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Summary 

Aim 

The aim of this study was to evaluate, in-vitro, the shear bond strength (SBS) and the resultant 

failure pattern after debonding of metal orthodontic brackets bonded with Transbond
TM 

XT adhesive 

resin cement and RelyX
TM 

Unicem 2 self-adhesive resin cement to pre-treated (35% ortho-

phosphoric acid and silane coupling agent application) IPS eMax and porcelain veneered zirconia 

crowns. 

 

Material and methodology 

A Typhodont maxillary lateral incisor was used and prepared in a conventional manner to receive a 

full ceramic crown. A CAD (computer aided design)/ CAM (computer aided manufacturing) 

machine was used to scan the prepared tooth and manufacture 40 IPS eMax crowns and 40 porcelain 

veneered zirconia crowns. Half the number of IPS eMax crown specimens (ie. 20) and half the 

number of porcelain veneered zirconia crown specimens (ie. 20) were thermocycled (ie. to mimic 

thermal changes which occur in the mouth), from 5 to 55
o 

for 500 cycles as recommended by the 

International Organization for Standardization (ISO 6872, 2008). The remaining 20 IPS eMax crown 

specimens and 20 porcelain veneered zirconia crown specimens remained new and unexposed to 

thermal changes. The facial surfaces of all the thermocycled and non-thermocycled crown specimens 

were then etched. Etching of all the ceramic bonding surfaces was performed by the application of 

35 per cent ortho-phosphoric acid liquid for 2 minutes, followed by a thin layer of a ceramic primer. 

A lateral incisor metal bracket with a bracket base area of 9mm
2 

(as confirmed by the manufacturer) 

was bonded to each of the etched and silane treated ceramic crown specimens and separated in the 

following manner: Group 1: (10 thermocycled, etched and silane treated IPS eMax and 10 
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thermocycled, etched and silane treated porcelain veneered zirconia crown specimens) RelyX™ 

Unicem 2 self-adhesive resin cement was used to bond the bracket to the ceramic crown specimens, 

Group 2:  (10 thermocycled, etched and silane treated IPS eMax and 10 thermocycled, etched and 

silane treated porcelain veneered zirconia crown specimens) Transbond™ XT light cure adhesive 

primer was first applied onto the bonding surface of the crowns and then Transbond™ XT adhesive 

resin was used to bond the bracket to the ceramic crown specimens, Group 3: (10 non-thermocycled, 

etched and silane treated IPS eMax and 10 non-thermocycled, etched and silane treated porcelain 

veneered zirconia crown specimens) RelyX™ Unicem 2 self-adhesive resin cement was used to bond 

the bracket to the ceramic crown specimens, Group 4: (10 non-thermocycled, etched and silane 

treated IPS eMax and 10 non-thermocycled, etched and silane treated porcelain veneered zirconia 

crown specimens) Transbond™ XT light cure adhesive primer was first applied onto the bonding 

surface of the crowns and then Transbond™ XT adhesive resin cement was used to bond the bracket 

to the ceramic crown specimens. 

 After bonding all samples were stored in distilled water for 24 hours before being submitted to the 

shear bond strength test.
 
Debonding forces in Newtons (N) was determined by using a shear testing 

machine and converted into Mega Pascals (MPa). 

 

Results   

The results after debonding were compared. The mean shear bond strength for RelyX
TM

 Unicem 2 

self-adhesive resin cement bonded to the all ceramic non-thermocycled crowns (Group 3) ranged 

from a low of 5.1 MPa (45.5 Newtons) when brackets were bonded to the IPS eMax crowns to a high 

of 5.8 MPa (51.9 Newtons) when brackets were bonded to the porcelain veneered zirconia crowns. 

The mean shear bond strength for Transbond XT adhesive resin cement bonded to the all ceramic 

non-thermocycled crowns (Group 4) ranged from a low of 6.4 MPa (57.3 Newtons) when brackets 
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were bonded to the porcelain veneered zirconia crowns to a high of 8.1 MPa (72.7 Newtons) when 

brackets were bonded  to the IPS eMax crowns. 

The side by side Box-and-Whisker plots of the shear bond strengths show wide and overlapping 

dispersions of the crown/adhesive resin combinations which consequently lessen the probability of 

significant differences between the crown/adhesive resin combinations in all 4 groups. According to 

the Kruskal-Wallis test (p < 0.05), and the Bonferroni Test the non-thermocycled crown/adhesive 

resin combinations do not differ significantly. 

Study of the mean ARI (Adhesive Remnant Index) values for the non-thermocycled crown/adhesive 

combinations shows that brackets bonded with Rely-X
TM

 Unicem 2 to non-thermocycled porcelain 

veneered zirconia crowns failed entirely at the ceramic/adhesive interface and for all the other non-

thermocycled ceramic/adhesive combinations most of the failures of the bond (70%) occurred at the 

bracket/adhesive interface, ie. cohesive fractures within the composite resin. No cohesive fractures of 

the porcelain crowns were noted. 

The results of the thermocycled groups (Group 1 and Group 2) show the Transbond
TM

 XT/non-

thermocycled IPS eMax crown combination yielded the highest overall mean shear bond strength of 

8.1 MPa (72.7 Newtons) but dropped to a mean shear bond strength of 5.1 MPa (46.1 Newtons) 

(36.4% drop in shear bond strength) when the crowns were thermocycled prior to bonding. The 

Transbond
TM

 XT/non-thermocycled porcelain veneerd zirconia crown combination yielded the 

second highest overall mean shear bond strength of 6.4 MPa (57.3 Newtons) and dropped to a mean 

shear bond strength of 5.1 MPa (45.8 Newtons) (19.3% drop in shear bond strength) when the 

crowns were thermocycled prior to bonding. The RelyX
TM

 Unicem 2/non-thermocycled porcelain 

veneered zirconia crown combination yielded the third highest overall mean shear bond strength of 

5.8 MPa (51.9 Newtons) but dropped significantly to a mean shear bond strength of 3.2 MPa (29.1 

Newtons) (a significant 43.8% drop in shear bond strength) when the crowns were thermocycled 
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prior to bonding. Lastly, the RelyX
TM

 Unicem 2/non-thermocycled IPS eMax crown combination 

yielded the fourth highest mean shear bond strength of 5.1MPa (45.5 Newtons) but dropped to a 

mean shear bond strength of 4.9 MPa (44.5 Newtons) (a drop in shear bond strength of only 3%) 

when the crowns were thermocyled prior to bonding. Relaxing the significance level (p-value) 

somewhat demonstrates the negative influence of thermocycling on the shear bond strength of the 

crown/adhesive combinations. 

The non-thermocycled all ceramic crown/adhesive combinations showed mean ARI values of 

between 1.3 and 2.1 indicating cohesive fractures within the composite resin and efficient bonding of 

the adhesive material to the porcelain surface. However, all the thermocycled all ceramic 

crown/adhesive treatment combinations showed mean ARI values of between 0 and 0.8 indicating a 

bond failure between adhesive and porcelain and highlighting the negative influence of 

thermocycling on bond strength of both adhesive resin cements. 

 

Conclusion 

Within the limitations of this study, it can be concluded that: 

1.There was no significant difference in the shear bond strengths of metal orthodontic brackets 

bonded with RelyX
TM

 Unicem 2 self-adhesive resin cement and metal orthodontic brackets bonded 

with Transbond
TM

 XT adhesive resin cement to IPS eMax and porcelain-veneered zirconia crowns 

which were conditioned with 35 % phosphoric acid and a silane coupling agent. 

2. Conditioning the porcelain surface with 35% phosphoric acid and a silane coupling agent (which 

is safer to use than Hydrofluoric acid) is sufficient for bonding metal orthodontic brackets to all 

ceramic crowns, and should make it simpler for clinicians to remove the remaining adhesive from the 

porcelain surface after debonding. 
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3. The negative influence of thermocycling prior to bonding can be seen on shear bond strength 

values. 

4. Most of the failures of the bond occurred at the ceramic/adhesive interface and cohesive fractures 

within the composite resin. No cohesive fractures of the porcelain crowns were noted. 
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Introduction 

Aims and objectives 
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Introduction 

There has been an increasing interest and demand in the use of all-ceramic materials to restore 

severely damaged teeth or to replace lost teeth, particularly in adult patients. This is largely due to 

its’ non-metallic, biocompatible and improved aesthetic properties (Blatz et al 2003, Conrad et al 

2007). 

In the anterior region, the most commonly fabricated silica based ceramic crown is the IPS eMax 

crown and the most commonly fabricated high strength ceramic crown is the feldspathic porcelain 

veneered zirconia based crown. Although the veneered porcelain reduces the flexural strength of the 

zirconia based ceramic, its translucency is greatly improved making it more aesthetically pleasing in 

the anterior regions (Fradaeni 2012).
 

The demand for orthodontic treatment in adult patients has been increased considerably, together 

with the increase of patients’ knowledge and change in modern lifestyle. As a result, orthodontists 

are required to attach orthodontic attachments or fixed retainers to teeth which may have been 

previously restored with ceramic restorations such as crowns or veneers. 

Ceramic is an inert material and therefore does not adhere chemically to any of the currently 

available bonding resins.  Therefore, in orthodontics, ceramic surface preparation is an essential step 

prior to bonding. Several methods like sandblasting (Zachrisson et al 1996),
 
using diamond burs to 

roughen the surface, etching with hydrofluoric acid (Zachrisson et al 1996), using silane coupling 

agents (Kocadereli and Canay Sand Akea 2001),
 
etching with lasers (Raji et al 2012),

 
and curing 

with halogen and plasma arc lights (Toodehzaeim et al 2012),
 
have been advocated to increase the 

bond strength of orthodontic brackets to the porcelain surface. However, mechanical alteration 

(sandblasting and using diamond burs) to roughen the surface of porcelain can cause irreversible 

damage and compromise the integrity of the porcelain crown (Ajlouni et al 2005). Anecdotal 

evidence suggests orthodontic brackets bonded with silane coupling agents and phosphoric acid or 
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hydrofluoric acid has sufficient bond strength for orthodontic treatment (Nebbe and Stein 1996, 

Schmage et al 2003, Ajlouni et al 2005, Lamour et al 2006, Abu Alhaija and Al-Wahadani 2007).  

The overall time required to place an appliance is an important factor in the cost of the treatment 

(Ajlouni et al 2005). Newer, self-adhesive cements have the potential to further simplify the bonding 

process. This is done by reducing the bonding of orthodontic brackets to a one-step procedure, and 

thereby, reduce chair time and increase cost effectiveness, resulting in increased convenience and 

reduced costs for the patient (Hayakawa et al 1992). Reducing the steps during the bonding process 

will also reduce the risks of saliva contamination and the effects of humidity which could both have 

an adverse effect on the bond strength of the resin cement. 

On the one hand, optimum bond strength is required for minimizing accessory bond failures during 

the treatment phase, and on the other hand, the porcelain on the restored tooth must return to its 

initial state of appearance, without any damage to its surface after the brackets are removed (Mattos 

and Capelli 2006).  

 

Although there are innumerable protocols for bonding orthodontic brackets to porcelain, there is still 

no scientific consensus about which of the techniques would be the ideal standard protocol for the 

purpose of overcoming the two points of contrast mentioned above (Herion et al 2010).
 

Increasing demands of adults for orthodontic treatment and controversy of the results in efficient 

methods of bonding to ceramics require more investigations. Hence, the purpose of the present study 

was to test and compare the shear bond strength and the resultant failure pattern of 2 types of resin 

adhesive cements (RelyX
TM

 Unicem 2, a self-adhesive resin cement and Transbond
TM 

XT, a 2 step 

bonding resin cement) to etched and silane treated all ceramic crowns. Additionally, a further aim of 

this study was to examine an alternative to etching using hydrofluoric acid which is noxious and 
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harmful. Instead, etching with 35% ortho-phosphoric acid and silane coupling application as pre-

treatment preparation of the all ceramic crown surfaces before bonding was investigated. 

Furthermore, examining the effect of thermocycling (ie. the ceramic specimens will be thermocycled 

to simulate the oral environment prior to bonding of the orthodontic bracket to the ceramic crown) on 

the shear bond strengths, which many studies have not included, was also tested. 

 

1.1. Aim 

The aim of this study was to evaluate, in-vitro, the shear bond strength (SBS) and the resultant 

failure pattern after debonding of metal orthodontic brackets bonded with Transbond
TM 

XT and 

RelyX
TM 

Unicem 2 self-adhesive resin cement to pre-treated (35% ortho-phosphoric acid and silane 

coupling agent application) IPS eMax and porcelain veneered zirconia crowns. 

 

 1.2. Objectives 

The objectives of this study were to compare:    

1.  The shear bond strengths of the self-adhesive resin cement (RelyX
TM 

Unicem 2) and the 2 

step adhesive resin cement (Transbond™ XT light cure adhesive primer and Transbond
TM 

XT 

adhesive resin cement) to the pre-treated (35% ortho-phosphoric acid and silane coupling 

agent application), non-thermocycled IPS eMax and porcelain veneered zirconia crowns. 

2.  The resultant failure pattern of all the tested groups. 

3.        The effects of thermocycling on the shear bond strengths of the tested groups. 

4. The surface integrity of the IPS eMax and porcelain veneered zirconia crowns after 

debonding for each of the groups tested. 
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1.3. Hypothesis   

Transbond
TM 

XT, a 2 step adhesive resin cement and RelyX
TM 

Unicem 2, a self-adhesive resin 

cement have bond strengths which will be sufficient to bond metal orthodontic brackets to prepared 

ceramic crowns (etched with 35% ortho-phosphoric acid and treated with a silane coupling agent) for 

the period of orthodontic treatment. 
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Chapter 2 

Review of the Literature 
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Review of the Literature 

Introduction 

Ceramic material is believed to be the most aesthetically pleasing option for the replacement of a lost 

tooth, the repair of a damaged tooth or for masking of an unattractive enamel surface. The demand 

for naturally looking restorations has led to the development of more advanced porcelain systems. 

Ceramics are made from the melting and fusion of non-metallic materials, like clay, after having 

fired them at high temperatures (850-13000
o
C). Dental porcelains are a form of ceramic and can be 

classified according to (Anusavice 2003, Rosensteil et al 2006): 

a. Indications: anterior or posterior crowns, veneers, post and cores, stain ceramics, glaze ceramics 

and bridges. 

b. Composition: Pure alumina, alumina-based glass ceramic, pure zirconia, zirconia-based glass 

ceramics, silica glass ceramic, leucite-based glass ceramic and Lithia-based glass ceramic. 

c. Processing methods: sintering, partial sintering and glass infiltration, copy-milling and 

CAD/CAM (computer aided design/ computer aided manufacture). 

d. Firing temperature: ultra-low fusing, low-fusing, medium-fusing and high-fusing. 

e. Microstructure: glass, crystalline, and crystal containing glass. 

f. Translucency: opaque, translucent and transparent. 

g. Fracture resistance. 

h. Abrasiveness. 

