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Abstract 
 

Oxygen reduction reaction (ORR) is carried out in the cathode of the proton exchange 

membrane fuel cell (PEMFC) and it is known for its sluggish kinetics and the existence of 

two-pathway mechanism, related with the production of water and hydrogen peroxide. 

Nowadays, the design of novel cathode catalysts that are able to generate both high oxygen 

reduction currents and water as main product is a challenge since it causes an enhancement in 

the performance of PEMFC. Generally, these catalysts are composed of platinum 

nanoparticles, bearing in mind its high activity towards the ORR. However, the use of 

platinum means an increase in the total cost of PEMFCs due to its scarcity and high cost. This 

topic has been the motivation for a wide research in the field of PEMFCs during the last 

several years, being the main goal to design efficient and low cost catalysts for the cathode of 

PEMFCs. In this Master thesis project, platinum-palladium (Pt-Pd) catalysts supported on 

carbon black (CB), carbon nanofibers (CNF) and carbon xerogels (CX) were synthesised 

using methanol (MeOH), formaldehyde (FMY), n-propanol (nPrOH), ethanol (EtOH) and 

ascorbic acid (AA). The as-prepared materials were physically characterised by energy 

dispersive X-ray (EDS), X-ray diffraction (XRD) and transmission electronic microscopy 

(TEM), in order to determine its composition and morphological characteristics. The catalytic 

activity towards ORR was assessed by means of electrochemical techniques as rotating disc 

electrode (RDE) and cyclic voltammetry (CV).  

In general, Pt-Pd atomic ratios close to 1:2 were obtained, with metal contents close to 40 wt. 

% except in the case of the catalysts supported on carbon nanofibers. The formation of alloys 

between platinum and palladium was observed from the shift in the XRD typical reflections 

for the cubic face centred structure of platinum and the obtaining of low values for the lattice 

parameters, compared with the value of a commercial Pt/C catalyst. On the other hand, the 
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TEM analysis demonstrated a high dispersion of the nanoparticles on the carbon supports.  

Regarding the electrochemical characterisation, the Pt-Pd/CX-FMY, Pt-Pd/CX-MeOH, Pt-

Pd/CB-AA, Pt-Pd/CB-nPrOH, Pt-Pd/CNF-EtOH and Pt-Pd/CNF-nPrOH catalysts 

demonstrated the highest diffusional current densities, being comparable to those obtained for 

Pt/C. Moreover, a Koutécky-Levich analysis proved that most of the synthesised catalysts 

perform the ORR producing water as the main product, meaning that 4 electrons are involved 

in this reaction and therefore, the maximum performance is achieved. Remarkable corrosion 

resistance was observed in the catalysts supported on carbon xerogels, as they showed lower 

differences in the half-way potential and improved current densities after cycling treatment. 

The results presented here suggest that the studied synthesis routes are suitable to prepare Pt-

Pd catalysts supported on carbon xerogels, carbon black and carbon nanofiber with a better 

use of Pt, even increasing their high activity toward the ORR and thus, making them good 

candidates to be employed as cathodes in proton exchange membrane fuel cells. 

The results were published in two international journals with high impact factor and another 

article was submitted for publication in December 2019. 
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1. Chapter One: Introduction 

1.1 Overview 

Sustainable energy generation and conversion is a widely discussed topic by the society due 

to the enhanced deterioration of the natural environment and the evident depletion of fossil 

fuels. In order to perform the conversion of more clean fuels such as hydrogen, methanol or 

formic acid to electricity, which produce less contaminant residues, fuel cells have been 

considered as alternative to supply the current energy demand [1]. Fuel cells use oxygen and 

hydrogen as reactants to produce water as product which is not harmful to the environment. A 

lot of research and development has been devoted on different types of fuel cells [2, 3] which 

include: (1) direct methanol fuel cells (DMFCs) [4] that use methanol fuel which is oxidised 

to carbon dioxide to form water; (2) alkaline fuel cells (AFCs) [5], operating with 

compressed hydrogen and oxygen and a potassium hydroxide solution in water as electrolyte; 

(3) molten carbonate fuel cells (MCFCs) [6], employing molten sodium or magnesium 

carbonates as electrolyte; (4) solid oxide fuel cells (SOFCs) [7] that are conformed by a 

ceramic calcium or zirconium oxide playing the role of interface between the electrodes; (5) 

reversible fuel cell (RFC) have a first electrode and a second electrode separated by an 

ionically conducting electrolyte, and at least two chambers adapted to hold fuel (preferably 

hydrogen and oxygen) and each chamber being in passive communication with the fuel cell, 

wherein the system is substantially closed [8]; (6) phosphoric acid fuel cell (PAFC) consists 

of an anode and a cathode made of a finely dispersed platinum; they use phosphoric acid as 

an electrolyte [9]; and finally (7) proton exchange membrane fuel cells (PEMFCs) [10], 

where a polymer membrane acts as electrolyte. 

Regarding the proton exchange membrane fuel cells (PEMFCs), they have attracted a lot of 

attention because of their advantages such as low operating temperature, low pollutant 
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emission, sustained operation at high current density, low weight and volume, compactness, 

long stack life, fast start-ups and sustainability for discontinues operations [3, 10, 11]. In the 

PEMFC, hydrogen is oxidised in the anode to produce electrons and protons. The electrons 

go through the electrical circuit while the protons pass through the proton exchange 

membrane to the cathode to combine with the fed oxygen forming water. These are the 

reactions associated with this process: 

Cathodic reaction:    ⁄ O2 + 2H
+ 

+ 2e
-
 → H2O 

Anodic reaction: H2 → 2e
-
 + 2H

+
 

Net reaction: H2 +    ⁄ O2 → H2O 

 

Scheme 1.1: Scheme of a proton exchange membrane fuel cell [12] 

Traditionally, PEMFCs possess platinum (Pt) catalysts in both the cathode and the anode to 

perform the mentioned reactions.  Nonetheless, in spite of the promising achievements and 

plausible prospects of PEMFCs, there are still some problems associated to these devices 

such as the high cost of platinum used as catalyst, low durability and sluggish kinetics, the 

requirement of very pure hydrogen (with much lower than 5 ppm CO), which is typically 
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produced via steam reforming or partial oxidation of natural gas, methanol, or other liquid 

fuels, which hinder their successful commercialisation [13-17].  

In order to obtain a catalyst with high activity, the content of Pt should decrease while the 

ORR performance is increased [18]. The use of Pt alloyed with metals such as palladium (Pd) 

has enhanced the kinetics of the ORR, reducing the production of hydrogen peroxide as 

collateral product [19]. This is due to the fact that Pd has high activity towards ORR in an 

acidic medium, being a good alternative to partially replace Pt as catalyst in the cathode of 

PEMFCs. The entrance of Pd into the crystallographic structure of Pt decreases the Pt-Pt 

interatomic distance, facilitating the oxygen adsorption on the nanoparticle surface [20, 21]. 

Besides the mentioned facts, South Africa possesses more than 75% of the platinum group 

metal (PGM) world reserves, making indispensable the development of PGM-based 

components for proton exchange membrane fuel cells and other technologies to produce 

clean renewable energy, in line with the national strategy to use the country’s natural 

resources [22]. Bimetallic alloys supported on carbon supports have also been reported to 

have an enhanced effect on ORR performance. This is due to the fact that carbon supports 

have high surface area, high chemical and electrochemical stability, good porous size and 

high conductivity [23]. The most commonly used carbon supports are carbon blacks, carbon 

nanofibers and carbon nanotubes [24-26] Based on the above mentioned facts, Pt-Pd alloys 

supported on carbon structures are promising candidates to be used as catalysts for the ORR 

in the cathode of PEMFCs.  

1.2 Problem statement 
 

Oxygen reduction reaction (ORR) occurs on the cathode of proton exchange membrane fuel 

cells (PEMFC), being addressed by a reaction mechanism with two pathways: the direct 4-

electron reduction pathway, from O2 to H2O, and the 2-electron reduction pathway, from O2 
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to hydrogen peroxide (H2O2) [27]. The water pathway is the most efficient route, involving 

the maximum number of transferred electrons (4) and the production of water as residue, 

resulting in less corrosion for the PEMFC components. The kinetics associated to ORR is 

very slow, thus the use of a catalyst with high activity to perform this reaction is crucial, 

being the platinum-based catalysts the most employed materials for this purpose. 

Nevertheless, due to several factors as high cost of Pt, limited adsorption of oxygen on Pt 

caused by oxides and the partial increase of reaction rates, extensive research has focused 

their efforts in developing alternative catalysts with low or zero content of Pt and high 

catalytic activities. These options include macrocyclic compounds [28], chalcogenides, 

carbides [27] and alloys between Pt and transition metals. Particularly, Pt alloys have 

demonstrated a suitable performance when used as cathodes, due to some effects caused by 

the insertion of second metal such as reduction of surface Pt oxides, reduction of Pt-Pt 

distance and increase in the resistance to corrosion [29]. Other important research line is the 

design of novel carbon materials with improved morphological and electrical properties, 

which can be able to support and increase the catalytic activity of metal nanoparticles through 

high dispersion of them and particle sizes limited to a small range of diameters [20]. 

1.3 Motivation of the study 
 

Considering the previously exposed drawbacks of oxygen reduction reaction in PEMFC, it is 

necessary to design novel Pt catalysts alloyed with transition metals and supported on 

different carbon materials such as carbon black, carbon nanofibers and carbon xerogels. 

