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Abstract 

The assessment of Namibian water resources for endocrine disruptors 

Namibia is the driest sub-Saharan country in Africa and it is characterised by low 

and variable rainfall. As a result, potable water in this mostly semi-arid country is 

considered an extremely valuable resource. Given the variety of anthropogenic 

and natural chemicals released into the environment by a growing human 

population, many water resources worldwide present health risks to both man and 

wildlife. Many of these chemicals are classified as endocrine disruptors which are 

chemicals with the ability to adversely affect the physiological systems regulated 

by the endocrine systems of organisms. These include, among others, 

reproductive, neurological and immunological effects. Endocrine disrupting 

chemicals include: natural and synthetic hormones such as estrogen, estrone, 

estriol and testosterone; heavy metals such as tri-butyltin, lead and cadmium; 

pesticides such as organophosphates and organochlorides; and a number of 

compounds such as polycyclic aromatic hydrocarbons and polychlorinated 

biphenyls. 

Windhoek, the capital city of Namibia, has for long been at the forefront of water 

reclamation by being the first town in the world to reclaim sewage for direct 

potable re-use. Presently, reclaimed sewage contributes approximately a third of 

the potable water utilised in Windhoek, with the remaining water being sourced 

mainly from a three-dam system: the S von Bach, Swakoppoort and Omatako 

dams, as well as from boreholes tapping into the Windhoek aquifer.  

Prior to the research conducted for this thesis, no studies have been undertaken to 

determine the endocrine disrupting potential of the reclaimed sewage in 

Windhoek. Likewise, no such studies have been performed on any of the surface 

water sources in this country, including the three-dam system supplying 

Windhoek. 

During 2010 and 2011, raw sewage, treated sewage and reclaimed sewage 

samples from Windhoek were collected at different stages of the wet and dry 
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season. These samples were analysed for cytotoxicity using a lactate 

dehydrogenase (LDH) assay, for neurotoxicity using an acetylcholinesterase 

(AChE) inhibition assay, for inflammatory activity using enzyme-linked 

immunosorbent-assays (ELISAs) to determine interleukin-6 (IL-6) and 

interleukin-10 (IL-10) concentrations, as well as for the presence and 

quantification of three selected steroid hormones: estradiol, estrone and 

testosterone using ELISAs. Simultaneously, surface water from nine dams in 

Namibia were collected and analysed for the same parameters. 

High estradiol, estrone and testosterone levels were detected in the raw sewage. 

The sewage treatment plant process significantly reduced the concentration of 

these hormones, but levels were still in the range where adverse effects can be 

expected in organisms exposed to this water. The reclamation process 

successfully removed these residual hormones. The AChE inhibition and 

inflammatory activity of the treated sewage was also significantly lower than in 

the raw sewage and were completely removed in the reclaimed water. 

Cytotoxicity was only present in the raw sewage. 

In all the dam waters, no samples showed cytotoxicity. Estrone was the only 

hormone detected at low levels, once in the Avis dam water sample and once in 

the Goreangab dam water sample. The highest acetylcholinesterase inhibition was 

noted in the Goreangab dam water. Water from all the dams induced high IL-6 

production with the highest levels being in the Goreangab and Swakoppoort dam 

water. IL-10 was lower than IL-6 concentrations in all samples, but was also 

highest in the Goreangab and Swakoppoort as well as the Avis dam water 

samples. 

During 2017 the efficiency of the reclamation process of treated sewage in 

Windhoek was assessed using a range of immunotoxicological bioassays on the 

water samples. This again included LDH and AChE inhibition assays as well as 

IL-6 and IL-10 production. In addition interferon-γ (IFN-γ) and macrophage 

inflammatory protein (MIP) -1β production were also determined using ELISAs. 

As a broad screen for immunotoxicity, proteome profiling was performed to test 
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for 36 different chemokines and cytokines. This is the first time that proteome 

profiling is used for determining the immunotoxicity of treated sewage reclaimed 

for direct potable water use. 

For the 2017 assays, no cytotoxicity was detected in treated sewage or reclaimed 

water. Based on the ELISAs, treated sewage induced IL-6, MIP-1β and IL-10 

production, but not IFN-γ. The corresponding test results for the reclaimed water 

were negative. The proteome profile indicated the presence of interleukin-1ra (IL-

1ra), Monocyte Chemoattractant Protein-1 (MCP-1), MIP-1α/MIP-1β, IL-6 and 

interleukin-1β (IL-1β) in culture supernatants exposed to treated sewage, but not 

to the reclaimed water. 

In conclusion, the results of the studies indicated the usefulness of the in vitro 

bioassays to test the endocrine disrupting potential of water sources. Results 

indicated that intake water at the reclamation plant in Windhoek contains 

contaminants that can adversely affect human health. The reclamation process 

however successfully removed these. However, routine monitoring is required to 

ensure continued delivery of safe potable water. The study further indicated the 

usefulness of proteome profiling as a quick, cost-effective screen for the 

immunotoxicity of water sources. The proteome profile can be followed up with 

cytokine-specific ELISAs to better quantify the inflammatory potential of water 

sources. 

6 January 2018 
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1.1 Introduction 

"The next war in the Middle East will be fought over water, not politics." This 

famous quote from 1985 by former United Nations Secretary General, Boutros 

Boutros Ghali, sums up the importance of fresh water and the pressure that the 

human population is placing on this renewable, but limited source. In fact, wars 

have possibly already involved securing of water supplies as is the case in the 

Battle of Beersheba of 1917 and the Six-Day war of 1967 

(http://en.wikipedia.org/wiki/Battle_of_Beersheba_(1917); Seliktar 2005). While 

water resources remained relatively unthreatened historically, during the last  

10 000 years have seen the human civilization starting to take shape and this has 

culminated in a population explosion during the last two centuries (Smol 2002). 

The beginning of the industrial revolution some 250 years ago permanently 

changed the future of water sources worldwide. Increased manufacturing, 

intensive agriculture and large scale mining became a way of life and together 

with that, improved health care lead to an explosion in the human population. The 

downside of this improved lifestyle was, however, numerous adverse impacts on 

the ecology of the environment in which we live. This was not limited to the 

degradation of the immediate environment through various forms of pollution and 

destruction, but also ecosystems in remote locations with limited or no human 

inhabitants at all. In fact, today it is believed that there is not a single location left 

on earth where anthropogenic disturbances have not yet occurred (Western 2001).  

Water covers about three quarters of our planet’s surface. It has long been realised 

that our impact on freshwater ecosystems through pollution by products such as 

pesticides, organic waste, agricultural run-off and sewage discharge has made 

many water sources unsuitable for human or animal consumption (Cabra 2010; 

Andersson et al. 2012). In marine environments, the adverse effects of these 

pollutants have always been believed to be insignificant, since oceans were seen 

as being resistant to the effects of pollutants mainly as a result of the ocean’s 

volume and thus a dilution effect (Cohen 2001). However, the amount of 

pollutants reaching the oceans and specifically coastal areas are raising serious 

concern. With more than seven billion people living on earth, and exploiting its 
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resources to make their lives more comfortable, man must take a closer look at the 

pollutants reaching our aquatic resources and the way they impact on biota and 

man. 

Laws to prevent pollution of the environment and water resources are not an 

entirely new thing. Laws dating back to 500 B.C. were in place for proper refuse 

disposal in Greece, and in ancient Rome, pollution of the Tiber River were 

prohibited. The practice of drinking water purification and treatment in ancient 

Egypt dates back even further to about 2000 B.C. (Kartaginer 2004). This is seen 

in inscriptions on Egyptian walls and medical texts (1440 - 2000 B.C.) that shows 

primitive purification devices and talks about keeping and treating water in copper 

vessels. Initial concerns regarding water quality therefore were mostly focussed 

on the elimination of waterborne disease in humans. 

More recently, during the middle of the 19th century, discoveries by scientists like 

Filippo Pacini, Robert Koch, Joseph Lister and John Snow, showed that diseases 

like Cholera spread through bacterial contamination of drinking water (Page 2004; 

Department of Environmental Engineering 2005). Advances in water treatment 

over the next 200 years have led to the eradication of most water borne diseases in 

the developed world. These have been so successful that even the reclamation of 

sewage for human consumption has become a reality. With the elimination of 

waterborne disease in drinking water the focus of many researchers has moved to 

the chemical contamination and pollution of aquatic ecosystems and the effect 

that these may have on both humans and wildlife. Already, towards the end of the 

19th century, American naturalist George Perkins Marsh warned about the way 

man has changed the woods and streams of Western Europe (Pullin 2002), but it 

was not until the 1960s that the threat of contamination of water resources became 

a major concern. Often this change in attitude towards pollution, especially of 

water resources, is accredited to the publication of the books like Silent Spring by 

Rachel Carson. Today thousands of publications exist on all forms of aquatic 

pollution, the threats that they pose, and its mitigation or remediation. Among all 

these pollutants is a group called the endocrine disrupting chemicals (EDCs) that 

pose health threats to both man and wildlife. 
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Water scarce countries, like Namibia, has to take special precautions when it 

comes to the protection of its potable water sources. With the only perennial rivers 

being on the northern and southern borders, some 1 250 km apart and shared with 

the neighbouring countries, Namibia relies mainly on underground aquifers and 

the storing of rain water in man-made and natural reservoirs. Two main 

alternative water sources are utilised and these are a sewage reclamation plant in 

Windhoek, the first of its kind in the world, and a desalination plant on the central 

coast. 

Despite the vulnerability of Namibia in terms of its water resources, no research 

has been conducted with regard to the endocrine disrupting potential of the 

various surface and sub-surface water sources. For completion of this thesis 

multiple biomarkers have been employed for the first time ever, to determine the 

endocrine disrupting potential of various surface water sources (water from 

storage dams) and of reclaimed sewage in Windhoek. The literature review  

(Chapter 2) provides a brief discussion on the nature and history of EDCs before 

reviewing the most frequently used monitoring and screening methods for EDCs 

in the environment. It further provides a short summary of cytotoxicity, 

neurotoxicity and immunotoxicity as physiological biomarkers for EDCs in 

aquatic habitats and presents an overview of the immune system to create a better 

understanding of immunotoxicity and the use of immunological biomarkers for 

toxicity testing. 

Chapter 3 and Chapter 4 assesses the successful removal of some selected 

potential EDCs in the sewage treatment and reclamation process in Windhoek as 

well as in nine surface water sources throughout Namibia. This is achieved by 

determining oestrogen and testosterone levels as well as cytotoxic, neurotoxic and 

immunotoxin potential of the water sources. Chapter 5 focuses only on the 

reclamation process of treated sewage and whether it successfully removes 

pollutants with immunomodulatory potential. It further investigates the potential 

of using proteome profiling for quick and cost effective screening of reclaimed 

water for direct potable reuse.  
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1.2 Problem Statement 

Potable water is becoming an increasingly scarce resource and anthropogenic 

impacts on remaining water sources pose a number of health problems. In 

Windhoek, Namibia, reclamation of treated sewage has been an important source 

of potable water for almost five decades. While microbial contamination and 

aesthetic characteristics of reclaimed water are strictly monitored, the endocrine 

disrupting potential of the reclaimed water, as well as other surface water sources, 

has never been investigated. The potential impact of potable water on 

physiological systems of the Namibian, and specifically Windhoek, population are 

therefore not known. 

1.3 Focus of the Study 

This study will focus on determining the endocrine disrupting potential and 

presence of EDCs in treated and reclaimed sewage and selected surface water 

sources in Namibia. It will further investigate the use of proteome profiling as a 

rapid and cost-effective screen for immunotoxicity in reclaimed water. 

1.4 Aims and Objectives 

The aim of the study is to assess the baseline endocrine disrupting potential of 

treated and reclaimed sewage as well as surface water sources in Namibia. This 

will be achieved through the following objectives. 

Objective 1: To determine the baseline steroid hormone concentrations, 

specifically estradiol, estrone and testoasterone, in raw, treated and reclaimed 

sewage at the Gammams Sewage Treatment Plant (GSTP) and Goreangab Water 

Reclamation Plant (GWRP) in Windhoek. 

Objective 2: To determine cytotoxicity, neurotoxicity and immunotoxicity of raw, 

treated and reclaimed sewage at the Gammams Sewage Treatment Plant (GSTP) 

and Goreangab Water Reclamation Plant (GWRP) in Windhoek, using selected 

biomarkers,. 
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Objective 3: To determine the baseline steroid hormone concentrations, 

specifically estradiol, estrone and testoasterone, in nine dams in Namibia. 

Objective 4: To determine cytotoxicity, neurotoxicity and immunotoxicity, using 

selected biomarkers, in nine dams in Namibia. 

Objective 5: To, for the first time ever, do proteome profiling of treated and 

reclaimed sewage at the GSTP and the GWRP, to determine the immunotoxicity 

of reclaimed sewage for direct potable reuse. 
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Chapter 2 

Endocrine Disrupting Chemicals, their Screening 

Methods, and the Use of Physiological Endpoints as 

Biomarkers for EDCs in Aquatic Environments 
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2.1 What are Endocrine Disrupting Chemicals? 

In the 1980’s and 1990’s several scientists in the field of toxicology shifted their 

attention to a collection of chemicals that would be termed endocrine disrupting 

chemicals or endocrine disrupting compounds (EDCs). EDCs are chemicals, both 

natural and synthetic, with the ability to mimic or antagonize the effects of 

hormones, alter the pattern of synthesis and metabolism of hormones, and modify 

hormone receptor levels (Colborn et al. 1993; Burkhardt-Holm 2010). Today, 

various definitions for EDCs are in use. The World Health Organization (WHO) 

defines it as “an exogenous substance or mixture that alters function(s) of the 

endocrine system and consequently causes adverse health effects in an intact 

organism, or its progeny, or (sub) populations” (WHO 2002), while the United 

States Environmental Protection Agency (US EPA) defines EDCs as “exogenous 

agents that interfere with the synthesis, secretion, transport, binding, action, or 

elimination of natural hormones in the body that are responsible for the 

maintenance of homeostasis, reproduction, development, and/or behaviour” 

(Markey et al. 2003). Furthermore, the WHO defines a potential endocrine 

disruptor as “an exogenous substance or mixture that possesses properties that 

might be expected to lead to endocrine disruption in an intact organism, or its 

progeny, or (sub) populations” (WHO 2002). 

When the first evidence of chemicals altering hormonal systems of wildlife 

surfaced, the number of chemicals suspected of having this ability were largely 

limited to pesticides and some industrial chemicals. Today, hundreds of chemicals 

are either suspected to, or known to have endocrine disrupting properties. 

Although many of these EDCs are of anthropogenic origin, there are also those 

that occur naturally in the environment. As highlighted by Markey et al. (2003) 

and Burkhardt-Holm (2010), the major recognised groups of EDCs today are: 

• Natural EDCs 

o Natural hormones like estradiol, progesterone and testosterone 

o The metabolites of natural hormones like estrone and estriol 

o Phyto- and myco-estrogens 
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o Heavy metals, like cadmium and lead 

• Synthetic EDCs 

o Synthetic hormones like those used in hormonal treatments and 

contraception, e.g., 17-α-ethinylestradiol 

o Pesticides and their metabolites, like organochlorine and 

organophosphate 

o Chemicals, like polychlorinated biphenyls (PCBs), plasticizers, 

surfactants and polycyclic aromatic hydrocarbons (PAHs) 

2.2 A Brief History of Endocrine Disrupting Chemical Research 

The majority of research on EDCs has mainly been conducted in the last two to 

three decades. However, the potential effects of EDCs were already predicted in 

the middle of the 20th century although it was not termed “endocrine disruptor” at 

that stage (Matthiessen 2003; Markey et al. 2003). In the 1940’s to 1960’s it was 

noted that various bird species and animals like minks showed reduced 

reproductive success and declining population numbers (Niering 1968; Markey et 

al. 2003). These effects were linked to the presence of sewage, agricultural run-off 

as well as chemicals like PCBs and dioxin in aquatic habitats. During the same 

time, livestock showed endocrine disrupting effects believed to be as a result of 

natural and synthetic substances (Bennetts 1946; Burlington 1950). However, 

despite evidence pointing towards the harmful effects of some chemicals on 

wildlife, society at large remained either ignorant towards it or ignored the 

warnings expressed. The publication Silent Spring by Rachel Carson (1962) was 

met with some scepticism by industrialists and agriculturalists (Cottam and Scott 

1963; Niering 1968) and this further illustrates the disregard shown towards 

environmental threats due to pollutants during the middle to latter part of the 20th 

century.  

During the 1970’s and 1980’s increasing evidence of endocrine disruption in 

wildlife surfaced. For example, studies on tadpoles exposed to  

2,2-bis (p-chlorophenyl)-1,1,1-trichloroethane (DDT) showed retardation in tail 
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generation (Weis 1975) while gull eggs injected with DDT showed feminization 

of male embryos (Fry and Toone 1981). In the United States of America scientists 

found that alligators exposed to industrial and agricultural chemicals like DDT 

showed reproductive disorders (Markey et al. 2003), while sex changes were 

observed in female dog-whelks as a result of exposure to tri-butyltin and anti-

fouling paints (Gibbs et al. 1988). Abnormal thyroid pathology in herring gulls 

and salmon were also attributed to exposure to environmental contaminants 

(Moccia et al. 1981; Moccia et al. 1986). In the early 1990’s a strong focus and 

awareness in research into the endocrine disruptive behaviour of chemicals 

ensued. One of the key moments in EDC research was the Wingspread 

Conference held in Raccine, Wisconsin in 1991 (Markey et al. 2003). Here, focus 

was on the large number of man-made chemicals that had the potential to disrupt 

the endocrine systems of animals and possibly humans. Following the 

Wingspread conference, it seems, the term endocrine disruption was first 

published in 1992 (Matthiessen 2003; Markey et al. 2003). During the rest of the 

1990’s the presence and dangers of EDCs in the environment became well 

established and it became a major research field. A large number of research 

publications provided evidence for the presence and effects of EDCs in the 

environment and these typically had a strong focus on aquatic ecosystems and 

often on fish as affected species. Publications ranged from the occurrence of 

intersex and vitellogenin (VTG) production in wild and caged fish exposed to 

estrogenic river water (Harries et al. 1997; Tyler and Routledge 1998) to the 

possible link between environmental estrogens and male infertility (Colborn 1993; 

Sharpe 1998). By 1998 various testing methods for reproductive and 

developmental effects of EDCs on wildlife existed, but these were largely 

insufficiently validated for regulatory testing (Jobling 1998). However, the 

existing research field laid the foundation for regulatory action, including controls 

on certain EDCs, as well as the phasing out of certain chemicals, like phthalates 

(Jobling 1998). The last 15 years have seen an enormous global interest in the 

study of EDCs and their effects and a multitude of tests have been developed for 

the detection and monitoring of EDCs in the environment. 
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Today a quick search on endocrine disruption using science-based databases can 

deliver thousands of results. These include literature on the testing of chemicals 

for endocrine disrupting effects, determination of the presence of, and 

quantification of, such chemicals in ecosystems, the adverse health effects of 

EDCs on organisms and the development of biomarkers and bioassays to monitor 

environmental health. Research has become more and more specific with regard 

to the chemicals that have an endocrine disrupting potential as well as the 

potential use of biomarkers or bioassays for the early, cost-effective and easy 

detection of EDCs. The number of potential EDCs and the continued production 

of new chemicals, the number of different ecosystems on which they can impact, 

as well as the different effects they can cause in organisms, together with their 

degradation pathways and removal from systems, warrants continued research. 

2.3 Screening and Monitoring for Endocrine Disrupting Chemicals 

The presence of EDCs in the environment is a cause for concern as a result of its 

effects on wildlife as well as its potential effects on humans. Due to ethical 

considerations, the effects of EDCs have been much better studied in animals than 

in humans, but one can expect that many of the effects on animals will also be 

present in humans. As a result, it is important to be able to monitor environments, 

water sources and food sources of both wildlife and humans for the presence of 

EDCs as well as the consequences of its presence on biological systems. 

2.3.1 Quantification with Analytical Methods 

Analytical methods are often employed to accurately measure the quantity of a 

specific EDC in a sample (Snyder et al. 2008). The development of advanced 

instrumentation has significantly increased the ability to detect and analyse for 

EDCs (Sosa-Ferrera et al. 2013). Analytical methods however do not give an 

indication of the overall effect of EDCs on organisms as well as the combined 

effects of multiple EDCs in a system. 
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2.3.1.1 High-Performance Liquid Chromatography 

High-performance liquid chromatography is one of the most frequently used 

analytical techniques for determination of EDCs. Various modern techniques such 

as hyphenated chromatography-mass spectrometry, the use of monolith columns, 

liquid chromatography conducted at high temperatures, and liquid 

chromatography at ultra-high pressures using columns packed with sub-2-micron 

particles provided increased sensitivity and/or reduced time required for the 

analyses (Sodré et al. 2010; Liu et al. 2011; Sosa-Ferrera et al. 2013).  

2.3.1.2 Mass Spectrometry 

Mass spectrometry is a very sensitive and selective method that also provides 

information on the molecular structure of the compounds analysed (Snyder et al. 

2008; Sosa-Ferrera et al. 2013). Mass spectrometry can be combined with other 

analytical techniques to reach different objectives and to improve results (Chang 

et al. 2009). For example, when chromatography is combined with mass 

spectrometry, mixtures can be separated into individual compounds or elements 

which can then be analysed qualitatively and quantitatively (Sosa-Ferrera et al. 

2013). 

2.3.2 In Vitro Bioassays 

The in vitro and cell-based assays target specific EDCs and allow for relatively 

high throughput at costs lower than those of the in vivo animal studies while 

allowing high reproducibility (Gross et al. 2003; Shanle and Xu 2011). Additional 

advantages include their use for studying modes of action, screening the effects of 

mixtures, and detecting interaction effects. However, in the in vivo systems, EDCs 

may behave differently if they undergo enzymatic conversions, this being the 

major limitation of the in vitro assays (Gross et al. 2003). 

2.3.2.1 Receptor-Binding Assays 

Receptor-binding assays are useful to monitor for and identify specific EDCs. 

Certain EDCs will bind to specific receptors, for example estrogenic EDCs will 
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interfere with estrogenic signalling by binding to estrogen receptors (Holmes et al. 

1998; Shanle and Xu 2011). Receptor-binding assays to identify chemicals 

interacting with estrogen receptors include transcriptional reporter assays, 

bioluminescence or fluorescence resonance energy transfer and fluorescence 

polarization assays (Shanle and Xu 2011). 

2.3.2.2 Target-Cell Proliferation and Differentiation Assays 

The growth and multiplication of cells, or the differentiation of cells, can be used 

to screen for EDCs that have the potential to stimulate cell proliferation or 

differentiation in specific cells. One such assay is the E-screen assay that works 

on the principle of estrogenic chemicals stimulating for example MCF-7 cells 

derived from human breast cancer cells (Soto et al. 1995). Chemicals leading to 

the proliferation of MCF-7 cells are identified as E2 agonists by the assay, but one 

potential limitation of the study is the fact that it may result in false positives due 

to the presence of other chemicals that also stimulate cell proliferation such as 

nutrients, cytokines and growth factors (Gross et al. 2003). Methods for increasing 

accuracy have however been investigated with some success (Tian et al. 2002). 

