Imo; Oyo and Osun which 

are Yoruba-speaking and Katsina state where the dominant groups are Hausa and Fulani. 

Most towns and villages are however ethnically mixed, especially Lagos, Kano, Port 

Harcourt, Onitsha, Abuja, Jos, Kaduna, Ibadan and Benin City (Ehgosa, 2002). It was 
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known that the major languages spoken in Nigeria represent three major families of 

African languages. The majority are Niger-Congo languages such as Yoruba, Igbo and 

Ijaw. The Hausa language is Afro-Asiatic and the Kanuri, spoken in the North-east, 

primarily Borno state, is a member of the Nilo-Saharan family (Blench, 2011).    

The boundaries of present-day Nigeria were created by the British colonial administration 

in the late nineteenth and early twentieth centuries (Elochukwu, 1997: Hodgkins, 1984; 

Falola and Heaton, 2008). While political boundaries often coincide with physical 

boundaries, such as bodies of water or mountain ranges, or established by mutual 

agreement between societies over generations, the boundaries adopted to create modern 

Nigeria never had any geophysical boundary or physical significance to the indigenous 

peoples of the region. The only geophysical boundary of Nigeria is the Atlantic Ocean, 

which forms the southernmost border of the country. Her eastern, western and northern 

borders are all relatively arbitrary, having been negotiated at drafting tables in Europe 

rather than through local processes of societal development (Falola and Heaton, 2008). 

The Country hence was a conglomerate of hundreds of ethnic groups, many of which 

straddle these arbitrary borders. The Nigerian people of today thus have many different 

indigenous languages, historical memories, traditional lifestyles and social frameworks 

with roots reaching into the distant past. 
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4.3 Are there correlations between genetic distances and geographical distances in 

the Nigerian populations? 

The Mantle’s test (Table 3.11) was used to resolve this question conclusively. Based on 

the Rst distance matrix for Y-STR and Fst distance matrix for Y-SNP there were strong 

correlations of these with the geographical distances in the Nigerian populations. Even 

though the linguistic distances were not constructed for the Nigerian populations, the 

distinct manner that the Nigerian populations settled (Afro- Asiatic populations in the 

Northern part and all Niger-Congo populations in the Southern part and even surprisingly 

the Nilo-Saharans populations in the North East across the Lake Chad region, this would 

not have been surprising. The Afro-asiatic language-speaking Hausa populations 

provided all the distinctions by their geographical origin and language from the others to 

make notable difference.  

Again, when this was contrasted with the report of Veeramah and other workers 

(Veeramah, et al., 2010), they got no correlation at all the distances they contrasted 

except when including the wide geographically distant Ghanaian and Cameroonian 

populations that they also analyzed. 

The most in-depth genetic studies on the populations of any part of Nigeria were the fine-

scaled dense sampling of the peoples of the Cross rivers area (Veeramah, et al., 2010).  

Using six Y-STRs and some Y-SNP and the Hyper Variable Region1 (HVRI) of the 
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mitochondrial DNA (mtDNA) of more than 1000 male subjects, they concluded that 

there was little genetic differentiation among the populations despite significant language 

difference. They also extoled the merits of fine scaled sampling over a region rather than 

the broader geographical distances utilized in most literature. Other studies included the 

12 Yoruba males (Barbieri, et al., 2012; Shi, et al., 2010; de Filippo, et al., 2011, Hausa 

(Tishkoff, et al., 2009), Igbo (Adeyemo, et al., 2005), Tiv (Montano, et al., 2011), Idoma, 

Fulani and a few others that are not purely resident in Nigeria (Alloco, et al., 2007; 

Disotell, 2000; Salas, et al., 2002, Hassan, et al., 2008; Zictkiewiicz, et al., 1998, Deka, 

et al., 1999;  Shi, et al., 2010; Woods, et al., 2005; Montano, et al., 2011).  The literatures 

revealed a common denominator, that these genetic markers form a significant part of the 

heterogeneous Africa genetic landscape (Tishkoff, et al., 2009). They established that the 

Fulani population exhibited low levels of European/ Middle Eastern ancestry, consistent 

with possible gene flow from those regions. Nilo-Saharan speaking populations from 

Nigeria (the Kanuri population) also shared a genetic cluster with peoples of Southern 

Sudan. A similar cluster with Bantu-speakers of West-Central Africa and East Africa was 

observed among individuals from Nigeria who speak non-bantu Niger-Kordofanian 

languages (the Yoruba, Igbo and Ijaw populations) (Tishkoff, et al., 2009). 

Generally however in a broader West African or sub-Saharan African context, there was 

a clear genetic separation of Nigerian and sub-Saharan African populations from North 

African populations. The latter more closely resembling Middle Eastern and Eurasian 
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populations in almost all mtDNA, NRY and autosomal studies (Poloni, et al., (1997); 

Scozzari, et al., (1999); Luis, et al., (2004); Cruciani, et al., (2002); Salas, et al., (2002); 

Terreros, et al., (2005)), demonstrating the major genetic barrier that the Sahara Desert 

has been through much of modern man’s occupation of the African continent. However 

there was evidence of contact in both directions involving both male and female mediated 

gene flow in populations lying close to the boundaries of the Sahara: the Chad Basin, 

Guinea Bissau and Algeria (Salas, et al., (2002), Coia, et al., (2005), Rosa, et al., (2004), 

Rosa, et al., (2007), Cerny, et al., (2007), Flores, et al., (2001), Richards, et al., (2003)), 

with the expansions of Berbers, migrations of Fulani and the Arab slave trade possibly 

being major influences.  

Both NRY and mtDNA lineages appear to have been spread through much of sub-

Saharan Africa as a result of Bantu expansion though the patterns observed for men and 

women are quite distinct. The majority of men in Bantu-speaking populations possess the 

NRY defined haplogroup E1b1a (Underhill, et al., 2001; Cruciani, et al., 2002) and a 

particular haplotype on this E1b1a background defined by six microsatellites (15-12-21-

10-11-13 for DYS19, DYS388, DYS390, DYS391, DYS392 and DYS393 respectively) 

was the modal type in numerous Bantu-speaking populations, stretching all the way from 

Cameroon and Nigeria to Southern Africa (Thomas, et al., 2000; Pereira, et al., 2002; 

Berniel-Lee, et al., 2006). Given its predominant presence in Bantu-speaking 

populations, its relatively low within-haplogroup diversity (Scozzari, et al., 1999) and an 
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estimated time for the most recent common ancestor for South African Bantu possessing 

E1b1a chromosomes of 3000-5000 years before present (Thomas, et al., 2000) this 

distribution was best interpreted as a signature of Bantu-speaking males expanding across 

sub-Saharan Africa. 

NRY data from Senegal, Guinea Bissau, Gambia and Ghana showed a high frequency of 

haplogroup E1b1a (Semino, et al., 2002; Wood, et al., 2005; Rosa, et al., 2007), which 

was interesting given that the haplogroup was a putative signature of the Bantu expansion 

(Underhill, et al., 2001), suggesting it has an older and geographically more widespread 

significance, possibly being a signature of the original proto Niger-Congo speakers. In 

addition or alternatively, the low NRY haplogroup diversity in West Africa may be a 

product of agricultural expansion throughout the region or another part of the same 

expansion that included that of the Bantu-speaking peoples. 

The Chad Basin presented a very heterogeneous genetic profile that differed significantly 

between male- and female-specific lineages, consistent with the complex population 

movements the region had experienced. The NRY, mostly assessed by datasets from 

northern Cameroon, showed a substantial proportion of R1*-M173 types (Scozzari, et 

al.,1999; Cruciani, et al., 2002; van Oven, et al., 2014), a clade not usually found 

elsewhere in sub-Saharan Africa but present in Asia (Luis, et al., 2004). This has been 

presented as evidence for a possible back migration from Asia to sub-Saharan African 

through the Levantine corridor. However, mtDNA showed no such signal, suggesting that 
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admixture of the immigrating group was primarily male-mediated; at least once they 

reached their destination (Coia, et al., 2005). The mtDNA data are still very 

heterogeneous with many different types showing a mostly Central African connection 

but with possible gene flow from East Africa and from West Africa (Cerny, et al., 2004; 

Cerny, et al., 2007) as well as a small North African influence (Coia, et al., 2005), 

demonstrating that the Sahel along which the Chad Basin lies, has been a major corridor 

for human migration in Africa. 

Montano and co-workers explored previously unsampled populations in Central Nigeria 

with a view to reviewing some aspects of the Bantu expansion problems (Montano, et al., 

2011). They discovered distinct genetic substructures on the backgrounds of Haplogroups 

E1b1a7 and E1b1a8 when they explored the different sub-haplogroups of these lineages 

between Bantu and Non Bantu speakers and among different Bantu populations of 

Central Africa. These, with the published mtDNA data for the Yoruba populations by 

Barbieri and co- workers, studies on Burkina Faso populations (Barbieri, et al., 2012) are 

good attempts to fill the dearth of genetic data on Nigeria and contribute to the on-going 

discussions on the resolution and significance of demographic events in sub-Saharan 

Africa. 

 

 

 

 

 



118 
 

4.4 Was inter-haplogroup STR profile sharing a common or rare occurrence in this 

Nigerian dataset? 

This question arose from the observations from the Southern Nigerian dataset set of 

Veeramah and other workers (Veeramah, et al., 2010) that there were significant inter 

haplogroup STR profile sharing among the populations of the Cross Rivers region of 

Nigeria. This perhaps may result in influencing their conclusions of little genetic 

differentiation among those populations. However, based on the SWGDAM STR profiles 

evaluated in this report, no inter-haplogroup STR sharing was observed in these Nigerian 

populations. Apparently, the number of loci evaluated might have resulted in this 

different outcome. The conclusions from results in this thesis overall, were based solely 

on the 11 SWGDAM STR profiles. It has however been shown that it was not just 

increasing the number of the STR but the particular qualities of the STR that improves 

their forensic usefulness (Hedman, et al., 2011; D’Amato, et al., 2011 and Ballantyne, et 

al., 2010).  

The incorporation of haplogroup profiles along with STR was recommended to enhance 

the value of the YHRD and when this was explored with the Nigerian dataset, there was 

no improvement in the discrimination capacity among this Nigerian dataset. This was 

apparently because, at the level of the SWGDAM STRs utilized in this report, no inter-

lineage STR sharing was observed. 
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De Filippo and other workers (de Filippo, et al., 2011), using a technique called Linear 

Discriminant Analysis (LDA), were able to achieve a more than 92% accuracy in 

predicting the haplogroups from Y-STR profiles of populations within and very close to 

the Bantu-language speaking populations of sub-Saharan Africa. As this technique was 

not applied to this dataset, it is hoped that future studies will be done to evaluate this 

process of LDA experiment with the Nigerian population. This is to take forward efforts 

at achieving accuracy as was observed by the Japanese and others in their populations 

(Mizano, et al., 2010; Schlecht, et al., 2008). However, towards this process, it must be 

borne in mind that, even de Filippo and others (de Filippo, et al., 2011) recognized the 

constraint of extrapolating this process for populations beyond the Bantu language 

speakers where the result was much less accurate.   

