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ABSTRACT  

The motivation to determine H2O2 lies in the fact that this chemical species plays a crucial role 

in diverse fields of practise such as cosmetic, food, diagnostic, pharmaceutical, clinical and 

environmental protection industries. Several methods such as chromatography, colorimetry, 

titrimetry and spectrophotometry have been developed for its detection. However, these 

methods are known to manifest underlying disadvantages such as high cost, time consuming, 

instability and complicated immobilization procedures. In this present study an enzyme-less 

electrochemical sensor based on Ag-Fe2O3/POM/RGO nanocomposite (POM stands for 

polyoxometalate and RGO stands for reduced graphene oxide) was successfully synthesised 

via a hydrothermal method and a photochemical reduction method for the detection of 

hydrogen peroxide (H2O2). 

Graphene oxide (GO) was chemically reduced by sodium borohydride to RGO. UV-Vis, FTIR, 

Raman and XRD studies confirmed the reduction process. The disappearance of the vibrational 

peak at 3126 cm-1 assigned to O-H stretching in the FTIR of RGO and the disappearance of the 

shoulder located at 291 nm in the Uv-Vis absorption of RGO due to the removal of oxygen-

containing functional groups suggested that GO was reduced to RGO. The photochemical 

reduction of POM at the surface of RGO sheet was followed by hydrothermal synthesis of Ag-

Fe2O3 to form the novel Ag-Fe2O3/POM/RGO nanocomposite. The synthesised composites, 

namely POM/RGO, Ag-Fe2O3 nanoparticles and Ag-Fe2O3/POM/RGO were studied using 

UV-Vis, FTIR, XRD, SEM, TEM, AFM, EDX and SAXS analysis. The TEM revealed that the 

Ag-Fe2O3 nanoparticles onto the POM/RGO surface had different shape and size, with the Ag 

being of a spherical shape with size ranging from (3-5) nm and the Fe2O3 nanoparticles with 

irregular shapes being (15-16) nm in size. SASX analysis revealed that these nanoparticles on 

the surface of POM/RGO are very close to each other with the Fe2O3 nanoparticles being more 

intense than the Ag nanoparticles. XRD analysis showed that the Ag-Fe2O3/POM/RGO 

nanocomposite had rhombohedral and spherical crystalline structure due to Fe2O3 and Ag 

nanoparticles respectively, this high crystallinity was further confirmed by the Selected area 

(electron) diffraction of the novel nanocomposite. 

 The Ag-Fe2O3/POM/RGO nanocomposite was further modified on a glassy carbon electrode 

(GCE) and was used to investigate its electrochemical properties. The cyclic voltammetry (CV) 

revealed that the Ag-Fe2O3/POM/RGO nanocomposite has excellent electroreduction 

behaviour towards H2O2 when compared to the response of GCE due to the presence of 

POM/RGO which enhanced the rate of transfer of electrons during the electrochemical 

http://etd.uwc.ac.za/



iii 
 

reduction of H2O2. Amperometric method was further used to quantify H2O2 using Ag-

Fe2O3/POM/RGO nanocomposite, and the response was linear over the concentration ranging 

from 0.3 mM to 3.3 mM (R2 = 0.992). The detection limit and sensitivity were calculated to be 

0.0029 mM and 270.96 A.Mm-1cm-2, respectively with the response time of about 5 s at a 

signal to noise ratio (S/N=4). The fabricated sensor was also used for the detection of H2O2 in 

the presence of potentially active interfering species, and found high selectivity towards H2O2. 

Further studies of this sensor with real life water samples obtained from the Western Cape 

Science Services showed that the sensor was able to detect and reduce H2O2 successfully with 

relative standard deviation (RSD) % values being less than 4.2 %. This sensors good 

performance is attributed to the synergetic effect of the Ag-Fe2O3 nanoparticles and POM with 

RGO. RGO is believed to have increase the surface area roughness and therefore acted as an 

excelled underneath layer. POM served as a matrix for incorporating the nanoparticles. The 

metal-metal oxide nanoparticles (Ag-Fe2O3) NPs exhibited an irregular size distribution and 

helped to enhance the electrocatalytic activity and increased the sensitivity of the fabricated 

sensor.  
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CHAPTER 1 

Chapter Overview 

This chapter gives an overview on the importance of detecting hydrogen peroxide (H2O2) and 

the rationale behind the choice of electrochemical detection methods over other reported 

analytical methods. Disadvantages associated with electrochemical enzyme sensors over non-

enzyme sensors based on previously conducted studies are also discussed. The chapter further 

elaborates on the rationale behind the use of Graphene oxide, Silver-Iron Oxide nanoparticles 

and Polyoxometalate (POM) for the construction of enzyme-free electrochemical H2O2 sensor. 

The research objectives, problem statement and motivation of the study are presented. The 

chapter closes with a general outline of the thesis layout.  

1.1 Introduction  

Discovered by Louis Auguste Thenard, a French Scientist in 1818, hydrogen peroxide is a 

compound with the chemical formula (H2O2); it is a pale-blue covalent liquid in its pure form 

but appears colourless in a dilute solution, somewhat more viscous than water (Scandurra et 

al., 2013). It is the simplest of the class of peroxides (compounds with an oxygen-oxygen single 

bond). In chemical terms, H2O2 is poorly reactive; its chemistry is subjugated by the identity 

of its unstable peroxide bond. It is found in small amounts in the environment (air and water) 

and in biological systems including the human body (Y et al., 2000). 

