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Abstract 
 

POST-DEPOSITION DOPING OF SILICON 

NANOWIRES 

Jané Bronwyn Slinger 

M.Sc. Thesis, Department of Physics, University of the Western Cape 

Silicon nanowires (Si NWs) continue to demonstrate superior properties to their bulk 

counterparts, with respect to their morphological and electrical transport properties for 

the use in photovoltaic (PV) applications. The two most common and simplest 

approaches for Si NW fabrication are the bottom-up approach, namely, vapour-liquid-

solid (VLS) growth and the top-down approach, namely, the metal-assisted chemical 

etching (MaCE) fabrication technique. Thermal diffusion of phosphorus (P) in Si is at 

present the primary method for emitter formation in Si solar cell processing. Most work 

done in the literature that is based on the diffusion doping of Si NWs has been carried 

out by means of VLS-grown Si NWs. Therefore, there is a lack of the understanding of 

the particular diffusion mechanism of applying the phosphorus dopant source to the 

MaCE-grown Si NWs.  

In this study, Si NW formation was thus induced by etching the Silver (Ag)-coated p-

type polished single-crystalline (100) Si wafer in a hydrofluoric/peroxide (HF/H2O2) 

solution at pre-determined molar ratios. Thereafter, the p-type Si NWs were spin cast 

with liquid phosphorus-oxychloride (POCl3), an n-type P-containing spin-on dopant 
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(SOD) source, which was followed by drive-in diffusion annealing in a nitrogen carrier 

gas (N2) high-temperature furnace.  

The focus of this study was to interrogate the effect of the annealing temperature 

(ranging from 700 to 1000
 
°C) on the morphological, structural, compositional, and 

electrical transport properties of the MaCE-grown Si NWs. In particular, scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM) were used to 

study the effect of n-type doping on the morphological properties of the MaCE-grown 

Si NWs. TEM and X-ray diffraction (XRD) were used to evaluate whether the MaCE-

grown Si NWs and n-doped Si NWs maintained the original structural properties of the 

bulk single-crystalline (100) Si wafer. X-ray photoelectron spectroscopy (XPS) was 

used to study the chemical composition of the n-doped Si NW annealed at 1000 °C. 

Lastly, the temperature dependence of electrical transport properties on the n-doped Si 

NWs using the Hall effect measurement technique was interrogated.  

The SEM and TEM results show that the morphological properties of the MaCE-grown 

Si NWs changes post-annealing. The diameter and length for the n-doped Si NWs 

enhance from 133 ± 22 nm to 160 ± 17 nm and reduces from 8.21 ± 0.27 μm to        

4.48 ± 0.14 μm as compared to the as-synthesised Si NWs due to the parasitic layers 

formed post-annealing and to the wafer damage during SEM preparation, respectively. 

The TEM results show that the surface roughness of the MaCE-grown Si NWs alters 

post-annealing, due to the N2 carrier gas ambient. The TEM and XRD results show that 

the MaCE-grown Si NWs and n-doped Si NWs maintained the single-crystalline 

diamond lattice structure of the starting (100) Si wafer. The XPS results show that the 

phosphorus dopant atoms tend to exist mostly within the Si NWs since phosphorus has 

a low diffusivity and high segregation coefficient in SiO2. The hall effect measurement 
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technique shows that that electrical transport properties improve with increasing 

annealing temperature.  
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1 
 

Chapter One: Introduction 

 

1.1 The Energy Crisis and Renewable Energy  
 

It is realised that the burning of fossil fuels for electricity generation is affecting the 

Earth’s atmosphere. Carbon dioxide (CO2) emissions produced globally from the 

combustion of fossil fuels have a significant impact on greenhouse gases (GHGs) in the 

atmosphere, resulting in global warming. South Africa is regarded as the seventh largest 

coal exporting country in the world. The coal-generated energy produced in South 

Africa contributes an appreciable amount to global climate change, thus the South 

African government has acknowledged the need for a sustainable energy mix, and it has 

recognised renewable energy (RE) sources as a reliable candidate for reducing the 

energy crisis and GHG emissions [1.1, 1.2].   

The use of RE sources offers an alternative to the growing global energy demand and 

the impacts of climate change. There will be a high demand for clean RE sources in the 

coming decades due to the increasing inaccessibility and price of natural fossil fuels. Of 

the various energy sources, which include hydro, biomass, wind, geothermal, and solar 

energy is the most naturally abundant energy resource. South Africa has one of the 

highest solar capacities in the world with the annual solar direct nominal irradiation 

(DNI) being the highest [1.2, 1.3]. 

Since ancient times, solar energy has been a significant source of energy. The industrial 

age marked the discovery of sunlight as an energy source. On average, the sun supplies 

the Earth’s surface with about 1.2 × 10
17

 Watts (W) of solar power. This means that the 
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energy radiated in less than an hour (hr) could meet the energy demands of the human 

population for an entire year. Other renewable means of generating power that also 

depend on the sun include hydroelectric, wind and wave power. Conversion of solar 

energy to electricity by means of photovoltaic (PV) technology is recognised as reliable 

energy sources to minimise the significant impact of GHGs in the atmosphere and to 

lessen global warming [1.1].      

1.2 Photovoltaic Solar Energy 

 

1.2.1 Background 

 

As far back as 1839, Alexandré-Edmund Becquerel discovered the PV effect, which is 

based on direct solar energy conversion (SEC) into electricity by PV cells, also termed 

solar cells (SCs) [1.4, 1.5]; Becquerel observed that certain light-induced chemical 

reactions produced electricity. In the SEC process, incident light energy creates moving 

charged particles in a semiconductor; these particles are then separated by the structure 

of the device in order to produce electricity [1.1]. However, it was not until the mid-

1950s that the PV effect awakened curiosity amongst scientists in laboratories, although 

it had few practical uses at the time. The real revolution only occurred during the 

American space program, starting with America’s Vanguard I in 1958, which initiated 

the practical use of Si SCs in scientific, commercial and military satellites launched by 

various space organisations [1.4].  

PV devices are simple in design and do not require any heat engine. Their main 

advantage is their ability to give outputs ranging from microwatts (µW) to megawatts 

(MW) as stand-alone systems. PVs are employed in power sourcing, water pumping, 
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remote buildings, solar home systems, communications, satellites, space vehicles, 

reverse osmosis plants, and MW-scale power plants [1.5]. PV systems are prepared 

from semiconductors and are similar in construction to other solid-state electronic 

devices such as diodes, integrated circuits (ICs), and transistors. PV modules have 

production efficiencies approaching 18% and a long lifetime of 20 years [1.1].  

1.2.2 Intrinsic and Extrinsic Semiconductor Materials  
 

The band gap (Eg) of a material characterises materials into semiconductors, conductors 

and insulators. The band gap is an important property of materials, as it controls the 

functionality of a SC. Insulators, such as glass, have a broad band gap, viz. a value of 2 

electronvolts (eV), while a conductor or a metal has an overlapping band gap, A 

semiconductor has a band gap between that of a conductor and an insulator in the range 

of 0.5 to 3 eV [1.6].   

In an intrinsic semiconductor (i.e. a pure semiconductor), the valence band (VB) is 

completely filled with sufficient electrons (e’s), whereas the conduction band (CB) is 

completely empty (see Figure 1.1 (a)). Since the VB is completely filled, the electrons 

in this band are unable to move. One way in which semiconductors can become 

conductive is either to introduce carriers into the CB or to remove carriers from the VB 

[1.1]. This procedure, in which the semiconductor is alloyed with impurities, is known 

as doping [1.1, 1.7].  

Semiconductors that are comprised of impurity atoms are called extrinsic 

semiconductors [1.8]. If for instance, some impurity atoms of a group V element (e.g. 

phosphorus (P)) are added to silicon (Si), only four electrons are used to fill the VB. 

The one remaining electrons from each impurity atom is enhanced to the CB (see also 
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Figure 1.1 (b)). These impurity atoms from the CB are mobile and are called donors. At 

this point, the semiconductor becomes a conductor. This type of semiconductor is 

referred to as n-type since the negatively charged electrons contribute to the electrical 

current [1.1, 1.8].  

 

 

 

 

 

 

Figure 1.1: Band diagram and electron-hole distribution in semiconductors. (a) Intrinsic 

semiconductor and (b) and (c) n-type and p-type semiconductors, respectively [1.9]. 

Similarly, if some impurity atoms of a group III element (e.g. Boron (B)) are doped 

with Si, a deficiency of electrons is created within the VB, since four electrons per atom 

are required to fill this band completely. These atoms are called acceptors (see also 

Figure 1.1 (c)). The absence of an electron is called a hole (h); this is mobile and 

contributes to the electrical current. A semiconductor that holds more holes than 

electrons is called p-type since holes are positively charged. In an n-type semiconductor, 

the majority and minority carriers are electrons and holes, respectively. In contrast, for 

p-type semiconductors, the majority and minority carriers are holes and electrons, 

respectively [1.1, 1.8].  

 

(a) (c) (b) 
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1.2.3 Semiconductor Junctions 
 

The basic operation of a SC is centred on the formation of a junction [1.1]. Figure 1.2 

presents various types of junctions.  

  

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Band diagram of semiconductor junctions: (a) and (b) the p-n and p-i-n 

junction, respectively; (c) and (d) Schottky and heterojunction, respectively [1.10, 1.11]. 

When two semiconductor materials are brought into contact (i.e. an n-type and a p-type 

material), a strong electric field (E) is formed pulling the electrons and holes in opposite 

directions. In separation, there are more electrons and more holes in an n-type and a p-

(d) 

(a) (b) 

(d) (c) 
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type material, respectively. When the two materials are brought together, the electrons 

near the interface from the n-side diffuse to the p-side, leaving behind positively 

charged ions by the donors. Similarly, holes diffuse to the n-side, resulting in a layer of 

electrons on the p-side [1.1]. If there is no external source, the diffusion process cannot 

go on repeatedly [1.8]. The junction region contains immobile charge carriers and the 

fixed charges of the dopant atoms further restrict [i.e. ‘the charges restrict’] the 

movement of both electrons and holes, creating a potential barrier [1.1]. 

The p-n junction (Figure 1.2 (a)), possibly the simplest type, is an interface between the 

n and p regions of a semiconductor. In addition, a layer of intrinsic material is 

embedded between the n-and p regions, resulting in a broader transition zone; the 

resultant junction is called a p-i-n junction (Figure 1.2 (b)). These are labelled as 

homojunctions. A Schottky barrier, an interface between a metal and a semiconductor, 

also forms a junction (Figure 1.2 (c)). Conversely, heterojunctions (Figure 1.2 (d)) are 

formed between two different semiconductors that have different band gaps [1.1].  

1.3 Silicon for Photovoltaic Applications 

 

1.3.1 Introduction 

 

Si is the most commonly used material in commercial SC modules, accounting for ≈ 

90% of the PV market. As a result, Si PVs are employed due to their special features 

such that (1) Si is abundant (Si is the second most abundant element on Earth), (2) Si is 

typically stable and non-toxic, (3) The band gap of Si (1.12 eV) is nearly perfectly 

matched to the terrestrial solar spectrum, and (4) Si PVs are readily well-suited to the 

modern Si-based microelectronics industry [1.3]. Even though pure Si does not occur in 
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nature, 60% of the Earth’s crust is composed of sand, mostly in the form of quartzite or 

silicon dioxide (SiO2) [1.1]. 

The principles of semiconductor physics are best demonstrated by using Si, a group 4 

semiconductor element, as an example. The crystal structure of Si is the so-called 

diamond lattice, where each Si atom has four nearest neighbours at the vertices of a 

tetrahedron. The four-fold tetrahedral coordination is a consequence of the bonding 

arrangement that uses the four valence electrons (i.e. outer electrons) of each atom. 

Figure 1.3 shows the diamond lattice four-fold tetrahedral coordination of Si. Each 

bond is comprised of two electrons, in which all the valence electrons are taken up by 

the bonds [1.1]. 

 

 

 

 

 

 

 

 

Figure 1.3: The Si diamond lattice [1.1]. 

1.3.2 Generations of Silicon Solar Cells 
 

Wafer-based Si SCs are acknowledged as first generation SCs [1.4], whereas second-

generation SCs are based on thin film technologies [1.6]. The efficiency of typical 
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monocrystalline Si SC modules lies between 17 and 18% [1.4]. The efficiency of typical 

poly-crystalline SC modules is roughly 15 to 17%, about 1% lower than 

monocrystalline cells, manufactured within similar production lines [1.12]. The focus of 

this study is on the use of monocrystalline Si as a starting material.  

1.3.3 Monocrystalline Silicon Solar Cell 
 

The monocrystalline production process comprises various steps. Firstly, metallurgical 

grade silicon (MGS) with purity in the range of 98 to 99% is produced, after melting 

carbon (C) (found in coal and coke) and quartzite (SiO2) at operating temperatures 

above 1800 degree Celsius (°C) according to the reduction process demonstrated by 

Equation (1.1) [1.13]:  

SiO2 (s) + 2C (s) → Si (ℓ) + 2CO (g)                                                                (1.1) 

Polycrystalline Si is a result of further purification, in which purities higher than 

99.999999% may be achieved. MGS is changed to trichlorosilane (HSiCl3) by using 

hydrogen chloride (HCl) according to the exothermic process demonstrated by Equation 

(1.2) [1.13]:  

Si (s) + 3HCl3 (g) + H2 (g) + heat                                                                       (1.2) 

The purity is further enhanced through a sequence of distillation steps. Thereafter, the 

Siemens process is employed to reduce HSiCl3 thermally under a hydrogen (H) 

atmosphere to deposit polycrystalline Si by means of chemical vapour deposition 

(CVD), according to the process described in Equation (1.3). This results in Si being 

deposited on high purity Si rods [1.13].  
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SiHCl3 (g) + H2 (g) → Si (s) + 3HCl (g)                                                           (1.3) 

The crystallisation processes continue with the use of the polycrystalline Si described 

above to produce Si wafers. Some methods include the Czochralski (Cz) and the Float- 

zone (FZ) processes. These methods produce high-quality monocrystalline Si (see 

Figure 1.4). Because of the lower Si purity, polycrystalline SCs are not as efficient as 

monocrystalline SCs [1.13].  

 

 

 

 

 

 

 

 

Figure 1.4: Typical Mono crystalline Si SC [1.14]. 

The need for large quantities of high-purity Si materials explains the high cost of Si 

SCs. The immense increase in the demand for raw Si material in recent years has 

inflated the price. Even though monocrystalline Si is expensive to manufacture, its good 

electrical properties allow it to be exploited by the introduction of advanced cell 

processing [1.13]. The focus of this study is on the use of monocrystalline Si as a 

starting material.  
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1.4 Nanostructured Materials for Photovoltaic 

Applications 

1.4.1 Introduction 
 

The high cost of wafer-based Si has resulted in a low mass distribution of Si SCs, hence 

much attention has been focused on developing new unconventional SCs to create low-

cost and high-performance SCs. Of particular interest are nanostructured materials, 

including nanocrystals (also known as quantum dots and nanoparticles), nanorods (also 

known as nanopillars), nanotubes, and nanowires (NWs); their novel properties make 

them excellent for use in PV design applications, such as strong light absorption, due to 

their large surface areas [1.3].  

1.4.2 Silicon Nanowires 
 

Si nanostructures, such as silicon nanowires (Si NWs), continue to demonstrate superior 

properties to their bulk counterparts, with respect to their morphology and energetic 

features. For this reason, researchers are driven to explore controllable fabrication 

methods of Si nanostructures and their applications [1.15]. NWs along with nanorods 

and nanobelts form part of the one-dimensional (1D) nanostructures [1.16]. NWs are 

hair-like 1D nanomaterials with diameters of a scale of sub-one hundred nanometres 

(nm) and lengths in the range of more than a few hundreds of nm to a few micrometres 

(μm) [1.17]. 

Research on Si NW-based PVs is still in its early stages [1.18]. The ability of NWs to be 

incorporated into electronic devices [1.16], their ability to trap light [1.19 - 1.22], along 
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with many other properties, allow this semiconductor NWs to be utilised in many 

device applications [1.16], such as PVs, electronics, thermoelectrics, and biological 

sensors [1.19 - 1.22].  

1.5 Photovoltaic Devices Based on Silicon Nanowires 
 

1.5.1 Radial p-n Junction Silicon Nanowire Photovoltaic 

Devices 

The fascinating theoretical results on radial p-n junction assemblies (i.e. coaxial 

core/shell NWs) have driven scientists to develop Si NW-based PV devices of this sort. 

Each NW consists of a p-type Si wire core, and an n-type Si layer shell, producing 

radial p-n junction geometry. Figure 1.5 shows a radial p-n junction Si NW SC by 

means of P dopant diffusion. Worthy characteristics of radial p-n junctions include their 

short travel distances of photoexcited minority carriers to the collection electrodes 

causing increased carrier collection efficiency and minimum bulk recombination [1.3]. 

 

 

 

 

 

Figure 1.5: Radial p-n junction Si NW SC through P dopant diffusion. Shown in red is  

the n-type Si shell [1.3]. 

 

(b) 
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1.5.2 Axial Homojunction Silicon Nanowire Photovoltaic 

Devices 

The radial and axial p-n junction NWs are two structural geometries employed for 

application in PV devices. Both the radial and axial p-n junction NWs adopt the same 

device physics. For an axial p-n junction NW structure, the photoexcited electron-hole 

pair (the e-h pair) separates at the depletion region due to the built-in field that can be 

recognised in the axial direction. In contrast to the radial p-n junction NW 

configuration, the carriers have to travel a longer distance along the wire direction  to 

the collection electrodes [1.3].  