Based on the well-reported conclusion of Hammer and other workers (Hammer, et al., 

2000) that Jewish and Middle Eastern non-Jewish populations shared a common pool of 

Y-chromosome bi-allelic haplotypes, the expectation of finding Nigerian populations 

clustering with such populations might lend credence to the historical myth of origin of 

the male founders of many Nigerian populations coming from such exotic places and thus 

inspire a full investigation of this hypothesis. However the results in this thesis, which 

revealed North African populations (Algeria, Morocco and Tunisia) clustering with a 

Middle Eastern population (Saudi Arabia), was assessed with the Nigerian populations at 

the SWGDAM STR profile level (as this was synonymous with the SNP result in the 
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Nigerian populations), did not provide a prima facie support such conclusions on the 

myth of origin.  

The Neighbour Joining Tree result in this thesis confirmed the relatively close association 

of the North African with the Middle Eastern populations but glaringly exposed the 

Nigerian populations as clustering with other sub-Saharan African populations. Most of 

the other results in this thesis showed a much closer relationship of sub-Saharan African 

populations among themselves rather than with populations afar off. This was also 

observed in the Veeramah and others report, establishing that the claims of some 

Southern Nigerian populations in the Cross Rivers region originating from the Middle 

East have no genetic evidence so far (Veeramah, et al., 2010). The caveat in this thesis 

however was that, those subjects whose haplogroups were not resolved could perhaps be 

the carriers of the Middle Eastern signature. However, considering their number which is 

obviously less than 5% of the sampled subjects, this hypothetical situation could be 

explained as counseled by Jobling and Tyler-Smith (Jobling and Tyler-Smith, 2003), as 

more recent introgressions from the Middle East as a result of the advent of Islam (in the 

last 1000 years) with its demand of regular pilgrimages (and other social interactions) to 

Saudi Arabia and from many countries of the world including Nigeria.  

 

 

 

 

 

 



121 
 

4.5 Are there other important issues from these experiments? 

The first issue addressed here was the ascertainment bias associated with the choice of Y-

SNP markers evaluated in this thesis. The SNPs were resolved at the very roots of the 

major haplogroups found in Africa, to ensure that deep ancestral origins were captured. 

This approach was fairly representative considering that the haplogroup diversities 

confirmed that three major haplogroups were observed in significant proportion. The 

major Y-SNP haplogroups found in Africa are A, B, E, J and R (Underhill, et al., 2001; 

Cruciani, et al., 2002; Tishkoff, et al., 2007; Batini, et al., 2011). Both haplogroups J and 

R are geographically restricted to Eastern and Central Africa respectively. Haplogroup A 

is very rare in West Africa (Batini, et al., 2011). A cautionary note with Y-SNP profile 

generally is that, the lack of evidence does not confirm an absence (Jobling and Tyler-

Smith, 2003), as sample sizes in some cases might be extremely small that it could not 

have represented all possible haplogroups present in a population. 

In this thesis, all the subjects, except four individuals, were resolved into three major 

haplogroups namely B, E and R. This immediately raises a bias issue and a need to 

assimilate the report with caution. However, a comparison of this result with that reported 

by Veeramah and others (Veeramah, et al., 2010) on 1081 individuals from the Cross 

Rivers region of Southern Nigeria, which found only 5 and 1 individual respectively 

belonging to haplogroups A and J respectively (less than 0.5% and 0.1% respectively), 

erases such concern. In the same report (Veeramah, et al., 2010), they observed 8.4% 
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haplogroup B and more than 91% with haplogroup E background which was very similar 

to the findings of this thesis (Table 3.2). 

The impact of historical freed slaves’ re-integration in these regions of modern Nigeria 

might also significantly undermine the generally self-ascribed ethnicities of most people 

found in these regions. Lovejoy (Lovejoy 1986; Lovejoy, 2000) estimated that the Trans-

Sahara slave trade resulted in the demic-diffusion of more than five million peoples in 

Africa. Jobling and Tyler-Smith (Jobling and Tyler-Smith, 2003) advised that more 

recent explanations of genetic admixtures must be excluded before inferring pre-historic 

interpretation of population genetics data.  

Geographic proximity apparently influenced substantially the gene flow among these 

Niger Congo speaking southern Nigerian populations rather than with the linguistically 

different Afro-Asiatic Hausa populations. This could explain the apparent non-

differentiations of the Southern populations from their linguistically different neighbours. 

The relatively few gene exchange between Northern Nigeria Hausa populations and the 

four Southern Nigeria neighbours could be explained from the demographic influences of 

the last two millennial including, but not limited to, the trans-Sahara slave trade and other 

commercial contacts, inter-ethnic wars, and most importantly, the various cultural 

practices like polygamy, patrilocality, exogamy, and even, the re-integration of freed 

slaves from other parts of the continent (Falola and Heaton, 2008; Wood, et al., 2005). 
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4.6 Forensic significance of these dataset 

The forensic science infrastructures in Nigeria are being upgraded to cope with a rising 

security challenge by home-grown terrorist groups. Prior to this upsurge in violent 

crimes, rape and indecent assault cases ranked 4th on the scale of most serious crimes 

against persons reported in Nigeria (Alemika and Chukwuma, 2010). In some few cases 

when prosecutions were attempted, they were unsuccessful on the strength of weak 

evidence. The established autosomal marker based forensic analysis was unhelpful in the 

face of overwhelming female victims’ cells over the comparatively small male signals. 

The absence of a reference population database of Nigerian populations too, might not 

allow for a statistical haplotype frequency estimates. However for this, the YHRD 

African meta-population database provides some temporary relief. The ultimate would be 

to have a database that fully represents all the different alleles in the Nigerian populations 

with high haplotype diversities within and among populations but without geographic 

structure (Tables 3.5a-f).  

This thesis provides a complete profile of 463 males, representing five major Nigerian 

populations based on the SWGDAM recommended 11-loci STRs. Two notable features 

of these profiles are: (a) the high haplotype diversities among individual populations, and 

(b) the low discrimination capacities (DC) in 60% of the sampled populations (Igbo, 

Yoruba and Ijaw). The haplotypes obtained in this report could be incorporated and used 
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in a DNA reference population database that could be deployed in forensic match 

frequency estimation. 

The issue of DNA reference database was a critical requirement for the use of DNA 

profiles from crime scenes. The Y-STR analyzed here would be very useful in resolving 

male specific forensic cases despite their non-specific identification and the population 

stratification associated with them at both national and continental levels. 

It has been suggested that between 100 and 150 individuals per population could provide 

an adequate sampling for a genetic locus (Chakraborty, 1992). At this locus, allele 

frequencies below 1% would not be used in forensic calculations. Foreman and Evett also 

suggested that collecting information from more samples usually only improves the 

precision of a result rather than the accuracy of the allele count (Foreman and Evett, 

2001). It was also recommended that each allele should be observed at least 5 times to be 

included in reliable statistical calculations. However, Hale and others (Hale, et al., 2012) 

and Pruett and Winker (Pruett and Winker, 2008) both argued that, at least 20-30 

individuals be sampled in microsatellite studies that assess genetic diversity when 

working in a population that has unknown level of diversity. They suggested that when 

large sample sizes are not possible or extremely difficult to obtain (as in the case of 

endangered species), research should include measures of genetic diversity if sample 

sizes are less than ideal. They tested sample sizes as low as 10 and even 5 individuals. 

This advice was followed in this thesis (Table 2.1) as seen in the low overall sample 
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sizes of the Bini and Ijaw populations. This was the reason the results of Bini and Ijaw 

populations forensic parameters were assimilated with caution in this thesis. An 

alternative solution to this sample size issue was rarefaction (-a statistical technique that 

compares observed taxon richness at a standardized sampling effort using confidence 

intervals) which provides a useful way to compare estimates of allelic diversity. 

A major drawback of Y-STRs in forensics was the sometimes low diversities and 

geographical structures within specific populations (Hedman, et al., 2011). These two 

issues could be resolved in two ways; (1) Increase the number of polymorphic markers 

and/or (2) explore or add new and fast mutating STRs (Hedman, et al., 2011; D’Amato, 

et al., 2011; Ballantyne, et al., 2010). The first approach was the standard method and the 

rationale behind the 17 loci commercial kits. The second approach was applied successful 

by these cited publications to Finish population (Hedman, et al, 2011), South African 

populations (D’Amato, et al., 2011) and European populations (Ballantyne, et al., 2010). 

Ballantyne and others were able to demonstrate even a distinction between close and 

distant relatives of a male DNA profile with their new rapidly mutating 13 STRs system 

(Ballantyne, et al., 2010; Ballantyne, et al., 2012; Ballantyne, et al., 2014).  They 

overcame the associated problems that affect Y-STR mutation rates namely (a) the total 

repeat number, (b) repeat complexity, (c) length of base pairs repeat motifs and (d) the 

age of the father in a father son pair. They highlighted  earlier problems associated with 

the approach of applying average mutation rates for Y-STRs and suggested the use of 
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only locus specific knowledge in subsequent applications in evolutionary and forensic 

studies, as utilized in this thesis, de Filippo and others (de Filippo, et al., 2011) and also 

Batini and others reports (Batini, et. al., 2011).  The profiles reported in this thesis 

allowed for comparison of different Nigerian populations’ profiles with several others in 

the YHRD, especially within the African meta-population (a great potential to enrich the 

YHRD when added). There has not been any reported data of this nature from Nigeria 

with which to compare.  In Veeramah and others report of more than 1000 Nigerian 

chromosomes (Veeramah, et al., 2010), where they observed no genetic differentiation 

among the populations evaluated, they limited the scope of their investigation to basically 

evolutionary and ancestral studies, and thus used only six (6) Y-STRs, not even the 

minimal haplotypes as used in Forensics.  

On some 51 African-wide populations comparison for the SWGDAM recommended loci 

also evaluated (Supplementary Table 3) however, geographic structuring was observed, 

even among those formerly assumed to be homogenous Bantu speaking populations (De 

Filippo, et al., 2011; Berniel-Lee, et al., 2009; Montano, et al., 2011). Three different 

proposals to resolve this geographic structure are as follows: (1) to increase the number 

of STR loci to 17 as used in the Y-filer or other commercial kits (instead of the 11 used in 

this thesis) and to sample more previously unsampled Nigeria populations (from the more 

than 250 ethnic nationalities).  (2) To explore the new 10-plex STRs developed in South 

Africa for their likely African populations’ specificity (D’Amato, et al., 2011). (3) To 
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explore the 13 rapidly mutating STRs validated for European populations for their world 

wide applications (Ballantyne, et al., 2010; Ballantyne, et al., 2014). All these to varying 

degrees will definitely change the current situation not only with the forensic application 

of Y-STRs in Nigeria but within the African continent and even world-wide. Some  

African population data (Table 3.8) for Y-STR have reported the 17- loci systems but 

with very limited number of populations within Countries, making it difficult to assess 

the impact among several populations within the same country (Omran, et al., 2008; 

Laouina, et al., 2011; Gomes, et al., 2010;  Arroyo-Prado, et al., 2005; Alves, et al., 

2003). 

 4.7 Was there any genetic evidence to corroborate the historical and archeological 

pre-existence of the Nigerian populations in their current geographical locations? 

The inter-lineages TMRCA, apart from confirming and describing a consistent age 

distinctions among the major haplogroups found in Nigeria also revealed the presumably 

shortest time of human existence in the area to be not less than 10,000 to 30,000 years 

ago. This corroborates the age ascribed to an archeological findings in the central 

Nigerian region dated to approximately 11,000 years ago (Falola and Heaton, 2008; 

Alabi, 2005). Apparently, the ethnicity might not be as well defined as today. 

