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Abstract 
Analysis of monthly MOD16 evapotranspiration rates at sites with different climatic 

characteristics; Heuningnes and Letaba catchments in South Africa 

N.Ndara 

MSc Environmental and Water Science Thesis, Department of Earth Science, University of the 

Western Cape 

Evapotranspiration (ET) is an important component of the water cycle that is estimated to return 

about 60% of precipitation back to the atmosphere. Actual ET can be estimated using remote 

sensing techniques and ground-based measurements. In recent years, a remote sensing product 

MOD 16 ET has been developed.  The limited validation of this product done in South Africa 

showed that ET was underestimated at some sites. A comprehensive analysis of historic and 

seasonal trends in MOD 16 ET data in different climatic regions of South Africa has not been 

done.  

This study has the objective of evaluating if MOD 16 evapotranspiration estimates realistically 

represent the seasonal variations of ET on different land cover types in two different climatic 

regions; Mediterranean (Heuningnes catchment in Western Cape) and Sub-tropical (Letaba 

catchment in Limpopo) regions. Monthly MOD 16 ET maps for 2000-2012 for the Letaba 

catchment and Heuningnes catchment were created using ArcGIS. The results suggested that 

during the 2000 – 2012 period, ET was 438 - 753 mm/ year in the Letaba catchment and 432 – 

458 mm/year in the Heuningnes catchment.  

The accuracy of MOD 16 ET was evaluated using estimates of actual ET from scintillometer 

data in Elandsberg (Western Cape) and flux tower data in Malopeni (Limpopo) and Skukuza 

(Limpopo). Monthly ET estimated using scintillometer and flux tower were calculated to 

coincide with the monthly MOD 16 ET data for a period of 1 year from Nov 2012- Oct 2013 in 

Elandsberg, 1 year 1 month from Mar 2009- Mar 2010 in Malopeni and 13 years from 2000-

2012 in Skukuza. In Elandsberg, the results showed that MOD 16 underestimated ET (R
2 

= 0.16, 

RMSE = 28.30 mm/month). In Malopeni, the results suggested that there is a strong relationship 

between ET estimated from flux tower data and MOD 16 ET (R
2 

= 0.77), but MOD 16 slightly 

overestimate ET (RMSE = 8.6 mm/month).  MODIS ET estimates for Elandsberg had a poorer 

comparison with the results obtained at Malopeni and Skukuza. Thus, it is evident that MOD 16 
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underestimates ET in the Mediterranean region and slightly overestimates in the Sub-tropical 

region. 

The second objective was to establish whether the performance of MOD 16 is influenced by 

spatial variation of ET in the Heuningnes catchment and the Letaba catchment, in relation to 

different land cover types. It was found that forest had highest ET (603 mm) during summer and 

cultivated dry land had lowest ET (367 mm) during winter in Heuningnes. In Letaba, forest had 

highest ET (1204 mm) during summer wet season, and cultivated dry land had lowest ET (330 

mm) during summer wet season. MOD 16 was found to be applicable in applications like 

mapping shallow groundwater areas, as it was successfully used to identify areas with shallow 

groundwater in the Heuningnes catchment and Molototsi in Letaba catchment. 
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Chapter 1: General Introduction 

1.1 Background to the study 

Evapotranspiration (ET), is defined as the sum of water transferred to the atmosphere from water 

bodies, soil surface through evaporation, and from plant tissues via transpiration (Mu et al., 

2007). Evapotranspiration is the second largest component after precipitation in the terrestrial 

water cycle at the global scale, since it returns more than 60% of precipitation back to the 

atmosphere and therefore determines the availability of water at the land surface (Mu et al., 

2011).  

In plant leaves the most important pathway for ET is the stomata. There is a high correlation 

between stomatal conductance and the rate of carbon assimilation for a wide range of plant 

species (Mu et al., 2007). Stomatal conductance controls the rate of water and carbon exchange 

between vegetation and the atmosphere (Mu et al., 2007). In general, high stomatal conductance 

leads to high transpiration and high photosynthesis, resulting in lowering of soil moisture 

assuming there is no additional input of water, which in turn reduces the stomatal conductance.  

 ET rates differ between warm wet regions and cold dry regions. Brown (2000), states that in 

cold dry regions the rate of ET is low due to limited available water and solar radiation. In arid 

areas ET and soil water content are the most critical variables, where ET may reach nearly 100% 

of rainfall (Jovanovic et al., 2014). In warm wet regions the rate of ET is high due to high levels 

of available water and solar radiation (Brown 2000).  

There are possibly three different evapotranspiration rates, namely actual ET, reference ET and 

potential ET in the water cycle. Potential ET is the rate at which ET will occur from a large area 

uniformly and completely covered with growing vegetation which has access to an unlimited 

supply of soil water (McMahon et al., 2013). The assumptions of no advection and no heating 

effects refer to water-advected energy and to heat storage effects, which will be valid for water 

bodies but may not be so for vegetation surfaces. In nature, potential ET rarely occurs, especially 

in semi-arid areas. Stomata close and ET rates are below potential rates when water is a limiting 

factor (Jovanovic & Israel 2012). Reference ET is the evapotranspiration rate from a reference 

surface, not short of water (Allen et al., 1998). The reference surface is assumed to be a grass 

reference crop with specific characteristics; such as crop height of 0.12 m, fixed surface 

resistance of 70 s m
-1 

and an albedo of 0.23. Reference ET does not consider the crop 
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characteristics and soil factors; it is only affected by climatic parameters such as temperature, 

radiation, wind speed, sunshine hours and air humidity and can be computed from weather data 

(Allen et al., 1998). Actual ET is the rate at which water is transformed into water vapor under 

the prevailing meteorological, soil water and plant conditions (McMahon et al., 2013). Actual 

ET is the major component in the water balance of a catchment, reservoir or lake, irrigation 

region and some groundwater systems. Thus it is important to have knowledge of actual ET rates 

and how these affect availability of water.  

Actual ET is the most difficult component to determine, especially in arid and semi-arid areas 

where a large proportion of low and sporadic precipitation is returned to atmosphere via ET 

(Jovanovic et al., 2015). In these areas, vegetation is often subject to water stress and plant 

species adapt in different ways to prolonged drought conditions. Actual ET as part of the 

hydrologic cycle is affected by a multitude of processes at the interface between soil, vegetation 

and atmosphere (Mauser & Schadlich 1998). Actual ET therefore varies depending on the 

heterogeneity of the landscape and topography, climate, type of vegetation and soil properties 

(Mu et al., 2007). This makes actual ET very dynamic over time and variable in space.  

Actual ET is important in managing and monitoring ecosystems. For instance, sustainable 

management of water resources within the water cycle requires monitoring of both the quality 

and quantity of water (Jovanovic et al., 2011). Monitoring actual ET has important implications 

in modeling the hydrological cycle at regional and global scales (Kustas & Norman 1996). For 

many land surfaces even those containing sparse vegetation cover, ET rates are closely related to 

the need for plants to assimilate carbon for their maintenance and growth (Kustas & Norman 

1996). Therefore, significant deviation from a potential or optimal ET rate for different vegetated 

surfaces has been related to plant stress indicators, which in turn have been related to vegetation 

temperature.  Actual ET can thus be estimated using the remote sensing techniques or ground 

based measurements. 

 Remote sensing techniques have advantages over ground based measurements. The remote 

sensing techniques inherently have the ability to provide spatial and temporal information of the 

land surface (Chen et al., 2005). The remote sensing imagery is directly used to identify 

phenomena such as flooded areas and snow cover (Chen et al., 2005). Bastiaanssen et al., 

(1998), state that remote sensing data from satellites provide consistent and frequent observation 

of spectral reflectance and emittance of radiation of the land surface at micro and macro scales. 
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Remote sensing data are used to estimate precipitation and soil moisture. Various remote sensing 

algorithms are used to estimate actual ET. These include; SEBAL, METRIC, SEBS, and 

MODIS. The Surface Energy Balance Algorithm over Land (SEBAL) uses remote sensing 

imagery, empirical relationships and physical modules to calculate the terms of the energy 

balance equation and estimate ET (Bastiaanssen et al., 1998).  The Mapping EvapoTranspiration 

at high Resolution with Internalized Calibration (METRIC) uses LandSat data to estimate ET at 

high resolution (Allen et al., 2007). The Surface Energy Balance System (SEBS) is an energy 

balance algorithm for the estimation of ET that works on similar principles as SEBAL and 

METRIC (Courault et al., 2005). The Moderate Resolution Imaging Spectroradiometer 

(MODIS) is based on the physical sound theory of the Penman-Monteith method and estimates 

both canopy conductance and ET (Mu et al., 2007).  

The MOD 16 ET algorithm estimates ET using global daily temperature, actual vapour pressure 

and incoming solar radiation, and remotely-sensed Leaf Area Index, fraction of 

Photosynthetically Active Radiation (fPAR), albedo and land cover (Mu et al., 2007). MOD 16 

ET is a sum of three components;  

                                                         𝐸𝑇 = 𝑇𝐶 + 𝐸𝑆 + 𝐸𝐼         (1.1) 

where: Tc is the canopy transpiration, Es is soil evaporation and Ei is interception evaporation 

(Mu et al., 2007). The MOD 16 ET product estimates global ET from ground-based 

meteorological observations and remote-sensing data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) located on NASA’s Terra and Aqua satellites (Mu et al., 2007). The 

MODIS sensor works on spatial resolution of approximately 1 km, suitable for application in 

water resources management (Mu et al., 2007). Actual ET rates estimated using MODIS are 

freely available. However the accuracy of actual ET rates estimated using MODIS needs to be 

evaluated in arid and semi-arid areas (Jovanovic et al 2013).  

There are various techniques used to measure actual ET in the field namely; Bowen ratio, Eddy 

correlation systems, soil water balance. Courault et al (2005), state that the main problem with 

the field techniques is that they do not allow estimating the fluxes when dealing with large 

spatial scales. The other disadvantage with in situ techniques is that measurements are taken 

across a specific distance, 1-5 km (eg. when using the scintillometer), that result in a small area 

being covered. The ground based methods are also relatively time consuming and require 

expensive equipment.  
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The current study will therefore validate MOD 16 ET estimates using ground based 

measurements, evaluate if actual ET rates estimated by MOD 16 effectively represent the 

seasonal and interannual variations of actual ET at the catchment scale and examine if actual ET 

rates estimated by MOD 16 capture the variations of actual ET with land cover or land use types 

on selected catchments. 

1.2 Problem Statement 

Jovanovic et al. (2015) analysed yearly temporal and spatial variation of MOD16 ET in South 

Africa and concluded that MOD16 may underestimate ET at national scale (15%).  However, a 

comprehensive analysis of seasonal and interannual variation of MOD 16 ET data in different 

climatic regions of South Africa has not been done. An understanding of temporal and spatial ET 

variation for different climatic regions, e.g. Mediterranean (Heuningnes catchment in Western 

Cape) and Sub-tropical (Letaba catchment in Limpopo) of South Africa, can contribute to 

accurate mapping and comparing historic changes in land cover types in these regions.  

Land cover types are generally very important in ecosystem; therefore the variation of actual ET 

rates in different land cover types needs to be examined. Land cover types are beneficial in the 

ecosystem in different ways. Forests, for example, provide food and shelter for some animal 

species and also reduce soil erosion. Wetlands can reduce flooding by holding back peak flows 

when water levels are high and in some cases, storing water within the wetland. They can also 

produce a number of valuable plants and animals, which can be harvested on a sustainable basis 

to provide an economic return. Shallow groundwater can contribute water for irrigation purposes. 

Application of MODIS would therefore examine if actual ET rates by MOD 16 capture the 

variation of ET with different land cover or land use types. Therefore the analysis of MOD 16 

ET data is very crucial in the Heuningnes catchment (Western Cape) and the Letaba catchment 

(Limpopo) in order to identify the effects of historic changes in land cover types on the water 

consumption in catchments. The Heuningnes catchment (Western Cape) and Letaba catchment 

(Limpopo) were selected as examples because of the marked differences in climatic and 

environmental conditions. 
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1.3 Research Questions 

1. Can MOD 16 accurately represent the seasonal and interannual variations of ET at the 

catchment scale?  

2. Can actual ET rates estimated by MOD 16 capture the variations of ET with land cover or 

land use types on selected catchments?  

1.4 General Objective 

The general objective of this study is to evaluate whether MOD 16 realistically represents the 

seasonal and interannual variations of actual ET rates in two different climatic regions of South 

Africa; Mediterranean (Heuningnes catchment in Western Cape) and Sub-tropical (Letaba 

catchment in Limpopo) regions. 

1.5 Specific Objectives 

1. To evaluate if ET rates estimated by MOD 16 adequately represent the seasonal and 

interannual variations of actual ET at the catchment scale.  

2. To examine whether ET rates estimated by MOD 16 capture the variations of actual ET 

with land cover or land use types on selected catchments. 

3. To evaluate whether MOD 16 can be used to identify areas with shallow groundwater  

1.6 Significance of the study 

Validation of the accuracy of MOD 16 ET products is very crucial. This enables proper 

conclusions to be drawn based on the MOD 16 ET product. MOD 16 was developed in recent 

years and its accuracy is therefore not well known in South Africa. Therefore, it is crucial to 

validate its accuracy in different climatic regions of South Africa. It is also important to analyse 

the seasonal and interannual MOD 16 ET in different climatic regions in order to evaluate 

whether MOD 16 adequately represent the seasonal and interannual variations of ET and also to 

examine if actual ET rates estimated by MOD 16 capture the variations of actual ET with land 

cover or land use types on selected catchments. The MOD 16 ET data can possibly contribute in 

determining water use from different land cover types such as forest and shrub land, lakes, rivers, 

wetlands, crop lands, shallow groundwater. These land cover types in turn each play a significant 

role on earth ecosystems. The wetlands for instance are essential components of the water cycle 

and many are a link between surface and groundwater. They are very important in the ecosystem 
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as they provide food, shelter, breeding and resting places for many species of plants, and 

animals. Wetlands improve water quality as they act like a filter to remove sediments, absorb 

nutrients and biologically change many chemicals into less harmful forms.  Shallow groundwater 

is widely used for agricultural purposes, and mostly used in areas that are likely to have drought. 

Appropriate knowledge about land cover types can therefore be used in proper management of 

water and ecosystem. 

1.7 Outline of the study 

Chapter 1 represents the background of the study, problem statement, research questions, 

objectives of the study, and the significance of the study. Chapter 2 presents the review from 

previous studies that are similar to the current study with the aim of identifying the gap in 

knowledge and practice including methods. Chapter 3 describes the research design and explains 

the methods that are going to be used in this study. Chapter 4 represents and discusses the results 

found in validation of MOD 16 ET.  Chapter 5 illustrates and discusses the variations of ET with 

land cover. Chapter 6 draws a proper conclusion based on the objectives of this study, results 

found and discussed. Appropriate recommendations are also made in this chapter. 
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Chapter 2: Literature review 

2.1 Introduction  

This chapter will firstly examine the principles upon which methods for establishing ET using 

remote sensing data are based. Secondly the principles upon which methods for establishing ET 

using ground measured data will be examined. In the last section the assessment of the 

performance of these methods will be reviewed. 

2.2 Remote sensing techniques 

The methods for estimating ET using remote sensing data are grouped into; vegetation index 

models and energy balance models. These models are distinguished based on how they calculate 

ET and their inputs. The vegetation index models are useful for calculating ET in arid and 

semiarid regions because ET is dominated by transpiration (Senay et al., 2011). These models 

are based on the observation that foliage density on the ground, as measured by satellite 

vegetation index, often is strongly correlated with ET. Vegetation index methods must be 

combined with meteorological data to estimate atmospheric water demand and the energy 

available to evaporate water. However the vegetation index models are not examined in detail, as 

the main focus of the study is on the energy balance models. The energy balance models for ET 

estimation are driven by the land surface temperature (Senay et al., 2011). Critical information 

on the partitioning of the net radiation among latent heat, sensible and ground heat flux is 

provided by the spatial or temporal variation in land surface temperature.  Based on these general 

principles several methods can be used to estimate ET. These methods include Surface Energy 

Balance System (SEBS), Surface Energy Balance Algorithm over Land (SEBAL), Mapping 

EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) and MOD 16. 

2.2.1 Surface Energy Balance System (SEBS) 

The Surface Energy Balance System (SEBS) uses remote sensing and meteorological data to 

estimate sensible and latent heat fluxes (Su., 2002). SEBS estimates the evaporative fraction 

from land surfaces and consists of the following components; the computations of land surface 

physical parameters, calculation of roughness length for heat transfer, and estimation of the 

evaporative fraction based on energy balance for limiting cases (Liou & Kar 2014). The 

algorithm of SEBS calculates ET as a residual of the energy balance (Su., 2002):  
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 𝜆𝐸 = 𝑅𝑛 − 𝐻 − 𝐺                                (2.1) 

where: Rn (MJ.m
-2

. day
-1

) is the net radiation, G (MJ.m
-2

. day
-1

) is the soil heat flux, H (MJ.m
-2 

. 

day
-1 

) is the sensible heat flux, 𝝺E (mm. day
-1

) is the turbulent latent heat flux, 𝝺 (MJ.kg-1) is the 

latent heat of vaporization and E (mm. day
-1

) is the actual evapotranspiration. 