2.3.2.3 Cell-Based Expression Assays 

Biological responses to EDCs may involve the induction or suppression of 

proteins by specific genes (Gross et al. 2003). One of the most often used 

endpoints for expression assays to determine estrogenicity of chemicals is the 

measurement of VTG (Anderson et al. 1996, Tremblay and Van der Kraak 1998). 

Cells that are used for expression assays include fish hepatocytes, MCF-7 and 

yeast (Anderson et al. 1996; Tremblay and Van der Kraak 1998; Gross et al. 

2003). It should however be noted that the type of cell used will determine the 

response and cell sensitivities also show great variation. The major advantage of 

expression assays is that they detect both agonists and antagonists (Gross et al. 

2003). 
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2.3.2.4 Reporter Gene Assays 

Reporter gene assays are based on the ability to manipulate eukaryotic cells at a 

genetic and biochemical level (Liu 2009). Cells can be genetically modified to 

express specific gene products when they are stimulated. These gene products 

may be measurable, as is the case in fluorescence assays, or displayed enzymatic 

activity can be monitored. The luciferase assays for example typically use yeast or 

mammalian cells which are transfected with an expression vector like one that 

encodes the human estrogen receptor and estrogen response elements (Baker 

2001; Berckmans et al. 2007; Liu 2009). 

2.3.2.5 Non-Cellular Bioassays 

A number of assays exist that do not rely on cellular material for the in vitro 

quantification of EDCs. A popular example is the Enzyme-Linked Immuno-

Sorbent Assays (ELISA) that can, for example, be used to detect presence, or 

quantify concentrations of, steroid hormones. These typically can be performed 

using ready-to-use kits that can be bought from a variety of suppliers. A major 

advantage of these assays is that one does not have to deal with the difficulties 

often experienced when working with living cells and organisms such as 

mortalities, varying life stages and individual toxicity responses (Swart 2008). 

One major disadvantage is that the assays do not provide an indication of the 

consequences of EDC presence on biological systems. 

2.3.3 In Vivo Assays 

The in vivo assays are not mechanism-dependent and as a result they can identify 

potential EDCs as well as provide a description of their potential effects. It thus 

provides more environmentally relevant results than the in vitro studies (Gross et 

al. 2003). The in vivo assays either look at naturally exposed organisms or 

controlled exposures. Popular endpoints in in vivo assays are molecular, 

biochemical and physiological changes. Biochemical and molecular level changes 

are typically early indicators of exposures and effects. 
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The in vivo assays making use of molecular endpoints include receptor analysis, 

transcriptional-based analysis and differential displays (Gross et al. 2003; Larkin 

et al. 2003; Lee et al. 2007). An example includes differential display reverse 

transcription polymerase chain reaction (PCR) that can be used to detect induction 

and repression of gene expression. The major advantage of molecular endpoints in 

EDC assays is their sensitivity, but they can be difficult to validate and it may lack 

relevance to ecological systems (Gross et al. 2003).  

Biochemical endpoints include the up or down regulation of a variety of enzymes 

and proteins in response to EDC exposure. A popular biochemical endpoint is the 

production of VTG in response to estrogenic EDCs in oviparous species like fish 

(Harries at al. 1997; Lye et al. 2005), amphibians (Palmer and Palmer 1995; Van 

Wyk et al. 2003; Selcer and Verbanic 2014) and invertebrates like mussels and 

crabs (Ricciardi et al. 2008; Ricciardi et al. 2010). However, many different 

biochemical constituents and enzymes have been studied as potential biomarkers 

with the advantage of them being more sensitive, less variable and easy to 

measure (Vijayavel and Balasubramanian 2006). A number of in vivo assays 

measure cell viability as endpoint after exposure to EDCs. Examples include 

lysozyme and lysosomal investigations in mussels (Farcy et al. 2011; Dailianis et 

al. 2003). 

Some biomarkers do not assess the biochemical or molecular level of EDC 

effects, but rather at whole organism responses or morphological characteristics. 

These endpoints include aspects like mortality (Ackermann et al. 2002; Akaishi et 

al. 2007), growth rate (Jobling et al. 2003; Robinson et al. 2007), reproductive 

traits (Ackermann et al. 2002; Lye et al. 2005; Dammann et al. 2011), 

hepatosomatic index (HSI), gonadosomatic index (GSI) and organ histology 

(Bogers et al. 2007; Dammann et al. 2011). The major advantage of these 

biomarkers is that they have excellent eco-relevancy as part of in vivo research. 
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2.4 Physiological Endpoints as Biomarkers for Contaminants in Aquatic 

Environments 

Over the last three to four decades a great deal of research was conducted and 

methods were developed that relate to the detection of environmental pollution. 

Methods either identify specific chemicals through quantification with analytical 

methods (Snyder et al. 2008) or in vivo and in vitro measurement of the presence 

and/or effects of toxins (Gross et al. 2003) often using physiological endpoints. 

The following is a brief overview of three physiological systems that are 

frequently employed for EDC and general toxicity testing of aquatic 

environments, utilizing in vivo and in vitro assays. They are cytotoxicity, 

neurotoxicity and immunotoxicity. 

2.4.1 Cytotoxicity 

Cytotoxicity (cellular toxicity) is the ability of a substance to adversely affect and 

potentially kill living cells. When cells are exposed to a cytotoxic chemical it can 

lead to reduced cell viability, (i.e. reduced/no cell growth and division), cell death 

as a result of necrosis, and programmed cell death (apoptosis) (Orrenius et al. 

2011). Cell viability tests are popular measures for the determination of the 

cytotoxic potential of chemicals or contaminated water sources (Zhang et al. 

1990). Cell viability is often evaluated by quantifying the amount of plasma 

membrane damage induced by exposing a cell culture to a toxin. 

A widely used method for the determination of cell viability is measurement of 

the amount of lactate dehydrogenase (LDH) that leak through damaged plasma 

membranes of cells (Zhang et al. 1990). Lactate dehydrogenase is an intracellular 

enzyme found in most viable cells. The assay is based on the principle that 

increased cytotoxicity results in increased cell membrane damage, causing the 

release of intracellular components, and thus a proportional increase in LDH 

leakage. The amount of LDH present in the extracellular medium is thus 

representative of the amount of cell damage. A cell culture is for example exposed 

in vitro to a toxin and after exposure LDH can be measured in the supernatant by 

allowing it, if present, to oxidize lactate to pyruvate (Mosmann 1983). 
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Chromogenic-based water-soluble tetrazolium salts are then added which reacts 

with pyruvate to form formazan dye. The amount of dye correlates directly with 

the LDH and can be determined spectrophotometrically (Mosmann 1983). 

Lactate dehydrogenase assays can be used on a wide range of cells, both animal 

and human. In previous studies mouse macrophage RAW264.7 cell lines were for 

example exposed to treated sewage (Makene and Pool 2015) and raw and treated 

textile factory wastewater (Makene et al. 2016). The cytotoxicity of raw sewage, 

treated sewage and reclaimed sewage (Faul et al. 2013) and various surface water 

sources (Faul et al. 2014) were determined using human whole blood cultures. 

The absence of cytotoxicity results in such studies does not necessarily mean that 

the samples tested had no toxic effects on cells. It is possible that cells are effected 

intracellularly without any plasma membrane damage. 

Another popular method to determine cell viability is the use of neutral red 

retention assays (Lowe and Pipe 1994; Dailianis et al. 2003; Martínez-Gómez et 

al. 2015). It is often used to determine lysosomal membrane stability in 

invertebrates and typically in in vivo applications. Typically, haemolymph of test 

organisms are collected and neutral red dye is added. The dye will freely permeate 

the cell membranes of granulocytes where it will be taken up by the lysosomes. 

Dye leakage from the lysosomes back into the cytoplasm of the granulocytes are 

then monitored against time. Granulocytes with intact lysosomes will retain the 

neutral red dye for longer than cells that experienced damage as a result of, for 

example, exposure to toxins. Although neutral red retention assays are very 

popular for use with invertebrates like mussels (Lowe and Pipe 1994; Dailianis et 

al. 2003; Rickwood and Galloway 2004) and earthworms (Maboeta et al. 2004; 

Reinecke and Reinecke 2007) it has also been used on cultured mammalian cells 

like rat and human hepatocytes (Zhang et al. 1990). 

Cell metabolic activity can also be used as a measure of cytotoxicity. Metabolic 

activity can be determined using the tetrazolium (MTT)-based colorimetric assay 

(Mosman 1983; Twentyman and Luscombe 1987). The soluble  

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is converted 

into insoluble formazan crystals in a redox reaction that is catalyzed by 
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oxidoreductases (Twentyman and Luscombe 1987; Parolini et al. 2011). The 

purple formazan crystals are then dissolved in an organic solvent and the optical 

density determined in a spectrophotometer. Viable cells with normal metabolic 

rates will reduce more MTT and hence produce more formazan resulting in 

increased absorbances. 

Bacterial toxicity assays can be used as a sensitive measure of cytotoxicity as they 

are reproducible and cost-effective (Parvez et al. 2006; Leusch 2015). One 

example is the use of the gram-negative bacterium Vibrio fischeri which produces 

bioluminescence as a by-product of metabolism. Exposure of the bacteria to 

toxins can reduce its metabolism and thus the amount of bioluminescence. The 

reduction in bioluminescence is therefore an indicator of cytotoxicity. 

Bioluminescence assays have successfully been employed for many years to test 

the cytotoxic potential of waste water and other pollutants (Fernández et al. 1995; 

Dizer et al. 2002; Kelly et al. 2004; Ye et al. 2011). 

2.4.2 Neurotoxicity 

Neurotoxicity refers to the deleterious effects that exposure to toxins may have on 

nervous system structure and function. This can include cell death, structural 

damage or disruption of signaling processes (Blake 2004). Neurotoxicity of waste 

water is typically associated with the presence of pesticides like organophosphates 

and carbamate (Ghedira et al. 2009), but can include many other toxins like heavy 

metals (Järup 2003), brominated flame retardants (Hendriks and Westerink 2015), 

polychlorinated biphenyls (PCBs) (Tilson et al. 1990; Ndountse and Chan 2009) 

and polycylic hydrocarbons (Maisano et al. 2015). 

One of the most frequently employed neurotoxicity assay is the determination of 

acetylcholinesterase (AChE) inhibition in exposed organisms or cell cultures 

(Rickwood and Galloway 2004; Ghedira et al. 2009; Solé et al. 2009). 

Acetylcholinesterase is the enzyme responsible for the hydrolysis of 

acetylcholine, a neurotransmitter, into choline and acetic acid (Ghedira et al. 

2009). Pesticides like organophosphates inhibit AChE irreversibly, thus disrupting 

the functioning of the nervous system. By measuring the inhibition of AChE in 
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exposed versus control organisms or cell cultures, one can establish the neurotoxic 

potential of a chemical or mixture of chemicals. Neurotoxic effects are often 

associated with raw and semi-purified waste water streams. Acetylcholinesterase 

assays have for example been performed on human whole blood cultures (Faul et 

al. 2013; Faul et al. 2014), whole homogenized earthworm extracts (Rault et al. 

2008), mussel haemolymph (Dailianis et al. 2003; Rickwood and Galloway 2004), 

crab gill and hepatopancreas (Ghedira et al. 2009), homogenized whole body or 

heads only, of small aquatic invertebrates including water fleas, stoneflies and 

mayflies (Day and Scott 1990), rat blood plasma and homogenized rat brain tissue 

(Singh and Rishi 2005). 

2.4.3 Immunotoxicity 

The presence of a multitude of anthropogenic and natural chemicals in the 

environment have the ability to influence both innate and acquired immunity. 

These chemicals are often referred to as immunotoxins and their immunotoxic 

effects can result in immunosuppression, immunostimulation, hypersensitivity and 

autoimmunity (Duramad and Holland 2011; Luster 2014). The next section first 

provides a brief overview of immunity before some biomarkers of 

immunotoxicity are discussed. 

2.5 Immunity 

Objects or microorganisms foreign to living organisms that, when interacted with, 

can result in disease or damage, are generally referred to as pathogens. This 

disease or damage is caused when introduction of a pathogen into a living 

organism results in an imbalance in the normal homeostasis of an organism, or it 

causes physical damage to cells, tissues and organs. Immunity is the physiological 

system responsible for the protection of organisms against pathogens like bacteria, 

viruses, fungi and parasites as well as protection in cases of injury (Cota and 

Midwinter 2009; Lilic 2009). In immunity, the specific proteins of pathogens that 

are recognized by the immune system are referred to as antigens. It is however not 

only living organisms like bacteria that are potential pathogens that can illicit an 
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immune response, but also many of the chemicals and pollutants like EDCs we 

encounter on a daily basis. 

In higher vertebrates, the functioning of the immune system, or the immune 

response, can be classified into two main categories, namely innate immunity 

(first and second line of defence) and acquired immunity (third line of defence) 

(Cota and Midwinter 2009). Innate immunity are those elements of the immune 

system one is born with, while acquired immunity is the immunity one develops 

as a result of exposure to antigens throughout life (Murphy and Weaver 2016). 

Innate and acquired immunity are not two entirely distinct processes, but rather 

one complex, interdependent physiological process, i.e., some steps of the innate 

immune system are required for processes of acquired immunity to be activated 

and vice versa (Lilic 2009). Typically, once infection by a pathogen occurs, both 

the innate and acquired immune system are required to rid the organism of the 

infection. In general, the innate immune system, which is fast acting, keeps the 

infection suppressed, while the acquired immune system activates through a much 

longer process and eliminates the infection completely. 

The following review of the immune system aims to provide a general overview 

of the immune system components and functioning. The objective is to provide 

background to immunity in order to create a better understanding of the field of 

immunotoxicity addressed earlier, which is an important focal point in the 

remaining research chapters of this thesis. 

2.5.1 Immune Cells 

Central to most immune responses are a group of cells collectively referred to as 

leukocytes or white blood cells. Leukocytes drive or influence both innate and 

acquired immune systems and develop and mature, like most immune system 

cells, within the bone marrow (Luster et al. 2005; Murphy and Weaver 2016). 

Leukocytes originate from two lineages of stem cells, the lymphoid and myeloid 

lines (Figure 2.1) (Murphy and Weaver 2016). The lymphoid cells are B Cells,  

T Cells, Natural Killer (NK) Cells and innate lymphoid cells (ILC), while myeloid 

cells are neutrophils, eosinophils, basophils, monocytes and mast cells. Dendritic 
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cells can originate from both lineages although it originates mainly from the 

myeloid lineage. Furthermore, monocytes from the myeloid lineage mature into 

macrophages within tissues while erythrocytes (red blood cells) and thrombocytes 

(platelets) also originate from the myeloid lineage of stem cells, but does not form 

part of this review. 

2.5.2 Innate Immune System 

The innate immune system is the first line of defence against immunity and it acts 

by preventing pathogens from entering the body, or when they do enter, to destroy 

them within minutes. The innate immune system however lacks the specificity 

and memory which is part of acquired immunity (Lilic 2009). Innate immunity 

utilises secreted proteins and cell-associated receptors (pattern recognition 

receptors (PRRs)) to detect pathogens and to prevent self-recognition. It is the part 

of the immune system that one is born with and the receptors are coded by genes 

inherited from parents (Murphy and Weaver 2016). Innate immunity comprises of 

barriers, the complement pathway and phagocytosis. 

2.5.2.1 Barriers 

Barriers are the first line of defence against infections and include chemical and 

anatomical barriers. Anatomical (or mechanical) barriers are the epithelial cells 

(including hairs and cilia) of the skin, respiratory system, gastrointestinal tract, 

eyes and oral cavity (Cota and Midwinter 2009; Murphy and Weaver 2016). The 

cells of epithelial linings function by forming tight mats that physically prevent 

pathogens from penetrating the deeper lying cells and tissues. In turn, the 

movement of air and fluids over epithelial surfaces aid in removing pathogens that 

may accrue on their surfaces. 
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The mucosal epithelium, as is found within for example the respiratory ducts, 

gastrointestinal tract and oral cavity, secretes and are covered by a layer of mucus 

(Schleimer et al. 2007; Murphy and Weaver 2016). This viscous liquid functions 

in defence against pathogens by preventing their adhesion to the epithelium as 

well as by trapping pathogens. To rid the organism of these pathogens, the mucus 

and the pathogens contained in it, are continuously being expelled through 

mucociliary (respiratory surfaces) and peristaltic actions (gastrointestinal tract). 

Not all bacteria present on epithelial surfaces are harmful. Healthy epithelial 

surfaces are populated with non-pathogenic bacteria (microbiota) that competes 

with pathogens and thus helps prevention of infection (Murphy and Weaver 

2016). They produce an assortment of antimicrobial substances such as lactic 

acid, glycoproteins (mucins) and antimicrobial peptides that fights pathogens as 

well as stimulate the epithelium to produce antimicrobial peptides. 

Epithelial cells and phagocytic cells can eliminate pathogens by producing the 

antimicrobial enzyme lysozyme (Peterson and Artis 2014). This forms part of the 

innate immune response and has the ability to recognize and attack specific 

receptors on bacterial cell walls. It functions by breaking chemical bonds within 

the cell wall of bacteria and the resultant cellular damage ultimately leads to 

bacterial death (Callewaert et al. 2017). 

The three main antimicrobial peptides produced by epithelial cells and phagocytes 

are defensins, cathelicidins and histatins (Schleimer et al. 2007; Peterson and 

Artis 2014; Murphy and Weaver 2016). Epithelial cells secrete these antimicrobial 

peptides into the mucus lining of the epithelium while it is secreted into tissues by 

phagocytes. Defensins and cathelicidins act by disrupting the cell membranes of 

bacteria and fungi and the membrane envelope of some viruses. Histatins are 

constantly produced by the parotid, sublingual and submandibular glands and acts 

against pathogenic fungi. 

When pathogens manage to bind to or cross over epithelial surfaces, an infection 

occurs. Damage to epithelial surfaces, like cuts, bites and burns, can allow 

pathogens to easily enter and infect deeper lying tissues. If not successfully 
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eliminated, airborne pathogens may infect respiratory tract epithelium while 

pathogens in food can infect gastrointestinal tract epithelium. In order to maintain 

its immunological functions, epithelial layers are continuously renewing 

themselves to ensure intact barriers for protection and other functions. 

2.5.2.2 Complement Pathway 

When the barrier defence is breached, the complement pathways form the next 

line of defence. It consists of approximately 30 plasma proteins that collectively 

or together with antibodies target pathogens (Murphy and Weaver 2016). The 

complement proteins opsonize pathogens as well as trigger the series of steps 

involved in the inflammatory process (Janeway et al. 2001). The complement 

pathways produce three main effectors: 1) proinflammatory anaphylatoxins (C3a 

and C5a) for activation and attraction of leukocytes; 2) opsonins (e.g. C3b) which 

attach to pathogens for recognition by phagocytes (opsonisation); and the 

membrane attack complex (MAC) that lyse opsonised pathogens (Noris and 

Remuzzi 2013). Complement proteins are synthesized in the liver and it circulates 

in the blood and other fluids in an inactive form. The complement proteins 

activates only when in contact with pathogens or antibody-bound pathogens. 

Complement pathways acts by killing pathogens either directly, or by facilitating 

their phagocytosis, and it triggers inflammation utilizing the complement proteins. 

Three complement pathways exist, all three producing C3 convertases, the role of 

which will be explained later. They are the classical, alternative and lectin 

pathways. 

The classical pathway is set off when the C1 complement component, containing 

a recognition protein C1q, recognizes pathogen-associated molecular patterns 

(PAMPs) on a microbial surface directly, or binds to an antibody-bound pathogen 

(Cota and Midwinter 2009; Noris and Remuzzi 2013; Ricklin et al. 2016; Murphy 

and Weaver 2016). The classical pathway is activated by immunoglobulin G 

(IgG) and IgM, by apoptotic and necrotic cells, and by proteins like C-reactive 

protein (Noris and Remuzzi 2013). 
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The lectin pathway, is set off when mannose-binding lectin (MBL) or ficolin 

recognises specific carbohydrates, or carbohydrate signatures, on pathogens. The 

MBL, or ficolin, binds these signatures and as a result activates MBL-associated 

serine proteases (MASPs). The MASPs initiate complement protein cleavage of 

C4 and C2 which generates the C3 convertase C4bC2a (Murphy and Weaver 

2016; Ricklin et al. 2016). 

Alternative pathway activation can happen in two ways. In the blood plasma, C3 

spontaneously hydrolyses (a process called “tickover”) to form C3 (H2O) and then 

binds to Factor B. Factor B is cleaved by Factor D into Ba and Bb to form  

C3 (H2O)Bb, which is known as short-lived fluid-phase C3 convertase (Murphy 

and Weaver 2016). The tickover path of the alternative pathway remains primed 

and active at low levels in a healthy host and can rapidly act against pathogens 

(Noris and Remuzzi 2013). The second method of activation of the alternative 

pathway produces the C3 convertase C3bBb. It requires the C3b product of either 

the classical pathway or lectin pathway to bind to a microbial surface. Factor B 

then binds to the C3b and is cleaved by Factor D. The cleavage fragment Bb 

remains bounded to the C3b forming the C3 convertase C3bBb (Murphy and 

Weaver 2016). The alternative pathway is a signal amplification pathway as the 

production of C3b leads to the production of C3bBb which in turn produces more 

C3b when cleaving additional C3. 

As mentioned earlier, all three pathways, when interacting with a pathogen, 

activate C3 convertase enzymes (see Table 2.1). These convertases cleave C3 into 

C3b and C3a (Ricklin et al. 2010; Noris and Remuzzi 2013; Murphy and Weaver 

2016). Opsonisation of pathogens takes place when C3b, acting as an opsin, binds 

covalently to pathogens (Janeway 2001). The opsonin component is then 

recognized by phagocytes leading to the phagocytosis of the pathogen. C3b can in 

turn bind to C3 convertase of the classical and lectin pathways to form C5 

convertase. C5 convertase cleaves C5 into C5a and C5b. C5b in turn binds to 

other complement proteins to form a membrane attack complex (MAC) on 

pathogens. The MAC results in cell death by causing cell lysis through formation 

of transmembrane channels in its cell membrane. These transmembrane channels 
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or pores results in cell lysis through the disruption of the lipid bi-layers (Hadders 

et al. 2012). 

Table 2.1 Convertases of the different complement pathways 

Pathway C3 Convertases C5 Convertases 

Lectin pathway C4b2a C4b2a3b 

Classical pathway C4b2a C4b2a3b 

Alternative Pathway C3bBb C3bBb3b 

Fluid Phase C3 (H2O) Bb  

Initiation of phagocytosis takes place when a complement receptor (CR) on the 

phagocyte recognizes and binds to the C3b opsonin on the pathogen cell 

membrane and the inflammatory mediator fragment C5a binds to the C5a receptor 

on the phagocyte (Ricklin et al. 2010; Murphy and Weaver 2016). The C3a and 

C5a fragments also trigger local inflammatory responses and they recruit 

antibodies, complement factors and phagocytic cells to infected areas. They result 

in contraction of smooth muscle, increase vascular permeability, and induce 

synthesis of adhesion molecules by endothelium of blood vessels. It also activates 

mast cells to release inflammatory molecules like histamine and cytokine tumor 

necrosis factor-α (TNF-α). Histamine increases vascular permeability, resulting in 

more fluid in the infected area which in turn speeds up the movement of 

pathogen-bearing antigen-presenting cells (APCs) to local lymph nodes. The 

presence of APCs accelerates the initiation of the acquired immune response 

(Murphy and Weaver 2016). 