At the level of inter-lineages however, Shi and other workers (Shi, et al., 2010) 

established that the Yoruba population has a minimum TMRCA of 17,000 years ago and 
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an expansion time of at least 12,000 years ago (based on population-wide estimation 

regardless of the specific haplogroups as estimated in this report). Apparently, their 

observations could have been majorly influenced by the comparatively older haplogroup 

B. It was also possible that about this time, the population was not known as Yoruba 

which now only retained the genetic make-up of their pre-historic ancestors. 

The relatively lower TMRCA for Haplogroup E1b1a7 represented the Pre-bantu 

expansion presence of this haplogroup among some Nigerian populations (Hausa, Bini 

and Ijaw). As the date of the Bantu expansion was estimated to be between 3000 and 

5000 years ago (Veeramah, et al., 2010), the overall results in this thesis suggested that 

the E1b1a7 lineage (and other lineages) was in rapid expansion with no particular pattern 

in the Nigeria area. Indeed, the signature Bantu haplotype (15-21-10-11-13 for DYS19, 

DYS390, DYS391, DYS 392 and DYS393 respectively, as DYS388 was not assessed in 

this thesis) was present in significant proportion among the four southern Nigerian Non-

Bantu speaking Niger Congo Nigerian populations of Bini, Ijaw, Igbo and Yoruba. 

 The distinction between the dates of haplogroups B and both haplogroups E1b1a7 and 

E1b1a8 seems to lend credence to the historical observance of different waves of 

settlements in the Nigeria area at significantly different times. The older settlers could be 

presumed to be haplogroup B while the later settlers were ancestors of haplogroup 

E1b1a7 and E1b1a8 (Falola and Heaton, 2008). The results in this thesis also hinted at 

the relatively equal migrants from both the Afro-asiatic speaking Hausa population (40) 
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of Northern Nigeria and the Niger-Congo language speaking Igbo, Yoruba, Bini and Ijaw 

populations (31) of Southern Nigeria respectively (Table 3.12). 

The conclusion above seemed to be supported by other lines of evidence. For instance, 

given the rapid expansion, especially of Haplogroups E1b1a7 and E1b1a8 from the 

network plots in Figures 3.8a-f, and a diminished presence of these haplogroups in the 

Hausa populations, Tables 3.1 and 3.2, the Hausa population could not have been the 

source migrants of these haplogroups. Apparently, as shown from the results in this 

thesis, the modern Nigeria area has been a site of massive migration, without any strong 

evidence on the pattern of these migrations. This was quite possible with the absence of 

any physical or natural barrier to migration around the Niger-Benue River confluence, 

from which Nigeria got her name. 

The insight from genetics in this thesis had significant corroboration from both 

archeology evidence and history of the peoples living in the area of modern day Nigeria. 

The Late Stone Age (LSA), between roughly 12,000 and 4,000 years ago (Falola and 

Heaton, 2008; Alabi, 2005) was a period of major firsts for human development in the 

territories in and around modern-day Nigeria.  The first known human remains were 

found in the Iwo Eleru rock shelter in what is now southwestern Nigeria, and have been 

dated to around 11,000 years ago. While humans must have lived in the area well before 

this time, the LSA was unique historically for several other reasons. It was widely 
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postulated that this was characterized by unprecedented levels of migration in the greater 

Nigeria area, particular as people moved south from the savanna into the forest zones to 

escape the rapid desiccation of the Sahara. Secondly, it was during this period that 

humans in the greater Nigeria began to use stone tools, called microliths. These tools led 

to the development of pottery around 5,000 years ago in most areas and ultimately to the 

development of agriculture between 6,000 and 3,000 years ago, depending on the specific 

area in focus. Development of agriculture allowed for the establishment of permanent 

settlements. This also meant a departure from hunting and gathering activities to the 

centralization of food resources, which allowed dwelling together on a lasting basis. 

Much evidence has been uncovered in the various ecological region of modern-day 

Nigeria dating from the LSA period. These include Apa I, Iwo Eleru, Ifetedo and Ita-

Ogbolu in the southern forested region to the Itaakpa in the middle belt region, Mejiro 

cave, Afikpo and Rop in the savanna zone, and Daima and other sites in the Chad basin 

area of the Sahel (Alabi, 2005). Iwo Eleru I in   particular showed evidence of both the 

aceramic and ceramic periods of between 12,000 to 7,000 years ago and 7,000 to 3,500 

years ago respectively. Afikpo in the southeastern part revealed three phases of 

development covering a few microlithic tools before 5,000 years ago, flaked axes 

between 5,000 and 2,500 years ago and different types of ceramics commencing around 

2,100 years ago, different from those of the second phase. The transition from hunting to 

agricultural tools seemed to confirm this theory (Alabi, 2005). Lake Chad region revealed 
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evidence from Daima and Kursakata, the presence of domesticated animals like sheep, 

goats and cattle about 4,000 years ago. Archeologists believed that animal husbandry 

reached here across the Sahara from the east and north between 5,000 and 4,000 years 

ago (Breunig, et al., 1996). Remains of horses from North Africa have been found in 

archeological sites in the savanna and Sahel dating to roughly 3,000 years ago. Unlike 

those in Europe, or the Near east, most west African societies transited directly from the 

use of stone tools to iron  without an intervening period of using softer tools like copper 

or bronze. More evidence of iron-working and iron tools at archeological sites dates from 

about 9,000 years ago at Taruga, near Abuja, in the middle belt region. This Taruga was 

also known to be the Centre of the Nok culture, most famous in archeological circles for 

the large terracotta sculptures found within 500 km radius of Taruga. This technology 

which could have come from other region through trade contacts or migration indicated a 

local knowledge of iron production. Other areas in the region include Tadun Wada, 

Kuchamfa, Jemaa Maitumbi, Kawu and Kagara, all of which were smelting iron between 

2,900 years ago and 1,800 years ago, the recognized dates for the duration of the Nok 

culture (Aremu, 2005). Eventually, this technology became rampant in the greater 

Nigeria areas like Uffe Ijumu, in the south west, 1860 years ago (Oyelaran, 1998), Opi in 

the southeast, as early as 7,000 years ago (Okafor, 1993), (Connah, 1968) and (Hartle, 

1996).  
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The time-consuming nature of iron smelting, underscored the presence of professional 

Blacksmiths responsible for fashioning these tools in the places mentioned. The finished 

products of iron smelters in one region were evidently spreading to other regions through 

either migration or trade or both, indicating the extent to which distinct communities 

across long distances had contact with each other during this period (Falola and Heaton, 

2008). 

4.8 What were the genetic associations among the haplotypes in the Nigerian 

lineages?  

Apart from the network of haplogroup E1b1a7 which revealed the pattern of a rapidly 

expanded lineage with no structure, the remaining lineages revealed clearly that there 

were some branches of haplotypes in the lineages. As most lineages evaluated had sub-

clades that were not specifically evaluated, yet the networks revealed signatures of these. 

These branches, as summarized in the results section of this thesis, were not population 

specific, as could be seen from all the network plots (Figures 3.8a-f) and spatial auto 

correlation plots (Figures 3.9a-c).  Clinal relationships among the populations were not 

observed within the three major lineages (B, E1b1a7 and E1b1a8) found among Nigerian 

populations. 

The results also showed limited gene flow, particularly between geographical Northern 

and Southern populations as well as along linguistic lines of Afro-asiatic and Niger 
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Congo language speakers, the southern Nigerian populations were not distinguishable 

from each other at the levels of the two different genetic markers utilized, namely Y-

STRs and Y-SNPs. This might thus account for the non-population specific branches in 

the networks and also suggested that the current genetic structure of the Nigerian 

population had persisted from ancient date and has not be significantly obliterated by 

relatively recent events of slave trading (especially trans-Saharan) in the last 1,500 years 

and other demographic or cultural practices. 
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5.0   CHAPTER FIVE:  CONCLUSIONS AND RECOMMENDATIONS 

The Y-STRs are believed to be suitable for investigating more recent events, whereas Y-

chromosome single-nucleotide polymorphisms (Y-SNPs) are suitable for more ancient 

events (de Knijff, 2000) in human history. This was because of the observed 10,000 times 

slower mutation rate of Y-SNPs compared with Y-STRs (Thomson, et al., 2000). This 

thesis contributes to the growing number of systematic studies to compare the power of 

both marker systems in detecting the time depth of events in human population history 

and their potential forensic significance. 

5.1 Conclusions 

New Y-chromosome marker profiles of 463 unrelated Nigerian males representing five 

major populations namely Yoruba (238), Igbo (119), Hausa (78), Ijaw (15) and Bini (13) 

are reported. This significantly increases the amount of Nigerian genetic data available 

for comparison with other world populations and also serves to fill the scarcity of DNA 

data from Nigeria. When these are eventually contributed and incorporated into the 

existing Y haplotypes reference database (YHRD), they will be adding more than 270 

new Scientific Working Group on DNA Analytical Methods (SWGDAM) recommended 

haplotypes and also increase the frequency of previously uploaded haplotypes, which are 

also found in this report, by 120 on the YHRD. 
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The SWGDAM recommended 11 loci Short Tandem Repeats (STRs) and nine (9) 

Unique Event Polymorphisms (UEP) have been used to resolve 463 Nigerian male 

chromosomes into 394 Y-haplotypes and 7 Single Nucleotide Polymorphisms (SNPs) Y-

haplogroups. Only four of these were not assigned as they tested ancestral to all 

haplogroup tested. 

The STR haplotypes revealed a very high diversity within and among populations but no 

significant geographical sub-structures. 

The SNP haplogroups revealed that haplogroup E1b1b and haplogroup R are very rare in 

the four (4) Niger- Congo populations of Nigeria evaluated. 

Even though haplogroup E1b1b was thought to be the signature haplogroup of the Afro-

asiatic language speaking populations of Africa, the Hausa populations of Nigeria and 

Sudan seems to be exceptions to this rule demonstrating about 5% and 3% in these 

populations respectively. They also shared 18% and 13% respectively along the R 

lineage. 

The combined haplotype and haplogroup dataset revealed that while the southern 

Nigerian populations were substantially undistinguishable, there was notable sub-

structure among the Hausa populations hence revealing contrasting patterns among broad 

linguistic and geographical groupings. These patterns were different that while there was 

limited gene flow among the Afro-asiatic Hausa populations, there was substantial gene-
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flow among the Niger Congo populations of southern Nigeria. Language was found to be 

a greater factor in accounting for genetic variance among these populations than 

geography and ethnicity which all have significant effects. 

The most common haplogroups among the individual populations were E1b1a7, E1b1a8 

and B with geographically varying frequencies.  

The patterns of diversities of both haplotypes and haplogroups showed a North to South 

decreasing gradient. This pattern of diversities between STRs and SNPs also showed 

strong correlations to conclude that the structures observed in the Nigerian populations 

had an older rather than a more recent date.  

The five Nigerian populations demonstrated a glaring lack of evidence that their male 

founders descended from the Middle East by clustering with other sub-Saharan African 

populations rather than with the populations from both North Africa and the Middle East. 

There was strong correlation between both Rst and Fst distances and geographical 

distances among the Nigerian populations. 