Net radiation (Rn) is the total amount of radiation that reaches the earth’s surface. Rn is estimated 

from downward solar radiation (Rswd) and emitted long wave radiation (Rlwd) as shown in 

Equation (2.2): 

𝑅𝑛 = (1 − 𝞪) ∗ 𝑅𝑠𝑤𝑑 + 𝜀 ∗ 𝑅𝑙𝑤𝑑 − 𝜀 ∗ 𝜎 ∗ 𝑇𝑜4                                         (2.2) 

where: 𝞪 is albedo, 𝞮 is emissivity of the surface, 𝞼 is the Stefan-Bolzmann constant and To (°C) 

is the surface temperature. 

Soil heat flux (G) is determined as: 

𝐺 = 𝑅𝑛(𝑇𝑐 + (1 − 𝐹𝑐)(𝑇𝑠 − 𝑇𝑐))                                  (2.3) 

where: Tc is the ratio of soil heat flux to net radiation for full vegetation canopy, Ts is the ratio of 

soil heat flux to net radiation for bare soils, Fc is the fractional vegetation coverage. Sensible and 

latent heat flux are derived using similarity theory. A distinction is made between the atmosphere 

or planetary boundary layer and the atmospheric surface layer.  

Su (2002) conducted a study to assess the reliabilities of SEBS. The results indicated that SEBS 

can be used to estimate turbulent heat fluxes at different scales with acceptable accuracy. The 

application of SEBS does not require any prior knowledge of the actual turbulent heat fluxes, 

which indicates that SEBS is a credible and independent approach. The advantages of SEBS 

include; a) consideration of the energy balance at the limiting cases which minimizes the 

uncertainty involved in surface temperature or meteorological variables, b) new formulation of 

the roughness height for heat transfer instead of using constant values, c) characterizing actual 

turbulent heat fluxes without any prior knowledge, and d) representativeness of parameters 

associated with surface resistance (Liou & Kar 2014). SEBS has been widely applied over large 

heterogeneous areas using MODIS data for the thermal band information of 1 km (Liou & Kar 

2014). However, relatively complex solution of the turbulent heat fluxes and too many required 

parameters can often cause more or less inconveniences in SEBS when data are not readily 

available. 
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2.2.2 Surface Energy Balance Algorithm over Land (SEBAL) 

 The Surface Energy Balance Algorithm over Land (SEBAL) is an algorithm that uses remote 

sensing data, empirical relationships and physical modules to calculate the terms of the energy 

balance equation and estimate ET (Bastiaanssen et al., 1998). SEBAL is suitable for visible, 

near-infrared and thermal infrared input data obtained from satellite sensors.  

Net radiation is calculated as follows for each pixel of the satellite image: 

  oisn LLRrR  01
 

                                                 (2.4) 

  

where: r0 is the hemispherical surface reflectance, Rs is the incoming solar radiation (W m
-2

), Li 

is the incoming long wave radiation (W m
-2

), and Lo is the outgoing long wave radiation (W m
-2

). 

r0 can be obtained from the broadband directional planetary reflectance and atmospheric 

transmittance, whereas Rs can be calculated from incoming extra-terrestrial radiation and 

atmospheric transmittance for cloudless conditions. Li can be calculated with the Stephan-

Boltzmann formula as a function of the apparent thermal infrared emissivity of the atmosphere 

and air temperature. Lo can be calculated with the Stephan-Boltzmann formula as a function of 

surface emissivity and temperature. 

Soil heat flux for the whole day is calculated with the following empirical equation: 

  42

00

0

0 98.010062.00032.0 NDVIrr
r

T
RG avgavg

n 

 

                 (2.5) 

where: T0 (°C) is the surface temperature and r0  is the daytime hemispherical surface resistance, 

r0
avg 

is the average daytime hemispherical resistance and NDVI is Normalized Difference 

Vegetation Index.  

In the calculation of H both wet and dry surface pixels are required because these represent 

extreme pixels in the studied domain at the specific time when the satellite images are taken. The 

sensible heat flux is controlled by a dry limit (surface with latent heat flux λE = 0; sensible heat 

flux H = Rn - G) and wet limit (surface with sensible heat flux H = 0; near-surface vertical 

difference in air temperature δTa = 0). The near-surface vertical difference in air temperature 
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value (δTa) is assigned to all other pixels assuming it varies linearly between the dry and wet 

ranges. H is then calculated for each pixel of the satellite image as follows: 

a

ahsur

pa
T

r

C
H 




 

                                                        (2.6) 

where ρa (kg m
-3

) is the moist air density, Cp (Jkg
-1 

k
-1

) is the air specific heat at constant 

pressure, rahsur (s m
-1

) is the distributed air resistance to heat transport and δTa (°C) is the near-

surface vertical air temperature difference. 

rahsur is calculated as a function of friction velocity. δTa (°C) is obtained from radiometric surface 

temperature (T0 in K) as follows: 

54 cTkcTa   
                                                        (2.7) 

Where c4 and c5 are linear regression coefficients valid for one particular moment and landscape 

(a given satellite image) for the function that relates dry and wet pixels.  

λE is finally computed from Equation (2.1) as residual. Instantaneous λE values are extrapolated 

over time assuming that the instantaneous evaporative fraction in Equation (2.1) is stable, where 

the evaporative fraction EF is: 

GR

E
EF

n 




 

                                                        (2.8) 

λE is converted into mm and provides directly a measure of actual ET. 

The advantages of this algorithm are; a) the algorithm is a physical concept, and thus applicable 

to various climates, b) there is no need for land use classification, c) the method is suitable for all 

visible, near-infrared and thermal-infrared radiometers, which indicates that it can be applied at 

different spatial and temporal resolutions, d) minimum ground-based data are required, e) it does 

not require a strict correction of atmospheric effects on surface temperature due to its automatic 

internal calibration, and f) internal calibration can be done with each analyzed image (Bala et al., 

2013). On the other hand the disadvantages of this algorithm are; a) it requires cloud-free 

conditions, b) presence of wetlands and dry lands is required, c) subjective specifications of 

representative hot or dry and wet or cool pixels within the image are required to determine model 

parameters. The resulting H flux and ET estimates from SEBAL can vary with differing extreme 
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pixels selected by the operator, domain size and spatial resolution of satellite sensors (Liou & 

Kar 2014), and d) estimated H is greatly affected by the errors in surface air temperature 

differences or surface temperature measurements. 

2.2.3 Mapping EvapoTranspiration at high Resolution with Internalized Calibration 

(METRIC) 

Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) is a 

satellite-based image-processing tool for mapping ET as a residual of the energy balance at the 

Earth’s surface (Equation 2.1) (Allen et al.,2007a and b). The primary inputs for the model are 

short-wave and long wave images from a satellite (e.g. LandSat), a digital elevation model and 

ground-based weather data measured within or near the area of interest. These ET images (i.e. 

maps) provide the means to quantify ET on a field by field basis in terms of both rates and 

spatial distribution (Allen et al., 2007a and b).  

METRIC calculates Rn using Equation (2.4). METRIC uses a bi-directional reflectance at the top 

of the atmosphere instead of r0. Soil heat flux (G) is calculated using the following equation: 

   4

0 98.010074.00038.015.273 NDVITRG n  
 

                   (2.9) 

Where: α is the albedo. METRIC uses Equation (2.6) to calculate δTa (°C) from sensible heat 

flux (H) by inversion. When calibrating the ET model for the wet and dry surface pixels, 

METRIC considers all the assumption λE = Rn – G for the wet limit (wet pixel) may not 

necessarily be true because advection may occur as an additional source of energy to Rn. λE for 

the wet pixel is therefore estimated as: 

rETFE
 

                                                      (2.10) 

where: ETr is the reference evapotranspiration of an alfalfa (lucerne) crop and F is a factor. ETr 

is calculated for each satellite image using ground-based weather stations.  F is usually taken as 

1.05 based on the assumption that agricultural fields that are at full cover have ET rates that are 

typically about 5% greater than ETr (some fields have a wet soil surface beneath a full vegetation 

canopy that tends to increase the total ET rate to about 5% above that of the ETr). H can then be 

estimated as a residual from H = Rn – G – λE. In this way, an independent estimate of λE is built 

into the calibration (Equation 2.7) and the value of λE is freed from being expressed as an 

evaporative fraction dependent on Rn (Allen et al., 2007a). 
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Once H is calculated for each pixel using Equation (2.6), λE can be calculated for each pixel as 

residual of the energy balance (Equation 2.1). Instantaneous λE is converted into hourly ETh 

using the following equation: 

w

h

E
ET




600,3

 

                                                   (2.11) 

where λ is the latent heat of vapourization (MJ kg
-1

), 3,600 is the conversion factor from seconds 

to hours and ρw is the density of water (1,000 kg m
-3

). Lantent heat of vaporization (λ) is given 

by:  

   6

0 1015.27300236.0501.2  T
 

                                   (2.12) 

Daily evapotranspiration ET24h is calculated as: 

  2424 rrradh ETFETCET 
 

                                            (2.13) 

where: Crad is a clear-sky solar radiation and ETr24 is the cumulative 24 h reference 

evapotranspiration for the day of the satellite image. ETr F is calculated as: 

r

h

r
ET

ET
FET 

 

                                                     (2.14) 

In Equation (2.14) METRIC assumes that the ratio ETh / ETr is constant during the day (the ratio 

is the same at both the observation time and for the 24 h period). ET for periods longer than 1 

day can be obtained by cumulating daily ETr values multiplied by the corresponding ETr F: 

   



n

mi

irir ETFETET 24

 

                                               (2.15) 

The use of an independently calculated reference evapotranspiration ETr (from ground-based 

weather data) in the extrapolation of instantaneous ET and ETh to periods of 24 h and longer 

accounts better for regional advection effects compared to the use of the evaporative fraction to 

net radiation, because ET can exceed daily net radiation in many arid or semi-arid locations and 

ETr incorporates advection effects (Allen et al., 2007a).  
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The advantage of METRIC is that the use of reference ET in calibration of METRIC and the use 

of ETr F in extrapolation to 24 h ET provide general equivalency and congruency. METRIC 

estimates actual ET rather than potential ET and does not require knowledge of crop types (no 

satellite-based crop classification is needed). METRIC relies on theoretical and physical 

relationships but, provides for the introduction and automated calibration of empirical 

coefficients and relationships to make process operational and accurate (Allen et al., 2007a). 

2.2.4 Moderate Resolution Imaging Spectroradiometer (MOD 16)  

MOD 16 was developed by Mu et al., (2007) and improved by Mu et al., (2011).  

MOD 16 is based on the Penman-Monteith equation: 

𝜆𝐸𝑇 =
𝑆∗𝐴+𝑝∗𝐶𝑝∗

𝑒𝑠𝑎𝑡−𝑒

𝑟𝑎

𝑠+𝛾∗(1+
𝑟𝑠

𝑟𝑎
)

                                                                                                        (2.16) 

where:  

λET is the latent heat flux; λ is the latent heat of vaporization; s = d(esat)/dT, the slope of the 

curve relating saturated water vapour pressure ( esat) to temperature; e is actual vapour pressure; 

A is available energy partitioned between sensible heat, latent heat and soil heat fluxes on land 

surface; p is air density; Cp is the specific heat capacity of air; and ra is the aerodynamic 

resistance; γ is the psychrometric constant and rs is the surface resistance (Mu et al., 2011).  

MOD 16 has a spatial resolution of approximately 1 km and a temporal resolution of 8-day, 

monthly and annual intervals. The MOD 16 ET algorithm estimates ET using 8- day remote 

sensing data (Land cover, Leaf Area Index (LAI), Fraction of Photosynthetically Active 

Radiation (fPAR), and albedo) and daily in situ data  (air temperature, air pressure, humidity, and 

solar radiation) (Mu et al., 2011). MOD 16 ET algorithm estimates both plant evapotranspiration 

and soil evaporation (Figure 2.1). Plant evapotranspiration is the evaporation of water intercepted 

by the canopy before reaching the ground and transpiration through stomata on plant leaves and 

stems. Plant evapotranspiration is estimated using both remote sensing data (land cover, LAI, 

albedo and fPAR) and in situ data (air pressure, air temperature, humidity and radiation). 

Moreover, soil evaporation includes the potential evaporation from the saturated soil surface and 

evaporation from the moist soil surface. Soil evaporation is estimated using remote sensing data 

(albedo, fPAR, and land cover) and in situ data (radiation and air temperature). Soil evaporation 

is important in areas with a sparse canopy. ET is given as 𝑇𝑐 + 𝐸𝑠 + 𝐸𝑖where Tc is the canopy 
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transpiration, Es is the soil evaporation and Ei is the interception evaporation. The combination of 

plant evapotranspiration and soil evaporation result to actual evapotranspiration (Figure 2.1).  

The uncertainties about MOD 16 include the misclassification of land type in the given pixel as 

that would result in misinterpretation of results (Kim et al., 2012). A large number of physical 

factors are involved in soil surface evaporation and plant transpiration processes, including 

microclimate, plant biophysics for site specific species and landscape heterogeneity, making 

accurate assessment of ET a challenge (Mu et al., 2011). Uncertainties from MODIS LAI/fPAR 

and daily meteorological data can introduce biases to ET estimates. Ramoelo et al., (2014) 

validated the MOD 16 ET product using flux tower data in the African Savanna, South Africa. 

The flux tower results achieved a poorer comparison with MOD 16 ET. These results may be 

due to a number of factors, including the parameterization (input data) of the Penman-Monteith 

model, flux tower measurement error, and flux tower footprint versus MODIS pixel size. The 

input data parameters of MODIS ET are coarse scale products, generally poorly or not validated 

in the semi-arid conditions of South Africa, which are likely to generate significant ET 

prediction errors (Ramoelo et al., 2014). For instance MODIS global land cover is a relatively 

coarse product (500 m) which inadequately captures the heterogeneity of Savanna ecosystems. 

 

Figure 2.1:  Flowchart of MODIS Evapotranspiration (ET) algorithm (Mu et al., 2011) 
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2.3 Ground based measurement techniques 

Actual ET is estimated using various methods such as a scintillometer, eddy covariance and 

lysimeters. Ground based measurement techniques are important for the evaluation of ET 

estimates obtained by remote sensing techniques. A review of each mentioned method is given 

below. 

2.3.1 Scintillometer 

This method is based on the physical principle of the propagation of electromagnetic waves in 

the atmosphere and their disturbance by atmospheric turbulence. A scintillometer measures the 

variation of radiation intensity fluctuations (Petropoulos et al., 2013). These variations in the 

refraction index are caused by fluctuations in temperature, pressure, and humidity as well as their 

interactions. A scintillometer measures a parameter of the refractive index of air (Cn
2
) over a 

horizontal path, caused by air temperature fluctuations that represent the atmospheric turbulence 

structure. The Cn
2
 and ET are determined over a distance of 500 m to 5 km (Jovanovic et al., 

2014). An area-averaged heat flux can be derived from the changes in the refractive index of the 

air between a transmitter and a receiver (Petropoulos et al., 2013). Estimates of total evaporation 

are spatially averaged over the area between the transmitter and receiver.  

The advantage of scintillometers is that they can provide representative estimates of the lantent 

heat fluxes (LE) over large areas with the use of a single instrument, due to the extended spatial 

averaging of those instruments (Petropoulos et al., 2013). Furthermore, as the scintillometer 

measurement principle is based on evaluations of relative intensity statistics, the system is free of 

long term drift and does not require calibration prior to use. However a major disadvantage is 

that they are affected by strong turbulence that is referred to as saturation, which occurs at path 

lengths of about 250 m (Petropoulos et al., 2013).  

Savage et al., (2010), contrasted various methods used for estimating evaporation rates as a 

residual of the shortened energy balance in mesic grassland in South Africa. Bowen ratio 

systems (BR) were used to measure water vapour pressure and air temperature profile 

differences between heights of 1.55 m and 2.96 m above the soil surface. Eddy covariance 

system (EC) was used to measure sensible heat flux at a height of 1.45 m above the soil surface 

and later the height was increased to 2.12 m above the soil surface. Surface-layer scintillometer 

(SLS) was used to estimate sensible heat flux (H) for a path lengths of either 50 or 101, for more 

than 30 months. From the sensible heat flux (H) estimates, using surface-layer scintillometer 

(SLS) and measurements of soil heat flux and net irradiance, evaporation rates were calculated as 
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a residual of the shortened energy balance equation and compared with grass reference 

evaporation rates (ETo).  

The results showed inconsistent hourly ETo values in the late afternoon due to the incorrect 

assumption that the soil heat flux is 10% of net irradiance. The surface-layer scintillometer (SLS) 

estimates of sensible heat flux (H) and the estimates of evaporation rates as a residual compared 

favorably with those obtained using Bowen ratio (BR) and eddy covariance (EC) methods for 

cloudless days, cloudy days and days with variable cloud. There was no evidence for eddy 

covariance (EC) measurements of sensible heat flux (H) being underestimated in comparison to 

the Bowen ratio (BR) and surface-layer scintillometer (SLS) measurements. It was concluded 

that the surface-layer scintillometer (SLS) method is a robust method allowing long-term and 

continuous evaporation rate measurements that represent a larger measurement footprint than 

may be the case for the Bowen ratio (BR) and eddy covariance (EC) methods. 

