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SUMMARY 

This study was based on Dioxy MP 14 (DMP), a brand of stabilized chlorine dioxide (SCD). 

The active pharmaceutical ingredient (API) of DMP is chlorine dioxide (CD) which is a potent 

oxidant and biocide. These properties have proved invaluable for various applications. The 

main goals of this study were: to evaluate the effectiveness of DMP for disinfecting 

Mycobateria tuberculosis (TB) contaminated medical instruments, devices, floors and surfaces; 

to investigate the stability of DMP; and to explore possibilities for medical application of 

DMP. 

Evaluation of disinfectant activity of DMP on TB was performed using the spectrophotometric 

method, a modification of the European suspension test, EN 14348. M. bovis BCG was 

employed as surrogate in this test. Results were as follows: The minimum inhibitory 

concentration (MIC90) = 12.5 ppm; the minimum bactericidal concentration (MBC) = 15.4 

ppm; the Mycobactericidal Effect (ME) = 8.8log reduction; and the minimum inhibitory 

concentration (MIC90) x minimum exposure time (CT) = 12.5 ppm.s. 

 The long term stability study of DMP was performed by monitoring the rate of degradation of 

DMP stored in the fridge (2-8 
o
C), in the oven (40 

o
C), and under ambient conditions (15-30 

o
C). Analytical methods of assessing DMP concentration was by Iodometric titration method. 

The shelf life of DMP stored in a transparent bottle at room temperature was 9.8 weeks, as 

opposed to 52.7 weeks when stored in an amber colored reagent bottle at the same temperature. 

Both oven samples had an expiry date of about 20 weeks and the fridge samples about 70 

weeks. 
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Foam formulations for a vaginal douche (VGD), mouth rinse (MRF), and foot/sit bubble bath 

(F/SBB)], were developed in the laboratory. DMP and the formulated concentrate were 

designed to be mixed just prior to administration. During foam evaluation studies, a 

mechanical overhead stirrer was used to generate foam. Foamability was assessed by 

quantifying the amount of foam generated. The stability of foams were assessed by: 1) 

determining the rate of foam decay and the rate of foam drainage observed concurrently from 

foam loaded in a measuring cylinder; and 2) determining the life span of single bubbles of each 

foam system i.e. the bubble breaking time (BBT). The density of each foam system was also 

determined. Potentiometric acid base titration was used to select suitable adjuster alkali, and to 

show the benefits of employing a buffer. Concentrate development was initiated by a simple 

mixture of all the ingredients followed by stirring and observing the deviations from desired 

quality attributes of the product. The subsequent five processes were improvements designed to 

circumvent the shortcomings of the initial procedure to arrive at the optimized method E. 

Prototype formulations were employed to optimize excipient quantities to eventually arrive at 

an optimized master formula. In foam evaluation, it was found that sodium lauryl 

sulphate/ammonium lauryl sulphate/cocoamidopropyl betaine/cetostearyl alcohol 

(SLS/ALS/CAPB/CSA) foam system was the most appropriate to use in the formulation. 

NaOH was selected as the adjuster solution and KHP as the buffer. The dosage formula (DF) 

of the VGD and F/SBB was determined to be MDF = 5 ml of 50 ppm DMP + 5 ml concentrate 

+ 40 ml water = 50 ml and that of MRF as MDF = 19 ml diluted concentrate + 1 ml of 50 ppm 

DMP. 
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In conclusion, DMP was found to be a highly effective disinfectant against Mycobacteria. 

DMP has reasonable shelf life if stored appropriately. Pharmaceutical formulation from DMP 

was found to be delicate due to the narrow pH window of DMP stability, but is feasible.  
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CHAPTER 1 

INTRODUCTION AND RESEARCH OBJECTIVES 

1.1  History and uses of chlorine dioxide 

The compound chlorine dioxide (CD), though still a subject of intense research, is not a 

recent discovery. The gas was first prepared by Sir Humphrey Davy in 1811 when 

reacting sulfuric acid with potassium chlorate (Aieta & Berg, 1986). Watt and Burgess, 

who invented alkaline pulp bleaching in 1834, patented CD, (US patent 11,343 of 1854) 

as a bleaching agent (Watt & Burgess, 1854).  Since then, CD has experienced increased 

use in the bleaching of wood pulp in paper processing industry as well as textile 

bleaching industry especially from the 1920s (Jeng & Woodworth, 1990; Suess, 2010). 

The production of CD from chlorate is complicated and the gas is explosive. For this 

reason it could not be easily utilized until the discovery of efficient production methods 

for sodium chlorite by the Mathieson company, now called the Olin Corporation (Aieta 

& Berg, 1986; Alliger, 2001; Vincent, MaCmahon, & Synan, 1946). In 1944, CD was 

first used for primary disinfection of municipal water systems at Niagara Falls in the 

USA (Aieta & Berg, 1986). Shortly thereafter, it was discovered that CD also enhanced 

the quality of drinking water, controlling bad tastes, odors and colors, by 

oxidation/killing of phenolic wastes, sulfur compounds, iron, manganese, algae and other 

causative factors (Black and Veatch corporation, 2010; Vincent et al., 1946). CD is 

currently the second most important municipal water treatment agent with over 3,000 

municipal water systems using CD in Europe and North America (Aieta & Berg, 1986; 

US EPA, 1999). CD was also found to eliminate cyanide from industrial waste (Aieta & 

Berg, 1986). In 1967, the  US EPA first registered the liquid form of CD for use as a 
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disinfectant and sanitizer on a variety of sites such as animal farms, bottling plants, food 

processing, handling, and storage plants (Alliger, 2001; Lin, Hsieh, Liou, Lee, & Lai, 

2007; Parga, Shukla, & Carrillo-Pedroza, 2003; Powis, 2005). Stabilized chlorine dioxide 

(SCD) was developed in the 1970s to further solve the problem of instability and 

volatility (Junli, Lihua, & and Zhenye, 2001). In 1978, Alliger patented an SCD gel and 

an accompanying lactic acid gel activator (Alliger Patents: # 4084747, # 4330531) for 

topical application by the individual user as a disinfectant (Alliger, 2001). In 1984 CD 

was first recognized as a chemosterilizing agent and was approved as a sterilant by the 

EPA in 1988 (Lin, Hsieh, Liou, Lee, & Lai, 2007; US EPA, 2007). In the 1990s, CD 

gained widespread use for small scale disinfection of water, a scenario arising from 

outbreaks due to inadequate disinfection or organisms resistant to the usual chlorine 

disinfection such as Legionella, Cryptosporidium etc. and for personal drinking water e.g. 

for military personnel ( Lin, Hsieh, Liou, Lee, & Lai, 2007; Lin, Stout, & Yu, 2011; 

Thomas et al., 2004). To use SCD under such circumstances might require the granting of 

a crisis exemption (US EPA, 2007). Other uses of CD include: disinfecting flume water 

(Beuchat 1998), treating medical waste (US EPA, 2007), control of biofilms in pipe 

systems e.g. dental unit (Wirthlin, Marshall, & Rowland, 2003), fumigation treatment for 

inactivating sick building syndrome-related fungi and their mycotoxins (Wilson et al., 

2005), national security issues such as Bio-warfare and  Bio-terrorism as was the case 

when gaseous CD was used to disinfect anthrax virus from offices of the Hart Senate 

Building and Post office by the Environmental Protection Agency in 2002 etc. (Lin, 

Hsieh, Liou, Lee, & Lai, 2007; US EPA, 2007). Medical application of CD so far has 

mainly been confined to its use as a disinfectant. It is approved by the EPA for 

disinfection of ventilation systems and hard surfaces such as floors, walls and laboratory 

equipment where it is formulated as concentrates and ready to use liquid solutions. It is 
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applied as spray, mop, injector system, mist and fog (US EPA, 2006). No FDA approved 

medical formulation was found. Patents, however, exist including the Alliger gel 

mentioned above, various oral formulations, as well as vaginal wipes (Hughes, 2005).  

1.2 Physical and thermodynamic properties of CD  

Chlorine dioxide is a greenish yellow gas at room temperature. It has a pungent, 

distinctive, irritating smell, reminiscent of that of chlorine (Black and Veatch 

Corporation, 2010). According to Kaczur and Cawlfield (2000), CD has a critical 

temperature of 465 K; critical pressure of 8621.6 kPa; melting point of 213.55 K which is 

also its triple point; triple point pressure of 1.2544 kPa; boiling point of 284.05 K at 

101.3 kPa; and a liquid molar volume of 4.1852x10^-2 m
3
/K.mol. Its liquid density at -

55
o
C, 0

o
C, and 10

o
C is 1.773, 1.640, and 1.614 g/ml respectively. Kaczur and Cawlfield 

further states that CD has an ideal gas heat of formation of 102.5 KJ/mol; ideal gas Gibbs 

energy of formation of 120.5 KJ/mol; ideal gas entropy of 0.257 KJ/(mol.K); and 

standard net heat of combustion (gas) of -102.5 KJ/mol; Like all gases the aqueous 

solubility of CD can be defined in terms of Henry‟s law whereby the equilibrium 

relationship between dissolved and gaseous CD is: 

pClO2 = [ClO2 g/L] e^[10.717−(3102/T)]  

Where  

 pClO2  =  the partial pressure of CD gas in kPa 

[ClO2] =  the CD solution concentration in grams per liter and  

T  =  the absolute temperature in Kelvin.  
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This simply implies that the solubility of the gas in the liquid at a particular temperature 

increases as the pressure of the gas above the liquid is increased (Kaczur & Cawlfield, 

2007). Various solubilities of CD in water at partial pressures of up to 20 kPa are shown 

in figure 1.1 below:  

  

Figure 1.1: Solubility of chlorine dioxide in water (Buser & Hanisch, 1952) 

Data in figure 1.1 show that CD is highly soluble in water, i.e. solubility of 3.01 g/l at 25 

o
C and 34.5 mm Hg (US EPA, 2006). This is higher solubility than that of comparable 

disinfectants such as chlorine and ozone (Black and Veatch Corporation, 2010; 

Emanuele, 2007). CD does not hydrolyze appreciably in water but remains as a dissolved 

gas (Aieta & Berg, 1986). CD forms a yellow to yellow-green color solution. The 

partition coefficient between water and CD gas is about 21.5 at 35 ◦C and 70.0 at 0◦C. 

The UV aqueous absorption spectrum of CD is the same as the gas phase spectrum and 

has a broad absorption band with a peak near 360 nm. Its molar extinction coefficient is 

1250 (M.cm)
-1 

when using high resolution, narrow bandwith spectrophotometers (Kaczur 

& Cawlfield, 2007).  
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1.3  Chemistry of CD 

1.3.1 Electronic structure of CD 

CD has an unusual electronic structure which chemists could not comprehend for a long 

time because none of the possible Lewis structures were satisfactory. The currently 

accepted electronic structure consists of two resonance structures involving a double 

bond on one side of chlorine and a single bond together with a three electron bond on the 

other. The O–Cl–O bonds are at an angle of about 117.5 degrees, and each chlorine–

oxygen bond length is 0.147 nm (Kaczur & Cawlfield, 2007), as shown in figure 1.2 

below: CD is a free radical, owing to one unpaired electron in its molecular orbital 

(Linus, 1988; Zsolt, 2004). 

    

Figure 1.2: Lewis structure of CD (Linus, 1988). 

1.3.2 Oxidizing properties of CD 

CD gas is a strong oxidant. Its redox potentials (E) for various reactions are given in 

Table 1.1.  In these calculations the standard reversible potentials (E◦) are determined by 

the specific reaction chemistry and can vary depending on the pH and concentration of 

CD. The four redox equations below are: for an aqueous solution where chloride ion is 

the product (E◦ = −1.511), for a reaction where chlorite is the product (E◦ = −1.160), for 

gaseous systems where HCl gas is formed (E◦ = −1.436), and a reaction where hydrogen 

chlorite forms (E◦ = −1.26) (Kaczur & Cawlfield, 2007; Zsolt, 2004) respectively. 
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Table 1.1: Electrode potentials of CD for various reactions (Kaczur & Cawlfield, 2007; 

Zsolt, 2004). 

ClO2 (g) + 4 H + 5e   E =−1.511 + 0.0473 pH− 0.0118log {(P
CO2 

)/ [Cl
–
]} 

Cl
–
 + 2 H2O 

ClO2 (g) + 1e  ClO2 
– 
   E = −1.160− 0.0591log {(P

ClO2
)/ [ClO2

-
] }  

ClO2+ 5 H+ + 5e−     E =−1.436 + 0.0591 pH− 0.0118log {(P
ClO2

)/ (HCl) 

HCl + 2 H2O  

ClO2 (g) + H + 1e    E= −1.26 – 0.0591log {(P
ClO2

)/ [HClO2] }  

HClO2 

From the above equations, it can be seen that the oxidation potential of CD depends upon 

the pH of the solution i.e. the more acidic the solution the higher the oxidation potential 

(Junli, Li, Nanqi, Fang, & Juli, 1997). 

The relative oxidation efficiency of chlorine dioxide has sometimes been expressed in 

terms of „available chlorine‟ which can be calculated as follows: 

CD accepts 5 electrons when it is reduced to chloride in a reaction shown below.  

ClO2 + 5e-  Cl
-
 + 2O

2- 
 

From the above, it can be noticed that the equivalent weight of CD is 13.49 (67.45/5) 

g/mol and that of chlorine is 35.45 g/mol (70.90/2). This simply means that 13.49 g of 

CD can oxidize the same amount of material as 35.45 g of Cl2. Thus „available chlorine‟ 

in CD is 263 % that in Cl2. i.e. CD has 2.6 times more capacity to oxidize than chlorine. 

In practice, the 263 % equivalent available chlorine is rarely attained because CD is 
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rarely reduced completely to chloride ion (Benarde, Israel, Olivieri, & and Granstrom, 

1965; Black and Veatch corporation, 2010).  

1.3.3 Reactions of CD with organic compounds  

In disinfecting highly contaminated water CD is ten times more efficient than chlorine, in 

terms of quantities used to achieve same level of disinfection, while it is just twice more 

efficient than hypochlorite in disinfecting non contaminated water. Furthermore, the half-

life of CD in raw sewage is higher than that of equimolar hypochlorite (Aieta & Berg, 

1986; Masschelein, 1979). These observations are attributed to the selective nature of CD 

in its reaction with organic compound(s), which is due to its unique single electron 

transfer reducing to chlorite as it attacks electron rich centers (Aieta & Berg, 1986; Black 

and Veatch corporation, 2010; WHO, 2000). CD does not react with ammonia or primary 

and secondary amine(s) which are largely responsible for consumption of chlorine in 

contaminated water (Gagnona et al., 2005; Masschelein, 1979). CD also does not oxidize 

bromine to bromate as ozone does (Black and Veatch corporation, 2010) and saturated 

aliphatic compounds are also unreactive with CD (Rav-Acha & Choshen, 1987). 

Alcohols and carbonyl compounds react slowly with CD to produce carboxylic acids 

(Kaczur & Cawlfield, 2007). On the other hand CD rapidly oxidizes the following: 

tertiary amines, humic substances, cyanides and phenols such as chlorophenols (Aieta & 

Berg, 1986). In the reactions of CD, the formation of organohalogens such as 

trihalomethanes and haloacetic acid is negligible as opposed to chlorine reactions where 

these are present in considerable amounts (Aieta & Berg, 1986; Berg, Roberts, & Matin, 

1986; Roberts, Aieta, Berg, & Chow, 1980). This is attributed to differences in reaction 

mechanisms where, as already stated, CD oxidizes by free radical electron abstraction as 
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opposed to chlorine which oxidizes by both substitution and addition. Chlorite is a well-

known by product of CD reactions (Gagnona et al., 2005).  

1.3.4 Thermal Decomposition of CD  

Thermal decomposition of gaseous CD is characterized by a slow induction period 

followed by a rapid autocatalytic phase that may be explosive if the initial concentration 

is above a partial pressure of 10.1 kPa (76 mm Hg). During this reaction, one of the 

intermediates formed is the unstable Cl2O3. The presence of water vapour is thought to 

extend the duration of the induction period by reacting with this intermediate. When the 

water vapour concentration as well as the temperature, are both high, all decomposition 

takes place in the induction period hence the smooth rather than explosive 

decomposition. In solution, CD decomposes very slowly at ambient temperature in the 

dark. The thermal decomposition products of gaseous CD include chlorine, oxygen, HCl, 

HClO3, and HClO4 while in solution CD is hydrolyzed into chlorite and chlorate ions 

(Kaczur & Cawlfield, 2007).  

1.3.5 Photochemical Reactions  

In gas phase CD undergoes homolytic fission of the chlorine–oxygen bond to form ClO 

and O, as the primary products of photochemical reaction. Secondary products are then 

generated and these include chlorine peroxide (ClOO), chlorine (Cl2), oxygen (O2), 

chlorine trioxide (Cl2O3), chlorine hexoxide (Cl2O6), and other oxychlorine species. In 

aqueous solutions, CD photolyzes in a more complex manner producing chlorate (ClO3
−
), 

chloride (Cl
−
), and hypochlorite (OCl

−
) anions as the principal stable products (Kaczur & 

Cawlfield, 2007). 
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1.3.6 The hazardous nature of CD 

Being such a powerful oxidizer, CD reacts violently with strong reducing agents such as 

hydrides, nitrites, and sulfides. Explosive reactions also occur with carbon monoxide, 

carbon dioxide, phosphorous, sugar, sulfur, fluorine, flouramines etc. Liquid CD 

explodes on contact with mercury and metal hydrides. CD is also incompatible with 

rubber. Though it is not combustible, CD enhances combustion of combustible material 

such as dust, hydrocarbons, butadiene, ethane, ethylene, methane, etc. Further to this the 

gas could explode at temperatures in excess of 44 
o
C. Explosions, even at room 

temperature are also likely if concentrations above 10 % v/v are exposed to light, sparks, 

static electricity, on impact, or may be self-initiated after an induction period. When 

involved in a fire CD is a source of oxygen. These incompatibility and instabilities 

exemplify the dangers involved in handling of CD (Pohanish & Greene, 2009).  

1.4 Biocidal properties of CD 

CD is a powerful and versatile biocide in both the aqueous and gas phases. This is highly 

advantageous for biopharmaceutical applications since it is easy to change CD from one 

state to the other. With regards to efficacy, CD is a broad spectrum biocide capable of 

inactivating bacteria, spores, cysts, viruses, yeasts, moulds and protozoa (Novak, 

Demirci, & Han, 2008; Ogata & Shibata, 2008). It is effective at concentrations as low as 

0.1 ppm (Safeoxy, 2011). CD having a higher oxidizing capacity than comparable 

oxidizing disinfectants implies that it is a more efficient disinfectant on a weight by 

weight basis e.g. theoretically, 13.49 g of CD disinfects the same amount as 35.45 g of 

chlorine (Block, 2001). The selectivity of CD, alluded to in section 1.3.3 above, implies 

that CD is a more efficient biocide due to less wastage. Chlorine which is less selective, 
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for instance reacts with ammonium ions and primary amines, substances which are 

abundant in nature. This increases chlorine demand unnecessarily since the chlorine 

intended for disinfection ends up oxidizing unintended substances (Aieta & Berg, 1986; 

Masschelein, 1979). The disinfection efficiency of CD is also relatively independent of 

pH unlike biocides like chlorine whose disinfection capacity is restricted to a narrow pH 

range. Junli et al. (1997), states that CD is effective as a biocide in the pH range of 3 to 9. 

CD is approximately 10 times more soluble in water than chlorine (Black and Veatch 

corporation, 2010; US EPA, 1999). This could be a contributing factor for the good 

residual disinfectant effect of CD which is crucial for suppressing microbial growth in the 

long run (Black and Veatch corporation, 2010; US EPA, 1999). Since CD exists in 

solution as an undissociated gas, it should easily penetrate membranes and this should 

enhance its lethal action (Junli et al., 1997). On the safety score, CD has a relatively good 

disinfection and disinfection by-product profile (DBP) as it results in formation of much 

less harmful by-products in comparison with comparable oxidizing disinfectants 

(Simpson, Miller, & Laxton, G. D. and Clements, W. R., 1993; Tarquin, Rittmann, & 

Pino, 2002). The main undesirable byproducts of disinfection with CD are chlorite and 

chlorate which are discussed in section 1.5. CD also has excellent biofilms removing 

properties and has registered widespread use for removing biofilms in cooling towers, 

intra vascular catheters, small tubing water systems of dental units, pipes of municipal 

water supply systems etc. (Weinstein & Donlan, 2011; Wirthlin et al., 2003). One 

possible reason for the relatively slow re‐growth of bacteria after sterilization with 

chlorine dioxide lies in its superior ability to penetrate and disperse a biomass (Epstein, 

Pokroy, Seminara, & Aizenberg, 2011). The persistent residual effect of CD seems of 

high value in this respect as well (Masschelein, 1979; Thomas, V.et al., 2004). 
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1.4.1 Mechanism of action of CD 

According to Aieta, (1986), efforts to elucidate the mode of biocidal action of CD have 

taken two main routes: 1) identification of specific chemical reactions between CD and 

biomolecules and 2) evaluation of the effect of CD on physiological functions. Both 

approaches have been invaluable. On the first type study, it was found that CD impaired 

viral RNA synthesis by inhibiting further incorporation of uridine. Noss, Hauchman and 

Olivieri (1986) obtained contrary results finding that CD destroyed the tertiary structure 

of proteins such that specific attachment was no longer possible. They identified the 

amino acids tyrosine, cystein, and tryptophane within the protein moiety as being 

reactive with CD leading to viral inactivation. Fatty acids have also been implicated by 

some researchers as being reactive with CD and therefore this is yet another possible 

mode of inactivation. However, the actual target of CD remains uncertain. 

Studies on CD effect on physiological functions were initiated by Bernade et al. (1967) 

who found that CD acted by disrupting protein synthesis. Later in 1980, it was proved 

that inhibition of protein synthesis, inhibition of dehydrogenase enzymes and action on 

nucleic acids were not the primary targets of CD inactivation of microorganisms (Roller, 

Olivieri, & Kawata, 1980). In 1986, Berg et al. showed that loss of permeability control 

by disruption of the outer membrane with efflux of potassium ions resulting in 

elimination of the transmembrane ionic gradient was the primary mode of action. This 

view is currently the popular one and has been supported by a number of other 

researchers (Aieta & Berg, 1986).  
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1.4.2 Relative efficacy of CD 

Aieta et al. (1986) describes a study by Hoff and Geldreich where a number of 

disinfectants were ranked based on „biocidal efficacy‟ and „stability.‟ Biocidal efficacy 

measured disinfectant activity against viruses and bacteria in the pH range 6-9 while 

stability was meant to show disinfectant selectivity for microbes. Stability therefore 

measured persistence of the disinfectant in the treated system. The biocidal efficacy 

ranking (best to worst) was given as: ozone> CD>free chlorine>chloramines while that 

of stability (best to worst) was given as: chloramines > CD > free chlorine > ozone 

(Akin, Hoff, & Lippy, 1982). This ranking agrees with that of other investigators as 

explained below: Simpsom (1993) made a comparison of four oxidizing biocides, 

namely; ozone, CD, chlorine and bromine, in light of the criteria of an 'ideal' biocide.‟ He 

found that although each of the oxidizers studied excelled in one or more areas, when 

reviewed as whole, chlorine dioxide came closer to achieving the status of 'ideal' biocide 

than any of the others. 

1.5 Toxicology of CD 

According to the US EPA integrated risk information system (IRIS), CD in drinking 

water rapidly degrades to chlorite (ClO2
-
), chlorate (ClO3

-
), and chloride ion (Cl

-
). If 

absorbed in the blood, CD and chlorite have similar distribution and clearance profiles 

and chloride ion is the major in vivo degradation product of CD, chlorite, and chlorate. 

Furthermore the US EPA is of the view that CD and chlorite have similar toxicity and 

potency targets. Therefore toxicity information of chlorite is applicable to that of CD. 

Kaczur et al. (2007), states that the oxidative properties of sodium chlorite are directly 

related to its toxic effects. Sodium chlorite toxicity arises mainly from ingestion.  For 31 
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% w/v sodium chlorite solution, the following acute lethal doses apply to rats: oral lethal 

dose (LD50) is 284 mg/kg; dermal LD50 is >2000 mg/kg; and lethal concentration LC50 is 

0.29 mg/L when inhaled for 4 hours (Arkema Inc., 2010). This means that for rats 

weighing about 400 mg each: consumption of about 0.4 ml each will kill about half the 

rat population; dermal exposure of each rat to more than 2.6 ml could be fatal to half the 

population; and inhalation of 0.29 ppm by each rat for four hours could decimate half the 

population. Sodium chlorite produces severe irritation or burns to the skin or eyes. 

Corneal damage and impairment of vision may occur if this material is not washed 

immediately from the eyes (Kaczur & Cawlfield, 2007).  

 

Kaczur also states that sodium chlorite is not listed by any regulatory authority as a 

carcinogen. He points to studies conducted in mice and rats as showing that sodium 

chlorite is not carcinogenic although sodium chlorite has been found to have mutagenic 

activity in Ames Salmonella reverse mutation assays. The significance of these test 

results in regard to human health is not clear. Controlled animal and human studies in the 

CD/sodium chlorite concentration range of 1-1000 ppm have also been conducted. They 

proved the point in the opening paragraph of this section that metabolically, both CD and 

ClO2
−
 are rapidly reduced following ingestion to chloride ions which is excreted via the 

renal route together with a small amount of ClO2
−
. These studies also show that the no 

observed effect level (NOEL), for CD and ClO2
−
 generally ranges between 10 and 100 

ppm. Exposures of laboratory animals to CD above 100 ppm in drinking water have 

shown a decrease in blood cell glutathione, red blood cell counts, and hemoglobin. Some 

mild effects on the thyroid and anemia were noted in younger laboratory animals. Human 

volunteers in one study with doses up to 24 ppm of CD or ClO2
−
 showed no adverse 

health effects (Kaczur & Cawlfield, 2007). 
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1.6 Limitations/regulatory issues 

Due to instability, CD gas cannot be compressed for storage in gas tanks, with or without 

other gases (Aieta & Berg, 1986; Gordon, Kieffer, & Rosenblatt, 1972) and by law is not 

permitted to be transported. It has to be produced at the site of consumption (Kaczur & 

Cawlfield, 2007; US EPA, 2000). After utilization, the gas is normally neutralized by 

sodium-bi-sulfite (Jin, Hu, Zhang, & Bo, 2009; US EPA, 2007). The instability 

limitations of CD gas prevent the full utilization of the superior biocidal properties of CD 

particularly in the medical and agricultural industries. 