For the purpose of this thesis, a general understanding of the various currently available dental 

ceramics will aid in the understanding of the materials’ different behaviours. There are essentially 

 

 

 

 



8 
 

two families of dental porcelain: the family of glass ceramics and the family of poly-crystalline 

ceramics in which physical properties vary greatly. 

The family of glass ceramics can further be divided into three sub-groups of dental ceramics: 

feldspathic porcelain, leucite-reinforced porcelain and lithium-disilicate porcelain. Feldspathic 

porcelain is formed from clay or sand that has been fired at high temperatures. It becomes a vitreous 

dental ceramic formed of a glass matrix and one or more crystalline phases. Conventional feldspar 

porcelain contain a silica network (SiO2, 52-62% by weight), alumina (Al2O3, 11-16% by weight), 

lithium oxide and barium oxide additives, either potash (K2O3, 9-11% in weight), soda (Na2O5, 5-7% 

by weight) or both. As dental feldspars are relatively colourless and pure, pigments, opacifiers and 

other types of glass modifiers are required to reproduce the hues of natural teeth, to control the fusion 

and sintering temperatures, and to control the coefficient of thermal contraction and solubility 

(Anusavice 2003). 

Feldspathic porcelains are the most aesthetic type of porcelain, but have the weakest flexural strength 

of 90MPa; they contain less than 40% leucite by content. Leucite is a crystalline mineral formed 

from melting potassium feldspar or potash. In other words, leucite is a potassium-aluminium-silicate 

mineral (Rosensteil et al 2006). In contrast, leucite-reinforced or leucite-based glass ceramics contain 

more than 35-50% of leucite in weight dispersed in a glassy matrix, and have a higher flexural 

strength of 110MPa (Kelly and Benetti 2011). Lithium-disilicate or Lithia-based glass ceramics has a 

greater flexural strength of 300-400 MPa. These materials can be relatively translucent (Raigrodski 

2004).  

The family of poly-crystalline ceramics is divided into two sub-groups: alumina and zirconia 

ceramics. The alumina or zirconia may come in pure forms, or be dispersed in a glass matrix as 

alumina- or zirconia-based glass ceramics. Alumina ceramics have a high fracture toughness and 

hardness, with a flexural strength of 700-800 MPa. 
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Zirconia or zirconia oxide is also considered a core material, upon which aesthetic feldspathic 

porcelain can be layered, as it has the highest flexural strength of 1100-1300 MPa. Although this 

type of ceramic is the strongest and toughest, it has a disadvantage: zirconia can only be fabricated 

through computer aided design-computer aided manufacturing (CAD/CAM) technology, which can 

be expensive and technique sensitive (Rosensteil et al 2006). 

 

2.1. Porcelain surface Preparation 

In vivo the tooth surface is covered by a pellicle consisting of a protein film that forms on the surface 

of the enamel/porcelain by selective binding of the glycoproteins from saliva. In order to remove the 

pellicle from the enamel/porcelain surface, routine bonding clinical practice sees enamel/porcelain 

surfaces cleaned with a slurry of pumice and a brush or rubber cup, used in a slow handpiece, prior 

to etching. There is no reported difference in the failure rate of the bond in cases where the polishing 

of the enamel/porcelain surface was excluded (Barry 1995, Eliades 2006). Prophylaxis pastes are 

contra-indicated as the fluoride content or the oils and the flavouring agents added to the pastes are 

believed to have a detrimental effect on the bond strength (Garcia-Godoy et al 1991).
 

 

 Ceramic being an inert material does not adhere chemically to any of the currently available bonding 

resins.  It is therefore necessary to change the inert characteristics of the surface to achieve clinically 

acceptable bonding of orthodontic metal brackets to ceramic surfaces (Abu Alhaija et al 2010). 

There are distinct differences in the constituents; particle size and crystalline structure of the 

commercially available porcelains but usually have a similar chemical formula. Different results are 

expected regarding bonding orthodontic brackets to porcelain (Hayakawa et al 1992). Authors have 

suggested three different approaches: a) physical or mechanical preparation, b) chemical preparation 
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and c) combined mechanical and chemical preparation of the ceramic surface (Mair and 

Padipatvuthikul 2009). 

 

2.1.1. Mechanical Preparation 

Preparing the ceramic surface mechanically involves the removal of the porcelain’s glaze and/or the 

roughening of the porcelain surface to provide more surface area for chemical retention. Several 

options are available and are relatively quick chair side procedures. The use of coarse diamond burs 

has been well documented, along with green stones, and abrasive discs (Bourke and Rock 1999, 

Schmage et al 2003, Karan et al 2007). Zachrisson et al (1996) found that intra-oral sandblasting 

with microscopic particles of aluminium oxide removes the porcelain glaze better than burs or 

stones, since only a small amount of surface is removed and the result is more uniform. Although 

this requires minimal chair side time, the aluminium oxide particles are difficult to contain within 

limits of the mouth and also requires thorough rinse of the area afterwards. Authors have found that 

fine diamond roughening and sandblasting showed the highest surface roughness when compared to 

surface roughness obtained by acid etching (Schmage et al 2003). A retention cavity can also be cut 

in the porcelain surface to assist with bonding of the resin cement to the porcelain surface (Wood et 

al 1986, Bourke and Rock 1999). Laser radiation of the porcelain surface has also been studied as an 

alternative conditioning technique, but it is a very costly procedure (Zachrisson et al 1996).
 

 

 However, mechanical alteration of the surface of porcelain can cause irreversible damage to the 

porcelain glaze and compromise the original lustre and integrity of the porcelain crown (Ajlouni et al 

2005). 
 

 

 

 

 

 



11 
 

2.1.2. Chemical Preparation 

The acid used in the chemical preparation of a ceramic surface is meant to create a series of micro-

retention pits by the preferential dissolution of the glass phase within the ceramic matrix (Bourke and 

Rock 1999). Although this procedure yields mechanical retention and not a chemical bond to the 

ceramic surface, it is included as part of a chemical preparation because it entails the application of a 

technique-sensitive liquid product. 

 

2.1.2.1. Acid Etching 

The most commonly used ceramic acid etchant is a 9.6 % hydrofluoric acid gel. A 2-4 minute 

application of hydrofluoric gel has been advocated (Kocadereli and Canay Sand Akea 2001). 

Clinically, there are drawbacks with the use of hydrofluoric acid. It is very acidic and must be used 

with great care, and it is extremely corrosive and capable of causing severe trauma to soft tissue and 

tooth substance (Hayakawa et al 1992). Careful isolation of the working area (use of the rubber dam) 

is required. Bourke and Rock (1999) have questioned the clinical relevance of bond strengths with 

hydrofluoric acid application.  Their shear bond strength study found that the shear bond strength 

was similar when comparing the groups that have use hydrofluoric acid with those that used 

phosphoric acid. If there is no added advantage of using hydrofluoric acid, one should eliminate it for 

obvious reasons.  

Another study found that 1.23% of acidulated phosphate fluoride (APF) was a suitable substitute to 

hydrofluoric acid etching, while being a safer product. However, a 10 minute etching time with 

acidulated phosphate fluoride (APF) provided shear bond strength to a 1 minute hydrofluoric acid 

etching time (Nelson 1989, Abu Alhaija et al 2010). There are also contradicting results in the 
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current literature on acidulated phosphate fluoride application which provide clinically unacceptable 

low bond strengths (Abu Alhaija et al 2010, Heravi et al 2010, Raji et al 2012). 

There are also inconsistent findings on the effects of acid etching with ortho-phosphoric acid on 

porcelain bond strengths. It was demonstrated that ortho-phosphoric acid with a concentration of 

37% is not able to etch a ceramic surface and, consequently, does not produce physical or 

topographical changes on porcelain (Aidam et al 1995). However, in a study by Lamour et al (2006), 

etching ceramic surfaces with 37% ortho-phosphoric acid was reported to produce clinically 

acceptable bond strength comparable with that produced by the application of hydrofluoric acid. 

Anecdotal evidence suggests orthodontic brackets bonded with silane coupling agents and ortho-

phosphoric acid or hydrofluoric acid has sufficient bond strength for orthodontic treatment (Nebbe 

and Stein 1996, Schmage et al 2003, Aljouni et al 2005, Lamour et al 2006, Abu Alhaija and Al-

Wahadani 2007). 

 

2.1.2.2 Silane Application 

 Silane coupling agents have been reported to enhance bond strength to ceramic surfaces (Kao et al 

1988, Kocadereli and Canay Sand Akea 2001). Silane molecules, after being hydrolysed to silanol, is 

able to form a polysiloxane network or hydroxyl groups to cover the silica surface. Monomeric ends 

of silane molecules react with the methacrylate groups of the adhesive resins by free radical 

polymerization (Gillis and Redlich 1998, Daub et al 2006). In a study by Faltermeier et al (2012), 

etching with 37% ortho-phosphoric acid for 2 minutes and followed by a silane coupling agent 

application (pre-treatment procedure of veneering ceramics before bonding of the bracket), seem to 

prepare the surface of the ceramic restoration sufficiently before bracket bonding. In another study 

by Guimaraes et al (2012), surface etching with phosphoric acid, followed by silane application 

provide adequate bond strength, capable of resisting the forces applied during orthodontic treatment, 
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without causing irreversible failures in porcelain. On the other hand, ortho-phosphoric acid has the 

ability to neutralize the alkalinity of the adsorbed water layer, which is present on all ceramic 

surfaces in the mouth and, thereby, improve the chemical activity of any silane primer when 

subsequently applied (Hayakawa et al 1992). Therefore, the use of ortho-phosphoric acid followed 

by silane application seems to be an acceptable protocol for bonding orthodontic accessories to 

porcelain surfaces. 

 

2.2. Measuring Shear Bond Strength 

There are clinically many variable factors that are associated with the shear bond strength of any 

adhesive material (Thomas et al 1999, Eliades and Brantley 2000, Aljouni et al 2005). These 

variable factors associated with shear bond testing need to be carefully analysed in order to produce a 

reliable testing protocol for the results to be in any way meaningful (Eliades and Brantley 2000). 

Comparing different materials through in vitro testing is a common place. However, attempting to 

gain any clinical significance from such tests remains controversial. 

Values for Shear Bond Strengths (SBS) can only be determined and measured in a laboratory or in 

vitro environments. Bond force is usually measured in shear or tension on a universal testing 

machine, although torsional testing has been reported (Rossouw 2010). In shear testing, the brackets 

are loaded by a blade in compression or by a wire in tension, so that the brackets slide parallel off the 

substrate. Unfortunately, pure shear loading is difficult to achieve. Most shear testing includes 

components of peeling, tension and torsion as well. Both shear and tensile loading modes are valid 

tests for studying orthodontic bonding (Powers et al 1997). However, many investigators believe that 

testing in tension or torsion loading modes are less relevant for clinical application, and have thus 

placed focus on shear testing for ease of reproducibility of protocols (Eliades and Brantley 2000). 

The average force transmitted to a bracket during mastication has been reported to be between 40 
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and 120 Newtons (N) (Reynolds 1975). The bond strength tests are basically performed as follows: 

in all situations a bracket is bonded to a substrate, enamel or porcelain. After some time of storage, a 

force is applied to the bracket until fracture occurs. The bond strength of the material is presented in 

Mega Pascals (MPa) and is the amount of force at the time of fracture which is measured in Newtons 

(N) divided by the bonding area of the bracket base in mm
2
, MPa= Newtons/mm

2
 (Conrad et al 

2007, Rossouw 2010). Directly after testing the fracture area is examined and scored using the 

Adhesive Remnant Index (ARI score), first described by Artun and Bergland (1984). With this test 

the amount of residual cement left at the bonding surface is scored on a 4-point scale as shown in the 

table below: 

 

Score Definition 

0 

1 

2 

3 

No adhesive remained on the porcelain surface 

less than 50% of the adhesive remained on the porcelain surface 

more than 50% of the adhesive remained on the porcelain surface 

All adhesive remained on the porcelain surface 

Table: 1. Adhesive Remnant Index (ARI) 

The scores are determined with an optical microscope at a magnification of 10-25x. 

 

2.3. Factors Affecting Bond Strength  

Many variables must be taken into account when interpreting data and results of bond test studies 

(Bishara et al 1999). 
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These include: 

 Type of surface (teeth vs porcelain).  

 Type of porcelain (leucite vs feldspathic vs alumina). 

 The different bonding agents. 

 Type of bracket base (mesh size and topography). 

 Type of surface treatment (mechanical vs chemical preparation, and its various products and 

concentrations). 

 Type of bonding method (direct or indirect). 

 The duration, intensity and direction of the light cure source. 

 The size, speed and direction of the debonding force. 

 The time period between bonding and debonding.  

 Type of aging process (water storage, thermocycling, etc). 

  In the clinical scenario the clinician’s skills as well as the management of the oral 

environment play an important role in the success of the bond between the enamel/porcelain 

and the bracket. 

 

2.4. Porcelain: Shear Bond Strength Comparisons 

The ideal rupture force for clinically successful orthodontic bonding is between 5.9 and 7.9 MPa 

(Guimaraes et al 2012). 

In a study by Faltermeir et al (2012), two surface conditioning methods of 4 ceramic materials 

before bonding was examined (Group 1- air particle abrasion with 25µm aluminium trioxide and 

subsequently a silane coupling agent was applied, Group 2- samples were etched with 37% ortho-

phosphoric acid followed by silane application). Self-ligating metal brackets were bonded to the 
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ceramic blocks with Transbond™ XT and thermocycled (5
0
C-55

0
C, 6000 cycles). Shear bond 

strength testing was performed using the universal testing machine at a cross-head speed of 

1mm/min. The statistical analysis of the data obtained in this study revealed that there is no 

significant enhancement of shear bond strength using sandblasting with 25µm aluminium trioxide in 

comparison to using 37% ortho-phosphoric acid as a surface conditioning method of ceramic 

restorations. The results show that median values of 130-217,5 MPa could be reached using only 37 

% ortho-phosphoric acid together with a silane coupling agent. This level of shear bond strength is 

described to be sufficient for bracket bonding and to avoid accidental bracket debonding 

(Faltermeier et al 2012). 

Guimares et al (2012) evaluated in vitro, the shear bond strength of orthodontic accessories to 

porcelain, under different porcelain surface treatment protocols. The sample consisted of 80 

feldspathic porcelain discs which were divided into 4 groups using different porcelain surface 

treatment protocols (Group 1- 37% phosphoric acid for 1 minute, only, Group 2- hydrofluoric acid 

only, Group 3- phosphoric acid and silane application, Group 4- hydrofluoric acid and silane 

application). After bonding with the adhesive system and resin composite, Transbond™ XT, all 

samples were stored in 0.9% physiological serum for 24 hours, at ambient temperature, before being 

submitted to shear bond strength test. A universal test machine was used. The test machine was 

calibrated with a 50 N load cell at a speed of 0.5 mm/min. Group 1 showed statistically lower results 

(mean bond strength value- 2.21 MPa), Group 4 showed statistically higher results than the other 

groups (mean bond strength- 21.93 MPa), Groups 2 and 3 showed statistically equal performance 

(mean bond strength- 7.24 MPa). The results of the study suggest that: 

 The application of silane significantly increases the shear bond strength of orthodontic 

accessories to porcelain; 

 Etching the porcelain surface with phosphoric acid alone does not provide adequate shear 

bond strength;  
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 Surface etching with hydrofluoric acid, with or without silane application, increases the 

occurrence of irreversible fractures in porcelain; 

 Surface etching with phosphoric acid, followed by silane application provided adequate bond 

strength, without causing irreversible failures in porcelain. 

