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ABSTRACT 

 

Exogenous caffeic acid alters molecular responses in Salvia hispanica L. 

 

S.A Jones 

Masters Thesis, Department of Biotechnology, University of the Western Cape 

 

Salt stress is one of the most important abiotic stresses, resulting in the 

accumulation of ROS, which amount to great agricultural losses by influencing 

plant yield and in turn threaten sustainable agriculture and food security worldwide. 

ROS accumulates to levels that can become toxic to plants and is dependent on the 

scavenging ability of the antioxidant system to maintain redox homeostasis. Caffeic 

acid (CA) is a known antioxidant that have been shown to reduce the 

formation/production of ROS in legume plants exposed to salt stress. However, its’ 

effect on pseudocereal plants such as chia have not been elucidated. This study 

investigated the influence of exogenous caffeic acid (at a final concentration of 100 

µM) on the physiological and biochemical responses of chia plants under salt stress 

(100 mM). Furthermore, this study also investigated how caffeic acid and salt stress 

influenced protein changes in chia leaves using gel based proteomic analysis 

coupled with mass spectrometry.  

The results showed that salt stress significantly reduces plant growth, biomass, 

relative water content, and chlorophyll metabolism.  Contrary to what was observed 

for salt stress, caffeic acid improved plant growth, biomass and chlorophyll content. 

When salt stressed plants was supplemented with caffeic acid, the negative effects 

observed in the salt treatment was reversed albeit not to the level of the untreated 
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control. A similar trend was observed for ROS accumulation as denoted by 

hydrogen peroxide content, superoxide levels and the extent of lipid peroxidation. 

Caffeic acid and salt stress differentially altered antioxidant enzyme activity to 

control ROS metabolism. Although a significant increase in antioxidant enzyme 

activity was observed in salt stressed plants, this increase was not sufficient to 

counter the deleterious effects caused by salt stress. However, exogenous 

supplementation of caffeic acid to salt stressed plants notably reversed the negative 

effect caused by salt stress although not to the level of the control plants.  

A total of 21 leaf based proteins with different degrees of abundance (across all 

treatments) was identified using gel based proteomic analysis. These proteins were 

functionally characterised into six broad categories. These categories include 

carbohydrate metabolism (43 %), proton transport (14 %), nitrogen metabolism (9 

%), protein synthesis (10 %), detoxification (19 %) and disease/defence (5 %). 

Interestingly, most of the proteins identified was induced by caffeic acid (76 %), 

whereas only one protein was upregulated in response to salt stress and the 

remaining proteins were induced in the combined treatment (19 %). Most of the 

positively identified proteins was localised to the chloroplast with some found in 

the thylakoid membrane.  

Based on the results obtained in this study we suggest that caffeic acid could serve 

as a regulatory signalling molecule in modulating salt stress tolerance in chia plants. 

This is evident by improved plant growth and biomass coupled with reduced ROS 

production. Moreover, the caffeic acid induced proteins identified in this study 

could also serve as potential biomarkers to enhance salt stress tolerance in chia 

plants. 
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CHAPTER 1 

LITERATURE REVIEW 

 

1.1. Introduction 

Food security, a globally used term, is defined as the accessibility to healthy and 

high quality nutritional food sources, throughout a particular region, at all times 

(Drimie and McLachlan 2013; Labadarios et al. 2011). Furthermore, food systems 

are explained as the interaction between (and within) the biogeophysical and human 

environments which leads to the production, processing, distribution, preparation 

and finally, food consumption (Gregory et al. 2005). Therefore, functioning foods 

systems, include three components: (i) food availability, (ii) food access, as well as 

(iii) food utilisation (Figure 1.1). Hence, these food systems are recognised as the 

underpin for food security (Gregory et al. 2005). 

 

Figure 1.1. Food systems with their respective functions. The diagram was adapted from Gregory 

et al. 2005. 
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The food security status within a particular domain is highly influenced by plant – 

based food sources, such as cereals and pseudocereals. The importance of these 

crops are expressed through its valuable nutritional and medicinal properties. These 

properties were discovered in numerous cereals, including sorghum (Sorghum 

Bicolor L. Moench) and maize (Zea mays L.), as well as pseudocereals such as 

buckwheat (Fagopyrum esculentum Moench), quinoa (Chenopodium quinoa) and 

amaranth (Amaranthus cruentus L.) (Goncalves et al. 2016; Ramatoulaye et al. 

2016; Rouf Shah et al. 2016; Tang et al. 2016). These crops have been exploited 

for various food sources categorised into fats and oils, carbohydrates, vitamins and 

salts, proteins, beverages, spices, as well as drugs for the prevention and curing of 

various infections and diseases (Muhammad and Amusa 2005). Therefore, food 

crops can serve as a valuable contributing factor to improve the food security status 

within food insecure domains. 

Food insecurity has become alarmingly worrisome within the African continent 

(Figure 1.2). However, according to Talebpour et al. (2015), South Africa is only 

at medium risk which was further explained by Drimie and McLachlan (2013). 

These authors amended the original food security definition to accommodate the 

South African population since various divisions of South Africa are declared food 

secure, whilst few areas remain food insecure. Therefore, suggesting that not every 

region within South Africa has access to foods that are essential for healthy living 

(Drimie and McLachlan 2013; Labadarios et al. 2011) and thus forming the basis 

of food crop research in aid of improving the food insecure domains of South 

Africa. 
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Figure 1.2. The distribution of global food insecurity in 2012 – 2013. The map was adapted from 

Talebpour et al. 2015. 

 

South Africa remains to be one of the fastest growing populations (Larkins et al. 

2008) and therefore, despite the advances witnessed in the South African economy 

since the Apartheid era (political and economical), the country remains 

overwhelmed with poverty, unemployment and food price volatility (Altman et al. 

2009; Drimie and McLachlan 2013; Labadarios et al. 2011). In addition to these 

economic impacts, South Africa is highly affected by climate change. This could 

lead to significant changes in rainfall patterns which could ultimately result in 

drought and high saline environments (Slingo et al. 2005). Therefore, as a 

consequence, the country suffers a persistence of hunger and malnutrition (Drimie 

and McLachlan 2013), contributing 204 million undernourished individuals (sub – 

Saharan including South Africa) to the 814 million within developing countries 

(Labadarios et al. 2011).  

Therefore, a wealth of research has shown that climate variability has a direct link 

to food security as various weather conditions impact certain valuable crops. Thus, 

climate change halts food production and ultimately negatively impacting the food 
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security status in South Africa (Gregory et al. 2005; Lobell et al. 2008; Slingo et 

al. 2005). Hence, given these “short wave shocks” such as food price volatility and 

“long wave shocks” which refers to climate change (Drimie and McLachlan 2013), 

ordinary South African citizens continue to experience the severe pressure through 

these adverse conditions, enforcing a greater struggle to meet their basic household 

needs (Labadarios et al. 2011). 

Although these wave shocks collectively reduces the strength of the food security 

status in South Africa, those fortunate of accessing healthy food sources consume 

maize, wheat and rice, which contribute to 60% of the world’s food supply 

(Pimentel et al. 1997). In addition to these crops, advances in plant research has led 

to the discovery of superfood crops that have shown to medicinally and nutritionally 

contribute to human health. Many of these superfood crops, such as buckwheat, 

quinoa and amaranth are characterised as pseudocereals. However, research in the 

pseudocereal, Salvia hispanica (chia), remain in its infancy.   

Therefore, in order to improve food security, this research addresses climate change 

and the highly nutritional pseudocereal, Salvia hispanica, to improve food production 

and reduce food insecurity not only in South Africa, but worldwide. 

 

1.2. The importance of pseudocereals 

Pseudocereals are defined as crops that are evolutionary distant from cereals, yet 

remain to produce grains, and are characterised by an excellent nutrient profile 

(Alvarez – Jubete et al. 2010; Berti et al. 2005). The nutritive value of pseudocereals 

are associated with their protein content which provides a substantial group of bio – 
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macromolecules required for various physiological functions (Mota et al. 2016), in 

addition to their polyphenol and high dietary fibre content (Tang et al. 2016). 

However, extensive research focused on cereal crops instead, given its 60% 

contribution to the world’s food supply (Pimentel et al. 1997).  Thereafter, upon the 

discovery of gluten – based diseases such as celiac disease (CD), plant researchers 

diverted their focus toward gluten – free sources. Alvarez – Jubete et al. (2010) 

explains CD to be an autoimmune enteropathy which is triggered via the ingestion of 

gluten containing grains in genetically susceptible individuals. This understanding 

has driven research towards the discovery and knowledge of gluten – free grains, such 

as amaranth (Amaranthus retroflexus), quinoa (Chenopodium quinoa), buckwheat 

(Fagopyrum esculentum) and chia (Salvia hispanica), all classified as pseudocereals 

(Galova et al. 2015; Tang et al. 2016). Furthermore, given its low allergenicity, 

pseudocereals have also been recommended for babies as a replacement for rice 

(Mota et al. 2016). Therefore, these pseudocereals have been implemented into, not 

only gluten sensitive individuals diets, but also healthy diets (Gorinstein et al. 2007). 

 

1.3. Salvia hispanica as an alternative food source 

Salvia hispanica, a pseudocereal commercially known as chia (Figure 1.3), was first 

documented in the codices of the 16th century in Mexico, whereby a volume of 

ethnobotanical information was provided in addition to describing the large 

agricultural areas that were solely devoted to chia cultivation. Therefore, chia can be 

described as an ancient crop as they were first discovered and cultivated by pre – 

Columbian communities in Mexico and Guatemala (Ayerza and Coates 1999; Ixtaina 
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et al. 2010; Sandoval – Oliveros and Paredes – Lopez 2012). However, although chia 

served as a staple food source for these pre – Columbian communities, the “chia rage” 

had become lost in history when the Spanish invaded the Aztecs as it resulted in a 

reduction in chia cultivation. This was due to the Spanish banishing chia cultivation 

as a means of control, and consequently limiting chia survival (Joseph 2004). It 

wasn’t until the 1990’s when Dr. Wayne Coates, the founder and writer of chia 

research, stimulated chia production for nutritional composition studies. This was 

achieved through the initiation of a project by Agropecuaria El Valle S.A., an 

Argentinian company, in order to determine the feasibility of commercialising chia 

production in Argentina and Columbia (Coates 1996). 

Although this pseudocereal originated in central Mexico and Guatemala, it is now 

grown in various countries with Australia currently noted as the largest producer of 

these chia seeds (Crawford et al. 2012; Timilsena et al. 2016).  In addition to 

Australia, chia is also produced in Argentina (Ayerza 2016), Brazil (de Freitas et al. 

2016), Italy (Bochicchio et al. 2015) and various other countries contributing to a 

worldwide annual production of 30 000 tons (Daniells 2013).  

Chia, classified within the mint (Labiatae) family, has been described as a crop that 

is capable of growing in arid and semiarid conditions (Ixtaina et al. 2008; Mohd Ali 

et al. 2012; Reyes – Caudillo et al. 2008). A total of 900 species exist within the 

Salvia genus which has all been explored for various chemical studies relating to the 

isolation of polyphenols, diterpenoids and tanshinones from various plant tissues. 

Chia was known to be one of the major crops of the 16th century (Reyes – Caudillo 

et al. 2008) and although this plant served as a staple food source for the pre – 



http://etd.uwc.ac.za
7 

 

Columbian communities, modern age communities primarily recognises chia plants 

for their oil applications (Ixtaina et al. 2008; Ixtaina et al. 2010). 

 

Figure 1.3. Matured Salvia hispanica (chia) plants grown in the field. Chia can grow up to 2 m 

tall. 
 

1.3.1. Botanical characteristics 

Chia oil, which is known to consist of highly nutritional components, is located within 

the seed. Mohd Ali and authors (2012) had described chia seeds as oval – shaped with 

a diameter of 1 – 2 mm (Figure 1.4). These authors further describe the chia plant’s 

to grow as tall as 2 m with opposite arranged leaves in its’ natural and accommodating 

environment. As viewed in Figure 1.3, upon maturation, chia plants exhibit purple 

colour flowers which have been described by Mohd Ali et al. (2012) to range between 

3 – 4 mm, with fused corollas. 
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Figure 1.4. Seeds of Salvia hispanica (chia). Chia seeds are oval shaped and are 1 – 2 mm in 

diameter (Daniells 2013). 
 

 

1.3.2. Nutritional value 

The seeds that are produced from this species are prized for their nutritional and 

medicinal properties since the Mayans and Aztecs exploited this seed as a food 

supplement for energy, endurance and strength (Sandoval – Olivero and Paredes – 

Lopez 2012). Hence, the interest in chia lies within its oil content, protein 

composition, antioxidant activity and dietary fibre content (Ixtaina et al. 2008). Due 

to its high dietary fibre content, the chia seed is considered highly nutritional given 

the volumes of published research proving that the consumption of dietary fibre 

reduces cholesterolaemia, modifies the glycemic and insulinaemic responses as well 

as alter the intestinal functions and antioxidant activities (Reyes – Caudillo et al. 

2008). According to Sandoval – Olivero and Paredes – Lopez (2012), researchers are 

interested in the high levels of natural antioxidants (phenolic compounds) within the 
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chia seed. These phenolic compounds, specific to chia, include caffeic and 

chlorogenic acid, kaempferol, quercetin and myricetin (Mohd Ali et al. 2012; 

Sandoval – Olivero and Paredes – Lopez 2012). 

 

1.3.3. Chia oil – Medicinal value 

Chia seeds comprises 25 – 40 % oil (Mohd Ali et al. 2012) that consists of linoleic 

(17 – 26 %) and α – linolenic (50 – 57 %) acids (Ayerza 1995). The α – linolenic 

acid, also referred to as omega 3 (ω – 3) polyunsaturated fatty acid, appears to be 

advantageously dominant thus covering 60 % of the oil content. Therefore, given that 

ω – 3 is essential for growth and development, chia oil has become medicinally 

important across the globe (Ixtaina et al. 2012). The ingestion of high levels of ω – 3 

has been proven to play an important role in the treatment as well as the prevention 

of diabetes, arthritis, hypertension, cancer, coronary heart disease (CHD) and other 

inflammatory and autoimmune disorders (Ixtaina et al. 2012). Studies in the United 

States have shown that CHD is regarded as one of the main causes of death in 

Americans. However, it has also been proven that a change in diet (increasing ω – 3 

fatty acid consumption) could result in reducing the chances of contracting the 

disease (Ayerza and Coates 2009). 

 

1.4. The influence of abiotic stress on plants 

Like other plants, chia is also exposed to several abiotic stresses, including salt stress, 

which is a consequence of acid rain. Saline soil, unfortunately contributes to many 

agricultural losses due to the presence of high levels of sodium within the soil, thus 
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diminishing accommodating environments, as well as inducing plant water 

deprivation by decreasing the osmotic potential of the soil. In addition to these 

consequences, high levels of salt could also cause nutrient imbalances and shortages 

(Sairam and Tyagi 2004). Therefore, maintaining the homeostasis of the ion 

concentrations within the plant is of high importance as it contributes to the 

physiology of the living cells. Therefore, proper regulation is required to minimise 

toxic ions and accumulate essential ions (Zhu 2003). Under normal conditions, the 

plant experiences high levels of potassium (K+) and low levels of sodium (Na+; Figure 

1.5) which is a homeostasis that is essential for many cytosolic enzymatic activities 

and maintaining membrane potential. Therefore, when the plant is exposed to salt 

stress, the Na+ interrupts the plants’ successful uptake of K+ and thus when the plant 

accumulates Na+ within the plant, it becomes toxic to the naturally occurring enzymes 

(Zhu 2003). In addition to Na+ becoming toxic to the plant, because the plant 

experiences low water availability, it initiates its protective mechanism by closing its 

stomata in order to reduce transpiration. However, as a consequence to the closure of 

the stomata, it prevents the entering of carbon dioxide which is essential for 

photosynthesis to occur and thus, limiting the successful survival of the plant (Amjad 

et al. 2014). 
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Figure 1.5. Diagram illustrating the effects of salt stress on plant growth. Salt stress causes 

water reduction and water stress within the plant as the sodium chloride prevents successful uptake 

of sufficient water (Berry and Sirault 2010). 

 

 

When the plant is exposed to abiotic stresses, or other stresses, it imposes oxidative 

strain on the plant. Stress exposure initiates the accumulation of toxic molecules 

known as Reactive Oxygen Species (ROS; Mittler 2002). Therefore, oxidative stress 

is explained as the generation of an imbalanced state of excessive reactive oxygen 

overcoming the plants’ antioxidant capacity, thereby leading to the oxidation of 

biomacromolecules (lipids, proteins, DNA and enzymes; Dai and Mumper 2010). 

Hence, ROS molecules are easily detected by the plant and thus serve as a signalling 

molecule for various biosynthetic pathways (Mittler 2002).  
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1.5. Stress induced ROS accumulation 

ROS are intermediates that are reduced forms (more toxic) of atmospheric oxygen 

including H2O2 (hydrogen peroxide), O2
- (superoxide radicals) and HO- (hydroxyl 

radicals). Under normal conditions, the production of ROS is low, not detrimental to 

the plant and serves as signalling molecules in various metabolite pathways (Mittler 

2002). However, when the plant is exposed to various stress conditions (including 

salt stress), it could result in the increased production of ROS. This accumulation is 

believed to be a by – product of stress metabolism (Miller et al. 2008) which could 

lead to lipid peroxidation, disruption of DNA strands and the inactivation of various 

essential enzymes (Bandeoglu et al. 2004; Cheng and Song 2006). 

There are two substances that can be measured to determine the plants’ strength 

capabilities in response to a specific stress. This begins with the extent of ROS 

accumulation which can be measured via H2O2 content, followed by the extent of 

lipid peroxidation, due to ROS accumulation, which can be elucidated via 

malondialdehyde (MDA) content. Given that H2O2 is a ROS classified molecule and 

MDA is known to be a naturally occurring by – product of lipid peroxidation, the 

increase in ROS results in the increase in cell death (as a consequence of lipid 

peroxidation). Therefore, the higher the levels of H2O2 and MDA, the more stressed 

the plant (Wang et al. 2013). 

Furthermore, because ROS plays an important role in the plant in terms of signalling 

molecules and mediating stress tolerance, but at the same time serve as a cytotoxic 

compound (Lee and Lee 2000), its’ concentrations are regulated by a large, complex 

network of genes referred to as the “ROS gene network” (Chaudhary et al. 2009; 
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Miller et al. 2008). Thus, to regulate the levels of ROS within the plant, it initiates 

scavenging mechanisms that help keep ROS concentrations at controllable and safe 

levels (Miller et al. 2008). 