1.7 Stabilized chlorine dioxide (SCD) 

Bio-Cide international Inc., USA, developed “stabilized chlorine dioxide (SCD)” in the 

early 1970s by stabilizing CD in aqueous solution using Na2CO3/H2O2 buffers. This 

overcame the problems of CD instability and its attendant legal restrictions on 

transportation. Many countries that used SCD, in a relatively wide field, have approved 

it. In SCD solution, CD exists as chlorite (ClO2-) and the so-called „„stabilized chlorine 

dioxide‟‟ actually is the mixture of NaClO2 and NaHCO3. Like CD, chlorite is a potent 

biocide and oxidant (Junli et al., 2001). Since its first advent in the 1970s, a number of 

brands of stabilized chlorine dioxide have emerged world over. Most SCD solutions are 

activated by adding acid and the activated solutions release CD. Dioxy MP-14 (DMP) is 

specifically a South African brand of SCD. DMP does not need to be activated by acids 

before use, but exists at very low pH where it is already in its active state. DMP solutions 

are normally stored cold, away from light in a tightly closed container and at 

concentrations of less than 10,000 ppm in order to keep the concentration of gaseous CD 

above the aqueous solution below the explosive limit. Where possible the storage vessel 
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should be filled, minimizing the headspace and therefore the accumulation of gaseous 

CD in the vessel (Taylor, Wohlers, & Amata, 2004). 

1.8 Research objectives 

The current research was based on DMP. The main goal was to explore possibilities for 

medical application of DMP. The effectiveness of DMP to destroy Tuberculosis bacillus 

(TB) was also determined for the possible application of disinfecting TB contaminated 

medical instruments, devices, floors and surfaces.  

Three specific aims pertaining to the aforementioned areas have been investigated in this 

work: 

Aim 1:  To conduct in-vitro evaluation of the effectiveness of DMP for use as TB 

chemical disinfectant for floors, surfaces and medical instrument and devices  

Aim 2: To investigate the long term stability of DMP 

Aim 3: To formulate a vaginal douche (VGD), foot/sit bubble (F/SBB) bath, and mouth 

rinse (MRF) in foam preparations of DMP 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 In-vitro evaluation of the effectiveness of DMP for use as chemical 

disinfectant (cold sterilant) against Mycobacteria tuberculosis (TB) 

The current TB pandemic has been fueled by factors such as the HIV/AIDS epidemic, 

demographic and socio-economic changes, emergency of multidrug resistance 

Mycobacteria (MDR TB), inadequate sterilization of medical devices, and premature 

termination of workable TB programs in the case of developed countries (Erickson, 

Campbell, & Cerniglia, 2000; Robison et al., 1996; Sattar, Best, Springthorpe, & Sanani, 

1995). Prevention of the spread of TB is one of the best strategies of overcoming this 

pandemic (Robison et al., 1996; Sattar et al., 1995). This aspect of the project is directed 

at testing disinfectant ability to preventing TB spread through disinfection of sources of 

contamination and chemical sterilization of exposed heat sensitive medical devices 

(Roup & Kelley, 2005). When considering disinfection and chemical sterilization, it 

should always be borne in mind that Mycobacteria are considerably more resistant to 

chemical inactivation. This is because Mycobacteria cell wall is made up of mycolic 

acids and other complex lipids which limit the uptake of biocides into the cell. 

Consequently, disinfectant concentrations necessary for antitubercular action must be 

separately established (Griffiths, Babb, & Fraise, 1998; Hernández, Martró, Matas, 

Jiménez, & Ausina, 2005). 
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2.1.1 Laboratory colour differentiation of Mycobacteria 

There are currently three staining methods for the positive identification of Mycobacteria 

in common use: 1) the Ziehl-Neelsen (ZN), 2) the kinyoun, and 3) the fluorochrome 

(Truant) methods (Bollela, Sato, & Fonseca, 1999). The ZN test was used to verify the 

Mycobacteria identity of bacteria employed in this study. The wax wall of Mycobacteria 

does not allow penetration and therefore staining by aqueous based solutions such as 

gram‟s solution. As for ZN stain, the basic fuschin component contains a stain called 

carbofuschin, which by virtue of its lipophilicity can be taken up by the wax wall.  

Heating also helps in the uptake of this stain into the wax wall. Carbofuschin once taken 

up resists decolorization with a dilute acid rinse (Hussey & Zayaitz, 2010). 

2.1.2 Official methods of testing disinfectant activity against TB (conventional plate 

counting methods) 

The official method of testing disinfectant activity against TB in North America is the 

Tuberculocidal Activity Test Method (TATM) (Robison et al., 1996). The European 

official tests are En 14348 (suspension test) and its modified version En 14563 (carrier 

test). All are quantitative assays (Dauendorffer et al., 1999). EN 14563 was designed for 

evaluation of the mycobactericidal activity of chemical disinfectants for medical 

instruments under more practical conditions while the former is more general but mainly 

for floors and surfaces (CEN, 2008; Steinhauer et al., 2010). Official methods generally 

have the following disadvantages: they are laborious, expensive, and slow for clinical 

use; they frequently fail due to either contamination or medium dehydration; and they are 

time-consuming requiring at least 4 weeks to detecting the M. tuberculosis. Furthermore, 

colony counting underestimates the number of bacteria because of the formation of 
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aggregates and sonification bears the risk of either incomplete resolution of aggregates or 

of rupturing of the cells (Cousins, Wilton, Francis, & Gow, 1992; Lewin et al., 2003). In 

this study, the spectrophotometric method which was employed is a modification of test 

EN14348. 

2.1.2.1 Summary of EN 14348 test methods 

The EN 14348 test method involves mixing 1 ml of the test bacteria with 1 ml of soil 

(0.03% or 3% albumin for clean and dirty conditions respectively) and then adding 8 ml 

of test disinfectant. After the required contact time, 1 ml is removed to 9 ml of recovery 

broth (8ml neutralizer and 1ml diluent), which is then plated to detect surviving test 

bacteria (Hospital Infection Research Laboratory, 2007). 

2.1.3 Non official methods 

Most companies chose to determine the efficacy of their disinfectants using non official 

methods. Some reasons for this are: the implementation of these alternative methods is 

simple, results are obtained in a short time (about a week), and the procedures enables the 

reduction of the cost of such studies, relative to that of official methods (Dauendorffer et 

al., 1999). Some of the documented non official methods of evaluating disinfectant 

activity against TB are: 1) the radio labeling (BATEC) method, 2) MGIT BACTEC non 

radiometric methods, 3) measurement of total protein content method, 4) ATP assay 

method, 5) quantification of the DNA content, and 6) the spectrophotometric  which is 

also known as the turbidimetric or optical density (OD) method (Lambrecht, Carriere, & 

Collins, 1988; Lewin et al., 2003; Meyers, et al., 1998).  
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2.1.3.1 The turbidimetric/spectrophotometric/optical density (OD) method 

The spectrophotometric method of evaluation of antimycobacterial activity of 

disinfectants is based on the Bear-Lambert law. According to this law, if a beam of 

monochromatic radiation of radiant power P0, is directed at a sample solution of 

mycobacteria concentration c, absorption takes place and the beam of radiation leaving 

the sample has radiant power P. The absorbance, A, is proportional to the concentration 

c. The Beer-Lambert law is mathematically given below: 

A= log10P0/ P = εbc 

Where 

A = absorbance  

ε = the molar absorptivity (L mol
-1

 cm
-1

)
 

b = the path length of the cuvette in which the sample is contained express centimeters. 

c = the concentration of the compound in solution, expressed in mol L
-1

 

Plotting absorbance against concentration, gives a straight line that passes through the 

origin (0, 0). In this manner a calibration curve could be prepared that could be useful in 

predicting unknown concentrations of Mycobacteria samples (O'Haver, T., 2010). The 

Beer-Lambert law has been used to estimate bacteria concentrations for a long time 

(Domínguez, de la Rosa, & Borobio, 2001; Lambrecht, et al., 1988).  

2.1.4 Surrogates 

The best organism for evaluation of disinfectant activity against TB would be MTB 

because of its clinical relevance. However, use of MTB in such a role is unacceptable due 
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to its high pathogenicity. This necessitates use of surrogates from whom accurate 

predictions about disinfectant activity on TB can be made (Griffiths et al., 1998). 

Commonly used surrogates include: M. bovis BCG, M. smegmatis, and M. terrae. M. 

bovis BCG genome is 99.9% similar to that of MTB, the difference being that the BCG 

genome contains several well defined deletions. The two also share physiological 

molecular and metabolic similarities: they have a similar growth profile; they have a 

similar ability to persist in the body after an infection; they share a similar resistance 

profile to chemical disinfection (Beste, Peters, Hooper, Avignone-Rossa, Bushell, & 

McFadden, 2005). M. bovis BCG is considered to be an ideal surrogate because of these 

reasons and is safer to handle (Griffiths et al., 1998). M. bovis BCG is the surrogate 

organism for the TATM (American official) method (Robison et al., 1996). It was chosen 

for testing disinfectant activity against TB in this study.  

2.1.5 McFarland nephelometer standards 

The McFarland nephelometer is a tool used to enumerate bacteria in solution 

(Domínguez, de la Rosa, &Borobio, 2001). It consists of McFarland standard solutions, 

which can easily be prepared by mixing 1 % solution of anhydrous BaCl2 with 1 % 

H2SO4 solution in proportions that give standards labeled as 0.5-10. The standard 

solutions are stable for about 6 months from the date of preparation if stored in tightly 

sealed containers at 20-25 
o
C and in the dark. Each McFarland standard represents a 

specific concentration of BaCl2 that can be used spectrophotometrically to standardize 

inoculums. (Bollela et al., 1999; PML microbiologicals, 2001). To avoid the hustle of 

preparing McFarland standards each time a procedure is to be performed, the McFarland 

nephelometer scale has been established as shown in table 3.1 (chapter 3). 
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2.1.6 In-vitro growth of MTB 

Though Mycobacteria are obligate aerobes, they have the capacity to adapt to hypoxic 

conditions both in-vivo and in-vitro by growth termination and reversion to a dormant 

form (Shin, Han, Manning, & Collins, 2007; Boon, Li, Qi, & Dick, 2001). M. bovis and 

MTB grow slowly (Lewin et al., 2008) with a generation time of 12 to 18 hours and this is 

influenced by a number of factors including the growth medium. Meyers et al. (1998) 

investigated the growth of mycobacteria in 7H9 broth media, using various growth 

monitoring techniques of which the growth curve from the OD method, taken at 600 nm, 

is given in figure 2.1 below.  

 

 

Figure 2.1: Growth curves of M. tuberculosis H37Rv Tokyo (II) cultures in 

         Middlebrook 7H9 broth (Meyers et al., 1998). 

 

The growth kinetics of mycobacteria population, like that of any bacteria population, can 

be divided into a lag phase, a logarithmic (exponential phase), a stationery phase and a 

senescence phase (Todar, 2008). From estimations based on figure 2.1 above, the lag 
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phase lasts from the time of inoculation to an OD of around 0.1 when the logarithmic 

growth commences. The logarithmic phase, in the OD range 0.1 to around 0.9, takes 

about 10 days. After about the tenth day mycobacteria enter the stationery phase where 

the cells either enter dormancy or begin to die (Meyers et al., 1998). And during the 

senescence phase cell death is predominant. It is normally advisable that subculture 

inoculums be derived from the logarithmic phase.   

2.1.7 Definition of efficacy of disinfectants against TB 

In Europe and the United States, antiseptics/disinfectants are required to decrease the 

number of viable bacilli to 1/10
3
 to 1/10

4
 of the original number of organisms to be 

deemed effective. Testing of instrument disinfectants against mycobacteria should be 

carried out with a contact of 10-20 min at 20°C. The contact time for testing 

environmental surface disinfectants should not be longer than 1 min (Sattar et al., 1995). 

2.2 Stability study of DMP 

Information from the study was used: to predict the shelf life of DMP; to recommend 

storage conditions; and it also helped in the selection of primary packaging materials. 

The information could also be useful for pharmacists in the field to offer advice where 

DMP has been incorrectly stored. 

2.2.1 Analytical methods for measuring chlorine dioxide 

There are several methods of quantifying CD and its degradation by products, chlorite 

and chlorate, including: the amperometric titration method; the spectrophotometric 

method; colorimetric methods; electrochemical methods; and the iodometric titration 
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method (Buser & Hanisch, 1952; Zsolt, 2004) . The latter method was employed in this 

study. 

2.2.2 Iodometric titration method 

In this method, at low pH the analyte oxidizes iodide ion to iodine as described by the 

equations below. The method is not really selective for CD but measures the total 

oxidizing power of the solution i.e. the degradation products of CD, chlorite (ClO2
–
) and 

chlorate (ClO3
–
), which inevitably are always present in all CD solutions in small 

quantities, are also taken in account (Zsolt, 2004). 

 2 ClO2 + 10 I
–
 + 8 H→ 5 I2 + 2 Cl

–
 + 4 H2O   

  ClO2
–
 + 4 I

–
 + 4 H  → 2 I2 + Cl

–
+  2 H2O     

  ClO3
–
 + 6 I

–
 + 6 H → 3 I2 +  Cl

– 
+ 3 H2O   

The iodine formed is titrated with a reducing titrant, commonly sodium thiosulfate 

(Na2S2O3) as shown below (Zsolt, 2004). So in essence this is a back titration method. 

2S2O3
2- 

 + I2  → S4O6
2- 

 + 2I
-  

 

The full method is outlined in chapter 5 below. 

2.2.3 ICH classification of stability tests 

Stability test are classified into: 1) stress tests (forced degradation studies); 2) accelerated 

stability tests, 3) intermediate stability tests, and 4) long term stability tests (WHO, 

2009). According to document Q1A (R2) of the international committee on 

harmonization (ICH), the long term stability test conditions for climatic zones I and II 

areas of the world for drug substance intended for storage in a refrigerator is 5 °C ± 3 °C 
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for a minimum period of 12 months. The frequency of testing are also specified as: 1) 

first year every three months i.e. 0, 3, 6, 9, 12; second year every six months i.e. 12, 18, 

24; and third year and longer annually: 24, 36, 48, 60 (ICH, 2003; WHO, 2009). The 

long term stability study of DMP performed in this study was a modification of this 

guideline and is described in chapter 4. 

2.3 Formulation development 

2.3.1 Dosage form  

One of the important early decisions of the drug development team is to select a suitable 

dosage form. This decision can be made prior to or very early in the formulation 

development process (FD), depending on the level of knowledge of the active 

pharmaceutical ingredient (API) as it relates to the disease profile, and these are the 

primary determinants of dosage form. Secondary determinants include market place 

issues such as competition and provider-patient considerations (Pavliv & cahill, 2007). 

Choice of dosage form should be made with a sense of finality as it is very time 

consuming, costly and often detrimental to change formulation in the midst of ongoing 

clinical trials (Pharmacelsus contract research organisation, 2004). In this project, a foam 

formulation was developed. 

2.3.2 Topical drug delivery from a foam formulation 

Compared to other topical dosage forms, foam may provide unique properties and 

advantages (Tanojo, Huang, & Maibach, 2007). Clinical studies indicated that foams 

often produce faster effects for the treatment of some dermatoses. Most commonly 

reported is the use of foam corticosteroid for the treatment of psoriasis and other scalp 
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dermatoses where foam has proved more efficient drug delivery than ointments and 

creams (Franz, Parsell, Myers, & Hannigan, 2000; Tanojo, Huang, & Maibach, 2007). 

The application of antifungal ketoconazole in foam dosage form is also reported to be 

more efficient than the current treatment with gels (Tanojo, Huang, & Maibach, 2007). 

 

Figure 2.2: Percutaneous flux profile of clobetasol propionate from hydroalcoholic

          foam in comparison to solution, creams and Lotion (Rekacewicz et al., 

          1990) 

 

Patients prefer foam to traditional formulations such as cream and ointments because 

foams are less dense and therefore easier to apply on the skin surface to achieve spread 

uniformity. The quick absorption of the foam with fewer residues is also found to be 

more acceptable because it doesn‟t interact with clothing or other material in contact with 

the applied site. The undesirable greasy feeling of many creams and ointments is less 

reported with foam, although the hydrating effect (especially from emollient foam) is 

comparable (Tanojo, Huang, & Maibach, 2007).  

2.3.2.1 Mechanism of drug delivery from foam formulation 

In vitro studies have proved that foam formulations are capable of a higher rate of API 

delivery in comparison with other dosage forms (Huang, Tanojo, Lenn, Deng, & 

Krochmal, 2005). These findings suggest that foam utilizes a different non-traditional 
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permeation pathway for drug delivery. It has been suggested that components within the 

foam act as penetration enhancers that reversibly alter the barrier properties of the 

stratum corneum thereby delivering the API across the skin via the intracellular route. In 

this way the API bypasses this physical barrier. The traditional topical delivery depends 

on, and takes place via, the hydrated intercellular spaces, which is a much slower process 

(Huang et al., 2005; Tanojo, Huang, & Maibach, 2007). Foam formulations also contain 

a significant amount of water phase, which promote extensive hydration of the 

intercellular spaces, especially if moisturizers are added. This maximizes drug delivery 

through this traditional route as well (Tanojo, Huang, & Maibach, 2007). Finally, the 

reservoir effect also significantly enhances API delivery i.e. during the breaking of the 

foam; the gaseous component evaporates with the liquid. This leaves a higher 

concentration of API on the surface and a concentration gradient comes into effect which 

contributes to delivery of the API. This study is special in that DMP will be releasing 

gaseous CD during application to target site, which could enhance the foaming process 

and at the same time improve drug delivery as the foam traps the gaseous CD drug 

around the site.  

2.3.3 Foam theory 

The physics of foams has many phenomena. Pure single-component liquids cannot be 

foamed. In pure water for example, bubbles rupture when they arrive at the surface. 

Water can only be foamed if it contains a surface-active component, also referred to as 

surfactants (Babcsán, Banhart, & Leitlmeier, 2003). 
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2.3.3.1 Surface active agents (SAA) 

The surface active agents (SAA) are amphiphilic i.e. they are characterized by having 

two distinct regions in their chemical structure: 1) a hydrophilic head and 2) a 

hydrophobic tail. This dual structure is the unique feature of surfactants that is 

responsible for surface activity (Tichagwa, 2006). 

   

Tail    Head 

Figure 2.3:  Structure of a Surface active agent (SAA) 

 

SAA are classified according to the type, or absence, of charge on the hydrophilic moiety 

as cationic, nonionic, anionic and amphoteric or zwitterionic (Stamatis, Xenakis, & 

Kolisis, 1999). The most important technical abilities of SAA and surfactant solutions are 

emulsifying, solubilizing, wetting, dispersing, foaming, defoaming and detergency 

(Centre for the Environment and the Lung - Denmark, 2002). 

A classification of foaming agents employed in this study is summarized in table 2.1  
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Table 2.1: Classification of foaming agents (FAs) studied  

 

SAA class Foaming subclass FA studied commonly found in: 

Non ionic 1. Ethoxylated sorbitan esters - Tween 20 - Food, Skin care 

products, detergents 2. Ethoxylated alcohols - MP9 

- NEO DAL 

Anionic  1. Alkyl sulfates  

 

- SLS 

- ALS  

- Oral care, Hair care, 

Skin care , Medicated  

products  2. Sarcosinates  - SNLSS 

Cationic  - -   

Amphoteric  Betaines - CAPB - Skin care, Hair care, 

Medicated products 

 

2.3.3.2 Surface chemistry and foaming 

Figure 2.4 below depicts a dynamic situation where a foaming agent (FA) is added to an 

aqueous medium in the absence of agitation. Initially the FA preferentially adsorbs at the 

air/water interface called the surface (Kanicky, Montilla, Pandey, & Shah, 2001). This 

lowers the surface tension but most important for a foaming agent, it increases surface 

elasticity. If the liquid was agitated at this point foam would be generated   consisting of 

air spaces surrounded by elastic films. These films are stabilized by a combination of 

Gibbs and Marangoni effects (Babcsán, Banhart, & Leitlmeier, 2003). Further addition of 

FA results in a situation where the surface becomes saturated, and therefore micelles 

begin to form within the liquid bulk. This is the critical micelle concentration (CMC). 

Foam volume increases with FA concentration up to this point but addition of FA beyond 
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this point results in minimal increases in the volume of the generated foam (Amaral, 

Neves, Oliveira, & Bahia, 2008). 

 

Figure 2.4: Schematic representation of surfactant molecules in water above the CMC

  (Kanicky et al., 2001)  

2.3.3.3 Causes of foam instability 

Three different processes contribute to the instability of foams i.e. drainage, coalescence 

and coarsening. Drainage is explained in section 2.3.4.1.3 below. Coalescence is the 

merging of two bubbles as a result of the rupture of the film between the bubbles. Larger 

bubbles appear in the foam and the number of bubbles decreases. Coarsening is 

interbubble gas diffusion, also called Ostwald ripening. As a result of gas diffusion larger 

bubbles grow at the expense of smaller bubbles. Smaller bubbles shrink and may finally 

disappear (Bisperink, Ronteltap, & Prins, 1992; Carey & Stubenrauch, 2009; Weairy, 

2002). 
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2.3.3.4 Structure of Liquid foams 

2.3.3.4.1 Levels of organization 

Liquid foam has four levels of structural organization as depicted graphically below i.e. the 

molecular level (individual FA molecules), the microscopic level (film of liquid and FA 

molecules) and the macroscopic levels (individual bubbles making up the foam): 

 

Figure 2.5: Levels of structural organization of a liquid foam (Durian, 2002). 

2.3.3.4.2 Wet and dry foams 

During its existence, foam loses water through drainage, which is the downward movement 

of the water under the influence of gravity.  This reduces wet foam to dry one, with less 

than 1% of liquid. Wet bubbles are spherical while dry ones are polyhedral with curved 

faces (Bisperink et al., 1992; Weairy, 2002): 

a) Wet foam       b) dry foam  

(Spherical bubbles)           (Hexagonal bubbles) 

    

Figure 2.5: bubble structure of wet and dry foam (Morrison, 2009)
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2.3.4 Preformulation studies 

Early in FD, it is essential that certain fundamental properties of the API and/or proposed 

excipients are determined. Information from these studies enhances rational formulation 

development whereby the aspects learnt, decides many of the subsequent events in FD 

(Patel, 2009). In this study, preformulation took the form of foam evaluation studies, 

buffer characterization by potentiometric titrations, and compatibility studies (WHO, 

2008). 

2.3.4.1 Foam evaluation 

Foamability and foam stability are two very important properties of any aqueous foam 

system (Amaral et al., 2008). In this study, the two properties have been studied with a 

view to optimize foaming, for patient satisfaction. Patients expect rapidly forming, 

lubricious, and dense foam that lasts long enough. In the absence of this the product is 

bound to fail (Klein, 2004). Trix, a commercial detergent, failed in the Australian market, 

despite being a very effective cleaning agent simply because it was a non-foaming 

detergent (Campbell & Campbell, 2008).  

2.3.4.1.1 Evaluation of foamability 

Three standard methods are popularly employed to evaluate foamability: 1) the Ross–

Miles (pouring) method, 2) The Foam Scan (sparging) method, and 3) the mechanical 

agitation method. The last method was employed to evaluate foamability in this study by 

agitation of the foam solution for a fixed period of times at the same rate. The height of 

the generated foam, over the given period of time, could be measured and this allowed 

for foamability determination (Carey & Stubenrauch, 2009).  
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2.3.4.1.2 Evaluation of Foam Stability 

Foam stability is most commonly evaluated by measuring the change in foam volume 

with time. This method was employed in this study and foam stability was expressed as 

foam height at half-life t1/2 (Wilde & Clark, 1996). Measuring the volume of liquid that 

drains from the foam could also be related to foam stability and was also studied (Amaral 

et al., 2008; Ross, 1943) and the volume of liquid drained at foam t1/2 was determined 

(Wilde & Clark, 1996). The time taken for a bubble to break was yet another 

characteristic studied as a measure of foam stability. Though it is a well-known and 

demonstrable fact that several bubbles together are more stable than each separately, 

experimental results demonstrate a correlation in the stability results between the single 

bubble observations and some foam-measuring methods for systems (Ross, 1943). 

2.3.4.1.3 The role of foam stabilizers  

Foam stability could be achieved by employing foam stabilizers which could be: a) 

wetting particles present in Plateau borders which slow down foam drainage; b) partial 

wetting particles which form layers on the surface of the liquid films and therefore can be 

considered as surfactants; c) colloidal particles in the liquid films which forms long-

range non-DLVO (Derjaguin, Landau, Verwey, and Overbeek, a theory that explains the 

stability of colloids as being dependent mainly on the balance between attractive and 

repulsive forces) surface force called structural force e.g. surfactant micelles, 

macromolecules or solid particles. The mechanism of foam stabilizers is not fully 

understood yet (Amaral et al., 2008; Carey &Stubenrauch, 2009). In this research 

cetostearyl alcohol (CSA) was employed as a foam stabilizer (Cosmetics info.org, 2009). 
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CSA probably achieves foam stabilization as solid macromolecular particles as well as 

by micelle formation. 