 

2.5. Thermocycling 

Orthodontic composite and adhesive resins are routinely exposed to temperature variations in the 

oral cavity. Intra-oral temperatures vary between 0
0
C when eating ice cream to 60

0
C when eating a 

hot cheese sandwich (Mair and Padipatvuthikul 2009). Thermocycling, usually between 5
0
C and 

55
0
C water baths, thus simulates the temperature changes of the oral environment and recreates the 

artificial aging process. Bishara et al (1999) suggested that thermocycling be part of the testing 

protocol of new resins. 

 Studies that incorporated thermocycling demonstrated statistically significant reductions in SBS 

between orthodontic resins and tooth or porcelain surfaces, in both direct and indirect bonding 

studies (Smith et al 1988, Bourke and Rock 1999 Faltermeier et al 2012). In all the previous studies 

the thermocycling was done after the bonding of the orthodontic attachments and prior to debonding. 

However, when an adult patient presents for orthodontic treatment, they may have teeth which were 

restored with ceramic restorations that have been in the oral cavity for a long time. These ceramic 

surfaces will be altered by variations in temperature, saliva, acidity and adsorptions of mucoproteins 

and mucopolysaccharides (Zachrisson et al 1996). Therefore, thermocycling (superficial aging and 

simulating the clinical environment) of the ceramic specimens prior to bonding of the orthodontic 

bracket onto the ceramic surface, and its effect on the shear bond strength of the orthodontic brackets 
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to the ceramic crowns, will help to simulate the clinical environment as closely as possible and 

hopefully overcome this limitation which is observed in previous in-vitro studies. 

 

2.6. Bonding of Metal Orthodontic Brackets  

2.6.1. The bracket base 

Orthodontists choose orthodontic brackets according to various treatment related factors (Proffitt and 

Fields 3
rd

 ed., Mosby Co, Alexander 1986). The effectiveness of the adhesive surface is just as 

important as any other consideration (ie, type of adhesive, treatment and preparation of 

ename/porcelain) as all treatment results depend on the success and stability of the bond between the 

enamel/porcelain and the bracket. In the attempt to improve bond strength the focus of development 

has been the adhesive pad (Matasa 2003). There are many variations in the adhesive surface design 

of orthodontic brackets. Some brackets are manufactured with grooves, some with perforations; 

some have stainless steel brazed onto the adhesive pad, while some bases are laser formed. Each 

manufacturer claims its own ‘in house’ adhesive surface design, trademarks and/or patents but at the 

same time providing very little information regarding their dimensions (Matasa 2003). The bracket 

base design, size and surface treatment are important variables when it comes to bond strength 

testing (Sharma-Sayal et al 20003). 

 The improvement in the bond strengths of the bonding agents since inception has been significant. 

This coupled with the aesthetic demands of an aesthetically conscious society and the refinement of 

the bracket base design has allowed manufacturers to decrease the size of the base, without 

sacrificing bond strength. Matasa (2003) claims the size of the adhesive surface of the bracket has 

been reduced by 75% in recent years. Orthodontic metal brackets have an average adhesive base size 

of 9 to 12 mm
2
 (Alexander 1986, Bishara et al 1999, Sorel et al 2002), and rely on mechanical 
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retention for their bond strength. The size of the base is important because of the oral hygiene 

ramifications, the strength of the bond, and the aesthetic considerations (Sharma-Sayal et al 2003). 

The effectiveness (design) of the adhesive surface is important for the stability, the strength of the 

bond, the ease of debonding, as well as the amount of bonding agent left on the enamel/porcelain 

surface after debonding. MacColl et al (1998) found that the shear bond strength was independent of 

the base size once the surface of the bracket exceeded 7mm
2
. Banks and Macfarlane (2007) claimed 

that there is no apparent relationship between the size of the adhesive pad and bond strength.    

 

2.6.2. Composite Resin Cements 

Intra-orally, dental cements and adhesive resin cements are used to bond orthodontic attachments to 

teeth. Since the pioneering studies of Buonocore in 1955, there have been many advances in the 

bonding of orthodontic attachments to natural teeth. Recent progress in materials and techniques has 

shown that direct bonding of orthodontic attachments to surfaces other than enamel is also possible, 

such as ceramic surfaces. Adhesive resins have the advantage of low solubility and improved 

physical characteristics over cements. The resins are less susceptible to fracture than the cements 

resulting in higher bond strengths (Hudson 2007). Adhesive resins, however, do not bond well as a 

result of moisture contamination. 

Good bond strength, clinically, is dependent on (Sfondrini et al 2004): 

 Avoiding moisture contamination of the etched enamel/porcelain. 

 Undisturbed polymerization of the bonding agent. 

 Using a bonding agent with sufficient strength. 

 Minimising occlusal stress (Banks and Macfarlane 2007).  
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The method for direct bonding of the orthodontic brackets is well known and understood by 

clinicians. It begins with the isolation of the oral environment, preparation of the tooth or ceramic 

surface, application of uncured composite resin on the back of the bracket, and placement of the 

individual bracket in its correct position on the surface of the tooth or ceramic restoration. Photo-

polymerization of the composite resin is initiated to secure the bracket onto the surface of the tooth 

or ceramic restoration. Ideally this step is performed for each bracket and tooth or ceramic 

restoration individually. 

Composite resin cements are the most popular choices for bonding orthodontic brackets to substrates. 

In order to maximise their advantages, composite resin cements are a combination of materials of 

differing properties (Matasa 2005). These advantages are improved mechanical properties, 

aesthetics, reduced polymerization shrinkage and a reduced coefficient of expansion (Aljouni et al 

2005).  

 

A wide variety of orthodontic resin bonding agents are available and there are a formidable set of 

criteria required for them to be successful (Proffitt and Fields 3
rd

 ed.). Ideally they should be:  

 Dimensionally stable. 

 Fluid enough to penetrate etched enamel/porcelain and the retentive part of the bracket base. 

 Strong enough to withstand the forces experienced in the mouth. 

 Viscous enough to prevent the bracket moving on the tooth/crown surface subsequent to 

placement and prior to curing. 

 User friendly. 

The main categories of composites are: 

 Dispersion-strengthened 
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 Particle strengthened 

 Laminar (sandwich) and 

 Fibre re-inforced 

Almost all composite resin dental cements are particle strengthened and the filler particles exceed 

25% of the composition of the composite. These particles have a strengthening effect in the 

composite (Hudson 2007). Chemically these material components display distinct boundaries 

between their particles (Matasa 2005). Little has changed in the composition of the composite resins 

in the last 50 years because of the consistent reliability of the bond achieved. They are still a mixture 

of Bis-GMA (Bisphenylglycidal-methacrylate) diluted with a less viscous acrylate (Matasa 2003, 

Aljouni et al 2005).  

The composite resins are thermo-cured, light-cured, or chemically-activated or dual-activated. 

Composite resin cements are a class of materials that do not inherently contain water. To obtain 

optimal adhesion, composite resin cements require acid-etched or roughened dry surfaces for the 

best mechanical retention. They are also more fracture resistant than glass ionomer cements. 

Unfortunately, composite resin cements have the disadvantages of not bonding well in the presence 

of moisture and their attachment to surfaces is primarily mechanical (Matasa 2005, Hudson 2007).  

 

Thermo-cured composite resin cements are available for custom base fabrication. It is dispensed as a 

single-paste onto the bracket base, which is then placed onto the casts. The resin cement stays 

unpolymerised until the cast is cured with heat for at least 15 minutes (Klange 2007). Only thermo-

cured or light-cured composite resin cements allow an unlimited working time before polymerization 

(Klocke et al 2003). 
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Light-cured composite resin cements are available and are dispensed as a single paste. These single-

component materials are easier to manipulate. The composite resin cement is cured with a handheld 

curing light. Again, the bracket placement can be verified indefinitely before curing, provided that 

the brackets are not exposed to light (Read and O’Brien 1990). 

Chemically-activated or auto-polymerizing or dual-activated composite resin cements are supplied as 

a two-part formulation with a base and catalyst. However, the newer dual-activated composite resin 

cements are supplied in an automix syringe thereby eliminating the need for hand-mixing the 

composite resin cement prior to application. Handling and applying these materials is less 

problematic and less time consuming.  

 

2.6.2a. Light-cured Composite Resin Cement   

Nowadays, Transbond™ XT of 3M Unitek is one of the most commonly used light curing composite 

resin cements for bonding orthodontic brackets to enamel/porcelain substrates. Transbond™ XT is 

composed of 14% volume Bis-FMA, 9% volume Bis-EMA, and 77% volume filler particles (Bishara 

et al 1997). Because of its clinical effectiveness Transbond™ XT is often used as a reference 

material in laboratory research (Bishara et al 1997).  

 

2.6.2b. Dual-cured Composite Resin Cement 

RelyX™ Unicem 2 is a dual curing, self-adhesive resin cement supplied in an automix syringe. It is 

used for the adhesive cementation of indirect all-ceramic, composite or metal restorations and for 

posts and screws. Kumbuloglu et al (2004) determined that Unicem had the highest compressive 

strength among the four resin composite luting cements tested. Additional research conducted by 

Piwowarczyk and Lauer (2003), determined that although not as strong as resin cements, Unicem 
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proved to have stronger flexural and compressive strength than resin-modified glass ionomer 

cements, glass ionomer cements, and zinc phosphate cements. Other studies have demonstrated that 

over long periods of time and after thermal cycling, Unicem retains its adhesion and strength 

properties better than other resin cements, suggesting the potential use of the adhesive for longer 

term applications (Porseld et al, Hecht et al, Piwowarczyk et al 2004). 

The use of RelyX™ Unicem in operative and prosthodontic applications without etching the enamel 

has provided contradictory results (De Munck et al 2004, Kumbuloglu et al 2005). For example, in a 

study investigating the shear bond strengths of composite resin cements to lithium disilicate 

ceramics, there was a significant difference between the bond strengths of Unicem (with no acid etch 

step) and other adhesive resin cements that require an additional acid etch step, namely, Panavia F 

(Kumbuloglu et al 2005). However, in another study it was found that the tensile bond strength of 

Unicem was similar to Panavia F bonding system only when a separate acid etch step was used 

before the application of the Unicem adhesive resin (De Munck et al 2004).  

Although numerous studies have been conducted in assessing Unicem’s potential applicability in 

operative and prosthodontic procedures, very little data are available on Unicem’s potential for the 

use as an orthodontic bracket bonding adhesive. 

With such limited data, and with the newer Unicem 2 Automix dispensing tips which make 

dispensing of the Unicem cement onto the orthodontic brackets easier, there is a need to further 

assess the potential use of Unicem as a one-step orthodontic bracket bonding system. 

  

2.7. The light curing process 

Maximum conversion of monomer, in the bonding agent, to polymer is required to achieve optimum 

bond strength. The thickness of the adhesive layer (which is considerably thinner than 2mm) is 
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largely determined by the amount and size of the filler particles in the resin, its viscosity, tooth 

surface irregularities and the bracket placement technique (Hudson 2007). This thin adhesive layer 

between the bracket base surface and the enamel/porcelain surface should therefore convert to 

polymer easily.      

 

Light cured bonding agents are now routinely used to bond orthodontic attachments to teeth/crowns 

because of their ease of use and the time saved (Klocke et al 2003). The conventional halogen light, 

which is commercially available, is the most common and most affordable light source, and thus the 

instrument of choice since the seventies. These halogen lights display a wide intensity spectrum 

ranging from, approximately, 400 mW/cm
2 

to 1000 mW/cm
2 

(Kauppi and Combe 2003, Swanson et 

al 2004). Kauppi and Combe (2003) found that conventional as well as high intensity halogen curing 

lights show a drop in light intensity after 30 seconds of continuous use. The bond strength depends 

on the composition of the bonding agent as well as the intensity of and the exposure to the light 

source as well as the time elapsed after exposure (Swanson et al 2004).    

 

2.8. Time post-cure 

Bishara et al (1999) demonstrated that the initial bond strength of Transbond
TM 

XT adhesive resin 

more than doubled in the first 24 hours. Sharma-Sayal et al (2003) also found an increase in the 

shear bond strength of Transbond
TM 

XT adhesive resin but not to the same extent as Bishara and co-

workers. Okemwa et al (2002) showed that the shear bond strength of Transbond
TM 

XT after 24 

hours and after 7 days remained constant at 123 Newtons on premolars.    
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2.9. Bracket removal  

2.9.1. Bond strength testing 

The literature contains a large number of publications on in vitro bond strength testing of materials, 

the results of which are quoted by manufactures in support of their products. However, little attention 

has been paid to the detail of the test procedures used. Fox et al (1994), published a critique of bond 

strength testing in orthodontics, which revealed a large variation in the methods used, and the case 

for a possible standard technique was suggested. Van Noort et al (1989), and Rueggeberg (1991), 

both suggested the need for standardization of test procedures for the measurement of bond 

strengths, to allow valid comparisons to be made between different bonding agents. 

There has been confusion in the literature over the unit of measurement most appropriate for 

describing bond strength (Fox et al 1994). Units such as Pascals, MegaPascals, Newtons per 

millimetre squared or MegaNewtons per metre squared have been used. These units provide an 

indication of the force per unit area required to dislodge the bracket. The use of force as an indicator 

of bond strength is only appropriate where the area is well controlled, but difficult to measure. As 

long as the dimensions (surface area) of the bracket base are quoted, the use of Newtons or 

MegaPascals is appropriate in quoting bond strength.  

Laboratory shear bond strength depends on several factors including the bracket base retention 

mechanisms, the bonding system, the type of enamel/porcelain conditioner used, the etch pattern of 

the enamel/porcelain, the point of force application, direction and crosshead speed of the force 

applied (Eliades and Brantley 2000, Klocke et al 2003). In vivo shear bond strength tests show 

significantly lower bond strengths than in vitro tests (Pickett et al 2001).  

Shear bond forces should be applied to the base of the attachment (Klocke and Kahl-Nieke 2005), as 

forces applied to any part of the attachment may corrupt comparative results and in this way may be 
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a reflection of the bracket design variability (resulting in varying force vectors) and not the base 

design or the adhesive material (Eliades and Brantley 2000, Klocke and Kahl-Nieke 2005).     

Normal orthodontic forces applied to the brackets are estimated to produce stresses in the region of 3 

to 7.8 MPa. For an adhesive system to have a clinical acceptable performance, the in vitro bond 

strength should be between 6 and 8 MPa (Clarke et al 2003).    

In 58 out of 66 papers (Fox et al 1994), an Instron machine or similar testing machine was used. 

Other devices used included a pair of specially designed opening pliers (Perry 1980), and various 

other testing machines (Newman 1965, Hirce 1980, O’Brien et al 1991). Forty four of the papers 

tested the specimens in shear mode, sixteen in tensile and six used a combination of directions. 

