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Abstract 
 

The HIV-1 envelope (Env) glycoprotein is the primary target of the humoral immune 

response and a critical vaccine candidate. However, Env is densely glycosylated and 

thereby substantially protected from neutralisation. Despite the importance of the HIV-

1 Env glycans, limited computational analyses have been employed to analyse these 

glycans. 

 

Here, the Env glycans of two HIV-1 wild-type subtype C isolates are examined, in 

detail, using computational approaches. These particular strains were used since in 

vitro data showed that the removal of a single glycan had a substantially different 

impact on the neutralisation sensitivity of the two strains. Molecular dynamics 

simulations, and the subsequent analyses, were carried out on the computationally 

determined, fully glycosylated, Env structures of these two wild-type strains and their 

N301A mutant counterparts.  

 

Detailed comparison of the molecular dynamics simulations demonstrated that unique 

glycan dynamics and conformations emerged and that, despite shared HXB2 

reference sequence positions, the glycans adopted distinct conformations specific to 

each wild-type model. Furthermore, different changes in conformations were observed 

for each wild-type model compared to its N301A mutant counterpart and, interestingly, 

these N301A mutant model-specific glycan conformations were directly associated 

with the protein residues ultimately found to be exposed, which may explain the varied 

resistance to neutralising antibodies observed, in vitro, for the two N301A mutant 

strains.  

 

A further detailed analysis was carried out focussing on the strain that remained 

resistant to frequently elicited neutralising antibodies, and displayed increased 

resistance to a CD4-binding site bNAb, despite the loss of glycan N301. The results 

complemented the laboratory study and revealed that, in silico, the glycan shield of 

this strain retained its ability to shield the protein residues even after the removal of 

glycan N301 from the wild-type model. Moreover, the change in the glycan landscape, 

and cascade of events, that contributed towards the maintenance of this glycan shield 
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and the increased resistance to a bNAb epitope located at the edge of the cascade, 

were discernible. 

 

This study has demonstrated that the landscape of the glycan shield contains 

immense diversity, and that glycans that share an HXB2 reference sequence position 

will not necessarily conform in shape, dynamics and function between different strains. 

These conformational differences ultimately determine whether or not the glycan 

shield can compensate for the loss of a glycan, which directly relates to the 

fundamental function of the glycans in their ability to shield and protect the virus from 

immune surveillance. Additionally, this study highlights the remarkable potential of 

molecular dynamics simulations, which can be used as a powerful predictive 

technique to facilitate, and direct, laboratory studies focussing on vaccine research. 
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 1 

Introduction  
 

The human immunodeficiency virus-1 (HIV-1) envelope (Env) glycoprotein trimer is 

extensively glycosylated with host-derived glycans. These glycans impede the 

engagement of frequently elicited neutralising antibodies, effectively shielding the 

virus from immune surveillance. However, the dense glycosylation on the Env trimer 

surface also limits the actions of the glycan-processing enzymes, which leads to an 

abundance of under-processed oligomannose glycans. Since this feature of the glycan 

shield is conserved, antibodies that target these oligomannose glycans achieve 

remarkable breadth. While glycan-targeting broadly neutralising antibodies (bNAbs) 

provide hope for the development of a vaccine, the isolation of viral isolates harbouring 

escape mutations from infected individuals who develop bNAbs, is of concern. These 

escape mutations have been related to shifted or deleted N-glycosylation sites and, 

therefore, the glycan shield is of particular interest both in its susceptibility to, and 

escape from, bNAbs. However, despite the importance of these glycans, to date, the 

computational analyses employed to analyse HIV-1 Env glycans are limited. Thus, this 

thesis explores the characteristics of the HIV-1 Env glycan shield using molecular 

dynamics simulations, with particular focus on the effect of removing a glycan from a 

wild-type model, as well as the application of various analysis techniques to this 

context. 

 

Chapter 1 is aimed at understanding both the features of HIV-1 Env glycans, as well 

as the requirements necessary to perform, and analyse, molecular dynamics 

simulations of the HIV-1 Env protein and its glycans. Therefore, a broad background 

on HIV, glycans and molecular dynamics simulations is provided. The first section 

includes an overview of the Env glycoprotein focusing on its biosynthesis and the 

experimental and computational approaches that have been employed to understand 

the HIV-1 Env glycans. The second section describes structural and conformational 

considerations relevant to the study of HIV-1 Env glycans, and the chapter concludes 

with a description of the underlying theory of molecular dynamics simulations as well 

as the requirements for applying it to molecular models. 
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In Chapter 2, the two wild-type HIV-1 subtype C isolates used throughout this thesis 

are introduced. These particular strains were of interest since in vitro data showed that 

the absence of glycan N301 had a substantially different effect on the neutralisation 

sensitivity of the two strains. Therefore, in order to understand the difference in the 

glycan shields of these two strains, and the differential impact of removing glycan 

N301, the fully glycosylated Env structures of these strains were computationally 

determined. Thus, Chapter 2 presents the computational approaches used to both 

predict the three-dimensional (3D) structures of experimentally undetermined HIV-1 

Env trimers as well as to glycosylate these trimers. Since numerous modelling options 

and parameters exist, for each of the software packages used, the prerequisites are 

described and the various features investigated. Finally, with the established 

framework for determining the HIV-1 Env glycoprotein trimer models, the preliminary 

analysis aimed at understanding the impact of removing glycan N301 by using these 

static state representations, is described.  

 

The static state representations determined in Chapter 2, however, offered relatively 

limited information since the molecules are dynamic, changing conformation over time. 

Therefore, Chapter 3 extended the analysis by comparing the molecular dynamics 

simulations of the modelled structures (two wild-type models and their N301A mutant 

counterparts). Several methods were applied to individual, or clusters of, glycan/s in 

order to describe the surroundings, conformations and potential functions of the 

glycans. These results were then compared between the wild-type models, between 

a wild-type model and its N301A mutant counterpart, and between the N301A mutant 

models. The differences between the N301A mutant model simulations are discussed 

in relation to their wild-type model counterparts, with specific focus on the integrity of 

the modelled glycan shields of the two strains. Therefore, Chapter 3 built upon Chapter 

2 and included information on the changes in glycan conformations over time for each 

model.   

 

During the analysis performed in Chapter 3, glycans that were conformational 

heterogeneous between each wild-type model and its N301A mutant counterpart were 

identified. Interestingly, some of these glycans were not in the immediate vicinity of 

the N301A mutation. The conformational heterogeneity of these glycans that are not 

located near the N301A mutation may explain why one of the strains remained 
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resistant to frequently elicited neutralising antibodies and displayed increased 

resistance to a CD4-binding site bNAb despite the loss of glycan N301. Therefore, in 

order to further investigate the resistant strain and directly associate the 

conformational heterogeneity of its glycans with the N301A mutation, a more detailed 

comparison between this wild-type model and its N301A mutant counterpart was 

carried out in Chapter 4. A method that determines the glycan nearest to each amino 

acid residue over time is described and used to illustrate how changes in glycan 

conformations impact their ability to protect surrounding residues of the underlying 

protein. Finally, the cascade of conformational changes that occurred after glycan 

N301 was removed is described. This analysis offers one explanation of how glycans 

further from the N301A mutation site could be impacted by the N301A mutation. 

Furthermore, results are presented that link the cascade of glycan conformational 

changes with the increased resistance to the CD4-binding site bNAb (observed in 

vitro), thereby providing a definitive hypothesis for, and connecting the computational 

analysis with, the laboratory findings.  

 

Finally, Chapter 5 provides a summary of the main findings of this thesis and presents 

clear avenues for future work.   
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Chapter 1 Background 
 

1.1 The Human Immunodeficiency Virus 
 

Human immunodeficiency virus (HIV) is a lentivirus of the retrovirus family that can 

cause acquired immunodeficiency syndrome (AIDS) in humans. Despite the 

development of antiretroviral therapies, HIV remains one of the greatest global health 

burdens. Approximately 1.8 million people were newly infected with HIV in 2017 and 

36.9 million people were already living with HIV at the time1. An effective prophylactic 

vaccine is therefore essential, but remains elusive despite tremendous progress in our 

understanding of HIV infection and the substantial investments in vaccine research 

and clinical trials2–10. A key scientific challenge in the field of HIV vaccine development 

is the design of immunogens that elicit antibodies capable of neutralising HIV despite 

its immense global diversity2–10. 

 

Two types of HIV have been characterised, HIV-1 and HIV-2, which originated from 

simian immunodeficiency virus (SIV) through multiple cross-species transmission 

events from non-human primates to humans11–17. Compared to HIV-1 infection, those 

infected with HIV-2 generally have longer asymptomatic stages, lower virus titers, and 

lower transmission rates; these particular differences contribute to the confinement of 

HIV-2 to West Africa18. HIV-1, on the other hand, is the cause of the majority of HIV 

infections globally and is currently the main focus for HIV researchers.  

 

HIV-1 is an assortment of genetically related, but phylogenetically diverse, viruses, 

which are classified into four groups (M, N, O, and P)19–21. Group M is responsible for 

the current worldwide pandemic and is further divided into nine major subtypes (A, B, 

C, D, F, G, H, J, and K)19–21. Superinfection or co-infection with one or more subtypes 

within an individual has led to more than 100 circulating recombinant forms (CRFs)19–

21. Subtypes A-D, and the recombinant forms CRF01_AE and CRF02_AG, cause the 

majority of HIV-1 infections; however, subtype C alone accounts for half of all HIV-1 

infections worldwide20.  
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HIV-1 is transmitted by the exchange of bodily fluids, which includes sexual contact, 

needle sharing by injecting drug users, and transmission from mother to child22. The 

main transmission route of HIV-1 infection is via sexual contact and requires that the 

virus cross a mucosal barrier22. Therefore, the first cells to encounter HIV-1 are the 

dendritic cells and macrophages located in vaginal mucosa, oral mucosa and male 

foreskin22. Both dendritic cells and macrophages express low levels of the surface 

protein, CD4, required by HIV-1 for binding and entry23–25. Following transmission, the 

progression from initial to chronic infection includes the spread of HIV-1 throughout 

the body’s CD4+ T cells, i.e. T cells that express a CD4 receptor26. The depletion of 

these cells is a hallmark of HIV-1 infection26.  

 

Like many other viruses, HIV-1 uses the cellular biosynthesis pathways of host cells 

to replicate27. This requires the virus to enter a host cell, a process initiated by the HIV-

1 surface glycoprotein, envelope (Env). Briefly, the Env glycoprotein comprises two 

subunits, gp120 and gp41, and of these, the gp120 subunit binds the CD4 receptor of 

the targeted host cell and initiates a series of conformational changes that enables 

binding to a chemokine co-receptor, either C-C chemokine receptor type 5 (CCR5) or 

CXC-chemokine receptor type 4 (CXCR4)28–30. After co-receptor binding, structural 

changes in the gp41 subunit of the HIV-1 envelope glycoprotein mediate fusion 

between the virion and host cell membranes27. 

 

Upon fusion, the HIV-1 capsid, which contains the viral RNA and enzymes, enters the 

host cell cytoplasm31; uncoating and degradation of the viral core takes place and the 

RNA is liberated from attached viral proteins and coded into complementary DNA 

(cDNA) by reverse transcriptase31,32. The cDNA forms a double-stranded viral DNA 

molecule and is transported into the cell nucleus by another viral enzyme, integrase33. 

The final step, assembly of a new HIV-1 virion, begins at the plasma membrane of the 

host cell. The polyproteins associate with the inner surface of the plasma membrane 

along with the HIV-1 RNA, after which the immature virion buds from the host cell and 

is then assembled to produce a mature HIV-1 virion capable of infecting another cell33. 

 

This HIV-1 replication cycle, where viral RNA is reverse transcribed into DNA33, is 

relatively short, lasting only approximately 2.5 days34. This process is performed by 

the viral enzyme reverse transcriptase, which is highly error-prone35 compared to other 

https://etd.uwc.ac.za
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transcription processes performed by mammalian cells where various proofreading 

and error correction mechanisms exist36. The short replication cycle and error-prone 

reverse transcription leads to diverse populations of viral particles, which are 

commonly referred to as the quasispecies37. While certain mutations may result in 

non-functioning viral particles38, others may result in increased fitness, particularly in 

the presence of a immune reaction38. As will be noted in section 1.1.1, a subset of 

individuals develop particularly broad and potent neutralising antibodies capable of 

neutralising a wide range of HIV-1 viruses39–43. However, this does not provide a 

clinical benefit for these individuals since escape mutations, present on the Env 

glycoprotein, flourish under the selection pressure leading to a “new” quasispecies, 

rendering the neutralising antibodies ineffective against the viruses expressing the 

mutated, and thus resistant, Env glycoproteins42,44. 

 

1.1.1 The HIV-1 Env glycoprotein 

 

HIV-1 Env, which mediates cell entry (as described in section 1.1), is the only surface-

exposed viral protein (Figure 1.1 A). It is, therefore, targeted by the humoral immune 

response and a good candidate for vaccine research. This has consequently led to 

extensive analyses of the Env glycoprotein (Figure 1.1 B), which, as the name 

suggests, comprises protein residues and glycans (carbohydrates; described in detail 

in section 1.2). 
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Figure 1.1: Schematic diagram of the HIV-1 virion and its surface glycoprotein 
(A) The assembled HIV-1 virion; (B) enlarged view of the surface protein, Enva; and 
(C) linear schematic of the env gene. For the Env protein structure (B) the gp41, gp120 
and variable loop (V1-V5) regions of gp120 are labelled and coloured, for the env gene 
schematic (C), these regions as well as the conserved regions (C1-C5) of gp120 are 
labelled and coloured to illustrate the order of gene sections. 
 

The Env glycoprotein is initially synthesised as a precursor gp160 molecule, which is 

cleaved by the host protease, furin, during its transportation through the trans-Golgi 

                                            
a	The	depicted	orientation,	where	the	lipid	membrane	is	located	at	the	top	and	the	V1/V2	loop	
regions	are	at	the	bottom	of	the	figure,	is	used	throughout	this	thesis.	
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network, into gp41 and gp12028. The surface of the gp120 subunit, in turn, consists of 

5 variable loop (V1-V5) and 5 conserved (C1-C5) regions (Figure 1.1 C). Prior to 

protein folding, cleaving and trimerisation, precursor Glc3Man9GlcNAc2 (Glc: glycose; 

Man: mannose; GlcNAc: N-acetylglucosamine; Figure 1.2 A) glycans are added, 

where possible, to the amide groups of asparagine (Asn) residues at potential N-linked 

glycosylation sites (PNGSs), determined by an Asn-X-Threonine (Thr) or Asn-X-

Serine (Ser) motif, where X is any amino acid except proline45. The gp120 subunit has, 

depending on the viral strain, 20-30 PNGSs, while the gp41 subunit has 4-5 PNGSs, 

and HIV-1 Env is one of the most heavily glycosylated molecules known to date46,47.  

 

After the precursor glycans are attached to the PNGSs, they are trimmed by the 

endoplasmic reticulum (ER) α-glucosidase I and II to yield monoglucosylated N-linked 

glycans, GlcMan9GlcNAc2, that interact with the folding chaperones calnexin and 

calreticulin45,48 (Figure 1.2 A). Once gp160 has correctly folded, the ER α-glucosidase 

II further trims the GlcMan9GlcNAc2 glycans into Man9GlcNAc2 glycans45 (Figure 1.2 

A). These are then further processed by ER and Golgi α-mannosidases, which yields 

unprocessed, immature, oligomannose-type glycans (Man5GlcNAc2) (Figure 1.2 B). 

 

Finally, N-acetylglucosaminyltransferase I transfers an N-acetylglucosamine residue, 

which initiates complex-type glycosylation and diversification45 (Figure 1.2). It is 

important to note that the exact glycoforms of hybrid- and complex-type glycans are 

cell type and tissue-specific, which can lead to a range of different glycoforms at 

different glycan sites49,50, as well as micro-heterogeneity at a particular site49. 

Ultimately, the matured, and functional, Env glycoprotein is a metastable trimer formed 

by non-covalently associated heterodimers of gp120 and gp41, with both subunits 

extensively modified by numerous glycans comprising different glycoforms.  
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Figure 1.2: Glycosylation pathway  
(A) In the ER, Glc3Man9GlcNAc2 glycans are attached to Asn residues of PNGSs on 
the Env glycoprotein. The three terminal glucose molecules are removed by α-
glucosidases I and II. This is followed by the ER α-mannosidases I, which further trim 
the glycans to form Man8GlcNAc2 glycans. (B) These glycans are further processed 
by Golgi ( -mannosidases IA-C to yield Man5GlcNAc2 glycans. Thereafter, an N-
acetylglucosamine residue is transferred, by N-acetylglucosaminyltransferase I, to the 
Man5GlcNAc2 glycans. (C) The GlcNAcMan5GlcNAc2 glycans are the substrate for 
Golgi-resident fucosyltransferase. Alternatively, further mannose trimming by the 
Golgi α-mannosidase II can occur, which leads to GlcNAcMan3GlcNAc2 glycans. (D) 
Finally, the glycan can be further possessed into hybrid- or complex-type glycans. This 
figure was adapted from a book by Pantophlet et al.51 and glycan representations are 
shown according to the nomenclature of Harvey et al.52. 
 

This extensive glycan coating is an important feature of the HIV-1 Env glycoprotein, 

as it is used as a defence mechanism to evade recognition by neutralising antibodies. 

Since these glycans are synthesised by the host-cell glycosylation machinery, it limits 

the range of B-cell responses due to antigen self-tolerance. The shielding capacity of 

these glycans is demonstrated by observations that the removal or addition of specific 

N-linked glycans modulate the susceptibility of HIV-1 to neutralising antibodies42,44,53–

https://etd.uwc.ac.za
http://etd.uwc.ac.za/



 10 

55. Therefore, the HIV-1 Env glycans have often been referred to as the “glycan shield” 
56,57. 

 

It was, therefore, surprising when a breakthrough publication by Walker et al.58 

revealed not only the presence of a distinct family of antibodies with greater 

neutralisation potency and breadth, but also that the epitopes of these antibodies 

contained glycans58. Further studies of such broadly neutralising antibodies (bNAbs) 

showed that the epitopes tend to cluster around “sites of vulnerability” (Figure 1.3), 

which include the CD4-binding site59, the membrane-proximal external region of 

gp4160, the glycan outer domain61, the V1V2 apex region around glycan N16058, the 

V3 base around glycans N301 and N33262, and the gp120/gp41 interface63. However, 

despite the presence of bNAbs in the serum of HIV-1 infected individuals, circulating 

plasma viruses generally escape, resulting in continued infection64,65. In these infected 

individuals, the virus is under constant pressure from both antibodies that target 

exposed protein epitopes and antibodies that target N-linked glycans42,44. Thus, the 

glycan shield is constantly evolving and shifting in response to the host immune 

system42,44. Taken together, these observations have led to the emerging view that 

the glycosylation profiles of HIV-1 strains are homogeneous overall, but within-host 

virus populations have diminished or increased numbers of glycans, or shifted glycan 

positions, depending on the specific pressure exerted by the host immune system. 
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Figure 1.3: HIV-1 Env sites of vulnerability 
Anti-HIV-1 bNAbs target six conserved regions on the Env glycoprotein: The CD4-
binding site (CD4bs); the membrane-proximal external region (MPER); the glycan 
outer domain; the V1V2 apex region around glycan N160; the V3 base around glycan 
N301 and N332; and the gp120/gp41 interface. 
 

Due to their importance, the HIV-1 Env glycans have been extensively investigated 

using a variety of techniques. The outcomes of these techniques include, but are not 

limited to, remodelling of the glycan shield53–55,66–71, determining the glycoforms at 

each glycosylated site49,72–82, and determining the structural characteristics of 

glycans83–92, which are each described in more detail below.  

 

Glycan shield remodelling refers to a process by which one, or more, glycans are 

edited or removed from the Env surface. This involves the use of glycosidase 

inhibitors93,94 to manipulate the glycoforms on Env, and/or the addition or removal of 

glycosylation sites through site-directed mutagenesis53–55,66–71, which mutates the 
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Asn, and/or Thr or Ser, residues. These methods have allowed for the identification of 

potential escape mutations, as well as N-linked glycans, and their glycoforms, that 

form part of epitopes of particular HIV-1 Env bNAbs53–55,66–71. 

 

Although remodelling of the glycan shield presents a crude determination of the 

glycoforms necessary for antibody binding, it does not provide information regarding 

the native glycoforms. However, the native glycoforms of each site can be, and are 

commonly, determined by carrying out mass spectrometry using HIV-1 Env 

glycoproteins49,72–82. Broadly speaking, these studies have demonstrated that 

complex-type glycans are more often found on the C1, V1/V2 and V3 regions, whereas 

oligomannose-type glycans mainly reside on the C2 and C3 regions, i.e. the outer 

domain of the Env glycoprotein (Figure 1.1 C). The presence of a dense cluster of 

glycans on the gp120 outer domain is thought to decrease the accessibility for 

glycosidases, which subsequently leads to stalled, or reduced, trimming of glycans 

forming part of these clusters49,72–82. This results in an N-linked glycosylation pattern 

dominated by minimally trimmed glycans, which differs from that which is generally 

observed on human glycoproteins49,72–82. Additionally, recent studies using mass 

spectrometry have provided information on how often each PNGS is glycosylated, as 

well as quantification of the individual glycoform micro-heterogeneity at each 

glycosylated site49,95. The presence or absence of a glycan/s, as well as the specific 

glycoforms, have been shown to have a substantial impact on the binding of bNAbs95. 

 

However, in order to determine exactly how different glycoforms impact the binding of 

bNAbs, the Env glycoprotein, together with the relevant bNAbs, need to be 

characterised in detail. This requires alternative methods over and above glycan shield 

remodelling and mass spectrometry. X-ray crystallography is one such method, 

however, the structural characterisation of a stable trimer is particularly difficult. The 

reason for this is that the assembly of functional Env trimers is inefficient and leads to 

dimers, malformed trimers, and higher-order aggregates, which do not represent the 

native Env trimer96,97. Additionally, Env often sheds the gp120 component98; together, 

these features of the HIV-1 Env glycoprotein contribute to the huge challenge of 

obtaining intact crystal structures of Env. Despite these challenges, the crystal 

structures of peptide fragments, gp120 core monomers, and scaffolded gp120 and 

gp41 loops have been determined for a variety of viral strains by introducing various 
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stabilising mutations, and by using antibodies and/or CD4 for additional stabilisation 

(some examples are83–92). 

 

The crystal structures of the Env glycans are even more difficult to characterise using 

X-ray crystallography than the protein component99. Crystallising any glycan-part 

beyond the protein-proximal GlcNAc residues is extremely difficult due to the 

extensive conformational heterogeneity99. Nevertheless, analysis of these protein-

proximal GlcNAc residues bound to proteins has shown a strong preference for 

glycosidic linkages with specific phi and psi dihedral angles (bond between four linked 

atoms; see section 1.2.2) with minimal energy conformations99–101. Recently, the 

atomic-level details of clades A, B and G Env glycoproteins were determined by 

Stewart et al.88, with 15, 17 and 16 glycans, respectively, resolved (to different 

degrees/lengths from the base) beyond the protein-proximal GlcNAc residues. The 

authors demonstrated that the HIV-1 Env glycan shield comprises prominent ridges of 

hydrogen-bonded oligosaccharides, which are ordered by glycan clustering and 

protrude 20Å above the Env glycoprotein surface88. 

 

Due to the difficulties surrounding the determination of the structural characteristics of 

glycans with regards to their impact on various Env functions, studies commonly 

include computational approaches to complement experimental-based studies53,95,102–

113. For these Env-focussed studies, the structures of the respective Env glycoproteins 

were either undetermined, or additional structural characteristics were sought. The 

computational approaches that were used include molecular dynamics simulations, 

which are particularly well suited for glycan and glycoprotein systems, i.e. systems 

that are either experimentally undetermined or poorly resolved. While molecular 

dynamics simulation studies have provided valuable insights on Env and its glycans, 

few analytical approaches exist in the context of the Env glycans, with the majority of 

studies focussing on the protein only103–113, or on the overlap, or binding, of glycans to 

antibodies88,113. Only two studies86,89 to date investigated glycans in more detail using, 

as measure, a solvent accessible surface area (SASA) calculation (with a probe of 0-

10Å86 or 10Å89), network analysis (based on distances89 or hydrogen bonds86), glycan-

antibody overlap86,89, glycan volumes86,89, and SASA when a glycan is removed89. 

Given the variation between the glycan shields of different viral isolates, as well as the 

glycoform micro-heterogeneity at different glycosylated sites, the application of 
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analytical techniques to investigate the HIV-1 Env glycan shield in a novel way is 

essential.  

 

1.2 Glycans and glycoform heterogeneity 
 

As introduced in section 1.1.1, the glycans of HIV-1 Env are diverse in their glycoforms 

and distribution, and characterising this diversity remains a challenge for HIV-1 Env 

research. A detailed investigation and comparison between different HIV-1 glycan 

shields is presented in Chapter 2-4 of this thesis, and background on the composition 

and conformational features of glycans is provided below.  

 

Glycans, or carbohydrates, are biomolecules consisting of chains of monosaccharides 

and follow the general formula ) ∙ +,- . from which their name, hydrates of carbon, 

is derived114. They are also referred to as sugars or, specifically, glycans when they 

are attached to other biomolecules such as lipids or proteins. 

 

1.2.1 Monosaccharides 

 

Monosaccharides, the most basic unit of carbohydrates, have a linear and unbranched 

carbon skeleton with one carbonyl (C=O) group on the first carbon atom and hydroxyl 

(OH) groups on all the remaining carbon atoms114 (Figure 1.4 A). The carbon atoms 

are numbered from 1 to n along the backbone, starting from the end that is closest to 

the carbonyl (C=O) group114 (Figure 1.4 A). Two monosaccharides, with the same 

molecular formula and location of the carbonyl group, can still be distinct in their 3D 

arrangements of the bonds of certain atoms114. For example, monosaccharides are 

classified as a member of either the D- or L-series, depending on the orientation of the 

hydroxyl furthest from the carbonyl group (Figure 1.4 B). Most naturally occurring 

monosaccharides belong to the D-series114. 