2.3.4.2 Potentiometric acid-base titration 

A buffer for an envisaged formulation could be characterized by potentiometric acid-base 

titration whereby the pH changes are monitored using the pH meter. The pH meter uses 

an electrode whose potential depends on the concentration of H
+
 ions in solution. During 

titration of a strong acid versus a strong base, the change in pH is initially small until the 

end point, where a sharp change is encountered. A major advantage of the potentiometric 

titration is that it is not necessary to add the titrant drop wise to obtain the equivalence 

point as in conventional indicator based titrations. The main requirement here is 

appropriate increments of added titrant which can lead to a good graph and analysis of 

results (GA/7 Potentiometric titration, 1999).  

2.3.4.2.1 Buffers 

Buffers contain two functional species in solution: 1) an acidic one, which can react with 

any added base, and 2) a basic one, which can react with any added acid. The two species 

are in molar equilibrium and are referred to as conjugate acid-base pairs (Thomson, 

2006). An illustration of such a pair and reactions with externally added acid or base is 

given below:  

 

          OH- 

HA     A
-
    

 (2) 

  Acid             H+                     conjugate base 
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The assumption here is that the concentration of buffer salts exceeds that of the acid or 

base being introduced to the solution. 

2.3.4.2.2 Buffer Capacity 

This is a measure of ability of a buffer system to resist pH change and is indicated by the 

buffer index (β) (Powers et al., 2005):  

β = ΔB/ΔpH 

Where: B = strong base/acid (in moles); Δ = change (delta) 

Buffers with a large buffer index possess a greater buffering capacity. This means that a 

smaller pH change is experienced from the addition of a given amount of strong acid or 

base. Buffer capacity depends on the total concentration of the buffer system and on the 

HA/A- ratio (Powers et al., 2005; Thompson, 2004). 

2.3.4.2.3 Determination of the end point 

The end point of an acid base potentiometric titration could be determined in four ways:  

1) Using the sigmoid curve to estimate the central part of the rise.   

2) Using the first derivative plot. This is the slope of the titration curve, and can be 

obtained simply from equation 1 below. Each first derivative point is plotted 

against V' where V' is the incremental value of the added titrant. The endpoint 

occurs at the volume, V', where dpH/dV has the maximum value. 

pH2 - pH1 = dpH        

V1 -V2 = dV' 

dpH/dV' = 1
st
 derivative plot      Equation 1 
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3) Using the second derivative plot which is the rate of change of the slope of the 

titration curve, and is shown in equation 2.  

(dpH2/d V')2 - (dpH1/d V')1 = d 
2
 pH  

(dV2 + dV1)/2 = dV
2
        

d
2
pH/ dV

2
 =  2

nd
 derivative plot     Equation 2 

Each second derivative point is plotted against V" is the increment in titrant volume. 

The end point occurs at the volume, V", where D
2
pH/ dV

2
 is zero (GA/7 

Potentiometric titration, 1999; Christian, 1977).  

4) Using the Glan‟s plot method which was not employed in this study (Rossotti, & 

Rossotti, 1965). 

2.3.4.2.4 Significance of a buffer 

The basic function of the buffer in this study was to protect the pharmaceutical 

preparation from unsolicited fluctuations in pH when limited concentrations of acid or 

base are added (Thompson, 2004). This in turn was meant to reduce tissue irritation. 

Buffering was also employed to enhance stability of DMP which is pH dependent. Other 

common uses of buffers are to enhance solubility and absorption (DiFeo, 2003; Rossotti 

& Rossotti, 1965). 

2.3.4.2.5 Choosing the correct pharmaceutical buffer 

The following are some considerations which could be helpful in choosing the most 

appropriate pharmaceutical buffer: Choose a weak acid with pH >> pKa; Use buffer 

equation to calculate ratio of acid/base needed to give required pH; choose concentration 

needed to give suitable buffer capacity; choose available ingredients considering sterility, 
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stability, cost, toxicity; use pH meter or, at least, pH indicator paper (Thompson, 2004). 

In this research the phthalic acid/potassium hydrogen phthalate (KHP) buffer system was 

used because of its ideal buffering range of pH 2.2 to 6 (Analchem Resources, 2001).  

2.3.4.3 Excipient selection 

In this study sodium lauryl sulfate (SLS) was used as the primary foaming agent while 

cocoamidopropyl betaine (CAPB) was employed as the secondary foaming agent. Gohel, 

M. et al. (2007) stated that the concentration of foaming agents particularly in suspension 

formulations need to be 0.5 % or less as higher concentrations promote instability. In a 

vaginal formulation, the concern with SAA is the risk of irritation. Both SLS and CAPB 

are regarded as safe and are listed in Garg‟s compendium of vaginal excipients. Both 

SLS and CAPB are bitter tasting as is the case with most SAA. Glycerol was the 

humectant of choice in this formulation because it is readily compatible with many 

substances and is easy to handle (The Soap and Detergent Association, 1990). The 

concentration of glycerol in formulations is ideally in the range of 0-10 % w/w (Gohel, 

M. et al. 2007). Hydrotropes act as solubilizing agents in a formulation and without them 

it could be impossible to incorporate sufficient quantities of other ingredients. 

Recommended hydrotrope concentration in a formulation is 3-5 % (Tiger chemical 

company, 1997). Sodium xylene sulfonate was employed as the hydrotrope in this 

formulation. The MRF needed sweeteners and flavorants particularly to mask the bitters 

which abounded in this formulation as alluded to earlier. Bulk sweeteners such as 

common sugar are ideally recommended to be 15-70 % w/w in concentration, while 

artificial sweeteners could be the range 0-5 g/100 ml. Masking could be a complex 

undertaking requiring introduction of competing stimuli of specific sweetness and flavor 

profiles and/or blocking bitter stimuli. Improved masking can be achieved by a 
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combination of monoammonium glycirrhyzinate, which has an initial burst of sweetness 

that dissipates rapidly with sodium saccharine, whose sweetness profile is slow in onset 

but long lasting (Stier, 2004). Finally, it is common knowledge that most excipients 

perform multiple roles in a formulation. In this case in addition to the above mentioned 

main roles, SLS is believed to have some biocidal properties; CAPB was also acting as a 

thickener and as a foam booster (Cui, 2011) and glycerin acted as a thickener, sweetener, 

lubricant, solvent, emollient, demulcent, etc. (The Soap and Detergent Association, 

1990).  

2.3.4.4 Excipient compatibility testing 

These are empirical tests designed to study the effects of excipients on pharmaceutical 

stability with the ultimate aim of excipient selection for the formulation.  Compatibility 

monitoring in this study was mainly by physical inspection (Monkhouse & Maderich, 

1989), but also by iodometric titrimetry to determine changes in concentration of CD that 

arose due to incompatibilities.  

2.3.5 Formulation  

This stage of formulation development consists of: 1) process and product design, which 

is essentially the initial planning aspect; 2) manufacturing process development; 3) 

optimization of excipient quantities in the formulation; and 4) and selection of the lead 

formulation (Yu, 2008). In practice, the approaches to formulation takes many and 

diverse paths and could be the least regulated in the drug development process i.e. the 

attitude of regulators is such that whatever works is acceptable so long as it can be 

scientifically rationalized (DiFeo, 2003).  

 

 

 

 

 



38 

 

2.3.5.1 The vaginal douche (VGD) 

Desirable qualities for a vaginal formulation include: easy to use, discrete, cost effective, 

safe for continuous application, allow self-administration, etc. These could be achieved 

through judicious formulation taking into account the biology of the vagina (Das Neves 

& Bahia, 2006) and especially pH considerations. The pH of the normal vagina ranges 

3.5-4.5 (Boskey, Cone, Whaley, & Moench, 2001). The pH of the douche needs to be 

around the stated vaginal pH range. Failure to this, vagina irritation or even outright acid 

burns could result. 

2.3.5.2 Mouth rinse formulation (MRF) 

Mouth rinse antiseptics control dental diseases by destroying and preventing biofilm 

formation. CD mouth rinse formulation (MRF) could be especially ideal for this purpose 

due to its powerful antimicrobial properties as discussed above. CD is known to control 

halitosis through a dual mechanism i.e. indirectly by killing the microorganisms 

responsible for halitosis and directly by oxidizing VSCs and their precursors to non-

malodorous products. The later mechanism is rare among antiseptics and suggests that 

CD mouth rinses have a superior anti halitosis effect, which indeed has been proven in a 

number of studies (Shinada et al., 2010). The mouth‟s natural pH ranges from 6.2 – 7.0. 

Fortunately, the mouth is capable of tolerating acidic preparations due to the presence of 

effective natural buffer systems. The mouth pH can drop below 2.3 upon consuming 

acidic items. Saliva contains bicarbonate ions which mainly act to neutralize the acids. 

Saliva also contains phosphate ions and proteins that act as buffering agents to maintain 

oral pH (Kivela, Parkkila, Parkkila, Leinonen, & Rajaniemi, 1999). The pH of the 

formulated mouth rinse was designed to be around 4.0. This should be safe to take. The 
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pH of lemon is far lower than this and Listerine
®

 mouth wash has a pH of 4.3 (Almeida, 

Poskus, Guimarães, & Silva, 2010; Emmerling, 2007).  

2.3.5.3 Foot bubble/sit bath 

CD is considered to be ideal for treating skin condition because it has superior 

antimicrobial properties, low toxicity, and is non-irritant when compared to similar 

commonly used skin antiseptics such as hypochlorite. In addition to this, CD does not 

form appreciable chlorinated hydrocarbons, which are carcinogenic. Currently, CD is 

commonly used in low concentration as an antiseptic for skin disinfection e.g. mastitis 

control (Alliger, 2001). The skin has a protective acid layer called the acid mantle. The 

pH of the human adult skin ranges from 4.1-5.8 with an average of about 4.8 (CP Kelco, 

Inc. 2008), but this tends to be higher in children (Boelsma et al., 2003). The skin also 

possesses potent buffering and neutralizing agents which are responsible for maintaining 

the normal pH range and is known to withstand exposure to low pH values without ill 

effects (Farage, 2010). Therefore the FB/SBB envisaged to be at around pH 4.8 should 

be safe. The target pH for the F/SBB was pH 4.8.    
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CHAPTER 3 

IN-VITRO EVALUATION OF THE EFFECTIVENESS OF 

DMP FOR USE AS CHEMICAL DISINFECTANT (COLD 

STERILANT) AGAINST MYCOBACTERIA TUBERCULOSIS 

(TB) 

3.1 Materials and methods   

3.1.1 Equipment  

Centrifuge - BeckmanJ2-21 high speed floor model - (Beckman RIIC LTD, Great 

Britain). 

Autoclave – (capacity 0.132 m
3 
Albert Moore (PTY) LTD, 1981 model, Cape Town, SA). 

Biosafety lamina flow cabinet – (Laminaire, New Jersey, USA). 

Incubator, Memmert 854 model, (Memmert GmbH, schwabach, West Germany). 

Vortex-Genie 2, model G-560E, (Scientific Industries, Inc. N.Y. USA). 

Spectrophotometer, Beckman DU
® 

640 model – (Pegasus scientific INC. Rockville, 

USA). 

Fridge, model C370– (Defy, capacity 360 L, Defy SA)  

Battery powered pipette controllers – (Integra Biosciences, SA) 

Rubber bulb pipette fillers -  

Micropipettes - (model M1000, Gilson, INC. France). 

Micropipette fin tips 100 – 1000 ul, - (Merk (Pty) LTD. SA). 

Sterile tissue culture flasks (25 cm
2
) – (SPL life sciences, SA). 

Appropriate glassware 
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3.1.2 Materials 

DMP (Rausa-Kem, Parow Valley, Cape Town, and SA) 

Absolute ethanol (Saarchem, South Africa) 

Polysorbate (Tween) 80 (Dynachem ltd. SA) 

Middlebrook agar 7H11 (BD biosciences, SA) 

Middlebrook 7H9 (BD biosciences, SA) 

Oleic acid albumin dextrose catalase (AODC) enrichment (BD biosciences, SA) 

Basic fuschin (Merk, KGaA, Darmstadt, Germany)  

Phenol (ELS (PTY) limited, SA). 

Concentrated Hydrochloric acid (SP Scientific, South Africa) 

Methylene blue (laboratory stock) 

Immersion oil (laboratory stock) 

3.1.3 The spectrophotometric method 

The spectrophotometric method, a modification of the European quantitative suspension 

test EN 14348, summarized in section 2.1.2.1 of the literature review was employed to 

evaluate anti-tuberculoid activity of DMP. The main modifications to the EN 14348 

method relate to the use of M. bovis BCG as surrogate in place of M. terrae, the use of 

7H9 broth as culture media in place of agar based culture media, dilutional neutralization 

with sterile distilled water in place of the Tween 80/SLS/lecithin cocktail and most 

important, use of spectrophotometric CFU enumeration of mycobacteria technique in 

place of plate counts.  

All tests were carried out in triplicate (n=3) 
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3.1.3.1 Test organism 

Mycobacterium bovis BCG was employed as surrogate for Mycobacterium tuberculosis 

for reasons given in the literature review. The BCG was obtained from the DST/NRF 

Centre of Excellence in Biomedical Tuberculosis Research, at the Department of 

Biomedical Sciences, Faculty of Health Sciences and Stellenbosch University at 

Tygerberg Hospital.  

3.1.3.2 Culture media 

Middlebrook agar 7H11 was used to stock Mycobacteria for storage purposes at – 80 
o
C 

while middlebrook 7H9 broth was employed to culture the Mycobacteria and for sub 

culturing purposes. Both were enriched with AODC (Flournoy & Twilley, 2001).  

3.1.3.3 Ziehl-Neelsen (ZN) stain 

Acid fastness of the M. bovis BCG was confirmed by (ZN) staining performed as 

follows: 

3.1.3.3.1 Preparation of carbol – fuschin        

0.3 g basic fuchsin was first dissolved in Ethanol, 95 % (v/v), 10 ml.  The phenol crystals 

were heated to 45 °C to melt, then transferred to 5 ml water and dissolved.  The basic 

fuchsin solution was then mixed with the phenol solution followed by addition of 95 ml 

of distilled water.  The reagent was filtered prior to use as recommended to attain best 

results (Hussey & Zayaitz, 2010).  
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3.1.3.3.2 Decolorizing solvent 

The decolorizing solution was prepared by mixing ethanol, 95 % (v/v), 97 ml with 

hydrochloric acid (concentrated), 3 ml (Hussey & Zayaitz, 2010). 

3.1.3.3.3 ZN staining procedure 

The smeared mycobacteria material was fixed by placing the slides on an electric hot-

plate prior to staining (65 - 75 
o
C). This procedure was performed in the protective 

cabinet until the smeared material was dried and fixed. The slide was then flooded with 

carbofuschin followed by gentle heating until steaming. It was then incubated for 3 – 5 

minutes and then rinsed with water followed by decolorization with 3 % v/v acid alcohol 

solution for 2 – 3 minutes. Again rinsing with water followed by replacing with fresh 

acid alcohol for 3 – 4 minutes until the slide retained a pink color. Again at this stage it 

was rinsed with water and this was followed by counter staining with 1 % w/v methylene 

blue. Finally, the slide was once more rinsed with water followed by drying. Once dry, 

immersion oil was applied and the slide was examined under a light microscope. Acid 

fast mycobacteria stained red (Health protection agency, 2007). 

3.1.3.4 Disinfectant 

The DMP was stored in the fridge (2 – 8 
o
C) and working dilutions were always freshly 

prepared for the tests. Activity was evaluated at concentrations of 2600, 1300, 650, 325, 

162, 28.9, 20.2, 14.4, 11.5, 8.7, 5.7, and 3 ppm.  

3.1.3.5 The pH of disinfectant 

The fact that acidic DMP (pH = 0.5) was diluted with water to achieve desired 

concentrations followed by mixing of a small amount of this DMP with test solution 
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(neutral pH of water) implies that the resultant pH of the test solution was higher than 

that of normal DMP. The actual value was not determined. 

3.1.3.6 Preparation of sterile distilled water 

De-ionized water was autoclaved at 121 
o
C for 15 minutes in 1or 2 litre SCHOTT bottles 

to achieve sterility. 

3.1.3.7 Glassware sterilization  

Flasks and pipettes were plugged with cotton wool stoppers and/or simply wrapped in 

aluminum foil and sterilized by autoclaving. Pipette tips and cleaned 50 ml plastic test 

tubes were also sterilized by autoclaving. Cuvetts and their lids were sterilized by 

immersion in 70 % ethanol. 70 % ethanol was also used to sterilize any others material 

that needed to enter the biosafety chamber where the aseptic experiments were in 

progress. 

3.1.3.8 Contact time 

Mycobacteria were exposed to the disinfectant for 30 seconds, 1 min, 5 min, 10 min, and 

20 min. 

3.1.3.9 Controls 

3.1.3.9.1 Positive control 

Mycobacteria were exposed to sterile distilled water in place of the antiseptic at stage 2 

in the schematic flow chart of the test procedure below (figure 3.1). 
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3.1.3.9.2 Negative control 

The growth medium (7H9 middlebrook broth) was not inoculated with mycobacteria 

solution but sterile distilled water was used in place of mycobacteria solution at stage 8 

of the same figure 3.1 schematic flow chart. 

3.1.3.10 Experimental temperatures 

All experiments were carried out at room temperature i.e. around 15 – 28 
o
C. 

3.1.3.11 Preparation of the 7H9 broth culture media 

Middlebrook 7H9 (4.7 g) culture media powder was suspended in 900ml of deionized 

water containing 0.5 g of polysorbate 80 in 1000 ml specimen bottle. This was then 

autoclaved at 121 
o
C for 15 min. 100 ml of AODC enrichment was added aseptically 

when the autoclaved material cooled to 45 
o
C. 

3.1.3.12 Preparation of mycobacterium suspensions 

Stock agar cultures were stored at −80 °C. Before testing, it was thawed and sub cultured 

by inoculating into 20 ml of 7H9 middlebrook growth medium (OADC enriched). It was 

then incubated for 7 days at 37 °C.  

The broths were further sub-cultured every other week, by inoculating 0.2 ml of 

Mycobacterium solution in logarithmic phase of growth, into 19.8 ml 7H9 middlebrook 

broth in 25 cm
2
 tissue culture flask(s) followed by incubation at 37 

o
C again for 10 days. 

In all such procedures aseptic techniques were strictly followed.  
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3.1.3.13 wavelength of OD readings 

All OD readings were performed at a wavelength of 600 nm. 

3.1.3.14 Tests procedure 

The actual disinfectant activity test against Mycobacteria was performed on the 10
th

 day 

of incubation. The subcultures in the 25 cm
3
 tissue culture flasks that were ear marked 

for the days experiment would be adjusted to the absorbance of reading to 0.4620 which 

gives a concentration of 6.25 x 10
8
 CFU/ml. To achieve this, the O.D of the stock culture 

solution would be measured and appropriately aseptically adjusted either with more sub-

culture titre or with sterile distilled water, until the O.D reading came to the desired 

0.4620. Once the desired O.D reading was achieved, 1 ml of mycobacteria test 

suspension was added to 9 ml of disinfectant solutions, previously diluted to the desired 

concentration. After the exposure time, 0.2 ml of the solution was removed and subjected 

to dilution neutralization by adding it to 35 ml of sterile distilled water. The resulting 

suspension was then centrifuged at 3,000 rpm for 20 minutes. The supernatant was 

decanted and the remaining bacteria re-suspended in 2 ml sterile distilled water. 0.2 ml of 

the suspension was drawn and added to 9.8 ml sterile distilled water of which finally, 0.2 

ml of this was inoculated to 19.8 ml 7H9 middle brook broth growth medium in a 25 cm
2
 

tissue culture flask. This was cultured for 10 days at 37 
o
C.  

O.D. readings were performed on the 10
th

 day of incubation. The whole procedure was 

done in triplicate as shown in table A1 and A2 in the appendix. Averages were employed 

in the calculations that followed. 
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Figure 3.1: Schematic illustration of the TB test procedure 
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3.2 Results and discussion 

Table A1 and table A2 in the appendix section illustrates the Mycobactericidal activity of 

DMP, results of the experiments done as explained in the preceding pages. 

3.2.1 Problems encountered in culturing mycobacteria  

Initially disinfectant activity tests at step 8 in the schematic diagram above and the 

subsequent culturing (step 9), were done in 10 ml sterile plastic test tubes. 4.8 ml of 7H9 

broth was inoculated with 0.2 ml of Mycobacteria, followed by exposure to the 

disinfectant and processed as explained in section 3.1.3.14. It was consequently found 

that containers like 10 ml test tubes inhibited the growth of the BCG due to a lack of 

oxygen. The 5 ml column head contributed to suffocation especially since the 

mycobacteria settled at the bottom and thus diffusion of gases could have been 

inadequate. This was overcome by switching to 25 cm
2
 tissue culture flasks. 

Mycobacteria are obligate aerobes as explained in the literature review. The 25 cm
2
 

tissue flask container closures have aeration holes which are sealed with a filter paper 

lining beneath. This allows for assurance of aseptic integrity, at the same time allowing 

for aeration. The flat 25 cm
2
 base ensures an overhead column of about 1 ml, allowing 

for diffusion of oxygen. Daily agitation also assisted uniform distribution of oxygen.  

3.2.2 Explanation of some formulas employed 

3.2.2.1 Calculation of bacteria numbers as they varied due to dilution dynamics:  

With reference to the schematic drawing of the methodology above (figure 3.1), an 

equation was developed, as shown below, to relate number of bacteria that survived 

exposure to disinfectant (test tube 2) if number of bacteria inoculated in the tissue culture 
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flask (N0) in  step 8 above was known, and vice versa. The formula was derived based on 

the dilution factors involved.  

P = 25,000N0 

Where: 

P = number of bacteria that survive exposure to disinfectant (step 2 of the schematic 

diagram) 

N0 = number of bacteria inoculated in the 25 cm
2
 tissue culture flask (step 8)  

3.2.2.2 Calculation of bacteria numbers at start and end of culturing period 

The population growth of Mycobacteria during day 1 to day 10 of culturing, after the 

experiment i.e. after step 9 of figure 3.1, was logarithmic (Meyers et al., 1998) and is 

approximated by the equation below (Domínguez et al., 2001; Lambrecht et al., 1988):    

Nt = N0e
λt 

          (2) 

Where N0 and Nt are the counts at times zero and t respectively. λ has been used for the 

specific growth rate. Nt was determined by OD readings on the 10
th

 day of incubation. 

Since the mycobacteria population grows by binary fission (Todar, 2008), equation 2, 

becomes: 

Nt =  N02
n            

(3) 

And         

n = T/G          (4) 

Where: 
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n = number of generations 

T = duration of the incubation  

G = generation time of BCG = 12 – 18 hours  

7H9 middlebrook broth is specifically meant for rapid growth of mycobacteria and 

generation time was taken to be 12 hours (Flournoy & Twilley, 2001). 

3.2.3 McFarland standards calibration curve 

Table 3.1 shows the McFarland Nephelometer standards from literature sources which 

were used to make a standard calibration curve from plots of O.D. against bacteria 

concentrations (figure 3.1). O.D. readings, at the end of the incubation period, could 

easily be converted to concentration of bacteria, or vice versa, using the calibration curve 

either graphically or from the equation of the calibration curve as calculated below: 

Table 3.1: McFarland Nephelometer scale (MacFarland, 1907). 

 

McFarland Standard No. 0.5 1 2 3 4 

1.0% Barium chloride (ml) 0.05 0.1 0.2 0.3 0.4 

1.0% Sulphuric acid (ml) 9.95 9.9 9.8 9.7 9.6 

Approx. cell density (1X10^8 CFU/ml) 1.5 3.0 6.0 9.0 12.0 

 % Transmittance* 74.3 55.6 35.6 26.4 21.5 

Absorbance* 0.132 0.257 0.451 0.582 0.669 

*at wavelength of 600 nm 

The McFarland Nephelometer scale shown above is fully explained in the literature 

review. It is a universally acceptable tool for quantify bacteria in suspensions (Wei, 

Shepherd, Browne, Clark, O‟Leary, 2007).  
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3.2.3.1 Calculation of the equation of the calibration curve 

Since the curve has one minimum or maximum, its equation must be a 2 degree i.e. 

General equation is: 

→ F(x) = y = ax
2
 + bx + c  

→ Since intercept = 0, c = 0 

→ Equation becomes: f(x) = Y = ax
2 
+ bx 

→ To calculate a and b, we choose any 2 points on the curve e.g. (3.0x10
8
,0.257) and 

(6.0x10
8
, 0.451) and make two equations by substitution: 

i) 0.257 = a(3
 
)
2 
+ b(3

 
) 
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ii) 0.451 = a(6)
 2 

+ b(6) 

→ From equation  (ii):  

→ b = [0.451 – a(36)]/6
 
 

→ b = 0.0752
 
– 

 
a(6) 

→ Substitute b in equation (i), for example, and calculate a. 

→ 0.257 = a(3)
2 
+ 3[0.0752 – 6(a)] 

→ 0.257 = a(9) + 0.2256 – 18(a) 

→ – 9(a) = 0.0315 

→ a = – 0.00346  

 b = 0.0752
 
– 6

 
(-0.0035) 

b = 0.0962
 

Therefore, the equation of the calibration curve is: 

F(x) = y = – 0.00346x
2 
+ 0.0962x 

This equation could be used to calculate mycobacteria concentration if O.D. was known, 

and vice versa, as an alternative to graphical determination. It should be remembered that 

the x value after such a calculation need to be multiplied by 10
8
. 