 

1.5.1. Mechanisms of ROS scavenging in plants 

Since the accumulation of ROS is a result of the impairment of the transportation of 

electrons within the chloroplast and mitochondria, which causes the production of 

superoxide radicals (Bandeoglu et al. 2004), there are various mechanisms of ROS 

scavenging that exists within a plant to avoid the over – production of these toxic 

molecules. These mechanisms involve enzymatic and non – enzymatic antioxidants 

(Figure 1.6; Mittler 2002). Antioxidants are compounds that sole function is to either 

delay, inhibit or prevent the effects of oxidative stress. Therefore, antioxidants 

prevent the reduction or oxidation of oxidizable material through free radical 

scavenging as well as weakening the effects of oxidative stress (Dai and Mumper 

2010). The activation of these enzymes are essential for the determination of safe 

levels of superoxide radicals (Mittler 2002). One of the pathways involved in ROS 

scavenging is known as the Halliwell – Asada pathway, or more commonly referred 

to as the ascorbate – glutathione pathway (Inze and Van Montagu 1995) (Figure 1.6). 
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Figure 1.6. The redox cycling of ascorbate as described by the Halliwell – Asada pathway. The 

pathway involves using enzymatic and non – enzymatic antioxidants to assist in the scavenging of 

ROS molecules which accumulates in response to stress (Inze and Van Montagu 1995). 

 

 

1.5.1.1.Enzymatic mechanisms 

The Halliwell – Asada pathway (Figure 1.6), also referred to as the ascorbate – 

glutathione pathway, involves five enzymatic ROS scavenging antioxidant enzymes. 

These include superoxide dismutase (SOD; EC 1.15.1.1), ascorbate peroxidase 

(APX; EC 1.11.1.11), monodehydroascorbate reductase (MDHAR: EC 1.6.5.4), 

dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 

1.6.4.2) (Inze and Van Montagu 1995).  

 

Superoxide dismutase 

Superoxide dismutase (SOD) is an enzyme that is abundant in aerobic organisms and 

its sole purpose is to reduce toxic superoxide radicals (O2
-) to less toxic hydrogen 

peroxide (H2O2). SOD, being the first enzyme in the ROS scavenging system, is a 
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gene that is expressed once the organism is exposed to stress which is indicated by 

increased levels of O2
- (Cheng and Song 2006; Lee and Lee 2000). 

 

Ascorbate peroxidase 

The SOD enzyme reduces high levels of O2
- into H2O2, which in turn activates the 

Halliwell – Asada H2O2 scavenging enzyme, known as ascorbate peroxidase (APX). 

Hydrogen peroxide is a form of ROS and therefore, even though it is not as 

detrimental as O2
- , it remains toxic in accumulative forms. APX enzymes function in 

reducing H2O2, using ascorbate (AsA) (Figure 1.6), to release monodehydroascorbate 

(MDHA) (Asada 1992). 

 

Monodehydroascorbate reductase 

Although MDHA has been declared safe for plant survival (Asada 1992), the 

generation of MDHA activates the enzyme, monodehydroascorbate reductase 

(MDHAR) to allow for the regeneration of ascorbate (AsA). Therefore, MDHAR 

reduces MDHA, using NADPH as electron donors, yielding ascorbate molecules as 

end products. However, MDHA, theoretically, has a short half – life and thus majority 

of MDHA is converted into dehydroascorbate (DHA). Hence, since the reduction of 

MDHA yields ascorbate as an end product (Figure 1.6), the MDHAR serves as a key 

role within the ROS scavenging system (Gill and Tuteja 2010). 
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Dehydroascorbate reductase 

Dehydroascorbate reductase (DHAR), like MDHAR, functions in the regeneration of 

ascorbate. However, DHAR yields oxidised glutathione (GSSG) from reduced 

glutathione (GSH). This enzyme is only activated when excess MDHA is converted 

into DHA (Gill and Tuteja 2010).  

 

Glutathione reductase 

Glutathione reductase (GR) functions as the final enzyme within the Halliwell – 

Asada pathway (Figure 1.6) in order to reduce toxic species and to yield ascorbate 

and glutathione (Mittler et al. 2004). According to my understanding of the Halliwell 

– Asada pathway, GR reduces the GSSG into a reduced form of glutathione with the 

help of an electron donor (NADPH) as GSH is required for DHAR to convert DHA 

back into ascorbate and GSSG (Mittler et al. 2004). Therefore, GR functions as a 

catalyst in the regeneration of ascorbate (Lee and Lee 2000).  

 

SOD, APX and GR all form part of the Halliwell - Asada scavenging pathway as they 

work together to neutralize the harmful effects caused by the over production of ROS. 

Although there are other forms ROS scavenging, it is believed that the enzymes in 
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the Halliwell - Asada pathway has a greater affinity for O2
- and H2O2 and is more 

effective as it covers a greater surface area within the plant (Lee and Lee 2000; Mittler 

2002).   

 

1.5.1.2. Non – enzymatic mechanisms 

Upon the activation of the enzymatic antioxidants, the complete ascorbate – 

glutathione (Halliwell – Asada) pathway oxidises and generates ascorbate and 

glutathione (Lee and Lee 2000). These non – enzymatic mechanisms serve as redox 

buffers that could possibly influence the expression of various genes that are 

associated with abiotic (as well as biotic) stresses (Miller et al. 2008). 

 

Ascorbic acid/Ascorbate 

Ascorbic acid, also known as ascorbate, but commercially known as vitamin C, serve 

many functions within plants considering it is a ubiquitous molecule found within 

most eukaryotic organisms. One of its functions is serving as an antioxidant and 

participates in a wide range of processes within the plant that are required for its’ 

survival, including the resistance to various environmental stresses (Smirnoff and 

Wheeler 2000).  It is considered one of the most powerful ROS scavenger (directly 

scavenging O2
- and OH-) as it donates numerous electrons in enzymatic and non – 

enzymatic reactions (Gill and Tuteja 2010). Ascorbate is well synthesised and used 

in the Halliwell – Asada pathway as it is required as a substrate for the scavenging of 

H2O2 by APX to yield MDHA which in turn is reduced to ascorbate in the presence 

of an electron donor (NADPH; Figure 1.6). 
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Glutathione 

Glutathione is a molecule that is of high importance within the plant systems by 

serving essential roles in the plant. These roles include functioning as an antioxidant 

as well as serve as a cofactor of various enzymatic processes among other roles (El – 

Enany 1997). This metabolite can occur in two forms: reduced glutathione (GSH) 

and oxidised glutathione (GSSG). To generate GSSG from GSH, the cys thiol group 

is oxidised. However, the reverse reaction is catalysed by GR using NADPH as 

electron donors (Yannarelli et al. 2007). In terms of the Hallwell – Asada pathway, 

glutathione serves as a substrate. However, its antioxidant capacity allows it to 

scavenge O2
-, H2O2 and OH-, thus assisting in the reduction of toxic ROS molecules 

(Gill and Tuteja 2010). 

 

1.6. Plant polyphenols 

Plants naturally produce phenolic or polyphenolic compounds as secondary 

metabolites that has now been referred to as plant polyphenols (Duthie et al. 2003; 

Pandey and Rizvi 2009). They are largely distributed throughout most plant tissues 

(Martin and Appel 2010) and are involved in diverse functions that contribute to the 

health and survival of the plant (Duthie et al. 2003). 

 

1.6.1. Importance of plant polyphenols 

Plant polyphenols exhibit vital roles in physiology and morphology within plants. 

They contribute to growth, reproduction, pigmentation, pathogen resistance, structure 

and lignification, predator resistance, pollination and allelopathy (Balasundram et al. 
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2006; Duthie et al. 2003; Martin and Appel 2010). Specifically to food crops, these 

compounds may contribute to bitterness, colour, flavour, stringency and odour 

(Pandey and Rizvi 2009). 

Furthermore, these polyphenols are essential components of the human diet given its 

antioxidant properties, free radical scavenging capabilities and their ability to reduce 

the effects of oxidative stress – induced tissue damage relating to chronic diseases. 

Hence, some polyphenols function as antibiotics and enforce anticancer, anti – 

inflammatory, antimutagenic, antiulcer, anti – carcinogenic and antidiarrheal effects 

(Balasundram et al. 2006; Karakaya 2004; Martin and Appel 2010). 

 

1.6.2. Biosynthesis of plant polyphenols 

Phenolics are derived from the pentose phosphate, shikimate and phenylpropanoid 

pathways (PPP) within plants (Figure 1.7; Balasundram et al. 2006; Duthie et al. 

2003; Randhir et al. 2004). These pathways function simultaneously in order to 

synthesise these polyphenols. The generation of phenolic compounds begin with the 

oxidative PPP providing a precursor, known as erythrose – 4 – phosphate, for the 

shikimate pathway. As a response, the shikimate pathway converts these sugar 

phosphates into aromatic amino acids such as phenylalanine, which in turn becomes 

the precursor for the phenylpropanoid pathway and ultimately producing various 

phenolic compounds (Lin et al. 2016). 
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Figure 1.7. Synthesis of phenolic compounds via the pentose phosphate pathway (PPP). 
Oxidative PPP provides a precursor erythrose – 4 – phosphate for the shikimate pathway. As a 

response, the shikimate pathway converts these sugar phosphates into aromatic amino acids such as 

phenylalanine (Phe), which in turn becomes the precursor for the phenylpropanoid pathway (Lin et 

al. 2016). 
 

 

1.6.3. Structure and classes of plant polyphenols 

The capabilities of plant polyphenols’ antioxidant power are dependent on its 

chemical structure (Figure 1.8). They possess the ideal chemical structure for free 

radical scavenging activities as they retain phenolic hydroxyl groups that are prone 
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to donate an electron or a hydrogen atom to a free radical. They also exhibit an 

extended conjugated aromatic system that delocalizes an unpaired electron 

(Balasundram et al. 2006; Dai and Mumper 2010). 

Plant polyphenols, or phenolic compounds, include phenolic acids, flavonoids, 

tannins, stilbenes and lignans (Dai and Mumper 2010). All these phenolic compounds 

have two common characteristics: the presence of at least one aromatic ring hydroxyl 

– substituted; and the fact that they are bound to sugars and/or proteins (Giada 2013). 

 
Figure 1.8. Classification and chemical structures of plant polyphenols. The diagram was 

adapted from Martin and Appel (2010). 
 

More than 8 000 phenolic structures have been identified (Dai and Mumper 2010; 

Martin and Appel 2010; Pandey and Rizvi 2009) and of these structures, flavonoids, 

including phenolic acids, are known to be most abundant, covering over half of the 

known phenolic compounds (Balasundram et al. 2006). Flavonoids can be further 
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divided into six subgroups: flavonols, flavanones, flavanols, flavones, anthocyanins, 

isoflavones, based on the oxidation state of the central C ring (Dai and Mumper 2010; 

Karakaya 2004; Martin and Appel 2010). 

On the other hand, phenolic acids are divided into two classes: hydroxybenzoic acids 

(seven carbon atoms) and hydroxycinnamic acids (nine carbon atoms). Benzoic acid 

derivatives include gallic acid, vanillic and syringic acids whereas the cinnamic acids 

include ferulic acid, sinapic acid and most importantly (to this study), caffeic acid 

(Balasundram et al. 2006; Dai and Mumper 2010). 

 

1.6.4. Biosynthesis and function of phenolic acids in plants 

Phenolic acids, famous for their pharmacological characteristics, are known to be one 

of the most abundant secondary metabolites and vital bioactive compounds within 

the plant system. They are also appreciated for their contribution to unique taste, 

flavour and health – promoting properties found in fruits and vegetables. Hence, there 

is a direct link between phenolic content and crop quality (Ghasemzadeh and 

Ghasemzadeh 2011) 

Recently, the importance of phenolic compounds and its role in food crops have been 

excessively studied given phenolic acids featuring in agricultural, chemical, 

biological as well as medicinal studies. Therefore, given the extensive phenolic 

research, the biosynthetic pathway of these compounds are well known (Figure 1.9; 

Ewane et al. 2012; Dixon and Paiva 1995; Sakihama et al. 2002) and are described 

to derive from the shikimate pathway from simple sugars resulting from primary 

metabolism. 
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Figure 1.9. Biosynthesis of phenolic compounds. The diagram was adapted from Ewane et al. 

(2012). 
 

 

The diagram illustrates the synthesis of phenylalanine via carbohydrate metabolism. 

These carbohydrates transform into erythrose – 4 – phosphate (pentose phosphate 

pathway) and phosphoenolpyruvate (glycolysis). The transformed carbohydrates then 

enter the shikimate metabolic pathway. Thereafter, phenylalanine deamination occurs 

via phenylalanine ammonia – lyase (PAL), inducing the first crucial stage in the 

biosynthesis of phenolic compounds. The diagram also indicates the division of 

phenolic acids, hence, these acids are widely distributed within the plant as 

hydroxycinnamic and hydroxybenzoic acids (Ewane et al. 2012). 
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1.6.5. Biosynthesis of hydroxycinnamic acids 

The biosynthesis of hydroxycinnamic acids (caffeic, ferulic, 5 – hydroxy ferulic 

and sinapic acids) uses phosphoenolpyruvate and erythrose – 4 – phosphate as its 

starting material (Figure 1.10). Thereafter, the shikimate pathway leads to the 

synthesis of phenylalanine and tyrosine, initiating phenyl deamination via PAL 

(phenylalanine ammonia – lyase; Krause et al. 2003). 

 

 

Figure 1.10. Biosynthesis of hydroxycinnamic acids. The diagram was adapted from Krause et al. 

(2003). 

 

 

In plants, tyrosine ammonia – lyase (TAL) converts tyrosine into 4 – 

hydroxycinnamic acid (p – coumaric acid), which can later be transformed into 

either caffeic, ferulic or sinapic acid. This pathway is responsible for the production 

of numerous secondary metabolites as well as lignin and lignin precursors known 

as CoA derivatives (Krause et al. 2003). 
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These CoA derivatives are known to possess multiple purposes. They are believed 

to be the chemical source to cell bound hydroxycinnamic acids. In addition, the 

thioester linkage formation between the CoA and cinnamate is known to activate 

the carbonyl group on the hydroxycinnamic acid, inducing various condensation 

and conjugation reactions that initiates the production of flavonoids and stilbenoids 

(El – Seedi et al. 2012). However, the first hydroxycinnamic acid derived from p – 

coumaric acid, as well as the most abundant in fruit sources, is caffeic acid. 

 

1.6.6. Caffeic acid as a phenolic compound with antioxidant properties 

The hydroxycinnamic compound, caffeic acid (CA), has been described as the most 

abundant phenolic acid in many agricultural products including vegetables, cereals, 

legumes and fruit sources (Belay et al. 2016). They are often esterified with 

chlorogenic acid, a major phenolic compound found in coffee (Figure 1.11; Dai and 

Mumper 2010; Karakaya 2004). Caffeic acid (3,4 – dihydroxycinnamic acid) has 

been shown to serve as an α – tocopherol protectant in LDL (low – density 

lipoprotein). In addition, this phenolic acid, along with its conjugates (chlorogenic 

and caftaric acids) have been shown to possess powerful antioxidant properties in 

various systems (Gulcin 2006). 
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Figure 1.11. Molecular structure of caffeine (a), caffeic acid (b) and chlorogenic acid (c). The 

diagram was adapted from Belay et al. (2016). 
 

 

As previously described, antioxidant compounds exist solely to prevent the effects of 

oxidative stress (Dai and Mumper 2010). Caffeic acid (CA) has been recognised as 

one of those antioxidants given its involvement in anti – inflammatory, antiviral, 

immunomodulatory functions, anticarcinogenic and antioxidant activities (Klein 

2012). Aside from this compound being a part of these numerous essential activities, 

they function in inhibiting lipid peroxidation in plant cells, reduce lipoxygenase 

activity and completely block ROS accumulation (Sud’ina et al. 1993).  

Phenolic compounds, generally, scavenge free radicals through a series of coupled 

reactions involving enzymatic and non – enzymatic antioxidants. However, caffeic 

acid, in comparison to ferulic and p – coumaric acids, has been recognised as a 

superior antioxidant in inhibiting LDL oxidation whilst scavenging free radicals and 



http://etd.uwc.ac.za
27 

 

singlet oxygen (Gulcin 2006). Hence, given its powerful status within recent studies, 

caffeic acid has been deemed to serve as a potent antioxidant within various systems. 

 

1.6.6.1. Caffeic acid in plants 

Caffeic acid is a secondary metabolite that can be isolated from a variety of plant 

species (Table 1.1). They serve as effective substrates of polyphenol oxidases and if 

conditions allow, they may undergo oxidation in plant tissues or in various plant – 

based products (Gulcin 2006). 

 

Table 1.1. Detection of caffeic acid in different plant species. The table was adapted from Klein 

(2012). 

Plant species Organ [] as caffeic acid 

(mg/kg), fresh weight 

Hydrolysis 

Vegetables 

Bean Hulls, unripe fruit 12-14; <0.5-9 Enzymatic 

Cabbage Outer leaves 11-44 Enzymatic 

Carrot Whole vegetable 18-96 Enzymatic 

Pea Unripe seeds <0.5-1 Enzymatic 

Potato Peel 63-280 Enzymatic 

Fruits 

Grape fruit Fruit/peel 11-40 / 14-51 Enzymatic 

Lemon Fruit/peel 13-27 / 16-35 Enzymatic 

Orange Fruit/peel 19-50 / 12-36 Enzymatic 

Strawberry Fruit <0.5-14 Enzymatic 

Watermelon Fruit/peel <0.5 Enzymatic 

 

 

Although caffeic acid forms one of the most common cinnamic acids isolated from 

crops plants (Rice 1995), research has also shown its role in plant growth inhibition 

in response to various concentrations. Batish et al. (2008) has shown caffeic acid 
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concentrations ranging between 0 mM to 10000 mM had significantly supressed the 

root growth as well as impair adventitious root formation (ARF) in mung bean (Vigna 

radiate). In addition, this allelopathic effect was also witnessed in soybean (Glycine 

max) seedlings whereby caffeic acid had shown to impair soybean root biomass 

(Bubna et al. 2011). However, in 2013, Klein et al. further explains, through soybean 

studies, that along with the reduction in root growth, also witnessed in their study, 

they also observed the antioxidant effect of caffeic acid by means of reduced ROS 

accumulation.  Furthermore, these authors justify stunted growth by explaining that 

caffeic acid causes premature lignification of plant cell walls (Klein et al. 2013). 

Therefore, although various studies have shown that caffeic acid could cause plant 

growth inhibition, other studies also show the inhibition effect parallel to the 

antioxidant effect of caffeic acid.  

 

1.7. Proteomics 

The term “Proteomics” derived from “proteome” expression which was first used in 

1995 to describe the protein complement to the genome (Blackstock and Weir 1999; 

Chen and Harmon 2006). Proteomics has since been defined as the study and 

determination of various protein properties. The technique studies the protein 

expression levels, interactions as well as post – translational modifications (PTM) on 

a large scale to generate a global, integrate understanding of cellular processes as well 

as networks at a protein level (Aebersold and Mann 2003; Blackstock and Weir 

1999).  
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1.7.1. Significance of proteomic research 

The development of proteomic studies stems from researchers realising that although 

the extensive DNA information availability, which was usually obtained via various 

high – throughput technologies, including transcript imaging, differential display, 

SAGE (serial analysis of gene expression) and DNA microarrays (Anderson and 

Seilhamer 1997; Lockhart and Winzeler 2000), one still cannot elucidate biological 

function (Pandey and Mann 2000). This was due to the above – mentioned techniques 

not guaranteeing information based on the quality and the quantity of the resulting 

gene products (proteins; Ngara 2009; Zivy and de Vienne 2000), hence the 

introduction of proteomic studies. 