 

Monosaccharides can exist in a linear or cyclic form; the latter results from an intra-

molecular interaction between the oxygen atom of a hydroxyl group and the carbonyl 

carbon114 (Figure 1.4 C). Several ring-forms are possible depending on which hydroxyl 

interacts with the carbonyl carbon. For example, monosaccharides can form five-
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membered (furanoses) or six membered (pyranoses) rings, provided that there are the 

appropriate number of carbons114. The pyranose form is the most common for the 

majority of monosaccharides114. Furthermore, monosaccharides are classified as 

either (  or / , based on two alternative hydroxyl configurations at the carbonyl 

carbon114 (Figure 1.4 D). Monosaccharides combine to form more complex molecules 

such as disaccharides, polysaccharides and glycans114.  

 

 

Figure 1.4: Monosaccharide configurations 
Representations of the (A) linear carbon skeleton, (B) distinction between D- and L-
series, (C) cyclic form, and (D) (  and /  classifications of monosaccharides. This 
figure was adapted from a book by Collins et al.114 
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1.2.2 Glycan conformations 

 

Disaccharides, and eventually glycans, are formed when the hydroxyl groups of two 

monosaccharides form a C-O-C bond, which releases a water molecule114. The C-O-

C bond is called the glycosidic linkage and occurs between carbon 1 (the first carbon) 

of one monosaccharide and either carbon 2, 3, 4, or 6 of another monosaccharide, 

forming a 1-2, 1-3, 1-4 or 1-6 linkage114. The dihedral angles, formed by four linked 

atoms, of these linkages are called 0	 (H1-C1-O-Cx) and 2 (C1-O-Cx-Hx)114 (Figure 

1.5 A). The 1-6 linkage has an additional dihedral angle called 3 (O-C6’-C5’-H5’)114 

(Figure 1.5 B). Glycosidic linkages and dihedral angles determine the overall glycan 

conformations.  

 

 

Figure 1.5: The dihedral angles of glycosidic linkages 
3D representations of sections of a Man-9 glycan, demonstrating the (A) 0, 2 and  
(B)	0, 2 and 3 dihedral angles. 
 

For example, and in this thesis, the majority of analyses were performed using Man-9 

glycans with the specific form: Manα1-2Manα1-6[Manα1-2Manα1-3]Manα1-6[Manα1-

2Manα1-2Manα1-3]Manβ1-4GlcNAcβ1-4GlcNAcβ1. During attachment of the glycans 

to the protein structures, these dihedral angles were adjusted, within reason, to 

facilitate glycan attachment, which is discussed in section 2.2.2. 
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1.2.3 The HIV-1 Env glycan shield 

 

The HIV-1 Env glycoprotein trimer is characterised by an unusually high abundance 

of glycans46,47. As detailed in section 1.1.1, these glycans shield the underlying Env 

surface from the immune system and continue to do so over the course of 

infection42,44,53–56. The HIV-1 Env glycans are, therefore, key features during 

investigations on structural and antigenic properties of Env, and while recent 

experimentally determined structures have greatly extended our knowledge of the 

interlocking glycan networks of the Env glycans, these cryo-electron microscopy115–117 

and X-ray crystallography87,88,91,92 studies can only capture a single static state of any 

individual glycan (as described in section 1.1.1). However, the potential glycan 

conformational heterogeneity and movement can be illustrated and described using a 

computational method of generating molecular dynamics simulations. As example, 

Lemmin et al.86 used a molecular dynamics approach and observed that neutralising 

antibodies generally bind at the interface between stable patches of glycans.  

 
1.3 Molecular Dynamics Simulations 
 

Molecular dynamics is a computational approach that simulates the physical 

movement of atoms in a given system. Atoms are typically represented as single point 

masses inside van der Waals potentials, i.e. they mostly act as hard spheres, and 

bond- and angle restraints are represented as harmonic oscillations118–120. Atoms can 

transfer both energy and momentum to one another via electrostatics and van der 

Waals interactions118–120. Atomic movements are determined by numerically solving 

Newton’s equations of motion for the system of 4  interacting atoms118–120. By 

Newton’s second law, the force (#) on an object, in this case an atom, is equal to the 

mass ($) of that object multiplied by the acceleration (") of the object118–120: 

 # = $" (1) 

The force (# ) is further given by the negative gradient of the potential energy 

6(&8, &,, … , &;)
118–120: 

 # = −∇6(?) (2) 

https://etd.uwc.ac.za
http://etd.uwc.ac.za/



 18 

Equations (1) and (2) are solved simultaneously in small time steps (@'), and the atom 

is accelerated in the direction of the force using a leap-frog integrator to determine the 

new velocity (A) and position (&) of the atom118–120:  

 
A ' +

1

2
@' = A ' −

1

2
@' +

@'

$
#(')	

   & ' + @' = & ' + @'	A ' +
8

,
@'  

(3) 

(4) 

 

Thus, in order to perform molecular dynamics simulations, several properties should 

be understood and specified. The potential energy 6(?) , calculated by solving a 

mathematical expression referred to as a force field, the thermodynamic ensemble 

that governs the simulation, the solvent model, and the boundary around the simulated 

system are important features that can have a large impact on the resultant molecular 

dynamics simulation118–120. Each of these features are described in further detail 

below. 

 

1.3.1 Force Fields  

 

An important consideration during the preparation of a system prior to the simulation, 

is the choice of a force field. Force fields are the mathematical equations used to 

model the interactions between atoms, and have two components, a mathematical 

expression and the parameters required by that expression118–120. The mathematical 

expression has a general form, which can be considered as comprising of the sum of 

two terms representing the bonded and non-bonded interactions118–120: 

 6 ? = 	6EF.GHG + 6;F.IEF.GHG (5) 

The bonded and non-bonded interactions are, in turn, the sum of their own respective 

terms. Bonded interactions are calculated for the interactions formed between two 

(bonds), three (angles) and four (dihedrals/torsion) atoms118–120: 

6EF.GHG =
1

2
JKL
E &KL − &KL

M ,
NF.GO

KPL

+
1

2
JKLQ
R SKLQ − SKLQ

M ,

T.UVHO

KPLPQ

+
1

2
JW(1 + cos %0 + [ )

\K]HG^_VO

KPLPQPV

 
(6) 
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Non-bonded interactions are calculated for the van der Waals and electrostatic 

interactions using a Lennard-Jones potential and Coulomb’s law, respectively118–120: 

6;F.IEF.GHG = 4aKL
bKL

&KL

8,

−
bKL

&KL

cd_.	GH^	e__VO

KPL

+
fKfL

4gaMh^&KL

iVHjk^FOk_kKjO

KPL

 
(7) 

The exact form of each equation (e.g. well depth and location) is determined by the 

parameters specified by the particular force field, which are derived using 

experimental data118–120. Several different force fields exist and the choice depends 

on the composition of the system and the ability of the force field to produce accurate 

results while maintaining reasonable computational efficiency118–120. The ff14SB121 

and GLYCAM06j-1122 force fields were used in this thesis for the protein and glycan 

atoms, respectively. During molecular dynamics simulations, the equation of motion is 

governed by both the force field as well as the constraints enforced by the particular 

ensemble. 

 

1.3.2 Ensemble 

 

A further consideration during the preparation of a system is the choice of statistical 

ensemble. An ensemble represents all the microstates accessible by a system during 

a simulation. For each microstate, the ensemble also provides the probability of that 

microstate118–120. For example, if the system under study is a bottle of beer, then the 

ensemble can be thought of as a huge warehouse filled with individual, non-

interacting, bottles of beer. A typical system has three intrinsic properties, number of 

atoms, volume and energy (Table 1.1) that would remain constant under an ideal 

molecular dynamics simulation118–120. Alternatively, each intrinsic property can be 

modulated by an external source, maintaining the chemical potential, pressure, and 

temperature instead (Table 1.1)118–120. For example, during a molecular dynamics 

simulation, energy is continuously lost due to rounding errors in the motion 

calculation118–120, and thus, the decision to keep the energy of a system constant 

requires that a thermostat be specified that governs when and how much energy is 

added to the system. Therefore, the selection of a statistical ensemble involves the 

decisions around which intrinsic properties remain constant and which are modulated 

by an external source. 
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Table 1.1: The intrinsic properties of a molecular dynamics system and their 
related properties. An ensemble is defined by selecting a property in each row 
that will be kept constant. 

Intrinsic property Related property 

Number of atoms (%) Chemical potential (!) 

Volume (V) Pressure (P) 

Energy (E) Temperature (T) 
 

The isobaric-isothermal ensemble (nPT) used in this thesis, is the ensemble where 

the number of atoms, pressure and temperature are held constant118–120. A thermostat 

and barostat are used to maintain the desired temperature and pressure, 

respectively118–120. Numerous thermostat and borostat algorithms exist to facilitate 

temperature and pressure control. Those available in the molecular dynamics package 

AMBER123, include the Berendsen, Andersen and Langevin thermostats, and the 

Berendsen and Monte Carlo borostats119. Of these, the Langevin thermostat and the 

Berendsen borostat were used here. 

 

1.3.3 Solvent Models 

 

While it is possible to proceed with molecular dynamics simulations after the 

specification of the force field and ensemble, it is common to include solvent molecules 

in order to better ascertain the behaviour of the biomolecule in a biologically relevant 

environment. One of two methods can be used to represent the solvent118–120. The first 

method uses a mathematical formula to approximate the influence of the solvent on 

the surface of the biomolecule, referred to as implicit solvent118–120. While an implicit 

solvent model is less computational expensive than the alternative method, the 

inability of the biomolecule to form hydrogen bonds with solvent molecules is a severe 

limitation. The alternative is to use an explicit solvent model that includes the atomic 

representation of the solvent similar to those of the biomolecule. Despite the increased 

computational burden, systems with explicit solvent offer a more accurate 

representation, and more detail, of the solvation environments of biomolecules. 
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There are various representations of the solvent molecules118–120. Each representation 

varies in the number of atoms used to represent the H2O molecules as well as the 

distances and angels between the atoms. The TIP3P solvent model (Figure 1.6 A) is 

most commonly used during molecular dynamics simulations since it is 

computationally efficient118–120. TIP3P has three interaction points corresponding to 

the three atoms of a water molecule118–120. Each atom has a point charge representing 

the electrostatic distribution around water. More complex water models add “dummy” 

atoms (also called extra points) to the TIP3P solvent model to refine the electrostatic 

distribution around the water molecules118–120. The TIP5P solvent model124 (Figure 1.6 

B), for example, augments the TIP3P solvent model with two extra points that 

represent the electron lone pairs on the oxygen124. While the TIP5P solvent model is 

more computationally expensive124, it has been shown to give the best quantitative 

agreement with experimental free energy data for small saccharides when used in 

conjunction with the GLYCAM force field125. For this reason, the TIP5P solvent model 

was used in this thesis. 

 

 

Figure 1.6: Explicit solvent models  
Diagrams of the explicit solvent models (A) TIP3P and (B) TIP5P. Each model is 
coloured according to its atom composition, with hydrogen (white), oxygen (red), and 
the dummy atom (purple) shown.   
 

1.3.4 Periodic Boundary Conditions 

 

Once the solute (biomolecule) has been placed within the solvent, a boundary must 

be defined that will prevent the solvent molecules from dispersing too far from the 

biomolecule118–120. However, when such a boundary is introduced, the solvent 

molecules that are in contact with void space along the edges give rise to calculation 
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artefacts118–120. This “edge effect” can be addressed by using periodic boundary 

conditions (PBC, Figure 1.7)118–120.  

 

 

Figure 1.7: Periodic boundary conditions 
Illustration of an HIV-1 Env system under periodic boundary conditions. As a molecule 
crosses the boundary on one side of the primary simulation, it re-enters on the 
opposite side, unaware of the boundaries. 
 

PBC essentially results in a system that is infinitely copied in all directions such that 

the edge of every system borders its opposing edge in the adjacent image118–120. 

Therefore, if a solvent molecule happens to cross the edge of the solvent box, i.e. the 

periodic boundary, it exits the system on one side and immediately re-enters on the 
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opposite side (Figure 1.7). Consequently, this kind of system requires a finite number 

of atoms to represent a fully solvated biomolecule and the problems associated with 

edge effects are eliminated118–120. 

 

There is, however, a caveat to using periodic boundary conditions, which should be 

addressed to avoid the introduction of calculation artefacts. The minimum image 

convention states that the shortest edge of the simulated system must be at least twice 

the value of the non-bonded interaction cut-off (usually 8Å)118–120. Therefore, during 

molecular dynamics simulations, the size of the water box should be large enough 

such that the biomolecule cannot interact with itself across the boundary, which would 

lead to erroneous results118–120. 

 

1.3.5 Molecular dynamics simulations of HIV-1 Env proteins 

 

Molecular dynamics simulations have been carried out on several HIV-1 Env proteins 

and recently, more studies have started including glycans. For example, Yang et al.89 

used molecular dynamics to calculate how often the glycans that are targeted by 

bNAbs, sample the bNAb-bound conformation (as determined in crystal structures). 

This “pre-organisation” is important since glycans that more frequently sample the 

conformation/s required for bNAb-binding potentially enhance the number of 

opportunities for bNAbs to do so, and are, thus, comparatively, better targets89. 

Therefore, despite the use of homogeneous, oligomannose, glycoforms in the Yang 

et al.89 study (Man5NAc2 or Man9NAc2, depending on the site), the ability to rigorously 

define the composition of the system and subsequently study its molecular details 

resulted in valuable insights that can be used in a predictive fashion to facilitate 

vaccine design.   
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Chapter 2 Variability in the HIV-1 Env glycan shield influences 

its vulnerability after the loss of a glycan 
 

As described in Chapter 1, the glycans on HIV-1 Env serve multiple functions. One 

important function is that these glycans shield epitopes from antibodies; for example, 

glycan N301 is implicated in the shielding of V3-loop and CD4-binding site epitopes. 

In this chapter, two subtype C strains are investigated, where for each of these 

isolates, the removal of glycan N301 had substantially different effects during an in 

vitro neutralisation investigation. Specifically, glycan N301 appeared to shield the 

epitopes of frequently elicited antibodies on one of the strains from recognition, but did 

not do so on the second strain. The molecular modelling of the Env glycoproteins, 

described here, suggests that the removal of glycan N301 likely exposed a greater 

surface area of specific protein residues in the V3-loop and C4 regions on one model 

compared to the other. 

 

2.1 Introduction 
 

The surface of HIV-1 Env, despite the protection afforded by the glycan shield, is 

susceptible to bNAbs. As described in section 1.1.1, there are six known sites of 

vulnerability on the Env glycoprotein that are targeted by bNAbs58–63 (Figure 1.3). Of 

these, the class of bNAbs targeting the V3 glycans may be the easiest to elicit via 

vaccination, since these are among the most widespread and potent bNAb responses 

in infected individuals126–129. There is, therefore, considerable research focussed on 

understanding the virus-antibody dynamics that enables the development of these 

bNAbs40,42,130–135. In addition, the mutations that facilitate escape from bNAbs are also 

extensively studied42,44,64,65,102,134. 

 

One potential escape pathway is the loss of a glycan targeted by a specific bNAb. As 

example, glycans N301, N332 and, to a lesser extent, N334 are targeted by the V3-

loop glycan-binding bNAbs. However, the loss of a glycan may afford an opportunity 

for strain-specific neutralising antibodies, that target the residues previously shielded 

by this lost glycan, to bind and neutralise. Since these antibodies that target the V3-

loop glycans are candidates for both passive infusion, as therapy, and induction by a 
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future vaccine, it is important to evaluate the tolerance of HIV-1 Env glycoproteins for 

the loss of the targeted glycan/s. The comparison between the resistance of mutated 

and wild-type HIV-1 Env glycan shields to frequently elicited neutralising antibodies, 

facilitates this assessment. 

 

For this reason, collaborators at the University of Cape Town (working in the CPGRb 

laboratories at the time) investigated the key glycans around the base of the V3-loop, 

at positions 301, 332 and 334, during an in vitro study of two subtype C strains, 

CAP45.2.00.G3 (further referred to as CAP45.G3) and Du156.12, which share 

approximately 90% sequence identity. During this study, the glycan shield was 

remodelled and tested against a panel of sera (%=64) from chronically HIV-1 infected 

individuals. This was done to assess whether the epitopes of frequently elicited 

neutralising antibodies were exposed on the remodelled shield. It was shown that the 

Du156.12 strain required glycan N301 for maintenance of its glycan shield, whereas 

the CAP45.G3 strain was, comparatively, less reliant on glycan N301, since it 

remained resistant to the panel of sera despite the loss of this glycan. However, the 

differences between the glycan shields that bring about the distinct tolerances of these 

strains, for the loss of a glycan, remained unknown. 

 

As described in section 1.1.1, computational analysis complements laboratory studies 

where structures are required but experimentally undetermined. For the described 

study, our research group carried out the computational analyses to predict the 

CAP45.G3 and Du156.12 Env glycoprotein trimers. In this chapter, the portion of our 

published manuscript, Moyo et al.53, focussing on the computational analyses is 

includedc and described in further detail (section 2.3). The primary focus was to 

describe the differences in the glycans shields of the CAP45.G3 and Du156.12 

models, however, several steps preceded the final analyses and are also included in 

this chapter (section 2.2.1 and 2.2.2).  

 

 

                                            
b	Center	for	Proteomic	&	Genomic	Research	(CPGR),	University	of	Cape	Town	
c	Text	adapted	from	peer	reviewed	publication	Moyo	et	al.53	
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2.2 Methods 
 

2.2.1 Protein Structural Modelling 

 

In order to determine the unknown 3D protein structures of the CAP45.G3 and 

Du156.12 protein sequences, homology modelling was performed with the computer 

program MODELLER136,137. The MODELLER algorithm predicts 3D structures of 

proteins by satisfying spatial restraints. These restraints are derived, by MODELLER, 

from known, related, structures (i.e. templates), and from the alignment between the 

template and target sequences, in this case either the CAP45.G3 or Du156.12 

sequences. These spatial restraints can be placed on distances, angles, dihedral 

angles, pairs of dihedral angles and other spatial features defined by atoms, or 

pseudo-atoms. Subsequently, a 3D structure is obtained by optimising a molecular 

probability density function. Thus, during homology modelling, MODELLER predicts 

the 3D structure by performing the following operations: 

 

1. Determine the spatial restraints on the target sequence from its alignment with 

the templates. 

a. Generate the molecular topology for the target sequence. 

b. Calculate the coordinates for atoms with equivalent atoms in the 

templates by using the average coordinates over all the templates. 

c. Build the remaining coordinates using internal coordinates from the 

CHARMM topology library. 

d. Determine the restraints (stereo-chemical, homology-derived and 

spatial). 

2. Predict a model that satisfies, to the largest extent, the restraints determined in 

step 1. 

a. Randomise the initial structure determined in 1.b. and 1.c. by adding a 

random number to the atomic coordinates. 

b. Optimise the model. 

3. Determine the remaining restraint violations. 

4. Write the violations and final model to separate files. 
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Therefore, in order to use MODELLER to predict the unknown 3D structures, a known 

related structure and its alignment with the target sequence is required.  

 

2.2.1.1 Structural templates for HIV-1 sequences 

 

Since MODELLER requires a template structure, an appropriate template or 

combination of templates for the HIV-1 Env sequences, was sought. At the time of the 

analysis (2015/05/22), there were 108 protein data bank (PDB) structures identified 

by BLAST (www.rcsb.org) that matched the HIV-1 HXB2 gp120 protein sequence. 

Most of the structures were modified Env proteins with shortened, or absent, variable 

loop sequences (see section 1.1.1). Therefore, in order to evaluate each of these 

structures, their protein sequences were aligned to HIV-1 HXB2 gp120 and the regions 

where the amino acids structures were unresolved, were highlighted (Figure 2.1). 

Furthermore, the structures were ordered based on their structural resolution, from 

highest to lowest (Figure 2.1 A). 

 

The PDB entries 2QAD138, 2B4C139, 4TVP87, 4NCO91 and 3J5M115 were the only 

structures with resolved V3-loop regions (Figure 2.1 A). Additionally, the PDB entries 

4TVP87, 4NCO91 and 3J5M115 were the only structures with resolved V1V2-loop 

regions and, of these, 4TVP87 had the highest resolution (Figure 2.1 A). Therefore, the 

4TVP87 crystal structure was the primary candidate as a homology modelling template. 

However, since there were some unresolved amino acids, a combination of 4TVP87 

with 4NCO91 and 2B4C139, that adds 3 and 11 resolved amino acids, respectively, in 

the V4-loop region of the 4TVP87 structure, was also considered (Figure 2.1 B). The 

HIV-1 Env sequences used for crystallisation, and any structures that were co-

crystallised with these proteins, are shown in Table 2.1. The co-crystallised structures 

were removed prior to modelling. 
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Figure 2.1: Overview of the HIV-1 Env crystallised structures  
Alignment of PDB protein sequences to the HIV-1 HXB2 gp120 protein sequence for 
(A) all and (B) a subset of the PDB structures (PDB ID:CHAIN) identified by BLAST. 
Regions where the amino acids structures were unresolved are highlighted (orange). 
PDB structures are ordered from highest to lowest resolution. The gp120 conserved 
(C1-C4) and variable (V1-V5) regions are labelled and shaded to indicate the borders 
of each region. 
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Table 2.1: Crystal structures considered for modelling. 

PDB ID Sequence name Co-crystallised structures 

4TVP87 BG505 SOSIP.644 PGT122 and 35O22 

4NCO91 BG505 SOSIP.644 PGT122 

2B4C139 JR-FL CD4 and X5 
 

 

2.2.1.2 Comparing template combinations  

 

In order to decide whether to use only 4TVP87 as the template, or in combination with 

4NCO91 and 2B4C139, the different template combinations were used to generate 3D 

models and the results compared. The comparison relied on the assignment of 

numerical scores to the generated structures, which are indicative of how similar the 

model is to the native structure. Generally, the native structure has the lowest free 

energy (under the native conditions, e.g. temperature and pressure), however, the 

evaluation of an accurate free energy function is computationally expensive140. An 

alternative approach, where a scoring function is constructed with a global minimum 

that corresponds to a sample of native structures deposited in the Protein Data Bank, 

is commonly used140–144. The reliance of this scoring function on known protein 

structures led to the term knowledge-based, or statistical, potentials140. The discrete 

optimised protein energy (DOPE) is such a knowledge-based scoring function140 and 

is implemented in MODELLER. Lower DOPE scores represent models that are more 

native-like and a representation of the DOPE score by residue (DOPE score profile) 

further facilitates a detailed analysis of different template combinations140. 

 

Hence, ten homology models of both wild-type protomers (CAP45.G3 and Du156.12) 

were generated for each of the three different template combinations: 4TVP87 alone; 

4TVP87, 4NCO91 and 2B4C139; and 4NCO91 and 2B4C139. The last combination, 

4NCO91 and 2B4C139, was included to evaluate a 4TVP-independent template 

combination. For the comparison between the template combinations, only the best 

(lowest DOPE score) models generated for the wild-type CAP45.G3 and Du156.12 

protomer sequences were considered. For the best models, the per residue DOPE 

scores were calculated and normalised for the number of restraints, since the model 
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generated using 4TVP87, 4NCO and 2B4C139 as templates has more restraints than 

those generated by using only 4TVP87 or 4NCO91 and 2B4C139 (Figure 2.2). 

 

 

Figure 2.2: Comparison of protein-template combinations 
The DOPE score profiles of the best (A) CAP45.G3 and (B) Du156.12 protomer 
models, using different template combinations. The total DOPE score for the best 
model is shown for each template combination. The gp160 conserved (C1-C4), 
variable (V1-V5) and gp41 sequence regions are labelled and shaded to indicate the 
borders of each region. 
 

Despite the additional structural information in the V4-loop region, provided by the 

inclusion of 4NCO91 and 2B4C139, the DOPE score profile values were similar to those 

of the models generated with 4TVP87 as the only template (Figure 2.2). Conversely, 
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including 4TVP87 as one of the templates in the combined example markedly improved 

the DOPE sore profile values for the V1V2-loop (Figure 2.2 A) and V3-loop residues 

(Figure 2.2 A and B). Furthermore, an interesting difference in the DOPE score profiles 

was observed between the V1V2-loop regions of the CAP45.G3 and Du156.12 

protomer models (Figure 2.2). The Du156.12 models had higher DOPE values for 

these regions, which was possibly due to the longer variable loop regions of the 

Du156.12 sequence and, hence, higher uncertainty in the modelling. 

 

While the models generated with only 4TVP87 as the template were the best models 

based on the DOPE scores, the addition of 4NCO91 and 2B4C139 was a more cautious 

approach as it included further information for modelling and did not substantially 

increase the DOPE scores or the DOPE score profiles (Figure 2.2). Hence, 4TVP87, 

4NCO91 and 2B4C139 were used as templates for generating the 10 models of the wild-

type CAP45.G3 and Du156.12 protomer sequences. Each protomer model was then 

individually triplicated, and the three copies were aligned to the protomers of the 4NCO 

trimer structure to generate the trimeric models. 

 

Thereafter, each of these trimeric models (20 in total) were duplicated and a 

computational mutation was introduced to the duplicated models. Specifically, the 

duplicated models of the CAP45.G3 strain were computational mutated such that the 

PNGS at position 334 was shifted to position 332. For the Du156.12 duplicated 

models, a computational mutation was introduced that shifted the PNGS at position 

332 to 334. Therefore, the final sets included 10 Env trimer models each for the 

CAP45.G3 wild-type, Du156.12 wild-type, CAP45.G3332 variant (PNGS shifted from 

position 334 to 332), and Du156.12334 variant (PNGS shifted from position 332 to 334) 

strains.   

 

2.2.2 Glycosylating the protein models 

 

In order to computationally glycosylate the 40 trimeric models, PNGSs were 

determined by identifying the Asn-X-Thr/Ser motifs, where X is any amino acid except 

a proline45. A glycan was attached, where possible, to each PNGS of the trimer protein 

models, with the exception of the second PNGS that occurred within an NNTT, or 
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similar, motif. At the start of the research project, the question was raised as to whether 

two glycans can be present within this kind of grouped N-linked glycosylation site, 

since glycans are attached in a linear fashion in the Golgi and the attachment of the 

first may exclude the enzymes from attaching the secondd. This decision was pertinent 

for the CAP45.G3 strain, since glycans N334 and N335 occurred within a NNST motif. 