Scintillometer performs well in areas with uniform and natural vegetation and does not perform 

well in areas with heterogeneous vegetation. The areas with heterogeneous vegetation bring 

uncertainties about the scintillometer as the measured refractive index of air is not the same 

throughout the horizontal path. For instance, Jovanovic et al., (2013) conducted a study to collect 

ground measured data derived from Scintillometer in Elandsberg Nature Reserve, Western Cape. 

The data collected was intended to ground-truth satellite remote sensing estimates of ET from 

MOD 16 product. The site where scintillometer was installed was selected based on the extent 

and uniformity of the natural vegetation. 

2.3.2 Eddy Covariance method  

This is one of the most widely used direct methods for collecting data for the purpose of 

estimating energy fluxes above a canopy. The eddy covariance method explicitly measures the 

turbulent components of momentum, heat, and moisture, theoretically providing a direct estimate 

of surface fluxes (Petropoulos et al., 2013). The method estimates rate of evaporation from 

measurements of upwind velocity and vapour fluxes of the air at a single point above the 

evaporation surface. 

The advantage of this method is that it provides a direct means of measuring the fluxes without 

making any kind of assumptions regarding diffusivities or about parameter values, the shape of 

the vertical profile, atmospheric stability, or the nature of the surface cover (Petropoulos et al., 

2013). Furthermore, as a direct measurement method, the eddy covariance method allows direct 
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checking of the fluxes estimated. The disadvantages of the method include the need for complex, 

fragile, and expensive instrumentation, and well-trained personnel to obtain accurate results. 

Eddy covariance measurements of evapotranspiration, are used to determine local, regional and 

global water budgets, calibrate and validate land surface models, and acquire understanding of 

ecosystem processes. Scott (2010) evaluated the accuracy of eddy covariance evaporation 

measurements for three semiarid ecosystems using catchment water balance. The aim of the 

study was to assess the accuracy of eddy covariance evaporation measurements by comparing 

them with those derived from small catchment water balances. Thirteen years of data from shrub 

land, grassland and savanna sites in southern Arizona USA were compared. The results showed 

that the two independent measurements agreed to within an average of 3% annually and differed 

from -10 to +17% in any given year, when an assumed 5% underestimation in precipitation due 

to gauge under catch was considered. The two measurements generally agreed better in drier 

years and at less topographically complex sites.  

Ding et al., (2010), validated eddy covariance method (EC) by large-scale weighing lysimeter in 

a maize field of northwest China. The study compared ET measured by EC (ETEC) with that 

measured by large-scale weighing lysimeter (ETL) during the whole growing season of maize in 

2009. A lack of energy balance closure occurred, and so the day time ETEC was then adjusted by 

Bowen-ration forced closure method. The half-hourly daytime ETEC was underestimated by 

21.8% without the adjustment and 4.8% with the adjustment, when compared to the 

corresponding ETL. Furthermore, nighttime ETEC was adjusted using filtering method. The 

results then showed that the mean error between half-hourly night time ETEC and ETL decreased 

from 30.2% without the adjustment to 10.3% with the adjustment. After such adjustment of day 

and night measurements, daily ETEC was underestimated by 6.2% compared to ETL. Moreover, 

the inconsistency of adjusted total ETEC and ETL was decreased to 3.2% after subtracting the 

overestimated ET by lysimeter resulting from irrigation and heavy rainfall events. Therefore, 

after appropriate adjustments of observations, eddy covariance method was accurate in 

estimating maize ET in the arid region of northwest China. 

Eddy covariance method is most accurate when atmospheric conditions (wind, temperature, and 

humidity) are stable, the underlying vegetation type is homogeneous and the site is located on a 

flat terrain for an extended distance upwind (Baldocchi, 2003). Methodology for selection of 

homogeneous sites for validation of MOD 16 ET using flux tower data was done by Jovanovic et 
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al., (2013). The selected sites were Berg River in the Western Cape and Letaba catchment in the 

Limpopo Province. The eddy covariance flux tower sites were selected based on several criteria; 

including land cover homogeneity, vegetation height, topographic variability and atmospheric 

stability. The two sites were successfully selected based on the above mentioned criteria’s.   

2.3.3 Lysimeters 
Lysimeters are used in water balance analysis. The amount of water lost to ET can be calculated 

by recording the amount of precipitation that an area receives and amount lost through the soil 

(Seyfriend et al., 2001). Lysimeters are divided into two types; the weighing and the 

nonweighing lysimeters. The nonweighing lysimeters determine the changes in soil water 

content indirectly, whereas the weighing lysimeters measures the changes in soil water within a 

constructed container (Seyfriend et al., 2001). In weighing lysimeters ET for a specified time 

period is calculated based on the following equation            

 𝐸𝑇 = 𝑃 −
𝑉𝑙+𝑉𝑟+𝜟𝑉𝑠

𝐴
                                                                                                                 (2.17) 

where; P is the precipitation (millimeters), Vl is the volume drainage loss m
3
, Vr is volume of net 

surface run on or runoff m
3
, 𝜟Vs is the change in the volume of soil water in the lysimeters and A 

is the area of the lysimeters m
2
. Vl and Vr are said to be zero if the lysimeters is well sealed and 

overland flow is prevented. Thus ET can be calculated from measured values of P, A, and 𝜟Vs 

(Seyfriend et al., 2001). The weighing lysimeters is further divided into two types; the 

mechanical and hydraulic weighing lysimeters (Johnson & Odin., 1978). The soil sample is 

placed directly on the balance in the mechanical weighing lysimeters, therefore the sensitivity 

will be high, if friction can be reduced using advanced support construction. In the hydraulic 

weighing lysimeters the soil sample is placed in a tank floating on a fluid (Johnson & Odin., 

1978). The changes in level reflect weight changes in the sample. 

Some of the limitations of lysimeters include that the values measured are only valid for a single 

position and results may not be transferred to large areas (Johnson & Odin., 1978). To guarantee 

comparable vegetation, hydrological and micro-climatic conditions the lysimeters surface should 

be as high as possible representative of the field in which the vessel is installed (Lanthaler 2004). 

The vegetation has to be of the same on the vessel as in the surrounding field, and the adjacent 

soil has to correspond to the soil in the lysimeters (Lanthaler 2004). The bypass fluxes can hardly 

be determined in lysimeters containers, as the lateral water transport is suppressed in a closed 
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vessel. In lysimeters less amount of water is sampled than really occurs and they are also 

expensive to construct. 

2.4 Review of the performance of remote sensing and ground measured techniques 

2.4.1 Validation of MOD 16 ET product 

The most promising tool for estimation of ET over a large spatial scale is considered to be 

remote sensing. Sun et al. (2007), evaluated the MOD 16 algorithm using MODIS and ground 

observational data in a winter wheat field in North China Plain. The purpose of the study was to 

analyse and find the potential problems of the MOD 16 algorithm and evaluate it in winter wheat 

fields by using MODIS land products, MOD 11-land surface temperature and MOD 13-standard 

normalized difference vegetation index (NDVI), as well as observations at the Yuchens 

Experimental Station, China in 2002. The study used two kinds of data: MODIS data and ground 

measured data from eddy covariance flux tower. For MODIS, two data products were used: 

MOD 11-land surface temperature and emissivity, and MOD13-standard normalized difference 

vegetation index with 1 km spatial resolution. Ground based data was collected from the eddy 

covariance flux tower from day of year (DOY) 97 to 162 of 2002. The data set included air 

temperature, humidity, soil heat flux, sensible heat flux, wind speed and components of radiation 

balance at half hour intervals measured by eddy covariance system. The other ground measured 

data from DOY 1-161, were also collected from a micrometeorological station near the flux 

tower, except for the latent heat flux and sensible heat flux.  

Actual ET and Evaporative fraction (EF) were then calculated using Penman-Monteith method. 

Actual ET and Evaporative fraction (EF) for vegetation estimated with the modified algorithm 

were found consistent with the observations of an eddy covariance system. A radiation budget 

sub-model was analyzed and it was found that the estimate for solar radiation was acceptable 

only on cloud-free days. When the sky was cloud-free, the downward shortwave radiation was 

consistent with the observed data. In the original MOD 16 it was found that the seasonal 

variations of minimum canopy resistance and physiological temperatures were not considered, 

which results in overestimation of canopy resistance when leaf area index was less than 2.5. The 

original MOD 16 estimated Evaporative fraction (EF) for vegetation was compared with the 

Evaporative fraction (EF) calculated with the Penman-Monteith method, which was consistent 

with the eddy covariance measurements. It was found that its mean absolute error was 0.13 mm, 

mean relative error was 40%, and the correlation coefficient was 0.62. The original MOD 16 

algorithm was then modified and its comparison with the Penman-Monteith calculated 

http://etd.uwc.ac.za/



 

 

 

 

 

20 
 

Evaporative fraction (EF) showed that its mean absolute error was 0.1 mm, mean relative error 

was 26% and the correlation coefficient was 0.88. The results show that both EF and ET for 

vegetation are consistent with both observations of an eddy covariance system and the 

calculations using the Penman-Monteith method. The current study will therefore also compare 

MOD 16 ET data with ground based data to evaluate the accuracy of MOD 16. 

2.4.2 Influence of Land cover 
Regional ET is vital to understanding interactions between land-atmosphere surface energy and 

water balances. Kim et al., (2012), validated MODIS 16 global terrestrial ET products in various 

climates and land cover types in Asia. The performance of the MOD 16 ET algorithm was fully 

examined through the comparison of data sets collected from 17 flux tower sites across Asia. The 

validation studies were conducted from 2000 to 2006. MOD 16 ET estimates were averaged over 

the surrounding 1 km
2
 MODIS pixels at each site and compared to the ET measured at the tower. 

It was found that global MOD 16 terrestrial ET overestimated ground ET measurements at nine 

flux tower sites. In eight of these sites the land cover types were forest and only in one site it was 

cropland. The climate was continental at five sites and equatorial for three sites and one site was 

warm temperature. MOD 16 ET underestimates were observed at sites where the land cover was 

rice paddy cropland and the climate was warm temperature. The MODIS ET algorithm 

performance was found poor at sites with grassland cover and it was found to have the best 

performance at sites with forest land cover. Among the climate conditions it was difficult to 

determine any trends that could clearly explain the connectivity between ground measurements 

of ET and MOD 16 ET. It was then concluded that MODIS global terrestrial ET product can 

estimate actual ET with reasonable accuracy in Asia. Based on this study similar approach will 

be adopted in the current study, whereby MOD 16 ET data will be compared with ground 

measurement ET data to test its accuracy in different climatic regions and detect the ET changes 

with different land uses and land cover. 

2.4.3 Validation of METRIC and SEBAL 
Information about surface ET over a range of spatial and temporal scales is required by many 

water resources, agricultural and forest management applications. There are several satellite 

remote sensing methods that can be used to estimate ET. Mkhwanazi and Chaves (2013) carried 

out a study to compare the remote sensing ET algorithms METRIC and SEBAL under advective 

and non-advective conditions. The accuracy of the two algorithms was assessed by comparing 

the estimated ET values with measured ET values using a weighing lysimeter. A total of nine 
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Landsat 7 ETM+ images (2010-2012) were processed using both algorithms (METRIC and 

SEBAL) and ET were estimated for former alfalfa and latter alfalfa fields. Both fields were 

equipped with weighing lysimeters. The remote sensing estimated daily ET was compared with 

lysimeter-based ET measurements. The model error was determined for each data, to measure 

the performance of these models under varying advective conditions. The results showed that 

there were larger errors in SEBAL than in METRIC, with errors up to 45% for the former and up 

to 25% for the latter. The largest errors occurred on windy and hot days when there was no 

advection. In general the METRIC performed better than SEBAL, although both underestimated 

ET in all cases, with the latter underestimating significantly under windy and warm conditions 

which indicated advection. The current study will also follow the similar approach to compare 

the MOD 16 ET data with the ground based data obtained from scintillometers and eddy 

covariance. 

2.4.4 Temporal and spatial variation of actual ET 
Frank and Richard (1994), investigated the temporal variation in actual ET of terrestrial 

ecosystems: the patterns and ecological implications. The water balance was compared among 

the earth’s major terrestrial ecosystems. The 25 year climate records (1965-1989) at ninety four 

sites around the world representing eleven biomes were used. Actual ET, potential ET and deficit 

were derived for each month and year from the 25 year climate records. The main objective of 

the study was to examine temporal variation in actual ET. The results indicated that the standard 

deviation of annual actual ET, an absolute measure of interannual variability, was highest for 

grassland (71) and lowest for tundra (34) and taiga (43). Coefficient of variation of annual actual 

ET was negatively related to mean actual ET and was higher for non-forested than for forested 

ecosystems. Monthly variation, an index of seasonality and interannual variation of actual ET 

were positively related for forested ecosystems and negatively related for non-forested 

ecosystems. Also there was a positive relationship between interannual variability and variation 

among sites within a biome. Furthermore, the results indicated a link between temperature 

variability and spatial heterogeneity among biomes. 

Temporal and spatial variability of the water budget components within the Limpopo River basin 

were investigated using a modeling study of atmospheric and terrestrial hydrological processes 

(Alemaw et al., no date). The spatio-temporal climatology database was created from a network 

of 66 gauging stations in the basin with monthly average records of rainfall and potential ET. A 

GIS-based simple water balance model called Limpopo Water Balance (LIMWAB) model was 

http://etd.uwc.ac.za/



 

 

 

 

 

22 
 

developed in order to understand the water balances which include: surface runoff, actual ET, 

and soil moisture. LIMWAB model simulated water balance components by taking rainfall-

runoff processes in the basin including soil texture controlled moisture in the terrestrial system, 

and the vertical integrated moisture convergence that accounts for the net water vapor flux from 

the basin in order to close the hydrologic water budget. The results indicated that actual ET was 

highly variable both spatially and temporally. The actual ET varied from 400 to 1100 mm/ year 

with high seasonal variability. Additionally, the central sub-catchment of the Limpopo basin 

experienced much less runoff with an average of 30 mm/ year. About 60% of the whole 

catchment areas had an average total runoff of about 100 mm/ year. Soil moisture was found to 

range between 50 and 450 mm/ year.  

 

2.5 Summarized gaps in knowledge and practice 

Although ET can be estimated using various satellite and ground based methods as shown in the 

reviewed studies, it is important to understand these existing ET estimation methods in order to 

improve ET estimation for different environments in South Africa. The current study will use 

MOD 16 to estimate ET in two different climatic regions of South Africa. Knowledge about the 

accuracy of ET estimated by MOD 16 is lacking, thus this study aims to fill this gap. Accurate 

and consistent estimation and mapping of ET is critical for understanding plant water use which 

is an important component of managing ecosystems. MOD 16 has freely readily available data 

from 2000-2012, whereas other remote sensing techniques do not have  historical available data 

for South Africa and are also not readily available, they need to be purchased and run on a 

complex software. 

Previous studies showed that remote sensing techniques are widely used to estimate ET; however 

they are still prone to errors in the estimation of ET in some areas nationwide. The main reason 

for errors is the misinterpretation of land type, which results in misinterpretation of results. Also 

the inaccuracy in remote sensing inputs such as LAI, albedo and land cover is an issue that 

results in errors in estimation of ET by the remote sensing techniques. 
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Chapter 3: Methodology 

3.1 Introduction 

This chapter presents the approach to the study. The first part describes the selected sites; their 

locations, geology, climate, vegetation and topography. The second part explains the types of 

data required. The ET derived from MOD 16 will be used and compared with ground measured 

ET on catchments differing in climate and topography. The last section explains statistical 

methods used to analyse data.  

3.2 Selection of study sites 

Study sites were selected based on two reasons: (i) the availability of ground measured ET data 

derived from flux towers and scintillometer, and (ii) catchments with contrasting climate and 

topography. The Elandsberg in the Western Cape was selected because of readily available ET 

data derived from scintillometer. Skukuza and Malopeni in the Limpopo Province were selected 

because they have readily available ground measured ET data derived from flux towers. These 

sites were selected to validate the accuracy of MOD 16. The Heuningnes catchment in the 

Western Cape Province and the Letaba catchment in the Limpopo Province were selected as the 

study sites. The study sites were selected because they have contrasting climatic regions 

(Mediterranean and Sub-tropical climatic regions) in South Africa. These sites were selected to 

evaluate if MOD 16 can adequately represent the seasonal and interannual variations of ET in 

different climatic regions.  