1.5.3 Photovoltaic Devices Based on n-Silicon Nanowires 

Grown on a p-Si substrate 

A p-n junction is formed between a p-type Si wafer and n-type Si NWs. These cells 

show poorer carrier collection abilities than the radial p-n junction. In 2008, Stelzner 

and co-workers synthesised n-type Si NWs on the p-type Si wafer by means of the 

vapour-liquid-solid (VLS) method. Under Global Air Mass 1.5 (AM 1.5) illumination, 

the device exhibited an open-circuit voltage (Voc), short circuit current density (Jsc), 

overall conversion efficiency (ղ) and fill factor (FF) of 230 to 280 millivolt (mV), 2 

milliampere per square centimetre (mA/cm
2
), 0.1% and 0.2, respectively [1.3].  

1.5.4 Photovoltaic Device Based on a Silicon Nanowire 

Schottky Metal/Semiconductor Junction 

Currently, researchers at Caltech have developed a single-junction Si NW SC device, by 

depending on the metal/semiconductor rectifying contacts (see Figure (1.6)) that were 
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selectively introduced underneath Aluminium (Al) contacts to Gold (Au)-catalysed 

wires, by joule heating a piece of the wire. Figure 1.6 shows a dark current-voltage (I-

V) measurement of a single Si NW diode device with a 900 nm diameter. The 

downward-facing arrows points towards the two inner contacts and the upward-facing 

arrows show adjacent upper contacts from which a rectifying junction was formed by 

sourcing current between the upper contacts until the enclosed wire segment was 

destroyed [1.3]. 

 

 

 

 

 

  

Figure 1.6: Silicon nanowire schottky metal/semiconductor junction. Inset: 45
o
 view 

scanning electron microscopy (SEM) micrograph. Scale bar: 10 μm [1.3].  

1.6 Fabrication Techniques of Silicon Nanowires 

1.6.1 Introduction 

There are two general methods of fabricating Si NWs, viz. the bottom-up approach and 

top-down approach. The bottom-up approach can be seen as a building process, in 

which Si atoms are fitted together to create a Si NW array. This approach includes 

growth processes such as the VLS, oxide-assisted growth (OAG), supercritical-fluid-
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based, and solution-based processes, amongst other methods. The most well-known 

bottom-up approach is the CVD, which uses the VLS mechanism. The fabrication of Si 

NWs by means of the conventional Au-catalysed VLS growth process involves (1) the 

decomposition of a Si precursor on a metal catalyst, (2) creation of the Si-metal liquid 

alloy, (3) Si distribution into the Si-metal alloy droplet, and (4) Si precipitation to 

produce Si NWs from the droplet upon Si supersaturation [1.3].  

In contrast, the top-down approach forms Si NWs by reducing the dimensions of bulk Si 

by means of lithography and etching. This approach is capable of fabricating Si NWs 

with diameters in the range of tens to hundreds of nanometers through electron beam 

lithography, reaction ion etching (RIE), and the metal-assisted chemical etching 

(MaCE) of Si. In contrast to the conventional bottom-up approach, the MaCE 

fabrication method is a potentially low-cost alternative of producing Si NWs high 

surface-to-volume ratio, vertically-aligned and wafer-scale in size [1.3]. The MaCE 

method is thus of particular interest in this study. Furthermore, MaCE is a simple, low-

temperature, a scalable and fast method to synthesise Si NWs [1.3, 1.23]. Since MaCE-

grown Si NWs are vertically-aligned with diameters in the range of 20 to 300 nm, they 

have desirable electrical properties and growth orientations; moreover, they are 

synthesised from the bulk Si wafer, hence they are of interest in this study. In the next 

section, we thus outline some of the Si NW growth methods, which use bottom-up and 

top-down approaches [1.3].  
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1.6.2 Bottom-Up Fabrication Techniques 

1.6.2.1 Chemical Vapour Deposition 

The VLS process is a well-known method capable of producing dense, high surface-to-

volume ratio, vertically aligned Si NWs. In the CVD-VLS process, Au or any other 

appropriate metal acts as the catalyst that assists in the growth of Si NWs. The gaseous 

Si reactants are provided by Si gaseous precursors such, as Silane (SiH4) or Si 

tetrachloride (SiCl4). Figure 1.7 summarises the VLS-CVD growth technique [1.3].   

 

 

 

 

 

 

Figure 1.7: (a) Schematic representation of a high-temperature CVD set-up. (b) A SEM 

cross-sectional micrograph of Si NWs grown from Au colloids. (c) A tilted SEM 

micrograph of Cu-catalysed Si NWs across a large area (> 1 cm
2
). (d) A SEM cross-

sectional micrograph of Al-catalysed Si NWs on a Si (111) wafer grown at a temperature 

of 430 °C [1.3]. 

Uniform Si NWs can be fabricated with a diameter of 3 nm using SiH4 as the precursor 

and H2 as the carrier gas. H2 softens radial growth of Si NWs either by Si reactant 

absorption, by terminating the Si surface or by dissociation of SiH4. The changeability 

 

http://etd.uwc.ac.za



 

 

 

 

Introduction 
 

16 
 

in Si NW growth using SiCl4 as the precursor is a result of using HCl as a by-product of 

SiCl4 decomposition, which ultimately etches the surface oxide of Si to form a clean Si 

surface for Si precipitation from the binary liquid droplet [1.3].  

1.6.2.2 Oxide-assisted growth  

 

Another vapour-phase NW formation mechanism is the oxide-assisted growth (OAG) 

technique. Through synthesis and optical characterisation, it was found that NWs 

created with gallium arsenide (GaAs) NWs exhibited lengths of up to tens of 

micrometres, and that a diameter in the range of 10 to 120 nm or an average diameter of 

about 60 nm can be achieved. The NWs consist of a GaAs core with a crystalline <111> 

growth direction covered with a thin oxide layer. This growth technique is also used to 

grow Si NW. Si NW growth is improved if SiO2 with Si powder targets are used. By 

mixing 30 to 70% SiO2 into the Si powder target, dense Si NWs can be obtained 

through laser ablation. The key factor in the proposed OAG mechanism is the 

generation of the vapour phase of SixO (0 < x > 1) by thermal evaporation or laser 

ablation [1.25]. 

1.6.3 Top-Down Fabrication Techniques 

 

1.6.3.1 Reactive Ion Etching  

 

Reactive ion etching (RIE) is a technique utilised for standard Si micro-/nanofabrication 

that produces a large area of vertically and horizontally uniformly grown Si NWs from 

the bulk Si wafer. Another technique, electron beam lithography, is commonly used to 

form sub-ten-nm patterns. However, this technique is time-consuming and expensive. 

Advanced lithography techniques, including photolithography, nanosphere lithography 
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and nanoimprint lithography are used to improve the standard RIE Si micro-

/nanofabrication technology. This popular technique is widely used to fabricate 

vertically aligned orderly Si nanopillars on Si wafers, although it is challenging to 

achieve high surface-to-volume ratio Si NWs through etch-mask erosion. Si NWs 

produced by a combination of RIE and the lithography technique exhibit ordered arrays 

of <100>-orientation with controlled size, density, and electronic properties [1.3].  

1.7 Metal-assisted Chemical Etching of Silicon 

 

1.7.1 Introduction  

 

In this study, the MaCE fabrication technique is employed to synthesise vertically 

aligned Si NWs. MaCE is a top-down method developed to fabricate Si nanostructures 

with the aim of controlling the parameters, such as cross-sectional shape, diameter, 

length, orientation, doping type, and doping level of Si nanostructures. Over the past 

few years, MaCE has become a key fabrication technique for Si or Si/Germanium (Ge) 

nanostructures. These structures have proved their potential in various applications, 

such as biomimetic superhydrophobicity, biological and chemical sensing, energy 

storage, solar energy conversion, and thermal power conversion. The benefits of using 

the MaCE fabrication technique includes [1.23]: 

 It is a simple and low-cost method of fabricating various Si nanostructures. 

 It is possible to control parameters, such as shape, diameter, doping level, 

doping type, length, and orientation of the nanostructures. 

 It is a flexible method and enables high surface-to-volume ratio structures. 

 There is no recognisable limitation in the size of the features. 
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 Despite all these positive aspects, the MaCE technique has not yet been fully studied or 

understood.  

1.7.2 Methods and Mechanisms 

 

1.7.2.1 Formation Mechanism of Silver Nanoparticles 

 

Numerous coating solutions containing noble metal ions may be used to coat noble 

metals electroless onto a Si wafer. The coating solution is typical of a galvanic process. 

MaCE process includes two steps: firstly, a metal catalyst is coated onto the wafer 

surface, which precedes the anisotropic etching in an oxidant/hydrofluoric acid (HF) 

solution. During the initial stages of the metal coating, silver ions (Ag
+
 ions) in the 

presence of the Si surface extract electrons from Si to form negatively charged Ag 

nuclei (i.e. nucleation). The Ag
+
 ions moving towards the Si surface acquire electrons 

from the Ag nuclei and localise around them rather than on the uncovered Si, leading to 

Ag nuclei growing into larger particles as more Ag
 
ions approach [1.22 - 1.23, 1.26].  

1.7.2.2 Formation Mechanism of Silicon Nanowires  

 

It is suggested that, during the etching process, the Silver nanoparticles (Ag NPs) act as 

the cathodes on which the reduction of the oxidant takes place. The Si underneath the 

Ag NPs acts as the anodes and is oxidised due to hole injection to form SiO2 and at the 

same time, SiO2 is dissolved by HF, forming shallow ‘craters’ underneath the Ag NPs.  

The Ag NPs are effectively maintained in their original state, and they gradually sink 

vertically downwards. The on-going sinking of Ag NPs results in the etching of Si that 

is in contact with the Ag NPs. As the process progresses, Ag NPs continues to sink 
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vertically downwards at the etched regions to form vertically aligned Si NWs [1.23, 

1.27].  

The approved method is that the chemical or electrochemical reactions should 

preferably take place near the noble metal particle. Several cathode and anode reactions 

are generally recommended for the etching process. The cathode and anode reactions of 

the etching process shown below explain one of the few proposed models in the 

literature [1.27]. 

Cathode reaction: 

It is approved that the oxidant (for example hydrogen peroxide (H2O2)) is reduced at the 

metal, such that:  

H2O2 + 2H
+
  →  2H2O + 2h

+
                                                                                (1.4)       

Anode reaction: 

The anode reaction involves the oxidation and dissolution of the Si wafer. Si oxide 

formation is followed by dissolution of the oxide, such that: 

Si + 2H2O  → SiO2 + 4H
+
+ 4e

-
                                                                            (1.5)

   

SiO2 + 6HF  → H2SiF6 + 2H2O                                                                            (1.6) 

1.7.2.3 The Overall Etching Process 

 

Figure 1.8 presents a schematic representation of the proposed etching process in the 

MaCE fabrication technique. The following steps summarise the proposed etching 

process [1.23]:   
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1. The oxidant is reduced at the surface of the noble metal due to the catalytic 

activity of the noble metal on the reduction of the oxidant. 

2. The holes are diffused due to the reduction of the oxidant. Subsequently, the 

holes move through the metal and are introduced into the Si that is in contact 

with the noble metal.  

3. Si is oxidised due to the introduction of holes, and it is dissolved at the Si/metal 

interface by HF. The reactant (HF) and the by-products diffuse along the 

Si/metal interface.  

4. The hole concentration is dominant at the Si/metal interface, which suggests that 

Si in the presence of a noble metal is etched much faster by HF than would be 

the case on a Si surface without metal coverage.  

5. Holes diffuse from the Si underneath the noble metal to off-metal areas or to the 

wall of the pore, if the rate at which the holes are consumed at the Si/metal 

interface is less than the rate at which holes are introduced. Accordingly, the off-

metal sections or sidewalls of the pore may possibly etch and result in 

microporous Si as in a case of electrochemical or stain etching.  

 

 

 

 

Figure 1.8: Schematic representation of the proposed processes involved in MaCE. The 

numbers indicate the steps mentioned in this section [1.23]. 
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1.8 Properties of Silicon Nanowires 
 

1.8.1 Electrical Transport Properties  
 

Properties of NWs, such as the chemical composition, diameter, doping level, growth 

direction, and surface-to-volume ratios influence the electrical characteristics of devices 

[1.28]. Electrical transport properties of Si NWs, such as n- or p-type conducting, are 

imperative for producing functional electronic devices, such as field-effect transistors 

(FETs) and SCs [1.3]. 

Si NWs are known to be quantum wires since they show quantum confinement effects. 

The quantum confinement effects in Si NWs influences the band gap and the effective 

mass (m*) of the carriers. The change in the band gap of Si NWs and effective mass of 

carriers depend on surface termination of the NWs. Theoretical studies show that the 

effective mass reduces from 0.47 to 0.31me with increasing Si thickness from 1.6 to 3.2 

nm for hydrogenated-terminated NWs. In contrast, the effective mass reduces from 0.36 

to 0.29me with the same Si thickness for SiO2 terminated Si NWs. The same study 

showed that the band gap was enhanced from 1.56 to 2.44 eV and from 1.50 to 1.88 eV 

when the Si thickness decreased from 1.6 to 3.2 nm for hydrogenated and SiO2 

terminated Si NWs, respectively [1.28].  

The addition of dopants or impurities changes the electrical transport properties of Si 

NWs. The addition of pentavalent dopants such as P, arsenic (As) and antimony (Sb) 

results in n-type semiconducting NWs, in which electrons are the majority charge 

carriers. In contrast, the addition of trivalent dopants such as B results in p-type 

semiconducting NWs, in which the majority charge carriers are holes. The doping level 
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regulates the density of states (DOS) in the NWs. A theoretical value of 10
13

 1/cm
2
 was 

obtained for a doping level of 10
20

 1/cm
3
 for p-type and n-type NWs [1.28]. 

The dopant concentration (ND) has an influence on the charge carrier mobility (µ) of 

bulk Si such that it decreases with enhanced impurity concentration. This is attributed to 

scattering centres of charge carriers created by ionised impurity atoms [1.28]. 

Significant work has been put into increasing the mobility of Si NWs to improve device 

performance [1.3]. The mobility value obtained experimentally enhanced from 95 to 

250 cm
2
/Vs with reduced P concentration in n-doped Si NW FETs. Thermal annealing 

and passivating surface defects through chemical modification showed improvement in 

the carrier mobility. An average mobility of 30 to 560 cm
2
/Vs was achieved after 

surface treatment [1.28].  

1.8.2 Optical Properties  
 

The focus of most work in the literature has been on understanding light emissions in Si 

NWs, rather than on understanding the practical application of Si NWs in light emitting 

devices. Even though mechanisms such as quantum confinement effects and surface 

state or defects in SiOx have been suggested, there has been a limited study of the basis 

of light emission [1.15].  

Etching conditions during non-lithographic patterning and MaCE of Si, such as etchant 

concentration, doping level and orientation and an etching time of Si, have an influence 

on optical properties. The light emission in the whole visible range and in the near 

infrared range that is seen in all the samples is independent of etching conditions. 

However, as can be seen in Figure 1.9, solid vertically-aligned Si NWs (Figure 1.9 (a)) 

showed stronger emission in the blue spectrum (~ 470 nm) (Figure 1.9 (c)), as opposed 
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to porous slanted Si NWs (Figure 1.9 (b)), which showed stronger emissions in the red 

spectrum (624 nm) (Figure 1.9 (c)) [1.15].  

A remarkable observation has been found in Si NWs with diameters of 1000 nm (Figure 

1.9 (d)-top micrograph) and 400 nm (Figure 1.9 (d)-bottom micrograph). The Si NWs 

with different diameters showed comparable emission wavelengths (λ) and intensities. 

Both of these diameters are far larger than the quantum confinement threshold (~ 5 nm). 

Hence, it was suggested that the visible emission is due to surface morphology [1.15]. 

 

 

 

 

 

 

 

Figure 1.9: Top-view SEM micrographs with corresponding higher magnification 

micrographs of (a) solid vertically-aligned Si NWs and (b) porous slanted Si NWs. (c) PL 

spectra of the solid vertically-aligned Si NWs and porous slanted Si NWs indicative of the 

red and blue squares, respectively. (d) Faux colour PL micrographs at a wavelength of 470 

nm from the Si NWs with a diameter of 1000 nm (top micrograph) and 400 nm (bottom 

micrograph) [1.15]. 
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The main experiment performed was to investigate the SiOx-based interface state before 

and after HF treatment. A collective study of optical and transmission electron 

microscopy (TEM) characterisation, revealed that the quantum confinement effect due 

to nanostructures at the rough sidewall seemed to be the reason of the 

photoluminescence (PL) rather than SiOx-based interface states. The intensity of the PL 

peak enhanced and shifted to red wavelength with increasing porosity. Also, the PL 

spectrum was deconvoluted into two peaks positioned at 750 nm and 850 nm. 

According to Fourier-transport infrared spectroscopy (FTIR) studies, the 750 nm and 

850 nm PL peaks are related to Si-O and Si-Hx bonds, respectively [1.15].  

This result confirms that there are two phenomena of light emission. In other words, the 

750 nm peak originates from surface-oxidised nanostructures and the 850 nm peak 

originates from nano-porous structures. Increasing surface Si-O bonds and porosity 

result in enhanced light emission intensity. They also suggested that the Si-O bonds and 

self-trapped excitations in nano-porous structures cause the strong emission [1.15].   