However, since glycan N334 is important in the context of bNAbs42 and is relatively 

more abundant than glycan N33547, glycan N334 was glycosylated instead of glycan 

N335. Moreover, for consistency, this handling of neighbouring glycosylation sites 

within a partially shared PNGS motif was applied to all similar motifs, i.e. a glycan was 

only attached at the first Asn residue.  

 

During the computational glycosylation, glycans were attached to the protein 

structures using a prototype tool under development for the Glycam-Web suite of web 

tools145. This tool adjusts the conformation of the input glycan such that there are no 

overlaps between the glycan and any previously added glycans or protein residues. 

The tool achieves this by executing the following sequence of operations: 

 

1. Superimpose an input glycan onto the target glycoprotein structure. 

2. Determine if there are overlapping atoms between the superimposed glycan 

(step 1.) and any other atoms of the target glycoprotein: 

a. If an overlap is present, calculate the glycan residue with the greatest 

overlap. 

b. For the glycan residue with the greatest overlap, determine and trace 

the sequential glycosidic linkages back to the Asn-GlcNac linkage 

located at the base of the glycan.  

3. Find a glycan conformation, for the superimposed glycan, that has no overlap 

with any atoms of the target glycoprotein.  

a. For each glycosidic linkage identified during the trace-back (step 2.b.), 

starting with the Asn-GlcNac linkage:  

i. Determine the number of dihedral angles present in the glycosidic 

linkage. 

                                            
d	Recent	unpublished	mass	spectrometry	data	shared	by	a	collaborator,	demonstrated	that	
the	attachment	of	a	second	glycan	in	these	motifs	is	possible.	
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ii. Increment each dihedral angle by plus or minus 5°, within a 20° 

range. 

iii. Generate “new” conformations by considering all the 

permutations of these angles, for example 2 dihedral angles 

would each have 8 new angles (step 3.a.(ii)), resulting in 64 (8x8) 

new conformations. 

iv. For those conformations determined in step 3.a.(iii), proceed with 

the conformation with the least number of overlaps.  

v. Repeat steps 3.a.(i)-(iv) for the next glycosidic linkage until a 

conformation with no overlaps is found. 

4. If no solution is found proceed to the next input glycan and repeat. 

 

The input glycans required by the attachment tool were generated using the 

carbohydrate builder available on the GLYCAM web server145. The carbohydrate 

builder generates the different rotamers of the specified glycan and then creates four 

copies of each in order to, in turn, link each glycan rotamer to one of the four Asn 

rotamers. For example, the four different rotamers of a Man5GlcNAc2 glycan (Figure 

2.3) are each attached to one of the four possible Asn residue conformations, resulting 

in sixteen conformations, which are then used as input for the attachment tool. 
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Figure 2.3: The Man5GlcNac2 rotamers 
Each conformation (A-D) represents one of the four Man5GlcNac2 rotamers as well 
as its attachment to one of the four Asn rotamers (A1-4). The oxygen (red) and 
nitrogen (blue) atoms of each conformation are coloured. 
 

While the current implementation of the attachment tool is remarkably efficient at 

attaching glycans, it is still limited to rotating and calculating overlaps for a single 

glycan at a time. Therefore, to ensure that the maximum number of glycans were 

attached to the CAP45.G3 and Du156.12 trimer models, the order of attachment as 

well as different glycoforms were taken into consideration. 

 

2.2.2.1 Glycan attachment order 

 

Since only a single glycan is considered at a time, previous, successfully added 

glycans are obstacles for the addition of subsequent glycans. This is of concern when 

previously added glycans block the current glycan by occupying the available space 

around the targeted PNGS. Therefore, the order in which glycans are attached can 

impact the total number of glycans successfully attached to a protein structure. To 

computationally glycosylate the majority of sites, those PNGSs with the least space 

available to accommodate a glycan should be considered first. Here, the SASA values 

for all the PNGSs of the two models (CAP45.G3 wild-type and Du156.12 wild-type) 

with the lowest DOPE scores were determined using a 3Å probe, which approximates 

the size of a monosaccharide99 (Figure 2.4). Subsequently, the order of the 
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computational glycosylation was set by these SASA values, glycosylating those sites 

with the lowest SASA values first (Figure 2.4). 

 

 

Figure 2.4: SASA of each PNGS of the CAP45.G3 and Du156.12 models  
The SASA (Å2) for each PNGS of the (A) CAP45.G3 and (B) Du156.12 wild-type 
models. The gp160 conserved (C1-C4), variable (V1-V5) and gp41 sequence regions 
are labelled and shaded to indicate the borders of each region. 
 

2.2.2.2 Assessing the attachment efficiency of different glycoforms 

 

Apart from the attachment order, the total number of glycans attached can also be 

affected by the glycoform, i.e. the type of glycan. This is due to the size difference 

between glycoforms. Since larger glycoforms (e.g. Man9GlcNAc2) occupy more space 
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than smaller ones (e.g. Man5GlcNAc2), the proximity of HIV-1 Env glycans may result 

in more unsuccessful attachments for the larger glycoforms than for the smaller 

glycoforms. Here, three glycoforms (Man5GlcNAc2, Man8GlcNAc2 and 

Man9GlcNAc2; Figure 2.5) were attached to the CAP45.G3 and Du156.12 trimer 

models (generated using the lowest DOPE score protomer models) according to the 

attachment order detailed in section 2.2.2.1. 

 

 

Figure 2.5: Glycoforms consdered during computational glycosylation 
Representations of the (A) Man5GlcNAc2, (B) Man8GlcNAc2 and (C) Man9GlcNAc2 
glycans considered during the computational glycosylation step. Each diagram is 
annotated to show the carbon atom involved in the glycosidic linkage (2 – 6; section 
1.2.2) as well as the ( (a) and / (b) classification of each monosaccharide (section 
1.2.1). 
 

The total number of glycans attached were similar across the glycoforms for the 

Du156.12 model (Table 2.2), however, for the CAP45.G3 model, three less 

Man9GlcNAc2 glycans were attached compared to either Man5GlcNAc2 or 

Man8GlcNAc2 glycans (Table 2.2). However, Man8GlcNAc2 glycans were unsuitable 

for the primary analysis due to the ambiguity of this glycoform (Figure 2.5 B). This is 

also the case for hybrid and complex glycans. On the other hand, Man5GlcNAc2 and 

Man9GlcNAc2 are commonly used during molecular studies86,89,103–113 as there is no 

ambiguity in their glycoforms (Figure 2.5 A and C), and these glycoforms can easily 
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be imitated during in vitro studies using inhibitors of the processing enzymes that 

govern glycosylation93,94 (section 1.1.1). Here, the Man9GlcNAc2 glycan was 

preferred due its abundance as one of the predominant glycoforms identified during 

mass spectrometry studies on HIV-1 Env glycans49,95. 

 

Table 2.2: Total number of attached glycans for each glycoform. 

Sequence Total PNGSs Man5GlcNAc2 Man8GlcNAc2 Man9GlcNAc2 

CAP45.G3 81 80 80 77 

Du156.12 84 76 75 75 
 

Since multiple rotamers (Figure 2.3) of each glycoform were provided to the 

attachment tool, a further investigation to determine the exact conformations of the 

glycans that were attached to each glycoprotein model was carried out (Figure 2.6). 

This revealed that the vast majority of the attached glycans were the first glycan 

conformation (rotamer 1 with Asn rotamer 1; Figure 2.3) supplied to the attachment 

tool (Figure 2.6). This implies that the glycan conformations on these glycoproteins 

were biased towards a specific glycan conformation, which is later addressed by 

molecular dynamics simulations (Chapter 3 and Chapter 4). 
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Figure 2.6: Conformations of the attached glycans 
Histograms of the number of times a glycan with a specific conformation was attached 
to the CAP45.G3 or Du156.12 trimer models for each glycoform. The conformations 
are defined by the glycan rotamer (R1 to R4) as well as the Asn rotamer (P1 to P4). 
For example, R1-P1 indicates the first glycan rotamer (R1) combined with the first Asn 
rotamer (P1). 
 

2.2.3 Predicting the exposed surface area 

 

In order to understand the potential impact of removing glycan N301 and why the 

impact varied between the CAP45.G3 and Du156.12 strains, it was necessary to 

identify the protein residues that became exposed once glycan N301 was removed. 

The computationally glycosylated Env models (ten for each of CAP45.G3, Du156.12, 

CAP45.G3332, and Du156.12334) predicted here (sections 2.2.1 and 2.2.2), facilitated 

this analysis. By using these models, the change in the SASA of the protein residues 

were determined and, in turn, compared between Env models.  

 

Thus, for each homology model the relative SASA was calculated in the presence of 

glycan N301, and then glycan N301 was removed and the relative solvent accessible 

surface was calculated. These relative SASA calculations were carried out using 

NACCESS146 and a 1.4Å probe, which approximates the size of water. The VDW radii 
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used for glycan atoms during the solvent accessibility calculation, were based on the 

force fields published by the Complex Carbohydrate Research Center version j1122 

available online (www.glycam.com). The change in relative SASA was then calculated 

using R147. Amino acid residues that showed an increase in relative SASA of 10% or 

greater when glycan N301 was removed, were identified. The number of occurrences 

of an increase of ≥10% for each amino acid was tabulated. It should be noted that 

each amino acid is limited to a maximum of 30 occurrences, since only ten minimised 

state trimer models were determined, each of which consists of three protomers and, 

therefore, only three duplicates of each amino acid exists. All amino acid numbers 

correspond to the HXB2 gp160 position numbers (Genbank accession number 

K03455). 

 

To further visualise the potential differences in glycan clustering, each homology 

model was glycosylated a second time with glycan N301 excluded from the models. 

Here, therefore, the change in clustering when glycan N301 is absent and other 

glycans are permitted to reshuffle, was modelled. 

 

2.3 Results 
 

To gain further insight into the surface likely shielded by glycan N301 in each virus, 

the fully glycosylated Env trimer structures were modelled for the CAP45.G3 and 

Du156.12 wild-type sequences. Additionally, since each strain had a PNGS at either 

position 332 or 334 (sites known to play a role in neutralisation sensitivity), a variant 

of each was also considered during the study. These variants were denoted by 

CAP45.G3332 and Du156.12334 to indicate the variants where the PNGS, and 

consequently the glycan, was shifted from its wild-type position to either 332 or 334. 

 

For each of the four target sequences, ten energy state-minimisation conformations 

were generated, glycosylated, and analysed. For each replicate the solvent accessible 

surface area (SASA) was calculated, using a 1.4Å probe, and subsequently, 

compared to those calculated after glycan N301 was removed (section 2.2.3). The 

number of occurrences of a specific protein residue, among those with a 10% or 
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greater increase in its SASA when glycan N301 was removed, across all the protomers 

of the replicates, was determined (Table 2.3). 

 

Table 2.3: Comparison of the number of times an increase of 10% or greater was 
observed in the SASA measure after the removal of glycan N301. 

  V3 region C4 region 

  N301a T303 I323 G324 D325 E440c G441c N442 

332 
equitable 

comparators 

CAP45.G3332 
variant 

30 6 6 0 0 0 8 14 

Du156.12 
wild-type 

29 6 14 2 2 8 14 7 

334 
equitable 

comparators 

CAP45.G3 
wild-type 

30b 6 6 0 0 0 8 11 

Du156.12334 
variant 

30 5 10 0 0 5 13 12 

 

a HXB2 gp160 reference numbering 
b Number of occurrences where an increase of ≥10% was observed in the SASA 
measure. The occurrences were counted across ten replicates each with three 
protomers, i.e. max=30 
c Suspected co-receptor binding site residue 
 

This analysis revealed that several residues were more frequently shielded by glycan 

N301 on the Du156.12 wild-type models compared to the CAP45.G3 wild-type models 

(Table 2.3). Between the 332 equitable comparators e  (Du156.12 wild-type and 

CAP45.G3332 variant), access to three V3-loop residues (323, 324 and 325) and two 

C4 residues (440 and 441) were blocked by glycan N301 in a higher proportion of the 

Du156.12 wild-type models than in CAP45.12332 variant models (Table 2.3). For the 

334 equitable comparators (CAP45.G3 wild-type and Du156.12334 variant), similar 

results were observed, with the exception of residues 324 and 325, which were not 

differentially blocked (Table 2.3). On the other hand, only residue 442 (C4 region) was 

more frequently shielded by glycan N301 on the CAP45.12332 variant models 

compared to the Du156.12 wild-type models, which was not the case when comparing 

the 334 equitable comparators (CAP45.G3 wild-type model and Du156.12334 variant 

model; Table 2.3).  

                                            
e	Comparison	between	models	where	the	glycan	of	the	mutually	exclusive	PNGS	pair,	332	or	
334,	was	in	the	same	location.	

https://etd.uwc.ac.za
http://etd.uwc.ac.za/



 41 

 

In order to visualise the areas that were likely shielded by glycan N301, the wild-type 

and variant homology models were superimposed and the models of the equitable 

comparators, 332 (Figure 2.7) and 334 (Figure 2.8), compared. From these figures it 

is clear that the exposed protein residues are clustered around the N301A mutation 

site. Although previous reports indicated that glycan N301 often shields the CD4-

binding site from antibody binding54,66,67,69,71,148, here, these amino acids (Figure 2.7 

and Figure 2.8) did not overlap with residues known to participate in CD4 binding69,85. 

Despite this, the differences in increased SASA were consistent with the in vitro 

neutralisation results53 that demonstrated that the loss of glycan N301 resulted in 

varied resistance to neutralising antibodies for the two HIV-1 subtype C viruses. 

Specifically, the removal of glycan N301 resulted in substantial increases in 

neutralisation sensitivity of the Du156.12 viruses to sera from chronically HIV-1 

infected individuals (18/64), while comparatively few sera (3/64) exhibited a similar 

increase for the CAP45.G3 viruses. 
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Figure 2.7: Glycosylated trimer models of the glycan-N332 variants 
The predicted models of the (A-C) Du156.12 wild-type and (D-F) CAP45.G3332 variant 
sequences are superimposed to illustrate the effect of removing glycan N301 (dark 
blue) in the presence of glycan N332 (dark green) and other glycans (red). C and F 
provide further detail around glycan N301.  Amino acid residues with a relative SASA 
greater than 30% regardless of the presence or absence of glycan N301 are shown in 
orange. The backbone of the gp120 subunit and the associated partial gp41 subunit 
are shown in cyan. The amino acid residues with a change in relative SASA greater 
than 10%, when glycan N301 is removed, are shown in a purple ball representation 
(B, C, E and F). 
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Figure 2.8: Glycosylated trimer models of the glycan-N334 variants 
The predicted models of the (A-C) Du156.12334 variant and (D-F) CAP45.G3 wild-type 
sequences are superimposed to illustrate the effect of removing glycan N301 (dark 
blue) in the presence of the glycan N334 (dark green) and other glycans (red). C and 
F provide further detail around glycan N301.Amino acid residues with a relative SASA 
greater than 30% regardless of the presence or absence of glycan N301 are shown in 
orange. The backbone of the gp120 subunit and the associated partial gp41 subunit 
are shown in cyan. The amino acid residues with a change in relative SASA greater 
than 10%, when glycan N301 is removed, are shown in a purple ball representation 
(B, C, E and F). 
 

Since the above SASA results did not account for the reshuffling of glycans that 

surround position 301 after the glycan was removed, an additional analysis was 

performed where glycan N301 was excluded during the computational glycosylation 

process in order to allow the remaining glycans to “reshuffle” on the models. Visual 

inspection of these glycosylated models (without glycan N301) illustrated the influence 

that glycan clustering may have. Apart from the space created by removing glycan 

N301, no clear overall differences were observed between the glycan shields (Figure 

2.9). Additionally, there was also no clear difference in the volumes of space occupied 

by glycan N334 on the models where this glycan is present (Figure 2.9 E, F, G and 

H). However, glycan N332 on the CAP45.G3332 variant models (Figure 2.9 C) clearly 

occupied a broader spatial range than those on the CAP45.G3332 variant models 

without glycan N301 (Figure 2.9 D). This comparison supports the hypothesis that, 

after the removal of one glycan, the clustering, conformational heterogeneity, and 
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reshuffling of glycans are likely to play a role in the accessibility and formation of 

particular antibody epitopes.  

 

 

 

Figure 2.9: Taking glycan reshuffling into account 
Superimposed structures to illustrate the effect of including (A, C, E and G) or 
excluding (B, D, F and H) glycan N301 prior to glycan-attachment for the two pairs, 
332 and 334, of equitable comparators. Glycan N301 is shown in dark blue, glycans 
N332/N334 are shown in dark green, and other glycans are in red. 
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2.4 Discussion 
 

Glycans comprise approximately half of the molecular weight of the gp120 subunit of 

HIV-1 Env and substantially shield the Env trimer from recognition by antibodies56,57. 

Conversely, glycans also often form important parts of epitopes of broadly neutralising 

antibodies. While the effect of these opposing selective pressures, for and against a 

glycan, from the different categories of antibodies has been observed in HIV-1 infected 

individuals42, the phenomenon remains incompletely understood. Studying the in vitro 

changes in neutralisation sensitivity upon the removal of PNGSs (and therefore the 

glycan/s), along with structural modelling, can broaden our understanding of this 

observation. 

 

Here, the state minimisation molecular models were modelled for the strains and their 

variants considered during the in vitro analysis, i.e. the CAP45.G3 wild-type, 

CAP45.G3332 variant, Du156.12 wild-type and Du156.12334 variant strains. The 

analysis of these state minimisation molecular models revealed a notable increase in 

the SASA upon removal of glycan N301 for the Du156.12 models as compared to the 

CAP45.G3 models, irrespective of whether the models had a glycan present at 

position 332 or 334 (Table 2.3). The regions more often blocked by glycan N301 in the 

Du156.12 glycan models were in the V3-loop and C4 regions. Although no further 

laboratory experiments were carried out to determine to what extent any particular 

residue is part of frequently recognised neutralising epitopes, the models clearly 

suggest that the surface area blocked by glycan N301 is larger for the Du156.12 

models than for the CAP45.G3 models. 

 

The particular residues identified that are likely to be more exposed on the Du156.12 

models than the CAP45.G3 models upon removal of glycan N301, were residues 323–

325 (V3) and residues 440 and 441 (C4). Amino acids 440 and 441 are thought to be 

part of the co-receptor binding site149,150. None of the identified residues formed part 

of the CD4-binding site, which was partially expected based upon the in vitro results 

of the presented work, and those of other studies54,66,69,71,148. It is possible, however, 

that the exposure of the CD4-binding site once glycan N301 is removed is related to 

changes in dynamic constraints on the conformation of the V3-loop111, which may be 
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incompletely modelled here using only a state minimisation approach. Nevertheless, 

several key observations regarding the dynamic properties of HIV-1 Env glycans were 

described. Specifically, glycans adopted distinct conformations on different HIV-1 Env 

structures and reshuffling is likely to occur upon the removal of glycan N301, and both 

of these observations may affect the accessibility and formation of antibody epitopes. 

However, since the state minimisation models provided only limited information on the 

conformational heterogeneity of the modelled HIV-1 Env glycan shields, the next step 

was to carry out a more rigorous investigation, including molecular dynamics 

simulations, to analyse the spatial and temporal characteristics of these HIV-1 Env 

glycans.  
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Chapter 3 Glycans adopt distinct conformations on different HIV-

1 Envelope structures 
 

Although it is well established that the HIV-1 Env glycans form a “glycan shield” that 

protects the underlying protein from recognition by neutralising antibodies, Chapter 2 

introduced the concept of a “glycan hole”, which refers to the notion that when glycans 

are removed, an opening is created in the glycan shield that can be exploited by 

neutralising antibodies. This chapter further investigates the concept of glycan holes, 

and the work is carried out on the two HIV-1 wild-type subtype C strains, which present 

different glycan landscapes, introduced in Chapter 2. The analysis considered two 

pairs of molecular dynamics simulations, where each pair comprised a simulation of a 

wild-type model and its N301A mutant counterpart. The analysis of these simulations 

revealed distinct conformations for equivalent glycans, i.e. glycans that shared an 

aligned HXB2 sequence position, between wild-type models. These distinct, and 

potentially favoured, conformations were specifically influenced by the surrounding 

glycan landscape, and these glycan landscapes were also important in the context of 

the glycan holes, since it shaped how the removal of glycan N301 impacted each 

glycan shield uniquely on the N301A mutant models. Due to the fact that glycan 

conformation were dependent on the overall landscape, glycans adopted distinct 

conformations on different HIV-1 Env structures, even in the case where the overall 

landscape deviated by only a single glycan. 

 

3.1 Introduction 
 

As the only surface-exposed molecule of the HIV-1 virion, the Env glycoprotein trimer 

is targeted by the immune system during infection. Due to the selection pressure this 

creates, HIV-1 env is the most variable gene151–153 in an already diverse genome 

(section 1.1). This variability is demonstrated by the disparity in the lengths of gp120 

subunits between viral strains, which range from approximately 484 to 543 amino 

acids154,155. For this reason, the HIV-1 Env amino acid positions are normalised to the 

HXB2 reference sequence to enable comparison across viral strains. These 

comparisons between viral strains have demonstrated that, despite the high levels of 

sequence and length diversity, many PNGSs are conserved47. For example, the 
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PNGSs at positions 88, 156, 160, 197, 230, 234, 241, 262, 276, 289, 301, 332, 356, 

386, 392, 442 and 448 are abundant among subtype C strains47. These conserved 

PNGSs and their glycans compose wholly, or partially, the epitopes recognised by 

many of the bNAbs58,62,63,83,127,156–165 discussed previously (section 1.1.1). While the 

HIV-1 Env glycans have long been considered as a shield, it is now evident that the 

glycan shield itself can be targeted by antibodies. Therefore, understanding the 

conformational properties of the Env glycans will substantially increase our knowledge 

of bNAb epitopes, which is vitally important in guiding vaccine design. 

 

The structural investigation of HIV-1 Env and its glycans has traditionally fallen in the 

domain of X-ray crystallography87,88,91,92 and cryo-electron microscopy115–117. While 

these studies have provided important insights into the structural features of Env and 

its glycans, the single static state image these studies produce lacks information 

regarding the dynamic nature of glycans and the glycan shield they constitute. 

Computational methods that provide atomic level molecular dynamics simulations 

offer an alternative approach with great potential for further structural investigations 

as already demonstrated, in particular, by two studies86,89. Yang et al.89 showed that 

despite conformational heterogeneity of individual glycans over the course of a 

simulation, glycans can form a network of glycan-glycan interactions. In addition, the 

authors showed that the partial pre-organisation of the glycans potentially favours 

binding by bNAbs89. Similarly, Lemmin et al.86 showed that glycans and protomer 

scissoring work in unison to restrict access to the underlying protein. Furthermore, the 

authors distinguish patches of glycans that form stable microdomains, with 

neutralising antibodies generally binding at the interface between these glycan 

microdomains86. While these studies provide valuable insight into key features of the 

glycan shield, they do not compare features between simulations of different Env 

glycoprotein trimers. This important comparison is the focus of the current chapter. 

 

With the goal of defining, understanding and comparing conformational properties of 

the Env glycan shield, four molecular dynamics simulations of fully glycosylated Env 

trimers were analysed. These models included the computationally-modelled 

glycosylated Env structures of the two subtype C strains introduced in Chapter 2. The 

remaining two simulations were of the N301A mutant forms of these models. The 

N301A mutant simulations were carried out to add insight on “glycan holes”, a concept 
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that implicates the removal of a glycan in the exposure of residues of the underlying 

protein. Thus, while any glycan was comparable between a wild-type and its N301A 

mutant counterpart, only glycans that shared an aligned HXB2 sequence position (i.e. 

equivalent glycans) were comparable within type, i.e. between wild-type or between 

N301A mutant models.  

 

The comparison between a subset of wild-type equivalent glycans revealed that both 

the conformations and interaction networks of these glycan were distinct between the 

wild-type models. This was more so for some glycans (e.g. glycans N446/N448 and 

N442) than others (e.g. glycans N156 and N262). For the comparison between each 

wild-type and its N301A mutant model counterpart (paired models), at least one glycan 

neighbouring the mutation site displayed an altered conformation. However, an 

additional, expanded comparison between the paired models demonstrated that 

glycans further from the mutation site also displayed relatively large conformational 

variations. Finally, collectively, these results, and a comparison between the N301A 

mutant models, directly associated the N301A mutant glycan conformation with the 

protein residues ultimately found to be exposed, which may explain the varied 

resistance to neutralising antibodies observed, in vitro, for the two N301A mutant 

strains. 

 

3.2 Methods  
 

3.2.1 Structural modelling and molecular dynamics simulations 

 

The protomer structures were generated using MODELLER136,137 (section 2.2.1). The 

CAP45.G3 (GenBank accession number DQ435682) and Du156.12 (GenBank 

accession number DQ411852) sequences were used as the targets, and three 

reference structures (PDB IDs 4NCO91, 4TVP87 and 2B4C139) were used as starting 

templates (sections 2.2.1.1 and 2.2.1.2). The modelling was repeated ten times for 

each strain, and models were ranked according to their DOPE scores140 (section 

2.2.1.2). The models of the CAP45.G3 and Du156.12 sequences with the lowest 

DOPE scores were then selected, triplicated, and the three copies were aligned to the 

protomers of the 4NCO91 trimer structure to generate the trimeric model.  
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Thereafter, for each PNGS, where possible, a Man9GlcNAc2 glycan (Manα1-2Manα1-

6[Manα1-2Manα1-3]Manα1-6[Manα1-2Manα1-2Manα1-3]Manβ1-4GlcNAcβ1-

4GlcNAcβ1-) was attached using a prototype tool under development for the Glycam-

Web suite of web tools145 (section 2.2.2). However, for the CAP45.G3 model, no 

attempt was made to glycosylate two of the PNGSs, N335 and N678; site 335 occurs 

in an NNST motif and due to the importance of glycan N334 in the context of bNAbs42 

and since glycan N334 is relatively more abundant than glycan N33547, glycan N334 

was glycosylated instead of glycan N335 (section 2.2.2), and N678 falls outside the 

modelled domain. For the Du156.12 model, one of the PNGSs, N625, was not 

glycosylated, for consistency, since it occurs in an NNTT motif (section 2.2.2).   