3.2.1 Elandsberg site 
The Elandsberg site is situated on the west-facing footslopes of the Elandskloof mountain rage, ± 

2 km south of the small town Hermon and ± 13 km east of Riebeek kasteel (Jovanovic et al., 

2013). Malmersbury is the underlying geology with some sandstone talus from adjacent 

mountain slopes and extensive areas of gravelly soils derived from ferricrete formed on old 

terraces. According to the vegetation map compiled by Rebelo et al., (2006), the dominant 

vegetation types are Swartland Alluvium Fynbos (SAF), with patches of Swartland Shale 

Renosterveld scattered within, and to the west of the fynbos (Figure 3.1). The adjacent slopes 

have Hawequas Sandstone fynbos. According to the 2000 Land cover type map produced by 

Jovanovic et al., (2013), the natural vegetation in the area is dominated by two classes; shrubland 

and low fynbos and thicket, bushland, bush clumps and high fynbos which are distinguished 

primarily on the degree of canopy cover features such as image texture which indicate taller 

vegetation. Although the 2000 land cover map is old, there have not been significant changes in 
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the land cover since then (Jovanovic et al., 2013). The scintillometer was installed at 33.47404ºS, 

19.0629ºE transmitter and 33.47029ºS, 19.05796ºE receiver and falls entirely within the SAF and 

crosses a seasonal stream (Figure 3.1). 

 

Figure 3.1:  Vegetation types of Elandsberg Nature Reserve (Jovanovic et al., 2013) based on the 

mapping and classification developed by Rebelo et al., (2006). 
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Figure 3.2: Land cover types in Elandsberg Nature Reserve and the position of the transmitter 

and receiver (Jovanovic et al., 2013). 

3.2.2 Skukuza and Malopeni sites 
The Skukuza and Malopeni sites are located in the Kruger National Park (KNP). The Skukuza 

flux tower is located in two distinct savanna types (25.01184ºS, 31.29813ºE), a broad-leafed 

Combretum savanna and fine-leafed Acacia savanna. These contrasting savanna types occur on 

soils of differing textures, water holding capacities and nutrient levels and are characterized by 

different physical structure, physiology and phenology (Scholes et al., 2001). The Skukuza site 

lies at 365 m above the sea level with 547 mm/year of mean annual rainfall and the temperatures 

range between 14.5 and 29.5°C (Scholes et al., 2001). The Malopeni flux tower is located on the 

northern part of KNP (23.495714ºS, 31.125170ºE) along the broad-leaf Mopane savanna, which 

is a hot and dry savanna. The Malopeni site is situated 384 m above the sea level, with mean 

annual rainfall of 473 mm/year and temperatures range between 12.4 and 30.5°C (Kirton and 

Scholes 2012). 
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3.2.3 Heuningnes Catchment 
The Heuningnes catchment is located at the southern tip of the African continent (Figure 3.3). 

The Heuningnes catchment drains into the Indian Ocean, and has the southernmost estuary in 

South Africa, situated near the Cape Agulhas. The catchment covers an area of 1401 km
2
 and lies 

within the Cape Agulhas Municipality in the Overberg District (Heydorn & Grindley, 1984). The 

Heuningnes River has two major tributaries, the Kars River which rises in the Bredasdorpberge 

and runs for 75 km to its confluence with Soetendalsvlei, and the Nuwejaars River that rises 

primarily in the Bredasdorpberge, Koueberge and Soetangsberg and runs for some 55 km to the 

Soetendalsvlei (Heydorn & Grindley, 1984). Wetlands occur from upstream of the Nuwejaars 

River-Soetendalsvlei confluence to the mouth of the Heuningnes River. The Soetendalsvlei is a 3 

km by 8 km lake that overflows into the Heuningnes River which feeds an estuary (Hoekstra & 

Waller, 2014).  

Figure 3.3: Heuningnes Catchment, Western Cape Province, South Africa 
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Geology 

The Heuningnes catchment is underlain by the Bredasdorp Beds which comprise calcified dune 

sand (Figure 3.4). These occur along the coast up to the Potberg Mountain in a band varying 

from three to twenty kilometers in width (Heydorn & Grindley, 1984). The geology of the upper 

catchment of Kars River is dominated by Table Mountain Group sandstones, quartzite and shale 

of the Bredasdorpberge in the southern parts, and Bokkeveld shale in the undulating northern 

parts. Further downstream, east of Bredasdorp, the Kars River crosses calcified dune sand and 

coastal limestone of the Bredasdorp beds. The geology of the upper catchment of the Nuwejaars 

River is dominated by sandstones, quartzite and shale of the Table Mountain Group (Hoekstra & 

Waller, 2014). Additional downstream near Elim, the Nuwejaars River traverses shale and sandy 

shale of the Bokkeveld Group which continues eastwards almost to where the Nuwejaars River 

enters Soetendalsvlei (Hoekstra & Waller, 2014). 

 

Figure 3.4: Geology of the Heuningnes Catchment 
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Climate 

The Heuningnes catchment has a Mediterranean climate receiving most of its rainfall in winter 

and is characterized by a warm to hot and dry summer (Heydorn & Grindley, 1984). The mean 

annual rainfall over most of the catchment varies from 400mm/year to 600 mm/year (Heydorn & 

Grindley, 1984). The rainfall is mostly of cyclonic origin with some orographic rainfall 

occurring in the upper reaches of the catchment. Rain-bearing winds are mostly from the west or 

south-west. Rainfall is more on the southern faces of the mountains than on the north facing 

slopes. During the summer months easterly winds predominate. 

Vegetation  

The vegetation of the Heuningnes catchment belongs to the fynbos biome. The fynbos biome is 

divided into various types such as; mountain fynbos, proteoid fynbos, restioid fynbos and 

asteraceous fynbos (ODM, 2004). Mountain fynbos occurs in mountainous areas on shallow, 

sandy, acid soils, most of which are derived from sandstones of the Table Mountain Group and 

are highly infertile. The mountain fynbos is found extensively in moister areas on the steep 

south-facing slopes of the mountains and also occurs in small patches on seaward-facing coastal 

slopes (ODM, 2004). The proteoid fynbos are usually taller than the surrounding vegetation. This 

type of vegetation is divided into various kinds; including Protea compacta veld, Protea 

susannae veld and limestone fynbos. The Protea compacta veld is the dominant species in the 

Proteoid fynbos and is found mainly on deep, leached sands and is restricted to low-lying areas. 

The Protea susannae veld occurs on deep, more fertile sands, often at the base of major outcrops 

of limestones of the Bredasdorp formation. The limestone fynbos is rich in species and most of 

the vegetation is relatively intact, although invasion by rooikrans is increasing (ODM, 2004). 

The restiod fynbos is dominated by tall reeds and is confined to low lying areas. This vegetation 

type is closely associated with vleis and may be flooded during winter rainfall season. It is 

mostly found along the coast and the east of Soetendalsvlei. The Asteraceous fynbos is 

distinguished into two types, namely Elim and dune fynbos. The Elim fynbos is characterized by 

the absence or sparse cover of a tall proteoid shrub layer. It occurs on dry, gravely soils, usually 

overlying Bokkeveld Shales or sand stones of the Table Mountain Group and occurs on low 

lying areas. The dune fynbos on the other hand occurs on coastal sands that are subject to severe 

winds (ODM, 2004). Dune fynbos has very few local endemics and reasonably large trats of this 

vegetation type remain. 
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Land cover and Land use 

According to the 2013-2014 land cover map classified by Agricultural Research Council  (Figure 

3.5), the Heuningnes catchment has various land cover types such as; woodland or open bush, 

wetlands, open water bodies, urban built-up, thicket or dense bush, shrubland fynbos, forest 

plantations, mines water, low shrubland, grassland, cultivated land and bare none vegetated land. 

Cultivated land is dominating along the mountains and there is also shrubland fynbos and small 

patches of thicket or dense bush. In the central part of the catchment shrubland fynbos, thicket or 

dense bush, cultivated land, woodland, and wetlands are found. Further down the catchment 

there are wetlands, open water bodies, thicket or dense bush and urban built-up. The entire 

catchment is generally dominated by cultivated land and shrubland fynbos.  

 

Figure 3.5: Land cover and land use of the Heuningnes Catchment 

3.2.4 Letaba Catchment 
The Letaba River flows through the Kruger National Park and into Mozambique before 

discharging into the Limpopo River (Figure 3.6). The Letaba River catchment covers an area of 

13 400 km
2
. The two main tributaries of the Letaba River are the Groot Letaba River and Klein 

Letaba River. The Groot Letaba River originates in the Drakensberg escarpment, descending in 

long runs with infrequent riffles or pools, mostly in the Limpopo Province of South Africa. At 

the high levels the Broederstroom River, Politsi River, Debengeni River Letsitele River, and 
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Thabina River, join the Groot Letaba (DWAF, 2001). Lower down the Molototsi River (a 

seasonal stream) and Nsama River join before the Nsami Dam, just before the Kruger National 

Park and Klein Letaba River flows into the Groot Letaba River.  

The topography of the Letaba varies from mountains in the west to low lying plains in the east 

(DWAF, 2001). The mountainous zone includes the northern portion of the Drakensberg 

mountain range and the eastern Southpansberg, which both spread to the western parts of the 

Letaba water management area. The highest peaks have an elevation of more than 2 000 m above 

mean sea level (SARHP, 2001). This zone is deeply incised by the major tributaries. The low 

lying plains cover most of the area and have gentle to flat slopes. 

 

Figure 3.6: Letaba Catchment, Limpopo Province, South Africa 
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Geology 

The Letaba Catchment consists mainly of sedimentary rocks in the north, and metamorphic and 

igneous rocks in the south (Figure 3.7) (DWAF, 2004). High quality coal deposits are found near 

Tshikondeni and in the northern part of the Kruger National Park, whilst the eastern limb of the 

mineral rich Bushveld igneous complex are found on the southern parts of the water management 

area (DWAF, 2004). The Letaba Catchment consists of granite and gneiss with dolerite 

instrusions, quartzile, sandstone and shale in the west part and basalt, rhyolite and granophyre, 

and granite and gneiss with dolerite instrusions in the east part (DWAF, 2001). 

 

Figure 3.7: Geology of the Letaba Catchment 
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Climate 

The change in topography (altitude and relief) gives rise to different climatic characteristics. The 

mountain zone receives about 2000 mm/year of rainfall and the lowland receives 400 mm/year 

(DWAF, 2001). More than 85% of the rain falls during the summer months. Relative humidity is 

high during the wet months ranging from about 70% in the west to above 72 % in the east of the 

catchment (DWA, 2004). The summers (Oct-Mar) are very hot and the winters (Apr-Sep) are 

mild with frost as exceptions in the bottomlands (DWAF, 2001). The mean annual temperature 

ranges from 18°C in the mountainous regions to more than 28°C in the eastern parts of the 

catchment with an average of about 25.5°C. High and low temperatures occur in the month of 

January and July respectively (DWA, 2004).  

Vegetation 

The Letaba catchment falls within the Savanna biome and the types of vegetation that occur in 

this catchment differ according to the geology and soil types in a specific region (Siebert et al., 

2010). The various types of vegetations are northern Sandveld, Mopane veld, savanna 

grasslands, mixed broad leaf woodland, thorn thickets and riverine bush. The northern Sandveld 

has sandy, well-drained soils that support a range of vegetation with no particular dominant 

species and it is mostly found in mountainous areas. The Mopane tree known as 

Colophospermum Mopane is found in three main forms; Mopane woodlands (mostly in the 

north-west) which are generally found on granite and gneiss, mopane shrubveld (mostly the 

central northern plains and the north-east) and Mopane thicket which are on ecca shales  (Siebert 

et al., 2010). The savanna grasslands are found dominating the eastern low-land plains. This type 

of vegetation is divided into various kinds such as; blue buffalo grass, finger grass and stinking 

grass. The mixed broad leaf woodland is another type of vegetation and is divided into various 

kinds; the bushwillow, russet bushwillow, large-fruited bushwillow and the leadwood. The 

mixed broad leaf woodland is found in low lying areas. The thorn thickets type of vegetation is 

found within the mixed broad leaf woodlands. The thorn thickets are almost impenetrable in 

some areas and are the favored habitat of the rare black rhino (Siebert et al., 2010). The riverine 

bush forests are found in varying degrees of intensity along the river. They mainly occur on the 

banks of the perennial rivers. 
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Land cover and Land uses 

According to the 2013-2014 land cover map classified by Agricultural Research Council  (Figure 

3.8), the Letaba catchment has various land cover types namely; cultivated land, grassland, bare 

none vegetated land, indigenous forest, low shrubland, mines water, forest plantations, thicket or 

dense bush, urban built-up, open water bodies, wetlands and woodland. The western part of the 

catchment is dominated by thicket or dense bush and the eastern part is dominated by grassland 

and woodland. The urban built-up is found dominating the central part of the catchment and open 

water bodies are found in the west and north part of the catchment. A lot of cultivation is done in 

the western part and indigenous forests and forest plantations are also found in the western part 

spreading to the middle of the catchment. Small patches of low shrubland are found in the edges 

of eastern part of the catchment.  

 

Figure 3.8: Land cover and land use of the Letaba catchment 

3.3 Data collection  
The types of data that were required for this study were satellite derived ET data from MOD 16, 

ground measured actual ET and rainfall data. MOD 16 ET data have a spatial resolution of 1 km 

pixels and a temporal resolution of 8 day, monthly and annual intervals. However this study was 

interested in working on monthly intervals for which the data has not been previously analysed. 

The thirteen years duration (2000-2012) was analysed, because by the time the research started 
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(March 2015) the data was available only from 2000-2012. In contrast, other satellite derived 

products such as SEBAL and SEBS were not used in this study because they do not have readily 

available data and cannot be accessed free. Ground measured ET data derived from 

scintillometer and eddy covariance flux towers were required for the purpose of validating the 

accuracy of MOD 16 ET. The rainfall data for (2000-2012) duration were obtained from weather 

stations of Agricultural Research Council. The rainfall data were required for the purpose of 

interpreting variability in ET in relation with the wetness conditions in the investigated years. 

3.3.1 MODIS ET data 
The MOD 16 ET data were acquired for free from the University of Montana’s Numerical 

Terradynamic Simulation group (http://www.ntsg.umt.edu/project/mod16, accessed on June 

2015. The data for areas of interest; Heuningnes Catchment in Western Cape and Letaba 

Catchment in Limpopo were extracted. Monthly MOD 16 ET maps were created for (2000-2012) 

for both catchments to determine the seasonal and interannual variation of ET over this period. 

From the monthly MOD 16 ET maps that were created for each catchment, three years were 

selected; one that was relatively wet, dry, and average. From each year, each month was overlaid 

with the land cover and land use map to clip out the ET for different land cover and land use 

types. Actual ET was separated for different land cover and land use types to examine if actual 

ET rates estimated by MOD 16 capture the variations of ET with land cover and land use types. 

3.3.2 Rainfall data 
For the purpose of identifying the possible causes of variations in ET from the period 2000-2012; 

rainfall recorded by the network of weather stations in the Letaba catchment and in the 

Heuningnes catchment was used. Rainfall recorded at Citimba, Piertrsburg, Brits-AGR, 

Lephalale, Dendron and Polokwane stations were used in the Letaba catchment, Limpopo 

Province. Rainfall recorded at Prinskraal and Agulhas stations was used in the Heuningnes 

catchment, Western Cape. Rainfall data were used to interpret variability in ET in relation with 

the wetness conditions in the landscape and the response of land cover types and vegetation. 

3.3.3 Ground measured actual ET data 
The ground measured actual ET derived from scintillometer and eddy covariance flux towers 

was collected by CSIR and this research obtained the data from CSIR. The ground measured ET 

data for Elandsberg, Skukuza and Malopeni sites were used. The sites are described in detail at 

the beginning of Chapter 3. For Elandsberg site actual ET was derived from a scintillometer for a 

period of 1 year (Nov 2012- Oct 2013). For the Malopeni site the actual ET was derived from an 
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eddy covariance flux tower for a period of 1 year and 1 month (Feb 2009-Mar 2010). For the 

Skukuza site the actual ET was derived from an eddy covariance flux tower for a period of 13 

years (2000-2012). However the years 2000, 2002, 2006 and 2012 were excluded from analyses 

because they have a lot of missing data. The duration of ground measured ET data varies at three 

sites, because the instruments at these sites were installed in different years. The actual ET 

estimated using ground measurement of meteorological variables was compared with the MOD 

16 ET estimates, to establish how accurate is remote sensing technique (MOD 16) compared to 

ground based methods.  

3.3.3 Ground-truthing 
Ground-truthing was done in the Letaba catchment and Heuningnes catchment to validate the ET 

data that was produced by MOD 16. The ground-truthing was not done in the entire catchment 

but instead the focus was on the areas that had high ET according to the MOD 16 ET maps. In 

each catchment pictures of land cover or land use types and vegetation were taken. Ground-

truthing supports the interpretation and analysis of MOD 16 ET data.    

3.4 Data analysis method 
This section explains the statistical methods that were used to answer the research questions. The 

appropriate statistical methods that were used are t-test, correlation coefficient, analysis of 

variances and box and whisker plots. These methods are commonly used because they are 

suitable to investigate the research questions. 

 3.4.1 Assessment of similarities between MODIS and ground based estimate of 

ET 
To assess the similarities between MODIS and ground based estimates of ET, a t-test at 5% 

significance level was used. The t-test is a statistical model used for testing the significance of 

differences between averages of two samples (Equation 3.1). A t-test is a parametric method that 

was used to compare the means of estimated and measured ET. The null hypothesis states that 

there is no difference between the means and the alternative hypothesis states that there is a 

difference between the means. A t-test assumes that the sets of data are continuous, follow a 

normal distribution, and that the two samples are independent (Wackerly et al., 2008). A t-test is 

calculated as: 

 𝑡 = (𝑥̅1 + 𝑥̅2)/𝑠𝑝√
1

𝑛1
+

1

𝑛2
   , 𝑠𝑝 =

√𝑛1𝑠1
2+𝑛2𝑠2

2

𝑛1+𝑛2−2
                                                                     (3.1) 
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where: 𝑥 ̅1 and 𝑥̅2 represents the first and second sample mean respectively, n is the number of 

samples, s is the sample standard deviation and 𝑆𝑝 represents the pool standard deviation.  