Carbon supports have been reported to have unique characteristic such as high surface area, 

good pore size and high conductivity and they have been widely used for electrochemical 

applications. These catalysts can enhance the performance of cathodes toward the ORR, 
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producing less amounts of hydrogen peroxide, increasing the ORR kinetics and decreasing 

the content of Pt. 

1.4 Project aim and objectives 
 

The aim of this project is to design an efficient catalyst for the oxygen reduction reaction in 

the cathode of PEMFCs, using Pt-Pd alloyed nanoparticles supported on various carbon 

supports. The research is based on the following objectives: 

 To design different synthesis routes for the preparation of Pt-Pd catalyst supported on 

carbon blacks, carbon nanofibers and carbon xerogels with metal content close to 40 

wt% and Pt-Pd atomic ratio close to 1:2. 

 To characterise physically the synthesised catalysts in order to correlate its 

morphological and crystallographic properties with the synthesis method. 

 To determine the impact of the synthesis method on the electrochemical activity of 

the catalyst towards the oxygen reduction reaction. 

 To assess the corrosion resistance of the materials and the influence of the synthesis 

method. 
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1.5 Research frame 

 

Scheme 1.2 Scheme of the research frame. 
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1.6 Thesis outline  
 

The thesis will be divided into four chapters which are the following: 

 Chapter 1 provides an overview on the current state of proton exchange membrane 

fuel cells and the objectives of the study. 

 Chapter 2 is the literature review of proton exchange membrane fuel cells in general, 

the current state of oxygen reduction reaction in these devices and the use of 

platinum-based alloys to perform the ORR. 

 Chapter 3 describes the experimental synthesis methods and characterisation 

techniques used in this study. 

 Chapter 4 discusses the data obtained from the physical characterisation; including the 

X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy 

dispersive X-ray (EDX) as well as the electrochemical characterisation and the 

activity towards the oxygen reduction reaction of the carbon supported Pt-Pd 

nanoparticles obtained by cyclic voltammetry (CV) and rotating disc electrode (RDE). 

 Chapter 5 draws a conclusion based on the outcomes of the researched compared with 

the already-existing literature. 
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2. Chapter Two: Literature Review 

Chapter overview 
 

This chapter reviews the current state of the art and history of fuel cells and its different 

types, focusing on proton exchange membrane fuel cells (PEMFCs). Their components and 

principles are described, emphasising in the cathode. In fact, since the focus of this thesis is 

the study of catalysts for the cathode of PEMFCs, the oxygen reduction reaction (ORR) on 

Pt, as well as its features and drawbacks are discussed. The use of Pt-Pd nanoparticles 

supported on carbon materials as cathode catalysts is also commented, highlighting the 

qualities that make them as suitable materials to perform the ORR.  

2.1 Background 
 

A fuel cell is a device that produces electricity from chemical reactions. As long as the fuel is 

supplied, the cell can continue producing electricity [1, 2].  Fuel cells are compatible with 

other renewable and modern energy sources, such as wind energy, solar energy and 

hydroelectricity, all of them devoted to a sustainable electricity production. Some of the 

characteristics associated to these devices are its silent operation without vibration, inherent 

modularity allowing to a simple construction and a diverse range of applications in portable 

devices, stationary units and transportation [3]. They provide a cleaner and more flexible 

chemical-to-electrical energy conversion than that offered by fossil fuel combustion. In this 

sense, it is important to highlight that combustion of fossil fuels has increased air pollution 

and the emission of greenhouse gasses such as CO2, leading to climate change, ozone 

depletion and acid rain [2, 4]. For these reasons, there has been intensive research and 

development of renewable and environmental friendly ways to generate electricity, since the 

Kyoto Protocol also suggested the use of renewable energy sources, the promotion of existing 
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high efficiency electricity technologies and the adoption of advanced low-CO2 emission 

energy systems [2, 5]. 

The first fuel cell was presented by Sir William Grove in the early 1800s, who built a device 

that combines hydrogen and oxygen to produce electricity, being named as gas battery. Later, 

this device was known as fuel cell. In 1959, Francis Thomas Bacon presented the first fully-

operational fuel cell [3, 4]. Nowadays, there are several types of fuel cells which have 

different chemical fuel feeds and operating principles. 

2.2 Types of fuel cells 
 

 The fuels, operation temperatures and electrolytes used in the different types of fuel cells 

determine the operating conditions. Therefore, the most common fuel cells are: 

2.2.1 Alkaline fuel cells (AFCs) 
 

Alkaline fuel cells work with compressed hydrogen and oxygen, using a potassium hydroxide 

solution (KOH) in water as electrolyte. Its efficiency is close to 70 %, operating between 150 

and 200 °C and yielding cell output ranges from 300 W to 5 kW. Some of the disadvantages 

of these devices are related with the use of pure hydrogen as fuel, the high cost of platinum as 

electrode catalyst and the liquid electrolyte leaking [5, 6-7].  

2.2.2 Molten Carbonate fuel cells (MCFCs) 
 

Molten carbonate fuel cells use molten sodium or magnesium carbonates as electrolytes. 

Efficiency ranges are between 60 to 80 %, operating at 650 °C. Some works reported 

performances up to 2 MW for a single stack and up to 100 MW for multi-stacks. In these 

cells, it is possible to limit the damage caused by carbon monoxide and recycle the heat 

produced during its operation. The low cost of these devices comes from the use of nickel 
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electro-catalysts, in comparison with the platinum electrodes used in other fuel cells. 

However, high operation temperatures limit the safety of MCFCs, as well as demand the use 

of corrosion-resistant materials [5, 6, 8]. 

2.2.3 Phosphoric acid fuel cells (PAFCs) 
 

In these devices, phosphoric acid is used as electrolyte. Efficiency ranges are between 40 and 

80 %, operating at 150 - 200 °C. Some phosphoric acid mono cells have shown outputs up to 

200 kW, whereas the stacks have achieved 11 MW. PAFCs are more tolerant to carbon 

monoxide poisoning, broadening the range of possible substances able to be employed as 

fuels. However, the presence of phosphoric acid implies the design of highly corrosion-

resistant parts for its building [5, 9]. 

2.2.4 Solid Oxide fuel cells (SOFCs) 
 

Solid oxide fuels cells use ceramic calcium or zirconium compounds as electrolytes. 

Efficiencies are close to 60 %, with working temperatures up to 1000 °C and outputs near to 

100 kW. At these high temperatures, a reformer is not required to extract hydrogen from the 

fuel, although this factor also avoids the implementation of SOFCs in different electrical 

devices [5, 6, 10] 

2.2.5 Proton exchange membrane fuel cell (PEMFCs) 
 

The PEMFC uses a water-based acidic polymer membrane as electrolyte and platinum-based 

electrodes. PEMFCs were the first fuel cells to be used by the NASA in the 1960s [3]. 

Considerable improvements in this type of fuel cell were made from the early 1970s. 

Although they have been known over a long time, only in the early 1990s century they have 

become a subject of research bearing in mind the necessity for finding cleaner ways to 
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produce energy [4]. Their many advantages such as low operating temperatures (below 

120°C), low weight, sustained operation at a high current density, easy start-ups, control of 

power outputs and compactness have promoted the attention of many researchers [5, 11].  

 

 

Scheme 2.1: Scheme of a PEMFC (components and involved reactions) [12]. 

PEMFCs consist of an anode and a cathode separated by a membrane that allows the flow of 

the ions through it.  The running of the cell starts when hydrogen is fed on the anode, which 

is usually obtained by water splitting or reforming of organic compounds such as natural gas, 

methanol or other liquid fuel [13, 14]. However, a lot of research needs to be performed 

about safer and cleaner ways to produce hydrogen, since the traditional methods result in the 

emission of pollutants such as carbon dioxide and carbon monoxide [11]. The oxidation of 

hydrogen can take place by two different pathways [15, 16]: (1) the chemical dissociation (1) 

or the electrochemical adsorption (2) of hydrogen on the catalyst 
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H2 + 2M → 2MH         (1) 

H2 + M → MH + H
+
 + e

-
        (2) 

With M as a catalytic metal adsorbing and decomposing the H-H bond. Then, the adsorbed 

monoatomic hydrogen is oxidised (3): 

MH → M + H
+
 + e

-
         (3) 

Once the electrons are produced, they go through the electrical circuit, while protons cross 

through the proton exchange membrane to reach the cathode (see Figure 1) [6, 17]. The union 

between the membrane and the two catalytic layers constitute the membrane electrode 

assembly (MEA). This catalytic layer is generally conformed by platinum, which is a 

common element in both the anode and the cathode. Once the protons reach the cathode, they 

react with oxygen, which is fed on the cathode. The mechanism for the oxygen reduction 

reaction is detailed described in the section 2.4, which global process is described by the 

equation: 

 

 
O2 + 2H

+ 
+ 2e

-
 → H2O         (4) 

Thus, the global reaction in the PEMFC is represented by: 

H2 + 
 

 
O2 → H2O          (5)  

2.3 High temperature PEMFCs 
 

Low temperatures PEMFCs (LT-PEMFCs) suffer several limitations, related with the low 

operating temperature, the complex water management to prevent the flooding inside the 

MEA and the adsorption of poisonous species such as carbon monoxide (CO) on the anode, 

which come with the hydrogen produced by the hydrocarbons reformate process [18, 19] and 
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competes with hydrogen for the adsorption on the Pt active sites. Nevertheless, at 

temperatures around 130 °C platinum-based catalysts can tolerate up to 1000 ppm CO, while 

at 80 °C the platinum catalysts can tolerate only 10 ppm [20].  