3.2.3.2 Quantitative evaluation of the bactericidal activity of DMP 

The important data to evaluate MIC and MBC was the DMP concentrations where 

growth of BCG was observed (refer to table A2 in the appendix). The O.D. against DMP 
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concentrations (where growth was observed) were plotted and bactericidal activity 

determined as below. 
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3.2.3.2.1 Determination of the MIC90  

→ O.D. reading of stock solution was adjusted to 0.4620 

→ From calibration curve 0.4620 = 6.25x10
8
 CFU/ml 

→ At MIC90 , number of bacteria killed = 90/100 x 6.25x10
8 

=5.62x10
8 

(i.e. 1 ml 

added to DMP) 

→ Number of bacteria that survive exposure = P = 6.25x10
8
 – 5.62x10

8 
= 6.25X10

7
 

CFU 
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→ Number of bacteria inoculated in the tissue culture flask = N0 = P/25,000 = 2500 

CFU 

→ n = T/G = 10 days/12 hours = 240 hours/12 hours = 20 generations 

→ N = N0x2
n 
= 2500 CFU x 2

20 
= 2.62x10

8 
CFU/20ml = 1.31 x10

8
 CFU/ml 

→ On the calibration curve, 1.31x10
8 
CFU/ml gives an O.D. reading of 0.115 

→ This O.D. is employed in section 3.2.3.2.2 below to calculate the MIC90 i.e.  

→ MIC90 = 12.5 ppm 

3.2.3.2.2 Determination of the minimum bactericidal concentration (MBC) 

The equation of the straight line in figure 3.3 can be derived as follows: 

Y = MX + C 

→ M = Y1 – Y2/X1 – X2 = (O.48053 – 0.213)/(30 – 100) = 0.26753/-70 = – 0.003822 

→ To calculate C, point (100,0.213) is used i.e. C = Y - MX = 0.213- (-

0.003822X100) = 0.5952 

Note: C is actually one of the positive control results  

→ The equation of the straight line: Y = -0.003822X + O.5952 

At Y = 0, X = MBC = -0.5952/-0.003822 = 15.6 ppm 
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3.2.3.2.3 Mycobatericidal activity of DMP at higher exposure times 

Only mycobactericidal activity at 30 seconds exposure time is reported because as can be 

seen from table A10 and A11 in the appendix, DMP is effective at low concentrations at 

30 seconds exposure i.e. MIC90 is 12.5 ppm. This is expected to drop even further at 

higher exposure times. 

3.2.3.2.4 Calculation of the microbiocidal effect (ME) using the Standard suspension 

test (SST) procedure (van Klingeren & Pullen, 1987)  

ME  = log Nc  - log Nd 

Where: 

ME = Microbiocidal effect 

Nc = the number of CFU per ml of the test mixture without disinfectant (+ve 

control) 

Nd  =  the number of CFU per ml of the test mixture after the action of the 

disinfectant. 

From the above results, no mycobacteria CFU survived to DMP exposure above a 

concentration of about 15.6 ppm. Therefore: 

ME = log 5.76 X 10^ 8  - log 0 

ME = 8.76    

i.e. this is an 8.8 log reduction at 1 second exposure time. 

 

 

 

 

 



56 

 

3.2.3.2.5 Calculation of the CT90% of DMP (Taylor et al. 2000). 

CT90% = concentration of CD that kills 90 % of mycobacteria X exposure time 

 = 12.5 ppm x 1s 

CT90 % = 12.5 ppm.s 

The MBC of DMP against M. bovis BCG was found to 15.6 ppm. This means that from 

this DMP concentration upward, DMP eradicates all the mycobacteria exposed to it for at 

least 30 s. This underscores the effectiveness of CD and shows that CD is actually more 

of a sterilant than a mere disinfectant. According to the standard suspension test, DMP 

from the initial concentration of 2900 ppm to 15.6 ppm achieved 8.8 log reduction in 

Mycobacteria concentration. This strengthens the argument that DMP is more of a 

sterilant than a disinfectant. A disinfectant that achieves a 4 log reduction against 

Mycobacteria at 10 to 20 minutes exposure time is regarded as effective by the both the 

European and American official disinfectant test (Griffiths et al., 1998).  Since the MIC90 

% is 12.5 ppm, it means that this concentration will kill 90 % of the mycobacteria 

exposed to it for 30 s. This also implies that at this concentration DMP has to be applied 

multiple times to eradicate Mycobacteria and will achieve complete eradication in about 

3 to 4 application. This holds for any number of organisms. The CT value of 12.5 ppm.s 

is slightly higher than the value other researchers give for other SCD. Taylor et al. 

(2000), report a CT99.9% value of 11± 2 ppm.s for M. avium strain 5002. This is expected 

to be more resistant than M. bovis BCG.  
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CHAPTER 4 

LONG TERM STABILITY STUDY OF DMP 

4.1 Materials and methods 

4.1.1 Design of experiments 

Six bottles containing the same initial concentration (2900 ppm) of DMP were prepared 

of which 3 were transparent (1 liter SCHOTT screw caped bottles) and 3 were amber 

colored (2 liter reagent bottles). Two bottles, one amber colored and one transparent were 

stored under each of the following storage conditions for the duration of the study: at 

room temperature on the shelves in the lab; in the oven (40 
o
C); and in the fridge (2 – 8 

o
C). The bottles were clearly labeled showing the following information: date of 

commencement of the experiment; storage condition of the bottle; initial concentration of 

DMP; and a note stating that the experiment was in progress. The containers were 

secured and stored under tamper proof conditions. 

4.1.2 Equipment  

The following equipment were employed in the course of this study:  

Weighing balance (OHAUS, Model SPU402, OHAUS Corporation, USA).   

Bunsen burner  

Appropriate glassware.  

Water distiller (Analyst HP, Purite Ltd, Oxon, England). 

Electric heater (IKA-WERKE, Germany). 

 

 

 

 



58 

 

4.1.3 Materials 

Materials used were as follow:  

DMP– stabilized aqueous chlorine dioxide solution of approximately 2900 ppm (Rausa-

Kem, Parow Valley, Cape Town, SA) 

Concentrated sulphuric acid (Merck, South Africa).  

Sodium thiosulphate pentahydrate (Riedel-de Haen AG, Germany). 

Sodium hydroxide pellets AR (B & M Scientific, South Africa).  

Concentrated hydrochloric acid (SP Scientific, South Africa).  

Potassium iodide (Merck, South Africa).  

Potassium bromide (B & M Scientific, South Africa). 

4.1.3.1 Chemical reagents 

Only sufficient reagents for a day‟s work were prepared. So most of the directions below 

were only used as guides to prepare just enough and avoid wastage.  

4.1.3.1.1 Sodium thiosulphate 0.1 M solution  

To prepare 1 L (1000 ml) solution; 

Mass = molar mass x Molarity x volume (ml) / 1000 

         = 248.18 x 0.1 x 1000 / 1000 

         = 24.818 g in 1000 ml of solution 
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For the demands of a day‟s titration requirements, 1.241 g of sodium thiosulphate was 

weighed out and dissolved in distilled water and the volume of the solution made up to 

50 ml. 

4.1.3.1.2 Starch 0.5 % solution 

Starch (0.5g) was triturated with 10 ml water to smooth paste. It was then added to 90 ml 

boiling water and stirred until totally dissolved. 

4.1.3.1.3 Caustic soda 30 % (NaOH solution) 

60 g of NaOH was dissolved in distilled water and the volume of the solution made up to 

200 ml. 

4.1.3.1.4  Potassium bromide 10 % (KBr) solution 

25 g KBr was dissolved in distilled water and the volume of the solution made up to 250 

ml.  

4.1.4  Determination of concentration of DMP  

The concentration was determined by the following Iodometric titration procedures 

(Buser & Hanisch, 1952; Kepinski & Trzeszcynski, 1964).   

4.1.4.1 Procedure 1 

5 ml of 10 % potassium bromide (KBr) solution and 25 ml of concentrated hydrochloric 

acid (HCl) solution were placed into a 50 ml Erlenmeyer flask. 20 ml of the chlorine 

dioxide solution (diluted 1 part biocide solution to 9 parts water to make a 1:10 solution) 

under examination was added and the flask closed. The flask was then exposed to light 
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for twenty (20) minutes. 1 g of potassium iodide (KI) was added and the flask placed in 

the dark for five (5) minutes. The solution was transferred into a 500 ml Erlenmeyer flask 

containing 30 ml of 30 % caustic soda (NaOH) solution and 100 ml distilled water. This 

was titrated with sodium thiosulphate (Na2S2O3) 0.1 N, with the addition of 3 ml of 

starch as an indicator (volume of Na2S2O3 used in titration = D1).  

The same procedure was repeated with 20 ml water in place of the biocide sample, as a 

blank test (volume of sodium thiosulphate, Na2S2O3 used in titration = D2). Titre volume 

was the difference between D1 and D2.  

4.1.4.2 Procedure 2 

2 g potassium iodide (KI) was introduced into a 250 ml glass Stoppered flask. 50 ml 

water, 25 ml of 25 % sulphuric acid and 20 ml biocide (diluted 1 part biocide solution in 

9 parts water to make a 1:10 solution) were added and the flask contents left in the dark 

for five minutes. Five drops of starch indicator was added and the solution titrated with 

0.1 N sodium thiosulphate solution. The titre volume was noted.  

Either of procedure 1 or 2 could be used to determine titre volume. At times the two 

procedures were both employed in which case the average titre volume from the two 

results was used. 

Biocide concentration was then calculated using the formula: 

Chlorine dioxide, ClO2 (mg/ml) = (Titration fig) x 0.1 x 13.49 / 20 x 10  
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4.1.5 Frequency of measurement of concentration of DMP during the study period 

The concentrations of DMP during the stability study period were determined on a 

weekly basis as can be seen in table A3 of the appendix. 
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4.2 Results and discussion 

4.2.1 Concentration of DMP at the start of the stability study 

The DMP that was meant to be subjected to stability study was freshly prepared and the 

concentration of the stock solution was determined immediately on arrival: 

Initial concentration of biocide [A]0 = (vol. of Na2S2O3 used x Normality x equiv. wt)/20 

x 10 

 [A]0 = (4.30 x 0.1 x 13.49)/20 x10 = 2900 ppm  

Immediately after determining its concentration, this stock DMP solution was used to fill 

all the six storage containers described in section 4.1.1 above, and this marked the 

commencement of the stability study. 

4.2.2 Changes in concentration of CD with time in the DMP solutions 

The changes in concentration of CD with time in the above DMP solution as determined 

from the weekly Iodometric measurements, over the 53 week time span, are provided in 

table A3 (appendix section) 
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4.2.3 Graphical presentation of stability data 

The table A3 (appendix section) stability study results are presented graphically in figure 

4.1 below as a plot of concentration of CD in DMP, [A] against time (t). 
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Figure 4.1: Stability profile of DMP under different storage conditions
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Key 

Purple and green = room (ambient) conditions; light blue and reddish pink = oven; and 

deep blue and reddish orange = fridge.  

Note:  

Average weather conditions during the study period could be summarized as follows: 

Ambient temperature  =  25
O
C and  

Ambient Relative humidity =  60% RH. 
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The above results show that a plot of the concentration of CD in DMP, [A], at any given 

temperature, against time (t) gives straight lines. The graph indicates that the 

decomposition of DMP follows zero order kinetics i.e. the rate of decay is independent of 

the concentration of CD in DMP. Vaidah et al. (1994) studied the thermal decomposition 

of CD in water by monitoring the time dependant disappearance of the absorption 

spectrum with diminishing CD concentration, at 294, 331, and 346 K. The decay of the 

absorption signal in this study revealed a first order kinetic reaction (Vaidah, Goudjil, 

Simon, & Flanders, 1994). This contrasts the findings of this study. A possible 

explanation of the discrepancy is that here we were working with DMP, which is 

different item from the material used in the Vaida study. DMP contains CD which has 

been stabilized chemically and this makes it different and more practical to be used in 

pharmaceutical formulations. As such, one would expect the stability data profiles to be 

different.  

4.3.4 Application of the zero order equation to DMP degradation reactions  

For the general reaction:  

 

Where 

A = chlorine dioxide 

P = reaction products 

 

The zero order rate law (Keusch, 2003; ScienTek Software I, 2006b) is written as:  
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This means that the rate of the reaction never changes; it's always equal to the value of the rate 

constant.  

Rearranging equation  (1)  gives  

 

which on integration of both sides  

 

 

leads to  

 

 

 

When t  =  0,   the concentration of  A  is  [ A ]o i.e. C = [A]0   

Now the integrated form of zero-order kinetics can be written as follows  

 

Where, 

[A]0  = initial concentration of DMP 

[A]  = Concentration of DMP at any given time t. 

k = Slope 
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4.3.4.1 Expiry dates of DMP stored under different conditions 

To determine the expiry dates of DMP stored under different conditions, firstly the 

lowest effective concentration of DMP/minimum inhibitory concentration must be 

defined: 

- The TB study below (see results section 3.2.3.2.1) suggests that the minimum 

inhibitory concentration of DMP on TB is 12.5 ppm. 

- For microbes other than TB and spores, CD is known to be effective even at 

concentrations lower than 0.1 ppm e.g. in drinking water disinfection (Black and 

Veatch corporation, 2010; US EPA, 1999).  

- In this formulation, DMP was to be diluted before use, by mixing with water and 

concentrate, so that after dilution, the concentration comes to about 5 ppm. 

Taking the foregoing argument into account, 50 ppm was taken to be lowest effective 

concentration of DMP for the formulations of this study i.e. below 50 ppm, DMP was 

considered to be expired. 

Equation 5 above can be rearranged as follows: 

t = ([A]0 - [A])/k      (6) 

This equation can be used to calculate the expiry dates of DMP stored under varied 

storage conditions once the expiry concentration is defined. Taking: 

t50ppm  = time to for DMP degradation to 50 ppm  = shelf life 

[A]0  = initial concentration of DMP i.e. concentration at t0 = 2900 ppm 
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[A]  = concentration of DMP at expiry date  = 50 ppm 

k   = rate constant (units = ppm/week) 

Table 4.1:  shelf lives of DMP under different storage conditions 

  

Storage 

conditions 

Container  [A]0 in ppm [A] in ppm k Shelf life 

(weeks) 

Room 

temperature 

(20-30
o
C)  

[T2] 

Transparent 2900 50 -290 9.8 

Amber  2900 50 -54 52.7 

Oven 

(40
o
C)   [T3] 

Transparent  2900 50 -145 19.7 

Amber 2900 50 -193.3 14.8 

Fridge 

(2-8
o
C)  [T1] 

transparent 2900 50 -42 68 

Amber  2900 50 -40.7 70.1 

 

4.3.5 Effect of temperature on DMP 

The chemical kinetic theory suggests that increasing kinetic energy of molecules 

increases the likehood that a chemical reaction will occur. Raising the temperature of a 

system increases the kinetic energy of its molecules and therefore increases the rates of 

chemical reactions (LAB: Q10 -the effect of temperature on reaction rates, 2000). The 

effect of temperature on stability of DMP could best be studied by paying closer attention 
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to the trend in amber colored containers which were least affected by light i.e. the 

assumption would be that temperature is the predominant factor responsible for 

degradation of DMP in amber colored containers. 

4.3.5.1 Rate constants at different temperatures 

A convenient approximate method to estimate the effect of temperature on reaction rates 

is to consider the ratio of rate constants kT1:kT2:kT3 at temperature T1, T2, and T3 from 

table 4.1 above: 

kT1:kT2:kT3 at 5, 25 and 40 
o
C = 40.7:54:193.3 = 1:1.3:4.7 

This means that the rate of degradation of DMP is 1.3 time faster at 25
o
C as it is at 5

o
C 

and is 4.7 times faster at 40 
o
C than it is at 5 

o
C.  

4.3.5.2 Applying Arrhenius equation  

The Arrhenius equation below is an equation of a straight line obtained by plotting of ln 

k against 1/T. 

 ln k  = ln A - Ea/RT 

Where: 

Ea/R  = slope 

T  = absolute temperature in K 

ln A = Intercept   

R =   gas constant  = 8.314x10^-3KJ/mol/K 
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Table 4.2: Effect of temperature on rate constant of DMP decomposition  

      in amber colored containers 

 

Rate constant (k) ln k Temperature 1/T 

40.7 3.7 5 
o
C (278 K) 0.0036 

54 4.0 25 
o
C (298 K) 0.00336 

193.3 5.26 40 
o
C (313 K) 0.0032 

 

Plotting ln k against 1/T gives the Arrhenius plot for DMP as shown below in figure 4.2: 

0.0030 0.0032 0.0034 0.0036 0.0038
3.0

3.5

4.0

4.5

5.0

5.5

6.0

Figure 4.2: The Arrhenius plot for DMP

Slope = Ea/R

1/T

ln
k

 

The Arrhenius plot can be used to calculate the rate constant of DMP degradation at any 

temperature and therefore, could be useful in predicting the shelf life of DMP stored at 

any temperature, as follows: 

For example, what will be the shelf life of DMP stored at 25 
o
C? 

Given: T = 298 K; 1/T = 0.0034; ln k = 4.34; k = 76.7 
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 t50ppm  = 2850/2900x2900/k 

  = 0.983x2900/76.7 

 t50ppm  = 37.2 weeks 

The expiry dates of DMP stored in amber containers can be predicted in this same 

manner at any temperature. This is the basis of prediction commonly employed in 

accelerated stability studies.  

The observed expiry date of DMP in the amber colored container stored at room 

temperature was about 53 weeks. The Arrhenius plot suggests that if this DMP was 

stored at 25 
o
C consistently, the shelf life would be about 37 weeks. The difference in the 

two results could be explained by the fact that during the stability study temperature 

changes were the norm, from as low as 5 
o
C during winter to as high as 32 

o
C during 

summer. The 25 
o
C was simply the mean room temperature and the graph showing 

stability profiles simply portrays the general trend. The predictions of the Arrhenius plot 

could still hold if the temperature was constant at 25 
o
C. 

4.3.5.3 The activation energy (Ea) of DMP 

Ea of DMP  =  slope x R 

   4000 x 8.314x10^-3 

Ea  = 33.256 Kj/mol 

The activation energy can also be calculated by setting the Arrhenius equation at two 

different temperatures and subtracting the second from the first: 
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    ln (k2)  = ln A - Ea/RT2 

    –{ln (k1) = ln A - Ea/RT1} 

Net equation:    ln (k2/k1)  = -Ea/R x (1/T2 - 1/T1) 

At T1 = 5
o
C and T2 = 40 

o
C 

ln (193.3/40.7)  = Ea/R x (0.0036 – 0.0032) 

Ea   = 1.56x8.31x10^-3/0.0004 

Ea   = 32.4 Kj/mol  

Although it is alright to estimate Ea with the Arrhenius equation by just using two rate 

constants at two temperatures, it is more realistic and therefore advisable to use at least 

three rate constants at three temperature and calculate the mean Ea as shown in table 4.3 

below where all the Ea values were calculate from the Arrhenius equation as in the 

preceding section (ScienTek Software I., 2006a). 
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Table 4.3: Calculated mean Ea values from points along the straight line of the Arrhenius 

        plot 

 

T1 1/T1 T2 1/T2 ln K2 ln K1 ln K2 –ln 

K1 

1/T2 – 1/T2 Ea 

5 0.00360 40 0.0032 Refer to section 5.3.5.3 -4.0x10^-4 32.4 

10 0.00353 30 0.0033 4.74 3.80 0.94 -2.3x10^-4 34.0 

10 0.00353 40 0.0032 5.12 3.80 1.32 -3.35x10^-4 32.7 

15 0.00347 40 0.0032 5.12 4.02 1.1 -2.8x10^-4 32.7 

20 0.00341 30 0.0033 4.74 4.28 0.46 -2.18x10^-4 33.8 

Average Ea = (32.4+34.0+32.7+32.7+33.8)/5 = 33.1 KJ/mol 

 

The average Ea of thermal degradation of DMP has been found to be about 33.1 KJ/mol. 

This makes sense if we consider the work of Hu et al. (2009), who studied the kinetics of 

a reaction in which CD oxidizes thiocyanide. Hu used UV spectrometry to monitor the 

concentrations of both CD and thiocyanide. He found the Ea of the reaction to be 2.5 

KJ/mol. This is a faster reaction than the degradation reaction of this study, hence a 

lower Ea. Wells, in his book pharmaceutical preformulation, states that Ea values for 

most of the drugs are in the range of 10 – 100 Kcal/mol (41.9 – 418.7 KJ/mol). This also 

is in agreement with the observed lower than average Ea of DMP considering that most 

drugs have expiry dates of more than at least two years, but that of CD is bare a year 

depending on the storage temperature i.e. DMP degradation is a faster reaction than the 

degradation reactions of most drugs. 
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In the Vaida et al. (1994) study mentioned above, the Ea of thermal decomposition of CD 

in water, study temperatures being 294, 331, and 364 K, was determined to be 0.60 eV 

(64.6 KJ/mol) (Vaida et al., 1994). The difference with the results of this study seems 

significant. It is advisable in situations like this where the true Ea value is in dispute to 

assume a low value, since this assumes high reaction rates and any prediction of expiry 

dates will be conservative (Wells, 1988).   

4.3.5.4 Q10 value calculations 

Q10 is the factor by which the rate constant increases for a 10 
o
C temperature increase. 

The commonly held view, particularly for biochemical reactions, is that a 10 
o
C increase 

in temperature doubles the rates of chemical reactions i.e. Q10 = 2. This view is not 

accurate but could be useful in making conservative estimates of expiry dates (Beavon, 

1998; Kenneth et al., 1986). The Q10 factors for DMP can be calculated from the 

formula below (LAB: Q10 -the effect of temperature on reaction rates, 2000): 

Q10 = (K2/K1)^10/(T2-T1)        (1) 

Where  

T2 = higher temperature   K2 = rate at T2 

T1 = lower temperature   K1 = rate at T1 

When T2 – T1 = 10 
o
C, then the expression (1) simplifies to: 

 Q10 = (K2/K1)^10/10 = K2/K1      (2) 

The above model suggests that Q10 for a particular drug is constant. Actually, Q10 is not 

constant but decreases with increasing temperature (Beavon, 1998; Kenneth et al., 1986). 

 

 

 

 



74 

 

In practice, the Q10 value of the 20 to 30 
o
C temperature interval is taken as the Q10 

value for any drug and this is the value that appears in monographs. Furthermore, Q10 

values are usually rounded up to the nearest values of either 2 or 3 or 4 to represent low 

or average or high estimates of Ea respectively i.e. the above rounded up values are 

linked to three corresponding Ea values of 12.2, 19.4 and 24.5 Kcal/mol, respectively and 

this makes expiry date approximations easy (Kenneth et al., 1986; Shaheen, 2005).  

Table 4.4:  Q10 Values of DMP on raising temperature from 0 to 10; 10 to 20; 20 to 30; 

  and 30 to 40 (data from Arrhenius plot figure 5.2) 

 

T (K) 1/T ln k(T+10) K(T+10) ln kT kT Q10 

273 0.00366 3.86 47.5 3.33 27.9 1.7 

283 0.00353 4.34 76.7 3.86 47.5 1.6 

293 0.00341 4.71 111 4.34 76.7 1.4 

303 0.0033 5.12 167 4.71 111 1.5 

313 0.0032 5.58 265 5.12 167 1.6 

 

From the above results the Q10 value of DMP in the 20 to 30 
o
C is 1.5. This must be 

rounded up for purposes of Q10 predictions of shelf life, to Q10 = 2. 

For any arbitrary change in temperature ΔT = T2 – T1,  an expression that could be useful 

to determine the factors by which rate constants (K) changes given Q10 values is shown 

below: 

 QΔT  = k(T+ΔT) /kT  =  Q10
(ΔT/10) 

    (3) 
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For example the factors by which the rate constants change as the temperature is changed 

from 10
o
C to 40 

o
C are: 

Q+30  =  Q10
(30/10)  

 

Given that the Q10 of DMP = 2 

Q+30  = 2^30/10 = 2
3 
 = 8 

Table 4.5: Factors by which rate constant changes for a given change in temperature 

          given Q10 values from table 5.3. 

 

Temp change (ΔT) Q10 Q10
(30/10)

 

10 – 20 
o
C 1.6 4.1 

20 – 30 
o
C 1.4 2.7 

30 – 40 
o
C 1.5 3.4 

 

On the other hand a change from 40 
o
C to 10 

o
C would change the rate constants by the 

following factors: 

 Q-30 = Q10
(-30/10)

  

Given Q10 of DMP = 2 

 Q-30  = 2
-3 

 = 0.125 

 

 

 

 

 

 



76 

 

Table 4.6: Factors by which rate constant changes for a given change in temperature 

          given Q10 values from table 5.3. 

 

Temp change (ΔT) Q10 Q10
(-30/10)

 

40 – 30
o
C 1.6 1/4.1 

30 – 20
o
C 1.4 1/2.7 

20 – 10
o
C 1.5 1/3.4 

 

4.3.5.4.1 Prediction of DMP shelf life using its Q10 value 

If the expiry date of DMP is known at one temperature, its expiry date can be established 

at any other temperature using Q10 estimation. For example if the expiry date of DMP 

stored at 5 
o
C is 70 weeks. Suppose the DMP is accidentally stored at 25 

o
C. What will 

its new expiry date be?  

The expiry date for both zero order and first order reactions can be written in a general 

as: 

t50 ppm  = a/KT  (refer to equation 6 of section 4.3.4.1) 

For T1 and T2 = 5 and 25 
o
C respectively: 

t50 ppm(T1)  = a/KT1   and       (1) 

t50 ppm(T2)  =  a/KT2  = a/KT1+ΔT      (2) 

Rearranging equation 1 gives 

a  = t50 ppm x KT1        (3) 
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From section 5.3.5.4 above: 

Q
ΔT/10

    = K(T1+ΔT) /KT1       (4) 

Rearranging this equation gives: 

K(T1+ ΔT)   = Q
ΔT/10 

 x KT1       (5) 

Substitute equation 4 into equation 2: 

t50 ppm(T2)  = a/ Q
ΔT/10 

 x KT1       (6) 

Substitute equation 3 into equation 6: 

t50 ppm(T2)  =  t50 ppm(T1) x KT1/ Q
ΔT/10 

 x KT1     (7) 

t50 ppm(T2) = t50 ppm(T1)/ Q
ΔT/10 

       (8) 

Equation 8 is called the Q10 equation and is applicable to any order of chemical reaction 

t50 ppm   = 70weeks/2^20/10 

   = 70/4 

t50 ppm  = 17.5 weeks 

For storage of DMP at 25 
o
C, calculation in section 5.3.5.2 from the Arrhenius plot 

predicted an expiry date of 37.2 weeks and now Q10 prediction is giving an expiry date 

of 17.5 weeks for storage at the same temperature. Q10 calculations are never accurate but 

are meant to fix conservative approximate expiry dates on the side of patient safety when 

the actual expiry date is not known. The Q10 expiry date is usually 6 months less than 

the actual shelf life of the drug (Kenneth et al., 1986; Shaheen, 2005). 
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4.3.6 Effect of light on DMP degradation 

The effect of light on degradation of DMP was found to be tremendous. DMP stored in a 

transparent bottle at room temperature, and therefore well exposed to light, had an expiry 

date of just over 9 weeks and had no trace of CD on the 10
th

 week. Transparent bottles in 

the fridge and oven were not well exposed to light and therefore the influence of light on 

these was minimal. 

