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ABSTRACT 

 

Cardiovascular effects, molecular docking and Chemoinformatics analysis of 

compounds isolated from Leonotis leonurus. 

 

Abd­Alkarim Sasi 

 

Leonotis leonurus (L. Leonurus) has relatively abundant diterpenes and has been used 

as a traditional herbal medicine for treating several ailments including influenza, 

muscular cramps, skin related diseases, menstrual, antilipidemic, hyperglycaemia and 

hypertension. In this study, diterpenoid compounds such as; Dubiin, Saponified­

Dubiin, Hispanol, Marrubiin and DC9 were isolated from L. Leonurus plant. The 

cardiovascular effects of these isolated compounds were investigated in order to 

determine the response of anaesthetised normotensive Wistar rats (in-vivo) to the 

compounds. Also, the drug­likeness of the isolated diterpenoid compounds and their 

binding interaction with β1 adrenoceptor (PDB: 2Y04), angiotensin II receptor (Ang 

II) (PDB: 3R8A), Angiotensin converting enzyme (ACE) (PDB: 4XX3), and renin 

receptor (PDB: 2X8Z) by using molecular docking methods and Chemoinformatics 

analysis was performed (in-silico). Important molecular descriptors and molecular 

docking were used in our Chemoinformatics (in-silico) analysis to study the drug­

likeness and the binding affinity for of each molecule (Dubiin, Saponified­Dubiin, 

Hispanol, Marrubiin and DC9). The molecular descriptors and the binding energy were 

calculated by using the molecular operating environment software (MOE 2013). The 

lowest energy and highest cluster conformations of the molecules were further 

analysed. All the five (5) diterpenoids were predicted to have good oral bioavailability 

after oral administration and passed the Blood­Brain Barrier (BBB) rules. Also, the 

compounds were predicted to have high probability of being good Drug­like 

candidates, except for DC9, which is predicted to have lower possibilities of being 

Drug­like candidate than the other diterpenoids. Furthermore, these compounds 

(Dubiin, Saponified­Dubiin, Hispanol, Marrubiin and DC9) were shown to interact 

with β1 adrenoceptors in-silico, an interaction that was confirmed in-vivo by increases 

in Blood pressure (SP, DP and MAP) and Heart rate (HR). In anaesthetized 
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normotensive male Wistar rats (in-vivo), Dubiin (0.5 ­ 40mg/kg; IV), Saponified­

Dubiin (0.5 ­ 60mg/kg; IV) Hispanol (0.5 ­ 40mg/kg; IV), DC9 (0.5 ­ 40mg/kg; IV) 

and Marrubiin (0.5 ­ 40mg/kg; IV) produced dose dependent increase in Systolic 

pressure (SP), Diastolic pressure (DP), and Mean arterial pressure (MAP) at all doses. 

Also, the compounds produced dose dependent increase in Heart rate (HR). From the 

in-vivo and in-silico studies it can be concluded that all the five (5) isolated diterpenoid 

compounds showed cardiovascular effects on Blood pressure (BP) and Heart rate (HR) 

by acting as β1 adrenoceptor agonists. Also, these diterpenoids compounds could be 

responsible for the cardiovascular effect observed in the methanol extracts from 

previous studies. These cardio­active compounds are prototype or "lead compounds” 

for designing and developing new non­toxic and effective drugs for cardiovascular 

disease (CVD) treatment. 
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CHAPTER ONE 

 

This chapter will provide background information on traditional medicinal plants and 

their uses including the treatment of cardiovascular diseases.  This chapter will also 

discuss the phytochemical composition of traditional medicinal plants and their 

pharmacological effects especially on the cardiovascular system.  Emphasis would be 

placed on the cardiovascular effects of L. Leonurus and plant­derived diterpenes. In 

addition, computational modelling as a tool for drug discovery will be discussed. In 

conclusion, the significance of the study and the problem statement will be presented 

and the chapter layout for the rest of the thesis presented.  

 

 

1.1 INTRODUCTION 

 

In recent decades, there has been an increase in the incidence of diseases of lifestyle 

such as diabetes and cardiovascular disorders especially in the developing countries 

(Adeyi et al., 2007). Some of the most prominent diseases of lifestyle are 

cardiovascular diseases (CVD), which incidentally are the leading cause of morbidity 

and mortality worldwide (Kreatsoulas and Anand, 2010; Patil et al., 2010). According 

to reports (Pieters and Vorster, 2008), Africa accounts for about 1.3 million people 

affected by cardiovascular diseases every year. Several studies have shown that there 

are various factors associated with CVD in humans including gender, age, 

dyslipidemia, obesity, tobacco smoking, diet and lifestyle (Appel et al., 1997; 

Chalmers et al., 1999; Dahl and Heine, 1975; Liu et al., 2013; Seedat, 2007). For 

instance, it has been established that there is a relationship between mean blood 

pressure (BP) and daily salt consumption by humans which results in cardiovascular 

diseases (Schmieder et al., 1987). The treatment and management of cardiovascular 

diseases can be achieved with the use of several commercially available medicines. 

However, the need for better treatment regimens for cardiovascular diseases has 

resulted in continuous research and drug design with a view to manufacturing new and 

more effective drugs. In addition to this, the use of pharmaceuticals for the treatment 

of cardiovascular disease is known to be expensive and thus inaccessible to the 
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majority of the global population (Ubani, 2011). As a result, it has been suggested that 

an extensive research on medicinal herbs is imperative in order to obtain better, 

affordable and effective drugs. This is because medicinal plants are potential sources 

of cheap starting materials for the synthesis of new drugs in the drug discovery process 

(Henkel et al., 1999). The traditional routes of drug discovery and design approaches 

are known to be a time­consuming and expensive process. Also, these procedures are 

associated with a high failure rate (DiMasi et al., 1991; Tufts CSDD, 2014). 

Consequently, in recent years, one of the promising areas that have been identified, 

and is attracting a lot of attention is the use of computer­based techniques and 

molecular modelling to design and evaluate novel potential drugs on a computer prior 

to laboratory preparation in order to reduce the time and costs involved (Zonta et al., 

2010). These new computer­based drug design techniques will continue to undergo 

several modifications and improvements thereby leading to new and more powerful 

drugs (Wlodawer and Vondrasek, 1998). 

 

Southern Africa is a region with rich abundant and pharmaceutically important plants 

species. This geographical region represents more than 10 % of the global vascular 

plant flora, on less than 2.5 % of the earth’s land surface area with 24, 000 of higher 

plant species from 368 families (Leistner, 2005). Traditional medicine practice is 

common in Southern Africa with approximately 70% of the South African population 

depending on traditional medicines for their primary health care needs (Bannerman, 

1983). Recent studies have also shown that natural products along with their 

derivatives represent more than 50% of all the drugs used in clinical treatment. This 

represents approximately 7,000 medical compounds in the modern pharmacopoeia 

(Gurib­Fakim, 2006; Lin et al., 1999). Natural products are known to have 

pharmacological or biological activity that have been used to treat diseases (Prasad 

and Aggarwal, 2011). Generally, natural plant products can be broadly classified into 

two categories i.e. primary and secondary metabolites. The primary metabolites (e.g. 

amino acids, nucleotides, sugars, acyl lipids) are characterized by their broad 

distribution in all living things, while the secondary metabolites (e.g. phenols, 

quinones, terpenes, and alkaloids) are attributed to give specific species some 

characteristic features such as colour (Hanson, 2003; Harrison, 1983). A large class of 
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secondary products are known as diterpenoids (terpenes) and these are categorized 

according to the number of ring systems (acyclic, bicyclic, tetracyclic, macrocyclic) 

present in their structure. These compounds have unique characteristics and are known 

for their cardiovascular effects, with several in-vivo and in-vitro studies reporting 

significant cardiovascular effects in the treatment of cardiovascular diseases (CVD) 

with diterpenoids extracted from plants (Baccelli et al., 2005; El Bardai et al., 2003, 

2001; Silva et al., 2005; Tirapelli et al., 2008). The ability of diterpenoids to treat 

cardiovascular related diseases have made them a source of new prototypes for the 

discovery and development of novel cardiovascular therapeutic agents. There are 

several medicinal plants from South Africa that are known to possess cardiovascular 

activity and not limited to L. Leonurus which include Croton Zambesicus (Baccelli et 

al., 2005), Croton Cajucara Benth (Guerrero et al., 2004), Andrographis Paniculata 

(Zhang et al., 1998), Marrubium vulgare and Orthosiphon aristatus (Kaplan and 

Rivett, 1968). These medicinal plants have been chemically investigated, with 

diterpenoids identified as one of their major constituents. 

 

Leonotis leonurus (Lamiaceae) is a traditional medicinal plant indigenous to southern 

Africa. It is commonly referred to locally as wild dagga due to its use as a substitute 

for Cannabis sativa. This plant has long been used in traditional herbal medicine for 

treating dermatological infections, muscular cramps, female menstrual problems, 

hyperlipidemia, hyperglycaemia and hypertension (Wyk et al., 2012). Previous studies 

on the extracts from L. Leonurus have shown that the nature of solvents used in the 

extraction, and the dosage administered determine the cardiovascular effects produced. 

For instance, Obikeze et al., (2013) reported an increase in BP and Heart rate (HR) 

using a methanol extract of L. Leonurus leaves. In another study, Obikeze, (2004) 

reported that the administered dosage of the aqueous extract in anaesthetized 

normotensive rats caused an increase in the BP and a decrease in HR. The result from 

the Obikeze (2004) study was different from a similar study reported by Ojewole 

(2003), who observed that the aqueous extract resulted in a decrease in BP and HR in 

anaesthetized, normotensive and spontaneously hypertensive rats (SHR). Also, in-

vitro studies by Mugabo et al., (2002) reported a positive chronotropic and inotropic 

effect with an aqueous extract of L. Leonurus on isolated Langendorff perfused male 
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Wistar rat hearts. Generally, the compounds in L. Leonurus that are responsible for its 

cardiovascular effect are unknown but with the abundance of diterpenes isolated from 

the plant, it has been postulated that these are the likely compounds with 

cardiovascular effects characteristic of the plants extracts. The diterpenoid compounds 

that have so far been isolated from L. Leonurus belong to Labdane­type diterpenoids 

i.e. bicyclic (Mazimba, 2015; Nsuala et al., 2015). Only one diterpenoid, ­9, 13­

epoxylabda­6(19), 15(14) diol dilactone (EDD) isolated from the methanol extracts of 

the leaves of L. Leonurus has been reported to produce cardiovascular effects (Obikeze 

et al., 2008). EDD was found to exhibit a dual effect on the cardiovascular system in 

isolated arteries as well as in anesthetized rats. However, there are many diterpenoids 

isolated from L. Leonurus for which no cardiovascular studies have been carried out. 

These include; Dubiin, Sponified­Dubiin, Hispanol, DC9 and Marrubiin (Kaplan et 

al., 1970; Popoola et al., 2013; Rivett, 1964; Savona et al., 1978). Marrubiin was one 

of the first diterpenoids isolated from Marrubium vulgare extract and subsequent 

studies on this diterpenoid have reported a vasorelaxant activity on the isolated rat 

aorta (in-vitro) (El Bardai et al., 2003; Khan et al., 2012). Marrubiin was also the 

primary diterpene isolated from a L. Leonurus extract (Mnonopi et al., 2011; Rivett, 

1964). In this study we investigate the cardiovascular activity of five (5) diterpenoid 

compounds labelled DC1, DC2, DC8, DC9 and DC15 isolated from L. Leonurus in 

anaesthetized normotensive Wistar rats. The study will also determine the binding 

affinity of these isolated diterpenoid compounds to different cardiovascular receptors 

as well as predicting their oral bioavailability and drug likeness by using 

Chemoinformatics techniques (In-silico). 

 

 

1.2 PROBLEM STATEMENT 

 

Leonotis leonurus extracts has been widely studied especially for their cardiovascular 

effects due to their traditional use in the treatment of cardiovascular diseases (CVD), 

but the compounds responsible for the different cardiovascular effects observed with 

these extracts are yet largely unknown. Although L. Leonurus contains an abundance 

of diterpenes, none of these compounds has so far any current clinical use for the 
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treatment of cardiovascular related diseases. This is mainly due to limited studies on 

the specific diterpenoid compounds with cardiovascular effects found in L. Leonurus. 

This study seeks to determine the different cardiovascular effects of previously 

isolated diterpenoids extracted from L. Leonurus.  

  

 

1.3 SIGNIFICANCE OF STUDY 

 

The isolation of these diterpenoid compounds from the extracts of L. Leonurus is the 

first step in determining the possible cardiovascular effects of these compounds and 

possible further development as drugs. This study will serve to determine the specific 

cardiovascular activities unique to each of the isolated diterpenoids compounds, as 

such this study will provide information necessary to drug discovery that would 

determine the usefulness of each compound as a lead compound for the design and 

development of new drugs for the treatment of cardiovascular related diseases (CVD). 

 

 

1.4 THESIS LAYOUT 

 

In this thesis, chapter one will provide general background information on L. 

Leonurus, its cardiovascular properties and progress in the development and 

improvement of their cardiovascular activities. Also in chapter one, the benefits of 

computational tools in drug discovery will be discussed. The significance and problem 

statement of this study will be presented in chapter one.  

In chapter two, a brief overview of the evidence of the use of traditional medicines for 

the treatment of cardiovascular disease will be presented. Also, chapter two will 

discuss some of the existing medicinal plant species and their use in treatment of 

different ailments, with emphasis on the plants that are used for the treatment of 

cardiovascular diseases. A description of Leonotis leonurus, its use in traditional 

medicine as well as the results of various studies into its composition and 

pharmacologic effects will be described. The chapter also highlights the benefits and 

successful application of Computer aided softwares (in-silico) in drug discovery.  
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Chapter three of this thesis will describe the material used and the various analytical 

techniques such as Chemoinformatics methods that were used to study the drug­

likeness of the isolated diterpenoids. Also, chapter three will provide detailed 

experimental procedures and preparations for both the drug­likeness and the molecular 

docking studies. Chapter three also presents the results of the drug­likeness and the 

molecular docking studies and discusses their implications on in-vivo studies. 

Chapter four of this thesis will present the materials and methods used for the in-vivo 

study. A full description of the cardiovascular model and experimental protocol used 

to determine the cardiovascular effects of the isolated compounds would be presented, 

and the results obtained from the studies presented. A discussion of the results obtained 

would also be contained in chapter four.  

Chapter five presents an analysis of the in-vivo and in-silico results with respect to 

predictions and provides conclusions derived from the in-silico and the in-vivo study. 

Recommendations on further research work to be carried out is also presented in this 

chapter. 
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CHAPTER TWO 

 

2 LITRATURE REVIEW 

 

In this chapter, the previous studies that have been conducted on the use of available 

natural products from plants and their various applications will be summarized. 

Various benefits of medicinal and herbal plants and how they are used to treat different 

ailments especially cardiovascular diseases in human beings are discussed. The 

chapter also highlights the traditional use of Leonotis leonurus including previous 

studies that have been reported on the extracts and various compounds that have been 

isolated from the plant. Finally, the benefit and successful application of Computer 

aided software (in-silico) in drug discovery is summarized within this chapter.  

 

 

2.1 NATURAL PRODUCTS 

 

Natural products can be described as purified organic compounds that have been 

isolated from natural sources which are mostly plants. The composition of natural 

products from plants depends on several factors such as plant species, plant part, and 

other ecological factors (Muhizi, 2002). Natural products are known to have active 

components and these active components have pharmacological or biological activity 

that have been explored and used in drug discovery to treat diseases (Prasad and 

Aggarwal, 2011). Consequently, the use of natural products from medicinal plants is 

a potential source of cheap starting materials for the synthesis of drugs especially for 

developing new drugs in the drug discovery process (Henkel et al., 1999; Muhizi, 

2002). According to Newman and Cragg, (2012), natural products consist of 

approximately one­half of U.S. Food and Drug Administration­approved drugs. 

 

The synthesis pathway of natural plant products is often either by primary or secondary 

metabolism (Hanson, 2003). Generally, the classification of natural plant products can 

be broadly considered in two categories i.e. primary and secondary metabolites 

(Harrison, 1983). Primary metabolites are essential because they facilitate plant 
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growth, development and survival. Unlike primary metabolites, plants are known to 

produce a large variety of secondary compounds but they have not been shown to have 

any direct function on growth and development of the plants. Another major difference 

between primary and secondary metabolites is that secondary metabolites have a 

limited distribution within the plant kingdom. For instance, a specific secondary 

metabolite is often found in only one plant species or related group of species, whereas 

primary metabolites are found throughout the plant kingdom (Taiz and Zeiger, 2010). 

In addition, the use of secondary metabolites has been extensively studied and forms 

a major area of research for organic chemists (Harrison, 1983).  

 

 

2.2 TERPENES 

 

Terpenes are the largest class of natural products in plants (Ahuja, 2006). All terpenes 

consist of five­carbon elements with branched carbon skeleton of isopentane and their 

basic structural elements are referred to as isoprene units. Generally, terpenes 

decompose at high temperatures to give isoprene (Figure 2.1) and are classified 

according to the number of isoprene units. The various isoprene units present in 

terpenes include; monoterpenes (2 isoprene units), sesquiterpenes (3 isoprene units), 

diterpenes (4 isoprene units), sesterpenes (5 isoprene units), triterpenes (6 isoprene 

units), carotenes (8 isoprene units), and polyisoprenes (n isoprene units) (Taiz and 

Zeiger, 2010). The diverse substances of this class of natural products are known to be 

insoluble in water and consist of different aromatic compounds, vitamins and steroids 

(Muhizi, 2002). When terpenes are modified chemically, such as by oxidation or 

rearrangement of the carbon skeleton, the resulting compounds are generally referred 

to as terpenoids. The difference between terpenes and terpenoids is that terpenes are 

hydrocarbons, whereas terpenoids contain additional functional groups (Schrader and 

Bohlmann, 2015). 
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Figure 2.1: The basic structural elements of terpenes (Isoprene unit). 

 

Diterpenoids are known to be one of the classes of the isoprene units with unique 

characteristics such as cardiovascular effects and are considered as a large class of 

secondary products. The molecular structure of diterpenoids is derived from four (4) 

isoprene units which are joined in a head­to–tail. Diterpenoids are classified according 

to the number of ring systems present (acyclic, bicyclic, tetracyclic, macrocyclic). 

Diterpenoids are known to possess a wide spectrum of important biological activities, 

(Dewick, 2011; Hoffmann, 2003). For instance, several in-vivo and in-vitro studies 

have shown that diterpenoids extracted from plants have significant cardiovascular 

effects. The ability of diterpenoids to treat cardiovascular related diseases have made 

them a source of new prototypes for the discovery and development of novel 

cardiovascular therapeutic agents such as Ca2+ channel blockers (Baccelli et al., 2005; 

El Bardai et al., 2003, 2001; Silva et al., 2005; Tirapelli et al., 2008). 

 

 

2.3 GENERAL VIEW ON TRADITIONAL MEDICINE 

 

The world health organization (WHO) defined traditional medicine as  

the comprehensive knowledge, skills, and practices based on theories, beliefs, and 

 

 

 

 



 

10 
 

experiences which are unique and indigenous to different cultures. In addition, 

traditional medicine, whether explicable or not, can be used in the maintenance of 

health as well as in the prevention, diagnosis, improvement or treatment of physical 

and mental illness (Zhang, 2000). In specific terms, traditional medicine or alternative 

medicine describes the use of plants and animals in medicinal treatment (De Smet, 

1991). Consequently, plants that are used to prevent or treat diseases, improve and 

promote health and also with the ability to exhibit curative properties are defined as 

herbal medicine. As a result, several herbs and minerals are known to be the basis of 

ancient medicinal treatments as described by many historical documents (Hoffmann, 

2003; Wyk et al., 2012). The compendium of traditional medicines is global and some 

of the examples include traditional Chinese medicine, the Ayurveda (Dubey et al., 

2004; Patwardhan et al., 2005), and traditional African medicine (Okpako, 1999). 

 

Herbal medicine is a prominent form of medicine with ancient applications and has 

been in use for centuries. However, herbal medicines have some unique disadvantages 

which include; poor hygiene and sanitation that can lead to other health problems due 

to microorganisms, as well as the presence of dangerous chemical impurities such as 

pesticides and other chemical contaminants from agricultural activities (Pearson, 

1995; Sofowora, 1982). The lack of a comprehensive database and the absence of 

convincing scientific evidence supporting the efficacy of herbal medicines and the lack 

of a toxicity profile is another disadvantage of herbal medicine (Sofowora, 1982). This 

is because the distribution of naturally occurring toxic chemicals such as arsenic and 

selenium can contaminate medicinal plants resulting in other serious health 

complications hence the toxicity profile of herbal plants is crucial to its usage (Pearson, 

1995). In addition, there is insufficient knowledge and lack of precise diagnosis by 

traditional healers before administering these herbal drugs. The lack of  precision in 

correct dosage mainly because  the traditional healers do not know or understand the 

pathology of certain diseases thereby end up treating the symptoms rather than the 

disease which can sometimes lead to other health complications (Sofowora, 1982).  