The increase in the temperature means a decrease in the resistance of the exchange 

membranes. For this reason, in the last years, polymer membranes have been developed for 

operation at temperatures up to 230°C. When these membranes are employed, the PEMFCs 

are known as high temperature PEMFCs (HT-PEMFCs). Since HT-PEMFCs have a higher 

CO tolerance, they can work with low-purity hydrogen, avoiding the gas humidification 

while the high temperature can be used on other processes such as cogeneration of heat and 

power or on-board reforming [21- 24]. This fact offers a significant advantage as many stages 

of fuel processing can be removed thus allowing for cost-effective fuel. Moreover, less CO in 

the cell means a high availability of active sites for hydrogen adsorption on platinum and thus 

overall improvement in the performance of the cell.  

Regarding the oxygen reduction reaction (ORR) occurring on the fuel cell cathode, its slow 

kinetic affects the performance of the PEMFCs. As a consequence, an overpotential is 

required to perform this reaction, which results in cell voltage losses. A partial solution to this 

drawback is the increase in the operation temperatures, which enhances the ORR kinetics 

[25]. On the other hand, the presence of platinum in the cathode contributes significantly to 

the high cost of the PEMFC; therefore, the use of a low cost material for the cathodes can 

contribute to the reducing of the fuel cell cost. This fact led to a lot of research about 

alternative catalysts for the PEMFC cathode. The use of platinum group metals [26] and 

alloys between Pt and other non-noble metals supported on carbon structures [27] has been 

reported to have similar performances compared with those for the traditional platinum 

catalysts.  
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2.4 Oxygen reduction reaction 
 

A wide research has been focussed in the mechanism of the ORR when it is performed on Pt, 

since this reaction is sensitive to the properties of the surface and the presence of other 

adsorbed species on the catalyst. In order to increase the performance of the ORR, the 

mechanism and kinetics of the oxygen reduction reaction have been studied on a great variety 

of electrode materials and electrolytes. These studies concluded that a high over potential is 

required to carry out the ORR observed in low temperature fuel cells [4]. 

The ORR occurs in two pathways and results in the production of water and the involvement 

of four electrons [28, 29]. However, because of the characteristics of the mechanism, it is also 

possible to produce hydrogen peroxide, which involves only two electrons during the 

reaction. It means a decrease in the performance of the cathode, besides the corrosion of 

some parts of the fuel cell, bearing in mind the high oxidising capacity of H2O2 [30]. The 

reduction of oxygen involving four electrons and producing water is described by: 

O2 + 4H
+
 + 4e

-
 → H2O                            (6) 

 

http://etd.uwc.ac.za/



35 
 

 

Scheme 2.2: Schematic representation of the total reduction of oxygen [31] 

However, when the oxygen reduction is not completed, the formation of hydrogen peroxide 

takes place, involving only two electrons:  

O2 + 2H
+
 + 2e

-
 → H2O2        (7) 

This H2O2 can be reduced to water, following the reaction: 

H2O2 + 2H
+
 + 2e

-
 → 2H2O         (8) 

According with the Figure 2, the ORR starts with the adsorption of oxygen on the surface of 

two adjacent platinum atoms. Once the water is formed, this is desorbed from the catalyst 

surface. 

Nevertheless, in some cases the dissociation of molecular oxygen does not occur after its 

adsorption. Therefore, the hydrogenation stages occur incompletely, as shown in Figure 3, 

generating hydrogen peroxide and involving only two electrons in the reaction [31]. 
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Scheme 2.3: Schematic representation of the partial reduction of oxygen [31]. 

2.5 Platinum catalysts 
 

Platinum is traditionally used as a catalyst in the cathode of the PEMFCs, usually in the form 

of nanoparticles supported on a carbon material, due to some advantages such as: (1) stability 

against corrosive environments caused by the low pH high temperatures and potential 

fluctuations. This factor avoids the use of transition metals in their pure forms [32]; (2) high 

activity toward the ORR, facilitating both the adsorption and dissociation of molecular 

oxygen [33]; (3) it must release the products from the surface once the reaction is complete, 

addressing the reaction toward the formation of desired products [34]. It is important to 

highlight that in the case of the ORR, the water formation pathway involves four electrons, 

meaning the highest performance for this reaction, while the hydrogen peroxide formation 

pathway only involves two electrons, besides its corrosive potential to the cell [35]. 

Therefore, the catalyst must optimise the production of water [36]. (4) It must be able to be 

resistant to poisoning by impurities coming from the feed gases.  
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2.6 Platinum alloys 
 

Using Pt alloys with other elements is an alternative to improve the activity of the catalysts 

[37]. It includes binary, ternary and quaternary Pt alloys, Pt-based metal oxide catalysts [38], 

Pt-based composites and organic metal complexes [39] and carbon-supported transition-metal 

porphyrin catalysts [40]. In the case of the cathode, Pt is usually alloyed with metals such as 

Co, Pd, Cu and Ni, providing stability against the dissolution of the less noble metal. On the 

other hand, the electronic structure of Pt is modified by the presence of the second metal, 

improving the ORR activity [41]. 

One of the metals alloyed with Pt to perform the ORR is palladium, which is able to induce a 

change in the electronic structure of Pt that increases its activity toward the ORR [42]. Peng 

and Yang prepared carbon supported platinum-on-palladium (Pt/Pd/C) bimetallic 

heterogeneous nanostructure, in which 3-nm Pt nanoparticles grew on the surface of 5 nm-Pd 

nanoparticles. The electrochemical study showed an enhancement in the electrocatalytic 

activity for ORR with improved stability in comparison to a commercial platinum catalyst 

[43]. Other studies have demonstrated that Pd enters into the face-centered cubic structure of 

Pt, reducing the distance between two platinum atoms and therefore, promoting the 

adsorption of oxygen atoms on the catalytic surface [44]. 

2.7 Carbon Supports 
 

Carbon materials have been used as supports for catalysts of the PEMFC to improve the 

stability and activity of the catalytic nanoparticles [45]. To achieve this purpose, the carbon 

material must fulfil have a high electrical conductivity to allow the electronic transference, 

large surface area to disperse properly the nanoparticles, outstanding corrosion resistance, 

strong interaction with the nanoparticle, and a pore size that enables the diffusion of the 
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electroactive species [46]. Thus, the selection of a carbon support with adequate properties is 

a crucial decision to influence properly the durability and activity of the catalyst [47]. There 

are different carbon supports commonly employed in the PEMFC electrodes, including 

carbon blacks [48], carbon nanofibers [49], carbon nanotubes [50], carbon xerogels [51] and 

graphenes [52].  

2.7.1 Carbon Blacks 
 

Carbon blacks have been used as catalytic support since the 1990s. These materials are 

produced by oil and acetylene furnace combustion processes. Their large surface area, high 

electrical conductivity, well-developed pore structure, high availability and low cost have 

attracted the attention of researchers [53]. However, the main disadvantage of carbon blacks 

is its highly rich microporous structure which inhibits the diffusion of the electroactive 

species. 

2.7.2 Carbon nanofibers 
 

Carbon nanofibers are produced by the thermal decomposition of hydrocarbons over NiAlCu 

catalysts [54]. They have several structures depending on their graphitic plane organisation 

such as ribbon, platelet and herringbone [55]. When carbon nanofibers are used as support 

for electrode catalysts in PEMFCs, its high length to diameter ratio allows the formation of 

conducting networks in the Nafion
® 

membrane matrix, a fact that contributes to the improved 

performance of the catalysts [56]. 

2.7.3 Carbon nanotubes 
 

Carbon nanotubes (CNTs) are the most well-known carbon nanostructures for application as 

catalyst support in fuel cells [57]. They are 2-dimensional nanostructural tubes typically 

http://etd.uwc.ac.za/



39 
 

formed by rolled up-single sheets of hexagonally arranged carbon atoms. The carbon 

nanotubes can be single walled (SWCNTs: single-walled carbon nanotubes) or multi-walled 

(MWCNTs: single-walled carbon nanotubes). SWCNTs can be either conducting or semi 

conducting depending on their chiral vector nature, while MWCNTs have higher conductivity 

than SWCNTs [45]. The inert character of these structures can be modified by 

functionalisation of their surface using strong acids. In fact, the functionalisation process 

promotes a better dispersion of the nanoparticles, better particle size control and dispersion 

and also tuned morphologies [58]. 

2.7.4 Carbon xerogels 
 

Carbon xerogels (CX) are characterised by its high surface area, high content of mesopores, 

low micro porosity and high corrosion resistance [59]. Particularly, the large porous size of 

CX increases the diffusion of electro-active species toward the catalytic nanoparticles. In fact, 

the pore texture can easily be tailored from diameters in the range of nanometres to 

micrometers [60]. Moreover, the surface chemistry tuning permits the design of supports with 

improved abilities to disperse the Pt on its surface, enhanced mass transport in the operating 

conditions and a strong Pt-Nafion contact [61].  
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3. Chapter Three: Materials and methods 

 Overview 
 

This chapter reports the different chemicals used during this study, as well as the detailed 

description of the experimental procedures followed to prepare the catalysts. Moreover, a 

description of the physical and electrochemical characterisation techniques used to study the 

physical and electrochemical properties of the as-synthesised materials is presented.  

