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Abstract

Personal identification and the protection of data are important issues because of the
ubiquitousness of computing and these have thus become interesting areas of research in
the field of computer science. Previously people have used a variety of ways to identify an
individual and protect themselves, their property and their information. This they did
mostly by means of locks, passwords, smartcards and biometrics. Verifying individuals by
using their physical or behavioural features is more secure than using other data such as
passwords or smartcards, because everyone has unique features which distinguish him or
her from others. Furthermore the biometrics of a person are difficult to imitate or steal.
Biometric technologies represent-a significant_component of a comprehensive digital
identity solution and play-an important-role-in-security. The technologies that support
identification and authentication of individuals is based on either their physiological or their
behavioural characteristics. Live-data, in this instance the human voice, is the topic of this
research. The aim is to recognize a person’s voice and to identify the user by verifying that
his/her voice is the same-as-a-record-of-his-/-her-voice-sighature in a systems database. To
address the main research question: “What is the best way to identify a person by his / her
voice signature?”, design science research, was employed. This methodology is used to
develop an artefact for solving a problem. Initially a pilot study was conducted using visual
representation of voice signatures, to check if it is possible to identify speakers without
using feature extraction or matching methods. Subsequently, experiments were conducted
with 6300 data sets derived from Texas Instruments and the Massachusetts Institute of
Technology audio database. Two methods of feature extraction and classification were
considered—mel frequency cepstrum coefficient and linear prediction cepstral coefficient
feature extraction—and for classification, the Support Vector Machines method was used.
The three methods were compared in terms of their effectiveness and it was found that the
system using the mel frequency cepstrum coefficient, for feature extraction, gave the

marginally better results for speaker recognition.
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Chapterl Introduction

1.1 Background and Motivation

Security has become an important issue in modern society because of our
interconnectedness, and the increasing use of the Internet. Figure 1, shows computer
ownership in 2014 and Figure 2 shows Internet access in the US and developing countries
around the world in the same year. This technology usage and interconnectedness allows

crimes like hacking, phishing to flourish.
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Figure 1: Computer ownership in 2014".
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As can be seen in Figure 2, the so-called third-world countries, such as countries on the
African, continent were not as interconnected as, for example the United States of America,
in 2014. However, as is shown in Figure 3, the African continent is fast becoming more
connected and thus, there is a pressing need in these countries to become more aware of
security. Security breaches can negatively affect individuals: for example, breaches can
result in the loss of a person’s identity and the control of that person’s personal data.
Security breaches can present a serious risk to organizations and businesses. As hackers

get smarter, security needs to become more complex.
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Figure 3: Planned African undersea cables for 2015 (Song, 2015).

The recognition of a person has wide applications, which can vary from identifying a person

to give them permission to enter a home or an office, to access his / her computer, etc. to



the secure identification of a person at a border post. Representations of identity, such as
identity cards and passwords, are not a completely secure and reliable identification
method because they can easily be tampered with, misplaced, shared, or stolen (Jain,
Nandkumar, & Nagar, 2008). Currently there is an increased interest in providing higher

levels of security and protection for individuals and communities.

The authentication of a person’s identity is a challenging problem. Currently three common
ways are used for authentication, that are to establish credibility and in general, for

identification. Most of these commonly used methods are based on:
What devices a person has—for example physical keys or smartcards.
What a person knows—such as passwords, personal information or PINs.

The characteristics of the person—=such.as biometric modalities. See Figure 4.

Figure 4: Different ways of identification and authentication.

When considering these three authentication methods to identify a person, it can be seen
that the last mentioned method, the biometric characteristics of a person, which uses the
individual’s physical or behavioural features for authentication,—ensure a more secure
identification than using passwords or smartcards, because everyone has unique features,
which distinguish him / her from others. According to Montrose et al. biometric-based
security systems are nearly impossible to defraud (Monrose, Fabian, & Aviel, 2000) (Pal, Pal,

& Blumenstein, 2014) (Prakash & Gupta, 2015).



Biometrics have existed for centuries, where parts of bodies and aspects of behaviour have
been used historically, in an unsophisticated manner, as a means to check a person's
identity. For example: in ancient Egypt unique body traits were used to identify
construction labourers in order to ensure the fair distribution of food; and fingerprint
studies date back to ancient China. A person’s face or sound of his / her voice was most
often used to identify a person; signatures have been the de facto method of
authentication in banking and for legal contracts, etc. for many years. Automated
biometrics, however, have only been in use for the last 40 years (Boukhonine, Krotov, &

Rupert, 2005).

The word biometric is derived from two Greek words “bios” and “metra”, bio means life
and metra means measure (Pal, Pal, & Blumenstein, 2014). However, several scientific

definitions for biometrics exist:

Jain et al. define biometrics as the measurement and statistical analysis of an
unchanging biological characteristic (Jain, Hong; &-Pankanti, 2000) but re-define it as
the science of using the physical, chemical or behavioural features of individuals to
establish a person’s identify—thus the metrics related to a human characteristic (Jain,

Flynn, & Ross, 2007);

According to Prabhakar et al. biometrics links a physical or behavioural attribute of a
person, to a person’s identity, by using specific methods that focus upon individual
differences. These differences, as depicted in Biometric characteristics can be divided

into two main classes: physiological and behavioural.

Physiological characteristics depend on the features of a person’s body, such as:

fingerprints, facial features, hand shape, iris features, etc.

Behavioural characteristics are related to the style of a person’s behaviour such as
their manner of speaking, their hand signature or writing style, and their walking style
(Bragagnini, Della Luna, Nocentini, & Turolla, 2014) (Prabhakar, Pankanti, & Jain, 2003).

See Figure 5.



Face

Signature Palmprint Voice Gait

Figure 5: Examples of characteristicsthat can be used for biometric authentication
Biometrics have desirable characteristics with respect to.authentication, namely:

Reliability and distinctiveness:' no | two individuals share the same biometric

characteristics. They are unique to each individual.
Permanence: this characteristic does not change over time.
Collectibility: the characteristic can be measured quantitatively.

Universality: individuals have unique characteristics or features that will not change

even if they are involved in an accident or succumb to a disease.
Acceptability: their use should be acceptable in general society.

Circumvention: they should be difficult or impossible to imitate or forge (Prakash &

Gupta, 2015).

These characteristics have led to the widespread dissemination of authentication systems,
generally using one or more of the following: fingerprints, images of the face, iris
recognition, handwriting recognition, signatures, hand geometry, voice prints, palm prints
or a person’s gait (Jain, Nandkumar, & Nagar, 2008) (Mordini & Tzovaras, 2012) (Prabhakar,
Pankanti, & Jain, 2003)



Table 1: The summary comparison of the biometric techniques
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Face H L M H L H H 4H, 1M, 2L

Facial thermo gram H H L H M H L 4H, 1M, 2L

Fingerprint M H H M H M M 3H, 4M
Gait M L L H L H M 2H, 2M, 3L
Hand geometry M M M H M M M 1H, 6M
Hand vein M M M M M M L 6M, 1L
Iris H H H M H L L 4H, 1M, 2L
Keystroke L L L M L M M 3M, 4L
Odor H H H L L M L 3H, 1M, 3L
Palm print H H M L H L L 3H, 1M, 3L
Retina H H M L H L L 3H, 1M, 3L
Signature L L L H L H H 3H, 4L
Voice M L L M L H H 2H, 2M, 3L

The summary of Jain et al.’s comparison of the biometric techniques is listed in Table 1
where H means high reliability, M means medium and L means low. As can be seen iris and
face are best, but there are many disadvantages of using these biometrics. For example, in
case of using the iris, the iris scanners may be tricked easily through the use of a high-
quality image of the iris or face rather than the real thing. Iris scanners cannot be used for
individuals with diabetes or some other serious diseases that may cause changes in the iris.
In addition the iris scanners are often difficult to adjust and they are more expensive

compared to other biometric measuring devices (Saini & Rana, 2014).



Using the face for recognition is not effective if the lighting is bad or weak, if hair is long, or
other objects partly cover the subject’s face. In addition using this type of biometric is more
expensive and complex than many others. However, for all the biometrics except voice, the

person needs to be present (Saini & Rana, 2014).

Biometric systems are pattern-recognition systems. These systems typically work in one of

two modes: verification or identification:

1. In verification mode the system compares the captured biometric characteristic of
the user with their biometric template, which has been previously saved in the
system’s database. The question being answered is “is this Peter?” or “is this Peter’s

voice?”

A. |dentificaticn B=\erification/ Authentication

% Whose voice is this? : .
Is this Peter’s voice?
Speaker 1
Speaker 2
g
Speaker 3

Figure 6: A. User identification, B. User verification/authentication.

2. While in identification mode the question being answered is “Who is this person?”
or “Whose voice is this?” to identify the individual the entire template database is
searched for a match. The system does a comparison of one to many to establish an

individual's identity (Prabhakar, Pankanti, & Jain, 2003) as can be seen in Figure 6.

Throughout this thesis the generic term “recognition” is used for both verification and

identification.



It is interesting to note that behavioural biometrics and new advanced sensor technologies,
which use and analyse the various bodily behavioural characteristics for recognition, have
been increasing. Furthermore, new sensors and networks have been introduced in
intelligent environments, which are capable of detecting physical movement and motion-
based characteristics, communication properties, and the existence and the incorporation
of these characteristics over time and space. According to Mordini & Tzovaras this is very

promising for biometrical recognition (Mordini & Tzovaras, 2012).

The voice, a behavioural biometric, when compared to other biometrics, is, according to
Pal et al. the most difficult to imitate. It is even possible to distinguish between voice
signatures of identical twins, who share the same DNA (deoxyribonucleic acid), which

makes this technique sufficiently reliable (Pal, Pal, & Blumenstein, 2014).

Most speaker recognition systems use thevoice-signal’s features to discriminate between
individuals; these features.can vary greatly from one speaker to another depending upon

their anatomy and behavioural-characteristies:
Speaker recognition can be used in many applications for example:

for access control such-as-to-access computer-networks or websites or to access

physical facilities;

to authorise transaction such as telephone banking or remote credit card purchases;
in forensics for law enforcement;

for management using speech data such as voice mail browsing or speech skimming;

for personalisation such as smart answering machines or voice customization

(Kinnunen & Li, 2010) (Mishra, 2012).

To extract the unique characteristics from a voice signal is the basic objective of speaker
recognition. This can be achieved by converting an uttered phrase from analogue to digital
format; the digital format permits the feature extraction methods to identify unique vocal
characteristics for creating a voiceprint or a voice signature. Voice recognition feature

extraction methods are described in detail in the following chapter.



Speaker recognition is subdivided into: text-dependent speaker recognition and text-
independent speaker recognition (Patel & Prasad, 2013). In text-dependent recognition
the system has previous knowledge of the text spoken by the speaker. The speaker reads a
set of specific words, that knowledge of spoken text enhances system performance. It is
used for strong control over user input applications, while in text-independent recognition
there are no restrictions on spoken text, the speakers are allowed to use any words. The
system must be able to recognise the user from any text. This type of recognition is used
when less control is needed over user input applications, and it is the more challenging of

the two tasks (Salna & Kamarauskas, 2015) (Xu, 2015) (Reynolds, 2002).

1.2 Problem Statement and Research Question

The aim of this investigation is to identify users by verifying that their voice matches the
recorded voice signature. This investigation will concentrate on text-dependent speaker

recognition.

The main research question thus is: “What is the best way to identify a person using his /

her voice signature?”

This research question-can be further subdivided into the following:
What feature extraction methods'should be used?
What matching or classification method would be effective?

What combinations of methods are reliable to authenticate a person’s voice signature?

10



Speaker model

- o

Feature Feature
Peter ) .
extraction matching
Anna Anna ‘
Feature Detection Decision
extraction decision
Figure. 7: The-aim of-the research.

1.3 Research Framework

A research methodology is the overall approach or design behind the choice of specific
methods, which in turn links the choice of methods to the desired outcomes. Methods
refer to the techniques-used-to-gather-and-analyse-data-with respect to a specific research

guestion or hypothesis (Crotty, 1998).

In this research, design science research (DSR) was used, more specifically the research
methodology of Vom Brocke and Buddendick (2006), was used, where artefacts are
developed to solve a problem and the knowledge derived during the process, is recorded
and contributes to the field of knowledge (Vom Brocke & Buddendick, 2006). The methods
used with this methodology were quantitative and the artefact, a conceptual voice

recognition system.

1.4 Contribution and Findings

Initially visual representations of voice images created with Audacity3 were compared.
Subsequently two feature extraction algorithms were considered—mel frequency

cepstrum coefficient (MFCC) and linear prediction cepstral coefficient (LPCC)—for feature

3http://www.audacityteam.org/
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extraction, and a Support Vector Machines (SVM) algorithm was considered for

classification.

The MFCC is used for feature extraction and SVM is used for classification with text—
dependent speaker recognition. The MFCC feature extraction algorithm will be shown to
give the slightly higher accuracy, when compared with the other two methods. The LPCC
feature extraction method gives results similar to the MFCC with slightly less accuracy. It

will be shown that the visual representation method gives the poorest results.