In the human body, produced by a secondary class of white blood cells called neutrophils, H2O2 

functions as the first line of protection against toxins, bacteria, parasites, viruses and yeast. 

H2O2 also plays an important role in modifying the renal function and has an antibacterial effect 

that is advantageous at high levels in urine that could reduce bladder and urinary tract infections 

(Yusoff et al., 2017). However, high (usually≥ 50 µM) levels of H2O2 are toxic to human health, 

including irritating the eyes, skin, and can constitute a pathogenic factor in vascular organ 

damage attendant upon systemic hypertension. These high levels can be controlled by excretion 

and catabolism (Y et al., 2000). 

 In industrial applications, H2O2 is one of the components in rocket fuels, in tooth whitening 

paste, laundry detergent, and purification of water and healing purposes. At high 

concentrations, H2O2 can also be used as bleach for textiles and paper. Due to its powerful 

oxidizing properties that allow it to react with viruses, spores, yeast and bacteria, H2O2 is used 

http://etd.uwc.ac.za/
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as a chemical agent for sterilization in the food industry (Liu, Liu & Chen, 2013). Thus, the 

detection and quantification of H2O2 is of significance. 

 Several techniques including chromatography, colorimetry, chemiluminescence, titrimetry, 

spectrophotometry, fluorimetry and electrochemistry (Keston & Brandt, 1965; Bader, 

Sturzenegger & Hoigné, 1988; Uchida et al., 2004; Tarvin et al., 2010; Liu, Tian, et al., 2012; 

Liu, Liu & Chen, 2013; Hsu et al., 2015) have been developed to detect and measure hydrogen 

peroxide. In comparison with the other techniques, the electrochemical methods are cost 

effective, require simpler experimental set up and allows sensitive and fast detection of 

hydrogen peroxide with sensitivities as low as 0.01 (µA mM-1 cm-2) and detection limits 

ranging from (0.01 to 57 000 )µM (Liu, Li, et al., 2012; Liu, Weng & Yang, 2017). It is for 

these reasons that the science community is on a frenzy for electrochemical techniques. 

Currently, a majority of research on electrochemical detection of hydrogen peroxide is done to 

develop and characterize the modified electrode on the surface where reduction/oxidation of 

hydrogen peroxide is achievable, by operating at low voltage thus improving the sensors 

selectivity (Scandurra et al., 2013).To improve the electrochemical detection of H2O2 sensors, 

the electrode can be fabricated using either carbon micro and nanomaterials, nanostructured 

metal oxides, conducting polymers, metal and metal alloy nanomaterials composites (Kumar 

et al., 2018). 

Ever since its discovery by Novoselov and Geim in 2004, graphene, a sp2 hybridized 2D sheet 

of single thick carbon atom has become the main focus in the science community because of 

its unique electronic, optical , mechanical , thermal and chemical properties (Teymourian, 

Salimi & Khezrian, 2013). Due to these properties it has been widely used in nanomaterial and 

nanotechnology applications. Graphene Oxide, a derivative of graphene has been an ideal 

material for electrochemistry due to its ability to provide a large specific surface area for the 

attachment of large amounts of substances such as nanoparticles, metals and biomolecules 

(Dhara et al., 2016). This can in turn enable high sensitivity, selectivity and manufacturing of 

small devices in electrochemical sensors (Li, Du, et al., 2010). Apart from the applications of 

graphene and graphene oxide, mixing of graphene oxide with nanoparticles, metals , metal 

oxides polyoxometalates and polymers into nanocomposites have received great attention due 

to their new and/or enhanced properties that cannot be achieved by either component alone and 

therefore holds a wide variety of applications in catalysis, sensors and medical field 

(Teymourian, Salimi & Khezrian, 2013). A wide range of graphene based composites, such as 

graphene metal oxides, graphene-metal and polyoxometalate-graphene oxide composites have 
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been exploited as electrochemical sensors for the detection of H2O2 (Paul et al., 2016; Zhang 

& Zheng, 2017). Polyoxometalates (POMs) are combinations between oxygen and early 

transition metals (e.g. M= V, Nb, Ta, Mo, W) at their high oxidation states with high structural, 

electronic and chemical versatility (Ammam, 2013). Due to their interesting structural and 

physicochemical properties, POM’s are prospective candidates for electrochemical 

applications such as photocatalysis, energy storage systems and sensors (Lin, Hu & Song, 

2017). 