3.1 Experimental 

3.1.1 Chemicals 
 

The chemicals used in this study include: chloroplatinic acid solution (H2PtCl6, 8%, w/w, 

Sigma-Aldrich), potassium tetrachloropalladate II (K2PdCl4, 98%, Sigma-Aldrich), ethanol 

(94-96%, Sigma Aldrich), Nafion
®
 (5%, dispersed in low weight alcohols, Sigma-Aldrich), 

carbon black, carbon nanofibers, carbon xerogels (Nanolit), n-propanol (C3H8O, 99.7%, 

Sigma-Aldrich), sodium carbonate (Na2CO3, 99.5%, Sigma-Aldrich), methanol (CH3O, 

99.8%, anhydrous, Sigma-Aldrich), formaldehyde (CH2O, 37w.% in H2O, Sigma-Aldrich), 

N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (C17H39NO3S, 98%, Sigma-

Adrich), sodium hydroxide (NaOH, 98%, anhydrous, Sigma-Aldrich), L-ascorbic acid 

(C6H8O6, Sigma-Adrich), perchloric acid (HClO4, ACS reagent, 70%, Sigma-Aldrich), 

hydrogen ( 99.990% H2, Air Liquide 
®

), nitrogen (90.999% N2, Air Liquide 
®
),  hydrochloric 

acid (HCl, 32%, KMIX). 
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3.1.2 Synthesis of carbon-supported Pt-Pd nanoparticles 

3.1.2.1 Synthesis using Ethanol as a reducing agent 
 

In this method, 30 mg of the carbon support were mixed with 0.5 µL of Nafion
®
, 20 mL of 

ethanol and 30 mL of milli-Q water (Millipak
®
 Express 40). The mixture was dispersed in the 

ultrasonic bath for 30 minutes. Afterwards, the chloroplatinic acid and potassium 

tetrachloropalladate (II) solution prepared in 8 mL of ethanol and 12 mL of water was 

dropped to the carbon dispersion in presence of ultrasound. Once the addition of the metal 

precursors was finished, the reaction mixture was kept in the ultrasound bath for 30 minutes. 

Then, the mixture was refluxed at 82 °C during 3 hours. Once the mixture was cooled down, 

the pH of the mixture was adjusted to 8.5 and stirred for 48 hours. The result ing Pt-Pd/C-

EtOH catalyst was then filtered, washed with ultrapure water and dried at 80 ºC. In the name 

of the catalyst, C could be CB as carbon black, CNF as carbon nanofibers and CX as carbon 

xerogels. The same procedure was performed replacing the ethanol by n-propanol as solvent, 

generating the catalyst Pt-Pd/C-nPrOH. 

3.1.2.2 Synthesis using Formaldehyde as a reducing agent 
 

30 mg of carbon support was mixed with 40 mL of water and 140 mg of sodium carbonate. 

The dispersion was stirred in the ultrasonic bath for 30 minutes at room temperature. Then, a 

20 mL-solution containing the metal precursors were slowly added to the mixture at 80° C. 

Afterwards, 100µl of formaldehyde were added and keep stirrinf for 3 hours at 80° C[1]. The 

mixture was kept in the stirrer for 48 hours and then filtered, washed and dried at 80ºC. The 

as-obtained catalyst was heat-treated under a hydrogen/nitrogen reductant atmosphere for 2 

hours at 300°C to finally obtain a catalyst labelled as Pt-Pt/C-FMY. 
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3.1.2.3 Synthesis using Methanol as the reducing agent 
 

In this procedure, 30 mg of carbon support were added to 40 mL of methanol, 120 mL of 

water and 12,5 mg of N-Dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate [2]. The 

mixture was stirred in the ultrasonic sound bath for 30 minutes and then under reflux until the 

temperature of the mixture reached 90°C. Afterwards, the solution of the metal precursors in 

10 mL of methanol and 30 mL of water was dropped into the dispersion. Once the addition of 

the metal precursors was finished, the reaction mixture was kept under reflux for one hour at 

90 °C. The dispersion was allowed to cool down at room temperature in stirring for 48 hours. 

Finally, the mixture was filtered, washed and dried in the oven at 80°C overnight. The as-

prepared catalyst has been labelled with the name Pt-Pd/C-MeOH. 

3.1.2.4 Synthesis using ascorbic acid as reducing agent. 
 

30 mg of carbon support were dispersed in 50 mL of water. The dispersion was put in the 

ultrasound bath for 30 minutes. The metal precursors were dissolved in 40 mL of water and 

this solution was dropwise added into the carbon dispersion. The mixture was stirred in the 

ultrasound bath for 30 minutes. Subsequently, 500 mg of ascorbic acid were added and the 

reaction mixture was stirred in the ultrasound bath for 30 minutes. Afterwards, the mixture 

was refluxed for 6 hours at 85 °C, followed by cooling down at room temperature for 48 

hours. The solution was then filtered, washed and dried in the oven overnight at 80 °C [3]. 

The as-prepared catalyst has been labelled with the name Pt-Pd/C-AA. 
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3.1.3 Characterisation techniques 

3.1.3.1 Physical characterisation 
 

The metal content and Pt:Pd atomic ratios of the as-synthesised catalysts were determined by 

energy-dispersive X-ray (EDX) analysis, employing a scanning electron microscope (Zeiss-

Auriga) working at 20 keV, with a Si detector and a Be window. X ray diffraction (XRD) 

patterns were obtained by means of a D8 Advance diffractometer (Bruker AXS), operating 

with a Cu-Kα radiation generated at 40 kV and 40 mA. The dispersion and particle size 

distribution of the catalytic nanoparticles were studied by transmission electron microscopy 

(TEM), using a transmission electron microscope (200 kV FEI Tecnai G2 20) coupled to a 

CCD Gatan camera, which generated the images. These images were treated with the 

ImageJ
®
 software. Textural properties of carbon supports and catalysts were calculated from 

nitrogen adsorption–desorption isotherms, measured at -196 °C using a Micromeritics ASAP 

2020. Microporosity was determined from t-plot method. 

3.1.3.2 Electrochemical characterisation 
 

A three-electrode cell at 25 
°
C coupled to an Autolab

®
 PGSTAT302N potentiostat-

galvanostat was used to perform the electrochemical characterisation of the catalysts. A Pt 

mesh acted as counter electrode, while the reference electrode was a Ag/AgCl electrode (3 M 

KCl, Metrohm
®
). A rotating disk electrode (RDE, Pine Research Instrumentation) with a 

glassy carbon disk (geometric area = 0.196 cm
2
) was used to support the synthesized 

catalysts. An aliquot of a catalyst ink (20 µL) was dried onto the glassy carbon disk at 

rotating speed of 700 rpm, in order to employ it as working electrode. The ink was prepared 

by ultrasound-mixing of 2 mg of catalyst with 10.5 µL of Nafion
®
, 630 µL of isopropyl 

alcohol and 2 mL of ultrapure water [4].  
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N2 was employed to deoxygenate all solutions. The activation of the working electrode was 

performed between 0.05 and 1.0 V at 20 mV s
−1

, making 75 cycles in the O2-free supporting 

electrolyte. Afterwards, 3 cycles between -0.020 and 1.0 V vs RHE at 20 mV s
−1 

were 

recorded. CO-stripping measurements were made in order to determine the activity of the 

catalysts toward the poisoning of this adsorbate. CO was bubbled into the electrochemical 

cell for 10 min at 0.2 V vs RHE, in order to form a monolayer on the deposited catalyst. 

After, nitrogen was bubbled for 20 min to remove the CO from the electrolyte and five 

potential scans at 20 mV s
−1

, between -0.020 and 1.0 V vs RHE were applied. The area under 

the CO oxidation peak was employed to calculate the electroactive area, assuming a charge of 

420 µC cm
−2

 involved in the oxidation of a linearly adsorbed CO monolayer. The currents 

obtained by cyclic voltammetry and presented in this thesis have been normalised by this 

electroactive area. For the ORR experiments, O2 was bubbled 30 min at 1.0 V before each 

experiment, maintaining a soft bubbling during all measurements. Steady-state polarization 

curves at 2 mV s
−1 

were recorded between 1.0 and 0 V with 200, 400, 600, 900, 1200, 1600, 

2000 and 2500 rpm as rotating speeds, to evaluate the catalysts activity toward the ORR.  

Durability tests of the catalysts were performed, performing 2000 cycles between 0.05 and 

1.0 V vs RHE, at 50 mV s
−1

 in the O2-free support electrolyte. Before and after the cycling 

process, the support electrolyte was bubbled with O2 during 30 min and steady-state 

polarization curves at 1600 rpm were recorded. All the currents corresponding to the ORR 

experiments presented in this thesis have been normalised by the geometric area. 
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4.Chapter Four: Results and Discussion 

Overview 
 

This chapter presents and discusses the results obtained from the physical and 

electrochemical characterisation of the synthesised Pt-Pt catalysts supported on carbon 

xerogels (CX), carbon black (CB) and carbon nanofibers (CNF), which were reduced with 

methanol (MeOH), n-propanol (nPrOH), formaldehyde (FMY), ethanol (EtOH) and ascorbic 

acid (AA). The physical characterisation was performed by means of X-ray diffraction 

(XRD), energy-dispersive spectroscopy (EDS) and transmission electron microscopy (TEM), 

whereas the electrochemical characterisation was carried out by cyclic voltammetry (CV) and 

rotating disc electrode (RDE). These results have been compared with those reported in the 

literature and the obtained from a commercial available Pt /C Alfa Aesar catalyst. 