1.5 Thesis Outline:
In this chapter an overview of the research is presented. It includes the background and
motivation, the aim of the investigation, the posing of the research questions and the

research design. The rest of the thesis.is-laid-out as follows:

In Chapter 2, the literature that deals with: the-identification of voice signatures is

reviewed.

In Chapter 3 the research design is discussed and the philosophical foundations upon which
the research is based, is explained. The theoretical perspective and the chosen
methodology is described. The methods chosen for collecting and analysing the data is

motivated and explained.
Chapter 4 presents the results of the various experiments and in

Chapter 5, the research findings are analysed and discussed and some recommendations

for future work are made.
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Chapter 2  Literature Review

In the previous chapter an overview of the research was presented. In this chapter, existing
literature that relates to voice signature recognition is discussed. The key concepts for
speaker recognition are overviewed. These concepts include voice recognition, feature

extraction, and feature classification.

The chapter is divided into three parts: Section 2.1 gives an overview of speaker
recognition in general; in Section 2.2 the different algorithms that can be used to extract a
feature, which is an important aspect of speaker recognition, are given; and in Section 2.3
an overview of the different methods which can be used for matching or classification of

voice signatures, is given.

2.1 Overview of Speaker Recognition

Speech is the most natural way humans communicate. Human speech contains numerous
discriminative features, which can be used to recognize a speaker by his voice. According to
Kinnunen, the automatic processing of a specific person’s voice using the characteristics of
his / her voice is called speaker-recognition-(Kinnunen-&Li,2010). Whereas the processing
of a speaker’s voice 'to identify  what the 'speaker .is saying, is called speech recognition
(Beigi, 2011). Speaker recognition includes individual identification, authentication, and
classification, as well as segmentation, tracking and detection of speakers. Speaker
recognition is a general term used to describe any procedure, which involves the
identification of users based on their voice characteristics (Lee, Soong, Paliwal, & (Eds),
2012). The voice is a unique characteristic of each person. No two individuals sound
identical, because of the difference in vocal tract shapes, larynx sizes, and other parts of

their voice production organs (Xu, 2015).

A voice can be presented graphically by describing a depiction of the pattern of sound
pressure variation in the time domain or the frequencies of sound per second. This

. . . 4 .
graphical form is called a voice waveform.” These waveforms are different for each person

4 www.digitizationguidelines.gov/term.php?term=waveformsound
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because of the difference in sound pressure variation which depend on vocal tract shapes
and larynx sizes (Xu, 2015). In addition; the difference in the frequency range also has an
influence (Latinus & Belin, 2011). Thus a sound waveform might be useful for recognising a

speaker.

Voice waveforms can be obtained easily using computer software such as Audacity, Wave
pad and Adobe Audition. These programs give the user a visual impression of what has

been recorded by viewing the waveform (Christensson, 2006).

A set of human voice features, characteristics, or metrics can be used for the recognition
process, these are: pitch, frequency, tone and cadence (Mansour, Salh, & Mohammmed,
2015). One of the most important characteristics of the human voice is the frequency of

the human voice, which has a range of up to 5 KHz (Patel & Prasad, 2013).

For recognising the individuals-from their voice;-it is-necessary to convert the speaker’s
voice into a digital signal with data representing each level of the voice signal in discrete
time steps, and then using feature extraction to produce voice features (Muda, Begam, &

Elamvazuthi, 2010).

According to the recognition-system framework shown'in Figure 8, speaker recognition is
divided into two main components: feature extraction and feature classification or

matching (Patel & Nadurbarkar, 2015).

Training
Model
Speech
wave Feature »| Classification |———p  Speaker ID
Extraction
Figure 8: Speaker recognition system as adapted from (Patel & Nadurbarkar, 2015,
p. 555).
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The strategy for text-dependent and text-independent speaker recognition comprises two
stages:

1. The training stage.

For this stage the speech signal is taken from an unknown speaker and feature
vectors from the speech signal are extracted. These can then be used to identify the
unknown speaker. By using these features a speech model or voiceprint is built. The
basic objective of this stage is to identify the unknown speaker from a set of known

speakers. See A in Figure 9.
2. The recognition, authentication or speaker classification stage.

For this stage the unknown speaker needs to be identified. A speech model or a
voiceprint, which was built in the previous stage is used for identification, if the
match is above a predefined “threshold. the identity is accepted (Salna &

Kamarauskas, 2015)..See B-in Figure 9.

A. Training stage

Speaker model

& v ot

Peter

Model
Peter Feature 3

extraction Training

g Anna Anna
B. Authentication stage
A\ 4
_/“MW‘ ) Feature o/ Detection | Decision
extraction decision

Figure 9: Strategy of speaker recognition, A. Depicts the training stage, and B.
Depicts the authentication stage.
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2.2 Feature Extraction

Speaker recognition is divided into two components. In this section the first component,

feature extraction, will be explained.

Feature extraction is the first and an important step in speaker recognition systems,
according to Patel & Prasad (2013). The objective of this step is to identify the components
of the acoustic signal or to convert the speech waveform to a set of features or
parameters, i.e., decreasing the number of resources required to describe the data.
Depending on the specific system used to obtain a good representation of speaker
features, appropriate information is estimated in a suitable form and size (Patel &

Nadurbarkar, 2015).

According to Vladutescu, the human voice has nine features, namely: fundamental
frequency (F,), vocal register, tone (height,-intonation), volume, accent, diction, timbre of
phonation, average frequency and verbal flow (Vladutescu S. , 2013). These features or
characteristics of the human voice have been considered by researchers such as Knapp,
who underlined three behavioural characteristics of the human voice namely: rate, pitch
and intensity (Knapp, 2008). While Poyatos considered: timbre, resonance, intensity or
volume, tempo, pitch-(level,-intervals;, range)(Poyatos, 2002). Pitch, intonation, emphasis,
volume, rhythm, timing,~.and" tempo" were' identified: by .Glenn and Meservy whereas
Burgoon hold that there are three defining features of the voice: pitch, intonation, and

speaking tempo (Vladutescu S., 2013).

Only two of the nine identified characteristics, frequency, and vocal register are fixed and
unchangeable for each individual. Frequency is quantitative and a constant similar to a
fingerprint. The other seven characteristics are qualitative (Vladutescu S. , 2013). For
speaker recognition, frequency is the main feature, which is extracted using a feature

extraction method (Mansour, Salh, & Mohammmed, 2015).

As a rule the value of the average frequency of an individual’s voice is mainly a function of
the size of the vocal folds, where in general, males have vocal folds larger than females. As
a result of this, the frequency values and the pitch of male voices are lower than frequency

values and the pitch of female voices (Latinus & Belin, 2011). The values are between 85Hz
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and 180Hz for males and between 165Hz and 255Hz for females (Vladutescu S. , 2013).

The voice pitch is the rate of vibration of the vocal folds.

Since an audio signal changes constantly, it is assumed that when a sample is taken over a
short time scale, a period of between 5 and 100 ms, the audio signal will not change much.
Thus statistically the audio signal can be considered to be stationary or quasi-stationary.
However if a sample of the signal is taken over a longer period of time, in the order 200 ms
or more, the characteristics of the signal change to reflect the different speech sounds
being spoken. Hence, the most common way to characterize an acoustic signal is to do a
short-time spectral analysis. A wide range of possibilities then exists for parametrically
representing the acoustic signal for speaker recognition. For example the mel frequency
cepstrum coefficient MFCC, linear prediction cepstral coefficient LPCC, perceptual linear
prediction (PLP) (Hasan, Jamil, & Rahman;2004) and local discriminant bases (LDB) (Tiwari,
2010) are all methods that can-be used.to.do.shorttime spectral analysis. The cepstrum is a
sequence of numbers that characterizes a frame of speech. The algorithms that can be

used will be explained in more detail in Sections 2.2.1—2.2.3.

2.2.1 Mel frequency cepstrum coefficient

To recap, speech recognition-distinguishes;what the speaker said but speaker recognition
identifies who the speaker is. Perhaps the most commonly used acoustic parameters for
speaker voice recognition‘are MFCCs. “ MFCCs-are widely used in automatic speech or
speaker recognition (ASR), because of the simplicity of the procedure for implementing
MFCCs (Chakraborty, Talele, & Upadhya, 2014), and also because they are efficient (Tiwari,
2010). In addition they are considered as the best available approximation of the human
ear (Gulzar, Singh, & Sharma, 2014). MFCCs were developed by Davis and Mermelstein
more than three decades ago (Davis & Mermelstein, 1980) (Saleh, lbrahim, & Ramli, 2014).
They are a result of a cosine transform of the logarithm of the short-term energy spectrum

expressed on a mel-frequency scale (Tiwari, 2010).

MFCCs are based on the perceptual characteristics of the human auditory system, which
cannot perceive frequencies over 1Khz (Bharti & Bansal, 2015). Human perception does not

ollow a linear scale, the subjective pitch is measured on a scale calle e ‘mel scale’, an
foll | le, th bject tch d | lled the ‘mel le’ d

17



each tone frequency is measured in Hz. The mel-frequency scale uses a linear frequency
spacing below 1000 Hz and a logarithmic spacing above 1kHz (Muda, Begam, &
Elamvazuthi, 2010), (Huang, Acero, Hon, & Foreword By-Reddy, 2001) and (Murty &

Yegnanarayana, 2006).

The block diagram of the structure of an MFCC processor is shown in Figure 10, and

includes the following steps:
Pre-Emphasis.
Framing.
Hamming Window (Windowing).
Fast Fourier Transform (FFT).
Mel-scale filter bank:
Logarithm and Discrete-Cosine Transform(DCT).

Each step of the procedure will be explained in more detail in the next six sections

Speech

Fram
— 3| Pre-Emphasis = Framing —3 | Windowing

FFT
Mel Mel Spectrum
—] < Mel-scale ¢
DCT )
filter bank
Cepstrum Spectrum
Figure 10: Mel frequency cepstrum coefficient (MFCC) steps. Adapted from (Patel &

Prasad, 2013, p. 35).
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Pre-emphasis

During this processing higher frequencies are emphasised by passing the voice signal
through a filter. This step compensates for the pent-up part of the signal during sound
production and improves or increases the energy of the signal at high frequency in order to

get better results.
If x(n) is a sound signal then

x2(n) =x(n) —a xx(n—1). (1)
Where X5(1n) is the output of the filter and its normalization factor varies between 0.9 to

1.0 (Rachna, Singh, & Vikas, 2014) (Chakraborty, Talele, & Upadhya, 2014).

For example if @ = 0.95

Xz(n)=x(n)—0.95xx(n—=1). (2)

Original wave: s(n)

1
R o ! -
05) «
Py
A - -

] 0s 1 15 2 25

After pre-emphasis: u,(n)-:(n)i's(n-ﬂ. 2=0.950000

it

05 A A A A

] 0s 1 15 2 25

Figure 11: The waveform after and before pre-emphasis.
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It assumes that 95% of any one sample originates from a previous sample. Figure 11 shows
the difference between the original waveform and the waveform after pre-emphasis

processing (Chapaneri, 2012).

Framing

Framing is very important to ensure good results, especially where variation of amplitude is
great, such as in a large signal compared to a small signal. For this step the speech samples
are converted from an analogue signal to a digital signal, called analogue to digital
conversion or ADC. This is then segmented into small frames with lengths of 20—40 ms,
with an overlap of 1/3— 1/5 of the frame size. The sound signal is cut into frames of N
samples, adjacent frames are detached by M (M < N) typical values used are M=100 and
N=256. If the sample rate is 16 kHz.and_frame size is 256, then the frame duration is
256/16000s =0.016 sec or-16-ms. In addition-for a-1/3=—1/2 overlap, there will be an
overlap of 128 points, and-then-the frame rate is~16000/(256—128) = 125 frames per

second. Overlapping is used to produce continuity within frames (Jain & Sharma, 2013).

Hamming window

The window is used to integrate all the closest frequency lines. To keep the continuity of
the first and last point-of the frame, all frames will be multiplied with the hamming window

(Jain & Sharma, 2013) (Joshi & Zalte,2013).:See Figure 12.
The hamming window is defined as W(n) where:

N = number of the samples in each frame.

Y (n) = output signal.

X (n) = input signal.

Y(n) = X(n) x W(n), (3)
2nn
W(n) = 054 — 0.46 x cos (%) , ()

where 0 < n < N-1.
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Goeneralized Hamming Window: (1-a)-a"cos{2=n/(N-1)), 0<n<N-1

Figure 12: Basic plot of a Hamming window. (Rachna, Singh, & Vikas, 2014, p. 274).

Fast Fourier transform

The fast Fourier transform (FFT), converts each frame from the time domain into the
frequency domain (Swaminathan & Jayasankar, 2015). FFT is calculated for each frame to
extract the signal frequency components in the time domain. FFT is used to accelerate the

processing.