 

In traditional herbal medicine, the herbal remedies can be prepared in several ways 

and administered or dispensed in different dosage forms. The preparation and 
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administration of herbal medicines often depend on the use of the plant (Aulton and 

Taylor, 2013). The dosage forms of herbal medicines vary in types and include semi­

solids (e.g. pastes, creams, ointments), solids (e.g. whole or powdered plant parts, pill, 

tablets), liquid dosage forms (e.g. Infusions, decoctions, elixirs, tinctures) and gases 

(e.g. Incense, fumigants, inhalants). The liquid dosage form is the most prominent and 

in this form medicines are administered orally or applied externally on the affected 

parts of the body (Germishuizen and Meyer, 2003). It is important to emphasize that 

the method of preparation of herbal medicines as well as the concentration of the herbs 

in preparations could be critical. This is because different preparations may result in 

different effects (Jager et al., 2011). For example, different cardiovascular activities 

were observed when different methods were used to prepare decoctions of the leaves 

of L. Leonurus (Mugabo et al., 2002; Obikeze, 2004; Ojewole, 2003). 

 

 

2.3.1 TRADITINAL MEDICINAL PLANTS IN SOUTH AFRICA 

 

The use of pharmaceutical drugs for the treatment of some ailments such as high Blood 

pressure (BP) are expensive and unaffordable to majority of the global population 

(Ubani, 2011). Bearing this in mind, it has been suggested that extensive research on 

herbs is imperative in order to obtain better, more affordable and effective drugs. 

Recent studies have shown that natural products along with their derivatives represent 

more than 50 % of all the drugs used in clinical treatment (Gurib­Fakim, 2006). Also, 

it has been estimated that more than two­thirds (35,000) of the global plant species are 

found in developing countries and they have medicinal values which is beneficial to 

human health and survival. Approximately 7,000 medical compounds in the modern 

pharmacopoeia are derived from plants (Hefferon, 2012). The relative abundance of 

medicinal plant species is crucial to research and development especially in the 

treatment of ailments that are unique to geographical areas. South Africa has abundant 

herbal medicines that have been used in the traditional practice for the treatment of 

several illnesses (Lin et al., 1999). Herbal medicines are an essential part of the culture 

and folklore of the African populace. These herbal medicines are found in 

approximately 24, 000 of higher plant species of 368 families. This represents more 
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than 10 % of the world’s vascular plant flora on less than 2.5 % of the earth’s land 

surface area (Leistner, 2005). Recent studies have shown that most of the South 

African communities depend on herbal medicines to meet their health care needs 

(Afolayan and Sunmonu, 2010; Fennell et al., 2004). Bannerman, (1983) stated that 

approximately 70 % of the South African population depends on traditional medicines, 

including   plants such as L. Leonurus for the treatment of a large number of diseases. 

The next section (2.4) will briefly discuss some of the existing medicinal plant species 

and their use in the treatment of different ailments. 

 

 

2.4 MEDICINAL PLANTS WITH CARDIOVASCULAR EFFECTS 

 

2.4.1  Tulbaghia violacea (Alliaceae) 

 

Tulbaghia violacea plant belongs to Alliaceae family of herbs. The crude methanol 

leaf extract of Tulbaghia violacea has been reported to reduce BP and HR in 

spontaneously hypertensive male rats (SHR). The BP and HR­ reducing effect of the 

methanol leaf extract has been suggested to involve several mechanisms via the 

inhibition of angiotensin converting enzymes (ACE) and β1 adrenoceptors. Also, the 

extract can act as a stimulant for muscarinic receptors and reduces the level of 

aldosterone in plasma (Raji et al., 2012; Ramesar et al., 2008). In a related study, 

Mackraj et al., (2008) reported a reduction in systemic arterial BP that is associated 

with decrease in renal angiotensin II receptor in Dahl salt sensitive (DSS) rats. 

 

 

2.4.2  Allium sativum (Liliaceae) 

 

Garlic and its derivatives have been described to considerably reduce the Diastolic 

(DP) and Systolic pressure (SP) in humans with high BP (McMahon and Vargas, 1993; 

Preuss et al., 2001). The cardio protective effects of dietary Garlic have been attributed 

to its ability to produce hydrogen sulfide (H2S) which has been reported to relax 

vascular smooth muscle and also induce vasodilatation of isolated blood vessels (Zahid 
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Ashraf et al., 2005). In addition, Allium sativum has the potential to reduce the risk of 

cardiovascular diseases in humans by lowering both lipids and circulating angiotensin 

II levels in the blood (Augusti et al., 2005; Mohamadi  et al., 2000). This plant species 

have the ability to perform several other functions such as the inhibition of blood 

coagulation, platelet aggregation, thrombus formation, angiotensin converting enzyme 

(Sendl A et al., 1992) and increased fibrinolysis (Rahman and Lowe, 2006). 

 

 

2.4.3 Rauwolfia serpentina (Apocynaceae)  

 

Rauwolfia serpentina is a small shrub with snake shaped woody roots. This plant 

species is best known as insanity herb and is often used to treat and cure snake bites 

and scorpion stings (Srivastava et al., 2006). Besides the curative activity of Rauwolfia 

serpentina, the alkaloids from this plant species have been reported to induce 

antihypertensive activity. The induced antihypertensive activity of Rauwolfia 

serpentina is achieved by controlling nerve impulses along certain nerve pathways via 

the depletion of catecholamines from peripheral sites that can act on the heart and 

blood vessels. The main constituent of Rauwolfia serpentina is Reserpine which is 

used as an antihypertensive and antipsychotic drug (Gurib­Fakim, 2006).  

 

 

2.4.4 Crataegus monogyna (Rosaceae) 

 

Crataegus monogyna is also known as hawthorn or single­seeded hawthorn. The 

flowers and leaves from this plant have been used as traditional remedy in the 

treatment of various cardiovascular diseases such as hypertension, myocardial 

dysfunction, angina, tachycardia and cardiac failure. In addition, Crataegus monogyna 

has been shown to cause a significant group difference in mean diastolic blood 

pressure (DP) reductions in comparison with the placebo group (Walker et al., 2006). 
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2.4.5 Ocimum gratissimum (Labiatae) 

  

Ocimum gratissimum was first reported to show physiological evidence with 

hypotensive effect after intravenous administration of the essential oil of Ocimum 

gratissimum on anesthetized and conscious rats (Lahlou et al., 2004). Also, Patil et al., 

(2010) reported that the alcoholic extract of the leaves from Ocimum gratissimum 

showed significant antihypertensive activity in conscious albino hypertensive rats 

when compared to standard drug enalapril maleate. 

 

 

2.4.6 Cissus assamica (Vitaceae) 

 

Cissus assamica (Laws) Craib, has been used mainly to treat snakebite in China. 

According to a study reported by Yang et al., (1998), dried extracts from Cissus 

assamica root has the ability to cause vasodilation of blood vessels on isolated aortic 

rings of rats by antagonizing the vasoconstriction induced by endothelin­1. 

 

 

2.4.7 Curcuma longa (Zingiberaceae) 

 

Turmeric (Curcuma longa) is a rhizome and an Indian traditional medicine which is 

mostly used as a spices. Studies have shown that turmeric exhibits antidiabetic and 

antihypertensive activities in humans (Chattopadhyay et al., 2004). The extract of 

Curcuma longa has the ability to cause vasodilatation by inhibiting the conversion of 

inactive angiotensin­I to the potent vasoconstrictor angiotensin II. (Lekshmi et al., 

2013; Zahid Ashraf et al., 2005). 

 

 

2.4.8 Salvia miltiorrhiza (Lamiaceae) 

 

Salvia miltiorrhiza (Red sage) plant has been studied with reports showing that it can 

induce vasodilatation and reduce BP in the two­kidney, one­clip (2KIC) endovascular 
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hypertension model in hamsters. This was achieved by stimulating the synthase 

production of endothelial nitric oxide (Kim et al., 2007). 

 

 

2.4.9 Leonotis leonurus (Lamiaceae) 

 

Leonotis leonurus (L. Leonurus) is an ancient traditional plant that is relatively 

abundant in South Africa and has been used in herbal medicine to control and manage 

hypertension (Wyk et al., 2012). For instance, previous studies on L. Leonurus have 

shown that extracts from this plant are known to have cardiovascular effects and these 

effects are have unique differences as observed with other different extracting solvents. 

In a study by Obikeze et al., (2013), it was reported that the methanol extracts of L. 

Leonurus leaves have both β1 agonist and direct vasoconstrictive effects and cause 

increase in all cardiac parameters of both the in-vitro and in-vivo conditions. This study 

was in contrast to earlier studies where L. Leonurus aqueous leaf extract was reported 

to show hypotensive activity (Mugabo et al., 2012; Ojewole, 2003). 

 

 

2.5 DITERPENOIDS AS ANTIHYPERTENSIVE COMPOUNDS IN 

MEDICINAL PLANTS 

  

There are several medicinal plants that are known to possess antihypertensive activity. 

These medicinal plants have been chemically investigated and diterpenoids have been 

identified as one of the major constituents. As a result, there have been several studies 

that have been directed on the cardiovascular activity of these unique compounds 

(Tirapelli et al., 2008). Diterpenoids can be extracted from several plants and used for 

treating various ailments. The subsequent section will briefly describe some of the 

plants containing diterpenoids as reported in literature and their respective uses. 
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2.5.1 Croton Zambesicus (Euphorbiaceae) 

 

In traditional African medicinal practice, Croton Zambesicus plant is widely used to 

treat hypertension, urinary infections and malaria (Adjanohoun et al., 1989). Two 

diterpenoid compounds were isolated from the dichloromethane extract of Croton 

zambesicus leaves and the mixture of both diterpenoids was reported to induce 

vascular relaxation via blockage of extracellular Ca2+ influx. Also, each purified 

diterpenoid was observed to show lower activity than the mixture (Baccelli et al., 

2005). 

 

 

2.5.2 Croton Cajucara Benth (Euphorbiaceae) 

 

This plant is commonly known as Sacaca or Cajuçara and it is obtained from the 

extracts of the stem, bark and leaves of Croton Cajucara Benth. Croton Cajucara 

Benth is used as a traditional herbal medicine for the treatment of hypertension, 

diabetes, diarrhoea, malaria, fever, gastrointestinal, renal and hepatic disorders, as well 

as in the control of cholesterolemia (Costa et al., 1999; Hiruma­Lima et al., 2002, 

2000). The various diterpenoids that have been isolated from the Croton Cajucara 

Benth plant include; trans­dehydrocrotonin, and cis­dehydrocrotonin (Guerrero et al., 

2004). Silva et al (2005) reported that the diterpene trans­dehydrocrotonin produced 

its hypotensive activity as well as bradycardiac effects in humans due to a vasorelaxant 

effect on aortic rings and a direct negative chronotropic effect on the right atria of rats. 

 

 

2.5.3 Andrographis Paniculata (Acanthaceae) 

 

Andrographis Paniculata is one of the well­known plants in Malaysia and is used to 

treat diabetes, hypertension and other diseases (Asmawi, 2012). The aqueous extracts 

of Andrographis Paniculata are known to decrease the Systolic Blood pressure (SP) 

in both normotensive and spontaneously hypertensive rats (Zhang and Tan, 1997, 

1996). In another study by Zhang et al., (1998), it was reported that the diterpenoid 
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lactones isolated from A. Paniculata, namely deoxyandrographolide and 14­deoxy­11, 

12 di­dehydroandrographolide, can cause a significant decrease  in Mean arterial blood 

pressure (MAP) and HR. In addition, these diterpenoids have been scientifically 

proven to non­competitively and dose­dependently antagonize, isoproterenol induced 

positive chronotropic actions in rat atria (Zhang et al., 1998). Yoopan et al (2007) 

identified the main site of action in humans for the hypotensive effects of A. paniculata 

extracts as the vascular smooth muscle. In a recent study conducted by Sriramaneni et 

al (2012), it was shown that chronic treatment using A. Paniculata preserved vascular 

endothelial, functions in spontaneously hypertensive rats (SHR). 

 

 

2.5.4 Marrubium vulgare (Lamiaceae) 

 

Marrubium vulgare is another plant that is frequently used in traditional medicine to 

cure various diseases. For example, Marrubium vulgare is helpful for the treatment of 

bronchial asthma, and non­productive cough. It also has hypoglycemic, vasorelaxant, 

analgesic, antiinflammatory, antioxidant, anti dermatogenic and antibacterial activity 

(Bokaeian et al., 2014). Marrubium vulgare extract is also extensively used as 

traditional medicine to treat hypertension, and has been shown to produce vascular 

relaxation and decrease SP in SHRs (El Bardai et al., 2001). The diterpenoid 

compounds marrubiin and marrubenol have been isolated from Marrubium vulgare, 

and have shown vasorelaxant activity on the rat aorta. The mechanism of this relaxant 

activity is due to the interaction with L­type Ca2+ channels (El Bardai et al., 2004, 

2003). 

 

 

2.5.5 Orthosiphon aristatus (Lamiaceae) 

 

The leaves of Orthosiphon aristatus have been prescribed in traditional Indonesian 

medicine especially for the treatment of hypertension (Awale et al., 2002). There are 

four (4) diterpenoids that have been isolated from the leaves of O. aristatus and they 

have shown vasorelaxant activity on the rat aorta (Ohashi et al., 2000). 
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2.5.6 Leonotis Leonurus (Lamiaceae) 

 

Several pure compounds have been isolated from Leonotis leonurus (L. Leonurus) 

extracts including diterpenoids. So far only one diterpenoid isolated from L. Leonurus, 

9, 13­epoxylabda­6(19), 15(14) diol dilactone (EDD)has been reported to have 

cardiovascular effect (Obikeze et al., 2008). It was found that EDD exhibits a dual 

effect on the cardiovascular system in isolated arteries as well as in anesthetized rats. 

At low doses, EDD produced significant dose­dependent decreases in BP, while at 

higher doses it produced significant dose­dependent increases in BP. All doses induced 

significant dose­dependent decreases in HR (Obikeze et al., 2008). No cardiovascular 

studies have been done on the other diterpenes isolated from L. Leonurus. 

 

 

2.6 LEONOTIS LEONURUS: DESCRIPTION AND USES 

 

Leonotis leonurus (L. Leonurus) is shrub indigenous to Southern Africa and commonly 

referred to as wild dagga. Other indigenous names of L. Leonurus include “umunyane” 

“lebake” and “umfincafincane” (Dyson, 1988). This plant is one of the more 

prominently used traditional medicinal plants in South Africa and has been 

documented for use in treating several diseases in both humans and animals 

(Hutchings, 1996; Oyedemi and Afolayan, 2011; Watt and Breyer­Brandwijk, 1962; 

Wyk et al., 2012). L. Leonurus grows mostly along forest margins, rocky hillsides, 

riverbanks as well as grasslands of the Eastern, Western Cape, Kwazulu­Natal and 

Mpumalanga Provinces of South Africa (Wyk et al., 2012). The generic name Leonotis 

stands for lion's ear which is due to the shape and texture of the flower (Pienaar, 1994). 

The features of L. Leonurus plant include tubular orange red flowers which are 

grouped in dense clusters along the stems. The fruit consists of four little nutlets 

situated at the base of calyx tube (Figure 2.2). Naturally, L. Leonurus dies after 

flowering and new growth starts in spring. The propagation of L. Leonurus plant is by 

cuttings, division of the rootstock or seeds (Adamson and Salter, 1950; Hutchinson, 

1973). Plants grow between 1­3m (Nichols, 2002). 
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Figure 2.2: Leonotis Leonurus (Lamiaceae) Common names. 

 

 

As indicated earlier, L. Leonurus has been used for several medicinal purposes in both 

animals and humans(Mazimba, 2015; Nsuala et al., 2015). For instance, dry leaves of 

L. Leonurus can be smoked alone or mixed with tobacco and has been reported to show 

narcotic or marijuana­like effects in humans (Watt and Breyer­Brandwijk, 1962). The 

aqueous extracts from L. Leonurus plant are used internally for the treatment of colds, 

dysentery, coughs, amenorrhea, influenza, bronchitis, high blood pressure, headaches, 

dyslipidemia and a hypoglycemic effect (McGaw and Eloff, 2008; Oyedemi and 

Afolayan, 2011).The aqueous extract of L. Leonurus has been applied to treat skin­

related infections such as boils, eczema, itching and muscular cramps (Bienvenu et al., 

2002; Hutchings, 1996; Wyk et al., 2012). Aqueous extracts are also used for the 

treatment of internal parasites in animals (Scott et al., 2004). 
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L. Leonurus is a versatile plant species is relatively abundant hence it is imperative to 

conduct an extensive laboratory testing of its extract and the isolated pure compounds. 

This is to provide a scientific basis and pharmacological understanding in order to 

support and expand the existing folkloric uses in the treatment of emerging ailments. 

The extracts from L. Leonurus plant are reported to possess an anticonvulsant effect 

(Bienvenu et al., 2002). In a study by Qi et al (2010), leonurine which is a compound 

isolated from a L. Leonurus extract was reported to show antioxidant and cardio­

protective properties with significant improvement in myocardial function (Liu et al., 

2010). The aqueous extracts from the leaves of L. Leonurus hav been reported to 

prevent many free­radical­related diseases as a result of the presence of compounds 

such as phenolics, flavonoids, flavonols and proanthocyanidins in the extract 

(Oyedemi and Afolayan, 2011). Ojewole (2003) reported that the aqueous leaf extract 

of L. Leonurus possessed antinociceptive, anti­inflammatory, as well as hypoglycemic 

activity. Similarly Oyedemi and Afolayan (2011) demonstrated that oral 

administration of aqueous extract of L. Leonurus leaves has antilipidemic and also 

antihyperglycemic effect which is capable of reducing the blood glucose levels by 

potentiating insulin secretion. Also, the decoctions from the leaves of L. Leonurus have 

been shown to have antihelmintic effect on gastrointestinal helminths in animals such 

as goats (Maphosa et al., 2010). Further study by Maphosa et al (2012) revealed that 

the extract exhibits anti­inflammatory and analgesic activities in rats. Previous studies 

have shown that the leaf extracts from L. Leonurus plant possesses hypotensive 

activity (Mugabo et al., 2012; Ojewole, 2003). This study did not agree with a recent 

study reported by Obikeze et al., (2013). In this recent study, it was reported that the 

extracts from L. Leonurus leaf showed an increase in all cardiac parameters for both 

the in-vitro and in-vivo studies with methanol extracts of the plant. The differences in 

the effects observed by Mugabo et al., (2012), Ojewole, (2003) and Obikeze, (2004) 

when they used different solvents to extract the plant could be due to the difference in 

solubility of the cardio­active compounds. The phytochemical studies performed on L. 

Leonurus extracts shows that it contains tannins, flavonoids, sterols, diterpenoids, 

triterpenoids, alkaloids, quinines and saponins (Bienvenu et al., 2002; Mazimba, 2015; 

Nsuala et al., 2015). 

 

 

 

 

 



 

21 
 

Previous studies on marrubiin,  first isolated from Marrubium vulgare extracts, have 

reported a vasorelaxant activity on the isolated rat aorta (El Bardai et al., 2003; Khan 

et al., 2012). Marrubiin is also one of the primary diterpenoids found in L. Leonurus 

(Mnonopi et al., 2011; Rivett, 1964) and has been suggested to be responsible for the 

anticoagulant, antiplatelet, antidiabetic, and cardio protective effects of the plant 

extracts (Mnonopi et al., 2011). Other diterpenoids previously extracted from L. 

Leonurus include Leoleorin A (or Compound Y), Leoleorin B, Leoleorin C, Leoleorin 

D, Leoleorin E, Leoleorin F, Leoleorin G (or Leonurenone B), Leoleorin H (or 

Leonurenone C), Leoleorin I, Leoleorin J (or Leonurenone A), Leoleorin L, Leoleorin 

M, Leoleorin N and 16­epi­Leoleorin F (Bienvenu et al., 2002; He et al., 2012; Kaplan 

and Rivett, 1968; Naidoo et al., 2011; Wu et al., 2011). Compound X, premarrubiin, 

Dubiin, Saponified­Dubiin, Hispanol, DC9 and leonurun have also been isolated from 

the plant (Henderson and Mccrindle, 1969; Kaplan et al., 1970; Kaplan and Rivett, 

1968; McKenzie et al., 2006; Savona et al., 1978). Recently, Narukawa et al (2015) 

reported two new diterpenoids 14α­hydroxy­9α, 13α­epoxylabd­5(6)­en­7­on­16, 15­

olide and 13ξ­hydroxylabd­5(6), 8(9)­dien­7­on­16, 15­olide from the plant. 

 

 

2.7 ANIMAL MODELS IN CARDIOVASCULAR RESEARCH 

 

The use of animal models can present useful information about genes as well as 

pathways to understanding the complex pathophysiologic characteristics within 

humans without the added risk of harming an actual human through the procedure 

(Pravenec and Kurtz, 2010). From the available experimental data based on several 

studies with over 4000 Medline references in the last 10 years, it was shown that the 

most commonly studied animal model of hypertension development is the use of 

spontaneously hypertensive rat (SHR) (Okamoto and Aoki, 1963). In comparative 

studies that were performed on nine genetic hypertensive rat strains, done by Horie et 

al (1986), SHR showed markedly higher BP levels and earlier blood pressure rises in 

comparison with other hypertensive strains. This is because of the similarity between 

SHR and human anatomy. These similarities are known to range from a genetic 

susceptibility to high BP without having specific aetiology. The responses to drug 
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treatment between SHR and humans have been similar especially with the 

development of many features of human hypertensive end­organ damage such as 

cardiac hypertrophy, cardiac failure and renal dysfunction (Pinto et al., 1998). As in 

the case of humans, hypertension is known to develop more rapidly and become severe 

in male than female SHR (Barrett­Connor, 1997; Iams and Wexler, 1979). Another 

advantage of using the SHR model is that it follows the same progression of 

hypertension as human hypertension with pre­hypertensive, developing and sustained 

hypertensive phases, with each phase characterized to last at least several weeks 

(Folkow and Svanborg, 1993). One of the characteristics of SHR that differs from 

human hypertension is that SHRs reproducibly develop hypertension in young adults 

compared to the middle age in humans (Kauser and Rubanyi, 1995). Although the SHR 

is the animal of choice for the screening of antihypertensive agents (Leong et al., 2015; 

Okamoto and Aoki, 1963; Trippodo and Frohlich, 1981), the use of normotensive rats 

are considered to be more appropriate especially for pharmacologic screening in cases 

where the cardiovascular effect of the compounds is unknown as it allows for the study 

of both hypertensive and hypotensive effects and also due to economic reasons 

(Obikeze et al., 2013, 2008). In addition, normotensive and SHRs have comfortably 

short life spans. 2.5–3 years and 1.5–2.5 years respectively. The short life span of these 

species make them a suitable candidate as it is relatively less time­consuming and 

easier to follow the changes during such a short life span (Folkow and Svanborg, 

1993). 

