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SUMMARY 

 

Stability of freeze-dried aqueous and other modified extracts of Leonotis leonurus  

 

Leonotis leonurus, a South African indigenous medicinal plant, is frequently used in the form of a tea. 

However, this dosage form has many disadvantages. Consequently three L. leonurus solid extract 

preparations were prepared and explored as possible replacements of the tea form, but very little was 

known about their physical and chemical stability during storage.  

 

The specific objectives were to: (i) prepare a freeze dried aqueous extract (FDAE), 20 % aqueous 

ethanol (Aq EtOH) extract and calcium alginate beads of the FDAE form of L. leonurus,  (ii) 

characterize the extracts using parameters of select physical and chemical features and, (iii) determine 

the long-term stability of the extracts. It was hypothesised that the Aq EtOH extract would contain 

higher levels of chemical marker compounds (marrubiin and leonurine) than the FDAE and calcium 

alginate FDAE beads of L. leonurus and, that the calcium alginate FDAE beads would have greater 

stability (i.e. longer shelf-life) than the FDAE and the Aq EtOH extract. 

  

The three L. leonurus solid extracts were prepared using accepted published methods. For the physical 

characterization of the extracts, the organoleptic properties were determined using the natural senses 

(e.g. sight, smell, taste, etc.) and for chemical characterization, total phenol content (TPC; using the 

Folin-Ciocalteu reagent method), total flavonoid content (TFC; using aluminium chloride-methanol 

solution) and antioxidant activity (using the -diphenyl-2-picryl-hydrazyl (DPPH) assay).  To establish 

the long-term stability of the preparations, encapsulated L. leonurus solid extracts was stored in sealed 

standard plastic containers at four conditions: (A), room temperature of 24 ˚C ± 5 ˚C; (B), fixed 

temperature of 30˚C ± 5 ˚C and (C), elevated temperature of 40˚C ± 5 ˚C for 6 months, and (D), 

accelerated stability test conditions of 40˚C ± 5 ˚C / 75 % RH for 4 weeks. Samples of the stored 

encapsulated preparations were collected periodically and assessed for changes in organoleptic 

properties, TPC, TFC, antioxidant activity levels and marker compound (i.e. marrubiin and leonurine) 

levels. The latter was determined by validated HPLC assay.  

 

Yields of 19.9, 12.82   and 10.7 % of FDAE, Aq EtOH extract and calcium alginate FDAE beads were 

obtained, respectively. Physically the calcium alginate beads contained less moisture (1.86 %) than the 

FDAE (3.77 %) and Aq EtOH (2.91 %). Chemically the FDAE, Aq EtOH extract and calcium alginate 

 

 

 

 



iv | P a g e  
 

FDAE beads respectively had appreciable and similar TPC (i.e.7.86, 7.52 &, 6.94 mg GAE/g; p > 0.05; 

Anova) and TFC (i.e. 4.30, 4.47 & 3.67 mg QE/g; p > 0.05; Anova) levels, but variable amounts of 

marrubiin (i.e. 22.5, 17.5, and 0.4 ug/mg plant extract) and leonurine (i.e. 2.0, 1.4 and 0.7 ug/mg plant 

extract), respectively.  The antioxidant activity levels were also different i.e.  EC50
 values of 7.71, 6.66 

and 11.53 mg/mL (student t-test p-value of < 0.0001; ANOVA-test; p< 0.05) for the FDAE, Aq EtOH 

extract and calcium alginate FDAE beads, respectively. 

 

During storage (i.e. stability study) the L. leonurus solid extracts generally remained physically  

unaffected by temperature (i.e. no significant change in organoleptic features), but when exposed to 

humidity the FDAE and Aq EtOH extracts showed clear signs of physical degradation i.e. changed 

from being flaky powders to sticky melted masses, while the calcium alginate beads remained 

unchanged.  Within 1 month storage at RT, 30 °C,  40 °C and 1 week at 40 °C / 75 % RH the TPC of 

the encapsulated FDAE decreased significantly by 61, 60, 58 and 52 %, respectively, that for the 

encapsulated Aq EtOH extract by 61, 54, 46 and 50 %, respectively, and for calcium alginate FDAE 

beads by 66, 71, 59 and 57 %, respectively. Using TPC as a stability parameter all three encapsulated 

extracts had very short shelf-lives ranging from 1.24 weeks (0.31 months) to 3.72 weeks (0.93 months). 

Under the same conditions and storage periods (i.e. 1 month & 1 week) the TFC of the encapsulated 

FDAE decreased significantly by 25, 25, 29 and 66 %, respectively, for encapsulated Aq EtOH extract 

by 26, 26, 23 and 70 %, respectively, and the calcium alginate FDAE beads by 55, 55, 52 and 64 %, 

respectively. The results obtained for TFC was thus similar to that obtained for the TPC data. Based 

on the TFC data all three encapsulated extracts had very short shelf-lives ranging, from 1.56 weeks 

(0.39 months) to 6.76 weeks (1.69 months). Under the same conditions and storage periods (i.e. 1 

month & 1 week) as that used to determine TPC and TFC, the antioxidant activity of the extracts 

changed little, i.e. decreased by 0.2, 0.1, 0.8 and 2 %, respectively for FDAE, by 0.7 %, 1 %, 0.1 % 

and 5.3 %, respectively for the Aq EtOH and by 2, 2, 1.4 and 0.8 %, respectively for the calcium 

alginate FDAE beads. Moreover, based on antioxidant activity, all three encapsulated extracts had 

relatively long shelf-lives ranging from 15.6 weeks (3.9 months) to 22.4 weeks (5.6 months). 

 

Finally, the determination of the stability of the encapsulated L. leonurus extracts stored under stress 

conditions (i.e. 40 °C / 75 % RH) and based on marker compound levels was unresolved. Between the 

time of extract preparation and characterisation until start of the stability study the marrubiin levels in 

the FDAE, Aq. ETOH and calcium beads had decreased from 22.5, 17.5, and 0.4 ug/mg plant extract, 

respectively, to 0.30, 0.11, 0.30 µg/mg, respectively, and the leonurine levels from 2.0, 1.4 and 0.7 to 
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0.46, 0.38 and 0.09 µg/mg, respectively and was too low to conduct a meaningful stability study with 

the developed validated assay.  

 

Overall, all three the encapsulated L. leonurus solid extracts studied were clearly very unstable and did 

not have suitable long-term storage stability. The modification of the freeze-dried aqueous extract of 

L. leonurus into a calcium alginate bead form seemed to combat physical instability but did not 

improve the chemical instability of the aqueous extract. It is therefore recommended that the addition 

of excipients or other post extract modification (e.g. production of phytosomes) be explored to combat 

the hygroscopicity of L. leonurus FDAE and ultimately improve its overall product stability.   
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 INTRODUCTION 

 

Traditional medicine (TM), a term used to denote the indigenous health traditions of the world, 

have over the past two decades claimed an increasing share in the public’s awareness and the 

agenda of medical research. According to the World Health Organization (WHO), as many as 

65 % of the world’s people depend on traditional medicine for their healthcare needs 

(Fabricant, et al., 2001). Popular use of traditional medicine has been accompanied by a growth 

in research and associated literature with an increase in evidence-based approaches.  Studies 

have documented that about half the population of many industrialized countries now use 

traditional medicine (Bodeker, et al., 2002).  

There are considerable economic benefits in the development of indigenous herbal medicines 

in appropriate high quality dosage forms for the treatment of various diseases (Muthu, et al., 

2006). With about 27 million consumers, the current African market value of traditional 

medicine is an estimated R29 billion (Mander, et al., 2007). Diseases such as arthritis, 

backache, kidney and bladder disorders, cancer, colds, influenza, diabetes, headache, heart 

rheumatism, high blood pressure and stomach ailments could possibly be treated with these 

traditional medicines (Thring, et al., 2006). Traditionally, most of the herbal therapies involve 

the use of plant extracts in the form of aqueous solutions (“herbal teas”) (Powell, et al., 2003).  

These herbal preparations are typically prepared by seeping or heating crude plant material, a 

practice that has prevailed for centuries, and has led to herbal teas which the modern healthcare 

providers sometimes prescribe (McKay, et al., 2006). 

Leonotis leonurus (L.) R. Br. is a well-known medicinal plant, indigenous to South Africa, 

widely used in various dosage forms for a variety of traditional uses. Various parts of this plant 

are commonly used in the treatment of chronic conditions such as diabetes, hypertension and 

epilepsy, etc. (Maphosa, et al., 2008).  However, few of these traditional uses may have been 

scientifically proven or validated.  Traditionally, L. leonurus leaves are most often administered 

in the form of a tea, an excellent beverage with some effective pharmaceutical properties. This 

dosage form has been used since the discovery of traditional medicine (Thring, et al., 2006). 

The advantage of using medicinal plants as a tea is that it contains and rapidly releases 

antioxidants, phenols and flavonoids which protect the body against free radicals, thus possibly 

facilitating cancer prevention, strengthening immunity and reducing the risk of various chronic 
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diseases e.g. cardiovascular disease (Rice-Evans, et al., 1996). However, the tea dosage form 

of L. leonurus also have many inherent disadvantages. 

The disadvantages of the tea as a dosage form include the facts that, unless the leaves are dried 

and packaged in a teabag, its preparation is time consuming and inconvenient, it is not easy to 

keep the preparation free from microbial contamination and traditional dose measurements 

(e.g. take half a cupful, take one spoonful, etc.) are found to be inconsistent or imprecise. 

Furthermore, teas may contain a limited amount of plant active compounds as not all its 

chemical constituents are water soluble. Moreover, the compounds extracted could, over time, 

undergo possible degradation resulting in poor pharmaceutical quality. This in turn may result 

in an inappropriately short shelf-life of the brewed tea. These short-comings may however be 

remedied by using appropriate dosage forms of the plant material. 

Solid dosage forms of medicinal plants, such as L. leonurus, may offer many advantages. And, 

possible appropriate oral dosage forms to replace the tea (i.e. liquid form) include tablets and 

capsules made from an appropriate dry aqueous extract of the plant.  

The solid dosage form must, however, as closely as possible, mimic the tea in terms of similar 

active constituents, good pharmaceutical quality and stability (i.e. shelf-life). This can be 

achieved by preparing a freeze-dried aqueous extract (FDAE) that can mimic the traditional 

tea dosage form. But, FDAE’s of plants were found to have their own disadvantages and are 

particularly prone to being hygroscopic (Ma, 2006). However, hygroscopicity of FDAE can be 

remedied by preparing modified forms of the extract by, for instance, using calcium alginate 

to coat the FDAE (Egieyeh, 2011).  Another means of circumventing the hygroscopicity and 

stability problems of FDAE might be the use of an alcohol-water extract instead of the 

traditional aqueous tea extract. The viability of these options have however not yet been 

investigated for L. leonurus. For such an investigation, suitable chemical marker compounds 

found in the plant material and dosage are required. Compounds associated with bioactivity or 

therapeutic effects are usually present in all medicinal plants (Ahmad, et al., 2001) and could 

also be used as markers in monitoring the stability and pharmaceutical quality of FDAE and 

modified forms of L. leonurus. The active compounds allow the plant to be easily assayed and 

therefore serve to be monitored as indicators of product deterioration (Ahmad, et al., 2001). 

A variety of chemical compounds has been cited as being potentially responsible for the 

therapeutic effects of L. leonurus and it contains at least 2 classes of chemical compounds that 

have been identified.  

 

 

 

 



3 | P a g e  
 

The first of these classes of compounds noted to be present in L. leonurus is the diterpenoids. 

These compounds contain 20 carbon atoms and 4 branched methyl groups and the diterpenoid 

labdane lactone marrubiin is a major marker compound found in L. leonurus (Mnonopi, et al., 

2012). Indeed, marrubiin was  isolated and quantified in L. leonurus FDAE  which was 

observed to have anticoagulant, antiplatelet and anti-inflammatory effects in in vitro rat studies 

(Mnonopi, et al., 2011) and anti-diabetic effect (i.e. increased insulin secretion) in obese rat 

models (Mnonopi, et al., 2012). A second important class of active compounds found in L. 

leonurus is alkaloids. This class of compounds contains nitrogen and heterocyclic ring 

structures and exhibits powerful pharmacological effects. For example, the alkaloid leonurine 

(4-guanidino-n-butyl syringate) was found in the plant tissue of L. leonurus (Liu, et al., 2010) 

and showed anti-oxidative, anti-apoptotic and cardio-protective effects in both in vitro and in 

vivo models (Liu, et al., 2012).  Leonurine and marrubiin may thus be ideal candidates for use 

as chemical markers to establish the quality and stability of solid extract forms of L. leonurus, 

but this has not yet been fully established. 

Finally, an important product quality requirement for any herbal medicinal product, including 

L. leonurus, is its appropriate stability on storage and long term use. Stability of a product 

entails the non-changing of physical, chemical and microbiological test characteristics of the 

product over time and ultimately decides its shelf-life (Roberts, et al., 2002). Stability will also 

be a crucial parameter when the suitability of any solid dosage form of L. leonurus is considered 

Indeed, both the physical and chemical quality of the L. leonurus plant extracts and its modified 

forms as well as the stability of any identified marker compounds that might contribute to its 

therapeutic activity are essential to ensure the quality, safety and efficacy of a marketable 

product and guarantee its shelf-life (Gafner, et al., 2005). Therefore this study also investigated 

the stability of 3 forms of L. leonurus plant extracts to establish whether the FDAE (i.e. a solid 

form that can mimic the traditional tea dosage form) and other modified forms may, compared 

to the tea form, offer advantages with respect to enhanced long term product stability. 

Given the above arguments, the objectives of this study consequently were to, first, prepare 

various solid extract forms of L. leonurus, then compare them in terms of their physical and 

chemical profiles and, finally, determine and compare their long-term stability using a variety 

of physical and chemical characteristics and the potential active constituents, marrubiin and 

leonurine, as marker compounds.  
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 LITERATURE REVIEW 

 

2.1 Introduction 

In this chapter an overview of traditional medicinal plants is given. Specifically focussing on 

L. leonurus, its description, traditional uses, phytochemistry, pharmacology and available 

traditional dosage forms. The shortcomings such as physical and chemical stability of 

traditional preparations will also be highlighted, and proposed methods of addressing them 

discussed. Parameters used to access the physical and chemical stability profiles of L. leonurus 

solid extract preparations are also included. 

2.2 Traditional medicinal plants 

Plants used as medicine are known as medicinal plants (Fabricant, et al., 2001). Medicinal 

plants form the bases of many sophisticated medicines as we know it today, because of its 

wealth in bioactive compounds (Elujoba, et al., 2005). 

Bioactive compounds are often extracted from various parts of the plant (i.e. leaves, root, stem, 

bark etc.) using a number of extraction procedures. The extraction procedures for volatile oils 

can include maceration, percolation and distillation. For fluid extracts, ethanol or water can be 

used or a combination of both. However, for powders the solvents used in the fluid extract 

process is usually evaporated (Calixto, 2000).  These extracts are what we know to be herbal 

medicines, and can take the form of crude drugs such as tinctures, teas, powders, poultices and 

other herbal formulations (Balunas, et al., 2005) which are often used in the treatment of 

coughs, colds, influenza, bronchitis, hypertension, headaches, delayed menstruation, diabetes 

mellitus, intestinal worms, constipation, spider bites, scorpion stings, snake bites, etc. 

(Oyedemi, et al., 2010). 

About 75-80 % of the world’s population uses medicinal plants for their primary health care 

needs because of its better cultural acceptability and compatibility with the human body 

(Kamboj, 2000). Medicinal plants have played a key role in world health despite advances in 

modern medicines (Calixto, 2000), but needs to undergo a series of processes in order for its 

safety, efficacy and pharmacokinetic profile to be established. This would usually require the 

identification and isolation of bioactive compounds, which are assayed and formulated into 

suitable dosage forms. The dosage forms would then need to undergo clinical trials (Iwu, et al., 
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1999). This process has however not been established or followed for most medicinal plants 

despite their cultural acceptability. 

2.3 Leonotis leonurus – A traditionally important medicinal plant 

 

2.3.1 Vernacular names 

English:     Wild dagga 

Afrikaans:     Wilde dagga 

Xhosa:      Umfincamfincane 

Zulu:      Umunyane  

Sotho/Tswana:    Lebake 

Shona:      Umhlahlampetu 

 

2.3.2 Botanical classification and morphology of Leonotis leonurus 

 

Leonotis leonurus belongs to: 

Kingdom:    Plantae 

Division:    Magnoliophyta 

Class:      Magnoliopsida 

Sub class:    Asteridae 

Order:     Lamiales 

Family:    Lamiaceae 

Genus:     Leonotis 

Species:    L. leonurus 

Fig.2.1 Leonotis leonurus 

 

Leonotis leonurus (L.) R. Br. is a very well-known medicinal plant indigenous to South Africa. 

It belongs to the Lamiaceae (mint) family (Ascensão, et al., 1995)  and is made-up of about 

3200 species in 200 genera (Mazimba, 2015). This plant has been used for centuries by various 

South African tribes, namely the Xhosa, Zulu, Sotho and the Shona, and therefore has a variety 

of vernacular names (see 2.3.1). The hairy flowers resemble a lion’s ear giving it its specie 

name leonurus meaning lion’s ear (Oyedemi et al., 2010). L. leonurus (figure 2.1) is a robust 
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shrub with a bright orange flowering top growing up to 2-5 m in height and 1.5 m in width with 

a thick woody base and pale brown branches (Maphosa, et al., 2008). The leaves are bright 

yellow-green in colour, shaped narrow with serrate edges growing opposite each other, rough 

in texture with a highly aromatic-pungent mint odour (Mazimba, 2015; Oyedemi, et al., 2010). 

L. leonurus is easily cultivated with the ability to withstand drought and frost, is fast growing 

and blooms in the late summer and early autumn (Nsuala, et al, 2015). 

2.3.3 Traditional uses of L. leonurus 

Leonotis leonurus has many traditional medicinal uses and is mainly taken orally, applied 

topically or administered per rectum in the treatment of many ailments. A decoction of the 

plant leaves are generally prepared by which water soluble compounds are extracted by boiling 

the leaves in water and allowing it to cool. This is traditionally referred to as a tea. Once the 

tea has cooled, it can be used internally for the treatment of coughs, colds, influenza, bronchitis, 

hypertension, headaches, delayed menstruation, diabetes mellitus, intestinal worms, 

constipation, spider bites, scorpion stings and snake bites. Teas made from the leaves and the 

stem can be topically applied for the treatment of haemorrhoids, boils, eczema, skin disease, 

rashes, sores and muscular cramps (Maphosa, et al, 2008; Oyedemi, et al, 2010; Mazimba, 

2015). The teas are also said to have both a hypnotic and diuretic effect (Mazimba, 2015). 

Teas made from the flowers and seeds, leaves or stems are commonly used as purgatives and 

tonics in the treatment of tuberculosis, jaundice, muscular cramps, high blood pressure, 

diabetes, viral hepatitis, dysentery and diarrhoea. Fresh stem juice is also used as a tea in the 

treatment of blood impurity (Mazimba, 2015). Teas made from the whole plant is used for the 

treatment of arteritis, piles, bladder, kidney disorders, obesity, cancer and rheumatism (Nsuala, 

et al, 2015). 

Leonotis leonurus dried leaves or flowers, also referred to as “wild cannabis”, and is often 

smoked.  The flowers are known to be hallucinogenic and is said to have a marijuana-like 

effect, but is less potent (Mazimba, 2015; Nsuala, et al, 2015). Smoking “wild cannabis” 

flowers has been found to have a direct effect on the user’s mental and emotional condition, in 

which the user experiences intense feelings of well-being, elation, happiness and joy. This can 

have side effects such as visual changes, nausea, dizziness, sedation, sweating and light 

headaches that can cause physical discomfort such as lung and throat irritation (Mazimba, 

2015; Nsuala, et al, 2015). 
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2.3.4 Traditional dosage forms and preparation 

Traditional dosage forms essentially refer to the form in which herbal products are either used 

or marketed for use. Suitable traditional dosage forms must be properly formulated for patients 

regardless of their age. In addition to that, the controlled delivery of an exact dosage is 

frequently key to its efficacy for the patient. Herbal products are traditionally dispensed in the 

form of liquids (e.g. infusions, decoctions, elixirs, and tinctures), semi-solids (e.g. pastes, 

creams and ointments), solids (e.g. whole or powdered plant parts, pills and tablets), and gasses 

(e.g. incense, fumigants and inhalants). Most of these dosage forms are given orally or applied 

externally to the affected areas on the body. Liquid dosage forms, also known as teas, are by 

far the most popular dosage forms used when it comes to traditional medicine (Ma, 2006). 

Traditional dosage forms are prepared in various ways. Generally, infusions are prepared from 

the more tender plants, leaves and delicate herbs. An infusion is more like a tea. First the water 

is boiled and added to approximately a ¼ cup of plant leaves or fresh flowers. This is then left 

to stand and seep for 5 minutes before it is strained. In some cases honey is added to sweeten 

the infusion, making it less bitter and more pleasant to drink. Infusions are prepared according 

to the concentrations needed and should be taken the same day (Roberts, 1990). 

Decoctions are usually prepared using the more woody parts of the plant such as the stems, 

seeds or course leaves.  Extraction for these plant parts are usually more difficult, therefore the 

plant material is boiled in water for a longer period of time, thus allowing it to soften and active 

compounds to be extracted. Decoctions are one of the oldest traditional medicine preparation 

forms and its preparation is inconvenient as well as time consuming.  A single preparation can 

easily be cooked for about an hour (Oyedemi, et al., 2009). 