The logarithmic mel-scaled filter bank is applied to the Fourier transformed frame. This
scale is approximately linear up to 1 kHz, and logarithmic at greater frequencies. The
equation below establishes the relation between the frequency of a signal and the mel

scale (Dave, 2013)
f(mel) = [2595%log (1 + f) / 700] (5)

FFT is usually performed to obtain the volume frequency response of each frame, since
spectral analysis displays the different timbres in voice signals matched by different energy
distributions over frequencies (Rachna, Singh, & Vikas, 2014). Figure 13 depicts the energy

spectrum using FFT for the original signal and for the windowed signal.
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Original signal Windowed signal
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Figure 13: Different energy distribution over frequency. (Rachna, Singh, & Vikas,
2014, p. 274).
Mel-scale filter bank

The mel scale is a scale of pitches judged by listeners to be equal in distance from one
another. The reference point between this scale and normal frequency measurement is
defined by equating a 1000 Hz tone, 40 dB above the listener's threshold, with a pitch of
1000 mels.

The mel-scale filter bank is a set of triangular filters that are used to compute a weighted

sum of filter spectral components. The frequency range of the spectrum is very wide and
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does not follow a linear scale, so it is approximated by a mel scale (Janse, Magre, Kurzekar,
& Deshmukh, 2014). See Figure 14.

Mel-spaced filterbank

3000 4000 5000
Frequency (Hz)

8|
8
v

7000

Figure 14:

Mel-scale filter bank, (Tallat, Shahid, Samad, & Abbasi, 2014, p. 7).
Logarithm and discrete cosine transform

In this process, the log 'mel spectrum:is ‘converted into the time domain. This can be
achieved by using a discrete‘cosine transform (DCT). The|result of the conversion is called
mel frequency cepstrum coefficient and the set of coefficients are acoustic vectors.

Therefore, each input word is converted into a series of acoustic vectors (Borde, Varpe,
Manze, & Yannawar, 2015).

2.2.2 Linear prediction cepstral coefficients

Linear prediction cepstral coefficients are some of the earliest speech feature extraction
algorithms, see Figure 15. They are based on predicting the current sound sample as a
linear mix of past acoustic samples, and assuming that the audio device's shape governs
the nature of the sound produced (Bahattacharjee, 2013). This method is an attempt to

mimic human speech by working at a low bit-rate and was derived using an autocorrelation

method (Veton Z & Hussien A., 2015).
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Autocorrelation is a technique used to find the correlation between the signal and itself.
The autocorrelation method evaluates the LPCC set and thus achieves filter efficiency
(Dave, 2013). The set of linear prediction coefficients specifies the characteristics of the
vocal tract transfer. A digital all-pole filter models the vocal tract, and the transfer function

in the z-domain is given by:

G
57 ask (6)
1-¥, -, akz

V(Z) =

Where V(Z) is the vocal tract transfer function, G is the gain filter and (aj) is a set of

autocorrelation coefficients.

Autocorrelation involves the calculation of a matrix of simultaneous equations and the
autocorrelation of the windowed speech frames. The matrix of equations that need to be
solved is:

R(0) R(M) = R(—1 q[%q [R(D)

R R(2) - R(p—2)|[%2] |R(2)

5 S 1 E U F S » (7)

R@—-1 R(=2) RO)I9%I LR(p)

where R[n] is the autocorrelation-function-of a-window-speech signal.

The gain of the all-pole-can be found by solving the following equation:

G = [RInIZ.. auRIK] @

The cepstral coefficient is calculated from LPC through recursive algorithms. The cepstral
analysis operation is a process to find the cepstrum of a sound sequence, as given below.

This method is called LPCC (Rabiner & Schafer, 1978)
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Cln] =a, + 2;6121 (;) Clklan_1,0<i<p (9)
Input speech signal
Pre- Hamming
— i > Frame )
Emphasis window
A 4
Linear
i Cepstral icti
Autocorrelation > LPCC P . , predictive
analysis analysis analysis Cepstral
! Y coefficients
Figure 15: Linear prediction cepstral coefficients (LPCC) adapted from (Veton Z &

Hussien-A., 2015, p. 4).

2.2.3 Perceptual linear prediction

Perceptual linear prediction (PLP) is'based on the power-law of nonlinearity. Hermansky
proposed PLP in 1990 (Harmansky, 1990) see Figure 16. In the next stage, in order to obtain
the linear prediction (LP) analysis, an Inverse Discrete Fourier Transform (IDFT), is used as a

perceptual autocorrelation sequence (Alam, Kinnunen, Kenny, Ouellet, & O’Shaughnessy,

2013).

To obtain the final features from the LP coefficients, an auditory-like kestrel recursion is

performed (Gold, Morgan, Ellis, & O'Shaughnessy, 2012).
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In this type of extraction the features of the sound are achieved by performing spectral
analysis, frequency band analysis, equal loudness pre-emphasis, intensity-loudness power
law and autoregressive modelling. The hidden Markov model toolkit (HTK)-based
processing is followed for PLP feature extraction, and for auditory frequency analysis.

Instead of a trapezoidal-shaped bark filter bank, a mel filter bank is used (Alam, Kinnunen,

Kenny, Ouellet, & O’Shaughnessy, 2013).

Input
speech Pre- . Critical bank Equal
T —»  Emphasis Discrete » analysis (Bark loudness Pre-
P A Fourier e v —
frame and scale emphasis
. . transform DFT .
windowing warping)
A 4
Intensity Cepstral Perceptual
loudness N IDFT » | Autoregressiv. [, domain Linear
power law e modelling transforms .Cfpf‘_t’a|
Figure 16: Perceptual Linear Prediction (PLP), Adapted from Venton & Hussien
(Vetan Z & Hussien A.;2015; p..5):
2.3 Feature Matching (Classification)

Feature matching is an aspect of pattern recognition. In general, a pattern is the object of
interest. A pattern sequence of an acoustic vector is extracted from speech input using one

of the feature extraction algorithms; these patterns are used in the classification algorithm.

Feature matching is the most important aspect of speaker recognition. This procedure
involves identifying an anonymous speaker by comparing the extracted features from the
speech signal—obtained using one of the feature extraction algorithms—to a set of

features of known speakers (Tallat, Shahid, Samad, & Abbasi, 2014).
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Many methods have been proposed for speaker recognition modelling and matching,

however the most popular methods for text-independent speaker recognition are:
Support Vector Machines (SVM)
Vector quantization (VQ)
Gaussian mixture model (GMM)
Artificial neural network (ANN) and
Fully—ergodic hidden Markov model (HMM)

In addition to the previous methods, the following methods are common methods for text-

dependent speaker recognition:
Hidden Markov model (HMM)

Dynamic time warping. (DTW) (Salna & Kamarauskas, 2015) (Loh & Abdul Manan,
2010).

These methods were used for speaker recognition in many studies by different researchers
for example Kaur who used GMM for feature classification. His system gave a high
accuracy of 99% (Kaur & Kaur, 2016). On the other hand, according to Parual, who used
GMM, HMM and VQ for feature classification in‘a speaker, recognition system, the system

tends to have accuracy between 79% to 87% (Parul, 2012).

In the next sections these methods will be discussed in more detail.

2.3.1 Support Vector Machines

SVMs were introduced by Boser, Guyon and Vapnik for classification problems. SVMs were
derived from statistical learning theory in the 90s. It is a relatively new machine learning
method. SVM is an effective feature classification model. It gave good performance
empirically in numerous successful applications fields for example biometrics, text
recognition, voice and image processing, etc. (Weston, 2014). Although a SVM is complex
mathematically and arithmetically expensive, it is one of machine learning techniques, that
help solving huge data classification problems in multi-domain applications (Sutharan,

2016). SVMs are derived from the theory of statistical learning and are applied as a
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machine-learning tool that inherently classifies data into two classes. SVMs offer several
advantages such as dealing with high-dimensional feature vectors without affecting the
training time; being memory efficient by only using a subset of training points in the
decision function; and using different kernel functions that offer both power and flexibility
(Whitehill, 2006).

SVMs provide a classification learning model and an algorithm rather than a
model. The algorithm allows linear domain division using a simple

and then manipulates it (Hearst, Dumais, Osman, Platt, & Scholkopf, 1998). The
kernel is the linear kernel that can easily be substituted with the radial basis
sigmoid, polynomial or other more recent kernels that allow features to be
clearly in a given classification problem. Alternative kernels allow SVMs to
classification problems using linear classification techniques (Tzotsos, 2006),
see
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Figure 17.

The SVM aims to maximize a mathematical function given a set of data points (Noble,
2006). Consider a set of data points that consists of two classes: the theory of SVMs
suggests that it is possible to find a boundary that can separate the two classes.
Furthermore, consider a training set of data points, N, that is represented by § =
{(x1, 1), (x2,¥2), -, (xn , Yy )}, where each x;, withi = 1,2,...,N,is a data point in R"
and each y;e{—1,1} is the corresponding classification label for x; such that the data
points are divided into positive and negative classes. Moreover, suppose that the positive
class, S = {x;|y; = 1}, and negative class, S = {x;|y; = —1} are linearly separable in R",
such that at least one boundary can be formed between the two; this boundary is referred

to as the decision boundary (Noble, 2006).
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Figure 17: Support Vector Machine.

In a higher dimensional spacethe-boundary.isregarded as a geometrical concept of a
plane, and is referred to-as-a-hyperplane.See Figure 18, where the hyperplane is defined by

the following equation:

f(x)=w:x+b=0; weR" beR. (10)

X

Figure 18: Linear classification of hyperplane. (Achmed, 2014, p. 57)
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Where w is the normal vector, x is the feature set and b is the interim term. The normal
vector, w, of the hyperplane is defined as a linear combination of data points, x;, with

weights, a;, and expressed as:
W= X Vi (11)

The two hyperplanes can be selected if the data points are linearly separable. The

hyperplanes can be described by the following equations:
w-x+b=+1,
w-x+b=-1. (12)
Midway between these hyperplanes, there is a decision boundary that can be defined as:
w - x +b=20. (13)

In addition, the distance between-the margin-and the decision boundary can be described

as:

d=— (14)

llwll

The selection of a hyperplane can-be determined by two factors:
. The data points should separate clearly.
. The hyperplane should have the same maximum distance to the nearest data

point from both classes.

This distance is referred to as the margin and the data points that are situated closest to
the hyperplane are referred to as the support vectors. It is necessary to find the maximum
margin if the separation between the two classes is the greatest, because this will allow the
SVM to classify new data points more accurately. To determine this hyperplane, two

requirements need to be met:

1. Alltraining data points should be classified correctly, where w and b

should be estimated such that:

yiw-x; +b) < -1, fory; = -1, (15)

and
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yiw-x; +b) <1, fory, =+1. (16)
Combining these two equations gives:
yiw-x;+b)—1>0,Vv;=0,1,2,..,N. (17)
2. The margins should be as large as possible; maximising the distance in

equation 13 is the same as minimising g This results in minimising:

fw) = llwll2.

The optimum hyperplane can therefore be found by solving the optimisation problem

(Long, 2006), which is defined as:
Minimise
1 2
S il (18)
subject to
yi(W'Xi+b)—1 =0,v;=01,2,..,N. (19)

The optimisation problem can be translated to:

Maximise
N 1¢vnN
Li=1 @ T3 2ij=1 G YV (X X)), (20)
subject to:
N
2i=1a:yi =0, (21)

wherea; > 0andi =0,1,2,..,N.

The hyperplane selected is referred to as the maximum margin; the optimal hyperplane

discriminant function can be defined as:

f(x) = Xies a;yi(x;x) + b. (22)

where S the subset of support vectors that corresponds to positive Langrange multipliers.
The linear classification divides the data domain linearly, i.e., by a straight line or

hyperplane, to separate the classes in the original domain. In LSVM the data domain is
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divided and mapped into a response set (Hastie, Tibshirani, & Friedman, 2009). The

modelling of a LSVM adopts the following linear equation:
Y=WX"+vy. (23)

In nonlinear classification the data domain can be transformed to a feature space that can
be divided linearly. The nonlinear SVM includes mapping of the data domain to feature
space using a kernel function (Scholkopf, et al., 1999), mapping the feature space domain
into a response set, then dividing the data domain (Hastie, Tibshirani, & Friedman, 2009),

The modelling of nonlinear SVM adopts the following linear equation:

Y=W¢X") +y. (24)
Using a Support Vector Machine for classification includes parameterization and the
optimization objectives. These objectives-are based on the topographical structure of the
class in the data domain. This. means the classes may be linearly detachable or linearly non-
detachable. Therefore, the~parameterization-and optimization objectives must consider

these class properties carefully (Huang, Chen, Zhou, & YinandK.Guo, 2011). See Figure 19.

/

/ /
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/

Figure 19: (a) Linear classification, (b) Non-Linear classification. (Achmed, 2014, p.
56)
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The scalar product of the vectors can be formed in the mapping space in the same way as
the function of the scalar products of the corresponding vector in the current space

(Tzotsos, 2006). This equivalence can be expressed as:
K (xi %) = 0(x) - 9(x;),

= (xixf) - (%, %7),
( o X

= XiXj + xizsz
=X;- x]- + (Xi,Xj)z. (25)

where K(xl-, xj) represents the kernel function.

Any set of data points can be separated linearly into a higher-dimensional space without

knowing the explicit form of @; by selecting the appropriate kernel.