 

Generally, there are three (3) methods that are used for BP measurement in rats; tail 

cuff plethysmography, intra­arterial catheters and radio telemetry. The tail cuff 

plethysmography is a simple, indirect method, surgically non­invasive and suitable 

especially for a large population of animals, short and long experiments. However, this 

method is known to be imprecise when compared with other methods. The continuous 

monitoring of direct arterial BP using intra­arterial catheters is more precise and with 

high fidelity especially when measuring mean arterial blood pressure and heart 

hemodynamics. Unlike the tail cuff method, the intra­arterial method requires surgery. 

The third method used in the measurement of BP is radio telemetry. This method 
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allows for the study of BP in conscious and freely moving animals. However, it is 

extremely expensive (Vogel, 2007). 

  

 

2.8 DRUG DESIGN AND DISCOVERY 

 

The traditional drug discovery and design methods are time­consuming, capital 

intensive processes and synonymous with a high failure rates. For instance, the average 

cost for discovering and developing a new drug has increased from $4 million in 1962 

to over $350 million in 1996 with the current estimated cost to be approximately $2.6 

Billion (DiMasi et al., 1991; Tufts CSDD, 2014). Consequently, new approaches for 

drug design and methodologies are constantly being developed in order to reduce the 

time and costs. One of the most recent approaches is the increase in the use of 

computer­based techniques and molecular modelling to design and virtually evaluate 

novel potential drugs before laboratory preparation (Zonta et al., 2010). Essentially, 

these newly designed drug approaches will continue to undergo several modifications 

and improvements thereby leading to new and more powerful drugs (Wlodawer and 

Vondrasek, 1998). 

 

The computer­aided techniques (in-silico) used in drug design and discovery are 

automated processes. It is a powerful, versatile technique that is used to identify a lead 

compound on computer before it is synthesized in the laboratory. This method is 

quicker and economical especially on a per compound in comparison with laboratory 

test (Blundell, 1996). This is mainly because of the fact that (in-silico) tools and 

techniques are capable of reducing both cost and time that are associated with the 

development of drug­like molecules (Singh et al., 2006). Another important benefit of 

these techniques is the ability to reduce failure during clinical trials. This is because at 

least 41 % of the failures in new drug development are attributed to poor 

pharmacokinetics and drug­drug interactions (Aulton and Taylor, 2013; Prentis et al., 

1988). Hence the ability to predict drug properties in earlier phases of development 

would increase safety and reduce the number of (in-vivo) tests and ultimately 

accelerate the drug discovery process. In addition, the computational methods could 
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help to predict the modifications needed to improve some of the identified poor 

pharmacokinetic parameters (Vass, 2011). These advantages make computational 

techniques an integral part of a successful and profitable drug design process 

(Blundell, 1996). In addition, large databases such as the ZINC library of compounds 

are often tested in software and are freely available for other users. (Zonta et al., 2010). 

Computer­aided drug design techniques are important in drug discovery and 

historically assist with providing useful insights and suggestions on the synthesis of 

new molecular structures and also experimental analysis prior to synthesis (Lybrand, 

1995). One of the successful applications of computer­aided drug design is the recent 

development of human immunodeficiency virus (HIV­1) protease inhibitors via three­

dimensional (3D) structures of protein target molecules in structure­based drug design 

(Wlodawer and Vondrasek, 1998).  

 

To date there have been several successful computer­assisted molecular design 

attempts to involve the use of lead optimization in order to improve the activity, 

specificity, and pharmacokinetics of lead compounds (Young, 2009). Examples of 

drugs that have been developed using computer­aided drug design include captopril 

(antihypertensive), indinavir sulphate (anti HIV) (Figure 2.3), teveten 

(antihypertensive), donepezil hydrochloride (Alzheimers disease), dorzolamide 

(Glaucoma), zolmitriptan (migraine), NVP­AUY922 (anticancer), and LY 517717 

(factor Xa inhibitor) (Glen et al., 1995; Greer et al., 1994; Kawakami et al., 1996; 

Keenan et al., 1993; Talele et al., 2010). 
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Figure 2.3: 3D structure of Indinavir, HIV-1 protease inhibitors bound to the HIV-1 protease 

receptor. 

Indinavir (small yellow docked molecule towards the centre of the figure) bound to HIV­1 protease 

receptor pocket (PDB: 1HSG). The drug molecule fits tightly in the binding site and blocks the normal 

protein function (Wlodawer and Vondrasek, 1998). 

 

 

2.9 MOLECULAR DOCKING 

 

Molecular docking (MD) is defined as a computational process of identifying a ligand 

that is capable of fitting both geometrically and energetically within the binding site 

(active site) of a protein (target) (Figure 2.3) (Teodoro et al., 2001). Molecular docking 

(MD) can assist to predict the binding modes (interactions) and binding energy (ΔGb) 

of a ligand with a known 3D structure of a protein and has been widely used for drug 

hit identification and lead optimization (Kitchen et al., 2004). The binding mode 

(interactions) and binding energy (ΔGb) are easy to visualize and analyse 

computationally. The more the negative value of the binding energy (ΔGb), the 

stronger the interactions between the ligand and the target (Lim et al., 2011; Temirak 

et al., 2014; Thakur and Thakur, 2015). The primary tool for this analysis is the 

“Protein­ligand docking” (molecular docking) technique. This technique provides 

different information on the strength of the interaction between the compound (drug) 
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and the biological system (target) (Kitchen et al., 2004). Generally, the application of 

computational methods to study the formation of intermolecular complexes has been 

the focus for researchers as it is widely accepted that drug activity is obtained through 

the binding mode (interactions) of a ligand to the pocket of a protein. For example, 

during the binding conformations of the complex of a protein with a therapeutic drug, 

the molecules are known to exhibit geometric and chemical complementarities which 

are both essential for successful drug activity (Teodoro et al., 2001).  

 

Historically, drug discovery did not emerge until the first structures of the targets 

(receptors) were solved. One of the pioneer studies by Ehrlich in 1897 suggested a 

theory that the side chain with specific groups on the cells can combine with the toxin. 

Ehrlich coined these side chains as receptors (Klebe, 2000). Several drugs are known 

to have protein targets and understanding their interaction is crucial to designing a 

potent compound (Bruce, 2010). This is because most of the targets for computer­

aided drug design are protein based such as enzymes or cell surface receptors 

(Overington et al., 2006). In particular, specific amino acid sequences in the binding 

site (active site) are necessary for the receptor to bind ligands (Roy and Luck, 2007). 

The main process involved for a drug to bind to a receptor is such that the drug should 

be in the correct shape to fit into the active site. This mechanism is referred to as the 

lock­and­key theory of drug action (Jorgensen, 1991). Receptor active sites are 

described as having specificity pockets which are empty and available areas of the 

active site where the drug can bind (Alberts et al., 2013). Another requirement is that 

the drug should have the right functional group to bind to the active site (Lodish et al., 

2000). For example, if the active site of the receptor contains a hydrogen bond donor, 

then the drug should have a hydrogen bond acceptor in order to be positioned and give 

a hydrogen bond binding the drug to the active site. Also, other important drug 

interactions with active sites include π­system stacking, positioning of charged groups 

to form ionic bonds, van der Waals interactions and steric hindrance (Young, 2009).  

 

The positioning (pose) of the drug in the active site can be obtained only with great 

effort and by using appropriate techniques such as X­ray crystallography to generate 

crystal structures of the protein with the drug soaked into the crystal before starting a 
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drug design project (MartÃ­­Renom et al., 2000). The protein structure used in drug 

design is most often obtained from high resolution X­ray crystallographic experiments, 

while the structures are rarely determined by NMR (Vass, 2011). If there is no 

experimentally determined structure available, a homology model has been suggested 

as an alternative to be used for drug design and drug discovery (Enyedy et al., 2001a, 

2001b). It is important for the proteins and ligand to undergo preparation procedure 

before docking which is simply the generation of a chemically correct three­

dimensional (3D) structure for both. This may involve converting from 2D to 3D, 

adding atoms missing in the database files, defining the correct topology and finding 

the possible tautomer and protonation states at physiological pH (MartÃ­­Renom et 

al., 2000). 

 

The initial steps in new drug discovery involve the identification of new chemical 

entities and this procedure can be via chemical synthesis or direct isolation of 

compounds from natural products (Koehn and Carter, 2009; Rishton, 2008). For 

instance, more than 80% of drug compounds were pure natural products or derived 

from natural sources and almost half of the drugs approved since 1994 are based on 

natural products. According to Harvey (2008), 13 new drugs related to natural products 

have been approved between 2005 and 2007 and are obtained from natural sources. 

The starting point for plant­based new drug discovery should be the identification of a 

suitable candidate plant with a well­documented traditional use, as well as the isolation 

of the pure compounds that are responsible for the activity. This is an integrated 

approach with the benefits of saving costs and time, and when coupled with molecular 

docking enhances the success rate of drug discovery (Katiyar et al., 2012).  

 

 

2.10 DRUG-LIKENESS 

 

Drug­likeness is a qualitative concept used in drug design to define the potential of a 

drug to produce in-vivo biological activity that is based on pharmacokinetic factors 

like bioavailability. Drug­likeness is estimated from the molecular descriptors 

(Physicochemical properties) before the substance is even synthesized and tested. One 
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of the traditional methods used to evaluate Drug­likeness is to check if it complies with 

the physicochemical properties based on the Lipinski's rule. However, many 

alternative rules have been developed from Lipinski’s rule such as Ghose filter, Veber 

rule, Blood brain barrier likeness (BBB) and MDL Drug Data Report (MDDR) like 

rule (Bickerton et al., 2012; Ghose et al., 1999; Lipinski et al., 1997; Oprea, 2000; 

Veber et al., 2002; Yusof and Segall, 2013).  

 

 

2.10.1 Lipinski’s rule 

 

This is a prominent rule that is used to predict the drug­likeness. The Lipinski’s Rule 

of Five (Ro5) by Lipinski in 1997 was based on the observation that most orally 

administered drugs are relatively small and moderately lipophilic molecules. This rule 

is also known as the Pfizer's rule of five or simply the rule of five (Lipinski, 2004; 

Lipinski et al., 1997). The rule states that a compound is more likely to exhibit poor 

absorption or permeation when two or more of the following physicochemical criteria 

are violated. A drug­like molecule has a molecular weight (MW) between (160­480 

g/mol), An octanol­water partition coefficient (LOGP) not greater than five (5), not 

more than five (5) hydrogen bond donors (HBD) or not more than ten (10) hydrogen 

bond acceptors (HBA) (Table 2.1). The rule describes molecular properties as an 

important parameter for a drugs pharmacokinetics especially in the human body 

including other mechanisms such as their absorption, distribution, metabolism, and 

excretion ("ADME"). However, the rule does not predict if a compound is 

pharmacologically active (Schneider., 2000). 

 

Table 2.1: Important descriptors and values to satisfy Lipinski’s rule. 

 

 

 

 

Name of the rule (MW) (LOGP) (HBD) (HBA) 

Lipinskies Rule of Five (ROF) 160 ­ 480 ≤ 5 ≤ 5 ≤ 10 
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2.10.2 Ghose filter 

 

Ghose et al (1999) characterized the Comprehensive Medicinal Chemistry (CMC) data 

base by establishing qualifying ranges which accounts for more than 80 % of the 

compounds. Based on the filter, a drug­like molecule has to have an octanol­

water partition coefficient (LOGP) between 0.4 and 5.6, a molecular weight (MW) 

between 160 and 480, a molar refractivity (MORF) between 40 and 130, and the total 

number of atoms (NAT) between 20 and 70 (Table 2.2). 

 

Table 2.2: Important descriptors and values to satisfy Ghose filter. 

Name of the rule (MW) (LOGP) (MORF) (NAT) 

Ghose filter 160 ­ 480 ­0.4 ­ 5.6 40 ­ 130 20 ­ 70 

  

 

2.10.3 MDDR like rule 

 

MDDR­like rule (MDL Drug Data Report) was defined and published by Oprea 

(2000), who concluded that the rule of five test “Lipinski’s Rule” could not be applied 

to discriminate between drugs and non­drugs. Oprea (2000) suggested that the 

probability of finding a drug­like compound is higher in those compounds with six (6) 

or more rotatable bonds (ROTB ≥ 6), eighteen (18) or more rigid bonds (RIGB ≥ 18), 

and three (3) or more aromatic rings (AROM ≥ 3). The probability of finding a 

‘nondrug­like’ compound is higher in the ranges of those with five (5) rotatable bonds 

or less (ROTB ≤ 5), seventeen (17) or less rigid bonds (RIGB ≤ 17), and two (2) or 

less aromatic rings (AROM ≤ 2). 

 

Table 2.3: Important descriptors and values to satisfy MDDR like rule. 

MDDR like rule (ROTB) (RIGB) (AROM) 

Drug-like ≥ 6 ≥ 18 ≥ 3 

Non drug-like ≤ 5 ≤ 17 ≤ 2 
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2.10.4 Vebers rule 

 

One of the notable contributions was made by Veber et al., (2002) in which two 

additional criteria were proposed for predicting rat oral bioavailability after 

investigating a dataset of 1100 compounds with rat oral bioavailability data. It was 

observed  that those with fewer than ten (10) rotatable bonds (ROTB) and polar surface 

area (PSA) less than 140 Å2 had a better probability of achieving a good oral 

bioavailability after oral administration, as presented in (table 2.4). 

 

Table 2.4: Important descriptors and values to satisfy Vebers rule. 

Name of the rule (ROTB) (PSA) 

Vebers rule ≤ 10 ≤ 140 

 

 

2.10.5 BBB likeness rule 

 

This filter defines and predicts the Blood­Brain Barrier likeness (BBB) of the molecule 

as presented in (table 2.5). According to this rule, the calculated molecular weight 

(MW) should be 400 or less, with eighth (8) or less hydrogen bonds (TOHB) (sum of 

hydrogen bond donors (HBD) and the hydrogen bond acceptors) (Kerns and Di, 2010; 

Pardridge, 2012, 2005), and no acid groups in the structure for it to cross the BBB, 

with the absence of an acidic group in particular increasing BBB permeation 

(Ducharme et al., 2005). 

 

Table 2.5: Important descriptors and values to satisfy BBB likeness rule. 

Name of the rule (MW) (NAC) (TOHB) 

BBB likeness rule ≤ 400 No Acids ≤ 8 

 

 

2.11 PHYSICOCHEMICAL PROPERTIES (MOLECULAR DESCRIPTORS) 

 

It is now possible to establish reliable physicochemical properties (molecule 

descriptors) for a fairly wide variety of molecules. The effects of a chemical species 

on a living organism or its distribution in the environment are controlled by the 
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physicochemical properties of the chemical species. The important physicochemical 

properties include; partition coefficient, aqueous solubility, vapours pressure and 

dissociation constant. Although all of these properties can be measured, the use of 

appropriate software tools saves time and resources, also by using quantitative 

structure permeability relationships (Dearden, 2012; Moss et al., 2002). The molecular 

descriptors are often derived mathematically from either the 2D or the 3D molecular 

structure or their associated physicochemical properties. There are thousands of such 

descriptors available, and numerous software programs are available for their 

calculation. Experimental descriptor values for many known molecules are also 

available in many books and compendia (Dearden, 2012). 

 

Chemical molecular descriptors can be used to establish a mathematical relationship 

with quantitative biological activity. This is because certain responses and 

mathematical expressions can be used to predict the biological response from other 

chemical descriptors. This mathematical expression is referred to as a quantitative 

structure­activity relationship (QSAR). The resulting mathematical relationship that is 

established between the chemical molecular descriptors and physicochemical 

properties is referred to as a quantitative structure­property relationship (QSPR). The 

physicochemical properties of chemical compounds between different phases can be 

successfully described by the modelling of the structure information (Shankar et al., 

2014). 

 

 

2.12 AIM OF THE STUDY 

 

Previous studies have shown that L. Leonurus extracts have cardiovascular effects with 

differences in the effects observed with different extracting solvents. However the 

compounds that are responsible for the cardiovascular activity observed with the plant 

extracts remain largely unknown. The aim of this study was therefore to investigate 

the cardiovascular activity of five (5) diterpenoid compounds (DC1, DC2, DC8, DC9 

and DC15) isolated from L. Leonurus extracts in anaesthetized normotensive Wistar 

rats. The study will also attempt to predict their receptor binding affinity to different 
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receptors, as well as predicting their oral bioavailability and Drug­likeness by using 

Chemoinformatics techniques (In-silico). 

 

 

2.13 HYPOTHESES 

 

Considering the abundance of diterpenoids in the plant it is hypothesized that; 

● More than one diterpenoids is responsible for the different cardiovascular 

effects observed with Leonotis Leonurus extracts. 

 

● There is a correlation between the predicted cardiovascular effects of the 

compounds following Chemoinformatics studies and actual cardiovascular 

effects obtained from in-vivo studies in normotensive Wistar rats. 

 

2.14  OBJECTIVES 

 

The objectives of this study were to: 

 

1. Perform Chemoinformatics studies (in-silico) on five (5) diterpenoid 

compounds isolated from Leonotis Leonurus. 

 

a. Calculate the molecular descriptors (physicochemical properties). 

b. Predict the Drug­likeness for the isolated compounds. 

c. Study each of the five (5) isolated diterpenoid compounds within the active 

site of a receptor by using Molecular Docking (MD) software(s), in order 

to predict their binding mode (interactions) and affinity with available 

three­dimensional structures of different receptors. 

 

2. Evaluate the cardiovascular properties of each of the five (5) isolated 

diterpenoid compounds on normotensive rats. 
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3. Compare the results from both studies, to investigate the correlation between 

Chemoinformatics studies (In-silico) for those compounds and their 

cardiovascular effects in SHR (In-vivo). 
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CHAPTER THREE 

 

3 IN-SILICO STUDIES  

 

This chapter will list the material and software used in the in-silico studies. The chapter 

will also describe the various Chemoinformatics techniques that were used in the 

Drug­likeness and the binding affinity studies of the diterpenoid compounds. This 

chapter will also provide details of the experimental preparation and procedure for 

both Drug­Likeness and Molecular Docking (MD) experiments. 

 

 

3.1 MATERIALS 

 

The following software were used in this study: The ChemDraw® Ultra 13.0 

(Cambridgesoft, USA) software was used to draw the various chemical structures, 

while the Chem3D® Ultra 13.0 (Cambridgesoft, USA) was used to convert the 

sketched structures to three dimension (3D) structures. Molecular operating 

environment (MOE) 2013 software (Chemical Computing Group Inc, US) was used 

to visualize, prepare ligands, prepare receptors, perform molecular docking, calculate 

molecular descriptors and visualize and analyse the docking result. Discovery Studio® 

0.4software (Client, USA) was also used to visualize molecular docking. Lastly, 3D 

crystal structure models of the targets (receptors) were downloaded from worldwide 

protein data bank (PDB) (http://www.rcsb.org). 

 

 

3.1.1 Ligand preparation for Drug-likeness and docking 

 

The diterpenoid compounds (DC1, DC2, DC8, DC9 and DC15) isolated from L. 

Leonurus were sketched and saved as .MDL (Mol file format) using ChemBioDraw® 

Ultra 13.0 (Cambridgesoft, USA). The structures of the ligands prepared and used for 

this study are presented in Table 3.1 below.  
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Table 3.1: Structures of five (5) Diterpenoid compounds found in L. Leonurus. 

Code DC1 DC2 DC8 DC9 DC15 

Structure 

 

     

Name Dubiin 
Saponified­

Dubiin 
Hispanol DC9 Marrubiin 

 

 

The sketched structures were then converted to three­dimensional (3D) structures 

(Figure 3.1). The energy of the 3D structures were then minimized with the use of 

MM2 Force field in ChemBio3D® Ultra 13.0 (Cambridgesoft, USA) software. The 

main goal of 3D structure preparation was to correct and fix the structural data to be 

ready for molecular descriptor calculations and docking. 

 

 

Figure 3.1: 3D structures of five (5) diterpenoid compounds found in L. Leonurus. 
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3.1.2 Receptor preparation for docking 

 

Three­dimensional (3D) experimentally determined X­ray crystal structures of target 

receptors in complex with their ligands were downloaded from the protein data bank. 

Receptors used in this study were Renin (PDB: 4XX3), Angiotensin converting 

enzyme (ACE) (PDB: 2X8Z), Angiotensin II receptor (AT1) (PDB: 3R8A) and β1 

adrenoceptor (PDB: 2Y04) (Figure 3.2). 