With the ever increasing developments of nanotechnology and nanoscience, an extensive 

variety of nanomaterials particularly, nanoparticles have become a hot topic because of their 

unique physicochemical properties. Among them are magnetic nanoparticles, particularly iron 

oxide (Fe2O3) have been exploited for use in gas sensors, electrochemical sensors, lithium ion 

batteries, catalysis, biomedical and biological applications (Pan, Tang & Chen, 2013). On the 

other hand, integration of iron oxide nanoparticles with other metals or transition metals oxide 

into a nanocomposite has attracted more attention due to their synergetic effect, and therefore 

leading to enhanced properties and wide range of applications. Among these nanocomposites 

are silver/iron oxide nanocomposites (Ag-Fe3O2) which have been used more in catalysis 

(Biabani-ravandi, Rezaei & Fattah, 2013). For example, (Jang et al., 2009) developed Ag-

Fe2O3 nanocomposite photocatalyst for water oxidation. (Narasimharao, Al-Shehri & Al-

Thabaiti, 2015) also synthesised Ag-Fe2O3 nanocomposite catalyst for oxidation of carbon 

monoxide.  Also Ag-Fe3O2 composite was synthesised by (Gao, Chen & Jiang, 2013) but it 

was for antibacterial property. The interest in integrating Ag in the iron oxide composite is to 

explore on properties of Ag nanoparticles which include biocompatibility, high electrical 

conductivity and large surface area (Evanoff & Chumanov, 2005). However Ag nanoparticles 

aggregate hence limiting their use, thus many research have shown that a graphene material 

can protect the nanoparticles against aggregation (Geetha Bai et al., 2016; Shaikh, Parida & 

Böhm, 2016; Zhao, Zhang & Zheng, 2017).   

In a research done by (Kumar et al., 2018) toward the detection of H2O2, a silver nanoparticle-

reduced graphene oxide–polyaniline composite was constructed; the silver nanoparticles 

immobilized onto the reduced graphene oxide did not aggregate. (Bai et al., 2014) used the 

modification of a silver mirror to construct an Ag/RGO nanocomposite for electrochemical 

sensing. (Xu et al., 2011)a simple and scalable method for preparation of Ag/RGO. From these 

researches it was found that graphene oxide can be used to protect the silver nanoparticles 

towards aggregation. Incorporating Fe2O3-Ag nanoparticle composite with graphene oxide to 
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form Ag-Fe2O3-graphene oxide nanocomposite will lead to enhanced chemical properties. This 

study presents findings on the development of a cost effective, sensitive and selective enzyme 

free electrochemical sensor based of the novel Ag-Fe2O3/POM-RGO nanocomposite modified 

glassy carbon electrode for the detection of H2O2. 

1.2 Problem Statement 

Despite the fact that there are numerous techniques for detecting H2O2 there still exists some 

disadvantages associated with the reported preferred electrochemical techniques. The 

electrochemical detection technique of H2O2 is achieved through non-enzyme and enzyme-

based sensors.  Even though, so far advanced enzyme-based sensors have high sensitivity and 

selectivity, they also exhibit some drawbacks, such as instability, high costs, restricted storage 

time and complicated immobilization procedures. Horseradish Peroxidase (HRP), 

haemoglobin (Hb), myoglobin (Mb) and cytochrome C (Cyt c)  (Lei et al., 2003; Ahammad, 

2012; Wang et al., 2012; Dinesh et al., 2014) are the most commonly used enzymes for the 

construction of H2O2 biosensors. The major challenge with these is that, the direct electron 

transfer between the proteins and the electrode is difficult because the active sites of the 

proteins are deeply buried in a thick protein shell, and that the large distance between the active 

sites of the proteins and the electrode surface will slow down the electron transfer. To overcome 

these drawbacks, the development of non-enzyme electrochemical sensors for detection of 

H2O2 has received great attention (Dinesh et al., 2014).  As part of the solution to the demand 

of sensitive and selective enzyme-free based H2O2 sensors, we propose to develop an enzyme 

free sensor which requires minimal skill operation, inexpensive and that produces real time 

analytical results towards H2O2 detection. 

1.3 Motivation  

The fact that there are vast applications of H2O2, clinically, environmentally and industrially, 

yet, calls abounds for the development of a cheap, environmental friendly and easy to use 

method for its detection. Quantitative and qualitative detection of H2O2 has been investigated 

through utilization of many platforms. The preceding literature exploration showed that 

nanoparticle composites and graphene nanocomposites such as metal oxide graphene 

nanocomposites and polyoxometalates-graphene nanocomposites have been used for selective 

and sensitive non-enzyme electrochemical detection of H2O2. Even though there have not been 

a number of papers on these composite combined together, Nig and Jianbin constructed an 

enzyme free sensor based on silver-iron-oxide/reduced graphene oxide nanocomposite for the 

detection of H2O2 which proves to be very effective with the detection limit of 0.5 µmolL-1 
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(Zhang & Zheng, 2017). On the other hand Arumugan and Sambandam constructed an enzyme 

free H2O2 sensor based on silver nanoparticles embedded phosphomolybdate-polyaniline 

hydride (Manivel & Anandan, 2011). Cyclic voltammetry showed that the electronic properties 

of POM were retained even after the formation of the hybrid which led to an effective reduction 

of H2O2 with a less negative over potential.  The detection limit of their sensor was estimated 

to be 750 nM. Incorporating POM in RGO led to an accurate, selective and sensitive H2O2 

detection.  Thus, the fabrication of Ag-Fe2O3/POM/RGO nanocomposite presents a novel, 

simple, cheap and environmental friendly method for detection of H2O2. 

1.4 Aim and Objectives  

This study will develop a synergetic electrochemical sensor based on Ag-Fe2O3 

NPs/POM/RGO nanocomposite for the detection of hydrogen peroxide. The aim is to combine 

the electrochemical properties of phosphomolybdic acid and Ag-Fe2O3-RGO nanocomposite 

into a very sensitive and high selective nanocomposite that is capable of detecting H2O2. The 

main objectives of this study are as follows. 