1.9 Aim and Outline of Thesis 
 

The burning of fossil fuels for electricity generation is recognised as an environmental 

problem since it is affecting the Earth’s atmosphere by causing global warming [1.1, 

1.29]. However, given increased efforts to control the emissions of CO2 produced from 

fossil fuels, it is likely that RE sources, including PVs, will become more important in 

generating electricity in the future [1.29]. The most popular solar PV modules sold are 

Si-based, but in recent years, an increased need for Si SCs has inflated the price of raw 

Si materials. The scarcity of high-quality Si materials has led researchers to seek 

alternative means of producing Si-based PV cells by using novel materials that are 
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inexpensive [1.30]. Si NWs have appeared as a promising candidate for PV application. 

Vertically-aligned Si NWs synthesised by means of the MaCE fabrication technique can 

be used as a low-cost solution for PV applications. Si NWs are becoming more 

attractive due to their novel optical and electrical transport properties compared to their 

bulk counterparts. The important role of vertically-aligned Si NWs is to minimise 

effective losses in PV devices [1.31].   

In this study, n-doped Si NWs are synthesised from p-type MaCE-grown Si NWs using 

a phosphorus (P)-containing spin-on dopant (SOD) by means of a post-deposition 

technique. There is a lack of understanding and a lack of resources with regard to the 

exact explanation of the diffusion mechanism involved when applying SODs to MaCE-

grown Si NWs. Hence, it is the intention of this study to add to the understanding of the 

effects of n-type doping on MaCE-grown Si NWs by this method. For this purpose, an 

investigation will be conducted into the following effects:  

 The effect of the Ag catalyst morphology on the MaCE-grown Si NWs by using 

the scanning electron microscopy (SEM) characterisation technique. 

 The effect of n-type doping on the MaCE-grown Si NWs using the SEM and the 

transmission electron microscopy (TEM) characterisation technique.  

 Evaluate whether the MaCE-grown Si NWs and n-doped Si NWs maintained the 

original characteristics of the bulk single-crystalline (100) Si wafer using the 

TEM and the X-ray diffraction (XRD) characterisation technique.  

 The composition of n-doped Si NWs using the X-ray photoelectron 

spectroscopy (XPS) technique, and  
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 The electrical transport properties of the n-doped Si NWs using the Hall effect 

measurement technique.  

The outline of this thesis is as follows:  

Chapter One presented some background on the importance of moving away from the 

use of fossil fuels to the use of using RE for electricity generation. The theory of using 

Si and Si NWs for PV application was introduced, as were the various types of PVs 

based on Si NWs, the various techniques of fabricating Si NWs, and the properties of Si 

NWs.  

Chapter Two will provide a comprehensive fundamental understanding of phosphorus 

(P) diffusion, which includes some background of the spin-on doping process, the 

atomic mechanism of diffusion, and the mechanism of the post-deposition doping of Si 

NWs that is proposed for this study, and the diffusivity and solid solubility of P in Si.  

Chapter Three will give comprehensive descriptions of the evolution of the 

experimental techniques that were ultimately used to produce the n-doped Si NWs. This 

specifically includes the synthesis of the Si NWs by using MaCE, the spin-on doping 

experimental procedure and the thermal annealing procedure. Also, the emphasis of this 

chapter will be on the fundamental physics, the preparation of the samples, and the data 

acquisition within the respective analytical techniques used to characterise the various 

samples.  

Chapter Four will discuss the results of this study, in particular, the effects of the 

initial morphology of the Ag NPs on the resultant etched structures (i.e. the MaCE-
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grown Si NWs) and the effects of n-type doping on the morphological, structural, 

compositional, and electrical transport properties of the MaCE-grown Si NWs. 

Chapter Five will conclude this study by providing the conclusions, suggesting future 

work that could be implemented in this field and by making recommendations to 

improve this study.   
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Chapter Two: Phosphorus Diffusion 
 

2.1 Introduction  
 

Introducing carriers into the conduction band (CB) or removing carriers from the 

valence band (VB) of semiconductors allows semiconductors to become more 

conductive; this process is known as doping. In the simplest case, a p-n junction is 

formed by doping p-type semiconductors with n-type dopants [1.1], as outlined in 

Chapter One, Section 1.2.2. In order to form a p-n junction, thermal diffusion using 

gaseous or liquid sources is an alternative doping method to ion implantation [2.1, 2.2]. 

Thermal diffusion of P in Si is currently the principal method for emitter formation in Si 

solar cell (SC) processing [2.1, 2.3]. Here, we adopt the drive-in diffusion annealing 

technique of bulk p-type Si, to produce n-doped MaCE-grown Si NWs by using a liquid 

Phosphorus oxychloride (POCl3) n-type P-containing spin-on dopant (SOD) as the 

diffusant source by means of a post-deposition technique that separates the doping step 

(i.e. spin coating) from the Si NW growth process (i.e. MaCE). Most studies on the 

diffusion doping of Si NWs are carried out with VLS-grown Si NWs [2.4]. Hence, there 

is a limitation in our understanding of the exact diffusion process of applying the SOD 

to the MaCE-grown Si NWs. As a result, it cannot be confirmed whether the P-doped n-

type Si NWs follows the same diffusion process that will be outlined in Section 2.3. 
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2.2 Spin-on Doping and Atomic Diffusion 
 

2.2.1 Spin-on Doping 
 

More than fifty years ago Emil et al. (1958) performed the original spin-on doping study 

by analysing the spreading of a Newtonian fluid characteristic of a thin axisymmetric 

film on a planar substrate that rotates with constant angular velocity. Centrifugal force 

causes the liquid to flow radially outward. The result of the viscous force and surface 

tension is the reason why the thin residual film can collect on the top flat surface of the 

substrate. The film becomes thin due to the product of outward fluid flow and 

evaporation [2.5].  

The key stages of the spin-on doping method can include: 

1. The fluid dispense 

2. Spin-up 

3. Stable fluid outflow 

4. Evaporation  

In this study, we refer to the thin film as the dopant layer; it is primarily formed by two 

independent parameters, namely the viscosity and spin speed. In general, the film 

thickness is about 1 to 200 μm. The key stages of the spin-on doping method are 

presented in Figure 2.1 and explained in detail as follows: 

1. The fluid dispense  

During the first stage, the SOD source may be exposed to the top surface of the spinning 

substrate from a microsyringe; the substrate accelerates at a specified rotation speed. 

The SOD spreads because of centrifugal forces and the initial thickness is reduced to an 
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acute thickness. In this study, the SOD was drop cast at the centre of a Si NW sample 

prior to spinning.  

2. Spin-up   

The second stage is usually characterised by forceful SOD removal from the substrate 

surface by the rotational motion. The substrate accelerates at a specified final rotation 

speed. Spiral vortices may be briefly present during this stage due to the initial depth of 

the SOD on the substrate surface because of the twisting motion caused by inertia that 

the top of the SOD exerts, whilst the substrate below subsequently moves faster. 

Ultimately, the SOD will be thin enough to be co-rotated with the substrate and a 

uniform source thickness is achieved. Once the substrate reaches its specified speed, the 

SOD will be thin enough so that the viscous shear drag balances the rotational 

acceleration.  

3. Stable fluid outflow 

The third stage is characterised by steady SOD thinning. The substrate is spinning at a 

constant rate and the SOD viscous forces overtake the SOD thinning behaviour.  

4. Evaporation  

The fourth stage is the dopant layer drying stage where the centrifugal outward flow 

stops, and the shrinkage of the layer occurs due to solvent loss. At this stage, the dopant 

layer forms on the substrate while the substrate is rotated at a constant speed and the 

solvent evaporation overtakes the coating thinning behaviour. The result is the 

formation of a P-rich oxide dopant layer on the Si NW substrate.  
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Figure 2.1: The key stages of the spin-on doping method [2.6].  

Thin film (dopant source) deposition technology is classified into chemical and 

physical. Spin-on doping is a physical means of deposition that involves a physical 

reaction. This can be explained, such that the dopant source is physically deposited onto 

the Si NW wafer. In other words, the dopant layer is not formed by a chemical reaction. 

This is not entirely correct for spin-on doping but is more convenient to classify it as 

physical [2.7].   

2.2.2 Atomic Diffusion 
 

Diffusion in a semiconductor may be regarded as the re-arrangement of the dopant 

atoms through the crystal lattice because of random thermal movement. Impurity dopant 

atoms can occupy either interstitial or substitutional positions in the Si lattice (Figure 

2.2). Dopant atoms such as arsenic (As), boron (B), and phosphorus (P) occupy 
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substitutional positions, in which the dopant atoms donate free electrons or holes to the 

Si lattice [2.8].  

 

 

 

 

 

Figure 2.2: (a) Substitutional and (b) interstitial dopants in Si [2.8].  

During high-temperature processing, the host atoms vibrate around equilibrium lattice 

sites. The vacancy diffusion mechanism involves the finite probability of a host atom 

acquiring sufficient energy to leave its lattice site to become an interstitial atom, thereby 

creating a vacancy and ultimately leading to a neighbouring dopant atom moving to a 

vacancy site as illustrated in Figure 2.3 (a). When a dopant atom moves from one 

position to the next without occupying a lattice site (see Figure 2.3 (b)), the mechanism 

is known as interstitial diffusion [2.8].  

Another concept that arises is interstitialcy diffusion (see Figure 2.3 (c)). This occurs 

when Si self-interstitials relocate substitutional dopants to an interstitial position, hence 

requiring the presence of Si self-interstitials. The dopant interstitial can then displace a 

Si lattice atom into a self-interstitial position. Dopant atoms such as As, P, and B 

occupy substitutional positions once initiated, the dopant diffusion is controlled by the 

presence of vacancy and interstitial point defects [2.8].  

 

(a) (b) 
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Figure 2.3: (a) Vacancy, (b) interstitial and (c) interstitialcy diffusion mechanism [2.8]. 

2.3 Phosphorus Diffusion 
 

A liquid POCl3 source (a P-containing source) along with nitrogen (N2) and oxygen 

(O2) as transport gasses is a well-known method employed in the PV industry to form 

an n-type emitter in a p-type Si wafer. P diffusion may be described as follows [1.13]: 

The wafers are loaded in a boat into a closed tube furnace. The boat and the tube are 

normally made of quartz. The heating procedure commences once the wafers are inside 

the tube furnace. The diffusion process may be separated into two stages, namely the 

pre-deposition stage and the drive-in stage, which can proceed at the same or at 

different temperatures.  

During the pre-deposition stage:  

A N2 carrier gas is used to bring the liquid POCl3 into the tube furnace where O2 is 

being supplied as well. The POCl3 liquid becomes a gas inside the heated furnace and 

reacts with O2 to form phosphorus pentoxide (P2O5) and chlorine (Cl2), according to 

Equation 2.1: 

(a) (b) (c) 
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4POCl3 (g) + 3O2 (g) → 2P2O5 (ℓ) + 6Cl2 (g)                                                  (2.1) 

During the drive-in stage: 

For the drive-in stage, the supply of POCl3 is stopped. The P2O5 formed during the pre-

deposition stage reacts with Si to form SiO2 on the Si surface and P atoms are released 

and diffused into Si according to Equation (2.2). Due to the low boiling temperature 

(105.8 
°
C), POCl3 is decomposed into P compounds, such as P2O5 at temperatures 

between 750 
°
C and 900 

°
C. The drive-in stage is described by Equation (2.2): 

2P2O5 (ℓ) + 5Si (s) → 5SiO2 (s) + 4 P (s)                                                         (2.2) 

Si is oxidised, creating a liquid/solid thin layer of SiO2 at the surface of Si. Furthermore, 

P2O5 reacts with SiO2 to form a phosphorus silicate glass (PSG) layer on SiO2 according 

to equation (2.3): 

xSiO2 + yP2O5 →   xSiO2 ∙ yP2O5                                                                        (2.3) 

Figure 2.4 presents a proposed model showing the various areas formed during P 

diffusion. A SiO2 (s) thin layer is formed on the surface of Si as described by Equation 

(2.2) (area IV). A layer of SiO2 (s) + PSG (s) (area III) is formed on top of the SiO2 

layer. Thereafter, two distinct areas (II and I) exist as a liquid + solid (SiO2 (s) + PSG 

(ℓ)) and a liquid phase (PSG (ℓ)), respectively. As can be seen in Figure 2.4, the PSG 

thickness can be considered to be XPSG = x1 + x2 + x3. 
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Figure 2.4: Schematic of the proposed model of PSG on Si [1.13]. 

 

2.4 Proposed Mechanism of the Post-doping of Silicon 

Nanowires 

In this study, we assume that at the end of the spin-on doping procedure, a P-rich oxide 

layer of x(PyOz) form is created. Figure 2.5 presents a schematic of the proposed 

x(PyOz) layer created on the Si NW surface after spin-on doping. The stoichiometry of 

the x(PyOz) layer can be determined from a characterisation technique such as X-ray 

photoemission spectroscopy as will be discussed in the results section. During the drive-

in stage, x(PyOz) reacts with Si forming SiO2 on the Si NW surface and simultaneously 

releases P atoms to diffuse into the Si NWs [1.13]. This means that the Si NWs is 

oxidised forming a SiO2/Si NW interface. At the same time, x(PyOz) react with SiO2 to 

form a PSG layer on-top of SiO2 in accordance with Equation 2.4: 
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wSiO2 + xPyOz → wSiO2 ∙ xP2O5                                                               (2.4) 

Here onwards, we assume the same principles as outlined in Section 2.3 excluding the 

layers marked as I and II. Figure 2.6 presents the proposed layers formed after the drive-

in stage. SiO2 is continuously created at the SiO2/Si NW interface during the reaction of  

x(PyOz) with the Si NWs. As a result, the P atoms from x(PyOz) need to move through 

the PSG, SiO2 or the combination of both to reach the Si NW wafer. The P atoms that 

are able to reach the Si NW wafer will form the P-doped n-type Si NWs. The P atoms 

are rejected from the SiO2 layer, and diffuse slowly in SiO2, forming accumulations at 

the Si NW surface. The pile-up of P in the Si NWs thus depends on the diffusivity (D) 

and the segregation coefficient (k) of P in SiO2. It was found that the x(PyOz) 

concentration will reduce,  as it reacts with the underlying SiO2 layer.  

 

 

 

     

 

 

Figure 2.5: Schematic of the proposed x(PyOz) layer created on the Si NW surface after 

spin-on doping. 
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Figure 2.6: Proposed layers formed after the drive-in stage.  

 

2.5 Diffusivity of Phosphorus in Silicon  
 

Two mechanisms describe how impurity dopant atoms reoccur at the lattice, namely, 

the kick-out mechanism and the (dissociative) Frank-Turnbull mechanism. For the kick-

out mechanism, a dopant atom exchanges positions with a lattice atom and for the 

dissociative mechanism an interstitial impurity atom is apprehended by a vacancy. 

These two mechanisms do not need the presence of self-interstitials. It is assumed that 

the diffusivity of P in Si is ruled by the vacancy mechanism. Figure 2.7 presents the 

vacancy model, depicting three regions where the diffusivity differs, depending on the 

concentration of the dopant atoms. In Figure 2.7 we see a high concentration region 

where the diffusivity of the dopant impurity is D α n
2
 (n is the electron concentration) 

and in the tail region D α ne
3 

(ne is the electron concentration at the plateau region). The 

vacancy diffusion requires a higher energy than interstitial diffusion since the 

substitutional atoms are more tightly bound than the interstitial atoms. The energy 

needed to jump from one position to the next is formally known as the activation energy 

(Ea), but for vacancy diffusion, it is the energy needed to form a silicon vacancy [1.13].  
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The following sets of equations describe the diffusivity of P in Si in the three regions in 

accordance with Figure 2.7 [1.13]. 

The intrinsic diffusivity of phosphorus is given as:  

Di = 3.85 ∙ exp (- 3.66/ kBT) [cm
2
/ s]                                                                  (2.5) 

In the high concentration region, the total amount of P concentration exceeds the active 

amount of P concentration. The P
+
 ions joins with V

= 
vacancies (double negative charge 

vacancy) to generate P
+
V

=
 pairs as (PV)

-
 and the extrinsic diffusivity of phosphorus is 

given as: 

Dx = D
0
 + D

=
 (n/ ni) [cm

2
/ s]                                                                                (2.6) 

Where D
+
 = 0, D

0
 = Di and D

= 
is given as: 

D
= 

= 44.2 ∙ exp (- 4.37/ kBT) [cm
2
/ s]                                                                 (2.7) 

The electron concentration for the kink region is given as: 

Ne = 4.65 × 10
17

 ∙ exp (- 0.39/ kBT) [1/cm
3
]                                                      (2.8) 

The diffusivity of phosphorus in the tail region is given as: 

DTail = D
0 
+ D

- 
ne

3
/ Ne

2
ni [1 + exp (0.3/ kBT]  [cm

2
/ s]                                    (2.9)                                                  

Where 

D
- 
= 4.44 ∙ exp (- 4/ kBT) [cm

2
/ s]                                                                      (2.10) 

Phosphorus diffusion is strongly linked to and controlled by the interstitial mechanism. 

The oxidation of Si plays a major role in the diffusion of P, whereby the self-interstitials 
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are included in the diffusion of elements in Group III and Group IV, and the conversion 

of P interstitialcy to substitutional form is due to self-interstitial emission. 

 

 

 

 

 

                                   

Figure 2.7: Phosphorus diffusion profile [1.13].  