The effector functions of the complement pathways have the potential to harm the 

host itself, if not properly regulated (Noris and Remuzzi 2013). In normal 

functioning immune systems, complement pathways are prevented from 

triggering inflammation and cell destruction in non-target areas. This is achieved 

by rapid inactivation of activated complement components, should they fail to 

bind to the surface of the pathogen that stimulated their activation (Murphy and 

Weaver 2016). Also, specific proteins prevent activation of complement 

components on healthy host cells (Noris and Remuzzi 2013; Murphy and Weaver 

2016). However, the complement pathways do rid the body of dying host cells by 
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triggering phagocytosis of these cells. This prevents release of the cell contents of 

the dying cells and thus prevents autoimmune responses (Murphy and Weaver 

2016). Figure 3.2 provides a summary of the three complement pathways 

(Murphy and Weaver 2016). 

 
Figure 2.2 The Complement Pathways (from Murphy and Weaver 2016) 

2.5.2.3 Phagocytosis 

Phagocytosis is the internalization and subsequent destruction of pathogens by 

phagocytes (Botelho and Grinstein 2011). Phagocytosis occurs either after a 

chance encounter between a phagocyte and a pathogen or, as was already 

mentioned in the complement pathways, through receptor-mediated uptake 

(Murphy and Weaver 2016). 
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Macrophages, monocytes, granulocytes (mainly neutrophils) and dendritic cells 

are the four main classes of phagocytic cells (Botelho and Grinstein 2011; 

Murphy and Weaver 2016). Macrophages are the most abundant phagocytic cells 

present in healthy tissues. They are formed during embryonic development and 

then self-renew during life and they can be formed from circulating monocytes 

(Murphy and Weaver 2016). The latter occurring when monocytes enter tissue 

from blood vessels during inflammation. The phagocytic granulocytes include 

neutrophils, eosinophils and basophils. The neutrophils are the major phagocytes 

of the group as well as the one immediately involved in innate immunity against 

infection. Granulocytes are present in blood, but not in healthy tissues. Both 

macrophages and granulocytes recognize, phagocytize and break down pathogens 

without input from acquired immunity (Murphy and Weaver 2016). 

Dendritic cells are found within lymphoid organs and peripheral tissues (skin and 

mucosal tissues) as immature cells. Dendritic cells ingest and break down 

pathogens, but conventional dendritic cells (cDCs) can also produce peptide 

antigens specific to the pathogen processed (Murphy and Weaver 2016). These 

antigens activate T cells and trigger acquired immunity. The cDCs also produce 

certain cytokines that play a role in immunity. Another type of dendritic cell, the 

plasmacytoid dendritic cells (pDCs), produce cytokines called type I interferons 

which are antiviral interferons and form part of innate immunity. 

Phagocytosis of pathogens by phagocytes involves various steps. Pathogen 

recognition receptors (PRRs) are present on macrophages, neutrophils and 

dendritic cells and they have the ability to recognize molecular structures specific 

to pathogens (Greenberg and Grinstein 2002; Botelho and Grinstein 2011; 

Murphy and Weaver 2016). Once recognized, the phagocyte binds to the pathogen 

and then internalizes it in its phagosome through a process of pseudopod 

formation and engulfment. The cell lysosomes fuses with the phagosome to form 

a phagolysosome and the lysosome contents are released into the phagolysosome. 

The phagolysosome becomes acidified and acquires antimicrobial peptides and 

enzymes (from cytoplasmic granules of neutrophils), reactive oxygen species 

(ROS), and reactive nitrogen species (Botelho and Grinstein 2011; Murphy and 
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Weaver 2016). All these aid in killing of the pathogens. Acidification reduces the 

pH to between 3.5 and 4.0 which creates an environment that is either 

bacteriostatic (stops bacterial reproduction without killing cells) or bactericidal 

(kills bacterial cells) (Murphy and Weaver 2016). Reactive oxygen species 

include superoxide, hydrogen peroxide, singlet oxygen (high energy oxygen), 

hydroxyl radicals and hypohalite while reactive nitrogen includes nitrous oxide. 

These are efficient microbe killing products, but when released into extracellular 

environment can cause damage and are toxic to the host cells. The active enzymes 

released by phagocytes are lysozyme that digest Gram-positive bacteria cell walls 

and acid hydrolases that break down ingested microbes. In macrophages, 

antimicrobial peptides that are produced are cathelicidin and macrophage elastase-

derived peptides, while neutrophills produce α-defensin, β-defensin, cathelicidin, 

azurocidin, bacterial permeability inducing protein, and lactoferricin (Botelho and 

Grinstein 2011; Murphy and Weaver 2016). 

2.5.2.4 Inflammatory Response 

As mentioned earlier, inflammation is triggered through innate immune system 

responses to infections or injury (Lilic 2009; Newton and Dixit 2012). The 

inflammatory response performs three main functions: 1) it increases the number 

of effector molecules and immune cells at the site of infection and thus speeds up 

the elimination of pathogens; 2) it prevents spreading of infection in the blood by 

inducing localized blood clotting, and 3) it enhances repair of damaged tissues 

(Murphy and Weaver 2016). 

Inflamed tissues are typically red, painful, warm and swollen as a result of the 

changes that occur in localized blood vessels (Newton and Dixit 2012; Murphy 

and Weaver 2016). These changes are firstly the dilation of blood vessels in the 

infected area. This result in increased blood flow, albeit at reduced speed, through 

the area, which in turn increases the temperature in surrounding tissues, as well as 

give the area the red colour associated with inflammation. Secondly, the 

endothelial cell lining of blood vessels in the inflamed area start expressing cell-

adhesion molecules (Murphy and Weaver 2016). Leukocytes circulating in the 

blood adhere to these molecules on the endothelial cells and can then migrate over 
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the epithelium into the infected area, a process known as extravasation. The blood 

vessels also become more permeable through the slight separation of the usually 

tightly joined endothelial cells. This endothelial activation allows plasma proteins, 

like complement and MBL, as well as fluids, to move from the blood into the 

infected tissue (Murphy and Weaver 2016). This results in swelling (edema), as 

well as pain, due to increased pressure in the area. Lastly, blood starts clotting 

inside the microvessels to prevent the spreading of pathogens via blood 

circulation.  

The changes in blood vessels and leukocyte response are brought about by pro-

inflammatory proteins called cytokines and chemokines (collectively referred to 

only as cytokines) that are secreted by immune system cells, like macrophages. 

Cytokines play an important role in cell signaling (Murphy and Weaver 2016). 

Some cytokines can be produced by a range of immune system cells while others 

are produced by very specific cells. Likewise, some cytokines have a wide range 

of receptor cells, while others have very specific receptors. Receptor specificity is 

brought about by cytokine specific receptors on target cells.  

The main function of cytokines is to amplify an immune response subsequent to 

exposure to a pathogen, while chemokines are responsible for chemoattraction of 

leukocytes (chemotaxis) as well as increasing the permeability of endothelium of 

blood vessels (Murphy and Weaver 2016). Cytokines trigger the endothelial cells 

to produce more cytokines, thereby accelerating the response to the infectious 

agent. 

The inflammatory response is initiated when initially macrophages and later more 

leukocytes, recognise pathogens and secrete inflammatory mediators (Murphy and 

Weaver 2016). These mediators are prostaglandins, leukotrienes and platelet-

activating factor (PAF) which are lipid products resulting from enzymatic 

degradation of membrane phospholipids. Inflammatory mediation is followed by 

cytokine and chemokine action. It is also during this inflammatory response that 

the cleaved C5 product, C5a, promotes inflammation by increasing vascular 

permeability and stimulating mast cells to release histamines, the cytokine TNF-α 

and cathelicidins as discussed earlier. 



http://etd.uwc.ac.za
~ 32 ~ 

 

Specific transmembrane proteins, called toll-like receptors (TLRs), are found on 

cell membranes and endocytic vesicles of immune cells of the innate immune 

system (Newton and Dixit 2012; Murphy and Weaver 2016). TLRs are found 

mainly in macrophages, mast cells and dendritic cells, although they can also be 

expressed by other cells like B cells and certain epithelia. Toll-like receptors have 

the ability to recognize specific molecular patterns on bacteria, fungi and viruses 

that are not present in vertebrate cells, primarily in the extracellular environment 

(Murphy and Weaver 2016). Important ones include lipoteichoic acids (Gram-

positive bacteria) and lipopolysaccharide (LPS) (Gram-negative bacteria). In turn, 

Nucleotide-binding oligomerization domain-like receptors or NOD-like receptors 

(NLRs) are intracellular sensors of microbial products or cellular damage 

(Murphy and Weaver 2016). Two NLRs, NOD1 and NOD2, are responsible for 

recognition of bacterial products. The NOD1 recognize γ-glutamyl 

diaminopimelic acid, a breakdown product of peptidoglycans of Gram negative 

bacteria and some Gram positive bacteria while NOD2 detect muramyl dipeptide 

(MDP) found in peptidoglycans of most bacteria. The NOD proteins have the 

ability to activate nuclear factor kappa-light-chain-enhancer of activated B cells 

(NFκB) and pro-inflammatory cytokines. 

2.5.3 Acquired Immunity 

Systems of innate immunity are the first line of defense against pathogens. When 

the innate immune system fails at eliminating a pathogen, the acquired immune 

system is activated. This activation occurs as the pathogen multiplies and specific 

sensor cells of innate immunity are triggered which in turn activate acquired 

immunity (Murphy and Weaver 2016). 

The main cells of acquired immunity are the T cells and B cells (Cota and 

Midwinter 2009; Lilic 2009; Murphy and Weaver 2016). Both are lymphocytes 

which are produced in the bone marrow, but T cells mature within the thymus and 

B cells in the bone marrow. They are found in the lymphatic system and the T cell 

subsets, T helper 1 (TH1) and cytotoxic T cells are involved in cellular immunity 

(cell-mediated immunity) while Transitional Stage 2 (T2) B cells are involved in 

humoral immunity (antibody-mediated immunity). 
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2.5.3.1 The Role of Phagocytosis in Acquired Immunity 

In order for T cells and B cells to recognize an infection by a pathogen and act 

upon it, they have to encounter some form of activator. This is achieved when 

antigen-specific receptors on T and B cells encounter antigen presenting cells 

(APCs) that are expressing antigens in a manner that it is recognized by the T and 

B cell receptors (Lilic 2009; Chaplin 2010; Murphy and Weaver 2016). The APCs 

are dendritic cells, B-lymphocytes and macrophages that have processed antigens 

and display them on their membrane surface.  Of the APCs the dendritic cells are 

the most important and they are abundant in areas that are in close contact with 

surface epithelia such as the skin, lung and intestine, as well as in organs like the 

heart and kidneys. 

When APCs phagocytose pathogens as part of the innate immune response, the 

breakdown products of the pathogens (antigens) are attached to the major 

histocompatibility complex (MHC) molecules to form an antigen: MHC complex 

on the cell membrane of the APC (Murphy and Weaver 2016). The APC presents 

the antigen: MHC complex which is recognized by the T and B cells. However, in 

order for activation to take place, certain co-stimulatory molecules must also be 

present on the APC. Co-stimulatory molecules are expressed as a result of pro-

inflammatory cytokines that are produced by dendritic cells following 

intracellular degradation of pathogens (Chaplin 2010; Murphy and Weaver 2016). 

These cytokines include interleukin (IL) -6, IL-12, IL-18 and interferon (IFN)-α 

and IFN-β. Thus, the co-stimulatory molecules are required in conjunction with 

the antigen: MHC complex for activation to occur. This dual trigger requirement 

prevents activation of T and B cells against self-peptides. 

There are two main ways in which dendritic cells handle antigens (Chaplin 2010; 

Murphy and Weaver 2016):  

1) Dendritic cells either phagocytose extracellular antigens through recognition of 

antigen: antibody complexes (receptor mediated phagocytosis) or take them up 

nonspecifically through micropinocytosis. These two methods of uptake allow 

dendritic cells to process and present almost any type of pathogen. Extracellular 
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antigens taken up in these two ways are processed in the endocytic pathway and 

presented on MHC class II molecules which is recognized by CD4 T cells (T cells 

carrying the co-receptor CD4). The CD4 T cells activate and then differentiate 

into effector T cells.  

2) Antigens can directly enter the cytoplasm of dendritic cells as is the case with 

viral infections. While in the cytoplasm, the virus synthesizes proteins which are 

degraded within the dendritic cell’s proteasome and are subsequently transported 

into the endoplasmic reticulum. The antigen peptides are then presented on  

MHC class 1 molecules on the cell membrane of the dendritic cell (or APC). 

These antigen: MHC 1 complexes specifically activate CD8 T cells (T cells 

carrying the co-receptor CD8) which differentiate into cytotoxic effector  

CD8 T cells with the ability to recognize and kill virus-infected cells.  

It is possible for dendritic cells to phagocytose extracellular virus particles or 

virus-infected cells. This will still lead to the formation of antigen: MHC I 

complexes and activation of cytotoxic effector CD8 T cells. However, viral 

antigen: MHC II complexes can also be formed that results in activation of naive 

CD4 T cells. The resultant effector CD4 T cells stimulate antiviral antibody 

production by B cells and cytokine production responsible for enhancing the 

immune response (Chaplin 2010; Murphy and Weaver 2016). 

The expression of MHC II and co-stimulatory molecules by macrophages result in 

the amplification of T cell responses where T cells have already been activated by 

dendritic cells. B cells can present antigens as antigen: MHC II complexes to 

interact with CD4 T cells already activated by the same antigen. This results in the 

T cell signaling the B cell to differentiate into antibody producing cells. 

2.5.3.2 Cell-Mediated Immunity 

After developing in the thymus, T cells move into the bloodstream and are 

referred to as naive T cells since they have not encountered their specific antigens 

(Janeway et al 2001). The naive T cells circulate between the secondary lymphoid 

tissues and the blood until they encounter their specific antigen in the form of the 
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antigen: MHC complex as well as the required co-stimulatory molecules (Janeway 

2001; Chaplin 2010; Murphy and Weaver 2016). The T cells, upon meeting the 

antigen: MHC complex will then proliferate and differentiate to form effector  

T cells that contribute to the removal of antigens. Some also differentiate into 

memory cells specific to the encountered antigen. The differentiation of the  

T cells into different effector T cells after activation is controlled by cytokines.  

T cells therefore do not react to the pathogen itself, but rather to the host cells 

carrying the peptide antigen: MHC complex. These host cells are referred to as 

target cells. The process leading up to the differentiation of naive T-cells into 

effector T cells forms part of the innate immune system.  

CD8 T Cell Activation 

Naive T cells can differentiate into different effector T cells each specialized for 

different functions (Janeway 2001; Chaplin 2010; Murphy and Weaver 2016). For 

example, naive CD8 T cells recognize antigen: MHC I complexes and form 

cytotoxic CD8 T cells which have the ability to recognize and kill infected cells. 

These cells are important in the defense against intracellular pathogens and 

especially viruses. They are however very destructive due to their cytotoxic 

effects and their activation must be carefully controlled and therefore requires 

more co-stimulatory activity than CD4 T effector cells.  

Activation of CD8 cytotoxic T cells can occur in two ways (Janeway 2001; 

Chaplin 2010; Murphy and Weaver 2016). Firstly, it can for example with virus 

infections, become activated when dendritic cells induce CD8 T cells to produce 

interleukin (IL)-2 that will trigger its own differentiation into cytotoxic effector 

cells. Secondly, its activation can be assisted by CD4 effector T cells that express 

IL-2 and CD40 ligand. The CD40 ligand binds to CD40 on the dendritic cell and 

through a few processes provide additional co-stimulation to the naive  

CD8 T cells. Simultaneously the IL-2 also promotes effector CD8 T-cell 

differentiation. 

CD4 T Cell Activation 

CD4 T cells can differentiate into subsets of effector T cells when they recognize 

antigen: MHC II complexes, each subset having its own immunological role 
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(Janeway 2001; Chaplin 2010; Murphy and Weaver 2016). The main subsets are 

TH1, TH2, TH17 and T follicular helper (TFH) subsets with the function of 

activating target cells, as well as regulatory T cells or Treg cells which inhibit 

immune activation. These effector T cells can 1) migrate rapidly to inflamed areas 

where pathogens are present when they get in contact with APCs; or 2) move to  

B cell zones to generate pathogen-specific antibodies in secondary lymphoid 

tissues. 

The following is brief description of the effector T cell subsets (Janeway 2001; 

Chaplin 2010; Murphy and Weaver 2016): 

TH1 Cells: In the presence of high levels of the cytokines IFN-γ and IL-12 during 

initial stages of naive T cell activation, TH1 cells are produced. In turn TH1 cells 

produce the cytokine IFN-γ that plays a part in eliminating infections by microbes 

that replicate and survive in macrophages (e.g. protozoans, intracellular bacteria 

and some viruses). The TH1 cells recognizes and enhances activation of the 

macrophages containing infections by releasing IFN-γ. This increases the 

macrophages ability to kill ingested microbes. The release of IFN-γ also reinforce 

the differentiation of more TH1 cells (positive feedback). 

TH2 Cells: Cytokine IL-4 stimulates the production of TH2 cells. TH2 cells 

produce IL-4, IL-5 and IL-13 and assist in controlling extracellular parasitic 

infections (e.g. by helminths). It boosts eosinophil, mast cell and IgE mediated 

responses. Since the TH2 cells produce IL-4, they are also a positive feedback 

system. 

TH17 Cells: TH17 cells are produced in the presence of high levels of the cytokine 

IL-6 and transforming growth factor (TGF)-β during initial stages of naive T cell 

activation. IL-6 and TGF-β are produced by microbial product activated innate 

immune cells. TH17 cells produce IL-17A, IL-17F and IL-22. TH17 cells are 

induced by, and enhances neutrophilic action against, extracellular bacterial and 

fungal infections. The cytokines produced by TH17 cells also activate 

antimicrobial peptide production in barrier epithelial cells as is found in the 

gastrointestinal, respiratory and urogenital tracts and the skin. Indirect 
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reinforcement of TH17 differentiation occurs when the IL-17, produced by TH17 

cells, enhances IL-6 production by innate immune cells. 

TFH cells: The requisites for production of TFH cell differentiation is not yet 

understood although it seems IL-6 plays an important role. TFH cells produce low 

levels of cytokines similar to those of the other effector T cell subsets like IFN-γ, 

IL-4 and IL-17, as well as high levels of IL-21 that assist B cell differentiation 

into plasma cells that produce antibodies. 

Treg cells: In contrast to the previous effector T cells, Treg cells suppress T cell 

responses and thus limits immune responses. This plays an important role in 

preventing autoimmunity (immunity against self). The Treg cells are activated 

when TGF- β is present, but not IL-6. Since IL-6 are produced in the presence of 

pathogens, Treg cells are produced in the absence of pathogens and presence of 

TGF- β and thus prevent unwanted immune responses. The Treg cells also produce 

TGF- β and IL-10, both being immunosuppressive and responsible for 

suppressing inflammation. 

2.5.3.3 Cell Death 

The need for T cell-mediated immunity arises from the fact that all viruses and 

some bacteria enter cells and multiply within cytoplasm (Murphy and Weaver 

2016). Here they are out of reach of antibody-mediated elimination, and thus the 

only way they can be rendered harmless is by total destruction of the host cell. 

This is achieved mainly by cytotoxic CD8 T cells (Murphy and Weaver 2016). 

There are two main types of cell death (Janeway et al. 2001; Wu et al. 2001; 

Elmore 2007; Murphy and Weaver 2016). The first is necrosis where cells 

disintegrate as a result of physical or chemical injury. The second type is 

apoptosis, or programmed cell death, which is also the way in which cytotoxic  

T cells kills off infected cells. Apoptosis is triggered by one of two pathways: 

extrinsic pathway of apoptosis and intrinsic (mitochondrial) pathway of apoptosis. 

Both pathways activate aspartic acid-specified cysteine proteases (caspases) 

which plays a role in apoptotic cell death. Initiator caspases cleave and activate 
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other caspases while effector caspases brings about cellular changes in cells which 

must undergo apoptosis. The latter is achieved by cleaving proteins critical to 

cellular integrity and by activating enzymes promoting cell death. An example of 

this is the cleaving of nuclear proteins and activation of endonucleases. Intact 

nuclear proteins provide structural integrity to the nucleus while endonucleases 

fragment chromosomal deoxyribonucleic acid (DNA). 

The extrinsic pathway of apoptosis occurs when extracellular ligands activates 

“death receptors” in receptor-bearing cells (Elmore 2007). This means the cell 

kills itself due to signals from other cells. The extrinsic pathway can be mediated 

either by a Tumor necrosis factor (TNF) path or by a First apoptosis signal (FAS) 

path (Elmore 2007; Murphy and Weaver 2016). 

The intrinsic pathway of apoptosis occurs in the presence of noxious stimuli or in 

the absence of growth factors that are important for cell survival (Janeway et al. 

2001; Elmore 2007; Murphy and Weaver 2016). The cells therefore kill 

themselves because the cell itself senses stress. The intrinsic pathway is initiated 

when mitochondria release cytochrome c which in turn triggers caspases. In the 

cytoplasm cytochrome c binds to apoptotic protease activating factor-1 and forms 

the apoptosome. The apoptosome recruit initiator caspase which in turn activate 

effector caspases. Effector caspases like caspase 3 can activate enzymes which 

can cleave DNA of target cells which lead to cell death. 

Phagocytic cells recognise cells in the process of cell death and respond rapidly to 

phagocytose these apoptotic cells. Once ingested the cells are degraded 

completely (Murphy and Weaver 2016). This serves to protect host cells from the 

release of the contents of apoptotic cells. 

In addition to inducing apoptosis, CD8 cytotoxic cells also release the cytokines 

IFN-γ, TNF-α and Lymphotoxin (LT) -α (Murphy and Weaver 2016). The IFN-γ 

plays, among others, a role in directly inhibiting viral replication and increases 

expression of MHC I molecules. The TNF-α and LT-α acts synergistically with 

IFN-γ to activate macrophages via TNFR-II as well as to kill target cells through 

interaction with TNFR-I. 
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2.5.3.4 Humoral Immunity 

Humoral immunity is responsible for the protection against extracellular pathogen 

infections (Hoffman et al. 2015). During the humoral immune response, B cells 

produce antibodies that protect against extracellular microorganisms and their by-

products (Murphy and Weaver 2016). 

The B cells are produced in the bone marrow but move to the secondary lymphoid 

organs, like the spleen, to mature into naive B cells (Murphy and Weaver 2016). 

Naive B cells, unlike T cells and natural killer cells, have receptors specific to 

certain antigens on their cell membranes, called B cell receptors (BCRs) 

(Hoffman et al. 2015). When an antigen binds to the BCR on the naive B cell, it is 

taken up by the B cell through endocytosis. Inside the B cell it is degraded and the 

resultant antigenic peptides are presented on the surface of the B cell with MHC-

II. The antigen: MHC-II complex can now be recognized by antigen specific TH 

cells that originated during the phagocytic process against the same pathogen 

described earlier (Hoffman et al. 2015; Murphy and Weaver 2016). The TH cells 

express co-stimulatory ligands and cytokines, both with the role of helping the B 

cell to proliferate and differentiate (Hoffman et al. 2015; Murphy and Weaver 

2016). Proliferation and differentiation of B cells are required in order to produce 

antibody-secreting cells and memory B cells, and also to form germinal centers 

inside lymphoid follicles (Murphy and Weaver 2016). The signals from the TH 

cells includes the activation of B cell CD40 by TFH expression of CD40L as well 

as IL-21, IL-4, IL-6, IFN-γ and TGF-β (Janeway et al. 2001; Hoffman et al. 2015; 

Murphy and Weaver 2016). Activation of CD40 promotes B cell survival while 

IL-21 promotes B cell proliferation and differentiation into plasma cells and 

memory B cells. Interleukin-4, IL-6, IFN-γ and TGF-β play a regulatory role in 

the type of antibody that will be produced. Some B cells can be activated directly 

as a response to certain microbial pathogens without the presence of TH cells. This 

results in a rapid response to pathogens, but with lower affinity and less 

functionality than those where TH cells plays a part (Murphy and Weaver 2016). 