1.  To synthesize the various materials for the sensor platform including RGO, Ag and 

Fe2O3 nanoparticles and investigate their surface morphology using scanning electron 

microscope (SEM) and transmission electron microscopy (TEM); elemental analysis 

using x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDX), also 

structural analysis using Ultraviolet-Visible spectroscopy (UV-Vis), Fourier 

Transform-Infrared Spectroscopy (FTIR) and Raman Spectroscopy. 

 

2.  Development of the Ag-Fe2O3 NPs/POM/RGO nanocomposite on the glassy carbon 

electrode and investigate the electrochemical properties of the developed platform 

using cyclic voltammetry (CV), amperometry (AMP) and electrochemical impedance 

spectroscopy (EIS). 

 

3.  To determine the potential at which H2O2 is reduced on the surface of the electrode 

using CV with different concentrations of H2O2.  
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1.5 Research Framework  

Research methodology leading to final results followed consecutive steps. Below is the flow 

diagram showing the summary of the study objectives in line with the experimental procedure. 

 

Scheme 1.1: Research framework showing the summary of the study objectives in line with 

the experimental procedure for the development and application of the Ag-Fe2O3/POM/RGO 

nanocomposite electrode for H2O2 detection.  
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1.6 Thesis Outline   

The thesis will be presented as outlined briefly below: 

Chapter 1 introduces the background and importance of the study and its objectives  

Chapter 2 reviews the literature related to biosensors, graphene, POMs, nanomaterials, 

synthetic methods, applications and relevant research associated with the problem addressed 

in this study.  

Chapter 3 includes information on the chemicals used, instrumentation and research design 

with an overview of successive steps taken to meet the objectives. Also characterization 

methods, such as cyclic voltammetry (CV), transmission electron microscopy (TEM) and 

electrochemical impedance spectroscopy (EIS) are discussed briefly in this chapter. 

Chapter 4 and 5 will represent results and discussion generated from the experimental 

followed in chapter 3.  

Chapter 4 will mainly represent and discuss the characterization results of the developed 

nanocomposite.  

Chapter 5 will discuss the enzyme-less sensor response towards the detection of H2O2 based 

on CV. A more detailed description of the enzyme-less sensor and its analytical characteristics 

such as linear range, stability, detection limits and selectivity is presented in this chapter. This 

chapter also reports the application of the sensor to real life samples.  

Chapter 6 will present the conclusion, future work and recommendations.  
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CHAPTER 2 

LITERATURE REVIEW 

 

Chapter overview 

Furnishing the sensor with high selectivity and sensitivity for analyte measurements is one of 

the primary goals of any sensor recognition system. Numerous materials such as POM and 

several classes of nanomaterials such as metals, metal oxides and carbon based materials that 

enhance the sensor’s selectivity and sensitivity for H2O2 detection have been reported in the 

literature. These nanomaterials include graphene, iron oxide, heteropolyanions and silver 

nanoparticles. In most cases the reported materials work in synergy with each other leading 

towards electrocatalytic detection of H2O2. In this section the most promising materials used 

to fabricate sensing devices with respect to enhanced analytical properties will be reviewed. 

2.1 Sensors 

Since the pioneering work of Clark and Lyons on biosensors, great efforts have been devoted 

to their commercialization (Karunakaran, Rajkumar & Bhargava, 2015). Known as the father 

of the “Biosensor” concept, 62 years ago, Prof Leland C Clark published his paper on the 

development of an oxygen electrode which now bears his name: “Clark Electrode”. The 

concept was demonstrated by immobilizing the enzyme glucose oxide on a Clark oxygen 

electrode surface using a super-permeable dialysis membrane. The addition of the glucose 

concentration was proportional to the decrease of the measured oxygen concentration (Mascini, 

2006). 13 years later, after Clarks invention, Springs Instrumental (Yellow Springs, OH, USA) 

placed the first commercially produced biosensor in the market (Iqbal, Gupta & Hussaini, 

2012). It was applied to a glucose assay in blood samples from diabetics (Pohanka & Republic, 

2008). Since then several breakthroughs have been accomplished by other scientist in this field 

of sensing.  

Advancements in science, technology and engineering remain the core drivers in the 

development of miniaturized multidisciplinary sensors. Devices that record chemical, physical, 

or biological changes in their environment and convert these changes into measurable signals 

are called sensors (Ronkainen, Halsall & Heineman, 2010). They are simple, portable 

analytical devices with many applications including environmental monitoring, defence, drug 

discovery, health care and  food safety (Cosnier, 2005). Connected in series, a recognition 
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element and transducer are usually the two main components of a sensor. While the recognition 

element allows selective response to a particular analyte or a group of analytes, the transducer 

or  detector device provides the signal (Ronkainen, Halsall & Heineman, 2010). In this regard, 

a device that converts chemical information, ranging from composition and concentration of 

the relevant material via an electrical signal is called a chemical sensor (K. Ihokura, 1994). In 

a chemical sensor the recognition element is known as a chemical or molecular recognition 

system (receptor) and the transducer is a physicochemical transducer (Thévenot et al., 2001). 

According to the transducer’s operating principle a chemical sensor can be classified into 

electrochemical, piezoelectric and optical sensors (Bochenkov & Sergeev, 2010). 

