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Abstract

A machine translation system that can convert South African Sign Language (SASL)

video to audio or text and vice versa would be beneficial to people who use SASL to

communicate. Five fundamental parameters are associated with sign language gestures,

these are: hand location; hand orientation; hand shape; hand movement and facial

expressions.

The aim of this research is to recognise facial expressions and to compare both feature

descriptors and machine learning techniques. This research used the Design Science

Research (DSR) methodology. A DSR artefact was built which consisted of two phases.

The first phase compared local binary patterns (LBP), compound local binary patterns

(CLBP) and histogram of oriented gradients (HOG) using support vector machines

(SVM). The second phase compared the SVM to artificial neural networks (ANN) and

random forests (RF) using the most promising feature descriptor—HOG—from the first

phase. The performance was evaluated in terms of accuracy, robustness to classes,

robustness to subjects and ability to generalise on both the Binghamton University 3D

facial expression (BU-3DFE) and Cohn Kanade (CK) datasets. The evaluation first

phase showed HOG to be the best feature descriptor followed by CLBP and LBP. The

second showed ANN to be the best choice of machine learning technique closely followed

by the SVM and RF.

Keywords

Facial expression recognition, Feature extraction, Machine learning, Support vector ma-

chine, Random forest, Artificial neural network, Local binary patterns, Compound local

binary patterns, Histogram of oriented gradients
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Chapter 1

Introduction

1.1 Background and Motivation

Communication is an integral part of life. By definition it is a means for us to exchange

information with one another. It allows us to share our experiences, complete our daily

activities and pass on relevant information and ideas in both social and professional

aspects of our life. Verbal communication is considered to be one of the foremost forms

of communication. It is a skill that is learned without much effort by people in the

hearing community despite its complexities.

The hearing impaired and Deaf1 communities use a visual or non-uttered form of com-

munication called sign language in order to communicate with one another. The consti-

tution of the Republic of South Africa recognises South African Sign Language (SASL)

as the official language for Deaf South African communities. Despite this, communi-

cation and interactions between deaf and hearing individuals is complex as there is no

standard form of communication and understanding between the two parties [1]. This

often leads to feelings of annoyance and resentment which results in these communities

feeling marginalised and isolated, and unable to fully reap the benefits of communication

with the broader society [2].

It has been estimated that as many as 235 000 people in South Africa are profoundly

deaf in both ears and use SASL as their main language [3]. Using interpreters to assist

the non-hearing community may be impractical as skilled SASL interpreters are scarce

1People born without hearing and who are unable to communicate in a spoken language.

1
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Chapter 1. Introduction 2

and costly [4]. The use of interpreters can incur issues of privacy when the signer does

not want the interpreter to know personal information about themselves especially when

dealing with the exchange of sensitive information. To help alleviate these problems,

a translation system to translate sign language to speech or text and vice versa would

be of great assistance to the community. The system will assist the Deaf and hearing

impaired communities to communicate without the use of interpreters and would also

attend to issues of privacy such as a medical consultation.

Facial 
expression 
recognition

Process videos/images

Render avatar

Sign notation Text

Translation
SASL    English

Speech to text

Text to speech

Figure 1.1: SASL translation system

Figure 1.1 illustrates an automatic SASL translation system which translates SASL to

English, and vice versa. However to make such a complex system a reality would re-

quire a multifaceted approach including image processing, artificial intelligence, natural

language processing and linguistics [5]. A significant aspect of any SASL translation

system its ability to interpret SASL gestures from videos using a web cam.

When recognising sign language, research indicates that there are five core parameters

which should be considered, namely, (1) hand shape, (2) hand orientation, (3) hand

location, (4) hand motion, and (5) facial expressions [6]. The research into the SASL

translation system has therefore been focused on these core parameters. Previous re-

search towards the translation system have successfully implemented the system’s hand

shape [7, 8], hand location [2, 9], hand motion [5, 10, 11] and facial expressions [12, 13]

recognition capabilities.

This research focuses on the implementation of an automatic facial expressions recogni-

tion (FER) system. Facial expressions provide a means for conveying our emotional state

and intentions [14] and are understood across many cultures [15]. This makes FER re-

search an interesting task as it impacts fields such as human computer interaction across

a variety of applications.

http://etd.uwc.ac.za/



Chapter 1. Introduction 3

The research aims to recognise facial expressions and to compare feature extraction

techniques: local binary patterns (LBP), compound local binary patterns (CLBP) and

histogram of oriented gradients (HOG) as well as machine learning techniques: support

vector machines (SVMs), random forests (RFs), and artificial neural networks (ANNs).

Each of these feature extraction and machine learning techniques mentioned has its

own set of parameters which need to be optimised. Once optimum values are found, a

classification model needs to be trained in order to classify data, and then built to test

the system on unseen data. All of these factors will be attended to in this research in

order to provide the criteria for an informed decision on choosing a machine learning

and feature extraction technique for facial expression recognition.

1.2 Research Question

The question thus is: “Which feature extraction and machine learning techniques are

best suited for facial expression recognition?” This question can be translated into two

sub-questions:

1. How do the feature extraction techniques, i.e., local binary patterns, compound

local binary patterns and histogram of oriented gradients compare in the context

of facial expression recognition?

2. How do the machine learning techniques, i.e., support vector machines, artificial

neural networks and random forests, compare in the context of facial expression

recognition?

The solution to these research questions should provide the criteria to make an informed

decision when choosing a feature extraction and machine learning technique for classify-

ing facial expression features as part of the complete SASL machine translation system.

1.3 Research Objectives

The objectives of the research are to extract and compare relevant facial feature descrip-

tors and various machine learning techniques when classifying facial expressions. This

http://etd.uwc.ac.za/



Chapter 1. Introduction 4

will be done by investigating and comparing the use of LBP, CLBP and HOG as facial

feature descriptors. Using SVMs to classify the facial expression the most promising

descriptor will be chosen. The chosen descriptors will be used as the final feature set to

be classified with ANNs and RFs to determine which is best suited for the recognition

of facial expressions in terms of accuracy. The objectives are as follows:

1. To optimise the feature extraction techniques LBP, CLBP and HOG using a SVM.

The ideal parameters will be found for each feature extraction technique and com-

pared.

2. To optimise and train a SVM, an ANN and a RF based on a set of facial expres-

sions. The ideal parameters will be found for each machine learning technique and

compared.

1.4 Premises

The premises of the FER system are:

• The expressions will be classified by associating them with the seven basic emo-

tions namely, anger, fear, disgust, happiness, surprise, sadness, and the neutral

expression.

• Only 2D images of the expressions with an uninhibited view of the user’s face will

be considered.

1.5 Thesis Outline

The rest of the thesis is organised as follows:

Chapter 2: Related work: This chapter reviews work related to facial expression recog-

nition in order to build an understanding of how FER systems are generally executed.

The related work demonstrates that SVMs, RFs, ANNs, LBP, CLBP and HOG have

been used as accurate classification techniques.

Chapter 3: Research design: This chapter discusses the elements of research design in

terms of the philosophy and the methodology of design science research which forms a

http://etd.uwc.ac.za/



Chapter 1. Introduction 5

foundation for the research by developing a framework/artefact for the implementation

and development of the FER system.

Chapter 4: Experimental results and analysis: This chapter describes the experimental

results of the FER artefact and reports the computational accuracy of the optimisation

procedures and testing procedures for each of the feature extraction techniques and the

machine learning techniques.

Chapter 5: Conclusion: This chapter summarises the thesis by providing the key obser-

vations, interpretations and answers to the main research question and sub-questions.

http://etd.uwc.ac.za/



Chapter 2

Related Work

Automatic facial expression recognition (FER) is a well-researched topic. The promi-

nence of FER research is due to the impact it has across a number of fields such as human

computer interaction and its application to other theoretical interests [14, 16–18]. This

chapter discusses the key terms and components of FER. The chapter will also survey a

study which compares machine learning techniques for a general classification problem.

2.1 Local vs Global Methods

The two main ways in which researchers implement automated FER systems are by using

local or global methods. Local methods are associated with the facial action encoding

system (FACS) and global methods with a set of prototypic facial expressions.

The FACS was originally developed by Hjortsjö [19] and extended by Ekman et al. [20,

21]. The FACS defines emotion by the appearance of key facial movements and has been

useful to both animators and psychologists. Key facial movements are labelled as action

units (AUs). AUs can refer to a single facial movement or a group thereof. The FACS

captures the subtlety of facial expressions, however AU labels are purely descriptive.

This means that in order to get an interpretation of the facial expression, AUs need to

be tracked and converted into the emotional FACS system or an other similar system.

Instead of recognising detailed local methods of the face such as the FACS, FER sys-

tems attempt to use global methods, i.e., the entire face. The faces are represented

6
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Chapter 2. Related work 7

by a discrete set of prototypic facial expressions. The prototypic set of facial expres-

sions has been shown to be recognisable across people of various cultures and social

backgrounds [22]. The set consists of the facial expressions: anger, disgust, fear, sad-

ness, happiness and surprise as shown in Figure 2.1. These expressions pose a six-class

problem for FER systems, however in some cases FER systems attempt to recognise a

seventh class the neutral expression.

Anger Disgust Sad Fear Surprise Happy

Figure 2.1: Six basic emotions. Images from [23, 24]

2.2 Facial Expression Recognition System Components

Image processing and machine learning techniques form the basis for research in au-

tomated FER systems. Figure 2.2 shows the three high-level components which are

generally used to form most FER systems [17]. The components are: face detection,

feature extraction, and classification.

Face 
detection

Feature 
extraction

Classification

Figure 2.2: FER system components

Face detection is the first step of many FER systems and has been a topic of research

for many years due to its many applications in computer vision software. The goal of

http://etd.uwc.ac.za/



Chapter 2. Related work 8

face detection is to determine whether any faces are present in an image. If present, the

face detector then returns the face location.

Once the face is detected and isolated from the image, feature extraction is applied.

The feature extraction component involves extracting “interesting” properties from the

facial image to form a feature set.

Classification is the process that produces a predicted output based on the feature set

given as input. The process usually consists of training and prediction stages. The

training stage computes a model capable of using the features to predict classes. In the

prediction stage features are fed to the model which produces a recognition output.

Researchers have mixed and matched numerous algorithms associated with each of the

components and formed a multitude of FER systems. Only the feature extraction and

classification components will be discussed in the subsequent sections. This is justified

by the omission of face detection procedures in many FER studies [12] instead using

images of only the face. However, in the subsequent sections, where possible, the face

detection procedure of the reviewed FER system will be discussed.

2.3 Feature Extraction

Feature extraction in FER systems can be motion-based, model-based or appearance-

based [12]. Motion-based feature extraction uses the displacement of pixels to provide

information about the motion of the face. Model-based feature extraction uses statistical

methods to build a set of model parameters to describe the face. Lastly, appearance-

based features provide information on the texture or shape of the face using pixel prop-

erties.

Mushfieldt [12] researched various feature extraction techniques associated with each

of the categories. He concluded that appearance-based techniques outperform model-

based techniques and are on par with motion-based techniques. However motion-based

techniques require illumination normalised image sequences whereas appearance-based

techniques are more robust, using statistical methods and work on static images. Of the

http://etd.uwc.ac.za/



Chapter 2. Related work 9

appearance-based methods the local binary patterns (LBP) was compared to Gabor-

wavelets. LBP was selected as the technique of choice due to the complexity and com-

putational requirements of Gabor-wavelets.

The studies below expand on the research done on appearance-based methods. FER

systems which use LBP are discussed in Section 2.3.1. Compound local binary patterns

(CLBP) and local ternary patterns (LTP) are discussed in Section 2.3.2 and histogram

of oriented gradients (HOG) is discussed in in Section 2.3.3.

2.3.1 Local Binary Patterns

Over the past decade LBP has become one of the leading texture-based feature extraction

methods used in computer vision systems [25]. It is especially popular in the field of

image processing. This is due to its ease of computation and robustness towards changes

in illumination. The LBP was originally proposed by Ojala et al. [26]. It is used to

describe an image in terms of texture and textural changes. The operator is applied to

a grey scale image and produces a grey scale texture image.