Activated B-cells differentiate into plasmablasts (short-lived), plasma cells (long-

lived) and memory B cells (Janeway et al. 2001; Hoffman et al. 2015; Murphy 
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and Weaver 2016). Plasmablasts are formed within the secondary lymphoid 

organs and immediately produce weak antibodies for a quick response. The 

antibodies produced are mainly the class IgM. Some activated B cells however 

enter a lymphoid follicle and from a germinal center. Here, facilitated by TFH, 

further proliferation, immunoglobulin class switching, and affinity maturation of 

activated B cells occur to produce long-lived plasma cells and memory B cells. 

Plasma cells are responsible for secreting a large number of antibodies of the 

immunoglobulin classes IgA, IgM, IgE, IgD and IgG. 

Antibodies fulfil a number of roles including neutralisation of toxins originating 

from bacteria, preventing microbes to attach to mucosal surfaces, activating the 

complement pathway of innate immunity, opsonisation of bacteria to promote its 

phagocytosis, and promotion of cytotoxic killing of cells infected with pathogens. 

The methods by which these functions are fulfilled include (Janeway et al. 2001; 

Hoffman et al. 2015; Murphy and Weaver 2016): 

• Antibodies binding to antigens to immobilize them and neutralise their 

toxins. 

• Precipitation of antigens by binding to multiple microbes and causing their 

agglutination. 

• Attraction of phagocytes by agglutinated, immobilized and neutralized 

antigens resulting in their ingestion and degradation. 

• Activation of C1 molecules as a result of formation of antigen: antibody 

complexes which triggers the classic pathway of the complement system. 

• C1 molecules aiding in identification of pathogens by macrophages to 

stimulate phagocytosis. 

• Antibodies, specifically IgE inducing inflammation by binding and 

activating eosinophils, basophils and mast cells. 

• Antibody-dependent cell-mediated cytotoxicity (ADCC) occurring when 

antibodies bound to a cell surface interacts with NK cells. NK cells then 

recognize IgG1 and IgG3 subclasses and the activated NK cell releases 
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cytoplasmic granules containing perforin and granzymes that degrade the 

target cell (pathogen). 

2.6 Biomarkers for Immunotoxicity 

During the last decade, a number of in vivo and in vitro biomarkers of 

immunotoxicity have been investigated. These biomarkers are indicative of the 

immunosuppressive or immunostimulatory effects of toxicants. 

Immunosuppression refers to the suppression or dampening of the immune 

response to antigens and immunostimulation is the upregulation, and in some 

instances exacerbation, of immune responses. 

Biomarkers employed to show the immunomodulatory nature of some xenobiotics 

have been investigated. Thymus histology in guinea pigs and mice was, for 

example, used as early as 1973 as a biomarker of 2,3,7,8-Tetrachlorodibenzo-p-

dioxin exposure (Vos et al. 1973). In rainbow trout exposed to creosote, 

pronephros leukocyte respiratory burst, phagocytic index, lymphocyte 

proliferation and lysozyme activity were investigated (Karrow et al. 1999). IgE 

and IgG, as well as genes for the cytokines IL-1, IL-4, IL-6 and IL-8, were used as 

biomarkers in human blood exposed to heavy metals (Marth et al. 2001). 

Similarly, cytokines like interleukin IL-6 and IL-10 in human whole blood 

cultures (Faul et al. 2013; Faul et al. 2014) and inflammatory activity in mouse 

RAW264.7 cells, measured as nitric oxide and IL-6 (Makene and Pool 2015), 

have been used. Intestinal mucosal immunoglobulins in NiCl2 exposed broiler 

chickens were determined by Wu et al. (2014). Biomarkers of the cellular immune 

system include, for example in mussels, hemocyte viability, cellularity, 

phagocytosis efficiency, NK cell-like cytotoxic activity and lysozyme activity 

(Farcy et al. 2011).  

Immunosuppression results in lowered immunity and can ultimately lead to the 

development of tumors and cancers (Duramad and Holland 2011). 

Immunostimulation can lead to immune-mediated diseases like atherosclerosis, 

asthma and allergy hypersensitivities, and auto-immune diseases like type 1 

diabetes and rheumatoid arthritis (Duramad and Holland 2011). 



http://etd.uwc.ac.za
~ 42 ~ 

 

2.7 Conclusion 

The large number of natural and anthropogenic EDCs and toxins released into the 

environment presents a number of health risks to both humans and wildlife. The 

aquatic environment presents special concern due to the ease of introduction of 

EDCs through storm water runoff and wastewater streams. Apart from the diverse 

number of ecosystem effects presented by EDCs, a pressing concern is where 

EDCs remain extant within potable water sources. Rapid, reliable, and cost-

effective methods to determine the presence and effects of EDCs in the 

environment and specifically water sources are thus important. Cellular, 

neurological and immunological changes in response to exposure to potentially 

contaminated water sources presents a number of options for testing for EDC 

contamination in water. These can either be measured in vivo or in vitro, each 

with its own advantages and disadvantages.  

The remaining chapters of this thesis investigates the presence of selected EDCs, 

specifically the natural steroid hormones, and some physiological endpoints 

related to cytotoxicity, neurotoxicity and immunotoxicity in raw, treated and 

reclaimed sewage as well as selected untreated surface water sources in Namibia. 

This is the first study for determining endocrine disrupting potential in these water 

sources and it is specifically important for the reclaimed water from the 

Goreangab Water Reclamation Plant supplying the capital of Namibia, Windhoek, 

with potable water. It is also the first study, world-wide, where proteome profiling 

is performed as a rapid screen for immunotoxicity biomarkers in exposed human 

blood culture exposed to reclaimed water. 
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3.1 Abstract 

Namibia is the driest sub-Saharan country in Africa. Namibia’s capital, 

Windhoek, reclaims sewage water for domestic use at the Goreangab Water 

Reclamation Plant (GWRP). Risks associated with sewage effluent and reclaimed 

sewage should be closely monitored; therefore water at the Gammams Sewage 

Treatment Plant’s (GSTP) inlet and outlet, as well as reclaimed water from the 

GWRP, were assayed using selected bioassays. The water samples collected were 

analysed using enzyme-linked immunosorbent-assays and chromogenic tests for 

some selected, natural steroid hormones, neurotoxicity, cytotoxicity and 

inflammatory activity. The sstradiol level at the sewage treatment inlet was  

78 pg/ml and the treated sewage showed an 83% to 95% reduction in this level, 

while after reclamation the level was below detection limit. The estrone 

concentrations at the sewage treatment inlet ranged from 10 to 161 pg/ml. The 

sewage treatment reduced estrone by between 85% and 92%. After reclamation 

the level of estrone was below detection limit. The testosterone level ranged 

between 162 and 405 pg/ml at the sewage plant inlet. The sewage treatment 

removed 96% of the initial testosterone. The residual testosterone was effectively 

removed by processes in the GWRP and after reclamation no testosterone was 

detected in the water. The acetylcholinesterase (AChE) inhibition at the sewage 

treatment inlet was 50% while it was only 27% after sewage treatment. After 

reclamation, the AChE inhibition was not detected. The water at the sewage inlet, 

in March and February, showed cytotoxicity. High inflammatory activity was 

detected at the sewage plant inlet. The sewage treatment reduced inflammatory 

activity by 64%. After reclamation low inflammatory activity was induced. The 

treated sewage used for reclamation tested positive for most of the biomarkers and 

can pose a risk to human health. However, reclamation successfully removed 

these contaminants. Due to the presence of contaminants in the intake water at the 

reclamation plant, it is essential to routinely monitor the water produced by the 

reclamation plant for potential residues that can adversely affect human health. 

Keywords: Endocrine disrupting potential, cytotoxicity, neurotoxicity, 

inflammatory response, steroid hormones, water quality 
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3.2 Introduction 

The protection and management of water resources are becoming increasingly 

important. The growing human population, linked to its resource needs, puts 

existing water sources under immense pressure due to unsustainable use and the 

effects of various environmental pollutants. Namibia has to take special care of its 

water sources, since it is the driest sub-Saharan African country, with an average 

rainfall of 360 mm per year. More than half of the surface of this country is 

considered semi-arid to hyper-arid. This is further aggravated by extremely high 

evaporation rates of 3 000–3 500 mm/a (Mendelsohn et al. 2009). With a total 

land surface area of 825 000 km2 and just over 2 million inhabitants it is one of 

the most sparsely populated countries in the world (Mendelsohn et al. 2009). 

Urbanisation has led to more than 10% of the country’s population settling in the 

capital city, Windhoek, resulting in an increased demand for clean water.  

Windhoek is a relatively small city and home to most of the 250 000 people of the 

Khomas Region (Mendelsohn et al. 2009). The current unofficial estimate for 

Windhoek’s population is more than 300 000 inhabitants. In 1969 water shortages 

led to the upgrade of the conventional water treatment plant in the vicinity of the 

Goreangab Dam to a fully functional water reclamation plant, with the purpose of 

reclaiming the final effluent from the city’s Gammams Sewage Treatment Plant 

(GSTP) (Du Pisani 2006). The Goreangab Water Reclamation Plant (GWRP) was 

the first water reclamation plant of its kind in the world, where the final effluent 

from a sewage water treatment plant was purified, together with water from the 

Goreangab Dam, for domestic use and human consumption. In full operation it 

could deliver up to 4 300 m3/day and the reclaimed water was mixed with 

borehole water before being delivered to the city of Windhoek (Du Pisani 2006). 

Goreangab Dam later became unfit for reclamation due to increasing organic 

matter input from expansion of the city as well as informal settlements that lie 

within the catchment area of the dam. As a result only sewage effluent was 

reclaimed. In subsequent years the water demand increased further and water had 

to be sourced from further away. The GWRP underwent several upgrades to 

finally reach a capacity of between 7 500 and 8 000 m3/day in 1997 (Du Pisani 
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2006; Kirchner and Van Wyk 2001). By this time the GWRP reached the end of 

its viable life and a new, larger plant (also called the Goreangab Water 

Reclamation Plant or new Goreangab Water Reclamation Plant) was built with a 

capacity of 21 000 m3/day (Lahnsteiner and Lempert 2007). Currently it has the 

potential of supplying up to 30% of the City of Windhoek’s water demand, the 

other 70% being supplied from the S Von Bach Dam, located approximately  

60 km from Windhoek, as well as from about 50 boreholes tapping into the 

Windhoek Aquifer. The new GWRP is managed by the Windhoek Goreangab 

Operating Company (WINGOC). The old GWRP is still used today to produce 

semi-purified water that is used for irrigation of Windhoek’s parks and sport 

fields.  

Using reclaimed sewage water for domestic purposes has the potential of posing 

various health threats. This includes the presence of endocrine disrupting 

compounds (EDCs) that may not be eliminated during the purification process or 

that may result from malfunctioning of the reclamation plant. Endocrine 

disrupting compounds include various natural and synthetic chemicals and 

compounds, the most important being natural and synthetic steroidal oestrogens 

and heavy metals (Bondegaard and Bjerregaard 2005; Medesani et al. 2004; 

Rodríguez et al. 2007). These compounds may interfere directly with hormonal 

systems of various animals by mimicking or antagonising the effects of hormones, 

altering hormone synthesis and metabolism, and modifying hormone receptor 

levels (Burkhardt-Holm 2010). Numerous studies have revealed that aquatic 

systems and their fauna are often very sensitive to the effects of EDCs (Harries et 

al. 1997; Porte et al. 2006; Tyler and Routledge 1998). The effects on endocrine 

and neural systems of animals, plants and humans are manifested as adverse 

effects on growth, development and reproductive success of individuals and these 

may eventually affect whole ecosystems (Burkhardt-Holm 2010; Gronen et al. 

1999; Harries et al. 1997; Tyler and Routledge 1998). The link between EDCs and 

detrimental effects on the endocrine systems of children, decreased fertility in 

males, and increased incidence of breast cancer in females has also been 

suggested by various studies (Burkhardt-Holm 2010; Rogan and Ragan 2007). 
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Potential sources of EDCs are raw and processed sewage that are released into the 

environment (Jackson and Sutton 2008; Swart and Pool 2007). 

One of the most important measures applied to ensure the supply of safe drinking 

water from the GWRP was to implement and strictly control the separation of 

industrial influent from domestic influent (Du Pisani 2006). The GSTP feeding 

the GWRP therefore only receives water from households and small businesses in 

Windhoek. Furthermore, stringent measures are in place at the GWRP to ensure 

the highest quality of reclaimed water, and daily testing is performed to ensure 

that water meets the water quality standards provided by the World Health 

Organization, the Rand Water Guidelines (South Africa) and the Namibian 

Guidelines for Group A Water (Lahnsteiner and Lempert 2007). If contamination 

of the water is detected, water supply from the GWRP is immediately stopped. 

Currently no published literature is available on the efficiency of the removal of 

EDCs from raw sewage at the GSTP or the efficiency of the GWRP in removing 

residual EDCs from the GSTP effluent which serves as the inlet for the GWRP. 

Furthermore, despite a significant amount of research done worldwide on EDCs 

over the past two decades, no international limits have been set for permissible 

steroid hormone levels in various water sources. Currently a useful guideline may 

be the predicted-no-effect-concentrations (PNECs) for synthetic oestrogen 17-α 

ethinylestradiol of 0.1 pg/ml, estradiol of 1 pg/ml, and estrone of 3–5 pg/ml, in 

freshwater ecosystems (Burkhardt-Holm 2010). However, the effects of 

oestrogens vary significantly from species to species and with different 

environmental conditions (Shin’ichiro et al. 2003). The synergetic effect of 

different xenobiotic hormones, and duration of exposure, influence the effects 

these EDCs may have (Vonier et al. 1996). More research is required to establish 

safe critical limits. Until these have been established it is difficult to monitor and 

implement policies regarding hormone levels at the GWRP.  

This study is aimed at assessing the effectiveness of some selected EDCs removal 

in the GSTP and GWRP. Specific EDCs were quantified in water samples from 

the GSTP inlet (influent) and effluent, as well as from the reclaimed water 

(effluent) produced at GWRP. Seven different bioassays consisting of both 
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enzyme-linked immune-sorbent assays (ELISAs) and chromogenic 

spectrophotometry were used to measure selected steroid hormone levels, 

immunotoxicity, cytotoxicity and neurotoxicity of the water samples. These 

bioassays were chosen for their rapid production of reliable test results and their 

endpoints provide an overview of the efficiency of reduction of potential 

endocrine toxicity of sewage water in the GSTP and of the reclaimed water from 

the GWRP. The results of this study are useful for the establishment of 

biomarkers for routine monitoring of water reclamation plants. 

3.3 Materials and Methods 

3.3.1 Sample collection 

Water samples were collected on 5 different occasions to include various stages of 

the wet and dry seasonal cycle (Table 3.1). This is important, since a higher 

organic matter load from increasing runoff into the sewage system is expected 

during the wet season. Windhoek received exceptionally high rainfall for January 

and February 2011 with the highest monthly rainfall ever recorded for Windhoek 

occurring in the month of January (320 mm). The sampling points were (1) the 

GSTP inlet (raw sewage), (2) the final GSTP maturation pond which also acts as 

the inlet for the GWRP, (3) the GWRP outlet (Figure 3.1) and (4) the Friedenau 

Dam, a suspected unpolluted dam close to Windhoek. The Friedenau Dam was 

included for assay verification purposes. 

Table 3.1 Rainfall recorded in Windhoek for the particular sampling months. 

Sampling Month Description Average rainfall 

(mm) 

March 2010 Towards end of rain season 26.5 

September 2010 End of dry season 11.9 

November 2010 Beginning of rain season 114 

February 2011 Peak of rain season 179.3 

April 2011 Towards end of rain season 161.5 
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Figure 3.1 Schematic representation of sewage processing and use in the City 

of Windhoek at the Gammams Sewage Treatment Plant (GSTP) and the 

Goreangab Water Reclamation Plant (GWRP). 

Water was collected in Schott bottles that had been thoroughly cleaned with soap 

solution and then rinsed with tap water followed by distilled water and finally 

chemically pure acetone. At the sampling point any residual acetone was rinsed 

from the bottles with the source water. The samples were transported on ice and 

frozen in the laboratory until solid-phase extraction was performed. For each 

sample 3 aliquots of 1 ml each were frozen in SureLock tubes for toxicity testing. 

At all sampling points 1 sample was taken, except during September 2010 when 

more replicates were taken for assay verification purposes.  

3.3.2 Solid-phase extraction 

Frozen samples were left at room temperature to thaw before organics were 

extracted using DSC-18 solid-phase extraction (SPE) columns (Supelco, Sigma-

Aldrich). A modified version of the extraction procedure followed by Pool and 

Magcwebeba (2009) was used. In short, the column was first washed with 2 ml of 

methanol followed by 2 ml of solvent mixture (40% v/v hexane, 45% v/v 
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methanol, and 15% v/v 2-propanol). It was then washed with 2 ml of methanol 

and the column was filled with distilled water, after which the samples were 

applied. Once the samples had passed through, the columns were dried under 

vacuum for at least 1 h. The hydrophobic molecules were then eluted from the 

SPE columns into glass vials by applying two 1 ml volumes of solvent mixture. 

The eluate was dried under hot air before being reconstituted in dimethyl 

sulphoxide (DMSO) to a final volume of 0.1% of the original sample volume. 

3.3.3 Steroid hormones 

Steroid hormone levels were determined using the Estradiol, Estrone and 

Testosterone ELISA kits (Sigma, Germany). The assay ranges of the kits are: 9.7–

2 000 pg/ml for estradiol, 2.21– 1 000 pg/ml for estrone and 83–16 000 pg/ml for 

testosterone. For estradiol and estrone a 100-fold dilution, and for testosterone a 

50-fold dilution of the extracts were made using diluted wash solution. All 

samples were applied to the ELISA microplate in duplicate and the assay 

procedure of the ELISA kit was followed. In short: standards, controls and sample 

extracts were applied to the microplate wells. Enzyme conjugate was added and 

the plates were incubated at room temperature. After incubation the plates were 

washed thoroughly and substrate solution was added. After a short incubation 

period stop solution was added and the absorbance was measured at 450 nm. 

The inter- and intra-assay variation of the steroid hormone ELISAs is minimal 

(Swart and Pool 2007) and therefore eliminates the need for expensive replication 

of samples. A once-off estradiol verification assay was performed using 3 

replicates of each sample taken during September 2010 to determine intra-sample 

variation. To determine inter-sample variation 6 replicates of 1 sample from the 

GSTP inlet were analysed.  

3.3.4 Blood collection 

Blood was collected at the University Health Centre from a healthy male 

volunteer that was not on any medication for the 3-month period prior to 

collection. Blood was collected in sterile heparin vacutainer tubes (Lasec, South 
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Africa) and stored at room temperature. Blood samples were used for experiments 

within 18 h of collection. 

3.3.5 Neurotoxicity 

Water samples were screened for general neurotoxicity using an 

acetylcholinesterase inhibition assay. 6 µl of the water extracts was diluted with 

54 µl of 0.1 M phosphate buffer. As positive control, 6 µl of 1 nM chloropyrifos 

in 6 µl DMSO, was used. The negative control consisted of 6 µl DMSO. Both 

positive and negative controls were diluted to 60 µl with 0.1 M phosphate buffer. 

The positive control was also used to construct a 4× dilution range. An 

acetylcholinesterase extract was prepared by mixing heparinised human blood, 

distilled water and 0.1 M phosphate buffer (in a ratio of 3:20:97). 25 µl of each 

sample was added in duplicate to a storage microplate followed by 25 µl of blood 

solution. The plate was left to incubate for 2 h after which 50 µl of substrate was 

added. The substrate consisted of 100 µl of 0.01 M 5,5-dithiobis (2-nitro-benzoic 

acid) (DTNB) that was pre-mixed with 3 ml of 0.1 M phosphate buffer. 20 µl of 

0.075 M acetylthiocholine iodide (ATCI) was then added to the DNTB-phosphate 

buffer mix. Optical density of each sample was immediately determined at  

405 nm and then every 30 min for 2 hours. 

3.3.6 Whole blood culture assays 

All culture assays were performed under sterile conditions. Water from each 

sample was pipetted into duplicate wells (20 µl/well) of a tissue culture plate 

(NuncTM, Denmark). Sterile distilled water was used as a negative control. 

Heparinised blood (5 ml) was added to 45 ml Dulbecco’s Modified Eagle’s 

Medium (BioWhitakker) and 200 µl of this mixture was added to each well. The 

plate was covered and incubated overnight at 37 °C, after which the supernatant 

was collected for lactate dehydrogenase (LDH), interleukin-6 (IL-6) and 

interleukin-10 (IL-10) analysis.  
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3.3.7 Cytotoxicity assays 

Lactate dehydrogenase leakage from damaged cells (i.e. cell death) into the 

plasma was monitored as an indication of cytotoxicity. Lactate dehydrogenase 

was measured using a commercially available chromogenic LDH assay kit 

(Sigma, Germany). Diluted blood (200 µl) was mixed with 20 µl 10% Tween 20 

detergent (Sigma, Germany) to result in complete lysis of the cells. The lysate was 

used as a 100% cytotoxicity control. Whole blood culture supernatants or 

dilutions of the positive control (10 µl/well) were transferred into wells of a  

96-well plate. Lactate dehydrogenase substrate was prepared according to the 

manufacturer’s instructions and 200 µl of substrate was added to each well. 

Optical density was immediately determined at 450 nM and then at intervals of  

10 min. Between measurements the plate was incubated in the dark and at room 

temperature. The LDH concentrations were determined using a standard curve 

constructed from dilutions of the 100% cytotoxicity control.  

3.3.8 Cytokine assays 

Double antibody sandwich ELISAs (e-Bioscience, Germany) were used to 

determine IL-6 and IL-10 concentrations in the whole blood culture supernatants 

collected. The kit’s instructions were used with minor modifications. In brief: 

Nunc-Immuno microplates (NuncTM, Denmark) were coated with 50 µl of capture 

antibody in coating buffer and sealed and incubated overnight at 4°C. Plates were 

washed 5 times with wash buffer and blotted dry on absorbent paper. Wells were 

blocked with 100 µl of 1× assay diluent for 1 h at room temperature after which 

they were washed and blotted dry. A 2-fold dilution range of the standard  

(50 µl/well) was included on all plates. The culture supernatants were diluted  

2-fold with 1× assay diluent and 50 µl of each sample was added in duplicate 

wells of the plate. The plates were covered and left to incubate for 2 h at room 

temperature. The plates were washed 5 times and blotted dry. Detection antibody 

(50 µl/well) diluted in 1× assay diluent was added to wells after which the plates 

were sealed and incubated for 1 h at room temperature. The plates were then 

washed 5 times, blotted dry, and 50 µl of Avidin-Horseradish Peroxidase (Avidin-
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HRP) was added to each well. The sealed plates were left to incubate for 30 min 

at room temperature, after which they were washed 7 times and blotted dry. Then 

50 µl of substrate solution was added per well and left to incubate for 15 min, 

after which 25 µl of stop solution was added. Optical densities were determined at 

450 nM and IL-6 and IL-10 concentrations were determined from standard curves. 