4.3.7 Need for tight closing of containers of DMP 

Tight closing of containers of DMP was found to be probably the foremost factor in 

preserving DMP. This is because CD is essentially a gas with good solubility in water. 

Gas solubility is always limited by the equilibrium between the gas and a saturated 

solution of the gas. The dissolved gas will always follow Henry's law as explained in the 

introduction. Therefore it was found that tight closing of the containers and elimination 

of the head space by filling to the brim where possible prevents escape of CD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

CHAPTER 5 

FORMULATION DEVELOPMENT (FD) 

Preformulation studies which consisted of foam evaluation, acid-base potentiometric 

titration and compatibility studies were performed. The ideal foam system was 

determined. The appropriate alkali to adjust the pH was also determined and DMP-

NaOH/KHP buffer interactions were characterized. Finally, a foam concentrate was 

formulated and manufactured that could be mixed to DMP prior to clinical application.  

5.1  Materials and methods 

5.1.1 Materials 

Sodium hydroxide pellets AR (B & M Scientific, South Africa). 

Sodium per carbonate (Crest Chemicals, South Africa). 

Potassium hydrogen phthalate (Merck N.T. Laboratory Supplies (Pty) Ltd., SA) 

Sodium lauryl sulphate (Aspen Pharmacare, SA) 

Ammonium lauryl sulphate (Sigma-Aldrich GmbH, France) 

EDTA (BDH laboratory supplies, England) 

Polysorbate 20 (Sigma-Aldrich Chemie, GmbH, Switzerland) 

SNLSS (Sigma-Aldrich, Co. USA) 

Sodium xylene sulfonate (Sigma-Aldrich chemie GmbH, France) 

Peppermint oil (Barrs Pharmaceutical Industries, SA) 
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Cocoamidopropyl betaine (Amka Products (Pty) ltd., Pretoria, SA) 

Glycerol (Merk KGaA, Darmstadt, Germany) 

Cetostearyl alcohol (Kimix Chemicals, CT, SA) 

Xylitol (pharmaceutics store room, UWC) 

Sucralose (pharmaceutics store room, UWC) 

Monoammonium glycyrrhizinate (pharmaceutics store room, UWC)  

Appropriate glassware 

5.1.2 Preformulation studies 

5.1.2.1 Foam evaluation 

Foams generated by various foaming agents and foaming agent combinations (FA/FAC) 

were evaluated in terms of foamability, stability, elegancy and aesthetic properties as 

well as other relevant criteria.  The foams were studied at pH 4.0 and at pH 5.5 which 

corresponds to the pH range appropriate for the intended application. 

5.1.2.1.1 Foamability 

5.1.2.1.1.1 DMP PH adjustment  

400 ml of DMP, supplied by Rausa-Kem, Parow Valley, Cape Town, was dispensed into 

500 ml beaker. 30 % w/v NaOH solution was used as agent for adjusting the pH of DMP 

solution to either pH 4.0 or 5.0. The pH of the solutions was measured using a portable 

laboratory pH meter (model GLP21 from Crison, Barcelona, Spain). The pH meter was 

calibrated before application using standard buffers at pH 7.00 and 4.01. The pH 
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measurements were carried out by direct immersion of the electrodes into the DMP 

sample. The temperature during these studies ranged between 15 and 28 
o
C. Once the 

desired pH was attained, the 400 ml DMP was transferred to a 2000 ml graduated beaker 

which was ideal for conducting Foamability studies. 

5.1.2.1.1.2 Foam generation 

Foamability studies were carried out in a fume hood. One FA/FAC-DMP system was 

studied at a time whereby progressively increasing amount of FA/FAC were added to the 

DMP solution followed by stirring, each time measuring the foam volume generated. A 

mechanical overhead stirrer (IKA model 20 RW, Janke and Kunkel GmbH and Co. KG, 

Staufen, Germany) fitted with a four axial blade impeller was employed. The 

mixing/agitation speed was fixed at 2000 rpm for 60 seconds immediately after which 

the amount of foam generated was measured (Carey & Stubenrauch, 2009; Klein, 2004). 

 

 

Figure 5.1: Mixer, 2000ml beaker 

 

5.1.2.1.1.3 Foamability measurements 

The amount of foam generated at each concentration of the FA/FAC was determined by 

measuring the volume of the foam in the 2000 ml measuring cylinder in which the foam 
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was generated. A ruler was also used to confirm the reading. Foamability assessments of 

each foam system were done in triplicate (Azira, Tazerouti, & Canselier, J 2008; Carey & 

Stubenrauch, 2009; Klein, 2004). The results are in section 5.2.1.1. 

5.1.2.1.2 Foam stability 

The stability of the various foam systems studied was assessed using foam decay and BBT 

methods. Foam drainage was studied concurrently with foam decay. The density of each foam 

system was also determined.  

5.1.2.1.2.1 Determination of foam decay and drainage 

The 2% w/v or v/v solution of each of the FA/FAC, as appropriate, in DMP was stirred at 

2000 rpm for 60 seconds, immediately after which the generated foam was transferred to 

a 100 ml measuring cylinder and its rate of collapse determined by reading the foam 

volume at 20 or 40 minute intervals. The foam was transferred to the measuring cylinder 

by scooping it off from the stirred solution. The t1/2 of decay of each FA/FAC-DMP foam 

system was indicative of the stability of its foam (Azira et al., 2008; Iglesias, Anderez, 

Forgiarini, & Salager, 1995; Klein, 2004; Suliman, El Tinay1, Elkhalifa2, Babiker, & 

Elkhalil, 2006). 

Determination of rate of collapse and the rate of drainage of liquid from the foam was 

determined simultaneously. The amount of liquid collected at t1/2 of foam decay was 

taken to determine relationship between foam stability and rate of drainage (Carey & 

Stubenrauch, 2009; Klein, 2004; Miles, Shedlovsky, & Ross, 1945). 
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5.1.2.1.2.2 Bubble breaking time (BBT) 

In a room where there was minimal air movement, 10 big bubbles of each foam system 

were blown from a pipette as shown below and time taken to break was noted. The 2 % 

w/v or v/v solution of each of the FA/FAC in DMP, as appropriate, was used to generate 

these bubbles. Shaking interferences were minimized by holding the blowing end of the 

pipette steadily while leaning the middle part on a wooden board during these stability 

measurements (Ross, 1943; Suliman1 et al., 2006). 

           

Figure 5.2: Blown bubbles 

 

5.1.2.1.2.4 Determination of the density of the foam 

The 2 % w/v or v/v solution, as appropriate, of each of the FA/FAC in DMP was agitated 

at 2000 rpm for 60 seconds. After 10 minutes waiting time, foam was scooped and 

transferred to a pre-weighed 93 ml specimen bottle to determine the weight of the foam. 

From these measurements the density was determined (Klein, 2004; Suliman1 et al., 

2006; Wilde & Clark, 1996).  
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               Figure 5.3: Specimen bottle (containing foam for density determinations) 

 

5.1.2.1.3 Foam stabilizer 

Cetostearyl alcohol (CSA) was used as foam stabilizer (Columbia analytical services, 

2001; Oxford University, 2007). Since it is insoluble in cold water, it had to be dispersed 

in hot sample of FA/FAC solution drawn from the solutions to be tested. After 

dispersion, the CSA sample solution was added back to the test solution. The stability 

tests on foams containing CSA were conducted in exactly the same way as above. 

5.1.2.1.4 Selection of appropriate foam system for product formulation 

The final selection of foam systems appropriate for incorporation into the formulation 

was based on a scoring system whereby, the foam characteristics of the various FA/FACs 

were assigned marks according to perceived importance of their properties in relation to 

the target product profile (Siltech personal care, 2006). Table 5.5 in section 5.2.1.4 below 

gives the selection criteria.  
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5.1.2.2 Acid-base Potentiometric titrations 

5.1.2.2.1 Determination of suitable alkali for raising the pH of DMP  

Two alkalis were available to act as pH adjuster solutions of the DMP: 1) sodium 

hydroxide (NaOH) and 2) sodium per carbonate [Na2(CO3).1/2H2O2]. 5 % w/v solutions 

of each of these alkalis were prepared, placed in a burette and 100 ml of DMP was 

titrated with the alkaline solutions measuring the pH after each addition. Each 

experiment was carried out in triplicate. The results were plotted to produce two acid-

base titration curves (figure 5.23 and figure 5.26) (GA/7 potentiometric titration. 1999; 

Christian, 1977; Stoog et al., 1988). 

5.1.2.2.2 Demonstration of usefulness of a buffer in the formulation  

In this study, the buffer system chosen was Potassium hydrogen phthalate (KHP), for 

reasons given in section 2.3.4.2.5. Three solutions bearing same concentration of NaOH 

and progressively increasing amount of KHP (i.e. 5 % w/v/0.1 % w/v KHP, 5 % w/v/1 % 

w/v KHP, and 5 % w/v/2 % w/v KHP), were prepared each in its own titration 

experiment turn. The titration experiments progressed as described in section 5.1.2.2.4 

below and the raw titration data are shown in the appendix tables A19, A20, and A21 

respectively for the stated solutions. This section also served to optimize the 

concentration of KHP in the concentrate being formulated as explained in section 5.1.3.4 

and 5.2.2.2. 

5.1.2.2.3 Demonstration of the usefulness of the adjuster solution 

In this case the KHP was held constant while the NaOH was varied. Two solutions of: 

0.25 % w/v NaOH/2.5 % w/v KHP; and 2.5 % w/v KHP without NaOH, were prepared, 
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again, each in its turn. The first solution was titrated as described in section 5.1.2.2.4 

below. The second solution was not titrated as the trend was already very clear i.e. the 

low NaOH concentration demonstrated no appreciable change in pH.  

5.1.2.2.4 Titration 

The NaOH/KHP system as the titrant was placed in a burette, while the 100 ml of DMP 

as the titrand was placed in a conical flask (Thompson, 2004). DMP was titrated while 

carefully monitoring the pH after each addition. Each titration experiment was performed 

in triplicate.  

5.1.3 Formulation  

5.1.3.1 Product design 

The product was designed to come as a two part formulation namely; DMP solution and 

a concentrated foam solution (concentrate). The two parts have to be mixed at the point 

of use to attain the desired formulation. This approach was followed to compensate for 

the instability of DMP. The mixing was done as follows for the different applications: to 

a mixture of appropriate volumes of water and concentrate, a specific amount of DMP 

was added to make either a VGD or an F/SBB; and an appropriate volume of pre-diluted 

concentrate was mixed with a specific quantity of DMP to make the MRF. If the 

concentrates for the VGD and F/SBB were also pre-diluted, the concentrate would be too 

bulky for the end user because the two formulations demand more volumes. It was 

envisaged that DMP would be used in its usual form. Therefore, all formulation efforts 

were directed at production of the foam concentrate. 
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5.1.3.2 Equipment for the manufacturing process 

Ordinary laboratory equipment were used like beakers, thermometer, spatula, weighing 

scale, measuring cylinders, pH meter, Heater, crucible, stirring rod, pipette etc. 

5.1.3.3 Development of the foam concentrate 

Five formulas were formulated before arrival at a satisfactory one which met the desired 

CQAs of uniformity of content, absence of lumps, and smoothness of flow (refer to 

appendix table A25). In method A, which was the initial and most simplified process, all 

the ingredients were added to 50 ml of distilled water in a mixing vessel and made up to 

100 ml followed by mixing for about 2 minutes. The resulting mixture was lumpy, 

separated according to phases, and was non-flowing due addition of too much SLS. The 

subsequent processes were designed to progressively circumvent problems identified in 

the initial process and are shown in table A5. Basically further addition of CAPB 

thickener, led to a formulation with uniformity. Lumpiness was avoided by heating to 70 

o
C. The addition of ingredients in a logical sequence is important and optimizing SLS 

leads to a formulation with ideal flow properties. An ideal foam concentrate formula was 

achieved in method E which is described in sections 5.2.5.1 and schematically presented 

in Figure 5.37 below: 

From the observations made, method E was evaluated to be the best and the quantities of 

excipients were further optimized. Table A26 refers to the initial quantities used in 

method E. 
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5.1.3.4 Optimization of levels of NaOH/KHP buffer system in the formulation 

5.1.3.4.1 Background information 

Ideal pH values for the different formulations are as follows: VGD formulation must be 

pH 3.8 – 4.5; and MRF and F/S BB must be pH 4.5 – 5.2. The pH of the formulated 

concentrate was around 13.0, depending on the level of NaOH in the concentrate, while 

that of DMP was about 0.5.  DMP and concentrate had to be mixed together with water, 

just prior to administration as explained in section 5.1.3.1. This mixing was meant to get 

a product with the desirable pH range of 3.8 to 5.2, which would be safe for patient 

administration. To achieve these targets depended on selecting appropriate 

concentrations of NaOH to raise pH of DMP to target pH and appropriate concentration 

of KHP to maintain the target pH.  

5.1.3.4.2 Optimization of levels of KHP 

As alluded to in sections 5.1.2.2.2 and 5.2.2.2, experiments that demonstrated the 

usefulness of the buffer in the preformulation studies also served to optimize KHP levels 

appropriate for employing in the final formulation. Figures 5.30, 5.31 and 5.32 

demonstrated that higher concentration of KHP improved buffering. At the same time, it 

was noted that KHP concentration beyond 3 % w/v could not be employed because the 

solution became saturated. So 2.5 % w/v was deemed to be the optimal concentration. 

This concentration was employed at every stage of the formulation as can be attested in 

table A26, A27 and A28 in the appendix and in the master formula of the lead 

concentrate formulation (table 5.10), where the concentration of KHP is maintained at 

2.5 % w/v. 
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5.1.3.4.3 Optimization of levels of NaOH 

Six prototype foam concentrates were progressively prepared based on the concentrate 

development method E (section 5.2.5.1, appendix table A25). In these prototypes, 

quantities of all other ingredient were kept constant, as those shown in appendix table 

A6, while varying the concentration of NaOH (refer to table A27 in the appendix). Once 

prepared, each prototype at its own time was then subjected to NaOH level optimization 

process by mixing various volumes of concentrate as given in table A27 in the appendix, 

with 5 ml of DMP (fixed volme) and appropriate volume of water to make 50 ml of 

product. The pH of such a mixture was then measured and noted down as shown in the 

same table A27 referred to above. Noteworthy is the fact that the volume of DMP was 

fixed at 5 ml and that this directly determines the level of NaOH in the foam concentrates 

required to meet target pH values. Therefore prototypes which after mixing in the 

proportions given in appendix table A27 gave pH values that fell outside target range 

were deemed to contain either too much or too little NaOH, as the case may be, and were 

rejected.  The raw data of the optimization process of NaOH is given in the appendix 

table A27. This table was summarized to table 5.9 and in figure 5.38 the pH values 

resulting from mixtures undertaken for each prototype were plotted against the 

concentrate volumes employed in respective mixtures. Once the level of NaOH was 

optimized, a dosage formula (DF) was derived as explained in section 5.2.5.5 in the 

results and discussion. 

5.1.3.5 Optimization of the other excipient quantities  

The initial step was to determine concentrations from literature sources, for commonly 

used ingredients as alluded to in section 2.3.4.3 in the literature review. In order to 
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determine the optimal level of the less commonly used excipients and also to refine 

quantities in accordance to desired quality of the final product, and therefore optimize 

formulation quantitatively, six different prototype formulations were progressively 

developed each with excipient quantities specified in Table A28 in the appendix. This 

means that the optimization of excipient levels were to some extent by trial and error. 

This is because optimization was based on evaluation of the effect of excipient quantities 

on the quality attributes of the product  (Cho et al., 2010; Dow, 2004) i.e. excipient levels 

were tailored to ensure that the resultant foam concentrate had uniformity of content, 

absence of lumps, and smoothness of flow.  
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5.2 Results and discussion 

5.2.1 Foam evaluation 

5.2.1.1 Foamability 

The foamability results of Table A5 (appendix) are graphically presented in figure 5.4 

below which gives the foamability profiles of various foam systems. The result is in 

agreement with authors who state that foam volume increases with increasing 

concentration until CMC is reached (Amaral, 2008; Carey &Stubenrauch, 2009). It was 

observed that even after CMC was reached foam volumes continued to register but 

minimal increments, as also was observed by Amarah et al. (2008). 
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Figure 5.4: Foamability profiles of various surfactant systems at pH 4.0
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From figure 5.4, it can be seen that some systems foam well at low concentrations but 

poor at higher concentrations and vice versa. In these instances, foamability comparisons 
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depend upon the time at which the comparison is made. To achieve better comparison the 

curves in figure 5.4 were converted into straight lines using the Lineweaver-Buck plot 

(figure 5.5), in which case it can be seen that the slope is linked to the variation in foam 

volume that accompanied the variations in concentration of FA/FAC. Iglesias et al. 

(1994), transformed data in various ways to obtain a numeric value for foam stability. 

Similar data manipulation was used for quantification of foamability.  

Note: 

The Lineweaver-Buck (double reciprocal) plot is a mathematical tool that is used to 

convert parabolic and sigmoid curves into straight lines. It is commonly employed for 

example in enzyme kinetic studies for calculation of the Michaelis constant (Km) and the 

maximum velocity of enzyme reaction (Vmax) since these values cannot be estimated 

accurately using parabolic and sigmoid curves (Stryer, Tymoczko, & Berg, 2002). 
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Figure 5.5: Lineweaver-Buck plot transform of foamability curves of figure 5
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Foamability was quantified by comparing the inverse of the slope as expressed in table 5.1.  

Table 5.1:  Quantification of Foamability  

 

FOAM SYSTEM SLS/ALS/CAPB SLS/ALS SLS ALS CAPB MP 9 NEO 

DAL 

Tween 20 

1/SLOPE 161,800 141,300 130,500 102,300 93,170 44710 32470 32190 

1/SLOPE/32,190 

(FOAMABILITY 

RATIO) 

5 4 4 3 3 1 1 1 

 

From table 5.1, it is clear that SLS/ALS/CAPB system has the highest capacity to foam 

and its Foamability is 5 times that of MP 9 or NEO DAL or Tween 20. It is followed by 

SLS/ALS and SLS foam system that has 4 times the foaming power of MP 9, NEO DAL 

or Tween 20. The rest can be interpreted in this same manner. 
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5.2.1.2 Foam stability 

5.2.1.2.1 Foam decay and foam drainage  

Figures 5.6 to 5.15 show stability profiles of various foam systems based on 

measurements of the rates of foam collapse. The drainage profile of each foam system is 

also presented as these two properties were studied concurrently. Four of these systems 

were measured at pH 4.0 and pH 5.5. Tween 20 foamed well at pH 4.0 but could barely 

foam at pH 5.5 while SNLSS foamed well at pH 5.5 but not at pH 4.0. The pH changes 

had little effect on the foamability of ALS, ALS/CSA and SLS, SLS/CSA foam systems 

which performed well at both pH values. The rest of the systems were studied at pH 4.0 

only because it was noticed that DMP had stability problems at pH 5.5 and therefore 

could not be utilized at that pH in the final formulation. The lack of foam for SNLSS, an 

anionic foaming agent, at pH 4.0 did not come as a surprise since it is a well known fact 

that  performance of ionic FAs can be affected by pH or any ionic changes for that matter 

(Centre for the Environment and the Lung - Denmark, 2002). The effect is such that if 

addition of an electrolyte causes a further reduction in surface tension, foaming is 

enhanced and the opposite is true if the additional electrolyte increases surface tension. 

This could be a possible explanation of the concepts of foam boosting and other co-

surfactant enhancement of foaming capacity. The lack of foaming of Tween 20 (a non 

ionic FA) at pH 5.5, however was unexpected since this group is known to be least 

affected by pH or any ionic changes (Centre for the Environment and the Lung - 

Denmark, 2002; Zhang, Dalgleish, & Goff, 2004). The decay of ALS foam was a special 

case in that it was characterized by a dry barely visible residue of the foam sticking to the 

container which did not represent the true foam.  
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5.2.1.2.1 Foam decay/drainage graphs 
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Figure 5.6: Foam collapse and drainage of SLS and SLS/CSA AT pH 5.5
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Figure 5.7: Foam collapse and drainage of SLS and SLS/CSA at pH 4.0
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Figure 5.8: Foam collapse and drainage of ALS and ALS/CSA at pH 5.5
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Figure 5.9: Foam collapse of ALS and ALS/CSA at pH 4.0
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Figure 5.10: Foam collapse and drainage of CAPB and CAPB/CSA at pH 4.0
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Figure 5.11: Foam collapse and drainage of SNLSS and SNLSS/CSA at pH 5.5
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Figure 5.12: Foam collapse/drainage of SLS/ALS and SLS/ALS/CSA AT pH 4.0
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Figure 5.13: Foam collapse/drainage of SLS/ALS/CAPB and
SLS/ALS/CAPB/CSA at pH 4.0
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Figure 3.14: Foam collapse/drainage of MP 9 and MP 9/CSA AT pH 4.0
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Figure 5.15: Foam collapse/drainage of TWEEN 20 and TWEEN 20/CSA at pH 4.0
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5.2.1.2.2 Bubble breaking time (BBT) 

 

Smaller bubbles if formed next to a larger bubble might disappear at the expense of the 

bigger one which grows bigger. This is because smaller bubbles are at a higher gas 

pressure than larger ones and the resulting gas diffusion leads to coalescence (Lambert, 

2010). It was therefore deemed important that as far as possible only one bubble at a time 

was formed to avoid such type of interference and only large bubbles were studied. Table 

5.2 shows the results of the BBT of 10 bubbles of each system. 
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Table 5.2:  Bubble breaking time (BBT)  

 

SLS  

 

 

 

pH 4.0   

SLS/CS

A    

 

 

pH 4.0  

SLS  

 

 

 

pH 5.5   

SLS/C

SA   

 

 

pH 5.5   

ALS  

 

 

 

pH 4.0  

ALS/C

SA    

 

 

 pH 4.0   

ALS  

 

 

 

pH 

5.5  

ALS/C

SA   

 

 

pH 5.5   

TWEE

N 20  

 

 

pH 4.0 

TWEE

N -

20/CSA  

 

pH 4.0 

SNLS

S  

 

 

pH 

5.5 

SNLS

S/CSA  

 

 

pH 5.5 

SLS/AL

S/SNLS

S  

 

pH 4.0 

SLS/AL

S/SNLS

S/CSA  

 

pH 4.0 

MP 9  

 

 

 

pH 

4.0 

MP9/

CSA  

 

 

pH 

4.0 

SLS/

ALS  

 

 

pH 

4.0 

SLS/A

LS/CS

A  

 

pH 

4.0 

CAPB  

 

 

 

pH 4.0 

CAPB/

CSA 

 

 

 pH 4.0 

SLS/AL

S/CAPB  

 

 

pH 4.0 

SLS/ALS

/CAPB/C

SA       

 

pH 4.0 

16.57 15.66 9.54 22.90 16.22 15.35 47.00 31.89 11.21 271.22 17.89 66.84 30.16 50.08 33.65 37.98 16.78 30.03 13.67 14.69 19.01 23.19 

26.47 39.41 8.90 22.10 17.44 16.63 35.74 25.56 22.15 283.56 20.70 56.19 34.39 38.10 36.81 35.32 17.05 64.22 10.23 17.60 14.37 36.46 

11.50 25.08 13.76 21.70 18.06 21.56 19.08 30.94 24.84 169.58 29.55 40.90 27.68 27.37 34.23 36.65 30.11 38.67 13.61 16.97 24.87 21.11 

12.50 20.72 16.56 56.94 23.91 17.61 24.18 26.27 25.45 255.52 39.35 32.69 40.33 37.65 22.30 46.12 17.36 41.60 8.76 23.54 25.71 27.34 

14.44 30.50 10.03 36.20 22.99 15.82 26.36 26.06 20.67 188.97 19.59 39.55 35.26 27.44 44.34 62.51 11.31 28.07 10.73 17.03 29.31 32.65 

12.61 30.53 9.72 17.11 30.07 16.82 22.19 38.29 22.87 200.14 27.83 51.73 38.46 33.25 34.27 47.61 15.74 42.68 6.86 14.00 34.44 34.45 

18.78 37.28 10.71 31.82 23.67 19.35 24.02 25.08 24.55 153.45 32.92 42.39 17.03 18.25 36.08 87.22 19.90 55.41 10.58 20.72 24.04 24.41 

12.91 35.04 9.88 32.70 18.42 37.09 27.45 24.48 26.41 143.26 24.96 41.02 26.80 30.50 22.15 98.38 33.04 62.06 6.67 19.51 23.52 35.67 

11.22 26.54 8.00 35.81 18.34 27.40 23.33 28.48 24.00 175.07 36.50 65.84 34.51 36.51 47.13 147.8 25.10 26.06 19.98 23.77 17.32 31.00 

9.87 25.26 8.28 26.69 21.46 40.33 31.41 27.22 59.49 221.83 34.47 51.62 21.73 48.87 51.62 98.01 9.25 26.89 8.83 22.07 17.07 28.46 

 

 

 

    Note: time is in seconds (s) 

BBT results of table 5.2 are also shown graphically as a scatter plot in figure 5.16 below 
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Figure 5.16: Scatter plot of mean BBTvalues
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5.2.1.2.3 The significance of addition of CSA on bubble stability  

An independent two sample t-test (two tailed) was applied on the data in table 5.2 above 

to test the significance of addition of the foam stabilizer (CSA) on the stability of bubbles 

and the results are shown in table 5.3 below. This can also be visually assessed in the 

BBT scatter plot (figure 5.16 above). The student t-test is a statistical test meant to 

compare two groups of related observations e.g. in this case, those taken from the same 
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subjects before and after a treatment (addition of foam stabilizer). The test is independent 

sampled because each observation in the first sample is not specifically linked to an 

observation in the second sample (Davis, and Mukamal, 2006). The null hypothesis was, 

„there is no difference in foam stability, as measured by BBT, in the absence and in the 

presence of the foam stabilizer, CSA‟. It was assumed that that the data was normally 

distributed. Graph pad prism software t-test was employed. 