 

 

Figure 3.2: 3D structures of receptors in complex with their native ligands 

Figure shows 3D structures of a) renin (PDB: 4XX3) in complex with 70X, b) Angiotensin converting 

enzyme (ACE) in complex with Captopril (PDB: 2X8Z), c) Angiotensin II receptor (AT1) receptor in 

complex with HIG (PDB: 3R8A) and, d) β1 adrenoceptor with in complex with Salbutamol (PDB: 

2Y04). 
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To prepare the receptors for docking, the (3D) receptor structures were downloaded 

from the protein data bank (http://www.rcsb.org), and then loaded to MOE. The 

preparation of the receptors involved the following processes; removal of all water 

molecules, addition of hydrogen atoms, completion of residues with missing atoms, 

selection of appropriate alternate locations and calculation of partial charges. In MOE 

these structural issues were automatically corrected using the structure preparation 

application.  

 

 

3.2 METHODS 

 

Chemoinformatics analysis and docking study was performed on DC1, DC2, DC8, 

DC9 and DC15, diterpenoid compounds isolated from L. leonurus. Computational 

software was used to predict the oral bioavailability and Drug­likeness for each 

compound, as well as the binding affinity for each compound with available receptors 

(Renin, Angiotensin converting enzyme, Angiotensin II receptor and β1 

adrenoceptor). 

 

 

3.2.1 DRUG-LIKENESS STUDY 

 

The data analysis was performed using twelve widely used molecular descriptors 

(Physicochemical properties), including  molecular weight (MW), number of atoms 

(NAT), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors 

(HBA), total number of hydrogen bonds (TOHB), molecular polar surface area (PSA), 

molar refractivity (MORF), number of rotatable bonds (ROTB), number of rings 

(NRING), partition coefficient (LOGP), number of rigid bonds (RIGB), and number 

of acids (NAC). These molecular descriptors were chosen on the basis that they have 

all been shown to influence the Drug­likeness of molecules. The data pre­processing 

and descriptor calculations were done with Molecular Operating Environment 

software 2013 (MOE). Based on molecular descriptor calculations , five (5) different 

Drug­likeness rules (Lipinski’s rule of five, Ghose filter, Veber filter, Blood­Brain 

 

 

 

 



 

38 
 

Barrier likeness (BBB) and MDDR­like rule) were employed to predict the oral 

bioavailability of the compounds (see Chapter two). 

 

 

3.2.2 MOLECULAR DOCKING STUDY 

 

To identify the molecular binding mode (interactions) of the molecules within the 

receptor, all the five (5) optimized molecules (DC1, DC2, DC8, DC9 and DC15) were 

docked against the 3D structures of β1 adrenoceptor (PDB: 2Y04), renin receptor 

(PDB: 4XX3), Angiotensin converting enzyme (ACE) (PDB: 2X8Z) and Angiotensin 

II type I (AT1) receptor (PDB: 3R8A). The Docking procedure was performed in MOE 

by default parameters. The binding site was identified by specifying the atoms of a co­

crystallized ligand (native ligand) presented in the pocket while the native ligand atoms 

were ignored by the software during the docking procedure. For each molecular 

species, a number of placements called poses were generated and scored. The scores 

were then calculated as a free energy of binding (ΔGb) and the final ten (10) highest 

scoring poses (conformations) for each molecule along with their scores and binding 

energies (ΔGb) were collated into a database. The database file generated from the 

docking procedure was further analysed, with the binding mode (interactions) of the 

highest ten (10) conformations for each docked molecule in the active site visualized 

and studied with the help of MOE visualization window. Green stick rendering was 

added to the native ligands (70X, Captopril, HIG, and Salbutamol) obtained from the 

PDB files, while the isolated diterpenoid compounds (DC1, DC2, DC8, DC9 and 

DC15) were marked in yellow stick style for better contrast and to enable the study of 

the interactions of these docked compounds within the receptor active site. Among the 

visualization of the conformation generated from the docking for each molecule the 

conformation with the best binding mode (interactions) with the lowest binding energy 

(ΔGb) was selected for further analysis.  

 

Before docking the isolated diterpenoid compounds the molecular docking (MD) with 

MOE was performed between the receptors and their native ligands (70X, Captopril, 

HIG, and Salbutamol) to validate the docking protocol by calculating the root mean 
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square deviation (RMSD). The binding energy (ΔGb) and the binding mode 

(interaction) for the native ligands were also calculated and analysed. 

 

 

3.3 RESULTS AND DISCUSSION 

 

3.3.1 Drug-Likeness  

 

Molecular physicochemical properties (molecular descriptors) and the Drug­Likeness 

are the two properties that are significant for considering a compound to become a 

successful drug candidate. Twelve important molecular descriptors for five (5) 

diterpenoid compounds found in L. Leonurus (DC 1, DC 2, DC 8, DC 9, and DC 15) 

were calculated and summarized in Table 3.2. The molecular descriptors were used to 

determine if the molecules satisfied the Drug­Likeness criteria based on existing rules. 

In order to determine the numerical and structural identity associated with each 

molecular descriptor, MOE software was used to calculate the molecular descriptors 

(physicochemical properties) for each compound. The 2D structure for the compounds 

has been presented in (Table 3.1) and the 3D structure presented in (Figure 3.1). 

 

Table 3.2: Physicochemical properties (Molecular descriptors) calculation for five compounds isolated 

from L. Leonurus isolated diterpenoid compounds. 

Code MW MF TOHB HBD HBA LOGP NAT MORF NRING RIGB ROTB PSA 

DC1 391.48 C22H30O6 4 1 3 3.26 58 83.22 4 20 7 85.9 

DC2 349.44 C20H28O5 5 2 3 2.69 53 74.07 4 20 6 79.9 

DC8 320.47 C20H32O3 4 2 2 4.17 55 90.82 3 16 5 53.6 

DC9 394.64 C22H34O2S2 2 1 1 5.99 60 94.27 4 21 5 33.9 

DC15 332.44 C20H28O4 3 1 2 3.72 52 71.15 4 19 3 59.6 

 

 

3.3.1.1 Drug-likeness - compound DC1 

 

In Table 3.2, the molecular descriptors for DC1 (C22H30O6) showed that the compound 

has a molecular weight of 391.484 g/mol. The results also indicate the presence of 

aromatic moieties with four (4) rings and twenty (20) rigid bonds, which have seven 
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(7) rotatable origins (Table 3.2). DC1 can form 4 (four) hydrogen bonds. The 

calculated partition coefficient of DC1 predicted value (LOGP) was 3.2644 while its 

molar refractivity value (MORF) was calculated to be 83.22. Also, the polar surface 

value (PSA) indicated 85.97 and the total number of atoms (NAT) was 58. 

 

The Lipinski’s rule can be used to investigate the oral bioavailability and Drug­

Likeness of a compound. In Table 3.2, the LOGP, MW, and TOHB values for DC1are 

3.2644, 391.484 g/mol and 4 respectively. According the Lipinski’s rule as described 

in Table 2.1, it was observed that the selected molecular descriptors fulfilled the 

Lipinski’s rule. As a result, DC1 complied with Lipinski’s rule and exhibited nil 

violation of rule.  

 

In order to further validate the Drug­Likeness of DC1 (Table 3.2), the Ghose filler rule 

as described in Table 2.2, was used to establish the molecular descriptor within specific 

qualifying ranges. According to the Ghose rule, DC1 partition coefficient (LOGP = 

3.2644) was within the preferred range (0.4 ­ 5.6). The molecular weight (MW) was 

found to be 391.484 g/mol while the molar refractivity (MORF) was 83.22. The Ghose 

range for MW is between 160 and 480 g/mol and the corresponding range for MORF 

is between 40 and 130.  This implies that DC1 satisfies the Ghose rule. The total 

number of atoms (NAT) for DC1 was 58 and lies within the Ghose preferred range (20 

­ 70). In summary, DC1 complied with the Ghose rule. 

 

Veber rule was also used to investigate the Drug­Likeness of DC1 as described in 

Table 2.4. The most important molecular descriptor parameters used in this rule are 

ROTB and PSA. In Table 3.2, the ROTB and PSA values for DC1 are seven (7) 

rotatable bonds and 85.97 respectively. The Veber rule stipulates that the preferred 

range of rotatable bonds must not be more than ten (10) rotatable bonds and the PSA 

value must be in the range of ≤140 Å2. The calculated ROTB and PSA for DC1s 

showed that the Veber rule was obeyed.  

 

Oprea (2000) suggested that the probability of finding a Drug­Like compound is higher 

provided the compounds passed all the criteria in MDDR­like rule. DC1 contains 
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seven (7) rotatable bonds (ROTB), while the preferred value is six (6) or more rotatable 

bonds (ROTB ≥ 6). DC1 also contains twenty (20) rigid bonds which lies within the 

preferred range (RIGB ≥ 18), and four (4) aromatic rings (AROM) which also lies 

within the preferred range (AROM ≥ 3). The MDDR­like rule was obeyed by 

compound DC1. 

 

With respect to the Blood­Brain Barrier (BBB) rule, as shown in Table 3.2, the 

calculated values for the MW and TOHB are 391.484 g/mol and 4 hydrogen bonds 

respectively. These values are within the accepted range for MW (≤ 400) and TOHB 

(≤ 8) (Pardridge, 2005, Pardridge, 2012, Kerns and Di, 2010). The BBB result 

indicates that there are no acid groups present in the DC1 structure. This is because the 

absence of an acidic group has been reported to increase BBB permeation of 

compounds (Ducharme et al., 2005). The Drug­Likeness for DC1 according to the 

rules (Lipinski’s rule, Ghose filter, Veber filter, Blood­Brain Barrier (BBB) likeness 

and MDDR­like rule) are summarized in Table 3.3. 

 

As presented in Table 3.3, the molecular descriptors analysis for DC1 showed that 

DC1 passed all the five (5) rules. This indicates that DC1 has a high probability of 

being a good Drug­like candidate, with good oral bioavailability after oral 

administration, and penetration of the Blood­brain barrier (BBB). 

 

 

3.3.1.2 Drug-likeness - compound DC2  

 

As presented in Table 3.2, the molecular descriptors for DC2 (C20H28O5) indicated that 

the compound has a molecular weight of 349.447 g/mol. The MOE software was used 

to determine detailed information on the structural configuration of DC2. DC2 has a 

structural configuration that contains four (4) aromatic rings, twenty (20) rigid bonds 

with six (6) rotatable origins and five (5) hydrogen bonds. The calculated partition 

coefficient (LOGP) of DC2 was 2.6936, while its molar refractivity value (MORF) 

was calculated to be 74.07. The polar surface value (PSA) was 75.99 and the total 

number of atoms (NAT) was 53. 
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The oral bioavailability and Drug­Likeness of DC2 was determined using the 

Lipinski’s rule. In Table 3.2, the LOGP, MW, and TOHB values for DC2 were 2.6936, 

349.447 g/mol and five (5) respectively. The values are within the range of the 

Lipinski’s rule as described in (Table 2.1). It was observed that the selected molecular 

descriptors fulfilled the Lipinski’s rule.  

 

The Ghose rule was used to validate the Drug­likeness of DC2 (Table 3.2) and to 

determine if the molecular descriptors are within specific qualifying ranges. According 

to the Ghose rule as described in (Table 2.2), the partition coefficient (LOGP = 2.6936) 

was within the preferred range (0.4 ­ 5.6). Molecular weight (MW) was found to be 

349.447 g/mol and the molar refractivity (MORF) was 74.07, all well within the 

preferred ranges (MW; 160 ­ 480 g/mol:  MORF; 40 ­ 130). The total number of atoms 

(NAT) in DC2 was 53, and also within the reference range (20 ­ 70). The use of Ghose 

rule to investigate DC2 showed that it agreed with all the conditions (LOGP, MORF, 

MW and NAT) of the rule. 

 

Veber rule was also used to investigate the Drug­Likeness of DC2 by investigating its 

ROTB and PSA values which are two important parameters that are considered using 

this rule as described in (Table 2.4). The ROTB and PSA values for DC2 as presented 

in (Table 3.2) are six (6) rotatable bonds and 75.99 respectively. According to this rule, 

the preferred range of rotatable bonds must not exceed ten (10) rotatable bonds and the 

PSA value must be less than or equal to 140 Å2. DC2 thus obeyed the Veber rule.  

 

Oprea (2000), suggested that the probability of finding a Drug­like compound is higher 

especially if such the compounds fulfilled all the criteria in MDDR­like rule as 

described in Table 2.3. In the case of DC2, the Lipinski’s, Ghose and Veber rules were 

all obeyed (Table 3.2). DC2 contains 6 rotatable bonds (ROTB) (preferred range: 

ROTB ≥ 6). DC2 contains twenty (20) rigid bonds (preferred range: RIGB ≥ 18), and 

has four (4) rings (AROM) (acceptable range: AROM ≥ 3).The MDDR­like rule was 

obeyed by compound DC2. 
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DC2 was investigated to predict its Blood­Brain Barrier (BBB) permeation as 

described in Table 2.5. It was observed that DC2 satisfied the BBB rule for its MW 

and TOBH values. The calculated values for the MW and TOHB were 349.447 g/mol 

and five (5) hydrogen bonds respectively. These values were within the accepted range 

for MW and TOHB (≤ 400 g/mol and ≤ 8 hydrogen bonds respectively) (Pardridge, 

2005, Pardridge, 2012, Kerns and Di, 2010). From the BBB result, it can be deduced 

that DC2 does not contain any acid group in its structural configuration. This is 

because the absence of an acidic group has been reported to increase BBB permeation 

of compounds (Ducharme et al., 2005). The Drug­Likeness for DC2 according to the 

rules (Lipinski’s rule, Ghose filter, Veber filter, Blood­Brain Barrier likeness (BBB) 

and MDDR­like rule) are summarized in Table 3.3. 

 

As presented in Table 3.3, the molecular descriptors analysis for DC2 showed that 

DC2 passed all the five (5) rules. This indicates that DC2 has a high probability of 

being a good Drug­like candidate, with good oral bioavailability after oral 

administration, and permeation through the Blood­Brain Barrier (BBB). 

 

 

3.3.1.3 Drug-likeness - compound DC8  

 

As presented in Table 3.2, compound DC8 has the following molecular descriptors 

values; MW (320.473 g/mol), TOHB four (4), three (3) rings and sixteen (16) rigid 

bonds, LOGP (4.1766), MORF (90.82), PSA (53.69) and NAT (55). The structure for 

DC8 was determined to be C20H28O5. It was observed that all the molecular descriptors 

values for DC8 satisfied the Lipinski’s rule as described in Table 2.1. With respect to 

the Ghose rule, the Drug­likeness indicators of DC8 were within the accepted range of 

the rule as described in Table 2.2. According to this rule, the molecular descriptors 

values for DC8 which include partition coefficient i.e. LOGP, MW, MORF, NAT all 

obeyed the rule (Table 3.2). With respect to the Veber rule (Table 2.4), the ROTB and 

PSA values for DC8 compound were five (5) rotatable bonds and 53.69 respectively. 

These values are within the limits of the Veber rule thus DC8 satisfied the rule.  
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DC8 was investigated to predict its Blood­Brain Barrier (BBB) permeation as 

described in Table 2.5. The calculated values (Table 3.2) for MW and TOHB were 

320.473 g/mol and four (4) hydrogen bonds respectively. These values were within the 

accepted range for MW and TOHB (Pardridge, 2005, Pardridge, 2012, kerns and Di, 

2010). DC8 does not contain acid group thus DC8 satisfied the BBB rule (Ducharme 

et al., 2005). 

 

Unlike DC1 and DC2, it was observed that DC8 did not satisfy the MDDR­Like rule 

as it violated two (2) of this rule's criteria. According to Oprea (2000), DC8 is more 

likely to be non­Drug­like because it contains five (5) rotatable bonds (ROTB) which 

is out the preferred range of ≥ 6 ROTB. DC8 also contains sixteen (16) rigid bonds 

which was out of the preferred range as the minimum value for rigid bonds is eighteen 

(18) (RIGB ≥ 18). The structural configuration results for DC8 showed that it 

contained three (3) aromatic rings (AROM) which lies within the preferred range 

(AROM ≥ 3). The Drug­Likeness for DC8 according to the rules are summarized in 

Table 3.3.  

 

As presented in Table 3.3, the molecular descriptors analysis for DC8 showed that the 

molecule (DC8) passed four (4) rules i.e. Lipinski’s rule, Ghose filter, Veber filter, and 

Blood­Brain Barrier likeness. However, DC8 violated two of the three criteria for the 

MDDR­Like rule. The result suggests that DC8 can be predicted to have a good 

probability of being a good Drug­Like candidate, good oral bioavailability after oral 

administration, and pass the Blood­Brain Barrier (BBB). 

 

 

3.3.1.4 Drug-likeness - Compound DC9  

 

From Table 3.2, the molecular descriptors for DC9 showed that the compound has a 

molecular formula and weight as C22H34O2S2 and 349.447 g/mol respectively. DC9 

contains aromatics moieties of four (4) rings, 21 rigid bonds (Table 3.1) and five (5) 

rotatable origins. As a result, DC9 can form two (2) hydrogen bonds. The calculated 
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partition coefficient value (LOGP) of DC9 was 5.992 and its MORF value was 

calculated to be 94.27. The PSA and NAT values were 33.97 and 60 respectively. 

 

The application of Lipinski’s rule to determine the oral bioavailability and Drug­

Likeness of DC9 (Table 3.2) showed that the compound violated one of the four 

criteria for Lipinski’s as described in Table 2.1. However, the Lipinski’s rule states 

that if a compound violates one criteria, its Drug­likeness properties may not be 

affected (Lipinski et al., 1997; Lipinski, 2004). The LOGP value of DC9 was out of 

the Lipinski’s rule preferred range because it was higher than 5 whereas the rule 

stipulates that a compound must be equal to or less than five (5). The MW of DC9 

(349.447 g/mol) showed that it was within the preferred range (160 to 480 g/mol). DC9 

has the possibility to form two (2) hydrogen bonds hence it agreed with Lipinski’s rule 

that the total hydrogen bond (TOHB) of a compound must not exceed five (5). DC9 

passed three (3) of four (4) criteria and according to this rule, a compound is more 

likely to exhibit poor absorption or permeation if the compound violated two or more 

of the mentioned physicochemical criteria in Table 2.1. This therefore means that DC9 

complied with the Lipinski’s rule for oral bioavailability and Drug­Likeness. 

 

The Ghose filter was used to analyse the Drug­likeness of DC9 and the molecular 

descriptor within the specific qualifying ranges of Ghose rule as described in Table 

2.2. The molecular weight (MW) was found to be 394.644 g/mol, while the molar 

refractivity (MORF) was 94.27. The Ghose filter range for MW is between (160 and 

480 g/mol) and the corresponding range for MORF is between 40 and 130. The 

partition coefficient (LOGP) for DC9 (5.992) was out of the Ghose filter preferred 

range (20 ­ 70). The result showed that the molecular descriptors for DC9 violated one 

of the Ghose filter criteria which is the LOGP value. 

 

The Veber rule (Table 2.4) was used to investigate the molecular descriptor parameter 

for DC9 for its ROTB and PSA values. In Table 3.2, the ROTB and PSA values for 

DC9 were five (5) rotatable bonds and 53.69 respectively. The Veber rule requires the 

preferred range of rotatable bonds to be no more than ten (10) while the PSA value 
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must be ≤140 Å2. The calculated ROTB and PSA for DC9 was five (5) and 53.99 

respectively hence the Veber rule was obeyed for this compound.  

 

As described in Table 2.3, DC9 was investigated in order to determine if it obeyed 

MDDR­like rule. The structure of the compound indicated that it contained five (5) 

rotatable bonds (ROTB), with the preferred range of at least six (6) rotatable bonds or 

more (ROTB ≥ 6). DC9 also contained 21 rigid bonds and this agreed with the 

preferred range i.e. minimum of 18 or more (RIGB ≥ 18). DC9 contained four (4) rings 

(AROM) which also lies within the preferred range i.e. equal to three (3) or more 

(AROM ≥ 3). In summary, molecular descriptors for DC9 violated the MDDR­like 

rule criteria as it contained a lower number of rotatable bonds ROTB. 

 

DC9 was investigated to predict its Blood­Brain Barrier (BBB) permeation as 

described in Table 2.5. It was observed that DC9 satisfied the BBB rule. For instance, 

in Table 3.2, the calculated values for the MW and TOHB were 394.644 g/mol and 

two (2) hydrogen bonds respectively. These values are within the accepted range for 

MW and TOHB (≤ 400 and ≤ 8 respectively) (Pardridge, 2005, Pardridge, 2012, Kerns 

and Di, 2010). The BBB result is significant as it serves as an indicator to show that 

DC9 does not contain acid groups in its structure which has been attributed to decrease 

permeation capacity of compound (Ducharme et al., 2005). 

 

The Drug­Likeness for DC9 according to the rules i.e. Lipinski’s rule, Ghose filter, 

Veber filter, Blood­Brain Barrier likeness (BBB) and MDDR­like rule are summarized 

in Table 3.3.  

 

As presented in Table 3.3, the molecular descriptor analysis for DC9 showed that the 

compound passed three (3) rules which include Lipinski’s rule of five, Veber filter, 

and Blood Brain Barrier likeness, while it violated the MDDR­Like rule and Ghose 

filter. Although the Lipinski’s rule of five, Veber filter, and Blood Brain Barrier 

likeness results predict that DC9 would have a good oral bioavailability after oral 

administration and pass the Blood­Brain Barrier (BBB), the compound has a lower 
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possibility of being a Drug­Like molecule due to failure of the Ghose filter and 

MDDR­Like rule. 

 

 

3.3.1.5 Drug-likeness - compound DC15 

 

 The following molecular descriptors for DC15 are shown in Table 3.2, with the 

molecular formula C20H28O4 and the MW i332.440 g/mol. The molecular formula 

implies that the structural configuration of DC15 contains aromatic moieties with four 

(4) rings, nineteen (19) rigid bonds (Table 3.1) and three (3) rotatable origins. 