3.4 Results 

3.4.1 Assay verification 

The measuring range of the estradiol ELISA is between 9.7 pg/ml and 2 000 

pg/ml. The intra-sample variation is shown for a negative control, water samples 

from the Friedenau Dam, the GSTP maturation pond and the GSTP inlet (Table 

3.2). The inter-sample variation is shown for 6 replicates produced from a sample 

taken at the GSTP inlet. 

Table 3.2 Intra- and inter-sample variation for the estradiol ELISA as 

validation of the steroid hormone ELISAs. 

Sample Site N 

Estradiol 

Concentration 

(pg/ml) SD % SD 

Intra-

sample 

variation 

Negative control 3 2.0 0.1 3.6 

Friedenau Dam 3 2.5 0.1 3.9 

GSTP maturation pond 3 12.8 0.9 7.2 

GSTP inlet 3 80.8 0.3 0.3 

Inter-sample 

variation 
GSTP inlet 6 80.2 0.6 0.8 
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3.4.2 Steroid hormone concentrations 

The highest concentrations of estradiol were found in the GSTP inlet and the 

GSTP maturation pond. The maturation pond revealed significant removal of 

estradiol during the purification process (Figure 3.2). The concentrations of 

estradiol in the GWRP outlet (the reclaimed water) were below detection limit. 

The highest estradiol concentrations in the GSTP inlet were recorded for the 

months of September 2010 and April 2011. Estrone concentrations in the GSTP 

inlet increased significantly at the start of the rainy season, from below 20 pg/ml 

to 161 pg/ml in November 2010 (Figure 3.3). Subsequent months showed a 

gradual decrease in estrone levels as the rainy season continued. Significantly 

reduced estrone concentrations were measured in the GSTP maturation pond with 

the highest concentrations measured in November 2010 (19.5 pg/ml). The estrone 

levels for the GWRP were below detection limit.  

High testosterone levels, ranging from 150 to approximately 400 pg/ml, were 

detected in the GSTP inlet for all of the months sampled (Figure 3.4). March 2010 

and April 2011 show the lowest levels, of 162 and 159 pg/ml respectively, while 

the highest value, of 405 pg/ml, was detected for November 2010, at the start of 

the rainy season. Testosterone removal is highly effective during the sewage water 

treatment process, since testosterone was less than the detection limit in all 

samples from the GSTP maturation pond and GWRP outlet. 

3.4.3 Neurotoxicity 

Acetylcholinesterase inhibition was high in the GSTP inlet for all months, except 

February 2011, when no inhibition was recorded, and April 2011 when low 

inhibition was recorded (Figure 3.5). The highest inhibition was recorded in 

November when total AChE inhibition was 94%. The GSTP maturation pond 

shows 22 ±7% AChE inhibition for March and September 2010 and April 2011. 

No inhibition was measured for November 2010 and February 2011. The GWRP 

outlet shows no AChE inhibition, except for March 2010 when a 6% AChE 

inhibition was detected. 
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Figure 3.2 Estradiol concentrations (pg/ml) for the months of March, 

September, November 2010 and February and April 2011. 

 

Figure 3.3 Estrone concentrations (pg/ml) for the months of March, 

September, November 2010 and February and April 2011. 
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Figure 3.4 Testosterone concentrations (pg/ml) for the months of March, 

September, November 2010 and February and April 2011. 

 

Figure 3.5 Human blood acetylcholinesterase (AChE) inhibition by water 

samples collected at the GSTP inlet, GSTP maturation pond and GWRP 

outlet. AChE inhibition is presented as a percentage of the AChE activity of 

the negative control. 
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3.4.4 Inflammatory activity for cytotoxicity and cytokine analysis 

Cytotoxicity was only detected in the March 2010 (13%) and February 2011 

(25%) samples of the GSTP inlet (Figure 3.6). All other samples for the GSTP 

inlet as well as the maturation pond and GWRP outlet were negative. 

 

Figure 3.6 Percentage cytotoxicity of water extracts from the GSTP inlet, 

GSTP maturation pond and GWRP outlet measured as concentrations of 

lactate dehydrogenase in supernatants of human blood cultures. 

High blood cytokine IL-6 levels were recorded after exposure of whole blood 

cultures to water extracts collected at the GSTP inlet (Figure 3.7). The lowest 

concentration was recorded in March 2010 (745 pg/ml) and the highest in April 

2011 (1 421 pg/ml). During September and November 2010, and February 2011, 

concentrations ranged between 900 and 1100 pg/ml. Water extracts from the 

GSTP maturation pond show reduced inflammatory activity with IL-6 levels 

reducing to between 500 and 800 pg/ml (average 618 pg/ml). Water collected at 

the GWRP outlet induced very low IL-6 levels (average 52 pg/ml) compared to 

the GSTP inlet and GSTP maturation pond samples. This translates into a  

38 ± 12% reduction during sewage treatment. After reclamation only 9 ± 8% of 

the initial IL-6 inducing activity was detected in the samples. 
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Figure 3.7 IL-6 concentrations in blood culture supernatants after overnight 

exposure to the extracts of water from the GSTP inlet, GSTP maturation 

pond and GWRP outlet. 

The IL-10 levels in the culture supernatants ranged between 150 and 250 pg/ml 

for the months of March, September and November 2010 as well as February 

2011 (Figure 8). During April 2011 a significant increase in IL-10 production was 

detected in both the GSTP inlet and maturation pond, with the inlet reaching  

527 pg/ml. Water treatment in the GSTP resulted in a significant reduction in IL-

10 production. The GWRP outlet tested negative for IL-10 induction in all 

samples. 

0

200

400

600

800

1000

1200

1400

1600

1800

Gammams Inlet GSTP Maturation

Pond

GWRP Outlet

p
g

/m
l

March 2010

September 2010

November 2010

February 2011

April 2011



http://etd.uwc.ac.za
~ 72 ~ 

 

 

Figure 3.8 IL-10 concentrations in blood in blood culture supernatants after 

overnight exposure to the extracts of water from the GSTP inlet, GSTP 

maturation pond and GWRP outlet. 

3.5 Discussion 

The GWRP in Windhoek reclaims a significant proportion of treated wastewater 

to supplement the domestic water supply. Therefore, there are concerns regarding 

the presence and potential effects of EDCs, although the main concern of the 

public still remains microbial pollution and algal toxicity. EDCs and their 

presence in the environment are still not well known to the general Namibian 

public.  

Relatively high levels of steroid hormones are present in the raw sewage entering 

the GSTP. However, during processing at the GSTP and the GWRP steroid 

hormones and neurotoxic, cytotoxic and immunotoxic chemicals present in raw 

sewage are effectively removed. Endocrine disrupting chemicals can be removed 

through various steps in the sewage treatment process. Biodegradation and 

sorption by activated sludge seems to be the most efficient and most often used 

step for the removal of hormones, especially estradiol and testosterone (Janex-
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Habibi et al. 2009; Leusch et al. 2006). However, for other EDCs, their removal is 

reported to be limited (Chang et al. 2009).  

The estradiol concentrations in the GSTP inlet were relatively constant throughout 

the sampling period (78 ± 9 pg/ml). This seems to be, on average, a 4 to 5 times 

higher concentration than for other sewage plants; values of 1.6 pg/ml in Spain 

(Carballa et al. 2008), 21 pg/ml in Brazil (Ternes et al. 1999), 15 pg/ml in 

Germany (Ternes et al. 1999), and 15.6 pg/ml in Canada (Servos et al. 2005; 

Ternes et al. 1999) have been measured. The dissimilarities between 

measurements might be due to, amongst others, the sampling regimen, differences 

in sewage influent properties, differences in the treatment processes, differences 

in the accuracy, and/or precision of the analytical test methods used. Estradiol is 

efficiently removed in the GSTP, with between 83% and 95% removal. This 

removal efficiency is similar to that in other countries (Ternes et al. 1999; Servos 

et al. 2005; Carballa et al. 2008). The water that enters the GWRP is that from the 

GSTP maturation pond, and all remaining estradiol that was detected in the pond 

was successfully removed at the GWRP. In line with research done by Kolpin et 

al. (2004) on the dilution effect on organic wastewater contaminants, lower 

estradiol concentrations during March and November 2010 and February 2011 

can be explained by the dilution effect of runoff rainwater, since these samples 

were collected during or soon after rain events that resulted in increased runoff 

into the sewage system. In contrast, during September 2010 the long dry winter 

resulted in a higher concentration of chemicals in the raw sewage. However, the 

higher estradiol concentration during April 2011 was measured at the end of a 

long intense rainy season and one would have expected it to be lower as well. The 

reason for this increase in concentration is not known, but may have been as a 

result of raw sewage runoff in the catchment. To our knowledge no information 

on steroidal hormone levels in storm-water runoff exists. 

The presence of estrone showed a different pattern compared to estradiol, with 

much more seasonal variation in the raw sewage. Initial concentrations for post-

wet (March 2010) and post-dry months (September 2010) were low (13 pg/ml). 

This was followed by a 12-fold increase in estrone (to 161 pg/ml) after the first 
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precipitation in November 2010. As the wet season continued the estrone levels 

decreased to 135 pg/ml in February and 74 pg/ml in April 2011. These findings 

suggest high levels of estrone build-up within the catchment of the GSTP during 

the dry season, and initial high levels due to runoff during the rainy season. The 

amount of estrone in raw sewage in comparable studies was 40 pg/ml for Brazil, 

27 pg/ml for Germany and 49 pg/ml for Canada (Ternes et al. 1999). The removal 

efficiency in Brazil and Canada ranged from 98% to instances where estrone 

levels in the effluent were even higher than in the raw sewage (Ternes et al. 1999). 

In this study, estrone removal in the GSTP was 100% during March and 

September 2010 when initial estrone concentrations were low. During the 

subsequent months, estrone removal was 85% to 92% and the remaining estrone 

in the maturation pond was completely removed in the GWRP. Estradiol is readily 

oxidised to estrone under aerobic conditions (Ternes et al. 1999) and studies have 

shown that estrone may, as a result of this, be found in higher concentrations in 

the final effluent of sewage treatment plants (Chang et al. 2011; Swart and Pool 

2007). This was however not the case in the GSTP where the estrone and estradiol 

concentrations in the effluent were very similar (9.2 ± 1.2 pg/ml and  

8.4 ± 4 pg/ml, respectively). 

The testosterone concentrations were, on average, much higher than those of 

estradiol and estrone. This is in agreement with the excretion concentrations of the 

natural steroid hormones by humans and animals (Shore and Shemesh 2003), and 

is similar to trends shown by Leusch et al. (2006) for sewage treatment plants in 

Australia and New Zealand. Similarly to estrone, testosterone also peaked in 

November 2010 at the start of the rainy season (405 pg/ml). Overall, testosterone 

concentrations showed greater variation between the different samples with the 

lowest concentration, of 162 and 159 pg/ml, occurring at the end of the rainy 

season (March 2010 and April 2011), probably as a result of dilution. The 

testosterone levels measured correspond well with those measured by Stalter et al. 

(2011) in Switzerland and Germany (21 to 400 pg/ml), while Chang et al. (2011) 

observed much lower concentrations (21 to 76.7 pg/ml) in China. Measurements 

at the GSTP are also within the range of testosterone concentrations measured in 

Australia and New Zealand (Leusch et al. 2006); however the variation in 
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concentrations measured by Leusch et al. (2006) is much more extreme (113 to 4 

300 pg/ml). Testosterone was almost completely removed in all of the samples 

after treatment at the GSTP, with only 10 ± 5 pg/ml remaining. This represents a 

96% removal efficiency of testosterone, which is the same as that observed in 

China by Chang et al. (2011).  

Although the measured steroid hormone concentrations were drastically reduced 

in the effluent, it may still pose an environmental and health risk. A multitude of 

studies have shown that the presence of steroid hormones in effluents have 

adverse effects on wildlife, including, among others, reduced fertility, abnormal 

development of male and female secondary sex characteristics, alteration in sex 

ratio, feminisation of males and alteration of behaviour (Sharpe 1998; Tyler and 

Routledge 1998; Rodríguez et al. 2007; Saaristo et al. 2009). Thus, where effluent 

is used for irrigation purposes or excess sewage effluent enters rivers or dams it 

poses health threats to both animals and humans. In Windhoek, excess sewage 

effluent ends up in the Goreangab Dam, currently used for recreational purposes 

(no swimming or fishing allowed). In addition, the effluent is reclaimed at the 

GWRP to supplement Windhoek’s domestic water supply. However, EDC 

removal in the GWRP was 100% effective.  

The toxicity of raw and treated wastewater has been demonstrated in previous 

research (Farcy et al. 2011; Gagné et al. 2011; Macova et al. 2011). Persistent 

organic pollutants (POPs) like polychlorinated biphenyls, organochlorine 

pesticides, and polycyclic aromatic hydrocarbons are typically responsible for 

many of the toxic effects of wastewater and are characterised by persistence by 

resisting chemical and biological degradation. The most effective means of 

removal seems to be dissolved organic carbon (DOC), powder activated carbon 

(PAC) and ozonation (Bolong et al. 2009; Katsoyiannis and Samara 2007a; Stalter 

et al. 2011). At the GSTP the raw sewage sample showed neurotoxicity, with 50% 

inhibition of AChE. It was only in February 2011, at the peak of the rainy season, 

that no inhibition was detected. This was probably due to the dilution effect of the 

continued rain in the catchment area. The highest AChE inhibition, of 94%, was 

detected in November 2010 after the first rains, when toxins washed in from the 
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city environment. Neurotoxicity was reduced by 73% during the sewage treatment 

process and 100% reduction was achieved at the end of the GWRP. This reduction 

efficiency corresponds well to the study of Macova et al. (2011) on reclamation 

plants in Australia. Cytotoxicity was low overall and only recorded in the GSTP 

inlet for March 2010 and February 2011 (13% and 25% respectively). Sewage 

effluent showed no cytoxicity, and this corresponds to studies elsewhere (Smital 

et al. 2011). Toxicity testing should, however, be done using a wide array of tests 

to include toxic chemicals of varying characteristics, and to accurately determine 

toxicity in a wide range of organisms and under different conditions, as suggested 

by Dizer et al. (2002).  

Pro-inflammatory IL-6 levels were very high in all of the raw sewage samples, 

indicating high microbial activity or microbial breakdown products (Pool et al. 

2000) or high steroid hormone presence, especially estradiol (Ansar Ahmed 

2000). The IL-6 level induced by the March 2011 sample was the lowest, at  

745 pg/ml, and for April 2011 the highest, at 1 421 pg/ml. Average IL-6 levels 

were 1 020 ± 250 pg/ml. High levels are to be expected since it is raw domestic 

sewage containing faecal bacteria, and the highest IL-6 production also 

corresponded with the highest estradiol levels in the GSTP inlet. On average the 

effluent from the GSTP resulted in 38% less IL-6 production, indicating that there 

is still relatively high microbial activity in the effluent. This may pose health risks 

where the effluent is used for irrigation purposes or if the reclamation process at 

the GWRP malfunctions. During this study, the reclaimed water had negligible 

effects on IL-6 production. Anti-inflammatory IL-10 production was lower than 

that of IL-6 with an average of 272 ± 146 pg/ml for the raw sewage. Similar to  

IL-6 the production of IL-10 was also the lowest for March 2010 and the highest 

for April 2011.  

From this study it is evident that the steroid hormone concentrations and 

neurotoxicity are higher towards the start of the rainy season, and cytotoxicity and 

immunotoxicity higher towards the end of the rainy season. Neurotoxicity is 

commonly caused by many anthropogenic chemicals, such as organophosphates 

that accumulate in the catchment during the dry season and then reach the plant 
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after the first rains. In contrast, cytotoxicity and immunotoxicity are mostly 

caused by microorganisms that need time to proliferate in polluted water before 

reaching levels where adverse effects are expressed. Since the rivers in the 

catchment are all seasonal rivers they are dry throughout the winter. With initial 

rains the water is expected to have relatively low microbial content. However, 

after longer periods of rain, and with accumulation of stagnant pools, there will be 

increased microbial activity and therefore increased cyto- and immunotoxicity. 

This may explain the higher cytotoxicity in March and April and higher 

immunotoxicity in April. 

Results from this study indicated that high rainfall decreases the general quality of 

influent water to the wastewater treatment plant, since the concentration of 

hormones such as estrone, estradiol and testosterone increases. The increase in the 

various hormones does not occur simultaneously. Water quality was worst at the 

beginning of the rainy season due to increased runoff bringing in all the 

accumulated pollutants from the streets and buildings. During the last, and more 

intense, part of the rainy season a dilution effect on sewage, and therefore lower 

endocrine disrupting potential, exists. This study revealed that the GSTP is not 

entirely successful in the removal of all EDCs, but achieves relatively good results 

and compares well with other sewage treatment plants, even when the load on the 

systems drastically increases, as was the case with the exceptionally high rainfall 

of the 2010/11 rainy season. It also indicates that remaining EDCs are 

successfully removed by the GWRP. The results of this study form a baseline for 

further EDC studies on the City of Windhoek’s potable water supply. Total 

oestrogenic activity and androgenic activity, as well as the bioavailability of 

EDCs, remain to be investigated. Furthermore, EDC presence in the surface and 

subterranean water sources of Windhoek’s water supply should be determined.  
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Steroid hormone concentrations and physiological 

toxicity of water from selected dams in Namibia 

FAUL, A.K., JULIES, E. & POOL, E.J. 2014. Steroid hormone concentrations 

and physiological toxicity of water from selected dams in Namibia. African J. 
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4.1 Abstract 

Namibia is a semi-arid to arid country and has most of its surface water in dams 

built on ephemeral rivers. Whilst water quality is often measured in terms of 

bacterial contamination and general physico-chemical characteristics, this study 

extends water quality assessment to include steroid hormone presence and 

potential physiological toxicity. This is the first study to determine these 

parameters in dams in Namibia at various stages of the seasons. Seven bioassays 

were used to determine estradiol (E2), estrone (E1) and testosterone (T) 

concentrations, as well as neurotoxicity, cytotoxicity and immunotoxicity, in 

water sampled during 2010 and 2011. Estradiol and E1 concentrations of up to 7.2 

pg/ml and 7.6 pg/ml, respectively, were recorded. Testosterone concentrations 

measured up to 19/pg ml. No cytotoxic effects were detected, while 

acetylcholinesterase (AChE) inhibition assays indicated low neurotoxic effects in 

Goreangab Dam (18% AChE inhibition) and no neurotoxic effects in other 

samples. The immune system biomarker interleukin-6 was high in all samples 

(457 pg/ml), with interleukin-10 being high only at Avis (46 pg/ml), Goreangab 

(74 pg/ml) and Swakoppoort (81 pg/ml) dams. The results suggest that water from 

Goreangab and Swakoppoort dams may have the potential to modulate endocrine 

systems, and shows physiological toxicity. 

Keywords: cytokines, cytotoxicity, endocrine disrupting chemicals, ephemeral 

rivers, inflammatory response, neurotoxicity, steroid hormones, water quality 
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4.2 Introduction 

Rapid increase in the global human population over the last two centuries has 

increased the demand for potable water, as well as its use in industry, mining and 

agriculture. Simultaneously, the adverse effects of these stressors threaten the 

world’s water resources in terms of various forms of pollutants being released into 

the environment. It is therefore of utmost importance that the world’s water 

resources are constantly monitored and protected from various forms of pollution. 

One of the major water contaminants that came under scrutiny in the last few 

decades is a group referred to as endocrine disrupting compounds (EDCs) (Tyler 

and Routledge 1998; Van Der Kraak 1998; Gadd et al. 2005; Pojana et al. 2007; 

Jackson and Sutton 2008). These are chemicals that have the ability to modulate 

the endocrine systems of animals and therefore have the potential to affect various 

physiological processes adversely. Natural and synthetic steroid hormones and 

heavy metals are environmental contaminants recognised as EDCs, most 

frequently encountered in aquatic ecosystems (Medesani et al. 2004; Bondegaard 

and Bjerregaard 2005; Rodríguez et al. 2007). In addition, other recognised EDCs 

include alkylphenols, polychlorinated biphenyls (PCBs), chlorinated pesticides, 

herbicides and petroleum hydrocarbons (Pojana et al. 2007; Rodríguez et al. 2007; 

Swart and Pool 2007; McKinlay et al. 2008). Previous studies have demonstrated 

that EDCs regularly occur in aquatic systems and impact wildlife when 

contamination with raw and semi-purified wastewater from various industries and 

sewage treatment works (STWs) occurs (Harries et al. 1997; Tyler and Routledge 

1998; Van Der Kraak 1998; Gadd et al. 2005; Pojana et al. 2007; Jackson and 

Sutton 2008). Adverse effects on wildlife reproduction include reduced fertility, 

abnormal development of male and female secondary sex characteristics, 

alteration in sex ratio, feminisation of males, masculinisation of females, intersex 

and alteration of behaviour (Sharpe 1998; Tyler and Routledge 1998; Rodríguez 

et al. 2007; Saaristo et al. 2009). These effects were in the past typically 

associated with the presence of steroidal oestrogens in the environment, but more 

recently the role of chemicals with anti-androgenic properties in rivers receiving 

effluent from wastewater treatment plants has been highlighted as another major 
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potential cause (Jobling et al. 2009). Apart from reproductive effects, EDCs may 

also influence other endocrine systems by having neurotoxic, cytotoxic and 

immunotoxic effects, such as acetylcholinesterase (AChE) inhibition in Xenopus 

laevis larvae (Colombo et al. 2005), immune system modulation (Jin et al. 2010; 

Rogers et al. 2013), and cytotoxic effects of EDCs in mussels (Parolini et al. 

2011). 

Namibia has a low population density, with 823 680 km2 of land being inhabited 

by a population of about 2.1 million in 2011 (National Planning Commission 

2012). It is a predominantly hyper-arid to semi-arid country with an average 

annual rainfall of 360 mm (Mendelsohn et al. 2009). There are only seven 

perennial rivers, six of which are situated on the borders of the country. 

Consequently, the largest part of Namibia relies on water from boreholes or 

surface water in dams for human consumption, agriculture and industry. However 

Windhoek, the capital of Namibia, also relies on the reclamation of sewage water 

to supplement the potable water supply, and it is especially here that the 

monitoring for EDCs becomes critical (du Pisani 2006; Faul et al. 2013). A large 

proportion of the country is hyper-arid and the majority of the population is 

concentrated in more densely populated towns, usually located close to water 

sources. This exerts additional pressure on the existing water sources and may 

result in EDC introduction into its available water sources. In the rest of Namibia, 

the relatively low population density probably has minor impacts on the water 

resources.  