 

Of the remaining 81 and 84 PNGSs for the CAP45.G3 and Du156.12 models, 79 and 

77 were computationally glycosylated, respectively. During the first round, 

glycosylation of sites N160 (CAP45.G3, protomer C as well as Du156.12, protomer 

B), N295 (Du156.12, protomer B), N339 (Du156.12 protomer A, B and C), N393 

(Du156.12 protomer A, B and C), N399 (CAP45.G3, protomer B), N386 (CAP45.G3 

protomer C) and N442 (Du156.12, protomer B) failed. However, after 30 ns 

simulations (according to the steps described below), a second glycosylation attempt 

was carried out and sites N386 (CAP45.G3, protomer C), N295 (Du156.12, protomer 

B) and N442 (Du156.12, protomer B) were successfully glycosylated, whereas sites 

N160 (CAP45.G3, protomer C and Du156.12, protomer B), N339 (Du156.12 protomer 

A, B and C), N393 (Du156.12 protomer A, B and C) and N399 (CAP45.G3, protomer 

B) remained unglycosylated. These ‘fully’ glycosylated models were then used to 

create the N301A mutant models by replacing the Asn residue at position 301 (HXB2 

numbering) with an alanine residue and removing the glycan for both the CAP45.G3 

and Du156.12 wild-type models. 

 

The systems for simulation were created using the tLEaP package contained in 

AmberTools 14123. The ff14SB121 force field was used for the protein and the 

GLYCAM06j-1122 force field for the glycans. The wild-type and N301A mutant systems 

were immersed in a truncated octahedron water box containing TIP5P124 water 

molecules (section 1.3.3), since TIP5P was found to produce the best quantitative 

agreement with experimental data125. The box size was set such that all protein and 
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glycan atoms were 15Å from the edge of the box (section 1.3.4). Chloride ions were 

added to neutralise the system. 

The molecular dynamics simulations were produced using AMBER 14123. The systems 

were minimised by running 10,000 steps of steepest descent and 10,000 steps of 

conjugate gradient minimisation. During minimisation, restraints were placed on all 

non-hydrogen protein and glycan atoms. The systems were equilibrated by running 

0.4 ns simulations under nPT (1 bar, 300 K) on a CPU cluster. During the first 

equilibration stage, Cartesian restraints (5.0 kcal/mol) were placed on all non-

hydrogen protein and glycan atoms. Thereafter, the restraints were removed, and the 

equilibration was extended by another 1 ns on a GPU cluster (to ensure stability across 

clusters) before the production run was initiated on the GPU cluster. The 520 ns 

production runs were generated on a GPU cluster using AMBER GPU acceleration 

pmemd123 and 0.002 ps time steps, with coordinates written to the trajectory file every 

10,000 steps. 

 

3.2.2 Analyses 

 

3.2.2.1 Root mean square deviation (RMSD) to investigate equilibrium states 

 

The conformational stability of each protein model was assessed by calculating the 

RMSD between the protein backbone atoms (C, C-alpha, N, O) of the starting structure 

and the structure at each time point during the production run, i.e. for each of the saved 

26,000 frames during the simulation. This analysis was carried out using the whole 

protein as well as, separately, using only the conserved and only the variable loop 

regions (section 3.3.2). Equilibrium was reached by 20 ns for each system; the first 20 

ns of each trajectory was therefore discarded, and further analyses carried out on the 

remaining 500 ns, including 25,000 frames, of each simulation (section 3.3.2).  

 

3.2.2.2 Hydrogen-bond analyses to determine and visualise the N301-glycan clusters 

 

Since glycans form dense clusters on the HIV-1 Env surface88,89, the first objective 

was to investigate the clusters surrounding position 301 of the CAP45.G3 and 

Du156.12 wild-type models. Hydrogen-bond analyses were carried out to determine 
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which glycans formed part of the N301-glycan clusters. The hbond function of 

cpptraj166 (AmberTools 14), and the default cut-off values for the distance between the 

heavy atoms (3Å) and the angle between the acceptor and donor atom (135 degrees), 

were used. For each frame in each trajectory (25,000 frames), it was noted whether 

hydrogen bonds were formed between any of the hydrogen atoms of two different 

glycans. The total number of times a hydrogen bond was formed between any two 

glycans was calculated, and thus, for each glycan pair (including inter-protomer pairs), 

the percentage time a hydrogen bond existed during the entire trajectory was 

determined. These percentages were further grouped ([0-25%), [25-50%), [50%-

75%), and [75%-100%]f) and plotted on a circular graph, using edgebundleR167 and 

R147.   

 

3.2.2.3 Glycan heterogeneity of the wild-type models 

 

The hydrogen-bond analyses revealed that the N301-glycan clusters for the 

CAP45.G3 and Du156.12 wild-type models varied in size and conformation. Since 

these differences were likely to affect the subsequent changes once glycan N301 was 

removed, it was important to first determine the heterogeneity of the wild-type model 

glycans. In order to describe the conformational differences between glycans on the 

CAP45.G3 and Du156.12 wild-type models, an “average” conformation of each glycan 

was projected, separately, onto its first principal component.  

 

The first principal component, and subsequently the projections, were determined 

using the matrix, diagmatrix and projection functions of cpptraj166. The visualisations 

of the movement along the first principal component required an average 

conformation. This average conformation was determined by first calculating the 

RMSD between all the conformations of the glycan under consideration using the 

2drms function of cpptraj166. Then, by using the upper triangular matrix this generates, 

the average RMSD of each conformation was calculated by averaging across the 

rows. The conformation with the smallest average RMSD, i.e. the conformation that 

was the most similar to all other conformations, was defined as the average 

                                            
f	Standard	interval	notation	where	square,	‘[‘	and	‘]’,	and	round,	‘(‘	and	‘)’,	brackets	indicate	
whether	the	endpoints	are	included	or	not,	respectively.	
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conformation. This method of determining the average conformation was used instead 

of the standard method (that averages coordinates across the trajectory), since the 

standard method results in a distorted glycan conformation. This is due to the relatively 

larger variability in glycan conformations over the course of the simulation compared 

to those of protein residues. Once the average conformation was determined for each 

glycan, it could be projected onto the first principal component by adding, to its 

coordinates, the projection matrix multiplied by an index value. Subsequent 

projections were, therefore, determined by altering the index value. The number, as 

well as the exact numerical values, of the indices were determined by using the lower 

and upper quartiles of the first principal component as the interval endpoints, with the 

numerical values spread within these endpoints (each incremented by one). For 

example, if the first principal component values had upper and lower quartile values 

of -1 and 5, there would be seven indices with values of -1, 0, 1, 2, 3, 4 and 5. This 

implies that a glycan with more variable conformations and, therefore, greater 

variability in its first principal component was represented by more projections of its 

average glycan conformation than a glycan with less variability. Visual representations 

of these projections were generated using UCSF Chimera168 and by setting these 

projection conformations to opaque, with the average conformation represented as a 

“solid” form. 

 

3.2.2.4 Conformational heterogeneity between wild-type and N301A mutant model 

glycans 

 

The conformational analyses of the wild-type glycans revealed several differences, 

which provided a proxy for the detailed analysis between the glycans of each wild-type 

and N301A mutant model pair. Multiple comparisons of glycan conformations, from 

various sources, i.e. different time points, protomers and models, were carried out in 

order to obtain a detailed account of the glycan conformational heterogeneity. The 

2drms function in cpptraj166, which computes the RMSD between every pair of frames 

of the supplied trajectory, was used, and pseudo-trajectories were generated 

specifically for the heterogeneity analysis. These trajectories were constructed such 

that the first frames were from the relevant wild-type simulation, starting with those 

from protomer A, followed by the frames from protomers B and C, and then followed 
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by the N301A mutant model simulation frames, protomer A through to C. All the frames 

of these pseudo-trajectories were aligned to the first frame of the applicable trajectory 

using the protein backbone atoms. Subsequently, to restrict the analysis to only the 

glycan under consideration (N156, N197, N262, N332/N334, N442 or N446/N448), all 

other atoms were removed from the trajectory. Therefore, running the 2drms routine 

on one of these trajectories resulted in an upper triangular matrix containing the RMSD 

calculated between all the atoms in the frames indicated by the row and column. For 

example, the cell in row 5 and column 10 constrained the RMSD calculated between 

all the atoms in frames 5 and 10. Therefore, by selecting certain combinations of rows 

and columns from this RMSD triangular matrix, it was possible to evaluate 

conformational differences across time, between protomers or between models. For 

example, Table 3.1 shows the RMSD matrix and the regions selected for each 

analyses, i.e across time (Table 3.1, blue), between protomers (Table 3.1, orange) 

and between the protomers of the wild-type and N301A mutant model counterparts 

(Table 3.1, pink). The box plots of these RMSD distributions were subsequently plotted 

using R147. 

 

Table 3.1: The 2drms upper triangular matrix and the sections used during the 
comparisons over time (blue), between promoters (orange), and between the 
protomer of the wild-type and N301A mutant model counterparts (pink). 

  Wild-type protomers N301A mutant protomers 

  A 
[1,25k]a 

B 
(25k,50k] 

C 
(50k,75k] 

A 
(75k,100k] 

B 
(100k,125k] 

C 
(125k,150k] 

Wild-type 
protomers 

A       

B       

C       
a Columns of the represented matrix.   

 

3.2.2.5 Extended investigation using principal component analysis (PCA) 

 

Since the initial investigation focused only on glycans that neighbour the N301A 

mutation, further analysis that would extend this initial work was required. Therefore, 

PCA was performed to investigate the conformational heterogeneity of all the glycans, 

as well as the protein, between the wild-type and N301A mutant model counterparts. 

While PCA is relatively capable of dealing with “wide” data, it is still preferable to 
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reduce the data to the minimal working set to circumvent the curse of dimensionality 

that can decay the power of the PCA. For this reason, the comparison between the 

wild-type and N301A mutant model counterparts were limited to the protomers, and 

for each protomer the protein residues and glycans were considered separately. The 

pseudo-trajectories for this analysis were assembled such that the first frames 

originated form the wild-type model simulations, followed by the frames from the 

relevant N301A mutant model simulation. These pseudo-trajectories were created, 

separately, for each protomer (A, B and C) and wild-type model (CAP45.G3 and 

Du156.12). Additionally, as before, the frames were aligned to the first frame of each 

pseudo-trajectory, using the protein backbone atoms, before the analysis was carried 

out. Thus, for the protein PCA, the glycan residues were removed and, similarly, for 

the glycan PCA, the protein residues were removed. The PCA was then performed on 

these pseudo-trajectories using the matrix, diagmatrix and projection functions of 

cpptraj166 and graphed using R147. 

 

After determining that the first principal components reasonably differentiated between 

the wild-type and N301A mutant model frames, the factor loadings of the first principal 

components were determined by squaring each value of the first eigen vector. Since 

these values represented the factor loadings of individual atoms, they were summed 

to obtain the factor loadings of the total protein residues or glycans. Given that small 

changes in the factor loadings could potentially impact which glycans, or protein 

residues, were identified during the analysis, a median factor-loading value was 

determined instead. These medians were determined using 100 moving-blocks 

bootstrap replicates. The 50 ns blocks were defined such that each block could only 

start on whole nanoseconds to ensure adequate sampling of the whole trajectory. 

There were, therefore, 450 possible blocks for each of the wild-type and N301A mutant 

simulations, with ten random blocks required for each bootstrap replicate. The pseudo-

trajectories required for each bootstrap replicate were generated by first randomly 

selecting 10 blocks from the relevant wild-type protomer simulation, followed by 10 

blocks randomly selected for the corresponding N301A mutant protomer simulation. 

Moving-blocks bootstrap was used instead of a normal bootstrap approach to 

conserve the correlation between sequential observations. 
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To address the possibility that random variation caused the observed differences 

between the wild-type models and their N301A mutant counterparts, it was necessary 

to quantify each glycans’ random variation. For this purpose, the conformational 

heterogeneity between the protomers of the same wild-type model were used to 

disqualify any protein residues, or glycans, with relatively large random variation. This 

assessment of the variation was determined in a similar way to that between the wild-

type and N301A mutant models, i.e. with 100 bootstrap replicates used to determine 

the medians. The key difference was the pseudo-trajectory used. In this instance, the 

pseudo-trajectories were assembled such that the first frames originated from 

protomer A, followed by the frames of protomers B and C. These pseudo-trajectories 

were created, separately, for each wild-type simulation.   

 

3.2.2.6 Antibody accessible surface area for protein residues 

 

Taken together, the results from the previous analyses showed that not only did each 

glycan shield respond differently to the N301A mutation, but the conformational shifts 

were distinct for each of the N301A mutant models. Therefore, to describe these 

unique responses to the N301A mutation in a meaningful way, the antibody accessible 

surface area (AASA) was calculated. This calculation was performed using a 10Å 

probe (as an approximation of the size of an antibody87) with Naccess146 for both the 

CAP45.G3, and Du156.12, wild-type and N301A mutant model simulations. The van 

der Waals radii of the glycan atoms were defined as described for the GLYCAM06j-

1122 force field. The AASA was calculated for 2,500 evenly spaced frames across the 

500 ns trajectories.  

 

Differences between the AASA values of the wild-type and N301A mutant models 

could be attributed to either the protein and/or glycan movements and, therefore, the 

AASA values were normalised to remove any changes in the AASA due to protein 

movements. This was done by determining the “base/maximum” AASA by removing 

the glycans and re-calculating the AASA for these non-glycosylated frames. The final 

AASA ratio, per frame, was the ratio of the glycosylated and non-glycosylated AASA 

values, calculated by dividing the AASA of the glycosylated protein by the AASA of 
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the non-glycosylated protein. Averages were calculated using these AASA ratios over 

time. 

 

The mean AASA ratio, per residue, of the N301A mutant model simulations were 

compared to those of their wild-type model counterparts to determine whether there 

were statistically significant increases. The AASA ratio distribution of each residue, 

under the null-hypothesis (wild-type and N301A mutant model AASA ratio means are 

equal), was assessed by using 100 moving-blocks bootstrap replicates. The AASA 

ratio datasets for each model were mean normalised to satisfy the null-hypothesis 

before bootstrap replicates were drawn. These bootstrap replicates were constructed 

similar to those of the PCA. Variance normalisation was not performed since 

numerous residues had average AASA ratios (over time) equal to zero. The significant 

residues were further filtered to include only those where the difference between the 

average AASA ratio for the wild-type and N301A mutant model over time was 10% or 

greater.  

 

3.3 Results 
 

As described in section 3.1, the main goal of this chapter was to define and compare 

conformational features of glycans of two glycosylated Env-modelled molecular 

dynamics simulations. The first step towards this goal was to establish the differences 

between the PNGS profiles of the wild-type models (section 3.3.1), which was followed 

by verifying the stability of the molecular dynamics simulations (section 3.3.2) and the 

selection of a subset of glycans for further analyses (section 3.3.3). Thereafter, the 

conformations of the glycans in this subset were compared between the wild-type 

models (section 3.3.4) as well as between each wild-type model and its N301A mutant 

counterpart (i.e. paired models, section 3.3.5). The comparison between the paired 

models was further extended to include protein residues and all the remaining glycans 

(section 3.3.6). Finally, the integrity of each N301A mutant model was evaluated and 

compared between the strains (section 3.3.7). These results offer a detailed account 

of the conformational heterogeneity, in silico, of HIV-1 Env glycans. 
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3.3.1 Overview of the PNGS profiles of the wild-type models 

 

To examine which PNGSs were contained within the modelled domains of the 

CAP45.G3 and Du156.12 strains, the locations of Asn-X-Thr/Ser motifs were 

determined (Figure 3.1). The CAP45.G3 wild-type strain contained 27 PNGSs, which 

included PNGSs at positions 334 and 446, whereas the Du156.12 wild-type strain had 

28 PNGSs, with PNGSs at positions 332 and 448. These positions (332/334 and 

446/448) represent mutually exclusive PNGSs that were inverted in the two wild-type 

strains. Both strains contained a PNGS at position 301, which was removed to create 

the N301A mutants. Although each PNGS could not be glycosylated during the 

computational glycosylation, it is known that there is variation in glycan occupancy, 

i.e. not all PNGSs are glycosylated 100% of the time49,72–82,95,169. Therefore, there are 

potentially several different glycosylated forms of Env glycoproteins, and the models 

used here (Figure 3.2) are representations of one of the possible forms of the Env 

glycoprotein of the CAP45.G3 and Du156.12 strains. 

 

 

Figure 3.1: Distribution of PNGSs 
PNGSs contained within the CAP45.G3 (blue) and Du156.12 (orange) strains in 
relation to the HIV-1 reference strain, HXB2 (pink) are shown. The gp160 conserved 
(C1-C4), variable (V1-V5) and gp41 sequence regions are labelled and shaded to 
indicate the borders of each region.  
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Figure 3.2: Glycan landscapes of the wild-type models 
3D representation of the N-linked glycosylation sites of the (A) CAP45.G3 and (B) Du156.12 Env models. The protein residues and glycans are shown as 
surfaces and the glycans are labelled according to HXB2 numbering. 
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3.3.2 Assessing the stability of the molecular dynamics simulations 

 

Molecular dynamics simulations evolve the conformation of a molecule forward in 

time. If the initial conformation is unrepresentative of an equilibrium conformation, the 

initial samples (i.e. frames) of the trajectory will correspond to the conformation in the 

tails of the equilibrium distribution. In short simulations, as analysed here, one would 

not expect to observe the initial conformations and this portion of the trajectory is 

commonly discarded. To determine which portion to exclude from the analysis, the 

RMSD was calculated between each frame and the starting frame for all backbone 

atoms (Figure 3.3; A and B). Since the HIV-1 Env variable regions (V1-V5) are 

generally more flexible than the conserved regions (C1-C5), the RMSD for the 

conserved (Figure 3.3; C and D) and variable (Figure 3.4) regions were calculated 

separately.  

 

 

Figure 3.3: RMSD calculated for all the protein residues or only those in the 
conserved regions 

The RMSD (Å), over time (ns), for each wild-type and N301A mutant model simulation, 
calculated for all backbone atoms (A and B), and only the atoms of the conserved 
regions (C and D). For each RMSD calculation, the first frame was used as reference. 
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Figure 3.4: RMSD calculated for the variable regions 

The RMSD (Å) over time (ns) for each wild-type and N301A mutant simulation, 
calculated for backbone atoms of the variable regions (V1-V5). 
 

An upward trend over time was observed for the RMSD calculated using the entire 

protein (Figure 3.3; A and B); however, this trend was far less pronounced when the 

variable regions were removed from the analysis, i.e. calculating the RMSD using only 

the residues found in the conserved regions (Figure 3.3; C and D). After the first 20 

ns, the RMSD of the conserved regions fluctuated between 1.5 and 3.5Å, suggesting 

that the conformations of the protein backbones were more stable during the latter 

portion of the simulation. In comparison, the variable regions fluctuated between 0.8 

and 6.8Å after the first 20 ns (Figure 3.4), with substantial variation between the 

individual variable regions, which is expected given the large degree of variability in 
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the sequence lengths and composition of these regions. The relative stability of the 

conserved regions after 20 ns provided an indication that an equilibrium state was 

reached; the first 20 ns of each simulation was thus discarded, and the remaining 500 

ns was used for all subsequent analyses.  

 

There was no clear difference between the RMSD results of the wild-type and N301A 

mutant models for either the conserved or variable regions (Figure 3.3 and Figure 3.4), 

which suggests that the N301A point mutation did not cause any apparent disruptions 

to the conformations of the protein backbone of either the CAP45.G3 or Du156.12 

models. 

 

In summary, the RMSD analyses demonstrated that the models had relatively stable 

conformations after the first 20 ns, and that the N301A mutation, and loss of this 

glycan, did not have a discernible influence on the conformations of the protein 

backbones. Given these results, most of the analysis was focused on comparing the 

glycan (and not protein) conformations. 

 

3.3.3 The organisation of the N301 glycan-glycan interaction networks on the wild-

type models 

 

Glycans form dense clusters on the HIV-1 Env surface88,89 and the glycan 

arrangements are therefore likely to be affected by the loss of a glycan. Here, the aim 

was to determine the composition of the N301-glycan clusters of the CAP45.G3 and 

Du156.12 wild-type models. Describing these clusters allows for the subsequent 

investigation of how each cluster changes after the removal of one of the glycans 

forming part of that cluster – in this case glycan N301. Steward et al.88 and Yang et 

al.89 defined glycan clusters using their proximity to one another. However, instead of 

using distance-based calculations that are intractable due to time constraints, glycan 

clusters were determined using the glycan-glycan interaction networks (hydrogen 

bonds). For each glycan-glycan interaction, the proportion of frames in which the 

interaction is present during the simulation was calculated. These results are 

represented on circular network graphs that illustrate both within and between 

protomer (cross-protomer) interactions (Figure 3.5 and Figure 3.6). 
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Figure 3.5: CAP45.G3 wild-type model N301 glycan-glycan interaction network 

Interaction networks between glycan N301 and any other glycan on each protomer (A, 
B and C) are depicted. Specific line types represent different interaction frequencies 
(0-100%). 
 

The interaction partners of glycan N301 on the CAP45.G3 wild-type model varied 

slightly between the protomers; in total seven glycans (N156, N197, N262, N276, 

N386, N442 and N446) were identified (Figure 3.5). Four glycans (N156, N197, N442 
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and N446) formed part of the N301-glycan cluster on all the CAP45.G3 wild-type 

protomers.   

 

 

Figure 3.6: Du156.12 wild-type model N301 glycan-glycan interaction network 

Interaction networks between glycan N301 and any other glycan on each protomer (A, 
B and C) are depicted. Specific line types represent different interaction frequencies 
(0-100%). 
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For the Du156.12 wild-type model, the N301-glycan clusters varied to a larger degree 

between protomers and in total eleven glycans (N135, N139, N145, N156, N189, 

N197, N262, N295, N332, N442 and N459b) were identified (Figure 3.6). However, 

despite the variation, glycans N156, N197, N262 and N442 were found on all the 

protomers. 

 

Taken together, the glycan-glycan interaction network analysis showed that glycans 

N156, N197 and N442 were consistently found to interact with glycan N301 on both 

the CAP45.G3 and Du156.12 wild-type models. Additionally, glycan N446 formed part 

of the N301-glycan cluster on the CAP45.G3 model, and N262 on the Du156.12 wild-

type model. Therefore, the loss of glycan N301 from the cluster is likely to have a 

pronounced effect on the conformations of each of these glycans. However, the 

glycan-glycan interaction network analysis only presents information on the interaction 

frequencies and, therefore, does not provide insight on the directionality, or shape, of 

each cluster. If the conformations of the N301-glycan clusters are irregular across 

protomers and models, the loss of glycan N301 would likely impact each cluster in a 

different way. Thus, to gain a better understanding of the conformational 

characteristics of each cluster, a preliminary analysis was carried out on the three 

glycans (N156, N197, and N442) that formed part of the N301-glycan clusters on both 

wild-type models.  

 

3.3.4 Evaluation of the conformational variance between equivalent glycans present 

on the wild-type models 

 

In section 3.3.3, the glycan-glycan interaction networks of glycan N301 were 

investigated and compared between the CAP45.G3 and Du156.12 Env wild-type 

models. Although several differences were observed, three glycans (N156, N197 and 

N442) were present in both wild-type N301-glycan interaction networks. The 

conformational differences for each of these glycans common to each distinct model 

are important considerations, since these differences are likely to impact the way the 

glycan conformations change upon removal of glycan N301. 
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Therefore, to investigate the extent of conformational heterogeneity between the 

N301-glycan clusters on each model, the extended hydrogen-bond networks of 

glycans N156, N197 and N442, were determined. The conformations of each of these 

glycans and their interaction partners were then visualised and compared between the 

wild-type models.  

 

The visual representations were obtained by determining the predominant movement 

of each glycan using principal component analysis. Each shared glycan, and its 

interaction partners, were projected onto their individual, separate, first principal 

components. These interaction partners were restricted to include only those glycans 

where interaction frequencies of 10% or greater were observed during the relevant 

simulation. This criterion meant that glycan N301 itself was not always included in the 

comparison, as its interaction frequency was lower than 10% for several protomers of 

the wild-type models during the simulations. Detailed analysis of each of these 

networks highlighted several interesting conformational differences as well as 

important contextual characteristics, i.e. how the glycan distribution and “landscape” 

varied around glycan N301. 

 

The visual representation of glycan N156 and its interaction partners illustrated that 

glycan conformations can be heterogeneous across models (Figure 3.7). For the N156 

glycans on the CAP45.G3 wild-type model, three interaction partners were present 

across protomers. Glycan N190b, which is located on the Env protein apex, and either 

glycan N197 or N301, which appear to compete as interaction partners (Figure 3.7 A, 

C and E). On the Du156.12 wild-type model, the interaction partners of the N156 

glycans, glycans N139, N160 and N189, were all on the protein apex (Figure 3.7 B, D 

and F). This distinction, where a greater number of interaction partners were available 

on the protein apex of the Du156.12 wild-type model, may be one reason for the 

differences in glycan conformations observed between the CAP45.G3 and Du156.12 

wild-type models. As can be seen in Figure 3.7, the N156 glycans on the Du156.12 

wild-type model displayed conformations that were all orientated more toward the 

protein apex than those on the CAP45.G3 wild-type model. However, the lack of apex 

interaction partners for glycan N156 on protomer B (Figure 3.7 D), that also displayed 

the distinct conformation orientated towards the protein apex, is perplexing, as it 
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implies that frequent interactions with the apex partners were not the sole cause for 

the orientation of the N156 glycans on the Du156.12 model.  

 

 

Figure 3.7: Movement and interaction networks of glycan N156 

Interaction frequencies, shown as horizontal bar graphs, and 3D movement 
representations for the glycans forming part of the N156-glycan interaction network of each 
protomer during the CAP45.G3 and Du156.12 wild-type model simulations. 
 