 In order to correctly use the sensor’s operating system and the signal information, the nature 

of the signal they produce must be fully understood. Hence before discussing the main 

components of a chemical sensor, it is important to familiarise ourselves with the terminology 

around this technology. A typical chemical sensor is represented in Figure 2.1 ; containing the 

following. 

 Sample – It is the substance that you wish to investigate. The sample contains the 

analyte, probably amongst other stuff.  

 Analyte – It is a substance being measured in an analytical procedure. For instance, 

H2O2 is an analyte in a biosensor that is designed to detect H2O2. 

 

 

Figure 2.1: diagram of a chemical sensor 
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 Biorecognition element  

The biorecognition element of a biosensor is composed of a bioreceptor which is stuck to a 

matrix support on a transducer surface, translating the information from the biochemical 

domain into a chemical or physical output signal (Thévenot et al., 2001). The bioreceptor is 

carefully chosen to selectively interact and bind a target analyte from the sample. which gives 

rise to transduction and signal production (Munyao, 2008). Since the sensitivity and specificity 

of the overall biosensor depends on the bioreceptor, the bioreceptor’s properties are regarded 

to be very important (Ronkainen, Halsall & Heineman, 2010). Furthermore the stability, 

orientation and the method in which the bioreceptor is immobilized onto the support matrix are 

also regarded to be very important (Cosnier, 2005). Bioreceptors can be classified as catalytic 

based (enzymes, proteins, microorganisms) and affinity based (immunesensors, DNA sensors 

and receptor sensors) (Subrahmanyam, Piletsky & Turner, 2002).  

 Transducer  

The transducer is the element that converts the biological event resulting from the interaction 

on the bioreceptor with the analyte into a measurable signal which may be read at the signal 

display (Koyun, Ahlatc & İ, 1962). The transducing element of the sensor is also known as a 

detector, sensor or electrode but to avoid confusion the term “transducer” is preferred  

(Thevenot et al., 1999). As stated before biosensors can be classified based on the type of 

transducer and bioreceptor used, biosensors are categorized as optical, piezoelectric and 

electrochemical sensors (Perumal & Hashim, 2014); below is a brief description of each with 

emphasis on electrochemical biosensors which are the main focus of this work.  

2.1.1 Types of Chemical Sensors 

2.1.1.1 Optical 

Optical biosensors are sensors which make use of optical principles for the transduction of 

biochemical interaction into a suitable output signal (To & Biosensors, 2005). The absorbed or 

emitted light as a consequence of a biological or chemical reaction is the main measurement 

technique in optical biosensors. In this biosensor, suitable detectors such as semiconductors, 

electrodes guide the light waves by means of optical fibres.  They are advantageous in their 

immunity to electromagnetic interferences, capability to sense remotely and use of multiple 

detection in one device.  However, there exist several draw backs such as instability of 

bioreceptor and sensitive to light. They can be used to measure pH, CO2 or O2 (Chaubey & 

Malhotra, 2002). 
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2.1.1.2 Piezoelectric 

Piezoelectric “mechanical” transducer act by converting the physical mass on an analyte into 

an electrical signal. The operation principle of this type of biosensor is based on the rule of 

coating the surface of the biosensor with a selectively binding biologically active substance, 

usually a quartz-crystal coated with a gold electrode (Janshoff, Galla & Steinem, n.d.). The 

coated surface is then put in a solution containing analytes that stick to the binding substance. 

Consequently, the resonance frequency of oscillation decreases while the mass of the crystal 

increases proportionally. Disadvantages associated with this type of biosensor include lack or 

selectivity or sensitivity and interruption from the liquid media where the analysis takes 

place(MEHRVAR & ABDI, 2004). Examples of piezoelectric sensors include bulk wave and 

surface acoustic wave (Perumal & Hashim, 2014). It has been used to detect nitrous oxide, 

carbon monoxide, ammonia and methane (Moozarm Nia, 2017). 

2.1.1.3 Electrochemical  

The electrochemical biosensors are the largest and most developed class of Chemical sensors. 

They measure the current produced from oxidation and reduction reactions (Perumal & 

Hashim, 2014). In an electrochemical biosensor the transducer is made up of a metal or carbon 

electrode. Since the biochemical film is coated with ionic conducting, semi-conducting and 

electronic conducting materials, the electrochemical biosensor is considered a chemically 

modified electrode (Thévenot et al., 2001). The electrode itself plays a crucial role in the 

performance of the electrochemical biosensor, since the reactions are usually detected only in 

proximity to the electrode surface. Depending on the chosen function of a specific electrode, 

the electrochemical biosensor’s detection ability is greatly influenced by the electrode’s 

material, its surface modification and its dimensions. As previously mentioned, dependent on 

the operating transducing principle, electrochemical biosensors can be classified further 

classified as amperometric, potentiometric and impedimetric sensors (Bochenkov & Sergeev, 

2010).  