Tinctures are alcohol only or alcohol and water extracts. This type of extract is used when 

plants contain compounds that are unable to be extracted using water only. During the 

extraction process volatile oils from plants are released making the extracts more concentrated 

exhibiting stronger activity (Zampini et al., 2009). 

Maceration is said to be the easiest preparation method. The plant material used can either be 

fresh or dried. During this extraction process the plant material is soaked overnight in cool 

water using a covered container. The herb mixture is then strained and the extract drunk. This 

method is used for plants containing heat sensitive or alcohol sensitive compounds (Ma, 2006). 
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2.3.5 Shortcomings of the traditional dosage-form preparation 

The aforementioned traditional dosage forms of L. leonurus has several disadvantages arising 

from inconsistent preparation, methods of administration and poor stability during storage. 

Firstly, wet leaves should not be used when preparing the tea, as moisture present in the leaves 

may promote bacterial growth which may lead to deterioration of the product (McCutcheon, 

2002). 

Secondly, directions for dosage preparations are often generally obscure. For example, the use 

of inexact measures such as a quarter cup, a handful, tumblerful and calabashful. These 

preparation instructions are very often vague and incorrect. This leads to lack of mass and 

content uniformity as it is difficult to accurately quantify a handful or measure a quarter cup 

consistently (Sofowora, 1982; Williamson et al., 1996). Thus, it may be anticipated that such 

variability in the preparation may lead to variations in dose each time a treatment is prepared, 

therefore altering the amount of active constituents extracted. 

Thirdly, L. leonurus teas (infusions or decoctions) are often smelly and awful tasting for oral 

use. Sweeteners such as honey and sugar gets added to make the tea more palatable, improving 

patient acceptability. However, these additives in turn act as good media for the growth of 

microorganisms like bacteria and fungi (Burlage et al., 1963). 

Lastly, incorrect storage of plant material causes chemical and biological activity changes. 

Previous research findings suggest that antibacterial activity in fresh plants increase after 90 

days of storage and stays consistent for up to 5 years when stored at 20 ºC. Antibacterial activity 

in fresh plants deteriorates after 15 days when stored at 55 ºC and 100 % humidity. It was 

concluded that temperature, light, pH, microbes and plant enzymes are the main cause of 

chemical and biological activity deterioration (Mazimba, 2015).      

2.3.6 Phytochemical constituents of L. leonurus 

Extensive research had been conducted on the phytochemical constituents of L. leonurus. It 

was found that terpenoids (mono-, sesqui and diterpenoids) known for their biologically active 

nature, are the main compounds in the L. leonurus plant (Nsuala, et al., 2015). Of these 

terpenoids, labdane diterpenoids extracted from plant leaves were the most abundant 

compounds present in the plant (Nsuala, et al., 2015). 
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2.3.6.1 Marrubiin 

Phytochemical studies have revealed that marrubiin, a labdane diterpenoid produced by 

Leonotis leonurus, Leonotis nepetifolia, and Marrubium vulgare, is the most active diterpenoid 

lactone present and is therefore responsible for the therapeutic properties observed in these 

plant species (Mnonopi et al., 2011). Pre-furanic (premarrubiin) and furanic (marrubiin) 

labdanoids are widespread in the family Lamiaceae. Furanic labdanoids are made of a C-9 

hydroxyl group with a furan ring and side chain, have the same marrubiin structure and is 

considered to be the final product of the biosynthetic pathway (Popoola et al., 2013). However, 

other researchers suggest that they are artefacts which arise from their corresponding pre-furan 

labdanoids during or after the extraction or isolation process due to cleavage of the 9,13-

epoxide bridge.  Recent literature findings report the detection of marrubiin in fresh plant 

material. The data obtained from these studies confirms that it is a natural product produced at 

the end of a biosynthetic pathway (Popoola et al., 2013). Marrubiin was found to be responsible 

for dose-related anti-nociceptive and cardio-protective effects as well as the inhibition of 

gastric acid secretion in animal models (Mnonopi et al., 2011; Mnonopi, et al., 2012: Popoola 

et al., 2013). This compound has been used as a valuable marker compound in the investigation 

of L. leonurus. 

2.3.6.2 Leonurine 

Leonotis leonurus also contain pharmacologically active guanidine alkaloid leonurine (4-

hydroxy-3,5-dimethoxybenzoic acid 4-guanidinobutyl ester) which is considered one of its 

major active ingredients. This active compound mainly exerting cardiovascular, hypotensive, 

uterotonic and neuroprotective effects (Kuchta, et al., 2012). Research findings on leonurine 

show that it has a protective effect against myocardial and cerebral ischemia both in vitro and 

in vivo (Zhu et al., 2012). The underlying mechanism of action may be associated with its anti-

oxidative and anti-apoptotic effects and its ability to protect mitochondrial function. The results 

of previous studies suggest that leonurine has become a novel promising cardiovascular drug 

candidate (Zhu et al., 2012). 

According to literature both marrubiin (figure 2.2) and leonurine (figure 2.3) are present in L. 

leonurus at considerable levels and can be assayed by simple extraction and HPLC analytical 

procedures (Mnonopi et al., 2011; Chao, et al., 2004). Moreover, based on the pharmacological 
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activities of marrubiin and leonurine (as mentioned above), it is hypothesized that the presence 

of these compounds in L. leonurus is responsible for the therapeutic activities of the plant. 

                              

Fig. 2.2: Marrubiin structure                                                   Fig. 2.3: Leonurine structure 

 

2.4 Leonotis leonurus extracts, short-comings and possible solutions to short-comings  

2.4.1 Freeze-dried extracts 

In order to improve the physical and chemical stability of a product, water has to be removed 

from it (Wolkers et al., 2001). Freeze-drying therefore involves the removal of water or other 

solvent from a product (i.e. plant material, food etc.), ensuring a final product of the highest 

quality when compared to other drying techniques.  It is the most preferred technique 

commonly used to covert solutions or suspensions into solids of sufficient stability, for 

distribution and storage (Wolkers et al., 2001).  Freeze-drying is based on the dehydration and 

sublimation of a frozen product. This occurs when a frozen liquid goes directly to the gaseous 

state without passing through the liquid phase. Due to the absence of water and the low 

temperatures required for the process, most of the deterioration and microbial processes are 

stopped, ensuring good product quality. The solid state of water during freeze-drying ensures 

that the primary structure and shape is retained with minimal reduction in volume (Ratti, 2001). 

Freeze-drying is superior to other drying methods and is regarded as one of the most important 

steps in the preservation of medicinal properties, found in plant material. The freeze-dried 

(lyophilized) extract is usually prepared before the analysis of various active compounds 

present in plant material. Freeze-dried extracts contain hydrophilic characteristics, but there is 

no information available on whether or not this will affect the shelf-life of products after the 

consumer packaging is opened and the contents exposed to oxygen and humidity (Abascal,  et 

al,. 2005). 
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2.4.2 Short-comings of freeze-dried extracts 

According to a study by Egieyeh (2009), hygroscopicity is the key degradation factor of freeze-

dried aqueous extracts. Hygroscopicity is a term widely used in the pharmaceutical community 

that describes the ability of a substance to attract and hold water molecules from the 

surrounding environment. The hygroscopic ability of a plant can be greatly influenced by 

increasing temperature and relative humidity (RH) values.  According to a study conducted by 

Callahan (1982), solid extracts were classified into various groups based on their water uptake 

after storage for one week at various conditions: Class 1 would be regarded non-hygroscopic 

(no water sorption below 90 % RH, and < 20 % at 90 % RH); Class II would be slightly 

hygroscopic (no water sorption below 80 % RH, and 40 % at 80 % RH); Class III would be 

moderately hygroscopic (5 % below 60 %, and < 50 % at 80 % RH) and Class IV would be 

very hygroscopic (> 5 % below 60 % RH). These criteria may not directly apply to this 

investigation, but is considered a good indicator of various hygroscopic classes. 

Hygroscopicity in solid plant extracts facilitate physical as well as chemical degradation, thus 

allowing plants to be less effective and unable to execute its therapeutic purposes. 

 

2.4.3 Alginate coating 

With hygroscopicity being the key degradation factor in solid plant extracts, an innovative 

approach is needed to combat it. One approach to combatting hygroscopicity is by coating the 

solid plant extract (i.e. freeze-dried extract) with alginate. 

Alginate is a naturally occurring biopolymer that is finding increasing applications as it has 

been used successfully in the food and beverage industry as a thickening agent, gelling agent 

and a colloidal stabilizer. Alginate properties allow it to be used as a matrix for the entrapment 

and delivery of a variety of proteins to cells. These properties include: (i) a relatively inert 

aqueous environment within the matrix; (ii) a mild room temperature encapsulation process 

free of organic solvents; (iii) a high porosity which allows for high diffusion rates of 

macromolecules; (iv) the ability to control porosity with simple coating procedures and (v) 

dissolution and biodegradation system under normal physiological conditions (Gombotz, et al., 

2012). 

There are various sources of alginate. Commercial alginate can be extracted from three species 

of brown algae (kelp). These include Laminaria hyperborea, Ascophyllum nodosum and 
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Microcystis pyrifera. Other sources include Laminaria japonica, Eclonia maxima, Lesonia 

negrescens and Sargassum species. In all of these algae alginate is the primary polysaccharide 

present. Alginate is found in the intracellular matrix where it exists as a mixed salt of various 

cations found in sea water such as Mg2+, Ca2+, Sr2+, Ba2+ and Na+. The native alginate is mainly 

present as an insoluble Ca2+ cross-linked gel. Bacterial alginates have also been isolated form 

Azotobacter vinelandii and several Pseudomonas species (Gombotz, et al., 2012). 

Alginate beads can be prepared by extruding a solution of sodium alginate containing the 

desired protein as droplets, into a divalent crosslinking solution such as Ca2+, Sr2+ or Br2+. 

Monovalent cations and Mg2+ ions do not induce gelatin while Ba2+ and Sr2+ ions produce 

stronger alginate gels than Ca2+. The gelatin and crosslinking of the polymers are mainly 

achieved by the exchange of sodium ions from the guluronic acids with the divalent cations, 

and the stacking of this guluronic groups to form a characteristic egg-box structure. The 

divalent cations bind to the α-ʟ-guluronic acid blocks in a highly cooperative manner and the 

size of the cooperative unit is more than 20 monomers. This allows each alginate chain to 

dimerize and form junctions with many other chains and as a result gel networks are formed 

rather than insoluble precipitants (Gombotz, et al., 2012). 

2.5 Quality evaluation of solid dosage forms 

2.5.1 Stability testing 

Stability is an essential part of drug development (Lusina et al. 2005). It demonstrates physical 

and chemical stability of a drug product exposed to a variety of environmental conditions such 

as temperature, humidity and light (Allinson, et al., 2001). A well-designed stability study 

should include testing of those attributes that are susceptible to change during storage and are 

likely to influence the quality, safety and efficacy of a product (Lusina et al., 2005). 

The challenge of a moisture sensitive compound is to demonstrate stability at accelerated 

conditions of 40 ˚C/ 75 % RH over a period of time. Many compounds are moisture sensitive 

resulting in significant product degradation (Allinson, et al., 2001). Moisture is frequently 

associated with physical and/ or chemical instability of a pharmaceutical drug product. 

Moisture sensitive products should be adequately protected during shelf-life (Badawy, et al., 

2001). 
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Stability testing of crude drugs is a fundamental requirement of industry and other 

organizations in the assurance of product quality. It should be noted that product stability is 

directly affected by the complexity and inconsistency of the active pharmaceutical ingredient 

(API) (Mukherjee et al., 2008). Degradation of the API is the most important cause of plant 

product stability changes. This can be caused by hydrolysis, oxidation, photolysis and thermal 

decomposition (Bhinge, et al., 2008). 

API of herbal products should be standardized since crude drugs have been seriously criticized 

for their lack of dosage precision, standardization and short shelf-life (Onunkwo, et al., 1996). 

Two main aspects that play an important role in shelf-life determination are assaying of the 

API and the degradents generated during the stability study (Naidu, et al., 2005).  

2.5.2 Total phenol content evaluation 

Phenolic compounds have been recognized as the major source of natural antioxidants 

(Kähkönen et al., 1999). Phenolic compounds are secondary metabolites that are derivatives of 

the pentose phosphate, shikimate and phenylpropanoid pathways in plants.  Phenolic 

compounds is one of the most frequently occurring groups of phytochemicals and are of 

considerable physical and morphological importance in plants. These compounds play an 

important role in growth and reproduction, providing protection against pathogens and 

predators, besides contributing towards the colour and sensory characteristics of fruits and 

vegetables. Phenolics exhibit a wide range of physiological properties, such as anti-allergenic, 

anti-artherogenic, anti-microbial, anti-inflammatory, anti-oxidant, anti-thrombotic, cardio-

protective and vasodilatory effects. The beneficial effects derived from phenolic compounds 

have been attributed to their antioxidant activity. Phenolic compounds could be a major 

determinant of antioxidant potentials of foods and could therefore be a natural source of 

antioxidants (Nookabkaew, et al., 2006). 

Colour development using Folin-Ciocalteu reagent (Folin- Ciocalteu assay) is the generally 

preferred method for measuring phenolics, because most plant derived antioxidants contain 

large amounts of polyphenols (Katsube et al., 2004).  The Folin- Ciocalteu assay was developed 

in 1927 for the measurement of tyrosine. The reagent consists of a mixture of sodium 

molybdate, sodium tangstate, and other reagents. Upon reaction it produces a blue colour which 

absorbs at a wavelength of 765 nm UV light. The assay has been used for many years by food 

and agricultural industries to determine the phenolic content of plant products (Everette et al., 

2010).  
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2.5.3 Total flavonoid content evaluation 

Flavonoids are polyphenolic compounds also known as low molecular weight phenolics. These 

properties include free radical scavenging, inhibition of hydrolytic and oxidative enzymes and 

anti-inflammatory actions (Bahorun et al., 2004). 

Flavonoids can act as vasodilators and platelet disaggregates and also possess antioxidant and 

free radical scavenging abilities (Bahorun et al., 2004).  They exist readily in the plant kingdom 

and are especially common in leaves, flowering tissues and pollen. Plant flavonoids are an 

important part of the diet because of their effects on human nutrition. These phytochemicals 

can modulate lipid peroxidation involved in artherogenesis, thrombosis and carcinogenesis 

(Zhishen, et al., 1999). 

Known properties of flavonoids include free radical scavenging, strong antioxidant activity, 

inhibition of hydrolytic and oxidative enzymes and anti-inflammatory action. Some evidence 

suggests that the pharmacological effects of flavonoids are correlated with their antioxidant 

activities (Zhishen, et al., 1999). Moreover, it is suggested that the overall antioxidant effect of 

flavonoids on lipid peroxidation may be related to their hydroxide and oxygen scavenging 

properties and their reaction with peroxy radicals. Flavonoids can be used directly to scavenge 

oxygen and hydroxide by single electron transfer, this scavenging process can be followed by 

means of electron spin resonance but the expense of such instruments hinders their use by the 

average laboratory (Zhishen, et al., 1999). 

Flavonoids contain a highly conjugated aromatic system and therefore exhibit intense, 

characteristic absorption or florescence spectra. Chelation with other metals causes spectral 

shifts that can be correlated with flavonoid structures. The UV/visible absorption spectra of 

flavonoids in the presence of Al3 have been used to distinguish flavonoids that contain either a 

free 5- or 3-hydroxyl group. Flavonoids that do not contain these groups do not form complexes 

with Al3 and therefore their spectra are unaltered. Among those flavonoids that do complex 

Al3, morin, quercetin, and kaempferol have been used in the flueorometric determination of 

Al3. In a neutral or acidic medium (typically ethanol), the characteristic florescence of the 

chelat provides detection levels for Al3 as much as few parts per billion (Deng, et al., 1998). 
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2.5.4 Antioxidant activity evaluation 

Antioxidants are compounds that inhibit or delay the oxidation of other molecules by inhibiting 

the initiation or propagation of oxidizing chain reactions. Antioxidant activity is a fundamental 

property important for life (Velioglu et al., 1998). Many of the biological functions, such as 

anti-mutagenicity, anti-carcinogenicity, and anti-aging, among others originate from this 

property. There are two basic categories of antioxidants namely synthetic and natural. Synthetic 

antioxidants are compounds with phenolic structures of various degrees of alkyl substitution, 

whereas natural antioxidants can be phenolic compounds (tocopherols, flavonoids, and 

phenolic acids), nitrogen acids (alkaloids, chlorophyll derivatives, amino acids, and amines), 

or carotenoids as well as ascorbic acid (Velioglu et al., 1998). Many naturally occurring 

oxidative compounds from plant sources have been identified as free radical inhibitors or active 

oxygen scavengers (Duh, et al., 1999). 

In recent years much attention has been devoted to plants containing natural antioxidants and 

their association with health benefits. Plants produce various anti-oxidative compounds to 

counteract reactive oxygen species in order to survive (Huda-Faujan et al., 2009). Reactive 

oxygen species which include free radicals such as superoxide anion radicals (O2), hydroxyl 

radicals (OH) and non-free radical species such as H2O2 and singled oxygen (O2) are various 

forms of activated oxygen. These molecules are exacerbating factors to cell injury and aging 

processes (Huda-Faujan et al., 2009). 

There are several methods used to determine the antioxidant activity of biological material. 

The two most widely used being the 2,2'-azino-bis(3-ethyl benzothiazoline -6-sulphonic acid) 

(ABTS) and 2,2-Diphenyl-1picrylhydrazyl (DPPH) radicals. Both present excellent stability in 

certain assay conditions but also show several important differences in their response to 

antioxidants and in their manipulation. DPPH is a free radical that is required directly without 

preparation, while ABTS must be generated by enzymatic or chemical reactions. Another 

difference is that ABTS can be solubilized in aqueous and organic media in which the 

antioxidant activity can be measured due to hydrophilic and lyophilic nature of the compounds 

in samples. In contrast to that DPPH can be absorbed in organic media. DPPH is a very stable 

absorbance radical and is therefore widely used to characterize plant material (Arnao, 2000). 

To evaluate the oxidative activity of specific compounds or extracts, plant extracts are allowed 

to react with a stable radical DPPH in a methanol solution. The reduction of DPPH is followed 

by monitoring the decrease in its absorbance at a characteristic wavelength of light during its 
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reaction. In its radical form DPPH absorbs light at 515 nm, but upon reduction by an antioxidant 

or radical species the reduction disappears. DPPH is thus used to determine antiradical activity 

(Brand-Williams, et al., 1995). 

2.5.5 HPLC fingerprinting evaluation 

HPLC fingerprinting has the ability to provide timely, accurate, and reliable data. It is central 

to the role of analytical chemists, especially in the discovery, development and manufacture of 

pharmaceuticals. Analytical data are used to screen potential drug candidates, aid in the 

development of drug synthesis, support formulation studies, monitor the stability of bulk 

pharmaceuticals and formulated products, and test final products for release (Green, 1996).  

The quality of analytical data is a key factor in the success of the drug development program. 

The process of method development and validation has a direct impact on the quality of this 

data. Although a thorough validation cannot rule out all potential problems, the process of 

method development and validation should address the most common ones (Green, 1996). 

Method validation is the process of proving that an analytical method is acceptable for its 

intended purpose. HPLC validation methods for regulatory submission must include studies on 

specificity, linearity, accuracy, precision, range, detection limit, quantitation limit and 

robustness. This approach should be viewed with the understanding that validation 

requirements are continually changing and vary widely, depending on the type of drug being 

tested, the stage of drug development and the regulatory group that will review the drug 

application. During each validation study, key parameters are determined and then used for all 

consecutive validation steps. HPLC fingerprints is therefore used to determine product 

stability. If the products are not stable, storage conditions or additives should be identified to 

improve stability (Green, 1996). HLPC fingerprinting is considered the method of choice for 

the quantitative determination of drugs. (Matuszewski, et al., 2003). 

  

 

 

 

 



17 | P a g e  
 

 PLAN OF WORK 

 

In this chapter, the objectives pursued, the hypotheses tested and the study approach was 

outlined. 

3.1 Aims 

The overall aims of the study were to test whether: (i) the solid dosage form of L. leonurus 

solid extracts is a viable replacement for the traditional tea form, (ii) to establish whether they 

had suitable long-term storage stability, and (iii) to establish which stability parameters 

(including the determination of marker compound levels, marrubiin and leonurine), were 

suitable to use as product stability indicators for these extracts.  

3.2 Objectives 

Consequently, the specific objectives included: (i) the preparation and characterization of a 

FDAE,  Aq EtOH extract and calcium alginate FDAE beads forms of L. leonurus, (ii) 

determination and comparison of their long-term stability using physical characteristics (e.g. 

organoleptic properties) and chemical parameters (e.g. TPC, TFC, antioxidant activity levels 

and marker compound levels) as stability-indicating parameters. 

3.3 Hypotheses  

The hypotheses to be tested were that: 

(i) The Aq EtOH extract of L. leonurus plant material would contain higher levels of 

chemicals (TPC, TFC) and chemical marker compounds (marrubiin and leonurine) 

than the FDAE and calcium alginate FDAE beads of L. leonurus and, 

(ii) Calcium alginate FDAE beads would have greater stability (i.e. longer shelf-life) 

than the FDAE and the Aq EtOH extract. 