The next comparison, focussing on the N197-glycan interaction networks, revealed 

interesting differences in the intra- and cross-protomer interactions. For the CAP45.G3 

wild-type model, each N197 glycan had two interaction partners. One of these partners 

formed a cross-protomer interaction, either glycan N156 or N301, and the other an 

intra-protomer interaction, either glycan N133 or N386 (Figure 3.8 A, C and E). These 

interaction partners effectively confine the N197 glycans, limiting their movements. 
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However, the N197 glycans on the Du156.12 wild-type model exclusively formed 

cross-protomer interactions with glycans N156, N262 or N301, depending on the 

protomer. Consequently, the conformations of the N197 glycans on the Du156.12 wild-

type model appeared less restricted, which resulted in larger observed conformational 

differences between the protomers of this model (Figure 3.8 B, D and F). 

 

 

Figure 3.8: Movement and interaction networks of glycan N197 

Interaction frequencies, shown as horizontal bar graphs, and 3D movement 
representations for the glycans forming part of the N197-glycan interaction network of each 
protomer during the CAP45.G3 and Du156.12 wild-type model simulations. 
 

The final wild-type glycan interaction network comparison was for glycan N442 (Figure 

3.9), which appeared to move substantially on both models compared to the N156 and 
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N197 glycans. The N442 glycans on the CAP45.G3 wild-type model consistently 

displayed conformations orientated towards the protein apex for all three protomers 

(Figure 3.9 A, C and E). Furthermore, glycan N137 was consistently an interaction 

partner of the N442 glycans, which was also observed on all three protomers (Figure 

3.9 A, C and E). In contrast, the N442 glycans on the Du156.12 wild-type were 

orientated towards the gp41 region and displayed substantial interactions with the 

N301 glycans (Figure 3.9 B, D and F). These conformations may, in part, be due to 

the N301-N442 glycan interactions and in part due to structural hindrance by V1V2 

glycans (N135 or N145). 
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Figure 3.9: Movement and interaction networks of glycan N442 

Interaction frequencies, shown as horizontal bar graphs, and 3D movement 
representations for the glycans forming part of the N442-glycan interaction network of each 
protomer during the CAP45.G3 and Du156.12 wild-type simulations. 
 

Taken together, the glycan interaction network comparison between the wild-type 

models clearly illustrated how different the N301-glycan cluster formations are, despite 

including the same, shared, interaction partners. Given these conformational 

differences of the N301-glycan clusters, it would be naïve to expect that the loss of 

glycan N301 from these wild-type models would have the same impact on the 

conformations of the remaining glycans. In the following section (section 3.3.5), the 

conformational heterogeneity comparison is expanded to include further neighbouring 
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glycans and describes, in detail, the extent of glycan conformational heterogeneity 

within, and between, protomers and paired models. 

 

3.3.5 Removing glycan N301: model-specific differences between the conformations 

of neighbouring glycans 

 

Apart from glycans N156, N197, and N442, which were shared glycans for each wild-

type N301-glycan cluster, glycans N446 and N262 formed consistent interactions 

across protomers with glycan N301 on the CAP45.G3 and Du156.12 wild-type models, 

respectively (section 3.3.3). Therefore, these two glycans were included in the new 

glycan subset for the detailed conformational heterogeneity analysis. In addition, 

glycans N448, N332 and N334 were also included in the analysis; glycan N448 is the 

mutually exclusive counterpart of glycan N446, and glycans N332 and N334 (also a 

mutually exclusive pair) were key consideration during the in vitro analysis53.  

 

To adequately describe and compare the conformational heterogeneity of the glycans 

within the new glycan subset, three glycan-group terms were defined: unique glycans, 

glycan siblings, and glycan families. The unique glycan group defines each individual 

glycan and is specified by the glycan position (e.g. “N156”), a protomer (e.g. “protomer 

A”) and a model (e.g. “CAP45.G3 wild-type”). Each model includes a set of three 

unique glycans, one from each protomer, that can then further be defined as glycan 

siblings, i.e. glycans N156 of the CAP45.G3 wild-type model are “N156 glycan 

siblings”. Finally, a glycan family includes all glycans at a specific position, regardless 

of the protomer or model. The 12 glycans (3 protomers A, B and C, of 4 models) 

attached to position 156 constitute the “N156 glycan family”. As described in the 

methods section 3.2.2.4, the conformational heterogeneity of glycans was investigated 

using the 2dms routine, which calculates the RMSD between all atoms in all frames of 

the supplied trajectory. By sub-setting and concatenating specific sections of the 

simulated trajectories, it is possible to examine conformational heterogeneity, over 

time, for unique glycans (section 3.3.5.1), between siblings (section 3.3.5.2), and 

between glycans from paired models (section 3.3.5.3). 
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To further illustrate the framework for these analyses, an example of each is presented 

in Figure 3.10. For each analysis, a conformation in group 1 was compared, using 

RMSD, to a conformation in group 2.  

 

 

Figure 3.10: Framework of the conformational heterogeneity analyses 

Each schematic (A, B and C) represents one of the three conformational heterogeneity 
analyses. (A) The comparison over time for unique glycans, termed flexibility; (B) the 
comparison between glycan siblings (versatility); and (C) the comparison between 
unique glycans from the wild-type and N301A mutant paired models.  
 

For the first analysis focusing on unique glycans, group 1 and 2 are the same 

conformations (e.g. all conformations of glycan N156 on a specific protomer and 

model). Thus, the resulting RMSD distribution represents the flexibility of a unique 

glycan (Figure 3.10 A).  
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The second analysis follows on from the first, where each unique glycan is compared 

to each of its siblings, and these siblings to each other. Group 1 represents the 

conformations of a unique glycan and group 2a and 2b the confirmations of its siblings 

(Figure 3.10 B). The distributions of these RMSD values represent the versatility of a 

glycan.  

 

For the final analysis (wild-type vs N301A mutant model), group 1 contained the 

conformations of a unique glycan (without its siblings) and group 2 those of its N301A 

mutant model counterpart (Figure 3.10 C). This analysis was extended to include, in 

group 1, all the conformations of a unique glycan and its siblings from the wild-type 

model, and in group 2 the glycan conformations of the glycan siblings on the N301A 

mutant model. However, these combined results did not provide meaningful 

information due to the large interquartile ranges and low overall differences between 

the glycan families and were not included for discussion (Supplementary Figure S3.1). 

 

These three analyses are inherently related, since each expands the preceding 

analysis by including, successively, more distant (siblings) and parallel (paired 

models) glycan conformations in the analysis set. The results for each are presented 

in sub-sections 3.3.5.1-3.3.5.3. 

 

3.3.5.1 The conformational heterogeneity of glycans over time 

 

When a glycan is removed from a densely glycosylated area, one possible 

consequence is that the glycan shield’s established equilibrium is maintained. This 

implies that the observed flexibility of the glycans surrounding the space created by 

the missing glycan (vacated space), increases, without substantially altering their 

average conformations. Under this hypothesis, the glycans of the CAP45.G3 and 

Du156.12 models surrounding the N301A mutation that displayed model specific 

flexibilities were distorted, i.e. had increased/decreased flexibility, by the removal of 

glycan N301. As described above (Figure 3.10 A), the flexibilities are defined as the 

distribution of RMSD values calculated between the collective conformations of a 

unique glycan over time. Despite the observation of large discrepancies between the 
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flexibilities of several glycans at an individual protomer level, which makes conclusive 

assertions regarding model specific flexibilities difficult, there were particular glycans 

that displayed model specific flexibilities. In these cases, glycans displayed different 

flexibilities in the paired model comparison, i.e. between the wild-type and N301A 

mutant models. 

 

3.3.5.1.1 Glycan flexibilities differentiating the CAP45.G3 paired models 

 

The comparison of glycan flexibilities between the wild-type and N301A mutant model 

revealed three glycans that showed evidence of model specific flexibilities. The 

glycans at positions 446 (Figure 3.11 K and L), 334 (Figure 3.11 I and J), and 442 

(Figure 3.11 G and H), had altered flexibilities in the N301A mutant model, suggesting 

that these glycans moved to a greater, or lesser, extent as result of the vacated space. 

Only for glycan N446 was the overall flexibility reduced for all protomers on the N301A 

mutant model, whereas for glycans N334 and N442, the change in flexibility differed 

across protomers.  
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Figure 3.11: Glycan flexibilities of the CAP45.G3 paired models 

Box and whiskerg plots of the RMSD (Å) of specific glycans (N156, N197, N262, N442, 
N334 and N446) calculated for each protomer (A, B and C). The RMSD, calculated 
between all adopted conformations of a single glycan over time, represents the 
flexibility of that glycan.  
 

                                            
g	For	all	Box	and	whisker	plots,	the	horizontal	 line	within	the	box	indicates	the	median,	the	
boundaries	 of	 the	 box	 indicate	 the	 25th-	 and	 75th-percentile,	 whiskers	 indicate	 the	
lowest/highest	datum	within	1.5	of	the	inter-quartile	range	of	the	lower/upper	quartile,	and	
circles	indicate	data	outliers.	
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3.3.5.1.2 Glycan flexibilities differentiating the Du156.12 paired models 

 

Similar to the CAP45.G3 paired model comparison, there were three Du156.12 

glycans that displayed different flexibilities between the wild-type and N301A mutant 

model. Glycans N332 (Figure 3.12 I and J), N442 (Figure 3.12 G and H), and N448 

(Figure 3.12 K and L) all presented evidence of model specific flexibility, even though 

the altered flexibilities were inconsistently lower or higher for different protomers. 

Interestingly, the N301A mutant model N442 glycans were all more flexible than their 

wild-type model counterparts when comparing the median values. However, one of 

the wild-type N442 glycans also displayed relatively large flexibility (Figure 3.12 G, 

protomer C), suggesting that the range of movement of glycan N442 is not exclusively 

affected by the removal of glycan N301.  
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Figure 3.12: Glycan flexibilities of the Du156.12 paired models 

Box and whisker plots of the RMSD (Å), representing the flexibilities, of specific 
glycans N156, N197, N262, N442, N332 and N448) calculated for each protomer (A, 
B and C)  
 

In summary, the glycan flexibilities revealed insufficient evidence to differentiate the 

wild-type and N301A mutant models. However, the RMSD results nonetheless 

presented several interesting observations. Glycans N156 and N262 had the lowest 

flexibilities on all models, which suggests that the movements of these glycans were 
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restricted regardless of the presence of glycan N301. It has been reported that glycan 

N262 is buried170 and, with the models used here, glycan N156 was densely packed 

within a cluster of glycans, which provides one explanation for the low flexibilities 

observed for these two glycans. Furthermore, although there were no definitive 

directional (less/greater) differences between glycan flexibilities when comparing the 

wild-type and N301A mutant paired models, glycans N332 (Du156.12 model), N334 

(CAP45.G3 model), N442 (CAP45.G3 and Du156.12 models), N446 (CAP45.G3 

model) and N448 (Du156.12 model) had altered flexibilities. These observations 

provide a first overview of how the movements of individual glycans were altered by 

the removal of glycan N301, but also indicates that further analyses, beyond individual 

glycans, are required.  

 

3.3.5.2 The conformational heterogeneity between glycan siblings  

 

The preceding section explored the hypothesis that the flexibility of glycans allowed 

the established equilibrium of the glycan shield to be maintained. An alternative 

hypothesis concerns the formation of a “new” equilibrium, where glycans surrounding 

the N301A mutation adopt different conformations. The observation that certain 

glycans were, unexpectedly, less flexible in the N301A mutant models (where 

intuitively there was more space for movement) compared to the wild-type models, fits 

the alternative hypothesis where a new equilibrium was established. These alternate 

conformations were inconsistent among protomers; therefore, the next investigation 

focussed on the glycan siblings, i.e. the same glycan on all protomers of the same 

model. As previously described (section 3.3.5 and Figure 3.10 B), the glycan 

conformational diversity between protomers was defined as the versatility. The 

versatility represents the distribution of RMSD values calculated between the 

conformations of a unique glycan and each of its siblings, and between these siblings. 

The versatilities were then compared between paired models, and glycans 

(surrounding the N301A mutation) with model specific versatilities, that were the direct 

result of the removal of glycan N301, were identified. 
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3.3.5.2.1 Glycan versatilities of the CAP45.G3 paired models 

 

Glycans N197, N332, N442 and N446 all showed evidence of different versatilities on 

the CAP45.G3 N301A mutant model when compared to the wild-type model (Figure 

3.13). Glycans N197 (Figure 3.13 C and D) and N442 (Figure 3.13 G and H), which 

are in the immediate vicinity of glycan N301, had higher versatilities on the N301A 

mutant model, whereas glycans N334 (Figure 3.13 I and J) and N446 (Figure 3.13 K 

and L), had lower versatilities. 
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Figure 3.13: Glycan versatilities of the CAP45.G3 paired models 

Box and whisker plots of the RMSD (Å) of specific glycans (N156, N197, N262, N442, 
N334 and N448). The RMSD was calculated between the conformations of a unique 
glycan and each of its siblings, and between these siblings. 
 

3.3.5.2.2 Glycan versatilities of the Du156.12 paired models 

 

Apart from glycan N197, all the remaining glycans (N156, N262, N442, N332 and 

N448) had increased versatilities on the Du156.12 N301A mutant model (Figure 3.14). 
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This suggests that the glycans surrounding the N301A mutation were able to explore 

a larger number of equilibrium conformations than those on the wild-type model. 

However, since these RMSD results were uninformative regarding the type of 

movement, further analysis was required to determine whether these additional 

conformations were distinct from those of the wild-type model.  
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Figure 3.14: Glycan versatilities of the Du156.12 paired models 

Box and whisker plots of the RMSD (Å) of specific glycans (N156, N197, N262, N442, 
N332 and N446), which was calculated between the conformations of a unique glycan 
and each of its siblings, and between these siblings. 
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3.3.5.3 The difference between the conformational heterogeneity of glycans on each 

wild-type and its N301A mutant model counterpart 

 

The final conformational heterogeneity analysis focussed specifically on the 

differences between the conformations of N301A mutant glycans compared to their 

wild-type model counterparts (sections 3.3.5 and Figure 3.10 C). Hence, the RMSD 

distribution was calculated between identical glycans on the paired models (Figure 

3.10 C). When evaluating these RMSD distributions to determine which glycans have 

substantially different conformation between the wild-type and N301A mutant model, 

the cause of the difference becomes important. Conformation differences can either 

be caused by the N301A mutation or by random variation, which was observed during 

the conformational heterogeneity analysis between glycan siblings (section 3.3.5.2). 

For this reason, RMSD distributions calculated here were compared to the relevant 

versatility results (Figure 3.13 and Figure 3.14). Only glycans with conformational 

differences greater than their versatilities were considered as heterogeneous between 

the wild-type and N301A mutant models. The possibility of identifying glycans with 

conformational heterogeneity due to random variation is also reduced by the fact that 

the starting conformation of the paired glycans, and all the surrounding glycans, were 

identical, and that this analysis was limited to the glycans close to the N301A mutation. 

Despite these precautions, it is still possible that some of the glycans identified during 

this analysis were heterogeneous due to random variation instead. Therefore, the 

results should be interpreted taking this into account.  

 

3.3.5.3.1 Glycan conformations differentiating the CAP45.G3 models 

 

For three glycans (N197, N442 and N446) particular protomer/s showed noticeably 

higher conformational heterogeneity when the CAP45.G3 N301A mutant glycan 

conformations were compared to those of the wild-type model. For glycans N197 and 

N446, the larger conformational heterogeneity was observed for protomer C, while for 

glycan N442 it was observed for protomers A and B. The heterogeneity between 

paired glycans was the largest for glycan N446, followed by glycan N442 (protomer A) 

and then glycan N197. The magnitude of these conformational differences (ranging 

from 12 to 43Å) compared to those observed for random variation (between the 
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CAP45.G3 wild-type protomers; section 3.3.5.2) for each particular glycan, increases 

the confidence that these conformational differences were likely due to the N301A 

mutation as opposed to random variation. 

  

 

Figure 3.15: RMSD distribution of identical glycans on the CAP45.G3 paired 
models 

Box and whisker plots of the RMSD (Å) of specific glycans (N156, N197, N262, N442, 
N334 and N446) calculated, for each glycan, between the conformations of the wild-
type glycan and the conformation of its N301A mutant glycan counterpart. 
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3.3.5.3.2 Glycan conformations differentiating the Du156.12 models 

 

With the exception of glycan N197, all the remaining glycans (N156, N262, N442, 

N332 and N448) had at least one protomer with considerable conformational 

heterogeneity when the Du156.12 N301A mutant glycan conformations were 

compared to the wild-type glycan conformations. Unlike the CAP45.G3 comparison, 

the differences were also more consistent across the protomers for the Du156.12 

paired models, where the same glycans from multiple protomers had considerable 

conformational heterogeneity, e.g. for glycan N442 on protomers A, B and C, for 

glycan N156 on protomers A and B, and for glycan N448 on protomers B and C. 

However, the magnitude of the conformational differences still varied between the 

protomers. Despite these differences in magnitudes, even the lowest variation was still 

larger than that observed for the random variation (i.e., between the Du156.12 wild-

type protomers; section 3.3.5.2) of the particular glycan. This implies, similar to the 

CAP45.G3 paired model comparison, that these conformational differences were likely 

due to the N301A mutation rather than random variation. 
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Figure 3.16: RMSD distribution of identical glycans on the Du156.12 paired 
models 

Box and whisker plots of the RMSD (Å) of specific glycans (N156, N197, N262, N442, 
N332 and N448) calculated, for each glycan, between the conformations of the wild-
type glycan and the conformation of its N301A mutant glycan counterpart. 
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3.3.6 Altered glycan conformations extended beyond those neighbouring glycan N301  

 

In the previous section (section 3.3.5), the extent of the conformational heterogeneity 

of glycans N156, N197, N262, N332/N334, N442 and N446/N448 within, and between, 

protomers and models was described in detail. Subsequently, the next focus was to 

extend this analysis beyond only these glycans that neighbour the N301A mutation, to 

all the glycans as well as the protein residues. To achieve this goal, each glycan, or 

protein residue, was ranked based on its capability to distinguish between frames of 

the wild-type and the corresponding N301A mutant model. For example, suppose the 

conformations of glycan N442 were perfectly distinct between paired models; if 

presented with a randomly chosen frame, one merely needs to consider the 

conformation of glycan N442 to determine if the frame emerged during the N301A 

mutant or wild-type model simulation. Therefore, glycans, or protein residues, 

exceedingly capable of correctly classifying frames as wild-type or N301A mutant 

model frames, were also the most conformational heterogeneous between paired 

models. 

 

In order to determine which glycans or protein residues were the best classifiers, an 

approach capable of dealing with “wide” data, i.e. where there are more 

variables/columns than observations/rows (many more atoms than frames), is 

advantageous. Principal component analysis (PCA), already implemented to 

accommodate simulation data, was suitable for this analysis. Even though PCA is 

relatively capable of dealing with “wide” data, it is still preferable to reduce the data to 

the minimal working set. The reason for this is that the number of variables is directly 

related to the volume of the resulting space, which increases exponentially with each 

additional variable, resulting in the available data becoming sparse. This sparsity is 

detrimental for any method that requires statistical significance. Therefore, the 

comparisons between the N301A mutant models and their wild-type counterparts were 

limited to the protomers. Additionally, for each protomer-level comparison, the protein 

residues and glycans were considered separately. 

 

Once these “reduced” simulation trajectories were assembled (see Methods section 

3.2.2.5), PCA was performed on pseudo-trajectories comprising frames originating 

from both the wild-type and N301A mutant simulations of paired models. For the initial 
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analysis, focussing only on the glycans, the first principal component differentiated the 

frames of the wild-type and N301A mutant models perfectly, since a vertical line 

completely separated each group of frames on the standard PCA plots (e.g. Figure 

3.17 A and C, and Supplementary figures Figure S3.2 and Figure S3.3). The 

separation was not as clear for the protein analysis (Supplementary figures Figure 

S3.4 and Figure S3.5), but still provided an indication of the frame separation for the 

paired models and was thus sufficient for further analysis. 

 

The next step was to isolate which glycans, or protein residues, were contributing most 

to the first principal component. In this analysis, the principal components are linear 

combinations of the atom coordinates weighted by their contributions towards 

explaining the variance in a particular orthogonal dimension. Therefore, since the first 

principal component differentiates between frames of the wild-type and N301A mutant, 

the squared weights (factor loadings) rank the glycans, or protein residues, by the 

extent of their variation between the wild-type and N301A mutant models. However, 

due to small changes in the factor loadings potentially altering the rankings 

substantially, especially if glycans or protein residues were equally distinct between 

paired models, each glycan or protein residue was ultimately ranked based on its 

median factor loading. These medians were determined for the factor loadings by 

repeating each PCA on 100 moving-block bootstrap replicates of the appropriate 

pseudo-trajectories. 
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Figure 3.17: Example of the standard PCA plots for the CAP45.G3 model 

The standard PCA plots for the CAP45.G3 paired-model comparison performed on 
the glycans of protomer A. The figures demonstrate the projection of the frames onto 
the (A) first and second, (B) second and third and (C) first and third principal 
components as well as (D) the proportion of the variance explained by each principal 
component. 
 

In studying the factor loadings of the first principal components of each protomer and 

paired models, the true range and scope of conformational heterogeneity between the 

N301A mutant models and the wild-type counterparts can be appreciated (Figure 3.18, 

Figure 3.19, Figure 3.20 and Figure 3.21). Due to the factor loadings only narrowly 

distinguishing successively ranked glycans, or protein residues, it was necessary to 

specify a threshold above which a practical number of glycans, or protein residues, 

Eigenvalue 
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were identified. Since the same glycans were rarely identified for each protomer, the 

two top ranking glycans within the gp120 and gp41 region of each protomer were 

considered. For the protein analysis, the top five protein residues for each protomer 

were identified. For consistency and reference, the rankings of glycans N156, N197, 

N262, N332/N334, N442 and N446/N448, which have been discussed in detail in the 

previous sections (sections 3.3.4 and 3.3.5) are also shown (Figure 3.18 and Figure 

3.19). 
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Figure 3.18: Factor loadings of the CAP45.G3 paired-model comparison 
focussing on glycans 

Box and whisker plots of the factor loadings of all glycans for (A) protomer A, (B) 
protomer B and (C) protomer C. Blue triangles represent the factor loadings calculated 
using the simulated trajectories. The rankings based on median factor loadings are 
shown for the top two glycans as well as glycans N156, N197, N262, N334, N442 and 
N446. 
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Figure 3.19: Factor loadings of the Du156.12 paired-model comparison 
focussing on glycans 

Box and whisker plots of the factor loadings of all glycans for (A) protomer A, (B) 
protomer B and (C) protomer C. Orange triangles represent the factor loadings 
calculated using the simulated trajectories. The rankings based on median factor 
loadings are show for the top two glycans as well as glycans N156, N197, N262, N332, 
N442 and N448. 
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Figure 3.20: Factor loadings of the CAP45.G3 paired-model comparison 
focussing on protein residues 

Box and whisker plots of the factor loadings of protein residues for (A) protomer A, (B) 
protomer B and (C) protomer C with a median value above a threshold (0.013) such 
that only the top protein residues are displayed. Blue triangles represent the factor 
loadings calculated using the simulated trajectories. The rankings based on median 
factor loadings are show for the top five protein residues. 
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Figure 3.21: Factor loadings of the Du156.12 paired-model comparison 
focussing on protein residues 

Box and whisker plots of the factor loadings of protein residues for (A) protomer A, (B) 
protomer B and (C) protomer C with a median value above a threshold (0.013) such 
that only the top protein residues are displayed. Orange triangles represent the factor 
loadings calculated using the simulated trajectories. The rankings based on median 
factor loadings are show for the top five protein residues. 
 

Of these glycans, the N442 and N446 glycans were identified by the PCA as among 

the glycans with the most distinct conformations between the CAP45.G3 wild-type and 

N301A mutant models for the gp120 region (Figure 3.18). Additionally, and similarly 

located in the gp120 region, glycans N289 and N463 also had considerable 

conformational heterogeneities between the CAP45.G3 paired models (Figure 3.18 
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C). In contrast, for the Du156.12 gp120 region, the paired-model comparison showed 

that the N197 and N332 glycans (that were also considered in the previous sections 

3.3.4 and 3.3.5), were among the most distinct glycans, along with glycans N160, 

N289 and N463 (Figure 3.19).  

 

For the gp41 region, both paired-model comparisons had at least one gp41 glycan 

that was identified as distinct between the wild-type and N301A mutant models (Figure 

3.18 and Figure 3.19). Specifically, glycans N616 and N625 for the CAP45.G3, and 

glycan N624 for the Du156.12, paired-model comparisons. Given that these glycans 

are located in the gp41 region, where there are relatively fewer glycans compared to 

gp120, and consequently more space, it is plausible that these distinct conformations 

could be attributed to random variation and not the N301A mutation. Thus, these 

glycans were not of interest in the context of the N301A mutation. 

 

In addition, the analysis of the protein revealed that residues 211, 384, 579 and 665 

consistently had distinct conformations between the CAP45.G3 N301A mutant model 

and its wild-type counterpart (Figure 3.20). However, for the Du156.12 paired-model 

comparison, no protein residues were identified that consistently had distinct 

conformations between the models (Figure 3.21). Furthermore, since the difference in 

the factor loadings of successively ranked protein residues were larger for the 

CAP45.G3 model protein residues than those for Du156.12, the factor loadings of the 

CAP45.G3 paired-models readily attributed the conformational heterogeneity to 

specific residues, whereas for the Du156.12 paired-model comparison, several, 

diverse residues were identified.  

 

Taken together the PCA analysis demonstrated that glycans (and protein residues) 

were conformationally heterogeneous between the wild-type models and their N301A 

mutant counterparts, and some more so than others. Of these top ranked glycans, 

only glycans N197, N332, N442 and N446 were previously identified using a crude 

method (hydrogen-bond interaction networks, section 3.3.3). This suggests that only 

a portion of the glycans potentially impacted by the N301A mutation were in the 

immediate vicinity of the mutation. Thus, it is important to investigate glycans further 

from the N301A mutation.  
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However, as previously described (section 3.3.5.3), a reasonable level of caution 

needs to be employed when considering glycans progressively further from the N301A 

mutation, since these glycans are more likely to display conformational heterogeneity 

due to random variation rather than due to the N301A mutation. Hence, the next step 

was to address this issue by quantifying the random variation of the glycans identified 

during the PCA and considering them relative to other glycans.  