In addition, proteins tend to undergo post – translational modifications (PTM) such 

as glycosylation, proteolytic processing or phosphorylation, consequently giving rise 

to the production of various isoforms from a single gene product (Abbott 1999; Ngara 

2009). Therefore, PTM proteins play a vital role in subcellular localization of proteins 

within a cell, as well as regulating the function and maintaining protein stability 

(Kersten et al. 2009; van Wijk 2001; Zivy and de Vienne 2000). Hence, given that 

PTM proteins show variation in response to various physiological states, only the 

investigation of protein expression itself would contribute to a better understanding 

of gene functions in response to various environmental conditions or physiological 

states (Dubey and Grover 2001). 

Although DNA information could provide answers to various genomic queries, 

proteins are believed to be to the effectors of biological function. Therefore, the 

expression levels of all these proteins could provide more accurate data when 

characterising a biological system (Cox and Mann 2007). Thus, since there is a direct 
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relationship between genes (genomics) and proteins (proteomics), researchers begin 

to embark on plant proteomics to contribute to the available genomic data to allow 

for a better understanding of the biological networks within various plant species. 

 

1.7.2. Plant proteomics 

Although proteomics has been used extensively in many areas since the 1970’s when 

researchers began building protein databases (Pandey and Mann 2000), plant 

proteomics was still in it’s infancy in the early twenty first century (Chen and Harmon 

2006; van Wijk 2001). However, the successful completion of the Arabidopsis 

genome sequence (model organism) had initiated the application of high – throughput 

technologies in plant – based studies, hence providing greater knowledge and 

understanding of complex biological networks (Kersten et al. 2002). Therefore, there 

is a direct link between proteomic studies and genomic data given that genome 

sequences are important resource tools for protein identification. However, where 

there is a lack of fully annotated sequences, protein identification can be determined 

via similarity searches of homologous proteins in closely related species (Carpentier 

et al. 2008). 

The genome sequence availability for Arabidopsis has evoked further research 

including rice (Oryza sativa) and poplar (Populus) as well as introducing expressed 

sequence tag (EST) databases and gene indices for numerous plant species giving rise 

to the advances in plant proteomics (Chen and Harmon 2006).  
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1.7.2.1. Applications of proteomics in plant sciences 

Once the Arabidopsis genome was published, many researchers embarked on plant 

proteomic research. In 2015, Jorrin – Novo and authors compiled a review on the 

advances on plant proteomics whereby stating all the crops that appeared in the 

Proteomics journal. However, not one article was dedicated to a pseudocereal. Thus, 

research regarding pseudocereal proteomic analysis remains limited. To date only a 

few documented cases can be accessed in the public domain. Galova et al. (2015) 

comparatively analysed the leaf proteomes of cereals (wheat) and pseudocereals 

(amaranth), respectively. This study identified distinct differences (using 2D PAGE 

analysis) in protein expression profiles between cereals and pseudocereals within the 

40 to 200 000 molecular weight (MW) range and isoelectric point (pI) region of 9 – 

11. Proteins detected in this molecular weight range were only present in the cereal 

proteome and absent in the pseudocereal proteome. The key nutritional difference 

between a cereal and a pseudocereal crop is gluten – based (Tang et al. 2016). Hence, 

it was no surprise for Galova et al. (2015) to identify those absent proteins as gluten 

– associated proteins involved in celiac disease (CD). This in turn supports the 

evidence that pseudocereals are gluten free as explained in the section 1.2. In 

addition, the proteome profile of amaranth in response to salt stress have also been 

described by Huerta – Ocampo et al. in 2014, thus creating a basis for the research 

proposed in this study. 
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Project aims and objectives 

This research aims to determine the effect of exogenously applied caffeic acid on chia 

(Salvia hispanica L.) plants under salt stress. The effect of salt stress on cereal crops 

are well documented, however, limited information in the public domain focuses on 

how pseudocereals respond to saline environments. Furthermore, to our knowledge, 

the effect of exogenously applied caffeic acid on pseudocereal crops have not been 

elucidated. Therefore, this study aims to achieve the effect of caffeic acid under salt 

stress on the physiological responses of chia plants by analysing various growth 

parameters. These parameters include shoot and root length and biomass, relative 

water content and photosynthetic pigments. In addition, this study targets the 

biochemical responses of chia plants (to exogenous caffeic acid and salt stress) by 

investigating the overproduction of ROS molecules (O2
- and H2O2), lipid 

peroxidation, cell death and various enzymatic antioxidant activities (SOD, APX and 

GR). Moreover, this report extends to gel based proteomic studies, coupled with mass 

spectrometry, in order to elucidate the effect of exogenously applied caffeic acid, 

under salt stress, on the chia leaf proteome. Hence, since the relationship between 

caffeic acid and salt stress, as well as its combined effect on pseudocereals, have not 

been reported, it provides a knowledge gap for which this research will contribute. 
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CHAPTER 2 

METHODS AND MATERIALS 

 

2.1. General chemicals and suppliers  

Table 2.1. List of chemicals and reagents used in this study 

Chemical / Reagent Supplier 

Acetone Merck Millipore 

Acrylamide/Bis (40 %) BIO – RAD  

Acetonitrile (ACN) Merck Millipore 

Agarose D – 1 LE White Scientific 

Ammonium acetate (C2H3O2NH4) Sigma Aldrich 

Ammonium Bicarbonate (AmBic) Merck Millipore 

Ammonium nitrate (NH4NO3) Sigma Aldrich 

Ammonium Persulfate (APS) BIO – RAD  

Ascorbic acid / Ascorbate Sigma Aldrich 

Bio – Lyte 3/10 Ampholyte (100 X) BIO – RAD 

Borric acid (H3BO3) Sigma Aldrich 

Bovine Serum Albumin (BSA) Fraction V Roche  

Bradford Reagent (1X) BIO – RAD  

Bromophenol blue Sigma Aldrich 

Caffeic acid Sigma Aldrich 

Calcium chloride (CaCl2) Sigma Aldrich 

3-[(3-Cholamidopropyl)dimethylammonio]1-

Propanesulfonate CHAPS 

Sigma Aldrich 

Cobalt (II) chloride (CoSO4) Sigma Aldrich 

Coomassie® brilliant blue (CBB) R-250 BIO – RAD 

Copper (II) sulfate (CuSO4) Sigma Aldrich 

5,5-Dithiobis(2-nitrobenzoic acid) (DTNB) Sigma Aldrich 

Dithiothreitol (DTT) Cleland’s reagent Fermentas 
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Electrode wicks (gel-side down) BIO – RAD 

Ethanol 99.9% Kimix 

Ethylenediaminetetraacetic acid (EDTA) Sigma Aldrich 

Ethylenediaminetetraacetic acid ferric sodium  salt (Fe-

Na EDTA) 

Sigma Aldrich 

Evans Blue Sigma Aldrich 

Glacial acetic acid Merck Millipore 

Glucose Merck Millipore 

Glutathione disulfide (GSSG) Sigma Aldrich 

Glycerol  Merck Millipore 

Glycine  BIO – RAD 

Hydrochloric acid (HCl) Merck Millipore 

Hydrogen peroxide (H2O2) Merck Millipore 

Iodoacetamide (IOA) BIO – RAD 

Magnesium sulfate (MgSO4) Sigma Aldrich 

Manganese (II) sulfate (MnSO4) Sigma Aldrich 

2-(N-Morpholino)ethanesulfonic acid (MES) hydrate Sigma Aldrich 

β-mercaptoethanol Amresco 

Methanol Merck Millipore 

Methionine Sigma Aldrich 

Methylthiazolyldiphenyl-tetrazolium bromide (MTT) Sigma Aldrich 

Mineral oil (PlusOne DryStrip Cover Fluid)  GE Healthcare 

Β-nicotinamide adenine dinucleotide (NADH) Sigma Aldrich 

Nitrotetrazolium blue chloride powder (NBT) Sigma Aldrich 

PageRulerTM unstained protein ladder  Fermentas 

Phenazine methosulfate (PMF) Sigma Aldrich 

Phenylmethylsulfonyl fluoride (PMSF) Amresco 

Polyvinylpyrrolidone (PVP) MW: 40 000 Sigma Aldrich 

Potassium cyanide (KCN) Sigma Aldrich 

Potassium hydroxide pellets Merck Millipore 

Potassium iodide (KI) Sigma Aldrich 

Potassium nitrate (KNO3) Sigma Aldrich 
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Potassium phosphate monobasic (KH2PO4) Sigma Aldrich 

Potassium phosphate dibasic (K2HPO4) Sigma Aldrich 

Potassium sulfate (K2SO4) Sigma Aldrich 

Promix Organic Cypress House Trading 

Propan-2-ol (isopropanol) Merck Millipore 

Ready stripTM IPG strips BIO – RAD 

Riboflavin   Sigma Aldrich 

Sodium chloride (NaCl) Merck Millipore 

Sodium dodecyl sulfate (SDS) BIO – RAD 

Sodium hydroxide (NaOH) Merck Millipore 

Sodium molybdate (Na2MoO4) Sigma Aldrich 

Sucrose Merck Millipore 

N,N,N’,N’-Tetramethylethylenediamine (TEMED) BIO – RAD 

Thiobarbituric acid (TBA) Sigma Aldrich 

Thiourea Sigma Aldrich 

Trichloroacetic acid (TCA)  Merck Millipore 

Trifluoroacetic acid (TFA) Merck Millipore 

Tris(hydroxymethyl)-aminethane  BIO – RAD 

Trypsin Promega 

Urea Sigma Aldrich 

3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-

tetrazolium-5-carboxyanilide (XTT) 

Sigma Aldrich 

Zinc sulfate monohydrate (ZnSO4) Sigma Aldrich 

 

2.2. Stock solutions and buffers 

Table 2.2. List of stock solutions and buffers prepared for this study 

Stock solution / Buffer Composition 

Agarose sealing solution  

(0.5 %) 

0.5 % (w/v) agarose prepared in 1 X SDS-

PAGE running buffer with a tint of 

bromophenol blue. 
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Acetone (80 %) 80 % (v/v) acetone in distilled water. 

APS (10 %) 10 % (w/v) APS in distilled water. The 

solution was freshly prepared before use. 

APX spectrophotometer  

buffer 

50 mM K2HPO4 at pH 7.0; 0.2 mM EDTA; 

0.25 mM ascorbic acid in d.H2O. 

BSA stock solution I (5 mg/ml) 5 mg/ml BSA in PVP extraction buffer 

BSA stock solution II (5 mg/ml) 5 mg/ml BSA in IEF buffer 

Caffeic acid (5 mM)  

stock solution 

5 mM caffeic acid dissolved in 6 % ethanol and 

made up with d.H2O. 

CBB stock solution (1.25 %) 1.25 % (w/v) CBB R-250 in d.H2O. 

CBB staining solution I 50 ml of 1.25 % (w/v) CBB stock solution, 10 

% (v/v) glacial acetic acid and 25 % (v/v) 

propan-2-ol in d.H2O. 

CBB staining solution II 6.25 ml of 1.25 % (w/v) CBB stock solution, 

10 % (v/v) glacial acetic acid and 10 % (v/v) 

propan-2-ol in d.H2O. 

CBB staining solution III 6.25 ml of 1.25 % (w/v) CBB stock solution 

and 10 % (v/v) glacial acetic acid in d.H2O. 

Destaining solution 10 % (v/v) acetic acid and 1 % (v/v) glycerol 

in d.H2O. 

Ethanol (70 %) 70% (v/v) ethanol in d.H2O. 

Equilibration buffer 6 M urea; 2 % (w/v) SDS, 50 mM Tris – HCl, 

pH 8.8 and 20 % (v/v) glycerol in d.H2O. 
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Evans blue stock solution  

(0.5 %) 

0.5% (w/v) Evans blue in d.H2O. 

GR spectrophotometer  

buffer 

100 mM K2HPO4 at pH 7.8; 0.5 mM GSSG; 1 

mM EDTA; 0.2 mM NADH in d.H2O. 

HCl (1 M) for pH 1 M HCl in d.H2O. 

IEF buffer 7 M Urea; 2 M thiourea; 4 % (w/v) CHAPS; 

20 mM DTT; 1 % (w/v) bromophenol blue in 

d.H2O. 

KH2PO4 (1M) stock solution 1 M KH2PO4 in d.H2O. 

K2HPO4 (1M) stock solution 1 M K2HPO4 in d.H2O. 

KI (0.5 M) stock solution 0.5 M KI in d.H2O. 

KOH (5 M) for nutrient 

solution pH 

5 M KOH in d.H2O. 

Native gel running buffer 

stock solution (5 X) 

25 mM Tris-base; 192 mM glycine in d.H2O. 

Native gel loading dye (6 X) 375 mM Tris-HCl at pH 6.8; 50 % (v/v) 

glycerol; 0.02 % (w/v) bromophenol blue in 

d.H2O. 

Nutrient solution (1 X) 0.5 mM K2SO4; 0.5 mM MgSO4; 1 mM CaCl2; 

10 mM KNO3; 2 mM NH4NO3; 8 mM KH2PO4 

buffer at pH 6.4; 30 μM H3BO3; 10 μM 

MnSO4; 0.7 μM ZnSO4; 0.2 μM CuSO4; 1 μM 

Na2MoO4; 0.2 μM CoSO4; 50 μM Fe – Na 

EDTA and 10 mM MES at pH 6.4 in d.H2O. 
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PVP extraction buffer 40 mM K2HPO4 at pH 7.4; 1 mM EDTA; 5 % 

PVP MW = 40 000; 5 % glycerol in d.H2O. 

SDS buffer 0.1 M Tris-HCl, pH 8.0; 2 % (w/v) SDS; 5 % 

(v/v) β-mercaptoethanol; 30 % (w/v) sucrose 

and 1 mM PMSF in d.H2O. 

SDS gel loading dye 100 mM Tris-HCl at pH 6.8; 4% (w/v) SDS; 

0.2% (w/v) bromophenol blue; 20% (v/v) 

glycerol; 200 mM DTT in d.H2O. 

SDS running buffer  

stock solution (5 X) 

25 mM Tris-base; 192 mM glycine; 0.1 % 

(w/v) SDS in d.H2O. 

SDS (10 %) stock solution 10 % (w/v) SDS in d.H2O. 

SOD spectrophotometer  

buffer 

50 mM KPO4 at pH 7.4; 13 mM methionine; 

75 µM NBT; 0.1 mM EDTA; 2 µM riboflavin 

in d.H2O.  

TCA (6 %) extraction buffer 6 % (w/v) TCA in d.H2O. 

TCA/Acetone (10 %) 10% (w/v) TCA in acetone. 

TCA (20 %) / TBA (0.5 %) 0.5 % (w/v) TBA in 20 % (v/v) TCA stock 

solution 

Tris-HCl (0.1 M), pH 7.9 0.1 M Tris in d.H2O adjusted to pH 7.9 with 

concentrated HCl. 

Tris-HCl (0.5 M), pH 6.8 0.5 M Tris in d.H2O adjusted to pH 6.8 with 

concentrated HCl. 

Tris-HCl (1.5 M), pH 8.8 1.5 M Tris in d.H2O adjusted to pH 8.8 with 

concentrated HCl. 
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2.3. Plant growth and treatment 

Chia (Salvia hispanica) seeds (purchased from Faithful to Nature, Cape Town, South 

Africa) were germinated on wet filter paper in a dark environment for 2 – 3 days. The 

germinated seedlings were transplanted (1 per pot) in a moist (distilled water) promix 

growth medium (Stodels Garden Centre, Brackenfell, South Africa) and were 

allowed to grow in a growth room on a 16 hour light/8 hour dark cycle at 25°C until 

the first leaves were fully expanded. Seedlings were supplemented with 50 ml of 1 X 

nutrient solution (see section 2.2) at 2 – day intervals until the collar of the second 

true leaves were visible. 

At this stage, control plants were supplied with 1 X nutrient solution every second 

day. For treatments, the nutrient solution was supplemented with the following final 

concentrations: 100 µM caffeic acid, 100 mM NaCl and a combination of 100 µM 

caffeic acid with 100 mM NaCl. Treatments or nutrient solution (40 ml per pot) were 

applied to each plant directly at the base of the stem of the plant in the pot every 

second day for 21 days. 

 

2.4. Analysis of plant growth 

After 21 days of treatment, plants were removed from the growth medium, being 

careful to avoid any loss of shoots and roots during the up – rooting of the plants. 

Plants from each treatment were scored for shoot length, root length, shoot and root 

fresh weight (FW) and shoot and root dry weight (DW). The DW was determined by 

heating the shoot and root samples in an oven at 55°C for 48 hours as described by 

Valentovic et al. (2006). 
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2.5. Measuring relative water content 

Relative water content (RWC) was measured as described by Mohammadkhani and 

Heidari (2007) using the following formula: 

𝑅𝑊𝐶 =
𝐹𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝐹𝑊) − 𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝐷𝑊)

𝑇𝑢𝑟𝑔𝑖𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑇𝑊) − 𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝐷𝑊)
 𝑥 100 

 

2.6. Measurement of leaf chlorophyll and carotenoid content 

Chlorophyll and carotenoid content was estimated using a modified method of 

Lichtenthaler and Wellburn (1983). Leaf tissue (100 mg) was submerged in 1 ml of 

80 % acetone. Leaf extracts were vortexed and centrifuged at 10 000 X g for 10 

minutes. This process was repeated until a clear pellet was observed. The absorbance 

of different fractions (200 µl) was recorded at 470 nm, 663 nm, and 646 nm. 

Chlorophyll and carotenoid content was calculated using the following formulas: 

Chlorphyll a (µg/ml) = 12.21 (A663) – 2.81 (A646) 

Chlorphyll b (µg/ml) = 20.13 (A663) – 5.03 (A646) 

Carotenoids (µg/ml) = (1000A470 – 3.27[Chl a] – 104[Chl b]) / 227 

 

2.7. Measurement of cell viability 

Cell viability was measured in the leaves of chia plants using a modified method 

described by Sanevas et al. (2007). Fresh leaf tissue was harvested from three 

different plants per treatment (approximately 100 mg per treatment) and stained with 

0.25 % (w/v) Evan’s Blue for 60 minutes at room temperature. The leaves were 

washed with distilled water for 90 minutes at room temperature to remove surface – 
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bound dye. This process was followed by the extraction of the Evans Blue stain (taken 

up by dead cells) from leaf tissue using 1 % (w/v) SDS, after 1 hour incubation at 

55°C.  Absorbance of the extracts was measured at 600 nm to determine the level of 

Evans Blue up – take by the leaf tissue 

 

2.8. Protein extraction for biochemical analysis 

Leaf tissue from all treatments were harvested and ground into a fine powder using 

liquid nitrogen. Leaf material (200 mg) was homogenized in 1 ml of 6 % (w/v) 

trichloroacetic acid (TCA) for analysis of H2O2 content and lipid peroxidation or in 

1 ml of homogenizing buffer (PVP) (see section 2.2) for the measurement of 

antioxidant enzymatic activities. Protein concentrations for all assays were measured 

in extracts as described by the manufacturer for the RC DC Protein Assay Kit 11 

(Bio-Rad Laboratories, Inc., Hercules, CA). 