This study used coefficient of determination (R
2
), root mean square error (RMSE) (Equation 

(3.2)), bias (Equation (3.3)) and percent bias (PBias) (Equation (3.4)) to assess the relationship 

between MOD 16 ET products and ground based estimates of ET, and the strength of the 

relationship.  

The coefficient of determination was used to determine the strength of the relationship between 

ground measured ET and MOD 16 ET. Bias is a measure of how a modeled value (MOD 16 ET 

value) deviates from the true value (ground measured ET value), and indicates whether there is 

under or overestimation, while the percent bias is a percent of bias relative to observed mean. 

The equations for RMSE, Bias and PBias are  

𝑅𝑀𝑆𝐸 =

√
∑(𝐺𝐸𝑇−𝑀𝐸𝑇)2

𝑁
                          (3.2) 

𝐵𝐼𝐴𝑆 =
∑𝑀𝐸𝑇−𝐺𝐸𝑇

𝑁
            (3.3) 

𝑃𝐵𝐼𝐴𝑆 = (
𝐵𝐼𝐴𝑆

1

𝑁

∗ ∑𝐺𝐸𝑇) ∗ 100         (3.4) 

Where GET is ground ET, MET is MOD 16 ET and N number of measurements. Bias and RMSE 

values close to zero (0.1-0.7) signify that MOD 16 is considered accurate, while higher values of 

these statistics metric indicate inaccuracy (Kim et al., 2011). A negative value of bias signifies 

underestimation while positive value shows overestimation by MOD 16. 

The R
2
, RMSE, BIAS and PBIAS were used in this study because they are suitable to answer the 

research question. Kim et al., (2011), used R
2
, RMSE, BIAS and PBIAS to validate the accuracy 

of MOD 16 at 17 flux towers located in Asia. The results showed a linear relationship between 

MOD 16 ET and ET measured at the flux towers (r
2 

= 0.5-0.76, bias = -1.42-1.99 mm/ 8 day, 

RMSE = 1.99-8.96 mm/ 8 day). A study by Ramoelo et al., (2014), also used these methods to 

do the validation of MOD 16 product using flux tower data in the African Savanna, South Africa. 

The R
2
, RMSE, BIAS and PBIAS were successfully applied and produced meaningful results. 

The results generally showed overestimation of ET by MOD 16 (BIAS = 1.18, and PBIAS = 

21%). 

http://etd.uwc.ac.za/



 

 

 

 

 

37 
 

3.4.2 Assessment of the influence of land uses on MODIS ET 

The current study used ANOVA to test the difference between the means of MOD 16 ET for 

different land cover types (dry land, bush land, irrigation, forest, grass land, wetland etc.) in two 

different climatic regions. Testing the difference between the means was done as the study 

wished to determine whether MOD 16 has the ability to distinguish differences in the actual ET 

rates on different land cover types. 

Analysis of variance (ANOVA) is a parametric method that is used to test difference between 

two or more means. ANOVA is used to test overall rather than exact difference among means. 

This test groups the samples using one factor (e.g. land cover type), with the purpose of 

determining whether samples drawn from different groups have meaningfully different means 

(Wackerly et al., 2008). In this study the null hypothesis states that MOD 16 cannot differentiate 

actual ET rates on different land cover types (𝑥̅1 =  𝑥 ̅2). The alternative hypothesis states that 

MOD 16 has the ability to distinguish differences in the actual ET rates on different land cover 

types (𝑥̅1 ≠  𝑥̅2). The null hypothesis is rejected, when at least one sample mean is different from 

at least one other mean. The alternative hypothesis is not rejected if the variation between groups 

is greater than the variation within groups. ANOVA offers less specific information than the 

Tukey HSD test, since it does not tell which means are different from which. However the 

ANOVA is more appropriate to use than the Tukey test because it allows complex types of 

analyses to be done which is not the case with the Tukey test (Wackerly et al., 2008). ANOVA is 

also the most commonly used technique for comparing means.  

Other studies have used ANOVA to achieve the similar objective as the current study. Ibrahim et 

al., (2016), undertook a study to analyse the impact of land surface temperature on land cover 

types. The results showed that there is a significant difference in the temperature variation on 

land cover types. A study about the effects of land use change on land degradation reflected by 

soil properties along Mara River, Kenya and Tanzania was done by Matano et al., (2015). Using 

the ANOVA test, the objective of the study was to determine the effect of land use change on the 

physic-chemical properties of soil along the course of the Mara River. The results indicated that 

the land use types affected land degradation differently along the Mara River, while adjacent 

land degradation affected water physic-chemical properties. 

Descriptive statistics such as the average, standard deviations, maximum, minimum, and median 

were calculated for each sample of data. ArcGIS was used for processing of layers such as MOD 
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16 ET maps, land use and land cover maps, topography map, wetlands maps, and groundwater 

data. All these maps were overlaid with the purpose of identifying areas of water use, such as 

irrigated land, land invaded by alien species, shallow groundwater areas and wetlands in the 

Letaba catchment and Heuningnes catchment. 
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Chapter 4: Validation of MOD 16 ET 

4.1 Introduction 

This chapter illustrates and discusses the results of the first objective, which is to evaluate 

whether actual ET rates estimated by MOD 16 adequately represent the seasonal and interannual 

variations of actual ET at the catchment scale.  Firstly the MOD 16 product was validated at 

three sites; Elandsberg, Malopeni, and Skukuza sites, and the findings of validation of MOD 16 

product are presented. Secondly the seasonal and interannual variation of MOD 16 ET in the 

Heuningnes catchment and in the Letaba catchment is presented.   

4.2 Validation of  MOD 16 product  

Firstly each weather factor such as relative humidity, solar radiation, air temperature and wind 

speed was compared with ground measured ET and MOD 16 ET for each site. This was done to 

investigate the effect of each weather factor on ground measured ET and MOD 16 ET. Secondly 

ground measured ET was correlated with MOD 16 ET for each site, to evaluate the accuracy of 

MOD 16. 

4.2.1 The effect of weather factors on ground measured actual ET and MOD 16 

ET at Elandsberg 
Ground measured actual ET data were collected using a scintillometer for a period of 1 year 

(Nov 2012- Oct 2013). The scintillometer receiver was located approximately 900 m away from 

the transmitter at Elandsberg Nature Reserve at pixel 67. Monthly MOD 16 ET data for this 

period were downloaded from (http://www.ntsg.umt.edu/project/mod16, accessed on 21 March 

2016). The weather factors such as solar radiation, temperature, relative humidity and wind 

speed were measured from the weather station installed in Elandsberg Nature Reserve on the 26 

October 2012.  The ground measured actual ET and MOD 16 ET were compared with the 

weather factors that mostly affect actual ET, to investigate the relations between variables. The 

comparison was first done at pixel 67 where the scintillometer was installed. The results showed 

a weak relationship between weather factors and scintillometer ET and MOD 16 ET, therefore 

further comparison was done with the pixels surrounding pixel 67 (Figure 4.1).  From those 

pixels only pixel 62 and pixel 63 showed a better relationship.  
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Figure 4.1: MOD 16 pixels numbered at Elandsberg site, Scintillometer was installed at pixel 

number 67  

The weather factors were compared with scintillometer ET and MOD 16 ET for pixel 67 (Figure 

4.2). The results showed that there is a strong relationship between scintillometer ET and solar 

radiation (R
2 

= 0.95), moderate relationship between scintillometer ET air temperature (R
2 

= 

0.61) and wind speed (R
2
 = 0.71) compared to relative humidity (R

2 
= 0.08). The results showed 

that there is a moderate relationship between MOD 16 ET and relative humidity (R
2 

= 0.72) 

compared to wind speed (R
2 

= 0.19) and solar radiation (R
2 

= 0.10) where there is a weak 

relationship and air temperature (R
2 

= 0.03). 
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Figure 4.2: The relationship between weather factors and actual ET derived from scintillometer 

and MODIS ET at Elandsberg (pixel 67) 

The weather factors were compared with scintillometer ET and MOD 16 ET for pixel 62 (Figure 

4.3). The results showed that there is a moderate relationship between MOD 16 ET and wind 

speed (R
2 

= 0.51) and solar radiation (R
2 

= 0.50) compared to relative humidity (R
2 

= 0.43) and 

air temperature (R
2 

= 0.05). 
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Figure 4.3: The relationship between weather factors and actual ET derived from scintillometer 

and MODIS ET at Elandsberg (pixel 62) 
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The weather factors were compared with scintillometer ET and MOD 16 ET for pixel 63 (Figure 

4.4). The results showed that there is a weak relationship between MOD 16 ET and relative 

humidity (R
2 

= 0.46), solar radiation (R
2 

= 0.42) and wind speed (R
2 

= 0.36) compared to air 

temperature (R
2
 = 0.04). 
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Figure 4.4: The relationship between weather factors and actual ET derived from scintillometer 

and MODIS ET at Elandsberg (pixel 63) 

A moderate and strong relationship between ground measured ET and solar radiation, air 

temperature and wind speed is expected because actual ET is influenced by these weather 

factors. According to Allen et al., (1998) ET is influenced by solar radiation in a way that during 

winter months (May, Jun and Jul) when there is less amount of energy coming from the solar 

radiation, ET becomes low and during summer months (Oct, Nov, Dec and Jan) when there is 

high amount of energy coming from solar radiation, ET is high (Figures 4.2, 4.3 and 4.4). High 

temperatures also occurred during summer months and low temperatures occurred during winter 

months; therefore the relationship between air temperature and ET derived from scintillometer is 

positive, as an increase in temperature resulted in an increase in actual ET. However this is not 

the case between air temperature and MOD 16 ET, in the studied pixels (67, 62 and 63) when air 

temperature increased MOD 16 ET decreased. 
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The high humidity of the air reduces the ET demand (Allen et al., 1998). During summer months 

in Elandsberg when the soil conditions are dry and there is high energy coming from solar 

radiation, relative humidity is low therefore ET is high. However during winter months when the 

soil conditions are moist and there is low amount of solar radiation, relative humidity is high thus 

ET is low. Relative humidity is therefore inversely proportional to ET. A moderate relationship 

is observed between wind speed and ET derived from scintillometer. The continuous 

replacement of air above evaporative surface with dry air increases the rate of ET, thus an 

increase in wind speed results in an increase in ET.   

4.2.2 Relationship between scintillometer ET and MOD 16 ET at Elandsberg 
The scintillometer ET was compared with MOD 16 ET for pixel 67 where scintillometer was 

installed and the surrounding pixels 62 and 63. The results suggested that at pixel 67 there is a 

very weak relationship between scintillometer ET and MOD 16 ET (R
2 

= 0.16) (Figure 4.5). 

Based on RMSE = 28.30 mm/month, Bias = -28.30 mm/month and PBias = -49.53%, MOD 16 

underestimated ET. High values of Bias and RMSE indicate a high level of inaccuracy of the 

MOD 16 ET and a negative value of Bias indicates underestimation. 

 

 

 

 

 

 

 

 

Figure 4.5: The relationship between scintillometer ET and MOD 16 ET (mm/month) at 

Elandsberg (pixel 67) 
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The scintillometer ET was compared with MOD 16 ET for pixel 62. The results showed that 

there is moderate relationship between scintillometer ET and MOD 16 ET (R
2 

0.58) (Figure 4.6). 

Pixel 62 achieved the highest values of RMSE = 25 mm/month, Bias = -25 mm/month and PBias 

= -43.99%, which indicates inaccuracy of the MOD 16 ET product. 

  

 

 

 

 

 

 

 

 

Figure 4.6: The relationship between scintillometer ET and MOD 16 ET (mm/month) at 

Elandsberg (pixel 62) 

The monthly Scintillometer ET was compared with monthly MOD 16 ET for pixel 63. The 

results showed that there is moderate relationship between scintillometer ET and MOD 16 ET 

(R
2 

= 0.52) (Figure 4.7). Based on RMSE = 21 mm/month, Bias = -21 mm/month and PBias= -

37.28%, pixel 63 achieved the highest values which indicates inaccuracy of the MOD 16 ET 

product. 
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Figure 4.7: The relationship between scintillometer ET and MOD 16 ET (mm/month) at 

Elandsberg (pixel 63) 

In summary, the Elandsberg results showed that MOD 16 ET underestimated actual ET in the 

Mediterranean climate of the Western Cape. It is apparent that the ET values derived from 

scintillometer are higher than MOD 16 ET values in summer months (Nov- Feb) and are closely 

related during winter months (May- Aug). This means that ET is mostly underestimated by 

MOD 16 during summer season. These results rather match with the results found by Ramoelo et 

al., (2014). It is argued that the differences between MOD 16 ET and ground measured ET can 

originate from a number of factors, such as scintillometer or flux tower footprints versus MOD 

16 pixel size, remote sensing data and in situ data. The pixel 67 was chosen to be in a 

homogeneity area of natural vegetation for installation of scintillometer. However pixel 67 was 

found to have a weak relationship with MOD 16 ET, and the surrounding pixels (62 and 63) had 

a moderate relationship with MOD 16 ET. The remote sensing input parameters include 8 day 

land cover, albedo, leaf area index, fraction of photosynthetic absorbed radiation and have a 

spatial resolution of approximately 1 km
2
. The in situ data parameters include daily air 

temperature, humidity and solar radiation. The findings suggest that the remote sensing 

parameters are generally poorly or not validated in Mediterranean region of South Africa, 

therefore they are likely to generate ET prediction errors (Ramoelo et al., 2014).  
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4.2.3 The effect of weather factors on ground measured actual ET and MODIS ET at 

Malopeni 

In Malopeni actual ET was measured using an eddy covariance flux tower for a period of 1 year 

and 1 month (March 2009- March 2010). The eddy covariance flux tower was installed at 

23.495714ºS, 31.125170ºE and monthly MOD 16 ET data for this period was downloaded from 

(http://www.ntsg.umt.edu/project/mod16, accessed on the 28 March 2016). The ground 

measured actual ET and MOD 16 ET were compared with the weather factors that mostly affect 

actual ET, to investigate the possible causes of errors in estimating actual ET. The temperature 

and relative humidity were excluded from comparison because they had a lot of missing values. 

There is no relationship between flux tower ET and solar radiation (R
2 

= 0.09) and wind speed 

(R
2 

= 0.004). The results also showed that MOD 16 ET was not related to solar radiation (R
2 

= 

0.003) and wind speed (R
2 

= 0.004) (Figure 4.8). There is generally a poor relationship between 

weather factors and MOD 16 ET and ET derived from flux tower in Malopeni. 
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Figure 4.8: The relationship between weather factors and actual ET derived from a flux tower 

and MODIS ET (mm/month) at Malopeni 

4.2.4 Relationship between Flux tower ET and MOD 16 ET at Malopeni 
There is a moderate relationship between flux tower ET and MOD 16 ET (R

2 
= 0.76), but MOD 

16 slightly overestimated ET (RMSE = 8.6 mm/month) (Figure 4.9). The ET values are closely 

related throughout the year, but MOD 16 slightly overestimated during summer months. 
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Figure 4.9: The relationship between flux tower ET and MOD 16 ET (mm/month) at Malopeni 

4.2.5 The effect of weather factors on ground measured actual ET and MODIS 

ET at Skukuza 
In Skukuza actual ET was measured using an eddy covariance flux tower from 2000-2012. The 

eddy covariance flux tower was installed at 25.01184ºS, 31.29813ºE and the monthly MOD 16 

ET data for this period was downloaded from http://www.ntsg.umt.edu/project/mod16, accessed 

on 28 March 2016). The weather data obtained from CSIR for the Skukuza site are in years 

(2009 and 2011), therefore for the Skukuza site the comparison was done in years. In 2009 there 

was a weak relationship between flux tower ET and relative humidity (R
2 

= 0.41) and air 

temperature (R
2 

= 0.37). Furthermore there is a weak relationship between MOD 16 ET and 

relative humidity (R
2 

= 0.47) and air temperature (R
2 

= 0.36) (Figure 4.10). 
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Figure 4.10: The relationship between weather factors and actual ET derived from flux tower 

and MODIS ET at Skukuza (2009) 

In 2011 there is a moderate relationship between flux tower ET and relative humidity (R
2 

= 0.63) 

and air temperature (R
2 

= 0.54). Moreover there is a moderate relationship between MOD 16 ET 

and relative humidity (R
2 

= 0.69) and air temperature (R
2 

= 0.57) (Figure 4.11). 
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Figure 4.11: The relationship between weather factors and actual ET derived from flux tower 

and MODIS ET at Skukuza (2011) 

In comparison, 2009 achieved the weak relationship between weather factors and ET derived 

from flux tower and MOD 16 ET, whereas 2011 achieved the moderate relationship between 

weather factors and ET derived from flux tower and MOD 16 ET. Issues like malfunction of 

equipment and change in climatic conditions have an impact in the results of these years. 