2.1.1.3.1 Impedimetric biosensor 

The impedimetric biosensor follows impedance (Z) in Ohms, or its components capacitance 

(C) in Faraday and resistance (R) in Ohm’s. Since inductance does minimal influence in the 

electrochemical setup, the expression of impedance is as shown in the above equation 2.1: 

𝑍2 = 𝑅2 +
1

(2𝑓𝐶)2                                                                                (2.1) 
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For some reasons other researchers also call this system “conductometric” , since conductance 

is the inverse value of resistance (Iqbal, Gupta & Hussaini, 2012). This type of electrochemical 

biosensor detects changes in the electrical field due to a change in capacitance and electron 

transfer resistance at the working electrode surface arising from analyte-bioreceptor 

interaction. As the concentration of the analyte increases, analyte stuck to the bioreceptor 

increases, and successively impedance across the electrode surface changes, which is detected 

at the transducer (Mantzila & Prodromidis, 2005). One important advantage of these biosensors 

is that there is no need for electroactive specie, meaning there are no limits on analyte type. 

Even so there exist some drawbacks such as reproducibility, non-specific binding and high 

limits of detection.  

2.1.1.3.2. Potentiometric biosensor  

The principal phenomenon of a potentiometric sensor is the measurement of the potential 

difference between either two reference electrodes or an indicator and a reference electrode 

divided by a permselective membrane, when there is no flow of any significant current between 

them. Potentiometric sensors are based on ion-selective electrodes (ISE) and ion-selective field 

effect transistors (ISFET) (Lee, Kyu Kim & Kim, 2009).  The potential difference between the 

indicator and the reference electrode are proportional to the logarithm of the ion activity or gas 

concentration, the electrode potential E, as defined by the Equation 2.2 below (Pohanka & 

Republic, 2008). But this can only be true if  the interesting ions have a low enough or a 

constant concentration and all various phase boundaries potential differences are neglected or 

remain constant, except at the membrane/sample-solution boundary (Thévenot et al., 2001).  

𝐸 = 𝐸0 + 2.303
𝑅𝑇

𝑛𝑒𝐹
𝑙𝑜𝑔10(𝑎𝑖),                                                       (2.2) 

Where E0 (standard potential) is the constant dependent upon the type of measuring and 

reference electrodes being used, R is the universal gas constant (8.314 J/mol.K), T is the 

temperature in Kelvin, F is the Faraday constant (9.648 x 104 C/mol), n is the valence of the 

ion and ai is the ionic activity of the ion being measured.  

The ionic activity, ai, of the solution is related to the analytical concentration, [i], by the 

following relationship 

𝑎𝑖 = ϒ𝑖[𝑖]                                                                                                 (2.3) 

Where ϒi is the ion activity coefficient.  
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The pH electrodes are the most common potentiometric devices while several ion (F-, I-, CN-, 

Na+, K+, Ca+, NH4
+) or gas (CO2, NH3) selective electrodes are also available. 

2.1.1.3.3 Amperometric biosensor  

Compared to potentiometric biosensors, amperometric biosensors are quite sensitive and are 

more suited for mass production. Measuring the current as a function of time resulting from 

oxidation and reduction of an electroactive species in a biochemical reaction that mainly 

depends on the concentration of the analyte with a fixed potential is one of the bases of an 

amperometric biosensor (Grieshaber et al., 2008). In this device as particular species undergo 

redox reactions (oxidized or reduced) at inert metal electrodes, there is a transfer of electrons 

from the analyte to the working electrode or vice versa. Since the direction of the electrons 

depends upon the properties of the analyte they can be controlled by the electric potential 

applied on the working electrode (Perumal & Hashim, 2014). The amperometric cell usually 

consists of two or three electrodes. The working electrode also known as the sensing or redox 

electrode, which is usually constructed from carbon (C), gold (Au), platinum (Pt), is the first 

electrode. The reference electrode usually made form Ag/AgCl, which has a fixed potential 

that controls and maintains a constant potential at a Pt, Au and C based working electrodes. A 

third electrode called a counter or auxiliary electrode which is sometimes included to assist in 

the measuring of current flow (Wang et al., 2008).  

They are divided into three generations depending on the electron transfer method that is used 

for measuring the biochemical reaction or the degree of separation of the components of the 

biosensor. In all cases an enzyme is required and therefore the performance of the sensor relies 

on different parameters, like temperature and pH. Figure 2.1 shows a 3rd generation 

Amperometric enzyme electrochemical sensor; here the biosensor depends on the 

bioelectrocatalysis and  there is a direct electron transfer between enzyme and electrode 

(Rocchitta et al., 2016). 

2.3 Characteristics of sensors   

To characterize a sensor’s performance, a set of static and dynamic parameters are used. The 

quality of these parameters decides the sensors effectiveness towards a particular application. 

For defining how accurate an output signal is employed for the description of a time varying 

analyte, dynamic parameters can be employed. On the other hand, static parameters are those 

that relate to issues such as: how a sensor’s output range in response to an input change is, how 

selective a sensor is, or internal interferences can affect its response and how stable the 
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operation of a sensing system can be. Below is the list of the some static and dynamic 

parameters and their definitions (Thevenot et al., 1999; Ronkainen, Halsall & Heineman, 2010; 

Bandodkar & Wang, 2014; Karunakaran, Rajkumar & Bhargava, 2015).   

 Detection Limit – It is the lowest concentration of the analyte that can be measured 

under specified conditions. It is regarded as one of the most important characteristics 

of a sensor. A sensor that can respond to concentrations of an analyte as low as ppb 

levels is said to be a good sensor. 