Thus the problem of dual optimization can be formulated as:

Maximise:
N 1y
i=1 @ — 5 80 j=1 G Yy K (0, X)), (26)
subject to:
N E
i=14iYi = 0 ;4 = 01 (27)
wherei=1,2,...,N.
Thus, the decision function becomes:
f(x) = Xies a;yiK (x; - x) + b. (28)

where K is the kernel function, b is the interim term and S is a set of support vectors.

Using one of the kernel functions that map data from a current space onto higher-
dimensional feature space, can give an optimal hyperplane that separates the classes.
There are four common kernel functions that are used for nonlinear feature mapping

(Moreno & Ho, 2003):

1. Radial basis function (RBF) Gaussian: K(xi,xj) =exp (—y- ||xi,x]~||2). y > 0.
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2. Polynomial function: K(xi,xj) = (xl-ij + )%, where d is the degree of the

polynomial.
. . . — T
3.  Sigmoid: K(xi,x]') = tanh(yx; X + r).
4. Linear: K(Xi,xj) = xiij'

where y, r and d are kernel parameters.

2.3.2 Vector quantization

Vector quantization (VQ) is a powerful method for multimedia communications and is
based on the principle of block coding. It was proposed in 1980 by Linde, Buzo and Garay
(LBG). In the VQ process a large number of feature vectors are taken to produce a smaller
set of measured vectors that represents the-centroids-of its distribution (Tiwari, 2010). The
VQ design algorithm is based on training quantization (Nijhawan & Soni, 2014), (Ku, Chang,

& Hwang, 2014).

Srinivasan has defined VQ as the process of dividing a large vector space into a limited
number of regions; where each region is called a cluster. All clusters are
their centre; this centreis called-a code . word. All code words are
codebook, combined with a background model to provide competitive
often used for computational speed-up techniques (Srinivasan, 2012). See

Codebook for speaker 1 Codebook for speaker 2

NN EEN RN [T o111

Speakerl

«Sample
= Centroid

Speaker2

a Sample

a Centroid

Feature Vector space

Figure 20.
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Figure 20: Vector quantization codebook formation. Adapted from (Tallat, Shahid,
Samad, & Abbasi, 2014, p. 9)

2.3.3 Gaussian mixture model

The Gaussian mixture model (GMM) is a probabilistic model. It is assumed that all data
points are derived from a mixture of a finite number of Gaussian distributions with
unknown parameters. Mathematically GMM is a density model, which is represented by M
Gaussian component densities. The functions of these components are combined to
provide multimodal density. Parametric models of some arbitrary probability distributions
are often utilized in GMMs. The GMM parameters can be obtained by the expectation-
maximization (EM) algorithm to train the data (Silveira, Schroeder, da Costa, de Oliveira,
Junior, & Junior, 2013). GMMs are widely used in recognition systems such as biometrics
recognition, which are related to-vocal-tract and.spectral features analysis, and in emotion
recognition systems; GMMs_use probability distribution features (Utane & Nalbawar,
2013). The probability distribution can be expressed by.the following equation (Nakagawa,
Asakawa, & Wang, 2007):

p(x/A) £ XL} p: bi(%), (29)

where M denotes the number of mixture weights, X is the continuous-valued data vector,

p; is the component weight and b;(x) is the component density (Kamarauskas, 2015).

2.3.4 Artificial neural network

A neural network is a computing system consisting of a number of simple, interrelated

processing elements, that respond to an external input (Caudill, 1989).

An artificial neural network (ANN) solves problems by learning based on combining artificial
neurons to do information processing. The weights of artificial neurons are adjusted to get
a particular output from a particular input, where adjusting the weights during processing

is known as learning (Shah, 2009).
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2.3.5 Hidden Markov model

The hidden Markov model (HMM) is a statistical approach commonly used. HMM was

developed by Baum and his colleagues in the late 1960s and early 1970s. It can be used in

many fields such as bioinformatics, econometric studies and population genetics (Yildirim,
Singh, Dean, & Jasra, 2015). It has been used for modelling observed patterns from the

1970s, and has been-applied-ona large scale in-speech processing applications since the

mid-1980s (Zhang, Sun, &'Luo, 2014).

Figure 21: Hidden Markov model.

The HMM consists of a Markov chain defined by Bonneville and Jin as a type of stochastic
finite-state machine of detached hidden variables and a series of constant observed
variables, each of which is dependent on one detached variable’s state (Bonneville & Jin,

2013) (Ghahramani, 2001).

The structure of the HMM is shown in Figure 21 where the sequence Z;,..., Z represents
the detached hidden variables. The value of each detached variable Z corresponds to one
of K states, while the sequence x;, ..., x; represents the continuous observed variables.
The value of each one of the continuous observed variables can take on any real number

(zilli, Parson, Merrett, & Rogers, 2014).
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2.3.6 Dynamic time warping

Dynamic time warping (DTW) can be computed in quadratic time using dynamic
programming. DTW is a useful solution for time-series problems in a variety of domains
(Tarango, Keogh, & Brisk, 2014). It can be applied in many applications such as speech
recognition systems, bioinformatics, data mining and hand writing recognition. It was
introduced for speech processing in 1968. DTW is an algorithm to determine the similarity
of time discrete signals or feature sequences sampled at equidistant points in time. DTW
aims to achieve maximal similarity between two sequences of feature vectors by warping
the time axis repeatedly to achieve the optimum fit (Celebi, Aydin, Temiz, & Arici, 2013)
(Grutzmacher, Wolff, & Haubelt, 2015). Figure 22 shows how DTW aligns two time series by

warping the time dimension.

L ] ] ] ] ] ] ]
Time

Figure 22: Dynamic Time Warping (DTW). (Muda, Begam, & Elamvazuthi, 2010, p.
140).

24 Summary

In the preceding sections an overview of speaker recognition algorithms was given, and
each was described and explained. An overview of several approaches was given and the
aspects of these that researchers consider useful when analysing speaker identification,

were explained.

In the following chapter the approach and methodology used for this research will be

described.
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Chapter 3 Research Methodology

In the previous chapter, concepts related to speaker identification were explained, the
contribution of researchers in the domain of voice processing was investigated and some of
the common speaker recognition techniques were reviewed. In this chapter, the
philosophical grounding that underpins the research is discussed to ensure the consistency
of the study, the methodology, which is informed by a philosophical stance and the

methods, which are selected to perform the data analysis, are discussed.

3.1 Research Philosophy

Research philosophy has been defined by Collis and Hussey as a belief about the way in
which data about a phenomenon-should.be-gathered, analysed and used. At the same
time all research is based-on latent-assumptions about what constitutes valid research,
whether it is quantitative, qualitative or _both, and which research methodologies and
methods are appropriate. It should be noted that some researchers use the terms
‘methods’ and ‘methodology’ interchangeably (Collis' & Hussey, 2013). In this research
methodology refers to-the-overall-approach-or-design-that lies behind the selection of

specific methods, and that links the selection of methods to the desired end result.

To ensure the consistency of the study, it is necessary to consider the philosophical basis
that informs the decision-making process. According to Crotty (1998) four basic building
blocks frame the research process: epistemology, theoretical perspective, methodology

and methods (Crotty, 1998). See Figure 23.
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Methods

Methodology

Theoretical perspective

Epistemology

Figure 23: The four basic elements of research according to Crotty (1998).

The decision-making process-in-the study can be defined by posing four questions that

relate to the four basic elements:
1. What methods are to be used?
2. What methodology guides the choice and use of the proposed methods?
3.  What theoretical perspective underpins the preferred methodology, and
4. What epistemology informs the suggested theoretical perspective?

Postulating the research process in terms of these four elements ensures the soundness of
the research and maintains consistency within the study. It also forms an analysis of the
process, points out the theoretical assumptions that underpin it and determines the quality
of its findings. The four basic elements of Crotty’s paradigm will be discussed in more

detail in Sections 3.1.1—3.1.4.
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3.1.1 Epistemology

Epistemology refers to theory of knowledge that defines what kind of knowledge is
possible and legitimate. It is combined with ontology, which is defined as the study of being
and deals with ways of constructing reality and describes our views, claims or assumptions
on the nature of reality (Flowers, 2009). It provides a philosophical grounding for the
decision regarding the kind of knowledge that is possible and ensures that it is both

adequate and legitimate, although a range of epistemologies exist (Crotty, 1998).

Each epistemology contains assumptions about the nature of the world and these
assumptions are in turn embedded in the particular methods. Crotty suggests three
epistemological stances: objectivism, subjectivism, constructivism and their variants (Feast,

2010).

Objectivism maintains-that-knowledge exists whether we.are conscious of it or not. The
existence of knowledge is-independent of .our . consciousness of it. With objectivism,
researchers look for explanations by developing and testing hypotheses and theories

(Feast, 2010) (Biggs & Buchler, 2008).

Constructionism maintains-that-meaning-is-constructed-through our minds interacting with
the world, which implies that people in different cultures or eras construct meaning in

different ways even in relation to the same phenomenon (Crotty, 1998).

Subjectivism, the last stance, maintains that knowledge is generated from the mind,
without reference to reality. While constructivism acknowledges the influence of (the)
reality in the generation of meaning, subjectivism holds that gaining knowledge about the

world is done through introspection (Feast, 2010).

The current study is done from an objectivist epistemological stance.

3.1.2 Theoretical perspective:

A theoretical perspective is described as a research paradigm or research philosophy and
refers to the philosophical assumptions related to the underlying epistemology that guides

the research (Flood, 2010).
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Two research paradigms have been suggested by Rubin & Rubin, these paradigms are:
positivism and naturalism, which differ in terms of the goals of the research and the ways
that are used to achieve the goals. Positivists claim the existence of a single and objective
reality or truth that can be observed and directly measured, the purpose of a positivist is to

work out theories and prove or disprove their hypotheses (Rubin & Rubin, 2012).

Naturalists argue that reality is indirectly measureable, i.e., reality can be changed and
perceived differently through the interpretations of people. Naturalists describe and
explain a complex situation or process. Their purpose is more to explain and understand
what has happened in a specific circumstance, than to prove or disprove a hypothesis. To
differentiate between the two stances Rubin & Rubin (2012) have proposed a list of

questions:

1. Is the purpose to test-theories and-discover general principles, or is it to describe

and explain complex situations?

2. Should the work be primarily deductive; thatis, should it start out with broad

theories and suppositions and then systematically test their implications?

3. Or should it be-inductive;-i.e.;-should-it build-explanations from the ground up,

based on what is discovered?

4. s there one truth out there that the researcher is trying to measure, or are there

many possibly‘contradictory ones?

The research considerations with regard to the current study followed a positivist
theoretical perspective, since the study has a more objective approach. This particular
paradigm offers a range of methodological choices where researchers can apply

guantitative methods.

Methodology

A research methodology is the system used to address a research problem. It is a set of
procedures to solve or describe specific phenomena concerned with the problem

(Rajasekar, Philomonathan, & Chinnathambi, 2006). Thus a methodology refers to a
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strategy of investigation or a work plan that moves from the underlying philosophical

assumptions to the research design and data collection.

For this research the design science research methodology of Brocke & Buddendick (2006)

is employed.

Design science research

Design science research (DSR) is a research paradigm used when artefacts are developed to
solve a problem. The knowledge derived during the process, is recorded and contributes to
the field of knowledge. DSR is an iterative process where each cycle consists of six phases:
identify, build, document, select, evaluate and communicate (Vom Brocke & Buddendick,

2006) as shown in Figure 24.

f ENVIRONMENT

Figure 24: The iterative process of a general DSR cycle consists of six basic stages
(Vom Brocke & Buddendick, 2006, p. 582)
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The key aspects that need to be considered in each phase can be summarized as follows:

Identify: this phase should answer the following questions:
What is the problem?
How should the problem be solved?
What are the specific criteria that a solution for the problem should meet?

The researcher needs to identify the research problem clearly and needs to
justify the value of a solution. In addition, the objectives of the research and the
derivation of the requirements are described in this phase. Perhaps the main
focus in this phase is to understand the problem’s relevance, together with

current solutions and their weaknesses.

Build and document: -in" this-phase “an-artefact, capable of solving and
delivering the functionalities is developed. Building the artefact can be achieved
using constructs, madels, methods, or-instantiations. The research contribution
is embedded in the application of methods, technologies and theories to create

the artefact that delivers utility.

Select and evaluate: the principal aim of this phase is to determine how well
the artefact- works. After the-design'of a solution; the use of the artefact to solve
one or more linstances  of ‘the' problem 'should be illustrated. Before the
evaluation, the evaluation criteria and techniques should be chosen, then the

system is tested and analysed according to the selected evaluation metrics.

Communicate: this is a comparison phase, where the problem solution, its
novelty and effectiveness are compared to other work and communicated to

relevant audiences.

The results obtained after each cycle can serve as new requirements to solve the next

instance of the problem.
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3.1.3 Methods

Research methods refer to the techniques or procedures that are used to collect and
analyse data related to the research question. In this study three different techniques are

used to achieve the aim of the research:
a visual representation method which uses the voice image to recognize individuals.

a feature extraction and matching method that uses the MFCC algorithm for

extractions and the SVM algorithm for feature classification—MFCC+SVM.

a feature extraction and matching method that uses the LPCC algorithm for extraction

and the SVM algorithm for feature classification—LPCC+SVM.