3.4 Study approach and motivation 

To realize the above objectives, crude extracts was to be prepared from the dried L. leonurus 

leaves.  This included a freeze-dried aqueous extract (FDAE) that would closely mimic the 

traditional tea and a 20 % aqueous ethanolic (Aq EtOH) extract and calcium alginate FDAE 

beads. Since it was expected that the FDAE would be hygroscopic in nature, the calcium 
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alginate coating was primarily intended to remedy the hygroscopicity of the FDAE, while the 

Aq EtOH extract was expected to contain higher levels of chemical constituents than the 

FDAE. The physical and chemical characteristics of all three solid L. leonurus forms would 

need to be determined and compared to one another in order to establish the stability profiles 

of each form. All three solid L. leonurus forms would then be encapsulated, the capsules placed 

in plastic containers and subjected to different conditions, including storage at elevated 

temperature and humidity. This would be followed by periodic sampling and using various 

parameters to determine changes in both physical and chemical long-term stability of the 

encapsulated solid extract forms. The stability profiles of L. leonurus solid extracts would be 

established and compared.  

3.5 Why stability testing and the specific test parameters used? 

Because of the known hygroscopic nature of the FDAE and expected hygroscopic nature of the 

Aq EtOH extract, the modification of FDAE into calcium alginate FDAE beads was therefore 

explored. Though the calcium alginate FDAE beads were expected to be more physically 

stable, overall physical and chemical stability of all three L. leonurus solid extracts needed to 

be investigated in order to produce a marketable product with suitable long-term storage 

stability.  

Stability tests can be done using various parameters. In this study, parameters based on the 

physical, chemical and activity characteristics of the products were to be used to determine 

physical stability changes in organoleptic features as parameters. This method involves the use 

of the natural senses making it a very easy method to apply (Ma, 2006).  

Chemical stability levels of total phenol content were to be determined using the Folin-

Ciocalteu reagent method. Most plant derived antioxidants contain large amounts of 

polyphenols and the selected method is a commonly used and preferred one for measuring 

phenolics (Katsube et al., 2004).  The reagent consists of a mixture of sodium molybdate, 

sodium tangstate, and other reagents and upon reaction a colour change from yellow to 

blue/green is observed indicating the presence of phenols.   

Another chemical parameter to be measured was the total phenol content and an aluminium 

(Al3) chloride-methanol solution method to test total flavonoid content. L. leonurus, like most 

plants, is known to contain flavonoids (Oyedemi, et al., 2011) and the UV/visible absorption 

spectra of flavonoids in the presence of Al3 have been used to distinguish flavonoids that 
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contain either a free 5- or 3-hydroxyl group. Flavonoids that do not contain these groups do not 

form complexes with Al3 and therefore their spectra are unaltered. This method was therefore 

found best suited for the study.  

As a further chemical parameter, levels of two marker compounds, viz. marrubiin and 

leonurine, was also to be monitored. For this an HPLC assay was to be validated and used for 

their quantification in the L. leonurus solid forms. The process of HPLC method development 

and validation has a direct impact on the quality of data from this section of the study. Although 

a thorough validation cannot rule out all potential problems, the process of method 

development and validation is expected to address the most common ones (Green, 1996). 

Following the validation of an HPLC assay, HPLC fingerprints obtained can then be used to 

determine product stability. Indeed, HPLC fingerprinting is considered the method of choice 

for the quantitative determination of drugs (Matuszewski, et al., 2003). 

In addition to using physical and chemical parameters to monitor the stability of the L. leonurus 

preparations, the antioxidant activity was also determined. For this the 2,2-diphenyl-1-

picrylhydrazyl (DPPH) assay was to be used to determine antioxidant activity  because DPPH 

is a very stable absorbance radical, is easily absorbed in organic media and is therefore widely 

used to characterize plant material (Arnao, 2000).  To evaluate the oxidative activity of specific 

compounds or extracts, plant extracts are normally allowed to react with the stable radical 

DPPH in a methanol solution and the reduction of DPPH followed by monitoring the decrease 

in its absorbance at a characteristic wavelength of light during this reaction (Brand-Williams, 

et al., 1995). 

Finally, to demonstrate physical and chemical stability of the L. leonurus solid forms they were 

to be exposed to varying environmental conditions such as temperature and humidity ranging 

from room temperature (moderate) to accelerated conditions (room temperature, 24 ˚C ± 5 ˚C; 

fixed temperature of 30˚C ± 5 ˚C; elevated temperature of 40˚C ± 5 ˚C and accelerated 

conditions of 40 ± 5 ˚C / 75 % relative humidity (RH)). This is usually done as an essential part 

of product development,  and entails testing those attributes that are susceptible to change 

during storage and are likely to influence the quality, safety and efficacy of the product and the 

afore-mentioned commonly used storage conditions (Allinson, et al., 2001 & Lusina et al., 

2005) 
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 PREPARATION AND CHARACTERIZATION OF L. 

LEONURUS EXTRACTS  

 

4.1 Introduction 

In this chapter, the preparation and characterization of L. leonurus solid extracts was 

investigated and discussed. The aim of this part of the study was to determine whether L. 

leonurus solid extracts was a viable replacement for the traditional tea form and the objective 

was to prepare and characterize the L. leonurus solid extracts. It was hypothesized that freeze-

dried 20 % aqueous ethanol extract (Aq EtOH) of L. leonurus plant material would contain 

higher levels of chemical marker compounds than the freeze-dried aqueous extract (FDAE) 

and calcium alginate FDAE beads. It was also expected that FDAE, Aq EtOH extract and 

calcium alginate FDAE beads of L. leonurus might differ in organoleptic features, chemical 

constituent profile and levels, and anti-oxidant activity. 

Furthermore, the chemicals, materials, equipment and experimental procedures used to prepare 

and characterize the FDAE, Aq EtOH extract and calcium alginate FDAE beads of L. leonurus 

were presented and the results obtained reported and discussed.  

4.2 Chemicals, Materials and Equipment 

The chemicals and materials used included: 

Leonotis leonurus leaves (Parceval Pharmaceuticals (Pty) Limited, South Africa), sodium 

carbonate, ascorbic acid, gallic acid, 1-diphenyl-2-picryl-hydrazyl (DPPH), Folin Ciocalteu 

reagent, aluminium  chloride (AnalytiCals Carlo Erba, France),  absolute ethanol, methanol 

(KIMIX, South Africa) and distilled  water (Saarchem, South Africa). 

The equipment used included: 

A hot plate and stirrer (MH-4, 1586, FRIED), halogen moisture analyser HR73 (Mettler toled, 

South Africa), scale (AR2140, Adventurer, OHAUS), filter (CH-9230, V-500, Buchi 

Laboratories AG), filter paper (Whatman no.3, Whatman England,  vacuum pump (V-700, 

Buchi Laboratories AG), rotor evaporator (RII, Buchi Laboratories AG), -86 °C freezer (Ultra 

flow freezer, NUAIRE), freeze-drier (Sentry 2.0, Vir Tis SPScientific),  photomicroscope (VMS-

004 Delux, Veho, Discovery), incubator (220, Scientific Incubator), spectrophotometer (Chemi 
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HR 410 BioSpectrum Imaging System UV spectrophotometer), microplate reader (BMG 

LABTECH GMBH, SPECTROstar Nano 601-0040 UV/Vis), water bath (WMR 14, Memmer) 

and a vortex mixer (VM-300, Vortex mixer, Gemmy Industrial Corp). 

4.2.1 Experimental Procedures 

4.2.2 Preparation of freeze-dried aqueous extract (FDAE)  

Dried leaves of L. leonurus were obtained from Parceval Pharmaceuticals (Pty) Limited, a 

commercial supplier in Wellington, Western Cape, South Africa. The leaves were stored in 

sealed plastic bags in a cool place, away from direct light. The extraction procedure used 

simulated the traditional preparation of medicinal herbs (Egieyeh, 2011). Commonly, a quarter 

cup of L. leonurus leaves added to a cup of boiling water is allowed to stand and seep for 10 

minutes. For this study, 4.42 L of boiled distilled water was added to 221 g of dried plant leaves 

(approx. 1:20 ratio of dried plant material to solvent), stirred for 10 minutes with a magnetic 

stirrer and then allowed to cool down to room temperature.  Thereafter the extract was filtered 

through Whatman no. 1 filter paper using a Buchner funnel and a vacuum pump, the filtrate 

poured into tarred round bottom flasks, quickly frozen to a thin layer using liquid nitrogen and 

then kept in a freezer at - 80 °C for 48 hours. The frozen extract was dried under vacuum in a 

freeze-dryer at – 44 °C for 72 hours. The freeze-dried powder was weighed for calculation of 

the percentage yield and then transferred to an amber glass bottle, sealed and stored in a 

desiccator until further testing. The yield was calculated using formula: 

% yield = [Wt FDAE powder / Wt dried plant leaves] * 100 % 

4.2.3 Preparation of 20 % aqueous ethanol extract 

The extraction procedure used to prepare the ethanol extract of L. leonurus was similar to that 

for a traditional herbal tea preparation, except that the extracting solvent consisted of a 20 % 

ethanol in distilled water (dH2O) solution.  For the ethanol extract, 1 L solution of 0.8 L distilled 

water plus 0.2 L 99 % ethanol was boiled and added to 50 g of dried L. leonurus leaves (i.e. 

approx. 1:20 ratio of dried plant material to solvent), the mixture stirred with a magnetic stirrer 

for 10 minutes and allowed to cool to room temperature.   Once cool the extract was filtered 

through Whatman no. 1 filter paper using a Buchner funnel and a vacuum pump, the filtrate 

collected and transferred to tarred round bottom flasks in which it was then evaporated to 

dryness with a rotor evaporator at 40 °C. When all the ethanol had evaporated, the flasks were 

placed in a freezer at - 80 °C for 48 hours to freeze the residue. The frozen extract was then 
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dried under vacuum at – 44 °C for 72 hours, the freeze-dried extract  powder was collected, 

weighed for calculation of the yield using the formula below and thereafter transferred to an 

amber glass bottle, sealed and stored in a desiccator until further testing. 

% yield = [Wt 20% EtOH extract powder / Wt dried plant leaves] * 100  

4.2.4 Preparation of calcium alginate FDAE beads  

The calcium alginate FDAE beads were prepared according to the method of Egieyeh (2011) 

(figure 4.1). First, a 2 % (w/v) solution of sodium alginate was prepared by mixing 2 g sodium 

alginate (A) in 0.1 L of dH2O. Then 2 g of FDAE was added to this 2 % sodium alginate 

solution. Separately, 4 % (w/v) calcium chloride was prepared by dissolving 4 g calcium 

chloride (B) in 0.1 L dH2O. The 2 % alginate solution containing the solid plant extract was 

drawn-up into a 20 mL syringe and then added, drop-wise through a 23 G needle, to the 4 % 

calcium chloride solution.  The beads formed in this process were allowed to soak for 5 minutes 

before the suspension was passed through a sieve and the beads collected.  The beads were then 

rinsed with distilled water to remove the excess calcium chloride, oven-dried at 60 °C and 

weighed for the percentage yield calculation. Finally, the prepared calcium alginate FDAE 

beads were transferred to an amber glass bottle, sealed and stored in a desiccator until further 

testing. 

% yield =   [(Wt Ca alginate FDAE beads)* % FDAE]   * 100   

FDAE + AB 

 

where AB = A (sodium alginate) + B (calcium chloride) 
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Fig. 4.1 A schematic representation of the production of calcium alginate FDAE beads using L. leonurus 

(Egieyeh, 2011) 

 

4.3 Characterisation of L. leonurus extract forms 

4.3.1 Determination of organoleptic properties  

Organoleptic properties refer to the appearance, colour, odour and taste of a substance. It is the 

first step in the description of a drug substance during a pre-formulation or formulation 

development program. For this study, the appearance, colour, scent, taste and texture of the 

FDAE and other modified forms of L. leonurus was characterized using the natural senses (e.g. 

sight, smell, taste, etc.) according to the method used by Ma (2006). The results obtained for 

the different extracts were recorded, tabulated and compared in table 4.1. 

4.3.2 Determination of moisture content   

Approximately 300 mg of each of the solid extracts was accurately weighed and the weight 

recorded as wet weight of sample (A). The sample was then dried at 115 °C, allowed to cool 

and then weighed again to give the dry weight of the sample (B). This was all done with the 

aid of a Halogen Moisture Analyser HR73 (fig 4.2). The percentage moisture content (% MC) 

of the prepared solid extracts was then calculated using the following equation (Biking, 2003):  

  % MC =  [(A-B)/B] * 100  

where:  % MC  =  Percentage of moisture in the sample  

  A  =  Weight of wet sample (grams), and 

  B  =  Weight of dry sample (grams) 
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The average moisture content of the freshly prepared solid extracts was recorded and 

compared.  

 

Fig 4.2: Halogen Moisture Analyser HR73 

 

4.3.3 Determination of total phenol content (TPC)  

To determine the total phenol content of the freshly prepared L. leonurus extracts, the method 

of Oyedemi et al., (2011) was used with some modifications. A volume of 2.5 mL 10 % Folin-

Ciocalteu reagent and 2 mL Na2CO3 (75 % w/v) was added to 0.5 mL plant extract (i.e. FDAE, 

Aq EtOH extract and calcium alginate FDAE beads) material (10 mg/mL) in a vial. The 

resulting mixture was vortexed for 15 seconds and incubated for 30 minutes at 40 °C in a water 

bath for colour development. Thereafter the solution was allowed to cool to room temperature 

and the absorbance measured at wavelength 765 nm with a UV spectrophotometer. A standard 

curve of absorbance at 765 nm versus concentration of gallic acid was plotted and the line of 

best fit determined by linear regression using GraphPad Prism. The TPC, in terms of gallic acid 

equivalents (mg/mg), for each of the extracts was then determined from this standard curve 

(appendix 2A) and compared.  

4.3.4 Determination of total flavonoid content (TFC) 

To determine the flavonoid content of the freshly prepared L. leonurus extracts, the method of 

Mbaebie et al., (2012) was used with some modifications. A volume of 0.5 mL 2 % aluminium 

chloride-methanol solution was mixed with 0.5 mL plant extract (i.e. FDAE, Aq EtOH extract 

or calcium alginate FDAE beads) material in methanol (MeOH) (10 mg/mL) in a vial. The 

resultant mixture was incubated at room temperature for 1 hour for yellow colour development 

indicating the presence of flavonoids. The absorbance was measured at a wavelength of 420 

nm with a UV spectrophotometer. A standard curve of absorbance at 420 nm versus 

concentration of quercetin was plotted and the line of best fit determined by linear regression 

using GraphPad Prism. The TFC, in terms of quercetin equivalents (mg/mg), for each of the 

extracts was then determined from this standard curve (Appendix 2B) and compared.  
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4.3.5 Determination of antioxidant activity 

The method of More et al., (2013) was used with some modifications. Free-radical scavenging 

activity was measured using the 1-diphenyl-2-picryl-hydrazyl (DPPH) assay. A 0.25 mM 

working solution was prepared by dissolving 1 mg of 1-diphenyl-2-picryl-hydrazyl (DPPH) in 

10 mL of MeOH.  Methanolic solutions of the FDAE and Aq EtOH L. leonurus extracts (10 

mg/mL) was prepared, while the alginate bead extract solution (10 mg/mL) was prepared using 

dH2O because of its inability to dissolve in MeOH. As a positive control 1 mg/mL ascorbic 

acid in methanol was prepared. For the assay a 96-well plate was used and 200 µl of MeOH 

added to the first row of wells and 110 µl MeOH in the remaining wells. Then 20 µl volumes 

of either plant extract or ascorbic acid solution was added to the first row  of wells (3 wells per 

sample), the plate gently shaken to mix the solution and then 110 µl of the solution transferred 

to the next row of corresponding wells containing the 110 µl of MeOH. This process was 

repeated in subsequent wells to obtain serially diluted solutions of extract or ascorbic acid.  

Thereafter, 90 µl of methanolic solution of DPPH (90 mM) was added to all the wells. The 

final concentrations of the extract/compounds ranged from 1 to 0.008 mg/mL for ascorbic acid 

and 10 to 0.08 mg/ml for the plant extract preparations. The microplates were incubated at 37 

°C for 2 hours, thereafter cooled down to room temperature and the absorbance read at a 

wavelength of 517 nm using the microplate reader. The percent radical scavenging activity of 

the L. leonurus preparations was determined by comparison with MeOH blank and calculated 

as follows:  

% DPPH radical-scavenging = ((AC – AS) / AC) x 100 

 

Where AC is the absorbance of the control solution (containing only DPPH solution), and AS 

is the absorbance of the sample (i.e. plant extract or ascorbic acid) in DPPH solution. Using 

GraphPad Prism 5®, the percentage of  DPPH scavenging activity  versus plant extract or 

ascorbic acid  concentrations (mg/mL) was plotted and the concentration of extract or ascorbic 

acid required to scavenge DPPH by 50 % (i.e. EC50), determined by nonlinear regression 

analysis. This parameter was then used to compare the antioxidant activity of the L. leonurus 

preparations. 
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4.4 Results and discussion  

4.4.1 Percentage yields of L. leonurus solid extract preparations  

The percentage yields of L. leonurus solid extract preparations was obtained using the 

procedure described in 4.3 and were displayed in table 4.1 and appendices 1A, 1B & 1C. 

Although their preparation was time consuming, the solid extracts were fairly easy to prepare.  

The yield obtained for the FDAE was 19.9 % which was similar to that obtained by other 

investigators i.e. Mukinda and Syce (2007), the 20.4 % of Egieyeh (2010) and 21.96 % of Dube 

(2006). For the Aq EtOH extract the yield obtained was 12.82 %, and lower than that of the 

FDAE powder. The Aq EtOH extract was quite flaky in appearance, suggesting that any 

volatile oils extracted was probably removed during the rotary evaporation and freeze-drying 

processes. An average of 3.42 ± 0.01 g of L. leonurus calcium alginate beads was obtained 

from the 2 g of FDAE used, clearly indicating the incorporation of the calcium alginate 

(presumably mainly as a coating) in the  final product.  Based on the total constituent 

ingredients used, the estimated yield for the calcium alginate FDAE beads was low (10.7 %) 

and it was not clear how much of FDAE the beads contained. Previous studies on alginate bead 

formation also do not provide records of the percentage yields obtained.  At this stage it is also 

not clear whether the yield of the beads can be improved (e.g. by small changes in the method 

of preparation), but further investigation into options to improve the yield of the beads might 

be warranted. 
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Table 4.1: Summary of L. leonurus solid extract preparations characteristics  

Characteristics  FDAE  Aq EtOH extract Calcium alginate FDAE 

beads 

% Yield   

(mean ± SD;  n = 3) 

19.9±0.35 12.82±0.02 10.70 ± 0.02 

Organoleptic properties 

 

Appearance  

 

Colour  

 

Scent 

 

Taste 

 

Texture 

 

 

 

Free flowing powder 

 

medium brown 

 

highly aromatic 

 

intensely bitter 

 

fairly course 

 

 

Flaky powder 

 

medium brown 

 

highly aromatic 

 

intensely bitter 

 

very course 

 

 

rounded balls  

 

dark brown 

 

odourless 

 

tasteless 

 

smooth 

Moisture content (%) 

(mean ± SD;  n = 3) 

 

3.77±0.05 2.91±0.12 1.86±0.06 

Antioxidant ability   

 

R2 (non-linear) 

 

EC50 

 

 

 

   0.9974 

 

   0.8868 

 

 

   0.9284 

 

   0.7525 

 

 

  0.9240 

 

  1.062 

Total phenol content 

(Gallic acid equivalent; 

mg/mg; Mean ± SD; n = 3)  

7.86±0.013 7.52±0.008 6.94±0.009 

Total flavonoid content  

(Quercetin equivalent; mg/mg; 

Mean ± SD; n = 3) 

4.30±0.010 4.47±0.009 3.67±0.014 
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4.4.2 Organoleptic properties of L. leonurus solid extract preparations 

The organoleptic properties of the three L. leonurus solid extract preparations were obtained 

using the procedure described in 4.4.1 and were summarized in table 4.1 and shown in figures 

4.3a to 4.3c. Generally the three solid extracts differed in appearance with the FDAE being a 

free flowing powder, the Aq EtOH appearing flaky and the calcium alginate FDAE beads 

taking the form of small round balls. While both FDAE and Aq EtOH extract were medium 

brown in colour, had highly aromatic scents and intensely bitter tastes, they differed in texture. 

In addition, the FDAE powder was fairly coarse while the Aq EtOH powder was very coarse. 

The calcium alginate FDAE beads, on the other hand, differed completely from the afore-

mentioned powders, in colour, scent, taste and texture. It was dark drown, odorless, tasteless 

and had a smooth texture. The differences in organoleptic features were clearly the result of 

the various preparation methods used. 

 

   

a b c 

 Fig. 4.3:  Photomicrographs of (a) FDAE, (b) 20 % Aq EtOH extract and   (c) calcium alginate FDAE 

beads  

 

4.4.3 Moisture content of L. leonurus solid extract preparations  

The moisture content levels of the three L. leonurus solid extract preparations were obtained 

using the procedure described in 4.4.2 and summarized in table 4.1.  The FDAE, Aq EtOH 

extract and calcium alginate FDAE beads contained 3.77±0.05, 2.91±0.12 and 1.86±0.06 % 

moisture, respectively.  These moisture content values did not specifically reflect the 

hygroscopic nature of the solid dosage forms; instead it reflected the amount of moisture 

present in the product immediately after manufacturing.  Nevertheless, the fact that the alginate 

beads contained the least and significantly less moisture (t-test; p< 0.05) when compared to the 

FDAE (p value = 0.0001) and 20 % Aq EtOH (p value = 0.0002) strongly suggested that such 

bead formation might be able to solve any hygroscopicity problem associated with the FDAE. 
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The latter suggestion must however still be conclusively proven with hygroscopicity 

evaluations. 