The majority of research into shear bond strength with a universal testing machine has applied 

unilateral forces to the test specimen. The results cannot be applied to clinical debonding (Olsen et al 

1996, Olsen et al 1997, Fernandez and Cnut 1999). Debonding with sharp-edged pliers that apply a 

bilateral force at the bracket base-adhesive interface has been found to be an effective method of 

debonding orthodontic brackets (Farquhar 1986),  and its use in vitro simulates more closely the 

debonding forces applied in actual clinical situations (Bishara et al 1993, Bishara et al 1994, Bishara 

et al 1995).  

Eliades and Brantley (2000) commented on in vitro debonding as follows; “The simulation of 

clinical conditions is a task that is not to be attainable in the near future.”  

 

2.9.2. Concerns when Debonding 

Cohesive failures occur either within the ceramic or tooth substrate, the bracket or the adhesive 

system. Adhesive failures occur between the ceramic-adhesive resin and the bracket-adhesive resin 

interfaces. Unfortunately, cohesive fractures of ceramic restorations resulting from bracket removal 
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are common and unpredictable (Newman 1994, Andreason and Stieg 1998). These fractures pose 

problems of an aesthetic and financial nature if they are large or extensively deep. The clinician may 

attempt to repair the slight porcelain damage with polishing systems. One can further try to prevent 

further extension of the micro-cracks by finishing and polishing with a series of graded ceramist 

points or diamond impregnated polishing wheels. Wood et al (1986) and Kao and Johnston (1988), 

both agree that this procedure can yield an acceptable, although not ideal, aesthetic result if finalised 

with a diamond polishing paste. 

Understanding the nature of cohesive failures can give clues on how to avoid them. Cohesive 

porcelain fractures occur when the adhesive strength at the metal bracket-porcelain interface exceeds 

the cohesive strength of the porcelain. Mechanical roughening with diamond burs or sandblasting 

can be guilty of weakening the cohesive strength of the porcelain by creating micro-cracks within the 

porcelain (Gillis and Redlich 1998, Abu Alhaijah and Al-Wahadani 2007). Therefore, Wood et al 

(1986) tried to avoid bur roughening and preserved the glaze. 

As with mechanical preparation, silane treatment has also been blamed for porcelain fractures at 

debonding sites by excessively enhancing the bond strength.  In Larmour et al.’s study (2006) all 

samples had silane treatment, without any mechanical preparation. They still found a high incidence 

of porcelain surface damage visible at debond, particularly in the groups using Transbond™ XT 

composite resin cement when compared with Fuji Ortho LC cement, where 37,5% of the ceramic 

samples had visible damage. Thus even without mechanical preparation, one may still obtain 

porcelain fracture.  

From a clinical perspective, it would be prudent to warn patients about the risk of damage to 

porcelain surfaces prior to the commencement of treatment and of the possible need to repair or 

replace them following orthodontic treatment. 
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2.10. Adhesive Remnant Index (ARI) 

2.10.1. Background and Relevance 

ARI scores are used to define the site of bond failure between enamel-porcelain, the adhesive and the 

orthodontic bracket base. The index scores the amount of resin remaining on the tooth after 

debonding. Many studies have used the Adhesive Remnant Index (ARI) developed originally by 

Artun and Bergland in order to assess the amount of resin remaining on the tooth surface after 

orthodontic bracket debonding (Artun and Bergland 1984, Powers et al 1997, Heravi et al 2010). The 

original ARI scores were defined from 0 to 3 or a 4-point scoring scale.  The ARI was then modified 

by Bishara et al (1999) who gave the scores from 0 to 4 to include a score representing porcelain 

fractures. Unfortunately, many studies use other variations of the ARI. Due to lack of methodology 

standards and variability in the ARI scores, the reader must be careful when interpreting ARI 

numeric scores and values. Therefore, for this study we have decided to use the original ARI by 

Artun and Bergland (1984) (see Table: 1).  

However, this original index did not include recording or assessing damage which may have 

occurred to the porcelain surface after debonding of the orthodontic bracket. 

 

2.11. Porcelain Fracture Index (PFI) 

Bonding of an orthodontic bracket to a ceramic crown with an adhesive resin cement should not only 

be strong enough to resist accidental debond during treatment but should also prevent irreversible 

damage to the ceramic crown when the brackets are removed at the completion of treatment 

(Zachrisson 1996). Therefore, in addition to the shear bond testing, it is important to evaluate the 

quality of the porcelain surface after the removal of the residual adhesive. 
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A Porcelain Fracture Index (PFI) which was developed by Bourke et al (1999) will be used to assess 

the surface integrity of the porcelain surfaces after debonding. The PFI uses a 0 to 3 or a 4-point 

scale to evaluate the quality or integrity of the porcelain surface after the removal of the residual 

adhesive (see Table: 2). 

Score Definition 

0 

 

1 

 

2 

 

3 

 

Ceramic surface intact in the same condition as before the bonding 

procedure; 

Surface damage limited to glaze layer or very superficial ceramic; 

 

Surface damage which features significant loss of ceramic requiring 

restoration of the defect by composite resin or replacement of the 

restoration; 

Surface damage where the core material has been exposed due to the 

depth of the cohesive failure. 

Table: 2. Porcelain Fracture Index (PFI) 

   All orthodontic bonding systems involve at least three interfaces: the tooth or porcelain interface, 

the resin interface, and the bracket interface. As previously mentioned, cohesive failures can occur 

within any of these components. Adhesive failures occur between the tooth/porcelain-adhesive 

system and the bracket-adhesive system. An observation is that authors do not differentiate between 

the residual adhesive resin and residual composite resin on the tooth/porcelain when they score; it is 

all combined under ARI (Powers et al 1997). Some researchers prefer bond failures within the 

adhesive or at the bracket-adhesive interface because it decreases the shear force stress at the crown 
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surface and increases the probability of maintaining an undamaged crown (Alhuwalia et al 2013). 

However, considerable chair time is needed to remove the residual adhesive with the added 

possibility of damaging the enamel/porcelain surface during the cleaning process (Bishara et al 

2000). Other researchers consider the bond failure at the adhesive/porcelain or adhesive/enamel 

interface more desirable because they do not leave residues on the surface where bonding occurred 

(Mattos and Capelli 2006). This type of failure in the adhesive/porcelain interface shows that the 

chemical and mechanical bonding was not equal to or exceeded the mechanical retention provided by 

the bracket base and the bond strength to the porcelain surface was lower than the cohesive strength 

of the adhesive bracket (Alhuwali et al 2013). However, the enamel/porcelain surface can be 

damaged when failure occurs in this mode (Britton et al 1998). Powers et al (1997) further 

highlighted that isolating the weak link is complicated if the bond failure occurs in two of the three 

interfaces which happens frequently. 

 

2.12. Data analysis 

Klocke and Kahl-Nieke (2005), cautioned against interpreting shear bond strength values from in 

vitro tests for clinical relevance, as these values may be affected more by the methodology of the 

tests than the materials. 
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Materials and Methodology 

List of materials used (see table 3.). 

Name of material Manufacturer 

Transbond
TM 

XT
 
adhesive resin cement 3M Unitek, Monrovia, USA. 

Transbond
TM 

XT light cure adhesive primer  3M Unitek, Monrovia, USA. 

RelyX
TM 

Unicem 2 self-adhesive resin 

cement 

3M ESPE, USA. 

35% ortho-phosphoric acid etchant ULTRADENT™, Salt Lake City, 

USA. 

RelyX 
TM 

Ceramic Primer 3M ESPE, USA. 

Cold-cured epoxy resin Buchler, Lake Bluff, Ill 

Table: 3. List of materials used. 

3.1. Sample selection and distribution 

A Typhodont maxillary lateral incisor was used and prepared in a conventional method to receive a 

full ceramic crown. A CAD (computer aided design)/ CAM (computer aided manufacturing) 

machine was used to scan the prepared tooth and manufacture 40 IPS eMax crowns and 40 zirconia 

crowns. A technician used the cut back technique to add feldspathic porcelain to the facial surface of 

the zirconia crowns. 

Mounting procedure: A 10mm diameter PVC pipe was used to make 80 plastic cylinders 10mm 

high. These 80 plastic cylinders were placed on a glass surface and filled with self-curing epoxy 

resin (Buchler, Lake Bluff, Ill), and a single ceramic crown was embedded into each of the epoxy 

resin filled plastic cylinders with the facial surface exposed. Alignment of crowns: The crowns were 

held in place with a piece of Prestik® attached to the facial surface of the crown and a matchstick 
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was attached to the Prestik® and suspended across the two ends of the plastic cylinder. This helped 

to align the facial surface of the crown perpendicular to the base and this also helped to orientate the 

bonding surface to be parallel to the force applied during the shearing strength test. The mounted 

teeth were kept overnight in distilled water for the epoxy resin to set completely. Half the number of 

IPS eMax crown specimens (ie.20) and half the number of porcelain veneered zirconia crown 

specimens (ie. 20) – were thermocycled prior to bonding (ie. to mimic thermal changes which occur 

in the mouth), from 5 to 55
o 

for 500 cycles as recommended by the International Organization for 

Standardization (ISO 6872, 2008) (see Figure: 1.). 

 

Figure: 1. The thermocycling apparatus used 

The remaining 20 IPS eMax crown specimens and 20 porcelain veneered zirconia crown specimens 

remained new and unexposed to thermal changes. 

Bonding process: The facial surfaces of all the thermocycled and non-thermocycled crown 

specimens were polished using pumice and water slurry in a rubber cup for 10 seconds. The crowns 

were then washed with distilled water for 15 seconds and dried thoroughly with oil-free air. Etching 
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of all the ceramic bonding surfaces was performed by the application of 35 per cent ortho-phosphoric 

acid liquid (ULTRADENT™) for 2 minutes (Faltermeier et al 2012). The crowns were then rinsed 

with distilled water for 15 seconds and dried with oil-free air. A thin layer of RelyX™ Ceramic 

Primer (3M, ESPE) was applied to the etched surface and allowed to react for 5 seconds, and then air 

dried so that the solvent evaporated completely (see Figure: 2.).  

 

 

 

Figure: 2. 35 % phosphoric acid etch and a ceramic primer. 

Before bonding, the etched ceramic crown specimens were divided into 4 groups. Group 1 and 

Group 2 consisted of 10 thermocycled, etched and silane treated IPS eMax crown specimens and 10 

thermocycled, etched and silane treated porcelain veneered zirconia crown specimens each. Group 3 

and Group 4 consisted of 10 non-thermocycled, etched and silane treated IPS eMax crown specimens 
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and 10 non-thermocycled, etched and silane treated porcelain veneered zirconia crown specimens 

each. The decision to use 10 specimens per group was made partly because of the high cost of the 

ceramic crowns. A higher number of specimens per group have been recommended for tests 

involving enamel surfaces (Kalange 2007), where it is possible that greater specimen variation 

would occur than that seen with ceramic crowns made to one die by a CAD/CAM machine and a 

skilled porcelain technician. A lateral incisor metal bracket (Octi
R
, Dentsply) (see Figure: 3.), with a 

bracket base area of 9mm
2 

(as confirmed by manufacturer) was bonded to each of the etched and 

silane treated ceramic crown specimens in the following manner:  

Group 1: (10 thermocycled, etched and silane treated IPS eMax and 10 thermocycled, etched and 

silane treated porcelain veneered zirconia crown specimens). A small amount RelyX™ Unicem 2 

Automix (3M, ESPE) (see Figure: 4.) was placed on the base of the bracket and the bracket was 

placed onto the bonding surface of the embedded crowns. The bracket was compressed onto each 

crown using a 300g force (Correx force gauge, Bern, Switzerland). Excess resin was removed with 

an explorer and the resin was light cured for 40 seconds (20 seconds mesial and 20 seconds distal) 

with a curing light (Ortholux LED, 3M Unitek).  

Group 2:  (10 thermocycled, etched and silane treated IPS eMax and 10 thermocycled, etched and 

silane treated porcelain veneered zirconia crown specimens). A thin layer of Transbond™ XT light 

cure adhesive primer (3M, Unitek) (see Figure: 5.) was applied onto the bonding surface of the 

crowns and air dried. A small amount of Transbond™ XT adhesive resin (3M, Unitek) (see Figure: 

6.) was applied to the base of the bracket and the bracket was positioned onto the bonding surface of 

the embedded crowns. The bracket was compressed onto each crown using a 300g force (Correx 

force gauge, Bern, Switzerland).  The excess resin was removed with an explorer and the resin was 

light cured for 40 seconds (20 seconds mesial and 20 seconds distal) with a curing light (Ortholux 

LED, 3M Unitek). 
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Group 3: (10 non-thermocycled, etched and silane treated IPS eMax and 10 non-thermocycled, 

etched and silane treated porcelain veneered zirconia crown specimens). A small amount RelyX™ 

Unicem 2 Automix (3M, ESPE) (see Figure: 4.) was placed on the base of the bracket and the 

bracket was placed onto bonding surface of the embedded crowns. The bracket was compressed onto 

each crown using a 300g force (Correx force gauge, Bern, Switzerland). Excess resin was removed 

with an explorer and the resin was light cured for 40 seconds (20 seconds mesial and 20 seconds 

distal) with a curing light (Ortholux LED, 3M Unitek).  

Group 4: (10 non-thermocycled, etched and silane treated IPS eMax and 10 non-thermocycled, 

etched and silane treated porcelain veneered zirconia crown specimens). A thin layer of Transbond™ 

XT light cure adhesive primer (3M, Unitek) (see Figure: 5.) was applied onto the bonding surface of 

the crowns and air dried. A small amount of Transbond™ XT adhesive resin (3M, Unitek) (see 

Figure: 6.) was applied to the base of the bracket and the bracket was positioned onto the bonding 

surface of the crowns. The bracket was compressed onto each crown using a 300g force (Correx 

force gauge, Bern, Switzerland). The excess resin was removed with an explorer and the resin was 

light cured for 40 seconds (20 seconds mesial and 20 seconds distal) with a curing light (Ortholux 

LED, 3M Unitek) (see Figure 7.). 
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Figure: 3. The metal orthodontic brackets used. 

 

Figure: 4. RelyX Unicem
TM

 2 self-adhesive resin cement. 
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 Figure: 5. Transbond
TM

 XT adhesive primer 

 

 

 

 

Figure: 6. Transbond
TM 

XT adhesive resin cement. 
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Figure: 7. Crown embedded and bonded with a metal bracket. Labelled according to particular 

groups 

 

 

 

3.2. Debonding Procedure 

After bonding all samples were stored in distilled water for 24 hours before being submitted to the 

shear bond strength test.
 
Debonding forces in Newtons was determined by using a testing machine 

(Instron, Canton, Mass.) operating at a crosshead speed of 1 mm/min. The embedded ceramic crown 

and adhesively fixed bracket was positioned in the machine so that the bracket slot was aligned 

horizontally. A knife-edged shearing rod was used to deliver a shearing force at the bracket-ceramic 

interface (see Figure: 8.). 