 

2.9. Assays for ROS accumulation 

For the detection of O2
- in chia leaves, a modified method by Able et al. (1998) was 

used. Leaf material (100 mg) for each treatment were homogenized in 500 µl of 50 

mM potassium  phosphate  buffer  (pH  8.2) which contained 0.12 mM 3 – bis(2 – 

methoxy – 4 – nitro – 5 – sulfophenyl) – 2H – tet – trazolium – 5 – carboxyanilide  

(XTT).  The homogenate was incubated in the dark at room temperature for 20 

minutes and centrifuged at 12 000 X g for 5 minutes to obtain the O2
- extract. The O2

- 

extracts were then measured as described by Sutherland and Learmonth (1997).  
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For H2O2 content analysis in chia leaves, a method previously described by Velikova 

et al. (2000) was used. The reaction mixture contained 50 µl of TCA protein extract, 

5 mM K2HPO4 (pH 5.0) and 0.5 M KI. The sample mixture was incubated at room 

temperature for 20 minutes and the absorbance readings were recorded at 390 nm. 

Therefore, the H2O2 content was calculated based on the standard curve constructed 

from the absorbance (A390 nm) of H2O2 standards. 

 

2.10. Measurement of lipid peroxidation 

The extent of lipid peroxidation (malondialdehyde; MDA) in chia leaves were 

monitored as described by Buege and Aust (1978) with slight modifications. TCA 

protein extracts (200 µl) from each sample was mixed with 400 µl of 0.5 % TBA 

(dissolved in 20 % TCA) and boiled at 95°C for 30 minutes, followed by an ice 

incubation for 10 minutes. The sample mixture was then centrifuged at 12 000 X g 

for 5 minutes and the absorbance of the supernatant was measured at 532 nm and 600 

nm respectively. The concentration of MDA was calculated using a molar extinction 

coefficient 155 mM-1 cm-1.  

 

2.11. Quantification of the antioxidant enzyme activity within chia 

leaves 

For all the antioxidant enzyme assays, sample extracts were prepared using PVP 

homogenizing buffer as described in section 2.2.  
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Total SOD activity was measured as described by Beyer and Fridovich (1987). The 

sample reaction mixture consisted of 10 µl PVP protein extract and 190 µl of SOD 

spectrophotometer buffer (see section 2.2) in a final volume of 200 µl. The reaction 

was initiated when the sample mixture was exposed to light for 15 minutes or until a 

colour change was observed. The absorbance was measured at 560 nm and SOD 

activity was calculated based on the amount of enzyme that was required to reduce 

50 % of NBT to blue formazan.  

For APX activity, a modified method was adapted from Asada (1984) where each 

reaction contained 10 µl PVP protein extract and 180 µl of APX spectrophotometer 

buffer (see section 2.2) in a final volume of 190 µl. The reaction was initiated through 

the addition of 10 µl H2O2 (90 µM), and the absorbance measured at 290 nm. APX 

activity was calculated using the extinction coefficient 2.8 mM-1 cm-1. 

GR activity was determined at 340 nm by following the rate of NADPH oxidation as 

described by Esterbauer and Grill (1978). The reaction mixture consisted of 0.2 mM 

NADPH, 0.5 mM glutathione disulfide (GSSG), 1 mM EDTA, 100 mM K2HPO4 at 

pH 7.8, and 50 µg of enzyme extract in a 200 µl reaction. The GR activity was 

calculated based on the oxidation of NADPH in the reaction, using the extinction 

coefficient of 6.2 mM-1 cm-1.  
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2.12. Detection of ROS scavenging antioxidant isoforms in 

response to exogenous caffeic acid and salt stress  

2.12.1. Superoxide dismutase 

Native gels were electophoretically separated on a 12 % polyacrylamide gel 

according to Laemmli (1970).  SOD activity was then detected using a modified 

method of Beauchamp and Fridovich (1971) using 100 µg of total protein extract 

from each sample. For the detection of SOD activity and identification of individual 

SOD isoforms, specific inhibitors were used. These inhibitors included potassium 

cyanide (KCN; inhibits the copper/zinc – containing Cu/ZnSOD) or H2O2 (inhibits 

both Cu/ZnSOD and the iron – containing FeSOD). However, the identification of 

manganese – SOD’s (MnSOD) are evident via its resistance to both KCN and H2O2.  

 

2.12.2. Ascorbate peroxidase 

Individual APX isoforms were detected as described by Mittler and Zilanskas (1993) 

using 60 µg of total protein extract. This was achieved by incubating the native gel 

(described in section 2.12.1) in 50 mM phosphate buffer (KPO4; pH 7.8) containing 

4 mM ascorbate and 2 mM H2O2. The gel was then washed with 50 mM KPO4 (pH 

7.8) for 1 minute prior to a final incubation (staining solution) containing 50 mM 

KPO4 (pH 7.8) with 209 µl TEMED and 15 mg NBT. The native gel remained in 

solution until visible APX isoforms were detected. 

 

2.12.3. Glutathione reductase 

GR activity was detected as described by Lee and Lee (2000) with slight 

modifications. GR activity (as individual isoforms) was visualized in the native gel 
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by an incubation in 50 mM Tris – HCl buffer (pH 7.9) containing 4.0 mM glutathione 

disulfide (GSSG), 1.5 mM NADPH, and 2 mM 5,5' – dithiobis(2 – nitrobenzoic acid) 

(DTNB) for 10 minutes. The GR activity was negatively stained in the dark with a 

solution containing 0.6 mM 3 - (4,5 – dimethylthiazol – 2 – yl) – 2,5 – 

diphenyltetrazolium bromide (MTT) and 0.8 mM phenazine methosulfate (PMS) for 

5 – 10 minutes at 30°C. 

 

2.13. Densitometry analysis of ROS scavenging enzymes 

The in – gel images for SOD, APX and GR enzymatic activities were analyzed by 

densitometry analysis using the Spot Denso tool of AlphaEase FC imaging software 

(Alpha Innotech Corporation). The individual enzymatic gels were measured and 

represented as arbitrary values (relative enzymatic activity) of three independent 

gels according to Klein (2012). The enzymatic activity (for SOD, APX and GR) of 

each isoform in the treatments were measured as an average of the relative pixel 

intensities and expressed in arbitrary units. This was achieved by assigning the 

isoform with the lowest pixel intensity to a value of 1 and expressing the rest of the 

pixel intensities for that particular enzymatic isoform in the other treatments relative 

to this isoform. 

 

2.14. Profiling the leaf proteome of Salvia hispanica 

2.14.1. Sample preparation for proteomic analysis 

Protein extraction was performed following an optimized method adapted from 

Ngara 2009. A total of 200 mg of ground up leaf material from each treatment were 
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homogenized in 10 % (w/v) TCA/Acetone through vortexing and a 13 000 X g 

centrifugation step for 6 minutes. The supernatants were discarded and the resultant 

pellets were initially washed with an 80 % (v/v) methanol plus 0.1 M ammonium 

acetate (met – NH4Ac) solution, followed by an 80 % (v/v) acetone wash. Thereafter, 

the pellets were air dried at room temperature for an hour, followed by resuspending 

the pellets in a 1:1 phenol and SDS buffer (see section 2.2) ratio. Samples were then 

incubated on ice for 6 minutes followed by a 13 000 X g centrifugation for another 6 

minutes. The upper phenol phase was then transferred to a sterile tube which was 

later filled with the 80 % (v/v) methanol plus 0.1 M ammonium acetate (met – 

NH4Ac) solution to allow for protein precipitation at – 20ºC overnight. The 

precipitates were subjected to a 13 000 X g spin for 6 minutes after which the 

supernatants were discarded revealing a white pellet. The pellets underwent two 

washes (pellet resuspension) with 100 % (v/v) methanol followed by an 80 % (v/v) 

acetone wash. After the final wash step, the pellets were allowed to air dry at room 

temperature for an hour. Thereafter, the pellets were dissolved in IEF buffer (see 

section 2.2) and stored at – 20ºC. Protein concentrations were determined according 

to Bradford in 1976. 

 

2.14.2. One dimensional polyacrylamide gel electrophoresis (1D PAGE) 

Protein samples, prepared in a 1:1 ratio with 6 X SDS gel loading dye (see section 

2.2), were boiled at 95ºC for 5 minutes, and subjected to a 1D PAGE. A 1D PAGE 

analysis was used to resolve proteins according to their molecular weight with the 

aid of the Mini – Protean III® Cell gel casting system (Bio – Rad).  Resolving 12 

% gels (40 % Acrylamide/Bis stock solution (37:5:1); 1.5 M Tris – HCl, pH 8.8; 
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0.5 M Tris – HCl, pH 6.8; 10 % SDS; 10 % APS, 16 mM TEMED) were gently 

poured between two glass plates according the manufacturer’s manual (Bio – Rad).  

The liquid gel was overlaid with isopropanol and allowed to polymerize for about 

30 minutes.  When this time had elapsed, the isopropanol was decanted and the 

plates were rinsed with dH2O.  A 5 % stacking gel (40 % Acrylamide/Bis stock 

solution (37:5:1); 0.5 M Tris – HCl, pH 6.8; 10 % SDS; 10 % APS, 16 mM TEMED) 

was prepared and poured on top of the resolving gel and a 10 – well comb was 

inserted to form wells necessary to load the samples.  The gel was allowed to 

polymerize for about 15 minutes.  Gels were then placed into the buffer tank 

according to the manufacturer’s guide (Bio – Rad).  Upon polymerization, the 

combs were removed, the tank was filled up with 1 X SDS running buffer (see 

section 2.2) and the samples were loaded.  Gels were electrophoresed at 120 V until 

the dye reached the bottom of the gel for approximately 90 minutes. 

 

2.14.3. Two dimensional polyacrylamide gel electrophoresis (2D PAGE) 

Protein samples were separated according to their isoelectric points (pI’s) and 

molecular weights (MW), using immobilized pH gradient (IPG) strips (pH 4 – 7) in 

the first dimension coupled with SDS – PAGE analysis in the second dimension. 

 

2.14.3.1. Rehydration of immobilized pH gradient (IPG) strip 

Protein samples (100 μg) from each treatment were premixed with 10 X ampholytes 

(1.25 μl), 0.2 % (w/v) DTT and made up to a final volume of 125 µl with DeStreak 

solution. Samples were loaded onto a balanced re – swelling tray. The IPG strips 
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(7cm long, pH range 4 – 7) were gently positioned on top of each sample, gel side 

facing downward, avoiding the formation of air bubbles. Strips were overlaid with 

mineral oil and allowed to passively rehydrate for 16 hours at room temperature. 

 

2.14.3.2. Isoelectric focusing (IEF) 

After rehydration, the IPG strips were rinsed with dH2O, blotted on tissue paper to 

remove excess water and each placed on a focusing platform, with the gel side 

facing downwards. Pre – wet electrode pads (wicks) were positioned at each end of 

the strips. The strips were overlaid with mineral oil and focused with the IEF 

program as described in Table 2.3. 

Table 2.3. Isoelectric focusing (IEF; BIO – RAD) parameters for 7 cm IPG strips 

Phase Volts (V) Hours (Hrs) / Volt Hours (Vhrs) 

Phase 1 250 0h15 minutes 

Phase 2 4 000 1h00 

Phase 3 4 000 12 000 Vhrs 

 

2.14.3.3. Equilibration of IPG strips 

After IEF, IPG strips were equilibrated in SDS – containing buffers (equilibration 

buffer) to solubilize focused proteins and allow SDS binding prior to second 

dimension SDS – PAGE. The focused IPG strips were incubated gel side up in re – 

swelling tray channels containing 2.5 ml equilibration buffer (see section 2.2), 

firstly containing 2 % (w/v) DTT for 15 minutes followed by 2.5 % (w/v) 

iodoacetamide (IOA) for another 15 minutes with gentle agitation at room 
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temperature. After equilibration, the isoelectric focused proteins were ready for 

separation on second dimension SDS-PAGE as described below (section 2.14.3.4). 

 

2.14.3.4. Second dimension by SDS PAGE analysis 

The SDS gels were prepared as outlined in section 2.14.2, with the omission of the 

stacking gel. Each IPG strip, was positioned directly above the resolving gel and 

sealed with melted agarose gel. Electrophoresis was performed as described in 

section 2.14.2.  

 

2.15. Coomassie Brilliant Blue (CBB) staining  

For both the 1D and the 2D SDS – PAGE gels, proteins were visualized using the 

coomassie brilliant blue (CBB) R – 250 staining protocol, involving three 

consecutive steps. On completion of electrophoresis, the gels were carefully 

removed from the glass plates and stained with CBB I (see section 2.2). This was 

followed by two 30 minute staining steps with CBB II (see section 2.2) and CBB 

III (see section 2.2), respectively. After the staining steps, the gels were submerged 

in a destaining solution (see section 2.2) at room temperature with gentle agitation 

until protein versus background ratio is appropriate for visualization was obtained. 

The gels were imaged using the Molecular Imager PharosFX Plus System (BIO – 

RAD).   
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2.16. Comparative analysis of 2D SDS – PAGE gels 

The 2D SDS – PAGE analysis was done using PDQuest™ Advanced 2D analysis 

software version 8.0.1 Build 055 (BIO – RAD). The 2D gels were imaged using the 

Molecular Imager PharosFX Plus System (BIO – RAD) and analysed according to 

the PDQuest™ Advanced 2D Analysis Software user manual (BIO – RAD). All 

analyses in experiments were made using three biological replicates per treatment 

group. The gels were normalised with the aid of the local regression model 

compensating for gel to gel differences in spot quantities due to non – expression 

related variations. Before differential protein expression was done, spots were 

manually edited using the consensus tool to obtain spot expression consensus across 

all biological replicates in treatment groups. A protein spot was considered 

differentially expressed between samples when it had a p – value of less than 0.05 

and a fold change of more than 1.5. Three biological replications were used for the 

analysis. Protein spots of interest were manually picked using sterile pipette tips for 

identification by mass spectrometry analysis. 

 

2.17. In – gel trypsin digestion and peptide extraction 

Briefly, the differential protein spots were manually excised from 2D gels and 

washed twice in distilled water for 10 minutes. The gel pieces were destained (50 

% acetonitrile and 25 mM ammonium bicarbonate) and sonicated for 3 – 5 minutes. 

The gel pieces were dehydrated by washing twice in 50 % acetonitrile (ACN) for 

10 minutes. After dehydration the gel pieces were digested overnight in 20 ng of 

sequencing grade trypsin (Promega) at 37°C according to the manufacturer’s guide. 
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Peptides were extracted with a 10 µl solution of 30 % ACN and 0.1 % 

trifluoroacetic acid (TFA) (Sigma) for 30 minutes at room temperature and stored 

at 4°C for further analysis. 

 

2.18. Protein identification by MALDI – TOF MS/MS 

Differential expressed proteins were identified using the ultrafleXtreme MALDI 

TOF system (Bruker Daltonics, Germany) with instrument control through Flex 

control 3.4. A small fraction (1 µl) of peptide extract produced by the in – gel 

digestion was placed on an MALDI anchor chip and allowed to air – dry at room 

temperature. Each sample on the anchor chip was covered with 1 µl solution of 0.4 

mg/ml α – cyano – 4 – hydroxycinnamic acid in a mixture of acetonitrile (ACN) 

and 0.1 % trifluoroacetic acid (TFA) (70∶30) and then air dried. The mass spectra 

were acquired on an ultrafleXtreme TOF mass spectrometer (Bruker Daltonics, 

German). Spectra were internally calibrated using peptide calibration standard II 

(Bruker Daltonics, Germany). This calibration method provided a mass accuracy of 

50 ppm across the mass range 700 Da to 4000 Da. Data captured by MALDI – TOF 

MS/MS were a result coupled with Mascot v2.2.03 

(http://www.matrixscience.com) against NCBI [Taxonomy: Viridiplantae (Green 

Plants)] and SwissProt using the following parameters: 0.2 Da mass tolerance, one 

missed cleavage, carbamidomethylation of cysteines as fixed modifications and 

oxidation of methionine as variable modifications. 
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2.19. Functional classification of positively identified proteins 

Proteins were grouped into functional categories using data available on the UniProt 

database (www.uniprot.org) as well as literature sources.   

 

2.20. Bioinformatic analysis 

All experiments described were performed three times independently, with 

measurements taken from eight (plant growth measurements) or three (for all other 

experiments) different plants for each treatment in each of the three independent 

experiments (100 µM caffeic acid, 100 mM NaCl and a combination of 100 µM 

caffeic acid with 100 mM NaCl). For statistical analysis, one – way analysis of 

variance (ANOVA) test was used for all data and means (for three independent 

experiments) were compared according to the Tukey – Kramer test at 5 % level of 

significance, using GraphPad Prism 5.03 software. 
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CHAPTER 3 

EXOGENOUSLY APPLIED CAFFEIC ACID 

REGULATES THE PHYSIOLOGICAL RESPONSES 

OF SALVIA HISPANICA UNDER SALT STRESS 

 

3.1. Introduction 

Plant physiological studies are described as the application of modern physics and 

chemistry to ultimately understand plants and what accounts for their survival 

(Salisbury and Ross 1992). The physiological appearance of plants, one component 

of physiological studies, are the first indicators as to whether the plant had undergone 

some sort of stress represented mainly by leaf discolouration and stunted shoot length.  

Plant growth is dependent on multiple factors or processes for optimal development. 

These activities involve complex interrelationships between the processes within the 

meristems (involving a supply of metabolites) and the effect of internal and external 

factors on these specific processes (Moorby 1981). Hence, in plant systems, 

environmental changes serves as the key external factor, thus consequently altering 

internal environments by means of ROS accumulation (Choudhury et al. 2016). This 

ripple effect ultimately affects the supply of essential metabolites and therefore, 

negatively impacting the growth of the plant.  

Salt stress have been shown to negatively influence various physiological parameters 

by limiting water uptake, by means of stomatal closure (section 1.4), thus influencing 
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the physiological indicators mentioned above (Aroca et al. 2012; Roy et al. 2014). 

The effect of long term salt stress have been studied in rice (Mishra et al. 2013), 

soybean (Klein et al. 2013) and various other cereal crops. However, limited 

information in the public domain focuses on the effect of salt on pseudocereals.   