 

 

 

 

 



104 

 

Table 5.3: The significance of addition of CSA on bubble stability 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

DMP bubble systems being compared Are means 

sig. 

different? 

(p<0.05) 

P  value t df 95% conf. 

interval 

YES NO 
SLS at pH 4.0 vs. SLS/CSA at pH 4.0 √  p<0.0001 6.895 9 -18.48 to -9.350 

SLS at pH 4.0 vs. SLS at pH 5.5  √ p<0.0561 2.192 9 -0.1334 to 8.431 

SLS /CSA at  pH 4.0 vs. SLS/CSA at pH 5.5   √ P<0.7108 0.383 9 -12.40 to 8.812 

ALS at pH 4.0 vs. ALS/CSA at pH 4.0  √ p<0.6240 0.508 9 -9.484 to 6.008 

ALS at pH 4.0 vs. ALS at pH 5.5  √ P<0.0723 2.035 9 -14.82 to 0.7811 

ALS/CSA at Ph 4.0 vs. ALS/CSA at pH 5.5  √ P<0.1465 1.589 9 -13.65 to 2.384 

TWEEN-20 at pH 4.0 vs. TWEEN-20/CSA at pH 4.0 √  0.0001 10.88 9 -217.5 to -142.6 

SNLSS at pH 5.5 vs. SNLSS/CSA at pH 5.5 √  0.0022 4.246 9 -31.42 to -9.579 

SLS/ALS/SNLSS at pH 4.0 vs. SLS/ALS/SNLSS/CSA at pH 4.0  √ 0.2614 1.198 9 -12.03 to 3.699 

MP 9 AT pH 4.0 vs. MP 9/CSA at pH 4.0 √  0.0130 3.088 9 -58.04 to -8.965 

SLS/ALS at pH 4.0 vs. SLS/ALS/CSA at pH 4.0 √  0.0005 4.229 18 -32.94 to -11.07 

CAPB at pH 4.0 vs. CAPB/CSA at pH 4.0 √  0.0004 5.456 9 -11.31 to -4.682 

SLS/ALS/CAPB at pH 4.0 vs. SLS/ALS/CAPB /CSA at pH 4.0 √  0.0229 2.576 9 -12.22 -0.7931 

 

 

 

 



105 

 

In table 5.3, a „YES‟ significant result implied that CSA enhanced the stability of the 

foam system while a „No‟ significant result implied that CSA had no effect on foam 

stability of that particular system. Some writers describe CSA as a foam booster (Artec 

Chemical Company Limited, n.d.) and others as foam stabilizer (columbia analytical 

services, 2001; Oxford University, 2007). In this study, CSA was found to have minimal 

effect on foamability, but profoundly influenced foam stability. This is probably because 

CSA was always introduced in this study at FA concentrations of 2 % w/v or v/v after 

assessing foam decay and drainage. Such concentrations are way beyond CMC and 

therefore can‟t be expected to yield useful foamability effect data.  

5.2.1.2.4 Correlation analysis of the different measures of foam stability 

Pearson‟s correlation test is the most popular way of determining both the strength and 

the direction of the relationship between two interval variables. The correlation 

coefficient, r, ranges between -1 and +1. Values closer to +1 represent a positive 

relationship i.e. if the independent variable is increased, the values of the dependent 

variable also increases. Values closer to -1 indicate a negative relationship, which is the 

opposite of preceding relationship. Values closer to 0 represent absence of a relationship 

(SAMHSA, 2003).  

The data in table 5.4 below was subjected to the Pearson correlation test to determine the 

relationship that existed between named foaming properties. Graphpad prism software 

(Graphpad software, Inc., 2004) based Pearson‟s correlation test was employed. The test 

assumption was that data was sampled from a Gaussian population. Correlation analysis 

revealed a positive correlation between foam decay and BBT (Pearson r = 0.5397), 

another positive correlation between foam density and BBT (Pearson r = 0.8842) and a 

 

 

 

 



106 

 

weak negative correlation between foam drainage and BBT (Pearson r = – 0.4447). This 

means that, the more water a foam can hold, the more stable it is, a view held by many 

authors (Babcsán et al., 2003; Klein, 2004). Foam density has also been linked to the 

amount of water a foam can hold (Hutzler, Verbist, Wenre, & Van der Stee, j. a., 1995; 

Klein, 2004). It is also generally agreed that BBT correlates well with foam collapse 

(Ross, 1943) as mentioned in the literature review. Miles et al. (1944) studied foam 

drainage and found a positive correlation between the rate of foam drainage and the 

volume of liquid in a foam, which he expressed as y = ax
n 

,
 
where y is the rate of 

drainage; x is the volume of liquid in the foam; a and n are constants. On the relationship 

between foam drainage and foam stability, this study concludes that there is no 

relationship between these. This is because rates of flow of liquid through foam are 

influenced by the size of the bubbles and the bulk and surface viscosities. If these are not 

controlled, relative drainage rates do not evaluate foam stability under the same 

conditions. Babcsan et al. (2003), states that a limitation to foam drainage is related to 

foam stability of aqueous foams. He attributes the stabilizing influence of foam 

stabilizers such as CSA to their slowing action on liquid drainage when they are present 

in plateau borders. 
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Table 5.4:  Correlation data of the different measures of foam stability 

 

System 

no. 
DMP foam system 

Foam 

density 

(mg/ml) 

Mean 

BBT (S) 

t1/2 of foam 

collapse 

(min) 

vol. 

drained at 

t1/2 (ml) 

1 SLS at pH 4.0 
5.29 14.69 98.9 21.3 

2 SLS /CSA at  pH 4.0 
6.00 28.60 >300 14.6 

3 ALS at pH 4.0 
5.97 21.06 >300 19.7 

4 ALS/CSA at Ph 4.0 
6.54 22.08 260 22.0 

5 TWEEN-20 at pH 4.0 
10.2 26.16 12.6 18.6 

6 TWEEN-20/CSA at pH 4.0 
33.40 206.3 >600 16.9 

7 SNLSS at pH 5.5 
14.9 28.38 95.9 18.6 

8 SNLSS/CSA at pH 5.5 
22.20 48.88 >600 14.9 

9 SLS/ALS/SNLSS at pH 4.0 
99.20 30.64 >600 26.3 

10 
SLS/ALS/SNLSS/CSA at pH 

4.0 

106.00 34.80 >600 24.0 

11 MP 9 AT pH 4.0 
11.60 36.26 13 16.8 

12 MP 9/CSA at pH 4.0 
42.50 69.76 28 12.3 

13 SLS/ALS at pH 4.0 
4.92 19.56 >300 21.5 

14 SLS/ALS/CSA at pH 4.0 
23.40 41.57 >600 17.1 

15 CAPB at pH 4.0 
11.2 10.99 85 19.6 

16 CAPB/CSA at pH 4.0 
11.9 18.99 87 15.8 

17 SLS/ALS/CAPB at pH 4.0 
100.00 22.97 >600 29.9 

18 
SLS/ALS/CAPB /CSA at pH 

4.0 

100 29.47 >600 34.8 

19 SLS at pH 5.5 
4.70 10.54 162 18.8 

20 SLS/CSA at pH 5.5 
9.60 30.40 >300 17.9 

21 ALS at pH 5.5 
5.27 28.08 >300 21.9 

22 ALS/CSA at pH 5.5 
11.00 28.43 >300 18.6 
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5.2.1.2.4.1 Pearson correlation tests and associated Scatter plots  

Below are self-explanatory scatter plots depicting correlation data graphically together 

with their correlation coefficients. The first scatter diagram on each page represents the 

initial Pearson test while the second represent the test after a few outliers were removed.  
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Figure 5.17: initial scatter plot correlation of t1/2 of foam decay vs mean BBT
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Figure 5.18: Scatter plot after removing outliers (position 6 and12)-
t1/2 of foam decay vs BBT

Number of XY Pairs  20
Pearson r 0.5397
95% confidence interval  0.1276 to 0.7929
P value (two-tailed)  0.0140
P value summary *
Is the correlation significant? (alpha=0.05)  Yes
R squared 0.2913
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Figure 5.19: Initial scatter plot of correlatio between mean BBTvs Foam density
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Figure 5.20: Scatter plot of correlation after removal of outliers -
mean BBT vs foam density

Number of XY Pairs 17
Pearson r 0.8842
95% confidence interval 0.7018 to 0.9578
P value (two-tailed) P<0.0001
P value summary ***
Is the correlation significant? (alpha=0.05) Yes
R squared 0.7819
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Figure 5.21: Initial scatter plot of correlation of Vol. drained
at t1/2 vs mean BBT
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Figure 5.22: Scatter plot of correlation after removing two outliers (row 6
and 18) - Vol. drained at t1/2 vs mean BBT

Number of XY Pairs 20
Pearson r -0.4447
95% confidence interval -0.7414 to -0.002649
P value (two-tailed) 0.0494
P value summary *
Is the correlation significant? (alpha=0.05) Yes
R squared 0.1978
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5.2.1.3 The pH stability profile of DMP  

An important result from the DMP-foam evaluation studies is the elucidation of the pH 

stability profile of DMP. DMP was found to be stable at pH ≤ 5.2. Beyond this pH DMP 

encounters serious stability problems such that it was no longer useful at least for 

formulation purposes. This meant DMP-foam systems such as SNLSS that performed 

well at pH 5.5 but poorly at pH 4.0, were automatically disqualified from the 

formulation. DMP however tended to regain some activity once the pH was dropped 

back from a high value to pH ≤ 5.2.  

5.2.1.4 Selection of appropriate foam system for product formulation 

 

Refer to table 5.5 below for the scoring system used to select FA/FAC appropriate for 

incorporation in the foam formulation (Siltech personal care, 2006). The marks were 

assigned as follows: Foamability = 40; stability = 40, i.e.  t1/2 of foam decay = 15, BBT = 

15, drainage = 5, density = 5; color effect = 5; physical attraction = 5; and other 

pharmaceutical consideration = 10; Total score = 100. 
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Table 5.5:  Selection of appropriate foam system for product formulation 
 

Foam system → 

 

          Property¬ 

SLS SLS/

CSA 

ALS ALS/

CSA 

TWEEN 20  TWEEN 20/ 

CSA 

SLS/ALS/ 

SNLSS  

SLS/ALS/ 

SNLSS/CSA  

MP 9  MP9/

CSA 

SLS/

ALS  

SLS/ALS/

CSA  

CAPB  CAPB/

CSA  

SLS/ALS/

CAPB  

SLS/ALS/

CAPB/CSA  

Foamability (40) 35 35 30 30 10 10 10 10 10 10 35 35 25 25 40 40 

Stability (40) T1/2 of foam 

decay (15) 

12 15 10 15 5 15 15 15 4 6 12 15 10 15 12 15 

Mean BBT 

(15) 

10 13 11 13 10 15 11 14 12 15 11 15 8 12 12 13 

 

Drainage  

at t1/2 (5) 

4 3 3 3 3 4 3 5 2 3 4 5 3 3 2 1 

Density of 

foam (5) 

2 2 2 2 2 4 3 4 3 4 1 3 2 3 5 5 

Colour changes (5) 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 

Physical attraction (5) 5 5 4 4 5 5 4 4 4 4 5 5 4 4 5 5 

Other pharm. factors (10)                10 10 8 8 10 10 8 8 6 7 10 10 10 10 10 10 

TOTAL SCORE (100) 83 88 73 80 50 68 59 65 46 54 83 93 66 76 90 93 

 

 

As seen from this table 5.5, SLS/ALS/CAPB/CSA foam system scored the highest marks and was therefore selected as the foam system of 

choice for incorporation into the present formulation. 
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5.2.2 Acid base potentiometric titrations  

5.2.2.1 Determination of suitable alkali for raising the pH of DMP 

In order to adjust the normal pH (acidic) of DMP to a higher value that matched the target 

site pH, a suitable alkali reagent had to be selected. The choice was between sodium 

hydroxide and sodium per carbonate.  

5.2.2.1.1 Titration curve of NaOH vs DMP  
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Figure 5.23: Titration curve of 5M NaOH against 100 ml of DMP
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Table 5.6:  First and second derivative calculations for 5 % w/v NaOH vs. 100 ml  

       DMP titration (figure 3.24)  

 

 

 

Refer to the literature review, section 2.3.4.2.3, for definition of first and second derivative 

functions and for explanation of headings in this and the other related tables below.

Vol. NaOH 

added (ml) 

Mean pH dpH dV dpH/dV d2pH dv2 d2PH/Dv2 

0 (a1) 0.88 (b1) 0.02 (b2- b1) 1 (a2-a1) 0.02    

1 (a2) 0.90 (b2) 0.09 (b3- b2) 1 (a3-a2) 0.09 0.07 [(b3-b2)-(b2- b1)]     1 [(a2-a1)+(a3-a2)]/2 0.07 

2 (a3) 0.99 (b3) 0.26 (b4- b3) 1 (a4-a3) 0.026 0.17 [(b4-b3)-(b3- b2)] 1 [(a4-a3)+(a3-a2)]/2 0.17 

3 (a4) 1.25 (b4) 3.48 (b5- b4) 1(a5 –a4)  3.48 3.22 [(b5-b4)-(b4- b3)] 1 [(a5 –a4)+(a4-a3)]/2 3.22 

4 (a5) 4.73 (b5) 0.28 (b6- b5) 1(a6-a5) 0.28 – 3.2 [(b6-b5)-(b5- b4)] 1 [(a6-a5)+(a5 –a4)]/2 – 3.2 

5 (a6) 5.01 (b6) 6.88 (b7- b6) 1(a7-a6) 6.88 6.6 [(b7-b6)-(b6- b5)] 1 [(a7-a6)+(a6-a5)]/2 6.6 

6 (a7) 11.89 (b7) 0.42 (b8- b7)  1(a8-a7) 0.42 – 6.46 [(b8-b7)-(b7- b6)] 1 [(a8-a7)+(a7-a6)]/2 – 6.46 

7 (a8) 12.31 (b8) 0.14 (b9- b8) 1(a9-a8) 0.14 – 0.28 [(b9-b8)-(b8- b7)] 1 [(a9-a8)+(a8-a7)]/2 – 0.26 

8 (a9) 12.45 (b9) 0.04 (b10- b9) 1(a10-a9) 0.04 – 0.10 [(b10-b9)-(b9- b8)] 1 [(a10-a9)+(a9-a8)]/2 – 0.10 

9 (a10) 12.49 (b10) 0.01 (b11- b10) 1(a11-a10) 0.01 – 0.03 [(b11-b10)-(b10- b9)] 1 [( a11-a10)+(a10-a9)]/2 – 0.03 

10 (a11) 12.50 (b11)       
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Figure 5.24: First derivative plot of potentiometric titration 
of 5 % w/v NaOH against 100 ml DMP
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Figure 5.25: Second derivative plot of potentiometric titration of
5 % w/v NaOH against 100 ml DMP
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From the above, 1
st
 end point = 4.1 ml of NaOH and 2nd end point = 6.2 ml of NaOH. For 

the first derivative (figure 5.24), the end-points are the x-axis values corresponding to the 

two peaks while for the second derivative (figure 5.25), the end points are the x-values 

where lines from peaks cuts the x–axis. 

5.2.2.1.2 Titration curve of Na2CO3.1.5H2O vs DMP 
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Figure 5.26: Titration curve of 5 % w/v Na2CO3.1.5H2O2 against 100 ml DMP
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Table 5.7:  First and second derivative calculations for Na2CO3.1.5H2O2 titration  

 
Vol. 

Na2CO3.1/2H2O2 

added (ml) 

Mean 

pH 

dpH dV dpH/dV d2pH dv2 d2PH/Dv2 

0 0.93 0 5 0    

5 0.93 0.1 5 0.02 0.1 5 0.02 

10 1.03 0.28 5 0.056 0.18 5 0.036 

15 1.31 2.97 5 0.594 2.69 5 0.538 

20 4.28 0.36 5 0.72 – 2.61 5 – 0.522 

25 4.64 0.68 5 0.136 0.32 5 0.064 

30 5.32 1.27 5 0.254 0.59 5 0.118 

35 6.59 1.97 5 0.394 0.70 5 0.14 

40 8.56 0.62 5 0.124 – 1.35 5 – 0.27 

45 9.18 0.24 5 0.048 – 0.38 5 – 0.076 

50 9.42 0.16 5 0.032 – 0.08 5 – 0.016 

55 9.58 0.08 5 0.016 – 0.08 5 – 0.016 

60 9.66  5     

 

 

 

Refer to table 5.6 (page 115) for the explanation of calculations in this table. 
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Figure 5.27: First derivative plot of potentiometric titration of 5 M
Na2CO3.1.5H2O2 against 100 ml DMP
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Figure 5.28: Second derivative plot of potentiometric titration of 5
% w/v Na2CO3.1.5H2O2 against 100 ml DMP
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From the above, 1
st
 end point is 15 ml of Na2CO3.1/2H2O2 and 2

nd
 end point is 36ml of 

Na2CO3.1/2H2O2. 

The titration curves for both NaOH vs. DMP (figure 5.23) and Na2CO3.1/2H2O2 vs. DMP 

(figure 5.26) have two inflection points. This implies that DMP contains either a diprotic 

acid or a mixture of acids. The nature of the NaOH/DMP curve also shows that the acid used 

to lower the pH of DMP could be a strong acid and this is confirmed by the pH of DMP 

(about pH 0.5).  

Combining figure 5.23 and figure 5.26, gives figure 5.29 below, demonstrating the 

efficiency of the two alkalis in adjusting the pH of DMP.  
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Figure 5.29: Graph comparing titration profiles of 5 % w/v of both
NaOH and Na2CO3.1.5H2O2 against DMP
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5.2.2.1.3 Selection of the most suitable alkali for the formulation  

The end point of 5 % w/v NaOH vs DMP titration was found to be 4.0 ml while that of 5 % 

w/v Na2CO3.1/2H2O2    was found to be 18 ml. From this it is clear that NaOH is more 

efficient at adjusting the pH of DMP since just a small amount would be sufficient to adjust 

the pH to desired levels. Hence NaOH was selected for the concentrate formulation. The first 

and second derivative plots (figures 5.24, 5.25, 3.27 and 5.28) were employed because they 

are more accurate at determining the end point than estimations based on the inflection 

points of the titration curves, which is a mere graphical approximation. The first and second 

derivative functions are mathematical procedures and determine end point by calculation of 

the slope of the curve and the rate of change of the slope respectively.  

5.2.2.2 Characterization of the NaOH/KHP buffer system  

Potentiometric acid base titrimetry was also employed to demonstrate the resistance of a 

buffer to pH changes in the envisaged formulation as illustrated in figure 5.30 to 5.33. 

Tables A19, A20, A21 and A22 in the appendix contain the data for figures 5.30, 5.31, 5.32 

and 5.33 respectively. 
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Figure 5.30: Titration curve of 5 % w/v NaOH/0.1 % w/v
KHP buffer against 100ml DMP
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Figure 5.31: Titration curve of  5 % w/v NaOH/1 % w/v
 KHP against 100 ml DMP
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Figure 5.32: Titration curve of 5 % w/v NaOH/2 % w/v 
  KHP buffer against 100 ml DMP
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Figure 5.33: Titration curve of 0.25 % w/v NaOH/2.5
% w/v KHP against 100 ml of DMP
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Table 5.8:  First and second derivative calculations for 5 % w/v NaOH/2 % w/v KHP titration 

 
Vol. 5M NaOH/2M 

KHP buffer added 

(ml) 

Mean 

pH 

dpH dV dpH/dV d2pH dv2 d2PH/Dv2 

0 0.83 0.05 3 0.0167    

3 0.88 0.39 3 0.130  0.34 3 0.11 

6 1.27 1.22 3 0.407 0.83 3 0.28 

9 2.49 0.99 3 0.330 -0.23 3 -0.077 

12 3.48 1.27 3 0.423 0.28 3 0.093 

15 4.75 1.22 3 0.407 -0.05 3 -0.017 

18 5.97 0.59 3 0.197 -0.63 3 -0.21 

21 6.56 0.76 3 0.253 0.17 3 0.057 

24 7.32 4.64 3 1.55 3.88 3 -1.46 

27 11.96 0.26 3 0.0867 -4.38 3 0.017 

30 12.22 0.31 3 0.103 0.05 3  

33 12.53       

 

Refer to table 5.6 (page 115) for the explanation of calculations in this table.
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Figure 5.34: First derivative plot potentiometric titration of % w/v 
NaOH/2 % w/v KHP buffer system against 100 ml DMP
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Figure 5.35: Second derivative plot of potentiometric titration of 5M 
NaOH/2M KHP buffer system against 100 ml DMP
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From the above, 1
st
 end point is 18 ml of 5 % w/v NaOH/2 % w/v KHP and 2

nd
 end point is 

about 28 ml of 5M NaOH/2M KHP. 

Figures 5.30-5.32 shows a trend in which buffering capacity increases with increasing KHP 

concentration. In figure 5.30 the amount of KHP is too low, buffering is negligible (buffer 

capacity = 3.45X10^-4) but as the amount of KHP was increased, buffering capacity also 

picked up as seen in figure 5.31 (buffer capacity =1.10X10^-3) and fig 5.32 shows that titration 

of 5 % w/v NaOH/2 % w/v KHP buffer system against DMP shifted the first end point from 4 

ml (5 % w/v NaOH/0.1 M KHP vs DMP) to 12 and the buffer capacity NaOH/KHP was found 

to be 3.75X10^-3 as calculated in section 5.2.2.2.2. The buffer capacities of figures 5.30 and 

5.31 could be calculated in a similar manner for a buffer volume change from 3 to 4 ml in 

appendix (tables-A19 and A20 respectively). This resistance to pH change should even be 

further enhanced if concentration of KHP was increased further, only that beyond KHP 

concentration of 3 % w/v the solutions became saturated. Consider also the fact that DMP and 

NaOH with which the KHP is contending in trying to maintain constant pH are very strong 

acid and alkali. KHP should have a higher buffer capacity under normal conditions where 

interference is encountered from weak acids and bases. The role of NaOH as adjuster solution 

in the formulation is explained in section 5.2.2.1. Without the NaOH adjuster, the KHP alone 

fails to raise the pH of DMP beyond pH= 1. This is illustrated in figure 3.33 where 0.25 % w/v 

NaOH proved to be insufficient to raise the pH of DMP beyond about 2.5. This demonstrates 

the need for the adjuster solution to be in sufficient strength.   
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Figure 5.36 is a combination of the above four graphs which gives clarity as to the effect of 

increasing the KHP strength in the buffer and reducing the concentration of NaOH beyond a 

specific limit. 
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Figure 5.36: Graph showing the effect of increasing the
concetration of the buffering agent KHP on DMP pH changes
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5.2.2.2.1 Application of the buffer equation to this system 

In the NaOH/KHP buffer as employed, the KHP exists as KP– in accordance with the equation 

below: 

KHP  +  NaOH   KP– + H2O 

As the buffer is added to DMP, the KP– gets converted to its conjugate acid, KPH as shown 

below: 

KP–  + H3O
+
   KHP  + H2O 
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In the initial stages of the titration almost all the KP– (conjugated base) added becomes KHP 

(conjugated acid). As the titration proceeds, KP– species builds up. At  pH 2.2, enough KP- is 

available in the DMP for buffering effect to be appreciable and this buffering continue up to 

pH 5.9 when all the KHP in DMP gets converted to KP–. 

Other buffer systems could be present in the above system e.g. in this product the possibility of 

HCl/HClO
-
 exist. However, it is here assumed the KHP/KP- is the main buffer i.e. the main 

contributor to pH stability. 

Ka = [KP–][H30+]/[KHP]          (1) 

As the titration progresses, a point is reached where [KP–] = [KHP] 

Ka = [H3O
+
]50%/50% 

So, Ka = [H3O
+
]

 
          (2) 

Taking the log and multiplying on both sides gives: 

 pKa = pH = 5.14 at 25
o
C         (3) 

pKa = -log Ka = 5.14   Ka = 7.2x10
-6 

     (4) 

Kb = Kwater/Ka = 1.4x10
–9 

         (5) 

Rearranging equation 1 above gives the Henderson Hasselbalch equation as shown below: 

 pH = pKa + [KP–]/ [KHP]        (5) 
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From this equation, the pH of DMP can be calculated once the ratio of the acid base conjugates 

of KHP is known. The equation applies only to the region between pH 2.2 to 5.9 where KHP 

buffering action is effective (Analchem Resources, 2001). 

5.2.2.2.2 Calculating the buffer capacity of NaOH/KHP buffer system against DMP 

With reference to figure 3.33, when 3ml of 5 % w/v NaOH/2 % w/v KHP buffer system was 

added to 100ml of DMP, the pH of DMP changed from a mean 2.49 to a mean of 3.48. Refer 

to literature review section 2.2.2.2 for explanation of buffer capacity. 