 

 

 

 



40 
 

 

Figure: 8. The knife-edged rod of the shearing machine positioned at the bracket-ceramic interface. 

The shear bond strength (MPa) was determined using the following formula: 

 Shear bond strength (MPa) =Shearing force (Newtons) / Bracket base surface area (mm
2
) 

 

3.3. Evaluation of bracket-crown interface 

After debonding the amount adhesive left on the crown surface was examined with an optical 

microscope at a magnification of 10-25x (see Figure: 9.). 
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Figure: 9. After debonding the surface of the crown was examined.  

 

3.3.1. Adhesive Remnant Index (ARI) 

 An adhesive remnant index (ARI), by Artun and Bergland (1984), was used to evaluate the adhesive 

remaining on the crown surface after debonding. Description of each category of the adhesive 

remnant index (see Table: 1.).  

 

3.3.2. Porcelain Fracture Index (PFI) 

All composite remnants were then removed from the ceramic crown specimens (with ARI scores of 

1 or more) using scaling instruments after bulk reduction with a twelve-fluted tungsten carbide bur in 

a slow-speed handpiece. The ceramic surfaces were examined before bonding and the re-examined 

after debonding with an optical microscope at a magnification of 10-25x to assess damage which 

may have occurred to the porcelain and recorded using the Porcelain Fracture Index (PFI) (see Table 

2.). For this study we used the Porcelain Fracture Index (PFI) developed by Bourke et al (1999). The 
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PFI uses a 0 to 3 or a 4-point scale to evaluate the quality or integrity of the porcelain surface after 

the removal of the residual adhesive.  
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Chapter 4 

Results 
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Results 

4.1. Presentation of raw data 

Each of the adhesive resin cement/ crown combinations were grouped and presented in groups (see 

Tables: 5-16.). The abbreviations used are explained in Table: 4. 

# Specimen number 

T. Thermocycled specimens 

NT. Non-Thermocycled specimens 

SBS-N Shear bond Strength value in Newtons 

SBS-

MPa 

Shear bond Strength value in Mega Pascals 

ARI Adhesive Remnant Index 

PFI Porcelain fracture Index 

R-X U RelyX
TM

 Unicem 2 dual-cure resin cement (3M, ESPE) 

Tb XT Transbond
TM 

 XT light cure adhesive resin cement (3M, Unitek) 

E IPS eMax crown 

Z Porcelain-veneered zirconia crown 

Table: 4. List of abbreviations used. 

 

 

 

Group 1: Results of the Thermocycled eMax/ RelyX
TM

 Unicem 2 and Porcelain-veneered 

zirconia crown/RelyX
TM

 Unicem 2 adhesive combinations (see Table: 5.). 
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Adhesive 

Agent 

Type of 

crown 

T./NT. 

SBS 

N 

SBS 

MPa 

ARI 

score 

PFI 

score 

1 R-X U E T 26.7 3.0 0 0 

2 R-X U E T 15.4 1.7 1 0 

3 R-X U E T 46.9 5.2 0 0 

4 R-X U E T 55.3 6.1 1 0 

5 R-X U E T 90.9 10.1 1 0 

6 R-X U E T 73.1 8.1 1 0 

7 R-X U E T 13.2 1.5 2 0 

8 R-X U E T 61.2 6.8 2 0 

9 R-X U E T 20.1 2.2 0 0 

10 R-X U E T 41.9 4.7 0 0 

11 R-X U Z T 13.4 1.5 0 0 

12 R-X U Z T 12.3 1.4 0 0 

13 R-X U Z T 60.4 6.7 0 0 

14 R-X U Z T 40 4.4 0 0 

15 R-X U Z T 17.6 2.0 0 0 

16 R-X U Z T 52.8 5.9 0 0 

17 R-X U Z T 23.4 2.6 0 0 

18 R-X U Z T 12.7 1.4 0 0 

19 

R-X U Z T 

0 

(defective) 

------ -------- ------- 

20 

R-X U Z T 

0 

(defective) 

------- ------- ------- 

Table: 5. Results: Group 1. 
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Group 1: Sorted from highest to lowest (SBS) (see Tables: 6 and 7). 

Adhesive 

Agent/Type of 

Crown 

SBS-N SBS-MPa 

R-X U/Z-T 60.4 6.7 

R-X U/Z-T 52.8 5.9 

R-X U/Z-T 40 4.4 

R-X U/Z-T 23.4 2.6 

R-X U/Z-T 17.6 2.0 

R-X U/Z-T 13.4 1.5 

R-X U/Z-T 12.7 1.4 

R-X U/Z-T 12.3 1.4 

R-X U/Z-T 0 0 

R-X U/Z-T 0 0 

Average/Mean 29.1 3.2 

Median 20.5 2.3 

 

Table: 6.       Table: 7. 

 

 

 

 

Adhesive 

Agent/Type of 

Crown 

SBS-N SBS-MPa 

R-X U/E-T 90.9 10.1 

R-X U/E- T 73.1 8.1 

R-X U/E-T 61.2 6.8 

R-X U/E-T 55.3 6.1 

R-X U/E-T 46.9 5.2 

R-X U/E-T 41.9 4.7 

R-X U/E-T 26.7 3.0 

R-X U/E-T 20.1 2.2 

R-X U/E-T 15.4 1.7 

R-X U/E-T 13.2 1.5 

Average/Mean 44.5 4.9 

Median 44.4 5 
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Group 2: Results of Thermocycled eMax/Transbond XT adhesive and Porcelain-veneered 

zirconia crown/Transbond XT adhesive combinations (see Table 8.) 

# Adhesive 

Agent 

Type of 

crown 

T./NT. 

SBS 

N 

SBS 

MPa 

ARI 

score 

PFI 

score 

21 Tb XT E T 38.3 4.3 0 0 

22 Tb XT E T 25.1 2.8 0 0 

23 Tb XT E T 54.5 6.1 0 0 

24 Tb XT E T 72.1 8.0 0 0 

25 Tb XT E T 56.7 6.3 0 0 

26 Tb XT E T 87.2 9.7 0 0 

27 Tb XT E T 25.5 2.8 0 0 

28 Tb XT E T 42.1 4.7 0 0 

29 Tb XT E T 44.2 4.9 0 0 

30 Tb XT E T 15.6 1.7 0 0 

31 Tb XT Z T 15.8 1.8 0 0 

32 Tb XT Z T 32.7 3.6 0 0 

33 Tb XT Z T 27.6 3.1 0 0 

34 Tb XT Z T 70.9 7.9 0 0 

35 Tb XT Z T 55.9 6.2 0 0 

36 Tb XT Z T 26.7 3.0 0 3 

37 Tb XT Z T 60.9 6.8 0 0 

38 Tb XT Z T 49.2 5.5 0 0 

39 Tb XT Z T 65.5 7.3 0 0 

40 Tb XT Z T 51.1 5.7 0 0 

Table: 8. 
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 Group 2: sorted from highest to lowest (SBS) (see Tables: 9 and 10.). 

Adhesive 

agent/Type of 

crown 

SBS-N SBS-MPa 

Tb XT/Z-T 70.9 7.9 

Tb XT/Z-T 65.5 7.3 

Tb XT/Z-T 60.9 6.8 

Tb XT/Z-T 55.9 6.2 

Tb XT/Z-T 51.1 5.7 

Tb XT/Z-T 49.2 5.5 

Tb XT/Z-T 32.7 3.6 

Tb XT/Z-T 27.6 3.1 

Tb XT/Z-T 26.7 3.0 

Tb XT/Z-T 15.8 1.8 

Average/Mean 45.8 5.1 

Median 50.2 5.4 

   

Table: 9.      Table: 10. 

 

 

 

 

 

Adhesive agent/ 

Type of crown SBS-N SBS-MPa 

Tb XT/E-T 87.2 9.7 

Tb XT/E-T 72.1 8.0 

Tb XT/E-T 56.7 6.3 

Tb XT/E-T 54.5 6.1 

Tb XT/E-T 44.2 4.9 

Tb XT/E-T 42.1 4.7 

Tb XT/E-T 38.3 4.3 

Tb XT/E-T 25.5 2.8 

Tb XT/E-T 25.1 2.8 

Tb XT/E-T 15.6 1.7 

Average/Mean 46.1 5.1 

Median 43.2 4.8 
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Group 3: Results of the Non –Thermocycled eMax/RelyX Unicem 2 and Porcelain-veneered 

zirconia Crown/ RelyX Unicem 2 adhesive combinations (see Table: 11.). 

 

Table: 11. 

# Adhesive 

Agent 

Type of 

crown 

T./NT. 

SBS 

N 

SBS 

MPa 

ARI 

score 

PFI 

score 

41 R-X U E NT 40.3 4.5 2 0 

42 R-X U E NT 65.3 7.3 3 0 

43 R-X U E NT 26.6 3.0 0 0 

44 R-X U E NT 45.8 5.1 3 0 

45 R-X U E NT 22.2 2.5 1 0 

46 R-X U E NT 49.4 5.5 1 0 

47 R-X U E NT 52.2 5.8 2 0 

48 R-X U E NT 51.4 5.7 3 0 

49 R-X U E NT 55.1 6.1 3 0 

50 R-X U E NT 45.5 5.1 3 0 

51 R-X U Z NT 38.8 4.3 0 0 

52 R-X U Z NT 40.8 4.5 0 0 

53 R-X U Z NT 27.2 3.0 0 0 

54 R-X U Z NT 52.5 5.8 0 0 

55 R-X U Z NT 34.6 3.8 0 0 

56 R-X U Z NT 68.2 7.6 0 0 

57 R-X U Z NT 58.5 6.5 0 0 

58 R-X U Z NT 65.9 7.3 0 0 

59 R-X U Z NT 81 9 0 0 

60 R-X U Z NT 0 
(defective)

  ------- ------ ------ 
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Group 3: sorted from highest to lowest (SBS) (see Tables: 12 and 13.). 

Adhesive 

agent/Type of 

crown 

SBS-N SBS-MPa 

R-X U/Z-NT 81 9 

R-X U/Z-NT 68.2 7.6 

R-X U/Z-NT 65.9 7.3 

R-X U/Z-NT 58.5 6.5 

R-X U/Z-NT 52.5 5.8 

R-X U/Z-NT 40.8 4.5 

R-X U/Z-NT 38.8 4.3 

R-X U/Z-NT 34.6 3.8 

R-X U/Z-NT 27.2 3.0 

R-X U/Z-NT 0 0 

Average/Mean 51.9 5.8 

Median 52.5 5.8 

Table: 12.      Table: 13. 

 

 

 

 

 

Adhesive 

Agent/Type of 

crown 

SBS-N SBS-MPa 

R-X U/E-NT 65.3 7.3 

R-X U/E-NT 55.1 6.1 

R-X U/E-NT 52.2 5.8 

R-X U/E-NT 51.4 5.7 

R-X U/E-NT 49.4 5.5 

R-X U/E-NT 45.8 5.1 

R-X U/E-NT 45.5 5.1 

R-X U/E-NT 40.3 4.5 

R-X U/E-NT 26.6 3.0 

R-X U/E-NT 22.2 2.5 

Average/Mean 45.5 5.1 

Median 47.6 5.3 
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Group 4: Results of the Non-Thermocycled eMax/Transbond XT adhesive and Porcelain-

veneered zirconia crown/ Transbond XT adhesive combinations (see Table: 14.). 

# Adhesive 

Agent 

Type of 

crown 

T./NT. 

SBS 

N 

SBS 

 MPa 

ARI 

score 

PFI 

Score 

61 Tb XT E NT 65.4 7.3 3 0 

62 Tb XT E NT 172.2 19.1 0 0 

63 Tb XT E NT 63.3 7.0 0 0 

64 Tb XT E NT 65.7 7.3 0 0 

65 Tb XT E NT 43.7 4.9 3 0 

66 Tb XT E NT 68.8 7.6 3 0 

67 Tb XT E NT 43.4 4.8 3 0 

68 Tb XT E NT 103.9 11.5 0 0 

69 Tb XT E NT 50.6 5.6 1 0 

70 Tb XT E NT 50.2 5.6 0 0 

71 
Tb XT Z NT 57.3 6.4 0 0 

72 
Tb XT Z NT 52.2 5.8 2 0 

73 
Tb XT Z NT 49.6 5.5 3 0 

74 
Tb XT Z NT 52.2 5.8 3 0 

      

75 
Tb XT Z NT 62.5 6.9 1 0 

      

76 
Tb XT Z NT 54.2 6.0 0 0 

      

77 
Tb XT Z NT 41.2 4.6 3 0 

      

78 
Tb XT Z NT 72.1 8.0 3 0 

      

79 
Tb XT Z NT 71.9 8.0 0 0  

    

80 
Tb XT Z NT 59.8 6.6 3        0 

     

Table: 14. 
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Group 4: sorted from highest to lowest (SBS) (see Table 15 and 16.). 

Adhesive 

agent/Type of 

Crown 

SBS-N SBS-MPa 

Tb XT/Z-NT 72.1 8.0 

Tb XT/Z-NT 71.9 8.0 

Tb XT/Z-NT 62.5 6.9 

Tb XT/Z-NT 59.8 6.6 

Tb XT/Z-NT 57.3 6.4 

Tb XT/Z-NT 54.2 6.0 

Tb XT/Z-NT 52.2 5.8 

Tb XT/Z-NT 52.2 5.8 

Tb XT/Z-NT 49.6 5.5 

Tb XT/Z-NT 41.2 4.6 

Average/Mean 57.3 6.4 

Median 55.75 6.2 

 

Table: 15.     Table: 16. 

 

 

 

 

Adhesive 

agent/Type of 

crown 

SBS-N SBS-MPa 

Tb XT/E-NT 172.2 19.1 

Tb XT/E-NT 103.9 11.5 

Tb XT/E-NT 68.8 7.6 

Tb XT/E-NT 65.7 7.3 

Tb XT/E-NT 65.4 7.3 

Tb XT/E-NT 63.3 7.0 

Tb XT/E-NT 50.6 5.6 

Tb XT/E-NT 50.2 5.6 

Tb XT/E-NT 43.7 4.9 

Tb XT/E-NT 43.4 4.8 

Average/Mean 72.7 8.1 

Median 64.4 7.2 
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4.2. Statistical Analysis of shear bond strengths in Newtons (N) and Mega Pascals (MPa)  

The following layout for IPS eMax (E) and Zirconia (Z) crowns were used. 

Group A-  

Thermocycled (T); IPS eMax (E) and Zirconia (Z) crowns bonded with RelyX
TM

 Unicem 2 (R-X U) 

Group B-  

Thermocycled (T); IPS eMax (E) and Zirconia (Z) crowns bonded with Transbond
TM

 XT (Tb XT) 

Group C-  

Non-Thermocycled (NT); IPS eMax (E) and Zirconia (Z) crowns bonded with RelyX
TM

 Unicem (R-

X U) 

Group D-  

Non-Thermocycled (NT); eMax (E) and Zirconia (Z) crowns bonded with Transbond
TM

 XT (Tb XT) 

This is also known as a factorial layout and the aim was to have ten replicates for each 

crown/adhesive treatment combination, eight combinations in total.  It was analysed as a one-way 

analysis of variance, ANOVA. 