Based on reports published on soybean (section 1.6.6.1; Klein et al. 2013; Bubna et 

al. 2011) the work in this report focuses on using caffeic acid (CA) in order to 

alleviate the effects of salt stress. Although Bubna et al. (2011) concluded negative 

impacts of caffeic acid on soybean plants, Klein et al. (in 2013 and 2015) reports 

positive effects of caffeic acid within soybean plants in response to saline conditions. 

However, there is limited information available on the effects of salt stress on 

pseudocereals and the relationship between salt and caffeic acid on the pseudocereal, 

chia, have not been shown. Therefore, this part of the thesis focuses on the effect of 

caffeic acid in chia plants, under salt stress, by monitoring various growth parameters 

and photosynthetic pigment studies. 

 

3.2. Results 

3.2.1. Caffeic acid improves plant growth under salt stress 

Chia plants were grown and treated as described in section 2.3. This section describes 

the influence of exogenous caffeic acid and salt stress on chia growth and 

development. The results show that caffeic acid and salt stress differentially 

influences plant growth (Figure 3.1). Caffeic acid significantly improved plant 

growth, whereas the opposite was observed in response to salt stress when compared 

to the untreated control. However, plant growth was significantly improved in salt 
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stressed plants supplemented with caffeic acid albeit not to level of the control plants 

(Figure 3.1). 

The shoot length in the caffeic acid treatment was ± 16 % higher compared to the 

control, whereas in the salt treatment, the shoot length was significantly inhibited by 

± 36 % in comparison to the control (Figure 3.1 B). However, the shoot length in the 

combined treatment (CA + NaCl) was augmented by ± 24 % compared to the salt 

treatment, albeit not to the level of the control or the caffeic acid treated plants.  

Apart from the caffeic acid treatment, the root length was not significantly altered in 

the other treatments (Figure 3.1 A and C). The caffeic acid treated plants exhibited a 

± 15 % increase in root length compared to the control plants. Interesting to note was 

that root volume (not measured) was significantly influenced by the exogenous 

combined caffeic acid and salt treatment. Caffeic acid significantly increased root 

volume in whereby the opposite was observed in the salt treated plants in comparison 

to the control plants. However, root volume in the salt treated plants supplemented 

with caffeic acid was increased to a level higher than that observed for the salt 

treatment, albeit not to the level of the control and caffeic acid treated plants. This 

suggests that exogenous caffeic acid could improve chia plant growth under salt 

stress. 
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Figure 3.1. The influence of caffeic acid and salt stress on chia plant growth. Plant growth 

parameters include individual representatives of each treatment (A), shoot length (B) and root length 

(C). Error bars are representative of the mean (± SE) of three independent experiments from 8 plants 

per treatment in each experiment. Means with different letters are significantly different from each 

other (p < 0.05). 
 

 

3.2.2. The effect of caffeic acid and salt stress on chia biomass  

Exogenous caffeic acid and salt stress differentially influences chia biomass as 

observed for shoot and root fresh and dry weights (Figure 3.2). Figure 3.2 shows that 
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plants exposed to caffeic acid (100 µM CA) promotes shoot and root development 

and subsequent plant survival.  

Exogenous application of caffeic acid increased shoot fresh weight by ± 17 %, 

whereas a significant reduction of ± 40 % was observed in the salt treatment when 

compared to the untreated control (Figure 3.2 A). The reduction in shoot fresh weight 

observed in the salt treatment was reversed (albeit not to the level of the untreated 

control) when salt stress plants were supplemented with caffeic acid. Interestingly, 

the trend observed for the shoot fresh weight in response to the different treatments 

was also witnessed for the root fresh weight (Figure 3.2 B), whereby a significant 

reduction (± 45 %) in root fresh weight was observed in response to 100 mM NaCl 

in comparison to the control plants. However, plants treated with caffeic acid showed 

to promote plant root formation by ± 26 % (100 µM CA) as well as exhibit a ± 40 % 

increase in response to 100 µM CA + 100 mM NaCl in comparison to 100 mM NaCl. 

This phenomenon was also observed for the shoot and root dry weights (Figure 3.2 

C and D). The shoot dry weight was improved by ± 40 % compared to the control in 

response to caffeic acid whereas a significant reduction (± 20 %) was observed as a 

consequence of salt stress. However, shoot dry weight in the salt treatment 

supplemented with caffeic acid was increased by ± 30 % in comparison to the salt 

treated plants, although not to the level observed for the control (Figure 3.2 C). In 

addition, root dry weights expressed a similar trend presenting a ± 34 % increase in 

response to caffeic acid and a subsequent decrease (± 23 %) in response to salt. The 

effect of the combined treatments (caffeic acid + salt stress), once again, show to 

reverse the effects of salt (± 31 % increase compared to the salt treatment) albeit not 

to the level of the untreated control (Figure 3.2 D). 
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Figure 3.2. The effect of caffeic acid on chia plant biomass under salt stress. Plant biomass is 

represented by shoot (including the leaf; A) and root (B) fresh weights as well as shoot (C) and root 

(D) dry weights. Error bars are representative of the mean (± SE) of three independent experiments 

from 8 plants per treatment in each experiment. Means with different letters are significantly 

different from each other (p < 0.05). 
 

 

3.2.3. Caffeic acid improves water retention in salt stressed plants 

The survival of plants in nature depends on its ability to retain water. Here we 

measured water retention of chia plants exposed to caffeic acid and salt stress. 

Exogenous caffeic acid did influence water retention as seen in Figure 3.3. However, 

salt stress reduced water retention in chia leaves by ± 30 % compared to the control. 

Interestingly, when salt stressed plants were supplemented with caffeic acid, water 

retention (as seen for RWC) was significantly improved to levels observed for the 

control (Figure 3.3). This suggests that caffeic acid not only reverses the effects of 

salt stress by improving water retention but also promotes plant survival. 
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Figure 3.3. The effect of exogenous 100 µM CA, 100 mM NaCl and the combination of the two 

on the relative water content in chia leaves. Error bars are representative of the mean (± SE) of 

three independent experiments from 3 plants per treatment in each experiment. Means with different 

letters are significantly different from each other (p < 0.05). 
 

 

3.2.4. The effect of caffeic acid and salt stress on chlorophyll pigments and 

carotenoid content 

Caffeic acid and salt stress differentially influences photosynthetic metabolism and 

carotenoid biosynthesis in chia leaves (Figure 3.4). A significant increase in leaf 

chlorophyll content (Figure 3.4 A) was observed in response to caffeic acid. This 

increase was approximately ± 16 % higher compared to the control. Contrary to what 

was observed in response to caffeic acid, salt stress reduced leaf chlorophyll content 

by ± 50 %. On the other hand, supplementation of the salt treatment with caffeic acid 

alleviated the salt – induced reduction in chlorophyll content as the chlorophyll 

content in the combined treatment (caffeic acid + salt stress) was statistically similar 

to that observed from control the plants.  



http://etd.uwc.ac.za
60 

 

For carotenoid content, no significant difference was observed in the caffeic acid 

treatment when compared to the control (Figure 3.4 B). Salt stress reduced carotenoid 

content by ± 28 % compared to the control. Interestingly, the combined treatment 

significantly enhanced the carotenoid content to levels even higher than seen for the 

control. This increase was ± 19 % higher than control and ± 42 % higher than the salt 

treatment (Figure 3.4 B).  

  

 
Figure 3.4. Caffeic acid and salt stress differentially alters photosynthetic pigments (A) and 

carotenoid content (B) in chia leaves. Error bars are representative of the mean (± SE) of three 

independent experiments from 3 plants per treatment in each experiment. Means with different 

letters are significantly different from each other (p < 0.05). 

 

 

3.3. Discussion 

Here, we have analysed the influences of exogenously applied caffeic acid and long 

term salt stress on the physiological responses of Salvia hispanica L. The results 

show that salt stress inhibits plant growth and development whereas caffeic acid 
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show to exhibit the opposite effect. In addition, when salt stressed plants are 

supplemented with caffeic acid, the salt – induced inhibition is reversed although 

not to the level observed for the control.  

 

3.3.1. Caffeic acid improves chia growth and biomass under salt stress 

Contrary to what has been reported in literature, we have demonstrated that 

exogenously applied caffeic acid improves plant growth and biomass under salt stress 

in chia plants (Figure 3.1; Figure 3.2). Previous studies have shown that caffeic acid 

inhibits root elongation in leafy spurge (Euphorbia esula) (Barkosky et al. 2000). 

However, in this study, we have shown that caffeic acid increases root length and 

root volume (based on visual observation) relative to the control (Figure 3.1 A). The 

inhibitory effect of salt stress on plant growth and development have been well 

documented including this study (Al Hassan et al. 2015; Bor et al. 2003; Keyster et 

al. 2013). However, the combined treatment of salt stress and caffeic acid did not 

improve root length in comparison to the salt stress plants alone (Figure 3.1 A and 

C). On the other hand, root volume was significantly more in the combined treatment 

when compared to the salt treated chia plants but still less than the control and the 

caffeic acid treatment (Figure 3.1 A). It is evident across Figures 3.1 to 3.2 that not 

only does caffeic acid improve shoot elongation, root elongation as well as shoot and 

root biomass, but also show signs of rescue under saline conditions across all the 

fresh weight experiments. It is clear from these initial studies that caffeic acid appears 

to have a positive effect on this particular pseudocereal. Thus, since caffeic acid 

studies are not well documented, this is the first study to report the positive effects of 

caffeic acid on root volume under salt stress in pseudocereal plants, such as chia. 
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3.3.2. Exogenous caffeic acid improves water retention under salt stress 

conditions 

To analyse the beneficial effects of caffeic acid under salt stress, it is important to 

consider the role of caffeic acid in plant water retention, since the initial reduction in 

plant growth, after salt treatment, is a consequence of the osmotic effects caused by 

salts (Munns and Tester 2008). The ability to retain water under salt conditions (as 

seen in this study; Figure 3.3) can improve salt tolerance by mitigating an excessive 

ion concentration by a dilution effect (Romero – Aranda et al. 2006). In this study, 

exogenously applied caffeic acid could maintain a higher water content under salt 

stress conditions (Figure 3.3). Based on correlation analysis in this study, a direct 

relationship exists between RWC (Figure 3.3) and plant dry weight (Figure 3.2). This 

suggests that enhanced salt tolerance of chia plants could be partially attributed to 

higher RWC. 

 

3.3.3. Photosynthetic metabolism is differentially altered by exogenous caffeic 

acid and salt stress 

Photosynthetic pigment composition, such as chlorophylls and carotenoids, are 

directly linked to the physiological status of plant leaves (Gitelson et al. 2006). This 

statement is supported by the fact that various electron transfers occurring during 

photosynthesis within the chloroplasts depend on the above – mentioned plant 

pigments (Fassnacht et al. 2015). Chlorophylls – a and – b (green pigments) function 

in the absorption of solar light energy in order to transfer it into the photosynthetic 

apparatus (Gitelson et al. 2006; Kira et al. 2015). The results presented in this study 

showed a significant decrease in the chlorophyll – a and chlorophyll – b content, 

leading to a significant overall decrease in the total chlorophyll content observed in 
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salt treated chia plants (Figure 3.4 A). The adverse effect of photosynthesis under salt 

stressed conditions was previously described in different crop species such as sultana 

vines (Fisarakis et al. 2001), cowpea (Taffouo et al. 2009), cotton (Meloni et al. 2003) 

and wheat (Raza et al. 2006). However, there are many reports showing little or no 

changes or even the stimulation in the photosynthesis capacity of plants under low 

salt stress (Hawkins and Lewis 1993). In fact, the effect of salt stress on 

photosynthesis depends on the salt concentration in addition to the plant species or 

genotypes.  Chia plants treated with 100 mM NaCl experienced a significant 

reduction in chlorophyll content (Figure 3.4 A) as salt inhibits the synthesis of 

chlorophyll in addition to activating the chlorophyllase enzyme which is responsible 

chlorophyll degradation. Furthermore, salt stress (imposed by 100 mM NaCl) is also 

responsible for the inhibition of Rubisco and PEP carboxylase which is essential for 

photosynthesis (Al Hassan et al. 2015; Soussi et al. 1998). Therefore, the reduction 

in chlorophyll content by treatment with 100 mM NaCl, represents a physiologically 

stressed sample. On the other hand, exogenous application of caffeic acid to salt 

stressed plants improved photosynthetic capability (Figure 3.4 A) by abolishing salt 

– induced leaf chlorosis as previously described for soybean plants (Klein et al. 

2015). 

On the other hand, carotenoids (yellow pigments), in addition to light – harvesting, 

could serve as photoprotective molecules by means of the xanthophyll cycle. The role 

of carotenoids within this cycle allows for excess energy to dissipate, thus reducing 

the level of damage within the photosynthetic system (Fassnacht et al. 2015; Kira et 

al. 2015; Safafar et al. 2015). Therefore, alterations in plant pigments, especially the 

chlorophylls and carotenoids, have been directly associated with stress phenology. 
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This statement is supported by the fact that the reduction of chlorophyll content often 

implies stress and its ratio with upregulated carotenoids comfortably allows for the 

analysis of the physiological state of the plant (Fassnacht et al. 2015; Kira et al. 2015). 

However, the results presented in this study is in contradiction to how salt stress 

influences carotenoid biosynthesis in plants as we have shown that salt stress 

significantly reduces carotenoid content in chia leaves (Figure 3.4 B). However, 

Marti et al. (2016) further explains that the content of carotenoids are greatly 

dependent on the species and the environmental conditions. Therefore, chia leaves 

correspond to the research performed on tomato leaves (not fruits) whereby no 

correlation exists between Na+ and carotenoid content (Al Hassan et al. 2015; Juan 

et al. 2005; Tuna 2014) thereby reducing the level of carotenoids within a salt – 

stressed sample. In addition, although exogenous caffeic acid does not influence 

carotenoid production under physiological conditions, a significant increase in 

carotenoid content was observed in the salt treatment supplied with caffeic acid 

(Figure 3.4 B). This increase was even higher than observed in the control plants. 

This suggests that caffeic acid improves photosynthetic metabolism and carotenoid 

biosynthesis under salt stress and thus enhancing salt stress tolerance in chia plants. 
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CHAPTER 4 

CAFFEIC ACID – INDUCED ROS SCAVENGING IN 

CHIA PLANTS 

 

4.1. Introduction 

Salt stress is one of the major abiotic stress factors that adversely affects crop 

productivity. High concentrations of salts in soils account for large decreases in the 

yield of a wide variety of crops (Tester and Davenport 2003).  It is expected that 

increased salinisation of arable lands will have devastating global effects, rendering 

useless for crop production around 30 % of agricultural lands within the next 25 years, 

and up to 50 % by the year 2050 (Wang et al. 2003). Elevated levels of salt ions in 

soil solution, surrounding plant roots, induce an imbalance in water potential between 

plant root cells and ambient soil solution, resulting in cellular dehydration. Exposure 

of plants to salt and other abiotic stress factors activates various physiological and 

developmental changes. These alterations are regulated by the expression of different 

genes and the accumulation of their translated proteins, activating diverse 

physiological, metabolic, and defence systems to survive (Valliyodan and Nguyen 

2006). 

Reactive oxygen species (ROS) are regarded as the main source of damage to cells 

under biotic and abiotic stresses (Bor et al. 2003; Candan and Tarhan 2003). ROS 

production is one common feature of all aerobic organisms during their normal 

metabolic activities. Oxidative damage of lipids, proteins and nucleic acids, through 
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the alteration of normal cellular metabolism, is an important indicator of ROS (Imlay 

2003). Abiotic stress conditions, such as drought and salt stress, increase ROS 

production in plants, and depending on their natural and genetic capacity, they have 

developed enzymatic and non – enzymatic defence strategies against ROS. It is well 

documented that salt stress promotes oxidative damage and plants with constitutive 

and induced antioxidant levels have better resistance to damage (Parida and Das 

2005). 

Antioxidant enzymes play an important role in scavenging ROS through a series of 

complex reactions. These reactions include the dismutation of superoxide (O2
-) to 

hydrogen peroxide (H2O2) by superoxide dismutase (SOD). The H2O2 is then 

detoxified by various enzymes like ascorbate peroxidase (APX) and glutathione 

reductase (GR) (Noctor and Foyer 1998). Various researchers have reported that an 

increase in the activities of these enzymes are closely related to salt stress tolerance 

in many plant species. 

Caffeic acid (CA) has emerged as an inhibitor of root growth in plants, exerting its 

growth – inhibiting effects by modulating the generation of ROS and increasing 

lignification (Bubna et al. 2011; Singh et al. 2009). The role of caffeic acid in 

alleviating salt stress has been associated with enhanced scavenging of O2
- via the 

augmentation of SOD activity (Klein et al. 2013). Salt stress tolerance induced by 

exogenous caffeic acid is proposed to be resulting from the reduction of the extent of 

cell death caused by O2
- accumulation during salt stress (Klein et al. 2013).  Given 

the role of caffeic acid as an antioxidant with the capacity to inhibit ROS production 

(Jayanthi and Subash 2010), as well as the link between caffeic acid and plant salt 

stress tolerance (Klein et al. 2013), this study investigates the role of caffeic acid in 
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controlling ROS scavenging in chia plants under salt stress. Although a similar study 

have been performed on legume plants, to our knowledge this is the first study that 

describes how caffeic acid controls ROS production and antioxidant enzyme 

activities in pseudocereal (chia) plants under salt stress. 

 

4.2. Results 

4.2.1. The effect of exogenous caffeic acid and salt stress on ROS biomarkers 

Chia plants were grown and treated as described in section 2.3. The effect of the 

exogenous caffeic acid and salt stress on ROS production (O2
- and H2O2) in the leaf 

tissue of chia plants was investigated given that salt stress is known to cause excessive 

ROS accumulation. A few lines of research have shown that caffeic acid inhibits 

oxidative stress and should therefore reverse the negative effects caused by salt stress 

if it were to enhance salt tolerance in chia plants.  Exogenously applied caffeic acid 

have significantly reduced O2
- content by ± 30 % relative to the untreated control 

(Figure 4.1 A). Plants treated with 100 mM NaCl (to impose salt stress) enhanced O2
- 

content by ± 50 % compared to the untreated plants (Figure 4.1 A). However, when 

salt stressed plants were supplemented with caffeic acid, O2
- content was significantly 

reduced compared to the levels observed in the salt treatment. This reduction was ± 

42 % lower compared to the salt treatment albeit still higher (± 15 %) than observed 

for the untreated control (Figure 4.1 A).  

For H2O2 content, a similar profile to O2
- content was observed (Figure 4.1 B). Plants 

treated with caffeic acid (100 µM CA) reduced H2O2 content by ± 30 % relative to 

the untreated control, whereas those plants that were subjected to 100 mM NaCl 
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significantly increased H2O2 content by ± 48 % compared to the untreated controls 

(Figure 4.1 B). For salt treated plants supplemented with caffeic acid, H2O2 content 

was reduced by ± 34 % in comparison to the salt treatment although not to the levels 

observed for the control plants (Figure 4.1 B). The results obtained here demonstrates 

that exogenously applied caffeic acid can reduce salt – induced oxidative damage by 

controlling ROS production under salt stressed conditions in chia plants. 