7 1 10

50 45 12

135 200 51

0 0 0

1 0

1 1 1

220 23 43

150 240 12

3 220 200

Original image Comparison LBP image

Binary: 11110000

Decimal: 240

Figure 2.3: The original LBP operator

Figure 2.3 illustrates the computation of the original LBP operator which is applied to

every 3 × 3 pixel cell of an image. The center pixel is compared to each neighbouring

pixel values using a threshold function. If the centre pixel value is greater than or equal

to its neighbour write ‘0’ else ‘1’. As a result an eight-bit binary number is produced.

The binary pattern is then converted to decimal and used as the pixel value for the LBP

image.

Feng et al. [27] used LBPs and a linear programming classification technique to recognise

the six prototypic facial expression classes and the neutral expression. The images were

preprocessed using the CSU (Colorado State University) Face Identification Evaluation
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System [28]. This resulted in cropped images of size 150 × 128 pixels which excludes

non-face area. Figure 2.4 shows images used from the JAFFE dataset [29].

Figure 2.4: Original images (top) and images after preprocessing (below) [27]

The original LBP operator was applied to the normalised images. The resulting LBP im-

age was divided into non-overlapping local regions of size 10×8 pixels. Local histograms

of each region were computed and concatenated to form a single feature vector repre-

senting the facial expression. The size of the feature vectors was reduced by discarding

patterns with frequencies that fell below a certain threshold, which was the averaged

sum of all the feature vectors of the training samples.

A linear programming technique was the classifier of choice. This technique generates a

plane which minimizes an average sum of misclassified points belonging to two disjoint

point sets. Twenty-one two-pair sets were generated from the seven-class expression

problem: Happy-Disgust, Happy-Fear, etc. For the training, each of the 21 expression

pairs was trained. The predicted class was generated by feeding the feature vector of

each of the test samples to each of the classifiers.

The experiments were carried out on the seven-class JAFFE dataset [29] and used a 10-

fold cross-validation evaluation scheme. The process was repeated 20 times and resulted

in an average accuracy of 93.8%.

Mushfieldt et al. [12] researched facial expression recognition in the presence of rotation

and partial occlusion of the face. The system catered for both frontal and rotated face

segmentation. The Viola and Jones [30] frontal face detection was used to detect frontal

faces. If the face was not detected it was considered a rotated face. The rotated face
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was detected using a skin segmentation algorithm [2]. Furthermore, an eye detection

algorithm [31] was implemented to normalise the orientation of the image.

The extended multi-scale LBP8,2, which has been shown to be an accurate representation

of facial features [32], was applied to the normalised image. Uniform patterns [33] which

decrease the feature size dramatically were also applied. This resulted in a uniform

rotation invariant LBP texture image. The image was then divided into small regions of

equal size. Histograms were computed for each region to form the final feature vector.

Figure 2.5 illustrates a rotated and frontal face image and the LBP texture images of

both.

Figure 2.5: Frontal (bottom) and rotated face (top) images and the extracted LBP
texture images [12]

A SVM using the radial basis function (RBF) kernel was used for classification of the

facial expressions. The one-against-one approach [34] was used for multi-class classi-

fication. The experiment was carried out on a pruned BU-3DFE dataset [24] which

contains 50 subjects posing one frontal and one 60◦ image of the six prototypic facial

expressions. The system was trained on ten subjects and the remaining 40 subjects were

used exclusively as testing data. The training procedure optimised arbitrary values for

the resolution and region size of the LBP image. The optimised frontal image size was

40× 60 pixels with a region size of 8× 10 pixels. The optimised rotated image size was

40 × 50 pixels with a region size of 8 × 5 pixels. The system achieved a 75% average

accuracy for frontal faces and a 70% average accuracy for rotated faces.

From the studies above, it is seen that it is common practice to divide the LBP image

into smaller equal regions, extract histograms from each region and concatenate these
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histograms to represent the final LBP feature vector. This idea was proposed by [32]

to consider local texture information of the face and has provided an improved feature

representation of the face.

LBPs have been adapted to provide improved performance and other advantages when

dealing with the rigours of image analysis problems. These adapted versions include

local ternary patterns (LTP) and compound local binary patterns (CLBP) amongst

others. These extensions modify various aspects of LBPs such as the comparison of the

neighbouring pixels with the centre pixel, etc., but come at the cost of computation and

feature vector size. They are described in the subsection that follows along with related

studies that have applied them for FER.

2.3.2 Local Ternary Patterns and Compound Local Binary Patterns

LTP was introduced by Tan et al. [35] and extends LBP by adding an additional dis-

crimination level to the LBP thresholding function. LTP provides increased robustness

to noise when compared to LBP [35]. However, due to the application of a threshold

constant, LTP is no longer strictly invariant towards gray-level transformations [36].

The LTP operator is applied to a grey scale image and produces a two grey scale texture

images. As with LBP, LTP is applied to every 3× 3 pixel cell of an image.

For each 3× 3 cell the following procedure is carried out:

1. Choose a user-specified constant threshold t which sets the level of tolerance to

noise.

2. Compare the centre pixel pc in the cell with threshold t to each of the surround-

ing/neighbouring pixels {pn|n = 0, . . . , 7} using the LTP threshold function in

Equation 2.1. The comparison may start from any neighbouring pixel in any

direction as long as it is applied consistently, i.e.:

f(pc, pn) =


1 pn ≥ pc + t,

0 |pn − pc| < t,

−1 pn ≤ pc − t.

(2.1)
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3. The comparison produces an eight digit number called the local ternary pattern.

To reduce the feature dimensions the local ternary pattern is converted into an

eight-bit upper pattern and an eight-bit lower pattern [35]. The upper pattern is

formed by substituting the ‘-1’ value with ‘0’ and the lower pattern by substituting

the ‘-1’ value with ‘1’.

4. The eight-bit binary codes of the upper and lower patterns are converted to decimal

and assigned as new values for each of the upper and lower LTP images at the

position corresponding to the centre pixel.

Figure 2.6 illustrates the LTP encoding process.

Figure 2.6: The LTP encoding process [35]

CLBP was introduced by Ahmed et al. [37]. CLBP assigns an extra bit for comparison

between the average magnitude of the neighbourhood Mavg and the difference between

the centre pixel and its neighbour. CLBP adds additional magnitude information when

comparing the centre pixel to neighbouring values which is otherwise lost in LBP.

Ahmed et al. [37] successfully implemented each of LBP, LTP and CLBP as feature

descriptors in three FER systems. The work compared LBP, LTP and CLBP on both the

six-class prototypic facial expressions and the seventh-class, which included the neutral

pose. The images were preprocessed by cropping images based on the position of the

eyes. It is unclear which algorithm was used to determine the location of the eyes. This

resulted in images of size 150× 110 pixels which excluded the non-facial area.
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An experiment was carried out which compared LBP, LTP and CLBP. The LBP was

implemented using the original LBP descriptor together with the uniform patterns ex-

tension [33]. The histogram procedure in [32] was applied which represented the LBP

feature vectors. The CLBP operator was applied to the normalised image which com-

puted two sub-CLBP images. The histogram procedure [33] was applied to both images

which were concatenated to form the final CLBP feature vector. It is unclear which

threshold value was used to implement LTP, as the LTP was not detailed in the work.

Each descriptor was tested on three region sizes, 3× 3, 5× 5 and 7× 6.

A SVM with the radial-basis function kernel was used as the classifier of choice. The

SVM used a one-against-rest approach to achieve multi-class classification. An experi-

ment was carried out on the CK [23] and the JAFFE [29] datasets on both six and seven

classes. The six-class CK dataset contained 1224 labelled images. An additional 408

images labelled as the neutral expression were added for seven-class classification. A

10-fold cross-validation scheme was used to evaluate performance. A summary of best

accuracies per descriptor is given in Table 2.1

Table 2.1: Summary of accuracy of LBP, LTP and CLBP in [37]

Descriptor
Accuracy (%)

CK dataset JAFFE dataset
six-class seven-class six-class seven-class

LBP 90.1 83.3 90.5 85.3
LTP 93.6 88.9 90.9 86.7
CLBP 94.4 90.4 92.2 87.5

The results indicate that the accuracies of each feature descriptor are exceptional. Upon

comparison both the LTP and CLBP prove to be superior to LBP. The CLBP descriptor

show the most promise with the highest accuracies across the CK and JAFFE datasets.

2.3.3 Histogram of Oriented Gradients

The histogram of oriented gradients (HOG) was first introduced by Dalal et al. [38].

The HOG descriptor uses a distribution of local intensity gradients or edge directions to

form local histograms as image features. Research has shown that the use of the HOG

descriptor can be extended to represent facial features which are characterised by local

appearance and shape [16]. Given an image of the region of interest, the HOG algorithm

is implemented as follows:
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1. Calculate the gradient images—Compute the image for the vertical and horizontal

gradients using an edge detection algorithm. From the resultant image compute

the magnitude and direction of the gradient images

2. Calculate the histogram—Divide the image into cells of equal size. Select an

appropriate orientation bin size in the ‘signed’ or ‘unsigned’ range of the gradients.

For these cells compute a histogram of gradients.

3. Block normalization—Group cells to form overlapping blocks of equal size. Nor-

malise each of the block histograms locally.

4. Compute the feature vector—Concatenate each of the normalised histogram blocks

to form the final feature vector which represents the HOG descriptor.

Gritti et al. [16] investigated the use of local features for FER with face registration

errors. Their research investigated and compared the use of the HOG, LBP and the

LTP feature descriptors. The comparison included a novel approach of overlapping the

local regions of LBP and LTP. The overlapping of local regions was a method investigated

by [38] for HOG. Preprocessing consisted of scaling images based on the distance between

the eyes which were manually located using [39]. This resulted in normalised face images

of size 108× 147.

The experiment also investigated the use of the HOG parameter variables suggested in

[38]. This HOG implementation was used as a baseline to determine whether changing

a variable of one of the parameters would have a significant effect on FER accuracy.

The results indicated that the cell size and block size had the most significant impact

on FER accuracies.

Furthermore a comparison was drawn between HOG, LBP and LTP. HOG was imple-

mented using Prewitt filters [40] for gradient computation. Histograms were calculated

with ‘signed gradients’ and 18 orientation bins. The block size was 24×24 pixels and the

cell size was 8 × 8 pixels. The blocks were 1
2 overlapped. LBP was implemented using

the LBPu2
8,2 extension. The region size used was 6 × 7 pixels. LTP was implemented

with the same extensions and a threshold value of six. Furthermore, as local regions

were overlapped to form the HOG feature vector, the the LBP and LTP regions were

overlapped. LBP regions were overlapped by 1
2 and LTP by 3

4 .
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Multi-class classification was achieved using a linear SVM and the one-against-rest tech-

nique. The performance of the system was evaluated using a 10-fold cross-validation

scheme on a pruned six-class CK dataset consisting of 310 images. Table 2.2 displays

the results of their experiment.

Table 2.2: Linear SVM recognition performance (%) for feature descriptors [16]

Feature descriptor Performance

LBP 90.9 ±5.6
LBP-Overlap 92.9 ±5.0
LTP 90.9 ±4.9
LTP-Overlap 91.7 ±5.6
HOG 92.7 ±3.4

The results indicate that each feature descriptor achieves high performance with the

LBP and LTP feature descriptors and are on par with one another. The performance of

the LBP-Overlap and LTP-Overlap are seen to be superior compared to both LBP and

LTP, however, the LBP-Overlap and LTP-Overlap feature dimensions are significantly

larger than their LBP and LTP counterparts. That considered, the slight increase in

performance cannot be justified. HOG was shown to be a promising feature descriptor

with a high accuracy and a lower variance than the rest of the descriptors.

Unlike Gritti et al. [16], Chen et al. [41] proposed a method for FER based on facial

components and HOG features. The system detected the face and isolated the eyes,

nose and mouth. The HOG descriptor was applied to the components and concatenated

to form the feature set. Figure 2.7 illustrates their system design.

The face was detected with the Viola-Jones face detector [30]. The face was resized to a

resolution of 156×156 on the JAFFE dataset and 256×256 on the extended CK dataset.