 

2.6 Solid Solubility of Phosphorus in Silicon 
 

There exists a limit to a maximum amount of P concentration that can exist in the Si 

wafer in equilibrium at a given temperature. If this limit is exceeded, monoclinic or 

orthorhombic SiP precipitate forms in the highly doped region. The SiP precipitate may 

be expressed as [1.13]: 

SiP + P → SiP                                                                                            (2.11) 
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The P-precipitate is known to be inactive P atoms that occupy substitutional positions in 

the Si lattice and that do not contribute to current transport. Electrically inactive P 

dopants occupy positions near the surface area, called the “dead layer”. From Figure 

2.7, the dead layer is situated at the depth “xd” for which n (xd) = ne, where ne is the 

active dopant concentration at the plateau level. Electron diffraction studies showed that 

the precipitate in the diffused Si is SiP and assumes that P precipitates at the Si/SiO2 

interface. The inactive P thus exists in a precipitated phase and not as point defects, 

since they do not influence the electron mobility even at high concentrations. Figure 2.8 

presents the plot of the active P concentration (ne), inactive mobile P concentration (Csat 

- ne) and saturation concentration Csat [1.13].  

 

 

 

 

 

 

 

 Figure 2.7: Active P, saturation and inactive mobile P concentration [1.13]. 

 

The plots were acquired by applying the following equations: 

ne (T) = 1.3× 10
22

 ∙ exp (- 0.37/ kBT)[1/cm
3
]                                                  (2.12) 
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Csat (T) = 2.45 × 10
23

 ∙ exp (-0.62/ kBT) [1/cm
3
]                                           (2.13) 

P diffuses in the Si lattice by interacting with vacancies in three distinct charge states: 

P
+ 

V
x
, P

+ 
V

=
, where V

x
 is a neutral vacancy, V

=
 is a double negative charge vacancy and 

V
-
 is a single negative charge vacancy. The P

+ 
V

=
 plays a major role when the total 

concentration exceeds Ne (see Figure 2.7). As a result, the P
+ 

V
= 

plays a major role when 

the total concentration exceeds Ne (See Figure 2.7). As a result, the P
+ 

V
= 

pair will 

extract an electron from the CB and ultimately fill the second acceptor level of the 

vacancy, thus forming an electrically inactive P atom. When the concentration is close 

to Ne, the V
=
 vacancy has an increased probability of losing an electron by becoming V

-
. 

Hence, this lowers the binding energy (BE) of the P
+ 

V
- 

pair and causes a higher 

probability of the pair dissociation, forming a surplus of V
-
 above equilibrium values. 

The end result is responsible for increased diffusion in the tail region [1.13].  

A reliable diffusion mechanism has been proposed for P diffusion, such that the 

vacancy mechanism exists for the slower diffusion component and the interstitialcy 

mechanism for the faster diffusion component. Hence, it involves an interchange from 

the vacancy diffusion mechanism through the double negative charge vacancy at high 

concentrations to an interstitially governed diffusion at lower concentrations. At the 

high concentration region, P precipitates enter supersaturation. The supersaturation of P 

is due to the PSG formation and P exceeding its solid solubility limit. As a result, the 

precipitates are of SiP composition and orthorhombic structure [1.13].  

 

 

http://etd.uwc.ac.za



 

 

 

 

 
  Phosphorus Diffusion 

46 
 

2.7 References  
 

[2.1] Xu, Y. (2015). Fabrication and characterization of photodiodes for silicon 

nanowire applications and backside illumination. MSc thesis. The School of 

Engineering of the University of Dayton. 

[2.2] 2016. Available: http://Experiment 3 (Doping using Drive-in-Diffusion) [2016, 

August 7]. 

[2.3] Basher, M.K., and Shorowordi, K.M. (2015). Fabrication of Monocrystalline 

Silicon Solar Cell using Phosphorus Diffusion Technique. International Journal of 

Scientific and Research Publication, 5(3), 1.  

[2.4] Mertens, R. (2012). Characterization, morphology, oxidation and recession of 

silicon nanowires grown by electroless process. PhD Thesis. University of Central 

Florida. 

[2.5] Sahu, N., Parija, B. & Panigrahi, S. (2009). Fundamental understanding and 

modeling of spin coating process: A review. Indian Journal of Physics. 83(4), 493. 

[2.6] 2016. Available: http://Ossila. (2016). Spin Coating: A Guide to Theory and 

Techniques. Retrieved from Ossila – enabling innovative electronics [2016, September 

29]. 

[2.7] 2016.Available:http://personal.strath.ac.uk/barry.williams/Book/Chapter%201.pdf 

[2016, September 29]. 

[2.8] 2016. Available: http://Jones, S.W. IC Knowledge LLC. [2016, September 29]. 

http://etd.uwc.ac.za



 

 

 

 

  

47 
 

Chapter Three: Experimental 

Techniques 
 

3.1 Introduction 

This chapter provides comprehensive descriptions of the progression of the 

experimental techniques used to ultimately form the n-doped Si NWs. Section 3.2 

introduces the fabrication route used to synthesize the Si NWs by means of the metal-

assisted chemical etching (MaCE) fabrication technique. Thereafter, Section 3.3 gives 

an overview of the equipment used and the experimental conditions during post-

deposition doping of the Si NWs. This includes the operating conditions of the spin 

coater used in this work and the spin-on doping process, as well as the experimental 

route taken during phosphorus (P) dopant drive-in diffusion annealing and the operating 

conditions of the thermal chemical vapour deposition (TCVD) three-zone tube furnace 

that is equipped with a mass flow control (MFC) system. Section 3.4 focuses on the 

fundamental physics underlying the analytical techniques, as well as the sample 

preparation, and data acquisition within the respective techniques that were used to 

characterize the MaCE-grown Si NWs and n-doped Si NWs. 
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3.2 Synthesis of Si NWs by Metal-assisted Chemical 

Etching 

The MaCE fabrication technique used to form Si NWs was specifically performed at 

room temperature (25 °C). At first, ~ 1 × 1 cm
2
 p-type polished single-crystalline (100) 

Si wafers (size (100 mm), resistivity (1-10 Ω.cm), thickness (380 μm), purchased from 

Saetra (Pty) Ltd., Pretoria, South Africa), were carved with a diamond cutter on a non-

slipping cutting mat. Precautionary measures were taken in view of the hazardous 

nature of the solution and ingredients used, and the potential damage caused during the 

preparation of the solution and the wafers. These precautionary measures include the 

following: The Si wafers were stored in plastic sample holders to avoid any possible 

external damages. All solutions were prepared prior to the etching of the Si wafers to 

ensure a smooth-running process. In addition, protective gear was worn and the 

experiment was conducted under a fume hood, as it involved exposure to a highly 

corrosive liquid, such as hydrofluoric acid (HF, analysed reagent, 48% purity, 

purchased from Sigma-Aldrich, Missouri, USA). The ~1 × 1 cm
2
 carved Si wafers were 

handled with polytetrafluoroethylene (PTFE) Teflon beakers and Teflon coated stainless 

steel tweezers to avoid any possible contamination in the laboratory.  

Thereafter, the wafers were ultrasonically cleaned with acetone (C3H6O), followed by 

ethanol (C2H6O) cleaning, both for 5 minutes in an ultrasonic cleaner to remove surface 

grease. The wafers were then rinsed a few times with de-ionized (DI) water. 

Subsequently, the cleaned wafers were cured with 5% HF for 60 seconds to remove the 

native surface oxide layer. To obtain 5% HF, 5 millilitres (mL) of the 48% HF was 
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diluted with 50 mL DI water, giving a total of ~ 4.8% solution, which can be 

approximated to 5% HF.   

The Si wafers were immediately immersed into a metallization aqueous solution of 5 

molar concentrations (M) HF and 0.02 M silver nitrate (AgNO3, ≥ 99.0%, ACS reagent, 

purchased from Sigma-Aldrich, Missouri, USA) for 60 seconds to deposit Ag 

nanocatalyst particles. Take note that, after every successive step from here onwards, 

the wafers were rinsed a few times with DI water and left to dry. The HF/AgNO3 

solution was diluted with DI water until it ultimately reached a volume of 100 mL. 

More specifically, 9.0625 mL of 5 M HF was slowly added to 40.938 mL of DI water to 

achieve 50 mL of HF solution, and ~ 169.9 milligrams (mg) of 0.02 M AgNO3 salt, 

which was measured on a sensitive mass scale, was added to 50 mL of DI water. 

Ultimately, the resultant HF/H2O and AgNO3/H2O were added to each other to achieve 

a 100 mL AgNO3/HF/H2O solution for the Ag NP deposition. A volume of 100 mL was 

used for convenience. 

Immediately after the Ag NP deposition, the wafers were individually rinsed a few 

times with DI water to remove the Ag ion residues formed on the Si wafer surface and 

left to dry. The Ag-catalysed Si wafers were then immersed into an etchant solution of 

HF/H2O2/H2O for 20 minutes. The HF solution was prepared in the same manner as 

mentioned in this Section and 2.55 mL of 0.2 M hydrogen peroxide (H2O2, 30% purity, 

analysed reagent, purchased from Merck Chemicals (Pty) Ltd., Gauteng, South Africa) 

was diluted with 47.5 mL H2O to achieve 50 mL of H2O2 solution. Ultimately, the 

resultant HF/H2O and H2O2/H2O solutions were added to achieve 100 mL of the etchant 

solution (HF/H2O2/H2O) to form the resultant MaCE-grown Si NWs. Finally, the Ag 

NPs formed at each Si NW/wafer interface were removed by means of concentrated 
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nitric acid (HNO3, 65% purity, ACS reagent, purchased from Sigma-Aldrich, Missouri, 

USA). Figure 3.1 presents a schematic representation of the MaCE fabrication 

technique to form the resultant MaCE-grown Si NWs. The Ag NPs formed at the Si 

NW/wafer interface is not shown in the Figure. Thereafter, the MaCE-grown Si NWs 

were ready for the spin-on doping process using a KW-4A Spin Coater.  

 

 

 

 

 

 

Figure 3.1: Schematic of the MaCE fabrication technique. 

3.3 Post-deposition Doping Experimental Procedure 

3.3.1 Spin-on Doping Experimental Procedure 

3.3.1.1 KW-4A Spin Coater 

The KW-4A Chemat Technology Spin Coater is compact and easy to use, in order to 

ensure the uniform deposition of coatings and thin films. Its versatility allows various 

studies to be conducted since its design is portable, rugged, and vibration-free. Figure 

3.2 presents a pictorial representation of the control panel of the KW-4A Spin Coater 

[3.1]. The functions of the power and start switches are to turn the power of the spin 

coater on/off and to start the spinning cycle process, respectively. Note that the spinning 

cycle process will only function once the control and vacuum switches are pressed. The 
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control switch needs to be on before the spinning process can be carried out and 

switched off once the process is terminated. The vacuum switch allows the operator to 

control the vacuum to the vacuum chuck. If the vacuum switch is not on, then the motor 

cannot operate [3.2].  

 

 

 

 

 

 

Figure 3.2: Control panel of the KW-4A Spin Coater [3.1]. 

3.3.1.2 Spin-on Doping Experimental Procedure 

 

Safety precautions had to be adhered to when working with liquid phosphorus 

oxychloride (POCl3, ≥ 99.0%, purchased from Merck Millipore, Massachusetts, USA), 

a P-containing spin-on dopant (SOD) as the dopant diffusant source, since elevated 

levels of POCl3 are hazardous. Hence, the KW-4A Spin Coater used for the spin-on 

doping process was placed at a working distance in a built-in fume hood, from which air 

was drawn from the open side of the fume hood and fed back into the laboratory room. 

An Edwards RV3 vacuum pump was also employed to control the vacuum to the 

vacuum chuck in order to hold the rotating wafer firmly in place. The power and control 

switches must be pressed before initiating the spinning cycle process. The spin cycle 
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times for the fluid dispense and spin-up stages were 9 and 20 seconds, respectively, 

whereas the spin cycle speeds for the fluid dispensing and the spin-up stages were 500 

rotations per minute (rpm) and 2000 rpm, respectively. Both the spin cycle times and 

the speeds were pre-set accordingly. These stages refer to the first two stages of the key 

stages of the spin-on doping process, as outlined in Chapter Two, Section 2.2, in which 

the spinning speeds up during the second stage. The timer and spin controls are shown 

in Figure 3.2.  

The Si NW wafers were individually centred on the sample chuck, and the vacuum 

button was pressed to turn on the vacuum. Once the Si NW wafer was firmly in 

position, approximately 3 drops of liquid POCl3 were applied to the top surface of the 

wafer with a plastic transfer pipette, ensuring that the entire surface area of the wafer 

was covered with the dopant source. The bowl cover was placed over the bowl, and the 

spinning cycle process was initiated by pressing the start switch at the previously 

mentioned pre-set spin cycle times and speeds. At the end of the spinning process, the 

control switch was pressed. Figure 3.3 shows the experimental set-up during spin-on 

doping. The inset of Figure 3.3 illustrates the sample chuck onto which the sample was 

placed. Thereafter, the Si NW wafers that were exposed to spin-on doping creating a P-

rich oxide layer on Si NW wafers were ready for annealing.  
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Figure 3.3: Spin-on doping experimental set-up and corresponding illustration of the 

sample chuck.  

 

3.3.2 Annealing in Furnace 
 

3.3.2.1 Thermal Chemical Vapour Deposition Three-Zone Furnace 

System 

The thermal chemical vapour deposition (TCVD) system, a Brother (XD-1600MT) 

three-zone tube furnace, proposed and synthesized by Zhengzhou Brother Furnace Co., 

Ltd, was utilized for the P dopant drive-in diffusion annealing to obtain the resultant n-

doped Si NWs. Figures 3.4 (a) and (b) illustrate the overall system and the control 

system of the Brother (XD-1600MT) tube furnace, respectively.  

 

 

Fume hood 

Sample chuck 

 

Spin coater 
Fume hood 

Vacuum pump 
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Figure 3.4: (a) The overall system and (b) the control system of the Brother (XD-1600MT) 

three-zone tube furnace.  

The furnace is ideal for various materials since the accuracy of the temperature 

controller is around ± 1 °C. This high precision bench-top tube furnace employs high-

quality ceramic molybdenum disilicide (MoSi2) rods and resistance wires as heating 

elements. The furnace is mass-produced from a double layer steel casing with a three-

fan cooling system that enables the furnace surface to remain at a lower temperature 

than the inner chamber. Each square-shaped heating chamber in the furnace is 20 × 20 × 

20 cm in dimension, with a 4 cm thick insulating material subdividing the heat 

chambers from each other. For each chamber, the current temperature (PV) and the set 

temperature (SV) are displayed on the temperature control system. For convenience and 

flexibility, the system was mounted on top of a 100 × 60 × 60 cm wooden top trolley 

[3.3].  

(a) 

Wooden 

Alumina tube 

(b) 

Set temperature 

Current temperature 
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3.3.2.2 Mass Flow Control System 

Nearly all applications in CVD require mass flow metering and control in the 

experimental and production setup. Gas flow is needed as a carrier gas, as the reaction 

gas, and also for purging or throttling in a vacuum pump [3.4]. In this study, the TCVD 

system is coupled with a mass flow control system (MFC) system to control the mass 

flow rate of the N2 carrier gas entering the TCVD system. Figure 3.5 presents a pictorial 

and schematic representation of the MFC system.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: (a) The pictorial and (b) schematic representation of the mass flow control 

(MFC) system.  
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In this study, a MFC system that employs a 1179A Mass-Flow
®
 controller was designed 

and constructed in the Department of Physics and Astronomy at the University of the 

Western Cape (UWC)). The system can employ four different gases, such as the 

nitrogen (N2) carrier gas, argon (Ar) shielding gas, and the reactive gases, such as 

hydrogen (H2) and silane tetrachloride (SiCl4). In this study, the N2 carrier gas was 

employed to prevent any unwanted chemical reactions degrading the sample. 

The system consists of a gas supply and a mass flow controller (including an advanced 

flow sensor, a control valve, and an optimised bypass) that accurately sets, measures, 

and controls the mass flow rates of gases [3.5]. The flow rate was set and monitored to 

~ 200 standard cubic centimetres per minute (sccm) on the control panel. Although the 

system is a three-way system, Figure 3.5 only illustrates the main features used in this 

study. The system also employs a ball-valve for turning the gas on/off and a check-

valve that allows the gas to flow in one direction at a time. The mass flow controller, 

ball-valve and check-valve are not shown in Figure 3.5 (a), as they are situated behind 

the system.  

3.3.2.3 Phosphorus Dopant Drive-in Diffusion Annealing Experimental 

Procedure 

After the Si NWs were subjected to spin-on doping, thus creating a P-rich oxide layer 

on the surface of the Si NW wafers, the wafers were exposed to a tubular furnace 

annealing at various high temperatures of 700, 800, 900 and 1000 °C, separately in an 

N2 purged Brother (XD-1600MT) three-zone tube furnace to form the resultant n-doped 

Si NWs; the furnace itself was located in a laboratory in the Department of Physics and 

Astronomy based at UWC. Prior to initiating the experimental procedure, segmented 
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temperature profiles were drawn for each annealing temperature used in this study. 

Figures 3.6 (a), (b), (c) and (d) depict the segmented temperature profiles of the 

annealing temperatures of 700, 800, 900, and 1000 °C, respectively.  

About six samples were aligned to fit onto a layered Si rectangular sample stage and 

loaded into the alumina tube furnace. The samples were then transported 46 cm into the 

tube furnace with a calibrated meter stick. Another research group conducted a mini-

investigation on the temperature distribution array along the heating chamber inside the 

tube furnace to identify ideal positions for placing the samples (see Reference 3.3 for an 

in-depth discussion of the temperature distribution inside the tube furnace). Two heated 

zones were employed and set at the same temperature, as it was found that the 

temperature remains constant over a reasonable distance, as shown by the research 

group. 