 

As described in the methods (section 3.2.2.5), to quantify the random variation of each 

glycan, the individual glycan variation between the protomers of the wild-type models 

was used as a proxy. For example, a glycan that was conformationally heterogeneous 

between the protomers of the wild-type models, i.e. displayed higher random variation, 

was also more likely to exhibit distinct conformations between the wild-type and N301A 

mutant paired models due to this random variation, and not due to the N301A 

mutation. 

 

As before, the “reduced” simulation trajectories were used, however, the pseudo-

trajectories on which the PCA was performed consisted of frames from only the wild-

type simulation. Here, the first two principal components differentiated the frames of 

the wild-type protomer models perfectly, since only a vertical and horizontal line were 

required to separate each group of frames on the standard PCA plots for the glycans 

and protein residues (e.g. Figure 3.22 and Supplementary figures Figure S3.6-Figure 

S3.8). 

 

Similar to the paired-model comparisons, the first two principal components can be 

deconstructed into their factor loadings to determine which glycans, or protein 

residues, were contributing the most to each principal component. These glycans and 

protein residues were subsequently ranked according to their contributions based on 

their median factor loadings. As before, the medians were determined by repeating 

the PCA on 100 moving-block bootstrap replicates of the appropriate pseudo-

trajectories (Methods section 3.2.2.5). 

 

Quantifying and comparing the random variation of glycans N289, N442, N446, N463, 

N616 and N625 (CAP45.G3 model), and glycans N160, N197, N289, N332 and N468 

(Du156.12 model) was of particular interest, since these glycans displayed 
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exceptionally distinct conformations during the PCA between the appropriate paired 

models (Figure 3.18 and Figure 3.19). Additionally, the rankings of the glycans 

considered during the RMSD analysis are shown for reference and consistency 

(Figure 3.23 and Figure 3.24 glycans N156, N197, N262, N332/N334, N442 and 

N446/N448). 

 

 

Figure 3.22: Example of the standard PCA plots for the Du156.12 model 

The standard PCA plots for the Du156.12 protomer comparison performed on the 
glycans. The figures demonstrate the projection of the frames onto the (A) first and 
second, (B) second and third and (C) first and third principal components as well as 
(D) the proportion of the variance explained by each principal component. 
 

Eigenvalue 
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Figure 3.23: Factor loadings of the CAP45.G3 wild-type protomer comparison 
focussing on glycans 

Box and whisker plots of the factor loadings of all glycans for the (A) first and (B) 
second principal components. Blue triangles represent the value of the factor loadings 
calculated using the simulated trajectories. The rankings based on median factor 
loadings are shown for glycans N156, N197, N262, N289, N334, N442, N446, N463, 
N616 and N625. 
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Figure 3.24: Factor loadings of the Du156.12 wild-type protomer comparison 
focussing on glycans 

Box and whisker plots of the factor loadings of all glycans for the (A) first and (B) 
second principal components. Orange triangles represent the factor loadings 
calculated using the simulated trajectories. The rankings based on median factor 
loadings are shown for glycans N156, N197, N262, N289, N332, N442, N448, N463 
and N624. 
 

None of the glycans (N289, N442, N446 and N463) identified in the gp120 region 

during the PCA for the CAP45.G3 paired-model comparison were ranked within the 

top twelve (Figure 3.23). For the gp41 region, where two glycans were identified, 

glycan N616 was ranked 7th and 14th, while glycan N625 was ranked 18th and 12th by 

the first two principal components, respectively (Figure 3.23). Interestingly, glycans 
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N156 and N262 were ranked within the top ten by one or both principal components 

(Figure 3.23). This suggests that these glycans had distinct conformations on each 

wild-type protomer but were minimally affected by the N301A mutation, since the wild-

type and N301A mutant model conformations were comparable (Figure 3.18).  

 

During the Du156.12 paired-model comparison, five glycans (N160, N197, N289, 

N332 and N463) were identified. Glycan N160 was not glycosylated on protomer B 

(section 3.2.1) and was therefore not included during the wild-type protomer model 

comparison. Of the remaining glycans, N197 and N332 were ranked 2nd and 5th by the 

second principal component (Figure 3.24 B), while glycans N289 and N463 had 

relatively low ranks (Figure 3.24 rank 22 and 21, and 19 and 19). This suggests that 

while these glycans (N197 and N332) were potentially affected by the N301A mutation, 

they also varied between the wild-type protomer models. Therefore, further analysis 

would be required to unequivocally determine whether the conformations of these 

glycans were directly affected by the N301A mutation. 

 

During the protein analysis, only the CAP45.G3 paired-model comparison revealed 

protein residues (211, 384, 579 and 665) that were identified for all protomers (A, B 

and C). However, these were also the top four ranked protein residues during the wild-

type protomer analysis (Figure 3.25), which indicates that these protein residues were 

likely distinct due to random variation and not due to the N301A mutation. 
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Figure 3.25: Factor loadings of the CAP45.G3 wild-type protomer comparison 
focussing on protein residues 

Box and whisker plots of the factor loadings of protein residues for the (A) first and (B) 
second principal components with a median value above a threshold (0.1) such that 
only the top protein residues are displayed. Blue triangles represent the factor loadings 
calculated using the simulated trajectories. The rankings based on median factor 
loadings are show for the top five protein residues. 
 

3.3.7 The locations of exposed surface regions are associated with the unique glycan 

conformational changes in response to the N301A mutation 

 

The analyses thus far have demonstrated several interesting observations regarding 

the conformational heterogeneity between the simulations. Briefly, the PNGS locations 
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of the CAP45.G3 and Du156.12 wild-type models are considerably different. 

Consequently, the members of their respective N301-glycan clusters were also 

diverse. Nevertheless, three glycans (N156, N197 and N442) were N301-glycan 

cluster members across the protomers of both wild-type models. However, further 

investigation of these glycans revealed that not only were their conformations 

heterogeneous, but also that the landscapes around each of these glycans were 

distinct for each wild-type model. Subsequently, removing glycan N301 from each 

wild-type model resulted in different altered conformations for these glycans, 

especially glycans N197 and N442, since the glycan shields of each model responded 

to the change in specific ways. Therefore, it is likely that both the conformational 

differences of these glycans on the wild-type models, as well as the landscapes 

around each of these glycans, affected the ultimate changes in the glycan shields. 

 

To assess the influence of these unique responses to the N301A mutation in a 

meaningful way across the protein, the AASA was calculated using a 10Å probe (as 

an approximation of the size of an antibody). When comparing the AASA between 

paired models, differences could be due to protein and/or glycan movement. To focus 

on the glycan changes specifically, it was therefore necessary to normalise the AASA 

values; thus, the AASA, per residue, of the glycosylated protein was divided by the 

AASA of the non-glycosylated protein, which represents the “maximum” possible 

AASA per residue. Therefore, a proportion of 20% indicates that only 20% of the 

surface area for that residue remains accessible when the glycans are present.  

 

Subsequently, the protein residues of the N301A mutant models with statistically 

significant increases in their average AASA measures compared to the wild-type 

models, were identified (Figure 3.26, blue and orange regions). Furthermore, these 

result-sets of protein residues were further classified to distinguish residues with a 

substantial increase in the average AASA measure, i.e. an average increase of 10% 

or greater (Figure 3.26, blue regions). The location, and number, of clusters of these 

residues on the protein surface were compared between the CAP45.G3 and Du156.12 

N301A mutant models. 
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Figure 3.26: AASA for the N301A mutant models 

The N301A mutant models of (A, B, C) CAP45.G3 and (D, E, F) Du156.12 with 
different orientations (A – C, 120° increments) to show each protomer (different 
shades of tan) and the residues with statistically significant increases in their average 
AASA ratios relative to their wild-type counterparts (difference in average AASA <10% 
is orange, ≥10% is blue). A statistically significant increase was evaluated at a 5% 
significance level using a bootstrap approach (see Methods). The V3-loop (pink) and 
CD4 (green) regions are outlined. 
 

Although the number of statistically significant residues with a substantial increase 

were roughly equal for each N301A mutant model (157 for CAP45.G3 and 187 for 

Du156.12), there were clear differences in the clustering of these residues between 

the CAP45.G3 and Du156.12 N301A mutant models (Figure 3.26, blue regions). For 

the CAP45.G3 N301A mutant model, the identified residues were relatively spread 

out, with the exception of protomer B where a cluster, in either the C1/C2, V3 or C3/V4 

regions, was observed. On the Du156.12 N301A mutant model, however, the 

identified residues were clustered in the C3/V1/V4 regions on all the protomers. This 
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suggests that removing a glycan from the glycan shield not only uniquely impacted the 

conformations of the surrounding glycans, but that these differences may have further 

implications regarding the specific regions exposed after the N301A mutation was 

introduced. This is an important point, since predicting the regions exposed after the 

removal of a glycan may offer clues on where antibodies can bind. Moreover, the 

location of these regions may further indicate the relative ease with which antibodies 

can bind, since some regions on Env are generally more accessible than others 

(Supplementary Figure S3.9). 

 

3.4 Discussion 

 

Traditionally, detailed inspection of crystallised glycoprotein structures has allowed for 

certain observations regarding the conformations of N-linked glycans. However, apart 

from the protein-proximal GlcNAc residues, it is difficult to resolve the conformations 

of HIV-1 N-linked glycans unless the glycans are stabilised83–92 (section 1.1.1). This is 

thought to be due to the conformational heterogeneity of glycans83–92. Molecular 

dynamics simulations present an alternative approach for studying glycan 

conformations, since a converged simulation provides an ensemble of 3D structures 

from which it is possible to compute the relative populations of each conformational 

state observed120. These simulations further allow comparison between different 

glycoprotein structures, and, therefore, a comparison between HIV-1 strains, which 

was the focus of this chapter.  

 

In order to understand whether the conformations of equivalent glycans (i.e. shared 

HXB2 numbering) vary between wild-type models, and additionally if these 

conformations were impacted by the removal of a glycan, the conformational 

differences during the molecular dynamics simulations of four models, two wild-type 

and two N301A mutant models, were investigated in detail. 

 

The comparison between the wild-type models revealed that equivalent glycans had 

a wide range of conformational differences and diverse glycan-glycan interactions 

(sections 3.3.3 and 3.3.4). Since glycan conformations are constrained by 

neighbouring glycans, variation in the locations of neighbouring glycans led to this 
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observed diversity of glycan conformations and glycan-glycan interactions. This 

finding is in contrast to the observation from Steward et al.88, who compared the glycan 

conformations of three crystal structures and where a conserved structural motif of the 

protein-proximal GlcNAc residues was reported. Here, however, the conformational 

diversity was not restricted to the mannose branches, but also observed for the 

protein-proximal GlcNAc residues. This difference is likely attributable to the relatively 

larger disparity between the locations of neighbouring glycans between the sequences 

considered here compared to the Steward et al.88 study, where strains with more 

similar PNGS profiles were investigated. The differences, and similarities, between 

PNGS profiles, which provide an overview of potential glycan neighbours, is therefore 

an important factor when extrapolating information about glycan conformations to 

other HIV-1 Env glycoprotein structures (and thus HIV-1 strains). Importantly, 

equivalent HXB2 numbering does not necessarily translate to equivalent 

conformational characteristics. 

 

The next part of the investigating focused on the paired-model comparison, where the 

wild-type models were each compared to their N301A mutant model counterparts. 

This analysis revealed that at least one of the glycans neighbouring glycan N301 

displayed altered conformations when comparing the wild-type and N301A mutant 

models. Due to the extra space generated by removing a glycan, it was expected that 

the glycan conformations of the N301A mutant models would exhibit greater overall 

differences compared to those of the wild-type models. However, this was not always 

the case since certain glycans established “new” equilibrium positions, which were 

less flexible and more consistent across the protomers (e.g. glycan N446, section 

3.3.5.1.1, Figure 3.11). Extending the analysis using a different approach, beyond only 

the neighbouring glycans, revealed that while glycans around the N301A mutation 

were among those with relatively greater variation between paired models, further 

glycans also displayed relatively large variations. This suggests that there were farther 

reaching consequences to removing a glycan than were initially expected. 

 

Altogether, the results from the wild-type and paired-model comparisons established 

that the distinct wild-type conformations, and implicitly the landscapes, were linked to 

the observed changes and differences after removing a glycan. This was 

demonstrated by distinct glycan conformations not only emerging between paired 
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models, but also between the N301A mutant models. The distinct glycan 

conformations, in turn, impacted the location of the areas likely to be exposed, if any, 

due to the N301A mutation. Thus, these results again demonstrated that equivalent 

glycans are not as equivalent as implied by the identical HXB2 numbering, and that 

the landscape surrounding each glycan is an important consideration. Therefore, HIV-

1 Env glycans should not be considered in isolation, but in their glycan shield “context”. 

 

A caveat for the comparison of glycan conformations from molecular dynamics 

simulations is that the observed differences may be due to distinct equilibrium glycan 

conformations sampled on relatively short time scales, whereas the average 

properties of glycan conformations across an unlimited time scale are the same. This 

“random” variation was clearly seen when glycans were compared between the 

protomers of the same models. In this case, observed variations in glycan 

conformations were due to glycans occupying different equilibrium conformations and 

one would expect, given a long enough time scale, that these glycans would exhibit 

similar average properties due to their near identity. However, observing enough of 

the sample space during molecular dynamics simulations, i.e. a long enough 

trajectory, is a key, and ongoing, problem for molecular dynamics research of large 

structures. Since extending the simulations to an indefinite time scale was impractical, 

an alternative approach was considered here, i.e. using the variation between 

protomers as proxy for quantifying random variation (sections 3.3.5.3 and 3.3.6). 

Therefore, only where the variations between models exceeded that which was 

observed between protomers, were these variations considered as substantial 

differences. While this may have excluded glycans with small, yet statistically 

significant differences, the aforementioned, more cautious, approach was preferred 

during this investigation. 

 

Several studies have focussed on the changes to exposed HIV-1 Env surface areas 

when different mutations are introduced53–55,66–71. While this remains an important 

question, a further consideration relates to how the changes in glycan conformations 

impact the efficacy of glycan-binding antibodies. This particular line of enquiry was 

previously investigated by Kwong et al.51 using crystal structures of HIV-1 Env bound 

to different glycan-binding antibodies; these crystal structures contained a number of 

resolved glycans conformations that were compared. The authors speculated that the 
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initial orientation of an entire glycan might not be critical for glycan-binding antibodies 

that bind and recognise only a contiguous region on a single glycan51. However, for 

glycan-binding antibodies that bind multiple glycans, or multiple glycans and the 

protein surface, the initial orientation of the entire glycan, including its degree of 

flexibility, may be important51. This is due to the additional constraints on the angle of 

approach that is required for successfully binding to occur between the glycan-binding 

antibody and its target51,162. Therefore, the conformations of glycans can play a 

notable part in the ability of glycan-binding antibodies to recognise a glycan and are 

also likely to affect the elicitation of the particular antibodies51. Thus, the glycan 

conformations should be considered along with the glycan-binding antibody. Unlike 

the antibody-bound crystal structures studied by Kwong et al.51, the glycan 

conformations during the molecular dynamics simulations described here, allow for 

the additional investigation of the conformations of these glycans when unbound to 

the glycan-binding antibody. 

 

Thus, this chapter demonstrates that equivalent glycans can adopt conformations 

distinct to specific wild-type Env models, in this case the CAP45.G3 and Du156.12 

models. Moreover, these model-specific conformations also emerged when only a 

single glycan was removed from the glycan shield, and these differences were not 

limited to glycans in the immediate vicinity of the removed glycan. Additionally, the 

model-specific glycan conformations that emerged after glycan N301 was removed, 

were unique to each of the N301A mutant models, which was consequently directly 

related to whether certain protein residues were exposed. However, due to random 

variation implicit to macromolecular structures, there remained a degree of uncertainty 

as to whether the conformational heterogeneity observed for glycans located farther 

from the N301A mutation were a direct result of the mutation. Therefore, associating 

the conformational heterogeneity of a glycan to the original mutation was the focus for 

the subsequent investigation (Chapter 4). 
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Chapter 4 Structural Rearrangements Maintain the Glycan 

Shield of an HIV-1 Envelope Trimer After the Loss of a Glycanh 

 

As highlighted in Chapter 1, the HIV-1 Env glycans shield the underlying protein from 

the immune system and by removing a glycan, a hole, or gap, is created in the glycan 

shield. However, as described in Chapter 3, distinct glycan conformations were 

observed for the two HIV-1 Env wild-type subtype C isolates and their corresponding 

N301A mutant counterparts. These distinct conformations provide one potential 

explanation as to why one of these N301A mutant isolates not only remained protected 

against frequently elicited neutralising antibodies, but also exhibited increased 

resistance to a CD4-binding site broadly neutralising antibody despite the missing 

glycan. However, drawing a direct association between the conformational 

heterogeneity of any glycan and the loss of glycan N301, required a more detailed 

analysis. Therefore, in order to further investigate the resistant strain and directly 

associate the conformational heterogeneity of its glycans with the N301A mutation, a 

more detailed comparison between this wild-type model and its N301A mutant 

counterpart was carried out and is presented in this chapter, as published online in 

Scientific Reports (DOI:10.1038/s41598-018-33390-2). 

 

4.1 Abstract 

 

The HIV-1 envelope (Env) glycoprotein is the primary target of the humoral immune 

response and a critical vaccine candidate. However, Env is densely glycosylated and 

thereby substantially protected from neutralisation. Importantly, glycan N301 shields 

V3 loop and CD4 binding site epitopes from neutralising antibodies. Here, we use 

molecular dynamics techniques to evaluate the structural rearrangements that 

maintain the protective qualities of the glycan shield after the loss of glycan N301. We 

examined a naturally occurring subtype C isolate and its N301A mutant; the mutant 

not only remained protected against neutralising antibodies targeting underlying 

                                            
h	This	 chapter,	 from	 the	 Abstract	 onwards,	 is	 included	 verbatim	 as	 published	 in	 Scientific	
Reports	 (DOI:10.1038/s41598-018-33390-2).	 Where	 necessary,	 minor	 changes,	 e.g.	 Figure	
numbering,	were	made	to	ensure	reasonable	flow	and	consistency	between	chapters	of	this	
thesis.	
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epitopes, but also exhibited an increased resistance to the VRC01 class of broadly 

neutralising antibodies. Analysis of this mutant revealed several glycans that were 

responsible, independently or through synergy, for the neutralisation resistance of the 

mutant. These data provide detailed insight into the glycan shield’s ability to 

compensate for the loss of a glycan, as well as the cascade of glycan movements on 

a protomer, starting at the point mutation, that affects the integrity of an antibody 

epitope located at the edge of the diminishing effect. These results present key, 

previously overlooked, considerations for HIV-1 Env glycan research and related 

vaccine studies. 

 

4.2 Introduction 

 

A key scientific challenge in the field of HIV-1 vaccine development is the design of 

immunogens that elicit antibodies capable of neutralising the wide range of HIV-1 

isolates in circulation, despite its immense global diversity7. Due to immune-mediated 

selection pressure, the majority of this diversity is in the viral envelope gene that 

encodes the Env proteins on the surface of a virion171. The Env proteins facilitate viral 

entry to target cells and are formed by gp120/gp41 heterodimers that non-covalently 

associate, forming a trimer of heterodimers172,173. Even though the majority of HIV-

infected individuals mount an immune response targeting these Env trimers, within-

host diversity ensures that certain strains continue to evade recognition and 

neutralisation56,174–176.  

 

Large sections of the Env trimers are covered by dense glycosylation and roughly half 

of its molecular mass is made up by glycans177,178, which have been suggested to 

protect the virus from antibody binding and neutralisation42,44,53–55. Changes in these 

glycosylation patterns can therefore have a large impact on its ability to escape from 

immune attack. Once HIV infiltrates the host cells, it takes advantage of host cellular 

biosynthetic pathways for its own benefit, which includes protein glycosylation as one 

of the main post-translational modifications45. N-linked glycosylation occurs in the 

endoplasmic reticulum and Golgi apparatus, where glycans are attached to 

asparagine residues within an Asn-X-Ser/Thr motif (X is any amino acid except 

proline45). The attached glycans, initially assumed to be immunologically inert “self” 
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molecules, were until recently considered a largely insurmountable challenge for 

antibody recognition; hence termed, the “glycan shield”56,57. 

 

However, some HIV-1 infected individuals develop potent and broadly neutralising 

antibodies (bNAbs) that specifically target, or find ways to bypass, the glycan shield39–

43. These bNAbs are characterised by their target region, and are generally defined by 

particular monoclonal antibodies that target specific regions: the CD4 binding site59, 

the membrane proximal external region of gp4160, the glycan outer domain (typified 

by mAb 2G12)61, the V1V2 apex region around glycan N16058, the V3 base around 

glycans N301 and N33262, and the gp120/gp41 interface63. Despite the presence of 

such bNAbs in the serum of infected individuals, circulating plasma viruses generally 

escape, resulting in continued infection64,65. This escape from bNAbs has been linked 

to shifting glycosylation sites or mutations in the protein sequence surrounding specific 

glycans42,44. For example, Lynch et al.44 showed that the mutation introducing a glycan 

at position N276 lead to partial VRC01 resistance, and Moore et al.42 reported that the 

shift of glycan N332 to position N334 resulted in PGT128 resistance.  

 

To quantify the impact of glycans on the effectiveness of neutralising antibodies, 

previous in vitro studies have used targeted de-glycosylation to compare the 

neutralisation of a range of viral strains with and without a specific glycan53–55,70. For 

example, the removal of glycan N301 (HXB2 numbering throughout), which is highly 

conserved47,179 amongst HIV strains, has been shown to expose V3 loop and CD4 

binding site epitopes66–69,71. However, Moyo et al.53 described a subtype C strain, 

CAP45.2.00.G3 (referred to herein as CAP45.G3), in which removal of the glycan at 

position 301 unexpectedly did not result in increased sensitivity to to a large proportion 

of sera (61/64 panels) from chronically infected individuals53, despite its central role in 

protecting other isolates from neutralisation39,53,54,66,67,69,71. Furthermore, the N301A 

mutant had increased resistance to the CD4 binding site bNAb VRC01, and other 

VRC01-like bNAbs, when the neutralisation profile was compared to that of the wild-

type53. The authors suggested that this virus typified a subset of viruses that could 

tolerate the loss of glycan N301 while largely maintaining the protective qualities of 

the glycan shield. The mechanism of compensation for the loss of a glycan, in this 

case glycan N301, as well as the development of increased resistance to VRC01, was 

not understood.  
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Here, we explored glycan conformations in silico to explain these findings. We 

analysed two molecular dynamics simulations of glycosylated Env trimers: the 

CAP45.G3 wild-type and the CAP45.G3 N301A mutant, which removes the 

glycosylation site at residue 301, to establish whether the models replicated the in vitro 

compensation of the glycan shield observed previously53. Subsequently we describe, 

in detail, the structural changes of glycans N442, N446 and N262 that bear the burden 

of compensation, how this burden is distributed, and the differences observed 

between the protomers of each model. We show that by determining the glycan 

nearest to each protein residue over time, we can clearly illustrate how changes in 

glycan conformations impact their ability to protect certain residues of the underlying 

protein. Finally, our study demonstrates how a cascade of events could contribute 

towards the increased resistance to antibodies targeting an epitope distal to the point 

mutation, in this case the N301A mutation and the VRC01 epitope. These in silico data 

provide a detailed investigation of the glycan shield’s ability to compensate for the loss 

of a glycan as well as the associated cascade of events that affect a distal epitope, 

which provides further important considerations and avenues of exploration for 

vaccine studies focussing on the HIV-1 Envelope. 

 

4.3 Methods 

 

4.3.1 Structural modelling and molecular dynamics simulations: 

System preparation 

 

We used MODELLER136,137 to generate the protomer structures. The CAP45.G3 

(Genbank accession number DQ435682) sequence was used as the target, and three 

reference structures, PDB IDs 4NCO91, 4TVP87 and 2B4C139 were used as starting 

templates. The modelling was repeated ten times and models were ranked according 

to their DOPE scores140. The model with the lowest DOPE score was then selected, 

triplicated, and the three copies were aligned to the protomers of the 4NCO trimer 

structure to generate the trimeric model. Potential N-linked glycosylation sites 

(PNGSs) were determined by identifying the NXT/S motifs, where X is any amino acid 

except a proline. For each PNGS on the trimer homology model, we attempted to 

https://etd.uwc.ac.za
http://etd.uwc.ac.za/



 112 

attach a Man9GlcNAc2 glycan (Manα1-2Manα1-6[Manα1-2Manα1-3]Manα1-

6[Manα1-2Manα1-2Manα1-3]Manβ1-4GlcNAcβ1-4GlcNAcβ1-). The glycans were 

generated using the carbohydrate builder available at Glycam-Web145 and were 

attached using a prototype tool under development for the Glycam-Web suite of web 

tools that explores the most populated rotamers of the Asn-GlcNac linkage180 and 

then, if clashes are observed between previously added glycans or the protein, 

iteratively rotates the Asn sidechain and glycosidic linkages within reasonable bounds. 