An upper and lower facial component was detected based on the location of the eyes.

It is unclear from the literature how the eyes were detected. The upper component

contained the eyes and eyebrows, whereas the lower component contained the mouth

and nose. The upper facial component was resized to 52 × 106 pixels and the lower

component to 78× 104 pixels.

The HOG descriptor was applied to each of the facial components with cell size 8 × 8

pixels, nine orientation bins and an ‘unsigned’ range. No further HOG implementation

details were given. The HOG features of the facial components were concatenated and

formed the final feature vector.
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Figure 2.7: HOG based FER system design [41]

A linear SVM using the one-against-rest strategy was used to perform multi-class classifi-

cation. The system was evaluated on the seven-class JAFFE dataset and the seven-class

CK dataset. The CK dataset was pruned to contain only labelled data.

The system achieved an accuracy of 94.3% on the JAFFE dataset using a leave-one-

sample-out testing strategy and 88.7% on the extended CK dataset using a leave-one-

subject-out testing strategy. The experiment provided exceptional accuracies on both

datasets.

2.4 Classification

Numerous machine learning techniques have been used for the classification of facial

expressions such as random forests (RFs), artificial neural networks (ANNs), support

vector machines (SVMs), linear discriminant analysis, and hidden Markov models among

others ??. The literature in the sections below focusses on the popular supervised

machine learning techniques SVMs, ANNs and RFs.

2.4.1 Support Vector Machines

The SVM was introduced by Vapnik et al. [42] as a machine learning technique for

binary classification problems. It is a supervised machine learning technique: meaning
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that given a set of labelled training data, usually vectors, the SVM training algorithm

maps the data and separates them in order to predict to which class or category unseen

data will belong. SVMs can also cope with multi-class classification, regression and

outlier detection.

Shan et al. [43] proposed a robust facial expression system using a low computation

discriminative feature space. The system used a template matching method with a

weighted Chi-square statistic and SVMs for classification.

Faces were normalised to a fixed distance between the eyes [39]. This resulted in nor-

malised facial images of size 110× 150 pixels. The LBPu2
8,2 extension was applied to the

image and the histogram procedure was used to build the feature vector. The region

size used was 6× 7 pixel.

A SVM with the one-versus-rest approach was used for multi-class classification. The

linear, polynomial and RBF kernels were used. Experiments were conducted on a pruned

six-class CK dataset containing 320 images. The system was evaluated on a 10-fold cross-

validation testing scheme. Their system achieved the following results: 87.2% using the

linear kernel, 88.4% with the polynomial kernel and 87.6% using the radial basis function

(RBF) kernel.

SVMs are a popular choice of machine learning technique for FER systems [12, 16, 37,

41, 43]. This is due to the many advantages of SVMs these include effectiveness in higher

dimensional space, memory efficiency and versatility in terms of decision functions.

2.4.2 Artificial Neural Networks

An artificial neural network also known as a neural network, is a machine learning

technique inspired by the structure of neural networks in the human brain. The brain is

a highly complex information processor and purportedly contains 1011 neurons with 1014

interconnections in a complex network which allows us to perform certain computations.

The ANN models this idea in computing terms. The following studies successfully

implemented ANNs:

Khandait et al. [44] implemented a multi-layer perceptron (MLP) as the class of ANN

for their FER system. The system segmented local face components using an array of
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morphological image processing operations which included SUSAN edge detection [45]

and prior face image knowledge. The local face components extracted were, the eyes,

nose, mouth and eyebrows. The height, width and distance between these components

were used as features. Figure 2.8 illustrates the extracted facial components.

Figure 2.8: Extracted facial image components [44]

The MLP classifier consisted of 15-neuron input layers, two hidden layers and seven-

neuron output layers. Experiments were carried out on a pruned JAFFE dataset of

which 120 images were used for training and 30 images for testing. The system achieved

an accuracy of 96.42% when recognising the seven facial expressions.

Similarly, Rázuri et al. [46] implemented a FER system that analysed the eye and mouth

features of a facial image using an ANN. The eye and mouth regions of the image were

extracted and merged together. The merged image was resized to a resolution of 30×40

pixels and binarised using a threshold function. Figure 2.9 illustrates the procedure.

Figure 2.9: Preprocessing of images [46]

The binary image was used as input to the ANN. The class of ANN used was a feed-

forward neural network trained by back-propagation. The input layer consisted of 1200
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neurons corresponding to the size of the binary image. The sigmoid activation function

was used along with one hidden layer. The system was evaluated on a pruned six-class

CK dataset. The ANN was trained on 90 images and tested on 250 and achieved an

average accuracy of 84%.

2.4.3 Random Forests

The random forest (RF) is a popular machine learning technique introduced by Breiman

et al. [47]. RFs have been extensively used in computer vision and FER systems. This is

due to their ability to handle high-dimensional data such as images and being suited for

multi-class classification [48]. RFs are an ensemble of decision trees which collectively

form a forest [47]. Decision trees as a classifier tend to over-fit. To overcome this

RFs implement a technique called bootstrap aggregation or bagging, to form a powerful

classifier.

Dapogny et al. [48] successfully implemented a FER framework using an RF and an

extended version of RFs called pairwise condition random forests (PCRF). The PCRF

classifier was used on high-dimensional temporal information. Additionally their re-

search compared PCRF to RFs using static images. Local points were positioned on the

face and used features. The out-of-bag error estimate [47] was used as the performance

metric for testing on the CK and BU-3DFE datasets. The system achieved 93.2% on

the CK dataset and 70% BU-3DFE dataset using RFs as the classifier.

2.5 Comparison of Machine Learning Techniques

Foster [8] compared machine learning techniques for SASL hand gestures. The system

implemented a feature extraction method designed by Li et al. [7]. The feature extraction

method isolated and tracked the hands using a combination of skin detection and motion

detection techniques.

The system was tested on a self collected dataset consisting of ten SASL hand shapes

produced by 12 ethnically diverse subjects. Figure 2.10 illustrates the SASL hand shapes.
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Figure 2.10: Ten SASL hand shapes [8]

His work contributed a comparison framework that can be used to optimise and compare

machine learning techniques. His framework compared SVMs to ANNs and RFs in terms

of accuracy and time taken to train, optimise and classify. The SVM used the radial

basis function kernel for multi-class classification. The parameters tuned for the SVM

were the cost of classification and the gamma values. The classifier used for the ANN

was the multi-layer perceptron. The parameters optimised for the ANN were the number

of hidden layers and neurons. The parameters tuned for the RF were the depth and the

number of trees. Table 2.3 summarises the results and the analysis of the study.

Table 2.3: Summary of the results and the analysis in [8]

Factor SVM ANN RF

Overall Accuracy (%) 84.3 85.93 81.33
Robust to Subjects High Best High

Robust to Hand shapes High Best High
Classification Time (s) 20.974 0.061 0.033
Optimisation Time (s) 109 3589 14916

Training Time (s) 21 39 101

It was concluded that all the machine learning techniques achieved good performance

with the ANN as the best classifier followed by the SVM and RF. In terms of classification

speed the RF proved to be the best followed by the ANN then the SVM. Overall, it was

concluded that the ANN was the most suitable classifier, due to its accuracy, consistency,

robustness and exceptionally high classification speed.

2.6 Conclusion

This chapter provided an overview of the three main components used by researchers to

achieve FER. The chapter reviewed and discussed the use of LBP, LTP, CLBP, HOG,

ANN, RF and SVM in FER systems. All of the above studies on FER systems clearly
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demonstrate that these techniques achieved good accuracies for their respective FER

systems. A study which compared machine learning techniques for hand gestures was

also discussed. The studies demonstrated that the performance of a machine learning

technique varies according to the given set of features. Therefore it is crucial to compare

a variety of machine learning techniques for a set of features, to determine the optimal

technique.

The next chapter discusses the way in which the research will be done in terms of

structure, research philosophy, design, methods and methodologies.
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Chapter 3

Research Design and

Methodology

The previous chapter discussed the main components of FER systems and some im-

plementations were considered. A comparison of various machine learning techniques

used for solving general classification problems was also discussed. In this chapter the

research design is considered. To ensure consistency of the research the philosophical

stance is clarified in Section 3.1. The methodology adopted for this research is described

in Section 3.2 and its implementation dealt with in Section 3.3. The chapter is concluded

in Section 3.4.

3.1 Research Philosophy

Research philosophy is broadly defined as the development of knowledge and the nature

of knowledge which can be regarded as the belief and the way in which a researcher

collects, analyses and questions phenomena [49].

In order to define and understand the research philosophy in this research, the research

process will be guided by Crotty [50], who suggests that there are four research ele-

ments which guide the research process namely: epistemology, theoretical perspective,

methodology, and methods.

23
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Crotty poses the following questions with regards to the research elements to help su-

pervise the research design process:

1. What methods do we propose?

2. What methodology supervises the chosen methods?

3. What theoretical perspective forms the grounding for the methodology?

4. What epistemology informs the theoretical perspective?

The questions illustrate the relation between the research elements and this creates a

hierarchy which forms the decision making process, represented in Figure 3.1. The use

of the decision making process ensures the research is conducted in a clear and logical

manner.

Epistemology

Theoretical perspective

Methodology

Methods

Figure 3.1: Decision making process [50]

Objectivism is the chosen epistemological stance in this research. Objective knowledge

exists independently of the observer. Objectivism often asserts logic as a means of con-

ceptual knowledge and claims that truths are absolute. The objective researcher ignores

http://etd.uwc.ac.za/



Chapter 3. Research design 25

emotions and intuitions and is therefore inclined to a quantitative style of research. This

research is quantitative and takes an objective stance.

The theoretical perspective of this research is positivist. The objectivist epistemology

guides the research towards a positivist stance. A positivist perspective assumes that

properties of knowledge are measured directly through observation.

Methodology and methods are terms which are often used synonymously by researchers [50].

In this research, methodology refers to the systemic approach whereby the methods are

governed and infers how the data are collected and analysed. Whilst methods refer to

the tools, techniques and algorithms used to analyse data. Therefore the methodology

supervises the chosen methods.

The objective epistemology together with the positivist theoretical perspective avails a

range of research methodologies. Given this the methodology of choice is design science

research. The methods used in this research are quantitative and refer to the algorithms

and techniques forming the artefact.

3.2 Design Science Research

Design science research (DSR) is an outcome based research methodology which has

been adopted in the fields of information systems and computer science. DSR offers a

definitive instruction for evaluation and iteration within research projects. At the core

of DSR is the development and implementation of design artefacts.

The first DSR framework for information systems (IS) was produced by Smith et al. [51].

Their work includes basic definitions for DSR and the artefact. Hevner et al. [52] refined

DSR by conceptualising a widely accepted DSR framework consisting of seven DSR

guidelines with the primary goal of helping researchers understand the DSR approach

in IS research. Their work discusses DSR as a research paradigm but does not propose

a process for performing DSR [53].

Peffers et al. [54] sought to bridge the gap by designing a DSR process through a synthesis

of prominent previous DSR works by [52, 55, 56] amongst others. The result of the

synthesis is a nominal process model consisting of six activities. The six activities are

defined as follows:
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1. Problem identification and motivation. To define a specific research problem and

to justify a solution. This activity produces knowledge of the state of the problem

and the importance of a solution.

2. Objectives of a solution. To deduce the objectives of a solution from the prob-

lem definition. This can be referred to as the research objectives. This activity

produces knowledge of the state of the problem and its current solutions.

3. Design and development. To create the artefacts solution. This activity refers to

the functionality, architecture and creation of the artefact. The outcome of this

activity is knowledge of the theory that can be used as the solution.

4. Demonstration. To demonstrate the competency of the designed artefact as a

solution to the problem. This includes experimentation or simulation using self-

collected data or public data-sets. The outcome of this activity is knowledge of

how to use the artefact to solve the problem.

5. Evaluation. To examine and measure how well the artefact supports a solution.

This activity involves observing the results of demonstrating the artefact and

analysing it with regards to the objectives. The activity requires knowledge of

relevant metrics and analysis techniques. The nature of the research will dictate

whether an iteration is required back to activity 2 or 3 or leave subsequent im-

provements to future projects.