 

 

 

 

 

 

 

Figure 3.6: Segmented temperature profiles for annealing temperatures at (a) 700; 

(b) 800; (c) 900 and (d) 1000 °C.  

(a) (b) 

(c) (d) 
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After the substrates had been loaded into the furnace, both ends of the alumina tube 

were sealed with a pair of vacuum sealing assemblies to avoid heat radiation. 

Thereafter, the MFC system was switched on prior to switching on the furnace, thus 

enabling it to warm up. The gas supply was opened and the mass flow rate was set and 

controlled at ~ 200 sccm, as mentioned earlier. The main electrical supply of the 

furnace was then switched on at the wall socket. A green power light from the furnace 

control panel illuminated, indicating that the input power was supplied.  

The annealing temperatures and times were set in accordance with the temperature 

profiles seen in Figure 3.6. The heating rate of the system is 10 °C/minute and the 

annealing process commenced at the current furnace temperature (PV) (i.e. room 

temperature). As can be seen from Figure 3.6, the furnace was ramped up to its desired 

annealing temperature, and then stabilised for 20 minutes. Thereafter, the system 

automatically cooled down to -121 °C for 40 minutes. The MFC system and furnace 

were switched off in the order that it was switched on. Finally, the samples were 

removed and dipped into HF for 60 seconds to remove the parasitic layer, as seen in the 

schematic of Figure 2.6 in Chapter Two.   

3.4 Analytical Techniques 

3.4.1 Scanning Electron Microscopy 

3.4.1.1 Introduction  

The scanning electron microscope (SEM) is used in a broad range of fields, extending 

from physical sciences and engineering to biology. Since the invention of the SEM, 

useful resolutions of 7 nm are attainable, and for some instruments, 3 nm can be 
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achieved. The range of electron-induced signals produced in the SEM can yield 

chemical, physical and morphological informational about the specimen (or sample) 

[3.6].   

The principle of the SEM is based on the production of a high-resolution micrograph 

produced by focusing a beam of electrons onto the sample. Figure 3.7 presents a 

schematic representation of the SEM column. As seen in Figure 3.7, the electron gun, 

situated at the top of the electron column, is normally of the tungsten filament 

thermionic cathode type, generating a large spread of electrons that diverge outward 

from the filament tip. These electrons are contained within an electron cloud that 

accelerates towards an anode-containing sample in the range of 15 to 25 kV, which may 

vary depending on the type of sample and application [3.6].  

 

 

 

 

 

 

 

 

Figure 3.7: Schematic representation of the main components of the SEM column [3.6].  
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The electromagnetic lenses seen in Figure 3.7 focus the outward spread of electrons. 

The condenser lens is the first lens that has an effect on the electron beam, causing the 

beam to converge and pass through a focal point in the column. The condenser lens, in 

conjunction with the specified accelerating voltage, is the two factors that are mainly 

accountable for the beam intensity striking the sample and they, in turn, affect the 

brightness of the micrograph signal from that sample. The beam spreads again below 

the condenser lens aperture, and the final lens is used to bring the beam into focus by 

de-magnifying it at the focal point of the sample surface. In addition, a final lens 

aperture may be employed to reduce spherical aberrations (lens defects) in the final lens 

[3.6, 3.7].  

3.4.1.2 Resolution  

A high magnification micrograph produced in microscopy might be seen as useless if 

the microscope is incapable of delivering equally high resolution. The limit of 

resolution may be described as the minimum separation at which two objects are seen as 

different objects. To better understand the basic concept of resolution, Figure 3.8 shows 

an example of a pair of car headlights that are observed as a single entity from afar; as 

the car approaches, the headlights appear as two separate objects and become resolved 

to the onlooker. The same idea applies to microscopy. Mathematically, the limit of 

resolution is given by Abbe’s equation as [3.6, 3.7]:  

d = 0.612 λ / n sin α             (3.1) 

where  

 d is the resolution (should be small) 
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λ is the wavelength of the energy beam 

n is the index of refraction of the medium through which the energy beam 

travels, and 

α is the aperture angle. 

The product n sin α is usually known as the numerical aperture (NA). The importance of 

Equation (3.1) is that it mathematically describes the limit of resolution for an optical 

system. If d should be small, it is obvious that λ should decrease or that n or α should 

increase to obtain the best resolution [3.6, 3.7].  

 

 

 

Figure 3.8: Schematic representation of the resolution of two objects using the headlights 

of an oncoming car as an example. From A to C: the pair of headlights initially appears as 

one object but, as the car approaches an onlooker, the two objects can be resolved and 

seen independently [3.6]. 

3.4.1.3 Depth of Field and Working Distance  

In any microscope, the depth of field (DOF) is defined as the degree at which a region 

of an object appears reasonably in focus. The DOF can be enhanced in the SEM by 

distancing the sample from the final lens, hence increasing the working distance (WD) 

and effectively decrease the aperture angle, α, as can be illustrated by Figure 3.9. The 

space between the final lens pole piece and the topmost part of the sample is termed the 

WD, as can be seen in Figure 3.9. The consequence of the change in WD on the DOF 
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and resolution is listed in Table 3.1. It is obvious from Table 3.1 and Abbe’s equation 

(see Equation (3.1)) that the conditions enhancing the DOF simultaneously worsen the 

resolution [3.6, 3.7]. 

 

 

 

 

 

 

 

Figure 3.9: Schematic showing the enhancement of depth of field (DOF). (A) Short 

working distance (WD) and (B) longer WD enhance the DOF and effectively decrease the 

aperture angle, α [3.6].  

Table 3.1: Influence of the Working Distance on Depth of Field and Resolution [3.6]. 

 

 

 

3.4.1.4 Electron Beam - Specimen Interaction: Signals Produced 

When a primary electron beam interacts with a specimen, it creates a volume of primary 

excitation within the specimen, causing electrons to scatter (see Figure 3.10). Two types 

of scattering events may occur: elastic or inelastic. Inelastic scattering events, the 
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electrons involved are termed backscattered electrons, because they are scattered back 

from the specimen surface; they maintain practically all of their energies, and as a result 

are high-energy electrons. In contrast, in an inelastic scattering event, low energy 

electrons with energy less than 50 eV, termed secondary electrons, lose much of their 

energy upon interaction and are formed throughout the volume of primary excitation 

(see also Figure 3.10). Since secondary electrons possess low energy, adjacent atoms in 

the specimen absorb them and, as a result, only those near the surface of the specimen 

are able to escape, whereas backscattered electrons are able to escape from deep within 

the specimen due to their higher energy [3.6].  

 

 

 

 

 

 

Figure 3.10: Schematic of the interaction between the electron beam and the specimen. (A) 

Illustration of the volume of primary beam excitation and (B) areas of origins of 

secondary and backscattered emissions [3.6].  

There are, however, more signals generated during the interaction between the solid 

specimen and the electron beam that may be detected in the SEM, as can be seen in 

Figure 3.11. In order to obtain an image of the specimen, one might need to collect and 

display secondary electrons, backscattered electrons, transmitted electrons, or specimen 
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current. To determine the chemical composition of the specimen one might also need to 

measure cathodoluminescence, or record X-ray, or Auger spectra [3.6]. 

 

 

 

 

 

 

 

 

Figure 3.11: Schematic representation of the various signals produced subsequent to 

primary electron beam incidence on the specimen [3.7].  

3.4.1.5 Detecting Secondary and Backscattered Electrons 

The secondary and backscattered electrons emitted from the specimen surface in all 

directions can be detected by a system in the microscope column that is composed of a 

collector, a scintillator, a light pipe, and a photomultiplier tube, as can be seen in Figure 

3.12. The collector has a positive bias that attracts the electrons to a thin plastic disc 

coated with a distinct phosphor that more efficiently transfers electrons to photons, and 

is known as the scintillator. This scintillator is also coated with roughly 10 nm of 

aluminium, acting as a mirror to reflect photons to the photomultiplier. Ultimately, the 

positive bias (anode) is applied to a ring around the scintillator that is able to accelerate 

low energy secondary electrons to the detector. The collector does not have an effect on 
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higher energy backscattered electrons, thus the “secondary electron micrograph” is a 

result of most of the secondary electrons being collected and the backscattered electrons 

being emitted toward the detector. The flashes of light (photons) formed by the 

phosphor-containing scintillator are driven through a light pipe and converted outside 

the microscope column to an amplified electronic signal by means of a photocathode 

and a photomultiplier tube. The signal is displayed on a cathode ray tube, in which the 

brightness seen on the screen is relative to the number of secondary electrons emitted 

from the specimen [3.6].  

In order to form an image from the backscattered signals, the secondary electron signal 

must be prevented from touching the detector by cutting off the positive detector bias. 

Such microscopes are able to apply a somewhat negative bias to the detector, thus 

enabling secondary electron repulsion. Other techniques make use of modified 

scintillator detectors or other accessories [3.6].  

 

 

 

 

 

 

Figure 3.12: Image collection secondary electron detection system [3.6]. 
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3.4.1.6 Characteristic X-rays and Energy Dispersive Spectroscopy 

(EDS)  

As mentioned earlier, the interaction between the electron beam and the specimen 

produces many signals, including X-rays. From basic physics, it can be explained that 

the electrons of a given atom occupy distinct energy levels, also known as “shells” (see 

Figure 3.13). By convention, up to two electrons can occupy the shell closest to the 

atomic nucleus, which is known as the “K shell”. Thereafter, up to 8 electrons are able 

to occupy the next “L shell”, while 18 electrons can occupy the “M shell”, and 32 

electrons can occupy the “N shell”, and so on [3.6].  

 

 

 

 

Figure 3.14: Schematic diagram of an atom depicting the electron shells [3.6]. 

When the beam has knocked out an electron from the K shell, an electron from the next 

shell will occupy the vacant position. Therefore, the energy difference of the electron 

from its initial to its final state may be emitted as X-rays; it follows that this energy 

difference, emitted in the form of X-rays, has a discrete quantity, characteristic of the 

atom from which it was discharged. X-ray spectroscopy of interest in this work includes 

quantitative energy dispersive analysis in order to identify the elements and their 

relative atomic percentages in the sample. A special detector, known as an energy 
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dispersive spectrometer, that is able to measure the energies of X-rays is needed for this 

type of analysis [3.6].  

The energy dispersion accompanied by X-ray energy analysis involves the separation of 

X-rays according to their energy, which is currently measured by a semiconductor 

detector. When an X-ray is incident upon a semiconductor crystal, each electron in the 

crystal absorbs a particular amount of energy: the higher the energy of the X-ray, the 

higher the number of electron excitation. The X-ray energy absorbed by the electrons in 

the crystals is converted to an electrical signal that is emitted and amplified. The 

strength of the current from the crystal is relative to the X-ray energy. The amplified 

electrical pulses from the semiconductor are converted to digital form and introduced 

into a multichannel analyser (MCA), which sorts and counts the number of X-rays at 

each energy level incident upon the crystal [3.6].  

3.4.1.7 Sample Preparation and Data Acquisition 

In order to obtain effective micrographs in SEM, the sample needs to be electrically 

conductive in order to enhance the collection of backscattered and secondary electrons. 

To satisfy this condition, non-conductive and low-conductive samples are coated with a 

thin, highly conductive layer of Au or C via sputter coating or thermal evaporation. 

When the incoming electron beam strikes the sample, there is a build-up of charge that 

may lead to sample damage. For a non-conductive sample (such as a biological sample), 

the build-up of charge results in an effect known as charging, which may degrade the 

resolving power that ultimately produces a low-quality micrograph. However, if the 

sample is conductive, the effect becomes insignificant, as the charge will be conducted 

through the sample and eventually grounded by contact with the sample stage.  
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In this study, SEM was used to evaluate the effect that the Ag catalyst morphology has 

on the geometry of the resultant MaCE-grown Si NWs and also the effect of n-type 

doping on the morphology of the MaCE-grown Si NWs. All Ag-coated Si wafers, as-

synthesised Si NWs and n-doped Si NWs were coated using a Quorom150 ES 

gold/palladium (Au/Pd) sputter coater, in which a base pressure of 10
-4

 millibar (mbars) 

and a deposition pressure of 10
-2

 mbar were maintained. All micrographs were analysed 

with a Zeiss Auriga field-emission gun scanning electron microscope (FEG-SEM) at the 

Electron Microscope Unit (EMU) in the Department of Physics and Astronomy at UWC 

(see Figure 3.14). All EDS spectra were collected and analysed using Oxford Aztec 

software and an Oxford X-Max solid-state silicon drift detector (SDD), respectively. 

The SEM was operated at a working distance of 5 mm. Micrographs and EDS 

measurements were acquired at an accelerating voltage of 5 and 20 kV, respectively.  

 

 

 

 

 

 

 

 Figure 3.14: Zeiss Auriga FEG-SEM (EMU, UWC, Cape Town). 
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3.4.2 Transmission Electron Microscopy  

The transmission electron microscopy (TEM) technique differs in principle from SEM, 

in that the primary electron beam is transmitted through the sample, instead of knocking 

out secondary electrons from the sample or being backscattered [3.8]. In TEM, the 

accelerating potential is enhanced to 50 kV, which reduces the electron wavelength to 

about 5 petameters (Pm) in accordance with De Broglie’s relationship [3.9]. These 

higher energy electrons are able to penetrate into a solid material over distances of 

several microns (μm). If the solid material is crystalline, then the atomic planes of the 

material diffract the electrons, producing a transmission electron diffraction pattern. 

Due to the smaller wavelength of the transmitted electrons, the sample can be imaged at 

a higher spatial resolution in comparison to SEM. Modern TEMs are capable of 

producing accelerating voltages between 100 and 300 kV, thus regularly reaching 

spectral resolutions of 0.1 nm (1 angstrom (Å)) [3.8].  

Image formation during TEM can be explained by means of two stages, namely elastic 

and inelastic scattering. The incoming electrons undergo interactions with the atoms of 

the sample, resulting in the aforementioned scattering processes. The electron wave 

function leaving the surface of the sample is first transferred through the objective lens 

and then through the intermediate lenses of the electron microscope to produce the final 

enlarged image [3.8], as can be seen in the schematic diagram of the TEM in Figure 

3.15.  
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Figure 3.15: Schematic diagram of the transmission electron microscope [3.10].  

Elastically scattered electrons are responsible for the high-resolution TEM micrographs, 

whereas the inelastically scattered electrons are detected and analysed to produce 

valuable information about the sample during electron energy loss spectroscopy (EELS) 

[3.8].  

TEM was used to study the structural properties of the MaCE-grown Si NWs and n-

doped Si NWs. For TEM analysis, the samples need to be thin enough for electrons to 

be transmitted and to allow for good imaging. For the preparation of the TEM samples, 

the Si NWs were mechanically removed from the substrates and dispersed in ethanol by 

means of ultra-sonication. The solution was then dropped cast onto a copper (Cu) grid 

covered by a thin amorphous C layer and thereafter inserted into the instrument for 

analysis. All results were obtained using the Technai G
2
20 field emission gun 

transmission electron microscope (FEG-TEM), operated at 200 kV. Figure 3.16 shows 

the FEG-TEM used at the Electron Microscope Unit (EMU) at UWC.  
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 In order to obtain a single precise interplanar spacing (d) from the high-resolution TEM 

(HR-TEM) micrographs to determine the Si NW preferred-growth orientation, five 

consecutive spacing’s were averaged using the ImageJ image processing program. The 

selected area electron diffraction (SAED) patterns were indexed using the NBS 

monograph [3.11], and the lattice constant (a) values obtained from the SAED patterns 

were averaged across three interplanar spacing (d) values measured using the ImageJ 

program. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Technai G
2
20FEG-TEM (EMU, UWC, Cape Town). 
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3.4.3 X-Ray Diffraction 

3.4.3.1 Basic Theory of X-Ray Diffraction 

X-rays are classified as electromagnetic waves with energies in the range of about 100 

eV to 10 megaelectron volts (MeV); they differ from radio waves, light, and gamma 

rays in terms of wavelength and energy. X-rays exhibit a wave-like nature with a 

wavelength in the range of about 10 to 103 nm. Atoms that are the basis of a crystal 

generate X-rays with a similar wavelength as that of the incoming X-ray beam by 

oscillating electrons, whereas the generated X-rays are most likely to be spherical waves 

centring on the individual atoms [3.12]. X-ray diffraction (XRD) is a technique that may 

be used to determine the structural properties, chemical analysis, particle size and the 

stress measurement of materials [3.13]. In this study, XRD is used to study the 

structural properties of the MaCE-grown Si NWs and n-doped Si NWs.  

The main objective of X-ray diffraction by crystals is to recognise the specific condition 

under which the incoming and scattered X-rays are entirely in phase, and in which they 

thus strengthen each other in order to produce a detectable diffraction beam. For this 

reason, the most significant and well-known law is given by Bragg’s law, which 

includes the Bragg angle. Bragg’s law is illustrated in Figure 3.17. If the incoming X-

ray beam of wavelength (λ) is incident upon a crystal, with atoms arranged in a regular 

periodic array with lattice spacing d ꞌ, a diffraction beam of sufficient intensity is 

detected only if the “Bragg condition”, in other words, Bragg’s law, is satisfied such 

that [3.12]:  

2d ꞌ sin ϴ = nλ    (3.2) 
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where n is the order of reflection and is given as the number of wavelengths in the path 

difference between diffracted X-rays from neighbouring crystal planes (see Figure 

3.17). For a fixed value of λ and d ꞌ, diffraction takes place at a number of incident 

angles, such as Ө1, Ө2, Ө3, … , corresponding to n = 1, 2, 3 …. In the first order of 

reflection, where n = 1, the path difference between two scattered X-rays is indicated by 

1’ and 2’ in Figure 3.17 as one wavelength. In contrast, the path difference between two 

scattered X-rays is indicated by 1’ and 3’ as two wavelengths, etc. If the X-rays 

diffracted from all the atomic planes are entirely in phase, such that an X-ray beam is 

diffracted with intensity in a specific direction, it satisfies Bragg’s law. Equation 3.2 

may be rewritten as [3.12], 

2d sin Ө = nλ   (3.3) 

where d = d ꞌ/ n. This is the most common form of Bragg’s law.  