 

Figure 4.1. The effect of exogenous caffeic acid (100 µM CA) and salt stress (100 mM NaCl) 

on superoxide content (A) and hydrogen peroxide levels (B) in the leaf tissue of chia plants. 
Data represent the mean (± SE) of three independent experiments from 3 plants per treatment in 

each experiment. Means with different letters are significantly different from each other (p < 0.05). 
 

 

4.2.2. Exogenous caffeic acid restricts salt – induced cell death by inhibiting 

oxidative damage 

The extent of malondialdehyde (MDA) accumulation, which is indicative of lipid 

peroxidation, in the various treatments, was measured as an estimate of oxidative 

damage. The MDA content in chia plants treated with 100 µM caffeic acid was ± 13 

% lower compared to the untreated control plants. In response to treatment with 100 

mM NaCl, MDA content in chia leaves was increased by ± 50 % compared to the 
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untreated controls (Figure 4.2 A). However, when salt stressed plants were 

supplemented with caffeic acid, MDA content was reduced by ± 38 % in comparison 

to the salt treatment although not to the level observed for the untreated control 

(Figure 4.2 A). 

The increase in MDA content in response to salt stress was manifested as an increase 

in cell death (as shown for Evans blue uptake) (Figure 4.2 B). A similar trend for cell 

death was observed as seen for the MDA analysis (Figure 4.2 A). A significant 

reduction of ± 22 % in Evans blue uptake (manifested as cell death) was observed in 

response to caffeic acid when compared to the untreated control (Figure 4.2 B). Cell 

death in the leaves of chia plants exposed to salt stress was significantly increased by 

± 55 % in comparison to the untreated control. However, this increase was 

significantly reduced in salt stressed plants that were supplemented with exogenous 

caffeic acid, although not the level observed for the untreated controls (Figure 4.2 B). 

 

Figure 4.2. The influence of caffeic acid and salt stress on lipid peroxidation (A) and the extent 

of cell death (B). Data represent the mean (± SE) of three independent experiments from 3 plants 

per treatment in each experiment. Means with different letters are significantly different from each 

other (p < 0.05). 
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4.2.3. Caffeic acid differentially regulated antioxidant enzyme activity under 

salt stress 

Differential regulation of antioxidant enzyme activity in various plant species to salt 

stress have been well documented (Abogadallah 2010; Gill and Tuteja 2010). In 

addition, there is evidence that such response is modulated by exogenously applied 

caffeic acid (Klein 2012; Klein et al. 2013). 

Caffeic acid and salt stress differentially regulated total SOD activity in the leaves of 

chia plants. Caffeic acid reduced SOD activity by ± 26 % whereas a significant 

increase of ± 62 % was observed for salt stress when compared to the untreated 

controls (Figure 4.3 A).  A significant reduction in SOD activity (± 35 %) was 

observed in the salt treatment supplemented with caffeic acid when compared to the 

salt treatment although not to the level of the untreated control (Figure 4.3 A). 

For leaf APX activity, a similar trend to SOD activity was observed. Caffeic acid 

inhibited APX activity by ± 31 % when compared to the untreated control (Figure 4.3 

B). Salt stress augmented APX activity by ± 58 %. However, for salt stressed plants 

supplemented with caffeic acid, APX activity was reduced to levels complementing 

that of the untreated control plants although still higher to what was observed in the 

caffeic acid treatment (Figure 4.3 B).  

Contrary to what was observed for SOD and APX activity, GR activity was 

significantly increased in both caffeic acid and salt stress treatments (Figure 4.3 C).  

However, in the salt treatment supplemented with caffeic acid, GR activity was 

reduced to levels lower than observed for the caffeic acid and salt treatment albeit 

higher than the untreated control (Figure 4.3 C).  



http://etd.uwc.ac.za
71 

 

 

Figure 4.3. Caffeic acid and salt stress differentially alters antioxidant activity in the leaves of 

chia plants. Total SOD (A), APX (B) and GR (C) enzymatic activity were measured 

spectrophotometrically in the leaves of chia plants. Data represent the mean (± SE) of three 

independent experiments from 3 plants per treatment in each experiment. Means with different 

letters are significantly different from each other (p < 0.05). 
 

 

4.2.4. The effect of exogenous caffeic acid and salt stress on the activity of 

individual SOD isoforms 

Superoxide dismutases (SOD, EC 1.15.1.1) represent the first line of plant defence 

against ROS in the array of enzymes that function to protect the plant cells against 

oxidative stress. Therefore, SOD is classified as a chain – breaking group of enzymes 

since they scavenge superoxide and yield another form of ROS; hydrogen peroxide 

(H2O2). This study demonstrates the effect of exogenous caffeic acid and salt stress 

on the enzymatic activity of various SOD isoforms in chia leaves. Leaf extracts from 

each treatment were separated on a 12 % native polyacrylamide gel and stained for 

individual SOD isoforms. A total of four SOD isoforms was detected in the 

uninhibited control gel (Figure 4.4 A). The activity of each SOD isoform was 

differentially regulated in response to caffeic acid and salt stress (Figure 4.4). The 
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characterisation of SOD isoforms in chia leaves was determined using KCN and H2O2 

as described in section 2.12.1. Analyses of these results, based on resistance and 

sensitivity to KCN and H2O2, suggests the existence of two manganese SOD’s 

(MnSOD1 and MnSOD2), one iron SOD (FeSOD) and one copper – zinc SOD 

(Cu/ZnSOD) (Figure 4.4). Based on densitometry analysis (Table 4.1), caffeic acid 

and salt stress differentially alter the activity of each SOD isoform. MnSOD1 was 

only detected in the caffeic acid treatments and absent (or very low in abundance) in 

the control and salt stress treatments. The activity of MnSOD2 was significantly 

reduced by ± 55 % in the caffeic acid treatment when compared to the untreated 

control (Figure 4.4; Table 4.1). In response to salt stress, the activity of MnSOD2 was 

augmented by ± 38 % compared to the untreated control. Furthermore, when salt 

stressed plants were supplemented with caffeic acid, MnSOD2 activity was 

significantly reduced compared to the salt treatment. The activity observed was like 

that of the untreated control (Figure 4.4; Table 4.1). For FeSOD, the activity detected 

in response to caffeic acid was ± 12 % higher compared to the untreated control. The 

salt treatment reduced FeSOD activity by ± 23 %, whereas salt treated plants 

supplemented with caffeic acid improved FeSOD activity to a levels slightly beyond 

that of the untreated control (Figure 4.4; Table 4.1).  A similar trend in activity to 

FeSOD was observed for Cu/ZnSOD. 
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Figure 4.4. Caffeic acid and salt stress differentially regulate SOD isoform activity. In – gel 

activity assays were performed on chia leaves treated for 21 days. The native polyacrylamide gels 

shows the detection of SOD isoforms with no inhibitors (A), in the presence of 5 mM KCN (B) and 

in the presence of 6 mM H2O2 (C) in response to the various treatments. 
 

Table 4.1. Tabular representation of relative SOD isoforms in chia leaves. 
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Chia leaf 

SOD 

isoforms 

Treatments 

Control 100 µM CA 100 mM NaCl 100 µM CA + 

100 mM NaCl 

MnSOD1 0.00 ± 0.00c 1.49 ± 0.07a 0.00 ± 0.00c 1.00 ± 0.05b 

MnSOD2 2.23 ± 0.11b 1.00 ± 0.05c 3.59 ± 0.18a 2.12 ± 0.11b 

FeSOD 1.27 ± 0.06b 1.44 ± 0.07a 1.00 ± 0.05c 1.52 ± 0.08a 

Cu/ZnSOD 1.25 ± 0.06b 1.48 ± 0.07a 1.00 ± 0.05c 1.53 ± 0.08a 

Data presented in this table are the means ± standard error of three replicates (n = 3). Means marked with the 

different letters in the same row for the same isoform indicate significant difference between treatments at 5% 

level of significance according to Tukey-Kramer test.  

 

4.2.5. Caffeic acid and salt stress alters APX activity 

While SOD is responsible for scavenging O2
-, yielding high levels of H2O2, additional 

enzymes are activated for H2O2 scavenging such as ascorbate peroxidase (APX). In 

relation to the Halliwell – Asada pathway, APX is the primary enzyme responsible 

for scavenging H2O2. Here, we describe the influence of exogenous caffeic acid and 
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salt stress on the enzymatic activities of individual APX isoforms. The results show 

that only two APX isoforms (as labelled from the top of the gel) was identified 

(Figure 4.5 A). For APX1, no significant changes in enzymatic activity was observed 

for the different treatments (Figure 4.5 A and B).  

For APX2, exogenous application of caffeic acid significantly reduced enzymatic 

activity by ± 60 %, compared to the untreated control Figure 4.5 C). On the contrary, 

salt stress significantly enhanced enzymatic activity by ± 50 % compared to the 

untreated control. However, the increase in activity observed the salt treatment was 

reversed when salt stressed plants were supplemented with caffeic acid albeit not to 

the level of the untreated control (Figure 4.5). 

 

 

Figure 4.5. The effect of caffeic acid and salt stress on APX activity. In – gel activity assays were 

performed on chia leaves treated for 21 days. Data represent the mean (± SE) of three independent 

experiments from 3 plants per treatment in each experiment. Means with different letters are 

significantly different from each other (p < 0.05). 
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4.2.6. The influence of caffeic acid and salt stress on GR activity 

Although APX plays an important role in the conversion of H2O2 to water, GR is also 

an essential catalyser in the conversion of H2O2 to maintain the redox state of 

ascorbate and glutathione, since it converts GSSG to GSH that is used by DHAR to 

regenerate ascorbate (section 1.5.1.1; Hernandez et al. 1999). GR is responsible for 

recycling GSSG to GSH and controls the redox status in plant cells. Here we describe 

the influence of exogenous application of caffeic acid and salt stress on GR activity 

in chia leaves. The results show that two GR isoforms (GR1 and GR2) was detected 

after activity specific staining as described in section 2.12.3 (Figure 4.6). The 

enzymatic activity observed for both GR isoforms were differentially regulated by 

caffeic acid and salt stress (Figure 4.6). Based on densitometry analysis (Figure 4.6 

B and C), GR1 activity was not altered in response to caffeic acid, whereas a 

significant increase of ± 38 % was observed in the salt treatment compared to the 

untreated control. When the salt treatment was supplemented with caffeic acid, GR1 

activity was reduced to a level below that of the control (Figure 4.6 B) 

For GR2, no or very low enzymatic activity was detected in the control sample. 

Interestingly, GR2 was only detected in caffeic acid treatments (Figure 4.6 A and C). 

A reduction in GR2 activity was observed in the combined treatment when compared 

to the caffeic acid treatment. 
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Figure 4.6. The effect of caffeic acid and salt stress on GR activity in chia leaves. In – gel activity 

assay was performed on chia leaves treated for 21 days. Data represent the mean (± SE) of three 

independent experiments from 3 plants per treatment in each experiment. Means with different 

letters are significantly different from each other (p < 0.05). 

 

 

4.3. Discussion 

4.3.1. Exogenous caffeic acid modulates ROS accumulation by restricting 

oxidative damage 

Salt stress has a reputation of negatively affecting plant growth (Keyster et al. 2013; 

Parida and Das 2005) and is known to be associated with ROS accumulation (Miller 

et al. 2010). The deleterious effects of ROS production in response to abiotic stresses 

and the modulatory role of various enzymatic and non – enzymatic antioxidants in 

controlling these molecules have been observed in various crops species including 

liquorice (Glycyrrhiza uralensis Fisch), sorghum (Sorghum bicolor L. Moench), 

cucumber (Cucumis sativus L.), alfalfa (Medicago sativa L.) and many other valuable 
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cereals (Boldaji et al. 2012; Lee and Lee 2000; O’Donnell et al. 2013; Pan et al. 

2006). 

The role of caffeic acid in scavenging ROS have been previously described in Wan 

et al. (2014). However, in a recent study by Klein et al. (2015), the authors 

demonstrated that exogenous caffeic acid does restrict oxidative damage by inhibiting 

ROS production under salt stressed conditions in soybean root nodules. These results 

are in support of our findings that caffeic acid protects chia plants under salt stressed 

conditions by inhibiting ROS production (Figure 4.1) and thus restricting ROS – 

induced oxidative damage and limiting cellular death (Figure 4.2). Therefore, the 

level of plant cells that are able to remain viable in response to salt stress 

supplemented with caffeic acid in comparison to salt stressed conditions, instigated 

enzymatic research in order to determine the effect of an exogenous antioxidant on 

various endogenous antioxidants.  

 

4.3.2. Salt stress tolerance in chia plants is mediated by caffeic acid – induced 

antioxidant capacity 

The involvement of ROS scavenging in long – term salt stress tolerance in chia plants 

mediated by caffeic acid is supported by the enhancement of antioxidant enzymatic 

activity in the various treatments. Apart from GR, the enzymatic activities of SOD 

and APX were differentially regulated in response to exogenously applied caffeic 

acid and/or salt stress compared to the untreated control. However, the salt stress – 

induced increase in these enzymatic activities was significantly higher than the 

increase in the enzymatic activities seen where salt stress treatment was supplemented 

with caffeic acid. This result could suggest that the supplementation of exogenous 
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caffeic acid to chia plants could reduce the demand for enhanced enzymatic activity 

under salt stress since plant experiences reduced signs of stress in the presence of 

caffeic acid (Figures 4.1 and 4.2). 

 

4.3.2.1. SOD activity is differentially expressed by caffeic acid and salt 

stress in chia leaves 

Superoxide dismutase (SOD) represents the first line of defence when the plant 

undergoes stress given its high affinity for superoxide radicals (section 1.5.1.1). They 

are considered chain – breaking enzymes (Alscher et al. 2002; Gill and Tuteja 2010). 

In that case, the total SOD activity was determined spectrophotometrically (Figure 

4.3 A) from which a significant increase in total SOD activity within the 100 mM 

NaCl treated sample was witnessed, indicating the immediate requirement for 

survival. Interestingly, the SOD levels in the combined treatments showed a 

significant decrease in comparison to the salt, presenting the first implication of 

caffeic acid limiting the need for excessive antioxidant activity under salt stress. 

Subsequently, chia leaves were then subjected to native PAGE analysis in order to 

identify the individual isoforms contributing to total SOD activity (Figure 4.4) from 

which, generally, three isoforms were identified. However, intriguingly, a fourth 

SOD isoform was identified in those samples that were subjected to exogenous 

caffeic acid which was eventually recognised as a MnSOD. However, the 

contribution of each isoform, including the CA – induced SOD, toward superoxide 

radical scavenging varied across all treatments. 

The analysis of individual SOD isoforms (FeSOD, MnSOD and Cu/ZnSOD) would 

require the knowledge of the origin of ROS accumulation which Miller et al. (2010) 
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describes to be within the chloroplast, mitochondria as well as the peroxisome. These 

authors also emphasise that the main cellular compartment housing ROS 

accumulation is the chloroplast which is a result of the limitation of CO2 fixation 

along with the over – reduction of the electron transport chain. In addition to the 

chloroplast, the mitochondria is also responsible for high levels of ROS as a result of 

over – reduction of the electron transport chain (Miller et al. 2010).  

Theoretically speaking, different SOD isoforms are localised within various 

subcellular compartments whereby FeSOD’s (Iron – SOD) are found within the 

chloroplast, MnSOD’s (Manganese – SOD) within mitochondrial and peroxisomal 

cells and finally Cu/ZnSOD’s (Copper Zinc – SOD) are found in chloroplasts as well 

as the cytosol (Alscher et al. 2002; Gupta et al. 1993). Given that O2
- radicals can be 

generated at any location that contains an electron transport chain, it would not be 

surprising to witness SOD activity within all those subcellular locations.  

However, various environmental conditions could affect the availability of metals 

and thus diminish the effectiveness of the enzyme. FeSOD’s suffer from this 

environmental change condition as the increase in O2 within the environment results 

in the reduction of Fe (II) availability which causes a shift to the more available metal, 

Mn (III). MnSOD’s effectively catalyses O2
- by attracting the negatively charged O2

- 

molecule to the positively charged amino acid present at the active site of SOD. Mn 

(III) then donates an electron directly to O2
- resulting in a reduction of one O2

- 

molecule and thus forms H2O2 through proton reactions (Alscher et al. 2002). Given 

that MnSOD’s derived from FeSOD’s, they have similar electrical properties and thus 

the transition from using iron to manganese did not require an immense change in 

SOD protein structure.  
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In addition, Alscher et al. (2002) explains that the various SOD isoforms respond 

differently based on their location as well as the location as to where the oxidative 

stress affects most. These authors further explained that although MnSOD’s are 

mitochondrial – localized, they can also be targeted to the chloroplast, thereby 

increasing their protective abilities. 

Based on the research conducted in this report, involving chia plants, referring to the 

SOD native gel (Figure 4.4), the fact that the effectiveness of various SOD isoforms 

depends on environmental conditions as well as the location of the SOD, and the 

stress, could provide answers as to why the MnSOD’s show greater expression 

differences across all treatments in comparison to the FeSOD and Cu/ZnSOD. 

Furthermore, the fact that the level of MnSOD2 is significantly upregulated in 

response to salt stress, as well as the presence/absence of MnSOD1 across the 

treatments, could be a consequence of the readily available Mn (III) metal as well as 

the fact that MnSOD’s can be targeted to areas apart from the mitochondria. 

However, although the information availability on SOD activity and its response to 

stress is in abundance, given that the proteome and transcriptome of chia plants have 

not been well studied and thus there is no data relating to the plants proteomic and 

transcriptomic behaviour, one can only suggest the contributing SOD isoforms. 

The public domain provides volumes of information on the effects of salt stress on 

SOD activity in crop plants (Hernandez et al. 1999; Klein 2012), which directly 

supports the result in this study. However, besides Klein et al. (2013) and Klein 

(2012) (performed on soybean), there is no information available on the relationship 

between salt and caffeic acid and its combined effect on pseudocereals such as chia. 

The results in this report show reduced SOD activity in the caffeic acid treated plants 
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(Figure 4.3 A) in comparison to the control. In addition, the level of SOD activity is 

also diminished in the salt stressed plants that were supplemented with caffeic acid 

(Figure 4.3 A) compared to the 100 mM NaCl. Since there are reduced levels of O2
- 

in caffeic acid treated plants as well as salt stressed plants supplemented with caffeic 

acid, the reduction of SOD activity was expected and thus suggesting that exogenous 

caffeic acid could reduce the necessity for enhanced antioxidant enzyme activity. 