Generally, there was a moderate relationship between weather factors such as solar radiation, air 

temperature and relative humidity and ET derived from flux towers and MOD 16 ET at Skukuza. 

These weather factors are therefore important in predicting actual ET.  

However wind speed was omitted in the comparison because of lack of sufficient wind data. The 

poor comparison of weather factors and MOD 16 ET and ET derived from flux towers is 

expected to cause substantial errors in predictions of ET.   
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4.2.6 Relationship between Flux tower ET and MOD 16 ET at Skukuza 
The flux tower ET was compared with MOD 16 ET from 2000-2012 (Figure 4.12). The 

comparison was done in years because the data obtained from CSIR was in years. The years 

2000, 2002, 2006 and 2012 were excluded from analysis due to missing data. The results showed 

a varying comparison of the flux tower ET and MOD 16 ET over this period of time. 

From 2000-2012, excluding 2000, 2002, 2006 and 2012, the lowest correlations were obtained in 

2001, 2004 and 2005 achieving (R
2 

0.04, 0.001 and 0.08) between MOD 16 ET and actual ET 

derived from flux tower measurements. Based on RMSE, 2007 (R
2
 = 0.64, RMSE = 2.49 

mm/month), 2008 (R
2
 = 0.64, RMSE = 3.24 mm/month), 2009 (R

2 = 
0.65, RMSE = 3.53 

mm/month), 2010 (R
2
 = 0.89, RMSE = 6.8 mm/month) achieved the lowest values which 

indicates reasonable accuracy of the MOD 16 ET product. The inconsistency of the results may 

be due to change in land cover and land use types and change in climatic conditions over this 

period. In general, Skukuza results showed that there is an overestimation of MOD 16 ET from 

2001-2011. 

In 2001, 2003, 2004 and 2005 there was evidence of high overestimation of MOD 16 ET, while 

in 2007, 2008, 2009 and 2010 low bias and low PBias were obtained confirming the reasonable 

prediction of MOD 16 ET during these years. Flux tower measurements are mainly influenced 

by weather conditions. Flux tower sensors either record abnormal values or do not record any 

data during rainy and stormy days (Ramoelo et al., 2014). This is noticeable in Skukuza, as 

MOD 16 ET values are higher than flux tower ET values particularly during summer wet 

months, typically for years with gaps in data. During years with almost complete data MOD 16 

ET values are closely related to flux tower ET values, accepting a substantial accuracy in MOD 

16 ET. Having full monthly flux tower data measurements was marked to be an advantage in 

2010, as this year attained a good relationship between MOD 16 ET and flux tower ET. 
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Figure 4.12: The relationship between flux tower ET and MOD 16 ET (mm/month) from 2001-

2011 at Skukuza 
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A statistical t-test analysis was applied to examine the similarities between MOD 16 ET and 

ground based estimates of ET (Table 4.1, 4.2 and 4.3). 

Table 4.1: t-test variables used to test the similarities between MODIS and  ground 

based estimates of ET at Malopeni site.  

ET Period Sample 

mean 

Standard 

dev. 

Sample 

no. 

sp t Critical 

value 

Flux 

tower ET 

Mar 

2009-

Mar 

2010 

19 11.6 13 16.26 -1.41 2.06 

MOD 16 

ET 

Mar 

2009-

Mar 

2010 

28 18.8 13    

 

The null hypothesis tested on this analysis stated that there is no difference between the average 

of flux tower ET and MOD 16 ET, was not rejected. Therefore these results suggest that there is 

no significant difference between the ET estimated using flux towers and MOD 16 ET. 

 

Table 4.2: t-test variables used to test the similarities between MOD 16 ET and 

ground based estimates of ET at  Skukuza site.  

ET Period Sample 

mean 

Standard 

dev. 

Sample 

no. 

sp t Critical 

value 

Flux 

tower ET 

2001-

2011 

36.56 29.80 9 35.24 -0.9 2.12 

MOD 16 

ET 

2001-

2011    

53.11 36.32 9    

 

The null hypothesis tested on this analysis stated that there is no difference between the annual 

average of flux tower ET and MOD 16 ET, was not rejected. Therefore these results suggest that 

there is no significant difference between the annual averages of ET estimated using flux towers 

and MOD 16 ET. 
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Table 4.3: t-test variables used to test the similarities between MOD 16 ET and 

ground based estimates of ET at  Elandsberg site.  

ET Period Sample 

mean 

Standard 

dev. 

Sample 

no. 

sp t Critical 

value 

Scintillometer 

ET 

Nov 

2012- 

Nov 

2013 

57 30 12 22.59 3.04 2.07 

MOD 16 ET Nov 

2012-

Nov21-

2013 

29 6 12    

 

The null hypothesis tested on this analysis stated that there is no difference between the average 

of scintillometer ET and MOD 16 ET, was rejected. Thus, the results support the alternative 

hypothesis that the ET derived from Scintillometer differs from MOD 16 ET.  

 

According to the t-test analysis it was found that there is a difference between average of MOD 

16 ET and average of ET derived from scintillometer in Elandsberg site, which means that MOD 

16 underestimated ET in Mediterranean climate of the Western Cape. The t-test analysis also 

found that there is no meaningful variation between average of MOD 16 ET and average of ET 

derived from flux towers in Skukuza and Malopeni sites, which means that MOD 16 is 

reasonably accurate although slightly overestimated ET in Sub-tropical climate of the Limpopo 

province. Poor comparison of weather factors such as: wind speed, temperature and humidity 

with flux tower ET and MOD 16 ET in 2009 have an impact in underestimation and 

overestimation of ET in the Sub-tropical climate of the Limpopo Province. The different land 

cover types found in different parts of the catchment also possibly cause the underestimation and 

overestimation of ET. This is as a result of land cover types requiring different amount of water; 

some consume a lot of water such as forests and others such as cultivated dryland consume less 

water thus they have different ET rates. 
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4.3 Seasonal and interannual variation of MOD 16 ET  

   4.3.1 Letaba catchment 
The seasonal (wet and dry seasons) and interannual (year to year variation) variations of MOD 

16 ET are examined in this section. To determine MOD 16 ET seasonal and interannual 

variations, monthly MOD 16 ET maps for 2000-2012 for the Letaba catchment were created 

(Appendix A). For all the 13 years analyzed, Jan to Jun are wet, and Jul to Dec are dry, except 

for 2000 (Figure 4.13), and 2003 (Figure 4.14). The year 2000 and 2003 were selected to be 

presented because 2000 (ET = 752 mm/year) was relatively wet and 2003 (ET = 396 mm/year) 

was relatively dry. The months Jan and Feb were selected to represent the wet season, Aug and 

Sep were selected to represent the dry season. These months were selected because the interest 

was generally on the rates of ET during wet and dry seasons respectively.  

 

Figure 4.13: MOD 16 monthly evapotranspiration rates for Jan (top left), Feb (top right), Aug 

(bottom left) and Sep (bottom right) in 2000 for Letaba catchment at a pixel resolution of 

approximately 1 km. 
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High ET occurred in the western part of the catchment throughout the year (101-250 

mm/month), and low ET occurred in the eastern part especially in dry season (0-50 mm/month 

and 51-100 mm/month). High ET occurs in summer because of availability of solar radiation and 

moisture. According to Xu & Singh (2005), soil moisture is the dominating factor controlling 

actual ET in warmer and drier months. Therefore, at the beginning of dry season the soil is moist 

thus the ET is high while in the mid dry season (Aug and Sep) the soil is dry, due to low 

availability of moisture hence the ET is low.  

The land cover type map (Figure 3.8) shows the existence of irrigation and forest plantations in 

the western part of the catchment that utilizes high volumes of water; hence this part had 

relatively high ET in all years. The eastern part of the catchment has low lying plains which 

receive low rainfall. These areas have woodland, bush, and bush clumps which have adjusted to 

dry conditions and have low ET rates. Areas with free water surfaces (lakes) had very high rates 

of ET.  

The same pattern (i.e western part high ET and eastern part low ET) is shown in all other years, 

except in 2003 (Figure 4.14) and 2005 (Appendix A). The whole catchment was relatively dry in 

these years. Although other years indicated to be mostly wet during the rainfall season and 

mostly dry in the dry season, however there is no visible trend of how ET varies from year to 

year.  
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Figure 4.14: MOD 16 monthly evapotranspiration rates for Jan (top left), Feb (top right), Aug 

(bottom left) and Sep (bottom right) in 2003 for Letaba catchment at a pixel resolution of 

approximately 1 km. 

The average of all pixel values were used to obtain the monthly ET estimates. The results in 

Figure 4.15  indicates that all the years follow a similar pattern, with relatively high monthly 

average ET in summer rainfall season (Jan- Apr) and low monthly average ET in winter season 

(May-Sep) and the monthly average ET slightly increases again in early summer (Oct- Dec). 

These results are rather expected in the Letaba catchment. The Letaba catchment receives rainfall 

during summer period and there is also high evaporative demand, thus high ET occurs. During 

winter period the catchment is relatively dry and the evaporative demand is low therefore low ET 

occurs. The variations in ET are mainly caused by weather factors such as rainfall, solar 

radiation, relative humidity and air temperature. The ET process is determined by the amount of 

energy available to vaporize water (Allen et al., 1998). Therefore during summer when there is 
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high solar radiation the ET rates are high and during winter when there is less solar radiation the 

rates of ET decrease. Also in summer season when there are high temperatures, the loss of water 

by ET is greater than in winter season when there are low temperatures. 

 

Figure 4.15: Monthly average evapotranspiration rates from 2000-2012 in the Letaba catchment 

estimated from MOD 16 

The year 2000 was the wettest year while 2003 and 2005 were the driest years (Figure 4.16). 

There is a considerable variation of ET from year to year; some years had high ET and others 

had slightly low ET. Years with high rainfall had high ET and the years with low rainfall also 

had low ET. The maximum ET estimated ranges between 198.7-248.2 mm/year, and the 

minimum ET estimated ranges between 2.5- 7.9 mm/year (Table 4.4). The lowest minimum 

value was estimated in 2012 (2.5 mm/year) and the highest minimum value was estimated in 

2000 (7.9 mm/year). This means there was a considerable spatial variability in rainfall received 

by the catchment in each year. The years that had relatively high maximum and minimum values 

also had higher median values than the years that had low maximum and minimum values. The 

standard deviations are relatively high for all the years, with the least one being 26.62 mm/year 

in 2003 and the highest on being 39.10 mm/year in 2006. This indicates that a wide range of 

values were observed in all years. 
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Figure 4.16: MOD 16 annual average evapotranspiration and annual rainfall from 2000-2012 in 

the Letaba catchment. 

 

Table 4.4: Descriptive statistics of MOD 16 ET from 2000-2012 in the Letaba 

catchment 

Years 

Statistical 
parameters 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Maximum 
(mm/year) 

229.3 248.2 254.8 198.7 201.4 217 237.9 238.2 213.4 248.8 231.8 240.1 217.2 

Minimum 
(mm/year) 

7.9 5.8 5 5.8 5.4 2.9 4.8 4.3 3.4 3.5 3.3 3.4 2.5 

Median 
(mm/year) 

55.4 46.1 22.7 23.3 37.4 22.2 38.3 34.8 28.8 27.3 45.3 32.4 24.7 

Standard 
deviation 
(mm/year) 

33.6 34.4 30.9 26.6 29.5 28.0 39.1 30.7 34.7 38.9 33.0 32.6 29.9 
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4.3.2 Heuningnes catchment 
For all the 13 years analyzed (Appendix B), ET decreases from Jan to Jun and increases from Jul 

to Dec. The year 2004 (Figure 4.17) and 2008 (Figure 4.18) were selected because 2004 (ET = 

403 mm/year) was relatively dry and 2008 (ET = 465 mm/year) was relatively wet. The months 

Jan and Feb were selected to represent the dry season, Aug and Sep were selected to represent 

the wet season. These months were selected because the interest was generally on the rates of ET 

during wet and dry seasons respectively.  

In summer season the northern part had low ET (ranging from 0-40 mm/month) during all the 

years. This part of the catchment corresponds to dry land as shown in the land cover types map 

(Figure 3.5), thus low ET occurs. The southern part of the catchment which is a low land is 

always wet during summer season (range of ET from 81-160 mm/month). This part has wetlands 

and fynbos, hence there is high ET. In winter there is high spatial variability of ET across the 

whole catchment (range of ET 0-80 mm/month). There are few noticeable areas with high ET 

throughout the year, these areas coincide with the wetlands in the catchment. High ET occurs at 

the beginning of warm dry season, because the soil is relatively moist and there is high 

evaporative demand and low ET occurs in cold wet season; in this season there is high rainfall 

but less sunshine thus less evaporative demand.  
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Figure 4.17: MOD 16 monthly evapotranspiration rates for January (top left), February (top 

right), August (bottom left) and September (bottom right) in 2004 for the Heuningnes 

catchment at a pixel resolution of approximately 1 km. 
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Figure 4.18: MOD 16 monthly evapotranspiration rates for January (top left), February (top 

right), August (bottom left) and September (bottom right) in 2008 for the Heuningnes 

catchment at a pixel resolution of approximately 1 km. 

The average of all pixel values were used to obtain the monthly ET estimates. All the years 

follow a similar pattern with monthly average ET slightly decreasing in January until June (30 

mm/month- 20 mm/month) and increasing from July until December (25 mm/month- 60 

mm/month) (Figure 4.19). At the end of summer dry period, the ET is low because the soil is 

relatively dry. During winter wet season, the soil conditions are relatively moist allowing high 

ET to occur but there is low evaporative demand due to less energy coming from the solar 

radiation therefore a lot of water is stored and becomes evaporated at the beginning of summer 

dry season (October) when the temperatures are high and evaporative demand is high.  
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Figure 4.19: MOD16 monthly average evapotranspiration from 2000-2012 in the Heuningnes 

catchment 

There are variations of ET over the years; some years had high ET and others had slightly low 

ET. Years with high rainfall had high ET and the years with low rainfall also had low ET (Figure 

4.20). Generally it is apparent that MOD 16 ET is higher in the Letaba catchment (Sub-tropical 

region) compared to the Heuningnes catchment (Mediterranean region) in some years and lower 

in other years from 2000-2012. This observation is rather expected as a study by Jovanovic et al., 

(2015), established that ET was higher in summer rainfall areas compared to winter rainfall areas 

in some years, and lower in other years, depending on rainfall pattern and distribution. The 

maximum ET estimated ranges from 140 to 172.8 mm/year and the minimum ET ranges from 15 

to 19.6 mm/year (Table 4.5). This means there was a spatial variation of rainfall received in the 

catchment from year to year. The median values ranged between 30-35.7 mm/year throughout all 

the years. The standard deviations are relatively high for all the years ranging from 12- 15.76. 

This indicates that a range of values were observed from all years.  
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Figure 4.20: MOD 16 annual average evapotranspiration and annual average rainfall from 2000-

2012 in the Heuningnes catchment 

Table 4.5: Descriptive statistics of MOD 16 ET from 2000-2012 in the Heuningnes 

catchment 

Years 

Statistical 

parameters 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Maximum 

(mm/year) 

140 156 150.3 164.7 164.2 161.1 154.2 163.5 169.8 163.4 150.1 159.7 172.8 

Minimum 

(mm/year) 

16.2 16.5 15 15.4 15.7 16.6 16.3 15.9 16 16.3 19.6 16.9 15.2 

Median 

(mm/year) 

33.4 31.8 32 35.1 30.8 34.4 32.1 33.7 35.7 33.2 33.6 34.3 33.5 

Standard 

deviation 

(mm/year) 

13.0 15.6 15.0 13.9 12.4 13.0 15.3 15.7 14.9 14.9 14.1 15.3 15.8 
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In comparison, the seasonal and interannual variations of MOD 16 ET differ between the Letaba 

and Heuningnes Catchments. The catchments have different climatic conditions. The Letaba 

catchment is characterized by summer rainfall, thus ET is high in summer and the Heuningnes 

catchment is characterized by winter rainfall, hence ET is high in winter. Highest ET was 

obtained in the western part of the Letaba catchment (range from 101-250 mm/month) and 

highest ET was obtained in the southern part of the Heuningnes catchment (range from 81-160 

mm/month). These variations are due to the land cover and land use types that are found in these 

areas and the topography of these areas. The interannual variations of MOD 16 ET differed in 

these catchments; in Letaba ET had decreased over the 13 years period and had increased in the 

Heuningnes catchment. The years with high rainfall also had high ET in both catchments. 
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Chapter 5: Variations of ET with land cover 

5.1 Introduction 

This chapter presents and discusses the second and third objectives. The objectives are: to 

examine whether ET rates estimated by MOD 16 capture the variation of actual ET with land 

cover and land use types in the selected catchments, and also to evaluate whether MOD 16 can 

be used to identify areas with shallow groundwater. The results of the spatial variation of MOD 

16 ET in the Letaba and Heuningnes catchments are presented. Following those results, ground-

truthing results are presented. Ground-truthing was done to check the vegetation, land cover and 

land use types in the areas with high spots of ET in the MOD 16 ET maps. Lastly shallow 

groundwater areas were mapped in both catchments. The purpose was to determine the spatial 

variation of ET and to evaluate whether MOD 16 ET can be used as a method to map shallow 

groundwater areas.   