Figure 3.17: Schematic of X-ray diffraction by a crystal (Bragg’s condition) [3.12].  

In general, the nth order of reflection from a specific crystal plane (hkl) with interplanar 

spacing d, is considered the first order of reflection from a plane (nh nk nl). And since 
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the (nh nk nl) plane is parallel to the (hkl) plane, reflection from the (nh nk nl) plane is 

equal to the first order reflection from planes that are spaced at a distance of d = d ꞌ/ n. 

In this way, the diffraction angle in most cases is considered to be 2Ө. The diffraction 

angle 2Ө may be determined by relating Equation 3.3 (Bragg’s law) and the plane-

spacing equations seen in Table 3.1 that relates the interplanar spacing to the lattice 

parameters and the Miller indices for each type of crystal. For example, for a cubic 

crystal with lattice parameter (a), the interplanar spacing (d) and Miller indices (hkl) are 

given by [3.12]:  

1 / d
2
 = (h

2
 + k

2
 + l

2
) / a

2 
 (3.4)  

 

Table 3.1: Plane-spacing equations for seven crystals [3.12]. 
  

 

 

 

 

 

 

 

3.4.3.2 The X-Ray Diffractometer  

XRD patterns are acquired by using an X-ray diffractometer as shown in Figure 3.18. 

The diffractometer is composed of three main parts, namely [3.3, 3.8, 3.12]:  
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 The X-ray source (indicated by S and T in Figure 3.18) 

 The diffractometer circle and  

 The detector system (indicated by G and E in Figure 3.18) 

The detector (G) is positioned at the circumference of the diffractometer circle centred 

at the sample stage, C. The sample is supported by a horizontal table H, which can 

rotate about its axis O, perpendicular to this page. X-rays are diverged from the source 

at S and diffracted by the sample at C to produce a convergent diffracted beam, which 

focuses at the slit F prior to entering the detector at G that is supported on a carriage, E. 

The carriage with angular position 2Ө also rotates about the axis O. The supports 

indicated as H and E is mechanically sealed in a Ө-2Ө connection. The unique slits 

indicated as A and B in Figure 3.18, define and collimate the incident and diffracted X-

ray beams. A filter is located in the diffracted beam-path to suppress the K-beta (Kβ) 

radiation and to minimise the background radiation coming from the sample.  

 

 

 

 

 

 

 

Figure 3.18: X-ray diffractometer [3.12]. 
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3.4.3.3 Data Acquisition    

XRD patterns were obtained by means of an Empyrean XRD system from PANalytical 

in grazing incidence geometry at the National Metrology Institute of South Africa 

(NMISA) in Pretoria. Figure 3.19 illustrates the Empyrean XRD system. The patterns 

were recorded at room temperature (25 °C) in 2Ө range between 15
o
 and 90

o
 with a step 

size of 0.02
o
. Cu K-alpha 1 (Kα1) radiation with a wavelength of 1.5406 Å was used as 

the X-ray source, operated with a voltage and current of 45 kV and 40 milliamperes 

(mA), respectively. The divergence slit was fixed at 0.01 millimetre (mm) to ensure that 

the measured spot was smaller than the sample size (~ 1 × 1 cm
2
). PANalytical X’ 

PERT Data Collector and X’ PERT HighScore software were used for data acquisition 

and evaluation, respectively. Hence the interplanar spacing (d), peak position 2Ө and 

the full width at half maximum (FWHM) parameters were readily obtained and did not 

need any calculation. The XRD patterns were indexed using the NBS monograph 

[3.11]. The lattice parameter (a) values were calculated by re-arranging the plane 

spacing equation (see Equation 3.4). The XRD patterns were plotted using the 

OriginPro 8.5.1 software.  

 

 

 

 

         

Figure 3.19: Empyrean XRD system (NMISA, Pretoria). 
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3.4.4 X-Ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) is a technique widely used to study the 

chemical composition of surfaces. During XPS surface analysis, a sample is irradiated 

with monochromatic soft X-rays, of which Al kα radiation (1486.7 eV) is often used. 

When the X-rays are incident upon the surface atoms of the sample, electrons are 

emitted via the photoelectron effect. The emitted photoelectrons have kinetic energies 

expressed as [3.13]:  

KE = hv - BE - σS   (3.5) 

where hv is the energy of the incoming X-ray photon, BE is the binding energy of the 

atomic orbital of the initial position of the electron and σS is the work function of the 

spectrometer. The BE is given as the energy difference between the initial and final 

states of the photoelectron upon leaving the atom and is characteristic for each atom. In 

general, elemental quantification is obtained by using the area and height of the 

particular energy peaks [3.13].  

Methods involving peak area sensitivity factors are normally more accurate and 

frequently used. The number of atoms n of the element per cm
3
 of a homogeneous 

sample is expressed as [3.13]:  

n = I / fσӨyλAT  (3.6) 

where I is the number of photoelectrons per second for a particular peak within the 

spectra, f is the X-ray flux in units of photons/cm
2
/s, σ is the photoelectron cross-section 

of the particular atomic orbital in units of cm
2
, Ө is the angular efficiency factor of the 

detector that is based on the arrangement of the instrument, y is the efficiency of the 
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photoelectric process that is based on the production of photoelectrons within the 

sample, A is the sample area from which the photoelectrons are detected, λ is the 

electron mean free path of the photoelectrons in the sample, and T is the detection 

efficiency of electrons emitted from the sample. The denominator of Equation (3.6) is 

better known as the atomic sensitivity factor S [3.13].  

For that reason, the XPS technique is capable of qualitative and quantitative chemical 

composition analysis of the surfaces of samples. In certain XPS systems, elemental 

depthprofiling is possible. Depth profiling involves the removal of atomic layers of the 

sample surface by sputtering it with Ar ions. This is done by sputtering the surface of 

the sample sequentially to obtain elemental composition information within the sample 

[3.13].  

XPS was used to evaluate the chemical composition of the surfaces of the n-doped Si 

NWs annealed at 1000 °C and the location of the P dopants within the sample. The 

analysis was carried out at an ambient temperature of 20 ± 5 °C and a relative humidity 

(RH) of 50 ± 25%. The chemical composition of the surface was characterised using a 

Thermo ESCAlab 250Xi X-ray photoelectron spectrometer with a scanning 

monochromated Al kα source (1486.7 eV; 80 W; spot size, 300 μm). Figure 3.20 shows 

a pictorial of the Thermo ESCAlab 250Xi X-ray photoelectron spectrometer located at 

NMISA in Pretoria. The X-ray beam collected elemental information relating to O 1s, 

Si 2p, C 1s, N 1s, P 2s, and F 1s. Detailed XPS acquisition parameters (chemical states 

of the elements) were identified from the NIST database [3.13]. Depth profiling was 

accomplished by using the instrument’s Ar
+
 ion source. XPS depth profiles were 

acquired after each sputtering time of 0 s, 48 s, and 1068 s, respectively. The data were 

plotted using the OriginPro 8.5.1 software.  
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Figure 3.20: (Thermo ESCAlab 250Xi X-ray photoelectron spectrometer NMISA, 

Pretoria). 

3.4.5 Hall Effect Measurement Technique 

3.4.5.1 Introduction  

 

The Hall effect occurs when a current carrying semiconductor or conductor is placed in 

a magnetic field perpendicular to the current [3.15, 3.16]. Consequently, the magnetic 

field deflects the charge carriers within the conductor (or semiconductor), giving rise to 

an electric field, owing to the voltage induced by the separation of negative and positive 

carriers, which is known as the Hall field. The Hall field is perpendicular to both the 

current and the magnetic field. The Hall field can point along whichever direction of the 

axis it exist in. It should be noted that, at sufficient temperature, the net current within a 

semiconductor is composed of counteracting currents of n-type and p-type carriers 
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[3.15]. And for that reason, the Hall effect measurement technique is useful for 

analysing the electrical conducting properties of semiconductors [3.16].   

3.4.5.2 Theory  

Electric current in a semiconductor is composed of charged carriers known as electrons 

and holes. When these charged carriers experience a force owing to a magnetic field 

that is applied perpendicular to their movement, they experience a Lorentz force, given 

by [3.15, 3.16]:   

FL   qvB  (3.7)  

This results in mobile charged carriers accumulating on one face of the material, leaving 

equal and opposite charges exposed on the other face, where there is a scarcity of 

mobile charges. Due to the separation of charges, an electric field (E) is formed between 

these two faces. Immediately, the electric field (E) produces a force F  qE, which 

cancels the Lorentz force. Once equilibrium between the two forces is reached, a 

voltage difference is recognised across the faces of the material. This transverse voltage 

difference is better known as the Hall voltage VH. The sign of VH is dependent upon 

whether the carriers are primarily negatively (electrons) or positively (holes) charged 

[3.16]. Therefore, by measuring VH we can identify whether we have an n-type or p-

type semiconductor material [3.15]. In this study, the charge carriers in the Si NW 

samples are the electrons (negatively charged). In other words, the Si NW samples are 

n-type. So, if the samples are n-type, VH is negative, and is determined through:  

VH  - IB / qnd  (3.8)  
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Figure 3.21 presents a schematic of the Hall effect theoretical model.  

 

 

 

 

 

Figure 3.21: Hall effect geometry [3.15]. 

From VH the sheet carrier density (the amount of carriers in the dopant layer) of the 

conducting material may be determined from the following expression [3.16]:  

ns = IB / qVH  (3.9) 

where I = current     

  B = applied magnetic field  

q = charge of free carriers 

VH = Hall voltage. 

The bulk carrier density of the material is acquired once the thickness (d) of the sample 

is known; it is obtained by using and re-arranging the expression, ns = nd [3.16]. In this 

study, the lengths of the n-doped Si NWs are taken as the thickness (d). SEM analysis 

later on in this work will interrogate the length measurements (See Chapter 4, Sections 

4.2.1.2 and 4.2.1.3). Other important parameters of interest in this study are the Hall 

mobility (μH) and the bulk resistivity (ρ). The Hall mobility is acquired by using 
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Equation (3.10), whereas the bulk resistivity (ρ) is obtained by using Equation (3.11) 

subsequent to obtaining the sheet resistance (Rs) from Equation (3.10) [3.16].  

μsheet = VH / RsIB = 1 / qnsRs  (3.10) 

ρ = Rsd  (3.11) 

3.4.5.3 Data Acquisition  

In this study, the temperature dependence of electrical transport properties using the 

Hall effect measurement technique on the n-doped Si NWs annealed at 700, 800, 900, 

and 1000 °C was interrogated. The electrical transport properties were acquired at UWC 

using the Ecopia HMS-3000 Hall Effect Measurement System with a 0.55 tesla (T) 

permanent magnet operating at room temperature. Figure 3.22 illustrates the system 

used in this study. Six stages of the input current of 50, 100, 250, 500, 750, and 1000 

μA were applied to reduce the error allowance to a minimum.  

The system is fully automated and computer-controlled to enable it to derive the Hall 

mobility (μH), the charge carrier density (n) and the resistivity (ρ). In this study, we 

simply refer to the Hall mobility (μH), the charge carrier density (n) and the resistivity 

(ρ) as the mobility (μ), the dopant concentration (ND) and the resistivity (ρ), 

respectively.  
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Figure 3.22: Ecopia HMS-3000 Hall Effect Measurement System (The Department of 

Physics and Astronomy, UWC, Cape Town). 
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Chapter Four: Results and 

Discussions 
 

4.1  Introduction 

As previously outlined in Chapter 1, Sections 1.7, the metal-assisted chemical etching 

(MaCE) top-down fabrication technique is employed in this study to form silicon 

nanowires (Si NWs). Given the increased necessity and scarcity of high-quality Si 

materials, it is essential to use novel materials that are inexpensive for photovoltaic 

(PV) applications [1.30]. Si NWs produced from the MaCE process is a potential 

candidate that can be used as a low-cost alternative for PV applications [1.31]. In this 

study, the two-step MaCE process is used, in which the silver (Ag) metal catalyst is 

coated onto a Si wafer before proceeding with anisotropic etching in an 

oxidant/hydrofluoric (HF) solution to form the resultant Si NWs.  

The morphological properties of the silver nanoparticles (Ag NPs) are dependent on the 

coating conditions, such as coating solution temperature, silver nitrate (AgNO3) 

concentration, and coating time [4.1]. If the Ag NPs are relatively high in density such 

that it overlaps or if the distance between Ag metal particles is minimal (i.e. an 

increased Ag NP coverage), Si NWs may form. The increased surface coverage is a 

result of higher surface density and, to a small degree, Ag NP size, which ultimately 

depends on a higher coating solution temperature, larger AgNO3 concentration or longer 

coating time. As a result, the geometry of the resultant etched Si structures grown by 

MaCE is generally affected by the initial morphology of the Ag NP coverage and the 

http://etd.uwc.ac.za



 

 

 

 

 
   Results and Discussions 

87 
 

distance between the Ag NPs [1.21, 1.23]. Hence, it is necessary to report on the effect 

that the morphology of the Ag metal catalyst (i.e. Ag NPs) has on the resultant MaCE-

grown Si NWs.  

As stated in Chapter 2, Section 2.1, thermal diffusion of phosphorus (P) in Si is the 

main method for emitter formation in Si solar cell (SC) processing. The thermal 

diffusion of phosphorus is required to form an n-type emitter to the p-type wafer. P-type 

Si wafers are extensively employed in solar industries and for that reason diffusion 

technologies have been developed to deposit n-type dopants to form p-n junctions [2.3]. 

In this study, the diffusion annealing technique of bulk p-type Si is adapted in order to 

produce n-doped MaCE-grown Si NWs by using a phosphorus-containing spin-on 

dopant (SOD) source for the post-deposition technique. There is limited understanding 

of the precise diffusion procedure of coating a SOD to MaCE-grown Si NWs, as most 

studies have thus far focused on understanding the diffusion mechanism in the vapour-

liquid-solid (VLS)-grown Si NWs. This study seeks to contribute to the development, 

cost reduction, and understanding of depositing a phosphorus-containing SOD to 

MaCE-grown Si NWs.   

In this chapter, the effect of the initial morphology of the Ag NPs on the resultant 

etched Si structures grown by MaCE will be interrogated. Also, the effect of n-type 

doping on the morphological, structural, compositional and electrical transport 

properties of MaCE-grown Si structures will be studied. This chapter begins by 

studying the effects of the initial morphology of the Ag NPs on the MaCE-grown Si 

NWs.  
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4.2  Morphology Characterisation 

In this section, the scanning electron microscopy (SEM) characterisation technique was 

employed to study the effect that the initial Ag catalyst morphology has on the 

geometry of the resultant etched Si structures (i.e. Si NWs) grown by MaCE, in 

conjunction with energy dispersive spectroscopy (EDS) to study the elemental 

composition of the Ag catalyst, MaCE-grown Si NWs, and n-doped Si NWs. The SEM 

technique was employed in conjunction with the transmission electron microscopy 

(TEM) characterisation technique to study the effect of n-type doping on the 

morphology of MaCE-grown Si NWs. 

4.2.1 Scanning Electron Microscopy Characterisation  

4.2.1.1 Ag Catalyst Morphology 

The Ag-coated Si wafer, illustrated in Figure 4.1 (a), was intentionally prepared under 

the experimental conditions as explained in Chapter 3, Section 3.2 to meet the required 

morphological features seen in Figure 4.1 (a). The semi-spherical and densely-packed 

Ag NPs coated onto the p-type single-crystalline (100) Si wafer has a mean particle size 

of 167 ± 23 nm and a relatively uniform size distribution, as indicated and confirmed by 

the corresponding size distribution curve of the Ag NPs in Figure 4.1 (b). The measured 

EDS spectrum of the Ag-coated Si wafer (see Figure 4.1 (c)) was obtained by scanning 

the entire surface area of the top-view SEM micrograph, as seen in the inset of Figure 

4.1 (c). The EDS spectrum of the Ag-coated Si wafer confirms the presence of Ag and 

Si. Carbon (C), gold (Au), and palladium (Pd) are the only other visible peaks in the 

spectrum due to Au/Pd sputter coating and the use of carbon conductive tape, onto 

which the Si wafer was deposited during preparation for SEM characterisation.  
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Figure 4.1: (a) Top-view SEM micrograph, (b) size distribution curve, and (c) EDS 

spectrum with corresponding scan area analysis on a top-view SEM micrograph of Ag 

NPs coated onto the Si wafer grown by MaCE.  

4.2.1.2 As-synthesised Si NWs Morphology 

The top-view and cross-sectional SEM micrographs of Figures 4.2 (a) and (b) are 

representative of the resultant as-synthesised Si NWs with a mean diameter and length 

of 128 ± 18 nm and 8.28 ± 0.47 μm, respectively. The dark hollow and bright projected 

areas seen in Figure 4.2 (a) are those of the Ag NPs in the etched regions and of the Si 

NWs in the unetched regions, respectively. It is apparent from Figure 4.2 (a) that the Si 

NWs accumulate at the tips to form a ‘cone-like’ geometry. The bundle formation may 

be due to the capillary action during the MaCE drying process, as a result of high-

aspect-ratio Si NWs [1.20].  
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The etching of Si as a result of the ongoing sinking of the Ag NPs in the presence of the 

oxidant in the etched regions and the simultaneous unaffected Si in the unetched regions 

resulted in the presence of Ag NPs at the Si NW/wafer interface (indicated by the 

arrow) and the Si NW growth normal (i.e. vertically aligned Si NWs) to the wafer 

surface, as can be seen in Figure 4.2 (b). 