 

 Selectivity – It refers to characteristics that can decide whether a sensing system can 

selectively respond to a group of analytes or even more precisely for a single target 

analyte in the presence of other interferences. For example, an oxygen gas sensor that 

does not show any response to other gas species, such as carbon dioxide or nitrogen 

oxide, is considered a very selective sensor. 

 

 Sensitivity – It is the ratio of the incremental change in the sensor’s output (Δy) to the 

incremental change of the subject to be measured in input (Δx), i.e., the slope of 

calibration graph. Sometimes it is confused with the detection limit. 

 

 Response Time – When a sensing system is exposed to a subject to be measured, the 

time required for a sensor to respond to a step concentration change from zero to a 

certain concentration value is the response time.  

 

 Recovery Time –It defined conversely to “the response time” as the amount of time it 

takes for the sensor signal to return to its initial value after a step concentration change 

from a certain value to zero. 

 

 Stability – It is a sensing system’s ability to provide reproducible results for a certain 

period while keeping the sensitivity, selectivity, and response and recovery time.  

 

 Dynamic Range – Also called the measurement range or span, the dynamic range is 

the analyte’s concentration range between maximum and minimum values that can be 

measured with the sensing system i.e., the analyte concentration range between the 

detection limit and the highest limit concentration. It gives a meaning and accurate 
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output for the sensor. Damage to the sensor, unacceptably large inaccuracies and 

unintelligible readings may be caused by signals outside of this range.  

 

 Reproducibility – The ability of a sensing system to give the same response after 

changing the conditions of the measurement. For instance, when a sensing system 

shows indistinguishable responses when performed by different operators or at 

laboratories the system is said to be reproducible.  

 

 Resolution – Strongly limited by any noise in the signal the resolution also known as 

the “discrimination” is the minimal concentration difference that can be distinguished 

by the sensor.  

 

 Life time – It is the period in which the sensor will continue to work without any 

weakening in its performance. 

 

2.4 Materials used for electrochemical H2O2 Sensor  

Over the past few years, publications related to H2O2 enzyme-free electrochemical sensors have 

increased rapidly. This improvement indubitably indicates good development activities and a 

continuing bright future for enzyme-free H2O2 electrochemical sensors. Because of their 

desirable chemical, physical and electronic properties, unique from those of bulk materials, 

nanomaterials have attracted great attention in the engineering, science and technology behind 

the construction of these enzyme-less H2O2 sensors (Liu, Weng & Yang, 2017). Furthermore, 

the correct combination of nanomaterials with different morphologies or components has led 

to the remarkable progress of multifunctional nano-assembles systems. In parallel with the 

advancement of nanomaterial science and nanotechnology, numerous types of nanomaterials 

have been used for designing enzyme-free H2O2 electrochemical sensor including 

polyoxometalates, metal nanoparticles, metal oxide nanoparticles, bimetallic nanoparticles and 

carbon based nanoparticles. This section of the this will review this afore mentioned 

nanomaterials as potential materials for H2O2 detection (Chen et al., 2014). 
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2.4.1 Graphene oxide 

Graphene is a very interesting material among carbon structures such as fullerenes, carbon 

nanotubes (CNTs) and graphite.  Structurally it a single layer of carbon atoms densely packed 

in a honey two-dimensional 2D lattice. Compared to CNTs, it shows competitive advantages 

such as low cost, ease of preparation and safety. In addition, it is also an ideal platform for 

electrochemical research since it is free from contamination of transition metals which are apt 

to exist in CNTs. The graphene can be prepared by several methods with the reduction of GO 

being a more promising approach (Wang, Wu, et al., 2014). Different methods have been used 

for the synthesis of graphene oxide (GO) to reduced graphene oxide (RGO), such as thermal, 

electrochemical and chemical reduction (Amanulla et al., 2017). Compared to other methods, 

the reduction of GO by chemical route is the most widely used method for obtaining RGO. 

However, the major drawback of this method is that the RGO agglomerates and reverts to 

graphite (Kumar et al., 2018). Its unique optical, electronic, chemical and its ability to 

immobilize large amount of substance due to its large specific surface area offered great 

potential in electrochemical sensor applications (Li, Du, et al., 2010; Zhao, Zhang & Zheng, 

2017). In addition, this high surface area of electrically conductive graphene sheets can give 

rise to high densities of attached analyte molecules. It has been reported that carboxyl-modifies 

GO possess intrinsic peroxide-like activity that can catalyse the reaction of peroxide substrate. 

This in turn can facilitate high selectivity and sensitivity in electrochemical sensors (Yusoff et 

al., 2017).  

2.4.1.1 Graphene based H2O2 sensor  

For developing an H2O2 sensor, it is an important mission to decrease the oxidation-reduction 

over potential. (Zhou, Zhai & Dong, 2009) characterized a chemically reduced graphene oxide 

(CR-GO) investigating its performance towards H2O2 detection. Compared to the graphite 

modified electrode the CR-GO modified electrode showed enhanced electron transfer rates. 