4.4.4 Total phenol content (TPC) of L. leonurus solid extract preparations  

The amount of total phenols in the prepared solid extracts was determined according to the 

procedure described in 4.4.3 and calculated from the standard curve of the gallic acid 

concentration vs UV/VIS absorbance as shown in appendix 2A.  The standard curve was linear 

with equation Y = 0.02239x and regression coefficient, R2 = 0.9989 and was used to determine 

the TPC levels in the extracts. 

The levels obtained were recorded in table 4.2 and were 7.86 ± 0.013, 7.52 ± 0.008 and 6.94 ± 

0.009 mg/g gallic acid equivalent for the FDAE, the Aq EtOH extract and the calcium alginate 

FDAE beads, respectively. The TPC of the preparations were in a reasonably similar (ANOVA; 

p> 0.05) range but the calcium alginate FDAE bead extract clearly contained significantly 

lower levels of total phenols when compared to the FDAE and Aq EtOH extracts (t-test; p< 

0.05).  The only other information available on the TPC levels in L. leonurus preparations is 

that reported by Oyedemi et al., (2011), who found 48 mg/g tannic acid equivalent total phenols 

in L. leonurus aqueous extracts. In the FDAE of Artemisia afra a value of 258.39 mg/g tannic 

acid equivalent total phenols was found (Sunmona, et al, 2012). This was however much higher 

than that found for the FDAE of L. Leonurus, possibly because of the different plant and 

standard used. 

Overall, it is clear that use of different extract preparations of L leonurus, and especially the 

preparation or more sophisticated modified forms such as alginate beads of the FDAE, which 

in turn was prepared to solve pharmaceutical (e.g. high hygroscopicity) or biopharmaceutical 

(e.g. low bioavailability) problems, can be expected to affect the levels of active compounds 

(e.g. TPC’s) in the final product.  

Table 4.2: Total phenol content levels in L. leonurus solid extracts   

Solid plant extract  Absorbance at 765 nm (AUF’s)    

(Mean ± SD; n = 3) 

Gallic acid equivalence (mg/g) 

(Mean ± SD; n = 3) 

FDAE 0.327±0.013 7.86±0.013 

Aq EtOH extract 0.313±0.008 7.52±0.008 

Calcium alginate FDAE beads 0.289±0.009 6.94±0.009 

 

  

 

 

 

 



30 | P a g e  
 

4.4.5 Total flavonoid content of L. leonurus solid extract preparations  

The amount of total flavonoids in the prepared solid extracts was determined according to the 

procedure described in 4.4.4 and from the standard curve of the quercetin concentration vs UV 

absorbance shown in appendix 2B.  The standard curve was linear with Y= 0.02970x, R2 = 

0.9805 and was used to determine the TFC levels in the extracts. 

The TFC levels were recorded in table 4.3 and were 4.30±0.010, 4.49±0.009 and 3.67±0.014 

mg/g quercetin equivalent FDAE, Aq EtOH extract and calcium alginate FDAE beads, 

respectively. The flavonoid levels of calcium alginate FDAE beads being slightly lower than 

that of both the FDAE and Aq EtOH extract. This was most likely due to the effect of the 

calcium alginate coating.  The levels of flavonoid in the FDAE and Aq EtOH was fairly similar 

(t-test; p < 0.05) to each other and also to that found by Oyedemi et al., (2011) in an aqueous 

extract of L. leonurus (4.8 mg/g quercetin equivalent). These flavonoid levels were however 

much more than that found in the acetone (0.77 ± 0.003), methanol (0.46 ± 0.02) and water 

(0.69 ± 0.00) quercetin equivalent (mg/g) of L. leonurus FDAE (Jimoh, el al., 2010).  

Overall, the TFC level did not appear to be much affected by the type of solid L. leonurus 

extract material prepared. Moreover, since the TFC and TPC level findings were fairly similar 

it is very likely that most of the phenolics in the preparations were flavonoid compounds.  

Table 4.3: Total flavonoid content levels in L. leonurus solid extracts   

Solid plant extract  Absorbance at 420 nm (AUFS) 

(Mean ± SD; n = 3) 

Quercetin equivalents (mg/ g) 

(Mean ± SD; n = 3) 

FDAE 0.284±0.010 4.30±0.010 

Aq EtOH extract 0.296±0.009 4.49±0.009 

Calcium alginate FDAE beads 0.242±0.014 3.67±0.014 

 

4.4.6 Antioxidant activity of L. leonurus solid extract preparations  

The antioxidant activities of the L. leonurus solid extract preparations and ascorbic acid 

reference standard was determined according to the procedure described in 4.4.5 and is 

summarized in table 4.4 and displayed in figure 4.4. 

From the curves in figures 4.4 the EC50, a slope co-efficient and a non-linear correlation 

coefficient, shown as R2 (non-linear) was calculated and presented in table 4.4.  Generally the 

non-linear correlation coefficients of the % DPPH radical-scavenging ability vs concentration 
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curves for ascorbic acid reference standard and all three L. leonurus solid extract preparations 

showed a good fit with R2 (non-linear) values of 0.9885, 0.9974, 0.9284 and 0.9240 for ascorbic 

acid, FDAE, Aq EtOH extract and calcium alginate FDAE beads, respectively. More 

importantly, based on the EC50 values the calcium alginate FDAE bead preparations 11.53 

mg/mL (1.062) differed significantly from the FDAE 7.71 mg/mL (0.8868) and the Aq EtOH 

extract 5.66 mg/mL (0.7525) in its antioxidant ability (student t-test p-value of < 0.0001; 

ANOVA-test; p< 0.05). Clearly the solid L. leonurus preparations contained antioxidants but 

differed in free-radical scavenging ability and, presumably, overall levels of antioxidants. 

When comparing the EC50 values of L. leonurus FDAE preparations (0.8868) to that of the 

ascorbic acid standard (0.005) it was clear that these preparations did not have very remarkable 

antioxidant efficacy. Former studies had reported slightly higher antioxidant ability for 

ascorbic acid (0.0025) (Nkobole, et al, 2011) and popular South African plants such as Aloe 

ferrox (0.04853) and Artemisia afra (0.01695) (More, et al, 2012). When comparing the L. 

leonurus FDAE to that of the aforementioned Aloe ferrox and Artemisia afra it was found not 

to possess substantial antioxidant activity. This significant difference in activity between the 

three plants is possibly a reflection of the difference in levels of active constituents, e.g. 

flavonoids, also found in this study (see 4.5.5 discussion). 
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Fig. 4.4: Antioxidant response curves depicting % DPPH radical scavenging activity verses concentration 

of ascorbic acid standard, FDAE, Aq EtOH extract and alcium alginate FDAE beads. The data 

represents the percentage DPPH inhibition. Each value represents, mean ± S.D (n=3). 

 

 

Table 4.4:  Antioxidant activities of the solid plant extracts of L. leonurus and ascorbic 

acid standard expressed as EC50 values 

Solid plant extract EC50 

(log10 mg/mL) 

*R2 

 

Ascorbic acid 0.005 0.9885 

FDAE 0.8868 0.9974 

Aq EtOH extract 0.7525 0.9284 

Calcium alginate FDAE beads 1.062 0.9240 

*R2 = nonlinear correlation coefficient for % DPPH scavenging ability vs log concentration curve  
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4.5 Conclusion 

Overall, the results obtained indicated that the solid extracts of L. leonurus could be easily 

prepared, and can therefore be viable practical replacements for the traditional tea form. 

The three L. leonurus solid extracts differed in organoleptic properties and the fact that the 

alginate beads contained the least moisture strongly suggested that such bead formation might 

be able to solve any hygroscopicity problem associated with the FDAE. 

Chemically, the total phenol levels for all three L. leonurus preparations were very similar and 

so was the TFC levels of the three extracts, possibly indicating that most of the phenolics in 

the L. leonurus preparations were flavonoid compounds. However, the antioxidant activities 

for the three extracts were not similar (ANOVA-test; p< 0.05). The antioxidant activity was 

slightly lower for the calcium alginate beads than that of the FDAE and Aq EtOH extract, thus 

clearly indicating that all the solid L. leonurus preparations contained antioxidants but differed 

in free-radical scavenging ability and, presumably, overall levels (and/or types) of antioxidants. 

Clearly the hypothesis that the Aq EtOH extract contained higher levels of chemical 

compounds compared to the FDAE and calcium alginate FDAE beads was not met, at least not 

in terms of TPC, TFC and antioxidant (activity) levels. Whether it would hold in terms of 

marker compound levels was considered in chapter 5. 
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 VALIDATION OF HPLC ASSAY METHOD FOR L. 

LEONURUS  

 

5.1 Introduction  

In this chapter, the validation of high-performance liquid chromatography (HPLC) assay 

method for L. leonurus is investigated and discussed. The aim of this part of the study was to 

establish whether the marker compounds, marrubiin and leonurine, were suitable to use as 

product stability indicators. This was to validate the HPLC assay method for L. leonurus solid 

extracts and determine the chemical marker profiles and content levels of the solid extract 

forms by HPLC fingerprinting.  

Furthermore, the chemicals, materials, equipment and experimental procedures used for the 

validation of the HPLC assay for L. leonurus was presented and the results obtained reported 

and discussed.  

5.2 Chemicals, Materials and Equipment 

The chemicals and materials used included: 

Rutin, quercetin, marrubiin, leonurine, sodium carbonate, ascorbic acid, gallic acid, 

acetonitrile, formic acid (all from Sigma-Aldrich, Germany), absolute ethanol, methanol HPLC 

grade (KIMIX) and distilled water (Saarchem, South Africa). 

The equipment used included: 

An HPLC system Agilent 1200 system consisting of a degassing system (G1322A, Japan), 

quaternary pump (G1311A, Germany), auto loading sampler (G1329A, Germany), TCC 

(G1316A, Germany), diode array detector (G1315B, Germany), fluorescence detector 

(G1521A, Germany), analyte fraction collector (G164C, Germany), Agilent ChemStation 

software (G2173-60101L, Germany); column (Luna C18 column, 5 µm, 4.6 x 250 mm); vortex 

mixer (VM-300, Gemmy Industrial Corp) and a scale (Adventurer OHAUS, Model AR2140, 

USA). 
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5.3 Experimental procedure  

5.3.1 HPLC conditions and validation of HLPC assay for marker compounds 

marrubiin & leonurine 

The method of Bienvenu et al., (2002), was used with some modifications, to separate, detect 

and quantitate the marrubiin, leonurine and other compounds in the L. leonurus samples. 

Specifically, an Agilent 1200 Series HPLC system equipped with a quaternary pump, 

photodiode array (PDA) detector, in-line degasser, column oven and a PC with ChemStation 

software was used. Separation of the compounds in the test samples were obtained by using a 

C18 column (Phenomenex Luna, 5 µm, 4.6 x 250 mm) maintained at a column temperature of 

25 ˚C, gradient elution with a mobile phase solvent system consisting of H2O with 0.01 % 

formic acid (solvent A) and acetonitrile containing 0.01 % formic acid (solvent B) and a mobile 

phase flow rate of 0.8 mL/min. The peaks were eluted using the following solvent gradient:  at 

0 min, solvent B: 15 %; 3 min, solvent B: 15 %; 26 min, solvent B: 100 %; 30 min, solvent B: 

100 %; 31 min, solvent B: 15 % and at 36 min (i.e. the end of run), solvent B: 15 %. The 

injection volume used was 20 µL and the peaks were detected on a PDA detector set at 

wavelengths 214, 254 and 280 nm.  

For the validation of the assay, the following parameters were determined: linearity of the 

standard curve, precision, accuracy, lowest limit of detection and lowest limit of quantification. 

In performing the validation, stock solutions of marrubiin and leonurine was prepared in 50 % 

methanol/water and stored in a refrigerator at -80 °C. Standard solutions were prepared by 

diluting the stock solution of marrubiin in 50 % methanol/water to a concentration range of 14 

– 140 µg/ml and leonurine in 50 % methanol/water to obtain a concentration range of 6 – 38 

µg/ml. These standard solutions were used to establish the standard curve. For each standard, 

20 µl was injected onto the column and the marrubiin and leonurine peaks detected at 

wavelengths 214 and 280 nm, respectively. Thereafter the marrubiin and leonurine peak areas 

were plotted against corresponding concentrations of the injected standard sample. 

GraphPad™ prism was used for plotting and determination of the standard curve, assessing its 

linearity (R2) and extrapolation of the concentrations of the test samples. 

The precision of the analytical method was determined by assaying three replicates of the low 

(i.e. the low concentration quantitation or LCQ), medium (MCQ) and high (HCQ) 

concentrations of the marrubiin and leonurine solutions on three consecutive days. On each 
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occasion the average, standard deviation and percent relative standard deviation (RSD) was 

calculated and compared. The accuracy of the method was determined from the mean 

concentrations obtained for the replicates and the percentage difference. The limits of detection 

(LOD) and limits of quantitation (LOQ) for marrubiin and leonurine were determined from the 

detector response (peak area) with LOD defined as the concentration giving an analyte response 

that is three times that of the noise (signal to noise ratio 3:1) and the LOQ as the lowest 

concentration where an accuracy better than 20 % was achieved. Lastly, the percentage bias 

was determined as the difference between the concentration measured (and determined from 

the standard curve linear regression equation) and the concentration of the prepared standard 

and expressed as a percentage of the prepared standard concentration.  

5.3.2 Identification and comparison of marrubiin and leonurine levels in L. leonurus 

plant extract preparations 

For this part of the study the validated HPLC assay described above was used. Replicate 

samples of 10 mg were accurately weighed for all three L. leonurus solid extracts. These 

samples were individually dissolved in 1 ml of methanol (FDAE & Aq EtOH extract) or 1 mL 

dH2O (in the case of the calcium alginate FDAE beads which was insoluble in methanol). The 

samples were vortexed for 15 seconds, sonicated for 30 min, then withdrawn and filtered 

through a 0.45 micron MilliporeTM filter using a syringe and the filtrate transferred to amber 

HPLC vials for analysis.  Twenty microliters of the samples were injected onto the HPLC 

column and the HPLC chromatographic fingerprint obtained, analysed for total numbers and 

profile of peaks. The peaks of active constituents were identified and the fingerprints of plant 

preparations were compared. Finally, the retention times, heights and peak areas of the 

marrubiin and leonurine peaks in the chromatograms of the different samples were determined 

and the levels of the actives determined from their respective calibration and compared for the 

three preparations. 

5.4 Results and discussion  

5.4.1 Validation of HPLC assay for marrubiin 

Under the HPLC conditions described in section 5.3.1, good symmetrical peaks with retention 

time of 23.75 ± 0.25 minutes were found for marrubiin at a wavelength of 214 nm (figure 5.1; 

table 5.1). For the marrubiin assay the standard curve was linear (r2 = 0.9991) (figure 5.2) over 
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the concentration range of 4.75 to 40.0 µg / ml marrubiin (table 5.2) and the assay had a LOD 

and LOQ of 2.38 and 4.75 ug/ml, respectively (table 5.3). 

 

Fig 5.1:  HPLC chromatogram of marrubiin reference standard at 214 nm Inset: UV/Vis spectrum for the 

reference compound at ~23.75 min (indicated by red arrow on chromatogram) 

 

Table 5.1:  HPLC retention times and selected system suitability parameters for 

marrubiin detected at 214 nm  

Compound Retention time (min) k’* R# T& 

Marrubiin 23.75 59.95624 193.486 1.29508 

Where 

*k’ the capacity factor is calculated from equation k’ = (ta/tα) – 1. Peaks should be well resolved from the 

void volume and k’ > 2 is acceptable. The Agilent ChemStation software was used to calculate these. 

#Resolution: Rs = 2 x (t2 +t1) / (W2 + W1). Rs > 2 between the peak of interest and the closest potential 

interfering peak are desirable. 

&Tailing factor: T = W0.05 / 2f. T < 2 is acceptable. The Agilent ChemStation software was used to 

calculate these. 

And generally:  tα = elution time of the void volume or non-retained compounds; ta = the retention time 

from the time of injection to the time of the elution of the peak maximum; and t2 and t1 = the retention 

times of the two components being separated 

 

Table 5.2:  Peak area values for 20 µL aliquots of fixed concentrations of standard 

marrubiin injected on column and measured at 214 nm  

Concentration (ng/µL) Mean peak area (mAU) %RSD 

4.75 83.74 1.63 

1.87 

1.13 

0.22 

1.34 

0.13 

7.9 143.56 

15.8 277.80 

23.8 410.01 

31.7 531.47 

39.6 685.84 
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Fig. 5.2: Standard curve of marrubiin peak areas vs. concentration using the method described in 

section 5.3.1 

 

In addition, the accuracy and precision for the quantitation of marrubiin (table 5.4) at 7.9 ng/µL 

was found to be 7.98 ng/µL and at 31.7 ng/µL to be 30.70 ng/µL which were both highly 

acceptable with percentage relative standard deviations (% RSD) of 0.67 and 1.68 %, 

respectively. Overall, these values indicated good validity and reproducibility of the assay. 

 

Table 5.3:  LOD and LOQ data of marrubiin over the 4.8 – 40.0 ug/mL range at 214 nm 

Prepared 

concentration 

(µg/mL) 

Mean peak 

area       

(units) 

 Concentration 

found (µg/mL) 

% RSD % Bias& LOD# LOQ 

7.9 143.56 7.11 1.87 2.4644 Accept Accept 

4.75 83.74 4.59 1.63 -3.3587 Accept Accept 

2.38 23.45 1.04 1.08 -56.2742 Accept Reject 

0.79 6.77 0.06 4.13 -92.5746 Reject Reject 

Bias&: The difference between the mean concentration measured and the prepared concentrations as a 

percentage of the prepared concentration shown in table 5.3. 

LOD#: Determined using an analyte response 3 times that of the noise (signal-to-noise ratio of 3:1) with 

the mean baseline noise = 0.4 a.u., n=3. 

*Concentration could not be determined since the peak area was less than the regression equation 

intercept. 

 

Table 5.4:  Assay precision and accuracy data for quantification of marrubiin at 214 nm 

Concentration (ng/µL) *Concentration found(ng/µL), Mean 

(n=6) 

%RSD 

7.9 7.98 

30.70 

1.68 

31.7 0.67 

*Calculated using the linear regression equation given in figure 5.2 

y = 16.986x + 5.769
R² = 0.9991
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5.4.2 Validation of HPLC assay for leonurine  

Under the HPLC conditions described in section 5.3.1, good symmetrical peaks with retention 

time of 10.11 ± 0.35 minutes was found for leonurine at a wavelength of 280 nm (figure 5.3; 

table 5.5). Moreover, the leonurine standard curve was linear (r2 = 0.9960) (figure 5.4) over the 

concentration range of 2.0 to 12.0 µg / ml leonurine (table 5.6). 

 

 

 

 

 

 

 

 

Fig. 5.3: HPLC chromatogram of leonurine reference standard at wavelength 280 nm. Inset: UV/Vis 

spectrum for the reference compound at ~10.11 min (indicated with red on chromatogram) 

 

Table 5.5:  HPLC retention times and selected system suitability parameters of leonurine 

at 280 nm  

Compound Retention time 

(min) 

k’* Rs
# T& 

Leonurine (10.11) 

10.11 

(24.94592) 

24.94613 

- 

193.486 

(2.62766) 

1.22034 

k’*, the capacity factor, where k’ = (ta/t ) – 1. Peaks should be well resolved from the void volume and 

k’ > 2 is acceptable. The Agilent ChemStation software was used to calculate these. 

Resolution#: Rs = 2 x (t2 +t1) / (W2 + W1). Rs > 2 between the peak of interest and the closest potential 

interfering peak are desirable. 

Tailing factor: T& = W0.05 / 2f. T < 2 is acceptable. The Agilent ChemStation software was used to 

calculate these. 

And tα = elution time of the void volume or non-retained compounds; ta = is the retention time from the 

time of injection to the time of the elution of the peak maximum; t2 and t1 = are the retention times 

of the two components; W1 and W2 = are the corresponding widths of the bases of the peaks, obtained 

by extrapolating the sides of the peaks to the baseline; and f = distance from the front edge of the 

peak to the perpendicular at the peak maximum. 
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Table 5.6: Peak area values for fixed concentrations of standard leonurine injected 

on column 

        Concentration (ng/µL) Mean peak area (mAU)           %RSD 

2.00 23.67 17.85 

4.00 47.53 1.37 

6.00 70.50 0.28 

0.34 

0.76 

8.00 95.17 

10.00 128.63 

12.00 154.37 1.37 

 

 

 

Fig. 5.4: Standard curve of leonurine peak areas vs. concentration  

 

As for the marrubiin, the accuracy and precision of the leonurine assay (table 5.7) was also 

highly acceptable with the 4.0 ng/µL standard being determined as 4.08 ng/µL, the10 ng/µL 

standard unchanged as 10 ng/µL and the percentage relative standard deviations (%RSD) being 

2.11 and 2.35 %, respectively. In addition, the assay had a LOD and LOQ of 2.0 and 4.0 ug/mL, 

respectively (table 5.8). Overall, these values indicated good validity and reproducibility for 

the leonurine assay.  