Therefore, DC15 is capable of forming three (3) hydrogen bonds. The calculated 

partition coefficient value (LOGP) for DC15 was 3.721, while its molar refractivity 

(MORF) value was calculated to be 71.15. The polar surface (PSA) value was 59.67 

and the total number of atoms (NAT) was 52. 

 

DC15 was analysed using the Lipinski’s rule to investigate its oral bioavailability and 

Drug­Likeness. In Table 3.1, DC15 values for LOGP, MW, and TOHB were 3.721, 

332.440 g/mol and 3 respectively. These values were observed to agree with the 

Lipinski’s rule as described in Table 2.1 hence DC15 did not violate any of the rule 

criteria.  

 

With respect to the Ghose filter rule for its Drug­likeness as described in Table 2.2, 

the partition coefficient  for DC15 (3.721)was within the preferred range (0.4 ­ 5.6). 

The molecular weight (MW) (332.440 g/mol) and molar refractivity (MORF) (71.15) 

were within the ranges (160 ­ 480 g/mol for MW and 40 ­ 130 for MORF). This implies 

that DC15 satisfied the Ghose rule. The total number of atoms (NAT) for DC15 was 

52 and lies within the Ghose preferred range (20 ­ 70). Therefore, DC15 complied with 

the Ghose rule. 

 

The Veber rule was used to investigate the ROTB and PSA for DC15 which are the 

two most important molecular descriptor parameters in the twelve (12) descriptors as 

described in Table 2.4. The ROTB and PSA values for DC15 were three (3) rotatable 
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bonds and 59.67 respectively. The Veber rule stipulates that the preferred range of 

rotatable bonds must not be more than ten (10) rotatable bonds and the PSA value must 

be ≤140 Å2. The calculated ROTB and PSA for DC15 showed that the Veber rule was 

obeyed.  

 

DC15 was investigated in order to determine if it obeyed the MDDR­like rule as 

described in Table 2.3. DC15 contained three (3) rotatable bonds (ROTB) which was 

less than the minimum six (6) rotatable bonds required. DC15 contained 19 rigid bonds 

and this agreed with the preferred range i.e. minimum of 18 or more (RIGB ≥ 18). The 

structure of this compound showed that it contained four (4) rings (AROM) which also 

lies within the preferred range (AROM ≥ 3). However, DC15 violated one of criteria 

for MDDR­Likeness i.e. RTOB, hence DC15 is more likely to be a non­Drug­like 

molecule (Table 2.3). 

 

DC15 was investigated to predict its Blood­Brain Barrier (BBB) permeation as 

described in Table 2.5. It was observed that DC15 satisfied the BBB rule for MW and 

TOBH which are 332.440 g/mol and 3 respectively. These values are within the 

accepted range for MW (≤ 400) and TOHB (≤ 8) (Pardridge, 2005, Pardridge, 2012, 

Kerns and Di, 2010). The BBB result indicates that no acid groups are present in DC15 

and as a result will increase the BBB permeation of compounds (Ducharme et al., 

2005). The Drug­Likeness for DC15 according to the rules i.e. Lipinski’s rule, Ghose 

filter, Veber filter, Blood­Brain Barrier likeness (BBB) and MDDR­like rule are 

summarized in Table 3.3. 

 

 As presented in Table 3.3, the molecular descriptor analysis for DC15 showed that the 

compound passed four (4) rules i.e. Lipinski’s rule of five, Ghose filter, Veber filter, 

and Blood Brain Barrier likeness but violated one of three criteria of the MDDR­Like 

rule. The result showed that DC15 has a good probability of being a good Drug­Like 

candidate with good oral bioavailability after oral administration as it passed the 

Blood­Brain Barrier (BBB). 
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Table 3.3: Result of Drug-likeness prediction of L. Leonurus compounds. 

Filters DC 1 DC 2 DC 8 DC 9 DC 15 

Lipinski’s rule Pass  Pass Pass Pass Pass 

Ghose filter Pass  Pass  Pass Fail Pass 

MDDR-like rule Pass  Pass  Fail Fail Fail 

Veber filter Pass  Pass  Pass Pass Pass 

BBB likeness Pass  Pass Pass Pass Pass 

 

 

3.3.2 MOLECULAR DOCKING  

 

Molecular docking (MD) is a method used to understand the binding interactions 

(binding modes and binding affinity) between the active site of the targeted receptor 

and the test compound. In this study, MD analysis was performed on DC1, DC2, DC8, 

DC9 and DC15 (Table 3.1). The MD analysis was used to understand the binding 

modes and estimate the binding affinity of DC1, DC2, DC8, DC9 and DC15 against 

the 3D structure of receptors downloaded from the protein data bank (PDB) coded as 

PDB: 2Y04, PDB: 4XX3, PDB: 3R8A and PDB: 2X8Z. The receptors have been 

presented and described in Figure 3.2.  

 

 

3.3.2.1 Accuracy of the docking protocol 

 

Molecular docking (MD) with MOE was performed between the receptor and their 

native ligands to validate the docking protocol. This approach is often done by 

calculating the root mean square deviation (RMSD) (Chen et al., 2007; Temirak et al., 

2014; Wang et al., 2003). The RMSDs values between the re­docked poses and the 

original poses of the native ligands are indicative of whether the docking protocol is 

accurate, with values under 2 Å indicative of an accurate protocol. If the RMSD of the 

best docked conformation of the native ligand is 2.0 Å or less from the experimental 

one (native ligand), the used scoring function (protocol) is successful (Wang et al., 

2003). The obtained pose from re­docking the native ligands with their receptors were 

well correlated with the original poses, with small RMSD values (Figure 3.3). 
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Figure 3.3: Root-mean-square deviation between the original poses and the re-docked poses 

Figure shows the Root­mean­square deviation (RMSD) between the original poses (Green) and the re­

docked poses (Yellow). a) RMSD value (0.514 Å) between the re­docked pose (Yellow) and the original 

pose (Green) of the native ligand (70X) in renin active site (PDB: 4XX3). b) Shows RMSD value (0.381 

Å) between the re­docked pose (Yellow) and the original pose (Green) of the native ligand (Captopril) 

in ACE (PDB: 2X8Z) active site. c) RMSD value (0.597 Å) between the re­docked pose (Yellow) and 

the original pose (Green) of the native ligand (HIG) in AT1 receptor (PDB: 3R8A) active site. d) RMSD 

value (0.478Å) between the re­docked pose (Yellow) and the original pose (Green) of the native ligands 

(Salbutamol) in β1 adrenoceptor (PDB: 2Y04) active site. 

 

Molecular docking (MD) was performed between renin and it is native inhibitor (70X) 

which was obtained from the protein data bank (PDB: 4XX3). The RMSD value for 

the re­docked native ligand (Figure 3.3a) was 0.514 Å. The re­docked 70X was 

superimposed and this inhibitor showed that it perfectly aligns with is original position 

in the active site of the receptor i.e. renin. Also, the angiotensin converting enzymes 

(ACE) receptor was re­docked with its native inhibitor (Captopril) which was obtained 

from protein data bank (PDB: 2X8Z). It was observed that the RMSD value for the re­

docked Captopril in the ACE active site as shown in Figure 3.3b was 0.381 Å and the 

active site of the re­docked Captopril which was superimposed on the receptor 

indicated similarity in position and binding mode as the original docking site of 

inhibitor. The MD procedure that was performed between Angiotensin II receptor 

(ANG II) and its native antagonist (HIG) (PDB: 3R8A) showed an RMSD value of 
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0.59 Å for the re­docked native ligand (Figure 3.3b) with the re­docked HIG perfectly 

superimposed with it is original position in the active site of the inhibitor. As for the 

β1 adrenoceptor, the molecular docking of this receptor and its native partial agonist 

(salbutamol) which was obtained from protein data bank (PDB: 2Y04) resulted in an 

RMSD value of 0.478 Å for the re­docked native ligand between salbutamol in the β1 

adrenoceptor active site (Figure 3.3c). All the re­docked inhibitors showed perfect 

alignment (site positions) with their respective native ligands while the RMSD values 

of the re­docked receptors and native ligands showed close proximity. The obtained 

RMSDs values were summarised in Table 3.4. 

 

Table 3.4: RMSDs values between the original poses and the re-docked poses of the native ligands. 

 Target PDB Code Native ligand RMSD 

1 Renin 4XX3 70X 0.514 Å 

2 ACE 2X8Z Captopril 0.381 Å 

3 ANG II receptor 3R8A HIG 0.597 Å 

4 β1 adrenoceptor 2Y04 Salbutamol 0.478 Å 

 

RMSD ­ root mean square deviation between the original position of native ligand in the active site and 

the re­docked position of the native ligand. PDB ­ protein data bank. ACE ­ angiotensin converting 

enzymes. ANG II ­ Angiotensin II receptor, Å ­ Angstrom. 

 

These RMSDs values obtained after re­docking the native ligands into the receptor 

active site (Table 3.4) indicated that the docking protocol involving MOE under our 

experimental conditions seems to be accurate (Wang et al., 2003). This is because the 

lower the RMSD values, the higher the resemblance to the biological co­

crystallization. After the docking protocol was validated, the isolated diterpenoid 

compounds from L. Leonurus were then docked to each receptor (PDB: 4XX3, 2X8Z, 

3R8A and 2Y04) and results will be presented and discussed in the following sections. 

 

 

3.3.2.2 Docking of isolated diterpenoid compounds into Renin 

 

The molecular docking technique was used to understand the binding modes and also 

estimate the binding affinity of the isolated diterpenoids i.e. DC1, DC2, DC8, DC9 

and DC15s into the renin active site. The 3D structure of renin in complex with the 
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native inhibitor (70X) was obtained from protein data bank (PDB) and coded as PDB: 

4XX3 (Figure 3.1a). Renin is an enzyme that participates in the body's renin 

angiotensin aldosterone system pathway (RAAS). The RAAS pathway is known to be 

involved in the regulation of blood volume, vascular resistance and also responsible 

for cardiovascular pathology. As a result, RAAS is often the target in the treatment of 

cardiovascular diseases (De Mello, 2014). Renin acts as an enzyme, hydrolysing 

angiotensinogen to angiotensin I (ANG I), which is further hydrolysed by ACE to 

angiotensin II a potent vasoconstrictor. For this reason, drugs known as renin inhibitors 

are used to lower BP. The native ligand (70X) has been reported to act as a 

subnanomolar inhibitor of renin (McKittrick et al., 2015). 

 

From the database file generated by the MOE software as docking result, the RMSD 

value between the original pose of 70X and the pose resulting from the re­docking was 

0.514 Å (Table 3.4), with the generated pose from docking a close fit when  

superimposed on the originally embedded pose (Figure 3.3a). The binding energy 

(ΔGb) value obtained was ­ 8.207 kcal/mol. Isolated diterpenoid compounds (DC1, 

DC2, DC8, DC9 and DC15) (Table 3.1) were docked into renin at similar position 

which was previously occupied by the native ligand (70X) (Figure 3.2a). From the 

database file generated by the MOE docking software, DC9 was observed to have the 

highest binding affinity with the lowest binding energy (ΔGb) of ­5.501 kcal/mol. The 

binding energy for DC1, DC2 and DC15s were ­5.273, ­4.335 and ­4.365 kcal/mol 

respectively. DC8 exhibited the lowest binding affinity with the highest binding energy 

(ΔGb) of ­3.830 kcal/mol respectively.  

 

The position of the native inhibitor (70X), the isolated diterpenoid compounds and 

their binding mode (interactions) within the active site of renin were visualized in 

three­dimension (3D) and analysed with the help of MOE visualization window as 

shown in Figure 3.4. 
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Figure 3.4: The binding mode (interactions) of L. Leonurus diterpenoid compounds with renin 

a) DC1, b) DC2, c) DC8, d) DC9, e) DC15 (in yellow colour) and f) native renin inhibitor (70X) (in 

green colour) with renin (PDB: 4XX3) active site residues. The blue dash line presents the hydrogen 

bonds between the molecule and the receptor amino acids residues, while the yellow dash line presents 

the π interaction between the molecule and the receptor amino acids residues. 

 

The visual inspection of the binding mode (interaction) of renin inhibitor (70X) within 

the active site of renin (Figure 3.4f; Table 3.5) showed five (5) hydrogen bond 

interactions with four (4) amino acids residues ­ Gly 294, Asp 292, Asp 104 and Thr 

151. The Asp 292 residue constitutes of two (2) hydrogen bonds which are involved 

in the interaction with 70X and the Gln 85 residue was responsible for the π interaction 

with 70X.  
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The binding mode (interaction) analysis of the isolated diterpenoids showed that DC1 

(Figure 3.4a; Table 3.5) interacted with renin through one (1) hydrogen bonds with 

Thr 151 residues. In the case of DC2 (Figure 3.4b; Table 3.5), it was observed that the 

compound interacted with renin through two (2) hydrogen bonds with the residues Asp 

292 and Asp. DC8 (Figure 3.4c; Table 3.5) it was observed to interact with renin 

through one (1) hydrogen bond with Thr 151 residue. The interaction between DC9 

(Figure 3.4d; Table 3.5) and renin was observed to occur with one (1) hydrogen bond 

with Gly 294 residue. DC15 (Figure 3.4e; Table 3.5) interacted with renin through one 

(1) hydrogen bond with the residue Gly 294.  

 

The isolated diterpenoids showed interactions with different amino acid residues, 

forming different numbers of hydrogen bonds and π interactions with renin (Table 

3.5). This may be due to differences in their physicochemical properties (Table 3.2). 

Differences in the types and numbers of functional groups also affects the availability 

of atoms in the active site for these interactions to occur (Jorgensen, 1991; Lodish et 

al., 2000). 

 

Table 3.5: List of binding energy, Hydrogen bonds and π interaction between L. leonurus 

diterpenoids and renin. 

Compound 

(ΔGb) Hydrogen bond interaction π interaction 

 

 

 

Amino acid residue TOHB 
Amino acid 

residue 

Number of π 

interaction 

DC1 ­5.273 Thr 151 1 ­ 0 

DC2 ­4.335 Asp 292 and Asp 104 2 ­ 0 

DC8 ­3.830 Thr 151. 1 ­ 0 

DC9 ­5.501 Ser 296  1 ­ 0 

DC15 ­4.365 Gly 294 1 ­ 0 

70X ­8.207 
Gly 294, Asp 292, Asp 104 

and Thr 151 
5 Gln 85 1 

 

The binding energy (ΔGb) and the binding mode (interactions) analysis of the 

diterpenoids were compared with the binding energy and the binding mode property 

of renin inhibitor (70X) in the active site of renin (Figure 3.4; Table 3.5).  

 

The binding mode (interaction) of DC1 (Figure 3.4a) and DC8 (Figure 3.4c) in the 

active site of renin was similar to the interactions between 70X (Figure 3.4f) with 
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renin. The similarity in binding mode is such that the isolated diterpenoids (DC1 and 

DC8) and 70X all interacted with renin at the Thr 151 residue. DC2 (Figure 3.4b), the 

compound interacted with Asp 104 and Asp 292 residue which was also similar to that 

observed for 70X binding mode. The binding mode result of DC15 (Figure 3.4e) 

indicated that the interaction with renin was similar to the observed interaction for 70X 

in which both DC15 and 70X (renin inhibitor) interacted with Gly 294 residue. In the 

case of DC9 interactions with renin (Figure 3.4c) did not indicate any similarity with 

the binding mode (interactions) of 70X (renin inhibitor). Although the diterpenoids 

(DC1, DC2, DC8, DC9 and DC15) exhibited binding energy (ΔGb) with renin, the 

binding energy (ΔGb) values of the diterpenoids were higher in comparison with the 

binding energy observed between the renin inhibitor (70X) and renin. For instance the 

binding energy values obtained between DC1, DC2, DC8, DC9 and DC15 and renin 

were ­5.273, ­4.335, ­3.830, ­5.501 and ­4.365 kcal/mol which indicated that DC9 has 

the lowest binding energy (ΔGb) with renin. The more the negative binding energy 

(ΔGb) value, the stronger the interactions (Lim et al., 2011; Temirak et al., 2014; 

Thakur and Thakur, 2015). Also, the isolated diterpenoid compounds showed 

differences in their binding mode (interaction) with renin in comparison with the 

interaction between 70X (renin inhibitor) and renin. This implies that from the 

obtained binding energy (ΔGb) values and the binding mode (interactions) for the 

isolated diterpenoid compounds, these compounds (DC1, DC2, DC8, DC9 and DC15) 

are not expected to have renin inhibition activity or at best to exhibit a weak renin 

inhibition activity when tested in-vivo (De Mello, 2014; McKittrick et al., 2015). 

 

 

3.3.2.3 Docking of isolated diterpenoid compounds into ACE 

 

The molecular docking (MD) technique was used to understand the binding modes and 

also estimate the binding affinity of the isolated diterpenoids with the angiotensin 

converting enzyme (ACE) active site. The 3D structure of ACE in complex with the 

native inhibitor (Captopril) was obtained from protein data bank (PDB) and coded as 

PDB: 2X8Z (Figure 3.1b). ACE is an enzyme that participates in the body's renin 

angiotensin aldosterone system (RAAS) pathway. The RAAS pathway is known to be 
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involved in the regulation of blood volume, vascular resistance and plays an important 

role in cardiovascular pathology. RAAS is often the target in the treatment of 

cardiovascular diseases (De Mello, 2014). ACE indirectly increases BP by converting 

angiotensin I (ANG I) to angiotensin II (ANG II), which constricts the vessels. For this 

reason, drugs known as ACE inhibitors, which exhibit inhibitory activity on the ACE, 

such as Captopril, are used to lower BP. Captopril is widely used clinically for the 

treatment of hypertension (Akif et al., 2012, 2010; Amery et al., 2012). 

 

The first approach in the docking technique that was used in this study was to re­dock 

the native inhibitor (Captopril) into ACE (PDB: 2X8Z) and thus to calculate its RMSD 

and (ΔGb). From the database file generated by the MOE software as docking result, 

the RMSD value between the original pose of Captopril and the pose resulting from 

the re­docking was 0.381 Å (Table 3.4). It is found that the generated pose from 

docking was a perfect fit when superimposed with the originally embedded pose 

(Figure 3.3b), while the binding energy (ΔGb) value obtained was ­7.958 kcal/mol. 

Thereafter, the compounds DC1, DC2, DC8, DC9 and DC15 (Table 3.1) were docked 

into ACE at a similar position which was previously occupied by the native ligand 

(Captopril) (Figure 3.2b).  

 

From the database file generated by the MOE docking software, docking of DC1 into 

the ACE active site (PDB; 2X8Z) was observed to have the highest binding affinity 

with the lowest binding energy (ΔGb) of ­6.612 kcal/mol. DC9, DC15 and DC8 

followed closely with binding free energy score (ΔGb) of  ­6.498, ­6.340 and ­6.148 

kcal/mol respectively. DC2 exhibited lowest binding affinity with a binding energy 

(ΔGb) of ­5.776 kcal/mol when compared the binding energy with the other isolated 

diterpenoids. 

 

The position of the native inhibitor (Captopril), isolated diterpenoid compounds and 

their binding mode (interactions) within the active site of ACE were visualized in 

three­dimension (3D) and analysed with the help of MOE visualization window as 

shown in Figure 3.6. 
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Figure 3.5: The binding mode (interactions) of L. Leonurus diterpenoid compounds with ACE 

a) DC1, b) DC2, c) DC8, d) DC9, e) DC15 (in yellow colour) and f) native ACE inhibitor (Captopril) 

(in green colour) with ACE (PDB: 2X8Z) active site residues. The blue dash line presents the hydrogen 

bonds between the molecule and the receptor amino acids residues, while the yellow dash line presents 

the π interaction between the molecule and the receptor amino acids residues. 

 

From Figure 3.5e the visualization of the binding mode (interaction) of ACE inhibitor 

(Captopril) within the active site of ACE, showed that the inhibitor had four (4) 

hydrogen bonds with four (4) amino acids (Lys 495, Tyr 504, His 337, and Tyr 507). 

Also the Captopril (ACE inhibitor) makes a direct interaction with the Zn2+ ion. The 

binding mode (interactions) visualization analysis of isolated diterpenoids showed that 

DC1 (Figure 3.5a; Table 3.6) interacted with ACE through two (2) amino acids 

residues (Thr 364 and Asn 261), it interacted with these residues by forming two (2) 

hydrogen bonds. DC2 (Figure 3.5b; Table 3.6) was observed to interact with ACE 
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through three (3) amino acid residues (Tyr 504, Lys 495 and Gln 265) by forming three 

(3) hydrogen bonds. DC9 (Figure 3.5d; Table 3.6) was observed to interact with ACE 

through two (2) amino acid residues (Glu 368 and Thr 364) by forming two (2) 

hydrogen bonds. DC15 (Figure 3.5e; Table 3.6) showed interactions with two (2) 

amino acid residues (His 337 and Lys 495) by forming two (2) hydrogen bonds with 

these residues. In the case of DC8 (Figure 3.5c; Table 3.6) it was observed to interact 

with ACE by forming one (2) hydrogen bonds with the residue Asp 360 and Ala 338. 

 

The following Table (Table 3.6) presents summary of results obtained from visualizing 

the active site and the results obtained from the database file generated by MOE 

software after the docking procedures. These results include the binding energy (ΔGb) 

and the binding mode (interactions) i.e. number and the name of amino acids residues 

responsible for the hydrogen bond as well as π interaction that were formed between 

the docked compounds and the ACE active site. Also the number of the hydrogen bond 

and number of π interactions formed are presented and discussed. 