The data in Newtons (N) which was obtained from the shear bond strength test performed with the 

Instron testing machine was converted into Mega Pascals using the following equation: 

 Shear bond strength (MPa) =Shearing force (Newtons) / Bracket base surface area (mm
2
) 

The orthodontic bracket used had a surface area of 9mm
2
, as confirmed by the manufacturer.  
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A/C 

T/NT 

Sample 

size 

Average 

N 

Median 

N 

S.D 

Average 

MPa 

Median 

MPa 

S.D 

R-X U/ 

E-T 

10 44.46 44.55 26.07 4.94 4.95 2.89 

R-X U/ 

Z-T 

10 29.14 20.70 19.36 3.24 2.30 2.14 

TbXT/ 

E-T 

10 46.17 43.20 22.17 5.13 4.80 2.47 

TbXT/ 

Z-T 

10 45.81 50.40 18.72 5.13 5.60 2.08 

R-X U/ 

E-NT 

10 45.54 47.70 12.94 5.09 5.30 1.43 

R-X U/ 

Z-NT 

10 51.80 52.20 17.88 5.76 5.80 2 

TbXT/ 

E-NT 

10 72.63 64.35 39.12 8.07 7.15 4.33 

TbXT/ 

Z-NT 

10 57.24 55.80 9.69 6.36 6.20 1.07 

Table:17:  

Data 

analysed 
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Figure: 10: Line graph: Mean shear bond strengths in Newtons for the 8 combinations. 

 

Figure: 11: Line graph showing the Median shear bond strengths in Newtons for each 

adhesive/crown combination. 
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 Figure: 12: Line graph showing the shear bond strengths in Mega Pascals (MPa) for each 

adhesive/crown combination. 

The red line represents the median. 

The blue line represents the average/mean. 
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Figure: 13: Line graph showing the Mean shear bond strengths in MPa for the adhesive/crown 

combinations. 

The blue line shows the Thermocycled specimens. 

The red line shows the Non –Thermocycled specimens.  

 

 

For a graphical display of the SBS determinations for each of the eight adhesive/crown combinations 

a Stem-and-Leaf was constructed (see Tables: 18-21.) 

 

The bold digits in the Leaves-columns represents the individual observations (SBS in Newtons). 

 

 

0

1

2

3

4

5

6

7

8

9

R-XU/E R-X U/Z TbXT/E TbXT/Z

Sh
e

ar
b

o
n

d
 s

tr
e

n
gt

h
 M

P
a 

Means shear bond strengths in MPa 
- Thermocycled vs. Non-Thermocycled 

Specimens 

T

NT

 

 

 

 



58 
 

E-max- E  

 

E-max – E 

 

      Thermo Rely X 

 

Thermo Transbond 

 Cycled Unicem 

 

cycled XT 

 Stem- Leaves 

 

Stem- Leaves 

 

  

Freq 

  

Freq 

17 

 

  17 
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  16 
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9 1 1 9 

 

  

8 

 

  8 7 1 

7 3 1 7 2 1 

6 1 1 6 

 

  

5 5 1 5 57 2 

4 27 2 4 27 2 
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  3 8 1 

2 07 2 2 56 2 

1 35 2 1 6 1 
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Distribution very flat   Distribution very flat   

            

 

Table: 18. Stem-and-Leaf Diagram for two of the eight adhesive/crown combinations (Freq ≡ 

Frequency). 
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E-max - E 

 

E-max - E 

 Non-   

 

Non-   

 Thermo Rely X 

 

Thermo Transbond 

 Cycled Unicem 

 

cycled XT 

 Stem- Leaves 

 

Stem- Leaves 

 

  

Freq 

  

Freq 

17 

 

  17 2 1 

16 

 

  16 

 

  

15 

 

  15 

 

  

14 

 

  14 

 

  

13 

 

  13 

 

  

12 

 

  12 

 

  

11 

 

  11 

 

  

10 

 

  10 4 1 

9 

 

  9 

 

  

8 

 

  8 

 

  

7 

 

  7 

 

  

6 5 1 6 3569 4 

5 125 3 5 01 2 

4 0669 4 4 34 2 

3 

 

  3 

 

  

2 27 2 2 
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Dispersion narrow   Contains two outliers  172 &104 

 

          

             

Table 19.  Stem-and-Leaf Diagram for two of the eight adhesive/crown combinations (Freq ≡ 

Frequency). 
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Zirconia – Z 

 

Zirconia - Z 

 

      Thermo Rely X 

 

Thermo Transbond 

 Cycled Unicem 

 

cycled XT 

 Stem- Leaves Stem- Leaves 

 

  

Freq 

  

Freq 

17 

 

  17 

 

  

16 

 

  16 

 

  

15 

 

  15 

 

  

14 

 

  14 

 

  

13 

 

  13 

 

  

12 

 

  12 

 

  

11 

 

  11 

 

  

10 

 

  10 

 

  

9 

 

  9 

 

  

8 

 

  8 

 

  

7 

 

  7 1 1 

6 0 1 6 16 2 

5 3 1 5 16 2 

4 0 1 4 9 1 

3 

 

  3 3 1 

2 3 1 2 78 2 

1 238 3 1 6 1 

0 003 3 0 
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Distribution; skewed towards Dispersion wide   

the larger values         

      

Table: 20: Stem-and-Leaf Diagram for two of the eight treatment combinations (Freq ≡ Frequency). 
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Zirconia – Z 

 

Zirconia - Z 

 Non-   

 

Non-   

 Thermo Rely X 

 

Thermo Transbond 

 Cycled Unicem 

 

cycled XT 

 Stem- Leaves Stem- Leaves 

 

  

Freq 

  

Freq 

17 

 

  17 

  16 
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  14 
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  13 

 

  13 

  12 

 

  12 
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  10 
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  9 

  8 1 1 8 

  7 

 

  7 22 2 

6 68 2 6 03 2 

5 39 2 5 02247 5 

4 1 1 4 1 1 

3 59 2 3 

  2 7 1 2 

  1 

 

  1 

  0 0 1 0 
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Dispersion wide   Dispersion narrow   

            

 

Table: 21: Stem-and-Leaf Diagram for two of the eight adhesive/crown combinations (Freq ≡ 

Frequency). 

 

 

 

 

 

 

Table: 22.: The SBS in Newtons and MPa Medians of the eight adhesive/crown combinations sorted 

from small to large.  

     

 Group SBS N   Group SBS Mpa  

     

R-X U-Z-T 20.70  R-X U-Z-T 2.30 

Tb XT-E-T 43.20  Tb XT-E-T 4.80 

R-X U-E-T 44.55  R-X U-E-T 4.95 

R-X U-E-NT 47.70  R-X U-E-NT 5.30 

Tb XT-Z- T 50.40  Tb XT-Z-T 5.60 

R-X U-Z-NT 52.20  R-X U-Z-NT 5.80 

Tb XT-Z-NT 55.80  Tb XT-Z-NT 6.20 

Tb XT-E-NT 64.35  Tb XT-E-NT 7.15 
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Group 

SBS N 

 

Group 

SBS 

Mpa 

     

R-X U-Z-T 29.14  R-X U-Z-T 3.24 

R-X U-E-T 44.46  R-X U-E-T 4.94 

R-X U-E-

NT 

45.54 

 R-X U-E-NT 

5.06 

Tb XT-Z-T 45.81  Tb XT-Z-T 5.09 

Tb XT-E-T 46.17  Tb XT-E-T 5.13 

R-X U-Z-

NT 

51.80 

 R-X U-Z-NT 

5.76 

Tb XT-Z-

NT 

57.24 

 Tb XT-Z-NT 

6.36 

Tb XT-E-

NT 

72.63 

 Tb XT-E-NT 

8.07 

 

Table: 23.: The SBS in Newtons and MPa Means of the eight adhesive/crown combinations sorted 

from small to large. 

 The order for the two measures are exactly the same because the two units are linearly related 

 

In the two Tables above (see Tables: 22 and 23.) there is a strong correspondence between the two 

rankings (Medians and the Means).  The smallest shear bond (SBS) values remain the same as well 
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as the last three at the higher end of the spectrum. Towards the middle section of the rankings R-X 

U-E-T, R-X U-E-NT, Tb XT-Z-T and Tb XT-E-T are only slightly rearranged.  

 

 

Group 

R-X 

U-Z-T 

Tb 

XT-E-

T 

R-X 

U-E-T 

R-X 

U-E-

NT 

Tb 

XT-Z-

T 

R-X 

U-Z-

NT 

Tb 

XT-Z-

NT 

Tb 

XT-E-

NT 

Median SBS N 20.70 43.20 44.55 47.70 50.40 52.20 55.80 64.35 

Mean SBS N 29.14 46.17 44.46 45.54 45.81 51.80 57.24 72.63 

 

Table: 24:  The Medians and Means of the SBS in Newtons of the eight different adhesive/crown 

combinations.  
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Figure: 14: Scatter plot of the Medians vs Means of the SBS in Newtons of the eight adhesive/crown 

combinations. 

 

In the above graph of the eight adhesive/crown combinations Medians vs Means of SBS N are 

displayed and the symmetry of the statistical distribution of SBS-N is confirmed.  The smallest SBS 

N is much less than the second smallest observation. 
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Figure: 15: Side by side Box-and-Whisker Plots of the SBS (N) values for the eight adhesive/crown 

combinations (Single combination Names). 

 

Each box represents the interquartile area (50% of the readings for each combination). 

The red line in each box represents the medians. 

The red dot is representative of an extreme value obtained. 
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The wide and overlapping dispersion (interquartile ranges, the red boxes) of the adhesive/crown 

combinations will consequently lessen the probability of significant differences between the eight 

adhesive/crown combinations. The excessive outlier in the treatment combination Tb XT-E-NT 

would not affect the analysis because non-parametric methods were used. 

 

From the Kruskal-Wallis test with respect to the Medians, the following Table (see Table: 25.) (for 

all the pairwise comparisons) can be constructed (p < 0.05). 

 

                         

Group R-Z-T Tb-E-T R-E-T 

R-E-

NT Tb-Z-T 

R-Z-

NT 

Tb-Z-

NT 

Tb-E-

NT 

Median 20.7 43.2 44.55 47.7 50.4 52.2 55.8 64.35 

 

Table: 25. Medians in Newtons of the eight adhesive/crown combinations. 

From this Table we could learn that SBS N for the treatment R-X U-Z-T which has a median of 20.7 

N is different from Tb XT-E-T, R-X U-E-T, R-X U-E-NT, Tb XT-Z-T, R-X U-Z-NT, Tb XT-Z-NT 

and Tb XT-E-NT with corresponding medians 43.2, 44.55, 47.7, 50.4, 52.2, 55.8 and 64.35.  Using 

the Bonferroni Test for Medians, it implies that those adhesive/crown combinations linked by the 

dark horizontal line do not differ significantly.  
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Relaxing the significance level (p-value) somewhat one could arrive at the following Table (see 

Table 26.).  

 

                                       

Group R-Z-T Tb-E-T R-E-T 

R-E-

NT Tb-Z-T 

R-Z-

NT 

Tb-Z-

NT 

Tb-E-

NT 

Median 20.7 43.2 44.55 47.7 50.4 52.2 55.8 64.35 

         

 

Table:26.   Relaxing  p-value 

     
This figure is corresponding to the Scatter plot (see Figure: 14.).  From this follows that  

Tb XT-E-NT (Transbond XT and e-Max and not Thermocycled) yielded the maximum SBS, but 

after being Thermocycled it dropped to the second lowest position of SBS N (a fall of six positions).   

Tb XT-Z-NT, R-X U-Z-NT and R-X U-E-NT dropped two positions, five positions and one position 

respectively. 

 

R-X U-Z-NT, Tb XT-Z-NT, Tb XT-E-NT three of the not Thermocycled treatments are in the top 

positions, showing the adverse effects of Thermocycling.  The treatment R-X U-Z-T (20.7) had the 

lowest SBS. 

 

4.3. Shear bond strength comparisons  

The results after debonding were sorted into maximum and minimum values and the means and 

medians were calculated (see Tables: 6-16.).  

 

 

 

 



72 
 

Table: 17. expresses the mean Shear bond strength (SBS) of the 8 adhesive/crown combinations in 

Newtons (N) and Mega Pascals (MPa) and their respective standard deviations (S.D). 

Figures: 10 and 11. are line graphs showing the mean and median shear bond strengths (SBS) values 

in Newtons (N) of each adhesive/crown combination. Figure: 12. are superimposed line graphs 

comparing the mean and median shear bond strength (SBS) values of each adhesive/crown 

combination in Mega Pascals (MPa). Figure: 13. are superimposed line graphs comparing the mean 

shear bond strength (SBS) values in Mega Pascals (MPa) of the thermocycled and non-thermocycled 

adhesive/crown combinations.  

For a graphical display of the shear bond strength (SBS) values in Newtons (N) for each of the 8 

adhesive/crown combinations Stem-and-Leaf diagrams were constructed. Table: 18. displays a flat 

distribution of shear bond strength (SBS) values for both the R-X U/E-T and the Tb XT/E- T 

combinations. Table: 19. displays a narrow dispersion of shear bond strength (SBS) values for the R-

X U/E-NT combination and the Tb XT/E-NT combination contained two outliners (104 N and 172 

N). 

 Table: 20. displays a distribution of shear bond strength (SBS) values which is skewed towards the 

larger values for the R-X U/Z-T combination and a wide dispersion of  shear bond strength (SBS) 

values for the TbXT/Z-T combination. Table: 21. displays a wide dispersion of shear bond strength 

(SBS) values for the R-X U/Z-NT combination and a narrow dispersion of shear bond strength (SBS) 

values for the TbXT/Z-NT combination. 

Table: 22. represents the medians of the shear bond strength (SBS) values of the 8 adhesive/crown 

combinations in Newtons (N) and Mega Pascals (MPa). Table: 23. represents the Means of the shear 

bond strength (SBS) values of the 8 adhesive/crown combinations in Newtons (N) and Mega Pascals 

(MPa). The order in these two tables is exactly the same because the two units are linearly related.   
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Figure: 14. shows a scatter plot of the Medians and Means of the shear bond strength (SBS) values in 

Newtons (N) of the 8 adhesive/crown combinations (see Table: 24.) and the symmetry of the 

statistical distribution of the shear bond strength (SBS) values in Newtons (N) is confirmed. 

    

4.3.1. Rely X
TM

 Unicem 2 self-adhesive resin  

Comparative shear bond strengths of the 2 all ceramic non-thermocycled crowns 

The results after debonding were compared. The mean shear bond strength for this adhesive bonded 

to the all ceramic non-thermocycled crowns ranged from a low of 5.1 MPa (45.5 Newtons) when 

brackets were bonded to the eMax crowns to a high of 5.8 MPa (51.9 Newtons) when brackets were 

bonded to the porcelain veneered zirconia crowns. The standard deviation in the shear bond strength 

values displayed in the 2 groups was small even though the range between the maximum and 

minimum values was large. 