 

Table 5.7:  Precision and Accuracy data for quantification of leonurine at 280 nm 
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Table 5.8:  LOD and LOQ data of leonurine over the 2.0 – 12.0 ug/mL range at 280 

nm 

Prepared 

concentration 

(µg/mL) 

Mean peak 

area (units) 

Concentration 

found (µg/mL) 

% RSD % Bias& LOD# LOQ 

4.00 4.03 3.57 1.37 0.7204 
Accept Accept 

2.00 2.39 1.07 1.46 19.5255 
Accept Reject 

0.80 0.96 0.51 3.73 19.6635 
Reject Reject 

0.20 -* -* -* -* 
Reject Reject 

Bias&: The difference between the mean concentration measured and the prepared concentrations as a 

percentage of the prepared concentration shown in table 5.7. 

LOD#: Determined using an analyte response 3 times that of the noise (signal-to-noise ratio of 3:1) with 

the mean baseline noise = 0.4 a.u., n=3. 

*Concentration could not be determined since the peak area was less than the regression intercept.   

 

Based on the above data the assays were considered to be specific, reproducible enough and 

linear over suitable concentration ranges to quantify marrubiin and leonurine in the L. leonurus 

preparations.  

5.4.3 Identification and comparison of levels of marrubiin and leonurine in L. leonurus 

plant preparations 

The above described and validated an HPLC assay which was then used to identify and 

compare the levels of marrubiin and leonurine in the L. leonurus plant extract preparations.  

The marrubiin and leonurine in the plant preparations was identified by comparing the retention 

times and UV spectra of those peaks with that obtained with the standards and their levels were 

determined from the standard curves. Figures 5.5, 5.6 and 5.7 are copies of the chromatograms 

obtained after the HPLC analysis of solutions of the FDAE, Aq EtOH extract and calcium 

alginate FDAE beads of L. leonurus.   Several peaks were evident in these chromatograms 

clearly indicating the presence of many compounds in the L. leonurus preparations but 

marrubiin eluted at a retention time of 27.9 min (using the 214 nm UV detection wavelength). 

From the peak areas and standard curve analysis the FDAE, Aq EtOH extract and calcium 

alginate FDAE beads of L. leonurus appeared to contain 22.5±1.241 (2.25 %), 17.5±1.033 

(1.75 %) and 0.4±0.112 (0.04 %) µg marrubiin /mg plant, respectively (table 5.9). The FDAE 
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thus contained the highest level of marrubiin, with the Aq EtOH extract having a slightly lower 

level and the calcium alginate FDAE beads containing the least amount of marrubiin. 

Marrubiin was thus indeed present in all three of the L. leonurus plant preparations, but at 

different levels. Thus far there has been few reports on the quantitative level of marrubiin in L. 

leonurus. In one study, detection and the quantification of L. leonurus leaf extract yielded as 

much as 5 % marrubiin (Mnonopi et al., 2011). This was more than double the marrubiin 

quantified in the present L. leonurus FDAE, and could be a result of acetone (instead of water) 

being used as solvent during the extraction process, resulting in higher levels of marrubiin 

being quantified. Clearly different forms of the L. leonurus preparations can be expected to 

have different marrubiin levels depending on how they were prepared. 

 

Fig. 5.5:  HPLC fingerprint of FDAE at UV detection wavelength 214 nm. The marrubiin is indicated by 

the arrow at retention time 27.9 min 

 

 

Fig. 5.6: HPLC chromatogram of Aq EtOH at UV detection wavelength 214 nm. The marrubiin peak is 

indicated by the arrow at retention time 27.9 min 
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Fig. 5.7: HPLC chromatogram of calcium alginate FDAE beads at UV detection wavelength 214 nm. The 

low levels of marrubiin peak is indicated by the arrow at retention time 27.9 min 

 

Figures 5.8 to 5.10 are copies of HPLC chromatograms of the L leonurus preparations obtained 

at UV detection wavelength of 280 nm and, along with several other peaks, indicating the 

presence of leonurine at a retention time of 10.11 min.  Moreover, the FDAE, Aq EtOH extract 

and calcium alginate FDAE beads of L. leonurus contained 2±0.436 (i.e. 0.2 %), 1.4±0.155 

(0.14 %) and 0.7±0.150 (0.07 %) µg leonurine /mg plant, respectively (table 5.9).  When 

compared to marrubiin the L. leonurus preparations contained fairly low levels of leonurine.  

Again the FDAE contained the highest level of leonurine, followed by the Aq EtOH extract 

having a slightly lower level of leonurine and the calcium alginate FDAE beads containing the 

least amount of leonurine. Clearly, leonurine was present in all three L. leonurus plant 

preparations, but in significantly different levels. Despite leonurine being detected and 

quantified, a former study reported that it could not be detected in the L. leonurus plant (Kuchta, 

et al., 2012). Leonurine has however been quantified in other plants such as Leonuri herba 

which was reported to contain 2.0 µg leonurine /mg plant (0.2 %) (Pang1 et al., 2001), i.e. 

approximately the same amount as that found in the L. leonurus FDAE in this study. Leonurine 

was also present in Chinese motherwort which was reported to contain 0.15 µg leonurine /mg 

plant (0.015 %) (Chen1, el at., 2010), less than that found in the calcium alginate FDAE beads 

prepared in the present study. It is clear that a limited amount of research has thus far been 

done on the quantification of leonurine from L. leonurus plants. Quantified levels vary 

depending on the type of plant preparation (e.g. type of extract) used. This however serves as 

important topic for further investigation. 
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Fig. 5.8: HPLC chromatogram of FDAE at UV detection wavelength 280 nm. The low levels of leonurine 

peak is indicated by the arrow at retention time 10.11 min 

 

 

Fig. 5.9: HPLC chromatogram of Aq EtOH extract at UV detection wavelength 280 nm. The low levels of 

leonurine peak is indicated by the arrow at retention time 10.11 min 

 

 

Fig. 5.10: HPLC chromatogram of calcium alginate FDAE beads at UV detection wavelength 280 nm. The 

low levels of leonurine peak is indicated by the arrow at retention time 10.11 min. 
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Table 5.9:  Level of marrubiin and leonurine present in L. leonurus plant preparations 

 L. Leonurus plant preparations 

Characteristics  FDAE Aq EtOH extract Calcium alginate FDAE beads 

Marrubiin  

(concentration µg/mg of 

plant extract; SD; n=3) 

 

22.5±0.241 17.5±0.033 0.4±0.112 

Leonurine  

(concentration µg/mg of 

plant extract; SD; n=3) 

 

2.0±0.436 1.4±0.155 0.7±0.150 

 

5.5 Conclusion  

In summary, it can be said that the developed validated HPLC method was reliable and 

reproducible enough to identify and quantitate leonurine and marrubiin present in L. leonurus. 

The method could therefore also be used in the further stability testing. In addition, the findings 

of this part of the study confirmed that both marrubiin and leonurine was present in the L. 

leonurus plant extract preparations and could therefore be used as marker compounds for 

quality control of such preparations. Moreover, the FDAE contained higher levels of marrubiin 

and leonurine than the Aq EtOH extract and calcium alginate FDAE beads. This may impact 

the pharmacological activities of the individual preparations. Clearly the hypothesis that the 

Aq EtOH extract contained higher levels of the chemical marker compounds compared to the 

FDAE was not proven.  
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 STABILITY OF AQUEOUS AND OTHER MODIFIED 

EXTRACTS OF L. LEONURUS  

 

6.1 Introduction  

Another major main aim of the study was to test whether the L. leonurus solid extracts had 

suitable long-term storage stability. Within this aim the specific objectives was to assess the 

stability of encapsulated L. leonurus solid extracts stored under different storage conditions by 

monitoring changes in their organoleptic features, chemical components (i.e. total phenol, 

flavonoid and marker compound, viz. marrubiin and leonurine, levels) and potential therapeutic 

activity (i.e. antioxidant activity). It was hypothesized that the calcium alginate FDAE beads 

would have greater stability (i.e. longer shelf-life) than the FDAE and the Aq EtOH extract 

preparations. 

In this chapter, the chemicals, materials, equipment and experimental procedures used to 

determine the stability of the FDAE, Aq EtOH extract, and calcium alginate FDAE beads of L. 

leonurus was presented and the results obtained presented and discussed.  

6.2 Chemicals, Materials and Equipment 

The chemicals and materials used included: 

Rutin, quercetin, marrubiin, leonurine, sodium carbonate, ascorbic acid, gallic acid, 1-

diphenyl-2-picryl-hydrazyl (DPPH), Folin Ciocalteu reagent, acetonitrile, formic acid (all from 

Sigma-Aldrich, Germany), aluminium chloride (AnalytiCals Carlo Erba, France), absolute 

ethanol, methanol HPLC grade (KIMIX, South Africa), distilled water (Saarchem, South 

Africa) and hard gelatine capsule shells  (Size 0; Colour: green and white,  Cape Town). 

The equipment used included: 

HPLC system (Agilent 1200 system consisting of: degassing system (G1322A, Japan), 

quaternary pump (G1311A, Germany), auto loading sampler (G1329A, Germany), 

thermostatted column holder TCC (G1316A, Germany), diode array detector (G1315B, 

Germany), fluorescence detector (G1521A, Germany), analyte fraction collector (G164C, 

Germany), Agilent ChemStation software (G2173-60101L, Germany), HPLC column (Luna 

column, 5 µm, 4.6 x 250 mm), vortex mixer (VM-300 Vortex mixer, Gemmy Industrial Corp),  
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scale (Adventurer OHAUS, Model AR2140, USA), hot plate and stirrer (MH-4, 1586, FRIED), 

incubator (220, Scientific Incubator), spectrophotometer (Chemi HR 410 BioSpectrum Imaging 

System UV spectrophotometer), microplate reader (BMG LABTECH GMBH, SPECTROstar 

Nano 601-0040 UV/Vis) and a water bath (WMR 14, Memmer) and manual capsule filling 

apparatus with tamper (Cap-M-Quick). 

6.3 Experimental Procedures  

6.3.1 Manufacture of capsules & determination of capsule mass uniformity 

Encapsulation of the three L. leonurus solid extracts was done using a manual capsule filling 

machine (i.e. the plate method using the Cap-M-Quick hand operated capsule filler, figure 6.1). 

Empty “0” size capsules were placed by hand into the holes of the capsule filling plate, with 

the bodies fitting snuggly into the plate. The capsule caps were then removed and the capsule 

bodies filled with L. leonurus solid extract (FDAE, Aq EtOH extract or calcium alginate FDAE 

beads, respectively) by placing L. leonurus solid extracts onto the surface of the plate 

containing the capsule bodies and spreading it evenly with a Cap-M-Quick card so that the 

powder flowed into all the empty capsule bodies. Thereafter the plate was gently shaken to 

remove any possible air pockets and the process repeated, i.e. more of the respective L. 

leonurus solid extract spread onto the surface and filled into the capsule body. Once filled to 

the brim, the cap of each capsule was repositioned over the extract-filled capsule body, and the 

two capsule parts re-joined together using gentle pressure as per method used by Ma (2006). 

 

 

Fig. 6.1:  Cap-M-Quick hand operated capsule filler  

 

After the capsule filling, the mass uniformity of the respected capsules were determined using 

the British Pharmacopoeia (BP, 2000) method, with some modifications. According to this 
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method, individual weights (masses) of not more than two of the capsules may deviate by more 

than 7.5 % from the average weight (mass) and none by more than twice that percentage for 

the capsules to have acceptable mass uniformity. For this uniformity of weight determination, 

ten randomly selected filled capsules from each of the manufactured batches were weighed, 

each then completely emptied of its contents, the empty shell brushed to remove any remaining 

particles, and the empty capsule reweighed. The mass of the capsule content was then 

calculated by subtracting the mass of the empty capsule shell from the initial mass of the full 

capsule. The values for the 10 capsules were averaged, the percent deviation calculated and the 

results tabulated and compared.  

6.3.2 Determination of stability profile of L. leonurus solid extracts 

For the stability study, storage conditions suggested in the current guidelines of the South 

African Medicines Regulatory Authority, viz. the Medicines Control Council (MCC, 2012), 

was used, with some modifications.   The encapsulated L. leonurus  solid extracts, prepared as 

described in section 4.3.1, were placed in sealed standard plastic capsule containers and stored 

at three temperature conditions: (A) room temperature, 24 ˚C ± 5 ˚C; (B) fixed temperature of 

30˚C ± 5 ˚C and (C) elevated temperature of 40˚C ± 5 ˚C. Furthermore, an additional set of 

each of the L. leonurus solid extract capsules were stored in sealed standard capsule containers 

under stressed condition (D), viz. 40 ± 5 ˚C / 75 % relative humidity (RH). Condition A was 

attained in a controlled laboratory environment (having RH > 50 %), and both B and C by 

using ovens (with RH > 20 %), while condition D was attained using a climatic chamber. The 

manufactured capsules were stored under the aforementioned conditions A, B and C for a 

period of 6 months and every month samples of capsules and their content were taken from 

each site and assessed for organoleptic properties (i.e. gross physical nature, appearance, 

texture, odour, scent, and appearance of the capsules and their contents), total phenol content 

(TPC), total flavonoid content (TFC) and antioxidant activity levels. For the organoleptic 

properties, TPC, TFC and antioxidant activity levels the methods described in sections 4.4.1, 

4.4.3, 4.4.4 and 4.4.5, respectively, was used and the retrieved data recorded and compared at 

the end of the 6 months.  

For storage condition D, the manufactured capsules was stored for a period of 4 weeks and 

were assessed using the same parameters i.e. organoleptic properties, TPC, TFC and 

antioxidant activity levels as those used for storage conditions A, B and C. At the end of the 4 
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weeks the retrieved data were recorded and compared to the data obtained for storage 

conditions A, B and C.  

6.3.3 Quantification of extent of degradation of L. leonurus solid extracts during storage 

The degradation profiles of all three L. leonurus solid extracts, in terms of TPC and TFC, was 

quantified as follows.  First, the levels of TPC and TFC for each set of extract-containing 

capsules stored from baseline (i.e. t = 0) to 6 months or 4 weeks were recorded (as GAE i.e. 

gallic acid equivalents, or QE i.e. quercetin equivalents). These values were then converted to 

percentages of the baseline values (i.e. baseline GAE or QE = 100%) and plotted vs storage 

time. Since the latter plot was distinctly nonlinear, the data was then fitted assuming at least 

first or second order degradation kinetics (Pugh, et al., 2002 & Murphy, et al,, 1997) and further 

analysed using GraphPad Prism 5.   

 

For first order degradation reaction the relevant equations were: 

     ˗ d [Α] / dt   = k [A]2                      

  [A]t = [A] 0 . e –K1t  

   K1 = (ln [A]t6  - ln[A]t0) / (t6  -  t0 )  

 

where [At0  and [A]t6  = TPC or TFC levels initially (t0) and at 6 months (or 4 weeks for the 

test under stressed conditions), and  K1  = first order rate constant.  The graph of ln [A] vs t, 

fitted by linear regression then gave the slope as an estimate of K1 and this could be used to 

calculate the shelf-life from 

 

Shelf-life (t90)  = 0.105 / K1 

 

For second order reaction the relevant equations were:    

 

                                     ˗ d [Α] / dt = k [A]2                      

with plot of 1/ [A] vs t giving the slope as an estimate of the second order rate constant k, and 

 

Shelf-life (t90)  = 0.0011 / k 
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Finally, the relative stabilities of the encapsulated L. leonurus solid extracts under the different 

storage conditions were compared using the calculated shelf-life values. 

 

6.3.4 Determination of stability profile of L. leonurus solid extracts based on marker 

compound levels  

For this part of the study the L. leonurus capsules containing the solid extract preparations were 

stored under stressed conditions of 40˚C ± 5 ˚C / 75 % RH (as described in section 6.3.2) for 1 

month, 10 mg samples was drawn every week and these assayed for marrubiin and leonurine 

content. The validated HPLC assay method described in section 5.3.1 was used for the latter 

purpose.  From the chromatographic fingerprints of the weekly samples the peaks for the 

marrubiin and leonurine compounds were identified, the peak areas recorded, and their 

concentrations determined using the calibration curves presented in chapter 5. Change in 

marker compound concentrations for the specific extracts over the 4 week period was then 

assessed to compare the chemical stability of the test capsules under the stressed storage 

conditions.  

6.4 Results and discussion  

6.4.1 Mass content uniformity of capsules containing L. leonurus solid extracts  

The average weights of L. leonurus solid extracts that were loaded into the capsules are given 

in table 6.1 and appendices 3A, 3B & 3C. According to the results obtained the average solid 

extract content mass was 369 ± 0.018, 386 ± 0.025 and 599 ± 0.018 mg for the FDAE, Aq 

EtOH extract and calcium alginate FDAE beads containing capsules, respectively. The average 

mass of encapsulated FDAE and Aq EtOH extracts was similar (t-test; p < 0.05) but 

significantly (p < 0.05) higher than the solid extract content of 320 ± 0.01 mg of Phela, another 

herbal leaf product, that was also previously packed in size “0” capsules and tested in the 

present laboratory (Sehume, 2010). 
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Table 6.1 Mass content uniformity of L. leonurus solid extract capsules 

Characteristic    FDAE Aq EtOH extract Calcium alginate 

FDAE beads 

Mass of capsule content (g) 

 (mean± SD;  n = 10)         

0.369±0.018 

 

0.386±0.025 0.599±0.018 

Mass uniformity (RSD %) 

(mean± SD;  n = 10) 

 

0.048±0.018 

 

0.064±0.025 0.030±0.018 

 

 

 

As expected, the capsules containing calcium alginate FDAE beads was however significantly 

heavier (t-test; p < 0.05) than the other two L. leonurus extract-filled capsules, presumably 

because of the heavier calcium alginate coating and more compact filling of the capsules. 

Finally, the % RSD for the mass of 10 capsules for all three L. leonurus solid extract forms was 

reasonable (i.e. <  6.5%) with the content masses of  only two (but not more than two) of the 

FDAE and two of the ten Aq EtOH extract-containing capsules deviating by  > 7.5 % from the 

average mass. The three sets of capsules thus met the content uniformity acceptance criterion, 

i.e. that “not more than two of the individual weights (masses) should deviate from the average 

weight (mass) by more than 7.5 % and none of them by more than twice that percentage” (BP, 

2000e). However, the flaky nature of the Aq EtOH extract clearly affected the consistent filling 

of the capsules and this must be borne in mind when the practicality and final formulation of 

this L. leonurus solid extract is considered for use in a capsule solid dosage form.  

6.4.2 Stability profile of encapsulated L. leonurus solid extracts based on organoleptic 

properties  

The organoleptic properties was determined using the procedure described in 4.4.1 and the 

stability test results obtained for the L. leonurus solid extract preparations were summarized 

and tabulated in appendices 4A and 4B. 

From the findings (in appendix 4A and 4B) it was clear that, in the absence of moisture (i.e. in 

presence of low humidity), temperature (i.e. 30 and 40 ˚C) in itself did not appear to have any 

significant macroscopic effect on either the organoleptic properties of the L. leonurus FDAE, 

Aq EtOH extract or the calcium alginate FDAE beads.  However, when exposed to a relative 

humidity (RH) of 54 %, the FDAE and Aq EtOH extracts, after a period of 4 months, started 
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showing signs of physical degradation. They changed in physical appearance from being 

powders to being melted masses and their texture had changed from being fairly coarse to 

sticky. When exposed to the stressed conditions (i.e. 40 ± 5 ˚C / 75 % RH) the appearance of 

the FDAE changed even more significantly,  from being flaky to a clumped mass, by week 1 

and completely melted by week 4 while its colour changed from medium to dark brown and 

the texture from fairly course to sticky. Previous studies have reported similar organoleptic 

property changes in the FDAE of A. afra as those displayed by the L. leonurus FDAE (and Aq 

EtOH) extracts used in the present study (Dube, 2006).  Moreover, the Aq EtOH L. leonurus 

extract showed gross physical degradation from the very first week of storage. Its appearance 

changed from flaky to being completely melted, colour changed from medium to dark brown 

and texture from being fairly course to sticky. The physical appearance of both the FDAE and 

Aq EtOH extracts were thus particularly affected by the moisture level during storage with the 

deterioration being accelerated when temperature is also elevated. The storage conditions for 

capsules containing these two L. leonurus extracts must therefore preferably include a 

maximum storage temperature specification of  < 30 ˚C (e.g. store below 25 ˚C) and protection 

from high humidity (e.g. in tightly closed storage containers, inclusion of silica moisture 

adsorbents, etc.). On the other hand, the organoleptic features of the calcium alginate FDAE 

beads was, irrespective of the storage conditions and storage duration, not affected by either 

temperature or humidity making it the most physically stable L. leonurus solid extract 

preparation of the three, i.e. compared to the FDAE and Aq EtOH extract preparations.  

Particularly restrictive storage and packaging conditions should therefore not be required for 

capsules containing this extract of L. leonurus. It was however also important to know whether 

the storage condition-induced changes in the organoleptic features of the three L. leonurus 

solids were matched by chemical changes in the products and this is addressed in the next 

section.   

6.4.3 Stability profile of encapsulated L. leonurus solid extracts based on total phenol 

content (TPC)  

It was expected that some of the active constituents of L. leonurus may be phenolic compounds 

and therefore the amounts of total phenols in the stored encapsulated L. leonurus solid extracts 

was determined. This was done using the procedures described in 4.4.3, 6.3.2 and 6.3.3 and the 

levels quantitated using a standard curve of the gallic acid concentration vs UV/VIS 

absorbance, as shown in appendix 2A. The curve was linear with equation Y = 0.02239x and 
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regression coefficient, R2 = 0.9989 and was used to determine the TPC levels in the extracts 

stored from baseline to 6 months and/or 4 weeks (in case the of accelerated storage conditions). 