6. Communication. To communicate the problem and its importance, with regards

to the utility and the design of the artefact, the rigour of its design, and its

effectiveness to researchers and other relevant audiences when appropriate. The

output is often a structured empirical process, i.e., an experiment, described in a

research paper.

Figure 3.2 illustrates the DSR process model of Peffers et al. The model is structured

in a sequential manner with four possible entry points. The DSR process may start at

any activity from 1–4 depending on the type and nature of the research, and then move

on to the next activity.
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Problem identification & motivation

Objectives of a solution

Design & development

Demonstration

Evaluation

Communication

Problem centred 
approach

Objective centred 
approach

Design centred 
approach

Observing a solution

Figure 3.2: Design science research process model [54]

3.3 The Design of This Research

This research takes a problem centred approach as illustrated in Figure 3.3. The defini-

tion of the problem and motivation are discussed in Chapter 1.

Research objectives are detailed in Chapter 1. The related work in Chapter 2 supports

and strengthens the insights towards building an artefact as a solution.

The design and development of the artefact and demonstration of the artefact is discussed

in the later subsections. The system is evaluated in Chapter 5. Communication of the

process and its results are through a conference paper [57] as well as through this thesis.

3.3.1 Artefact Design and Development

This section discusses the design and development of the artefact as illustrated in Fig-

ure 3.4. The proposed artefact is structured using the general composition of a FER

system namely: face detection, feature extraction and classification. To meet the objec-

tives of the research, the artefact designed consists of two phases and follow a top-down

approach, as depicted in Figure 3.5.
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Problem identification & motivation

Objectives of a solution

Design & development

Demonstration

Evaluation

Communication

Problem centred 
approach

Figure 3.3: DSR process model highlighting activities 1 and 2 of Section 3.2

In phase one, the FER system is built with the: Viola-Jones face detection; LBP, CLBP

and HOG feature extraction methods; and the SVM for classifier. Phase one is designed

to compare the feature extraction methods and train, model and test the SVM. The

objective is to select which feature extraction method is better suited for FER. The

SVM is adopted as the classifier in this phase due to its prominence in FER research, its

efficiency, generalisation capabilities and because it also limits the scope of the research

by limiting the number of comparisons.

In phase two, the FER system is built with the preferred isolated feature extraction

method based on the results of phase one and the ANN and RF machine learning

techniques. Phase two is designed to train, model and test the ANN and RF. The

objective is to compare the SVM results from Phase one to those for the ANN and RF.

As part of the design, two datasets were used in this research namely, the seven-class

BU-3DFE [24] and the six-class CK [23] datasets. The CK dataset is considered to be

a standard in FER research, however it is considerably smaller than the BU-3DFE with

respect to labelled data. The use of the BU-3DFE dataset was thus considered important

as it contains more labelled data. Both datasets were requested and permission was

granted to download the datasets via a link given by the respective owners.
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Figure 3.4: DSR process model highlighting activity 3 of Section 3.2
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Figure 3.5: Proposed FER artefact

Two evaluating procedures were used. The first procedure consisted of splitting the

BU-3DFE dataset into a training set and a testing set. However, the CK dataset was

used solely as a test set. The motivation for this approach was to demonstrate how

well the system generalises on completely unseen data taken under completely different

conditions. This procedure was followed to evaluate the FER system’s performance in

Phase one and Phase two.
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The second evaluation procedure consisted of using only the CK dataset. The FER

system was evaluated using a k-fold cross-validation strategy and was only performed

in Phase one. As shown in works referenced in Chapter 2, the k-fold cross-validation

strategy is implemented by many researchers to evaluate the performance of their FER

systems.

The next section demonstrates the artefact implementation by detailing the datasets

used and the associated algorithms.

3.3.2 Artefact Demonstration

Problem identification & motivation

Objectives of a solution

Design & development

Demonstration

Evaluation

Communication

Problem centred 
approach

Figure 3.6: DSR process highlighting activity 4 of Section 3.2

This section demonstrates the use of the artefact as illustrated in Figure 3.6. In the

subsequent sections the datasets and the algorithms associated with the designed artefact

are discussed.

BU-3DFE Dataset—Train and Test sets

The Binghamton University 3D Facial Expression (BU-3DFE) dataset [24] contains 2D

and 3D images of subjects posing with the six prototypic facial expressions: happiness,
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sadness, surprise, anger, disgust, fear and the neutral pose. The facial expressions are

posed by 100 male and female subjects of various ethnicities and age groups.

The 2D data consists of four images of each expression per subject. The four images

illustrate different intensities of the subject’s expression. The initial image illustrates the

least intense pose of the expression and the last the most intense pose of the expression.

Only the most intense 2D expressions are used in this research. As mentioned above

the data was randomly split into a training set and a test set. The training set consists

of 70 subjects performing each of the seven facial expressions resulting in a total of 490

images. The remaining 30 subjects are used as test data, resulting in a total of 210

images.

CK Dataset—Test set

The CK dataset [23] consists of 123 subjects of different ethnicities. The subjects ex-

pressed six prototypic emotions and a seventh expression labelled as contempt. The

dataset contains sequences of images varying in length of subjects performing one or

more facial expressions. Each image sequence starts from a neutral face to the peak

formation of a the labelled expression.

Each subject performed one or more of the facial expressions and some sequences were

not labelled as one of the prototypic expressions. This is due the subject’s formation

of an expression not always being clear. The inconsistencies contribute to an unevenly

distributed dataset.

Only the final image in a labelled sequence was used. The final image represents the

peak formation of the expression. This results in a six-class dataset which contains 307

images. Table 3.1 summarises the distribution of the chosen images in the dataset across

each of the facial expressions. The CK final dataset is used exclusively for testing in

this research.

The FER artefact illustrated in Figure 3.5 is used to structure the subsequent sections.

The implementation FER artefact will be discussed top-down starting at the face detec-

tion algorithm and ending with the classification algorithm.
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Table 3.1: Distribution of labelled expressions in the CK dataset

Expression Number of images

Anger 43
Disgust 59
Fear 25
Happiness/Joy 68
Sadness 28
Surprise 84

Total 307

Face Detection

Face detection is the initial step in the feature selection phase as highlighted in Fig-

ure 3.7).

Phase 1: Feature selection 

Face detection

Viola-Jones face 
detection

Classification

Support vector machine

Feature extraction

Local binary patterns

Compound local binary 
patterns

Histogram of oriented 
gradients

Train Test

Model

Figure 3.7: Phase 1: Feature selection - Face detection

The face is detected using the Viola-Jones algorithm [30]. The algorithm detects and

delimits faces in images using weak-features known as Haar features. Haar features are

a set of simple rectangles which contain “dark” and “light” areas. Figure 3.8 illustrates

the two, three and four rectangular Haar features.

Figure 3.8: Forms of Haar features used in the Viola-Jones algorithm

The value of a single feature is calculated by subtracting the sum of pixels under the

“dark” rectangle from the sum of pixels under the “light’ rectangles. The Haar features
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are computed at varying scales and positions within an image sub-window. To speed up

computation an image representation called the integral image is used to simplify the

summing operation which allows the features to be computed in a constant time.

Among the features calculated, many are irrelevant. A modified Adaboost classifier

is used to select important features that represent the face forming, a weighted sum of

weak-classifiers. The process removes all irrelevant features by finding the best threshold

to classify the face at a low error rate. To further increase performance, a cascade of

classifiers is constructed.

Figure 3.9: Cascade of classifiers [30]

The purpose of the cascade is to check whether the facial features are present within a

sub-window of the image without having to evaluate each of the weak-classifiers. Fig-

ure 3.9 visually illustrates the cascade of classifiers. A sub-window of the image is used

as input and each one of the weak-classifiers within the sub-window is tested. If one of

the weak-classifiers does not represent the face the entire sub-window is rejected.

Figure 3.10: Face detection applied to input image

Figure 3.10 illustrates the detection of the face from the original input image. Once

detected the face is cropped, isolated and resized for further processing.

Local Binary Patterns

Following face detection, the next step is to implement the feature extraction methods

highlighted in Figure 3.11).
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Figure 3.11: Phase 1: Feature selection - Feature extraction

An extension of the LBP operator is applied to the face image to capture details of

varying scales. The extension allows the LBP operator to handle variable neighbour-

hood sizes. To account for the changes considered, two parameters were introduced: the

number of points P in a circular neighbourhood and the radius of the circle R. Fig-

ure 3.12 illustrates an example of varying points P and radius R used to construct LBP.

Parameters R = 2 and P = 8 provide an accurate representation of a facial image [12].

P = 8, R = 1 P = 8, R = 2

Figure 3.12: Examples of varying number of points P and radius R of the LBP
operator

LBP is computed by comparing the neighbouring pixels to the centre pixel of the neigh-

bourhood. Mathematically the computation of the LBP operator is represented by

Equation 3.1 and the threshold function in Equation 3.2 where ip is the neighbouring

pixel value and ic is the centre pixel.

LBPP,R(ic) =
n−1∑
p=0

2P (f(ip, ic)), (3.1)

f(ip, ic) =


0 ip < ic,

1 ip ≥ ic.
(3.2)

http://etd.uwc.ac.za/



Chapter 3. Research design 35

Figure 3.13 illustrates the computation of the LBP operator with a neighbourhood

size of 5 × 5 and parameters R = 2 and P = 8. The comparison produces a binary

representation of the LBP value which is then converted to decimal and used to form

the LBP image. Figure 3.14 shows the original image and the LBP image of the face.

45 76 155

132 45 123

35 200 51

Original image LBP image

Binary: 00010000

Decimal: 16
189 200 124

35 203 51

24

50

134

35

35

210

12

75

51

51

45 76 155

46 78 112

135 16 151

5 200 11

94 209 111

24

13

201

235

35

210

124

21

86

17

Figure 3.13: The LBP operator with parameters R = 2 and P = 8 applied to image
in pixel representation

Figure 3.14: Original facial image (left) and LBP image (right)

The uniform patterns extension is applied to the LBP. A LBP is considered uniform if

there are two or less transitions from 1–0 or 0–1 in the binary representation. Figure 3.15

illustrates a binary representation containing two transitions which is considered as

a uniform pattern. The number of neighbours P determines the number of uniform

patterns. For P = 8 neighbours, there are a total 57 uniform patterns. All non-uniform

patterns are combined and represented as one pattern—the 58th pattern. The uniform

pattern extension thus considerably reduces the size of the feature vector [33].

00010000
Figure 3.15: Example of a uniform pattern
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The LBP image is equally partitioned into non-overlapping cells to consider the shape

information of the face. Histograms are extracted from each of the cells. The histogram

is built using the range 0–58 representing uniform patterns. The final feature vector

is formed by concatenating each of the histograms to form one spatially enhanced his-

togram representing the LBP image. The process of partitioning the facial image and

forming the final feature vector from the histograms is illustrated in Figure 3.16.

Feature Histogram

Figure 3.16: Formation of the LBP feature vector

Compound Local Binary Patterns

CLBP assigns 2P bits within a local neighbourhood of P pixels. The first bit mirrors the

computation of the LBP operator whereby the centre pixel is compared to a neighbouring

pixel and threshold using Eqn. 3.1. The second bit is computed by comparing the average

magnitude of the neighbouring pixels Mavg to the absolute difference between the centre

pixel and its neighbouring pixel. The CLBP thresholding function is defined as follows:

f(ip, ic) =



11 if ip ≥ ic, |ic − ip| ≤Mavg,

10 if ip ≥ ic, |ic − ip| > Mavg,

01 if ip < ic, |ic − ip| ≤Mavg,

00 otherwise,

(3.3)

here ip is the pixel intensity of the neighbouring pixel and ic the pixel intensity of the

centre pixel in the neighbourhood. The average magnitude of the local neighbourhood

Mavg represents the sum of all the neighbouring pixel intensities
∑P

p=1 ip divided by the

number of neighbours P . Figure 3.17 illustrates the generation of the CLBP code.
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Figure 3.17: Illustration of the generation of the CLBP code

Similar to the LBP, the neighbourhood size and the parameters P and R may be ex-

tended with the CLBP. Using the parameters P = 8 and R = 2, the CLBP is generated,

resulting in a 16-bit binary code. The 16-bit binary code is divided into two equal sub-

CLBP codes of eight-bits in length. The first eight-bit code is formed by merging the

binary threshold values of the south, north, west and east neighbours. The second 8-bit

code is comprised the remaining neighbours’ threshold values. Each sub-CLBP code is

then converted to decimal to form two sub-CLBP images. Figure 3.18 illustrates the

generation of the sub-CLBP codes.