 

Rely X Unicem 2 self-adhesive resin/non-thermocycled eMax crown combination  

The Rely-X Unicem 2 self-adhesive resin displayed the sixth highest shear bond strength value of the 

two adhesive resin cements when bonded to the non-thermocycled eMax crowns (Transbond
TM 

XT 

adhesive resin cement displayed the 5 highest shear bond strength values). The shear bond strength 

values for this combination ranged from a minimum of 2.5 MPa (22.2 Newtons) to a maximum of 

7.3 MPa (65.3 Newtons) with a mean value of 5.1 MPa (45.5 Newtons) (see Table: 12.). This 

combination displayed a standard deviation of 1.43 (see Table: 17.). 
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Rely-X Unicem 2 self-adhesive resin/non-thermocycled porcelain veneered zirconia crown 

combination    

The Rely-X Unicem 2 self-adhesive resin displayed the highest shear bond strength value of the two 

adhesive resin cements when bonded to the non-thermocycled porcelain veneered zirconia crowns. 

The shear bond strength values for this combination ranged from a minimum of 0 MPa (the bracket 

debonded without registering a value on the shearing machine) to a maximum of 9 MPa (81 

Newtons) with a mean value of 5.8 MPa (51.9 Newtons) (see Table: 13.). This combination 

displayed a standard deviation of 2 (see Table: 17.). 

 

4.3.2. Transbond XT adhesive resin     

Comparative shear bond strengths of the 2 all ceramic non-thermocycled crowns 

The results after debonding were compared. The mean shear bond strength for this adhesive bonded 

to the all ceramic non-thermocycled crowns ranged from a low of 6.4 MPa (57.3 Newtons) when 

brackets were bonded to the porcelain veneered zirconia crowns to a high of 8.1 MPa (72.7 Newtons) 

when brackets were bonded  to the eMax crowns.   

 

Transbond XT adhesive resin/non-thermocycled eMax crown combination 

The Transbond XT adhesive resin displayed the highest shear bond strength value of the two 

adhesive resin cements when bonded to the non-thermocycled eMax crowns. The shear bond 

strength values for this combination ranged from a low of 4.8 MPa (43.4 Newtons) to a maximum of 

19.1 MPa (172.2 Newtons) with a mean value of 8.1 MPa (72.7 Newtons) (see Table: 15.). This 

combination displayed a standard deviation of 4.33 (see Table: 17.). 
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Transbond XT adhesive resin/non-thermocycled porcelain veneered zirconia crown combination  

The Transbond XT adhesive resin displayed the second highest shear bond strength value of the two 

adhesive resin cements when bonded to the non-thermocycled porcelain veneered zirconia crowns. 

The shear bond strength values for this combination ranged from a low of 4.6 MPa (41.2 Newtons) 

to a maximum of 8 MPa (72.1 Newtons) with a mean value of 6.4 MPa (57.3 Newtons) (see Table: 

16.). This combination displayed a standard deviation of 1.07 (see Table: 17.).  

 

  

The side by side Box-and-Whisker plots of the shear bond strengths (see Figure: 15.) show wide and 

overlapping dispersions of the treatment combinations which consequently lessen the probability of 

significant differences between the treatment combinations. According to the Kruskal-Wallis test 

(see Tables: 25 and 26.) (p < 0.05), and the Bonferroni Test the non-thermocycled crown/adhesive 

resin combination do not differ significantly. 
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4.4. The Adhesive Remnant index (ARI) And Porcelain Fracture Index (PFI) results: 

Analysis of the ARI and the PFI: 

 

Group 1 Adhesive Remnant Index (ARI) Porcelain Fracture Index (PFI) 

0 1 2 3 Average 0 1 2 3 Average 

R-X U/E-T 4 4 2 0 0.8 10 --- --- --- 0 

R-X U/Z-T 10 0 --- ---- 0 10 --- --- --- 0 

 

 

Group 2 

          

Tb XT/E-T 10 --- --- --- 0 10 --- --- --- 0 

Tb XT/Z-T 10 --- --- --- 0 9 --- --- 1 0.3 

 

 

Group 3 

          

R-X U/E-NT 1 2 2 5 2.1 10 --- --- --- 0 

R-X U/Z-NT 10 0 --- --- 0 10 --- --- --- 0 

 

 

Group 4 

          

Tb XT/E-NT 5 1 0 4 1.3 10 --- --- --- 0 

Tb XT/Z-NT 3 1 1 5 1.8 10 --- --- --- 0 

Table: 27: Adhesive Remnant Index (ARI) and Porcelain Fracture Index (PFI) (sorted)-Groups 

1,2,3,4. 
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Figure: 16: Line graph showing the Means of the Adhesive Remnant Index (ARI) for the different 

adhesive/crown combinations. 
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 For the next two measurements: ARI-score and PFI-score the values consists discrete integers.  For 

the ARI-score the following summary table provides a list of similarities and differences.   

 

 

 

            
                                 

Group 

R-X U-

Z-T 

Tb XT-

E-T 

Tb XT-

Z-T 

R-X U-

Z-NT 

R-X U-

E-T 

Tb 

XT-E-

NT 

Tb XT-Z-

NT 

R-X U-

E-NT 

Mean 0 0 0 0 0.8 1.3 1.8 2.1 

 

 

Table: 28. Mean ARI-scores for the eight adhesive/crown combinations. 

 

For the last measurement, PFI only one observation was different from zero, therefore all eight 

medians were equal to zero. 
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4.4. Conclusions 

 

Despite the small sample sizes and the overlapping dispersions, the study gives an indication of a 

trend, in the Shear Bond Strengths (SBS).  The two units (Newtons and Mpa) differ only for a linear 

transformation of nine (9), therefore the statistical outcomes hold for both units. The detrimental 

influence of Thermocycling was observed in the measured shear bond strengths. 
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Discussion 

Introduction 

Optimal bracket adhesion to the bonding surface of porcelain crowns is always of concern to 

orthodontists because the forces applied during treatment should not result in bond failure. Glazed 

porcelain is not an appropriate surface for resin penetration and orthodontic bonding due to the 

physical properties of glazed surfaces and the chemical properties of bonding resins (Smith et al 

1988). 
 
Recommended surface treatment methods can be time consuming or even harmful to soft 

tissues. Hydroflouric acid (HFA) etching is an effective surface treatment for porcelain-composite 

bonding (Kocadereli et al 2001). 
 
However, the risk of soft tissue burns and toxic effects of HFA 

requires extreme care during intraoral application, causing many orthodontists to be hesitant in its 

use (Zachrisson et al 1996, Lamour et al 2006).  

In the present study, due to the potential toxicity of HFA, the ceramic surfaces were treated with 

37% phosphoric acid and a silane coupling agent. Etching of porcelain surfaces with phosphoric acid 

alone does not provide adequate shear bond strength, capable of resisting the forces applied during 

orthodontic treatment (Guimaraes et al 2012). Anecdotal evidence suggests brackets bonded with 

silane coupling agents and phosphoric acid or hydrofluoric acid has sufficient bond strength for 

orthodontic treatment ( Nebbe and Stein 1996, Schmage et al 2003, Ajlouni et al 2005, Lamour et al 

2006,  Abu Alhaija and Al-Wahadani 2007). Phosphoric acid does not etch porcelain, and it does not 

produce physical or topographical changes in the porcelain surface. Instead, phosphoric acid has the 

effect of neutralising the alkalinity of the adsorbed water layer, which is present on all porcelain 

restorations in the oral cavity. This enhances the chemical activity of the silane coupling agents 

which are subsequently applied (Wolf et al 1993, Samruajbenjakul and Kukiattrakoon 2009, Purmal 

et al 2013). Silane coupling agents have been reported to enhance bond strength to porcelain surfaces 

(Wood et al 1986, Kao 1988,Winchester and Orth 1991,Newman 1994, Bourke and Rock 1999, 
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Kocadereli et al 2001) . The silane reacts with the silica within the porcelain and the organic groups 

of the bonding resin, thus forming a bridge between the two materials (Newman 1994).     

  

Commercially available porcelains are usually similar in chemical formula but have distinct 

differences in constituents in particle size, and crystalline structure. Therefore, different results are 

expected regarding bonding to different types of porcelain. In the present study, 40 IPS eMax and 40 

porcelain-veneered zirconia crowns were fabricated off a single die and were divided into 4 groups 

containing 20 crowns each (10 IPS eMax crowns and 10 porcelain-veneered zirconia crowns). The 

IPS eMax crown and the porcelain-veneered zirconia crowns were chosen because currently they are 

the most commonly used crowns to restore teeth in the anterior region (Fradaeni 2012). 
 
A minimum 

of 10 specimens is recommended to perform shear bond strength testing (Fox et al 1994). However, 

a sample size greater than 10 specimens per group is recommended for bond strength testing of 

natural teeth where variations in tooth shape exist (Eliades and Brantley 2000). The maxillary 

anterior teeth are the teeth most frequently restored with porcelain restorations (Fradaeni 2012). 

Therefore, in this present study, the lateral incisor tooth form was selected to allow clinical 

simulation. Some studies (Nebbe and Stein 1996, Schmage et al 2003, Purmal et al 2013), have used 

porcelain tabs with flattened surfaces, while some have used porcelain discs (Guimaraes et al 2012) 

and others porcelain denture teeth (Lamour et al 2006).  

         

The maximum bond strength which may be achieved to porcelain is not usually required for 

orthodontic purposes. The ideal bond should be sufficiently strong to endure a course of orthodontic 

treatment, yet be sufficiently weak at debond to permit restoration of the original porcelain surface.  
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There are a few scientifically-based recommendations in the literature for minimum orthodontic 

bracket shear bond strength. Reynolds (1975) recommended a tensile force of 60kg/cm
2
 to 80kg/cm

2
, 

while Newman (1994) stated that 14kg/cm
2
 was the maximum that should be applied by an 

orthodontic appliance. Whitlock et al (1994)
 
based upon the works of Reynolds (1975), also 

suggested that 6-8 MPa was adequate for orthodontic attachments and this was used in the present 

study. The Adhesive Remnant Index and the Porcelain Fracture Index was also examined to establish 

which regime produced adequate strength for orthodontic bracket attachment to all-ceramic crowns, 

with least porcelain surface damage following bracket removal.     

  

  The overall time required to place an appliance is an important factor in the cost of the treatment 

(Ajlouni et al 2005). Newer, self-adhesive cements have the potential to further simplify the bonding 

process, that is, by reducing the bonding of orthodontic brackets to a one-step procedure, and thereby 

reduce chair time and increase cost effectiveness, resulting in increased convenience and reduced 

costs for the patient (Hayakawa et al 1992). Reducing the steps during the bonding process will also 

reduce the risks of saliva contamination and the effects of humidity which could both have an 

adverse effect on the bond strength of the cement. 

Although there are innumerable protocols for bonding orthodontic brackets to porcelain, there is still 

no scientific consensus about which of the techniques would be the ideal standard protocol for the 

purpose of overcoming the two points of contrast mentioned above (Herion et al 2010).
 

Increasing demands of adults for orthodontic treatment and the variation of the results in efficient 

methods of bonding to ceramics require more investigations. Hence, the purpose of the present study 

was to test and compare the shear bond strength and the resultant failure pattern of 2 types of resin 

cements (a self-adhesive, dual cured resin cement and a 2-step bonding, light cured resin cement) to 

etched and silane treated ceramic crowns.  
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 Additionally, a further aim of this study was to substitute the etching using hydrofluoric acid which 

is noxious and potentially harmful. Instead, etching with 37% ortho-phosphoric acid and silane 

coupling application as a pre-treatment conditioning procedure of the ceramic crown surfaces before 

bonding was used. 

   Furthermore, examining the effect of thermocycling (ie. some the ceramic specimens were 

thermocycled to simulate the oral environment prior to bonding of the orthodontic bracket to the 

ceramic crown) on the shear bond strengths, which many studies have not included, was also 

documented.   

 The first objective of this study was to compare the shear bond strengths of the dual-cured, self-

adhesive resin cement (RelyX
TM 

Unicem 2) and the light-cured, 2 step bonding resin cement 

(Transbond™ XT light cure adhesive primer and Transbond
TM

XT adhesive resin cement) (3M, 

Unitek) to the pre-treated (35% ortho-phosphoric acid and silane coupling agent application) IPS 

eMmax and porcelain veneered zirconia crowns. 

 

The results of the non-thermocycled groups (Group 3 and Group 4) show the highest mean shear 

bond strength (SBS) of 8.1 MPa (72.7 Newtons) was for the Transbond XT/eMax crown 

combination, second highest shear bond strength  of 6.4 MPa (57.3 N) for the Transbond XT/ 

porcelain veneered zirconia crown combination, third highest shear bond strength of 5.8 MPa (51.9 

N) for the RelyX Unicem 2/ porcelain veneered zirconia crown combination and the lowest mean 

shear bond strength of 5.1 MPa (45.5 Newtons) was for the RelyX Unicem 2/eMax crown 

combination (see Tables: 12 and 13. and Tables:15 and 16.). Guimaraes et al.’s (2012) study on 

shear bond strength (SBS) of Transbond XT bonded to feldspathic porcelain discs conditioned with 

37% phosphoric acid and silane application showed a mean SBS value of 7.32 MPa and concluded 

the shear bond strength (SBS) to be ideal for orthodontic bonding. Larmour et al.’s (2006) study on 
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shear bond strength (SBS) of Transbond
TM

 XT bonded to porcelain denture teeth conditioned with 

37% phosphoric acid and a silane coupling agent showed a mean shear bond strength (SBS) value of 

7.9 MPa. However, it must be borne in mind that these studies have used feldspathic porcelain discs 

and porcelain denture teeth respectively, which may behave differently then when bonding to 

porcelain crowns. The Mean shear bond strengths (SBS) of the 4 non-thermocycled adhesive/crown 

combinations in the present study (ie. 8.1 MPa for Transbond
TM

 XT/IPS eMax crown, 6.4 MPa for 

the Transbond
TM

 XT/porcelain veneered zirconia crown, 5.8 MPa for the RelyX
TM

 Unicem 2/ 

porcelain veneered zirconia crown and 5.1 MPa for the RelyX
TM

 Unicem 2/ IPS eMax crown 

combinations) are in agreement with the current literature and even though the Mean SBS of 5.8 

MPa for the RelyX
TM

 Unicem 2/ porcelain veneered crown and  5.1 MPa for the RelyX
TM

 Unicem 2/ 

IPS eMax crown combination are lower than the ideal rupture force of 5.9 MPa (Guimaraes 2012), in 

this study, there is no statistically significant difference between the SBS of RelyX
TM

 Unicem 2 dual-

cured, self-adhesive resin cement and Transbond
TM

 XT light-cured, 2-step adhesive resin cement 

(which is  a commonly used orthodontic adhesive resin cement) to IPS eMax and porcelain veneered 

zirconia crowns, and should therefore still be clinically acceptable. Moreover, cohesive fractures 

may be seen on the ceramic surface, if the bond strength results between the ceramic and the 

composite resin are greater than 13 MPa (Thurmond et al 1994).  In our present study, the bond 

strength values in all 4 groups did not exceed this value. 