It has been hypothesised that the MaCE process is isotropic and that the metal catalyst 

always promotes the etching along the vertical direction relative to the wafer surface. It 

has been proved in relation to (100) and (111) wafers, although it was subsequently 

proved otherwise in the case of (111) and (110) wafers. The etching in a certain 

preferred crystallographic direction is ascribed to the back-bond breaking theory. This 

may be described as follows: In order for surface Si atoms to be dissolved or oxidised, it 

is essential to break the back-bonds of the surface atoms that link to the atoms below. 

The greater the back-bond strength, the more difficult it becomes to remove the surface 

atoms. Now, the crystallographic orientation of the starting Si wafer determines the 

number of Si atom back-bonds. In this study, each atom on the surface of the (100) Si 

surface plane has two back-bonds, while the atoms on the (110) or (111) wafer have 

three. As a result of the back-bond strength, the Si atom on the (100) plane is more 

easily removed [1.23], hence the presence of vertically aligned Si NWs evident in the 

cross-sectional micrograph of Figure 4.2 (b) infers that the etching is isotropic and that 

it grows along the <100> direction.  

The measured EDS spectrum of Figure 4.2 (c) acquired from the EDS scan area analysis 

taken at the interface of the cross-sectional SEM micrograph of the Si NWs prior to the 

removal of the Ag NPs at the Si NW/wafer interface (inset of Figure 4.2 (c)) confirms 

the presence of Ag situated at the Si NW/wafer interface. 
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Figure 4.2: Top-view (a) and (b) cross-sectional SEM micrographs of Si NWs prior to the 

removal of the Ag NPs at the Si NW/wafer interface; (c) Measured EDS spectrum and 

corresponding EDS scan area analysis taken at the interface of the cross-sectional SEM 

micrograph of the Si NWs.  

To remove the Ag NPs at the Si NW/wafer interface, the Si NWs observed in Figures 

4.3 (a) and (b) were placed into a nitric acid (HNO3) solution, as specified in Chapter 3, 

Section 3.2. A mean diameter and length of 133 ± 22 nm and 8.21 ± 0.27 μm were 

obtained for the resultant Si NWs, respectively. It appears that the mean diameter and 

length measurements of the Si NWs prior and subsequent to HNO3 treatment remain 

constant when the standard deviation is taken into account. The same ‘cone-like’ and 

cluster formation that was seen in Figure 4.2 (a) for the Si NWs prior to the removal of 

the Ag NPs at the Si NW/wafer interface is apparent in the top-view SEM micrographs 
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of Figure 4.3 (a). However, for the cross-sectional SEM micrograph of the Si NWs seen 

in Figure 4.3 (b), no significant traces of Ag NPs are present at the Si NW/wafer 

interface.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Top-view (a) and (b) cross-sectional SEM micrographs of Si NWs subsequent 

to the removal of the Ag NPs at the Si NW/wafer interface; (c) The measured EDS 

spectrum with corresponding EDS spot analysis taken at the interface of the cross-

sectional SEM micrograph of the Si NWs. 

This is confirmed by the measured EDS spectrum of Figure 4.3 (c) acquired from the 

corresponding EDS spot analysis taken at the interface of the cross-sectional SEM 

micrograph of the Si NWs subsequent to the removal of the Ag NPs at the Si NW/wafer 
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interface (inset of Figure 4.3 (c)), showing the absence of Ag. The gold, palladium, and 

carbon peaks visible in the spectrum are due to the same phenomena explained in 

Section 4.2.1.1. However, the oxygen (O) peak in the spectrum is due to native 

oxidation in the air.  

4.2.1.3 N-doped Si NWs Morphology 

Subsequent to MaCE-growing the Si NWs, liquid POCl3 SOD was spin-cast onto the 

Si NWs. Thereafter it was annealed via phosphorus drive-in dopant diffusion at elevated 

temperatures (i.e. 700, 800, 900, and 1000 °C) in an N2 purged high-temperature tube 

furnace as earlier mentioned in Chapter 3, Section 3.3.2.3, setting out the experiments. 

Annealing is essential for the formation of n-doped Si NWs. Here we interrogate the 

effect of n-type doping on the morphological properties of the MaCE-grown Si NWs. 

For the sake of simplicity, this section refers to the resultant doped wafers as n-doped Si 

NWs, as electrical transport properties by means of the Hall effect measurement 

technique and X-ray photoelectron spectroscopy (XPS) characterisation in Sections 4.5 

and 4.4 of this chapter will verify whether the phosphorus dopant atoms are electrically 

active and whether they exist within the Si NWs, respectively.  

The same bundle formation realised for the as-synthesised Si NWs seen in Figures 4.2 

(a) and 4.3 (a) can be seen for the n-doped Si NWs in the top-view SEM micrographs of 

Figures 4.4 (a), (c), (e), and (g) for all annealing temperatures. However, certain Si NW 

attributes seen in Figure 4.4 for n-doped Si NWs differed from the as-synthesised Si 

NWs; for instance, they showed less Si NW bending and enhanced Si NW 

accumulation, which will be elaborated on later in this section. In comparing 

morphological features of the n-doped Si NWs from the top-view, it is realized that an 
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increase in annealing temperature does not contribute to any obvious modifications in 

terms of Si NW bending and accumulation.  

Figures 4.4 (b), (d), (f), and (h) present the cross-sectional SEM micrographs of n-doped 

Si NWs annealed at 700, 800, 900, and 1000 °C, respectively. The mean diameter and 

length measurements for n-doped Si NWs increased from 133 ± 22 nm to 160 ± 17 nm 

and decreased from 8.21 ± 0.27 μm to 4.48 ± 0.14 μm when compared to the as-

synthesised Si NWs. The mean diameter and length of the n-doped Si NWs enhanced 

and reduced when compared to the as-synthesised Si NWs; this may be attributed to 

additional layers having formed post-annealing and to sample damage occurring during 

SEM characterisation preparation. XPS studies in Section 4.4 of this chapter will prove 

whether extra layers may have formed post-annealing.  

The cross-sectional SEM micrographs show that annealing reduced the Si NW density 

and interface roughness after Si NWs had been MaCE-grown, although no significant 

variations in Si NW densities and interfaces are observed at elevated temperatures. The 

reduction in density may be attributed to the enhanced Si NW accumulation and lower 

Si NW bending [4.2], as previously observed in Figures 4.4 (a), (c), (e), and (g). The 

reduced Si NW density post-annealing poses an advantage for PV application, as it 

results in lower reflectance, as proved in reflectance studies by Peng et al. (2011) [1.3]. 

The reduced interface roughness post-annealing is in good agreement with a previous 

study [4.3].  
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Figure 4.4: The top-view and corresponding higher magnification SEM micrographs ((a), 

(c), (e), and (g)); Cross-sectional SEM micrographs ((b), (d), (f), and (h)).  
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Figures 4.5 (a), (b), (c), and (d) present the EDS spectra for n-doped Si NWs annealed at 

700, 800, 900 and 1000 °C, respectively. The EDS spectra were acquired from the 

corresponding EDS scan analysis taken at the interface of the cross-sectional SEM 

micrographs, seen in the insets. The EDS spectra confirmed the presence of Si (p-type 

wafer) and P (n-type dopant) in n-doped Si NWs annealed at 700, 800, 900, and 

1000 °C.  

 

 

 

 

 

 

 

 

 

Figure 4.5: EDS spectra ((a), (b), (c), and (d)) with corresponding scan selected-area 

analysis of n-doped Si NWs annealed at 700, 800, 900, and 1000 °C, respectively.   

The presence of the oxygen peaks in the spectra for all n-doped Si NWs may be due to 

the thermally grown oxidized Si, seen in the schematic of Figure 2.6 (see Chapter 2). 

The aluminium (Al) peak in the spectrum for n-doped Si NWs annealed at 1000 °C is 

due to the aluminium stub onto which the sample was mounted, and the carbon peak in 
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the spectra for all n-doped Si NWs is due to an unavoidable contamination in the 

internal walls of the SEM vacuum chamber during the SEM characterisation, 

respectively. XPS studies in Section 4.4 will elaborate more on the oxide formation. 

4.2.2 Transmission Electron Microscopy Characterisation 

Heavier dopant atoms, such as phosphorus, are more tightly bound to the crystal lattice 

of the starting material, and as a result, that temperatures from 800 °C to 1250 °C
 
are 

required to ensure practical diffusion rates [4.4]. Hence, TEM characterisation was 

employed to intentionally study the internal structure of a singular as-synthesised Si 

NW and n-doped Si NWs under 700 °C and 900 °C drive-in annealing conditions 

(temperatures both below and within the range of 800 and 1250 °C). 

Figure 4.6 presents the TEM micrograph of a singular as-synthesised Si NW grown by 

the MaCE fabrication technique. The smooth surface of the as-synthesised Si NW that 

is apparent in the micrograph agrees with various low and short etching condition of the 

Si wafer (100, 1 to 10 Ω.cm) used in this study; it is controlled by various low and short 

etching conditions stated in [4.5], which include low hydrogen peroxide (H2O2) etchant 

concentration (from 0.005 to 0.2 M), low temperature (< 25 °C), short etching time 

(from 15 to 30 minutes) and short Ag NP deposition time. Also, the wafer properties, 

such as crystal orientation and doping level, affect the surface morphology of the 

material. If the above conditions are enhanced or changed, a rough-surfaced Si NW with 

or without pores is induced [4.5]. See Reference 4.5 for the various phenomena for 

roughness and pore formation. 
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Figure 4.6: TEM micrograph of the smoothly-surfaced singular as-synthesised Si NW 

grown by the MaCE fabrication method at room temperature.    

The n-doped Si NWs annealed at 700 °C and 900 °C are illustrated in the TEM 

micrographs of Figures 4.7 (a) and (b), respectively. The n-doped Si NW annealed at 

700 °C seen in Figure 4.7 (a) exhibits a slight enhancement in surface roughness in 

comparison to the as-synthesised Si NW. Increasing the annealing temperature to 

900 °C showed obvious surface roughness for the n-doped Si NW in Figure 4.7 (b).  

 

 

 

 

 

Figure 4.7: TEM micrographs of the roughly-surfaced singular n-doped Si NWs annealed 

under (a) 700 °C and (b) 900 °C conditions.   

Si NW of 

interest 

(a) (b) 
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It is also widely accepted that the induced surface roughness of a Si wafer and/or Si 

NWs post-annealing is a consequence of the N2 carrier gas ambient during annealing 

[4.6]. It is widely accepted that the surface roughness observed for the n-doped Si NWs 

facilitates and contributes to light trapping in PV devices, by reducing the reflection of 

light [1.6].   

Having examined the impact of n-type doping on the morphological properties of the 

MaCE-grown Si NWs, the next section will evaluate whether the MaCE-grown Si NWs 

and n-doped Si NWs maintained the structural properties of the bulk single-crystalline 

(100) Si wafer.   

4.3 Structural Characterisation 
 

TEM and XRD characterisation techniques were employed to evaluate whether the 

MaCE-grown Si NWs and n-doped Si NWs maintained the single-crystalline diamond 

lattice structure of the bulk (100) Si wafer.  

4.3.1 Transmission Electron Microscopy Characterisation 
 

A non-uniform amorphous outermost Si oxide layer is observed in the high-resolution 

transmission electron microscopy (HR-TEM) micrograph of Figure 4.8 (a) for the as-

synthesised Si NW and may be attributed to native oxidation in the air as mentioned 

above in Section 4.2.1.2. Also, amorphous outermost Si oxide layers are evident in the 

HR-TEM micrographs of Figures 4.8 (b) and 4.8 (c) for the n-doped Si NWs annealed 

at 700 °C and 900 °C, respectively. The presence of the oxide layer may possibly be 

thermally-grown oxidised Si. The oxide chemical composition and stoichiometry of a n-

doped Si NW sample will be confirmed by XPS presented later on in this study.  
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As of yet, TEM cannot image single point defects [4.7], but by indirect interpretation, 

the interruptions marked as rectangles in Figures 4.8 (a), (b), and (c) may be due to 

phosphorus impurity atom defects. These defects are governed by the vacancy diffusion 

mechanism in the case of slower diffusion and the interstitialcy mechanism in the case 

of faster diffusion, as previously stated in Chapter 2, Section 2.6. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: HR-TEM micrographs of the singular (a) as-synthesised Si NW sample and n-

doped Si NWs annealed under (a) 700 °C and (b) 900 °C conditions.   

The insets of the selected area electron diffraction (SAED) patterns of Figures 4.9 (a), 

(b), and (c) present magnified HR-TEM micrographs of the crystalline structure of the 

as-synthesised Si NW and n-doped Si NWs annealed at 700 and 900 °C, respectively. 

The insets were taken from the HR-TEM micrographs of Figure 4.8 to demonstrate the 

(a) (b) 

(c) 
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measured interplanar spacings (d) more accurately. The interplanar spacing obtained for 

the as-synthesised Si NW, n-doped Si NW annealed at 700 °C
 
and n-doped Si NW 

annealed at 900 °C was 0.3187 nm, 0.3182 nm and 0.3178 nm, respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 4.9: SAED patterns of the singular (a) as-synthesised and n-doped Si NWs 

annealed under (b) 700 °C and (c) 900 °C conditions. Insets: magnified selected-areas from 

the crystalline structure of the HR-TEM micrographs of Figure 4.8 demonstrating the 

interplanar spacing (d). 

The interplanar spacings for all the samples were consistent with the (111) planes. 

Hence, the Si NWs are indeed grown along the <100> orientation, as evident in the HR-

TEM micrographs of Figures 4.8. The (111) planes are not necessarily perpendicular to 

the <100> growth direction, as it is known in the literature that the (111) and (100) 

𝒅𝟏𝟏𝟏 = 𝟎.𝟑𝟏𝟖𝟕 nm 

(a) 

𝒅𝟏𝟏𝟏 = 𝟎.𝟑𝟏𝟖𝟐 nm 

13 3  

(b) 

𝒅𝟏𝟏𝟏 = 𝟎.𝟑𝟏𝟕𝟖 nm 
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surfaces make a sharp angle at 54.74° [4.8], which makes sense by visually interpreting 

the HR-TEM micrographs.  

The SAED patterns of Figures 4.9 (a), (b), and (c) were acquired along the [332], [22 0], 

and [110] zone axes for the as-synthesised Si NW and n-doped Si NWs annealed at 700 

and 900 °C, respectively. The well-aligned atomic planes seen from the HR-TEM 

micrographs and the diffraction spots from the SAED patterns confirm that the as-

synthesised Si NW and n-doped Si NWs retained the single-crystalline diamond lattice 

structure of the bulk Si wafer.   

4.3.2 X-ray Diffraction Characterisation  

The structural properties of the as-synthesised Si NWs and n-doped Si NWs were 

further studied by means of X-ray diffraction (XRD) characterisation.  

Figure 4.10 presents the XRD patterns of the as-synthesised Si NWs and n-doped Si 

NWs annealed at 700 °C and 900 °C. It appears that all the Si NWs hold the original 

characteristics of the single-crystalline diamond lattice structure of bulk Si that is in 

agreement with the TEM results. As can be seen from Figure 4.10, all the Si NW wafers 

have a prominent Si (311) diffraction peak at around 2θ ≈ 56°. Figure 4.11 presents the 

magnification of the Si (311) peak prior and subsequent to annealing.  
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Figure 4.10: XRD patterns of the (a) as-synthesised (MaCE-grown) Si NWs at room 

temperature and n-doped Si NWs annealed under (b) 700 °C and (c) 900 °C conditions.  

 

 

 

 

 

 

Figure 4.11: Magnification of the Si (311) XRD patterns for the as-synthesised Si NWs and 

n-doped Si NWs annealed under 700 °C and 900 °C conditions.  
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The as-synthesised Si NWs show a broad and weak Si (311) diffraction peak. It is also 

apparent that the full width at half maximum (FWHM) was reduced with enhanced 

annealing temperature, and this is attributed to an increase in the average crystal size. 

The FWHM values listed in Table 4.1 for the as-synthesized Si NWs and n-doped Si 

NWs annealed at 700 °C and 900 °C are given as 1.6401, 1.6388, and 1.6378 degrees, 

respectively. The increased crystal size is attributed to the higher thermal energy with 

annealing temperature leading to more lattice scattering with the Si NW sample that 

ultimately reduces the mobility [4.9]. The electrical transport properties using the Hall 

effect measurement technique will confirm the reduced mobility with increasing 

annealing temperature.  

It can also be seen from Figure 4.11 that the crystallinity of the n-doped Si NWs 

worsens with an increase in annealing temperature; this may be attributed to higher 

phosphorus dopant concentration that ultimately contributes to increasing defects [1.6, 

4.9]. The enhancement in phosphorus dopant concentration with annealing temperature 

will be confirmed by the electrical transport properties by means of the Hall effect 

measurement technique.  

The Si (311) peak shifts to a higher angle post-annealing from 2θ = 56.08°, 56.13°, and 

56.16° for the as-synthesised Si NWs and n-doped Si NWs annealed at 700 °C and 

900 °C, respectively. According to Bragg’s law, as given by Equation (3.3) and the 

lattice parameter (a) calculated using Equation (3.4), it is expected that the lattice 

parameter values should decrease post-annealing, due to the enhanced 2θ values with 

annealing temperature.  
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Table 4.1: Influence of post-deposition annealing on the structural properties of the as-

synthesised Si NWs and n-doped Si NWs.  