Two of the glycosylation sites, N335 and N678, were not glycosylated; site N335 

occurs in an NNST motif and we were specifically interested in the positioning of 

glycan N334 in the context of bNAbs42 and due to its relative abundance compared to 

N33547, and N678 falls outside the modelled domain. For the remaining 81 PNGSs, 

79 were computationally glycosylated. During the first round, glycosylation of sites 

N160 (protomer C), N399 (protomer B), and N386 (protomer C) failed. However, after 

a 30 ns simulation (according to the steps described below), we retried glycosylating 

these three sites; only site N386 (protomer C) was successfully glycosylated, whereas 

sites N160 (protomer C) and N399 (protomer B) remained unglycosylated. It is 

unknown whether, but unlikely that, the three protomers of an Env trimer will always 

have matching glycosylation profiles; although position N160 is widely known as a 

conserved PNGS, researchers have used mass spectrometry to quantify the presence 

of glycans at PNGSs of 94 cross-clade HIV-1 gp120 proteins and the results show that 

glycosylation at N160 is not absolute169. Furthermore, the dependence of a glycan at 

this position for effective neutralisation has been shown to be variable42, and the 

particular binding characteristics of bNAb PG9 and PG16 to glycan N160 does not 

necessitate trimer specific glycosylation, i.e. the antibodies recognise a single N160 

glycan163. Therefore, although we could not glycosylate each PNGS of the model 

(positions N335 and N678, and positions N160 on protomer C and N399 protomer B), 

each viral clone will have varied glycosylation patterns and our ‘fully’ glycosylated 

model represents one form of the CAP45.G3 Env glycoprotein. We continued with this 

fully glycosylated model to create the N301A mutant by replacing the asparagine 

residue at position 301 (HXB2 numbering) with an alanine residue and removing the 

glycan. 

 

The systems were created using the tLEaP package contained in AmberTools 14123. 

The ff14SB121 force field was used for the protein and the GLYCAM06j-1122 force field 
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for the glycans. The wild-type and N301A mutant systems were immersed in a 

truncated octahedron water box containing TIP5P124 water molecules, since TIP5P 

was found to produce the best quantitative agreement with experimental data125. The 

box size was set such that all protein and glycan atoms were 15 Å from the edge of 

the box. Chloride ions were added to neutralise the system. 

 

4.3.2 Simulation 

 

The molecular dynamics simulations were produced using AMBER 14123. The systems 

were minimised by running 10,000 steps of steepest descent and 10,000 steps of 

conjugate gradient minimisation. During minimisation restraints were placed on all 

non-hydrogen protein and glycan atoms. The systems were equilibrated by running 

0.4 ns simulations under nPT (1 bar, 300 K) on a CPU cluster. During the first 

equilibration stage, Cartesian restraints (5.0 kcal/mol) were placed on all non-

hydrogen protein and glycan atoms. The restraints were removed, and the 

equilibration was extended by another 1 ns on a GPU cluster to ensure stability across 

clusters before the production run started on the GPU cluster. The 520 ns production 

runs were generated on a GPU cluster using AMBER GPU acceleration pmemd123 

and 0.002 ps time steps, with coordinates written to the trajectory file every 10,000 

steps. 

 

4.3.3 Analyses 

 

4.3.3.1 Root Mean Square Deviation to determine system equilibrium 

 

The conformational stability of the protein during the simulation was assessed by 

calculating the root mean squared deviation (RMSD) between the protein backbone 

atoms (C, C-alpha, N, O) and the starting structure of the production run. 

Conformational stability was achieved after 20 ns (data not shown) and this section of 

each trajectory was therefore discarded; the remaining 500 ns simulations were used 

for further analyses. 
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4.3.3.2 Antibody-accessible surface area for different regions and residues 

 

To investigate the efficiency with which the glycan shield compensates for the loss of 

glycan N301, we calculated the antibody accessible surface area (AASA) using a 10 

Å probe (as an approximation of the size of an antibody87) with Naccess146 for both 

the wild-type and N301A mutant simulations. The van der Waals radii of the glycan 

atoms were defined as described for the GLYCAM06j-122 force field. The AASA was 

calculated for 2,500 evenly spaced frames across the 500 ns trajectory. 

 

Differences between the wild-type and N301A mutant AASA values could be attributed 

to either the protein and/or glycan movements and we, therefore, normalise the values 

to remove changes in the AASA due to protein movements. To do this, we determined 

the “base/maximum” AASA by removing the glycans and re-calculating the AASA for 

these non-glycosylated frames. The final AASA ratio, per frame, is the ratio of the 

glycosylated and non-glycosylated AASA values, calculated by dividing the AASA of 

the glycosylated protein by the AASA of the non-glycosylated protein. Averages were 

calculated using these AASA ratio over time. 

 

We compared the mean AASA ratio, per residue, of the N301A mutant simulation to 

that of the wild-type to determine whether there was a statistically significant increase. 

The AASA ratio distribution of each residue under the null-hypothesis (wild-type and 

N301A mutant means are equal) was assessed by using 100 moving-blocks bootstrap 

replicates. The AASA ratio datasets for each model were mean normalised to satisfy 

the null-hypothesis before bootstrap replicates were drawn. The 50 ns blocks were 

defined such that each block could only start on whole nanoseconds for adequate 

sampling of the whole trajectory. There were, therefore, 450 possible blocks, with ten 

random blocks required for each bootstrap replicate. Variance normalisation was not 

performed due to numerous residues with average AASA ratio over time equal to zero. 

We further filtered the significant residues to include only those where the difference 

between the average AASA ratio for the wild-type and N301A mutant over time was 

10% or greater. We opted for moving-blocks bootstrap above a normal bootstrap 

approach to conserve the correlation between sequential observations. 
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4.3.3.3 Nearest glycan calculation for all protein residues 

 

Since the AASA results revealed that some residues have increased AASA ratios in 

the N301A mutant when compared to the wild-type simulation, we wanted to 

understand the shielding capacity of the surrounding glycans and determine which 

glycans are the most likely to affect the AASA ratio of particular protein residues. To 

achieve this, we calculated, for each residue, the distances between its atoms and all 

the atoms of the glycans. Each residue is subsequently assigned a nearest glycan 

based on the calculated distances. The nearest glycan for each residue was calculated 

for 25 evenly spaced frames across the 500 ns trajectory. The glycan that was most 

frequently the nearest to a particular residue throughout the trajectory, was defined as 

that residue’s “nearest glycan”. 

 

4.3.3.4 Overlap between wild-type glycans and specific glycans from the N301A 

mutant model 

 

The nearest glycan calculation revealed which glycans were nearest to the protein 

residues that had increased AASA ratios, and showed conformational changes, during 

the N301A mutant simulation compared to that of the wild-type. In order to determine 

if these conformational changes were specifically due to the additional space 

generated from the absence of glycan N301, we investigated whether the changes 

were viable when glycan N301 was present, i.e. whether or not the identified glycans 

caused large conformational clashes with any of the wild-type glycans. Hence, we 

iteratively removed the identified nearest glycans from the wild-type model trajectory 

and replaced each with the N301A mutant model trajectory equivalent. One glycan 

was analysed at a time and then restored before the next N301A mutant glycan’s 

overlap calculations were performed. All the frames of the wild-type and N301A mutant 

models were aligned to the first frame of the wild-type trajectory before the analysis 

was carried out. The overlap was calculated using UCSF Chimera168 for 2,500 evenly 

spaced frames across the 500 ns trajectory. The default values were used for the van 

der Waals overlap (0.6 Å) and potential hydrogen bonding between clashing pairs 

(subtract 0.4 Å). 
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4.3.3.5 Tree representation of hydrogen bonds between glycans to illustrate the 

cascade of events after the loss of a glycan 

 

In order to determine which further glycans were affected by the absence of glycan 

N301, but not immediately adjacent to the N301A mutation, we calculated and 

compared the hydrogen bonds that formed between glycans in the N301A mutant and 

wild-type simulations. The number of hydrogen bonds that formed between any two 

glycans was calculated for all 25,000 frames. The proportion of the total frames in 

which there was a hydrogen bond between any two glycans was calculated and 

rounded to the nearest percentage. The analysis was performed using the hbond 

function in cpptraj166 contained in AmberTools 14, using the default cut-off values for 

the distance between the heavy atoms (3 Å) and the angle between the acceptor and 

donor atom (135 degrees). The glycans that showed a change of 10% or greater in 

the frequency of the interaction between the wild-type and N301A mutant simulations 

were represented on tree graphs.  The analyses tree graphs were generated using 

R147 and, where necessary, the trajectory data was parsed into R using the Bio3D 

package181. Visual representation of the protein structures were generated using 

UCSF Chimera168. 

 

4.4 Results 

 

The CAP45.G3 subtype C virus was used to model the wild-type and N301A mutant 

trimer structures, comprising of protomers A, B and C, for molecular dynamics (MD) 

simulations. The CAP45.G3 Env sequence has 29 potential N-linked glycosylation 

sites (PNGSs, Figure 4.1) and although we could not computationally glycosylate each 

PNGS, given the extent of variation seen during glycan occupancy studies49,72–82,95, the 

generated model represents one possible form of the wild-type glycosylated model 

(Figure 4.2). The N301A mutant model matched the wild-type model, except the 

asparagine at position 301 was replaced with alanine and the glycan excluded. The 

systems were equilibrated for the first 20 ns of the simulation and analyses were 

performed on the remaining 500 ns. 
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Figure 4.1: Distribution of PNGSs of the CAP45.G3 strain  

Distribution of PNGSs for the CAP45.G3 strain (blue) relative to the PNGSs of the 
HIV-1 reference strain, HXB2 (orange). The gp160 conserved (C1-C4), variable (V1-
V5) and gp41 sequence regions are labelled and shaded to indicate the borders of 
each region. 
 

 

Figure 4.2: The CAP45.G3 computationally determined model vs. a crystal 
structure 

3D representation of the N-linked glycosylation sites of the (a) CAP45.G3 strain 
(computationally determined) and the (b) clade A BG505 strain88 (crystal structure). 
The protein and glycan residues are shown as surfaces and the glycans are labelled 
according to HXB2 numbering. The depicted orientation is such that the lipid 
membrane is located at the top and the V1/V2-loop regions are at the bottom of the 
figure.	
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4.4.1 Region-specific changes in the average antibody-accessible surface area 

(AASA) between the wild-type and N301A mutant viruses 

 

To investigate how the glycan shield compensates for the loss of glycan N301 in 

CAP45.G3, we calculated the antibody accessible surface area (AASA) of the wild-

type and N301A mutant models using a 10 Å probe (as an approximation of the size 

of an antibody87) with Naccess146. When directly comparing AASA values between the 

wild-type and mutant simulations, there are differences due to underlying protein 

movement (particularly in the loop regions) and as a result of the loss of a glycan. In 

order to isolate the effect of the glycan loss, we divided the AASA of each residue by 

its AASA when all glycans are removed from the same simulation. The non-

glycosylated value represents the “maximum” possible AASA for a residue. We next 

compared these AASA ratios between the wild-type and N301A mutant simulations 

using a bootstrap approach (see Methods section) to calculate which residues 

displayed a statistically significant (5% significance level) increase in the average 

AASA ratios between the wild-type and N301A mutant simulations.  

 

From the statistically significant subset (Figure 4.3, blue and orange residues), we 

distinguished those residues with a considerable increase in their AASA ratios, i.e. an 

average increase of 10% or greater, which we define as ‘substantial’ (Figure 4.3, blue 

residues), to further isolate those residues that were most affected by the loss of 

glycan N301. Residues identified in this manner were observed across all protomers 

and a total of 14, 42 and 18 residues were found for protomers A, B and C, 

respectively. Two clusters, one within the V3 region (Figure 4.3, pink and outlined) and 

one within the CD4 binding site region (Figure 4.3, green and outlined), were apparent. 

 

These clusters (Figure 4.3 (a) and (b), blue clusters) with a substantial increase in their 

AASA ratios (average increase of 10% or greater) surround the N301A mutant site, 

and since the clusters fall within the V3 loop and CD4 binding site regions, we defined 

each cluster as the “V3 sub-region” (including residues 303-305, 321-322, 323, and 

440) and “CD4 sub-region” (including residues 198, 365, 367, 368, 460, 462, and 464) 

(Table 4.1). 
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Figure 4.3: AASA for the CAP45.G3 N301A mutant model 

N301A mutant model with different orientations (A – C, 120° increments) to show each 
protomer (different shades of tan) and the residues with statistically significant 
increases in their average AASA ratios relative to the wild-type simulation (difference 
in average AASA <10% is orange, ≥10% is blue). A statistically significant increase 
was evaluated at a 5% significance level using a bootstrap approach (see Methods). 
The V3 (pink) and CD4 (green) regions are outlined. 
 

Table 4.1: Residues with significantly different AASA values between the wild-
type and N301A mutant simulations.  

SUB-REGION [ENV REGION] RESIDUES 

V3  [V3] 303-305, 321-322, 323, [C4] 440 

CD4  [C2] 198, [C3] 365, 367, 368, [V5] 460, 462, 464 

 

For these V3 and CD4 sub-regions, we calculated the average AASA ratios over time 

(glycosylated region total, over non-glycosylated total averaged over time) for the 

protomers of the wild-type and N301A mutant models ((Table 4.2). Apart from the CD4 

sub-region on protomer A, the average AASA values are substantially higher for the 

N301A mutant sub-regions on protomer B (33% for the CD4 sub-region and 14% for 

the V3 sub-region, N301A mutant virus) than for the other N301A mutant or wild-type 

protomers. 
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Table 4.2: Average AASA ratios (%) of the residues for the wild-type (WT) and 
N301A mutant (M) viruses that form part of the CD4 sub-region and V3 sub-
region.  

 Protomers 

 A B C 

 WT M WT M WT M 

CD4 sub-region 30 30 8 33 20 4 

V3 sub-region <1 0 <1 14 <1 <1 

 

Because the laboratory study showed that the N301A mutant strain had increased 

resistance to VRC01, and VRC01-like, antibodies compared to the wild-type strain, we 

also calculated the AASA ratios for the residues that form part of this epitope (residues 

[C1] 123, 128, 129, [C2] 276, 278-283, [C3] 365-368, 371, [C4] 427-430, 455-459, [V5] 

460-461, 463, 465-467, 469, 471, [C5] 472, 474, 476182). Apart from protomer C, 

where there was a substantial decrease in the AASA ratio for the N301A mutant model 

(wild-type: 11% and N301A mutant: 2%), the wild-type and N301A mutant ratios 

remained relatively unchanged for protomers A (wild-type: 11% and N301A mutant: 

16%) and B (wild-type: 10% and N301A mutant: 14%). 

 

4.4.2 Glycan conformational changes around the N301A mutation 

 

As shown in previous studies42,44,53–55, and evident from the AASA ratio results 

focussing on glycan N301, glycosylation shields the underlying protein. To fully 

understand the shielding capacity of any glycan, it is important to establish which 

glycans are capable, and most likely given their proximity, to affect the AASA of a 

particular protein residue. To achieve this, we determined the nearest glycan to each 

protein residue by calculating the distances between its atoms and all the atoms of 

each of the glycans for the wild-type and N301 mutant trimer models. Since the 

systems are dynamic, the nearest glycan can vary between frames and we defined 

each glycan’s ‘neighbourhood’ as the region that includes all the protein residues 

nearest to that glycan in the majority of the frames. For example, the protein residues 

surrounding glycan N442 form the neighbourhood of glycan N442 and can be 

represented on the 3D structure. These calculations allow us to determine which 
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glycans shield the residues of the sub-regions identified during the AASA calculations 

(Table 4.1).  

 

We specifically focus on comparing the neighbourhoods of the N301A mutant 

protomers to their wild-type counterparts, since the starting structures are identical 

and thus the differences in glycan neighbourhoods are likely to be due to the loss of 

glycan N301. To further visualise and interpret the 3D representation of the glycan 

neighbourhoods, we also calculate the average centre of mass position (to illustrate 

the directionality of the change), throughout the simulation, for each glycan. The 

results are described for the two sub-regions surrounding the N301A mutation, CD4 

and V3, identified during the AASA calculations. 

 

CD4 sub-region:  Our neighbourhood calculation determined which glycans were 

nearest to each of the residues within each sub-region. For the C3 residues (CD4 sub-

region, Table 1), glycan N386 was the nearest to these residues for all wild-type 

protomers, as well as for protomers A and B of the N301A mutant, whereas glycan 

N197 was the nearest on protomer C of the N301A mutant (Table 4.3). To further 

investigate how glycan N197 replaces glycan N386 as nearest glycan to the C3 

residues, we represent their 3D neighbourhoods on all protomers (Figure 4.4). There 

is a clear difference in the conformation of glycan N197 (protomer C; N301A mutant) 

when compared to its wild-type counterpart, and this conformational change results in 

a shift in the residues contained in its neighbourhood (Figure 4.4 (a) and (b), protomer 

C). A large proportion (29%) of the neighbourhood of the wild-type glycan N197 

(protomer C) contains residues from the V3 region of protomer B. However, the 

neighbourhood of glycan N197 of the N301A mutant includes a large proportion (31%) 

of CD4 binding residues from protomer C and five fewer V3 residues of protomer B 

than the wild-type. 
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Table 4.3: The glycans nearest to the two protein clusters, with a statistically 
significant and substantial (≥10%) increase in their average AASA ratio (CD4 
and V3 sub-region), for the three protomers (A, B and C). 

 Protomers 
 A B C 

CD4 sub-region:    

Wild-type N386, N463 N386, N355 N276, N386, N463 

N301A mutant N276, N386 N386, N463 N197, N276, N463 

    

V3 sub-region:    

Wild-type N156, N262, N442 
N156, N197, N301, 

N442 

N156, N197, N262, 

N301 

N301A mutant N156, N262, N442 N156, N442 N156, N262 
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Figure 4.4: Neighbourhood of the CD4 sub-region 

Neighbourhoods of the (A) wild-type and (B) N301A mutant glycans nearest to the 
CD4 sub-region for the three protomers (A, B, and C): glycans N197 (orange), N301 
(blue, only present in the wild-type), and N386 (pink). Horizontal lines represent 
residues that are in different neighbourhoods when comparing the wild-type and 
N301A mutant. The arrows originate from the Cα atom of the Asn and end at the 
average centre of mass position for the selected glycans. The representations are 
cropped around the CD4-binding site of each protomer and the surface representation 
of residues on adjacent protomers are shown as opaque. 
 

Also, for protomer C of the N301A mutant, a change in the conformation of glycan 

N386 is associated with the change in conformation of glycan N197 (Figure 4.4 (b) 

protomer C), which causes the exclusion of any CD4 binding residues from glycan 

N386’s neighbourhood. Conversely, glycan N386 of the N301A mutant protomer A 

also undergoes a conformational change (Figure 4.4 (b) protomer A), but this change 

results in the inclusion of an equivalent number of CD4 binding residues as its wild-

type counterpart. 
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V3 sub-region:  The neighbourhoods of the glycans nearest to the V3 sub-region, 

N156, N262 and N442 (Table 4.3), are shown in Figure 4.5. Additionally, the 

neighbourhood of glycan N446 is included because its neighbourhood is itself 

enclosed by the abovementioned V3 sub-region glycan neighbourhoods (Figure 4.5 

(a) protomer B). There are marked differences between the conformations of glycans 

N442 and N446 of the N301A mutant model on protomer A, and to a lesser extent 

those on protomers B and C, when compared to their wild-type counterparts (Figure 

4.5).  

 

 

Figure 4.5: Neighbourhood of the V3 sub-region 

Neighbourhoods of the (A) wild-type and (B) N301A mutant glycans nearest to the V3 
sub-region for the three protomers (A, B, C): glycans N156 (orange), N262 (yellow), 
N301 (blue, only present in the wild-type), N442 (pink), and N446 (green). Horizontal 
lines represent residues that are in different neighbourhoods when comparing the wild-
type and N301A mutant. The arrows originate from the Cα atom of the Asn and end 
at the average centre of mass position for the selected glycans. The representations 
are cropped around the V3 region of each protomer and the surface representation of 
residues on adjacent protomers are shown as opaque. 
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Glycan N442 (N301A mutant) re-orientates towards the N301A site in all the protomers 

to varying degrees, with the largest shift occurring on protomer A (Figure 4.5 (b) 

protomer A) and only a slight movement on protomer C (Figure 4.5 (b) protomer C). 

Comparatively, glycan N446 (N301A mutant) re-orientates towards the N301A site on 

protomers A and C only (Figure 4.5 (b) protomers A and C), while for protomer B, the 

glycan shifts away from the N301A site (Figure 4.5 (b) protomer B). Finally, glycan 

N262 on protomer C (N301A mutant) also re-orientates towards the N301A site 

(Figure 4.5 (b) protomer C). 

 

4.4.2.1 Protomer-specific glycan conformational changes that compensate for the loss 

of glycan N301 

 

Since glycans N197, N262, N386, N442 and N446 were identified as the glycans 

nearest to the protein residues that had increased AASA ratios and showed 

conformational changes, we investigated whether these conformations were viable 

when glycan N301 was present, i.e. whether or not they caused large conformational 

clashes with any of the wild-type glycans, which would imply that the N301A mutant 

glycan conformations are impossible in the wild-type model. Hence, we superimposed 

the N301A mutant glycan conformations of each protomer onto its wild-type 

counterpart and directly compared each time point. For each of these N301A mutant 

glycans, we calculated the proportion of frames where an atomic overlap was 

observed with any of the wild-type glycans, as well as the average number of atoms 

with an atomic overlap with wild-type glycans (Table 4.4). Due to differences between 

the results, each protomer is described separately. 
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Table 4.4: Overlap calculations between the N301A mutant glycan substitute 
and any wild-type glycan.  

N301A mutant 

glycan 

substitute 

Wild-type glycans 

 that clash with  

the N301A substitute 

Protomers 

A B C 

N197 

N133  53%a; 45b  

N156c 86%; 58 68%; 46 <1%; 2 
N160  33%; 30  

N301 21%; 37 10%; 25 12%; 27 
N386 55%; 25 <1%; 6 94%; 115 

     

N262 

N301 77%; 22 3%; 7 97%; 58 

N334  <1%; 1 16%; 6 

N442 90%; 42 12%; 13 67%; 26 

N446 6%; 9 99%; 175 85%; 23 

     

N386 

N137 9%; 5 17%; 67  

N197 11%; 13 1%; 14 6%; 7 

N463 13%; 33 22%; 20 8%; 43 

     

N442 

N133   34%; 14 

N137  13%; 49 59%; 43 

N156 21%; 33 7%; 43  

N262 52%; 9 2%; 13 1%; 6 

N301 99%; 226 29%; 28 19%; 14 

N446  31%; 45 36%; 19 

     

N446 

N137 15%; 13  1%; 12 

N262 >99%; 80 88%; 86 24%; 9 

N301 22%; 18 <1%; 16 66%; 36 

N334  24%; 56 3%; 49 

N442 95%; 148 6%; 16 96 %; 125 
a
The proportion of frames with a overlap (%).  

b
The average number of overlapping atoms in those frames with a overlap. Wild-type glycans are 

omitted if the proportion of frames with an overlap is below 10% on all protomers. 
c
Wild-type glycans on a different protomer from that of the N301A mutant glycan are shown in bold.  
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Protomer A:  The glycan with the largest and most frequent overlap with glycan N301 

(protomer A; wild-type) was glycan N442 (N301A mutant). In 99% of the frames, 

glycan N442 occupies the same space as glycan N301 does in the wild-type simulation 

with an average of 226 overlapping atoms per frame (Table 4.4). A Man-9 glycan 

(described in the Methods section) has a total of 244 atoms; 226 clashes therefore 

imply that almost all of the atoms overlap with glycan N301 and that glycan N442 

(N301A mutant) occupies most of the space vacated by glycan N301 for practically 

the entire duration of the trajectory. Similarly, glycan N262 (protomer C; N301A 

mutant) occupies some (22 clashes per frame) of the space vacated by glycan N301 

for a large (77%) proportion of the trajectory (Table 4.4).  

 

Concurrently, the space vacated by glycans N442 and N262, is in turn occupied by 

glycan N446 (N301A mutant). This is evident from the large proportion of frames with 

an atomic overlap, as well as a large average number of overlapping atoms per frame 

(Table 4.4), observed between glycan N446 and glycans N442 (95%, 148 overlapping 

atoms) and N262 (>99%, 80 overlapping atoms). 

 

Protomer B:  None of the glycans on protomer B have noticeably large overlap with 

glycan N301 on the wild-type protomer B, which suggests that the wild-type glycan 

conformations are maintained on the N301A mutant protomer B.  

 

Protomer C:  The largest overlap with glycan N301 were observed for glycan N262 

(N301A mutant), where 97% of the frames have an atomic overlap with glycan N301, 

with an average of 58 overlapping atoms per frame, and for glycan N446 (N301A 

mutant; 66%, 36 overlapping atoms; Table 4.4). 

 

Lastly, the nearest glycan results highlighted the conformational change of glycan 

N197 (protomer C; N301A mutant). This shifted conformation appeared to occupy the 

space where glycan N386 of the wild-type is located, which is confirmed here by the 

large overlap observed between glycan N197 (N301A mutant) and glycan N386 (wild-

type). Only a small overlap is observed for glycan N386 (protomer C; N301A mutant) 

with glycan N301, which suggests that the adjusted conformation for this glycan is 

viable in the presence of glycan N301. The conformation of glycan N197 (protomer C; 

N301A mutant), however, has moderate overlap with glycan N301 (12%, 27 
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overlapping atoms). Further investigation revealed that glycan N197 overlaps with 

glycan N301 at two specific time intervals (14-35 ns and 346-500 ns) and not 

throughout the simulations. This suggests the ‘new’ conformation for glycan N197 can 

coexist with glycan N301. 

 

4.4.3 Domino effect of glycan conformational changes: how changes propagate and 

taper off 

 

During the investigation of the protomer specific conformational changes, we observed 

that the space generated by removing glycan N301 is occupied by another glycan, 

which in turn leaves a new space that is then occupied by yet another glycan. To 

extend the investigation of glycan conformational changes beyond those glycans 

nearest to the N301A mutation site, while maintaining the relevance of the changes 

(i.e. the changes associated with the loss of the N301 glycan), we compare the 

frequency of the hydrogen bonds that form between glycans in the wild-type and 

N301A mutant. Substantial changes in the hydrogen bond network allude to changes 

in the conformations of glycans adjacent to those glycans near the N301A mutation 

site. For each of the identified glycans, we calculated the average centre of mass 

position, throughout the simulation, for the wild-type (Figure 4.6 (a), orange arrows) 

and N301A mutant (Figure 4.6 (a), blue arrows).
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Figure 4.6: Domino effect of glycan conformational changes on the three 
protomers 

(A) Structures illustrating the location of glycans. The arrows originate from the Cα 
atom of the Asn and end at the average centre of mass position for the selected wild-
type (orange) and N301A mutant (blue) glycans identified by the hydrogen bond 
analysis for protomers A, B and C. Curved arrows indicate the degree of change in 
directionality, e.g. the large movement for glycan N399 on protomer C. The 
representations are cropped around the V3 region of each protomer and the surface 
representation of residues on adjacent protomers are shown as opaque. (B) Each 
schematic – protomer A, B and C - shows the hydrogen bond network starting from 
glycan N442 (first node) on protomer A, B and C, respectively. Solid borders around 
glycan nodes and broad arrows represent glycans and interactions that form part of 
the domino effect considered, whereas dotted borders and fine arrows indicate any 
glycans and interactions outside the considered domino effect. The arrows connecting 
glycan nodes distinguish interactions that are either greater on the wild-type (WT; 
orange) or on the N301A mutant (M; blue). 
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Protomer A:  The conformational change domino effect is clear on protomer A, where 

the conformations of six glycans (N442, N446, N137, N133, N386 and N463) are 

affected. In the wild-type, these glycans are interlinked by sequential hydrogen bonds. 