1111111010101010

10

11

11

10

1111101010111010

CLBP

10

11

10

10

Figure 3.18: Generation of the sub-CLBP code

Similar to the LBP, the sub-CLBP images are then partitioned into equal cells and

a histogram is built from the pixel intensities of each cell. The histograms are then

concatenated for each of the sub-CLBP images. The final feature vector is produced by

concatenating the histograms of the two sub-CLBP images.
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Histogram of Oriented Gradients

The HOG represents features by expressing the direction of edges and change thereof

to capture contour, silhouette and some texture information. The first step involves

calculating the gradient of the image. The gradients of the image are calculated for

both the x and y directions separately. The result is two gradient images Gx and Gy,

i.e,

Gx = Mx ∗ I, Gy = My ∗ I. (3.4)

Where Mx and My are 1-D gradient-centred-point descriptive masks, where Mx is

[−1, 0, 1] and My, [−1, 0, 1]T . The masks are convoluted over the facial image I produc-

ing gradient images Gx and Gy. The next step involves calculating gradient magnitude

and orientation using the following Equations 3.5 and 3.6:

√
G2
x +G2

y, (3.5)

θ = arctan
Gy
Gx

. (3.6)

The image of gradient orientations is then divided into small regions called cells. An

orientation histogram is built with nine bins uniformly spread over 0–180◦ representing

unsigned gradients. Each pixel within the cell casts a vote based on its orientation and

is placed into the appropriate bin, thus forming a basic orientation histogram.

To handle variations in contrast and illumination, cells are grouped together into blocks

which are normalised separately. According to [38] block overlap greatly improves accu-

racy. The overlap between consecutive blocks is 50% which allows each cell to contribute

more than once to the final descriptor. Figure 3.19 illustrates three facial images: the

first image is divided into equally sized cells; the second into blocks made up of 2 × 2

cells and lastly the 50% block overlap.

The L2-Hys method is used to normalise each block’s histogram. L2-Hys is computed

by taking the L2-norm, clipping the result and then re-normalising the block, as in [58].

All the normalised blocks are concatenated to form the final HOG feature vector.
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Figure 3.19: Facial image partitioned into cells (left), blocks formed from 2× 2 cells
(centre) and 50% block overlap (right)

Support Vector Machine

Following feature extraction methods, the next step is to implement the SVM as high-

lighted in Figure 3.20).

Phase 1: Feature selection 

Face detection

Viola-Jones face 
detection

Classification

Support vector machine

Feature extraction

Local binary patterns

Compound local binary 
patterns

Histogram of oriented 
gradients

Train Test

Model

Figure 3.20: Phase 1: Feature selection - Classification

A SVM is a supervised machine learning technique which performs classification by

constructing a decision hyper-plane to separate two class labels. Figure 3.21 illustrates

a Cartesian plane of two linearly separable classes of observations represented by dots

and diamonds separated by a hyper-plane. Since many orientations of the hyper-plane

exist, the goal of the classification process is to find the optimum hyper-plane which has

the maximum margin between classes.

The maximum margin offers an optimisation problem which is dealt with by building a

buffer zone around the hyper-plane. The class label points which define the margin are

called ‘support vectors’. The SVM establishes the optimum hyper-plane by penalising

the support vectors which fall on the opposite side of the hyper-plane indicated by the

red arrows illustrated in Figure 3.21.

In most cases data points are not entirely separable. In order to separate classes in higher

dimensions that are not linearly separable by the SVM classifier, a kernel function is
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Support vectors

Maximize margin

Figure 3.21: Two classes separated by a hyper-plane in SVM

used to map data. The kernel choice is problem-dependent. Given training samples

{xi ∈ Rp, i = 1, . . . , n}, in two classes, and an indicator vector y ∈ {1,−1}, the support

vector machine [42, 59] solves the following:

min
w,b,ζ

1
2w

Tw + C
n∑
i=1

ζi, subject to yi(w
Tφ(xi) + b) ≥ 1− ζi, and ζi ≥ 0, i = 1, . . . , n.

(3.7)

where w is the normal vector, b the interim term and ζ the slack variable. Its dual is:

min
α

1
2α

TQα− eTα, subject to yTα = 0, and 0 ≤ αi ≤ C, i = 1, . . . , n. (3.8)

where e is the vector of all ones, C > 0 is the upper bound, Q is an n× n positive semi

definite matrix, Qij ≡ yiyjK(xi, xj), where K(xi, xj) = φ(xi)
Tφ(xj) is the kernel. Here

training vectors are implicitly mapped onto a higher—perhaps infinite—dimensional

space by the function φ. Studies have indicated that the RBF kernel is a reasonable first

choice [60]. As such, the RBF kernel is used in this research which is given as:

K(xi, xj) = exp(−γ(‖ x̄, x̄′ ‖22)). (3.9)

The decision function is:

sgn(
n∑
i=1

yiαiK(xi, x) + ρ). (3.10)

SVMs are by definition limited to solving two-class problems but can be modified to
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handle multi-class classification. Multi-class classification techniques involve a combina-

tion of several binary classifiers along with a strategic decision to choose a single class.

To achieve multi-class classification, a one-against-one (OAO) [34, 61] approach is used.

The approach creates a series of binary classifiers trained with each possible pair of

classes. For the n multi-class problem, where n > 2, (n−1)
2 , binary classifiers are created.

The final prediction is determined by which class received the most votes.

The training and optimising of the SVM is carried out using the grid-search function

of the library for support vector machines (LibSVM) [62]. The grid-search function

exhaustively iterates through C and γ hyper-parameter values of the SVM and RBF

kernel. The C parameter indicates the cost of classification. C determines the width of

the margin of the decision hyper-plane, as to how much it avoids misclassifying training

examples. The γ parameter defines how far the influence of a single training example

reaches.

A total of 110 different exponentially growing sequences of (C, γ) are traversed ranging

between C = 2−5, 2−3, . . . , 215; γ = 2−15, 213, . . . , 23. For each combination of (C, γ),

a five-fold cross-validation scheme is used. The (C, γ) combination with the highest

cross-validation accuracy is selected.

The optimisation of the three feature descriptors is carried out in parallel with the

optimisation of the SVM. The process of determining optimal parameters for each of

the feature descriptors is a process of trial and error. The parameters optimised for

LBP and CLBP are the resolution of the facial image and the cell sizes. The parameters

optimised for the HOG descriptor are the cell size, block size and resolution of the facial

image.

Artificial Neural Network

Following the classification of the SVM, the next step is to implement the ANN and RF

which forms part of phase 2 as highlighted in Figure 3.22

The multi-layer perceptron (MLP) is a class of ANN used to perform classification.

A perceptron consists of one or more artificial neurons arranged in a specific pat-

tern [63]. Figure 3.23 illustrates the most basic perceptron consisting of one neuron. The

perceptron receives inputs x1, . . . , xn, multiplies them with the corresponding weights
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Figure 3.22: Phase 2: Comparison of machine learning techniques - Classification

w1, . . . , wn and sums the result which is passed through an activation function producing

the output.

Figure 3.23: A simple perceptron consisting of one neuron [8]

The weighted sum is given by:

S =
n∑
i=1

wixi. (3.11)

The choice of activation function is problem dependent. There is no clear method of

selecting an activation function. Selection is a process of trial and error. The MLP trains

using backpropagation. More precisely, it trains using some form of gradient descent

and the gradients are calculated using backpropagation.

The neural network is built by adding layers of perceptrons together, forming a multi-

layer perceptron. The network consists of an input layer which receives features as input

and an output layer which creates the resulting outputs. Hidden layers are the layers
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in between the input and output layers. The hidden layer does not directly ‘see’ the

feature inputs or outputs. Each layer can apply any function from the previous layer

to produce an output. Hidden layers are constantly adjusted during the training of the

neural network to transform the values of the inputs. The final hidden layer transfers the

values to the output layer which transforms the values to outputs. Figure 3.24 illustrates

a multilayer perceptron with one hidden layer.

Figure 3.24: A multi-layer perceptron with one hidden layer [8]

The formal definition of a MLP is given as follows [63]: Given a set of training data

(x1, y1), (x2, y2), . . . , (xn, yn) where xi ∈ Rn and yi ∈ {−1, 1}, a one hidden layer one

hidden neuron MLP learns the function f(x) = W2g(W T
1 x + b1) + b2 where W1 ∈ Rm

and W2, b1, b2 ∈ R are model parameters. W1,W2 represent the weights of the input

layer and hidden layer, respectively; and b1, b2 represent the bias added to the hidden

layer and the output layer, respectively. g(x) : R→ R is the activation function, set by

default as the hyperbolic tan function. It is given as:

g(z) =
ez − e−z

ez + e−z
. (3.12)

For binary classification, f(x) passes through the logistic function g(z) = 1
(1+e−z)

to

obtain output values between zero and one. A threshold, set to 0.5, would assign samples

of outputs larger or equal to 0.5 to the positive class, and the rest to the negative class.

If there are more than two classes, f(x) itself would be a vector of size (nclasses). Instead

of passing through a logistic function, a soft-max function is used instead, which is
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written as:

softmax(z) =
exp(zi)∑K
l=1 exp(zl)

. (3.13)

where zi represents the ith element of the input to soft-max function, which corresponds

to class i, and K is the number of classes. The result is a vector containing the prob-

abilities that sample x belong to each class. The output is the class with the highest

probability.

MLPs use different loss functions depending on the problem type. For regression, MLP

uses the Square Error loss function. This is expressed as:

Loss(ŷ, y,W ) =
1

2
||ŷ − y||22 +

α

2
||W ||22, (3.14)

beginning random initial weights, the MLP minimizes the loss function by constantly

updating the weights. After computing the loss, a backward pass propagates it from the

output layer to the previous layers, providing each weight parameter with an update

value meant to decrease the loss. In gradient descent, the gradient ∇LossW of the loss

with respect to the weights is computed and deducted from W . This is expressed as:

W i+1 = W i − ε∇LossiW . (3.15)

where i is the iteration step, and ε is the learning rate with a value larger than 0. The

algorithm stops when it reaches a pre-set maximum number of iterations; or when the

improvement in loss is below a certain small number.

Using the training data a grid-search is used to tune the hyper-parameters of the ANN

and k-fold cross validation as the evaluation metric. For the scope of the research only

one hidden layer was considered in the neural network. The grid-search is made up of n

the number of neurons in the hidden layer which range from 1− 100, additional to the

typical number of neurons which used in MLP which range from 5 − 50 [64], and four

activation functions. The activation functions are as follows:

• Identity/Linear activation function:

f(x) = x. (3.16)
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• Logistic/Sigmoid activation function:

f(x) = 1/(1 + exp(−x)). (3.17)

• Hyperbolic tan function (Tanh):

f(x) = tanh(x). (3.18)

• Rectified linear unit function (Relu):

f(x) = max(0, x). (3.19)

The grid-search exhaustively iterates through combinations of the activation function

and numerous neurons resulting in total of 400 different combinations. For each com-

bination a five-fold cross-validation scheme is used to evaluate the performance. The

combination with the highest cross-validation accuracy is selected to train the model.

Random Forest

A RF is comprised of a group decision trees to form a forest of trees [47]. In order to

understand the RF algorithm it is important to understand the underlying decision tree

structure.

Decision trees are a class of supervised learning algorithms associated with directed

acyclic graphs. Decision trees use a top-down approach to classify input data. The

decision tree poses a set of pre-defined questions associated with features of the inputs.