 

4.3.2.2. APX activity is differentially expressed by caffeic acid and salt 

stress in chia leaves 

According to Caverzan et al. (2012) and Pandey et al. (2015), ascorbate peroxidase 

(APX) is labelled as the key enzyme within the ascorbate – glutathione (Halliwell – 

Asada) pathway by functioning to reducing H2O2 to H2O and O2, using ascorbate 

(AsA) as an electron donor (section 1.5.1.1). APX is valued for its ability to be 

functional within the chloroplast, mitochondria, peroxisomes as well as in the cytosol 

(Mittler et al. 2004; Shigeoka et al. 2002). Caverzan et al. (2012) continues to explain 

that generally, APX activity, along with other enzymatic antioxidants, increases in 

response to various environmental stress which is clearly observed in the 100 mM 

NaCl treated sample within the spectrophotometer analysis (Figure 4.3 B) as well as 

the native PAGE data (Figure 4.5). However, as with SOD isoforms, various APX 

isoforms are usually classified according to their subcellular localization known as 

mitochondrial-, chloroplastic-, cytosolic - and peroxisomal/glyoxysomal – APX 

isoenzymes which can be identified using the Peroxidase database (Caverzan et al. 

2012; Dabrowska et al. 2007; Pandey et al. 2015).  
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Though, unlike SOD isoforms, Pandey et al. (2015) further explains that APX 

isoforms across all subcellular compartments are upregulated in response to salt stress 

given its great sensitivity to abiotic stresses. Therefore, in the case of this report, the 

two APX isoforms identified in chia leaves were labelled as APX1 and APX2 and 

was not further classified given the limited sequence information availability within 

the Salvia hispanica species. 

However, although no significant enzymatic changes was observed for APX1, APX2 

showed distinct alterations in expression levels across all treatments (Figure 4.5 C). 

As previously stated, chia leaves experienced a distinct increase in APX activity in 

response salt. However, the application of exogenous caffeic acid significantly 

reduced total APX activity (Figure 4.3 B) as well as APX2 expression levels (Figure 

4.5 C) in response to 100 µM CA in comparison to the control. This finding could 

suggest that exogenous caffeic acid limits the demand for active enzymatic 

antioxidants given the reduction in ROS molecules present within the plant system 

when exposed to caffeic acid (Figure 4.1). 

The relationship between caffeic acid and salt are not well documented and thus the 

effect of these exogenous compounds (combined) on pseudocereals antioxidant 

systems have been done. The results in this report show that salt stress supplemented 

with caffeic acid reduces total APX activity (Figure 4.3 B). However, since the 

exogenous application of caffeic acid to salt stressed chia plants reduced H2O2 

production molecule formation (Figure 4.1 B) as well as lipid peroxidation and cell 

death (Figure 4.2), the demand for excessive APX activity is reduced in comparison 

to salt stressed chia plants. 
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4.3.2.3. GR activity is differentially expressed by caffeic acid and salt stress 

in chia leaves 

The function of the Halliwell – Asada pathway is to utilize its’ enzymatic and non – 

enzymatic antioxidants, in parallel, to assist in reducing ROS molecules to levels less 

toxic to the plant (Pandey et al. 2015). The final active enzyme in the pathway is 

known as glutathione reductase (GR) and have been observed in bean (Phaseolus 

vulgaris L.; Cakmak and Marschner 1992) and maize plants (Yannarelli et al. 2007). 

GR maintains a cellular redox state by means of catalysing the reduction of oxidized 

glutathione (GSSG) to reduced glutathione (GSH) through the oxidation of NADPH 

(section 1.5.1.1), resulting in maintaining a balance between reduced GSH and AsA 

pools (Hossain et al. 2012). As expected, increased GR enzymatic activity within the 

salt stressed plant was observed (Figure 4.3 C; Figure 4.6). However, different from 

the O2
- and H2O2 scavenging enzymes (SOD and APX), the level of GR activity in 

the caffeic acid treated plants showed a significant increase in comparison to the 

control (Figure 4.3 C). It is possible that because the expression levels of SOD and 

APX activity could be directly linked to the concentrations of ROS molecules present 

within the plant, the expression of these enzymes in the caffeic acid treated plants are 

lower than the control. However, since GR’s main function in the Halliwell – Asada 

pathway is to serve as a catalyst in the regeneration of ascorbate (Lee and Lee 2000), 

its upregulated expression in response to caffeic acid could serve as a protective 

mechanism.  

On the other hand, a second GR isoform was identified that was unique to those plants 

subjected to caffeic acid and hence referred to as CA – induced (Figure 4.6). The 

presence of an additional GR isoform in response to caffeic acid could also explain 
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the upregulation of total GR activity (Figure 4.3 C) in chia plants in response to 100 

µM CA compared to the untreated control plants. 

However, salt stressed chia plants supplemented with caffeic acid reduced GR 

activity to a level below that of the control which is in contradiction to what was 

observed for SOD and APX. Since the effect of caffeic acid on the entire Halliwell – 

Asada pathway within pseudocereal crops had not been elucidated, we suggest that 

there could be a direct link between caffeic acid biosynthesis and GR induced ROS 

scavenging to promote salt stress tolerance in chia plants. 
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CHAPTER 5 

EXOGENOUS CAFFEIC ACID AND SALT STRESS 

ALTERS THE LEAF PROTEOME OF CHIA PLANTS 

 

5.1. Introduction 

Plant polyphenols are naturally occurring polyphenolic compounds within plant 

systems (Pandey and Rizvi 2009). They are involved in diverse functions that 

contribute to the health and survival of the plant (Duthie et al. 2003). In response to 

salt stress, polyphenolic compounds are known to reduce reactive oxygen and thus 

participates in the defence against ROS accumulation (Ksouri et al. 2007). The most 

abundant phenolic compound described in food crops is known as caffeic acid (CA) 

(Belay et al. 2016). 

The exogenous application of caffeic acid on food crops have been shown to enhance 

salt tolerance in soybean root nodules through the reduction of superoxide radicals 

(Klein et al. 2013). These authors focused on the physiological and biochemical 

responses to caffeic acid and salt stress, thereby showing that the exogenous 

supplementation of caffeic acid under salt stress enhanced antioxidant activity and 

thus improves salt tolerance in soybean plants. 

However, the effect of caffeic acid on plant proteomes have not been described, thus 

making this study a first of its kind. Given the distinct physiological and biochemical 

changes observed in chia plants in response to salt and caffeic acid, including the 

combined treatment (Chapter 3 and 4), changes in protein abundance should be 
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observed. Therefore, this study investigated the changes in leaf protein abundance 

under salt stress in the presence of caffeic acid. 

 

5.2. Results 

5.2.1. Separation and visualisation of chia leaf samples on 1D SDS – PAGE 

Chia leaf samples were subjected to 1D SDS – PAGE to evaluate protein quality and 

abundances prior to 2D SDS – PAGE analysis. A total of 10 µg of total protein extract 

(section 2.14.1) of all chia samples were separated and visualised on a CBB stained 

12 % polyacrylamide gel (Figure 5.1). The protein expression across all treatments 

showed high similarities which suggested uniform protein loading across all 

treatments. It was also evident that the separated proteins were of high quality with 

no visible streaking or protein degradation. The results show that protein extracts 

from all treatments covered the molecular weight (MW) range between 14.4 and 116 

kDa in which some bands were more expressed than others. Distinct differences in 

the chia leaf protein profile in response to the various treatments were observed as 

indicated by the different arrows (Figure 5.1). Exogenously applied caffeic acid 

increased protein abundance/expression as shown for the band intensities compared 

to the control sample. However, the opposite was observed in the salt stress 

treatments where some of the proteins identified were downregulated when compared 

to the untreated control. Interestingly, the reduction in band intensity observed in the 

salt treatment was reversed when salt stressed plants were supplemented with 

exogenous caffeic acid. The increase in protein abundance/expression (as seen for 

increased band intensities) could be attributed to more than one protein separating as 

a single band, whereas the opposite can be suggested for the proteins with low 
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expression/abundance. This in turn illustrates a limitation associated with 1D SDS – 

PAGE analysis. Therefore, the separation of proteins in the second dimension could 

aid in protein identification as all proteins would separate as individual spots. 

 

Figure 5.1. One – dimensional leaf proteome profile of chia in response to caffeic acid and salt 

stress. Protein extracts from different treatments were size fractionated on a 12 % denaturing 1D 

SDS polyacrylamide gel. 

 

 

5.2.2. Detection of differential expressed proteins in chia leaves exposed to 

caffeic acid and salt stress 

Two – dimensional gel electrophoresis was used for the detection and identification 

of differential expressed proteins in chia leaves in response to exogenously applied 
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caffeic acid and salt stress. Using 1D SDS – PAGE analysis, proteins were separated 

based on their MW whereas 2D SDS – PAGE resolved proteins based on their MW 

as well as their isoelectric point (pI), allowing for precise comparison between protein 

samples. A fraction of chia leaf protein extract (100 µg) from three independent 

biological and technical replicates of each treatment were resolved on  7 cm IPG 

strips of pH range 4 – 7 and separated on a 12 % (v/v) 2D SDS – PAGE gels (section 

2.14.3). The well resolved CBB stained protein spots were visualised and imaged as 

described in section 2.15 and 2.16. The result show that most protein spots are 

confined within the 25 – 116 kDa range with an experimental IEF pH restriction of 4 

– 7 (Figure 5.2).  

 

Table 5.1. Tabular representation of various categories identified in this study based on 

differentially expressed proteins across the two – dimensional gels 

Class Regulation Spot Numbers Total 

I CA ↑; S ↓; CA + NaCl ↑ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 

12; 13; 14; 15; 16; 17 

16 

II S ↓; CA + NaCl ↑ 18; 19; 20; 21 4 

III CA ↓; S ↑; CA + NaCl ↓ 11 1 
** ↑ Up-regulated ↓ Down-regulated 

 

The results in Table 5.1 show that caffeic acid and salt stress (imposed by 100 mM 

NaCl) significantly alters the leaf proteome of chia plants (Table 5.1; Figure 5.2). 

Table 5.1 is divided into three distinct classes. Class I represents protein spots that 

are upregulated in response to caffeic acid (even the combined treatment) and 

downregulated by salt stress. Class II represents protein spots that are downregulated 

salt stress and recovered by caffeic acid. However, showed no difference in 

expression levels in response to caffeic acid in comparison to the untreated control.  
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Figure 5.2. Representative CBB stained two – dimensional SDS PAGE gels of chia leaves in response to different treatments.  Chia leaf samples (control (A), 100 µM CA (B), 100 mM NaCl 

(C) and 100 µM CA + 100 mM NaCl (D)) were separated on a 12 % denaturing 2D SDS polyacrylamide gel. Red arrows represent CA – induced spots; yellow arrows represent CA – recovered 

spots and blue arrows representing salt – induced spots. 
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Class III represents protein spots that are upregulated by salt stress but inhibited by 

caffeic acid. The protein spots represented in each class was plotted as a pie chart 

(Figure 5.3). The result shows that 76 % of the protein spots detected in this study 

were induced by caffeic acid whereas 19 % of the spots was recovered by caffeic acid 

when suppressed by salt stress. Only 5 % of detected protein spots was induced by 

salt stress (Figure 5.3).   

 
Figure 5.3. Graphical representation of the influence of caffeic acid and salt stress on protein 

expression in chia leaves 

 

5.2.3. Identification and functional characterisation of differentially 

expressed chia leaf proteins 

A total of 21 spots were well resolved, reproducible, abundant spots that were excised 

and identified using MALDI M/S (Table 5.2) as described in section 2.18. The results 

obtained from mass spectrometry were tabulated showing spot numbers, protein ID’s, 

accession numbers, molecular weight search (MOWSE) scores, molecular weights, 

isoelectric points, location of the identified protein as well as its expression. Proteins 

were identified by means of a newly developed Salvia hispanica transcriptomic 

database converted to a peptide database using TRINITY version 

Trinityrnaseq_r2013-02-25 (Haas et al. 2013) against the NCBI protein datasets of 

Sesamum indicum and Erythranthe guttata as primary related species.
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Table 5.2. Protein identification of differentially expressed chia leaf proteins spots using MALDI – TOF MS/MS 

Spot 

No.a) 

Protein Name Species gi|b) Accession No.c) MOWSE 

scored) 

Matching 

peptides 

Exp. 

MW(kDa)/

pIe) 

Locationf) Expression
g) 

          

 Carbohydrate Metabolism         

          

          

5 Ferredoxin-NADP reductase, leaf type 

isozyme, chloroplastic 

 

Erythranthe 

guttata 

 

604319636 

 

XP_012345049.1 

 

383.84 

 

9 35.90/ 6.20 

 

Chloroplast 

stoma 

 

CA-

induced 

6 Ferredoxin-NADP reductase, leaf type 

isozyme, chloroplastic 

 

Erythranthe 

guttata 

 

604319636 

 

XP_012345049.1 

 

504.14 

 

7 35.90/ 6.20 

 

Chloroplast 

stoma 

 

CA-

induced 

8 Phosphoglycerate kinase chloroplastic 

 

Sesamum 

indicum 

 

747078374 

 

XP_011086346.1 

 

476.60 

 

9 64.50/9.83 

 

 

Chloroplast 

 

CA-

induced 

9 Fructose-bisphosphate aldolase 1 

chloroplastic 

 

Erythranthe 

guttata 

 

747082340 

 

XP_012837114.1 

 

354.53 

 

6 42.00/5.75 

 

 

Plastoglobule 

 

CA-

induced 

          

12 Sedoheptulose-1,7-bisphosphatase, 

chloroplastic 

Sesamum 

indicum 

 

604342107 

 

XP_011084948.1 

 

375.28 

 

10 49.90/8.64 

 

Chloroplast CA-

induced 

13 Sedoheptulose-1,7-bisphosphatase, 

chloroplastic 

 

Sesamum 

indicum 

 

604342107 

 

XP_011084948.1 

 

236.08 

 

6 49.90/8.64 

 

Chloroplast 

 

CA-

induced 

14 Phosphoribulokinase, chloroplastic-

like (Thioredoxin F1 chloroplastic) 

 

Erythranthe 

guttata 

 

604316997 

 

XP_012847146.1 259.13 

 

5 54.40/5.98 

 

 

 

Chloroplast 

stroma 

 

CA-

induced 

16 Glyceraldehyde-3-phosphate 

Dehydrogenase B chloroplastic 

 

Sesamum 

indicum 

 

747055657 

 

XP_011074072.1 

 

94.74 

 

2 46.40/9.58 

 

 

Chloroplast 

stroma 

 

CA-

induced 
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18 Transketolase chloroplastic 

 

Sesamum 

indicum 

 

747044732 

 

XP_011090550.1 

 

170.94 

 

4 92.70/6.23 

 

 

Chloroplast 

thylakoid 

membrane 

CA-

recovered 

          

 Proton Transport         

          

          

19 ATP synthase CF1 beta subunit 

(chloroplast)  

 

Sesamum 

indicum 

 

335059307 

 

YP_004935673.1 

 

438.18 

 

8 55.40/5.17 

 

 

Chloroplast 

thylakoid 

membrane 

 

CA-

recovered 

20 ATP synthase CF1 alpha subunit 

(chloroplast)  

 

Sesamum 

indicum 

 

496538586 

 

YP_004935651.1 

 

176.51 

 

3 57.60/5.20 

 

 

Chloroplast 

thylakoid 

membrane 

 

CA-

recovered 

21 ATP synthase CF1 beta subunit 

(chloroplast)  

 

Sesamum 

indicum 

 

335059307 

 

 

YP_004935673.1 

 

490.03 

 

8 55.40/5.17 

 

 

Chloroplast 

thylakoid 

membrane 

CA-

recovered 

          

          

 Nitrogen Metabolism         

          

          

10 Glutamine synthetase leaf isozyme 

chloroplastic like 

 

Sesamum 

indicum 

 

747086629 

 

XP_011071523.1 

 

278.71 

 

6 45.20/5.12 

 

 

Chloroplast 

 

CA-

induced 

15 Glutamine synthetase leaf isozyme 

chloroplastic like 

Sesamum 

indicum 

747086629 XP_011071523.1 152.87 4 45.20/5.12 

 

Chloroplast 

 

CA-

induced 

          

          

 Protein synthesis         

          

          

7 Elongation factor TuB, chloroplastic  

 

Sesamum 

indicum 

1024013872 

 

XP_011101284.1 

 

279.38 

 

5 45.00/6.09 

 

Chloroplast 

 

CA-

induced 
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17 Elongation factor TuB, chloroplastic  

 

Sesamum 

indicum 

1024013872 XP_011101284.1 232.54 7 45.00/6.09 

 

Chloroplast CA-

induced 

          

          

 Detoxifying enzymes         

          

          

1 Carbonic anhydrase chloroplastic-like 

isoform X1 

 

Sesamum 

indicum 

 

747100747 

 

XP_011098473.1 

 

415.61 

 

9 35.70/ 6.30 

 

Cytoplasm 

 

CA-

induced 

2 Carbonic anhydrase chloroplastic-like 

isoform X2 

 

Sesamum 

indicum 

 

747100747 

 

XP_011098474.1 

 

348.74 

 

8 27.60/6.02 

 

 

Cytoplasm 

 

CA-

induced 

3 Carbonic anhydrase chloroplastic-like 

isoform X2 

Sesamum 

indicum 

 

747100747 XP_011098474.1 458.10 9 27.60/6.02 Cytoplasm CA-

induced 

4 2-Cys peroxiredoxin BAS1 

chloroplastic-like 

Sesamum 

indicum 

747092875 XP_011094222.1 88.86 2 28.50/4.72 Chloroplast 

 

CA-

induced 

          

          

 Disease/Defence         

          

          

11 Thaumatin-like protein Sesamum 

indicum 

604334283 XP_011072290.1 123.24 3 25.50/4.81 Secreted Salt-

induced 

          

          

**a) Spot number as indicated on 2D gel images (Figure 5.2) 

**b) gi| numbers obtained from the newly developed Salvia hispanica transcriptomic database generated using TRINITY version and searched against the NCBI protein database 

**c) Accession number in the National Center for Biotechnology Information (NCBI) database 

**d) MOWSE score for MALDI-TOF 

**e) Experimental MW and pI were estimated from the 2D gels shown in Figure 5.2 

**f) Subcellular location of the proteins as predicted by UniProt (http://www.uniprot.org/) 

**g) Describe the expression levels of each treatment relative to the untreated control as shown in Figure 5.2
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Positively identified proteins were functionally characterised based on their 

involvement in various cellular processes using a combination of similarity searches 

with Universal Protein Sequence database (http://www.uniprot.org/) and various 

other literature sources (The EU Arabidopsis Genome Project 1998; Ngara 2009). 

These categories include carbohydrate metabolism, proton transport, nitrogen 

metabolism, protein synthesis, detoxifying enzymes and disease/defence. (Table 5.2; 

Figure 5.4). 

Most of the proteins identified in this study were associated with carbohydrate 

metabolism (43 %) followed by detoxification (19 %). In addition, positively 

identified proteins are also shown to be involved in proton transport (14 %), protein 

synthesis (10 %), nitrogen metabolism (9 %) and disease/defence (5 %) (Figure 5.4).  