5 % w/v NaOH = 5 g of NaOH in 100 ml = 0.125 moles of NaOH in 100 ml 

→ 1000 ml will have 1.25 moles  

→ Molarity (M) of NaOH = 1.25 M 

Number of moles of NaOH added  =  MV      (1) 

     = 1.25 moles/dm
3 
x 0.003dm

3 
 

Number of moles of NaOH added = 3.75X10^-3 moles 

dpH = 3.48 - 2.49 = 0.99     (2) 

β  = moles of NaOH added/dpH = 3.75x10^-3/0.99 

β = 3.80x10^-3 
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5.2.3  Excipient selection  

5.2.3.1 Initial excipient selection 

The initial excipient selection was guided by factors such as the goals of the formulation, 

cosmetic considerations, route of administration, physical chemical properties and 

compatibility. Excipients for each category are shown in table A23, appendix section.  

5.2.3.2 Final excipient selection 

Safety considerations were foremost in the final selection of excipients.  Only excipients 

regarded as safe by regulatory agencies, and therefore commonly incorporated in various 

registered products, were selected. Final selection was also guided by excipient 

availability/procurement cost considerations. So excipients deemed unsuitable based on the 

foregoing criteria were eliminated from the initial list to come up with the final list which is 

table A24 in the appendix. The selected ingredients were then subjected to drug-excipient 

compatibility studies. 

5.2.4 Compatibility studies 

Taking into account the reputably low predictive power of compatibility studies in general, to 

the extent that some scientists question its very worthiness (Monkhouse & Maderich, 1989), a 

simplified model aimed at predicting rapidly and inexpensively the short and long term 

stability of the mixtures, was adopted.   
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Literature was searched to determine documented compatibilities among the chosen excipients. 

Particularly, various pharmaceutical and cosmetic preparations containing excipients of interest 

were checked to determine if any of the chosen excipients have ever been used together before. 

For the purpose of this study, binary mixtures, each consisting of 20 ml of approximately 1000 

ppm DMP and each of the excipients selected were prepared. The concentrations of the 

excipients were in the ranges recommended for final formulation from literature sources as 

given in section 2.3.4.3. For multiple mixes, to 20 ml of about 1000 ppm DMP, all the selected 

excipients were added in the same concentrations as above. 2 % w/v or v/v was added for those 

excipients whose concentrations could not be determined from literature. The test mixtures 

were placed in glass vials which were then sealed tightly using Teflon – lined screw cap 

(Serajuddin et al., 1999). All tests solutions were in duplicate. 

5.2.4.1 Storage  

The mixtures were placed both in the fridge and at room temperature for three weeks. Vials 

placed at room temperature were wrapped in aluminum foil to exclude light.  

5.2.4.2 Duration of study 

The mixtures were stored for up to 3 weeks depending upon presence of reaction i.e. those that 

reacted were noted and discarded immediately. 

5.2.4.3 Criteria for incompatibility judgment 

The containers were physically inspected carefully during the mixing process and weekly 

during the time of compatibility study (Monkhouse & Maderich, 1989). Indicators which could 

 

 

 

 



 

 

132 

 

suggest possible interaction included: Rise in temperature during mixing which could be 

monitored by thermometry; color/turbidity changes which could be visually monitored; 

abnormal evolution of gases which could be monitored by observation of rate of bubble 

formation; changes in viscosity which could be monitored by changes in liquid thickness; 

detection of strange odors; and unexpected loss of ClO2 determined by Iodometric titration.  

5.2.4.4 Incompatibilities  

1. Mixing ALS and NaOH resulted in release of a gaseous smell typical of that of ammonia 

and the remaining compound looked similar to SLS. It was suspected that NaOH reacted with 

ALS converting it to SLS. The likely reaction is shown below: 

 

CH3
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O
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NH4

+
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CH3
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O
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11 + NH
3 + H
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 ALS       SLS 

Due to this reaction, ALS was not used it the final formulation i.e. recall that the selected foam 

system for the formulation under study was SLA/ALS/CAPB/CSA. The formulation ended up 

with SLS/CAPB/CSA which proved to work well satisfying the TPP. 

2. DMP reacts with anise oil changing to a light blue color 

3. DMP reacts with cinnamon oil to give light blue color 
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3.2.4.5 Compatibilities  

All other excipients used in the experiments and formulation studies, proved to be compatible 

without noticeable reactions or precipitations at the concentrations used. The excipients 

selected after conclusion of compatibility studies were taken for the formulation studies. 

5.2.5 Formulation  

5.2.5.1 Development of the foam concentrate 

Table A25, appendix section, gives the results of the foam concentrate development process. A 

narrative and a schematic presentation of the optimized development method E is given below 

and in figure 5.37 respectively.  

5.2.5.1.1 Preparation of the Buffer/adjuster solution 

To 35 ml of 0.4 M NaOH, add 2.5 g of KHP and shake until completely dissolved. This is the 

NaOH/KHP buffer system. This solution was stored in the fume hood until required. 

5.2.5.1.2 Preparation of foam concentrate 

In a mixing vessel, 5 g of SLS was crushed to a powder, followed by addition of 40ml of 

distilled water and mixing by stirring. Add 5ml of glycerol and bring contents to 70 
o
C. Then 

add 0.5 g CSA with stirring to disperse the CSA. Cool the mixture to room temperature after 

which the NaOH/KHP buffer may be added followed by 5 ml of CAPB. Heat contents to 70 
o
C 

again, with stirring so as to dissolve contents. Cool and add 0.2 g of SXS and 0.25 g of EDTA. 

Make up to 100ml.  
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Figure 5.37: Schematic illustration of the preparation of the foam concentrate  
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5.2.5.2 Optimization of the quantities of NaOH and KHP (buffer system) 

KHP was optimized as explained in section 5.1.3.4.2 and section 5.2.2.2. 2.5 % w/v was found 

to be appropriate level of KHP to be employed in this formulation.  Table A27 in the appendix 

details the optimization of NaOH by means of six progressively prepared prototypes and was 

summarized to table 5.9 which is self-explanatory as shown below.  

Table 5.9: Optimization of NaOH (summary of table A27) 

 

Vol. of 

concentrate 

Prod. I Prod. II Prod.III Prod. IV Prod. V Prod. VI 

pH values Resulting from mixing 5 ml DMP + concentrate + water = 50 ml 

2.0 5.43 3.50     

2.5 6.10 4.22     

3.0  5.37     

4.0  6.44     

5.0 11.60 6.84 5.16 2.79 2.76 4.07 

6.0   6.57    

7.5    3.43 3.41 4.98 

8.0    3.65 3.85 5.30 

9.0    3.87 3.92  

10.0    4.23 4.17 5.60 

12.5     4.65  

15.0     4.88  

 

In figure 5.39 below, the pHs of the mixtures of table 5.9 were plotted against the volumes of 

concentrate. 
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Prototype concentrate VI was found to have optimal level of NaOH at 1.6 % w/v as 

demonstrated in this figure.   

5.2.5.3 Optimization of the quantities of the rest of excipients and selection of the lead  

    formulation 

From table A28, prototype formulation number 6 was taken and a master formula was drawn 

up as illustrated in table 5.10. 
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Table 5.10: Master formula of lead formulation 

 

No. Ingredient  Standard  Concentration  

1 DMP  5 ppm 

2 NaOH  1.6 % w/v 

3 C8H5KO4 (KHP)  2.5 % w/v 

4 SLS  5 % w/v 

5 CAPB  5 % w/v 

6 Glycerol  2 % w/v 

7 EDTA  0.25 % w/v 

8 CSA  0.5 % w/v 

9 SXS  0.25 % w/v 

10 H2O  ≈ 80 % v/v 

Additional ingredients added to mouth rinse concentrate only 

10 NaF  Adults = 1000 ppm 

Children = 500 ppm 

11 Sucralose  2 – 10% 

12 Monoammonium glycyrrhisinate  2 – 10% 

13 peppermint  2.5% 
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The master formula was applicable to all three formulations namely, the VGD, F/SBB, and the 

MRF. The relative excipient quantities in the Master formula are graphically presented in 

figure 3.39 below for visual conceptualization. 
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The foam concentrate was clear and transparent for a day or so but then turned into a milky 

suspension. Most likely this signified emulsion formation. This change was undesirable 
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because the resulting solution was not elegant. Strategies to overcome emulsification could 

have been tried but for lack time. 

5.2.5.4 Determination of the amount of DMP in the DMP/concentrate/water mixture 

From reports in the literature the amount of DMP should be such that the final concentration 

does not exceed 5 ppm (Toxinet, 2004; US EPA, 1999). From the stability study results, the 

slopes of figure 4.1 give the rate of degradation of DMP. For DMP stored in amber colored 

containers in the fridge, calculations indicate that 166 ppm of CD is lost every month. 

Knowing the initial concentration of DMP and the rate of degradation, the concentration of 

DMP on a monthly basis could be predicted and from this a guide for the end user was derived 

that ensures that patient dosage does not exceed 5 ppm as shown in table 5.11 below. The best 

way to achieve 5 ppm of DMP per dose would be to first dilute DMP to 50 ppm. Then 5 ml (50 

ppm) should be mixed with concentrate and water to achieve volume of 50 ml so that the final 

concentration of the product to be administered will always be constant at 5 ppm. 
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Table 5.11: Patient dosage guide for DMP 

 

Month from 

date of 

manufacture 

Conc. of 

DMP 

(ppm) 

DMP:Water mixing ratio 

to achieve 50 ppm 

concentration 

(diluted DMP) 

Concentration of DMP in: 

Conc./5 ml of 50ppm 

DMP/water = 50 ml 

(ppm) 

Month 0 2900 1:57 5 

Month 1 2734 1:54 5 

Month 2 2568 1:50 5 

Month 3 2402 1: 47 5 

Month 4 2236 1:44 5 

Month 5 2070 1:40 5 

Month 6 1904 1:37 5 

Month 7 1738 1:34 5 

Month 8 1572 1:30 5 

Month 9 1406 1:27 5 
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Month 10 1240 1:24 5 

Month 11 1074 1:20 5 

Month 12 908 1:17 5 

Month 13 742 1:14 5 

Month 14 576 1:10 5 

Month 15 410 1:7 5 

Month 16 244 1:4 5 

Month 17 78 1:0.5 5 

 

Note: 

It was observed that the pH of DMP remained the same even after dilution with water to 

achieve 50 ppm. 

5.2.5.5 Final product Dosage formula 

Having determined the amount of DMP per dose of the final product as explained in section 

5.2.5.4 above, the next step was to determine the amount of foam concentrate per dose. 

5.2.5.5.1 Amount of concentrate in the DMP/concentrate/water = 50 ml product  

 

 

 

 



 

 

142 

 

It was found that when the foam concentrate volumes in excess of 10 ml were employed in the 

above mixtures, the resulting mixtures were too thick while foaming capacity was 

compromised when less than about 2 ml of concentrate was employed. Hence 2.5-10 ml was 

identified as the working volume range for the concentrate of which 5 ml was adopted as the 

actual working volume. With this information, the following final product dosage formulas 

were derived: 

A)     VDG and F/SBB 

DF = 5 ml of 50 ppm DMP + 5 ml concentrate + 40 ml water = 50 ml product for application 

Thus, to reconstitute the product for patient administration in the eighth (8) month of DMP 

storage for example, Dilute DMP as per Table 3.10 and mix according to proportions below:  

DF = 5 ml of 1:30 mixture of DMP and water + 5 ml concentrate + 40 ml water = 50 ml 

product for application. 

For other final working volumes, the volumes as stated in the DF can easily be adjusted by 

altering these amounts pro-rata to obtain the desired final volume. 

B)      MRF 

For the MRF, the DMP concentration would have to be determined according to month of storage as 

above and then diluted to 50 ppm. 1 ml of this could then be added to 19 ml of diluted concentrate to 

come up with 2.5 ppm of final solution for application.  

MDF = 19 ml of diluted concentrated + 1 ml of 50 ppm DMP = 20 ml product for application. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

This study was about exploring the possibility of employing the well known antimicrobial 

properties of Chlorine dioxide (CD) in the medical arena. The CD used comes as a South 

African brand of stabilized chlorine dioxide (SCD) known as dioxy MP 14 (DMP). The 

specific objectives of the study were: to evaluate the effectiveness of DMP as a tuberculosis 

(TB) disinfectant/cold sterilant for the possible use for floors, surfaces, and medical 

instruments and related devices.; to investigate the long term stability of DMP; and to 

formulate a vaginal douche (VGD), mouth rinse formulation (MRF), and foot/sit bubble bath 

(F/SBB) foam formulations. It was hypothesized that DMP could find a good niche in medical 

application as a biocide. 

6.1.3 Evaluation of the disinfectant activity of DMP on TB 

The test procedure employed was a modification the European quantitative suspension test, 

European Norm (EN) 14348, involving spectrophotometric evaluation of Mycobatericidal 

activity. M. bovis BCG (Bacillus Calmette-Guérin) was employed as surrogate for 

Mycobacteria tuberculosis (MTB). DMP was found to be more of a sterilizing biocide than 

disinfectant in that it eliminated all Mycobacteria from DMP concentrations of 2900 to 15.6 

ppm. The minimum inhibitory concentration (MIC90 %) of DMP was found to be 12.5 ppm, its 
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concentration x time (CT90 %) value was found to be 12.5 pp.s and its mycobactericidal efficacy 

(ME) value was an 8.8 log reduction in Mycobacteria at concentrations of ≥ 15.6 ppm. 

6.1.2 Long term stability study of DMP 

This stability study highlighted the vulnerability of DMP to degradation by light particularly, 

but also to storage at higher temperatures. When stored in a fridge, DMP had an expiry date of 

about 70 weeks as opposed to 10 weeks when stored in a transparent bottle at room 

temperature and about 20 weeks if store at 40 
o
C. Degradation of DMP was found to follow 

zero order kinetics and the activation energy (Ea) of DMP was found to be 33.1 KJ/mol. Based 

on Arrhenius plot, the expiry date of DMP stored strictly at 25 
o
C was estimated to be 

37.5weeks. The expiry date of DMP stored at 25 
o
C was predicted based on temperature 

coefficient (Q10) estimation to be 17.5 weeks which is expected considering that Q10 prediction 

of expiry dates are very conservative for patient protection.  

6.1.1 Formulation development 

6.1.1.1 Preformulation studies 

6.1.1.1.1 Foam evaluation 

Of all the foam systems studied for incorporation into the above stated formulations, sodium 

lauryl sulphate/ ammonium lauryl sulphate/cocoamidopropyl betaine/cetostearyl alcohol 

(SLS/ALS/CAPB/CSA) scored the highest mark (93). 
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6.1.1.1.2 Selection of pH adjustor, buffer and the rest of the ingredients. 

An adjuster solution and a buffer were needed to be incorporated in the concentrate for raising 

the pH of DMP to match that of the target sites and to maintain the pH at these target site 

levels, respectively. After appropriate potentiometric acid base titrimetric evaluations, sodium 

hydroxide (NaOH) was selected as the pH adjuster. Potassium hydrogen phthalate (KHP) was 

found to be the buffer of choice with a buffering profile that matched the target site pH values. 

The buffer capacities of 5 % w/v NaOH/0.1 % w/v KHP, 5 % w/v NaOH/1% w/v KHP and 5 

% w/v NaOH/2 % w/v KHP were found to be 3.45X10^-4, 1.10X10^-3, and 3.80X10^-3 

respectively, demonstrating increased buffer capacity with increasing concentration of KHP. 

The rest of the other ingredients were selected for their individual pharmaceutical properties. 

6.1.1.1.3 Compatibility studies 

Compatibility studies revealed that NaOH reacts with ammonium lauryl sulphate (ALS), while 

DMP reacts with anise oil, and cinnamon oil. The rest of the ingredients proved to be 

compatible with no noticeable reactions or precipitations at the concentrations used. 

6.1.1.2 Formulation  

The design of the product was such that the DMP and the foam concentrate would come in two 

separate primary containers to be mixed just prior to patient administration/application. 

Therefore formulation efforts were directed towards the foam concentrate 
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6.1.1.2.2 Optimization of excipient quantities 

Initial excipient concentrations were derived from literature estimations. These were refined 

and optimized by developing six prototype formulations with progressively varied ingredient 

concentrations to finally arrive at an optimized formulation that met foam concentrate 

expectations. 

6.1.1.2.3 Dosage formula (DF) 

The dosage formula (DF) for the VGD and F/SBB was found to be: 

MDF = 5 ml of 50 ppm DMP + 5 ml concentrate + 40 ml water = 50 ml product for application 

This could be converted to any amount of product required for patient 

administration/application. The DF of the MRF is different and is shown below. The difference 

is due to the fact that the water aspect of the above MDF would have to be added at the point of 

manufacture, in the MRF, and not at the point of use. 

DF of MRF = 19 ml of diluted concentrated + 1 ml of 50 ppm DMP  

In summary, DMP was found to be a highly effective disinfectant against Mycobacteria. DMP 

also has a reasonable shelf life if appropriately stored. Formulating pharmaceutical 

preparations of DMP is feasible but delicate in that human target site pH ranges from about 3.5 

to about 7 while the pH of DMP is 0.5. Adjusting the pH to target site ranges and buffering of 

DMP pharmaceutical preparations is therefore essential. beyond pH of about 5.2, DMP is 
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unstable and formulation is not feasible. Formulating below pH 3.5 compromises patient 

safety. Formulation is thus only possible between pH 3.5 and 5.2.  

6.2 Recommendations 

There is need for a further study to assess clinical safety of the above formulations especially 

as far as pH values of DMP/concentrate/water mixture are concerned and also to effectively 

assess effectiveness of bitter taste masking for the MRF. DMP has been found to be a highly 

effective mycobactericidal biocide. Studies to assess its compatibility with medical instruments 

and devices are also recommended as well as specific formulations for disinfecting floors and 

surfaces. Studies on the effectiveness of a DMP aerosol for disinfecting TB wards and homes 

of patients particularly the multidrug resistant (MDR) patients are also needed (Lin et al. 

2007).  
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APPENDIX 

TABLE A1: Mycobacterium activity of DMP at various concentrations and exposure times 

 

CONCENTRATION OF DMP USED = 2600PPM (9ML DMP + 0ML H2O)  

EXPOSURE TIME EXP 1 - O.D.  EXP 2 – O.D. EXP3 – O.D. 

30 S 0.0079 -0.0004 0.0015 

1 Minute 0.4377 0.0022 0.0028 

5 Minute 0.0051 0.0001 0.0018 

10 Minute 0.0059 -0.0007 0.0012 

20 Minute 0.0062 -0.0012 0.0006 

-Ve control 0.0084 0.0034 0.0025 

+Ve control 0.4373 0.3955 0.4234 

  
CONCENTRATION OF DMP USED = 1300PPM (4.5ML DMP + 4.5ML H2O) 

EXPOSURE TIME EXP 1 – O.D. EXP 2 O.D. EXP 3 O.D. 

30 S -0.0038 0.0006 0.0002 

1 Minute 0.0038 0.0011 0.0012 

5 Minute 0.0029 -0.0015 0.0002 

10 Minute 0.0046 -0.0008 0.0005 

20 Minute 0.0038 0.0012 -0.0022 

-Ve control 0.0027 0.0010 0.0015 

+Ve control 0.3912 0.4106 0.3645 

  
CONCENTRATION OF DMP USED = 650PPM (2.25ML DMP + 6.75ML H2O) 

EXPOSURE TIME EXP 1 – O.D. EXP 2 – O.D. EXP3 – O.D. 

30 S 0.0011 -0.0004 0.0008 

1 Minute 0.0013 0.0012 0.0012 

5 Minute 0.0025 0.0007 0.0020 

10 Minute 0.0018 0.0017 0.0016 

20 Minute 0.0005 0.0015 0.0008 

-Ve control 0.0013 0.0022 0.0022 

+Ve control 0.3640 0.3815 0.6112 

  
CONCENTRATION OF DMP USED = 325PPM (1.125ML DMP + 7.875ML H2O) 

EXPOSURE TIME EXP 1 – O.D. EXP 2 – O.D. EXP 3 – O.D. 

30 S -0.0013 0.0008 -0.0002 

1 Minute -0.0010 -0.0005 -0.0005 

5 Minute 0.0006 0.0012 -0.0014 

10 Minute -0.0019 0.0015 -0.0008 

20 Minute -0.0018 0.0017 0.0003 
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-Ve control -0.0015 0.0014 0.0010 

+Ve control 0.3761 0.3657 0.5954 

 

  
CONCENTRATION OF DMP USED = 162.5 PPM (0.56 ML DMP + 8.44 ML H2O) 

EXPOSURE TIME    

30S EXP 1 – O.D EXP 2- O.D. EXP 3 – O.D. 

1 Minute -0.0011 0.0003 -0.0007 

5 Minute -0.0015 -0.0014 -0.0002 

10 Minute -0.0017 -0.0008 -0.0016 

20 Minute 0.0016 -0.0005 -0.0010 

-Ve control 0.0038 -0.0010 -0.0010 

+Ve control 0.4779 0.4372 0.4675 

  

  

The above results show that exposure at 30 s is enough to effectively kill bacteria and there is 

consistency in killing at higher exposure times.  Therefore the rest of the study, which was meant 

to accurately determine the MIC, was restricted to the 30 s exposure to.  

Table A2:  Mycobactericidal activity of DMP at various concentrations and a fixed exposure  

          time of 30 s 

 

30S EXPOSURE TIME  

DISINFECTANT 

(DMP + H2O = 9 ML) 

DMP CONC 

(PPM) 

EXP 1 - O.D. EXP 2 – O.D. EXP 3 – O.D. 

1.0 ML + 8.0 ML  28.9 -0.0006 -0.0014 -0.0011 

0.7 ML + 8.3 ML 20.2 -0.0014 -0.0005 0.0008 

0.5 ML + 8.5 ML 14.4 -0.0003 0.0006 0.0006 

0.4 ML + 8.6 ML 11.5 0.1102 0.0355 0.2053 

0.3 ML + 8.7 ML 8.7 0.3421 0.3087 0.3536 

0.2 ML + 8.8 ML 5.7 0.3132 0.3542 0.3652 

0.1 ML + 8.9 ML 3.0 0.4707 0.4812 0.4797 
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Table A3: Changes in concentration of CD with time in the DMP solutions 

 

STORAGE 

CONDITIONS 

ROOM  TEMPERATURE 

(20 – 30 
O
C) 

OVEN 

(40 
O
C) 

FRIDGE 

(2 – 8 
O
C) 

TIME 

(WEEK) 

Transparent 

bottle 

Amber 

bottle 

Transparent 

bottle 

Amber 

bottle 

Transparent 

bottle 

Amber 

0. 2900. 2900. 2900. 2900. 2900. 2900. 

1. 2361. 2765. 2563. 2496. 2900. 2900. 

2. 2079. 2765. 2428. 2293. 2765. 2765. 

3. 1754. 2698. 2293. 2158. 2765. 2765. 

4. 1349. 2496. 2158. 1889. 2765. 2698. 

5. 1214. 2496. 2079. 1754. 2698. 2698. 

6. 944. 2361. 1889. 1551. 2698. 2698. 

7. 674. 2361. 1686. 1349. 2563. 2563. 

8. 472. 2293. 1484. 1214. 2563. 2563. 

9. 207. 2293. 1349. 1079. 2496. 2563. 

10. 0. 2158. 1214. 809. 2496. 2428. 

11.   2158. 1147. 674. 2428. 2428. 
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12.   2079. 944. 472. 2428. 2428. 

13.   2079. 805. 337. 2361. 2361. 

14.   1889. 674. 135. 2361. 2361. 

15.   1889. 540. 0. 2293. 2361. 

16.   1889. 472.   2293. 2293. 

17.   1754. 337.   2158. 2293. 

18.   1686. 205.   2158. 2158. 

19.   1686. 67.4   2158. 2158. 

20.   1686. 0.   2079. 2079. 

21.   1551.     2079. 2079. 

22.   1551.     1889. 2079. 

23.   1551.     1889. 1889. 

24.   1349.     1889. 1889. 

25.   1349.     1754. 1889. 

26.   1349.     1754. 1889. 

27.   1214.     1686. 1754. 

28.   1214.     1686. 1754. 

29.   1214.     1551. 1686. 
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30.   1079.     1551. 1686. 

31.   1079.     1484. 1686. 

32.   1079.     1484. 1551. 

33.   944.     1349. 1551. 

34.   944.     1349. 1484. 

35.   809.     1349. 1484. 

36.   809.     1349. 1349. 

37.   742.     1214. 1349. 

38.   742.     1214. 1349. 

39.   674.     1214. 1349. 

40.   674.     1079. 1214. 

41.   674.     1079. 1214. 

42.   540.     1012. 1214. 

43.   540.     944. 1012. 

44.   405.     944. 1012. 

52.   135.     674. 742. 

53.   0.     674. 742. 
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Table A4: The target product profile for VGD, MRF, and F/SBB DMP formulations 

 

A TPP GENERAL STATEMENT 

i Project name PHARMACEUTICAL FORMULATION BASED ON DIOXY MP 

14 - mouth rinse, vaginal douche and foot bubble/ sit bath 

ii Project category Formulation of an existing drug with well studied biocide properties, but having 

unique challenges in terms of formulation 

iii Value to patients Powerful oxidizing antimicrobial agent, broad spectrum of action, low probability 

of developing resistance 

iv Rationale for success The stability study has shown that under ideal storage conditions, DMP can remain 

in effective concentrations for over a year. This proves that a reasonably stable 

product is assured. Furthermore, pH of DMP can be adjusted to about 5.2 without 

encountering stability problems. This is compatible to target site pH requirements 

for all the planned formulations. The chosen dosage form, which is foam 

formulation, is proven to have good drug delivery properties and could even be 

more ideal for the gaseous CD.  

v Factors for success - Huge market for a multipurpose antiseptic drug e.g. the problem of 

athlete‟s foot among miners, footballers; multiple vaginal infections in the 

immune compromised, diabetics etc.  