The TPC levels (expressed in gallic acid equivalents (mg/g)) of the L. leonurus solid extract 

preparations stored over time under the different temperature conditions, were recorded in 

appendices 5A to 5E, and displayed graphically in figure 6.1.  

The high TPC baseline levels in all three L. leonurus plant preparations decreased significantly 

during subsequent storage at the different conditions. The TPC of encapsulated FDAE, which 

contained 7.86 mg/g GAE of total phenols at baseline, decreased significantly to 3.05, 3.15, 

3.27 and 3.75 mg/g GAE (i.e. by 61, 60, 58 and 52  %) over 1 month storage at RT, 30 °C,  40 

°C and  1 week storage at 40 °C / 75 % RH, respectively. Similarly the TPC of encapsulated 

Aq EtOH extract, which had contained 7.52 mg/g GAE total phenols at baseline, decreased 

significantly to 2.93, 3.45, 4.03 and 3.77 mg/g GAE (i.e. by 61, 54, 46 and 50 %) over 1 month 

when stored at RT, 30 °C and 40 °C and over 1 week when stored at 40 °C / 75 % RH, 

respectively. Finally, the TPC in the calcium alginate FDAE beads, which contained 6.94 mg/g 

GAE total phenols at baseline, decreased significantly to 2.34, 2.01, 2.83 and 2.99 mg/g GAE 

(i.e. by 66, 71, 59 and 57 %) over the 1 month when stored at RT, 30 °C and 40 °C and over 1 

week when stored at 40 °C / 75 % RH, respectively (appendix 5 and figure 6.1).  For all three 

extracts, the bulk of the TPC decreases (i.e. between  46 %  to  71 % on average) occurred 

within the first month of storage at RT, 30 °C and 40 °C, and thereafter at much slower rates. 

This firstly indicated that, based on TPC, the shelf-lives (i.e. t90 = time for level to decrease by 

10 %) for all three extracts were very short (i.e.  < 1 month). The data also clearly indicated the 

presence of at least a 2 phase decay rate process (i.e. a second order degradation reaction) being 

responsible for the decline in polyphenol levels in the tested L. leonurus plant preparations. 
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Fig. 6.1: Profile of total phenol content levels (mg/g) of L. leonurus solid extracts stored at RT (room   

temperature, 24 ± 2 ˚C / 54 % RH);  30 °C (30 ± 5 ˚C) ; 40 °C (40 ± 5 ˚C) and 40 ± 5 ˚C / 75 % RH 

for 6 months and 4 weeks 

 

However, when the data was fitted to both first and second order degradation equations (i.e. ln 

[A] versus time and 1/ [A] vs t plots), the linear regression fits were not very good (see R2 

values in table 6.2 of results assuming second order degradation). There were simply not 

enough data points over the first month to describe the first rapid decay process (over month 

1) accurately and obtain reliable rate constants (to use to calculate t90) for that part of the curve. 

Nevertheless, if the k values obtained from the poor second order reaction fit were used (i.e.  

see table 6.2) k =  0.0023, the calculated shelf-lives was no more than 0.47 months (1.9 weeks) 

confirming that all three extracts were very unstable if TPC is used as the marker for stability. 

Overall, it was also hard to tell which of the three L. leonurus solid extracts were, in terms of 

their TPC, the most or least stable overtime as they all retained approximately the same level 

of TPC and thus had the same degree of instability. 

 

 

 

 

 

 

 



55 | P a g e  
 

Table 6.2 Second order degradation rate constants and shelf-lives for TPC in L. leonurus   

      solid extracts stored under different conditions 

R2          = Linear regression coefficient for 1/[A] vs time plot 

K        = 1 / GAE (mg/g) solid plant extract vs. time (months at RT, 30 °C and 40 °C  or weeks at 40 °C/ 75    % RH)  

T90       =  0.0011 / K (expressed in months at RT, 30 °C and 40 °C  or in weeks at 40 °C/ 75    % RH ) 

 

With this assumption, the TPC data were also used to estimate the shelf-life of the encapsulated 

extracts and the results obtained were summarised in table 6.2.  Using TPC as stability 

parameter, all 3 encapsulated extracts had very short, shelf-lives ranging, from 1.24 weeks 

(0.31 months) to 3.72 weeks (0.93 months) (e.g. compare samples stored at RT vs 30 °C and 

40 °C) (see table 6.2).  Unfortunately not enough data (i.e. only 1 data point) was collected 

over the first month of the 6 month stability test periods to quantitate the effects of temperature 

and humidity on shelf-lives. When stored under the officially recommended stressed conditions 

for stability testing (i.e. 40 ± 5 ˚C / 75 % RH) the shelf-lives for the encapsulated extracts were 

even shorter i.e. 3.10 days (i.e.  (0.44) weeks x 7 days/week), confirming the instability of these 

encapsulated L. leonurus extracts. Presently there are no reports in literature on the stability of 

the polyphenols in L. leonurus plant extracts.  However, this instability and short shelf-lives of 

the 3 extracts is problematic and needs to be addressed if high quality therapeutically effective 

L. leonurus preparations are to be made.  Moreover, conversion of the FDAE into the calcium 

alginate beads also did not alleviate the clear instability of the L. leonurus aqueous extract.   

6.4.4 Stability profile of encapsulated L. leonurus solid extracts in terms of total 

flavonoid content (TFC) 

It was expected that some of the active constituents of L. leonurus may be flavonoid 

compounds and therefore the amount of total flavonoids in the stored encapsulated L. leonurus 

solid extracts was determined. This was done using the procedure described in 4.4.4, 6.3.2 and 

6.3.3 and the levels quantitated using a standard curve of the quercetin concentration vs UV 

Stability storage 

conditions 

FDAE 

 

Aq EtOH extract 

 

Calcium alginate FDAE 

beads 

R2 K T90 R2 K T90 R2 K T90 

                                          

24 ± 2 ˚C / 54 % RH 

 

0.6178 

 

0.0025 

 

0.43 

 

0.7603 

 

0.0036 

 

0.31 

 

0.6647 

 

0.0035 

 

0.31 

30 ± 5 ˚C 0.4388 0.0018 0.60 0.3750 0.0013 0.86 0.3750 0.0027 0.41 

40 ± 5 ˚C 0.4706 0.0018 0.62 0.4932 0.0012 0.93 0.6528 0.0028 0.39 

40 ± 5 ˚C / 75 % RH 0.4953 0.0023 0.48 0.5708 0.0022 0.50 0.5748 0.0031 0.35 
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absorbance as shown in appendix 2B.  The curve was linear with equation Y= 0.02970x and 

regression co-efficient, R2 = 0.9805 and was used to determine the TFC levels in the extracts 

from baseline to 6 months and/or 4 weeks (in case of accelerated storage conditions). The TFC 

levels (expressed in quercetin equivalent (mg/g)) of the L. leonurus solid extract preparations 

stored over time under different temperature conditions, were recorded in appendices 6A to 

6E, and displayed in figure 6.2. 

The high TFC baseline levels in all three L. leonurus plant preparations decreased significantly 

during subsequent storage at the different conditions. In fact, the TFC of encapsulated FDAE, 

which contained 4.30 mg/g quercetin equivalents of total flavonoids at baseline, decreased 

significantly to 3.02, 3.34, 1.89 and 2.69 mg/g (i.e. by 25, 25, 29 and 66 % %) after 1 month 

storage at RT, 30 °C and 40 °C and 1 week storage at 40 °C / 75 % RH, respectively. Similarly 

the TFC of encapsulated Aq EtOH extract, which contained 4.49 mg/g quercetin equivalence 

total flavonoids at baseline, had decreased significantly to 3.24, 3.49, 1.65 and 2.28 mg/g (i.e. 

by 26, 26, 23 and 70  %) after 1 month storage at RT, 30 °C and 40 °C and 1 week storage at 

40 °C / 75 % RH, respectively. Finally, the TFC in the calcium alginate FDAE beads, which 

contained 3.69 mg/g quercetin equivalence total flavonoids at baseline, also decreased 

significantly to 3.07, 3.47, 1.77 and 2.53 (i.e. by 55, 55, 52 and 64 %) after 1 month storage at 

RT, 30 °C and 40 °C and 1 week storage at 40 °C / 75 % RH, respectively (appendix 6 and 

figure 6.2). The results obtained for TFC was thus similar to that obtained for the TPC data. 

Again the decrease in TFC in all three L. leonurus plant preparations were biphasic with a very 

rapid drop in flavonoid levels during month 1 followed by a slower decline thereafter for all 

the storage conditions, clearly suggesting that a second order degradation process was 

involved. 
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Fig. 6.2: Profile of total flavonoid content levels (mg/g) of L. leonurus solid extracts stored at room 

temperature (RT) 24 ± 2 ˚C / 54 % RH; 30 °C  (30 ± 5 ˚C); 40 °C (40 ± 5 ˚C) and 40 ± 5 ˚C / 75 % 

RH for 6 months and 4 weeks 

Indeed, for all three extracts in the current study, the bulk of the TFC decreases (i.e. between  

23 %  to  70 %  on average) occurred within the first month of storage at RT, 30 °C and 40 °C, 

and thereafter at much slower rates (i.e.   0.12, 0.07 and 0.13 QE mg/ g /month), confirming a 

2 phase decay rate process for the flavonoids (as was found for the total polyphenols) in the 

tested L. leonurus plant preparations. These preparations were therefore not very stable in terms 

of its flavonoid content. 

Shelf-lives of the encapsulated extracts were also estimated from the TFC data and the results 

obtained were summarised in table 6.3.  Based on the TFC data all three encapsulated extracts 

had very short, shelf-lives ranging, from 2.28 weeks (0.57 months) to 8.8 weeks (2.2 months) 

that was further shortened with an increased temperature (e.g. compare samples stored at RT 

vs 30 °C and 40 °C) and addition of  humidity (see table 6.5).  Unfortunately not enough data 

(i.e. only 1 data point) was collected over the first month of the 6 month stability test periods 

to quantitate the effects of temperature and humidity on the shelf-lives of the extracts. When 

stored under the officially recommended stressed conditions for accelerated stability testing 

(i.e. 40 ± 5 ˚C / 75 % RH) the shelf-lives for the encapsulated extracts were, as expected, even 

shorter i.e. 1.96 days (i.e. (0.28 weeks x 7 days/week), confirming the instability of these 

encapsulated L. leonurus extracts. 
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Table 6.3 Degradation rate constant (shelf-life) of TFC in L. leonurus solid extracts  

QE     = Quercetin equivalent (mg/g) (Mean ± SD; n = 3)) 

K        = 1 / QE (mg/g) solid plant extract vs. time (months at RT, 30 °C and 40 °C  or weeks at 40 °C/ 75    % RH)  

T90       =  0.0011 / K (expressed in months at RT, 30 °C and 40 °C  or in weeks at 40 °C/ 75    % RH ) 

 

Overall, these results were similar to that of Ogangole (2007)  who measured luteolin levels 

(flavonoid) in freeze dried A. afra extract stored under ambient room and accelerated  (i.e. 40 

C /75 % RH) storage conditions. He found that, based on total luteolin levels, the FDAE of A. 

afra had shelf-lives (t90) of 7.57 and 2.27 days when stored under ambient and elevated 

conditions, respectively. On the other hand Heigl & Franz (2003), who  investigated the TFC 

of flavonoid containing herbal drugs (i.e. Marigold flowers, Elder flower and Birch leaves) 

stored under moderate climatic conditions (room temperature) 25 °C / 60 RH for 24 months 

and stressed conditions 40 °C/ 75 % RH for 6 months, found that no significant changes 

occurred in the TFC levels of the herbal drugs during storage at 25 °C / 60 RH, but a significant 

decrease   at the 40 °C/ 75 % RH storage condition. They in fact concluded that the stability of 

flavonoids in herbal drugs or plant material could be guaranteed for a period of two years (Heigl 

& Franz, 2003), but clearly that won’t be the case for freeze dried extracts (such as A. afra in 

the Ogangole (2007)) or the L. leonurus plant preparations investigated in the present study.  

6.4.5 Stability profile of encapsulated L. leonurus solid extracts based on antioxidant 

properties 

Another way to monitor the stability of L. leonurus solid extracts might be via measurement of 

their antioxidant activity. In this study, for antioxidant activity, the radical-scavenging ability 

of the stored extracts was monitored using the procedure described in sections 4.4.5 and 6.3.2 

and the results obtained were summarized in appendices 7A to 7D and displayed in figure 6.3. 

The antioxidant activity of encapsulated FDAE, which contained 100 % DPPH scavenging 

activity at baseline, decreased to 99.8, 99.7, 98.2  and 98 % (i.e. by only 0.2, 0.3 , 1.2 and 2 %) 

Stability storage 

conditions 

FDAE 

 

Aq EtOH extract 

 

Calcium alginate FDAE 

beads 

R2 K T90 R2     K T90 R2 K T90 

                                      

24 ± 2 ˚C / 54 % RH 

 

0.7278 

 

0.0007 

 

1.57 

 

0.7278 

 

0.0007 

 

1.57 

 

0.5768 

 

0.0019 

 

0.57 

30 ± 5 ˚C 0.7278 0.0007 1.57 0.6696 0.0005 2.2 0.5768 0.0019 0.57 

40 ± 5 ˚C 0.7202 0.0008 1.38 0.5455 0.0004 2.2 0.5865 0.0016 0.68 

40 ± 5 ˚C / 75 % RH 0.5000 0.0038 0.29 0.4882 0.0045 0.24 0.4980 0.0035 0.31 
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after 1 month storage at RT, 30 °C and 40 °C, and 1 week storage, at 40 °C / 75 % RH, 

respectively. The data showed that the increased temperature and exposure to humidly during 

storage hardly affected the stability of encapsulated FDAE, the product remained relatively 

stable. The results were similar for  the encapsulated Aq EtOH extracts which had 100 % DPPH 

scavenging activity at baseline and had that decreased to 99.3, 98.7, 99.9  and 94.7% (i.e. by 

0.7 %, 1.3 %, 0.1 % and 5.3 %) after 1 month storage at RT, 30 °C and 40 °C, and 1 week 

storage at 40 °C / 75 % RH, respectively. In addition,  the encapsulated calcium alginate beads 

which had 100 % DPPH scavenging activity at baseline also only had it decreased to 98, 97.7, 

98.6  and 99.2 % (i.e. only by 0.2, 3.3, 2.4  and 0.8 %) after 1 month storage at RT, 30 °C and 

40 °C, and 1 week storage at 40 °C / 75 % RH, respectively. All three L. leonurus solid extracts 

showed the same degree of antioxidant stability and therefore displayed reasonably good 

overall antioxidant activity stability profiles under the various storage temperature and 

humidity conditions used in the present study. No previous studies appear to have been done 

on specifically the antioxidant activity of stored L. leonurus solid extracts, but Amoo (2012) 

had performed a stability study on L. leonurus and 20 other medicinal plants in which they 

oven-dried the plants at 50 °C, stored them in brown paper bags at 25 °C for a period of 12-16 

years and then tested it for antioxidant activity. They found that a 50 % methanolic extract of 

the L. leonurus leaves had a maximum radical-scavenging activity of 93.7 % which agrees 

somewhat with the levels found in the present study. Overall, based on the above-mentioned 

results obtained for the antioxidant study and when that is compared to the results obtained for 

the TPC and TFC, it was clear that antioxidant activity level was not a viable parameter to use 

to monitor and quantitate the stability of the L. leonurus extracts. 
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Fig. 6.3: Profiles of antioxidant activity (expressed as % DPPH radical-scavenging activity) of L. leonurus 

solid extracts stored at room temperature (RT) 24 ± 2 ˚C  / 54 % RH; 30 °C (30 ± 5 ˚C); 40 °C 

(40 ± 5 ˚C) and 40 ± 5 ˚C / 75 % RH  for 6 months or 4 weeks. 

 

Based on the antioxidant test data all 3 encapsulated extracts had fairly long shelf-lives ranging, 

from 22.4 weeks (5.6 months) to 18.8 weeks (4.7 months) and  15.6 weeks (3.9 months) when 

stored at RT, 30 °C and 40 °C respectively. When stored under the officially recommended 

stressed conditions for accelerated stability testing (i.e. 40 ± 5 ˚C / 75 % RH) the shelf-lives 

for the encapsulated extracts were even longer i.e. 28 days (i.e.  (4 weeks x 7 days/week), 

confirming the instability of these encapsulated L. leonurus extracts. 

6.4.6 Stability profile of encapsulated L. leonurus solid extracts based on marrubiin and 

leonurine levels 

The stability of the L. leonurus solid extracts stored under stress conditions was also monitored 

in terms of levels of 2 marker compounds, viz. marrubiin and leonurine, using the procedures 

described in sections 5.3.1 and 6.3.2, and the chromatographic fingerprints obtained were given 
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in appendices 8A to 8F and the marker compound level versus storage time results in tables 

6.5 and 6.6. 

6.4.6.1 Stability of L. leonurus solid extracts based on marrubiin levels  

The concentration of marrubiin in the FDAE (table 6.5) after preparation was 22.5 µg/mg and 

at the start of the stability study was 0.46 µg/mg, marrubiin levels decreased rapidly and 

significantly to 0.25 µg/mg within the first week under the accelerated (stressed) storage 

conditions. By the end of the second week of storage the concentration of marrubiin in the 

FDAE was non-detectable (0 µg/mg). The marrubiin in the FDAE was thus very unstable and 

degraded rapidly under this storage condition.  For the L. leonurus Aq EtOH extract the initial 

concentration of marrubiin upon preparation was 17.5 µg/mg at t=0 and at the beginning of the 

stability study had degraded to 0.38 µg/mg, but had completely degraded after week 1 of 

storage, i.e. no detectable amounts present (Appendix 8C 8.2 to 8C 8.5). As for the FDAE, the 

marrubiin in the Aq EtOH extract was also very unstable. On the other hand, much lower 

marrubiin levels were detected in the stored calcium alginate FDAE beads, compared to the 

FADE and Aq EtOH extract, before storage the marrubiin concentration was 0.4 µg/mg and at 

time zero 0.09 µg/mg was detected (Appendix 8E 8.2 to 8E 8.5) for at least 3 weeks.  After 4 

weeks storage the levels were however also not quantifiable with the present assay, suggesting 

degradation even at such low levels.  Overall, all three products contained marrubiin which 

was rapidly degraded under the stressed storage conditions. With the current assay method and 

because of its low content of marrubiin this marker compound was however not likely to be an 

effective marker to monitor the stability of calcium alginate FDAE beads but may be a suitable 

marker for the FDAE and Aq EtOH extract. Alternatively, a much more sensitive assay needs 

to be developed and used. 
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Table 6.5: Levels of marrubiin in encapsulated L. leonurus solid extracts stored under 

stressed conditions (40 ˚C/ 75 % RH) and measured at 214 nm  

Plant extract Sample storage 

time in weeks 

Marrubiin peak 

area 

 (mAU) 

Marrubiin 

Concentration (µg/mg) 

 week 0 550 0.46 

 week 1 250 0.25 

FDAE week 2 0 0 

 week 3 0 0 

 week 4 0 0 

 

Aq EtOH 

extract 

week 0 450 0.38 

week 1 0 0 

week 2 0 0 

week 3 0 0 

week 4 0 0 

 

Calcium 

alginate beads 

week 0 100 0.09 

week 1 100 0.09 

week 2 100 0.09 

          week 3 100 0.09 

week 4 0 0 

 

6.4.6.2 Stability of L. leonurus solid extracts based on leonurine levels  

The HPLC fingerprint chromatograms and results for the leonurine levels was shown in 

appendix 8 and table 6.6 and were generally not very good i.e. the leonurine peak was small 

and not very well separated from surrounding peaks. Thus generally, unless a more selective 

and sensitive HPLC method is developed this compound may not be a very useful marker to 

assess the stability of the encapsulated L. leonurus solid extracts.  

Also, the concentration of leonurine in FDAE prior to the stability study was 0.30 µg/mg 

(appendix 8B 8.1) and then decreased inconsistently to 0.23 µg/mg by the third week and below 

detection limit (0 mg/mg) at 4th week of storage, while there was no change in leonurine levels 

and therefore no obvious degradation of the marker compound, over the 4 weeks the 
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encapsulated Aq EtOH extract was stored at 40 ˚C/ 75 % RH.  On the other hand the leonurine 

level in the calcium alginate FDAE beads dropped rapidly from 0.30 µg/mg to 0.11 µg/mg at 

week 1  (table 6.6) and then remained constant at this level for the remaining 3 weeks. No 

meaningful conclusions on the stability profile of the three extracts could thus be drawn from 

the data on this marker compound. 

Overall, the main finding on the marrubiin and leonurine levels was that indeed both were 

present in all three L. leonurus solid extract preparations. The levels of marrubiin were 

initially higher compared to that for leonurine but the latter took much longer to decrease (i.e. 

leonurine took much longer to breakdown) and was therefore the more stable of the 2 marker 

compounds. When comparing the L. leonurus solid extract preparations to one another, the  

 

Table 6.6: Levels of leonurine in encapsulated L. leonurus solid extracts stored under 

stressed conditions (40 ˚C/ 75 % RH) and measured at 214 nm  

Plant extract Sample storage 

time in weeks 

Leonurine peak 

area 

(mAU) 

Leonurine 

Concentration (µg/mg) 

 week 0 40 0.30 

 week 1 40 0.30 

FDAE week 2 30 0.23 

 week 3 30 0.23 

 week 4 0 0 

 

Aq EtOH 

extract 

week 0 15 0.11 

week 1 15 0.11 

week 2 15 0.11 

week 3 15 0.11 

week 4 15 0.11 

 

Calcium 

alginate beads 

week 0 40 0.30 

week 1 15 0.11 

week 2 15 0.11 

           week 3 15 0.11 

week 4 15 0.11 
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low levels of both marrubiin and leonurine  detected in the calcium alginate FDAE bead 

preparations also possibly  reflecting that this L. leonurus extract preparation contained less of 

the plant material (and hence marker compounds).  Collectively, the leonurine and marrubiin 

data obtained strongly suggests that a more sensitive and selective assay (e.g. using LC MS 

detector and/or including solid phase extraction or sample clean up, etc. ) will be required if  

the stability of L. leonurus preparations is to be monitored using these marker compounds. 