There seems to be no pattern in the spread of the E1b1a7 lineage between the Hausa 

populations of Northern Nigeria and the southern Nigerian populations of Bini, Ijaw, 

Yoruba and Igbo.  
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Also the distinctions between the oldest TMRCA (haplogroup B) and the youngest 

TMRCA (haplogroup E1b1a8) corresponded with historical waves of settlements found 

in the literature.  
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5.2 Recommendations 

To resolve the potential issue of Y-STR haplotypes sub-structure within population for 

forensic applications, three proposals with increasing effectiveness are recommended:   

Increase the number of STR loci in future studies from the 11-loci STR used in this thesis 

to 17 loci. This will definitely increase both the diversity and reduce potential sub-

structure. 

Based on the successfully developed 10-STR multiplex system for South African 

populations, which was able to increase both the discrimination capacity (DC) and 

haplotype diversity (HD) and most importantly, its greater efficiency than the available 

17-loci commercial kits in those populations, apply this to the Nigerian populations to 

ascertain its African populations’ specificity. 

 The newly developed rapidly mutating 13 STRs that were found to even resolve both 

close and distant relations of male haplotypes in European populations, apart from their 

superiority to the 17 loci commercial kits in terms of their increased DC, HD and absence 

of substructures among nations, should be applied to the Nigerian populations and even 

other African populations to ascertain their world-wide applicability for forensic and 

evolutionary studies.     

To enhance the data on Nigerian population structure and demographics, a proposal to 

survey and analyze Nilo-Saharan populations of North eastern Nigeria and many 
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populations from the North central that were not reported in this thesis, which should 

specifically include in the minimum Idoma, Igala, Igbirra, Jukun, Kanuri, Kilba, Margi 

and Tiv populations, is recommended. This will give a fuller and more complete view of 

the Y profiles of the entire Nigerian landscape, having combined the earlier report on the 

Cross rivers region and the latest report in this thesis; it is proposed that the haplotype 

and haplogroup diversities of the North-Eastern Nilo-Saharan populations be evaluated. 

In addition to this, some sparsely sampled Hausa populations in some geographical 

locations could also be re-evaluated to confirm the complete none representation of the 

major haplogroups (E1b1a7 and E1b1a8) in them. 

Haplogroups E1b1a7 and E1b1a8 have several sub-haplogroups each. These could be 

very informative in revealing patterns of migration and dispersal of the apparently 

homogenous Igbo, Ijaw and Bini populations. A proposal to explore their signatures is 

recommended.  

Finally, despite the plethora of publications on the mitochondrial DNA (mtDNA) profiles 

of African populations which suggested a vastly homogenous maternal profiles among 

populations, it is still necessary to confirm this observation in the Nigerian populations 

too, to complete the pictures of uniparental markers signatures in Nigeria, especially for 

their evolutionary significance. 
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7.0 Appendices 

Preparation of Solutions 

Binding Solution (1.0 mL) 

Binding Saline (Promega) 2.5µL 

Ethanol (Merck Laboratories Supplies) 50.0µL 

Glacial Acetic Acid to fill to 1000.0µL 

 

10X TBE Buffer (2 Litres) 

• Tris (Merck Laboratory supplies) 216 gm. 

• Boric Acid (Merck Laboratory supplies) 112 gm. 

• EDTA (Merck Laboratory supplies) 16 gm. 

• Distilled Water to 2 Litres 

 

4 % Polyacrylamide Gel Mix 

• Urea (Merck Laboratory supplies) 72 gm. 

• 40 % 19:1 Polyacrylamide Solution (Promega) 20 ml 

• 10X TBE Buffer 20 mL 

• Distilled Water to 200 mL 

 

10X AMPS (10ml) 

• Ammonium Persulfate (AMPS) 1 gm. 

• Distilled Water 10 ml 

 

Loading Buffer 

• Formamide 5 μl 

• Loading Dye (Applied Biosystems) 2 μl 

• LIZ500 (Applied Biosystems) 1 μl 
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Preparation of Gel running Plates 

Gel Preparation 

1. A 4 % Polyacrylamide gel was prepared 

2. 25 ml of gel mix was then transferred to a clean 50 mL beaker. 

3. With a 50 mL syringe, gel mix was pulled up and filtered through a 0.22 micron filter 

directly into a side‐arm flask. 

4. Gel mix was swirled gently then degassed, for approximately 5 minutes, with 

intermittent gentle agitation. 

5. Gel mix was then transferred from the side‐arm flask to a clean 50 ml beaker. 

6. 125 μL (AMPS) and 17.5 μL N, N, N’, N’ Tetramethyl‐EthyleneDiamine (TEMED) 

was added to opposite sides of the beaker, and swirled gently 

 

Plate Set – Up 

1. The plates were cleaned using distilled water 

2. The plates were set – up according to the manufacturer’s instructions. 

 

Pouring of Gel 

1. Gel mix, containing AMPS and TEMED, was poured into plates which was previously 

mounted and left for two hours to solidify 

2. The plates were cleaned with distilled water and then dried. 

3. Plates were placed onto ABI® 377 DNA Sequencer and set – up was followed 

according to the manufacturer’s instructions. 

 

AGAROSE GEL WORK 

2X loading buffer (10mL) 

Bromophenol Blue (Merck laboratories Supplies (MLS)) 0.05gm 

Xylene Cyanol                                           0.05gm 

NaOH (Sodium Hydroxide)                            0.1mM 

Absolute Ethanol added to make 10.0mL. 
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Developing Solution (2Litres) 

NaOH pellets (MLS)           30.0gms 

15% Formaldehyde (MLS) 20mL 

Distilled water to make up to 2.0L 

 

 

Preparation of 1% Agarose Gel (50mL) 

Put 0.5gm of agarose in a beaker. 

Add 50mL of TBE buffer to the beaker. 

Heat up in a microwave oven for 60 seconds. 

Cool beaker under tap till lukewarm (not cold). 

Add 1.0 µL ethidium bromide and stir till fully dissolved. 

Pour in the preset with comb. 

Allow to stand for at least 30 minutes. 

Remove comb, and the gel is ready for use. 

 

Agarose Electrophoresis of PCR Product 

Put 2.0µL of PCR product in a 0.2mL tube. 

Add 1.0mL of loading dye to the tube. 

Transfer mixture to the well leaving enough space between wells. 

Add another sample with 2.0µL distilled water as negative control in another well. 

Add columns with DNA standards for comparison. 

Align electrodes and apply current till bands separate substantially
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Appendices Figure 1: Consent Form 
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Appendices Figure 2: Ethical Clearance 
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The Nigerian populations haplotypes and haplogroups profile  

S/N LAB CODE Ethnicity DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS385a,b DYS438 DYS439 Haplogroup 

N001 BINI9 BINI 17 13 30 21 10 11 14 17,21 11 13 E1b1a7 

N002 BINI1 BINI 17 13 30 21 10 11 15 17,19 11 12 E1b1a7 

N003 BINI10 BINI 17 12 33 21 13 11 16 18,19 13 14 E1b1a7 

N004 BINI11 BINI 14 13 30 23 11 11 13 17,18 11 12 E1b1b 

N005 BINI12 BINI 16 13 30 21 10 12 15 19,20 11 12 E1b1a7 

N006 BINI13 BINI 15 13 30 21 10 11 15 17,18 11 12 E1b1a7 

N007 BINI2 BINI 16 13 31 21 10 13 15 16,17 12 12 E1b1a7 

N008 BINI3 BINI 16 13 30 21 10 11 15 18,19 10 13 E1b1a7 

N009 BINI4 BINI 15 13 31 21 10 11 13 16,17 11 12 E1b1a8 

N010 BINI5 BINI 16 14 31 21 10 12 15 17,18 11 12 E1b1a7 

N011 BINI6 BINI 17 13 30 21 10 11 14 18,18 11 12 E1b1a7 

N012 BINI7 BINI 15 13 30 21 10 11 13 16,18 11 12 E1b1a8 

N013 BINI8 BINI 17 13 29 21 9 11 15 18,19 11 12 E1b1a7 

N014 HUSA33 HAUSA 17 13 30 21 10 11 15 14,18 11 12 E1b1a7 

N015 HUSA78 HAUSA 17 17 33 24 13 15 16 14,16 12 14 E 

N016 HUSA27 HAUSA 15 14 31 21 10 11 15 22,23 11 11 E1b1a7 

N017 HUSA13 HAUSA 15 13 32 21 10 11 13 16,17 11 13 E1b1a7 

N018 HUSA14 HAUSA 17 13 30 21 10 11 15 16,18 11 11 E1b1a7 

N019 HUSA34 HAUSA 15 11 29 24 11 11 13 12,12 10 12 B 

N020 HUSA54 HAUSA 16 13 31 23 10 14 13 16,17 11 13 E 

N021 HUSA60 HAUSA 15 14 30 24 12 14 13 12,13 11 12 R 

N022 HUSA66 HAUSA 17 15 30 25 11 14 16 17,18 13 14 R 

N023 HUSA74 HAUSA 14 14 32 21 10 11 13 15,17 11 12 E1b1a8 

N024 HUSA17 HAUSA 15 13 27 21 10 11 14 17,18 11 11 E1b1a7 

N025 HUSA36 HAUSA 16 13 30 21 10 11 14 17,18 11 12 E1b1a7 

N026 HUSA16 HAUSA 17 13 30 21 10 11 14 16,17 11 12 E1b1a7 

N027 HUSA3 HAUSA 16 12 29 21 10 11 15 19,19 10 14 E1b1a7 

N028 HUSA1 HAUSA 15 13 31 21 10 11 13 17,18 11 12 E1b1a7 

N029 HUSA10 HAUSA 17 14 33 21 10 11 14 16,18 11 13 E1b1a7 

N030 HUSA28 HAUSA 15 13 32 26 10 11 14 22,22 11 12 E 

N031 HUSA29 HAUSA 13 14 30 24 9 11 13 13,14 10 10 E1b1b 

N032 HUSA38 HAUSA 15 14 30 18 10 12 14 13,13 11 14 E1b1a 
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N033 HUSA9 HAUSA 16 14 30 24 10 11 13 13,13 11 13 R 