However, the interlinked nature of these glycans is broken in the absence of glycan 

N301, and two glycan clusters exist on the N301A mutant. The first cluster includes 

glycans N442, N446 and N137, and the second glycans N133, N386 and N463.  

 

Glycan N442 occupies the space vacated by glycan N301 (Figure 4.6 (a) protomer A). 

In turn, the space vacated by glycan N442 is occupied by glycans N446 and N137 

(Figure 4.6 (a) protomer A). These rearrangements result in an increased interaction 

between glycans N442 and N446 (9% wild-type vs. 20% N301A mutant; Figure 4.6 (b) 

Protomer A). Glycan N137 on the other hand, no longer interacts with glycan N442 

(33% wild-type vs. 0% N301A mutant; Figure 4.6 (b) Protomer A) but instead has an 

increased interaction with glycan N446 (14% wild-type vs. 59% N301A mutant; Figure 

4.6 (b) Protomer A). The second cluster is separated from the first by the change in 

conformation of glycan N137 (Figure 4.6 (a) protomer A), which eliminates the 

interaction between glycans N137 and N133 (13% wild-type vs. 0% N301A mutant; 

Figure 4.6 (b) Protomer A). This reduced structural hindrance near glycan N133 may 

allow for its re-orientation (Figure 4.6 (a) protomer A) and subsequent increased 

interaction with glycan N386 (5% wild-type vs. 30% N301A mutant; Figure 4.6 (b) 

Protomer A), as well as with glycans N463 (2% wild-type vs. 16% N301A mutant; 

Figure 4.6 (b) Protomer A). There is also an increased interaction between glycan 

N386 and N463 (0% wild-type vs. 17% N301A mutant; Figure 4.6 (b) Protomer A). 

Other changes in the hydrogen bond network quickly taper off to glycans located at 

the protein apex (Figure 4.6 (b) Protomer A). 

 

Protomer B:  Apart from glycans N156, N197, N262, N386, N442 and N446, which 

were previously investigated on protomer B during the neighbourhood and subsequent 

overlap analyses, the hydrogen bond network further identifies interaction with glycan 

N334 (N301A mutant; Figure 4.6 (b) Protomer B). However, glycan N334 shows no 

movement when compared to its wild-type counterpart (Figure 4.6 (a) protomer B), 

which indicates that there was almost no domino effect. 
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Protomer C:  The domino effect was similar to that of protomer A, however, glycans 

N446 and N463 (N301A mutant) are not implicated, whereas glycan N399 is. The 

hydrogen bonds between glycans N137 and N133 persist, although at a reduced scale 

compared to the wild-type (76% wild-type vs. 56% N301A mutant; Figure 4.6 (b) 

Protomer C). The hydrogen bonds between glycans N133 and N386 were not present 

in the wild-type and are substantial in the N301A mutant (0% wild-type vs. 39% N301A 

mutant; Figure 4.6 (b) Protomer C). The persistent interaction between glycans N133 

and N137 results in all these interlinked glycans collectively moving closer to the gap 

left by the N301A mutation on the N301A mutant model (Figure 4.6 (a) protomer C). 

In our model, this movement, coupled with the increase in interaction between glycans 

N133 and N386, likely contributes to the ‘new’ conformation of glycan N197 (protomer 

C; N301A mutant). 

 

4.5 Discussion 

 

Here, we analysed two 500 ns molecular dynamics simulations (CAP45.G3 wild-type 

and CAP45.G3 N301A mutant) and show that the systems imitate in vitro 

neutralisation data – the glycan shield restores itself and retains its ability to protect 

key epitopes after the removal of glycan N30153. This was in contrast to a second 

isolate, Du156.12, where the laboratory results showed that this N301A mutant virus 

had increased sensitivity to a panel of sera from chronically infected individuals53, and 

where the in silico simulations of the Du156.12 wild-type and N301A mutant models 

were vastly different to that of the CAP45.G3 models (Supplementary Figure S4.1). 

The key observation during our initial, in silico, comparative analysis was that the 

conformational differences of the glycans on the wild-type models, as well as the 

landscapes around each of these glycans, likely affected the ultimate changes in the 

glycan shields. The importance of this collective behaviour of glycans on the Env 

surface was previously noted by Lemmin et al.86, describing several, relatively stable, 

glycan microdomains86. Since Moyo et al. 53 speculated that the CAP45.G3 virus 

typified a subset of viruses where the loss of glycan N301 was tolerated, i.e. the 

protective qualities of the glycan shield, or perhaps the glycan microdomain, were 

retained, the focus of our manuscript was on providing a thorough account for the 

suggested compensation. Therefore, for the CAP45.G3 modelled systems, we 
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describe, in detail, the change in the glycan landscape, and cascade of events, that 

may have contributed towards the maintenance of the glycan shield for this viral 

isolate. The only structural difference between the model simulations is the presence 

or absence of the N-linked glycan at position 301 and the stability of the distinct glycan 

interactions throughout each simulation suggests that the observed differences are 

meaningful.  

 

We observed clear evidence of compensation for two of the three N301A mutant 

protomers (A and C) within the trimeric protein structures. The antibody accessible 

surface area (AASA) ratios of these two protomers are equivalent to their wild-type 

counterparts, despite the lack of glycan N301. However, unexpectedly, there are 

differences in the particular glycans compensating for the loss. Glycan N442 bears the 

bulk of the compensation burden on protomer A, whereas glycans N446 and N262 

share the burden on protomer C. However, even though glycan N442 bears the 

compensation burden on protomer A, its ‘new’ conformation was considerably 

influenced by glycan N446 on the same protomer. The spatial pressure from glycan 

N446 resulted in a glycan N301-like conformation observed for glycan N442 (protomer 

A; N301A mutant). Therefore, this suggests that in our model, glycan N446 is essential 

for maintaining the glycan shield by not only directly bearing a part of the 

compensation burden, but also through its substantial influence on the conformation 

of glycan N442. Although we are currently unaware of studies describing the influence 

of glycan N446 on epitopes accessibility, there have been reports on glycan N442 and 

its role in shielding epitopes of the CD4 and gp41 regions55. This suggests that glycan 

N446 may also influence the availability of epitopes in these regions.  

 

In contrast to protomers A and C, we found ambiguous evidence of compensation for 

protomer B (N301A mutant), where increased AASA ratios were observed for various 

residues. The apparent lack of compensation for protomer B can be, in part, attributed 

to the lack of conformational change in glycan N442, as well as the substantial change 

in the conformation of glycan N197 on protomer C (adjacent to protomer B), which is 

commonly reported as shielding the CD4 and V3 regions54,55.  

 

We also identified specific glycan conformational changes that have a direct impact 

on the accessibility of the modelled protein surface. The conformational change of 
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glycan N197 (protomer C; N301A mutant) has drastic implications for the AASA ratios 

of the residues of the CD4 sub-region and VRC01 epitope on protomer C. Both the 

residues in the CD4 sub-region (Table 4.1) and the residues of the VRC01 epitope 

show decreased AASA ratios for protomer C of the N301A mutant model. Glycan N386 

(protomer A; N301 mutant) also plays a role in maintaining the AASA ratio of residues 

that form part of the CD4 sub-region (Table 4.1); however, in comparison, the 

conformational change of glycan N386 does not lead to a decrease in the AASA ratio 

of the VRC01 epitope, but instead, the removal of glycan N301 leads to a slight 

increase in AASA for this region (protomer A). Thus, based on the AASA results, 

glycan N386 may not contribute to the increased resistance observed to the VRC01 

bNAb (unlike glycan N197), which is contrary to evidence of this glycan shielding the 

CD4 binding site70,183.  

 

Despite the popularity of calculating the AASA86,87,89,90 as a predictor of whether 

residues are accessible by antibodies, it remains to be seen whether they are useful, 

and accurate, for describing the contact between HIV-1 gp160 and antibodies. For 

example, there are considerable differences between the conformation of particular 

HIV-1 envelope glycans co-crystalised with VRC01 compared to an unliganded crystal 

structure88. Additionally, Stewart-Jones et al.88 showed that substantial overlap 

occurred between broadly neutralising antibodies and one or more glycan/s 

throughout 500 ns trajectories, suggesting that known broadly neutralising antibodies 

likely need to accommodate at least one glycan during the binding process. Given this 

evidence, the passive nature of AASA calculations is likely to result in an 

underestimation of the accessibility of residues in regions where the “shielding” 

glycans can be flexible. This may be the case for glycan N386 (protomer A; N301A 

mutant), where the flexibility of glycan N133 (protomer A; N301A mutant) increased 

the structural hindrance near glycan N386. This, in turn, reduced the freedom of 

movement of glycan N386 resulting in slightly higher AASA ratios around this glycan 

in our model, but potentially still leading to increased VRC01 resistance due to its 

reduced flexibility to accommodate the antibody. However, complete resistance to 

VRC01 was not observed for the CAP45.G3 N301A mutant53 and it is unknown if 

glycan N386 plays a role, or whether the conformation of glycan N197 is solely 

responsible for, the observed increase in VRC01 resistance.  
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Due to the potential caveats associated with AASA, we extended the analyses to 

examine the capacity for each glycan to act as a shield to its surrounding protein 

residues by determining which glycan was the nearest to each protein residue across 

time. A benefit of this analysis is the ability to generate leads in the cases where the 

binding site of a particular antibody is known and point mutations that would reduce 

resistance are sought. The analysis also provides an intuitive and easy representation 

of the glycan positions over time. For example, the large change in the conformation 

of glycan N197 (protomer C; N301A mutant) is apparent and easily related to a change 

in the conformation of glycan N386 (protomer C; N301A mutant; Figure 4.4 (b)). 

 

The nearest glycan approach also presents certain disadvantages; small differences 

are easily overlooked and, since the crowded nature of the HIV glycan shield can result 

in large conformational differences that change the glycan neighbourhood only 

slightly, small changes could be an important consideration. Additionally, the nearest 

glycan may not necessarily be the shielding glycan, which is the case when glycans 

are buried and therefore relatively inflexible. Glycan N262, where a large 

neighbourhood was observed, presents one such case. Visual inspection suggested 

that other glycans, only slightly further away, may have greater capacity to shield 

certain residues assigned to glycan N262. However, due to its static, buried, nature, 

these residues were consistently assigned to glycan N262, and therefore removing it 

prior to the analysis might be prudent.  

 

The length of the trajectory (MD simulation), which relates to the uncertainty 

associated with observing enough of the sample space during the simulation is a key, 

and ongoing, problem of molecular dynamics research of large structures. We would 

expect that, on a long enough time scale, the glycans would populate similar volumes 

across the protomers. However, the glycans of each protomer adopt distinct 

conformations that do not interconvert during our simulation. Unlike the protomer 

scissoring reported by Lemmin et al.86, we did not observe this effect for either the 

wild-type or N301 mutant model simulations, but did identify small scale, protomer 

specific, protein movements (data not shown). Nonetheless, despite the differences, 

the data for each protomer is self-consistent and stable; i.e. although the effect of 

glycosylation on the AASA is different across protomers, the effect is constant in each 

protomer throughout the simulation. A possible solution to this issue is to use replicate 
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exchange (which should explore greater proportions of the potential energy surface) 

but requires more study. Yang et al.89 used replicate exchange and described 

enhanced sampling for glycosylated Env trimers; it would be worthwhile for future 

studies to compare the degree of convergence in the observed glycan shapes 

between different protomers in the different approaches. The advantage of the 

molecular dynamic protocol used here is that it clearly shows that there are glycan-

glycan and glycan-protein interaction networks that extend across the Env surface and 

persist on at least a 500 ns timescale. Although the lack of convergence between 

protomers is concerning for drawing statistically strong conclusions, it is interesting, 

and important, to note that the interactions driving the observed differences occur at 

longer time scales than 500 ns.  

 

Finally, our modelling results suggest that the loss of a glycan, due to a point mutation, 

can result in a cascade of events on the same protomer (intra-protomer) that could 

contribute towards increased resistance to epitopes distal to the location of the initial 

sequence mutation causing the cascade of events – in this case the VRC01 epitope. 

We initially speculated that this epitope would be influenced directly by the N301A 

mutation via cross-protomer interactions (through the additional space created), since 

it has been shown that the N301 glycan overlaps with VRC01 on an Env crystal 

structure bound to this antibody88. However, here we present evidence for intra-

protomer conformational rearrangements of specific glycans, which we believe 

contributed to the increased resistance of the CAP45.G3 N301A mutant to VRC01, 

and other VRC01-like, antibodies.  

 

It is unlikely that the glycan shield of the CAP45.G3 isolate is unique in its ability to 

compensate for a loss of a glycan, however, the particular glycan distribution and 

clustering meant that the absence of glycan N301 was not crucial for the maintenance 

of its protective qualities as a whole. The further implication is that different viral Env 

glycoproteins will likely each have their own set of glycans that are, individually, either 

dispensable or indispensable in forming, and maintaining, the glycan shield. This 

argument extends to the asymmetrical effects seen across protomers; the degree of 

glycan conformity, both in terms of site occupancy and glycan type, between the three 

protomers of an Env trimer is currently unknown and largely unacknowledged in HIV-

1 Env studies. It is completely plausible that the HIV-1 glycans of Env trimers vary 
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across their protomers and that these differences affect the neutralisation efficiency of 

glycan-dependent antibodies in different ways. This ties in with the knowledge that 

antibodies are not always present on all three protomers, and that glycan 

heterogeneity is one likely cause of this finding115,184.  

 

Despite the caveats associated with molecular dynamics simulations, as well as the 

immense potential variation in the Env glycan shields of HIV-1 isolates, this study 

provides a detailed investigation of how the loss of a single HIV-1 Env glycan does not 

result in a hole, but rather results in a cascade of events that may have led to the 

maintenance of the glycan shield and increased resistance to a broadly neutralising 

antibody observed for the viral isolate. Given the focus on Env glycans within HIV-1 

vaccine research, and the importance of these glycans for bNAb binding, we hope the 

techniques and results presented here will encourage further in-depth consideration 

of the virus-specific glycan landscapes. Future investigations, both in vitro and in silico, 

focussing on different glycan point mutations and including systems composed of a 

variety of glycan forms, will demonstrate to what extent these results translate, and 

are predictive, across viral isolates and subtypes.  
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Chapter 5 Conclusion and Future Work 

 

This manuscript focussed on examining the HIV-1 Env glycan shield using molecular 

dynamics simulations. These molecular dynamics simulations were carried out on the 

computationally determined, fully glycosylated, Env structures of two wild-type HIV-1 

subtype C isolates and their paired N301A mutant variants, i.e. where glycan N301 

was removed. These particular strains were used since in vitro data showed that the 

absence of glycan N301 had a substantially different effect on the neutralisation 

sensitivity of the two strains, despite the large (~90%) identity between the sequences. 

Therefore, the project focussed on using computational techniques to describe the 

differences between the glycan shields of these two isolates and to identify the 

particular glycans that contributed toward maintaining the glycan shield of the resistant 

strain (to both frequently elicited antibodies and a bNAb), despite the missing glycan. 

However, the literature on the analysis of molecular dynamics simulations in this 

context is limited and, consequently, an additional goal for this study emerged very 

quickly, which was to determine what analyses were not only feasible, but also 

provided useful features for comparison. 

 

Initially, in order to understand the potential impact of removing glycan N301, static 

state representations of the fully glycosylated Env trimer structures were compared 

(Chapter 2). These results suggested that the removal of glycan N301 likely exposed 

a greater surface area on one model compared to the other and in that way affected 

the neutralisation sensitivity of each strain uniquely, which was in agreement with the 

in vitro study. However, since molecular molecules are dynamic and change 

conformation over time, the static state representations offered only limited information 

for carrying out comparative studies.  

 

Therefore, the next step was to carry out and compare molecular dynamics 

simulations of the modelled structures (Chapter 3). The results of these comparisons 

revealed glycan position-specific differences. For example, the N442 and N197 

glycans were more likely to vary between models than the N156 glycans, irrespective 

of which models were compared. Nevertheless, the comparisons also demonstrated 

that not only can equivalent glycans adopt distinct conformations specific to each wild-

https://etd.uwc.ac.za
http://etd.uwc.ac.za/



 138 

type model, but that model-specific conformations emerged when glycan N301 was 

removed from the glycan shield. Moreover, the N301A mutant model-specific glycan 

conformations were directly associated with the protein residues ultimately exposed. 

The difference in the locations of these exposed regions on the N301A mutant models 

may explain the varied resistant to neutralising antibodies observed, in vitro, after 

glycan N301 was removed. Furthermore, the results also demonstrated that each 

glycan shield is conformationally unique, regardless of large sequence identity (e.g. 

between the wild-type models) or where the glycan shields differ by only a single 

glycan (e.g. between a wild-type model and its N301A mutant counterpart).  

 

However, due to the random variation implicit in macromolecular structures, a degree 

of uncertainty remained regarding whether the conformational heterogeneity observed 

for glycans located farther from the N301A mutation were a direct result of the N301A 

mutation. Additionally, these result did not provide substantial insight on how one of 

the strains remained resistant to the frequently elicited neutralising antibodies and had 

increased resistance to a CD4-binding site bNAb despite the loss of glycan N301. 

Therefore, due to this remaining uncertainty, a detailed comparison between the wild-

type simulation and its N301A mutant counterpart was carried out on the resistant 

strain (Chapter 4). The results of the detailed computational analysis showed that the 

glycan shield of this strain retained its ability to shield the protein residues even after 

the removal of glycan N301. Moreover, the change in the glycan landscape, and 

cascade of events, that contributed towards the maintenance of this glycan shield and 

the increased resistance to a bNAb epitope located at the edge of the cascade, were 

discernible. 

 

This thesis therefore provides a detailed analysis of the HIV-1 Env glycans and their 

capacity to protect the underlying protein and, in some cases, shield the virus against 

frequently elicited neutralising antibodies. During the study, several key 

considerations, and important opportunities for further explorations, for vaccine and 

treatment studies focussing on HIV-1 Env were highlighted. These include: 

 

- PNGS profiles can vary substantially despite large sequence identity 
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- The conformations of equivalent glycans (glycans that share an HXB2 

reference sequence position) can be distinct between strains and, therefore, 

this should be considered during all Env glycan shield comparisons 

- The conformation of a glycan is dependent on the conformations of the 

surrounding glycans 

- Protomers may present alternate equilibrium states 

- Glycans move and adjust to accommodate changes in the surrounding 

landscape 

- Glycan adjustments, after a glycan is removed, could lead to the maintenance 

of the glycan shield 

 

These considerations came to light throughout this project where, broadly speaking, 

the analyses always focussed on one of three glycan features, i.e. the glycan’s 

surroundings, its conformation, or its function (shield and/or target). These glycan 

features are intrinsically related since a change in one likely impacts the others. For 

example, removing a glycan changes the surroundings of the neighbouring glycans, 

which themselves could change conformations as a result, and this could affect the 

region they shield. Therefore, a single change in the glycan shield can affect the region 

each glycan is capable of shielding, i.e. its fundamental function within the glycan 

shield. However, it is important to note that an altered feature does not necessarily 

imply that the glycan shield is impaired. In fact, glycans appear to be capable of 

altering their features over time, and these changes may even be distinct across 

protomers, as demonstrated in this thesis where unique glycan features were 

observed for the different protomers of the same model. Thus, it is important that 

glycan features are not considered in isolation at a single time point, but rather as an 

integrated network that changes over time. 

 

However, this type of analysis is complex, since determining a fully glycosylated HIV-

1 Env trimer structure and carrying out molecular dynamics simulations are non-trivial 

tasks. The glycosylated structures can either be obtained from deposited X-ray crystal 

structures or computationally determined, as was done here. The considerable 

differences between these types of structures (Figure 4.2) demonstrate the 

advantages of computationally determined structures, which allow the composition of 

the system to be defined in much more detail. Together, the established methods that 
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predict protein structures from template crystal structures, the higher resolution of 

available HIV-1 Env crystal structures, and the development of tools that facilitate 

computational glycosylation of these models, will inevitably streamline the creation of 

computationally-determined glycosylated models and alleviate a substantial portion of 

the burden associated with performing HIV-1 Env molecular dynamics simulations. 

 

It is important to reiterate that, although this study has offered one of the current most 

systematic analysis of the molecular dynamics simulations of HIV-1 Env and its 

glycans, it was conducted on only 500 ns simulations of glycosylated Env trimers that 

lacked the MPER regions and where the glycan shield comprised of only 

Man9GlcNAc2 glycans. In the context of a virion, however, the Env trimer is 

membrane-bound with variations in occupancy and glycoforms at N-linked glycan 

sites, as well as glycoform micro-heterogeneity at the same N-linked glycan site (i.e. 

a wide spectrum of similar, but not identical, glycoforms have been identified at the 

same site). These features give rise to additional questions regarding the differences 

between glycan characteristics of Env glycoproteins. Therefore, future work will 

include investigating glycan features over longer time scales, the effect of various 

glycoforms at the same or different positions, and models that include both MPER and 

a membrane in order to determine the impact of membrane proximity on the 

surrounding glycans.  

 

In conclusion, the current study has demonstrated that the landscape of the glycan 

shield contains immense diversity, and that glycans that share an HXB2 reference 

sequence position will not necessarily conform in shape, dynamics and function 

between different strains. These conformational differences ultimately determine 

whether or not the glycan shield can compensate for the loss of a glycan. This is a 

key, and too often ignored, detail, since it directly relates to the main function of the 

glycans in their ability to shield and protect the virus from immune surveillance. The 

results from the analysis of the simulations in this thesis further highlight the 

remarkable potential of molecular dynamics simulations, which can be used as a 

powerful predictive technique to facilitate, and direct, laboratory studies focussing on 

vaccine research.  
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Supplementary Materials 

 

Chapter 3  

 

Figure S3.1: Conformational heterogeneity between wild-type glycan siblings 
and the N301A mutant siblings. 
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Figure S3.2: Standard PCA plots for the CAP45.G3 glycans 

The standard PCA plots for the CAP45.G3 paired-model comparison performed on 
the glycans of protomer A (A), B (B) and C (C). Demonstrating the projection of the 
frames onto the (i) first and second principal components as well as (ii) the proportion 
of the variance explained by the first three principal components. 
 

 

Eigenvalue 

Eigenvalue 

Eigenvalue 
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Figure S3.3: Standard PCA plots for the Du156.12 glycans 

The standard PCA plots for the Du156.12 paired-model comparison performed on the 
glycans of protomer A (A), B (B) and C (C). Demonstrating the projection of the frames 
onto the (i) first and second principal components as well as (ii) the proportion of the 
variance explained by the first three principal components. 
	

Eigenvalue 

Eigenvalue 

Eigenvalue 
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Figure S3.4: Standard PCA plots for the CAP45. G3 protein residues 

The standard PCA plots for the CAP45.G3 paired-model comparison performed on 
the glycans of protomer A (A), B (B) and C (C). Demonstrating the projection of the 
frames onto the (i) first and second principal components as well as (ii) the proportion 
of the variance explained by the first three principal components.	
	

Eigenvalue 

Eigenvalue 

Eigenvalue 
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Figure S3.5: Standard PCA plots for the Du156.12 protein residues 

The standard PCA plots for the Du156.12 paired-model comparison performed on the 
glycans of protomer A (A), B (B) and C (C). Demonstrating the projection of the frames 
onto the (i) first and second principal components as well as (ii) the proportion of the 
variance explained by the first three principal components.	
	

Eigenvalue 

Eigenvalue 

Eigenvalue 
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Figure S3.6: Standard PCA plots for the CAP45.G3 protomer glycans  

The standard PCA plots for the CAP45.G3 protomer comparison performed on the 
glycans. Demonstrating the projection of the frames onto the first and second principal 
components as well as the proportion of the variance explained by the first three 
principal components. 

	

	

	

Figure S3.7: Standard PCA plots for the CAP45.G3 protomer protein residues  

The standard PCA plots for the CAP45.G3 protomer comparison performed on the 
protein residues. Demonstrating the projection of the frames onto the first and second 
principal components as well as the proportion of the variance explained by the first 
three principal components.	

	

Eigenvalue 

Eigenvalue 
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Figure S3.8: Standard PCA plots for the Du156.12 protomer protein residues  

The standard PCA plots for the Du156.12 protomer comparison performed on the 
protein residues. Demonstrating the projection of the frames onto the first and second 
principal components as well as the proportion of the variance explained by the first 
three principal components.	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Eigenvalue 
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Figure S3.9: AASA ratios for the Env regions 

AASA ratios (%), using a 10Å probe radius, of the Env region (C1-C5, gp41, and V1-
V5) for the three protomers A, B and C. The ratios are shown for each wild-type and 
N301A mutant simulations. 	
	

https://etd.uwc.ac.za
http://etd.uwc.ac.za/



 149 

Chapter 4  

 

	

Figure S4.1: Residue accessibility for the CAP45.G3 and Du156.12 N301A 
mutant models. 

The surface area accessibility for each residue on the (a) CAP45.G3 and (b) Du156.12 
N301A mutant models is shown on a scale where bright red represents least 
accessible and blue indicates high accessibility. The V3-loop and CD4 binding site 
regions are circled and labelled.  
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