4.1 Physical characterisation 

4.1.1 Composition and particle sizes of the synthesised catalysts 
 

4.1.1.1 Composition and particle sizes of Pt-Pd/CX 
 

Table 4.1 summarises the results obtained from the physical characterisation of the 

synthesised Pt-Pd/CX catalysts. The aim of the study was to prepare catalysts with a metal 

content close to 40 wt. % and the EDS analysis showed values between 34-38 wt. %, while 

the metal content for the commercial Pt/C catalyst was around 34 wt. %. It is also remarkable 

the low Pt content in the synthesised catalysts (between 15.3 and 18 wt %), compared with 

that of the commercial one. The obtaining of low Pt content is an important fact in this study, 

since one of our goals was to reduce the content of Pt in these materials. All the catalysts 

demonstrated a Pt:Pd atomic ratio close to 1:2, as experimentally planned, suggesting that the 
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employed reducing agents are suitable for the synthesis of Pt-Pd nanoparticles with the 

planned nominal values. The lattice parameters were calculated using the equation 4.1: 

2 2 2

1

max

K
fcc

h k l
a

sen





 
         4.1 

with h, k and l as the Miller index, λKα1 as the X-ray source wavelenght, θmax as the Bragg 

angle and afcc as the lattice parameter. This parameter was lower than that of Pt/C (3.916 Å), 

particularly in the case of Pt-Pd/CX-nPrOH, Pt-Pd/CX-FMY and Pt-Pd/CX-AA, indicating 

the formation of an alloy between platinum and palladium [1, 2].  

Table 4.1. Physical characterisation of the synthesized Pt-Pd/CX catalysts 

 

4.1.1.2 Composition and particle size of Pt-Pd/CB 

 

Table 4.2 presents the results from the physical characterisation of the Pt-Pd/CB catalysts. 

The metal content of these materials was close to 40 wt. % and the Pt-Pd atomic ratio was 

near to 1:2, as planned. Similar to the case of the carbon xerogel-supported materials, a 

remarkable fact was the obtaining of low Pt contents between 14 wt. % and 19wt. %. In 

Catalyst 

Atomic 

ratio Pt:Pd 

Metal or Pt 

content/wt. % 

Crystallite or particle 

size/nm 

Lattice 

parameter/Å 

Metal surface 

area/ m
2
g

-1
 

Metal Pt XRD TEM 

Pt-Pd/CX-MeOH 30:70 38 15.4 7.4 4.3 ± 1.0 3.917 50 

Pt-Pd/CX-EtOH 34:66 37 18.0 9.5 3.2 ± 0.6 3.918 38 

Pt-Pd/CX-nPrOH 31:69 34 15.3 7.8 3.0 ± 0.7 3.899 47 

Pt-Pd/CX-FMY 34:66 35 17.2 8.5 5.4 ± 2.5 3.908 43 

Pt-Pd/CX-AA 35.65 36 18.0 12.8 4.3 ± 1.7 3.898 28 

Pt/C Alfa Aesar … 34 34 3.3 3.1 ± 1.4 3.916 85 
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general, the Pt-Pd/CB catalysts showed particle sizes similar and even lower than that of the 

commercial catalyst, except in the case of the catalyst reduced with formaldehyde. On the 

other hand, there was a reduction in the lattice parameter compared to that of Pt/C except in 

the case of Pt-Pd/CX-MeOH, confirming the formation of an alloy between platinum and 

palladium. 

Table 4.2. Physical characterisation of the synthesized Pt-Pd/CB catalysts. 

 

Catalyst 

Atomic 

ratio 

Pt:Pd 

Metal or Pt 

content/wt. % 

Crystallite or 

particle size/ nm 

Lattice 

Parameter/ Å 

Metal surface 

area/ m
2
.g

-1
 

Metal Pt XRD TEM 

Pt-Pd/CB- MeOH 37:67 31 16 3.9 3.8 ± 2.1 3.917 90 

Pt-Pd/CB-EtOH 30:70 31 14 3.6 2.9 ± 1.9 3.903 104 

Pt-Pd/CB-nPrOH 33:67 40 19 4.9 3.3 ± 1.1 3.902 75 

Pt-Pd/CB-FMY 35:65 39 19 3.8 6.0 ± 2.5 3.907 95 

Pt-Pd/CB-AA 34:66 37 18 4.2 2.7 ± 1.5 3.903 85 

Pt/C Alfa Aesar … 34 34 3.3 3.1 ± 1.4 3.916 85 

 

4.1.1.3 Composition and particle size of Pt-Pd/CNF 
 

The results obtained for the physical characterisation of the catalysts supported on carbon 

nanofibers are showed in Table 4.3. The atomic ratio values in the catalysts reduced with 

methanol, ethanol and ascorbic acid were close to 1:2, although the metal contents of the 

catalysts were below 40 wt. %, with Pt-Pd/CNF-nPrOH achieving the high metal content 

among this group of catalysts (31 wt. %). This result suggests that there was not a good 

interaction between carbon nanofibers and the metal precursors in these synthesis routes. On 

the other hand, the obtaining of lattice parameters lower than that of the commercial catalyst 
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demonstrated the formation of a Pt-Pd alloy. The crystallite size was employed to calculate 

the metal surface area, by means of the equation: 

 SA (m
2
 g

-1
) = 6000/dρPt-Pd        4.2 

Where d is the crystallite size (nm) and ρPt-Pd is the alloy density.  ρPt-Pd was calculated by 

means of the expression ρPt-Pd (g cm
-3

) = ρPtXPt + ρPdXPd, where ρPt is the platinum density 

(21.4 g cm
-3

), ρPd is the palladium density (12.0 g cm
-3

), and XPt and XPd are the weight 

percentage of Pt and Pd, respectively. The biggest surface area was recorded with the 

catalysts reduced with methanol (94 m
2 

g-
1
), overcoming that one of Pt/C (85 m

2
 g

-1
). All the 

catalysts supported on carbon black, except in the case of the material reduced with n-

propanol displayed bigger surface areas than that of Pt/C. This can be attributed to the large 

surface area of carbon black, which allows dispersion of metal nanoparticles [3]. On the other 

hand, the catalysts supported on carbon xerogels displayed lower surface areas compared to 

the commercial Pt/C catalyst, which means a minor number of  active sites on the metal 

nanoparticles surface. 

Table 4.3. Physical characterisation of the synthesised Pt-Pd/CNF catalysts 

 

Catalyst 

Atomic 

ratio 

Pt:Pd 

Metal/Pt 

content/wt. % 

Crystallite or 

particle size/nm 

Lattice 

parameter/Å 

Metal surface 

area/m
2

.g
-1

 

Metal Pt XRD TEM 

Pt-Pd/CNF-MeOH 33:67 23 11 3.9 4.7 ± 1.5 3.919 94 

Pt-Pd/CNF-EtOH 33:67 23 11 5.3 2.9 ± 1.1 3.903 70 

Pt-Pd/CNF-nPrOH 43:57 31 19 5.0 2.7 ± 1.5 3.909 69 

Pt-Pd/CNF-FMY 43:57 28 17 4.6 5.5 ± 1.5 3.903 77 

Pt-Pd/CNF-AA 34:66 14 9 5.4 2.6 ± 0.7 3.891 63 

Pt/C Alfa Aesar … 34 34 3.3 3.1 ± 1.4 3.916 85 
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4.1.1 X-Ray diffraction (XRD) characterisation of the synthesised 

catalysts 

                                                                                                                                                                                                                                                                                                                                                          
The XRD patterns for the catalysts supported on carbon xerogels are depicted in Figure 4.1. 

The typical (111), (200), (220), (311) and (222) peaks of the Pt face-centred cubic (fcc) 

structure were observed at 40, 47, 67, 82, and 89° 2θ, respectively. These reflections showed 

a shift toward high 2θ values, respect to the peaks observed for the commercial Pt/C catalyst, 

as a consequence of the entrance of Pd into the Pt structure, forming an alloy [4]. In the case 

of the catalyst Pt-Pd/CX-EtOH, the shift was not evident, matching the low variation in its 

lattice parameter (see Table 4.1) and suggesting that in this material, there are Pt and Pd 

nanoparticles deposited on the carbon xerogels besides Pt-Pd alloyed nanoparticles. 

Regarding the crystallite sizes, they were calculated using the dimensions of the (220) peak 

and the Debye-Scherrer equation [5]: 

  
  

     
           4.3 

Where K is the Scherrer constant, D is the average particle size, θ is the diffraction angle, β is 

the width and λ is the X-ray wavelength. These values are summarised in the Table 4.1. The 

crystallite sizes of the carbon xerogel-supported catalysts were larger than 7 nm, whereas the 

particle sizes detected by TEM were lower than 5.5 nm, indicating that the synthesis routes 

promote the formation of amorphous particles with short diameter. The crystallite size is 

larger than the particle size due to the employed measurement method; In XRD, an average 

of all the crystalline particles is obtained, even those which are aggregated, since the X ray 

beam crosses all the crystallites in the material. As a consequence, the X ray beam considers 

the agglomerated crystallites as only one particle, increasing the crystallite size value. In 

TEM, only the well-defined nanoparticles are considered to measure the diameter and the 

agglomerated nanoparticles are disregarded. The lowest crystallite size was determined for 
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the catalyst reduced with methanol (Pt-Pd/CX-MeOH, 7.4 nm) whereas the largest one was 

found for the catalyst prepared in presence of ascorbic acid (Pt-Pd/CX-AA, 12.8 nm). 
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Figure 4.1 XRD patterns of synthesised Pt-Pd/CX and the commercial Pt/C catalysts. 