N034 HUSA2 HAUSA 15 14 30 24 10 13 14 18,20 12 12 B 

N035 HUSA26 HAUSA 14 13 30 21 10 11 13 16,16 10 12 E1b1a 

N036 HUSA7 HAUSA 17 13 29 21 10 11 14 12,14 11 11 B 

N037 HUSA18 HAUSA 15 14 30 24 10 13 12 14,14 12 12 R 

N038 HUSA19 HAUSA 13 13 30 22 10 14 13 14,15 10 12 E 

N039 HUSA20 HAUSA 15 13 29 24 13 13 13 15,20 13 12 E 

N040 HUSA40 HAUSA 15 13 30 24 9 13 12 13,15 11 12 E 

N041 HUSA59 HAUSA 13 14 30 24 10 13 13 13,15 11 12 R 

N042 HUSA8 HAUSA 15 14 31 24 12 12 13 13,15 12 13 R 

N043 HUSA11 HAUSA 17 14 30 24 10 11 14 13,13 11 13 R 

N044 HUSA12 HAUSA 13 14 31 24 10 11 12 17,18 11 11 E1b1b 

N045 HUSA22 HAUSA 17 14 30 24 10 12 13 13,13 12 12 R 

N046 HUSA23 HAUSA 16 13 30 24 10 13 15 12,13 11 11 R 

N047 HUSA25 HAUSA 16 14 30 24 10 11 14 13,13 11 13 R 

N048 HUSA31 HAUSA 15 13 32 21 10 10 13 16,18 11 11 E1b1a8 

N049 HUSA4 HAUSA 15 13 30 21 10 11 13 16,18 11 12 E1b1a8 

N050 HUSA43 HAUSA 17 13 30 21 10 11 14 20,21 10 12 E1b1a7 

N051 HUSA47 HAUSA 16 13 32 21 10 11 14 16,17 11 13 E1b1a7 

N052 HUSA53 HAUSA 12 14 32 24 10 12 13 17,19 12 11 E1b1b 

N053 HUSA41 HAUSA 16 12 30 22 9 12 13 16,16 10 13 E 

N054 HUSA49 HAUSA 17 12 29 21 10 11 16 16,18 11 12 E1b1a7 

N055 HUSA5 HAUSA 15 13 32 21 10 11 13 16,17 11 11 E1b1a8 

N056 HUSA65 HAUSA 14 12 27 22 8 11 13 15,20 11 11 E1b1a 

N057 HUSA73 HAUSA 15 13 32 21 10 10 13 16,17 11 11 E1b1a8 

N058 HUSA24 HAUSA 15 12 27 22 10 11 15 11,12 8 12 B 

N059 HUSA6 HAUSA 15 13 31 21 12 11 13 16,18 12 11 E1b1a8 

N060 HUSA15 HAUSA 16 12 29 22 11 11 13 12,16 8 12 B 

N061 HUSA21 HAUSA 16 12 30 21 10 11 14 16,16 11 13 E1b1a7 

N062 HUSA30 HAUSA 13 11 28 22 10 11 13 15,16 8 12 E 

N063 HUSA32 HAUSA 16 13 32 23 12 14 13 18,20 11 14 E 

N064 HUSA35 HAUSA 17 16 33 23 12 14 15 20,21 13 14 E 

N065 HUSA37 HAUSA 15 13 32 21 10 10 13 16,18 11 11 E1b1a8 

N066 HUSA39 HAUSA 16 14 30 24 10 14 13 13,15 12 12 R 
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N067 HUSA42 HAUSA 15 13 32 21 10 10 13 17,18 11 11 E1b1a7 

N068 HUSA44 HAUSA 16 12 29 21 10 12 14 16,18 11 13 E1b1a7 

N069 HUSA45 HAUSA 17 13 32 23 10 14 12 17,18 13 11 E 

N070 HUSA46 HAUSA 15 13 32 21 10 10 13 16,18 11 11 E1b1a8 

N071 HUSA48 HAUSA 15 13 30 20 10 11 13 16,18 11 11 E1b1a8 

N072 HUSA50 HAUSA 15 13 30 20 10 11 14 15,16 11 12 E1b1a7 

N073 HUSA51 HAUSA 17 12 29 21 11 11 15 16,18 11 12 E1b1a7 

N074 HUSA52 HAUSA 15 14 31 24 13 14 13 13,14 12 12 R 

N075 HUSA55 HAUSA 13 14 32 24 10 12 13 17,19 12 11 E1b1b 

N076 HUSA56 HAUSA 16 12 29 22 11 11 13 15,17 10 12 E1b1a7 

N077 HUSA57 HAUSA 16 12 30 22 10 11 13 15,16 10 11 E1b1a 

N078 HUSA58 HAUSA 15 13 30 21 10 11 13 16,17 12 13 E1b1a8 

N079 HUSA61 HAUSA 15 14 30 18 10 13 11 13,15 9 10 E 

N080 HUSA62 HAUSA 15 16 30 24 13 14 16 20,21 11 12 E 

N081 HUSA63 HAUSA 15 13 31 21 11 11 13 16,18 11 11 E1b1a8 

N082 HUSA64 HAUSA 18 13 30 21 10 11 15 16,18 11 12 E1b1a7 

N083 HUSA67 HAUSA 14 12 27 22 10 11 13 15,20 11 11 E 

N084 HUSA68 HAUSA 15 12 29 21 10 8 13 15,17 11 11 E1b1a 

N085 HUSA69 HAUSA 15 13 32 21 10 10 13 16,18 11 11 E1b1a8 

N086 HUSA70 HAUSA 17 13 29 24 10 13 13 14,14 11 11 R 

N087 HUSA71 HAUSA 15 13 32 21 10 10 13 16,18 13 11 E 

N088 HUSA72 HAUSA 17 13 29 24 10 13 12 11,12 10 14 B 

N089 HUSA75 HAUSA 16 14 32 21 10 11 13 15,17 13 12 E 

N090 HUSA76 HAUSA 16 14 31 22 11 12 14 13,13 11 13 R 

N091 HUSA77 HAUSA 14 14 31 21 10 11 14 11,13 10 12 B 

N092 IGBO100 IGBO 17 14 31 21 10 11 14 17,18 11 12 E1b1a7 

N093 IGBO102 IGBO 15 13 32 21 10 11 13 17,17 11 11 E1b1a7 

N094 IGBO110 IGBO 16 13 32 21 10 11 13 15,17 11 11 E1b1a7 

N095 IGBO15 IGBO 15 13 31 21 10 11 14 16,16 11 12 E1b1a7 

N096 IGBO19 IGBO 15 12 30 21 11 11 13 17,18 11 11 E1b1a7 

N097 IGBO26 IGBO 17 13 30 21 10 11 14 17,18 11 10 E1b1a7 

N098 IGBO27 IGBO 16 13 31 22 10 11 13 11,11 10 11 B 

N099 IGBO31 IGBO 15 14 30 20 10 12 14 14,16 11 11 E1b1a7 

N100 IGBO34 IGBO 17 13 30 21 10 11 13 17,19 11 12 E1b1a7 
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N101 IGBO52 IGBO 15 13 30 21 10 11 13 17,18 11 12 E1b1a7 

N102 IGBO55 IGBO 15 13 32 21 10 11 12 16,16 11 11 E1b1a8 

N103 IGBO61 IGBO 17 13 30 21 10 11 13 17,18 11 12 E1b1a7 

N104 IGBO67 IGBO 16 14 31 22 10 11 14 16,17 11 11 E1b1a7 

N105 IGBO72 IGBO 15 13 31 22 10 11 13 16,18 11 11 E1b1a8 

N106 IGBO78 IGBO 15 13 29 21 10 11 12 15,17 9 11 E1b1a8 

N107 IGBO82 IGBO 17 13 30 21 10 11 15 16,19 11 12 E1b1a7 

N108 IGBO87 IGBO 17 13 30 21 10 11 13 18,18 11 12 E1b1a7 

N109 IGBO94 IGBO 15 13 30 21 10 11 13 17,19 11 12 E1b1a7 

N110 IGBO99 IGBO 15 13 30 24 12 11 13 11,12 10 13 B 

N111 IGBO1 IGBO 15 13 32 21 10 11 13 17,18 11 11 E1b1a7 

N112 IGBO108 IGBO 15 13 31 21 10 11 13 15,20 11 12 E1b1a8 

N113 IGBO116 IGBO 16 13 31 21 10 11 13 16,18 11 12 E1b1a7 

N114 IGBO118 IGBO 16 13 30 21 10 11 14 17,18 11 11 E1b1a7 

N115 IGBO119 IGBO 17 13 33 21 10 11 15 17,18 11 12 E1b1a7 

N116 IGBO12 IGBO 17 13 31 21 10 11 15 16,18 11 13 E1b1a7 

N117 IGBO14 IGBO 15 14 32 21 10 11 13 15,17 11 13 E1b1a8 

N118 IGBO21 IGBO 15 13 31 21 9 11 13 16,17 11 11 E1b1a8 

N119 IGBO32 IGBO 15 11 29 22 10 11 11 14,17 8 10 E 

N120 IGBO36 IGBO 16 13 30 21 10 11 16 16,21 11 12 E1b1a7 

N121 IGBO46 IGBO 16 13 30 21 10 11 15 16,18 11 13 E1b1a7 

N122 IGBO47 IGBO 17 13 31 21 10 11 14 17,19 12 11 E1b1a7 

N123 IGBO49 IGBO 16 13 30 21 10 11 13 17,18 11 12 E1b1a7 

N124 IGBO6 IGBO 16 13 30 21 10 12 15 17,18 11 12 E1b1a7 

N125 IGBO62 IGBO 16 13 30 21 10 11 14 16,18 11 12 E1b1a7 

N126 IGBO70 IGBO 17 13 30 21 10 11 13 17,18 11 12 E1b1a7 

N127 IGBO71 IGBO 16 13 30 21 10 11 13 17,18 11 12 E1b1a7 

N128 IGBO73 IGBO 15 13 31 21 10 11 13 16,17 11 12 E1b1a8 

N129 IGBO74 IGBO 17 13 30 21 10 11 13 18,18 11 12 E1b1a7 

N130 IGBO75 IGBO 15 13 30 21 10 11 14 16,17 11 12 E1b1a7 

N131 IGBO8 IGBO 15 13 32 21 10 11 13 17,17 11 12 E1b1a7 

N132 IGBO84 IGBO 17 13 31 21 10 14 15 17,18 11 11 E1b1a7 

N133 IGBO92 IGBO 15 13 30 21 10 11 15 17,18 11 13 E1b1a7 

N134 IGBO109 IGBO 17 13 30 21 10 11 14 17,18 11 12 E1b1a7 
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N135 IGBO13 IGBO 14 12 31 21 10 11 13 16,17 11 12 E1b1a8 