3.2 Research Design

3.2.1 Application of design science research

In order to answer the research question, the DSR cycle was applied as three cycles or
phases of analysis: the visual representation-phase, the MFCC+SVM phase and the
LPCC+SVM phase. See Figure 25.

Phase 1: Phase 2: Phase 3:

Visual MFCC+SVM LPCC+SVM
representation

ENVIRONMENT

ENVIRONMENT

Figure 25: The DSR cycle applied to each of the phases.
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Phase 1: Visual representation cycle/phase

Data collection process

For the first cycle of the research, the UWC Research Committee gave ethical clearance for
data collection as well as the experiments with randomly selected participants (reference
number 15/7/242). Participants, students at the University of the Western Cape, were
advised of the purpose of the study, their right to withdraw and their right to anonymity.
Those that agreed to be part of the study, were asked to read a specific paragraph, which
was recorded, and the voice recordings were used as input to the application designed for
the research. As explained to the participants, their recorded voice messages would not be
linked to them in any way and would be destroyed once the research was completed. No

vulnerable persons were involved in the research.

Audio data was collected.from six adults, 3-females-and 3 males, aged between 26 and 50,
in a quiet environment using a normal imicrophone and a MacBook Pro. All speakers
repeated the same phrase four-times-to create 24-voice-images. These voice images were
used for visual analysis experiments. During this cycle the visual representation of the voice

signature, thus a voice image, was considered.

Method used

The voice signatures were transformed into voice images using a program called Audacitys,
Which is a computer application 'used for digital'audio editing and recording. It can be used
for post-processing of all types of audio file formats such as .wav, .MP3 and podcasts, by
adding effects such as normalization, trimming and fading in and out. In this research,
Audacity was used to normalize the waveform of each voice image and also to produce a
linear frequency analysis image of each voice image. See Figure 26. The linear frequency
analysis image was preferred for this experiment since it does not need any normalization.
The Audacity software produces the same image size for each voice image, although this is
not the case for the waveform of each voice image. The waveform sizes differ, because the

talking speed is different for each voice image.

5 https://multimedia.journalism.berkeley.edu/tutorials/audacity/
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Linear frequency analysis images of the 24 voice images were created using Audacity and
saved in a database. This database was created using a structured query language (SQL)
database. VB.net was used to create a program to compare the images. The program
comparing the voice’s images first checks the size of the two images, then compares the

images pixel-by-pixel to get the percentage of similarity between pairs of images.
The similarity was measured using the Jaccard similarity index J (M, N) as following:

IM N N|

— X100
|[M U N|

J(M,N) =
M N|

= %100
IM| + [N| —|M NN

where the index is a 100 when M is exactly equal N, and 0 when the intersection is emptyG.
Depending on this percentage; the-program_decides whether or not these two images

belong to the same speaker.

Figure 26: A. Voice waveform, B. Linear frequency analysis image.

Experiments were carried out with the visual representation of the voice signatures. The

images were compared to determine if the images are from the same speaker or not.

6 www.statisticshowto.com/jaccard-index/
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Experiments two and three were done for speakers of different gender to see if the

comparison differs depending on the gender.

This simple method was proposed for the initial cycle to check if it is possible to recognise
speakers without using more sophisticated methods. More sophisticated methods were

applied in the second and third cycles.

Phase 2: Mel frequency cepstrum coefficients combined with Support
Vector Machine cycle/phase

Data collection process

The Texas Instruments (Tl) and Massachusetts Institute of Technology (MIT) audio
database, called TIMIT7, was used for training and testing. The TIMIT audio database
contains 6300 voice recordings«~These were recorded using 630 speakers speaking in the
eight major dialects of American English. Each speaker repeated the same phrase ten
times. This database was used.-for the testing as-well-as for the training of the system in

this cycle.

Methods used

MFCC—a feature extraction algorithm—was used to extract a set of features from a voice

signal. These features were used by‘the Support Vector Machine for classification.

The experiments using MFCC with SVM ‘were implemented with MatLab. The MatlLab
signal and image-processing package was used. The signal processing and auditory toolbox

were also required to access all the necessary MatLab voice processing functions.

First, a voice signal, using the steps suggested in Section 2.2.1—pre-emphasis, framing,
Hamming window, fast Fourier transform, mel-scale filter bank and logarithm and discrete
cosine transform—was read and turned into a sequence of features. Many of these tasks
are provided by MatlLab functions such as wavread to read a voice signal, hamming for
Hamming windowing, fft for fast Fourier transform, dct for discrete cosine transform and

melfb for mel-scale filter bank.

7 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogld=LDC9351
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Then the voice signal was divided into frames with an overlap length of 25 ms, the result
was a matrix where each column was a frame of N samples from the original signal. Next
each voice signal was transformed to the frequency domain by applying windowing and
FFT. The result of this task is the spectrum. The last processing step was to convert the

power spectrum into the mel frequency cepstrum using the melfb function.

Finally, all the pieces were put together into a single Matlab function mfcc, which performs
the MFCC processing. This function extracted 13 dimensional feature vectors for each

frame.

SVM for classification, using the Matlab machine learning and statistics toolbox, was then

used.

First the SVM classifier was trained: the fitcsym function from the statistics toolbox was
used for this training and optional-cross validation. The _output of this function was the
trained model consisting of the optimal parameters of the SVM algorithm, which were

applied to classify the new datas

Then the predict function of the MatlLab 'statistics toolbox was used to test new unseen
data from the TIMIT dataset.-The-MFCC-features and-polynomial SVM kernel function were
used to get satisfactory predictions. The SVM was able to find a hyperplane, which

separated positive and-negative samples:

Before testing the system'with the new data, as any system‘involved with machine learning
methods it was necessary to training system with a number of data. The system was
trained with 65 speakers from the TIMIT database. In order to measure the average
accuracy of using MFCC combined with SVM to recognize a speaker, 35 different speakers
from the TIMIT database were selected and used for testing the system. The recognition of
each speaker was attempted eight times. The results were assessed based on the number

of false acceptances and false rejections giving the accuracy:

Y. True acceptances + ), True rejections

Accuracy =
y Y. Number of recognition attempts

49



Phase 3: Linear prediction cepstral coefficients combined with Support
Vector Machine cycle/phase

Data collection process

The same dataset TIMIT was used as in the previous cycle—Phase 2.

Methods used

LPCC feature extraction algorithms, commonly used for speaker recognition, were
considered for doing the experiments in this phase, SVM was again used for feature

classification.

This experiment was also implemented using MatLab. The TIMIT audio database was used
for training and testing during this phase. The system was trained with 65 speakers from

the TIMIT database and tested with-35 speakers, as was done in Phase 2.

The Ipcc MatlLab function from the-auditory toolbox was used to extract the features in this

cycle/phase for classification:

To measure the accuracy of the LPCC algorithm combined with the SVM algorithm, 35
speakers were selected from the TIMIT audio database for testing[, as previously stated].
The recognition of each speaker was done eight times. The results can be assessed based

on the number of false acceptances.and false rejections.

>, True acceptances + Y, True rejections

Accuracy =
Y Y. Number of recognition attempts

3.3 Summary

In this chapter, the philosophical grounding that underpins the research was described in
order to ensure the consistency of the study. It described how the epistemology and
theoretical perspectives inform the research process. It was concluded that in order to
follow a more objective approach, a positivist theoretical perspective should be taken. The
discussion concluded that the DSR methodology is relevant to managing this philosophical
stance. In addition, the six-stage cycle of the DSR framework that structured the research

was discussed.
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The specific methods that were used to collect the data and run the experiments were

explained and discussed. Two different datasets were considered in this research:

a created database with a small number of records that was used for the visual

representation method, and

the TIMIT audio database, which contains 6300 records. This dataset was used for

training and testing since for this part of the experiment, a big dataset is required.

The next chapter describes and summarizes the main results obtained for the experiments

that were conducted.
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Chapter 4  Results

The previous chapter outlined the approach and methodology adopted for the research,
and considered the four important elements that influence the way in which research is
undertaken: epistemology, theoretical perspectives, methodology and methods. A design
science research methodology was applied to address the research problem in an
incremental manner. In this chapter the results for each method are discussed and

compared.

The aim of this study is to recognize a person by his/her voiceprint. To achieve the goal of
this study a set of methods were considered: (1) visual representation—which compares
the user’s voice image to images stored in a database, to determine if the image matches
any of the voice images in-the database; (2)~an_MFCC feature extraction algorithm
combined with SVM for- feature-classification;-and-(3)-finally an LPCC feature extraction

algorithm combined with-SVM-for feature classification:

4.1 Phase 1: Jaccard Similarity Method

The first cycle of the-research-is—shown—-in—Figure-27.-The visual representation of a
speaker’s voice image, using graphs of the linearfrequency, was compared to a database of

24 voice images.

Visual representation MFCC+SVM LPCC+SVM

Figure 27: Phase 1: The first DSR cycle consisting of the visual representation phase.
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Figure 28: The four waveform images for Speaker 1.

. . ‘ . I,
Figure 29: The waveforms of six speakers for the same phrase.
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Figure 29 is a depiction of different speakers’ waveforms and shows how the waveforms
differ from speaker to speaker. To be able to compare the voice images, linear frequency
images of the 24 images were created, using the Audacity software. The results were

subsequently stored in a SQL database.

A linear frequency analysis image of Speaker 1 is shown in Figure 30.

Figure 30: The four linear frequency analysis images of Speaker 1.

Figure 31 shows an example of one of the linear frequency analysis images (or waveforms)

of each of the six person’s voiceprints.
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Figure 31: Linear frequency analysis images for six different speakers.

The linear frequency analysis voice images were compared as follows—the speaker with

himself and the speaker with each of the other speakers—using a VB.net program to get

55

http://etd.uwc.ac.za/



the percentage of similarity, which was measured by the Jaccard index, see Page 46. This
experiment was executed to see if the program would be able to determine the identity of
the speaker. The VB program compared the images pixel by pixel and then decided if the
images belong to the same speaker or not. The results depend on the percentage of

similarity between the voice images.
Three different experiments were done during this phase:
1. The comparison of the four voiceprints of the same speaker.

2. The comparison of Speaker 1’s voice image—a female speaker—with the other five

speakers’ voice images.

3. The comparison of Speaker 3’s voice image—a male speaker—with the other five

speakers’ voice images.
Experiment 1
For this experiment the following was done:

The first image of Speaker 1 was compared with the second image, third image and

fourth image of Speaker-1—thus three comparisons were done.

The second image .of Speaker-1.was compared to the third and the fourth image of

Speaker 1—thus two comparisons were done.
The third image of Speaker 1 was compared to the fourth image of Speaker 1.

Six comparisons were done for each speaker. Figure 32 depicts the six comparisons for
each speaker for all six speakers. It shows the percentage of similarity between each two
images for the same speaker, imgl VS img2 means the first voice image of the speaker
compared to the second voice image, imgl VS img3 the first voice image of the speaker
compared to the third voice image, etc. Each column depicts the percentage of similarity

between the compared images. Each group belonged to one speaker.
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Comparison of the voiceprint of the same speaker
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Figure 32: — Six comparisons of the same speakers for all six speakers.
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For example, the first gro‘u"p gf aalEa LD\WH tIE Emﬁ;rl{y df the voice images of Speaker 1,
which ranges between'95% and 99%. | . [T [

According to data in the Figure 32 each speaker’s voice image are extremely similar as one

would expect, since the percentages range between 93% and 99%.
Experiment 2

In this experiment the four voice signatures of Speaker 1, a female speaker, were
compared with all the voice signatures of the other speakers. Figure 33 shows each voice

signature of Speaker 1 compared with all the voice signatures of other speakers.

For example the first voice signature of Speaker 1 compared to the first voice signature of
Speaker 2, Speaker 3, Speaker 4, Speaker 5 and Speaker 6 is presented as imgl1Spl X imgl,

each bar depicts one speaker.
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Then the first voice signature of Speaker 1 was compared to the second, third and fourth

voice signatures of other speakers imglSpl X img2, imglSpl X img3 and img1Sp1 X img4.

The same was done to the second, third and fourth voice signatures of Speaker 1.

Comparison Speaker 1 with other speakers
100
[FSpeaker 2
95 [[Speaker 3
N » 1 N N ) 1R o . T [I I [| @Speaker4
= .. | | o 1 o | | | | ESpeaker 5
5
= =]
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k3
Q
-1
©
5
5 I
<
Compared images
Figure 33: Comparisons voice images of Speaker 1 with the other speakers.

The similarity between the voice images range between 79% and 94%. Speakers 1, 2 and 5
were all females. For the same gender speakers—Speaker 1 compared to Speaker 2 and
Speaker 5—the percentage range was between 90% and 94%. For different gender
speakers—Speaker 1 compared to Speaker 3, Speaker 4 and Speaker 6—the similarity was

between 79% and 86%.

58

http://etd.uwc.ac.za/




According to the literature the frequency values of male individuals are lower than that of
females, where the values range between 85Hz and 180Hz for males and between 165Hz
and 255Hz for females (Latinus & Belin, 2011). That may be the reason behind the higher

similarity for speakers of the same gender.