 

Table 3.6: List of binding energy, and list of Hydrogen bonds and π interaction formed between 

L. leonurus diterpenoid compounds and ACE. 

Compound (ΔGb) 

Hydrogen bond interaction π interaction 

Amino acid residue TOHB 
Amino acid 

residue 

Number of π 

interaction 

DC1 ­6.612 Thr 364 and Asn 261 2 ­ 0 

DC2 ­5.776 Tyr 504, Lys 495 and Gln 265 3 ­ 0 

DC8 ­6.148 Asp 360 and Ala 338 1 ­ 0 

DC9 ­6.498 Glu 368 and Thr 364 2 ­ 0 

DC15 ­6.340 His 337 and Lys 495 2 ­ 0 

Captopril ­7.958 

Lys 495, Tyr 504, His 337, 

Tyr 507 and direct interaction 

with Zn2+ 

4 ­ 0 

 

 

The binding energy and the binding mode (interactions) analysis of DC1, DC2, DC8, 

DC9 and DC15 were compared with the binding energy and the binding mode property 

of ACE inhibitor (Captopril) in the active site of ACE (Figure 3.5f; Table 3.6). As 

presented in Table 3.6 the binding mode (interaction) of DC15 (Figure 3.5e) in the 

active site of ACE were similar with what observed from Captopril interaction. Both 
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DC15 and Captopril (ACE inhibitor) interacted with His 337 and Lys 495 residues 

through hydrogen bonding. Unlike DC15, Captopril (Figure 3.5f) showed direct 

interaction with the Zn2+ ion, while DC15 showed no interaction with Zn2+. The 

binding mode (interaction) of DC2 (Figure 3.5b) in the active site of ACE was similar 

to that observed from Captopril interaction, with both DC2 and Captopril (ACE 

inhibitor) interacting with Tyr 504 and Lys 495 residues through hydrogen bonding. 

Unlike DC2, Captopril (Figure 3.5f) showed direct interaction with the Zn2+ ion, while 

DC2 showed no interaction with Zn2+. DC1, DC8 and DC9 did not show any similarity 

with Captopril binding mode (interactions). The isolated compounds (DC1, DC2, 

DC8, DC9 and DC15) exhibited binding energy (ΔGb) with ACE, with the binding 

energy similar to that observed with the ACE inhibitor (Captopril), this could suggest 

that these isolated diterpenoids compounds could have similar affinity to the ACE 

receptor to that observed with Captopril (Lim et al., 2011; Temirak et al., 2014; Thakur 

and Thakur, 2015). On other hand, the isolated diterpenoids showed a difference in 

binding mode (interaction) to that observed with Captopril (ACE inhibitor). None of 

the isolated diterpenoid compounds interacted with the Zn2+ ion, while the ACE 

inhibitor (Captopril) makes a direct interaction with the catalytic Zn2+ with ACE, the 

success of clinically used ACE inhibitors, such as Captopril and lisinopril depend on 

their ability to interact directly with the zinc ion (Akif et al., 2010; Akif et al., 2012). 

The difference in binding mode (interaction) and the absence of direct interaction with 

the Zn2+ ion with the isolated diterpenoids may suggest that these compounds would 

not exhibit ACE inhibition when tested in-vivo. 

 

 

3.3.2.4 Docking of isolated diterpenoid compounds into AT1 receptor  

 

The Molecular Docking technique was used to understand the binding modes and also 

estimate the binding affinity of the isolated diterpenoids into the Angiotensin II 

receptor type I (AT1) active site. The 3D structure of AT1 in complex with the native 

blocker (HIG) was obtained from protein data bank (PDB) and coded as PDB: 3R8A 

(Figure 3.1c). The AT1 receptor is known to be part of renin­angiotensin­aldosterone 

system pathway (RAAS). These receptors are found in blood vessels and mediate the 
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major cardiovascular effects of angiotensin II (ANG II). It has vasopressor effects and 

regulates aldosterone secretion. The RAAS pathway is known to be involved in the 

regulation of blood volume, vascular resistance and plays an important role in 

cardiovascular pathology. RAAS is often the target in the treatment of cardiovascular 

diseases (De Mello, 2014). For this reason, drugs known as angiotensin II receptor 

(AT1) blockers are used to lower BP (Casimiro­Garcia et al., 2011). 

 

The native ligand HIG was re­docked to its receptor (AT1 receptor PDB: 3R8A) to 

calculate the RMSD and (ΔGb). The RMSD value for the re­docked ligand was 0.597 

Å (Table 3.4), and the generated pose from docking when superimposed on the 

originally embedded pose showed a perfect fit (Figure 3.3c). The binding energy (ΔGb) 

value obtained after re­docking HIG (AT1 blocker) was ­9.129 kcal/mol. DC1, DC2, 

DC8, DC9 and DC15 (Table 3.1) were docked into AT1 receptor at a similar position 

previously occupied by the native ligand (HIG) (Figure 3.1c). From the database file 

generated by the MOE docking software, docking of DC9 into AT1 active site (PDB: 

3R8A) was observed to have the highest binding affinity with the lowest binding free 

energy (ΔGb) of ­5.671 kcal/mol. DC1 and DC8 followed closely with binding free 

energy score (ΔGb) of ­5.306 and ­5.214 kcal/mol respectively. DC2 and DC15 

exhibited lowest binding affinity with binding free energy scores of (ΔGb) of ­3.509 

and ­3.029 kcal/mol respectively. 

 

The position of the native blocker (HIG), isolated diterpenoids and their binding mode 

(interactions) within the active site of AT1 receptor were visualized in three­dimension 

(3D) and analysed with the help of MOE visualization window as shown in Figure 3.6. 
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Figure 3.6: The binding mode (interactions) of L. leonurus diterpenoid compounds with AT1 

receptor 

a) DC1, b) DC2, c) DC8, d) DC9, e) DC15 (yellow coloured) and f) native AT1 blocker (HIG) (in green 

colour) with angiotensin II (AT1) receptor (PDB: 3R8A) active site residues. The blue dash line presents 

the hydrogen bonds between the molecule and the receptor amino acids residues, while the yellow dash 

line presents the π interaction between the molecule and the receptor amino acids residues. 

 

From Figure 3.6e the visualization of the binding mode (interaction) of AT1 blocker 

(HIG) within the active site of AT1 receptor, showed two (2) hydrogen bonds with one 

(1) amino acid residue (Arg 288). While the binding mode (interactions) visualization 

analysis of isolated diterpenoids showed that DC1 (Figure 3.6a; Table 3.7) and DC8 

(Figure 3­6c; Table 3.7) interacted with AT1 receptor through one (1) hydrogen 

bonding with the residues Gly 284. DC2 (Figure 3.6b; Table 3.7) was observed to 
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interact with the receptor through two (2) hydrogen bonds with the residues Ser 342 

and Gly 284. DC9 (Figure 3.6d; Table 3.7) was observed to interact with the receptor 

through one (1) hydrogen bonds with the residues Ser 342. DC15 (Figure 3­6e; Table 

3.7) was observed to interact with the receptor through one (1) hydrogen bonding with 

the residue Cys 285. 

 

The following Table (Table 3.7) presents a summary of results obtained from 

visualizing the active site and the results obtained from the database file generated by 

MOE software after the docking procedures. These results include the binding energy 

(ΔGb) and the binding mode (interactions) i.e. number and the name of amino acids 

residues responsible for the hydrogen bond as well as π interaction that were formed 

between the docked compounds and AT1 receptor active site. Also the number of the 

hydrogen bond and number of π interactions formed are presented and discussed. 

 

Table 3.7: List of binding energy, and list of hydrogen bonds and π interaction formed between 

L. leonurus diterpenoid compounds and AT1 receptor. 

Compound (ΔGb) 

Hydrogen bond interaction π interaction 

Amino acid residue 
Number 

of H­B 

Amino acid 

residue 

Number of π 

interaction 

DC1 ­5.306 Gly 284 1 ­ 0 

DC2 ­3.509 Ser 342 and Gly 284 2 ­ 0 

DC8 ­5.214 Gly 284 1 ­ 0 

DC9 ­5.671 Ser 342  1 ­ 0 

DC15 ­3.029 Cys 285 1 ­ 0 

HIG ­9.129 Arg 288 2 ­ 0 

 

The binding energy (ΔGb) and the binding mode (interactions) analysis of DC1, DC2, 

DC8, DC9 and DC15 (Table 3.7) were compared with the binding energy and the 

binding mode property of the AT1 blocker (HIG) in the active site of AT1 receptor as 

shown in Figure 3.6f.  

 

 As presented in Table 3.7, the binding mode (interactions) analysis of DC1, DC2, 

DC8, DC9 and DC15s did not show any similarity with HIG (AT1 blocker) 

interactions. Although these isolated compounds (DC1, DC2, DC8, DC9 and DC15) 

exhibited binding energies (ΔGb) with the AT1 receptor, the binding energy (ΔGb) of 

the diterpenoids were higher than to that observed with HIG (AT1 blocker), this could 
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suggest that these isolated diterpenoid compounds could have low affinity to the AT1 

receptor, as the more negative binding energy (ΔGb) value indicates stronger 

interactions (Lim et al., 2011; Temirak et al., 2014; Thakur and Thakur, 2015). The 

difference in binding mode (interaction) and the binding energy (ΔGb) to that observed 

with AT1 blocker (HIG) suggests that these compounds (DC1, DC2, DC8, DC9 and 

DC15) would not produce the same pharmacological effect observed with AT1 

blocking drugs or may have weak AT1 blocking activity when tested in-vivo. 

 

 

3.3.2.5 Docking of isolated diterpenoid compounds into β1 adrenoceptor 

 

The molecular docking (MD) technique was used to understand the binding modes and 

also estimate the binding affinity of the isolated diterpenoids DC1, DC2, DC8, DC9 

and DC15 to the β1 adrenoceptor active site. The 3D structure of the β1 adrenoceptor 

in complex with the native agonist (salbutamol) was obtained from protein data bank 

(PDB) and coded as PDB: 2Y04 (Figure 3.1d) (Warne et al., 2011).   

 

The first step in the docking technique was to re­dock the native agonist (Salbutamol) 

to its receptor active site (β1 adrenoceptor) and thus calculate its RMSD and binding 

energy (ΔGb). From the database file generated by the MOE software, the RMSD value 

between the original pose of Salbutamol and the pose resulting from the re­docking 

was 0.478 Å (Table 3.3), and the generated pose from docking when superimposed on 

the originally embedded pose showed a perfect fit. The binding energy (ΔGb) value 

obtained was ­5.654 kcal/mol. Thereafter, the L. Leonurus diterpenoids (Table 3.1) 

were docked into the β1 adrenoceptor at a similar position to that previously occupied 

by the native ligand (Salbutamol) (Figure 3.2c). From the database file generated by 

the MOE docking software, docking of the isolated diterpenoids DC1, DC2, DC8, DC9 

and DC15 into the β1 adrenoceptor active site (PDB; 2Y04) resulted in binding 

energies (ΔGb) of ­5.450, ­5.315, ­5.264, ­5.270, and ­5.144 kcal/mol respectively. 

This result showed that the binding energy for these compounds were similar, with 

DC1 having the highest (ΔGb) values and DC15 the lowest (ΔGb) value.  
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The position of the native agonist (Salbutamol), L. Leonurus diterpenoids and their 

binding mode (interactions) within the active site of β1 adrenoceptor were visualized 

in three­dimension (3D) and analysed with the help of MOE visualization window as 

shown in Figure 3.7. 

 

 

Figure 3.7: The binding mode (interactions) of L. Leonurus diterpenoid compounds with β1 

adrenoceptor 

a) DC1, b) DC2, c) DC8, d) DC9 and e) DC15 (in yellow colour) and f) native β1 adrenoceptor agonist 

(Salbutamol) (in green colour) with the β1 adrenoceptor active site residues. The blue dash line presents 

the hydrogen bonds between the molecule and the receptor amino acids residues, while the yellow dash 

line presents the π interaction between the molecule and the receptor amino acids residues. 
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From Figure 3.7e, the visualization of the binding mode (interaction) of β1 agonist 

(Salbutamol) within the active site of β1 adrenoceptor, showed four (4) hydrogen bond 

interactions with three (3) amino acids residues Asn 329, Asn 310 and Asp 121. 

Salbutamol also interacted with the receptor through the formation of one (1) π 

interaction with the Val 122 residue. The binding mode (interactions) visualization 

analysis of the isolated diterpenoids showed that DC1 (Figure 3.7a; Table 3.8),  

DC9 (Figure 3.7d; Table 3.8) and DC15 (Figure 3.7e; Table 3.8) interacted with the 

β1 adrenoceptor by forming two (2) hydrogen bonds with the amino acids residues 

Asp 200 and Asn 329. Unlike DC1, DC9 and DC15, DC2 (Figure 3.7b; Table 3.8) was 

observed to interact with the receptor through three (3) hydrogen bonds;  two bonds 

with the Asp 200 residue and one (1) hydrogen bond with Asn 329 residue. The 

interaction between DC8 (Figure 3.7c; Table 3.8), and the receptor occurred through 

only one (1) hydrogen bond with the Asn 329 residue. These compounds (DC1, DC2, 

DC9 and DC15 (Figure 3.7e; Table 3.8) showed identical interactions to each other 

with the amino acid residues Asp 200 and Asn 329. There were no major difference in 

their (ΔGb) values suggesting that these compounds have similar affinity to the β1 

adrenoceptor.  

 

The following Table (Table 3.8) presents a summary of results obtained from 

visualizing the active site and the results obtained from the database file generated by 

MOE software after the docking procedures of the L. leonurus diterpenoids and native 

agonist (Salbutamol) with the β1 adrenoceptor. These results include the binding 

energy (ΔGb) and the binding mode (interactions) i.e. number and the name of amino 

acids residues responsible for the hydrogen bond as well as π interactions that were 

formed between the docked compounds and the β1 adrenoceptor. Also the number of 

the hydrogen bond and number of π interactions formed are presented. 
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Table 3.8: List of binding energy, and list of hydrogen bonds and π interaction formed between 

L. leonurus diterpenoid compounds and β1 adrenoceptor. 

Compound (ΔGb) 

Hydrogen bond interaction π interaction 

Amino acid residue 
Number of 

H­B 

Amino 

acid 

residue 

Number of 

π 

interaction 

DC1 ­5.450 Asp 200 and Asn 329 2 ­ 0 

DC2 ­5.315 Asp 200 and Asn 329 3 ­ 0 

DC8 ­5.264 Asn 329 1 ­ 0 

DC9 ­5.270 Asp 200 and Asn 329 2 ­ 0 

DC15 ­5.144 Asp 200 and Asn 329 2 ­ 0 

Salbutamol ­5.654 Asp 121 and Asn 329 2 Val 122 1 

 

The binding energy and the binding mode (interactions) analysis of the isolated 

diterpenoids DC1, DC2, DC8, DC9 and DC15 (Table 3.8) were compared with the 

binding energy and the binding mode property of the agonist salbutamol in the active 

site of β1 adrenoceptor as shown in Figure 3.7f.  

 

As presented in Table 3.8 the binding mode (interaction) of DC1, DC2, DC8, DC9 and 

DC15 in the active site of the β1 adrenoceptor were similar to those of salbutamol. 

DC1, DC2, DC8, DC9, DC15 and Salbutamol (β1 agonist) all interacted with the same 

amino acid residues (Asp 329). Also, the binding energy (ΔGb) of DC1, DC2, DC9 

and DC15 were close to that observed with salbutamol, which could indicate that these 

compounds may have similar affinity as salbutamol to the β1 adrenoceptor (see Table 

3.8 and Figure 3.7).  All the five (5) diterpenoid compounds exhibited binding energy 

value (ΔGb) close to that observed with salbutamol, indicating the possibility of strong 

interactions, as the more negative the binding energy (ΔGb) value, the stronger the 

interactions (Lim et al., 2011; Temirak et al., 2014; Thakur and Thakur, 2015). The 

binding mode (interactions) and the binding energy (ΔGb) for DC1, DC2, DC8 DC9 

and DC15 were similar to that observed with salbutamol, which could indicate that 

these compounds may produce similar pharmacological effects to that observed with 

salbutamol (β1 agonist activity) when tested in-vivo. 
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CHAPTER FOUR 

 

4 IN-VIVO STUDIES METHODOLOGY 

 

This chapter lists the materials, reagents, and equipment, and describes the methods 

and procedures used in this study to investigate the in-vivo cardiovascular activity of 

five (5) diterpenoid compounds isolated from L. leonurus.  

 

 

4.1 EQUIPMENT AND REAGENTS 

 

The equipment used in the in-vivo experiments included the small animal operating 

table (BioScience, Cape Town, SA), Lab Chart 4 for windows software, BP transducer, 

PowerLab® 4/20T unit, and BP amplifier (AD instruments, Bella Vista, Australia), and 

double­syringe pump (AP22, ASCOR, Poland). The surgical tools included; syringes 

(1 ml, 5ml and 10 ml), forceps,  polyethylene cannulae, bulldog clamp, respiratory 

tubing, surgical blades, sterile gauze, sterile pads, Blunt­nosed scissor, vanna micro­

dissecting scissors, catgut sutures and adhesive tape (See Figure 4.1). The drugs and 

chemicals used include, NaCl 0.9% saline solution, Sodium pentobarbital 

(1ml/200mg) (Kyron Laboratories, South Africa), Heparin (1ml/5000 unit) (Fresenius 

Kabi, South Africa). The five (5) diterpenoids (DC1, DC2, DC8, DC9 and DC15) 

compounds tested were suspended in normal saline with a 0.1 ml Tween 80. 
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Figure 4.1: equipment and reagents used in the in-vivo study 

Figure Shows a) Surgical tools, b) Blood pressure transducer, c) Rat­operating table, d) PowerLab® 

4/20T unit, and Blood pressure amplifier, e) Double­syringe pump, f) Normotensive rat, g) Computer. 

 

 

4.2 ANIMALS 

 

Healthy male normotensive Wistar rats weighing 250–350 g, and less than 5 months 

old were obtained from the animal unit of the school of Pharmacy, at University of the 

Western Cape. Animals were housed in standard rat cages and given free access to 

both food and water throughout the study period. The room temperature was kept at 

24°C, with a 12:12­h light dark cycle. 

 

 

4.3 ETHICAL CONSIDERATIONS 

 

The animals were allowed free access to food and water before the commencement of 

the experiments. The methods used in this study were approved by the Ethics 

Committee of the University of the Western Cape, and the registration number 

obtained was 13/1/17. All experiments were carried out in accordance with the ethical 

care of animals. 
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4.4 ANIMAL PREPARATION 

 

Animals were prepared according to the method described by (Raji et al., 2013, 2012). 

Rats were anesthetized with 6% sodium pentobarbital at a dose of (40mg/kg) 

intraperitoneally, and placed in dorsal recumbence position (Figure 4.2) on a heated 

rat­operating table, with the temperature monitored and maintained at 37 ± 0.5° C 

throughout each experiment via a rectal thermometer. Three preparatory surgical 

procedures a) tracheotomy, b) jugular vein catheterization, and c) femoral artery 

catheterization were performed.  

 

 

4.4.1 TRACHEOTOMY 

 

In order to maintain airflow during the experiment, the anesthetized animal was placed 

in dorsal recumbence position on the small animal operation table. An incision was 

made in the neck of the rat for tracheostomy and jugular vein cannulation. The 

longitudinal neck muscles (sternohyoid and longus colli) were dissected along the 

midline through the small skin incision 2­3 mm rostral to the manubrium, and the 

trachea was visualized. The trachea was incised transversely 2­3 tracheal rings caudal 

to the thyroid isthmus but 1 tracheal ring rostral to the underlying suture. The 

tracheotomy tube was inserted 8 mm into the trachea and secured in place using the 

suture (Figure 4.2). 

 

 

4.4.2 JUGULAR VEIN CANNULATION 

 

The right external jugular vein was cannulated with a small polyethylene cannula filled 

with heparinized saline (10% heparin in 0.9% NaCl) during the experiment (Figure 

4.2), to allow intravenous infusion of drugs via a syringe and the syringe pump. The 

external jugular vein was located via the tracheotomy incision bilaterally in the incised 

region, and visible just below the dermis. The vein was isolated from surrounding 
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tissues using artery forceps or curved, blunt forceps, and tied off proximal to the brain. 

A small cut was made on the vein to insert a catheter up to 1′′ towards the heart, and 

secured with a thread. 

 

 

4.4.3 FEMORAL ARTERY CANNULATION 

 

The left femoral artery was cannulated with a small polyethylene cannula filled with 

heparinized saline (10% heparin in 0.9% NaCl) (Figure 4.2), for continuous BP 

monitoring during the experiment via an incision is made in the medial surface of the 

leg. Using blunt dissection, the femoral artery was located, isolated from the femoral 

vein and nerve and tied off distal to the heart. A micro­vascular clamp was placed on 

the artery proximal to the heart from the ligature, a small cut made into the femoral 

artery and the catheter inserted and secured to prevent dislodgement. The femoral 

cannula was connected to a BP transducer attached to a BP amplifier and PowerLab® 

(4/20T unit) for recordings of the BP and HR on the Chart 4.0® for Windows software 

(all AD Instruments, Australia).  