Each question posed corresponds to a single node within the tree and each successive

question is dependent on the criteria of the previous question. Thus in a classification

context, a decision tree is a hierarchy which outputs a predicted class based on the

terminal node produced.

Figure 3.25 illustrates an abstracted decision tree which contains a set of nodes and

edges forming an organised hierarchy. The decision tree structure consists of two main

types of nodes. Internal/split node—which include the root node—represented by circles

and terminal/leaf nodes represented by squares in Figure 3.25. A boolean function or
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Figure 3.25: The structure of a simple decision tree

question is used at each internal node, the answer to which determines to which path

the input is directed. The terminal node indicates the predicted output.

On their own, decision trees are very simple and poor classifiers [47] as they tend to

over-fit data. However, ensemble methods that query and vote on various aspects of the

data, can be used as a foundation to form a powerful classification technique with the

RF. Ensemble methods group together ‘weak learners’, which are simple low accuracy

predictors, to form a ‘strong learner’ capable of high-accuracy predictions. In terms of

the ensemble, the decision trees represent the ‘weak learners’, which collectively form

the ‘strong learner’, the RF classifier.

Breiman defines the RF classifier as follows [47]:

R = Tk(X,Θk), k = 1, . . . ,K. (3.20)

Where the RF is denoted as R and K the collection of decision tree classifiers. Tk

denotes the k-th tree in the forest and Θk is a set of independently distributed samples

used to generate unique decision trees. Each decision tree is considered unbiased and

votes for the most popular class given input X.
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The algorithm for the RF is as follows [64]: Given a training set of L labelled points

{(xi, yi)|i = 1, . . . , L} where xi represents a single training example and yi is its class

label, K decision trees are generated.

For each decision tree, given N the dataset of samples, a subset of the samples n are

extracted using bootstrapping. Each subset of k samples are uniform and randomly se-

lected without replacement. Bootstrapping is a process whereby unique random subsets

of a dataset are used to train different classifiers. Furthermore, ms features are chosen

randomly from a total of M features available. During the construction of the tree, at

each node, the best split positions are chosen from ms, the random selection features.

The nodes are then split into child nodes and iterated until the tree reaches a depth of

Ds equal to a threshold Dmin. The entire algorithm is repeated for each tree B resulting

in a RF Tk(X,Θk), k = 1, . . . ,K.

The algorithm is formally defined as follows given the symbols defined above [64]:

Algorithm 1 Random Forest algorithm

1: for k = 1 to K do
2: Create a bootstrap sample Z∗ of size n to build tree Tk
3: while Nodes in current tree Ds < Dmin do
4: Choose ms features at random from the total M features
5: Pick the best feature split of ms features
6: Split into 2 child nodes

7: Output Random forest Tk|k = 1, . . . ,K

Using the training data a grid-search is used to tune the hyper-parameters of the RF

and k-fold cross validation as the evaluation metric. For the scope of the research the

tree depth and number of trees were considered as adjustable hyper-parameters in the

neural network. The grid search consists of a number of trees in the range 1–100 and a

tree depth of 1–20.

The grid-search exhaustively iterates through combinations of the chosen hyper-parameters.

This results in a total of 2000 different combinations for the RF. For each combination

a five-fold cross-validation scheme is used as the evaluation metric. The combination

with the highest cross-validation accuracy is selected to train the model.
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3.4 Conclusion

This chapter discussed the research design and methodology. The research design pro-

cess leads to the use of the DSR methodology. The methodology was discussed and

its implementation is presented throughout the thesis. The design, development and

demonstration of the research artefact were also discussed. The next chapter discusses

the evaluation of the artefact.
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Figure 4.1: DSR process highlighting activity 5 of Section 3.2

This Chapter signals the start of the activity 5 of the DSR process (see 4.1 and provides

an in depth evaluation of the designed artefact and by doing so provides the answers

to the research questions outlined in Chapter 1. The Chapter is structured as follows:

Section 4.1 describes the optimisation and testing of phase one—the feature selection

process and Section 4.2 describes the optimisation and testing of phase two and provides

the comparisons of machine learning techniques.

49
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Accuracy is measured by dividing the total number of correctly classified images by

the total number of images in the set. Where applicable, confusion matrices is used

to analyse the difference between classes. In some cases for ease of reference the facial

expressions are abbreviated in this chapter. When assessing accuracy, experiments were

carried out on an Intel i7 3.8 GHz CPU with 16 GB DDR4 RAM and a GeForce GTX

580 GPU—3GB RAM. The operating system used was Windows 10.

4.1 Evaluation of Phase 1: Feature Selection

Phase 1: Feature selection 

Face detection

Viola-Jones face 
detection

Classification

Support vector machine

Feature extraction

Local binary patterns

Compound local binary 
patterns

Histogram of oriented 
gradients

Train Test

Model

Figure 4.2: Phase 1: Feature selection - Evaluation

Phase 1 consisted of two evaluating procedures. The first procedure consisted of splitting

the BU-3DFE dataset into a training set and a testing set. The training set was used

to optimise the feature extraction techniques and the RBF parameters of SVM simulta-

neously as described in Section 3.3.2. The optimisation and the results are described in

sub-sections 4.1.1– 4.1.3.

The optimised model of each feature extraction technique was evaluated and compared

on the CK and BU-3DFE test sets. The results using the test sets of the BU-3DFE

and CK datasets is described in Section 4.1.4 and 4.1.5. The test sets will be evaluated

on overall accuracy, robustness toward facial expressions and test subjects and lastly

generalising capability. In Section 4.1.6 the CK dataset is tested with a cross-validation

scheme. The final choice of feature descriptor which will be used in phase two is discussed

in Section 4.1.7.

4.1.1 Optimisation of the LBP

A grid-search approach was used in optimising the parameters of the LBP descriptor.

The parameters optimised were the resolution of the facial image r and the cell sizes c.
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The ranges of the resolution r were 40, 50 and 60 pixels and the ranges for the cell size c

were 5 and 10 pixels. These arbitrary values were chosen due to their ease of divisibility

and to limit the scope of the research.

Table 4.1: LBP Cross-validation optimisation scores (%)

r = 40 × 40 r = 50 × 40 r = 60 × 40
c 5 10 c 5 10 c 5 10
5 63.87 63.26 5 53.4 52.4 5 49.18 45.90
10 62.88 60.41 10 55.1 53.67 10 49.10 45.30

r = 40 × 50 r = 50 × 50 r = 60 × 50
c 5 10 c 5 10 c 5 10
5 61.60 58.75 5 63.06 63.88 5 55.71 57.34
10 59.80 55.91 10 64.20 62.04 10 55.71 55.71

r = 40 × 60 r = 50 × 60 r = 60 × 60
c 5 10 c 5 10 c 5 10
5 61.60 60.61 5 63.06 63.88 5 65.10 66.70
10 61.83 56.50 10 64.2 62.04 10 63.26 66.12

Table 4.1 summarises the cross-validation accuracies for the optimisation of the LBP

operator. Table 4.1 shows that the optimal parameters resolution size was 60 × 60 at

a cell size of 5 × 10 yielding a score of 66.70%. The optimum (C, γ) combination that

provided this accuracy was (27, 2−15). These parameters were used to train a final SVM

model specific to the LBP feature descriptor.

4.1.2 Optimisation of the CLBP

The CLBP operator was optimised in a way similar to that used for the LBP operator

in terms of the resolution width and height combinations of 40 and 60 pixels, and cell

sizes of 5 and 10 pixels.

Table 4.2 summarises the cross-validation scores for the CLBP operator. As illustrated

in the table, the optimum resolution width and height were 60 × 60 with a cell size of

10×10. These parameters yielded a cross validation score of 68.57%, which was obtained

with the SVM hyper-parameters C = 23 and γ = 2−15. These parameters were used to

train a final SVM model specific to the CLBP feature descriptor.
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Table 4.2: CLBP Cross-validation optimisation scores (%)

r = 40 × 40 r = 50 × 40 r = 60 × 40
c 5 10 c 5 10 c 5 10
5 64.69 64.08 5 55.10 54.49 5 48.36 46.12
10 65.10 62.86 10 54.49 64.89 10 49.38 45.10

r = 40 × 50 r = 50 × 50 r = 60 × 50
c 5 10 c 5 10 c 5 10
5 57.96 58.77 5 65.31 66.93 5 54.69 56.73
10 57.34 57.75 10 63.67 64.89 10 54.90 55.30

r = 40 × 60 r = 50 × 60 r = 60 × 60
c 5 10 c 5 10 c 5 10
5 63.88 61.02 5 63.06 63.88 5 62.04 66.53
10 62.45 64.89 10 64.2 62.04 10 65.91 68.57

4.1.3 Optimisation of the HOG

The parameters optimised were the width and height of the image, i.e., the resolution

size of the facial image r along with the cell size c and block dimensions b for the HOG

descriptor. Resolution sizes r of 64× 64 and 128× 128 were considered. To reduce the

complexity of the parameter search space, only square cells and blocks were considered,

i.e, cell and block sizes of the same width as the height. The cell sizes c considered were

4× 4, 8× 8 and 16× 16. The block dimensions b considered were 2× 2 and 4× 4.

Table 4.3: HOG cross-validation optimisation scores (%)

r = 128 × 128 r = 64 × 64

b
c

b
c

4×4 8×8 16×16 4×4 8×8 16×16
2×2 45.71 56.12 70.81 2×2 56.94 70.61 68.37
4×4 57.14 65.51 75.10 4×4 72.04 72.04 63.88

Table 4.3 summarises the cross-validation scores for the HOG descriptor. The results

show that the highest cross-validation accuracy is 75.10% at a resolution of 128 × 128

along with parameters c = 16× 16 and b = 4× 4. The optimum SVM hyper-parameter

combination yielded was C = 211 and γ = 2−5. These parameters were used to train a

final SVM model specific to the HOG feature descriptor.
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4.1.4 BU-3DFE Test Set Results

Table 4.4 outlines the total number of correctly classified frames and accuracies of each

feature extraction method using the BU-3DFE test set. Each of the three feature ex-

traction methods performed well with overall accuracies of 60% and above. Table 4.4

shows that the HOG descriptor was the top-performer followed by CLBP and LBP.

Table 4.4: Performance of each feature descriptor on BU-3DFE test set

Descriptor Total frames Correct Accuracy (%)

LBP 210 126 60.0
CLBP 210 136 64.8
HOG 210 139 66.2

It is noted that there is a slight discrepancy between the training set and test set results.

This is due to the test set being completely exclusive of the training set and the similarity

of certain expressions in samples of the test set which will be discussed later.

To provide insight into the robustness towards classes, Figure 4.3 highlights the per-

formance of each descriptor across each facial expression class. Each facial expression

class is comprised of 30 images. The accuracies are derived by dividing the number of

correctly predicted images per class by the total number of images in the class.

Figure 4.3 shows that the most accurately predicted classes are ‘Happy’ and ‘Surprise’.

Both classes performed well across the feature descriptors. ‘Surprise’ and ‘Happy’ are

considered to be visually distinct and are somewhat easier to perform than most of the

other facial expressions. ‘Fear’ and ‘Sad’ were generally the most difficult to recognise

with ‘Fear’ possibly the most complex of the expressions to perform non-spontaneously.

HOG and CLBP are similar in accuracy across the majority of classes with both out-

performing each other in two classes however HOG does so with a higher margin. In

terms of accuracy, LBP was clearly eclipsed by both HOG and CLBP, however it has

the lowest standard deviation in accuracies across classes—14%—implying that it is the

most robust toward variations in classes. The standard deviation between classes was

equally robust for HOG at 19% and CLBP at 16%. Considering that HOG and CLBP

outperform LBP it is somewhat surprising that both descriptors are less robust towards

variation in classes.

http://etd.uwc.ac.za/



Chapter 4. Results and analysis 54

0

10

20

30

40

50

60

70

80

90

100

Anger Disgust Fear Happy Neutral Sad Surprise

A
cc

u
ra

cy
 (

%
)

Class

LBP CLBP HOG

Figure 4.3: Performance of each feature descriptor per facial expression class on the
BU-3DFE test set

To describe the performance of the classification model and highlight the variations

across classes confusion matrices were built for each feature descriptor. The confusion

matrix breaks down the performance of each facial expression class by analysing the

correct and incorrect predictions with count values. For the sake of clarity, all confusion

matrices are normalised and values of zero are left blank.