As a result it can be seen that it is difficult to distinguish between speakers by using this
method because of the high rates of similarity between the voice images of different

speakers.
Experiment 3

In this experiment, the four voice images of Speaker 3, a male speaker, were compared
with the voice images of each speaker. In this experiment the male speaker was selected to
compare with other speakers to see if it is possible to distinguish between two speakers
using voice images, and-how.the similarities-differ.in-the case of speakers with the same

gender.

For example the first voice image of Speaker 3 was compared to the first voice image of
Speaker 1, Speaker 2, Speaker 4, Speaker 5 and Speaker 6. This is represented as

img1Sp3 X imgl, and each-bar depicts one speaker.

Then the first voice image-of Speaker.3 was compared with the second, third and fourth

voice signatures of other speakers imglSp3 X img2, img3Spl X img3 and imglSp3 X img4.

The same was done for the second, third and fourth voice images of Speaker 1. Figure 34

shows the results obtained from this experiment.
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Comparison of Speaker 3 with other speakers
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Figure 34: Comparisons of voice images of Speaker 3 with the other speakers.

Figure 34 depicts the comparisons of Speaker 3 to all the other speakers. As can be seen,
the range of similarity in this case was between 79% and 92%. For the same gender
speakers—Speaker 4 and Speaker 6—it was between 82% and 92%. For different gender

speakers—Speaker 1, Speaker 2 and Speaker 5—it was between 79% and 84%.

The results of the three experiments of Phase 1 were not satisfactory because of the high
level of similarity between the different speakers, especially when they are of the same
gender. Thus this method is not accurate enough to use to identify speakers uniquely, and

thus the experiments using visual representations were not extended.
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4.2 Phase 2: MFCC Feature Extraction Algorithm with SVM classification.

During the second phase—the second DSR cycle—see Figure 35, the MFCC algorithm and
the SVM were used to do the experiments. The TIMIT database was used for both training

and testing.

Visual representation MFCC+SVM LPCC+SVM

Figure 35: The second DSR cycle consisting of the MFCC+SVM phase.

Table 2 shows the main results of false acceptance, false rejection, true acceptance, and
true rejection for each of the 35 speakers who were used to test the method of using MFCC

combined with SVM.

Table 2: The main results obtained using MECCicombined with SVM.
Seley False I.Zals.e True jrru.e I
acceptance rejection acceptance rejection
Spl 1 1 3 3 75%
Sp2 0 1 4 3 87.5%
Sp3 1 0 3 4 87.5%
Sp4 1 1 3 3 75%
Sp5 0 1 4 3 87.5%
Sp6 1 1 3 3 75%
Sp7 0 1 4 3 87.5%
Sp8 1 1 3 3 75%
Sp9 0 1 4 3 87.5%
Sp10 0 0 4 4 100%
Spll 0 1 4 3 87.5%
Sp12 1 1 3 3 75%
Sp13 0 1 4 3 87.5%
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Speaker e I.:als? True jl'ru.e Accuracy
acceptance rejection acceptance rejection
Spl4d 0 2 4 2 75%
Sp15 0 1 4 3 87.5%
Spl6 0 1 4 3 87.5%
Spl7 1 0 3 4 87.5%
Sp18 0 0 4 4 100%
Sp19 0 2 4 2 75%
Sp20 0 1 4 3 87.5%
Sp21 1 0 3 4 87.5%
Sp22 1 1 3 3 75%
Sp23 0 1 4 3 87.5%
Sp24 0 1 4 3 87.5%
Sp25 0 1 4 3 87.5%
Sp26 0 2 4 2 75%
Sp27 0 0 4 4 100%
Sp28 1 1 B 3 75%
Sp29 1 1 =3 3 75%
Sp30 0 0 4 4 100%
Sp31 1 1 8 3 75%
Sp32 0 1 4 3 87.5%
Sp33 0 2 4 2 75%
Sp34 0 1 4 3 87.5%
Sp35 0 1 4 3 87.5%

According to the data in Table 2 the average accuracy for using this method is 84.29% with a
standard deviation of 8.22%. Figure 36 depicts the recognition accuracy for each speaker

of 35 speakers.
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Figure 37: The third DSR cycle consisting of the LPCC+SVM phase.
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Table 3 shows the main results obtained using the LPCC algorithm to extract the features of

the voice signals and the SVM that was applied for classification.

Table 3: The main results obtained using LPCC combined with SVM.
Speaker False I.:als.e True TFU? Accuracy
acceptance rejection acceptance rejection
Spl 1 1 3 3 75%
Sp2 0 1 4 3 87.5%
Sp3 1 1 3 3 75%
Sp4d 1 1 3 3 75%
Sp5 1 1 3 3 75%
Sp6 0 1 4 3 87.5%
Sp7 0 1 4 3 87.5%
Sp8 1 1 3 3 75%
Sp9 0 1 4 3 87.5%
Sp10 0 2 4 2 75%
Spll 0 1 4 3 87.5%
Spl2 1 1 3 3 75%
Sp13 0 1 4 3 87.5%
Spl4 0 2 4 2 75%
Spl5 0 2 4 2 75%
Spl6 0 1 4 3 87.5%
Spl7 1 0 3 4 87.5%
Spl8 0 0 4 4 100%
Sp19 1 1 3 3 75%
Sp20 1 1 3 3 75%
Sp21 0 1 4 3 87.5%
Sp22 1 1 3 3 75%
Sp23 0 1 4 3 87.5%
Sp24 0 0 4 4 100%
Sp25 0 1 4 3 87.5%
Sp26 0 2 4 2 75%
Sp27 0 0 4 4 100%
Sp28 1 1 3 3 75%
Sp29 1 1 3 3 75%
Sp30 0 0 4 4 100%
Sp31 1 1 3 3 75%
Sp32 0 3 4 1 87.5%
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False False True True
Speaker L L. Accuracy
acceptance rejection acceptance | rejection
Sp33 1 1 3 3 75%
Sp34 0 1 4 3 87.5%
Sp35 0 1 4 3 87.5%

According to the data in Table 3 the average accuracy of using LPCC combined with SVM to

recognize the speaker is 82.9% with a standard deviation of 8.6%. Figure 38 represents the

recognition accuracy of each one of the 35 speakers.
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4.4 Comparison of Different Methods:

In the previous sections the main results were presented. The first method used the

Jaccard similarity index to compare the voice images. This method yielded the poorest

results.

The methods applied in Phases 2 and 3 gave encouraging results. However, using the MFCC
algorithm with the SVM classifier, to recognise speakers, was found to be slightly more

effective and accurate than using the LPCC algorithm with the SVM classifier.

Table 4 summaries the comparison of these two methods. It shows the average accuracy

(ACC), false acceptance rate (FAR), and false rejection rate (FRR).

Where:
s Number.of-false acceptances
Number of recognition attempts
and
el Number of false rejections
Number of recognition attempts
Table 4: Comparison between MFCC+SVM and LPCC+SVM.
Methods ACC FAR FRR
MFCC+SVM 84.3% 0.04 0.11
LPCC+SVM 82.9% 0.05 0.12

Since the data of the two methods is normally distributed with equal variances, the T-test

will be reported, see Appendix C.

Table 5: Statistical comparison of the two methods
Methods Mean Standard 95% ClI
Deviation
MFCC+SVM 84.3% 8.22 81.5-87.1
LPCC+SVM 82.5% 8.13 79.7-85.3
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Since the 95% confidence intervals (ClI) overlap, there is no significant difference between
the two groups—MFCC+SVM and LPCC+SVM. To confirm this, the equal variance T-test =
0.9138 and the probability value = 0.3641, also indicate no significant difference between

the two groups at a 5% level of significance, see Appendix C.

4.5 Summary

This chapter discussed the results obtained using the DSR methodology to do the
experiments. These results were summarized and compared. Using the MFCC feature
extraction algorithm and SVM for feature matching gave a slightly better result than

LPCC+SVM. However, the difference has been shown not to be statistically significant.

In the next chapter the results will be discussed and some recommendations for future

work will be given.
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Chapter 5 Discussion and Conclusion

The aim of this research was to recognize a user through his voice and to identify the user
by verifying that his/her voice is the same as a record of the voice signature. The research
guestion addressed in this investigation was “What is the best way to identify a person

using his / her voice signature?”
This overarching question was unpacked into the following three sub-questions:

What feature extraction methods should be used?
What classification method would be effective?
What combinations of methods are reliable to authenticate a person’s voice

signature?

In the previous chapter-the-results.obtained, using various experiments, were presented.
Several experiments were conducted using three different methods, to recognize users by
means of voice signatures. These methods included: Jaccard similarity of linear frequency
histograms of voice signatures, the MFCC feature extraction algorithm with SVM for
speaker classification, and-LPCC for feature extraction-with SVM for speaker classification.
The results achieved for each method were given. In this chapter, these findings will be
discussed in terms of the research’questions. In-addition 'some suggestions will be made

about how to improve voice-based speakerrecognition.

5.1 Findings in Terms of the Research Questions

What is the best way to identify a person using his / her voice signature?
The methods that were used to address the first question were:

Jaccard’s similarity method—it involved comparing the linear frequency histograms of

each user’s voice image with the images of the other users’ voices;

the mel frequency cepstrum coefficient feature extraction method was used to extract
the unique features from the individual’s voice signal combined with a Support Vector

Machine for classification.
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the linear prediction cepstral coefficient feature extraction method was used to extract
the unique features from the individual’s voice signature and classified by a Support

Vector Machine trained on these extracted features.

The results achieved, using each of the methods, were compared to see which performs
the best. The results of the analysis using the Jaccard similarity index method were found
to be unsatisfactory. It was established that extracting the features from an individual’s
voice signal using a feature extraction method combined with a support vector machine for

classification is the best way to identify a person.
What feature extraction methods should be used?

For the first sub question two different feature extraction algorithms were considered to
achieve the aim of this research, the mel frequency cepstrum coefficient is the most
popular feature extraction "algorithm, “which~is_based on a human being’s hearing
perceptions, and the linear prediction cepstral coefficient, which is based on the prediction

of current voice samples:as a linear combination of pastvoice samples.

According to the results that were presented in Chapter 4, both of these algorithms gave
similar results with only a slight difference in accuracy. However, using the features
extracted with the MFCC method gave an accuracy of 84.3% while feature extraction by
LPCC gave an accuracy. of 82.9%. 'This difference’ was' shown not to be statistically

significant.

What classification methods would be more effective?

Many feature classification methods exist to use for speaker recognition, however,
according to the literature, the Support Vector Machine is one of the most popular feature
classification methods for text-dependent speaker recognition (Salna & Kamarauskas,
2015) (Loh & Abdul Manan, 2010), and therefore this method was the one used for

classification.

What combinations of methods are reliable to authenticate a person’s voice
signature?

For the last research question combinations of feature extraction and feature matching

were used: firstly the MFCC feature extraction algorithm was used combined with SVM for
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feature matching. Secondly the LPCC feature extraction algorithm was used combined with

SVM for feature matching.

5.2 Difficulties Encountered

Some problems encountered during the study include:
Data collection of the audio data for training and testing was difficult. In particular it
was difficult to create consistent conditions for the recording of all the voice
signatures. The need to collect a large corpus of data to improve training was also an
impediment. Consequently, the TIMIT data set was considered instead of creating a
self-generated data set. This TIMIT data set was available on-line and could be

downloaded free of charge.

Matlab was used to implement-both feature extraction algorithms. Octave was also

considered but it was found-that-MatLab-has aricher-machine learning toolkit.

5.3 Future Work

In future research the text-dependent speaker recognition system could be improved. The

following are some suggestions-to-extend-and-improve-the-speaker recognition system.

Testing the system within different environments: for example in a noisy environment;
when the speaker is using a phone; when a speaker is angry or sad, etc. and then to
establish which method is more effective. To improve the system so that it is a text-
independent speaker recognition system. That is, to improve the system so that it is able
to identify the speaker with any spoken phrase. More feature extraction algorithms could
be tested and compared to decide which is more effective when considering text-

independent speaker recognition in different environments.

Many feature matching methods could be considered: for example, vector quantization,
Gaussian mixture model, artificial neural network and hidden Markov model for text-
dependent speaker recognition, and hidden Markov model, dynamic time warping for text-
independent speaker recognition. Other combinations of methods could be used and
could be compared to see which is the most effective and accurate method for recognizing

a speaker’s voice.
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5.4 Conclusion

Reflecting on the study it is noted that there is currently a new interest in voice signatures,
with for example Vodacom considering using voice signatures instead of a list of questions
to identify their customers (www.vodacom.co.za/vodacom/services/internet/voice-

password) this study therefore is relevant.
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Appendices

Appendix A: TIMIT data base loading

function [this default_path] = ADT( dbName ,init dir,flags)
%ADT - constructs a MatlabADT object.