To date, no published data exists on the evaluation of EDCs in the natural or 

impounded water sources in Namibia. Therefore, this study aimed to determine 

the endocrine modulating potential of water from nine selected dams acting as 

major surface water sources in Namibia. 
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4.3 Materials and methods 

4.3.1 Sample collection 

The grab water samples were collected every two to three months throughout the 

year, so as to include different times of the wet and dry seasons, between March 

2010 and April 2011 from nine dams. Tables 4.1 and 4.2 show the dams sampled, 

their main uses, the sampling dates and related rainfall information. Since weather 

stations were present at only some of the dams sampled, or in their catchments, 

nearby weather stations in the areas were selected to provide an overview of 

rainfall patterns for the sampling months (Figure 4.1). 

One 400 ml water sample was collected in a Schott glass bottle from 10 cm below 

the surface at each location. Prior to collection the bottles were thoroughly 

washed with soap solution, rinsed with reverse osmosis water and then with 

chemically pure acetone. The bottles were rinsed with water from the sample site 

before collection to get rid of any residual acetone. All water samples were 

transported on ice. Three 2 ml aliquots of each sample were frozen in SureLock 

tubes for cytotoxicity and immunotoxicity analysis. The remaining water was 

frozen until extractions were made for steroid hormone and neurotoxicity 

analysis. 

The water samples were screened for the female hormones 17ß-estradiol (E2) and 

estrone (E1) (also a metabolite of E2) and the male hormone testosterone (T). 

Bioassays to evaluate physiological toxicity, using whole blood cultures to assess 

immunotoxic, cytotoxic and neurotoxic activity in the selected water sources, 

were also conducted. 
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Table 4.1 Namibian dams selected for water analysis and the main uses of the 

water. 

Name Domestic 

Supply 

Irrigation Mining Augmen-

tation 

Recreation 

Omatako    
a  

S von Bach      

Swakoppoort    
a  

Goreangab      

Avis     
b 

Friedenau     
b 

Oanob      

Hardap      

Naute     
b 

a Supplement S von Bach Dam         b Limited Recreation – No watercraft with petrol engines allowed 

Table 4.2 Total monthly rainfall data (mm) for selected weather stations in 

Namibia. 

Station Mar ’10 Sep ’10 Nov ’10 Feb ’11 Apr ’11 
Hochfelda 166.2 0 47.4 155.1 256.6 

Windhoekb 26.5 11.9 114.0 179.3 161.5 

Rehobothb 23.5 0 40.0 207.5 82.3 

Stamprieta 14.0 0 0 152.2 55.0 

Keetmanshoopb 9.5 0 3.6 158.5 14.7 

Canon Roadhousea 17.5 0.3 1.0 8.2 11.9 

a Data obtained from the Namibia Weather Network (www.namibiaweather.info). 

b Data obtained from the Namibia Meteorological Service (www.meteona.com). 

Shaded areas indicate the months with the lowest and highest rainfall recorded. 
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Figure 4.1 Locations of dams sampled and weather stations used to obtain 

rainfall data, in relation to the major towns in Namibia. 

4.3.2 Solid phase extraction 

Extraction of organic compounds was done using DSC-18 solid phase extraction 

(SPE) columns (Supelco, Sigma-Aldrich). Frozen samples were thawed at room 

temperature, and a modified version of the extraction procedure followed by Pool 

and Magcwebeba (2009) was used. The column was charged by washing with  

2 ml of methanol followed by 2 ml of solvent mixture (40% v/v hexane, 45% v/v 

methanol and 15% v/v 2-propanol). It was then washed with 2 ml of methanol and 

filled with distilled water, after which 100 ml of the unfiltered samples were 

applied. Once the samples had passed through, the columns were dried under 

vacuum for at least 1 h. The hydrophobic molecules were eluted from the SPE 

columns into glass vials by applying two 1 ml volumes of solvent mixture. The 

eluate was dried with a hairdryer placed 30 cm above the samples and inside a 

fume hood. The dried samples were reconstituted in dimethyl sulphoxide (DMSO) 
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to a final volume of 0.1% of the original sample volume extracted. All extracts 

were therefore a 1 000× concentrate of the original sample. 

4.3.3 Steroid hormones 

The estradiol, E1 and T concentrations were determined using enzyme-linked 

immunosorbent assay (ELISA) kits (Sigma, Germany). Inter- and intra-assay 

variation for steroid hormone ELISAs are negligible, as shown by Swart and Pool 

(2007) who determined inter-assay variation at 5.6% (n = 3) and intra-assay 

variation between 0.6% and 2.5% (n = 3). This was repeated by Faul et al. (2013), 

who measured inter-assay variation at 0.8% (n = 6) and intra-assay variation 

between 0.3% and 7.2% (n = 3). Thus, the precision of the ELISAs reduces the 

need for expensive and time-consuming replication and provides for a rapid 

screen of a number of samples. 

All procedures provided in the ELISA kits were followed. All samples were 

applied to the ELISA microplates in duplicate. For E2 and E1 a 100-fold dilution, 

and for T a 50-fold dilution, of the 1 000× concentrated extracts were made using 

wash solution. Thus, the E1 and E2 samples were applied to the ELISA 

microplates 10× concentrated, and the T samples were applied 20× concentrated. 

For most of the samples this allowed the concentration of hormones to fall within 

the dynamic ranges of the assays and above the lower limit of quantification 

(LOQ). Afterwards, the results of the ELISAs were adjusted to represent the true 

concentration of hormones in the environment. The dynamic ranges of the assays, 

as provided by the supplier, were: 9.7–2 000 pg/ml for E2; 2.21–1 000 pg/ml for 

E1; and 83–16 000 pg/ml for T. After factoring in the concentrated samples that 

were applied to the ELISAs, the effective lower LOQ for each was reduced to  

0.97 pg/ml for E2, 0.22 pg/ml for E1 and 4.15 pg/ml for T. 

4.3.4 Blood collection  

Blood from three healthy male volunteers, who had not used any medication for a 

three-month period, was collected at the University of the Western Cape Health 
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Centre. Sterile heparin Vacutainer® tubes (Lasec, South Africa) were used for 

collection, and the blood was stored at room temperature and used within 18 h. 

4.3.5 Neurotoxicity 

Water samples were screened for general neurotoxicity by measuring 

acetylcholinesterase (AChE) inhibition in heparinised human blood. Tenfold 

dilutions of 6 μl extracts were prepared using 0.1 M phosphate buffer. Six 

millilitres of 1 nM chloropyrifos were mixed with 6 μl DMSO for the positive 

control. Six microlitres of DMSO was used as negative control and both positive 

and negative controls were diluted to 60 μl using 0.1 M phosphate buffer. The 

positive control was used for a 4× dilution range. Samples in volumes of 25 μl 

were applied in duplicate to a storage microplate. An AChE extract was prepared 

by mixing the collected blood, distilled water and 0.1 M phosphate buffer in a 

ratio of 3:20:97. Thereafter, 25 μl of the diluted blood was added to each well on 

the microplate and left to incubate for 2 h. Substrate was prepared by mixing 100 

μl of 0.01 M 5,5-dithiobis (2-nitro-benzoic acid) (DTNB) with a solution of  

3 ml 0.1 M phosphate buffer and 20 μl 0.075 M acetylthiocholine iodide (ATCI). 

After incubation, 50 μl of substrate was added to each well and the optical density 

of each sample was immediately determined at 405 nm, and thereafter at 30 min 

intervals for 2 h. 

4.3.6 Whole blood culture assays 

The collected healthy heparinised human blood was used to initiate an 

inflammatory response. Under sterile conditions, 20 μl of unextracted water from 

each sample was pipetted in duplicate into the wells of a tissue culture plate 

(NuncTM, Denmark). Sterile distilled water was used as negative control. A 10× 

dilution of heparinised human blood in Dulbecco’s modified Eagle’s medium 

(BioWhittaker) was prepared and 200 μl of the blood-medium mixture was added 

to each well. The plate was covered and, after an overnight incubation at 37 °C, 

the supernatants were collected for lactate dehydrogenase (LDH), interleukin-6 

(IL-6) and interleukin-10 (IL-10) analysis. 
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4.3.7 Cytotoxicity assays 

Lactate dehydrogenase concentrations in the plasma were measured as an 

indication of cytotoxicity of water samples using a commercially available 

chromogenic LDH assay kit (Sigma, Germany). A 100% cytotoxicity control was 

prepared by mixing 20 μl 10% Tween 20 detergent (Sigma, Germany) with 200 μl 

of diluted blood and allowing for complete lysis of the cells. Ten micro litres of 

the whole blood culture supernatants and a dilution range of the positive control 

were transferred into a 96-well storage plate; 200 μl of LDH cytotoxicity assay kit 

WST-8 substrate was diluted in 10 ml of LDH assay buffer and 50 μl of the 

dilution was added to each well. Optical density was immediately determined at 

450 nm and thereafter at intervals of 10 min. Between measurements, the plate 

was incubated at room temperature in the dark. The LDH concentrations were 

determined using a standard curve from the dilutions of the 100% cytotoxicity 

control. 

4.3.8 Cytokine assays 

Bi-directional interaction exists between endocrine and immune systems. The 

increased production of cytokines has been linked to exposure to EDCs (Lee et al. 

2003). To determine the immunotoxicity of the water samples, the supernatants 

collected were analysed for IL-6 and IL-10 concentrations using double antibody 

sandwich ELISAs (e-Bioscience, Germany). The ELISAs were performed with 

minor modifications to the supplier’s instructions. Nunc-Immuno microplates 

(NuncTM, Denmark) were coated with 50 μl of capture antibody in coating buffer 

then sealed and incubated overnight at 4 °C. Plates were washed five times with 

wash buffer and blotted dry on absorbent paper. Wells were blocked with 100 μl 

of 1× assay diluent for 1 h at room temperature after which they were washed and 

blotted dry. Fifty microlitres of the standards were added and a 2-fold dilution was 

performed to create a standard curve. The supernatants were diluted 2-fold with 

1× assay diluent and 50 μl of each sample was added in duplicate to the plate. The 

plates were covered and left to incubate for 2 h at room temperature. The plates 

were washed five times and blotted dry. Fifty microlitres of detection antibody in 
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1× assay diluent was added, the plates sealed and incubated for 1 h at room 

temperature. The plates were washed, blotted dry, and 50 μl of Avidin-

Horseradish Peroxidase (Avidin-HRP) was added to each well. The sealed plates 

were left to incubate for 30 min at room temperature after which they were 

washed seven times and blotted dry; 50 μl of substrate solution was added and the 

plates were left to incubate for 15 min, after which 25 μl of stop solution was 

added. Optical densities were determined at 450 nm and IL-6 and IL-10 

concentrations were determined from standard curves. The LOQ for both ELISAs 

was 15.6 pg/ml. 

4.3.9 Statistical analysis 

Descriptive statistics were used to represent data. The Kruskal–Wallis test was 

used to determine significant differences between data. Where significant 

differences existed, the Mann–Whitney test was used for post hoc analysis. 

OpenStat 2013 and Microsoft Excel 2010 were used for statistical analysis. 

4.4 Results 

4.4.1 Steroid hormone concentrations 

The results of the ELISAs for the female steroid hormone E2 are presented in 

Figure 4.2. The observed levels of E2 in all the samples were higher than the 

lower LOQ of the test and exceeded the predicted no effect concentration (PNEC) 

values for fish (1 pg/ml) as proposed by Young et al. (2004) and Burkhardt-Holm 

(2010). The highest recorded E2values were 7.2 pg/ml and 5.5 pg/ml for the 

Oanob and Goreangab dams, respectively, for September 2010, which was also 

the month with a statistically significant higher average E2 concentration (4.6 

pg/ml) than all the other months (p < 0.05). All E1 concentrations were above the 

lower LOQ. The highest concentrations being 6.1 pg/ml in Avis Dam in 

November 2010, and 7.6 pg/ml in Goreangab Dam in April 2011 (Figure 4.3). 

November 2010 had the highest average E1 concentration (4.4 pg/ml), and the 

concentrations were significantly higher than those in March and September 2010 

(p < 0.05), but no difference was detected between November 2010 and February 
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and April 2011 (p > 0.05). On average, the estrone levels in Avis, Friedenau, 

Goreangab and Swakoppoort dams were above the PNEC values for fish given by 

Burkhardt-Holm (2010). Testosterone concentrations were mostly above the 

lower LOQ (Figure 4.4). The highest values were recorded in November 2010, 

with the maximum concentration of 19 pg/ml being recorded in Friedenau Dam. 

The average T concentration of 10 pg/ml in November was significantly higher 

than the February and April 2011 concentrations (p < 0.05). 

 

Figure 4.2 Estradiol (E2) concentrations (pg/ml) in water from selected 

Namibian dams in March 2010–April 2011 (p < 0.05 for monthly variation). 

Effective lower limit of quantification (LOQ) and predicted no effect 

concentration (PNEC) for fish (Burkhardt-Holm 2010) are indicated. Error 

bars denote SD; n = 2. 
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Figure 4.3 Estrone concentrations (pg/ml) in surface water from selected 

dams in Namibia for the months of March, September, November 2010 and 

February and April 2011 (p < 0.05 for monthly variation). The effective lower 

limit of quantification (LOQ) and predicted no effect concentration (PNEC) 

for fish as provided in Burkhardt-Holm 2010 are also indicated. Error bars 

denote SD; n = 2. 

 

Figure 4.4 Testosterone concentrations (pg/ml) in surface water from selected 

dams in Namibia for the months of March, September, November 2010 and 
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February and April 2011 (p < 0.05 for monthly variation). The effective lower 

limit of quantification (LOQ) is also indicated. Error bars denote SD; n = 2. 

4.4.2 Neurotoxicity 

The acetylcholinesterase inhibition is indicated in Figure 4.5. Water sampled from 

the Goreangab Dam exhibited the highest AChE inhibition during February 2011 

(26%). The month with the highest AChE inhibition for all dams (8%; SD 2%) 

was April 2011, which was statistically significantly higher than in all other 

months (p < 0.05). 

 

Figure 4.5 Acetylcholinesterase inhibition in human blood spiked with water 

samples collected from selected dams in Namibia for the months of March, 

September, November 2010 and February and April 2011 (p < 0.05 for 

monthly variation) (February 2011 data for Goreangab dam not available). 

Error bars denote SD; n = 2. 

4.4.3 Inflammatory activity for cytotoxicity and cytokine analysis 

Lactate dehydrogenase was not detected in plasma indicating that none of the 

corresponding water samples were cytotoxic (1%; SD 0.4%). Interleukin-6 
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457 pg/ml (SD 54), and no significant difference was detected between the 

different months (p > 0.05) (Figure 4.6). Typically, for healthy blood, IL-6 values 

of less than 15 pg/ml would be expected. The highest IL-6 concentrations were 

found in water samples from the Swakoppoort (710 pg/ml; SD 90) and Goreangab 

(673 pg/ml; SD 60) dams, while the lowest concentrations were in the water 

samples from the Omatako (131 pg/ml; SD 83) and Naute (207 pg/ml; SD 28) 

dams. Maximum IL-6 concentrations were observed during February 2011 (651 

pg/ml; SD 56) and November 2010 (515 pg/ml; SD 39), while minimum 

concentrations were observed during April 2011 (323 pg/ml; SD 62) and March 

2010 (376 pg/ml; SD 31). 

Interleukin-10 concentrations were much lower than those of IL-6 (Figure 4.7). 

The significantly higher concentrations were in water samples from the 

Swakoppoort (81 pg/ml; SD 16), Goreangab (74 pg/ml; SD 17) and Avis (46 

pg/ml; SD 6) dams, while concentrations in water from the Naute, Hardap, S von 

Bach, Friedenau and Omatako dams were all below the detection limit (p < 0.05). 

Typically, for healthy blood, IL-10 values of less than 15 pg/ml would be 

expected. No significant differences were detected (p > 0.05) between the 

monthly concentrations for the water samples from any of the dams. 



http://etd.uwc.ac.za
~ 98 ~ 

 

 

Figure 4.6 Interleukin-6 concentrations (pg/ml) of blood plasma of 

uncontaminated human blood after overnight exposure to the extracts of 

water were elevated and showed no significant differences between the 

selected dams (p > 0.05 for monthly variation). Error bars denote SD; n = 2. 

 

Figure 4.7 Interleukin-10 concentrations (pg/ml) of blood plasma of 

uncontaminated human blood after overnight exposure to the extracts of 

water from the selected dams were significantly higher for Avis, Goreangab 
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and Swakoppoort dams (p < 0.05 for monthly variation) while being mostly 

below the lower LOQ for the other dams. Error bars denote SD; n = 2. 

4.5 Discussion 

In Namibia, most of the water available for humans comes either from 

subterranean aquifers or from dams built on ephemeral rivers throughout the 

country. Human activities and water quality in the catchments of dams may 

adversely affect the quality of stored water and the ecosystems of these dams. 

Since Namibia is the driest sub-Saharan country in Africa (Heyns 2005; Baker et 

al. 2007), it is crucial that surface water sources and underground aquifers are 

protected from pollutants. 

Oestrogenic steroid hormone levels as low as 1–10 pg/ml have been shown to 

induce reproductive abnormalities in fish (Young et al. 2004). The concentrations 

of both E2 and E1 in all surface water samples tested in this study were higher 

than the proposed PNEC values (1 and 3 pg/ml, respectively). No reports exist, 

locally or elsewhere, on steroid hormone presence in dams built on ephemeral 

rivers. 

However, some reports exist for dams built on perennial rivers. Jafari et al. (2009) 

measured E2 and E1 concentrations below 7 pg/ml during 2006 and 2007 in 

Ekbatan Dam, Iran. This is comparable to the concentrations measured in the 

present study. Globally, more data exist on the oestrogenicity of surface water 

from perennial streams and rivers than for dam water. Examples include Austria 

(Hohenblum et al. 2004), Brazil (Sodré et al. 2010), the Netherlands (Belfroid et 

al. 1999) and France (Vulliet & Cren-Olivé 2011). In these studies, E2 

concentrations were determined using either gas or liquid chromatography 

techniques and results were generally low (<5 pg/ml), while only one sample from 

Brazil had an E1 concentration of 39 pg/ml. 

In general, the testosterone concentrations in this study are comparable to, or 

lower than, those found by Vulliet and Cren-Olivé (2011) for surface waters in 

France (0.3–26.3 pg/ml), whereas Kolpin et al. (2002) reported values as high as 
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214 (average 116) pg/ml for streams in the USA. The higher testosterone 

concentrations measured during November 2010 in the Friedenau, Avis, Naute 

and Goreangab dam samples can possibly be explained by the onset of that rainy 

season causing testosterone in agricultural runoff to be washed from their 

catchments, since all these dams, except Goreangab, lie within livestock farming 

areas. Towards the end of the rainy season the sluices of most of the dams were 

opened for long periods of time, due to high rainfall. This may have resulted in 

the reduced testosterone concentrations (average concentration below effective 

LOQ of 4.15 pg/ml) observed in April 2011 due to the dilution effect of a 

continued in- and outflow of rainwater. One natural degradation process of 

testosterone is by exposure to ultraviolet light (Vulliet et al. 2010). This suggests 

that, with long-term exposure of dam water to sunlight, without additional 

influxes, one would expect a reduction in testosterone concentrations. The dam 

with the highest testosterone concentrations throughout the sampling period was 

Goreangab. This dam’s catchment consists of a mixture of informal settlements 

and residential and industrial areas of the city of Windhoek. Furthermore, part of 

the effluent from the Gammams sewage treatment plant (GSTP) is released into 

this dam. This effluent contains testosterone concentrations exceeding 10 pg/ml 

(Faul et al. 2013). 

The steroid hormone levels reported in this study are comparable to measurements 

made elsewhere (Jafari et al. 2009; Vulliet and Cren-Olivé 2011), although 

research results on water from artificial reservoirs on ephemeral rivers, such as 

those in Namibia, are scarce. This study further indicates that, of the dams 

investigated, Goreangab Dam generally has the highest steroid hormone levels. 

This is most likely as a result of the inflow of sewage effluent, the catchment 

including the city of Windhoek, and the presence of informal settlements around 

the dam. 

All the dams, except Goreangab, have their catchments outside urban or 

agricultural areas, where intensive use of pesticides or other chemicals may occur. 

This explains why negligible or no neurotoxic effects are present in the surface 

waters of these dams. However, the possibility of chemicals with neurotoxic 
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characteristics occurring in the sediments needs to be investigated, since organic 

hydrophobic pollutants will accumulate in sediments, as suggested by Xue et al. 

(2005). 

The water sampled from Goreangab Dam shows neurotoxic effects, possibly 

because its catchment lies in the city of Windhoek. This includes a large informal 

settlement on the immediate northern side of the dam. Persistent neurotoxins can 

therefore be introduced into the dam from upstream. Furthermore, excess sewage 

effluent from the GSTP, which receives stormwater runoff and domestic sewage, 

is also released into this dam. This effluent showed AChE inhibition of up to 22% 

(Faul et al. 2013). Comparable studies indicated that sewage effluent and 

stormwater runoff can be a source of chemicals (e.g. organophosphate 

compounds) with potential neurotoxic effects (Martínez-Carballo et al. 2007; 

Regnery and Püttmann 2010). Apart from anthropogenic chemicals, algal blooms 

containing microcystins can also have potential neurotoxic and endocrine 

disrupting effects (De Figueiredo et al. 2004; Osswald et al. 2007; Rogers et al. 

2011). Recently, Rogers et al. (2011) showed that algal blooms release 

compounds with endocrine disrupting effects that are not related to microcystins. 

Although no published data exist, previous water quality monitoring at the 

Swakoppoort and Goreangab dams indicated that these dams have high microbial 

activity as well as eutrophication leading to algae, mostly cyanobacteria, blooms. 

One of the main reasons why the Goreangab Dam wtare source is considered unfit 

for purification as drinking water is the large amount of algae present in the dam, 

creating problems with the maintenance of filters. The occurrence of 

cyanobacteria, specifically Microcystis, with its link to neurotoxic effects, in 

Goreangab Dam requires further investigation. Similarly, concern about the high 

algae content in the Swakoppoort Dam should also be closely monitored, because 

this dam supplements the Windhoek water supply. 

The results of the current study indicate that the tested surface water sources for 

human consumption are free from neurotoxic effects. This does not imply that 

substances such as polychlorinated biphenyls, organochlorines, organophosphates 

and polycyclic aromatic hydrocarbons, as well as mycrocystins, are not present. It 
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may be that these substances are diluted or degraded to such an extent that they 

were not detected by the assay methods employed, or their concentrations were 

below the assay quantification limits. Should farming practices or land use in 

these catchments change to the extensive use of pesticides and fertilisers, the 

current water quality situation might change, and therefore regular monitoring is 

advisable. 

No cytotoxicity (cell death) was detected in any of the surface water sources 

sampled. Similar results were found for selected rivers in the Western Cape, South 

Africa (Pool & Magcwebeba 2009), while variable levels of cytotoxicity were 

detected in water from rivers in studies done in Tasmania and Slovenia (Khalil & 

Winder 2008; Žegura et al. 2009). The present bioassay of the cytotoxic properties 

of water indicates that the tested Namibian surface water sources are of good 

water quality and are probably unpolluted. However, as suggested by Pool and 

Magcwebeba (2009), cell death as a measure of cytotoxicity does not exclude 

possible non-destructive physiological effects on cells.  