Table 4.5: Confusion matrix for LBP (%) (BU-3DFE)

Actual
Predicted

ANG DISG FEA HAP NEU SAD SURP

ANG 53 13 3 7 23
DISG 17 63 10 7 3
FEA 13 10 47 13 3 13
HAP 10 87 3
NEU 13 10 10 50 17
SAD 27 7 13 53
SURP 7 13 3 7 3 67

Table 4.5 is the confusion matrix for the LBP descriptor. It is observed that the ex-

pressions ‘Anger’ and ‘Sad’ are misclassified with one another. Likewise, ‘Disgust’ is
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often confused with ‘Anger’. ‘Fear’ performs more erratically and is misclassified with

a handful of the other classes.

Table 4.6: Confusion matrix for CLBP (%)(BU-3DFE)

Actual
Predicted

ANG DISG FEA HAP NEU SAD SURP

ANG 67 7 7 3 3 13
DISG 20 63 3 3 7 3
FEA 20 3 50 13 10 3
HAP 3 90 7
NEU 7 3 3 67 20
SAD 11 3 10 3 7 40
SURP 3 3 3 3 10 77

Table 4.6 is the confusion matrix for the CLBP descriptor. Upon inspection Table 4.6

is similar to that of Table 4.5: A similar trend is found for ‘Anger’ and ‘Sad’; a similar

confusion between the ‘Disgust’ and ‘Anger’ classes; and ‘Fear’ is randomly spread across

most of the classes.

Table 4.7: Confusion matrix for HOG (%) (BU-3DFE)

Actual
Predicted

ANG DISG FEA HAP NEU SAD SURP

ANG 67 10 10 3 7 3
DISG 10 83 3 3
FEA 3.3 10 50 13 10 7 7
HAP 3 13 83
NEU 3 27 10 67 13
SAD 43 3 13 3 33 3
SURP 7 3 3 7 80

Table 4.7 is the confusion matrix for the HOG descriptor. Once again, similarities can

be drawn with Table 4.6 and Table 4.7: ‘Sad’ predominantly confused with ‘Anger’;

‘Disgust’ is predominately misclassified as ‘Anger’; and ‘Fear’ is randomly misclassified

as every other class. This indicates that the difficulty in classification may be attributed

to incorrect labelling in the dataset.

Upon review of the test samples, some of the ‘Sad’, ‘Anger’ and ‘Disgust’ classes were

found to be similar in appearance. Figure 4.4 displays samples of test subjects labelled

as ‘Anger’ in the top row and ‘Sad’ in the bottom row. Figure 4.4 illustrates that the

images are visually similar, and one can be easily misjudged for the other producing

incorrect classification. A similar case using different classes is represented in Figure 4.5
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which depicts subjects expressing ‘Anger’ on the top row, and ‘Disgust’ on the bottom

row.

Figure 4.4: Similarity of ‘Anger’ (top) and ‘Sad’ (bottom) expressions in the test set

Figure 4.5: Similarity of ‘Anger’ (top) and ‘Disgust’ (bottom) expressions

Therfore the fluctuation in classification accuracies between classes can be connected to

the quality of the BU-3DFE dataset. A similar observation was made by Mushfieldt in

[12] whereby he stated that many of the samples in the BU-3DFE dataset are incorrectly

labelled, especially in the samples labelled as ‘Fear’.

The final performance analysis involves comparing the robustness of each descriptor to

variations across test subjects. A graph containing a per test subject analysis turned

out to be convoluted, therefore a histogram of the number of correctly recognised images

across the test subjects was built instead. Meaning that each test subject was given a

score out of seven, since the test data per subject, contains one image of each of the

seven classes expressed. Figure 4.6 illustrates a histogram representing the spread of the

scores across test subjects.
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Figure 4.6: Histogram of the number of test subjects that achieved each number of
correctly recognised images (out of seven) for each of the three feature descriptors

A distribution which is skewed to the right of the histogram would be ideal as it would

represent better variation towards test subjects. This means that a large number of

subjects would have more correctly recognised images. Figure 4.6 shows that for the

LBP descriptor, the majority of the subjects achieved scores of three, four and five out

of seven. Four subjects achieved a score for two out of seven, double that of the CLBP

and HOG descriptors. However, CLBP provides greater robustness to test subjects

compared to LBP, with the majority of test subjects distributed around the four, five

and six out of seven mark. Lastly, HOG outperforms both LBP and CLBP, with the

majority of test subjects scoring five or six out of seven. Furthermore, the histogram for

LBP follows a normal distribution. A similar distribution is seen for CLBP, however, the

spread of the results skew more to the right of the histogram. The HOG distribution

peaks toward the right of the histogram which is ideal. Meaning HOG has a higher

accuracy and more consistency per subject as compared to LBP and CLBP. Thus HOG

is more robust towards test subjects than CLBP and LBP.
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4.1.5 CK Test Set Results

The optimised models trained for each feature descriptor were tested on the CK dataset.

It should be noted that the CK dataset does not contain the neutral class, but the three

models were trained to recognise this class. This test set tests the generalising capability

of the model and consists of data which was captured under different conditions to

the training set. It is also important to note that the number of images per-class are

imbalanced.

Table 4.8: Overall recognition results for the CK dataset

Descriptor Total frames Correct Accuracy (%)

LBP 307 189 61.56
CLBP 307 107 34.85
HOG 307 198 64.50

Table 4.8 summarises the number of correctly recognised frames for each feature extrac-

tion method on the CK dataset. Both LBP and HOG perform very well, with accuracies

above 60%. This demonstrates the ability of the HOG and LBP descriptor to generalise

well. The HOG descriptor outperforms both LBP and CLBP, with a high average ac-

curacy of 64.50%. Surprisingly, the accuracy of CLBP is considerably lower than that

of LBP and HOG. It is unclear why the performance of CLBP is lower on this dataset.

The classification accuracy of each facial expression class across all subjects and feature

extraction methods is represented in Figure 4.7.

Figure 4.7 shows that CLBP achieves lower than 10% accuracy for three of the six classes

and achieves an excellent accuracy of 81% for ‘Anger’. The general performance of the

CLBP on this dataset is poor. LBP performs significantly better than the CLBP, with

accuracies of 97% for ‘Happy’ and 89% for ‘Sad’. However, for four of the six classes,

it scores an accuracy of below 45% which nevertheless is still better than CLBP. HOG

once again proves to be superior to the LBP and CLBP, now in terms of generalisation

potential. Four of the six classes achieve above 60% accuracy and one class above 40%.

HOG performed well for the expressions ‘Disgust’, ‘Happy’ and ‘Surprise’, with accura-

cies of 91%, 81% and 80% respectively. Clearly, HOG has excellent potential towards

generalising, noting that the testing and training sets were captured and controlled under

completely different conditions and with different subjects.
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Figure 4.7: Accuracy of each feature descriptor per facial expression class across all
subjects on the CK dataset

A per-subject analysis on the CK dataset was not possible due to the unbalanced nature

of the dataset; there are large variations in the number of images across test subjects,

and not all subjects performed all facial expressions.

4.1.6 CK Cross-validation Test Results

It should be noted that a direct comparison of results is not possible due to the difference

in evaluation metrics of the research. The cross-validation test was done solely for

comparison purposes with researchers who have used cross-validation and the six-class

CK dataset as their final evaluation criterion, however a direct comparison is still not

possible in this case either.

A five-fold cross validation scheme was used alongside the grid-search to find the opti-

mum SVM-RBF hyper-parameters for each of the feature extraction technique. It should

be noted that the LBP, CLBP and HOG parameters used were the optimised values from
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the BU-3DFE dataset. Table 4.9 illustrates the comparison of cross-validation accura-

cies.

Table 4.9: Comparison of cross-validation accuracies on CK dataset

Study
LBP
(%)

CLBP
(%)

HOG
(%)

Optimisation
Dataset

Total
Test

Images

Shan et al. [43] 88.4 - - CK 310
Ahmed et al. [37] 90.1 94.4 - CK 1124
Gritti et al. [16] 90.9 - 92.7 CK 320

This research 84.4 85.7 91.2 BU-3DFE 307

Table 4.9 indicates that excellent cross-validation accuracies are attained across each

feature descriptor. For this test each descriptors accuracy increases dramatically. HOG

performs exceptionally well and similar to the trend in the above results is followed by

CLBP and LBP.

As aforementioned a direct comparison between results is not be possible due to two

factors. First, the CK dataset has images which are not labelled and this situation

leads to inconsistent data. In the case of Ahmed, 1224 image sequences were used for

classification compared to Shan with 310 images. Similarly, Gritti used 320 in their

study and in this research 307 images were used. Second each of the studies optimised

their FER systems for use specifically on the CK dataset, whereas in this research, the

feature descriptors were implemented using the optimised values produced from BU-

3DFE training set. Nevertheless, the results achieved by this research are excellent and

comparable to the aforementioned studies for the HOG descriptor.

4.1.7 Discussion and Choice of Feature Descriptor

The factors considered when comparing HOG, CLBP and LBP were: overall accura-

cies, accuracy across facial expressions, robustness towards test subjects, and ability to

generalise. Table 4.10 summarise the results.

First, the overall accuracies on the BU-3DFE test set revealed that the HOG achieved

the highest accuracy, exceeding the overall accuracy of the LBP by 6.2% and that of the

CLBP by 1.4%. Thus HOG and CLBP could be considered comparable. However, the

cross-validation accuracy on the CK test set revealed a large increase in accuracies for
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Table 4.10: Summary of feature descriptor results

Dataset Factor LBP CLBP HOG

BU-3DFE
Overall Accuracy (%) 60.0 64.8 66.2

Robust to Subjects High High Best
Robust to Classes High High Best

CK

Cross-Validation Accuracy (%) 84.4 85.7 91.2
Overall Accuracy (%) 61.56 34.85 64.50

Robust to Classes High High Best
Generalisation Capability High High Best

the feature descriptors. HOG outperforms both CLBP and LBP. Thus HOG emerges

the winner in this regard.

Second, with regards to facial expression classes, CLBP and HOG were comparable,

however, HOG had higher accuracies across most classes. LBP was outperformed by

both HOG and CLBP. With regards to robustness to variations in test subjects, HOG

emerged as the better descriptor. HOG achieved higher scores per-subject and was more

consistent than both the CLBP and the LBP.

Finally, the ability to generalise to varied test data was considered by means of an

ambitious use of a dataset that was completely different from the training set; the

CK dataset. HOG emerged as the winner. The descriptor achieved high accuracies

consistently for the majority of the facial expression classes despite the challenging nature

of the test. Of note is that the LBP descriptor also proved to be robust however less

so than the HOG. CLBP proved inferior to even the LBP, being unable to maintain an

acceptable accuracy over most classes.

It seems evident to conclude that the HOG is a more robust feature descriptor than the

LBP and the CLBP. Furthermore, the CLBP can generally be considered to be superior

to the LBP, but the LBP has greater potential in terms of its ability to generalise.
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Figure 4.8: Phase 2: Comparison of machine learning techniques - Evaluation

4.2 Evaluation of Phase 2: Comparison of Machine Learn-

ing Techniques

As a consequence of the results in phase one, the HOG descriptor is selected as the

feature descriptor of choice. The training and optimisation of the ANN and the RF

using the HOG descriptor is described in Section 4.2.1 and 4.2.2. The comparison of the

SVM, ANN and RF take place in Sections 4.2.3 and 4.2.4. The final choice of machine

learning technique is discussed in Section 4.2.5.

4.2.1 Optimisation of the Artificial Neural Network

A grid-search was used to optimise the hyper-parameters of the ANN. Using one hidden

layer, the parameters optimised were the number of neurons in the hidden layer along

with an array of activation functions. The neurons used ranged from 1–100. The acti-

vation functions used were the: logistic, identity, tanh and relu activation functions. A

five-fold cross validation scheme was used to assess the performance.