N136 IGBO17 IGBO 15 13 31 21 10 11 12 17,17 11 12 E1b1a7 

N137 IGBO30 IGBO 16 13 29 21 10 11 14 17,17 11 12 E1b1a7 

N138 IGBO50 IGBO 14 12 30 21 10 11 13 13,16 11 12 E1b1a 

N139 IGBO104 IGBO 15 13 30 21 10 11 14 15,15 11 13 E1b1a7 

N140 IGBO106 IGBO 15 13 31 21 10 11 13 15,16 11 11 E1b1a8 

N141 IGBO112 IGBO 17 14 27 21 10 11 14 17,18 11 12 E1b1a7 

N142 IGBO16 IGBO 15 13 30 21 10 11 15 17,18 11 12 E1b1a7 

N143 IGBO2 IGBO 15 12 29 21 10 11 15 17,19 12 12 E1b1a7 

N144 IGBO20 IGBO 16 12 29 21 9 11 15 17,19 11 11 E1b1a7 

N145 IGBO40 IGBO 17 13 30 21 10 11 14 17,17 11 11 E1b1a7 

N146 IGBO69 IGBO 17 13 31 21 10 11 13 17,19 11 11 E1b1a7 

N147 IGBO7 IGBO 14 13 32 21 10 11 13 16,17 11 13 E1b1a8 

N148 IGBO90 IGBO 17 13 30 21 10 11 13 17,18 11 12 E1b1a7 

N149 IGBO95 IGBO 16 13 30 21 10 11 13 16,17 11 12 E1b1a7 

N150 IGBO97 IGBO 16 12 29 24 10 11 13 16,18 13 14 E 

N151 IGBO10 IGBO 16 12 31 22 9 13 14 15,16 11 12 E1b1a7 

N152 IGBO101 IGBO 14 13 30 21 10 11 16 16,17 11 12 E1b1a7 

N153 IGBO103 IGBO 16 13 30 21 10 11 13 17,18 11 13 E1b1a7 

N154 IGBO105 IGBO 15 13 31 22 10 11 14 17,19 11 12 E1b1a7 

N155 IGBO107 IGBO 15 13 30 21 11 11 15 16,17 11 11 E1b1a7 

N156 IGBO11 IGBO 15 13 30 21 9 11 13 18,18 11 11 E1b1a7 

N157 IGBO111 IGBO 17 14 31 21 10 11 14 17,18 11 12 E1b1a7 

N158 IGBO113 IGBO 17 14 31 21 10 11 15 17,17 11 13 E1b1a7 

N159 IGBO114 IGBO 16 14 32 21 11 11 13 17,19 11 11 E1b1a7 

N160 IGBO115 IGBO 15 12 30 21 11 11 15 16,18 11 12 E1b1a7 

N161 IGBO117 IGBO 15 13 31 21 10 12 12 17,20 11 11 E1b1a7 

N162 IGBO18 IGBO 17 13 30 21 10 11 15 16,17 11 13 E1b1a7 

N163 IGBO22 IGBO 14 13 31 21 10 11 13 16,18 11 12 E1b1a 

N164 IGBO24 IGBO 16 13 30 21 11 11 13 18,18 11 10 E1b1a7 

N165 IGBO28 IGBO 17 13 30 21 10 11 15 17,18 11 12 E1b1a7 

N166 IGBO29 IGBO 15 13 30 21 10 11 13 15,17 11 11 E1b1a8 

N167 IGBO3 IGBO 15 13 31 21 10 11 13 16,17 11 12 E1b1a8 

N168 IGBO33 IGBO 17 13 30 21 10 11 13 17,17 11 12 E1b1a7 

 

 

 

 



163 
 

N169 IGBO35 IGBO 15 12 29 22 11 12 13 13,15 9 11 

 
N170 IGBO37 IGBO 15 13 30 21 11 11 13 15,16 11 11 E1b1a8 

N171 IGBO38 IGBO 15 14 31 21 10 11 13 18,18 11 12 E1b1a7 

N172 IGBO39 IGBO 15 12 30 21 11 11 13 16,16 11 13 E1b1a7 

N173 IGBO4 IGBO 17 13 31 21 10 11 15 16,17 11 12 E1b1a7 

N174 IGBO41 IGBO 16 13 30 21 10 11 14 17,19 11 12 E1b1a7 

N175 IGBO42 IGBO 16 13 30 21 10 11 14 17,18 11 12 E1b1a7 

N176 IGBO43 IGBO 15 14 31 21 10 11 14 17,18 11 11 E1b1a7 

N177 IGBO44 IGBO 15 13 31 21 11 11 12 16,17 11 13 E1b1a8 

N178 IGBO45 IGBO 17 13 30 21 10 11 13 18,18 11 12 E1b1a7 

N179 IGBO48 IGBO 15 13 31 21 10 11 13 15,17 11 11 E1b1a8 

N180 IGBO51 IGBO 14 12 28 25 10 11 13 14,18 11 11 E 

N181 IGBO53 IGBO 17 13 30 21 10 11 14 17,20 11 13 E1b1a7 

N182 IGBO54 IGBO 16 13 30 21 10 11 13 16,18 11 11 E1b1a7 

N183 IGBO56 IGBO 16 13 30 21 10 11 13 16,18 11 11 E1b1a7 

N184 IGBO57 IGBO 16 13 30 21 10 11 13 17,18 11 13 E1b1a7 

N185 IGBO58 IGBO 17 12 29 21 11 11 15 17,17 11 12 E1b1a7 

N186 IGBO59 IGBO 17 13 30 21 10 11 14 17,17 11 12 E1b1a7 

N187 IGBO60 IGBO 17 13 31 21 10 11 13 15,17 12 11 E1b1a7 

N188 IGBO64 IGBO 17 13 30 21 10 11 14 17,19 11 13 E1b1a7 

N189 IGBO65 IGBO 16 13 30 22 10 11 15 11,12 11 13 B 

N190 IGBO68 IGBO 17 13 32 21 10 11 13 18,18 11 12 E1b1a7 

N191 IGBO76 IGBO 16 13 30 21 10 11 13 17,17 11 12 E1b1a7 

N192 IGBO77 IGBO 15 13 29 21 10 11 13 17,18 11 12 E1b1a7 

N193 IGBO79 IGBO 15 13 29 21 10 11 12 17,19 11 11 E1b1a7 

N194 IGBO80 IGBO 17 13 30 21 10 11 15 18,19 11 13 E1b1a7 

N195 IGBO81 IGBO 15 13 30 21 10 11 13 16,18 11 11 E1b1a8 

N196 IGBO86 IGBO 17 12 30 20 10 12 15 17,17 11 12 E1b1a7 

N197 IGBO88 IGBO 15 13 30 21 10 11 14 17,18 11 11 E1b1a7 

N198 IGBO89 IGBO 17 13 31 21 10 11 15 16,17 11 12 E1b1a7 

N199 IGBO9 IGBO 15 14 31 21 10 11 14 17,18 11 12 E1b1a7 

N200 IGBO91 IGBO 16 13 31 21 10 11 13 15,17 11 12 E1b1a7 

N201 IGBO93 IGBO 16 13 30 21 10 11 13 17,17 11 12 E1b1a7 

N202 IGBO98 IGBO 16 13 30 21 11 11 13 18,18 11 12 E1b1a7 
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N203 IGBO23 IGBO 16 12 28 21 10 11 15 15,17 11 12 E1b1a7 

N204 IGBO25 IGBO 17 13 30 21 11 11 14 17,19 11 11 E1b1a7 

N205 IGBO5 IGBO 16 13 30 21 10 11 15 15,18 11 13 E1b1a7 

N206 IGBO63 IGBO 16 14 31 21 10 11 14 17,17 11 12 E1b1a7 

N207 IGBO66 IGBO 17 14 32 21 10 11 14 18,18 11 13 E1b1a7 

N208 IGBO83 IGBO 16 14 31 21 10 11 14 17,18 11 12 E1b1a7 

N209 IGBO96 IGBO 17 13 29 21 10 11 15 15,21 11 11 E1b1a7 

N210 IGBO85 IGBO 17 13 30 21 10 12 13 17,19 11 12 E1b1a7 

N211 IJAW1 IJAW 15 12 29 21 10 11 13 14,16 10 13 E1b1a8 

N212 IJAW11 IJAW 17 14 31 21 10 11 15 17,18 11 12 E1b1a7 

N213 IJAW14 IJAW 17 13 30 21 10 11 14 17,18 11 13 E1b1a7 

N214 IJAW5 IJAW 16 13 31 21 11 13 15 16,21 12 12 E1b1a7 

N215 IJAW6 IJAW 15 14 33 21 10 11 13 15,16 11 12 E1b1a7 

N216 IJAW7 IJAW 14 13 30 21 10 11 14 16,17 11 12 E1b1a7 

N217 IJAW9 IJAW 17 13 30 21 10 11 14 16,17 11 12 E1b1a7 

N218 IJAW10 IJAW 15 12 29 22 10 11 14 14,15 9 13 E 

N219 IJAW12 IJAW 17 13 30 21 10 11 15 16,17 11 11 E1b1a7 

N220 IJAW13 IJAW 13 13 30 21 10 11 15 20,22 11 11 E1b1a 

N221 IJAW15 IJAW 17 13 30 21 10 11 15 16,17 11 11 E1b1a7 

N222 IJAW2 IJAW 15 13 33 21 10 11 13 17,17 11 12 E1b1a7 

N223 IJAW3 IJAW 15 13 31 21 10 11 15 16,17 11 11 E1b1a7 

N224 IJAW4 IJAW 16 13 30 21 10 11 15 17,17 11 11 E1b1a7 

N225 IJAW8 IJAW 17 13 30 21 10 11 16 21,22 11 12 E1b1a7 

N226 YRBA103 YORUBA 17 16 32 24 12 14 16 19,21 13 13 E 

N227 YRBA110 YORUBA 15 13 29 21 10 11 12 16,17 11 11 E1b1a8 

N228 YRBA169 YORUBA 17 13 30 21 10 11 14 14,18 11 12 E1b1a7 

N229 YRBA187 YORUBA 15 13 32 21 10 11 13 20,22 11 13 E1b1a 

N230 YRBA52 YORUBA 16 13 30 21 10 11 14 17,18 11 11 E1b1a7 

N231 YRBA80 YORUBA 15 13 32 21 10 11 13 16,17 11 12 E1b1a8 

N232 YRBA87 YORUBA 16 13 32 21 10 11 13 15,18 11 12 E1b1a7 

N233 YRBA119 YORUBA 17 14 32 21 10 11 15 15,16 11 11 E1b1a7 

N234 YRBA136 YORUBA 16 13 30 20 10 11 15 17,17 11 13 E1b1a7 

N235 YRBA167 YORUBA 17 13 31 21 11 11 13 17,17 11 12 E1b1a7 

N236 YRBA17 YORUBA 15 12 32 21 10 11 13 16,16 12 12 E1b1a7 
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N237 YRBA173 YORUBA 14 12 30 22 10 11 12 15,15 10 12 E1b1a 

N238 YRBA176 YORUBA 17 13 30 22 10 11 14 17,18 11 12 E1b1a7 

N239 YRBA178 YORUBA 16 13 32 21 10 10 13 16,18 11 11 E1b1a7 

N240 YRBA190 YORUBA 17 13 30 21 10 11 14 17,18 11 12 E1b1a7 

N241 YRBA217 YORUBA 17 14 31 21 11 11 15 15,18 11 14 E1b1a7 

N242 YRBA226 YORUBA 15 13 31 21 11 11 13 16,17 11 12 E1b1a8 

N243 YRBA235 YORUBA 15 14 32 21 10 11 13 16,17 11 12 E1b1a8 

N244 YRBA25 YORUBA 16 12 29 21 10 11 15 17,19 10 14 E1b1a7 

N245 YRBA50 YORUBA 16 13 30 21 9 12 15 17,19 11 12 E1b1a7 

N246 YRBA56 YORUBA 17 13 31 21 10 11 15 16,17 11 11 E1b1a7 

N247 YRBA68 YORUBA 15 13 30 21 10 11 13 11,13 11 12 B 

N248 YRBA69 YORUBA 15 13 30 21 10 11 14 17,18 11 12 E1b1a7 

N249 YRBA76 YORUBA 16 13 30 21 10 12 14 14,17 11 11 E1b1a7 

N250 YRBA77 YORUBA 14 13 31 21 10 11 13 16,17 11 12 E1b1a8 

N251 YRBA78 YORUBA 15 13 32 22 10 11 13 16,18 10 12 E1b1a8 

N252 YRBA79 YORUBA 14 12 31 21 9 11 13 17,17 11 11 E1b1a7 

N253 YRBA82 YORUBA 17 12 30 21 10 11 14 17,18 11 12 E1b1a7 

N254 YRBA91 YORUBA 15 13 32 21 10 11 13 15,18 11 12 E1b1a8 

N255 YRBA153 YORUBA 17 13 31 21 10 11 14 18,18 11 12 E1b1a7 

N256 YRBA184 YORUBA 16 13 30 21 10 11 13 16,18 11 11 E1b1a7 

N257 YRBA75 YORUBA 17 14 31 21 10 12 15 16,18 11 11 E1b1a7 

N258 YRBA10 YORUBA 15 14 30 24 11 13 13 13,16 12 12 R 

N259 YRBA126 YORUBA 17 13 30 21 10 11 16 16,18 11 12 E1b1a7 

N260 YRBA131 YORUBA 17 13 30 21 9 11 15 16,18 11 12 E1b1a7 

N261 YRBA141 YORUBA 16 13 30 21 10 11 14 18,18 11 12 E1b1a7 

N262 YRBA150 YORUBA 15 13 30 21 10 11 15 16,18 11 14 E1b1a7 

N263 YRBA166 YORUBA 15 13 32 21 10 11 13 17,18 11 12 E1b1a7 

N264 YRBA183 YORUBA 13 14 31 24 10 11 12 17,18 11 11 E1b1b 

N265 YRBA185 YORUBA 15 12 29 21 10 11 13 16,17 11 11 E1b1a8 

N266 YRBA218 YORUBA 15 12 31 21 10 12 13 17,18 11 12 E1b1a7 

N267 YRBA219 YORUBA 15 13 31 21 10 11 13 16,16 11 12 E1b1a8 

N268 YRBA229 YORUBA 16 13 31 21 10 11 14 16,17 11 12 E1b1a7 

N269 YRBA230 YORUBA 16 13 30 21 10 11 15 17,17 11 12 E1b1a7 

N270 YRBA231 YORUBA 15 13 30 21 9 11 15 17,18 11 12 E1b1a7 
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N271 YRBA232 YORUBA 15 13 31 21 10 11 14 16,17 11 12 E1b1a7 