Pro-inflammatory IL-6 production was high for all the surface water samples, 

with maximum production being measured during November 2011 and February 

2010. The lowest concentrations were detected in water sampled in April 2011 

and March 2010, in each case towards the end of the rainy season. This suggests 

that microbial pollution and its breakdown products increase during the dry 

season when the water is essentially stagnant, whereas, when the runoff from the 

first rain water enters the dams from their respective catchments, microbial 

activity increases significantly. This may be as a result of a high organic carbon 

load carried from the catchment, since microbes tend to proliferate in high 

dissolved organic carbon environments (Hamata & Chinsembu 2012). Reduced 

IL-6 concentrations in water sampled in April 2011 occurred after good rainfall, 

and the sluices of all the dams in the study area had been open for long periods, 

and the water in them had largely been replaced. Water samples from the 

Goreangab and Swakoppoort dams showed the highest IL-6 production 

throughout the study period. This supports the observations made that these two 

dams contain high levels of cyanobacteria and microbial activity. The exact cause 
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of high IL-6 production should be investigated, since the available literature 

shows that, in the case of cyanobacteria exposure, both suppression and activation 

of the immune system can be experienced, depending on the type of species and 

its toxins (Shen et al. 2003; Dogo et al. 2011). 

The highest IL-10 productions were measured in Water samples from the Avis, 

Goreangab and Swakoppoort dams. These dams also had high IL-6 

concentrations. The inflammation regulatory cytokine IL-10 is probably high in 

response to the high IL-6 concentrations, since IL-6 is pro-inflammatory and IL-

10 is an inflammation regulatory cytokine. A similar trend was observed by Faul 

et al. (2013) for cytokine production in response to exposure to sewage water 

extracts. Relatively high IL-10 concentrations in Avis Dam are also linked to high 

IL-6 concentrations. Avis Dam also supports periodically increased algal growth, 

which may induce these types of immune responses. 

This study is the first to have used a combination of assays to screen endocrine 

disrupting potential in dams built on ephemeral rivers in Namibia. It is evident 

that raw surface water from dams can have possible adverse immune system 

effects and, where the water is used for domestic purposes, proper purification is 

required. However, with the exception of Goreangab and to a lesser degree 

Swakoppoort dams, the overall water quality of the dams studied is good. Low 

oestrogenicity, testosterone levels, neurotoxicity, cytotoxicity and immunotoxicity 

were recorded. Currently, water from the Goreangab and Swakoppoort dams may 

pose the highest risk of eliciting significant immune responses. Although 

Goreangab dam is not used as a potable water source, the quality of water from 

the Swakoppoort Dam is of concern. Part of the catchment of the Swakoppoort 

dam lies in the Windhoek district, and this might be a possible source of 

pollutants. The presence of algal blooms may be one of the main contributing 

factors reducing water quality in many of the dams, and therefore the source, 

impacts and remediation of this should be investigated. 

The current study provides baseline information for future research in this field in 

water from the dams in Namibia. 
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Chapter 5 

Multiple Biomarker Screening and Proteome Profiling of Whole 

Blood Culture Supernatants Exposed to Reclaimed Sewage 
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5.1 Abstract 

The Goreangab Water Reclamation Plant in Windhoek, Namibia, was for a long 

time the only reclamation plant for direct potable reuse of treated sewage in the 

world. Direct potable reuse of reclaimed sewage raises concerns for potential 

health impacts on consumers. To date, limited research has been conducted on the 

potential adverse effects on the immune system caused by reclaimed water 

produced by the Goreangab Water Reclamation Plant. This study is aimed at 

determining the immunomodulatory potential of the reclaimed sewage by 

culturing blood obtained from healthy individuals in the presence of source 

(treated sewage/influent) or reclaimed (effluent) water samples. Cell viability was 

determined using a lactate dehydrogenase test and interleukin (IL)-6, macrophage 

inflammatory protein (MIP)-1β, IL-10 and interferon (IFN)-γ concentrations were 

determined using enzyme-linked immunosorbent-assays. Proteome profiling was 

performed to screen for a range of cytokines. Cell cultures were viable after 

exposure to treated sewage and reclaimed water. The treated sewage sample 

increased the IL-6 (2 160 pg/ml), MIP-1β (6 008 pg/ml) and IL-10 (67 pg/ml) 

production significantly. Assay results for the reclaimed water sample were all 

similar to the negative control. The proteome profile indicated production of IL-

1ra, Monocyte Chemoattractant Protein (MCP)-1, MIP-1α/MIP-1β, IL-6 and IL-

1β by blood cultures exposed to treated sewage and the lippopolysccharide 

positive control. These proteins were not produced by blood cultures exposed to 

the negative control or reclaimed water. The results of the study are indicative of 

the successful removal of immunomodulatory chemicals from the treated sewage 

during this reclamation treatment process. It further demonstrates the usefulness 

of immune system biomarkers for toxicity testing of treated and reclaimed water. 

Key Words: Direct Potable Reclamation; Immunomodulatory Potential; 

Endocrine Disrupting Chemicals, Interleukin, Interferon, Macrophage 

Inflammatory Protein, Proteome Profile 
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5.2 Introduction 

The City of Windhoek in Namibia has, since 1969, been at the forefront of water 

reclamation by becoming the first city in the world to directly reclaim domestic 

sewage effluent for direct potable reuse (Du Pisani 2006). Although indirect 

potable reuse, by first allowing reclaimed water to pass through an environmental 

buffer, is a more common practice, it is only recently that other countries started 

direct potable reuse similar to Namibia (Khan 2013). Initially reclamation in 

Windhoek was performed at the Old Goreangab Water Reclamation Plant, 

originally constructed to treat water from the Goreangab Dam as well as the 

sewage effluent from the Gammams Sewage Treatment Plant (GSTP). Following 

a number of upgrades, a new Goreangab Water Reclamation Plant (GWRP) was 

constructed in 2002, which continues to contribute towards the city’s water 

supply, and importantly so, during times of drought. Today, due to high pollution 

levels, water from the Goreangab Dam is no longer utilized for reclamation. Thus, 

the GWRP reclaims 100% treated effluent from the GSTP, which receives mainly 

domestic raw sewage from the City of Windhoek. 

In Namibia, direct potable reuse was necessitated by the relative scarcity of water 

in a mostly semi-arid environment characterized by low and erratic rainfall 

(Mendelsohn et al. 2009). The process steps followed by the GWRP are 

coagulation, dissolved air flotation, rapid gravity sand filtration, ozonation, 

biological activated carbon filtration, granular activated carbon filtration, ultra-

filtration, disinfection, and stabilisation using chlorine and sodium hydroxide 

(Pers. Comm. Siegfried Mueller). As a health and safety measure, the GWRP 

contributes not more than 35% to the total volume of potable water used in 

Windhoek (Pers. Comm. Siegfried Mueller). The remaining 65% being sourced 

from the S. von Bach Dam and the Windhoek aquifer via boreholes. The S. von 

Bach is part of a three–dam system whereby the S. von Bach Dam is augmented 

by the Swakoppoort and Omatako Dams. 

Direct potable reuse of reclaimed sewage effluent pose potential health risks to 

consumers due to the vast array of microbes, endocrine disrupting chemicals 

(EDCs) and toxins contained in the sewage influent. These include infectious 
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agents such as viruses, bacteria and parasites (Naidoo & Olaniran 2013), 

chemicals such as pesticides (Campo et al. 2013), pharmaceutical products (Leung 

et al. 2012), heavy metals such as cadmium and lead (Rule et al. 2006), synthetic 

organic chemicals like polychlorinated biphenyls (PCBs) and polyaromatic 

hydrocarbons (PAHs) (Khan 2010), volatile organic compounds (Khan 2010), and 

hormones (Swart and Pool 2007). EDCs, if present in the environment and in the 

domestic water supply, may potentially result in adverse effects in animals and 

humans by disrupting endocrine systems. This may include cytotoxic, neurotoxic, 

immunotoxic and reproductive effects (Sharpe 1998; Tyler and Routledge 1998; 

Colombo et al. 2005; Rodríguez et al. 2007; Saaristo et al. 2009; Jin et al. 2010; 

Parolini et al. 2011; Rogers et al. 2013).  

Contaminated water, like treated sewage effluent, has been shown to result in the 

modulation of the immune system in animals (Hébert et al. 2008; Farcy et al. 

2011). As a result, immunological biomarkers are actively researched as 

indicators of the presence of contaminants such as EDCs in the environment. This 

includes the stimulation or suppression of a variety of cytokines (Langezaal et al. 

2001; Kindinger 2005; Makene and Pool 2015). Interleukin-6 (IL-6), interleukin-

10 (IL-10), and interferon-γ (IFN-γ) have been employed as biomarkers for 

toxicity testing of water (Pool et al. 2000; Pool and Magcwebeba 2009; Faul et al. 

2013; Adebayo et al. 2014; Faul et al. 2014; Makene and Pool 2015; Ohkouchi et 

al. 2015, Makene et al. 2016). However, only one study, as far as could be 

discerned, has been conducted to determine the potential immunotoxicological 

effects of sewage reclaimed for direct potable reuse water (Faul et al. 2013). This 

study (Faul et al. 2013) indicated that the GWRP successfully eliminated the 

immunotoxic effects of the treated sewage effluent from the GSTP, measured as 

IL-6 and IL-10 cytokines in exposed whole blood cultures. 

The current study aims at expanding the immunological biomarker range tested in 

vitro as indicators of the successful reclamation of treated sewage effluent at the 

GWRP. It considers both the stimulation and suppression of immune responses. 

The cytotoxicity of water samples were determined with a lactate dehydrogenase 

(LDH) assay. The concentrations of IL-6, IL-10, IFN-γ and the macrophage 
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inflammatory protein MIP-1β were determined in the culture supernatants of 

whole blood cultures exposed to the GSTP effluent and the GWRP reclaimed 

water using enzyme linked immunosorbent assays (ELISAs). A proteome profile 

was also performed as a broad spectrum, although less sensitive, screen for a wide 

range of cytokines and chemokines. 

5.3 Methods and Materials 

5.3.1 Water Collection 

Three grab water samples were collected in sterile tubes at each of the GSTP final 

maturation pond (source for the GWRP) and the GWRP outlet (reclaimed water) 

on the 15th of May 2017. The samples were stored at -80 °C until used. 

5.3.2 Microbial and Chemical Analysis 

To ensure the safety and quality of reclaimed water, the Scientific Services 

division of the City of Windhoek performs regular microbial and chemical 

analysis on both the source water (treated sewage from the GSTP) and the final 

product water of the GWRP. The results of these analysis were obtained from the 

City of Windhoek for inclusion in this study. The results were for water samples 

collected on the 15th of May 2017, the same day of water collection for the 

immunotoxicity assays. 

5.3.3 Blood collection 

Blood was collected from healthy male volunteers that were not on any 

medication for a three month period prior to collection. Blood was collected in 

sterile vacutainer tubes (Vacuette, Greiner Bio-One, Germany) containing 3.2% 

sodium citrate as anti-coagulant and stored at room temperature. Blood samples 

were used for experiments within 8 hours of collection. Ethical clearance was 

granted under the project title: The use of whole blood cell cultures as a model for 

assessing immunotoxicity (Registration no: 10/9/43). 
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5.3.4 Whole Blood Culture Assays 

All culture assays were performed under sterile conditions. Blood was divided 

into three tubes to prepare unstimulated, lipopolysaccharide (LPS) stimulated, and 

phytohaemagglutinin (PHA) stimulated whole blood cultures. To prepare the 

unstimulated whole blood culture, a volume of Roswell Parks Memorial Institute 

(RPMI) 1640 medium (Sigma, Germany) equal to 25% of the volume of blood, 

was mixed in a heparinized vacutube (Vacuette, Greiner Bio-One, Germany) and 

added to the blood. The blood was then diluted to a final dilution of one in ten 

with RPMI medium. For the LPS and PHA stimulated cultures the same 

procedure as above was used, but LPS (Sigma, Germany) was added to a final 

concentration of 0.1 μg LPS/ml of culture medium and PHA (Sigma, Germany) 

was added to give a final concentration of 16 μg PHA/ml of culture medium. Both 

LPS and PHA were added to the culture mediums immediately before being 

applied to a culture plate. 

Water from each sample was filtered by passing it through a 0.22 μm syringe filter 

(Starlab Scientific, China) after which 100 μl was applied in duplicate to a 48-well 

flat bottom tissue culture plate (BD Falcon, USA). The Roswell Parks Memorial 

Institute 1640 medium containing 1% Tween 20 (Merck, Germany), was added as 

positive toxicity control and RPMI medium only was used as negative control. 

The unstimulated, LPS-stimulated and PHA-stimulated whole blood in culture 

medium (900 μl/well) were added to the samples on the culture plate. The plate 

was covered and incubated overnight at 37 °C after which supernatants were 

transferred to clean plates and kept at -80 °C until the cytotoxicity and cytokine 

determination as well as the proteome profiling could be performed. 

5.3.5 Cytotoxicity Assay 

The cytotoxicity of the water samples was determined using a Lactate 

Dehydrogenase (LDH) Cytotoxicity Colorimetric Assay Kit II (Biovision, USA). 

The unstimulated supernatants were centrifuged at 12 100 RPM for 5 minutes 

after which 10 μl of each sample was transferred to a flat bottom plate (Greiner 
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Bio-One, Germany). For the positive control (1% Tween 20 exposure) a double 

dilution was prepared by adding 1 × phosphate buffered saline (PBS) to the 

supernatant to have final supernatant concentrations ranging from 50% to 0%. 

Lactate dehydrogenase reaction mixture (100 μl/well) was added and the plate 

was incubated in the dark for 30 min at room temperature. The reaction was 

stopped by adding 10 μl stop solution and the optical density was determined at 

450 nm in a multi-plate reader (Multskan EX, Thermo Fischer Scientific). 

5.3.6 Cytokine Assays 

The cytokine concentrations were determined using double antibody sandwich 

ELISAs (e-Bioscience, Germany, for IL-6, IL-10 and INF-γ and R&D Systems, 

USA, for MIP-1β). The procedures used were as prescribed in the kit, but were 

followed with slight modifications. In brief: Flat bottom plates (Nunc 

MaxisorpTM, Denmark) were coated overnight at 4 °C with 50 μl capture antibody 

in coating buffer. After incubation the plates were washed five times in wash 

buffer and tapped dry. The wells were then blocked for an hour with 100 μl assay 

diluent per well, except for the MIP-1β plate which was blocked with 1% bovine 

serum albumin in PBS. After blocking, the plates were washed five times and 

tapped dry before adding 50 μl of the blood culture supernatants. For each 

cytokine ELISA a standard range was also included as provided in the kits. The 

plates were incubated for two hours before washing five times and then adding 50 

μl detecting antibody. After another two hour incubation followed by a five times 

wash procedure, 50 μl avidin horseradish peroxidase (HRP) was added to each 

well. A 20 minute incubation was then followed by washing seven times after 

which 50 μl of tetramethylbenzidine substrate was added and the plates were 

again incubated for 20 minutes. The process was stopped and the optical density 

was determined at 450 nm. For MIP-1β the optical density was also determined at 

540 nm as specified in the instructions in order to correct for optical imperfections 

on the plate. 
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5.3.7 Proteome Profiling 

Proteome profiling was performed using the Proteome ProfilerTM Human 

Cytokine Array (R&D Systems, USA). All instructions as provided in the kit were 

followed. In brief: The membranes were blocked for one hour in Array Buffer 4. 

One sample of each of the control, GSTP- and GWRP-unstimulated and LPS-

stimulated supernatants were thawed on ice and centrifuged at 12 100 rpm. A 

volume of 500 μl of each of the sample, Array Buffer 4 and Array Buffer 5 were 

mixed and 15 μl reconstituted detection antibody was added. The prepared 

samples were incubated for an hour at room temperature. After one hour, the array 

buffer was aspirated from the membranes and the prepared samples were added to 

the membranes. The 4-well multi-dish was covered and left to incubate overnight 

in the fridge. The membranes were then washed three times for 15 minutes each 

with 1 × wash buffer. Subsequently 2 ml of diluted Streptavidin-HRP was added 

to each membrane, which were then incubated for 30 minutes at room 

temperature. After washing the membrane five times for 15 minutes each with 

wash buffer, tetramethylbenzidine substrate was added to the membranes to 

visualise the cytokines detected. Photographs of the developed membranes were 

taken for analysis. 

5.3.8 Data Analysis 

All data analysis for the ELISA results were performed using Excel (Microsoft 

Office Professional 2010) and SigmaPlot 12. One-way Analysis of Variance was 

used to test for statistically significant differences between groups at P < 0.05. 

Where significant differences were detected, post-hoc analysis were performed 

using the Holm-Sidak method with statistical significance at P < 0.01. 

5.4 Results 

5.4.1 Microbial and Chemical Analysis 

The results of the microbial and chemical analysis of water samples as obtained 

from the City of Windhoek are presented in Table 5.1. The test results indicated 
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that all the microbial contaminants that were tested for, were successfully 

removed in the reclaimed water. 

Table 5.1 Microbial and chemical analysis of source (semi-purified sewage) 

and final reclaimed water samples sampled on 15 May 2017 in comparison to 

the Namibian (NamWater), South African and US EPA standards/limits. 

Measure Units Source 

Water 

(GSTP) 

Final 

Product 

(GWRP) 

Namibia* South 

Africa 

US 

EPA 

Heterotrophic plate 
count 

cfu/1 ml 59,500 0 10,000 1000  

Total coliform cfu/100 ml 5,250 0 100 <10  
Faecal coliform cfu/100 ml 695 0 50 0  
Faecal streptococci cfu/100 ml 26 0    
Pseudomonas 

aeroginosa 

cfu/100 ml 1,400 0    

Clostridium spores cfu/100 ml 3,050 0    
Clostridium viable cfu/100 ml 4,500 0    
Somatic coliphage PFU/100 

ml 
530 0    

Free chlorine mg/l - 1.43 0.1-5   
pH - 8.16 7.81 4.0-11  6.5-8.5 
Temperature °C 13.7 10.9    
Conductivity mS/m 

25°C 
125 140 400 170  

Total dissolved solids mg/l 838 938  1,200 500 
Turbidity NTU 1.31 0.169 10 5  
Total Alkalinity mg/l 

CaCO3 
228.14 190.7    

Total hardness 
(CaCO3) 

mg/l 
CaCO3 

195 190 1,300   

Nitrate (NO3
- as N) mg/l as N 4.6 5.7 40 11 10 

Nitrite (NO2
- as N) mg/l as N 0.16 <0.1  0.9 1 

Potassium (K) mg/l 28.6 28.6 800   
Sodium (Na) mg/l 170.9 194.6 800 200  
Calcium hardness 
(CaCO3) 

mg/l 
CaCO3 

120 120 1000   

Magnesium hardness 
(MgCO3) 

mg/l 
MgCO3 

74 72 840   

Ammonia (NH3-N) mg/l as N 0.43 <0.15 4 1.5  
Orthophosphate mg/l 1.2 0.23    
Total Kjeldahl 
nitrogen (TKN) 

mg/l as N 2.4 0.5    

Dissolved organic 
carbon 

mg/l 5.63 1.06    

Chemical oxygen 
demand 

mg/l 20 5    

Absorption (UV 254) abs/cm 0.174 0.016    
Chlorophyll A 
concentration 

μg/l 12.12 0    

* The limits provided are for water considered to have a low health risk and attention should be 
given to the problem, although the situation is not critical yet. 
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5.4.2 Cytotoxicity Assay and Cytokine Analysis 

No LDH was detected in culture supernatants for all the samples analysed, thus no 

apparent cytotoxicity was detected in any of the GSTP or GWRP exposed whole 

blood cultures (data not shown). Optical densities as determined with the assay 

were 0.703 for the positive control, 0.135 for the negative control, and between 

0.146 and 0.167 for all the samples. Thus, correcting for background absorbance 

by subtracting the negative control optical density from the samples, this equates 

to approximately sample optical densities being approximately 2% of the positive 

control. 

The results of the IL-6 ELISA are presented in Figure 5.1. The IL-6 concentration 

in the LPS stimulated control (2 734 ± 75 pg/ml) was significantly higher  

(p < 0.001) than the IL-6 concentration of the unstimulated control (25 ± 0 pg/ml). 

The IL-6 concentration in the GSTP-exposed cultures (2 160 ± 140 pg/ml) was 

significantly higher (P < 0.001) than both the unstimulated control (25 ± 0 pg/ml) 

and the GWRP (24 ± 4 pg/ml) exposures. There were no differences (p > 0.01) 

between the GSTP LPS-stimulated (2 707 ± 136 pg/ml), GWRP LPS-stimulated 

(2 500 ± 42 pg/ml), and the LPS-stimulated control (2 734 pg/ml). All three 

sample test results were higher (P < 0.001) than the unstimulated control (25 ± 0 

pg/ml). 

The results of the MIP-1β ELISA are presented in Figure 5.2. The macrophage 

inflammatory protein-1β concentration in the LPS-stimulated control  

(7 425 ± 575 pg/ml) was significantly upregulated (p < 0.001) compared to the 

unstimulated control (63 ± 12 pg/ml). In GSTP-exposed cultures the MIP-1β 

concentration (6 008 ± 954 pg/ml) was significantly higher (P < 0.001) than both 

the unstimulated control (63 ± 12 pg/ml) and the GWRP (54 ± 10 pg/ml) 

exposures. The macrophage inflammatory protein-1β concentration in the GSTP 

LPS-stimulated (5 849 ± 241 pg/ml) and in the GWRP LPS- 

stimulated (5 928 ± 323 pg/ml) cultures were significantly higher (P < 0.001) than 

in the unstimulated control (63 ± 12 pg/ml), but were not different (P > 0.01) from 

that in the LPS-stimulated control (7 425 ± 575 pg/ml). 
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Figure 5.1 Interleukin-6 concentrations, determined using an ELISA, in 

unstimulated and LPS-stimulated blood cultures after overnight exposure to 

GSTP and GWRP water samples. Significant differences (p < 0.01) are 

indicated with an “a” (significantly different from unstimulated control) 

and/or “b” (significantly different from LPS-stimulated control). Error bars 

denote standard deviation. 

 

Figure 5.2 Macrophage inflammatory protein-1β concentrations determined 

using an ELISA, in unstimulated and LPS-stimulated blood cultures after 

overnight exposure to GSTP and GWRP water samples. Significant 

differences (p < 0.01) are indicated with an “a” (significantly different from 

unstimulated control) and/or “b” (significantly different from LPS-

stimulated control). Error bars denote standard deviation. 
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The results of the IL-10 ELISA are presented in Figure 5.3. The interleukin-10 

concentration in the PHA stimulated control (102 ± 3 pg/ml) was significantly 

higher (p < 0.001) than in the unstimulated control (0 pg/ml). The interleukin-10 

in the GSTP-exposed culture (67 ± 14 pg/ml) was higher (P < 0.001) than in both 

the unstimulated control (0 pg/ml) and GWRP (0 pg/ml) exposures. The 

interleukin-10 concentration in the GSTP PHA-stimulated (146 ± 3 pg/ml) and in 

the GWRP PHA-stimulated (148 ± 5 pg/ml) cultures were higher (P < 0.001) than 

in the PHA-stimulated control (102 ± 3 pg/ml). 

 

Figure 5.3 Interleukin-10 concentrations determined using an ELISA, in 

unstimulated and LPS-stimulated blood cultures after overnight exposure to 

GSTP and GWRP water samples. Significant differences (p < 0.01) are 

indicated with an “a” (significantly different from unstimulated control) 

and/or “b” (significantly different from PHA-stimulated control). Error bars 

denote standard deviation. 