Interestingly, all the positively identified spots involved in carbohydrate metabolism 

were caffeic acid induced, apart from spot 18 that was instead recovered by caffeic 

acid under salt stress. Protein spots involved in nitrogen metabolism, protein 

synthesis and detoxification are also caffeic acid induced whereas all proteins 

involved in proton transport, along with spot 18, were classified as class II CA – 

recovered proteins (Table 5.1; Table 5.2; Figure 5.3). In addition, spot 14 represented 

the only spot to be successfully identified as a defence protein in response to salt 

stress in chia leaves. 

 

http://www.uniprot.org/
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Figure 5.4. Functional characterisation of identified proteins in chia leaves across all 

treatments. 

 

5.2.4. Subcellular localisation of positively identified proteins 

Protein function is dependent on subcellular localisation (van Wijk 2001). 

Localisations of the positively identified chia leaf proteins were predicted using a 

combination of similarity searches with Universal Protein Sequence database 

(http://www.uniprot.org/), Reactome: A Curated Pathway Database 

(http://www.reactome.org/) and various literature sources whereby majority of the 

positively identified proteins were localised to the chloroplast (67 %). Some proteins 

were found in the cytoplasm (25 %) and the rest were identified as secreted proteins 

(8 %) (Figure 5.5). Proteins localised to the chloroplast were further sub localised in 

the general chloroplast (40 %), chloroplast stroma (27 %), chloroplast thylakoid 

membrane (27 %) and plastoglobuli (6 %) (Figure 5.5). 

 

 

http://www.uniprot.org/
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Figure 5.5. Subcellular localisation of positively identified proteins expressed in chia leaves. 

 

5.2.5. Proteins observed in multiple spots 

A total of six classes of proteins were observed in multiple spots in the 2D gels 

(Figure 5.2; Figure 5.6). These classes include chloroplastic ATP synthases (spots 19, 

20 and 21), chloroplastic carbonic anhydrases (spots 1, 2 and 3), elongation factors 

(spots 7 and 17), ferredoxin – NADP reductases (spots 5 and 6), glutamine 

synthetases (spots 10 and 15) and sedoheptulose – 1,7 – bisphosphate (spots 12 and 

13). The multiple protein – spotting pattern in this chia leaf proteome can be 

subdivided into two groups. Group 1 represent proteins that have the same NCBI 

accession number and molecular weight, with different pI values. Group 2 include 

proteins with the same protein ID with different accession numbers, molecular weight 

and pI values. Proteins found in group 1 are elongation factors (spots 7 and 17), 

ferredoxin – NADP reductases (spots 5 and 6), glutamine synthetase leaf isozymes 

(spots 10 and 15) and sedoheptulose – 1,7 – bisphosphate (spots 12 and 13). On the 

other hand proteins found in group 2 are the ATP synthase proteins (spots 19, 20 and 

21) and the carbonic anhydrase (CCA) proteins (spots 1, 2 and 3). 
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Figure 5.6. Protein classes identified in multiple spots. 

 

5.3. Discussion 

Here we describe the influence of exogenous caffeic acid and salt stress on the leaf 

proteome of chia plants. Two – dimensional gel electrophoresis coupled with mass 

spectrometry was used to identify and functionally characterise differentially 

expressed proteins in the chia leaves. Although the influence of salt stress on leaf 

proteomes of important cereal crops have been well documented, no evidence exists 

in the public domain that describe the effect of caffeic acid on protein expression 

and its role in modulating protein changes under salt stress. To our knowledge, this 

study is a fist of its kind. The results presented here demonstrates that exogenous 

caffeic acid does influence protein abundance/changes in chia leaves exposed to 

salt stress (Figure 5.2).  Most of the differentially expressed protein spots visualised, 

detected and identified were CA – induced and were involved in various metabolic 
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processes (Table 5.2). Positively identified proteins (21) were grouped into six 

distinct functional categories based on their putative functions and subcellular 

localisation. These categories include carbohydrate metabolism, proton transport, 

nitrogen metabolism, protein synthesis, detoxifying enzymes and disease/defence. 

The roles of each of these categories are described below: 

 

5.3.1. Functional characterisation of proteins identified in chia leaves 

 

Carbohydrate metabolism 

From the 21 proteins positively identified in this study, 9 are associated with 

carbohydrate metabolism. These proteins were identified from spots 5, 6, 8, 9, 12, 13, 

14, 16 and 18 (Table 5.2). The proteins in this category represent most proteins 

identified in this study (43 %; Figure 5.4).  Proteins involved in carbohydrate 

metabolism participates in various biological processes and metabolic pathways such 

as photosynthesis and glycolysis. All proteins (except spot 18) identified in this 

functional category were upregulated in response to caffeic acid and down regulated 

by salt stress (Class I; Table 5.1). However, the expression levels of these proteins 

were significantly upregulated in the salt stress treatment supplemented with caffeic 

acid compared to the salt stressed plants (Figure 5.2). On the other hand, spot 18 was 

categorised as a Class II protein (Table 5.1). Apart from the current study, no 

evidence exists describing the influence of caffeic acid on protein expression, 

whereas the effect of salt stress is well documented. The reduction of photosynthesis 

– related proteins in response to salt is consistent with rice, wheat, soybean and potato 

(Nouri et al. 2015) and could be due to non – specific DNA damage (Pessarakli 2016). 
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In addition, a reduction in photosynthesis could also stem from the accumulative 

effects of ROS which include ROS molecules reacting with various proteins and 

lipids immediately associated with photosynthesis (Lawlor and Tezara 2009). 

 

Proton transport 

Proton transport (14 %; Figure 5.4) represents the third major functional category of 

the proteins identified in this study. These proteins, identified as ATP synthases 

(spots 19, 20 and 21), are involved in transporting protons across the chloroplast 

thylakoid membrane (Table 5.2; Figure 5.5). ATP synthases are known to serve as 

the general energy currency of the cell (Engelbrecht and Junge 1997) by converting 

ADP to ATP in the presence of a proton gradient across the thylakoid membrane 

(McCarty 1992; von Ballmoos and Dimroth 2007). This, in turn, drives a wide variety 

of energy consuming cellular processes during plant cell growth and development. 

Therefore, given that various cellular processes are dependent on ATP production, 

the inhibition of K+ ions in the presence of salt (section 1.4) reduces the 

photosynthetic rate as a result of limited K+ ions required for the charge balance at 

the site of ATP production (Shabala and Pottosin 2014). Therefore, all processes 

dependent on ATP, including carbohydrate metabolism, are inhibited which is clearly 

represented in the 100 mM NaCl treated sample given the reduction in the expression 

of majority of the proteins (Figure 5.1; Figure 5.2). On the other hand, the ATP 

synthase (spots 19, 20 and 21) expression levels were not altered in response to 

caffeic acid. However, in the salt stress treatment supplemented with caffeic acid, 

ATP synthase expression was enhanced to a level significantly higher than observed 
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for the salt treatment (Class II; Table 5.1). This could suggest that caffeic acid 

modulates salt stress tolerance by controlling ATP synthase activity under salt stress.  

 

Nitrogen metabolism 

Nitrogen (N) contributes significantly to plant biomass and serves as an essential 

component of most biomolecules. Inhibition in nitrogen metabolism significantly 

alters phenotypic characteristics, thus reducing plant growth and yield in various crop 

species (Beatty et al. 2016). Glutamine synthetase (spots 10 and 15; Table 5.2) 

contributes significantly to nitrogen metabolism by catalysing the first step in 

ammonia assimilation (Miflin and Habash 2002). This protein separated as two 

distinct isoforms (spot 10 and 15; Figure 5.2) contributing to 9 % of the 21 positively 

identified proteins in this study (Figure 5.4).  Exogenous caffeic acid enhanced 

glutamine synthetase abundance/expression relative to the untreated control whereas 

the opposite was observed for salt stress (Class I; Table 5.1; Figure 5.2). This could 

be a result of stomatal closure in response to salt stress, thereby reducing various 

nitrogen source uptake (Hu et al. 2014). A reduction in nitrogen source uptake 

inhibits nitrite and nitrate reductase functioning to yield ammonia which in turn 

inhibits the effect of glutamine synthetase (spots 10 and 15) under salt stress. 

However, the expression of glutamine synthetase was significantly higher in the 

combined treatment when compared to the salt treatment. This suggest a regulatory 

role of caffeic acid in nitrogen metabolism under salt stress conditions.   
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Protein synthesis 

Protein synthesis plays a vital role in providing the cells with the necessary proteins 

and enzymes which participate in various biological processes within the cell (Ngara 

2009). This category constitutes 10 % of the positively identified proteins (spots 7 

and 17) within this study (Figure 5.4). These proteins are chloroplast elongation 

factors Tu (EF – Tu) (Figure 5.2; Table 5.2), which migrated as two isoforms and 

have been shown to play an important role in protein synthesis in tobacco plants 

(Murayama et al. 1993; Sugita et al. 1994). Caffeic acid and salt stress differentially 

alters EF – Tu expression relative to the untreated control. Caffeic acid increased 

protein abundance of EF – Tu whereas salt stress reduced EF – Tu abundance which 

was in contrast to what was observed in Ndimba et al. (2005). However, the reduction 

in EF – Tu abundance observed in the salt treatment was reversed when caffeic acid 

was supplied to the salt treatment (Class I; Table 5.1; Figure 5.2). 

 

Detoxifying enzymes 

The 2 – Cys peroxiredoxins BAS1 (2 – Cys PRX BAS1) enzyme was successfully 

identified as a detoxifying enzyme within the chia leaf proteome (spot 4; Table 5.2). 

These enzymes form part of a large family of peroxidases in which Baier and Dietz 

(1996 a and b) have studied and introduced into the public domain. These authors 

have justified that the two cysteine residues conserved in all 2 – Cys peroxiredoxins 

allow them to function in the detoxification of peroxides (alkyl hydroperoxides and 

H2O2). In addition to 2 – Cys PRX BAS1, various carbonic anhydrase isoforms (spots 

1, 2 and 3) have been identified as detoxifying enzymes (Table 5.2). These proteins 

are known to play a vital role in various physiological functions, including the 
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reduction of O2
- and H2O2 as well as contribute to the carboxylation/decarboxylation 

reactions, involving both photosynthesis and respiration (Ellis 2006; Moroney et al. 

2001). The detoxifying enzymes represent the second major functional category of 

proteins identified in this study (19 %; Figure 5.4). However, although salt stress 

imposes severe stress on chia plants, the expression of these detoxifying enzymes 

under salt stress are reduced in comparison to the control and thus increasing the level 

of stress given the inactivity of these detoxifying enzymes. This result corresponds to 

the expression level of 2 – Cys PRX BAS1 in Arabidopsis plants under abiotic stress 

(Seki et al. 2002). On the other hand, since the effect of exogenous caffeic acid under 

salt stress have not been documented, it is interesting to note the upregulation of these 

detoxifying enzymes in response to caffeic acid in comparison to the control (Figure 

5.2). In addition, the supplementation of exogenous caffeic acid under salt stress 

increased 2 – Cys PRX BAS1 and carbonic anhydrase expression levels beyond that 

of the salt stressed plant (Class I; Table 5.1). Therefore, suggesting that exogenous 

caffeic acid promotes the detoxification of peroxides as well as reactive oxygen. 

 

Disease/Defence 

Although majority of the salt exposed chia protein profile was downregulated, one 

highly upregulated protein, in response to salt stress, was successfully identified as 

a thaumatin – like protein (TLP) (spot 11; Figure 5.2; Table 5.2). Plant TLP’s are 

known to play a vital role in plant defence and stress responses (Zhao et al. 2010). 

The distinct upregulation of this protein under salt stress corresponds to a study 

performed on Halogeton glomeratus (Halogeton; within the amaranth family) 

whereby TLP spots were significantly abundant after salt treatment, expressing the 
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role of TLP in secondary cell wall development in plants (Wang et al. 2015). On 

the other hand, the application of exogenous caffeic acid showed to have no effect 

on this particular enzyme, however, the supplementation of caffeic acid under salt 

stress significantly reduced the expression level of the TLP enzyme in comparison 

to the salt stress treatment (Class III; Table 5.1). This result suggests that the 

exogenous application of caffeic acid reduced the demand for enhanced defence 

activities. 

 

5.3.2. Subcellular localisation of proteins identified in chia leaves 

Most proteins involved in carbohydrate metabolism (section 5.3.1) are located within 

the chloroplast or the chloroplast stroma given its involvement in photosynthesis and 

glycolysis (Table 5.2; Figure 5.5). However, fructose – 1,6 – bisphosphate aldolase 

1, based on UniProt searches, has been localised within in the plastoglobule. 

Plastoglobules are globular compartments found within plastids and were usually 

viewed as lipid and carotenoid storage particles (Brehelin et al. 2007). However, 

more detailed studies had shown a possibility of plastoglobules functioning within 

the chloroplast. Using mass spectrometry methods, Vidi et al. (2006) identified 

chloroplastic metabolic enzymes within the Arabidopsis plastoglobule proteome, one 

of them being fructose – 1,6 – bisphosphate aldolase 1. Vidi and co – workers (2006) 

thus concluded that plastoglobules are not just lipid storages and that the presence of 

these enzymes suggest its involvement in metabolic pathways. However, Lundquist 

et al. (2012) studied fructose – 1,6 – bisphosphate aldolase 1 further and kindly 

excluded its involvement in the plastoglobule proteome explaining that they are not 

enriched in the plastoglobule fraction and that their abundance remains within the 
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stroma and the thylakoid membrane. On the other hand, Nacir and Brehelin continued 

to argue this statement in 2015, expressing that fructose – 1,6 – bisphosphate aldolase 

1 enzyme could partition between plastoglobules and other compartments of the 

chloroplast and thus should not be completely excluded from the plastoglobule 

proteome, but rather be considered as enzymes that exhibit functional roles within the 

plastoglobules as well as in other plastid compartments (Nacir and Brehelin 2015).  

In addition, transketolase (spot 18), functioning in carbohydrate metabolism, as well 

as all ATP synthase proteins (spots 19, 20 and 21) are all localised within the 

thylakoid membrane (Table 5.2; Figure 5.5). The thylakoid membrane functions in 

the fluidity of various lipids, membrane proteins, ions, pigments and various 

biological substances. However, any form of environmental stress can alter the 

fluidity and the composition of the stressed membrane (Tian et al. 2016) which was 

evident in the changes observed in the expression levels of these particular proteins 

in response to different environments (caffeic acid and salt). 

Furthermore, thaumatin was the only protein to be involved in the secretome 

(Figure 5.5), which is described as proteins that are released into the extracellular 

space at any given time and under certain conditions through various secretory 

mechanisms (Agrawal et al. 2010). 

 

5.3.3. Multiple proteins identified in chia leaves 

Given the existence of multiple proteins (Figure 5.6), it is possible that chia leaf 

proteins could have undergone post – translational modifications (PTM) (Pejaver et 

al. 2014). In addition, the identification of multiple proteins could be a result of a 
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combination of PTM, transcription, translation and protein turnover as a response to 

environmental change (Abdallah et al. 2012). Furthermore, proteins encoded by 

multigene families could also aid in multiple protein identification (Degand et al. 

2009) (Table 5.2; Figure 5.6). The identification of multiple proteins were also 

observed in proteomic studies involving maize leaves (Porubleva et al. 2001) and 

sorghum leaves (Ngara 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



http://etd.uwc.ac.za
106 

 

CONCLUDING REMARKS AND FUTURE 

PROSPECTS 

 

The consequences of salt stress on food crop production have been extensively 

reviewed. Salt stress have detrimental downstream effects on economically important 

food crops due their sensitivity to abiotic stress conditions and therefore contribute 

significantly to food insecurity within various regions. Chia is regarded as a potential 

alternative food source due to its nutritional and medicinal characteristics. 

Interestingly, chia is deemed to be naturally drought tolerant although this hypothesis 

has not been scientifically tested. This study described the regulatory effects of 

caffeic acid (small signalling molecule) to long term salt stress by monitoring the 

physiological and molecular responses of chia plants. The results presented in this 

thesis is divided into three research chapters. 

Chapter three described the effect of exogenous caffeic acid and salt stress on chia 

growth, biomass, relative water content and photosynthetic metabolism. Caffeic acid 

and salt stress differentially alters plant growth, total chlorophyll, and beta carotenoid 

content. Caffeic acid improved plant growth (Figure 3.1) and biomass (Figure 3.2) 

whereas salt stress showed an inhibitory effect. Interesting to note is that in the 

combined treatment (caffeic acid + salt stress), caffeic acid reversed the negative 

effects caused by salt stress by improving plant growth, biomass, and photosynthetic 

ability.   

Chapter four described the regulatory role of caffeic acid by enhancing salt stress 

tolerance through differentially modulating ROS metabolism and antioxidant 
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capacity in chia plants. Salt stress significantly enhanced ROS biomarkers, which is 

a common phenomenon previously described in literature. However, caffeic acid 

(under salt tress conditions) controls the increase in ROS molecules to levels that are 

no longer toxic to plants. This in turn restricted the extent of lipid peroxidation and 

ultimate cellular death (Figure 4.2). The exogenous application of caffeic acid 

reduced antioxidant enzymatic activity. This result, in correlation with reduced ROS 

levels, suggests that caffeic acid reduces the demand for enhanced antioxidant 

enzyme activity. 

Furthermore, chapter five comparatively analysed changes in the leaf proteome of 

chia plants in response to exogenous caffeic acid and salt stress. Although the 

influence of salt stress on plant proteomes are well documented, this study is the 

first to describe the effect of caffeic acid on plants proteomes and how caffeic acid 

regulates changes in the leaf proteome under salt stress. Using gel based proteomic 

analysis (2D PAGE coupled with mass spectrometry), we have positively identified 

21 differentially expressed proteins, some of which could serve as potential 

biomarkers to improve salt stress tolerance in chia and other cereal and 

pseudocereal food crops. Some of these markers include ferredoxin – NADP 

reductase, phosphoglycerate kinase, fructose – bisphosphate aldolase, 

sedoheptulose – 1,7 – bisphosphatase, phosphoribulokinase, glyceraldehyde – 3 – 

phosphate among other caffeic acid induced or recovered proteins identified in 

Table 5.2. 

The identification of energy and photosynthesis related proteins coupled with 

improved plant growth and biomass (as observed in chapter 3) suggest that caffeic 
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acid could serve as a plant growth promoting agent (alone) or as a regulatory 

signalling molecule under salt stress conditions. However, more in depth research is 

required to support this hypothesis. The role of caffeic acid in modulating salt stress 

tolerance should thus not be limited to the modification of the ROS scavenging 

antioxidant system and changes in protein abundance but extended to analysing the 

transcriptome and metabolome changes. This would provide great insight as well as 

pave the way for genetic engineering to enhance salt tolerance to sensitive crops.  
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