6.4.7 Conclusions  

A major goal of this study was to see if different encapsulated L. leonurus solid extract 

preparations would vary in their stability upon storage. Based on results of previous studies 

(Ogangole, 2007) done on aqueous extracts of other plants (e.g. A. afra) it was expected that 

the FDAE and even a Aq EtOH extract of L. leonurus would not be very stable upon storage 

and that a calcium alginate FDAE bead preparation of the FDAE of L. leonurus might have 

improved shelf-life (Egieyeh, 2011).  To answer these questions it was however also important 

to, first, prepare capsule dosage forms of the L. leonurus extracts that were of acceptable 

pharmaceutical quality and, secondly determine which of the different stability-indicating 

parameters could be used to actually effectively monitor/assess the stability profile of the test 

preparations. 

Generally, the monitoring of the parameters of physical characteristics (e.g. organoleptic 

features) and chemical characteristics (e.g. TPC, TFC, individual marker compound levels) 

provided similar results, viz, that all three preparations were very unstable, while the results 

based on the activity parameter (i.e. antioxidant activity) showed no or very little instability. 

Quite possibly, the degradation of the preparations (as evidenced by changes in the 

physicochemical characteristics and esp. the TPC & TFC profiles) simply did not involve 

compounds responsible for antioxidant activity and/or simply lead to the production of other 

chemical compounds which also had antioxidant activity. Whatever the reason, clearly the 

latter parameter (i.e. monitoring antioxidant activity) should preferably not be used to establish 

the stability profile or shelf-life of L. leonurus preparations. Moreover, monitoring of TPC and 

TFC showed the most clear and dramatic stability profiles and appeared to be particularly good 

parameters to use to accurately, inexpensively and rapidly establish (and confirm) the stability 

profile and shelf-life of L. leonurus preparations (provided sufficient attention is given to using 

correct sample collection time points e.g. sufficient time points during first month of storage). 

Finally, the use of leonurine and marrubiin levels as possible stability indicating parameters for 
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these preparations was not very convincing but might still work provided a more sensitive and 

selective assay than the HPLC assay used in the present study, is developed and utilized.  

Overall, all three the encapsulated L. leonurus solid extracts studied were clearly very unstable 

and did not have suitable long-term storage stability. Indeed with estimated shelf-lives of less 

than 4 weeks, even under ambient room conditions, the encapsulated FDAE, Aq EtOH and 

calcium alginate FDAE beads of L. leonurus was not suitable for use as they are at present and 

will require substantial additional pharmaceutical formulation and/or packaging to become 

products having acceptable pharmaceutical quality and shelf-life.  

Finally, modification of the freeze dried aqueous extract of L. leonurus into a calcium alginate 

bead form seemed to combat physical instability but did not improve the known chemical 

instability of the aqueous extract i.e. the postulated hypothesis was not proven. Clearly a 

different solution must be sought. 
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 CONCLUSIONS AND RECOMMENDATIONS  

 

7.1 Objectives of the study 

Overall, the aims of this study were to determine whether the FDAE, Aq EtOH extract and 

calcium alginate FDAE beads of L. leonurus were viable replacements for the traditional tea 

form, whether they had suitable long-term storage stability and, finally, to establish which 

stability parameters (including the determination of marker compound levels, marrubiin and 

leonurine), were suitable to use as product stability indicators for these extracts.  

The specific objectives of the study were: 

(i) To prepare and characterize the different solid extract forms of L. leonurus (FDAE, 

Aq EtOH extract and calcium alginate FDAE beads) and 

(ii) To determine and compare their long-term stability using physical characteristics 

(e.g. organoleptic properties) and chemical parameters (e.g. TPC, TFC, antioxidant 

activity levels and marker compound levels)  

It was hypothesised that the Aq EtOH extract of L. leonurus plant material would contain 

higher levels of chemicals (TPC, TFC) and chemical marker compounds (marrubiin and 

leonurine) than the FDAE and calcium alginate FDAE beads of L. leonurus and, that the 

calcium alginate FDAE beads would have greater stability (i.e. longer shelf-life) than the 

FDAE and the Aq EtOH extract. 

7.2 Conclusions 

Based on the results obtained the following conclusions could be drawn: 

1. The L. leonurus solid extracts was fairly easy to prepare and the percentage yield 

obtained for the FDAE was consistent with that obtained by other investigators. 

2. Physically the calcium alginate beads contained the least moisture, while chemically all 

three L. leonurus extract preparations contained appreciable and similar TPC and TFC 

levels but  variable amounts of marrubiin and leonurine.   

 

 

 

 



67 | P a g e  
 

3. All three encapsulated L. leonurus solid extract (i.e. FDAE, Aq EtOH and calcium 

alginate FDAE bead) preparations studied were very unstable and did not have suitable 

long-term storage stability (i.e. shelf-lives of  < 2 weeks).  

4. An array of parameters of physical characteristics (e.g. organoleptic features) and 

chemical characteristics (e.g. TFC, TPC, individual marker compound levels), but not 

antioxidant activity, can be used to effectively monitor the quality and stability of the 

three L. leonurus forms. Of these the TFC and TPC appear to be particularly good 

parameters to use to accurately, inexpensively and rapidly establish (and confirm) the 

stability profile and shelf-life of such L. leonurus preparations.  

5. Assessment of the stability of the L. leonurus preparations by monitoring the levels of 

the specific chemical marker compounds, marrubiin and leonurine, was not successful 

in the present study; a more sensitive assay was required. 

6. Finally, the modification of the freeze dried aqueous extract of L. leonurus into a 

calcium alginate bead form, although less hygroscopic, also did not improve the known 

and expected instability of the aqueous extract, i.e. the postulated hypothesis was not 

proven and clearly a different solution must be sought. 

7.3 Recommendations 

Based on the findings of this study it is consequently recommended that:  

 

1) The addition of excipients to the L. leonurus extract prior to freeze-drying should be 

explored to combat the hygroscopicity problem and ultimately improve overall product 

stability of the L. leonurus extract forms;  

2) TPC and TFC can be used to accurately, inexpensively and rapidly establish (and 

confirm) the stability profile and shelf-life of L. leonurus preparations, and possibly 

other herbal products known to contain flavonoids and polyphenols, and 

3) A more sensitive and selective assay will be required if the stability of L. leonurus 

preparations is to be monitored using marker compounds marrubiin and leonurine.  
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APPENDICES 

 

APPENDIX 1: Yield of L. leonurus solid extracts  

 

 

 

Appendix 1B:  Yield of Aq EtOH extract of L. leonurus   

Solid extract Weight of dried plant 

leaves (g) 

Volume of 20 % 

EtOH in dH2O 

 (mL) 

Weight of 20 

% Aq EtOH 

extract 

% Yield 

of plant 

extract 

(g)  

20 % Aq EtOH 50 100 6.43 12.86 

20 % Aq EtOH 50 100 6.41 12.82 

20 % Aq EtOH 50 100 6.40 12.80 

Mean & SD   6.41±0.15 12.82±0.02 

 

  

Appendix 1A:  Yield of freeze-dried aqueous extract (FDAE) of L. leonurus  

Solid extract Weight of dried plant 

leaves (g) 

Volume of dH2O  

(mL) 

Weight of 

FDAE 

(g) 

% Yield of 

plant 

extract 

  

FDAE 221 4.42 45 20.3 

FDAE 221 4.42 43 19.6 

FDAE 221 4.42 44 19.9 

Mean & SD   44±1 19.9±0.35 
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Appendix 1C:  Yield of calcium alginate FDAE beads of L. leonurus  

Solid extract Weight 

of  

FDAE 

(g) 

Weight of 

sodium 

alginate 

 (g) 

Weight of 

calcium 

chloride 

(g) 

Volume of 

dH2O  

(mL) 

Weight of 

calcium 

alginate 

FDAE 

beads 

% Yield 

of plant 

extract 

  

  (g)  

Calcium alginate 

FDAE beads 

2 2 4 100 3.43 10.72 

Calcium alginate 

FDAE beads 

2 2 4 100 3.42 10.69 

Calcium alginate 

FDAE beads 

2 2 4 100 3.42 10.69 

Mean & SD     3.42±0.01 10.70±0.02 
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APPENDIX 2: Standard curves  

 

  

Appendix 2A: Gallic acid standard curve 

Best-fit values   

Slope 0.09016 ± 0.002796 

Y-intercept when X=0.0 0.02924 ± 0.009732 

X-intercept when Y=0.0 -0.3243 

1/slope 11.09 

95% Confidence Intervals   

Slope 0.08384 to 0.09649 

Y-intercept when X=0.0 0.007227 to 0.05125 

X-intercept when Y=0.0 -0.5925 to -0.07728 

Goodness of Fit   

R square 0.9914 

Sy.x 0.02755 
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Fig. 2A 2.1: Standard curve of gallic acid concentration 

vs absorbance at 765 nm 
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Best-fit values   

Slope 0.06660 ± 0.002968 

Y-intercept when X=0.0 0.02850 ± 0.009893 

X-intercept when Y=0.0 -0.4280 

1/slope 15.02 

95% Confidence Intervals   

Slope 0.05998 to 0.07321 

Y-intercept when X=0.0 0.006460 to 0.05054 

X-intercept when Y=0.0 -0.8053 to -0.09233 

Goodness of Fit   

R square 0.9805 

Sy.x 0.02970 

  Appendix 2B: Quercetin standard curve 
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 Fig. 2B 2.2: Standard curve of quercetin concentration vs absorbance at 420 nm 
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Appendix 2C:  Antioxidant activity of L. leonurus solid extract preparations  

Cpd Conc *AS **AC 

***DPPH 

Scavenging 

REGRESSION  

ANALYSIS 

 (mg/mL) AUFS AUFS % EC50 R2 

Ascorbic Acid 

1 0.094 1.205 92.2   

0.5 0.128 1.205 89.4   

0.25 0.143 1.205 88.1   

0.125 0.155 1.205 87.1 0.005 0.9885 

0.063 0.182 1.205 84.9   

0.031 0.289 1.205 76.0   

0.016 0.439 1.205 63.6   

0.008 0.542 1.205 55.0   

FDAE 

10 0.140 1.205 88.4   

5 0.142 1.205 88.2   

2.5 0.251 1.205 79.2   

1.25 0.510 1.205 57.7 0.8868 0.9974 

0.63 0.649 1.205 46.1   

0.31 0.745 1.205 38.2   

0.16 0.748 1.205 37.9   

0.08 0.809 1.205 32.9   

Aq EtOH 

10 0.114 1.205 90.5   

5 0.123 1.205 89.8   

2.5 0.290 1.205 75.9   

1.25 0.366 1.205 69.6 0.7525 0.9284 

0.63 0.460 1.205 61.8   

0.31 0.581 1.205 51.8   

0.16 0.634 1.205 47.4   

0.08 0.686 1.205 43.1   

Calcium 

alginate FDAE 

beads 

10 0.412 1.205 65.8   

5 0.454 1.205 62.3   

2.5 0.533 1.205 55.8   

1.25 0.618 1.205 48.7 1.062 0.9240 

0.63 0.699 1.205 42.0   

0.31 0.740 1.205 38.6   

0.16 0.823 1.205 31.7   

0.08 0.894 1.205 25.8   

Where       

*AS = the absorbance of the sample (i.e. plant extract or ascorbic acid) in DPPH solution 

*AC = the absorbance of the control solution (containing only DPPH solution)  

***DPPH Scavenging = (AC – AS) / AC x100 %      
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APPENDIX 3: Content uniformity of L. leonurus solid extract capsules 

 

Appendix 3A:  Content uniformity data of capsules containing L. leonurus FDAE 

Capsule number Mass of whole 

capsule (g) 

Empty shell mass 

(g) 

Capsule content 

mass (g) 

Deviation from 

average (%) 

Capsule 1 0.464 0.094 0.370 0.27 

Capsule 2 0.492 0.095 0.397   7.59* 

Capsule 3 0.431 0.095 0.336  -8.94* 

Capsule 4 0.467 0.094 0.373 1.08 

Capsule 5 0.468 0.094 0.374 1.36 

Capsule 6 0.476 0.094 0.382 3.52 

Capsule 7 0.479 0.094 0.385 4.34 

Capsule 8 0.451 0.093 0.358 -2.98 

Capsule 9 0.443 0.094 0.349 -5.42 

Capsule 10 0.462 0.096 0.366 -0.81 

Mean & SD 0.463±0.017 0.094±0.001 0.369±0.018   0.17±3.22 

Deviation form average = (Capsule mass content - Mean of capsule mass content) / Capsule mass content * 100 

 

 

Appendix 3B: Content uniformity data for capsules containing L. leonurus Aq EtOH 

extract 

 

Capsule number Mass of whole 

capsule (g) 

Empty shell mass 

(g) 

Capsule content 

mass (g) 

Deviation from 

average (%) 

Capsule 1 0.444 0.094 0.350 -10.29* 

Capsule 2 0.504 0.093 0.411 6.08 

Capsule 3 0.493 0.094 0.399 3.26 

Capsule 4 0.458 0.092 0.366 -5.46 

Capsule 5 0.482 0.095 0.387 0.26 

Capsule 6 0.479 0.095 0.384 -0.52 

Capsule 7 0.498 0.096 0.402 3.98 

Capsule 8 0.440 0.096 0.344 -12.21* 

Capsule 9 0.504 0.095 0.409 5.62 

Capsule 10 0.511 0.094 0.417 7.43 

Mean & SD 0.481±0.025 0.094±0.001 0.386±0.025  2.58±2.46 

Deviation form average = (Capsule mass content - Mean of capsule mass content) / Capsule mass content * 100 
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Appendix 3C: Content uniformity data for capsules containing L. leonurus calcium 

alginate FDAE beads 

 

Capsule number Mass of whole 

capsule (g) 

Empty shell mass 

(g) 

Capsule content 

mass (g) 

Deviation from 

average (%) 

Capsule 1 0.664 0.094 0.570 -5.09 

Capsule 2 0.704 0.093 0.611 1.96 

Capsule 3 0.693 0.094 0.599 0.00 

Capsule 4 0.658 0.092 0.566 -5.83 

Capsule 5 0.682 0.095 0.587 -2.04 

Capsule 6 0.679 0. 095 0.584 -2.57 

Capsule 7 0.698 0.096 0.602 0.50 

Capsule 8 0.704 0.096 0.608 1.48 

Capsule 9 0.714 0.095 0.619 3.23 

Capsule 10 0.711 0.094 0.617 2.92 

Mean & SD 0.691±0.019 0.094±0.001 0.599±0.018   -0.54±3.21 

Deviation form average = (Capsule mass content - Mean of capsule mass content) / Capsule mass content * 100 

 

  

 

 

 

 



85 | P a g e  
 

APPENDIX 4: Organoleptic features of encapsulated L. leonurus solid extracts  

 

Appendix 4A:  Organoleptic features of encapsulated FDAE, Aq EtOH extract and 

calcium alginate FDAE beads of L. leonurus stored at room temperature 

(RT) 24 ± 2 ˚C /   54 % RH; 30 ± 5 ˚C and 40 ± 5 ˚C for 6 months 

 

Plant 

extract 

Storage 

temperature 

Organoleptic 

feature 

At baseline After 6 months 

    

  Appearance Free- flowing powder Melted 

Medium brown 

Highly aromatic  

Intensely bitter  

Sticky 

  Colour Medium brown 

FDAE Room temperature Scent Highly aromatic  

  Taste Intensely bitter  
  Texture Fairly course  

    

  Appearance Free- flowing powder Unchanged 
Unchanged 

Unchanged 

Unchanged 
Unchanged 

  Colour Medium brown 

FDAE 30 ± 5 ° C Scent Highly aromatic  

  Taste Intensely bitter  
  Texture Fairly course  

    

  Appearance Free- flowing powder Unchanged 
Unchanged 

Unchanged 

Unchanged 
Unchanged 

  Colour Medium brown 

FDAE 40 ± 5 ° C Scent Highly aromatic  

  Taste Intensely bitter  
  Texture Fairly course  

    

  Appearance 

Colour 

Scent 
Taste 

Texture 

Flaky powder 

Medium brown 

Highly aromatic  
Intensely bitter  

Very course  

Melted 

Medium brown 

Highly aromatic  
Intensely bitter  

Sticky 

  

Aq EtOH Room temperature 
  

  

  Appearance 

Colour 

Scent 

Taste 
Texture 

Flaky powder 

Medium brown 

Highly aromatic  

Intensely bitter  
Very course  

Unchanged 

Unchanged 

Unchanged 

Unchanged 
Unchanged 

  

Aq EtOH 30 ± 5 ° C 

  

     

  Appearance 
Colour 

Scent 

Taste 
Texture 

Flaky powder 
Medium brown 

Highly aromatic  

Intensely bitter  
Very course  

Unchanged 
Unchanged 

Unchanged 

Unchanged 
Unchanged 

  

Aq EtOH 40 ± 5 ° C 

  

    

  Appearance Rounded balls Unchanged 

Unchanged 

Unchanged 
Unchanged 

Unchanged 

  Colour Dark balls 

Alginate beads Room temperature Scent Odourless 
  Taste Tasteless  

  Texture Smooth 

    
  Appearance Rounded balls Unchanged 

Unchanged 

Unchanged 
Unchanged 

Unchanged 

  Colour Dark balls 

Alginate beads 30 ± 5 ° C Scent Odourless 
  Taste Tasteless  

  Texture Smooth 

    
  Appearance Rounded balls Unchanged 

Unchanged 

Unchanged 
Unchanged 

Unchanged 

  Colour Dark balls 

Alginate beads 40 ± 5 ° C Scent Odourless 
  Taste Tasteless  

  Texture Smooth 
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Appendix 4B: Organoleptic features of encapsulated FDAE, Aq EtOH extract and 

calcium alginate FDAE beads of L. leonurus stored under stressed 

conditions, 40 ±5 ˚C / 75 % RH for 4 weeks 

 

Plant extract Organoleptic 

features 

At baseline After 4 weeks 

 Appearance Free- flowing powder Melted 

Dark brown 

Highly aromatic  

Intensely bitter  

Sticky 

 Colour Medium brown 

FDAE Scent Highly aromatic  

 Taste Intensely bitter  

 Texture Fairly course  

   

 Appearance Flaky powder Melted 

Dark brown 

Aromatic  

Intensely bitter  

Sticky 

 Colour Medium brown 

Aq EtOH Scent Highly aromatic  

 Taste Intensely bitter  

 Texture Very course  

   

 Appearance Rounded balls Unchanged 

Unchanged 

Unchanged 

Unchanged 

Unchanged 

 Colour Dark balls 

Alginate beads Scent Odourless 

 Taste Tasteless  

 Texture Smooth 
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APPENDIX 5: Total phenol content of encapsulated L. leonurus solid extracts 

 

Appendix 5A: Total phenol content of encapsulated L. leonurus solid extracts stored at 

room temperature (RT) 24 ± 2 ˚C / 54 % RH for 6 months 

 

 

Stability 

storage  

period 

 

 Total phenol content of 

capsules containing  

 

 

FDAE Aq EtOH extract Calcium alginate FDAE beads 

GAE % GAE 

    

% GAE     % 

Month 0 7.86 ± 0.013 

3.05 ± 0.012 

3.05 ± 0.012 

2.87 ± 0.024 

2.80 ± 0.013 

2.68 ± 0.012 

2.51 ± 0.004 

100 7.52 ± 0.008 100 6.94 ± 0.009 

2.34 ± 0.007 

2.25 ± 0.002 

2.21 ± 0.012 

1.98 ± 0.004 

1.98 ± 0.004 

1.81 ± 0.003 

100 

Month 1 39 2.93 ± 0.007 

2.57 ± 0.004 

2.49 ± 0.021 

2.31 ± 0.001 

2.15 ± 0.003 

2.09 ± 0.003 

39         34 

Month 2  39 34 32 

Month 3 37 33 32 

Month 4 36 31 28 

Month 5  34 29 28 

Month 6 32 28 26 

GAE = Gallic acid equivalents (mg/g) (Mean ± SD; n = 3)) 

 

 

Appendix 5B: Total phenol content of encapsulated L. leonurus solid extracts stored at 

30 ±5 ˚C for 6 months 

 

Stability 

storage  

period 

 Total phenol content of 

capsules containing 

 

 

FDAE Aq EtOH extract Calcium alginate FDAE beads 

GAE    % GAE % GAE % 

Month 0 7.86 ± 0.013 

3.15 ± 0.005 

3.10 ± 0.011 

3.07 ± 0.008 

3.07 ± 0.008 

3.06 ± 0.013 

3.05 ± 0.002 

100 7.52 ± 0.008 

3.45 ± 0.005 

3.41 ± 0.005 

3.39 ± 0.018 

3.39 ± 0.005 

3.35 ± 0.016 

3.35 ± 0.002 

100 6.94 ± 0.009 

2.01 ± 0.003 

2.00 ± 0.002 

1.99 ± 0.012 

1.96 ± 0.003 

1.96 ± 0.003 

1.96 ± 0.001 

100 

Month 1 40 46 29 

Month 2  39 45 29 

Month 3 39 45 29 

Month 4 39 45 28 

Month 5  39 45 28 

Month 6 39 45 28 

GAE = Gallic acid equivalents (mg/g) (Mean ± SD; n = 3)) 