The results of the IFN-γ ELISA are presented in Figure 5.4. The IFN-γ 

concentration in the PHA-stimulated control (676 ± 18 pg/ml) was higher (p < 

0.001) than in the unstimulated control (7 ± 1 pg/ml). The IFN-γ in the GSTP-

exposed culture (7 ± 3 pg/ml) was not different (P > 0.01) from that in the 
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stimulated (585 ± 17 pg/ml) cultures were lower (P < 0.001) than that in the PHA-

stimulated control (676 ± 18 pg/ml). 

 

Figure 5.4 IFN-γγγγ concentrations determined using an ELISA, in unstimulated 

and LPS-stimulated blood cultures after overnight exposure to GSTP and 

GWRP water samples. Significant differences (p<0.01) are indicated with an 

“a” (significantly different from unstimulated control) and/or “b” 

(significantly different from PHA-stimulated control). Error bars denote 

standard deviation. 

5.4.3 Proteome Profiling 

As indicated in Figures 5.5 and 5.6 and Table 6.2, the CCL5/RANTES 

(Chemokine (C-C motif ligand 5 / / regulated on activation, normal T cell 

expressed and secreted), Macrophage migration inhibitory factor (MIF), serine 

protease inhibitors (Serpin) E1 and Intercellular Adhesion Molecule (ICAM) -1 

show the same trend in all samples. CCL2, MIP-1α/MIP-1β, IL-1 β, IL-1ra, IL-6 

and IL-8 are present in both the LPS-stimulated control and the GSTP samples. 

The LPS-stimulated control also produced CXCL1 which is not present in any of 

the other samples. 
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a - Unstimulated 
Control 
b - GSTP-Exposed 
Blood Culture 
c - LPS-Stimulated 
Control 
 
Reference spots 
indicated with dashed 
lines 
 
1 - CCL5/RANTES 
2 - ICAM-1 
3 – MIF 
4 - Serpin E1 
5 - CCL2  
6 - MIP-1α/MIP-1β 
7 - CXCL1 
8 - IL-1 β  
9 - IL-1ra 
10 - IL-6 
11 - IL-8 

Figure 5.5 Proteome membrane profiles for a) unstimulated control, b) 

GSTP-exposed, and c) LPS-stimulated control human blood cultures to 

present an overview of the immunotoxicological potential of the treated 

source water (GSTP) of the GWRP. 
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a - Unstimulated 
Control 
b - GWRP-Exposed 
Blood Culture 
c - LPS-Stimulated 
Control 
 
Reference spots 
indicated with dashed 
lines 
 
1 - CCL5/RANTES 
2 - ICAM-1 
3 – MIF 
4 - Serpin E1 
5 - CCL2  
6 - MIP-1α/MIP-1β 
7 - CXCL1 
8 - IL-1 β  
9 - IL-1ra 
10 - IL-6 
11 - IL-8 

Figure 5.6 Proteome membrane profiles for the a) unstimulated control, b) 

GWRP-exposed, and c) LPS-stimulated control human blood cultures to 

present an overview of the immunotoxicological potential of the reclaimed 

sewage. 
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Table 5.2 Summary of visual scoring of proteome profiler data for various 

protein biomarkers. – indicates not detected, + indicates detected. 

Biomarker Water Sample 

 
Negative 

Control 

LPS-

Stimulated 

Control 

GSTP GWRP 

CCL5/RANTES + + + + 

ICAM-1 + + + + 

MIF + + + + 

Serpin E1 + + + + 

CCL2 - + + - 

MIP-1α/MIP-1β - + + - 

CXCL1 - + - - 

IL-1β - + + - 

IL-1ra - + + - 

IL-6 - + + - 

IL-8 - + + - 

 

5.5 Discussion 

The City of Windhoek relies on the reclamation of sewage effluent for direct 

potable reuse to augment its water supply. This is achieved at the GWRP where 

treated sewage effluent from Windhoek’s domestic waste water treatment plant 

(GSTP) is processed. The reclamation of sewage for direct potable reuse does 

present potential risks where the reclamation process is insufficient or fails. The 

GWRP thus employs a multi-barrier approach in order to maximize plant 

efficiency. Due to the vast array of chemical contaminants used daily, it is 

impossible to analyse for the presence of all potential chemical contaminants that 

can remain in the reclaimed water. The GWRP employs monitoring mechanisms 

for the microbial contamination and aesthetic quality of the final product water. 

These do not however provide any indication of the potential risks of reclaimed 

water on biological systems such as the endocrine system, immune system, neural 
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system, etc. The in vitro bioassays can achieve this and the results include 

synergistic and antagonistic interactions between chemicals (Nelson et al. 2007) 

and they target the entire toxicity pathway (Escher et al. 2014). The in vitro assays 

using human blood cultures are relatively quick and easy and they eliminate the 

need for animal-based studies. 

The residual pollutants persisting in treated sewage effluents may have 

immunomodulatory effects which can include the suppression of the immune 

system, triggering of inflammation and allergic disease, and the overstimulation of 

immune responses that can cause autoimmune disease (Kuo et al. 2012). The 

biomarkers of immunity, for example the expression of cytokines and 

chemokines, have potential as indicators of pollutants in treated sewage effluent 

as well as in reclaimed water. These types of biomarkers and the use of proteome 

profiling have successfully been used to determine the effects of specific 

chemicals or products on blood cultures. Examples include exposing RAW264.7 

mouse macrophages to a Chinese herbal formula, “Zuojin Pill” (Wang et al. 2012) 

and compounds from Bi-Qi capsules (Wang et al. 2011). Both studies showed that 

the tested products can up-regulate and down-regulate a number of cytokines. 

However, despite the successful use of these biomarkers, these methods have 

never before been employed to determine the immunomodulatory potential of 

reclaimed water used for direct potable use. 

In this study, the whole blood cell cultures remained viable for the control, the 

GSTP and the GWRP exposures with no cytotoxicity detected. This does however 

not conclusively rule out the possibility of the presence of products or chemicals 

in the samples that can modulate physiological processes. Cytotoxic effects can 

still be contained at the intracellular level, without occurrence of plasma 

membrane damage, and thus LDH leakage that will be detected in the serum. The 

viability of all exposed whole blood cultures increases the comparability of the 

results of the immunological assays. 

Interleukin-6 is a pro-inflammatory cytokine that is secreted by dendritic cells and 

macrophages in response to bacterial products at the sites of inflammation (Pool et 

al. 2000; Gabay 2006). The secreted IL-6 stimulates monocyte and granulocyte 
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production and induces acute-phase protein production (Pool et al. 200; Murphy 

and Weaver 2016). The acute-phase proteins include C-reactive protein and 

mannose-binding lectin (MBL) which are pathogen-recognition molecules that 

can opsonize bacteria and activate the complement cascade (Murphy and Weaver 

2016). Given the presence of bacteria and breakdown products in the treated 

sewage effluent from the GSTP (Table 5.1), it is expected that IL-6 production 

will be stimulated in exposed whole blood cultures. The stimulation of IL-6 

production by treated sewage (GSTP) exposed unstimulated blood cultures in this 

study is thus expected. However, the GWRP samples did not stimulate IL-6 

production, indicating the successful removal of bacteria and bacterial breakdown 

products by the reclamation processes. This result is in line with IL-6 assays 

conducted during 2010 and 2011 on these two sources, which also indicated the 

successful removal of IL-6 stimulatory products by the GWRP (Faul et al. 2013). 

The results of the LPS stimulated GSTP and GWRP exposures showed no 

differences from the LPS control, indicating that the GSTP and the GWRP water 

samples had no IL-6 suppressive effects (Figure 5.1). The results of the proteome 

profile supported the results of the ELISAs with the LPS control and the GSTP 

exposed samples presenting IL-6 on the proteome profile membranes (Figure 6). 

Macrophage inflammatory protein-1β is a chemotactic cytokine (chemokine) 

responsible for the attraction of anti-inflammatory cells to sites of injury or 

infection (McManus et al. 1998). MIP-1β is among others produced by 

monocytes, macrophages, neutrophils and endothelium in response to bacterial 

endotoxins (Chaisavaneeyakorn 2003; Murphy and Weaver 2016). In comparison 

to the MIP-1β concentration in the negative control, the MIP-1β concentration in 

the GSTP-exposed unstimulated blood cultures were significantly upregulated, 

while no upregulation occurred in GWRP-exposed unstimulated samples (Figure 

5.2). No stimulation or suppression of MIP-1β took place in LPS-stimulated 

GSTP and LPS-stimulated GWRP exposures when compared to the positive 

control. The results of the proteome profile confirmed the presence of MIP in the 

GSTP-exposed samples (Figure 5.5 and Table 5.2). 
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IL-10 is mainly produced by T helper type 2 (TH2) cells, but also by B cells and 

innate immune cells like macrophages, mast cells, dendritic cells, neutrophils. It 

was previously referred to as a human cytokine synthesis inhibitory factor due to 

its role in supressing immune responses (Saraiva and O’Garra 2010; Murphy and 

Weaver 2016). It is an anti-inflammatory cytokine with the important role of 

preventing inflammatory and autoimmune diseases (Saraiva and O’Garra 2010). It 

also stimulates immunoglobulin production by B cells and mast cell proliferation 

as well as an increase in the cytotoxicity of NK cells (Oral et al. 2006). Due to its 

anti-inflammatory function, IL-10 is expected to be present in blood cultures 

where an inflammatory response was activated. This was true for the GSTP-

exposed unstimulated blood culture with an IL-10 concentration of 67 pg/ml, 

which also had high IL-6 levels and thus an inflammatory response (Figure 5.3). 

This result is in line with the IL-10 assays conducted during 2010 and 2011 on 

these two sources, which also indicated the successful removal of IL-10 

stimulatory products by the GWRP (Faul et al. 2013). Interleukin-10 

concentrations in both GSTP- and GWRP-exposed PHA stimulated blood cultures 

were significantly elevated above the PHA stimulated control. Although IL-10 

was present in GSTP exposed blood cultures as determined with the ELISA, it 

was not detected by the proteome profile (Figure 5.6). This is likely as a result of 

the very low concentrations of the interleukin in the samples. The ELISA thus 

remains a more sensitive, although more time consuming, method for determining 

IL-10 presence. 

To determine the reason for the upregulation of IL-10 in PHA-stimulated exposed 

blood cultures additional research is required. One possibility is the presence of 

calcium which has been shown to signal the production of IL-10 by TH2 cells 

(Rafiq et al. 2001; Murphy and Weaver 2016). Cytoplasmic calcium binds to 

calmodulin which in turn activates the protein phosphatase calcineurin. 

Calcineurin dephosphorylates the nuclear factor of activated T cells (NFAT) and 

nuclear transporters move the NFAT into the cell nucleus. Gene activation then 

occurs which allows for T-cell activation and IL-10 production (Rafiq et al. 2001; 

Murphy and Weaver 2016). Since IL-10 has a very strong inhibitory function on 

pro-inflammatory cytokines like IL-12 and IL-23, it prevents these cytokines from 
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stimulating the activation and differentiation of TH1 cells (Murphy and Weaver 

2016). This could possibly explain why suppression of IFN-γ was seen in the 

PHA-stimulated cultures where IL-10 was upregulated. 

In innate immunity, NK cells produce IFN-γ when stimulated by IL-12 and IL-18 

produced by activated macrophages (Murphy and Weaver 2016). IFN-γ in turn 

increases the macrophages’ ability to kill pathogens as part of innate immunity as 

well as stimulating the differentiation of CD4 T cells into TH1 cells. In the 

acquired immune response, IFN-γ is produced by TH1cells and acts in the defence 

against viruses and intracellular pathogens (Murphy and Weaver 2016). Water 

from both the GSTP and GWRP did not stimulate IFN-γ production in 

unstimulated blood cultures (Figure 5.4). IFN-γ production in the PHA stimulated 

cultures were supressed in both the GSTP- and the GWRP-exposed samples 

compared to the PHA-stimulated control. 

Interleukin-8 is a chemo-attractant cytokine with specificity for neutrophils and 

naïve T cells (Bickel 1993; Murphy and Weaver 2016). It is produced by 

monocytes, macrophages, fibroblasts, epithelial and endothelial cells and plays a 

part in the inflammatory response by attracting, among others, neutrophils to the 

sites of infection (Murphy and Weaver 2016). Interleukin-8 was synthesized by 

both LPS- and GSTP-exposed blood cultures. The cause of this inflammatory 

response was however successfully eliminated in the GWRP water. 

Interleukin-1β is produced by macrophages and epithelial cells and results in fever 

as well as T cell and macrophage activation (Murphy and Weaver 2016). 

Interleukin-1β was upregulated in the LPS-exposed control with very slight 

upregulation in GSTP-exposed cultures. The reclaimed water did not upregulate 

IL-1β and thus did not activate a fever-producing response. 

The chemokine CCL2, also known as monocyte chemo-attractant protein 1 

(MCP-1), is responsible for the attraction of monocytes, memory T cells and 

dendritic cells to inflamed areas (Deshmane et al. 2009; Murphy and Weaver 

2016). It is mainly produced by monocytes/macrophages and it also activates 

monocytes which differentiates into macrophages in order to phagocytose 
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pathogens as part of the innate immune response (Deshmane et al. 2009). The 

presence of CCL 2 in GSTP-exposed blood indicates the inflammatory potential 

of treated sewage, likely as a result of the presence of endotoxins and persistent 

chemicals. The absence of CCL2 in GWRP-exposed blood again confirms the 

efficiency of the GWRP process in eliminating inflammation-causing substances. 

The CCL5 chemokine, also known as RANTES (Regulated upon Activation, 

Normal T-cell Expressed, and Secreted), attracts various leukocytes to the sites of 

inflammation (Lv et al. 2013). It is produced by T cells, endothelium and platelets 

and it plays a role in activating T cells, degranulation of basophils, as well as in 

chronic inflammation (Murphy and Weaver 2016). CCL5 occurs in healthy blood 

at levels in the 5 to 6 ng/ml range (Kleiner et al. 2013) and its presence is thus 

expected in the negative control. The chemokine (C-C motif) ligand 5 was present 

in the negative control, the LPS stimulated control, the GSTP and the GWRP 

culture supernatants.  

Serpin E1, or Human Plasminogen Activator Inhibitor-1 (PAI-1), is a serine 

protease inhibitor that plays a regulatory role in the fibrinolytic system (Fay et al. 

1997). It thus regulates the breakdown of blood clots at sites of tissue damage and 

inflammation during the healing process. Serpin E1 is naturally present in healthy 

human blood and is thus expected to be present in all blood exposures (Cesari et 

al. 2010). The proteome profile indicates the presence of Serpin E1 in the negative 

control, positive control, GSTP- and GWRP-exposed culture supernatants.  

Interleukin-1ra is an IL-1 antagonist and thus plays an important role as an anti-

inflammatory protein regulating the inflammatory response of IL-1 (Arend and 

Guthridge 2000). It is produced by monocytes, macrophages, neutrophils and 

hepatocytes (Murphy and Weaver 2016). Expression of IL-1ra occurred in both 

the LPS-stimulated and the GSTP-exposed blood cultures, indicating the 

inflammatory potential of the GSTP water. This inflammatory potential was 

however eliminated during reclamation. 

Macrophage migration inhibitory factor produced by the T cell and the pituitary 

cells is an inflammatory cytokine that inhibits macrophage migration, but it 
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stimulates macrophage activation and induces steroid resistance (Calandra and 

Roger 2003; Murphy and Weaver 2016). Macrophage migration inhibitory factor 

was present in both the negative and LPS-stimulated positive controls indicating 

that MIF was already present in the blood. Macrophage migration inhibitory 

factor was also present in the GSTP- and the GWRP-exposed culture 

supernatants. 

Intercellular Adhesion Molecule 1 is a transmembrane glycoprotein that facilitates 

the transendothelial migration of immune cells to the sites of inflammation (Roy 

et al. 2001 and Usami et al. 2013). It is expressed at basal levels by epithelium 

and immune cells and its expression is upregulated by inflammatory mediators 

(Usami et al. 2013). Intercellular Adhesion Molecule 1 is thus expected in healthy 

blood and it was present in the negative control, LPS stimulated positive control, 

GSTP- and GWRP-exposed culture supernatants. 

Of the cytokines, IL-6 most frequently has been used to determine the 

inflammatory potential of various contaminated water sources. Pool et al. (2000) 

tested the inflammatory potential of water from the Eerste River in the Western 

Cape, South Africa, using IL-6 production in whole blood cultures. Results 

indicated that as river water quality deteriorates along a linear gradient its 

inflammatory potential increases. A second study on the Eerste River also 

indicated IL-6 inflammatory responses downstream of the upper reaches of the 

river (Pool and Magcwebeba 2009). The efficiency of pro-inflammatory responses 

measured as IL-6 production in mononuclear leukocytes in raw and treated water 

from three dams in the greater Pretoria region, South Africa, were determined by 

Adebayo et al. (2014). In two of the three water treatment facilities, treatment did 

reduce the IL-6 inflammatory responses. Interleukin-6 in RAW 264.7 cells 

exposed to sewage collected at various stages of a sewage treatment plant 

(Makene and Pool et al. 2015) and human whole blood cultures exposed to raw 

and final effluent from sewage treatment plants (Hendricks 2011) also indicated a 

reduced inflammatory response after treatment processes. These studies showed 

the usefulness of using IL-6 as a biomarker for determining the efficiency of 

waste water treatment to reduce the inflammatory potential of water. 
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The study on the Eerste River in South Africa, by Pool and Magcwebeba (2009) 

also assessed IFN-γ and IL-10 responses of whole blood cultures. Similar to the 

current study, in the Eerste River study, unstimulated whole blood cultures 

exposed to water samples produced no IFN-γ and in PHA-stimulated samples 

IFN-γ production was downregulated. However, in contrast to the present study 

IL-10 was also downregulated. Thus, while in the GSTP and GWRP samples 

there was a shift in the TH1/TH2 balance towards the TH2 cells side, both TH1 and 

TH2 production of IFN-γ and IL-10 were supressed in the Eerste River water 

samples. No studies were found that assessed the stimulation or suppression of 

MIP1-β by raw and treated wastewater or which employed proteome profiles for 

screening water for immunotoxicological effects. 

5.6 Conclusion 

The ability of the GWRP to successfully eliminate pollutants with cytotoxic, 

neurotoxic and immuno-modulatory potential was previously determined using a 

small set of biomarkers (Faul et al. 2013). The current study explored a much 

larger set of immune system biomarkers to further validate the GWRP’s 

effectiveness and to test the usefulness of utilising proteome profiling as a rapid 

and reliable screen for water quality. The results of the study confirmed the 

GWRPs ability to successfully eliminate pollutants that may have the ability to 

modulate immune systems in consumers of the product water. Although less 

sensitive, the proteome profile could potentially be employed as a reliable and 

rapid technique for determining a wide range of immune system proteins. The 

usefulness of the proteome profile as a quick screen for water quality assessment 

can further be explored. Due to the sensitivity of ELISAs it is recommended that 

where inflammatory responses are detected in reclaimed or other sources of 

potable water, selected ELISA’s should be performed to better determine the 

magnitude of the immunomodulatory potential of such water.  
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With the world’s population fast approaching eight billion, the pressure on its 

available resources are becoming increasingly severe. Water, being essential for 

life, is no exception. Apart from it becoming increasingly scarce, water is also 

under threat from the vast array of anthropogenic and natural pollutants that goes 

hand in hand with the increasing human population and its activities and resource 

requirements. The presence and effects of pollutants in rivers, oceans and other 

water sources have been demonstrated in numerous scientific journals. Severely 

polluted water can lead to mortality of organisms, but many water sources have 

low levels of contaminants that result in adverse effects at, for example, the 

physiological or biochemical level, without any obvious signs of distress. In the 

long term however, it can lead to significant biodiversity impacts as well as 

human health impacts. Examples include reproductive, immunological and 

neurological abnormalities.  

Many pollutants have the potential to adversely affect endocrine systems and are 

referred to as endocrine disruptors or endocrine disrupting chemicals (EDCs). 

EDCs are often present in aquatic environments such as rivers due to pollutant 

presence in storm water runoff and the release of treated sewage into the 

environment.  

During the last three decades toxicologists focussed strongly on EDC research. In 

Namibia however, very little toxicological research has been performed on water 

sources and almost no EDC related research has been conducted. With Windhoek, 

the capital city, reclaiming treated sewage for direct potable reuse for more than 

four decades, there is a definite need to assess the endocrine disrupting potential 

of the reclaimed water as well as other sources of potable water for Windhoek and 

the country as a whole. 

The research conducted and presented in this thesis aimed to assess the endocrine 

disrupting potential of reclaimed treated sewage as well as surface water from 

nine water storage dams in the country of Namibia. The water was assessed for 

steroid hormone presence in the form of estradiol, estrone and testosterone. The 

water’s cytotoxic, neurotoxic and immunotoxic potential were also determined by 

measuring lactate dehydrogenase (LDH) leakage from cells, acetylcholinesterase 
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(AChE) inhibition, and stimulation or suppression of cytokine production by cells 

exposed to the source water. Steroid hormones and cytokine (interleukin-6, 

interleukin-10, macrophage inhibitory protein-1β and interferon-γ) production 

were determined using enzyme-linked immune-sorbent assays, while cytotoxicity 

and neurotoxicity was determined with calorimetric assays.  

For the first time ever, a proteome profile was performed on culture supernatants 

exposed to reclaimed treated sewage to screen for stimulation or suppression of 

the production of 36 different cytokines and chemokines as a broad indicator of 

immunomodulatory potential of the water. 

The results of the research indicated that the reclamation process employed in 

Windhoek successfully removed contaminants with endocrine disrupting traits. 

All steroid hormones as well as cytotoxic, neurotoxic and immunomodulatory 

effects detected in raw and treated sewage were absent from the reclaimed water. 

In terms of dam water, the results indicated that, with the exception of Goreangab 

and Swakoppoort dams, surface water contained in these dams, are generally of 

good quality with low to no endocrine disrupting potential. The Goreangab dam is 

however known to be polluted and the raw water is currently not being utilised for 

human consumption. The Swakoppoort dam contributes to the Windhoek water 

supply scheme and should thus be monitored. 

This study indicated the usefulness of physiological biomarkers as relatively 

cheap and quick in vitro indicators of the endocrine disrupting potential of water 

sources. Specifically, it shows the potential use of proteome profiling for quick 

screening of water for immunomodulatory effects. This procedure may prove to 

be invaluable where treated sewage is reclaimed for direct potable re-use as is the 

case in Windhoek, Namibia. However, the in vitro indicators of toxicity do have 

their limitations and extrapolation of results to whole organism effects may be less 

reliable. This is mainly because the in vitro cultures often behave differently from 

the in vivo systems. 



http://etd.uwc.ac.za
~ 143 ~ 

 

Since potentially unsafe reclaimed treated sewage for direct potable reuse may 

result in adverse health effects, a holistic in vivo monitoring system for 

reclamation plants may need to be developed and/or implemented. Such a system 

will have to provide continuous monitoring options that provide rapid, cost-

effective results. In Windhoek, the use of fish, for example Oreochromis 

mossambicus, or crabs, for example Potamonautes perlatus, may be considered as 

candidates for the in vivo studies. Similar biomarkers of cytotoxicity, 

neurotoxicity and immunotoxicity, as used in this study on blood cultures, may be 

employed without the need to sacrifice the test organisms. Future research should 

thus include the development of a set of in vivo biomarkers for reclamation plants.  
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