5.2 Spatial variation of MOD 16 ET in different land cover types 

5.2.1 Letaba catchment 
Evapotranspiration varies in different land cover types, therefore MOD 16 ET rates captured by 

different land cover and land use types in the Letaba catchment were extracted using ArcGIS. 

Figure 5.1 presents MOD 16 evapotranspiration rates captured in different land cover types in 

2000 wet year, 2003 dry year and 2004 average year. The years 2000, 2003, and 2004 were 

selected to be wet, dry, and average years respectively based on the amount of ET they obtained 

throughout the year. Year 2000 obtained the highest ET (752 mm/year), hence it was regarded as 

a wet year, 2003 obtained the lowest ET (396 mm/year) thus it was considered as a dry year, and 

2004 obtained ET that is more or less the same as other years (547 mm/year), therefore it was 

used to represent average years. 

There is a considerable variation of ET among different land cover types within the same year 

and between the years. The forest had the highest ET (1204 mm/year in 2000, 1070 mm/year in 

2003 and 1130 mm/year in 2004) in both summer and winter seasons compared to all the other 

land cover types. Cultivated dry land (671 mm/year in 2000, 317 mm/year in 2003 and 437 

mm/year in 2004) and urban land (653 mm/year in 2000, 330 mm/year in 2003 and 436 mm/year 

in 2004) exhibited the smallest ET in both summer and winter compared to all the other land 

cover types. Actual ET depends upon rainfall, soil properties, climatic conditions, land cover and 

land use, vegetation and topography which cause it to vary both spatially and temporally (Hafeez 
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et al., no date). For example the land cover types that are situated in mountainous areas where 

there is a lot of rainfall reaching the surface the ET rates are likely to be high, whereas the land 

cover types situated in low land areas that receive low amount of rainfall the ET rates tend to be 

low.  

 

Figure 5.1: MOD 16 ET (mm/year) for different land cover types in 2000 (wet year), 2003 (dry 

year) and 2004 (average year) in the Letaba catchment 

An ANOVA test was undertaken to determine if the actual ET rates for  different land cover and 

land use types were significantly different. The null hypothesis stated that that MOD 16 cannot 

differentiate actual ET rates in different land cover types (𝑥̅1 =  𝑥 ̅2 =  𝑥3̅̅ ̅ = ⋯ 𝑥𝑛̅̅ ̅). The 

alternative hypothesis stated that MOD 16 has the ability to distinguish differences in the actual 

ET rates in different land cover types.  The test was done at the 5% significance level.The 

calculated F was greater than Fcrit (2.10), therefore null hypothesis was rejected and the results 

showed that average ET rates differed significantly among the land cover types. These results 

rather match the results of other studies. Ibrahim et al., (2016), used an ANOVA test to analyse 

the impact of land surface temperature on different land cover types. The results showed that 

there is a significant difference in the temperature variation in land cover types. 

Furthermore the box and whiskers plots were used to determine the land cover types that have an 

average ET that differ from the others (Figure 5.2). The forest mean was found different from the 

means of other land cover types, which ascertains that MOD 16 can distinguish the actual ET 

rates in different land cover types. This variation is shown in all three years with forest having 
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the most distinct mean compared to other land cover types. A study by Weligepolage (2005), 

reported that the analysis of spatial variation in actual ET between different land cover types 

presented has revealed that the average ET over different land cover types are substantially 

different from each other. These findings rather match the results of the current study, as forest 

had ET rates that differed significantly from the other land cover types.  

 

 
Figure 5.2: The box plots of MOD 16 ET data for different land cover types in 2000 (wet year), 

2003 (dry year) and 2004 (average year) in the Letaba catchment   
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5.2.2 Heuningnes Catchment 

There is considerable variation of ET in different land cover types within the same year and over 

the years. Forest had the highest ET in; 2004 (548 mm/year), 2008 (578 mm/year) and 2009 (603 

mm/year) compared to all other land cover types (Figure 5.3). Cultivated dry land had relatively 

low ET in; 2004 (367 mm/year), 2008 (444 mm/year) and 2009 (423 mm/year). Forest 

plantations have long roots that can abstract water from groundwater, thus they always have high 

ET rates. The canopy of forest plantations have the holding capacity of water, hence they also 

play a substantial role in the rates of ET. Cultivated dryland on the other hand had low ET rates 

because of shallow roots.  

 

Figure 5.3: MOD 16 ET (mm/year) for different land cover types in 2008 (wet year), 2004 (dry 

year) and 2009 (average year) in the Heuningnes catchment 

An ANOVA test was undertaken to determine if the actual ET rates for different land cover and 

land use types were significantly different. The null hypothesis stated that that MOD 16 cannot 

differentiate actual ET rates on different land cover types (𝑥̅1 =  𝑥 ̅2 =  𝑥3̅̅ ̅ … = 𝑥𝑛̅̅ ̅ ). Where n is 

the number of different land cover types. The alternative hypothesis stated that MOD 16 has the 

ability to distinguish differences in the actual ET rates on different land cover types. The test was 

done at the 5% significance level.  The calculated F was greater than Fcrit (2.10), therefore null 

hypothesis was rejected and the results showed that average ET rates differed significantly 

among the land cover types.  
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Additionally, the box and whiskers plots were used to determine the land cover types that have 

an average ET differing from the others (Figure 5.4). The forest mean was found significantly 

different from the means of others. Thus MOD 16 can distinguish the actual ET rates of different 

land cover types. The variation is shown in all three years with forest having the most distinct 

mean compared to the other land cover types. There is also a variation in the means and standard 

deviations of different land cover types. 

 

Figure 5.4: The box plots of MOD 16 ET data for different land cover types in 2004 (dry year), 

2008 (wet year) and 2009 (average year) in the Heuningnes catchment   
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The Letaba catchment is relatively larger than the Heuningnes catchment; thus the Letaba 

catchment had more spatial variation of MOD 16 ET compared to the Heuningnes catchment. 

The standard deviations also indicated that there was less spatial variation in Heuningnes 

catchment compared to the Letaba catchment. The Letaba catchment had highest ET rates for 

different land cover types as compared to the Heuningnes catchment. The variation of ET rates in 

the same land cover types of contrasting catchments is as the result of difference in location of 

land cover types and difference in weather conditions of these catchments.  

5.3 Ground-truthing and mapping of shallow groundwater areas 

5.3.1 Ground-truthing in Letaba catchment 
The sites visited and recorded during the field trip are summarized in Figure 5.5. Photos taken at 

each of these sites are also presented in Appendix C. 

The field trip started in the upper reaches at the source of the Molototsi River (Figure 5.5, and 

Appendix C). The presented pictures show areas that had high spots of ET and areas that had low 

ET rates. The Molototsi River originates in the vicinity of the village of Kgapane (Site 2). It 

flows through the village in the form of a narrow and deep valley (Site 3). Site 1 is in the 

northern adjacent catchment of the Brandboontjies River, a tributary of the Middle Letaba River. 

Site 5 is in the southern adjacent catchment of the Nwanedzi River, a tributary of the Greater 

Letaba River. 

The upper reaches of the Molototsi River are characterized by hilly and mountainous areas, with 

densely populated areas in the valleys and forests at higher altitudes. Forests are both plantations 

and natural forests. An example of forest plantations was found at Site 4, which is at the 

watershed between the Molototsi and Tzaneen dam catchments. Sites 6 and 7 are representative 

of natural forests, in the neighborhood of the Modjadji Nature Reserve. Such landscape occurs 

down to the Modjadji Water Scheme (Site 8). The Modjadji Water Scheme earth dam is visible 

from Site 6 and it showed a fairly low water level during the field visit. 

The landscape downstream of the Modjadji Water Scheme (Site 8) exhibits flatter and undulating 

hills, it is fairly densely populated, and it appears to be drier than the upper reaches. The 

vegetation is sparse and the land appears to be over-grazed. The Molototsi River is dry in these 

mid-reaches, however traces of shallow groundwater were found. For example, Site 9 is a site 

where sand mining appears to occur although no traces of water on the surface were observed.  
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Figure 5.5: Sites visited during the recognisance trip in the Molototsi river catchment, starting 

from the East (source) to the West (confluence) on a Google Earth map. Source: (www.google 

earth, Date 04/10/2013) 

Several perennial tributaries of the Molototsi river were observed, such as at Site 10 where water 

was ponding in the stream bed. Site 11 is the site of major earthworks. A sand dam was erected 

at this site to allow the construction of a new bridge. Excavations in the river bed indicated that a 

water table occurs at about 2 m depth overlying bedrock. This site could also be deemed suitable 

for the construction of barrage dams for water supply (populated villages and agriculture) and for 

the regulation of flow/floods upstream of the new bridge. Downstream of Site 11, the sand river 

bed of the Molototsi is remarkably exposed and this occurs down to its confluence in the Greater 

Letaba River. An example of the sand river bed appearance was evident at Site 12. A dug well 

was observed in the sand river bed at this site. The water table was about 1.5 m below the river 

bed, protected by thorn branches and a zinc sheet. The well was cased with a metal container 

(Appendix C).  
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A water sample was collected in the well. Site 13 occurs in an area where MOD16 ET indicates 

unusually high levels of evapotranspiration. It was observed that this is likely due to green and 

dense natural vegetation, which may be an indication of the occurrence of a shallow groundwater 

table. This area also includes a small irrigated vegetable farms. Tributaries of the Molototsi were 

observed, with sandy and rather stony river beds (Site 14) (Appendix C). 

In the lower reaches of the Molototsi, the vegetation is predominantly natural and sparse 

bushveld with small trees and the population is sparse in villages. The density of the vegetation 

increases in the neighborhood of water courses, as evidenced at Sites 15, 16, 17 and 19, where 

torrential tributaries occur on the left banks of the Molototsi river. Due to the visibly drier 

landscape, earth dams for cattle have been built, such as at Sites 18 and 21. Occasionally, the 

density of natural vegetation becomes high depending on water availability, such as at Site 20. A 

similar landscape occurs on the right bank of the Molototsi river, as evidenced at Site 22 where a 

torrential tributary occurs in the neighborhood of Dzumeri village. In these lower reaches, the 

groundwater depth in the Molototsi river bed is between about 0.4 m and 2.5 m as measured at 

Site 23 and Site 24 during the field trip, respectively. Sites 25, 26 and 27 are locations where 

some boreholes were found. Site 27 is in the neighborhood of a perennial tributary and a 

concrete water reservoir (Appendix C). 
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5.3.2 Mapping of shallow groundwater areas in the Letaba catchment  
In the Letaba catchment, a small catchment called Molototsi catchment was chosen for the 

mapping of shallow groundwater areas. Below are the steps that were taken to compile the map 

of shallow groundwater areas. 

Delineation of shallow groundwater based on borehole measurements 

The first step in the compilation of shallow groundwater maps was the delineation of shallow 

groundwater areas based on interpolated maps of groundwater depth, using data points obtained 

from the Groundwater Resource Information Project of the Limpopo Province (GRIP database; 

http://griplimpopo.co.za/ accessed on 9 November 2015). The borehole measurements in the 

GRIP database include a large number of boreholes and these are shown in Figure 5.6 for the 

Molototsi catchment and adjacent catchments. 

 

 

Figure 5.6: Groundwater monitoring points from GRIP database for the Molototsi river 

catchment. 

Data for all boreholes shown in Figure 5.6 were used to interpolate groundwater depth. 

Groundwater depth was plotted in ArcGIS using default cell size and interpolation with inverse 

distance weighting (IDW) with power factors from 0.5 to 2. A power factor of 0.5 tends to 

smooth out the interpolated values, whilst a power factor of 2 separates the interpolated values 
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the least. The interpolated groundwater depths are shown in Figure 5.7. Almost the entire 

Molototsi catchment has a groundwater depth < 20 m and in many areas < 10 m. The map 

interpolated with IDW and power factor of 0.5 showed the smallest areas of shallow 

groundwater. This interpolation was carried forward in the process of shallow groundwater 

mapping. 

 

 

Figure 5.7: Groundwater depths interpolated with inverse distance weighting with a power 

factor of 0.5 (top left), 1 (top right), 1.5 (bottom left) and 2 (bottom right), all with default cell 

size. 

Delineation of shallow groundwater based on National Freshwater Ecosystem Priority Areas 

(NFEPA) wetland maps 

The second step in the compilation of shallow groundwater maps was the delineation of wetlands 

based on National Freshwater Ecosystem Priority Areas (NFEPA) wetland maps. The 

information used to map wetlands and the national wetland classification systems used in 

NFEPA were described by Nel et al., (2011). An extract of this information is briefly 

summarized below. 
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Information used to map wetlands 

South African National Biodiversity Institute (SANBI) classified the wetlands. A brief 

description of how the classification was done is summarized. To compile the national wetland 

map, SANBI’s National Wetland Map 1 was used as the base GIS layer. This layer was derived 

from National Land Cover 2000 GIS layer, in which wetland polygons are described as wetland 

or waterbody. The waterbody category did not distinguish between natural and artificial 

waterbodies, therefore the National Wetland Map 1 was combined with the 1:50,000 inland 

water features to derive National Wetland Map 2 that was divided into 3 GIS layers: wetland 

(marsh vlei, swamp), natural waterbody (dry pan, lake, mudflats, pool, non-perennial and 

perennial pan) and artificial waterbody (dam, fish farm, large reservoir, water tank and 

purification plant). The wetland and natural waterbody GIS layers were then combined to 

produce a natural waterbody GIS layer. This was then combined with the artificial waterbody 

GIS layer to produce the National Wetland Map 3, in which wetland polygons have been 

described as either natural or artificial waterbodies. Finally, existing sub-national wetland 

locality maps from other biodiversity planning initiatives were added to the National Wetland 

Map 3 to derive the final NFEPA Wetland 3. 

Wetland ecosystem types 

Wetlands in the same wetland ecosystem type are expected to share similar broad functionalities 

and ecological characteristics. The diversity of wetland ecosystems was therefore represented 

using wetland ecosystem types according to the national wetland classification system (SANBI, 

2010). The national wetland classification system is a hierarchical classification framework 

consisting of six levels, with each level requiring increasing levels of detail about a wetland: 

 In level 1, wetlands are identified as estuaries or as inland wetland. 

 Levels 2 to 4 identify broad groups of wetlands sharing similar regional context, type of 

landform (slopes, benches, valley floors and plains) and broad hydrology. 

 Levels 5 and 6 describe site characteristics such as geology, hydro-period, substratum, 

vegetation, salinity, pH and naturalness. 
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Types of wetlands in Molototsi and their sources of water 

In the Molototsi river catchment, the following types of wetlands occur and they were mapped in 

NFEPA: 

a) Seep is a wetland area located on gently to steeply sloping land, which is 

dominated by the colluvial (gravity-driven), unidirectional movement of material 

down-slope. The source of water for this wetland is the subsurface flow that 

enters the wetland from an up-slope direction. 

b) Valleyhead seep is a gently-sloping, typically concave wetland area located on a 

valley floor at the head of drainage line. The source of water is mainly from 

subsurface flow although there is usually also a convergence of diffuse overland 

water flow in these areas during and after rainfall events. 

c) Depression is a landform with closed elevation contours that increases in depth 

from the perimeter to a central area of greatest depth and within which water 

typically accumulates. The dominant sources of water for this wetland are 

precipitation, groundwater discharge, interflow and overland flow. 

d) Channelled valley-bottom is a mostly flat wetland area on a valley floor that is 

dissected by, and typically elevated above a well-defined stream channel. The 

dominant source of water is the channel and also the adjacent valley-side slopes. 

e) Unchannelled valley-bottom is a mostly flat wetland area without a well-defined 

stream channel running through it, and it is characterized by an absence of distinct 

channel banks and the prevalence of diffuse flows, even during and after rainfall 

events. The source of water is from an upstream channel, as the flow becomes 

dispersed and from adjacent slopes. 

f) Flat is a near-level wetland area with little or no gradient, situated on a plain or a 

bench. The primary source of water is precipitation. 

g) Floodplain is the mostly flat or gently-sloping wetland area adjacent to and 

formed by a lowland or upland floodplain river, which is subject to periodic 

inundation by overtopping of the channel bank. The source of water is mainly via 

overspill from a river channel during flooding. 
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The wetlands in the Molototsi catchment according to NFEPA are shown in Figure 5.8. The 

variety and type of wetland can be easily linked to the position in the catchment. For 

comparative purpose, the digital elevation model (DEM) of the Molototsi catchment is shown in 

Figure 5.10 (Weepener et al., 2011). It is interesting to note that the location of many wetlands 

coincided with measured shallow groundwater (Figure 5.7). The wetlands are defined as areas 

with shallow groundwater and these areas were added to the interpolated maps of borehole 

measurements (Figure 5.7) in the compilation of the shallow groundwater map. 

 

Figure 5.8: Wetland map for the Molototsi river catchment with categories and descriptions 

according to NFEPA (National Freshwater Ecosystem Priority Areas). 