$Technion SIPL MatlabADT (Audio Database Toolbox)
¢Implemented by: Kobi Nistel

%Supervised by: Yevgeni Litvin and Yair Moshe

%Version 1.01, Jan 2009

$Technical support: matlab adt@sipl.technion.ac.il

%Lab site: www-sipl.technion.ac.il

%

$[ADTobj default path] = ADT(dbName,init dir,flags)

%A1l operations on the database will be performed using the
%ADT object which is passed to them as the first parameter.
%Exemples:

% db = ADT; - loads TIMIT database form defalut path.
% db2 = ADT('ctimit'); - loads CTIMIT database form the defalut path.
%Setup:

o0

on operating MatlabADT=6utside«of=SIPLwfor=the first time run the command
db = ADT('timit'jlesXtimitPath', 'setup )=

o0

oe

%See also query, filterdb ~read;-play:

%checks the location jof the timitdb directory
data_file path = which('@ADT/ADT'); %to be fixed
data_file_path = data file path(l:end-5) ;%to be fixed

if (nargin<1l)

dbName = 'timit";
end
if (nargin<2)
init_dir = textread([data_file path dbName ! path.txt'],'%q');

init_dir = init_dir{1};
end
if (nargin<3)
flags='non';
end
if (strcmpi(flags, 'setPath') || strcmpi(flags, 'setup') ||
strcmpi(flags, 'reBuild '))
fid = fopen([data_file path dbName ' path.txt'],'w+');
fwrite(£fid,['"" init _dir '"']);
fclose(fid);
end

persistent cachedDBname;

persistent cachedDataBase; %for faster loading
this = databaseclass;

this.path = init_dir; $%sets global path
this.kind = 1; %sets DB as sentence

this.name = dbName; %to do:from a file

%checks for exisitence of datafile
if( ~exist([data_file path ,dbName,'.mat'], 'file') || strcmpi(flags, 'reBuild
"))
this = makedb(init_dir,this);
save([data_file path,dbName], 'this"');
cachedDataBase = this;
else
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fprintf('Loading %s...\n',this.name);
if (isempty(cachedDataBase) || ~strcmp (cachedDBname, dbName) )
load([data_file path,dbName]);
this.path = init_dir; %$sets db path
cachedDataBase = this;
else
this = cachedDataBase;
this.path = init_dir; %$sets db path
end
end
default_path = this.path;
fprintf('Enteries: %d\n',this.entriesNumber);
cachedDBname = dbName;
if strcmpi(flags, 'setup')
play(this,1);
end
end

function this = makedb(init_dir,this)

$MAKEDB - generates the database file

fprintf( 'Generating database file:');

for train testC=1:2 $USAGE: Test / Run
switch train_testC

case 1, train_test = _‘train’';
case 2, train.test.="'test";
end
for dialectC=1:8 % Dialects
fprintf('.");
switch dialectC
case 1, dialect = 'drl';
case 2, dialect = 'dr2';
case 3, dialect = 'dr3';
case 4, dialect = 'dr4';
case 5, . .dialect = 'dr5';
case 6, dialect = 'dré6';
case 7, dialect = 'dr7';
case 8; dialect =~ 'dr8';
end
speaker _dirs = dir([init_dir,'\',train_test,'\',dialect, '\*.']);
%speakers

for sex speakerC'= 1:length(speaker dirs)
if( strcmpi(speaker_dirs(sex_speakerC).name(l) , 'F') )
sex = 'F';
else
sex = 'M';
end
speaker = speaker_ dirs(sex_speakerC).name(2:end); %Cutting the
F/M

direct=[init_dir,'\',train_test,'\',dialect,'\',speaker dirs(sex_speakerC).na
me];

files=dir([direct, '\*.wav']);

for sentenceC = l:length(files)

$read on sentence data:

this.enteries(end+1).ID = length(this.enteries); %couses an
empty cell in db(1l)!!

this.enteries(end).sentence = files(sentenceC).name(l:end-4);
%no exonetion

this.enteries(end).usage = train_test;

this.enteries(end).dialect = dialect;

this.enteries(end).sex = sex;

this.enteries(end).speaker = speaker;
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$read in sentence data:

gwords:
[b,e,name]=textread([direct ,'\',this.enteries(end).sentence
,".WRD'],"'%n %n %s');

%a "silence" word thet all not word assieted phonems
%can point to.
name{end+1}="h#";

b(end+1l) = 1;
e(end+l) = 1;
for temp=1l:length(name), name{temp} = [name{temp},' ']; end

$b = b+1l; %the Timit readings starts from zero

%e = e+l; %the Timit readings starts from zero
this.enteries(end).word.name = char (name);
this.enteries(end).word.b = b;

this.enteries(end).word.e = e;
this.enteries(end).word.flag = ones(length(b),1, 'int8");

$phonems:
[b,e,name]=textread([direct ,'\',this.enteries(end).sentence
,".PHN'],'%n %n %s');
for temp=1l:length(name), name{temp} = [name{temp},' ']; end
$b = b +1; %the Timit readings starts from zero
%e = e +1; %the Timit readings starts from zero
this.enteries(end).phoneme.name = char (name);
this.enteries(end).phoneme.b = b;
this.enteries(end).phoneme.e =-e;
thisventeries(end).phoneme.flag =. ones(length(b),1l, " 'int8');
this.enteries(end).phoneme. from =
length(this.enteries(end) .word.flag)*ones(length(b),1, 'int8");
for pho_in=1l:length(b)
for jj=l:length(this.enteries(end).word.b)

if(this.enteries(end).phoneme.b(pho_in)>=this.enteries(end).word.b(jj)-1)...

&&(this.enteries(end).phoneme.e(pho_in)<=this.enteries(end).word.e(jj)+1)
this.enteries(end).phoneme.from(pho_in)=jj;
continue;

end
end
end
end
end
end
end
fprintf('\n');
this.enteries = this.enteries(2:end);%becouse the first entery is empty
this.entriesNumber = length(this.enteries);
end
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Appendix B: MFCC algorithm

function [ CC, FBE, frames ] = mfcc( speech, fs, Tw, Ts, alpha, window, R,
N, L)

% MFCC Mel frequency cepstral coefficient feature extraction.

%

MFCC(S,FS,Tw,TS,ALPHA,WINDOW,R,M,N,L) returns mel frequency
cepstral coefficients (MFCCs) computed from speech signal given

in vector S and sampled at FS (Hz). The speech signal is first
preemphasised using a first order FIR filter with preemphasis
coefficient ALPHA. The preemphasised speech signal is subjected

to the short-time Fourier transform analysis with frame durations
of TW (ms), frame shifts of TS (ms) and analysis window function
given as a function handle in WINDOW. This is followed by magnitude
spectrum computation followed by filterbank design with M triangular
filters uniformly spaced on the mel scale between lower and upper
frequency limits given in R (Hz). The filterbank is applied to

the magnitude spectrum values to produce filterbank energies (FBEs)
(M per frame). Log-compressed FBEs are then decorrelated using the
discrete cosine transform to produce cepstral coefficients. Final
step applies sinusoidal lifter to produce liftered MFCCs that
closely match those produced by HTK [1].

[CC,FBE,FRAMES ]=MFCC(...) also returns FBEs and windowed frames,
with feature vectors and frame columns.

This frameworkyg4§~b: ! ) 1i§"~.rastaiaty routines [2]. The
emphasis is pla g produced by HTK [1]
(refer to p.337 M ‘I !!E ’ d m ‘. m th simplicity and
compactness as W cost of reduced
flexibility. Thi § I o : to extend, and as
a starting point |f 1 --101ents in MATLAB.
The triangular

Inputs

| i ,
. gl
S is the—wnp P g

FS is the saiplln freqpen?f‘ﬁ?z
, J.'f' I' 4

W is t e analy51s Jzéme duration' (m
s is W BSTERRNE msm

ALPHA is the preemphasis coefficient

WINDOW is a analysis window function handle
R is the frequency range (Hz) for filterbank analysis
M is the number of filterbank channels

N is the number of cepstral coefficients
(including the 0Oth coefficient)

L is the liftering parameter
Outputs
CC is a matrix of mel frequency cepstral coefficients

(MFCCs) with feature vectors as columns

FBE is a matrix of filterbank energies
with feature vectors as columns

FRAMES is a matrix of windowed frames
(one frame per column)

00 00 0P A0 A0 d° O° A° A0 0% O° A° A0 O° 00 AC A0 A0 O O A0 A0 O O° IO A0 O O O O° O O° O O° A° O° P O° A° A0 I O° A° A0 0% O° A° A0 0P O A0 A0 o0 0P O° o° o o° o°
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Example
Tw = 25; % analysis frame duration (ms)
Ts = 10; % analysis frame shift (ms)
alpha = 0.97; % preemphasis coefficient
R = [ 300 3700 ]; ¢ frequency range to consider
M = 20; % number of filterbank channels
C = 13; % number of cepstral coefficients
L %

22; cepstral sine lifter parameter
% hamming window (see Eq. (5.2) on p.73 of [1])
hamming = @(N)(0.54-0.46*cos(2*pi*[0:N-1]."'/(N-1)));

% Read speech samples, sampling rate and precision from file
[ speech, fs, nbits ] = wavread( 'splO.wav' );

% Feature extraction (feature vectors as columns)
[ MFCCs, FBEs, frames ] = .
mfcc( speech fs, Tw, Ts, alpha, hamming, R, M,

00 0P 0 (2 0P 0P 0P A0 P O° 0P 00 A0 0P O° O° A0 AP O° o o A0 oP

’ L )I
% Plot cepstrum over time
figure('Position', [30 100 800 200], 'PaperPositionMode', 'auto'

% 'colorﬂ e : ientation', 'landscape', 'Visible',
'on' )I - o .’ 4 - - -
% -
: images SR RGN OIS TR prcCs )
2 axis( Y §
% xlabel (
% ylabel(
] title(
%
%

$% PRELIMINARIES 3

% Ensure corregt; num ﬁi?' sy - rd ;

if( nargin~= 1 _b?‘(hﬁ' eﬁgﬁml‘;‘%nﬂ; ”Jh

% Explode sampl s “ran 16 ] qm;g

if( max(abs(sp S'Cht)l'.'{"hﬁ ﬁcﬁ :.k'h}[* ~15; end;

Nw = round( lE-3*Tw*fs ); % frame duration (samples)

Ns = round( lE-3*Ts*fs ); % frame shift (samples)

nfft = 2"nextpow2( Nw ); % length of FFT analysis

K = nfft/2+1; % length of the unique part of the FFT

%% HANDY INLINE FUNCTION HANDLES

% Forward and backward mel frequency warping (see Eq. (5.13) on p.76 of
[11)

% Note that base 10 is used in [1], while base e is used here and in HTK
code

hz2mel = @( hz )( 1127*log(l+hz/700) ); % Hertz to mel warping
function

mel2hz = @( mel )( 700*exp(mel/1127)-700 ); % mel to Hertz warping
function

% Type III DCT matrix routine (see Eg. (5.14) on p.77 of [1])
dctm = @( N, M )( sgrt(2.0/M) * cos( repmat([0:N-1].',1,M) ...
.* repmat(pi*([1:M]-0.5)/M,N,1) ) );
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% Cepstral lifter routine (see Eg. (5.12) on p.75 of [1])
ceplifter = @Q( N, L )( 1+0.5*L*sin(pi*[0:N-1]/L) );
%% FEATURE EXTRACTION

% Preemphasis filtering (see Eq. (5.1) on p.73 of [1])
speech = filter( [l -alpha], 1, speech ); % fvtool( [l -alpha], 1 );

% Framing and windowing (frames as columns)
frames = vec2frames( speech, Nw, Ns, 'cols', window, false );

% Magnitude spectrum computation (as column vectors)
MAG = abs( fft(frames,nfft,1) );

% Triangular filterbank with uniformly spaced filters on mel scale
H = trifbank( M, K, R, fs, hz2mel, mel2hz ); % size of H is M x K

% Filterbank application to unique part of the magnitude spectrum
FBE = H * MAG(1:K,:); % FBE( FBE<1.0 ) = 1.0; % apply mel floor

% DCT matrix computation
DCT = dctm( N, M );

% Conversion of logFBEs_te=€epstralk.coefficients through DCT
CC = DCT * log(.FBE ).;

% Cepstral lifter |computation
lifter = ceplifter( N, L );

% Cepstral liftering gives |liftered cepstral [coefficients
CC = diag( lifter |) * €CC; %/~ HTK's MECCs
% EOF

function FMatrix=kannumfcc(num,s,Fs)

n=512; gNumbert of ; ERT:. points

Tf=0.025; %$Frame duration in seconds

N=Fs*Tf; TNumber jofy samples per+ frame

fn=24; $Number ‘of“mel*filters

l=length(s); gtotal number of samples in speech

Ts=0.01; ¢Frame step in seconds

FrameStep=Fs*Ts; $Frame step in samples

a=1;

b=[1, -0.97]; %2a and b are high pass filter coefficients
noFrames=floor(l/FrameStep); %Maximum no of frames in speech sample
FMatrix=zeros (noFrames-2, num); %Matrix to hold cepstral coefficients
lifter=1:num; $Lifter vector index

lifter=1+floor((num)/2)*(sin(lifter*pi/num));%raised sine lifter version

if mean(abs(s)) > 0.01

s=s/max(s); ¢Normalises to compensate for mic vol
differences
end

$Segment the signal into overlapping frames and compute MFCC coefficients
for i=l:noFrames-2
frame=s((i-1)*FrameStep+1l:(i-1)*FrameStep+N); $%Holds individual frames

Cel=sum(frame.”2); ¢Frame energy

Ce2=max(Cel,2e-22); ¢floors to 2 X 10 raised to power -22
Ce=log(Ce2);

framef=filter(b,a, frame); %High pass pre-emphasis filter
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F=framef.*hamming(N); gmultiplies each frame with hamming window
FFTo=fft(F,N); %computes the fft

melf=melbankm(fn,n,Fs); %creates 24 filter, mel filter bank
halfn=1+floor(n/2);

spectrl=logl0(melf*abs(FFTo(l:halfn))."2);%result is mel-scale filtered
spectr=max(spectrl(:),le-22);

c=dct(spectr); %obtains DCT, changes to cepstral domain
c(l)=Ce; ¢replaces first coefficient
coeffs=c(l:num); $retains first num coefficients
ncoeffs=coeffs.*lifter’; gMultiplies coefficients by lifter value
FMatrix(i, :)=ncoeffs’; %assigns mfcc coeffs to succesive rows i

end

%% Train a Support Vector Machine Classifier

%%

% Load Fisher's iris data set. Remove the sepal lengths and widths, and all
% observed setosa irises.