 

Rats were given oxygen throughout the experiments through an oxygen mask, and 

allowed a 30min stabilization period to ensure that BP and HR parameters were stable 

before any further procedures. Drugs were infused at a constant rate (0.3 ml/min) via 

a double­syringe pump (AP22, ASCOR, Poland), and the cannula flushed with 0.4 ml 

of normal saline after each infusion. Changes to parameters were recorded within 3 

min of infusion. Blood pressures and HR were allowed to return to baseline values 

(between 10–15 minutes) before further doses were infused.  
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Figure 4.2: Surgical procedures involved in the in-vivo study 

Figure shows a) Rat­operating table, b) Tracheotomy Cannulation, c) Jugular Vein Cannulation, d) 

Femoral Artery Cannulation. 

 

 

4.5 PREPARATION OF TEST COMPOUNDS 

 

All compounds tested (DC1, DC2, DC8, DC9, and DC15) were sparingly soluble in 

normal saline and tween 80 was used to stabilise fine suspensions of the test 

compounds in normal saline. Two drops of tween 80 was added to a paste of the 

compound in normal saline, and then made up to the required volume with normal 

saline. Fresh solutions for the different concentrations of test compounds were 

prepared for each day’s experiments. 

 

 

4.6 EXPERIMENTAL PROTOCOL 

 

Animals were randomly divided into five (5) groups, each group receiving different 

doses of test compounds (DC1, DC2, DC8, DC9, and DC15) infused through the 

venous cannula at a constant rate (0.3 ml/min) via a double­syringe pump. Blood 

pressures and HR were allowed to return to baseline values (between 10–15 minutes) 

 

 

 

 



 

72 
 

before further doses were infused. Dose­response experiments for each compound was 

repeated in six animals to validate an observation of the results. 

 

a) Group I. DC1 – Dose response curve (0.5mg/kg, 1 mg/kg, 5 mg/kg, 10 mg/kg, 

20 mg/kg, and 40 mg/kg). 

b) Group II. DC2 – Dose response curve (0.5mg/kg, 1 mg/kg, 5 mg/kg, 10 mg/kg, 

20 mg/kg, 40 mg/kg and 60 mg/kg).  

c) Group III. DC8 ­ Dose response curve (0.5mg/kg, 1 mg/kg, 5 mg/kg, 10 mg/kg, 

20 mg/kg, 40 mg/kg and 60 mg/kg). 

d) Group IV. DC9 ­ Dose response curve (0.5mg/kg, 1 mg/kg, 5 mg/kg, 10 mg/kg, 

and 40 mg/kg).  

e) Group V. DC15 ­ Dose response curve (0.5mg/kg, 1 mg/kg, 5 mg/kg, 10 

mg/kg, 20 mg/kg, and 40 mg/kg).  

 

 

4.7 STATISTICAL ANALYSIS 

 

Data from experiments using the anaesthetized normotensive rat model was expressed 

as change in Systolic pressure (SP), Diastolic pressure (DP), Mean arterial pressure 

(MAP) and Heart rate (HR). This change was calculated as the difference between the 

value of the parameter just before the administration of the test compounds and the 

value at the peak of effect of the test compound. Mean change (Δ mean ± S.E.M) was 

calculated and statistically analysed using the student's t test for significant difference 

(p<0.05). The Microsoft Excel 2013 software was used for statistical analysis, and the 

Graphpad prism 6 software was used to illustrate the results as graphs. 

 

 

4.8 RESULTS 

 

Five (5) compounds (DC 1, DC 2, DC 8, DC 9, and DC 15) isolated from L. leonurus 

were tested for cardiovascular effect on the anaesthetised normotensive rat model. All 

the rats died after administration of doses above 80mg of the compounds. The 
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following results were obtained for the different doses of the compounds administered. 

Tables and graphs would be used to present the observed effects. 

 

 

4.8.1 EFFECTS ON SYSTOLIC BLOOD PRESSURE (SP) 

 

4.8.1.1 Effects of DC1 on Systolic blood pressure (SP) 

 

Figure 4.3 shows the effect of DC1 administered in a dose range of (0.5 mg/kg ­ 40 

mg/kg) on the systolic blood pressure in anaesthetised normotensive Wistar rats. DC1 

produced dose dependent increases in systolic blood pressure for all doses 

administered, the increases were shown to be statistically significant at the 10 mg/kg, 

20 mg/kg, and 40 mg/kg doses (see Figure 4.3; Appendix V). At the lowest dose (0.5 

mg/kg), it produced a 2.933 mmHg ± 0.6677 increase in systolic pressure, while the 

highest dose administered (40 mg/kg), produced a 42.360 mmHg ± 5.803 change in 

systolic pressure. Changes to SP were deemed statistically significant compared to the 

solvent (normal saline). 

 

 

 

Figure 4.3: Effects of DC1 (0.5 mg/kg ­ 40 mg/kg) on systolic pressure in normotensive Wistar rats.  * 

indicates statistical significant change. 
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4.8.1.2 Effects of DC2 on Systolic blood pressure (SP) 

 

Figure 4.4 shows the effect of DC2 administered in a dose range of (0.5 mg/kg, ­ 60 

mg/kg) on the systolic blood pressure (SP) in anaesthetised normotensive rats. DC2 

had a dose dependent effect on systolic pressure (see Figure 4.4; Appendix V), with 

the change in pressure increasing as the dose was increased, the increases were shown 

to be statistically significant at the higher (10, 20, 40 and 60 mg/kg) doses. At the 

lowest dose (0.5 mg/kg), it produced 8.675 mmHg ± 0.9162 increase in systolic 

pressure, while the highest dose administered (60 mg/kg), produced a 65.110 mmHg 

± 10.380 increase in systolic pressure. 
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Figure 4.4: Effects of DC2 (0.5 mg/kg ­ 60 mg/kg) on systolic pressure in anaesthetised normotensive 

Wistar rats. * indicates statistical significant change. 
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4.8.1.3 Effects of DC8 on Systolic blood pressure (SP) 

 

Figure 4.5 shows the effect of DC8 administered in a dose range of (0.5 mg/kg ­ 60 

mg/kg) on the systolic blood pressure (SP) in anaesthetised normotensive rats. DC8 

had a dose dependent effect on the systolic pressure (see Figure 4.5; Appendix V), 

with the change in pressure increasing as the dose was increased, the increases were 

shown to be statistically significant at the higher (20, 40 and 60 mg/kg) doses. At the 

lowest dose (0.5 mg/kg), it produced a non­significant 5.732 mmHg ± 0.8752 increase 

in systolic pressure, while the highest dose administered (60 mg/kg), produced a 

37.790 mmHg ± 0.7398 change in systolic pressure. 

 

 

 

 

Figure 4.5: Effects of DC8 (0.5 mg/kg ­ 60 mg/kg) on systolic pressure in anaesthetised normotensive 

Wistar rats. * indicates statistical significant change. 
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4.8.1.4 Effects of DC9 on Systolic blood pressure (SP) 

 

Figure 4.6 shows the effect of DC9 administered in a dose range of (0.5 mg/kg, ­ 40 

mg/kg) on the systolic blood pressure in anaesthetised normotensive rats. DC9 

produced dose dependent increases in systolic pressure, the increases were shown to 

be statistically significant at the 10 mg/kg and 40 mg/kg doses only (see Figure 4.6; 

Appendix V). At the lowest dose (0.5 mg/kg), it produced a non­significant 6.993 

mmHg ± 0.7063 increase in systolic pressure, while the highest dose administered (40 

mg/kg), produced a 61.850 mmHg ± 17.340 change in systolic pressure. 

 

 

 

 
Figure 4.6: Effects of DC9 (0.5 mg/kg ­ 40 mg/kg) on systolic pressure in anaesthetised normotensive 

Wistar rats. * indicates statistical significant change. 
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4.8.1.5 Effects of DC15 on Systolic blood pressure (SP) 

 

Figure 4.7 shows the effect of DC15 administered in a dose range of (0.5 mg/kg ­ 40 

mg/kg) on the systolic blood pressure (SP) in anaesthetised normotensive rats. DC15 

produced dose dependent increases in systolic pressure, the increases were shown to 

be statistically significant at the 5 mg/kg, 10 mg/kg, 20 mg/kg and 40 mg/kg doses 

(see Figure 4.7; Appendix V). At the lowest dose (0.5 mg/kg), it produced a non­

statistically significant 5.845 mmHg ± 0.9175 increase in systolic pressure, while the 

highest dose administered (40 mg/kg), produced a 22.630 mmHg ± 0.9431 change in 

systolic pressure. 
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Figure 4.7: Effects of DC15 (0.5 mg/kg ­ 40 mg/kg) on systolic pressure in anaesthetised normotensive 

Wistar rats. * indicates statistical significant change. 
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4.8.2 EFFECT ON DIASTOLIC PRESSURE (DP) 

 

4.8.2.1 Effects of DC1 on diastolic blood pressure (DP) 

 

Figure 4.8 shows the effect of DC1 administered in a dose range of (0.5 mg/kg, ­ 40 

mg/kg) on the diastolic blood pressure (DP) in anaesthetised normotensive rats. DC1 

produced dose dependent increases in diastolic pressure, the increases were shown to 

be statistically significant at the 10 mg/kg, 20 mg/kg and 40 mg/kg doses (see Figure 

4.8; Appendix V). At the lowest dose (0.5 mg/kg), it produced a non­significant 2.1180 

mmHg ± 0.6047 increase in systolic pressure, while the highest dose administered (40 

mg/kg), produced a 41.0600 mmHg ± 5.3820 change in systolic pressure.  
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Figure 4.8: Effects of DC1 (0.5 mg/kg ­ 40 mg/kg) on diastolic pressure in anaesthetised normotensive 

Wistar rats. * indicates statistical significant change. 
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4.8.2.2 Effects of DC2 on Diastolic blood pressure (DP) 

 

Figure 4.9 shows the effect of DC2 administered in a dose range of (0.5 mg/kg ­ 60 

mg/kg) on the DP in anaesthetised normotensive rats. DC2 produced dose dependent 

increases in diastolic pressure, the increases were shown to be statistically significant 

at the 10 mg/kg, 20 mg/kg, 40 mg/kg and 60 mg/kg doses (see Figure 4.9; Appendix 

V). At the lowest dose (0.5 mg/kg), it produced a non­significant 4.749 mmHg ± 

0.5796 increase in diastolic pressure, while the highest dose administered (60 mg/kg), 

produced a 58.200 mmHg ± 12.990 change in diastolic pressure. 
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Figure 4.9: Effects of DC2 (0.5 mg/kg ­ 60 mg/kg) on diastolic pressure in anaesthetised normotensive 

Wistar rats. * indicates statistical significant change. 

 

 

 

 

 

 

 

 

 

 

 

 



 

80 
 

4.8.2.3 Effects of DC8 on Diastolic blood pressure (DP) 

 

Figure 4.10 shows the effect of DC8 administered in a dose range of (0.5 mg/kg ­ 60 

mg/kg) on the DP in anaesthetised normotensive Wistar rats. DC8 produced dose 

dependent increases in diastolic pressure, with the increases shown to be statistically 

significant at the 20 mg/kg, 40 mg/kg and 60 mg/kg doses (see Figure 4.10; Appendix 

V). At the lowest dose (0.5 mg/kg), it produced a non­significant 2.1710 mmHg ± 

1.1690 increase in diastolic pressure, while the highest dose administered (60 mg/kg), 

produced a 23.7900 mmHg ± 3.0520 change in diastolic pressure. 

 

 

 

 

Figure 4.10: Effects of DC8 (0.5 mg/kg ­ 60 mg/kg) on diastolic pressure in anaesthetised normotensive 

Wistar rats. * indicates statistical significant change. 
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4.8.2.4 Effects of DC9 on Diastolic blood pressure (DP) 

 

Figure 4.11 shows the effect of DC9 administered in a dose range of (0.5 mg/kg, ­ 40 

mg/kg) on the DP in anaesthetised normotensive rats. DC9 produced dose dependent 

increases in diastolic pressure, with the increase statistically significant at the highest 

(40 mg/kg) dose (see Figure 4.11; Appendix V). At the lowest dose (0.5 mg/kg), it 

produced a non­significant 5.454 mmHg ± 0.4553 increase in diastolic pressure, while 

the highest dose administered (40 mg/kg), produced a 65.540 mmHg ± 13.320 change 

in diastolic pressure. 

 

 

 Diastolic BP  MEAN  SEM

Dose mg/kg

0

20

40

60

80

100

0.5 1 5 10 40

*

 

Figure 4.11: Effects of DC9 (0.5 mg/kg ­ 60 mg/kg) on diastolic pressure in anaesthetised normotensive 

Wistar rats. * indicates statistical significant change. 
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4.8.2.5 Effects of DC15 on Diastolic blood pressure (DP) 

 

Figure 4.12 shows the effect of DC15 administered in a dose range of (0.5 mg/kg ­ 40 

mg/kg) on the DP in anaesthetised normotensive rats. DC15 produced dose dependent 

increases in diastolic pressure, with the increases shown to be statistically significant 

at the 10 mg/kg, 20 mg/kg and 40 mg/kg doses (see Figure 4.12; Appendix V). At the 

lowest dose (0.5 mg/kg), it produced a non­significant 5.4460 mmHg ± 0.3822 

increase in diastolic pressure, while the highest dose administered (40 mg/kg), 

produced a 22.5500 mmHg ± 0.9463 change in diastolic pressure. 

 

 

 

 

Figure 4.12: Effects of DC15 (0.5 mg/kg ­ 40 mg/kg) on diastolic pressure in anaesthetised 

normotensive Wistar rats. * indicates statistical significant change. 
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4.8.3 EFFECT ON MEAN ARTERIAL PRESSURE (MAP) 

 

4.8.3.1 Effects of DC1 on mean arterial pressure (MAP) 

 

Figure 4.13 shows the effect of DC1 administered in a dose range of (0.5 mg/kg, ­ 40 

mg/kg) on the MAP of anaesthetised normotensive Wistar rats.   DC1 produced dose 

dependent increases in MAP for all doses administered, with the increases statistically 

significant with the 10 mg/kg, 20 mg/kg and 40 mg/kg doses (see Figure 4.13; 

Appendix V). At the lowest dose (0.5 mg/kg), it produced a non­significant 2.390 

mmHg ± 0.6006 increase in MAP, while the highest dose administered (40 mg/kg), 

produced a 41.490 mmHg ± 5.346 change in MAP.  
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Figure 4.13: Effects of DC1 (0.5 mg/kg ­ 40 mg/kg) on mean arterial pressure in anaesthetised 

normotensive Wistar rats. * indicates statistical significant change. 
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4.8.3.2 Effects of DC2 on Mean arterial pressure (MAP) 

 

Figure 4.14 shows the effect of DC2 administered in a dose range of (0.5 mg/kg, ­ 60 

mg/kg) on the MAP of anaesthetised normotensive Wistar rats. DC2 produced dose 

dependent increases in MAP for all doses administered, with the increases statistically 

significant at the 10 mg/kg, 20 mg/kg, 40 mg/kg and 60 mg/kg doses (see Figure 4.14; 

Appendix V). At the lowest dose (0.5 mg/kg), it produced a non­significant 6.058 

mmHg ± 0.5361 increase in MAP, while the highest dose administered (60 mg/kg), 

produced a 60.500 mmHg ± 12.120 change in MAP. 

 

 

 

 

Figure 4.14: Effects of DC2 (0.5 mg/kg ­ 60 mg/kg) on mean arterial pressure in anaesthetised 

normotensive Wistar rats. * indicates statistical significant change. 
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4.8.3.3 Effects of DC8 on Mean arterial pressure (MAP) 

 

Figure 4.15 shows the effect of DC8 administered in a dose range of (0.5 mg/kg, ­ 60 

mg/kg) on the MAP of anaesthetised normotensive Wistar rats. DC8 produced dose 

dependent increases in MAP, with the increases statistically significant at the 20 

mg/kg, 40 mg/kg and 60 mg/kg doses (see Figure 4.15; Appendix V). At the lowest 

dose (0.5 mg/kg), it produced a non­significant 3.3580 mmHg ± 0.6708 increase in 

MAP, while the highest dose administered (60 mg/kg), produced a 28.4500 mmHg ± 

2.2820 change in MAP. 

 

 

 

 

Figure 4.15: Effects of DC8 (0.5 mg/kg ­ 60 mg/kg) on mean arterial pressure in anaesthetised 

normotensive Wistar rats. * indicates statistical significant change. 
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4.8.3.4 Effects of DC9 on Mean arterial pressure (MAP) 

 

Figure 4.16 shows the effect of DC9 administered in a dose range of (0.5 mg/kg, ­ 40 

mg/kg) on the MAP of anaesthetised normotensive Wistar rats. DC9 produced dose 

dependent increases in MAP, with the increases statistically significant at the 10 mg/kg 

and 40 mg/kg doses only (See Figure 4.16; Appendix V). At the lowest dose (0.5 

mg/kg), it produced a 5.967 mmHg ± 0.2071 increase in MAP, while the highest dose 

administered (40 mg/kg), produced a 64.310 mmHg ± 14.550 change in MAP.  

 

 

 

 

Figure 4.16: Effects of DC9 (0.5 mg/kg ­ 40 mg/kg) on mean arterial pressure in anaesthetised 

normotensive Wistar rats. * indicates statistical significant change. 
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4.8.3.5 Effects of DC15 on Mean arterial pressure (MAP) 

 

Figure 4.17 shows the effect of DC15 (0.5 mg/kg ­ 40 mg/kg) on the MAP of 

anaesthetised normotensive Wistar rats. DC15 produced dose dependent, increases in 

MAP, with the increases statistically significant at the 10 mg/kg, 20 mg/kg and 40 

mg/kg doses (see Figure 4.17; Appendix V). At the lowest dose (0.5 mg/kg), it 

produced a 5.579 mmHg ± 0.5124 increase in, while the highest dose administered (40 

mg/kg), produced a 22.570 mmHg ± 0.7373 change in MAP.  

 

 

 

 

Figure 4.17: Effects of DC15 (0.5 mg/kg ­ 40 mg/kg) on mean arterial pressure in anaesthetised 

normotensive Wistar rats. * indicates statistical significant change. 
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4.8.4 EFFECT ON HEART RATE (HR) 

 

4.8.4.1 Effects of DC1 on Heart rate (HR) 

 

Figure 4.18 shows the effect of DC1 administered in a dose range of (0.5 mg/kg ­ 40 

mg/kg) on the HR of anaesthetised normotensive Wistar rats. DC1 produced dose 

dependent increases in HR, with the increases statistically significant at the 10 mg/kg, 

20 mg/kg and 40 mg/kg doses (see Figure 4.18; Appendix V). The lowest dose (0.5 

mg/kg), produced a 4.4880 bpm ± 2.4930 increase in HR, while the highest response 

(29.1300 bpm ± 4.9160) was observed with the 20mg/kg dose administered. Further 

increases in the dose of DC1 not produce any further increase in the in heart rate 

beyond the 20 mg/kg dose. 

 

 

 

 

Figure 4.18: Effects of DC1 (0.5 mg/kg ­ 40 mg/kg) on Heart rate in anaesthetised normotensive Wistar 

rats. * indicates statistical significant change. 
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4.8.4.2 Effects of DC2 on Heart rate (HR) 

 

Figure 4.19 shows the effect of DC2 administered in a dose range of (0.5 mg/kg, ­ 60 

mg/kg) on the HR of anaesthetised normotensive Wistar rats. DC2 produced dose 

dependent increases in HR, with the increases statistically significant at the 10 mg/kg, 

20 mg/kg, 40 mg/kg and 60 mg/kg doses (see Figure 4.19; Appendix V). The lowest 

dose (0.5 mg/kg), produced a 6.122 bpm ± 0.3989 increase in heart rate, while the 

highest dose administered (60 mg/kg), produced a 46.800 bpm ± 2,739 increase in HR.  
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Figure 4.19: Effects of DC2 (0.5 mg/kg ­ 40 mg/kg) on Heart rate in anaesthetised normotensive Wistar 

rats. * indicates statistical significant change. 
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4.8.4.3 Effects of DC8 on Heart rate (HR) 

 

Figure 4.20 shows the effect of DC8 administered in a dose range of (0.5 mg/kg, ­ 60 

mg/kg) on the HR of anaesthetised normotensive Wistar rats. DC8 produced dose 

dependent increases in HR, with the increases statistically significant at the 5 mg/kg, 

10 mg/kg, 20 mg/kg, 40 mg/kg and 60 mg/kg doses (see Figure 4.20; Appendix V). 

The lowest dose (0.5 mg/kg), produced a 5.4510 bpm ± 0.8787 increase in HR, while 

the highest dose administered (60 mg/kg), produced a 95.6000 bpm ± 0.8771 change 

in HR. 

 

 

 

 

Figure 4.20: Effects of DC8 (0.5 mg/kg ­ 60 mg/kg) on Heart rate in anaesthetised normotensive Wistar 

rats. * indicates statistical significant change. 
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4.8.4.4 Effects of DC9 on Heart rate (HR) 

 

Figure 4.21 shows the effect of DC9 administered in a dose range of (0.5 mg/kg, ­ 40 

mg/kg) on the HR of anaesthetised normotensive Wistar rats. DC9 produced dose 

dependent increases in HR, with the increases statistically significant at the 5 mg/kg, 

10 mg/kg and 50 mg/kg doses (see Figure 4.21; Appendix V). The lowest dose (0.5 

mg/kg), produced a 6.102 bpm ± 0.9101 increase in HR, while the highest dose 

administered (40 mg/kg), produced a 35.110 bpm ± 6.909 change in HR.  
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Figure 4.21: Effects of DC9 (0.5 mg/kg ­ 40 mg/kg) on Heart rate in anaesthetised normotensive Wistar 

rats. * indicates statistical significant change. 
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4.8.4.5 Effects of DC15 on Heart rate (HR) 

 

Figure 4.22 shows the effect of DC15 administered in a dose range of (0.5 mg/kg, ­ 40 

mg/kg) on the HR of anaesthetised normotensive Wistar rats. DC15 produced dose 

dependent increases in HR, with the increases statistically significant at the 10 mg/kg, 

20 mg/kg and 40 mg/kg doses (see Figure 4.22; Appendix V). The lowest dose (0.5 

mg/kg) produced a 7.127 bpm ± 1.047 increase in HR, while the highest dose 

administered (40 mg/kg), produced a 31.590 bpm ± 2.423 increase in HR.  