Temperature  

 

(
o
C) 

Peak 

Position 

2θ for 

(311) 

(degrees) 

Interplanar 

Spacing 

d 

 

(nm) 

Lattice 

Parameter 

a 

 

(nm) 

Full width at half 

maximum 

FWHM 

 

(degrees) 

As-

synthesised 

56.08 0.1640 0.5440 1.6401 

700 56.13 0.1639 0.5435 1.6388 

900 56.16 0.1638 0.5432 1.6378 

 

Figure 4.12 presents a comparative plot of the lattice parameter as a function of the 

annealing temperature that was calculated from the SAED patterns of Figure 4.9 in the 

TEM analysis and that obtained from the given interplanar spacing values of Table 4.1 

in the XRD analysis. The lattice parameter values as determined by TEM linearly 

decreases from 0.5589 ± 0.0012 nm to 0.5370 ± 0.0007 nm with enhanced annealing 

temperature for the as-synthesised Si NWs and n-doped Si NWs annealed at 700 °C, 

respectively. The lattice parameter value rapidly enhanced to 0.5628 ± 0.0025 nm with 

an increase in the annealing temperature for the n-doped Si NWs annealed at 900 °C.  

In contrast, there is a linear decrease in the lattice parameter values with enhanced 

annealing temperature as determined by the XRD analysis. The lattice parameter values 

obtained in XRD of the as-synthesised Si NWs at room temperature (RT) is determined 
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to be 0.5440 nm, while that of the n-doped Si NWs annealed at 700 °C and 900 °C is 

0.5435 nm and 0.5432 nm, respectively. The XRD analysis provides a more precise 

means of measuring the lattice parameter value as a result of a larger imaging area 

capability, giving an average value across the sample as opposed to a localised lattice 

parameter value obtained in TEM due to the small sample size. Hence, the lattice 

parameter analysis here onwards is based on the value given by XRD.  

The lattice parameter value calculated in XRD for the as-synthesised Si NWs (0.5440 

nm) is higher than the lattice parameter value in the literature (0.5431 nm) [4.10], 

reported for the bulk Si diamond lattice structure at room temperature. The enhanced 

lattice parameter value for the as-synthesised Si NWs shows that the structure is 

enlarged along the preferred growth direction having tensile stress applied; it may be 

attributed to the occurrence of the Ag-catalyst initially present in the Si wafer [4.11].  

The lattice parameter values for the n-doped Si NWs are found to be approaching the 

reported value for bulk Si with enhanced annealing temperature. This indicates that the 

presence of the lattice compression is due to the phosphorus impurity atom defects since 

the atomic radii of the phosphorus atoms are smaller than those of the Si host atoms 

[4.9, 4.12]. The lattice parameter values for the n-doped Si NWs also reduce with 

enhanced annealing temperature due to the increase in phosphorus dopant concentration 

with annealing temperature. These phenomena obey Vegard’s law, which states that the 

change in the lattice parameter value is directly proportional to the dopant concentration 

and the difference between dopant and host atomic radii [4.13].  
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Figure 4.12: Variation in the lattice parameter (a) for n-doped Si NWs as a function of 

annealing temperature.  

Having examined whether the MaCE-grown Si NWs and n-doped Si NWs had an 

impact on the structural properties of the single-crystalline diamond lattice structure of 

the starting (100) bulk Si wafer, the next section will focus on the compositional 

properties of n-doped Si NWs annealed at 1000 °C.  

4.4 Compositional Characterisation 

  

4.4.1 X-ray Photoelectron Spectroscopy  
 

X-ray photoelectron spectroscopy (XPS) was used to study the chemical composition, 

bonding status of phosphorus and silicon, and the location of the phosphorus dopants in 

the n-doped (phosphorus-doped) Si NWs annealed at 1000 °C.  

4.4.1.1 Chemical Composition 

 

Figure 4.13 presents the overall XPS spectrum of the n-doped Si NWs. It can be seen 

that the n-doped Si NWs are composed of fluorine (F), oxygen (O), nitrogen (N), carbon 
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(C), phosphorus (P), and silicon (Si). The F 1s, O 1s, N 1s, C 1s, P 2s, Si 2p peaks have 

corresponding binding energies (BEs) of approximately, 687.9, 533.9, 402.4, 286.2, 

193.0, and 104.3 eV, respectively. The presence of the peak related to phosphorus in the 

Si NWs is the result of phosphorus as a dopant. The oxygen-related peak is due to an 

oxide of Si on the Si NW surface. The x(PyOz) layer, which was deposited after the spin-

on doping process, reacted with the Si NWs to form silicon dioxide (SiO2) on the 

surface during the drive-in annealing process, as previously outlined in Chapter 2, 

Section 2.4. Fluorine, nitrogen, and carbon are typically surface contaminants.  

 

 

 

 

 

 

Figure 4.13: XPS surface spectrum of n-doped Si NWs annealed at 1000 °C.  

4.4.1.2 Bonding Status 

 

Figure 4.14 (a) and (b) shows the surface analysis of the XPS Si 2p and P 2p spectra for 

the n-doped Si NWs annealed at 1000 °C, respectively. There are two peaks centred at 

approximately 104.6 eV and 100.4 eV in the Si 2p spectrum of Figure 4.14 (a), 

corresponding to the SiO2 and Si-Si bonds, respectively. It is obvious that the SiO2 peak 

is the most prominent on the surface of the n-doped Si NWs.  
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The peak positioned at approximately 135.5 eV corresponds to the phosphorus 

pentoxide (P2O5) bond in the P 2p spectrum of Figure 4.14 (b). The SiO2 and P2O5 

bonds seen in Figures 4.14 (a) and (b) that originate from the proposed layers formed 

after the drive-in annealing stage (see Figure 2.6 in Chapter 2) verify the oxide 

composition and stoichiometry of the non-uniform disordered amorphous outermost Si 

layer in the HR-TEM micrographs of Figure 4.8; it confirms the stoichiometry of the 

deposited layer formed after the spin-on doping process.  

As previously mentioned in Chapter 2, Section 2.4, the P2O5 layer reacts with the 

Si NWs to form SiO2 on the Si NW surface. In this way, the Si NW wafer is oxidised, 

and it forms a SiO2/Si NW thin interface. At the same time, P2O5 reacts with SiO2 to 

form a phosphorus silicate glass (PSG) layer on the pure SiO2 layer. The SiO2 is 

continuously increasing at the interface [1.13], which explains the vast amount of SiO2 

seen at the surface of the XPS Si 2p surface spectrum of Figure 4.14 (a).  

Neither the PSG nor the SiO2 layer is supposed to be present at the surface since 

hydrofluoric (HF) acid is supposed to remove these parasitic layers after the annealing 

process. There are a few causes that might explain the presence of the PSG and SiO2 

layers: (i) The weakly concentrated (5%) HF is not an effective means to remove the 

parasitic layers after the annealing process, (ii) the HF removal time of 60 seconds is 

too short to remove the parasitic layers (PSG and SiO2), or (iii) the oxide formation on 

the surface is due to a native oxide.  
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Figure 4.14: XPS surface spectra of the (a) Si 2p and (b) P 2p bonds of the n-doped Si 

NWs annealed at 1000 °C.  

4.4.1.3 Location of the Phosphorus Dopants 

 

Figure 4.15 presents the XPS depth-profiles of the (a) Si 2p and (b) P 2p peaks for the 

n-doped Si NWs annealed at 1000 °C. The XPS scans were acquired after each sputter 

time of 0, 48, 1068 seconds, respectively. The co-occurrence of the two peaks (SiO2 

(104.6 eV) and Si (100.4 eV)) seen in the Si 2p spectrum of Figure 4.15 (a) at a sputter 

time of 0 seconds, suggests that the spotted position is near the SiO2/Si NW interface. 

At the same depth, a prominent P2O5 (135.8 eV) bond is spotted in Figure 4.15 (b), 

which corresponds to the phosphorus dopant atoms incorporated in the underlying SiO2 

layer.  

When the sputtering time is increased to 48 seconds, the SiO2 peak (103.7 eV) 

decreases in intensity compared to the higher intensity peak of Si (99.7 eV) as can be 

seen in Figure 4.15 (a). This implies that the spotted location is near the Si NW surface. 

At the same time, a P-Si bond (129.3 eV) appears and the P2O5 peak (135.2 eV) shrinks 
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in intensity as can be seen in Figure 4.15 (b). This indicates that the phosphorus dopant 

atoms exist near the Si NW surface.  

When the sputtering time is further enhanced to 1068 seconds, the oxidised Si peak 

vanishes entirely. A prominent Si-Si peak (99.9 eV) exists in the Si 2p spectrum of 

Figure 4.15 (a). At the same time, the P2O5 peak vanishes entirely and a prominent P-Si 

(129.3 eV) exists as evident in Figure 4.15 (b). This implies that the phosphorus atoms 

are diffused in the Si NW layer and will form the n-type dopant.  

 

 

 

 

 

 

Figure 4.15: XPS depth-profiles of the (a) Si 2p and (b) P 2p peaks for the n-doped Si NWs 

annealed at 1000 °C. 

These results show that the phosphorus dopant atoms exist mostly at the interface and 

within the Si NWs. This phenomenon is a result of the phosphorus atoms redistributed 

near the SiO2 until equilibrium is reached. But since the diffusivity of phosphorus is less 

in SiO2 than in Si, the diffusivity due to redistribution does not count. It is confirmed 

that phosphorus is blocked by the SiO2 layer and piles up at the Si NW layer. The pile-

up phenomena depend on the diffusivity and segregation coefficient of phosphorus in 

SiO2. Hence more phosphorus dopant atoms exist in the Si NW layer, due to the high 

142 140 138 136 134 132 130 128 126 124

1068 s

P-Si

48 s

P-Si
P

2
O

5

0 s

 

 
In

te
n

si
ty

 (
a
.u

.)

Binding Energy (eV)

P
2
O

5

(b) (a) 

110 108 106 104 102 100 98 96 94

1068 s

Si

48 s

Si

SiO
2

0 s

Si

 

 

 I
n

te
n

si
ty

 (
a
.u

.)

Binding Energy (eV)

SiO
2



 

 

 

 

 
   Results and Discussions 

112 
 

segregation coefficient (m ~ 10) and the slow diffusivity of phosphorus in SiO2 [1.13, 

4.14]. 

Having examined the compositional properties of the n-doped Si NWs annealed at 1000 

°C, in particular the chemical composition, location of the phosphorus dopants and the 

bonding status of phosphorus and silicon in the n-doped (phosphorus-doped) Si NWs 

annealed at 1000 °C, the next section will look into the temperature dependence of 

electrical transport properties using the Hall effect measurement technique.  

4.5  Electrical Transport Characterisation  

Electrical transport properties of Si NWs are important to produce functional electronic 

devices such as SCs [1.3]. In this section, the temperature dependence of electrical 

transport properties using the Hall effect measurement technique on n-doped Si NWs 

annealed at 700, 800, 900, and 1000 °C was studied. 

4.5.1 Hall Effect Measurement Technique 

 

4.5.1.1 Temperature Dependence of Dopant Concentration  

   

The variation of the dopant concentration (ND) with annealing temperature, as can be 

seen in Figure 4.15, increased from about 9×10
17

 cm
-3

 to 8×10
19

 cm
-3

 with enhanced 

annealing temperature. The dopant concentration value in this study is considerably 

lower than the dopant concentration value of 10
20

 cm
-3

 found by Vaurette et al. (2008) 

[4.15] and could possibly mean that the spin-on doping method in this work is not a 

good means of controlling the phosphorus-containing source while spin-doping. As 

previously stated in Chapter 3, Section 3.4.5, the negative sign of the Hall voltage 

confirmed that the dopant concentration type is n-type. For the purpose of convenience, 
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the negative sign is not considered. Consequently, these results confirm that the 

pentavalent phosphorus dopants changed the electrical transport properties of the 

initially p-type Si NWs to n-type conducting. In addition, these results also prove that 

the phosphorus dopant atoms are electrically active in the Si NWs. The overall increase 

of the dopant concentration of the phosphorus dopant atoms with annealing temperature 

is attributed to the improved ability of the phosphorus atoms to diffuse into the Si NWs 

at higher annealing temperature [4.16].  

The dopant concentration given here is a measure of the amount of electrically active P 

dopant atoms, as opposed to the total amount of dopant atoms measured by Secondary 

Ion Mass Spectrometry (SIMS) [4.17]. Hence it is expected that the dopant 

concentration values measured using the Hall effect measurement technique is 

considerably lower than the total dopant concentration of the phosphorus dopant atoms 

measured by SIMS.  

 

 

 

 

 

 

Figure 4.15: Temperature dependence of dopant concentration of n-doped Si NWs by 

means of the Hall effect. 
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4.5.1.2 Temperature Dependence of Mobility  

 

Figure 4.16 illustrates the variation of the mobility (μ) of the phosphorus dopant atoms 

with annealing temperature. The mobility deteriorates from about 184 cm
2
/V.s to        

67 cm
2
/V.s as the annealing temperature is enhanced. The enhancement in the dopant 

concentration with annealing, as seen in Figure 4.15, increases the possibility of a 

silicon host atom colliding with a dopant in a given time period and the shorter the 

mean free time between the collisions become, hence reducing the mobility. The 

reduced mobility with increasing annealing temperature is also inferred to the enhanced 

lattice (phonon) scattering. The phonon concentration enhances with annealing 

temperature, causing increased lattice scattering, which results in the reduced mobility 

[4.18].  

 

 

 

 

 

 

 

Figure 4.16: Temperature dependence of the mobility of n-doped Si NWs by means of the 

Hall effect. 
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4.5.1.3 Temperature Dependence of Resistivity  

 

The resistivity (ρ) values for the n-doped Si NWs were calculated using Equation (3.11) 

and were found to decrease from about 0.962 to 0.025 Ω.cm with increasing annealing 

temperature, as evident from Figure 4.17. The larger dopant concentration improves the 

conductivity of the n-doped Si NWs, thus reducing the resistivity with enhanced 

annealing temperature [4.16].  

 

 

 

 

 

 

Figure 4.17: Temperature dependence of the resistivity of n-doped Si NWs by means of the 

Hall effect. 
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Chapter Five: Conclusion and 

Recommendations 

 

Silicon nanowires (Si NWs) demonstrate unique electrical and optical properties 

compared to bulk Si for its use in photovoltaic (PV) applications. The two basic 

approaches for Si NW fabrication are the bottom-up approach, such as the vapour-

liquid-solid (VLS) growth, and the top-down approach, such as the recently developed 

metal-assisted chemical etching (MaCE) fabrication technique.  

In this study, n-doped Si NWs were synthesised from p-type MaCE-grown Si NWs 

using a phosphorus (P)-containing spin-on dopant (SOD) by means of a post-deposition 

technique. Most analysis on the diffusion doping of Si NWs are carried out with VLS-

grown Si NWs. Hence, there is a limitation in the understanding of the precise diffusion 

process of applying the SOD to MaCE-grown Si NWs.  

This study focussed on the effect of n-type doping on the morphological and structural 

properties of MaCE-grown Si NWs. Also the compositional and electrical transport 

properties of the n-doped Si NWs were interrogated.  

The morphological properties of the MaCE-grown Si NWs and n-doped Si NWs were 

studied using scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) characterisation techniques. The structural properties of MaCE-

grown Si NWs and n-doped Si NWs were studied using TEM and X-ray diffraction 

(XRD) characterisation techniques. The compositional and electrical transport 
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properties of n-doped Si NWs were studied using X-ray photoelectron spectroscopy 

(XPS) and the Hall effect measurement technique, respectively.  

The SEM results showed that the vertically-aligned Si NWs formed infers that the 

etching is isotropic and grows along the <100> direction. The SEM results also showed 

that the as-synthesised Si NWs and n-doped Si NWs accumulated at the tips due to the 

capillary action during the MaCE drying process; however, less Si NW bending and 

accumulation was observed at the tips due to reduced Si NW density in n-doped Si 

NWs. The average diameter and length of the n-doped Si NWs annealed at 700 °C and 

900 °C increased and decreased, as compared to the as-synthesised Si NWs and may be 

attributed to the extra layers created post-annealing and to sample damage during SEM 

preparation, respectively. The TEM results showed that the surface roughness post-

annealing for the n-doped Si NW enhanced as a result of the N2 carrier gas ambient.  

TEM and XRD studies confirm that the as-synthesised Si NW and n-doped Si NWs 

kept the single-crystalline diamond lattice structure of the bulk Si wafer.   

The XPS results showed that phosphorus dopant atoms exist mostly within the Si NW 

layer, due to the low diffusivity and high segregation coefficient of phosphorus in SiO2.  

The Hall effect measurement technique showed that the electrical transport properties of 

the n-doped Si NWs improved with increasing annealing temperature.   

Since there is a limitation in the understanding of the precise diffusion process of 

applying the SOD source to the MaCE-grown Si NWs, few to no resources explain the 

layer(s) formed post spin-on doping and post diffusion annealing. Hence, in this study 

proposed layers were created as can be seen in Chapter 2 (Figures 2.5 and 2.6) for the 

spin-on doping and diffusion drive-in processes, respectively. Hence, it is recommended 
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that the morphological and compositional properties post spin-on doping should be 

studied, as opposed to only studying the various properties post-annealing.  

For future reference, a solar cell (SC) based on n-doped MaCE-grown Si NWs can be 

fabricated after application of the drive-in diffusion annealing technique.   
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