N272 YRBA28 YORUBA 15 13 31 25 9 11 13 11,11 10 12 B 

N273 YRBA44 YORUBA 16 13 30 21 10 11 15 16,18 11 12 E1b1a7 

N274 YRBA6 YORUBA 17 14 32 21 10 11 14 17,18 11 12 E1b1a7 

N275 YRBA65 YORUBA 17 13 30 21 10 11 15 17,18 11 12 E1b1a7 

N276 YRBA70 YORUBA 15 13 30 21 10 11 15 16,17 11 12 E1b1a7 

N277 YRBA81 YORUBA 15 13 30 21 10 11 13 15,17 11 12 E1b1a8 

N278 YRBA97 YORUBA 17 13 31 21 10 11 14 17,18 11 12 E1b1a7 

N279 YRBA107 YORUBA 16 13 31 21 10 12 15 18,18 11 12 E1b1a7 

N280 YRBA109 YORUBA 15 13 30 21 10 11 14 17,18 11 12 E1b1a7 

N281 YRBA111 YORUBA 17 13 30 21 10 11 14 15,16 11 12 E1b1a7 

N282 YRBA115 YORUBA 15 13 30 21 10 11 14 19,19 11 12 E1b1a7 

N283 YRBA117 YORUBA 16 14 31 21 10 11 14 17,17 11 12 E1b1a7 

N284 YRBA12 YORUBA 17 13 30 21 10 11 14 17,20 11 12 E1b1a7 

N285 YRBA123 YORUBA 16 13 30 21 10 11 13 17,18 11 12 E1b1a7 

N286 YRBA129 YORUBA 17 13 30 21 10 11 14 17,17 11 12 E1b1a7 

N287 YRBA130 YORUBA 15 13 34 21 10 11 13 15,16 10 11 E1b1a8 

N288 YRBA134 YORUBA 15 13 31 21 10 11 13 16,17 11 13 E1b1a8 

N289 YRBA135 YORUBA 17 12 28 22 10 10 13 14,14 8 10 E 

N290 YRBA138 YORUBA 15 13 31 21 10 11 16 16,16 11 11 E1b1a7 

N291 YRBA14 YORUBA 15 13 32 21 10 11 14 16,17 11 12 E1b1a7 

N292 YRBA142 YORUBA 14 13 29 21 10 13 14 13,13 11 11 B 

N293 YRBA155 YORUBA 15 14 32 21 10 11 13 16,17 12 11 E1b1a8 

N294 YRBA156 YORUBA 17 13 31 21 10 11 15 17,18 11 12 E1b1a7 

N295 YRBA16 YORUBA 15 13 31 21 10 11 13 16,17 11 12 E1b1a8 

N296 YRBA165 YORUBA 17 13 30 21 10 11 14 17,18 11 12 E1b1a7 

N297 YRBA174 YORUBA 15 13 30 21 10 11 14 16,18 11 12 E1b1a7 

N298 YRBA175 YORUBA 15 13 30 21 10 11 13 16,18 11 11 E1b1a8 

N299 YRBA181 YORUBA 17 13 32 21 10 11 13 16,17 11 13 E1b1a7 

N300 YRBA182 YORUBA 15 13 29 21 10 11 13 21,22 11 11 E1b1a 

N301 YRBA204 YORUBA 17 13 30 21 10 11 14 17,17 11 11 E1b1a7 

N302 YRBA206 YORUBA 15 13 30 21 10 11 14 17,18 11 12 E1b1a7 

N303 YRBA207 YORUBA 16 13 30 21 10 11 13 16,17 11 12 E1b1a7 

N304 YRBA211 YORUBA 15 13 32 21 10 11 14 14,16 11 12 E1b1a7 
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N305 YRBA22 YORUBA 15 13 31 21 12 11 14 15,17 11 12 E1b1a7 

N306 YRBA227 YORUBA 17 13 30 21 10 11 14 17,20 11 12 E1b1a7 

N307 YRBA23 YORUBA 15 14 32 21 11 11 13 17,19 11 11 E1b1a7 

N308 YRBA234 YORUBA 15 13 31 21 10 11 13 16,17 11 12 E1b1a8 

N309 YRBA238 YORUBA 17 13 30 21 10 11 15 17,17 11 12 E1b1a7 

N310 YRBA35 YORUBA 17 13 30 21 11 11 15 18,18 11 12 E1b1a7 

N311 YRBA4 YORUBA 13 13 30 21 10 11 15 16,17 11 12 E1b1a7 

N312 YRBA43 YORUBA 15 13 32 21 10 11 13 16,18 11 13 E1b1a8 

N313 YRBA48 YORUBA 14 13 31 21 9 11 13 16,18 11 12 E1b1a8 

N314 YRBA49 YORUBA 16 12 28 21 10 11 15 15,17 11 12 E1b1a7 

N315 YRBA5 YORUBA 15 14 32 21 10 11 14 16,20 11 13 E1b1a 

N316 YRBA51 YORUBA 15 13 31 21 10 11 14 16,16 11 12 E1b1a7 

N317 YRBA55 YORUBA 17 13 31 21 10 11 15 16,17 11 11 E1b1a7 

N318 YRBA57 YORUBA 17 13 31 21 10 11 15 16,18 11 12 E1b1a7 

N319 YRBA58 YORUBA 17 12 29 22 10 12 12 16,17 10 11 E1b1a7 

N320 YRBA60 YORUBA 16 13 30 21 10 11 15 17,19 11 12 E1b1a7 

N321 YRBA62 YORUBA 16 13 29 21 10 11 15 17,22 11 11 E1b1a7 

N322 YRBA67 YORUBA 17 12 28 22 10 11 13 14,14 8 10 E 

N323 YRBA71 YORUBA 16 14 31 21 9 11 15 17,17 11 12 E1b1a7 

N324 YRBA88 YORUBA 15 13 31 21 10 10 13 16,18 11 13 E1b1a7 

N325 YRBA9 YORUBA 17 13 30 21 10 11 14 17,18 11 12 E1b1a7 

N326 YRBA93 YORUBA 14 13 27 19 10 10 13 16,16 11 11 E1b1a8 

N327 YRBA100 YORUBA 16 13 31 21 10 11 15 17,17 11 13 E1b1a7 

N328 YRBA102 YORUBA 17 13 30 24 10 11 12 15,19 13 11 

 
N329 YRBA108 YORUBA 15 13 30 21 10 11 14 18,19 11 12 E1b1a7 

N330 YRBA112 YORUBA 16 13 27 24 10 11 13 11,14 8 12 B 

N331 YRBA116 YORUBA 15 13 30 21 10 11 14 17,18 11 13 E1b1a7 

N332 YRBA120 YORUBA 15 13 30 21 10 11 14 15,16 11 12 E1b1a7 

N333 YRBA122 YORUBA 15 13 29 21 10 11 12 15,17 9 11 E1b1a8 

N334 YRBA13 YORUBA 17 13 29 21 10 11 15 17,17 11 12 E1b1a7 

N335 YRBA133 YORUBA 15 13 30 21 11 11 15 17,18 11 12 E1b1a7 

N336 YRBA137 YORUBA 15 13 30 21 11 11 14 14,17 11 12 E1b1a 

N337 YRBA148 YORUBA 15 14 32 21 10 11 14 16,18 11 12 E1b1a7 

N338 YRBA15 YORUBA 16 13 32 21 10 11 13 16,16 12 12 E1b1a7 
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N339 YRBA157 YORUBA 18 13 31 21 10 11 15 17,18 11 11 E1b1a7 

N340 YRBA158 YORUBA 17 12 30 22 10 12 12 13,15 10 11 E 

N341 YRBA19 YORUBA 16 13 31 21 10 11 14 16,18 11 12 E1b1a7 

N342 YRBA191 YORUBA 15 13 30 21 10 11 13 16,18 11 12 E1b1a8 

N343 YRBA195 YORUBA 17 13 30 21 11 11 15 17,18 11 12 E1b1a7 

N344 YRBA197 YORUBA 16 13 30 21 11 12 16 17,18 9 12 E1b1a7 

N345 YRBA202 YORUBA 17 13 30 21 10 11 14 18,18 11 12 E1b1a7 

N346 YRBA208 YORUBA 15 12 29 21 10 11 14 14,17 11 12 E1b1a7 

N347 YRBA210 YORUBA 15 13 32 21 10 11 13 16,17 11 11 E1b1a8 

N348 YRBA213 YORUBA 16 13 30 21 10 12 14 16,18 11 12 E1b1a7 

N349 YRBA215 YORUBA 17 12 30 26 10 12 12 13,14 10 11 B 

N350 YRBA24 YORUBA 17 13 30 21 9 11 15 17,17 11 13 E1b1a7 

N351 YRBA27 YORUBA 15 13 30 21 10 11 13 16,18 11 12 E1b1a8 

N352 YRBA29 YORUBA 16 14 32 21 10 11 15 17,17 11 12 E1b1a7 

N353 YRBA30 YORUBA 15 14 33 21 10 11 14 16,18 12 12 E1b1a7 

N354 YRBA31 YORUBA 17 12 29 21 10 11 14 18,18 11 12 E1b1a7 

N355 YRBA59 YORUBA 15 13 31 21 9 11 13 16,17 11 12 E1b1a8 

N356 YRBA61 YORUBA 16 13 30 21 10 11 16 16,18 11 12 E1b1a7 

N357 YRBA66 YORUBA 15 13 31 21 9 11 13 16,17 11 11 E1b1a8 

N358 YRBA7 YORUBA 17 13 30 21 10 11 14 17,18 11 12 E1b1a7 

N359 YRBA72 YORUBA 15 11 30 27 10 11 14 17,18 13 11 B 

N360 YRBA73 YORUBA 15 12 30 24 10 11 14 11,11 10 11 B 

N361 YRBA84 YORUBA 14 13 30 21 10 11 13 16,17 11 13 E1b1a8 

N362 YRBA86 YORUBA 15 13 32 21 10 11 13 17,17 11 11 E1b1a7 

N363 YRBA90 YORUBA 17 14 31 21 10 11 15 17,18 11 14 E1b1a7 

N364 YRBA92 YORUBA 15 14 32 21 10 12 13 16,17 11 12 E1b1a8 

N365 YRBA1 YORUBA 15 12 29 21 11 11 14 18,18 11 12 E1b1a7 

N366 YRBA121 YORUBA 15 12 29 21 10 11 14 17,20 11 12 E1b1a7 

N367 YRBA127 YORUBA 17 12 29 21 10 11 15 16,18 11 14 E1b1a7 

N368 YRBA128 YORUBA 14 13 30 20 10 11 13 18,18 11 11 E1b1a7 

N369 YRBA146 YORUBA 15 14 32 21 10 11 13 15,17 11 12 E1b1a8 

N370 YRBA159 YORUBA 13 12 29 22 10 11 12 14,14 10 13 E 

N371 YRBA161 YORUBA 15 14 31 21 10 11 14 17,17 11 11 E1b1a7 

N372 YRBA162 YORUBA 17 14 32 22 10 11 14 18,19 11 12 E1b1a7 
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N373 YRBA168 YORUBA 15 12 28 21 10 11 14 12,12 10 14 B 