 

 

 

 

Figure 4.22: Effects of DC15 (0.5 mg/kg ­ 40 mg/kg) on Heart rate in anaesthetised normotensive 

Wistar rats. * indicates statistical significant change. 
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4.9 DISCUSSION 

 

In this study all five (5) diterpenoids isolated from L. leonurus (DC 1, DC 2, DC 8, 

DC 9, and DC 15) (Table 3.1) were evaluated for their cardiovascular effect on 

anaesthetised normotensive Wistar rat models. The cardiovascular effects of a drug 

can be deciphered by its effect on measurable cardiovascular parameters like systolic 

pressure, diastolic pressure, mean arterial pressure, and heart rate (Obikeze, 2004; Raji 

et al., 2012). With respect to the five diterpenoids tested, all produced dose dependent 

and significant increases in systolic, diastolic, and mean arterial pressures, and heart 

rate (Appendix V). 

 

The increases in Blood pressure (BP) observed was the opposite of the effects reported 

by Njagi and Ojewole in anaesthetized normotensive animals using the crude aqueous 

extracts of the plant (Njagi et al., 2001; Ojewole, 2003). However this effect was 

similar to that noted in earlier experiments using crude aqueous extracts of the leaves 

only and methanol extracts of the leaves (Mugabo et al., 2002; Obikeze, 2004; Obikeze 

et al., 2013). Also, the increase in BP was similar to that produced by a novel diterpene 

­ EDD as reported by Obikeze and co­workers (2008), with EDD inducing dose­

dependent statistically significant increases in BP with high doses(Obikeze et al., 

2008). 

 

The increase in HR with the isolated diterpenoids was also similar to that observed by 

Raji et al., (2013) with methanol extracts, but was once more the opposite of the 

decrease in HR reported by Obikeze, (2004) and Ojewole, (2003) with the crude 

aqueous extract. EDD however showed dose­dependent statistically significant 

decreases in HR with all doses, the opposite of the effect observed with the five 

compounds evaluated in this study (Obikeze et al., 2008). 

 

DC15 (Marrubiin) is a diterpenoid found in different plants such as Marrubium 

vulgare and Phlomis bracteosa, and has been reported to exhibit vasorelaxant activity 

in-vitro on the isolated rat aorta. The mechanism of its relaxant activity is due to Ca2+ 

channel blockade (El Bardai et al., 2003; Khan et al., 2012). Vasorelaxant activity by 
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Calcium channel Ca2+ blockade has been identified as the mechanism of action of the 

cardiovascular effects of many plant compounds including diterpenoids (Ambrosio et 

al., 2006; Baccelli et al., 2005; El Bardai et al., 2004, 2003; Khan et al., 2012; Somova 

et al., 2001). A cardio selective Ca2+ channel blocker would produce decreases in Heart 

rate (HR) and blockade of Ca2+ channels in the contractile tissues of arteries would 

produce vasorelaxation which will cause a decrease in blood pressure (BP) (Fozzard, 

2002; Wakabayashi et al., 1995). This was the opposite of the effect observed with the 

five (5) diterpenoids tested in this study. Furthermore, the dose­dependent increases in 

blood pressure (SP, DP and MAP) and HR observed with these compounds (Table 3.1) 

as shown in Appendix V could be indicative of positive chronotropic and inotropic 

effect in the Heart. Interestingly a positive chronotropic and inotropic effect was 

similarly reported by (Mugabo et al., 2002) with the crude aqueous extract of L. 

leonurus in Langendorff perfused isolated rat hearts and by Obikeze (2013) with a 

fraction of the methanol extract of L. leonurus administered to anaesthetized 

normotensive rats. Suggesting the presence of DC15 in these extracts. The effects 

observed in this study were different from those observed by Khan et al (2012) and El 

Bardai et al (2003), possibly because the hypotensive effect of Marrubiin (DC15) as a 

result of vasorelaxant effect on the arteries masked by its effect on the Heart (positive 

chronotropic and inotropic effect) when tested in-vivo. 

 

Neural and hormonal regulation of the Heart is mediated by β1 adrenoceptors in the 

Heart, stimulation of these receptors with an agonist drug would lead to a positive 

chronotropic and inotropic effect. The activation of β1 adrenoceptors on the 

myocardial cell surface by an agonist leads to an increase in Heart rate (HR) (a positive 

chronotropic effect) and an increase force of contraction (a positive inotropic effect). 

Inhibition of these receptors with an antagonist would lead to a decrease in Heart rate 

(HR) (a negative chronotropic effect) and decrease in force of contraction (a negative 

inotropic effect) (Warne et al., 2011). Moreover, β1 adrenoceptor agonists produce a 

positive chronotropic and inotropic effect by increasing intracellular Ca2+ in cardiac 

cells, and β1 adrenoceptors blockers would prevent the increase of intracellular Ca2+, 

an effect similar to that produced by Ca2+ channel agonists and blockers (Opie, 2004).  

 

 

 

 

 



 

95 
 

Also, the peripheral vascular resistance (PVR) plays an important role in determining 

Blood pressure (BP). Certain agents called vasoactive agents could cause the 

vasoconstriction or vasodilatation of Blood vessels. Increases in Blood pressure (BP) 

could occur either through a direct vasoconstrictor effect or an indirect vasoconstrictor 

effect. For instance, a direct vasoconstrictor effect is mediated by an agonistic effect 

on α1 receptors or agonistic effect on Angiotensin II receptors (AT1) in the contractile 

tissue of the arteries, while an indirect vasoconstrictor effect is mediated via the release 

of catecholamines into the synaptic space (Moini, 2010; Ruffolo and Hieble, 1994). 

 

Comparing the effects of the five (5) diterpenoid compounds (DC1, DC2, DC8, DC9 

and DC15) to that of methanol extracts on the cardiovascular system, both diterpenoids 

and methanol extracts had similar effects on Systolic pressure (SP), Diastolic pressure 

(DP), Mean arterial pressure (MAP) and Heart rate (HR). A fraction of the methanol 

extracts of the leaves of L. leonurus were reported to exhibit a positive chronotropic 

and inotropic effect both in-vivo and in-vitro, indicative of a β1 adrenoceptor agonist 

(Obikeze, 2005; Obikeze et al., 2013). This suggests that these five (5) isolated 

diterpenoids compounds may have produced their cardiovascular effects by acting on 

the same receptors and they could also be the compounds responsible for the 

cardiovascular effect observed with the methanol extract of the plant. 
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CHAPTER FIVE 

 

 

5 DISCUSSES AND CONCLUSION 

 

5.1 DISCUSSION 

 

This chapter further discusses the results obtained from in-silico and in-vivo studies 

done on the five Leonotis leonurus diterpenoids. Conclusions derived from the study 

and recommendations are also given. 

  

L. Leonurus was chosen for this study because of its use in traditional medicine for the 

treatment of a wide range of diseases including cardiovascular disease (CVD) and also 

conflicting results from previous studies of its effects on the cardiovascular system. 

The purpose of this study was to investigate the Drug­likeness and to investigate the 

cardiovascular activity of five (5) diterpenoid compounds isolated from L. Leonurus 

extract, by performing Chemoinformatics analysis (in-silico) and invasive Blood 

pressure measurement technique (in-vivo). 

  

In the Chemoinformatics (in-silico) study, twelve (12) important molecular descriptors 

(physicochemical properties) for five (5) diterpenoid compounds found in L. Leonurus 

were calculated. Based on these calculated molecular descriptors, the Drug­Likeness 

of these isolated diterpenoid compounds were predicted. Also, the binding modes 

(interactions) and the binding energy were calculated by Molecular Docking (MD) of 

these isolated diterpenoids compounds against the 3D structure of renin receptor, 

Angiotensin converting enzyme (ACE), Angiotensin II receptor (AT1) and β1 

adrenoceptor. While in the in-vivo study, the cardiovascular activity of the isolated 

diterpenoids compounds were investigated by infusing these compounds intravenously 

(IV) into anaesthetized normotensive Wistar rats. Continuous monitoring of direct 

arterial Blood pressure (BP) using intra­arterial catheter inserted in the rat femoral 

arterial while infusing the compounds was carried out. At the end of the study, all the 

objectives of the study were achieved. 
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In the Renin­Angiotensin­Aldosterone System (RAAS). Renin acts as an enzyme 

which is involved in regulation of Blood volume, vascular resistance by hydrolysing 

Angiotensinogen to Angiotensin I (ANG I), which is further hydrolysed by ACE to 

Angiotensin II (ANG II) a potent vasoconstrictor (De Mello, 2014). The major 

cardiovascular effects of angiotensin II (ANG II) is mediated by Angiotensin II 

receptors (AT1), these receptors are found in Blood vessels. The RAAS pathway is 

often the target in the treatment of cardiovascular diseases (CVD) for example 

hypertension (De Mello, 2014). For this reason drugs known as renin inhibitors (70X), 

ACE inhibitors (Captopril) and Angiotensin II receptor (AT1) blockers (HIG) are used 

to lower Blood pressure (BP) (Akif et al., 2010; Casimiro­Garcia et al., 2011; Warne 

et al., 2011; Akif et al., 2012; Amery et al., 2012; McKittrick et al., 2015). 

  

From the molecular docking (MD) the isolated diterpenoid compounds (DC1, DC2, 

DC8, DC9 and DC15) exhibited high binding energy (ΔGb) values with renin in 

comparison to binding energy of 70X (renin inhibitor) with renin. Also, these 

compounds showed differences in their binding mode (interaction) with renin in 

comparison to the interaction between 70X (renin inhibitor) and renin, the more 

negative binding energy (ΔGb) value indicates stronger interactions (Lim et al., 2011; 

Temirak et al., 2014; Thakur and Thakur, 2015). This implies that these isolated 

diterpenoid compounds are not expected to have renin inhibition activity or at best to 

exhibit a weak renin inhibition activity when tested in-vivo. The result obtained from 

in-vivo studies, showed that all the five (5) diterpenoid compounds caused an increase 

in Blood pressure (BP) and Heart rate (HR) which was the opposite to that expected 

with renin inhibitors (De Mello, 2014; McKittrick et al., 2015). For instance, the 

correlation between both studies (in-silico and in-vivo) indicate that these diterpenoid 

compounds do not exhibit any renin inhibition (antihypertensive) activity. DC1, DC2, 

DC8, DC9 and DC15 exhibited binding energy (ΔGb) with ACE, similar to that 

observed with the ACE inhibitor ­ Captopril, and this could suggest that these isolated 

diterpenoids compounds could have similar affinity to the ACE receptor as that 

observed with Captopril. (Lim et al., 2011; Temirak et al., 2014; Thakur and Thakur, 

2015). On other hand, none of the isolated diterpenoid compounds interacted with the 

 

 

 

 



 

98 
 

Zn2+ ion. The success of clinically used ACE inhibitors, such as Captopril and 

lisinopril depend on their ability to interact directly with the zinc ion (Akif et al., 2010; 

Akif et al., 2012). The difference in binding mode (interaction) and the absence of a 

direct interaction with the Zn2+ ion with the isolated diterpenoids may suggest that 

these compounds would not exhibit ACEI­dependent antihypertensive activity when 

tested in-vivo. The result obtained from in-vivo studies, showed that all the five (5) 

isolated diterpenoid compounds caused an increase in Blood pressure (BP) and Heart 

rate (HR) which was the opposite to that expected with ACE inhibitors. For instance, 

the correlation between both studies (in-silico and in-vivo) indicate that these 

diterpenoid compounds do not exhibit any ACE inhibition (antihypertensive) activity. 

  

The binding mode (interactions) analysis of DC1, DC2, DC8, DC9 and DC15s did not 

show any similarity with HIG (AT1 blocker) binding mode. Although DC1, DC2, DC8, 

DC9 and DC15 exhibited binding energies (ΔGb) with the AT1 receptor, the binding 

energy (ΔGb) of the diterpenoids were higher than that observed with HIG (AT1 

blocker), suggesting that these compounds would have low affinity for the AT1 

receptor. The differences in the binding energy (ΔGb) and binding mode (interactions) 

between the diterpenoids and HIG with AT1 receptor suggests that these compounds 

would not exhibit antihypertensive activity as a result of AT1 blocking activity when 

tested in-vivo. The result obtained from in-vivo studies, showed that all the five (5) 

isolated diterpenoid compounds (DC1, DC2, DC8, DC9 and DC15) caused an increase 

in Blood pressure (BP) and Heart rate (HR) which was the opposite to the  

antihypertensive effect of AT1 blockers. For instance, the correlation between both 

studies (in-silico and in-vivo) indicate that these diterpenoid compounds do not exhibit 

any AT1 blocking (antihypertensive) activity (De Mello, 2014). 

  

The binding mode (interactions) and the binding energy (ΔGb) for DC1, DC2, DC9 

and DC15 were similar to that observed with Salbutamol, which could indicate that 

these compounds expected to produce similar pharmacological effects to that observed 

with the activation of β1 adrenoceptor. The result obtained from our in-vivo studies, 

showed that all the five (5) isolated diterpenoid compounds (DC1, DC2, DC8, DC9 

 

 

 

 



 

99 
 

and DC15) caused an increase in Blood pressure (BP) and Heart rate (HR) which was 

similar to that exhibited with β1 agonist drugs (Warne et al., 2011). 

  

In anaesthetized normotensive male Wistar rats, each of the isolated diterpenoid 

compounds produced significant dose­dependent increases in Blood pressure (SP, DP 

and MAP) and Heart rate (HR). Furthermore, the positive chronotropic and positive 

inotropic effects that were observed in the in-vivo study were similar to that observed 

with β1 agonist drugs (Warne et al., 2011) and different to that observed with renin 

inhibitors, ACE inhibitors and Angiotensin II (AT1) blockers (De Mello, 2014). The 

result obtained from in-vivo studies correlated with the in-silico studies. 

 

 

5.2 CONCLUSION 

 

From the study results, all the five (5) diterpenoid compounds ­ DC1, DC2, DC8, DC9 

and DC15 were predicted to have a good oral bioavailability and pass through the 

Blood­Brain Barrier (BBB). Also, the compounds were predicted to have high 

probability of being good Drug­like candidates, except for DC9, which is predicted to 

have lower possibilities of being Drug­like candidate than the other diterpenoids (DC1, 

DC2, DC8 and DC15). Furthermore, these compounds (DC1, DC2, DC8, DC9 and 

DC15) were shown to interact with β1 adrenoceptors in-silico, an interaction that was 

confirmed in-vivo by increases in Blood pressure (BP) and Heart rate (HR). These 

interactions were similar to that observed with the known β1agonist (Salbutamol). 

From the in-vivo and in-silico studies it can be concluded that all the five (5) isolated 

diterpenoids compounds showed cardiovascular effects on Blood pressure (BP) and 

Heart rate (HR) by acting as β1 adrenoceptor agonists. Also, these diterpenoids 

compounds could be responsible for the cardiovascular effect observed in the methanol 

extracts from previous studies. These cardio­active compounds are prototype or "lead 

compounds” for design and developing new non­toxic and effective drugs for 

cardiovascular disease (CVD) treatment. 
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5.3 RECOMENDATION 

 

The results from this study are not however conclusive on the mechanism of the action 

of the L. leonurus diterpenoids. Further studies using known drugs, isolated organs 

and homology modelling are required to confirm the mechanism of action through 

which these compounds produce their cardiovascular effect and also confirm their oral 

bioavailability and Blood­Brain Barrier permeability. The scope of this study was 

limited by the lack of sufficient funds and availability of the isolated compounds. Also 

limited access to equipment, materials and software needed to carry out some of the 

additional experiments contributed to limiting the scope of this study. 
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APPENDIXES 

 

APPENDIX I: Interactions of L. Leonurus diterpenoids compounds with renin 

 

 

 

 

 

 

 

 

 

 



 

117 
 

 

APPENDIX II: Interactions of L. Leonurus diterpenoids compounds with ACE 
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APPENDIX III: Interactions of L. Leonurus diterpenoids compounds with AT1 receptor  
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APPENDIX IV: Interactions of L. Leonurus diterpenoids compounds with β1 adrenoceptor 
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APPENDIX V: Effects of diterpenoid compounds on Blood pressure and Heart rate 

DC1 
Conc 

mg/kg 

SP DP MAP HR 

ΔMEAN ± SEM ΔMEAN ± SEM ΔMEAN ± SEM ΔMEAN ± SEM 

 

0,5 2,933 ± 0,6677 2,1180 ± 0,6047 2,390 ± 0,6006 4,4880 ± 2,4930 

1 7,766 ± 0,5164 7,8740 ± 1,1960 7,838 ± 0,9533 10,4600 ± 0,7133 

5 11,600 ± 1,350 10,3100 ± 0,6398 10,740 ± 0,7938 15,9500 ± 1,6260 

10 20,760 ± 0,9731* 21,5200 ± 2,1700* 21,270 ± 1,739* 23,1000 ± 1,6370* 

20 25,920 ± 1,095* 23,4600 ± 1,6460* 24,280 ± 1,430* 31,3200 ± 2,8700* 

40 42,360 ± 5,803* 41,0600 ± 5,3820* 41,490 ± 5,346* 29,1300 ± 4,9160* 

DC2 
Conc 

mg/kg 

SP DP MAP HR 

ΔMEAN ± SEM ΔMEAN ± SEM ΔMEAN ± SEM ΔMEAN ± SEM 

 

0,5 8,675 ± 0,9162 4,749 ± 0,5796 6,058 ± 0,5361 6,122 ± 0,3989 

1 14,810 ± 0,8572* 8,641 ± 0,8372 10,700 ± 0,8374 8,440 ± 0,8545 

5 12,500 ± 0,7503 6,597 ± 0,5378 8,564 ± 0,4541 14,960 ± 2,604 

10 21,030 ± 1,460* 19,600 ± 1,558* 20,080 ± 0,7594* 23,020 ± 2,255* 

20 27,200 ± 2,576* 24,390 ± 1,471* 25,320 ± 1,586* 24,030 ± 3,003* 

40 38,680 ± 3,978* 37,260 ± 2,846* 37,730 ± 3,138* 33,350 ± 1,470* 

60 65,110 ± 10,380* 58,200 ± 12,990* 60,500 ± 12,120* 46,800 ± 2,739* 

DC8 
Conc 

mg/kg 

SP DP MAP HR 

ΔMEAN ± SEM ΔMEAN ± SEM ΔMEAN ± SEM ΔMEAN ± SEM 

 

0,5 5,732 ± 0,8752 2,1710 ± 1,1690 3,3580 ± 0,6708 5,4510 ± 0,8787 

1 6,683 ± 1,099 2,9160 ± 1,0690 4,1720 ± 0,7508 15,4600 ± 3,2080 

5 8,702 ± 1,683 2,7470 ± 1,8120 4,7320 ± 1,2580 28,1400 ± 1,7910* 

10 11,700 ± 1,585 3,4940 ± 0,7695 6,2310 ± 0,5266 36,4500 ± 2,3040* 

20 20,150 ± 2,723* 19,8200 ± 3,5360* 19,9300 ± 3,2560* 33,6800 ± 12,8700* 

40 35,990 ± 2,887* 20,7700 ± 1,7690* 25,8400 ± 1,2980* 38,2000 ± 13,9100* 

60 37,790 ± 0,7398* 23,7900 ± 3,0520* 28,4500 ± 2,2820* 95,6000 ± 0,8771* 

DC9 
Conc 

mg/kg 

SP DP MAP HR 

ΔMEAN ± SEM ΔMEAN ± SEM ΔMEAN ± SEM ΔMEAN ± SEM 

 

0,5 6,993 ± 0,7063 5,454 ± 0,4553 5,967 ± 0,2071 6,102 ± 0,9101 

1 9,612 ± 0,566 7,709 ± 0,249 8,343 ± 0,2532 10,640 ± 1,132 

5 10,770 ± 0,9866 10,210 ± 1,530 10,400 ± 0,6947 22,950 ± 2,834* 

10 13,650 ± 1,359* 12,710 ± 1,518 13,030 ± 1,306* 28,510 ± 4,201* 

40 61,850 ± 17,340* 65,540 ± 13,320* 64,310 ± 14,550* 35,110 ± 6,909* 

DC15 
Conc 

mg/kg 

SP DP MAP HR 

ΔMEAN ± SEM ΔMEAN ± SEM ΔMEAN ± SEM ΔMEAN ± SEM 

 

0,5 5,845 ± 0,9175 5,4460 ± 0,3822 5,579 ± 0,5124 7,127 ± 1,047 

1 9,224 ± 0,7923 5,4230 ± 0,4334 6,690 ± 0,3393 11,590 ± 0,8099 

5 13,220 ± 1,350* 6,0310 ± 0,4127 8,427 ± 0,2163 13,960 ± 0,8717 

10 20,230 ± 1,378* 18,5600 ± 1,2450* 19,120 ± 1,051* 21,520 ± 0,6188* 

20 21,360 ± 1,497* 19,0900 ± 1,9410* 19,850 ± 1,484* 23,870 ± 4,215* 

40 22,630 ± 0,9431* 22,5500 ± 0,9463* 22,570 ± 0,7373* 31,590 ± 2,423* 
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