The XRD patterns of the Pt-Pd/CB catalysts are presented in Figure 4.2. A low intensity peak 

around 25 ° was observed, which corresponds to the reflection of the (002) graphitic planes 

of carbon black. A slight shift in the reflections of Pt-Pd respect to those of the commercial 

Pt/C was detected, confirming the entrance of Pd into the Pt fcc structure. On the other hand, 

the crystallite size was determined and values from 4.9 nm to 3.6 nm were calculated, with 

Pt-Pd/CB-nPrOH exhibiting the biggest value and Pt-Pd/CB-EtOH the lowest one. On the 

other hand, the highest lattice parameter was found for Pt-Pd/CB-MeOH indicating there is a 

low alloying degree between Pt and Pd when methanol is used as a reducing agent, being this 

result similar to that observed for the catalysts supported on carbon xerogels. The other 

catalysts displayed a smaller lattice parameter value and an evident shift in the XRD patterns, 

confirming the high alloying degree between Pt and Pd. 
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Figure 4.2 XRD patterns of synthesised Pt-Pd/CB and the commercial Pt/C catalysts. 

Figure 4.3 shows the XRD patterns of the catalysts supported on carbon nanofibers. For these 

materials, the peak corresponding to the (002) graphitic planes developed a higher intensity, 

due to the high content of these planes in this carbon material [5]. Similar to the other studied 

materials, the reflections were shifted toward higher 2θ degrees. Regarding the crystallite 

sizes, the largest value was determined for Pt-Pd/CNF-AA (5.4 nm) and the smallest for Pt-

Pd/CNF-MeOH (3.9 nm). Among these materials, the highest lattice parameter was obtained 

for the catalyst reduced with methanol, meaning a low alloying degree between Pt and Pd 

when this reducing agent is employed. 

 

 

 

 

 

20 40 60 80 100

In
te

ns
ity

/a
.u

2 

Pt-Pd/CB-nPrOH

 

Pt-Pd/CB-FMY

 

Pt-Pd/CB-EtOH

(311)

Pt/C Alfa Aesar

(222)

 

Pt-Pd/CB-MeOH

(220)
(200)

(111)

Pt-Pd/CB-AA

http://etd.uwc.ac.za/



62 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 XRD patterns of synthesised Pt-Pd/CNF and the commercial Pt/C catalysts. 

4.1.2 Transmission electron microscopy (TEM) characterisation of 

the synthesised catalysts  
 

Figure 4.4 shows the micrographs obtained from the TEM analysis of the Pt-Pd/CX catalysts. 

The metal nanoparticles demonstrated a high dispersion on the carbon xerogels, a fact 

explained from the encapsulation effect of the organic molecules and surfactants employed 

during the synthesis procedures, which inhibit the agglomeration between the nanoparticles. 

The catalyst synthesised with n-propanol as reducing agent exhibited the narrowest 

distribution in terms of the diameters, followed by the catalysts prepared in presence of 

ethanol and methanol, indicating that the longest carbon chain of the alcohols promotes the 

formation of nanoparticles with the smallest diameters. This fact was observed in previous 

works focussed in the synthesis of Pt-alloyed nanoparticles in presence of long carbon chain 

alcohols [6]. On the other hand, the agglomerated nanoparticles as well as the wide particle 

size dispersion of the catalyst reduced with formaldehyde indicate a low encapsulating 
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capacity of this molecule. It is important to consider that water was the main solvent in the 

catalysts reduced with formaldehyde and ascorbic acid, suggesting that presence of water as 

main solvent in the mentioned synthesis routes increases the particle size distribution. 

Therefore, these results verified the role of primary alcohols as reducing agents and 

encapsulating molecules to address the obtaining of well-dispersed nanoparticles with narrow 

size distributions [7-9].  

 

Figure 4.4 TEM images and histograms of Pt-Pd/CX and the commercial Pt/C catalysts. 

The TEM photographs of the catalysts supported on carbon black are shown in Figure 4.5. In 

general, these materials showed good dispersion of nanoparticles on carbon black although 

those reduced with n-propanol, methanol and formaldehyde showed a wide size distribution, 

while the catalysts reduced with ethanol and ascorbic acid showed a narrow distribution.  
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Figure 4.5 TEM images and histograms of Pt-Pd/CB and the commercial Pt/C catalysts. 

In the case of the catalysts supported on carbon nanofibers (Pt-Pd/CNF), a very good 

dispersion of the nanoparticles on the carbon support was observed (see Figure 4.6). Again, 

the catalysts reduced with methanol and formaldehyde showed a wide particle size 

distribution while the materials reduced with ethanol, n-propanol and ascorbic acid showed a 

narrower distribution of nanoparticles, suggesting that on carbon nanofibers, the use of small 

molecules as reducing agent promotes the formation of nanoparticles with short diameter.  
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Figure 4.6 TEM images and histograms of Pt-Pd/CB and the commercial Pt/C catalysts. 

4.2 Electrochemical characterisation 

4.2.1 Cyclic voltammetry 
 

Figure 4.7 depicts the electrochemical characterisation of the synthesised carbon xerogel-

supported catalysts in the electrolyte. For these experiments, the currents have been 

normalised by the electrochemical surface areas (ECSA), which were determined from the 

CO stripping as described in the section 3.1.3.2 and reported in Table 4.4. The cyclic 

voltammograms show the typical signals for the hydrogen adsorption/desorption process in 

the range of -0.010 to 0.3 V vs RHE, the capacitive currents between 0.3 V and 0.6 V and the 

formation of Pt oxides at high potentials at 0.6 - 1.0 V with its respective reduction peak 

around 0.730 V. The catalysts synthesised with ethanol and n-propanol developed higher 

current densities for hydrogen evolution compared with the materials reduced with ascorbic 

acid, methanol and formaldehyde. Nevertheless, a poor definition of the peaks corresponding 
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to the hydrogen desorption process, compared to those of the commercial Pt/C catalyst was 

observed. This fact can be attributed to the presence of palladium that adsorbs and also 

absorbs hydrogen. On the other hand, the potential values for the reduction of the metal 

oxides formed during the forward scan were more positive for all the Pt-Pd/CX than that of 

Pt/C. The presence of Pd might facilitate the reduction of these oxides and enables the 

formation of more active sites to increase the catalytic activity.  
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Figure 4.7 Cyclic voltammograms of the Pt-Pd/CX and the commercial Pt/C catalysts in the supporting 

electrolyte (0.1 M HClO4). Scan rate: 20 mV s−1. 

In the case of the materials supported on carbon black, the electrochemical signals were the 

same observed for the catalysts supported on carbon xerogels. The catalysts reduced with 

methanol and ascorbic acid displayed higher current densities for the evolution of hydrogen 
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compared to the materials reduced with ethanol, n-propanol and formaldehyde. In 

comparison with the catalysts supported on carbon xerogels, the potential values for the 

reduction of the Pt oxides in the carbon black-supported catalysts were more positive. This 

fact indicates that the presence of graphitic planes in this carbon material increases the 

activity of the Pt-Pd nanoparticles, bearing in mind that these graphitic planes were not 

detected by XRD in the Pt-Pd/CX catalysts.  
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Figure 4.8 Cyclic voltammograms of the Pt-Pd/CB and the commercial Pt/C catalysts in the supporting 

electrolyte (0.1 M HClO4). Scan rate: 20 mV s−1. 

Figure 4.9 presents the cyclic voltammograms of the synthesised catalysts supported on 

carbon nanofibers. Similar to the catalysts previously described, the typical signals for the 

hydrogen adsorption and desorption process were in the range between 0.010 and 0.3 V vs 

RHE. The catalyst developing the highest current densities for the evolution of hydrogen was 
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Pt-Pd/CNF-EtOH. Regarding the catalyst Pt-Pd/CNF-MeOH, this material developed the 

most positive potential corresponding to the reduction of metal oxides among all the studied 

catalysts. 
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Figure 4.9 Cyclic voltammograms of the Pt-Pd/CNF and the commercial Pt/C catalysts in the supporting 

electrolyte (0.1 M HClO4). Scan rate: 20 mV s−1. 

The electrochemical surface area (ECSA) of the synthesised Pt-Pd and the commercial Pt/C 

catalysts are reported in Table 4.4. The ECSA of a catalyst affects the reaction rate, the 

activity inside a fuel cell and the obtained current/power densities [10]. Pt-Pd/CX-MeOH, Pt-

Pd/CX-AA and Pt-Pt/CB-AA were the only materials displayed ECSA values higher than 

that of the commercial catalyst. 
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Table 4.4. Electrochemical surface area (ECSA) of the studied catalysts. 

 

Catalysts 

                    ECSA / m
2
 gPt

-1
 

CX CB CNF 

Pt-Pd-MeOH 154.72 61.81 46.02 

Pt-Pd-EtOH 38.83 70.91 94.65 

Pt-Pd-nPrOH 52.36 54.42 46.47 

Pt-Pd-FMY 62.02 56.39 45.35 

Pt-Pd-AA 115.81 113.84 94.28 

Pt/C Alfa Aesar … 98.0 … 

 

4.2.2 Activity towards ORR 
 

The activity of the studied carbon xerogel-supported catalysts toward the oxygen reduction 

reaction performed at 2500, 2000, 1600, 1200, 900, 600, 400 and 200 rpm was assessed and 

the results are presented in the Figure 4.10. The synthesised catalysts Pt-Pd/CX-MeOH, Pt-

Pd/CX-EtOH and Pt-Pd/CX-FMY exhibited the more positive onset potential at 2500 rpm 

(0.883 V and 0.792 V, respectively, see Table 4.5) compared to those of the other catalysts. 

This result indicates that a lower activation energy is required to start the electrochemical 

reduction of oxygen on the mentioned catalysts. On the other hand, the materials Pt-Pd/CX-

nPrOH, and Pt-Pd/CX-AA displayed similar onset potentials, which were 0.760 and 0.756 V, 

respectively. However, this sequence, changed on the half-wave potential since the catalysts 

reduced with formaldehyde and methanol developed the more positive values compared to 

the other materials. In this case, Pt/C generated the most positive half-wave potential at 0.717 

V, which means it requires the lowest energy to kinetically control the ORR at 2500 rpm. Pt-

Pd/CX-FMY and Pt-Pd/CX-MeOH displayed the highest diffusional current densities among 
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the synthesised catalysts followed by Pt-Pd/CX-nPrOH, Pt-Pd/CX-EtOH and Pt-Pd/CX-AA. 