  

As this is the first shear bond strength study on IPS eMax and porcelain-veneered zirconia crowns 

conditioned with 35% phosphoric acid and a silane coupling agent in the literature, there are no 

values to compare the results with.  
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Shear bond strength values will be compared with results from bonding orthodontic brackets to 

ceramic crowns conditioned with Hydrofluoric acid (HFA) and a silane coupling agent.  Jivanescu 

and Bratu (2014) compared RelyX
TM

 Unicem self-adhesive resin to a light cured bonding system on 

porcelain-fused to metal crowns which were conditioned with 10% HFA, a primer and an adhesive. 

No statistically significant difference was found between the RelyX
TM

 Unicem resin (SBS-5.18MPa) 

and the light cured bonding system. They concluded that both materials may be recommended for 

bonding orthodontic brackets to ceramic surfaces. In this study, the shear bond strength of the 

RelyX
TM

 Unicem 2 dual-cured, self adhesive resin cement/ IPS eMax crown combination was 5.1 

MPa and 5.8 MPa for the RelyX
TM

 Unicem 2 dual-cured, self-adhesive resin cement/ porcelain 

veneered zirconia crown combination. 

   In Group 3 and Group 4, no statistically significant differences were found in the shear bond 

strengths of metal brackets bonded with the RelyX
TM

 Unicem 2 dual-cured, self-adhesive resin 

cement and metal brackets bonded with the Transbond
TM

 XT light-cured, 2-step bonding orthodontic 

adhesive cement to IPS eMax and porcelain-veneered zirconia crowns which were treated with 35% 

phosphoric acid and a silane coupling agent. This is in agreement with a study by Bilgic et al (2013) 

who had treated the porcelain surfaces with 9.6% HFA and a silane primer. This is also in agreement 

with a study by Elham et al (2007). 
 
However, Turk et al (2006) reported that lithium disilicate had a 

higher shear bond strength (SBS) than feldspathic porcelain restorations. Moreover, Abu Alhaija and 

Al-Wahadani (2007)
 
observed significant differences between feldspathic and lithium disilicate 

ceramic restorations (IPS empress 2), with higher mean shear bond strength (SBS) reported in the 

feldspathic porcelain group. This may also be due to the structural differences between IPS empress 

2 crown (earlier version of IPS eMax crown) and the IPS eMax crown. Ahluwalia et al’s (2013) 

study which used a 9.6% HFA etch and silane primer found the IPS eMax crowns to have the 

greatest shear bond strength.  The ceramo-metal and ceramo-zirconia crowns had comparable shear 
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bond strengths. This may be due to the differences in the processing methods and the molecular 

structure of the all-ceramic restorations. 

 

5.1. Shear bond strengths (SBS) comparisons: non-thermocycled groups vs thermocycled 

groups (see Tables: 6-16.) 

The third objective of this study was to compare the effects of thermocycling on the shear bond 

strengths of the tested groups. The results of the thermocycled groups (Group 1 and Group 2) show 

the Transbond
TM

 XT/non-thermocycled eMax crown combination yielded the highest mean shear 

bond strength of 8.1 MPa (72.7 Newtons) but dropped to a mean shear bond strength of 5.1 MPa 

(46.1 Newtons) (36.4% drop in shear bond strength) when the crowns were thermocycled prior to 

bonding. The Transbond
TM

 XT/non-thermocycled porcelain veneerd zirconia crown combination 

yielded the second highest mean shear bond strength of 6.4 MPa (57.3 Newtons) and dropped to a 

mean shear bond strength of 5.1 MPa (45.8 Newtons) (19.3% drop in shear bond strength) when the 

crowns were thermocycled prior to bonding. The RelyX
TM

 Unicem 2/non-thermocycled porcelain 

veneered zirconia crown combination yielded the third highest mean shear bond strength of 5.8 MPa 

(51.9 Newtons) but dropped significantly to a mean shear bond strength of 3.2 MPa (29.1 Newtons) 

(a significant 43.8% drop in shear bond strength) when the crowns were thermocycled prior to 

bonding (see Table: 23.). Lastly, the RelyX
TM

 Unicem 2/non-thermocycled eMax crown 

combination yielded the fourth highest mean shear bond strength of 5.1MPa (45.5 Newtons) but 

dropped to a mean shear bond strength of 4.9 MPa (44.5 Newtons) (a drop in shear bond strength of 

only 3%) when the crowns were thermocyled prior to bonding. Relaxing the significance level (p-

value) somewhat demonstrates the adverse effect of thermocycling on the shear bond strength of the 

adhesive/crown combinations (see Tables: 23-26.). 
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  In this study, a statistically significant difference was found between the shear bond strengths of the 

non-thermocycled and thermocycled groups. As this is the first study on the influence of 

thermocycling prior to bonding on shear bond strength in the literature, there are no values to 

compare the results with. However, the adverse influence of thermocycling can be seen on the 

measured shear bond strength values.   

It should be emphasized that the difference between in vitro versus in vivo bond strengths needs to 

be considered carefully, especially when bonding brackets to other restorative materials. Andreasen 

and Stieg (1988) indicated that the shear and tensile bond strengths of in vivo incisor and premolar 

enamel were significantly less than those of in vitro incisor and premolar enamel. They suggested 

that part of the in vivo increase in the rate of deterioration may be because of the mechanical and 

masticatory stresses placed on the bonds in the oral environment. They listed other factors, which 

may be of importance, including the moisture within the living tooth, flexing of the enamel during 

mastication, moisture contamination during bonding, as well as the thermal fluctuation in the oral 

cavity and the constant bathing of saliva. However, as this is a first in-vitro study on the influence of 

thermocycling prior to bonding of orthodontic brackets, there is no explanation in the literature as to 

why bonding of orthodontic brackets using adhesive resin cements to porcelain, which is an inert 

material, would be adversely affected by thermocycling prior to bonding. This may be an interesting 

topic for future research in order to gain a better understanding of the bonding orthodontic brackets 

to porcelain crowns. 

 Andreasen and Stieg (1988) calculated that there was a decrease of approximately 17% to 22% in 

tensile strengths and 48% to 52% in shear strengths in vivo when compared with the in vitro bond 

strengths. They suggested that if this percent of in vivo decline is evident when bonding to porcelain 

surfaces, stronger bond strengths would be required for efficient bonding of orthodontic brackets in 

the actual patient. In this study, even though the shear bond strengths of the adhesive/crown 

combinations were reduced statistically significantly when the porcelain crowns were thermocycled 
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prior to bonding, according to the literature (Andreason and Stieg 1988), may be something that is 

expected. In this study, a decrease of 36.4% in shear bond strengths for the Transbond
TM

 XT/ 

thermocycled eMax crown combination, a decrease of 19.3% in shear bond strengths for the 

Transbond
TM

 XT/ thermocycled porcelain veneered zirconia crown combination, a decrease of 

43.8% in shear bond strengths for the RelyX
TM

 Unicem 2/ thermocycled porcelain veneered zirconia 

crown combination, and a decrease of 3% in shear bond strengths for the RelyX
TM

 Unicem 2/ 

thermocycled eMax crown combination, are significant, but according to the literature (Andreason 

and Stieg 1988), may still be clinically acceptable.    

 

  The number of thermal cycle is another point of dispute between different researchers. It has been 

100, 150, 200 and 500 times in previous researches (Smith et al 1988, Newman 1994). We applied 

the biggest number in our study. 

 

5.2. Adhesive Remnant Index comparisons (non-thermocycled crowns- group 3 and group 4) 

The second objective of this study was to compare the resultant failure pattern of the tested groups.  

Description of each category of the adhesive remnant index (see Table: 1.). 

 

RelyX
TM

 Unicem 2 adhesive/non-thermocycled eMax crown combination (see Table: 27.) 

 5 specimens debonded at the adhesive/bracket interface (ARI  3)  

 2 specimens had more than 50% of the adhesive on the ceramic surface (ARI 2)  

 2 specimens had less than 50% of the adhesive on the ceramic surface (ARI 1)  

 1 specimen had all the adhesive removed with the bracket (ARI 0)  
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 mean score of 2.1 

 

RelyX
TM

 Unicem 2 adhesive/non-thermocycled porcelain veneered zirconia crown combination (see 

Table: 27.) 

 All 10 specimens had all the adhesive removed with the bracket (ARI 0)  

 mean score of 0 

Transbond
TM

 XT adhesive/non-thermocycled eMax crown combination (see Table: 27.) 

 4 specimens debonded at the adhesive/bracket interface (ARI 3)  

 1 specimen had less than 50% of the adhesive on the ceramic surface (ARI 1)  

 5 specimens had all the adhesive removed with the bracket (ARI 0)  

 mean score of 1.3 

 

 

Transbond
TM

 XT adhesive/non-thermocycled porcelain veneered zirconia crown combination (see 

Table:27.)  

 5 specimens debonded at the adhesive/bracket interface (ARI 3)  

 1 specimen had more than 50% of the adhesive on the ceramic surface (ARI 2)  

 1 specimen had less than 50% of the adhesive on the ceramic surface (ARI 1) 

 3 specimens had all the adhesive removed with the bracket (ARI 0)  

 mean score of 1.8 
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 The ARI results for the non-thermocycled crown/adhesive combinations display a mean score of 2.1 

for the RelyX
TM

 Unicem 2/non-thermocycled eMax crown combination, a mean of 0 for the 

RelyX
TM

 Unicem 2/non-thermocycled porcelain veneered zirconia crown combination, a mean of 1.3 

for the Transbod
TM

 XT/ non-thermocycled eMax crown combination and a mean of 1.8 for the 

Transbond
TM

 XT/non-thermocycled porcelain veneered zirconia crown combination (see Table: 27. 

and Figure: 16.). Study of the mean ARI values for the non-thermocycled crown/adhesive 

combinations shows that brackets bonded with RelyX
TM

 Unicem 2/non-thermocycled porcelain 

veneered zirconia crowns failed entirely at the ceramic/adhesive interface and for all the other non-

thermocycled ceramic/adhesive combinations most of the failures of the bond (70%) occurred at the 

bracket/adhesive interface and cohesive fractures within the composite resin. No cohesive fractures 

of the porcelain crowns were noted. The present findings indicate that there was no significant 

difference in the debonding patterns of the four non-thermocycled ceramic/adhesive combinations. 

This finding is different to the study by Bishara et al (2000) who tested RelyX
TM

 Unicem with 

Transbond
TM

 XT and their findings indicated that the brackets bonded with RelyX
TM

 Unicem failed 

at the enamel/adhesive interface, whereas brackets bonded using Transbond
TM

 XT typically, failed at 

the bracket/adhesive interface. 

 

5.3. Adhesive Remnant Index (ARI): comparison of non-thermocycyled and thermocycled 

groups 

In this present study a similar trend to the shear bond strength was noted when ARI scores were 

examined. The non-thermocycled all ceramic crown/adhesive combinations showed mean ARI 

values of between 1.3 and 2.1 indicating cohesive fractures within the composite resin and efficient 

bonding of the adhesive material to the porcelain. However, the thermocycled all ceramic 

crown/adhesive treatment combinations showed mean ARI values of between 0 and 0.8 indicating a 
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bond failure between adhesive and porcelain and highlighting the adverse influence of thermocycling 

on bond strength of the adhesive resin cement (see Table: 27. and Figure: 16.). Bracket failure at 

each of the two interfaces has its own advantages and disadvantages. As an example, bracket failure 

at the bracket/adhesive interface is advantageous because it leaves the porcelain surface intact; 

however, considerable chair time is needed to remove the residual adhesive with the added 

possibility of damaging the porcelain during the cleaning process (Bishara et al 2000). On the other 

hand, when brackets fail at the porcelain/adhesive interface, less residual adhesive remains, therefore 

making the cleaning of the porcelain surface so much easier (Bishara et al 1998). 

 

5.4. Porcelain Fracture Index (PFI) 

The fourth objective of this study was to compare the surface integrity of the IPS eMax and porcelain 

veneered zirconia crowns after debonding for each of the groups tested using the Porcelain Fracture 

Index (PFI). Description of each category of the porcealain fracture index (see Table 2.). 

All specimens were scored 0 but one specimen from the Transbond
TM

 XT adhesive/thermocycled 

porcelain veneered zirconia crown combination was scored 3 due to delamination of the veneered 

porcelain from the underlying zirconia core. This may possibly be due to the poor bonding of the 

veneered porcelain to the underlying zirconia core. In the present study, optical microsope 

examination revealed no damage to the porcelain surfaces of 98.75% of the all ceramic crowns after 

debonding (see Table: 28.).  A previous study (Thurmond et al 1994)
 
showed that if the bond 

strength between the porcelain and the adhesive is greater than 13 MPa, the porcelain is fractured. In 

this study all 4 groups obtained shear bond strength values less than 13 MPa.  
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5.5. Ethical Consideration 

 This is a full laboratory study and no human tissue was used. 

 

5.6. Conflict of interest 

No conflict of interest was declared. 

 

5.7. Limitations 

This study has some limitations that may preclude the extrapolation of the results: a small sample 

size was used; the use of one type of orthodontic bracket and it is an in vitro study, which tested only 

resistance to shear forces, under constant load. Thermocycling studies also have limits. 

Thermocycling in water poorly represents the dynamic environment of the oral cavity (Mair and 

Padipatvuthikul 2009). There is also important variability in the methods used to evaluate bond 

strength within the orthodontic literature, partially due to the lack of standardization protocols. As a 

result, it is difficult to draw any meaningful conclusion when comparing studies.  

 

5.8. Future Research 

Future research avenues can be orientated towards alternative debonding methods. Debonding should 

be explored using manual debonding, electrothermal debonding devices and lasers (Tocchio et al 

1993, Azzeh and Feldon 2003, Bishara and Trulove 1990). Studies comparing machine debonding 

and manual debonding can be interesting. 
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Chapter 6 

Conclusion 
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Conclusion 

Within the limitations of this study, it can be concluded that: 

1.There was no significant difference in the shear bond strengths of metal orthodontic brackets 

bonded with RelyX
TM

 Unicem self-adhesive resin cement and metal orthodontic brackets bonded 

with Transbond
TM

 XT adhesive cement to non-thermocycled IPS eMax and porcelain-veneered 

zirconia crowns which were conditioned with 35 % phosphoric acid and a silane coupling agent. 

2. Conditioning the porcelain surface with 35% phosphoric acid and a silane coupling agent would 

be safer to use than Hydrofluoric acid and should make it less risky for clinicians to clean the 

adhesive on the porcelain surface after debonding. 

3. The negative influence of thermocycling prior to bonding can be seen on shear bond strength 

values. 

4. Most of the bond failures for the non-thermocycled crown/adhesive combinations occurred at the 

bracket/adhesive interface and cohesive fractures within the composite resin and most of the bond 

failures for the thermocycled crown/adhesive combinations occurred at the adhesive/porcelain 

interface. No cohesive fractures of the porcelain crowns were noted. 
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