% Copyright 2015 The MathWorks, Inc.

load fisheriris

inds = ~strcmp(species, 'setosa');

X = meas(inds,3:4);

y = species(inds);

%%

% Train an SVM classifier using“the.precessed data set.

SVMModel = fitcsvm(X,y)

%%

% The Command Window |SHows| that ||SVMModel| is & ftrained |ClassificationSVM|
% classifier and a property Ilist. ~Display the

% properties of |SvMModell,. for-example, to.determine the class order, by
using

% dot notation.

classOrder = SVMModel.ClassNames

%%

$ The first class (J\wersicolor'|) is the'!negative class, and the second
% (|'virginica'|) iis—the positive class. You can change the class order
$ during training by using the |'ClassNames'| name-value pair argument.
%%

% Plot a scatter diagramlof' the !data '‘and circle/the support vectors.
sv = SVMModel.SupportVectors;

figure

gscatter(X(:,1),X(:,2),y)

hold on

plot(sv(:,1),sv(:,2), ko', MarkerSize',10)

legend( 'versicolor', 'virginica', 'Support Vector')

hold off

%%

% The support vectors are observations that occur on or beyond their
% estimated class boundaries.

%%

% You can adjust the boundaries (and therefore the number of support
% vectors) by setting a box constraint during training using the

$ | 'BoxConstraint'| name-value pair argument.
%% Train and Cross Validate an SVM Classifier
%%

$ Load the |ionosphere| data set.
% Copyright 2015 The MathWorks, Inc.

load ionosphere

rng(l); % For reproducibility

%%

% Train an SVM classifier using the radial basis kernel. Let the software
% find a scale value for the kernel function. It is good

% practice to standardize the predictors.
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SVMModel = fitcsvm(X,Y, ' 'Standardize',true, 'KernelFunction', 'RBF',...
'KernelScale', 'auto');

%%

% |SVMModel| is a trained |ClassificationSVM| classifier.

%%

% Cross validate the SVM classifier. By default, the software uses

% 10-fold cross validation.

CVSVMModel = crossval(SVMModel);

%%

% |CVSVMModel| is a |ClassificationPartitionedModel| cross-validated

%% Linear Prediction and Autoregressive Modeling

% This example shows how to compare the relationship between autoregressive

modeling and linear prediction. Linear prediction and autoregressive

modeling are two different problems that can yield the same numerical

results. In both cases, the ultimate goal is to determine the parameters

of a linear filter. However, the filter used in each problem is

different.

00 00 o° o0 o°

%% Introduction

In the case of linear prediction, the intention is to determine an FIR
filter that can optimally predict future samples of an autoregressive
process based on a linear combination of past samples. The difference
between the actual autoregressive signal and the predicted signal is

all-pole IIR filt{ﬁ
with the same stati
to model. —

W E“e noise produces a signal
process that we are trying

00 0P 00 0P 0P O° o° 0P o° o

%% Generate an AR Si i a e 7 with White Noise as Input
% Here we use the L i

% parameters we wil | g ssive signal we will work
% with. The use of g not cit here. For example, we

% could replace d 1/3 1/4 1/5 1/6 1/7
% 1/8] and p0 with something like le-6. But the shape of this filter is
%
b
[d

nicer so we use 4ty ins ¢TI O Fr 4 e

= firl(1024, .5): |« Ie%* ERSITY of tne

/P01 = 1pc(b,7); i

O D D ” ® T

oy WESTERN CAPE
% To generate the autoregressive signal, we will excite an all-pole filter
% with white gaussian noise of variance p0. Notice that to get variance pO,
% we must use SQRT(p0) as the 'gain' term in the noise generator.

rng(0, 'twister'); % Allow reproduction of exact experiment
u = sqrt(p0)*randn(8192,1); % White gaussian noise with variance p0

%%

% We now use the white gaussian noise signal and the all-pole filter to
% generate an AR signal.

x = filter(1l,d,u);

%% Find AR Model from Signal using the Yule-Walker Method

% Solving the Yule-Walker equations, we can determine the parameters for an
% all-pole filter that when excited with white noise will produce an AR

% signal whose statistics match those of the given signal, x. Once again,

% this is called autoregressive modeling. In order to solve the Yule-Walker
% equations, it is necessary to estimate the autocorrelation function of x.
% The Levinson algorithm is used then to solve the Yule-Walker equations in
% an efficient manner. The function ARYULE does all this for us.

[dl,pl] = aryule(x,7);

%% Compare AR Model with AR Signal
% We now would like to compute the frequency response of the all-pole
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% filter we have just used to model the AR signal x. It is well-known that
% the power spectral density of the output of this filter, when the filter
% is excited with white gaussian noise is given by the magnitude-squared of
% its frequency response multiplied by the variance of the white-noise

% input. One way to compute this output power spectral density is by using
% FREQZ as follows:
[H1,wl]=freqz(sqrt(pl),dl);

%

% In order to get an idea of how well we have modeled the autoregressive

% signal x, we overlay the power spectral density of the output of the

% model, computed using FREQZ, with the power spectral density estimate of
% x, computed using PERIODOGRAM. Notice that the periodogram is scaled by
% 2*pi and is one-sided. We need to adjust for this in order to compare.
periodogram(x);

hold on;

hp = plot(wl/pi,20*logl0O(2*abs(H1)/(2*pi)),'r'); % Scale to make one-sided
PSD

hp.LineWidth = 2;

xlabel('Normalized frequency (\times \pi rad/sample)')

ylabel( 'One-sided PSD (dB/rad/sample)’')

legend( 'PSD estimate of x','PSD of model output')

%% Use LPC to Perform Linear Prediction

% We now turn to the linear psedjp "h‘pxngem Here we try to determine an
% FIR prediction flltﬁiﬁ‘Haﬂﬂﬁe-ﬂﬁﬁ’tenqp¥igi hﬂx the result from LPC
% requires a llttlﬁsﬂﬁ%erpgﬁt hé coefficients of the
% entire whitening ﬁ !g E | F(fz')‘g; t]l_ffg 'E‘El'te?;rﬂ:a}_'gqﬁg as input the
% autoregressive sig z pﬁf‘qhe prediction error.
% However, A(z) hasfgﬁg.n"i'ﬁct4qa £l Eer o led in it, in the form B(z)
$ = 1- A(z), where B(z) is EH_ EHE# lion Note that the
% coefficients and error varia ( coi te LPC are essentially the
% same as those computed with ARYULE ut Wnterpretation is different.
[d2,p2] = lpc(x,7); | | 1
[d1.', d2.'] 0 N 0 — - !
E '_ — - — - - |
%%

% We now extract BT q-fr 1x(2) qs desc Egd bove to use the FIR linear
% predictor filter'.toldbtaih &stldat EUturé Yalues of the
% autoregressive signal based on linear combinations of past values.
xh=filter(-d2(2:end);1l,x);y "~ 1 0 ok T I

22V ESTERN CAPE

%% Compare Actual and Predicted Signals

% To get a feeling for what we have done with a 7-tap FIR prediction

¢ filter, we plot (200 samples) of the original autoregressive signal along
% with the signal estimate resulting from the linear predictor keeping in
% mind the one-sample delay in the prediction filter.

cla

stem([x(2:end),xh(1l:end-1)]);

xlabel('Sample time');

ylabel('Signal value');

legend( 'Original autoregressive signal', 'Signal estimate from linear
predictor')

axis([0 200 -0.08 0.1])

%% Compare Prediction Errors

The prediction error power (variance) is returned as the second output
from LPC. Its value is (theoretically) the same as the variance of the
white noise driving the all-pole filter in the AR modeling problem (pl).
Another way of estimating this variance is from the prediction error
itself:

p3 = norm(x(2:end)-xh(l:end-1),2)"2/(length(x)-1);

0P o° 0P o° o°

%%
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% All of the following values are theoretically the same. The

% differences are due to the various computation and approximation errors
% herein.

[p0,pl,p2,p3]

UNIVERSITY of the
WESTERN CAPE
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Appendix C

Two-Sample Test Report
Variable C1

Descriptive Statistics Section

Standard Standard 95.0% LCL 95.0% UCL
Variable Count Mean Deviation Error of Mean of Mean
C2=1 35 84.28571 8.215199 1.388622 81.46369 87.10773
C2=2 35 82.5 8.134892 1.375048 79.70557 85.29443

Note: T-alpha (C2=1) = 2.0322, T-alpha (C2=2) = 2.0322

Confidence-Limits of Difference Section

Variance Mean Standard Standard 95.0% LCL 95.0% UCL
Assumption DF Difference Deviation Error Difference Difference
Equal 68 1.785714 8.175144 1.954233 -2.113898 5.685326
Unequal 67.99 1.785714 11.5614 1.954233 -2.113904 5.685333

Note: T-alpha (Equal) = 1.9955, T-alpha (Unequal) = 1.9955

Equal-Variance T-Test Section

Alternative Probability Reject HO Power Power
Hypothesis T-Value Level at.050 (Alpha=.050) (Alpha=.010)
Difference <> 0 0.9138 0.364068 No 0.146900 0.046343
Difference <0 0.9138 0.817966 No 0.005392 0.000636
Difference >0 0.9138 0.182034 No 0.229600 0.076270

Difference: (C2=1)-(C2=2)

Aspin-Welch Unequal-Variance Test Section

Alternative Probability——Reject HO Power Power
Hypothesis T-Value Level at .050 (Alpha=.050) (Alpha=.010)
Difference <> 0 0.9138 0.364068 No 0.146899 0.046343
Difference <0 0.9138 0.817966 No 0.005392 0.000636
Difference >0 0.9138 0.182034 No 0.229599 0.076270

Difference: (C2=1)-(C2=2)

Tests of Assumptions Section

Assumption Value Probability = Decision(.050)

Skewness Normality (C2=1) 0.8441 0.398622 Cannot reject normality
Kurtosis Normality (C2=1) -0.9122 0.361687 Cannot reject normality
Omnibus Normality (C2=1) 1.5445 0.461971 Cannot reject normality
Skewness Normality (C2=2) 1.5873 0.112434 Cannot reject normality
Kurtosis Normality (C2=2) -0.6499 0.515734 Cannot reject normality
Omnibus Normality (C2=2) 2.9421 0.229686 Cannot reject normality
Variance-Ratio Equal-Variance Test 1.0198 0.954656 Cannot reject equal variances
Modified-Levene Equal-Variance Test 0.5050 0.479763 Cannot reject equal variances
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Median Statistics
95.0% LCL 95.0% UCL

Variable Count Median of Median of Median
C2=1 35 87.5 75 87.5
C2=2 35 87.5 75 87.5

Mann-Whitney U or Wilcoxon Rank-Sum Test for Difference in Medians

Mann w Mean Std Dev
Variable Whitney U Sum Ranks of W of W
C2=1 685.5 1315.5 1242.5 76.88925
C2=2 539.5 1169.5 1242.5 76.88925

Number Sets of Ties = 3, Multiplicity Factor = 63210

Exact Probability Approximation Without Correction = Approximation With Correction

Alternative Prob Reject HO Prob Reject HO Prob Reject HO
Hypothesis Level at.050 Z-Value Level at .050 Z-Value Level at .050
Diff<>0 0.9494 0.342408 No 0.9429 0.345725 No

Diff<0 0.9494 0.828796 No 0.9559 0.830444 No

Diff>0 0.9494 0.171204 No 0.9429 0.172862 No

Kolmogorov-Smirnov Test For-Different Distributions

Alternative  Dmn Reject HOif —Test Alpha Reject HO Prob
Hypothesis  Criterion Value Greater Than Level (Test Alpha) Level
D(1)<>D(2)  0.114286 0.3251 .050 No 0.9794
D(1)<D(2) 0.000000 0.3251 .025 No

D(1)>D(2) 0.114286 0.3251 .025 No
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