 

http://etd.uwc.ac.za/



 

 

 

 

 

83 
 

 

Figure 5.9: Digital elevation model (DEM) for the Molototsi river catchment. 

Delineation of areas with high evapotranspiration 

Areas with consistently high evapotranspiration (ET) may usually indicate the presence of 

shallow groundwater that provides a source of water to vegetation. Measurements of ET are 

generally resource and time-intensive, and representative of a restricted area (point 

measurements). In recent years, satellite imagery has provided the opportunity to overcome the 

problems linked to ground measurements and to obtain large scale spatial data of ET (Jovanovic 

et al., 2014). In this instance, the MOD16 ET algorithm was used to identify areas with high 

evapotranspiration during the period 2000-2012. For the purpose of identifying areas where 

vegetation is possibly fed by shallow groundwater, we first selected a very dry year from the 

period 2000-2012. We used rainfall recorded by the network of weather stations of the 

Agricultural Research Council (ARC). Very few stations in Limpopo had a time series record as 

far back as 2000. Annual rainfall values from available weather stations (Citimba, Piertrsburg, 

Brits-AGR, Lephalale, Dendron and Polokwane stations) for the period 2000-2012 are shown in 

Figure 5.10. Based on the data available, 2003 was a particularly dry year. The average rainfall 

for 2003 was about 350 mm/year. Any ET values substantially higher than rainfall (350 

mm/year) would indicate the possible occurrence of shallow groundwater representing a water 

source for vegetation. Areas with ET > 350 mm/year in 2003 were therefore extracted and added 

to the compilation of the shallow groundwater map for the Molototsi catchment. 

http://etd.uwc.ac.za/



 

 

 

 

 

84 
 

 

 

Figure 5.10: Annual average rainfall measured at weather stations of the Agricultural Research 

Council (ARC) in Limpopo. 

 

 

Figure 5.11: MOD16 annual evapotranspiration (ET) for the Molototsi river catchment during a 

dry year (2003). 
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Interpretation of shallow groundwater areas 

The MOD16 ET for the Molototsi catchment in 2003 is shown in Figure 5.11. It is clear from the 

map that high ET values (>1,000 mm/year) occurred in the upper reaches in the western 

mountainous part of the catchment. This area corresponds to Sites 3, 4, 6 and 7 of the field trip 

(Appendix C), and it is likely that it receives more rainfall than the rest of the catchment through 

the orographic effect of the escarpment. The mountainous upper reach basically represents the 

main recharge area of the Molototsi River. The land uses and land cover were also checked 

against the National Land Cover (NLC) maps of 2009 (SANBI, 2009) and 2014 

(GEOTERRAIMAGE, 2014). The land cover maps for the Molototsi catchment are shown in 

Figure 5.13. According to NLC 2009 by SANBI, the upper reaches of the river are represented 

by natural vegetation, forest plantations, urban areas and some cultivated areas. According to 

NLC 2014 (GEOTERRAIMAGE, 2014), these areas are represented by thicket/dense bush, 

urban areas and plantations. The ground-truthing during the field trip and the NLC maps 

description are consistent with the expected high ET values in the upper reaches of the Molototsi 

catchment, as indicated in the MOD 16 ET map (Figure 5.11). 

From the Modjadji water scheme downstream (Site 8 of the field trip; Appendix C), MOD16 ET 

varied in the range between 200 and 500 mm in 2003. These areas in the mid- and lower reaches 

of the Molototsi River were classified predominantly as natural land, land under cultivation, 

urban areas (villages) with some degraded areas especially in the mid-reaches according to NLC 

2009. According to NLC 2014, these areas are classified as a mixture of woodland/open bush, 

grassland, thicket/dense bush, cultivated areas for subsistence agriculture and urban areas 

(villages). It is also interesting to notice that many locations of high MOD16 ET in the mid- and 

lower reaches coincide with the occurrence of wetlands (Figure 5.8). There are no major irrigated 

areas in the catchment that would be larger than the pixel resolution of ~1 km of MOD16 ET. 

In summary, the mountainous areas in the upper reaches of the Molototsi catchment are likely to 

receive more rainfall that sustains water use by natural forests and plantations. In the mid- and 

lower reaches of the catchment, there exist spots of high ET that often coincide with wetlands 

mapped by NFEPA and natural vegetation areas. These spots appear to be fed by seasonal 
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groundwater (soil water stored in the unsaturated zone, perched groundwater tables or fluctuating 

groundwater tables). 

  

  

Figure 5.12: Land cover map from 2009 (top) and 2014 (bottom) for the Molototsi river 

catchment. 

 

Final shallow groundwater map 

The final shallow groundwater map for the Molototsi river catchment was produced by 

overlaying interpolated groundwater depths < 10 m, wetlands mapped by NFEPA and MOD16 

pixels of high evapotranspiration (ET > 350 mm a
-1

) estimated during a dry year (2003). The 

final shallow groundwater map is presented in Figure 5.13. 
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Figure 5.13: Final map of shallow groundwater for the Molototsi River overlaying interpolated 

groundwater depths with inverse distance weighting (IDW GWL), NFEPA wetlands and MOD16 

pixels of high annual evapotranspiration (ET) during a dry year. 

 

5.3.3 Ground-truthing in the Heuningnes catchment 
The ground-truthing of land cover types and land uses from the Heuningnes catchment was done 

on 26 February 2016 and 20 sites were visited. The sites visited and recorded during the field trip 

are summarized in Figure 5.14. Photos taken at each of these sites are also presented in Appendix 

D.  
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Figure 5.14: Sites visited in the Heuningnes catchment. Source: (www.google earth, Date 

02/07/2014) 

Site 1 is a lowland area and is characterized by dense alien vegetation (Acacia saligna and 

Acacia mearnsii). The Acacia saligna usually grows 2- 6 m tall but can reach up to 10 m in 

height. The Acacia mearnsii grows up to 15 m in height. Site 2 is an open dry land that is 

characterized by loam soil and with patches of grass and the area is lowland. There is short green 

grassland at site 3. Site 4 is the Heuningnes River characterized by dense tall reeds (Phragmites 

australis) in the riparian zones. The Phragmites australis typically grow to 2 m in height, but 

may reach 4 m. Site 5 is another part of the Heuningnes River in the Vissesdrift, the stream is 

also characterized by tall reeds (Phragmites australis) in the riparian zones and within the 

stream. The stream is wider than the stream in site 4. There are also trees (Acacia mearnsii) in 

the surroundings of the stream (Appendix D).  

At site 6 there is dense alien vegetation (Acacia saligna and Acacia mearnsii) and dry natural 

grass land and the area is lowland. The vegetation is in a good state, not overgrazed. Site 7 is 

Soetendalsvlei that is characterized by tall reeds (Phragmites australis) in its riparian zones. The 

Soetendalsvlei is a 3 km by 8 km lake that overflows into the Heuningnes River. Site 8 and 9 are 

dry land areas that are characterized by loam soil and small patches of grass. Site 10 is a 

cultivated bare land next to the Soetendalsvlei. At site 11 and 12 the areas are lowland with 

dense bush land (Eucalyptus radiate, Acacia saligna and Acacia mearnsii). Eucalyptus radiate is 

a medium to tall tree up to 30 m high (Appendix D).  
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Site 13 is a flowing stream with dense riparian vegetation (Phragmites australis) on the right 

bank and with small patches of grass on the left bank of the stream. The river flow is low as the 

river flow in the Heuningnes catchment is expected to be low during summer dry season and is 

expected to rise during winter wet season. At site 14 there is dense vegetation (Acacia cyclops) 

and dry land. The Acacia cyclops is an evergreen shrub or tree with a dense, untidy appearance 

and has an average height of 3 m, but it can reach a height of 8 m. Site 15 and 16 are 

characterized by mountainous areas with dense vegetation (Acacia cyclops) and cultivated bare 

land. Site 17, 18 and 19 are mountainous areas with dense vegetation (Eucalyptus radiate, 

Acacia saligna, Acacia cyclops and Acacia mearmsii). Site 20 is a mountainous area with dense 

vegetation (Eucalyptus radiate and Acacia cyclops) covering the slope and a grass land in the 

lower parts of the area. The mountainous areas are likely to receive more rainfall than the rest of 

the catchment through the orographic effect of the mountains. The dense alien vegetation also 

absorbs a lot of water and therefore is likely to have high ET rates (Appendix D). 

 

5.3.4 Mapping of shallow groundwater areas in the Heuningnes catchment 

 

Delineation of shallow groundwater based on borehole measurements 

The first step in the compilation of shallow groundwater maps was the delineation of shallow 

groundwater areas based on interpolated maps of groundwater depth, using data points obtained 

from measurements taken during the field trip on 26 February 2016. The boreholes and 

piezometers are only in quaternary catchment G50 C as shown in Figure 5.15. There were no 

other borehole data found in the catchment.  

http://etd.uwc.ac.za/



 

 

 

 

 

90 
 

 

Figure 5.15: Groundwater monitoring points for the Heuningnes catchment. 

Data for boreholes shown in Figure 5.15 were used to interpolate groundwater depth. 

Groundwater depth was plotted in ArcGIS using default cell size and interpolation with inverse 

distance weighting (IDW) with power factors from 0.5 to 2. The interpolated groundwater depths 

are shown in Figure 5.16. There were few points with measurements; therefore the entire 

Heuningnes catchment has a groundwater depth < 10 m and in few areas < 5 m. 
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F 

Figure 5.16: Groundwater depths interpolated with inverse distance weighting with a power 

factor of 0.5 (top left), 1 (top right), 1.5 (bottom left) and 2 (bottom right), all with default cell 

size. 

Delineation of shallow groundwater based on National Freshwater Ecosystem Priority Areas 

(NFEPA) wetland maps 

The second step in the compilation of shallow groundwater maps was the delineation of wetlands 

based on NFEPA wetland maps. The information used to map wetlands and the national wetland 

classification system used in NFEPA was described by Nel et al., (2011). An extract of this 

information is briefly summarized above (under mapping of shallow groundwater areas in the 

Molototsi catchment) 

The wetlands in the Heuningnes catchment according to NFEPA are shown in Figure 5.17. The 

variety and type of wetland can be easily associated to the position in the catchment. For 

comparative purpose, the digital elevation model (DEM) of the Heuningnes catchment is shown 

in Figure 3.3. The location of many wetlands matched with measured shallow groundwater 

(Figure 5.16). The wetlands are defined as areas with shallow groundwater and these areas were 

added to the interpolated maps of borehole measurements (Figure 5.16) in the compilation of the 

shallow groundwater map. 
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Figure 5.17: Wetland map for the Heuningnes catchment with categories and descriptions 

according to NFEPA (National Freshwater Ecosystem Priority Areas). 

Delineation of areas with high evapotranspiration 

Areas with continually high evapotranspiration (ET) may usually indicate the presence of 

shallow groundwater that provides a source of water to vegetation. For the purpose of identifying 

areas where vegetation is possibly fed by shallow groundwater, we first selected a very dry year 

from the period 2000-2012 according to ET (Figure 5.19). The annual average rainfall values 

from available weather stations (Prinskraal and Agulhas stations) for the period 2000-2012 of the 

whole Heuningnes Catchment are shown in Figure 5.18, but because there is missing data in 

each weather station the rainfall data is not reliable, which makes it no feasible to choose a dry 

year based on rainfall. A 450 mm/year
 
was assumed to be generally the annual average rainfall in 

the Heuningnes Catchment. Therefore any ET values substantially higher than this annual 

average rainfall (450 mm/year) would indicate the possible occurrence of shallow groundwater 

representing a water source for vegetation. Areas with ET > 450 mm/year in 2004 were therefore 

extracted and added to the compilation of the shallow groundwater map for the Heuningnes 

catchment. 
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Figure 5.18: Annual average rainfall measured at weather stations (Prinskraal and Agulhas) in 

the Heuningnes Catchment. 

 

Figure 5.19: MOD16 annual evapotranspiration (ET) for the Heuningnes catchment during an 

average rainfall year (2004). 
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Interpretation of shallow groundwater areas 

The MOD16 ET for the Heuningnes catchment in 2004 is shown in Figure 5.19. It is clear from 

the map that high ET values (>680 mm/year) occurred in the lower reaches in the south part of 

the catchment. This area is likely to receive more rainfall than the rest of the catchment and is 

close to the coast. The land cover and land use were also checked against the National Land 

Cover (NLC) map of 2014 (SANBI, 2014). The land cover map for the Heuningnes catchment is 

shown in Figure 3.5. According to NLC 2014 by SANBI, the lower reaches of the catchment are 

represented by shrubland and low fynbos, thicket bushland, bush clumps, high fynbos and 

cultivated temporary commercial dryland. These land cover types are likely to consume a lot of 

water. It is also interesting to notice that many locations of high MOD16 ET in the mid- and 

lower reaches match with the occurrence of wetlands (Figure 5.17) and others match with the 

Soetendalsvlei (Site 7 in the field trip) and tributaries of the Heuningnes River. The mid reaches 

with high MOD 16 ET correspond to Sites 16, 17, 18 and 19 of the field trip (Figure 5.14), and 

they are likely to receive more rainfall during winter wet season. This is a mountainous area 

according to the DEM shown in Figure 3.3.  

In summary, the lowland areas in the south part of the Heuningnes catchment are likely to 

receive more rainfall that sustains water use by cultivation, shrubland and fynbos. In the mid- 

and lower reaches of the catchment, there exist spots of high ET that often match with wetlands 

mapped by NFEPA and natural vegetation areas. These spots appear to be fed by seasonal 

groundwater (soil water stored in the unsaturated zone, perched groundwater tables or fluctuating 

groundwater tables). 

Final shallow groundwater map 

The final shallow groundwater map for the Heuningnes catchment was produced by overlaying 

interpolated groundwater depths < 10 m, wetlands mapped by NFEPA and MOD16 pixels of 

high evapotranspiration (ET > 450 mm a
-1

) estimated during an average rainfall year (2004). The 

final shallow groundwater map is presented in Figure 5.20. 
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Figure 5.20: Final map of shallow groundwater for the Heuningnes catchment overlaying 

interpolated groundwater depths with inverse distance weighting (IDW GWL), NFEPA wetlands 

and MOD16 pixels of high annual evapotranspiration (ET) during an average rainfall year. 
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Chapter 6: Conclusion and Recommendations 

In this study the seasonal and spatial variation of MOD 16 ET for a period of 13 years (2000-

2012) in the Letaba catchment and Heuningnes catchment was investigated. The following was 

concluded based on the analysis of the monthly MOD 16 ET maps that were plotted to determine 

the seasonal variation of ET in these catchments. MOD 16 is able to determine the temporal 

variation of ET; however it is not accurate at predicting the absolute value of ET. According to 

the plotted monthly MOD 16 ET maps, it is evident that during the 2000-2012 period ET has 

varied in the Letaba catchment (438-753 mm/year) and in the Heuningnes catchment (432-458 

mm/year).  

Validation of MOD 16 ET was done in Elandsberg (Mediterranean region), Skukuza (Sub-

tropical region) and Malopeni sites (Sub-tropical region). From the results obtained, the null 

hyphothesis which stated that there is no difference between averages of MOD 16 ET and ET 

derived from scintillometer and ET derived from flux towers was rejected in Elandsberg site and 

it was concluded that the average of  ET derived from scintillometer differ from average of MOD 

16 ET. However in Skukuza and Malopeni sites the null hypothesis was not rejected, thus it was 

concluded that there was no meaningful variation between averages of ET derived from flux 

towers and average of MOD 16 ET. It is indicated that MOD 16 has uncertainty in the prediction 

of absolute values of ET in different climatic regions as it is shown to underestimate ET in 

Mediterranean region and slightly overestimate in Sub-tropical region. The main sources of poor 

performance of MOD 16 in these regions are likely to be the poor comparison of predicted ET 

with some weather factors and different land cover types. Although the weather factors had some 

missing data in some days, the temperature, solar radiation and relative humidity generally had a 

moderate relationship when compared with the ET derived from scintillometer and flux tower. 

This means these weather factors should be fairly considered when estimating actual ET.  

According to the statistical analysis and separation of ET in different land cover types, it is 

evident that MOD 16 has the ability to distinguish the spatial variation of ET in different land 

cover types. Furthermore, MOD 16 ET was found to be applicable in applications like mapping 

shallow groundwater areas, as it was successfully used to map areas with shallow groundwater in 

the Heuningnes catchment and Molototsi in the Letaba catchment. 
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Validation of MOD 16 ET in many sites within the Mediterranean region and Sub-tropical region 

is recommended, as it will further improve the conclusions about the accuracy of MOD 16 in 

these regions. The weather factors had missing data in some days, which makes it difficult to 

draw proper conclusions about their effect in estimating actual ET. Therefore further comparison 

of these weather factors is recommended to improve the conclusions about them. Ground 

measured ET data needs to be collected in the Heuningnes catchment and Letaba catchment for 

further studies to do validation of MOD 16 in these catchments.   
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Appendix B: Monthly MOD 16 ET in the Heuningnes catchment 
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Appendix C: The sites visited during the recognisance trip in October 2015 in the Molototsi 

catchment  
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Appendix D: The sites visited during the field trip on 26 February 2016 in the Heuningnes 

catchment  
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