- Powerful well studied biocidal properties of CD  

- Lower likelihood of emergence of resistance as compared to other drugs. 

vi Risk factors - The extremely low pH of DMP is not amenable to target site application.  

- Upon adjustment of pH, stability problems of the DMP arise above pH 5.2 

B FORMULATION GOALS 

The intention is to develop a 

product that is: 

- Scalable and  manufacturable,  

- Chemically and physically stable throughout product shelf life 
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- Bio-available i.e. must contain required amount of API in each dose that 

must reach target site 

- Has Excipients that are Generally regarded as safe (GRAS) and 

convincing rationale for inclusion of each 

- Meet quality standards to ensure efficacy and safety 

- Capable of achieving regulatory compliance 

C CLINICAL TPP ATTRIBUTES 

 PRODUCT 

ATTRIBUTES 

WANTS MUST ANNOTATION 

I Drug related 

i Indication Treatment and prophylaxis of:  

 

Treatment of:  

a. MRF - All bacterial, fungal, 

viral infections of the 

oral cavity 

- All bacterial, 

fungal, viral 

infections of the 

mouth cavity 

{{261 Novak, 

J. 2008; 262 

Ogata, 

2008}} 

 

 

b. VGD  - All bacterial, fungal, 

viral and parasitic 

infections of the vagina 

and vulva 

- All bacterial, 

fungal, viral and 

parasitic infections 

of the vagina and 

vulva 

c. F/SBB - All bacterial, fungal, 

viral infections 

afflicting the skin and 

those related to 

hemorrhoids. 

- All bacterial, 

fungal, viral 

infections 

afflicting the skin 

and those related to 
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hemorrhoids 

ii Route of administration Oral, P.V.  topical for each of 

the above formulations 

respectively 

Oral, P.V.  topical for each 

of the above formulations 

respectively 

 

iii Dosage range    

a. MRF 0.1 to 5 ppm  {{28 US EPA 

1999}} b. VGD 0.1 to 5 ppm  

c. F/SBB bath  0.1 to 5 ppm  

iv Dosage frequency At least BD Not less than BD Not studied 

v Expected duration of 

treatment 

Till remission of symptoms; 

stop after 1 wk if no response 

Not more than I month of 

continuous use 

Not studied 

vi Volume per dose   Convenient 

volumes a. Mouth rinse 20 – 40 ml 20 ml 

b. VGD 100 – 500 ml 200 ml 

c. FBB/SB 2 – 5 liters FBB = 5 L; SB = 5 L 

     

II Product related    

i pH    

a. MRF pH 4.5 – 5.2 pH 4.5 Refer to 

literature review b. VGD pH 3.8 – 4.5 pH 4.5 

c. FBB/SB pH 4.5 - 5.2 pH 5.0 

ii Excipients compedial Yes Yes literature review 

iii DILUTIONS 

a. Mouth rinse DMP + diluted concentrate  DMP + diluted concentrate  Refer to 

section 5.2.5.5 b. VGD DMP + concentrate + water DMP + concentrate + water 

c. FBB/SB DMP + concentrate + water DMP + concentrate + water 
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vi Storage conditions DMP: - Fridge 2 – 8 oC 

 

<10 oC 

 

Refer to Stability 

study 

vii Shelf life DMP: 1 – 1.5 years 

Concentrate: no studies done 

1 year 

No studies done 

Stability study 

viii caution  Concentrate and DMP can 

cause skin burns; Not for 

internal use 

NaOH/KHP 

Buffer study 

III Legal related 

i Freedom to operate yes yes Lit review 

ii Product intellectual 

property 

Formula/process could 

be patented if possible 

  

     

IV Laboratory related 

a. Cost of ingredients Only affordable ingredients 

used 

affordability Price lists 

b. Equipment needed Common laboratory apparatus available Lab stock list 

c Duration of project 1 – 2 years 3 years  
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Table A5: Foamability profiles of various FA/FAC

CONC. MP9 SLS SLS/ALS CAPB SLS/ALS/CAPB ALS NEO DAL TWEEN 20 SLS/ALS/SNLSS 

0.05 748. 750. 752. 1057. 1063. 1060. 1115. 1115. 1115. 950. 951. 949. 1138. 1138. 1144. 1008. 1012. 1009. 548. 549. 551.             

0.10 1000. 1000. 1000. 1142. 1141. 1139. 1181. 1178. 1181. 1098. 1099. 1102. 1200. 1200. 1200. 1119. 1120. 1120. 640. 640. 640. 670. 670. 670. 549. 550. 550. 

0.50 1092. 1089. 1088. 1230. 1230. 1230. 1250. 1250. 1250. 1160. 1158. 1162. 1272. 1268. 1268. 1218. 1218. 1223. 758. 761. 762. 719. 718. 722. 1000. 1000. 1000. 

1.00 1120. 1120. 1119. 1260. 1260. 1260. 1310. 1310. 1310. 1195. 1194. 1197. 1310. 1310. 1310. 1250. 1250. 1250. 830. 830. 830. 900. 900. 900. 1100. 1098. 1101. 

2.00             1340. 1338. 1342. 1200. 1200. 1200. 1340. 1340. 1340.                   1132. 1131. 1128. 
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FOAM DECAY/DRAINAGE AGAINST TIME - TABLES 

     

      

Table A6: CAPB and CAPB/CSA at pH 4.0 

 

Table A7: TWEEN-20 and TWEEN-20/CSA at 

pH 4.

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

TIME 

(MIN) 

FOAM COLLAPSE 

 

FOAM DRAINAGE - 

CAPB CAPB/CSA 

 

CAPB CAPB/CSA 

0. 

  
100. 100. 0.0 0.0 

 10. 

  
 100.  15.0 

20. 

  
99.  18.0  

30. 

  
 99.  15.2 

40. 

  
98.  18.8  

60. 

  
98.  18.9  

70. 

  
 80.  15.6 

80. 

  
60.  19.0  

90. 

  
 40.  15.8 

100. 

  
35.  19.0  

110. 

  
 25.  15.9 

120. 

  
30.  19.0  

TIME 

(MIN) 

FOAM COLLAPSE FOAM DRAINAGE 

TWEEN-

20  

TWEEN-

20/CSA  

TWEEN-

20  

TWEEN-

20/CSA  

0. 

  
100. 100. 0.0 0.0 

10. 

  
60.   17.8   

20. 

  
25. 100. 18.0 14.9 

30. 

  
22.   18.2   

80. 

  
  100.   16.9 

  

  
        

120. 

  
  100.   16.9 

  

  
        

160. 

  
  100.   16.9 

  

  
        

200. 

  
  99.   16.9 
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Table A8: SLS and SLS/CSA at pH 4.0 

  
Table A9: ALS and ALS/CSA at pH 4.0     

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIME 

(MIN) 

FOAM COLLAPSE 

FOAM 

DRAINAGE 

 

ALS 

 
ALS/CSA 

0. 

 
100. 100. 0.0 0.0 

20. 

 
98. 99. 18.5 20.9 

40. 

 
97. 98. 19.0 21.2 

60. 

 
97. 96. 19.1 21.6 

80. 

 
90. 90. 19.1 21.7 

100. 

 
86. 85. 19.3 21.8 

120. 

 
82. 84. 19.5 21.8 

160. 

 
80. 72. 19.5 21.8 

180. 

 
76. 64. 19.6 21.9 

200. 

 
76. 60. 19.6 22.0 

220. 

 
71. 55. 19.7 22.0 

240. 

 
70. 54. 19.7 22.0 

260. 

 
70. 50. 19.7 22.0 

280. 

 
70. 46. 19.7 22.0 

300. 

 
70. 

 
19.7 

 

320. 

 
70. 

 
19.7 

 

TIME 

(MIN) 

FOAM COLLAPSE DRAINAGE 

SLS  SLS/CSA SLS  SLS/CSA  

 0. 

  

100. 100. 0.0 0.0 

30. 

  

98.   20.6   

40. 

  

  97.   14.0 

50. 

  

88.   20.9   

70. 

  

62.   20.9   

80. 

  

  96.   14.5 

110. 

  

45.   21.0   

120. 

  

  95.   14.6 

130. 

  

35.   21.0   

160. 

  

  94.   14.6 

170. 

  

33.   21.0   

200. 

  

  94.     
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Table A10: SLS/ALSCAPB and SLS/ALS/CAPB/CSA at pH  4.0 

 
TIME 

(MIN) 

FOAM COLLAPSE  FOAM DRAINAGE  

SLS/ALS/CAPB SLS/ALS/CAPB/CSA 

 

SLS/ALS/CAPB SLS/ALS/CAPB/CSA 

0. 100. 100. 0.0 0.0 

20. 100. 100. 21.0 31.8 

40. 99.  27.0  

60. 98. 98. 28.2 33.8 

80. 98.  28.9  

100.  98.  34.0 

110. 98.  29.1  

140.  97.  34.4 

150. 98.  29.6  

180.  96.  34.6 

190. 98.  29.8  

220.  94.  34.7 

230. 97.  29.8  

260.  93.  34.8 

270.  96.  29.9  

 

 

Table  A11: SLS/ALS and SLS/ALS/CSA at pH 4.0 

 

 

 

 

 

    

   

 

 

 

 

 

 

 

 

 

 

 

 

TIME 

(MIN) 
FOAM COLLAPSE FOAM DRAINAGE 

SLS/ALS SLS/ALS/CSA SLS/ALS SLS/ALS/CSA 

0. 100. 100. 0.0 0.0 

20. 98. 98. 20.8 16.0 

40. 97. 97. 21.2 16.5 

60. 96. 
 

21.2 
 

80. 

  
97. 

 
17.0 

100. 94. 
 

21.3 
 

120. 

  
96. 

 
17.0 

140. 82. 
 

21.3 
 

160. 

  
96. 

 
17.1 

180. 71. 
 

21.4 
 

200. 

  
95. 

 
17.1 

220. 70. 
 

21.5 
 

240. 

  
95. 

 
17.1 

260. 

 
70. 

 
21.5 
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Table A12: SNLSS and SNLSS/CSA at pH 5.5 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A13: MP 9 and MP9/CSA at pH 4.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIME 

(MIN) 
FOAM COLLAPSE FOAM DRAINAGE 

SNLSS SNLSS/CSA SNLSS SNLSS/CSA 

0. 

 
100.0 100. 0.0 0.0 

20. 

 
98.0 98. 17.8 14.6 

40. 

 
39.1 96. 18.6 14.9 

60. 

 
28.0 96. 18.8 15.2 

80. 

 
26.0 95. 18.9 15.4 

100. 

 
25.0 94. 18.9 15.5 

140. 

 
22.0 94. 18.9 15.6 

180. 

  
94. 

 
15.6 

220. 

  
94. 

 
15.7 

260. 

     

TIME 

(MIN) 

MP 

9 

MP 

9/CSA 

MP 9 

FOAM 

DRAINGE 

MP 9/CSA 

FOAM 

DRAINAGE 

0. 
 

100. 100. 0.0 0.0 

20. 
 

65. 25. 16.3 18.2 

40. 
 

31. 24. 16.8 18.2 

60. 
     

80. 
 

28. 24. 16.9 18.2 

100. 
 

26. 24. 16.9 18.2 
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Table A14: SLS/ALS/CAPB and SLS/ALS/CAPB/CSA   

           

TIME 

(MIN) 
FOAM COLLAPSE - FOAM DRAINAGE 

SLS/ALS/CAPB SLS/ALS/CAPB/CSA SLS/ALS/CAPB SLS/ALS/CAPB/CSA 

0. 100. 100. 0.0 0.0 

20. 100. 100. 21.0 31.8 

40. 99. 
 

27.0 
 

60. 98. 98. 28.2 33.8 

80. 98. 
 

28.9 
 

100. 
 

98. 
 

34.0 

110. 98. 
 

29.1 
 

140. 
 

97. 
 

34.4 

150. 98. 
 

29.6 
 

180. 
 

96. 
 

34.6 

190. 98. 
 

29.8 
 

220. 
 

94. 
 

34.7 

230. 
 

97.  
29.8 

 

260. 
 

 
93. 

 
34.8 

270. 
 

96.  
29.9 
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Table A15: ALS and  ALS/CSA at PH 5.5              Table A16: SLS and SLS at PH 5.5 

  

   

TIME 

(MIN) 

FOAM 

COLLAPSE 

FOAM 

DRAINAGE 

ALS ALS/CSA ALS ALS/CSA 

0. 

 
100. 100. 0.0 0.0 

40. 

 
98. 98. 21.0 18.0 

80. 

 
89. 97. 21.5 18.4 

120. 

 
78. 92. 21.8 18.4 

160. 

 
67. 90. 21.8 18.5 

200. 

 
60. 85. 21.9 18.5 

240. 

 
58. 84. 21.9 18.6 

280. 

 
58. 78. 21.9 18.6 

320. 

 
58. 

 
21.9 

 

TIME 

(MIN) 

FOAM COLLAPSE FOAM 

DRAINAGE 

 SLS SLS/CSA SLS SLS/CSA 

0. 

  

100. 100. 0.0 0.0 

40. 

  

96. 98. 18.2 17.1 

80. 

  

82. 96. 18.5 17.5 

120. 

  

62. 93. 18.6 17.9 

160. 

  

52. 90. 18.8 17.9 

200. 

  

20. 85. 18.8 17.9 

240. 

  

  83.   17.9 

280. 

  

  81.   17.9 

320. 

  

  78.   17.9 

  

  

  78.   17.9 
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Table A17: Titration OF 100 ml DMP against 5 % w/v NaOH  

Vol. of buffer 

(ml) 

pH of DMP 

1st trial 2nd trial 3rd trial 

0. 0.94 0.87 0.83 

1. 0.95 0.89 0.87 

2. 1.01 0.99 0.96 

3. 1.17 1.32 1.26 

4. 4.71 4.79 4.70 

5. 4.88 5.17 4.98 

6. 12.02 12.10 11.54 

7. 12.25 12.37 12.30 

8. 12.42 12.47 12.46 

9. 12.48 12.49 12.51 

10. 12.50 12.49 12.52 

 

Table A18:  Titration of 5 % w/v Na2CO3.1/2 H2O2 against 100 ml DMP  

Vol. of Na2CO3.1.5H2O2 

(ml) 

pH of DMP 

 

1st trial 2nd trail 3rd trial 

0. 0.98 0.90 0.91 

5. 0.98 0.91 0.91 

10. 1.06 1.01 1.02 

15. 1.27 1.34 1.31 

20. 3.85 4.53 4.46 

25. 4.63 4.67 4.62 

30. 5.01 5.52 5.44 

35. 6.14 6.82 6.80 

40. 8.05 8.86 8.78 

45. 9.04 9.29 9.21 

50. 9.32 9.50 9.44 

55. 9.53 9.63 9.58 

60. 9.62 9.73 9.64 
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Table A19:  Titration of 5 % w/v NaOH/0.1 % w/v KHP against 100 ml of DMP 

Vol. of buffer 

(ml) 

pH of DMP 

1 st trial 2nd trial 3rd trial 

0. 0.90 0.500 0.88 

1. 0.91 0.660 0.92 

2. 1.04 0.850 1.08 

3. 1.41 1.410 1.40 

4. 5.00 5.060 5.02 

5. 5.40 6.170 5.60 

6. 11.71 11.920 11.90 

7. 12.36 12.360 12.37 

8. 12.48 12.460 12.46 

9. 12.48 12.500 12.48 

10. 12.50 12.520 12.50 

 

 

Table A20: Titration of 5 % w/v NaOH/1 % w/v KHP against 100 ml of DMP 

Vol. of buffer 

(ml) 

pH of DMP 

1 st trial 2nd trial 3rd trial 

0. 0.98 0.83 0.89 

1. 1.08 0.89 0.91 

2. 1.17 1.04 1.03 

3. 1.45 1.58 1.40 

4. 2.38 2.74 2.75 

5. 3.69 4.93 4.38 

6. 5.39 5.74 5.58 

7. 6.08 6.71 6.40 

8. 7.24 10.52 8.86 

9. 11.80 12.17 12.04 

10. 12.35 12.38 12.35 

11. 12.51 12.50 12.50 

12. 12.58 12.55 12.56 
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Table A21:  Titration of 5 % w/v NaOH/2 % w/v KHP against 100 ml of DMP 

Vol. of buffer 

(ml) 

pH 0f DMP 

 1 st trial 2nd trial 3rd trial 

0.0 0.95 0.63 0.90 

3.0 0.99 0.69 0.96 

6.0 1.38 1.32 1.12 

9.0 2.73 2.43 2.32 

12.0 3.48 3.31 3.65 

15.0 5.05 4.67 4.53 

18.0 6.06 5.90 5.96 

21.0 6.65 6.45 6.59 

24.0 7.53 7.17 7.25 

27.0 12.01 11.86 12.02 

30.0 12.35 12.14 12.18 

33.0 12.56 12.61 12.42 

 

Table A22: Titration of 0.25 % w/v NaOH/2.5 % w/v KHP against 100ml DMP 

Vol. of buffer  

(ml) 

pH of DMP 

1 st trial 2 nd trial 3 rd trial 

0. 0.61 0.64 0.60 

10. 0.76 0.92 0.80 

20. 0.82 0.93 0.85 

30. 0.94 1.02 1.00 

40. 1.13 1.17 1.15 

50. 1.41 1.42 1.42 

60. 1.87 1.85 1.86 

70. 2.37 2.33 2.35 

80. 2.66 2.63 2.67 

90. 2.83 2.82 2.84 
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Table A23: Initial list of excipient  

 

No. Functional category Possible excipients  

1 Foaming agents SLS, ALS, CAPB (selected from pre-formulation studies) 

2 Foam stabilizers CSA, Coco amide DEA, Coco amide MEA 

2 Buffer systems KHP/NaOH, citric acid/sodium citrate 

3 Moisturizer/humectants Glycerin, urea, propylene glycol 

4 Metal chelating agents EDTA 

5 hydro trope SXS 

6 sweeteners Sucrose, sucralose, xylitol, monoammonium glycyrrhisinate 

7 Flavourants Anise oil, cinnamon oil, peppermint oil 

8 Prevent tooth decay NaF, SnF2, Na2PO3F 

9 Thickeners NaCl, CAPB, PVP 
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Table A24: Final List of excipients 

 

No. Functional category Final excipient choice  

1 Foaming agents SLS, ALS, CAPB  

2 Foam stabilizers CSA 

2 Buffer systems KHP/NaOH 

3 Moisturizer/humectants Glycerin 

4 Metal chelating agents EDTA 

5 hydro trope SXS 

6 sweeteners sucralose, monoammonium glycyrrhisinate 

7 Flavourant peppermint oil 

8 Prevent tooth decay NaF 

9 Thickeners  CAPB 
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Table A25: Development of foam concentrate 

 

Method procedure Comments Technique to 

overcome challenge 

challenges 

A  To 50 ml distilled water in the mixing vessel, add all the 

other ingredients with stirring. Make up to 100 ml 

Phase separation, lack 

of uniformity, lumpy, 

possible chem. reaction 

Prepare buffer system 

separate from other 

ingredients (OI) 

B Prepare NaOH/KHP buffer system (35 ml) separately. 

Then, to 40ml of distilled water, add the rest of the 

ingredients with stirring. Add the two systems together and 

make up to 100 ml 

Phase separation, lack 

of uniformity, lumpy 

Add OI preparation 

systematically starting 

with the water soluble 

ones first 

C Prepare NaOH/KHP buffer system (35 ml) separately, 

Then, to 40 ml of distilled water, add all water soluble 

ingredients with stirring. Mix the two systems together with 

stirring. Finally add the water insoluble ingredients.  

Phase separation, lack 

of uniformity upon 

addition of  buffer 

system 

Heat to 70 OC to 

disperse water insoluble 

e.g CSA and again after 

addition of buffer 

system 

D Prepare NaOH/KHP buffer system (35 ml) separately, 

Then, to 5 g of SLS in another beaker, add 40 ml of 

distilled water followed by 1 ml of CAPB. Mix thoroughly 

followed by addition of glycerol. Heat to 70OC and add by 

CSA. Mix the two systems together with stirring. Next Add 

with stirring followed by heating. After cooling, finally add 

SXS, EDTA and make up to 100ml with water.  

Phase separation 

concentrate initially but 

(aging problems) 

Add sufficient thickener 

(CAPB chosen because 

it is also a foaming 

agent) 

E The  same as method D but with 5 ml CAPB turns milky after a day to be done 
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of storage 

Special case of  the Mouth rinse 

F Dilute concentrate E above with distilled water to levels 

appropriate for a ready to use concentrate solution 

Bitter taste, poor odor  Mask taste and flavor 
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Table A26: initial excipient quantities used during the development of the foam concentrate  

 

No. Ingredient  Concentration  

1 NaOH 6 % w/v 

2 KHP 2.5 % w/v 

2 SLS 3 % w/v 

3 CAPB 3 % v/v 

4 Glycerol 2 % v/v 

5 EDTA 0.1 % w/v 

6 CSA 0.2 % w/v 

7 SXS 0.2 % w/v 

8 NAF 500 ppm 

9 Sucralose 2 % w/v 

10 Monoammonium glycyrrhisinate 2 % w/v 

11 Peppermint  2 % v/v 

12 Distilled water  To finally make up to 100 ml 
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Table A27: Optimization of the levels NaOH in the concentrate 

 

Product I 

Conc. of NaOH =  6 % w/v                                                    pH of concentrate = 12.85                                                                    

 Conc. of other excipients as in Table A6                             pH of DMP =  0.5                                                                      

Concentrate  

Vol. used (ml) 

Vol. of DMP 

used (ml) 

Vol. of H2O 

used (ml) 

Total vol. used 

(ml) 

pH of prod. I 

2 5 43 50 5.43 

2.5 5 42.5 50 6.10 

5 5 40 50 11.60 

Product II 

Conc. of NaOH =  4 % w/v                                                      pH of concentrate =  12.23                                                                   

Conc. of other excipients as in Table A6                                 pH of DMP = 0.5                                                                       

Concentrate  

vol. used (ml) 

Vol. of DMP 

used (ml) 

Vol. of H2O 

used (ml) 

Total vol. (ml) pH of prod. I 

5 5 40 50 6.84 

4 5 41 50 6.44 

3 5 42 50 5.37 
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2.5 5 42.5 50 4.22 

2 5 43 50 3.5 

Product III 

Conc. of NaOH =   2 % w/v                                                     pH of concentrate = 13.2                                                                    

Conc. of other excipients as in Table A6                                pH of DMP =  0.5                                                                      

concentrate  

Vol. used (ml) 

Vol. of DMP 

used (ml) 

Vol. of H2O 

used (ml) 

Total vol. (ml) pH of prod. I 

5 5 40 50 5.16 

6 4 40 50 6.57 

Product IV 

 

Conc. of NaOH =  1.2 % w/v                                                      pH of concentrate =  12.25                                                                   

Conc. of other excipients as in Table A6                                    pH of DMP =   0.5                                                                     

concentrate  

Vol. used (ml) 

Vol. of DMP 

used (ml) 

Vol of H2O used 

(ml) 

Total vol. (ml) pH of prod. I 

5 5 40 50 2.79 

7.5 5 37.5 50 3.43 
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8 5 37 50 3.65 

9 5 36 50 3.87 

10 5 35 50 4.23 

Product V 

Conc. of NaOH =  1 % w/v                                                      pH of concentrate =  12.90                                                                   

Conc. of other excipients as in Table A6                                 pH of DMP =  0.5                                                                     

concentrate  

Vol. used (ml) 

Vol. of DMP 

used (ml) 

Vol. of H2O 

used (ml) 

Total vol. (ml) pH of prod. I 

5 5 40 50 2.76 

7.5 5 37.5 50 3.41 

8 5 37 50 3.85 

9 5 36 50 3.92 

10 5 35 50 4.17 

12.5 5 33.5 50 4.65 

15 5 30 50 4.88 

Product VI 
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Conc. of NaOH = 1.6 % w/v                                                       pH of concentrate = 12.58                                                                    

Conc. of other excipients as in Table A6                                    pH of DMP =  0.5                                                                      

concentrate  

Vol. used (ml) 

Vol. of DMP 

used (ml) 

Vol of H2O used 

(ml) 

Total vol. (ml) pH of prod. I 

5 5 40 50 4.07 

7.5 5 37.5 50 4.98 

8.0 5 37 50 5.3 

10 5 35 50 5.6 
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Table A28: Optimization of the quantities of the rest of excipients using Prototype concentrates 

 

Ingredien

t 

Prototype 

formulation  

1 

Prototype 

formulation 

2 

Prototype 

formulation 

3 

Prototype 

formulation 

4 

Prototype 

formulation 

5 

Prototype 

formulation 

6 

Concentration (% v/v or % w/v unless specified) 

SLS 10 7.5 2 4 3 5 

CAPB 10 7.5 2 4 3 5 

Glycerol 2 4 8 6 7 5 

CSA 0.5 0.5 0.5 0.5 0.5 0.5 

NAOH 1.6 1.6 1.6 1.6 1.6 1.6 

KHP 2.5 2.5 2.5 2.5 2.5 2.5 

EDTA 0.25 0.25 0.25 0.25 0.25 0.25 

SXS 0.2 0.2 0.2 0.2 0.2 0.2 

H2O 67.05 73.55 80.35 79.55 79.95 80.05 

comments Too thick 

(paste) 

Glycerol not 

Too thick  

 

Too much 

glycerol.  

Foaming 

Not that bad Too much 

glycerol. 

Foaming 

optimal 
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enough 

 

compromised a 

bit.  

compromised 

a bit. 

Special case of mouth rinse (dilute the above optimized concentrate 6 with distilled water in a 1:4, then add 

the ingredients below) 

NaF   Adult = 1000 ppm 

Children = 500 ppm 

sucralose  5 - 10 

Monoamm-onium 

glycyrrhizi-nate 

 5 - 10 

peppermint  0.5 
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