N374 YRBA196 YORUBA 16 13 30 21 10 11 14 16,17 9 12 E1b1a7 

N375 YRBA198 YORUBA 15 14 32 21 10 11 13 16,19 11 12 E1b1a7 

N376 YRBA199 YORUBA 16 12 29 21 10 11 13 16,17 11 12 E1b1a7 

N377 YRBA220 YORUBA 15 13 30 21 10 11 13 14,16 11 12 E1b1a8 

N378 YRBA225 YORUBA 15 12 30 22 10 11 14 16,17 11 13 E1b1a7 

N379 YRBA236 YORUBA 17 12 29 21 10 11 14 17,20 11 12 E1b1a7 

N380 YRBA237 YORUBA 14 13 31 21 11 11 13 16,17 11 12 E1b1a8 

N381 YRBA3 YORUBA 17 14 31 21 10 11 14 16,19 11 13 E1b1a7 

N382 YRBA32 YORUBA 15 13 30 21 11 11 13 15,16 11 12 E1b1a8 

N383 YRBA33 YORUBA 15 13 32 21 10 12 14 16,17 11 12 E1b1a7 

N384 YRBA38 YORUBA 16 12 30 21 10 11 14 14,17 11 11 E1b1a7 

N385 YRBA42 YORUBA 17 13 30 21 10 11 14 17,18 11 12 E1b1a7 

N386 YRBA45 YORUBA 16 13 30 21 10 11 15 16,18 11 11 E1b1a7 

N387 YRBA53 YORUBA 15 14 32 22 10 11 13 15,17 11 13 E1b1a7 

N388 YRBA85 YORUBA 15 12 29 21 10 11 13 16,17 11 11 E1b1a8 

N389 YRBA143 YORUBA 15 13 30 21 10 10 13 16,17 11 11 E1b1a8 

N390 YRBA180 YORUBA 16 13 30 21 10 11 13 20,22 11 11 

 
N391 YRBA106 YORUBA 15 13 31 21 10 11 14 16,16 11 12 E1b1a7 

N392 YRBA114 YORUBA 17 12 29 21 10 11 14 18,18 11 12 E1b1a7 

N393 YRBA118 YORUBA 15 14 34 21 10 11 13 16,19 11 11 E1b1a7 

N394 YRBA132 YORUBA 17 13 30 21 10 11 16 14,18 11 13 E1b1a7 

N395 YRBA139 YORUBA 16 13 31 22 10 11 13 16,19 11 12 E1b1a7 

N396 YRBA145 YORUBA 16 13 31 21 10 11 13 15,17 12 14 E1b1a 

N397 YRBA152 YORUBA 17 13 30 21 10 11 13 16,17 11 11 E1b1a7 

N398 YRBA163 YORUBA 15 14 31 21 10 11 14 11,13 10 12 B 

N399 YRBA164 YORUBA 15 12 30 21 11 11 13 17,17 11 11 E1b1a7 

N400 YRBA171 YORUBA 15 13 31 21 10 11 13 16,18 11 12 E1b1a8 

N401 YRBA172 YORUBA 16 14 31 21 10 11 14 16,17 11 11 E1b1a7 

N402 YRBA177 YORUBA 13 13 30 21 10 11 13 15,16 11 12 E1b1a8 

N403 YRBA179 YORUBA 18 13 33 21 10 11 16 19,20 12 14 E1b1a7 

N404 YRBA18 YORUBA 15 13 31 21 12 11 14 15,17 11 12 E1b1a7 

N405 YRBA192 YORUBA 15 13 31 21 11 11 14 15,17 11 12 E1b1a7 

N406 YRBA193 YORUBA 15 13 31 21 10 11 13 16,18 11 11 E1b1a8 
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N407 YRBA201 YORUBA 15 13 31 21 11 11 14 15,17 11 12 E1b1a7 

N408 YRBA203 YORUBA 16 14 32 21 10 11 14 16,19 11 12 E1b1a7 

N409 YRBA212 YORUBA 15 13 30 21 10 11 14 15,16 11 14 E1b1a 

N410 YRBA216 YORUBA 17 13 31 21 10 11 13 17,17 13 12 E1b1a7 

N411 YRBA221 YORUBA 17 13 30 21 10 11 14 18,18 11 12 E1b1a7 

N412 YRBA222 YORUBA 15 13 30 21 10 11 13 17,18 11 12 E1b1a7 

N413 YRBA223 YORUBA 16 14 32 21 10 11 13 12,12 10 11 B 

N414 YRBA224 YORUBA 15 14 31 22 10 11 13 16,17 10 12 E1b1a8 

N415 YRBA26 YORUBA 15 13 32 21 10 11 13 16,18 11 13 E1b1a8 

N416 YRBA37 YORUBA 17 12 28 21 10 11 14 12,12 10 13 B 

N417 YRBA40 YORUBA 17 13 31 21 11 11 14 17,17 11 12 E1b1a7 

N418 YRBA64 YORUBA 16 13 30 21 11 11 16 17,18 11 12 E1b1a7 

N419 YRBA74 YORUBA 15 13 30 21 10 11 13 15,17 11 12 E1b1a8 

N420 YRBA83 YORUBA 16 13 32 21 10 10 13 16,18 11 13 E1b1a7 

N421 YRBA96 YORUBA 14 13 31 21 10 11 13 16,17 11 12 E1b1a8 

N422 YRBA98 YORUBA 17 14 31 21 10 11 15 17,19 11 12 E1b1a7 

N423 YRBA99 YORUBA 15 13 30 21 10 11 14 17,18 11 13 E1b1a7 

N424 YRBA101 YORUBA 17 12 30 21 10 11 14 17,18 11 13 E1b1a7 

N425 YRBA104 YORUBA 17 13 30 21 10 13 14 17,18 9 12 E1b1a7 

N426 YRBA105 YORUBA 16 13 30 21 10 11 15 17,18 11 12 E1b1a7 

N427 YRBA11 YORUBA 17 13 31 21 10 11 13 17,17 11 12 E1b1a7 

N428 YRBA113 YORUBA 16 13 30 21 10 11 13 15,16 9 13 E 

N429 YRBA124 YORUBA 17 13 30 21 10 11 14 16,17 11 11 E1b1a7 

N430 YRBA125 YORUBA 16 13 31 21 10 11 13 16,17 11 12 E1b1a7 

N431 YRBA140 YORUBA 16 14 32 21 10 11 14 16,17 11 13 E1b1a7 

N432 YRBA144 YORUBA 17 13 31 21 9 12 15 16,17 11 12 E1b1a7 

N433 YRBA147 YORUBA 15 13 33 21 10 11 13 16,19 11 11 E1b1a7 

N434 YRBA149 YORUBA 17 13 30 21 10 11 15 18,18 11 12 E1b1a7 

N435 YRBA151 YORUBA 15 12 30 21 10 10 13 16,16 11 12 E1b1a8 

N436 YRBA154 YORUBA 15 13 32 22 10 11 13 13,16 11 11 B 

N437 YRBA160 YORUBA 15 13 30 21 10 11 15 17,18 11 12 E1b1a7 

N438 YRBA170 YORUBA 17 16 34 24 13 13 16 18,20 13 14 

 
N439 YRBA186 YORUBA 15 13 30 21 10 11 12 16,17 11 11 E1b1a8 

N440 YRBA188 YORUBA 15 14 32 21 10 11 13 17,21 11 12 E1b1a7 
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N441 YRBA189 YORUBA 15 14 30 21 11 11 14 16,18 11 12 E1b1a7 

N442 YRBA194 YORUBA 17 14 30 22 10 12 10 17,21 10 10 B 

N443 YRBA2 YORUBA 15 13 31 26 10 11 13 16,16 11 12 E 

N444 YRBA20 YORUBA 16 13 31 21 10 11 15 17,17 11 12 E1b1a7 

N445 YRBA200 YORUBA 15 12 30 21 10 10 13 15,18 11 12 E1b1a8 

N446 YRBA205 YORUBA 16 13 30 21 10 11 14 17,17 11 11 E1b1a7 

N447 YRBA209 YORUBA 15 13 30 21 10 10 13 16,17 11 11 E1b1a8 

N448 YRBA21 YORUBA 15 13 32 21 10 11 13 16,17 11 11 E1b1a8 

N449 YRBA214 YORUBA 15 14 31 21 10 11 14 17,18 11 13 E1b1a7 

N450 YRBA228 YORUBA 16 13 32 21 10 11 13 16,16 12 12 E1b1a7 

N451 YRBA233 YORUBA 15 13 30 21 10 11 14 14,18 11 12 E1b1a7 

N452 YRBA34 YORUBA 16 13 29 21 10 11 15 17,18 11 11 E1b1a7 

N453 YRBA36 YORUBA 15 13 30 22 10 11 13 16,17 10 11 E1b1a8 

N454 YRBA39 YORUBA 17 13 30 21 10 11 13 17,18 11 12 E1b1a7 

N455 YRBA41 YORUBA 15 12 29 22 10 11 13 15,15 9 13 E1b1a 

N456 YRBA46 YORUBA 15 15 33 21 10 11 14 14,17 11 12 E1b1a7 

N457 YRBA47 YORUBA 16 13 30 21 11 11 16 17,18 11 12 E1b1a7 

N458 YRBA54 YORUBA 15 13 33 21 10 11 13 17,17 11 12 E1b1a7 

N459 YRBA63 YORUBA 15 13 31 21 10 11 12 16,17 11 11 E1b1a8 

N460 YRBA8 YORUBA 16 13 30 21 11 11 13 17,17 11 12 E1b1a7 

N461 YRBA89 YORUBA 15 13 31 21 10 11 13 16,17 11 12 E1b1a8 

N462 YRBA94 YORUBA 15 13 31 21 10 11 14 17,17 11 11 E1b1a7 

N463 YRBA95 YORUBA 17 14 31 21 10 11 14 16,20 11 12 E1b1a7 
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