Figure 4.9 illustrates the optimisation results of the ANN. From Figure 4.9, the majority

of activation functions stabilise with accuracies of 70%+ when the ANN models are

trained with 25 or more neurons in the hidden layer. However, in the case of the logistic

activation function, the performance drops intermittently regardless of the number of

neurons in the ANN model. It is unclear why the fluctuation occurs.

The highest ranking combination of hyper-parameters is the identity activation function

coupled with 47 neurons in the hidden layer resulting in a cross validation accuracy of

78.16%. These parameters are used to form the final ANN model.
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Figure 4.9: Optimisation results of artificial neural network

4.2.2 Optimisation of the Random Forest

A grid-search was used to optimise the hyper-parameters of the RF. The parameters

optimised were the depth of the tree and the number of trees. The depth of the tree

ranged from 1–20 and the number of trees from 1–100. As with the optimisation of the

SVM and ANN, a five-fold cross validation scheme was used to assess the performance.

Figure 4.10 illustrates the optimisation results of the RF. From Figure 4.10, it is clear

that tree depths of 1–6, have considerably lower accuracies than depths > 6, which is to

be expected due to the low complexity of such RFs.

The highest ranking combination of hyper-parameters is 13 for the depth of tree with

84 nodes, resulting in a cross validation accuracy of 73.06%. These parameters are used

to form the final RF model.
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Figure 4.10: Optimisation results of the Random forest

Table 4.11: Performance of machine learning techniques on the BU-3DFE test set

Classifier Total frames Correct Accuracy (%)

RF 210 133 63.33
ANN 210 138 65.71
SVM 210 139 66.20

4.2.3 BU-3DFE Test Set Results

Table 4.11 displays the total number of correctly classified frames and accuracies of each

machine learning technique (classifier) used on the BU-3DFE test set. Each machine

learning technique performed well with high overall accuracies. Table 4.4 shows that

the accuracies of the SVM, ANN, and RF are quite comparable with a difference of six

misclassified frames between them. It is noted that there is once again a slight discrep-

ancy between the training set and test set results. The similarity in the discrepancies of

the results affirm that the test set has incorrectly labelled samples. To further inspect

the results, a histogram highlighting the performance of the facial expression classes was

built.

Figure 4.11 provides a histogram showing the comparative performance of facial expres-

sion classes across machine learning techniques. Figure 4.11 shows that the ‘Happy’ and

‘Surprise’ achieve accuracies of 80% and above for each machine learning technique. The
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Figure 4.11: Facial expression accuracies across machine learning techniques

performances of both the ‘Fear’ and ‘Sad’ classes are under-par with accuracies of 50%

and lower. A Similar trend was found when comparing the feature descriptors.

The SVM and ANN have the highest accuracies in three classes, whilst the RF performs

second best in five of the classes. The standard deviation across classes for the SVM

and ANN are 19% and 22% for the RF. Furthermore, the ANN has a higher maximum

accuracy 97% and a minimum accuracy of 47% compared to the SVM which has a

maximum of 83% and a minimum of 33%. This implies that the ANN is more consistent

and robust toward variations in classes followed by the SVM then the RF.

For further comparison confusion matrices were built for each classifier to highlight

the variation in classes. For clarity of comparison the ‘neutral’ and ‘surprise’ classes

were omitted from the confusion matrices. Tables 4.12, 4.13, 4.14 show the partitioned

confusion matrix for the SVM, ANN and RF respectively.

The confusion matrices show clear trends. In the case of the SVM and the ANN the

‘Anger’ class is misclassified mostly as ‘Fear’ or ‘Disgust’. ‘Disgust’ is predominately mis-

classified as Anger across all classifiers. In the case of ‘Fear’, although it is quite spread
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Table 4.12: Confusion matrix SVM (BU-3DFE)

Actual
Predicted

AN DI FE HA SA

AN 67 10 10 7
DI 10 83 3
FE 3 10 50 13 7
HA 13 83
SA 43 3 13 3 33

Table 4.13: Confusion matrix ANN (BU-3DFE)

Actual
Predicted

AN DI FE HA SA

AN 60 10 13 3 3
DI 27 63 7 3
FE 17 47 17 3
HA 3 97
SA 30 3 13 50

Table 4.14: Confusion matrix RF (BU-3DFE)

Actual
Predicted

AN DI FE HA SA

AN 53 10 23
DI 13 77 7
FE 13 3 33 23 3
HA 3 93
SA 23 10 47

across most classes, it is misclassified as ‘Happy’ across classifiers. The ‘Happy’ class

performs well across classifiers. Lastly ‘Sad’ is predominantly misclassified as ‘Anger’

across classifiers. From the evidence presented by the confusion matrices, it is safe to

assume that the models act similarly towards the test data as the feature descriptors.

This shows that some of the misclassification may not be due to the classifier, but may

be due to the quality of the data as highlighted previously in Section 4.1.4.

For further analysis, as explained for Figure 4.6, a histogram is used to inspect the

robustness of the machine learning techniques toward subjects. Figure 4.12 is a his-

togram illustrating the spread of scores for the seven expressions across test subjects per

machine learning technique.

Figure 4.12 shows that the RF and SVM are normally distributed, but they both peak

toward the right side of the histogram at a score of five. The histogram spread of the

SVM is more skewed to the right than the RF. This indicates that the SVM is more
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Figure 4.12: Test subject performance across machine learning techniques

consistent in regard to variation towards test subjects. Comparatively, the ANN is

distributed more uniformly, with none of the subjects having a score of one or two out

of seven. The majority of the scores for the ANN are distributed across three, four, five

and six. Thus indicating that the spread of the ANN is much narrower than that of

the SVM and RF. Therefore in this experiment the ANN has less variation and is more

consistent across test subjects than the SVM and the RF.

4.2.4 CK Test Set Results

The CK dataset was tested against the optimised models trained for each machine

learning technique. It should be noted that the CK dataset does not contain the neutral

class, but the models were trained to recognise this class. As mentioned previously using

the CK dataset tests the generalising capability of the model and it must be remembered

that this dataset has a non-constant number of images per class.

Table 4.15 summarises the number of correctly recognised frames for each machine learn-

ing technique on the CK dataset. Surprisingly the ANN increased in accuracy with the
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Table 4.15: Performance of each machine learning technique on CK test set

Classifier Total frames Correct Accuracy (%)

RF 307 180 58.63
ANN 307 214 69.71
SVM 307 198 64.50

highest accuracy of 69.71%. This is followed by the SVM with a high accuracy of 64.50%

and the RF with 58.63%.

0%

20%

40%

60%

80%

100%

Anger Disgust Fear Happy Sad Surprise

A
cc

u
ra

cy
 p

e
r 

fa
ci

al
 e

xp
re

ss
io

n

Facial expression

SVM ANN RF

Figure 4.13: Comparison of facial expressions across machine learning techniques on
the CK dataset

Figure 4.13 illustrates the per class analysis of the machine learning techniques on the

CK dataset. Figure 4.13 illustrates that the RF classifier achieves accuracies below 30%

for three of the six classes and achieves high accuracies of 80% for ‘Disgust’ and ‘Happy’.

The performance of the RF on this dataset is acceptable, however it cannot compare with

the ANN and SVM. The ANN performed exceptionally well, with the classes ‘Happy’

and ‘Surprise’ achieving accuracies of 90% and 94% respectively. ‘Disgust and ‘Fear’ also

fared well, with accuracies above 70%. However, two of the classes score an accuracy of

below 30%. Although the SVM and ANN are fairly comparable in terms of accuracy,

the SVM only outperforms the ANN in two of the six classes whilst the ANN does so for
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four classes. Thus it is clear that the ANN has excellent potential towards generalising

on unseen data.

4.2.5 Discussion and Choice of Machine Learning Technique

Several factors were considered when comparing the SVM, ANN, and RF which were:

overall accuracy; accuracy across facial expressions; robustness towards test subjects;

and ability to generalise. Table 4.16 summarises the results of the comparison of machine

learning techniques.

Table 4.16: Summary of comparison of machine learning techniques

Dataset Factor SVM ANN RF

BU-3DFE
Overall Accuracy (%) 66.20 65.71 63.33

Robust to Subjects High Best High
Robust to Classes High Best High

CK
Overall Accuracy (%) 64.50 69.71 58.63

Robust to Classes High Best High
Generalisation Capability High Best High

The overall accuracies on the BU-3DFE test set revealed that the SVM, ANN and RF

were comparable. Accuracies across facial expression classes were comparable as well,

however the ANN proved to be slightly more consistent toward variation in classes. It is

of note that similar trends in misclassification of classes were found. Cases exist whereby

some images were misclassified identically across machine learning techniques. This

confirms that some images, although labelled as one class, look more like another class.

With regards to robustness towards test subjects, the ANN proved to be marginally

better than the SVM and RF with all of the subjects getting scores of at least three

and above out of seven. The SVM and the RF were comparable in terms of robustness

towards test subjects.

The results on the CK test set revealed the generalisation capability of each machine

learning technique. The ANN emerged as the outright winner followed by the SVM

and lastly the RF. The RF performs considerably worse than the SVM and ANN. With

regards to the spread of accuracies across classes the SVM and ANN are comparable,

however the results favour the ANN.
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These results indicate that the ANN tends to be a more robust machine learning tech-

nique as it outperforms the SVM and RF in terms of robustness towards test subjects.

Furthermore, the SVM can generally be considered to be superior to the RF in terms of

its ability to generalise.
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Conclusion

This research aimed to compare both feature extraction and machine learning techniques

for facial expression recognition. A design science research artefact was built consisting

of two phases. The first phase compared the feature descriptors: LBPs; CLBPs; and

HOG using support vector machines. The second phase compared the machine learning

techniques: SVMs; ANNs; and RFs using the best feature descriptor from phase one,

namely, the HOG.

Four performance factors were considered, namely, classification accuracy, robustness

towards variation in classes, robustness towards variation in subjects, and generalisation

capability.

In response to the first research sub-question “How do the feature extraction methods

local binary patterns, compound local binary patterns and histogram of oriented gradi-

ents compare in the context of facial expression recognition?”: It was concluded that in

terms of classification accuracy, robustness towards variation in classes and robustness

towards variation in subjects, the HOG descriptor proved to be marginally better than

CLBP. CLBP outperforms LBP in the same cases. In terms of generalisation capability

HOG performs the best, followed by LBP. Both HOG and LBP outperform CLBP which

generalised poorly.

In response to the second research sub-question “How do the machine learning techniques

support vector machines, artificial neural networks and random forests compare in the

context of facial expression recognition?” It was concluded that in terms of classification

accuracy the SVM was marginally better than the ANN. Both the ANN and SVM

71
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outperforms the RF in this regard. However, the ANN is marginally better than the

SVM in robustness towards variation in classes followed by the RF. With regard to

robustness towards variation in subjects the ANN out-performs the SVM and is followed

by the RF. In terms of generalisation capability the ANN once again outperforms the

SVM which is followed by the RF.

Therefore in response to the main research question “Which feature extraction and

machine learning techniques are best suited for facial expression recognition?”: It was

concluded that the HOG feature descriptor and the ANN machine learning technique are

best suited for facial expression recognition due to their consistency, overall accuracy,

robustness toward changes in classes and subjects and generalisation capability.

5.1 Future Work

The HOG feature descriptor and the ANN machine learning technique have proven to

be the best suited feature extraction method and machine learning technique in the

context of facial expression recognition. In future, the HOG-ANN-based FER system

should, therefore, be incorporated into the SASL gesture recognition system. Although

the work has proved to be a good base for comparative research, it can be further ex-

tended to include: comparisons of each of the feature descriptors to each of the machine

learning techniques; more comparative metrics such as ROC curves; more machine learn-

ing techniques for comparison such as convolutional neural networks; and more feature

extraction for comparison such as other variations of LBPs.

5.2 Concluding Remarks

The researcher has concluded that the course and processes followed have added great

benefit to his life. It is hoped that this research can serve as a basis to compare machine

learning techniques for other sign language parameters and for general classification

problems.
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