Pt/C exhibited a higher diffusional current density compared to the Pt-Pd/CX materials. 

Nevertheless, the obtaining of high diffusional currents demonstrates that Pd plays an 

important role in the activity of the synthesised catalysts [11], promoting a synergy effect on 

Pt that induces the obtaining of higher current outputs. It is well-known that the presence of 

Pd induces a decrease in the Pt-Pt interatomic distance, which enables the oxygen adsorption 

and thus, the activity of the catalysts. Due this fact, the obtaining of higher outputs for these 

materials during the PEM fuel cell operation when they are used as cathodes could be 

expected. Another remarkable fact was related with the activity of Pt-Pd/CX-MeOH, which 

exhibited the smallest crystallite size and also developed high diffusional current densities, 

which indicates that the availability of active sites to carry out ORR is inversely proportional 

to the crystallite size. 

Table 4.5 ORR activity parameters of Pt-Pd/CX and the commercial Pt/C catalysts. 

 

Catalysts 

Onset potential / V vs 

RHE 

Half-wave potential / V 

vs RHE 

Current density / mA 

cm
-2

 

Pt-Pd/CX-MeOH 0.883 0.629 6.46 

Pt-Pd/CX-EtOH 0.792 0.570 4.00 

Pt-Pd/CX-nPrOH 0.760 0.573 5.58 

Pt-Pd/CX-FMY 0.785 0.656 6.65 

Pt-Pd/CX-AA 0.756 0.543 5.00 

Pt/C Alfa Aesar 0.885 0.717 7.04 
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Figure 4.10-ORR polarisation curves recorded for the Pt-Pd/CX and the commercial Pt/C catalysts. 

Figure 4.11 shows the current densities developed during the ORR performed on the catalysts 

supported on carbon black, while the Table 4.6 shows the most relevant activity parameters. 

Among the synthesised catalysts, Pt-Pd/CB-AA displayed the most positive onset (0.861 V) 

and half-wave potential (0.648 V) at 2500 rpm, whereas Pt-Pd/CB-FMY showed the less 

positive half wave potential. Furthermore, the highest diffusional current density at 2500 rpm 

was also recorded for Pt-Pd/CX-AA (6.98 mA cm
-2

), a value close to that of the commercial 

catalyst (7.04 mA cm
-2

). It is important to highlight that the synthesised Pt-Pd catalysts 

developed high diffusional current densities, considering their low Pt content compared to the 

commercial catalyst (see table 4.2).  
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Table 4.6 ORR activity parameters of Pt-Pd/CB and the commercial Pt/C catalysts. 

 

Catalysts 

Onset potential / V vs 

RHE 

Half-wave potential / V 

vs RHE 

Current density / mA 

cm
-2

 

Pt-Pd/CB-MeOH 0.824 0.570 5.12 

Pt-Pd/CB-EtOH 0.771 0.609 3.86 

Pt-Pd/CB-nPrOH 0.824 0.612 6.43 

Pt-Pd/CB-FMY 0.797 0.596 5.40 

Pt-Pd/CB-AA 0.861 0.648 6.98 

Pt/C Alfa Aesar 0.885 0.717 7.04 
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Figure 4.11- ORR polarisation curves recorded for the Pt-Pd/CB and the commercial Pt/C catalysts. 
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The ORR activities of the catalysts supported on carbon nanofibers are presented in Figure 

4.12. Among the group of the synthesised catalysts, Pt-Pd/CNF-EtOH presented the most 

positive onset potential (0.827V), although the commercial catalyst displayed the highest 

onset potential (0.885V). Despite this result, it is important to highlight that the catalysts 

Pd/CNF-FMY and Pd/CNF-nPrOH developed the highest half-wave potentials, while the 

catalyst Pd/CNF-EtOH developed the highest diffusional current density (6.51 mA cm
-2

) 

among the synthesised catalysts. 

Table 4.7 ORR activity parameters of Pt-Pd/CNF and the commercial Pt/C catalysts. 

 

Catalysts 

Onset potential / V vs 

RHE 

Half-wave potential / V 

vs RHE 

Current density / 

mA cm
-2

 

Pt-Pd/CNF-MeOH 0.773 0.458 4.10 

Pt-Pd/CNF-EtOH 0.827 0.639 6.51 

Pt-Pd/CNF-nPrOH 0.819 0.651 6.08 

Pt-Pd/CNF-FMY 0.619 0.453 5.13 

Pt-Pd/CNF-AA 0.651 0.470 3.93 

Pt/C Alfa Aesar 0.885 0.717 7.04 
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Figure 4.12- ORR polarisation curves recorded for the Pt-Pd/CNF and the commercial Pt/C catalysts. 

4.2.3 Mass and specific activity of the synthesised catalysts. 
 

The specific and mass activities of the catalysts supported on carbon xerogels at 0.75 V were 

calculated and the results are depicted in the Figure 4.13. The catalysts reduced with 

methanol, ethanol and formaldehyde displayed the highest mass and specific activities, even 

overcoming those of Pt/C, while the catalyst reduced with ascorbic acid generated the lower 

activities. These results confirm that the Pt-Pd/CX materials are suitable to be used in the 

cathode of the PEMFCs as they have a low but optimized Pt content, high content of active 

sites and high activity toward the ORR. The higher lattice parameter matched with the higher 

activity of the catalysts, suggesting that a low alloying degree between Pt and Pd benefits 

their activity.   
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Figure 4.13 Specific and mass activities of the Pt-Pd/CX and the commercial Pt/C catalysts. 

Figure 4.14 displays the mass and specific activity of the catalysts supported on carbon black. 

The catalyst with the highest mass activity is Pt-Pd/CB-AA and the lowest was generated by 

Pt-Pd/CB-EtOH. The catalysts reduced with ethanol presented both the lowest mass and 

specific activities, which was also demonstrated with their lowest diffusional current 

densities. The activities observed in the catalysts supported on carbon black were 

comparatively lower than those of the catalysts supported on carbon xerogels, a fact that can 

be explained from the high content of mesopores in the carbon xerogels. A high content of 

mesopores promotes a high dispersion of metal nanoparticles on the carbon support, and the 

diffusion of the electroactive species toward the catalytic nanoparticles. 
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Figure 4.14 Specific and mass activities of the Pt-Pd/CB and the commercial Pt/C catalysts. 

Figure 4.15 shows the results for the specific and mass activities of the catalysts supported on 

carbon nanofibers. Pt-Pd/CNF-nPrOH developed the highest specific activity, even 

overcoming that of Pt/C, while Pt-Pd/CNF-EtOH developed the highest mass activity 

compared to the other CNF-supported materials. The mass and specific activities of the 

catalysts reduced with ascorbic acid and formaldehyde were lower than those of the catalysts. 

The catalysts supported on carbon nanofibers did not achieve the expected 40 wt. % metal 

content (see table 4.3) which results in their low activity among all the studied materials in 

this work. Therefore, the low metal content of the catalysts supported on carbon nanofibers 

could be the main reason related with the low mass and specific activities of the Pt-Pd/CNF 

catalysts. 
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Figure 4.15 Specific and mass activities of the Pt-Pd/CNF and the commercial Pt/C catalysts. 

4.2.4 Koutecký-Levich analysis of the synthesised catalysts 
 

Figure 4.16 shows the Koutechý-Levich plots at different potentials of the catalysts supported 

on carbon xerogels, which were used to calculate the number of electrons involved in the 

oxygen reduction reaction on the synthesised catalysts supported on carbon xerogels. The 

number of electrons was calculated using the Koutecký-Levich equation: 

 

 
 

 

  
 

 

                    
                   (4.4) 

Where D is the diffusion coefficient of molecular oxygen in 0.1 M HClO4 (1.67 X 10
-5

 cm
2
 s

-

1
), υ is the kinematical viscosity (8.93 X 10-3 cm

2
 s

-1
), CO2 is the concentration of dissolved 

molecular oxygen (1.18 X 10
-6

 mol cm
-3

) and A is the geometric area of the working 

electrode (0.1962 cm
2
). Parallel trends were found at the different potentials, suggesting that 

water is formed as the main product during the ORR. Pt-Pd/CX-EtOH is the only catalyst that 

presented a slight deviation from parallelism, indicating the formation of some hydrogen 
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peroxide during the ORR. The slopes of these linear trends were used to calculate the number 

of electrons, finding values close to four electrons, except in the case of the catalyst reduced 

with ethanol (3.7 electrons), demonstrating an incipient formation of hydrogen peroxide 

when the ORR is performed on this catalyst.  
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Figure 4.16 Koutecký-Levich plots of the Pt-Pd/CX and the commercial Pt/C catalysts. 

Regarding the catalysts supported on carbon black, the materials Pt-Pd/CB-AA, Pt-Pd/CB-

FMY and Pt-Pd/CB-nPrOH presented four number of electrons involved in the ORR, 

indicating the formation of water as main product. The catalysts Pt-Pd/CB-EtOH and Pt-

Pd/CB-MeOH showed a number of electrons lower than four (3.1 and 3.2 respectively), 

suggesting that some hydrogen peroxide is formed when the ORR occurs on these materials. 