 

 

 

 

 

 

 

 



88 | P a g e  
 

Appendix 5C: Total phenol content of encapsulated L. leonurus solid extracts stored at 

40 ±5 ˚C for 6 months 

 

Stability 

storage  

period 

 

 Total phenol content of 

capsules containing 

 

 

FDAE Aq EtOH extract Calcium alginate FDAE beads 

GAE % GAE % GAE     % 

Month 0 7.86 ± 0.013 

3.27 ± 0.012 

3.22 ± 0.012 

3.24 ± 0.024 

3.14 ± 0.013 

3.48 ± 0.012 

2.96 ± 0.004 

100 7.52 ± 0.008 

4.03 ± 0.007 

3.96 ± 0.004 

3.91 ± 0.021 

3.86 ± 0.001 

3.83 ± 0.003 

3.83 ± 0.003 

100 6.94 ± 0.009 

2.83 ± 0.007 

2.59 ± 0.002 

2.34 ± 0.012 

2.29 ± 0.004 

2.29 ± 0.004 

2.17 ± 0.003 

100 

Month 1 42 54 41 

Month 2  41 53 37 

Month 3 41 52 34 

Month 4 40 51 33 

Month 5  44 51 33 

Month 6 38 51 31 

GAE = Gallic acid equivalents (mg/g) (Mean ± SD; n = 3)) 

 

 

Appendix 5D: Total phenol content levels of encapsulated L. leonurus solid extracts 

stored under stressed conditions (i.e. at 40 ± 5 ˚C / 75 % RH) for 1 month 

 

 

Stability 

storage  

period 

 

 Total phenol content of 

capsules containing 

 

 

FDAE Aq EtOH extract Calcium alginate FDAE beads 

GAE % GAE % GAE     % 

Week 0 7.86 ± 0.013 

3.75 ± 0.020 

3.51 ± 0.029 

3.61 ± 0.007 

3.66 ± 0.013 

100 7.52 ± 0.008 

3.77 ± 0.003 

3.80 ± 0.013 

3.73 ± 0.006 

3.65 ± 0.018 

100 6.94 ± 0.009 

2.99 ± 0.005 

2.89 ± 0.040 

2.65 ± 0.011 

2.94 ± 0.015 

100 

Week 1 48 50 43 

Week 2  45 51 42 

Week 3 46 50 38 

Week 4 47 49 42 

GAE = Gallic acid equivalents (mg/g) (Mean ± SD; n = 3)) 
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Appendix 5E: Profile of 1 / [A] vs time 
 

                                                                                                         - FDAE    

                                                                                                         - Aq EtOH extract 

                                                                                                         - Calcium alginate FDAE beads                                                                                                             
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Fig. 5A 5.1:  Profile of 1/ [A] vs t giving the slope as an estimate of the second order rate constant k of 

L.  leonurus solid extracts stored at RT (room temperature, 24 ± 2 ˚C / 54 % RH); 30 °C 

(30 ± 5 ˚C) ; 40 °C (40 ± 5 ˚C) and 40 ± 5 ˚C / 75 % RH for 6 months and 4 weeks 
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APPENDIX 6: Total flavonoid content of encapsulated L. leonurus solid extracts 

 

Appendix 6A: Total flavonoid content levels of encapsulated L. leonurus solid extracts 

stored at room temperature (RT) 24 ± 2 ˚C / 54 % RH 

 

 

Stability 

storage  

period 

 

 Total flavonoid content of 

capsules containing 

 

 

FDAE Aq EtOH extract Calcium alginate FDAE beads 

QE  % QE % QE     % 

Month 0 4.30 ± 0.010 

3.02 ± 0.008 

2.97 ± 0.027 

2.53 ± 0.003 

2.53 ± 0.003 

2.43 ± 0.002 

2.33 ± 0.002 

100 4.49 ± 0.009 

3.34 ± 0.014 

3.32 ± 0.025 

3.19 ± 0.008 

3.19 ± 0.005 

3.01 ± 0.008 

2.29 ± 0.002 

100 3.67 ± 0.014 

1.89 ± 0.008 

1.76 ± 0.009 

1.76 ± 0.011 

1.76 ± 0.011 

1.57 ± 0.004 

1.43 ± 0.002 

100 

Month 1 75 74 45 

Month 2  73 72 44 

Month 3 73 71 43 

Month 4 73 71 42 

Month 5  68 67 40 

Month 6 66 65 39 

QE = Quercetin equivalents (mg/g) (Mean ± SD; n = 3)) 

 

 

 

Appendix 6B: Total flavonoid content levels of encapsulated L. leonurus solid extracts 

stored at 30 ± 5 ˚C 

 

Stability 

storage  

period 

 

 Total flavonoid content of 

capsules containing 

 

 

FDAE Aq EtOH extract Calcium alginate FDAE beads 

QE    % QE % QE     % 

Month 0 4.30 ± 0.010 

3.24 ± 0.023 

3.16 ± 0.016 

3.16 ± 0.022 

3.14 ± 0.007 

2.92 ± 0.003 

2.84 ± 0.002 

100 4.49 ± 0.009 

3.49 ± 0.001 

3.49 ± 0.008 

3.33 ± 0.016 

3.32 ± 0.021 

3.30 ± 0.021 

3.27 ± 0.004 

100 3.67 ± 0.014 

1.65 ± 0.002 

1.62 ± 0.016 

1.59 ± 0.015 

1.54 ± 0.001 

1.49 ± 0.006 

1.45 ± 0.003 

100 

Month 1 75 74 45 

Month 2  73 72 44 

Month 3 73 71 43 

Month 4 73 71 42 

Month 5  68 67 40 

Month 6 66 65 39 

QE = Quercetin equivalents (mg/g) (Mean ± SD; n = 3)) 
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Appendix 6C: Total flavonoid content levels of encapsulated L. leonurus solid extracts 

stored at 40 ± 5 ˚C 

 

 

Stability 

storage  

period 

 

 Total flavonoid content of 

capsules containing 

 

 

FDAE Aq EtOH extract Calcium alginate FDAE beads 

QE    % QE % QE     % 

Month 0 4.30 ± 0.010 

3.07 ± 0.005 

3.06 ± 0.015 

3.06 ± 0.015 

2.97 ± 0.007 

2.75 ± 0.002 

2.65 ± 0.003 

100 4.49 ± 0.009 

3.47 ± 0.001 

3.37 ± 0.008 

3.35 ± 0.016 

3.33 ± 0.016 

3.33 ± 0.021 

3.25 ± 0.004 

100 3.67 ± 0.014 

1.77 ± 0.003 

1.77 ± 0.005 

1.76 ± 0.006 

1.76 ± 0.005 

1.59 ± 0.009 

1.57 ± 0.002 

100 

Month 1 71 77 48 

Month 2  71 75 48 

Month 3 71 75 48 

Month 4 69 74 48 

Month 5  64 74 43 

Month 6 62 72 43 

QE = Quercetin equivalents (mg/g) (Mean ± SD; n = 3)) 

 

 

 

Appendix 6D: Total flavonoid content levels of encapsulated L. leonurus solid extracts 

stored under stressed conditions (i.e.  40 ± 5 ˚C / 75 % RH) 

 

 

Stability 

storage  

period 

 

 Total flavonoid content of 

capsules containing 

 

 

FDAE Aq EtOH extract Calcium alginate FDAE beads 

QE    % QE % QE     % 

Week 0 4.30 ± 0.010 

2.69 ± 0.020 

2.75 ± 0.004 

2.74 ± 0.009 

2.74 ± 0.040 

100 4.49 ± 0.009 

2.28 ± 0.006 

2.30 ± 0.007 

2.33 ± 0.003 

2.30 ± 0.002 

100 3.67 ± 0.014 

2.53 ± 0.006 

2.50 ± 0.007 

2.52 ± 0.010 

2.62 ± 0.005 

100 

Week 1 34 30 36 

Week 2  35 31 36 

Week 3 35 31 36 

Week 4 35 31 38 

QE = Quercetin equivalents (mg/g) (Mean ± SD; n = 3)) 
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Appendix 6E: Profile of 1 / [A] vs time 
 

 

Fig. 6A 6.1:  Profile of 1/ [A] vs t giving the slope as an estimate of the second order rate constant k of 

L.   leonurus solid extracts stored at RT (room temperature, 24 ± 2 ˚C / 54 % RH); 30 °C 

(30 ± 5 ˚C) ; 40 °C (40 ± 5 ˚C) and 40 ± 5 ˚C / 75 % RH for 6 months and 4 weeks 
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                                                                                                         - Calcium alginate FDAE beads                                                                                                             
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APPENDIX 7: Antioxidant activity of encapsulated L. leonurus solid extracts 

Appendix 7A: Antioxidant activity of encapsulated L. leonurus FDAE under different 

storage conditions 

Stability study 

storage 

conditions 

Storage 

period 

 

Concentration of 

solid extract 

solution            

(mg/ mL) 

*AS     

(AUFS) 

**AC    

(AUFS) 

***DPPH 

Scavenging 

 

 

24 ± 2 ˚C / 54 % RH 

 

Month 0 10 0.140 1.205 100.0 

Month 1 10 0.142 1.205 99.8 

Month 2 10 0.145 1.205 99.5 

Month 3 10 0.152 1.205 98.9 

Month 4 10 0.190 1.205 95.2 

Month 5 10 0.234 1.205 91.2 

Month 6 10 0.258 1.205 88.9 

 

 

 

30 ± 5 ˚C 

Month 0 10 0.140 1.205 100 

Month 1 10 0.143 1.205 99.9 

Month 2 10 0.155 1.205 98 

Month 3 10 0.189 1.205 95 

Month 4 10 0.212 1.205 93 

Month 5 10 0.216 1.205 93 

Month 6 10 0.416 1.205 74 

 

 

 

 

 

40 ± 5 ˚C 

Month 0 10 0.140 1.205 100 

Month 1 10 0.148 1.205 99.2 

Month 2 10 0.148 1.205 99.2 

Month 3 10 0.218 1.205 92.6 

Month 4 10 0.257 1.205 89 

Month 5 10 0.269 1.205 87.9 

Month 6 10 0.480 1.205 68.1 
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Appendix 7B: Antioxidant activity of encapsulated L. leonurus Aq EtOH extract 

 

Stability study 

storage 

conditions 

Stability 

period 

 

Concentration of 

solid extract 

solution 

 (mg/ mL) 

*AS     

(AUFS) 

**AC    

(AUFS) 

***DPPH 

Scavenging 

 

 

24 ± 2 ˚C / 54 % RH 

 

Month 0 10 0.114 1.205 100 

Month 1 10 0.143 1.205 99.3 

Month 2 10 0.155 1.205 98.8 

Month 3 10 0.189 1.205 96 

Month 4 10 0.212 1.205 96.4 

Month 5 10 0.216 1.205 93 

Month 6 10 0.293 1.205 83.3 

 

 

 

30 ± 5 ˚C 

Month 0 10 0.114 1.205 100 

Month 1 10 0.114 1.205 99 

Month 2 10 0.129 1.205 93 

Month 3 10 0.186 1.205 97 

Month 4 10 0.149 1.205 95 

Month 5 10 0.167 1.205 87 

Month 6 10 0.254 1.205 71 

 

 

 

 

 

40 ± 5 ˚C 

Month 0 10 0.114 1.205 100 

Month 1 10 0.141 1.205 99.9 

Month 2 10 0.143 1.205 99.4 

Month 3 10 0.208 1.205 98.1 

Month 4 10 0.307 1.205 84.5 

Month 5 10 0.401 1.205 84.3 

Month 6 10 0.447 1.205 72.7 
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Appendix 7C: Antioxidant activity of encapsulated L. leonurus calcium alginate FDAE 

beads 

 

Stability study 

storage 

conditions 

Stability 

period 

 

Concentration of 

solid extract 

solution  

(mg/mL) 

*AS     

(AUFS) 

**AC    

(AUFS) 

***DPPH 

Scavenging 

 

 

24 ± 2 ˚C / 54 % RH 

 

Month 0 10 0.412 1.205 100 

Month 1 10 0.427 1.205 98 

Month 2 10 0.43 1.205 97.7 

Month 3 10 0.431 1.205 97.6 

Month 4 10 0.435 1.205 97.1 

Month 5 10 0.465 1.205 93.3 

Month 6 10 0.48 1.205 91.3 

 

 

 

30 ± 5 ˚C 

Month 0 10 0.412 1.205 100 

Month 1 10 0.429 1.205 98 

Month 2 10 0.432 1.205 97 

Month 3 10 0.442 1.205 96 

Month 4 10 0.44 1.205 96 

Month 5 10 0.438 1.205 97 

Month 6 10 0.45 1.205 95 

 

 

 

 

 

40 ± 5 ˚C 

Month 0 10 0.412 1.205 100 

Month 1 10 0.422 1.205 98.6 

Month 2 10 0.436 1.205 97 

Month 3 10 0.433 1.205 97.3 

Month 4 10 0.435 1.205 97.1 

Month 5 10 0.476 1.205 91.3 

Month 6 10 0.486 1.205 90.6 
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Appendix 7D:  Antioxidant activity of encapsulated L. leonurus solid extracts stored 

under stressed conditions, i.e. 40 ± 5 ˚C / 75 % RH 

 

Stability study 

storage 

conditions 

Stability 

period 

 

Concentration of 

solid extract 

solution  

 (mg/mL) 

*AS     

(AUFS) 

**AC    

(AUFS) 

***DPPH 

Scavenging 

 

 

FDAE 

Week 0 10 0.140 1.205 100.0 

Week 1 10 0.161 1.205 98.0 

Week 2 10 0.161 1.205 98.0 

Week 3 10 0.180 1.205 96.3 

Week 4 10 0.182 1.205 95.9 

 Week 0 10 0.140 1.205 100.0 

 Week 1 10 0.172 1.205 94.7 

Aq EtOH extract Week 2 10 0.180 1.205 94.0 

 Week 3 10 0.182 1.205 93.8 

 Week 4 10 0.201 1.205 92.0 

 Week 0 10 0.412 1.205 100.0 

 Week 1 10 0.417 1.205 99.2 

Calcium alginate 

FDAE beads 

Week 2 10 0.42 1.205 98.9 

 Week 3 10 0.426 1.205 98.2 

 Week 4 10 0.428 1.205 97.9 

 

Where:  

  *AS =  the UV absorbance of the sample (i.e. plant extract or ascorbic acid) in DPPH solution 

**AC =  the UV absorbance of the control solution (containing DPPH only) 

***DPPH Scavenging = (AC – AS) / AC *100 % 
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APPENDIX 8: HPLC fingerprints of encapsulated L. leonurus solid extracts  

 

Appendix 8A: HPLC fingerprints of encapsulated L. leonurus FDAE stored under 

stressed conditions and developed at 214nm to illustrate marrubiin  

 

  

 
Fig. 8A 8.1:  HPLC fingerprint of encapsulated FDAE developed at 214 nm: initial sample (i.e. 0   

                      storage) 

 

 
Fig. 8A 8.2: HPLC  fingerprint of encapsulated FDAE stored at 40 °C / 75 % RH and developed 

at 214 nm: sample after 1 week storage      

 

      
Fig. 8A 8.3:  HPLC  fingerprint of encapsulated FDAE stored at 40 °C / 75 % RH and    

                       developed at 214 nm: sample after 2 week storage   

 

 
Fig. 8A 8.4:  HPLC  fingerprint of encapsulated FDAE stored at 40 °C / 75 % RH and developed    

                      at 214 nm: sample after 3 week storage   

    

 
Fig. 8A 8.5:  HPLC  fingerprint of encapsulated FDAE stored at 40 °C / 75 % RH and developed     

                      at 214 nm: sample after 4 week storage   
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Appendix 8B: HPLC fingerprints of encapsulated L. leonurus FDAE stored under 

stressed conditions and developed at 280 nm to illustrate leonurine 

 

 
Fig. 8B 8.1: HPLC fingerprint of encapsulated FDAE at  280 nm: initial sample (i.e. 0   

                      storage) 

 

 

 
Fig. 8B 8.2: HPLC fingerprint of FDAE stored at 40 °C / 75 % RH and developed at 280 nm: 

sample after 1 week storage 

 

 
Fig. 8B 8.3: HPLC fingerprint of FDAE stored at 40 °C / 75 % RH and developed at 280 nm: 

sample after 2 week storage 

 

 

  
Fig. 8B 8.4: HPLC fingerprint of FDAE stored at 40 °C / 75 % RH and developed at 280 nm: 

sample after 3 week storage 

 

 
Fig. 8B 8.5: HPLC fingerprint of FDAE stored at 40 °C / 75 % RH and developed at 280 nm: 

sample after 4 week storage 
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Appendix 8C: HPLC fingerprints of encapsulated L. leonurus Aq EtOH extract stored 

under stressed conditions and developed at 214nm to illustrate 

marrubiin. 

 

  

 
Fig. 8C 8.1:  HPLC fingerprint of encapsulated Aq EtOH extract developed at 214 nm:    

                      initial sample (i.e. 0 storage) 

 

 
Fig. 8C 8.2:  HPLC  fingerprint of encapsulated  Aq EtOH extract stored at 40 °C / 75  

                      % RH and developed at 214 nm: sample after 1 week storage 

 

 
Fig. 8C 8.3: HPLC  fingerprint of encapsulated  Aq EtOH extract stored at 40 °C / 75   

                    % RH and developed at 214 nm: sample after 2 week storage 

 

 
Fig. 8C 8.4:  HPLC  fingerprint of encapsulated  Aq EtOH extract stored at 40 °C / 75   

                      % RH and developed at 214 nm: sample after 3 week storage 

 

 
Fig. 8C 8.5:  HPLC  fingerprint of encapsulated  Aq EtOH extract stored at 40 °C / 75   

                      % RH and developed at 214 nm: sample after 4 week storage 
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Appendix 8D: HPLC fingerprints of encapsulated L. leonurus Aq EtOH extract stored 

under stressed conditions and developed at 280 nm to illustrate  

Leonurine 

 

  

 
  Fig. 8D 8.1:  HPLC fingerprint of encapsulated Aq EtOH extract at  280 nm: initial   

                        sample (i.e. 0 storage) 

 

 
Fig. 8D 8.2:  HPLC fingerprint of Aq EtOH extract stored at 40 °C / 75 % RH and    

                      developed at 280 nm: sample after 1 week storage 

 

 
Fig. 8D 8.3:  HPLC fingerprint of Aq EtOH extract stored at 40 °C / 75 % RH and    

                      developed at 280 nm: sample after 2 week storage 

 

 
Fig. 8D 8.4:  HPLC fingerprint of Aq EtOH extract stored at 40 °C / 75 % RH and    

                      developed at 280 nm: sample after 3 week storage 

 

 
Fig. 8D 8.5:  HPLC fingerprint of Aq EtOH extract stored at 40 °C / 75 % RH and    

                      developed at 280 nm: sample after 4 week storage 
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Appendix 8E: HPLC fingerprints of encapsulated L. leonurus calcium alginate FDAE 

beads stored under stressed conditions and developed at 214nm to 

illustrate marrubiin  

 

 
Fig. 8E 8.1: HPLC fingerprint of encapsulated calcium alginate FDAE beads developed at 214 nm:    

                     initial sample (i.e. 0 storage) 

 

 
Fig. 8E 8.2: HPLC  fingerprint of encapsulated calcium alginate FDAE beads stored at 40 °C / 75  

                     % RH and developed at 214 nm: sample after 1 week storage     

  

 
Fig. 8E 8.3: HPLC  fingerprint of encapsulated calcium alginate FDAE beads stored at 40 °C / 75  

                    % RH and developed at 214 nm: sample after 2 week storage     

 

 
Fig. 8E 8.4: HPLC  fingerprint of encapsulated calcium alginate FDAE beads stored at 40 °C / 75  

                    % RH and developed at 214 nm: sample after 3 week storage     

 

 
Fig. 8E 8.5: HPLC  fingerprint of encapsulated calcium alginate FDAE beads stored at 40 °C / 75  

                    % RH and developed at 214 nm: sample after 4 week storage     
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Appendix 8F: HPLC fingerprints of encapsulated L. leonurus calcium alginate FDAE 

beads stored under stressed conditions and developed at 280 nm to 

illustrate leonurine 

 

 
Fig. 8F 8.1: HPLC fingerprint of encapsulated calcium alginate FDAE beads at  280 nm: initial   

                     sample (i.e. 0 storage) 

 

 
Fig. 8F 8.2: HPLC fingerprint of calcium alginate FDAE beads stored at 40 °C / 75 % RH and    

                       developed at 280 nm: sample after 1 week storage  

 

 
Fig. 8F 8.3: HPLC fingerprint of calcium alginate FDAE beads stored at 40 °C / 75 % RH and    

                       developed at 280 nm: sample after 2 week storage  

 

 
Fig. 8F 8.4: HPLC fingerprint of calcium alginate FDAE beads stored at 40 °C / 75 % RH and    

                       developed at 280 nm: sample after 3 week storage  

 

 
Fig. 8F 8.5: HPLC fingerprint of calcium alginate FDAE beads stored at 40 °C / 75 % RH and    

                       developed at 280 nm: sample after 4 week storage  
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