The catalysts reduced with ethanol supported on both carbon xerogel and carbon black 

involved less than four electrons, indicating that this synthesis route does not promote the 
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formation of nanoparticles with catalytic properties favouring the production of water [12, 

13].  
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Figure 4.17 Koutecký-Levich plots of the Pt-Pd/CB and the commercial Pt/C catalysts. 

In the case of the materials supported on carbon nanofibers, parallel trends were observed 

(see Figure 4.18) in the catalysts reduced with ethanol (4.1 electrons), n-propanol (4.3 

electrons) and formaldehyde (4.3 electrons), suggesting the formation of water as main 

product. The catalysts reduced with ascorbic acid and methanol showed a number of 

electrons lower than four (3.2 and 3.1 electrons respectively), suggesting some hydrogen 

peroxide formation.  
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Figure 4.18 Koutecký-Levich plots of the Pt-Pd/CNF and the commercial Pt/C catalysts. 

4.2.5 Corrosion and stability assessment of the synthesised catalysts. 
 

The synthesised catalysts were tested to assess the corrosion resistance in similar conditions 

to those employed in a PEMFC, following the procedure described in section 3.1.3.2. The 

changes in the electrochemical behaviours of the catalysts supported on carbon xerogels are 

presented in Figure 4.19. A negligible change in the peaks corresponding to hydrogen 

adsorption/desorption current densities (between -0.1 to 0.3 V vs RHE) with well-defined 

peaks for adsorption was observed, which indicates that there was no changes in the surface 

crystallinity of the nanoparticles.  Pt-Pd/CX-FMY demonstrated a decrease in the current 

densities of the peaks corresponding to formation/reduction of metal oxides (between 0.6 to 

0.95 V vs RHE), suggesting the formation of unstable surface oxides. No other synthesised 

catalysts showed significant changes after the cycling test suggesting high resistance towards 

corrosion.  
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Figure 4.19 Cyclic voltammograms of Pt-Pd/CX and the commercial Pt/C catalysts before and after the cycling 

treatment. 

The synthesised catalysts supported on carbon black demonstrated changes in the peaks 

corresponding to the adsorption and desorption of hydrogen after the cycling treatment, 

except in the case of the catalyst reduced with methanol. The peaks corresponding to the 

oxidation/reduction of metal oxides changed drastically in all the synthesised catalyst, which 

means a dissolution process of the metal nanoparticles [14]. The catalysts Pt-Pd/CX 

displayed higher stability and resistance to corrosion compared with the catalysts Pt-Pd/CB, 

verifying that carbon xerogel have improved corrosion resistance in acidic media. 
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Figure 4.20 Cyclic voltammograms of Pt-Pd/CB and the commercial Pt/C catalysts before and after the cycling 

treatment. 

Figure 4.21 depicts the behaviour of the catalysts supported on carbon nanofibers in the O2-

free supporting electrolyte, before and after the durability test. Only the catalyst reduced with 

ethanol did not show a change in the current density corresponding to the 

adsorption/desorption of hydrogen, suggesting that there was no change on the crystallinity of 

this material. There were changes in the current densities corresponding to the 

formation/reduction of metal oxides in the other synthesised catalysts, indicating that they are 

more sensible to corrosion processes associated with both, the metal nanoparticles and carbon 

support corrosion. 
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Figure 4.21 Cyclic voltammograms of Pt-Pd/CNF and the commercial Pt/C catalysts before and after the 

cycling treatment. 

The effect of the cycling treatment in the ORR activity was also studied on the catalysts 

supported on carbon xerogels, as shown in Figure 4.22. There is a shift toward more negative 

values in the half-wave potentials after the cycling treatment although the diffusional current 

densities increased after the test, indicating that the corrosion of the catalysts is mainly 

associated to the carbon support and thus, an increase in the electroactive area is generated. 

All the Pt-Pd materials showed lower differences in the half-wave potential than that of the 

commercial Pt/C, indicating that synthesised Pt-Pd/CX materials possess a high corrosion 

resistance, which can be attributed to the presence of both Pd and carbon xerogels. These 
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results were in consistence with those achieved by Nishanth [15] and Xiong [16], who found 

small differences in the half-wave potentials before and after the durability test, for materials 

prepared by galvanic replacement and solvothermal synthesis. 
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Figure 4.22 ORR polarisation curves recorded at 1600 rpm for the Pt-Pd/CX and the commercial Pt/C catalysts 

before and after the cycling treatment.  

Figure 4.23 shows the effect of the cycling treatment on the activity of the catalysts supported 

on carbon black. The half-wave potentials of the catalysts decreased drastically in the 

prepared materials compared with the commercial Pt/C, except in the case of Pt-Pd/CB-FMY 

and Pt-Pd/CB-MeOH. The diffusional current densities were also affected, since all of them 

decreased after the cycling, suggesting corrosion processes affecting both the carbon black 

support and the metal Pt-Pd nanoparticles. 
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Figure 4.23 ORR polarisation curves recorded at 1600 rpm for the Pt-Pd/CB and the commercial Pt/C catalysts 

before and after the cycling treatment. 

Figure 4.24 represents the performance of the ORR on the Pt-Pd/CNF catalysts. The half-

wave potential of the catalyst reduced with ascorbic acid presented the smallest change 

compared to the other synthesised catalysts, which means this material develops the lowest 

degree of corrosion. Moreover, among all the catalysts supported on the different carbon 

materials, the highest decrease in the half-wave potential was recorded on Pt-Pd/CB-AA and 

the lower on Pt-Pd/CB-MeOH.  
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Figure 4.24 ORR polarisation curves recorded at 1600 rpm for the Pt-Pd/CB and the commercial Pt/C catalysts 

before and after the cycling treatment. 
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5. Chapter Five: Conclusions 
 

Platinum-palladium catalysts supported on carbon xerogels, carbon black and carbon 

nanofibers were synthesised by chemical reduction with methanol, ethanol, n-propanol, 

formaldehyde and ascorbic acid, in order to evaluate their performance toward the oxygen 

reduction reaction (ORR) and thus determining its suitability as cathode catalysts for 

PEMFCs. The catalysts were physically characterised by X-ray diffraction (XRD), energy 

dispersive X-ray (EDS) and transmission electron microscopy (TEM). Moreover, the as-

synthesised materials were electrochemically characterised by cyclic voltammetry (CV) and 

rotating disk electrode (RDE). XRD analysis demonstrated the formation of an alloy between 

platinum and palladium, since the typical peaks of the face-centered structure of these 

catalysts shifted to the higher values of 2θ degrees, compared with the reflections of the 

commercial Pt/C catalyst. Furthermore, in most of the catalysts a decrease in the lattice 

parameter was found, verifying the entrance of Pd in the crystal lattice of Pt, forming an 

alloy. The EDS analysis showed that the Pt-Pd atomic ratio was close to 1:2 in the as-

prepared catalysts, while the metal contents were around 35 wt. % for the catalysts supported 

on carbon xerogels, 36 wt. % for the catalysts supported on carbon black and 24 wt. % for the 

materials supported on carbon nanofibers. TEM analysis demonstrated a high dispersion of 

metal nanoparticles on the carbon supports, especially in the case of the Pt-Pd/CNF catalysts. 

Among the studied synthesis methods, the use of ethanol as reducing agent promoted a 

narrow particle size distribution of the nanoparticles on all the carbon supports. 

Regarding the electrochemical characterisation, a shift towards more positive potentials in the 

peaks correspond to the reduction of metal oxides in the O2-free supporting electrolyte was 

observed due to the presence of Pd in the synthesised catalysts. Pt-Pd/CX-FMY, Pt-Pd/CX-

MeOH, Pt-Pd/CB-AA, Pt-Pd/CB-nPrOH, Pt-Pd/CNF-EtOH and Pt-Pd/CNF-nPrOH 
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demonstrated the highest activity towards the ORR, even overcoming the diffusional current 

densities developed by the commercial Pt/C Alfa Aesar catalyst. It is important to highlight 

that the materials synthesised in this work contain a lower platinum content and in most of 

the cases, they developed activities higher than that of Pt/C. After a Koutécy-Levich analysis 

of the catalysts, there were four electrons involved in the ORR found, suggesting the 

production of water as main product and the maximum efficiency of the catalysts. The mass 

and specific activity of the studied catalysts at 0.75 V was determined, and the obtained 

values demonstrated that Pt-Pd/CX-EtOH, Pt-Pd/CX-FMY and Pt-Pd/CX-MeOH possess 

activities higher than that of Pt/C. Pt-Pd/CX-AA and Pt-Pd/CNF-nPrOH also exhibited 

higher mass activities than that of Pt/C, as well as Pt-Pd/CB-MeOH displayed an improved 

specific activity. 

The corrosion resistance of the studied materials was evaluated by submitting them to a 

potential cycling, which did not affect the peaks corresponding to the adsorption/desorption 

process of hydrogen in the catalysts supported on carbon xerogels, except Pt-Pd/CX-FMY. 

Nevertheless, in the catalysts supported on carbon black and carbon nanofibers, a decrease in 

the currents corresponding to this process was observed. The diffusional current densities of 

the catalysts supported on carbon xerogels and Pt-Pd/CNF-AA improved after the cycling 

treatment, suggesting a corrosion process associated to the metal nanoparticles dissolution. 

The results here presented suggest that the studied synthesis routes are suitable to produce Pt-

Pd catalysts supported on carbon xerogels, carbon black and carbon nanofibers, procedures 

that allow the obtaining of materials with an optimised utilization of Pt. Despite the low 

content of this metal, there is no detriment in their ORR activity, making them good 

candidates to be employed as cathodes in proton exchange membrane fuel cells. 
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