The oxidation/reduction of H2O2 started at 0.2/0.1 V (vs. Ag/AgCl), a much lower onset 

potential compared to the bare and the graphite electrode. The superior electrocatalytic activity 

of the CR-GO modified electrode was ascribed to the high density of the edge-plane like 

defective sites on CR-GO.  (Shan et al., 2009) prepared and characterized a H2O2 sensor based 

on a PVP-protected graphene functionalized ion liquid (PFIL). The positive reduction potential 

(0 V) and the reduction current showed that the modified electrode by graphene showed better 

electrolysis that the PFIL modified electrode for H2O2. Due to properties such as hydrophicity 

and multiple oxygen moieties. These oxygen moieties allow further modification, especially 
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with materials. Moreover, the same group modified graphene with gold nanoparticles and 

chitosan to construct a glucose biosensor. The resulting graphene/AuNPs/chitosan sensor 

showed good electrocatalytic activity towards H2O2. The good electrocatalytical activity might 

be due to the synergetic effect of graphene and the nanoparticles. 

2.4.2 Metal nanoparticles  

Metal nanoparticles, especially transition metal nanoparticles, are known to be good catalysts 

due to their ability to adopt multiple oxidation states and activate other substances in the 

process of adsorbing them onto their surfaces. Furthermore, owing to their nano-size, they 

display unique advantages of enhanced mass transport, high effective surface area, sized 

controlled electrical activity and effective utilization of expensive materials (Luo et al., 2006). 

Thus, transition metal nanoparticles can be made excellent catalysts due to their high ratio of 

surface atoms with free valences to the cluster of total atoms (Son & Jang, 2013). The 

introduction of these nanoparticles with catalytic properties into electrochemical sensors can 

decrease over potentials of many analytically important electrochemical reactions, and even 

realize the reversibility of some redox reactions, which are irreversible at common unmodified 

electrodes. Platinum (Pt), Palladium (Pd), Gold (Au), Copper (Cu) and Silver (Ag) are the 

mostly used transition metals for making nanoparticles for H2O2 sensing (Chen, Yuan, et al., 

2013). Ag nanoparticles are cheap compared to Au nanoparticles (Li et al., 2015), therefore in 

this study Ag nanoparticles will be used. And we will only focus on Ag nanoparticles (AgNPs), 

reviewing their properties and fabrication methods for potential use as H2O2 sensors.  

2.4.2.1 Silver nanoparticles (AgNPs)  

Silver nanoparticles (AgNPs) are a class of material with size between 1nm and 100 nm 

(Syafiuddin et al., 2017). Even though they are called “AgNPs” some have large percentages 

of silver oxide (AgO) owing to their large ratio of surface to bulk silver atoms. Different shapes 

of these nanoparticles can be constructed depending on their application e.g. spheres, diamond 

shape, wires, rods, octagonal and thin sheets (Tran, Nguyen & Le, 2013; Ajitha et al., 2016). 

Compared to the bulk parent, AgNPs exhibit remarkable physical and chemical properties 

different from both the bulk and ion material (Srikar et al., 2016) such as optical, catalytic 

activity, high thermal and electrical conductivity, surface enhanced Raman scattering and 

chemical stability (Haider & Kang, 2015) . These properties sorely depend on the size, shape 

and morphology make them very attractive in many applications such electronics, catalysis, 

antibacterial agents and sensors (Zainal Abidin Ali  Shamala Devi Sekaran, and R. Puteh, in 

press; Han & Kim, 2015; Van der Horst et al., 2015; Shaikh, Parida & Böhm, 2016).  Thus 
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control of their size, shape and morphology is of very importance. In general, this specific 

control  often depends on varying the methods of preparation, reducing agents and stabilizers 

(Abou El-Nour et al., 2010).  

2.4.2.1.1 Preparation  

 

Figure 2.2: Top-down and bottom-up approaches for the synthesis of nanoparticles 

(https://nanografi.com/blog/metallic-nanoparticles-part-ii-top-down-and-bottomup/).  

Due to the afore mentioned metal nanoparticle’s interesting properties and their promising 

applications in different fields, many routes have been introduced for their preparation and can 

be grouped into “bottom up” and “top-down” approaches (Nurani et al., 2015). The former 

approach produces nanoparticles by build-up of material from the bottom by executing physical 

processes such as laser ablation, condensation and evaporation. On the other hand, the latter 

approach produced nanoparticles from ions, atoms and molecule by using wet chemical 

processes. Each method has its advantages and its drawbacks. The main merit of bottom-up 

approach is that homogenous nanostructures with perfect crystallographic and surface 

structures are achievable. While the main merit for top-down is that from a short period of time 

nanomaterials can be synthesised in bulky quantity (Pareek et al., 2017).  

2.4.2.1.2 Ag-based H2O2 sensors  

As typical nanomaterials, Ag nanoparticles have been extensively used to manufacture non-

enzymatic H2O2 sensors because of their excellent catalytic activity for the reduction of H2O2. 

Previously obtained electrochemical results by other researchers show that the presence of Ag 

nanoparticles is responsible for the sensor response, in terms of cathodic current increment 

regarding the reduction of H2O2. (Welch et al., 2005) were able to show that modifying the 

glassy-carbon surface with nano-sized Ag assemblies successfully facilitates the reduction of 

H2O2. 
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 Since size, distribution, shape, and dispersion of Ag nanoparticles play a vital role in the sensor 

performance, several methods have been used in order to synthesise the desired Ag 

nanoparticles (Zhao et al., 2009). Among these methods, hydrothermal technology has been a 

promising and attractive route for synthesising Ag nanoparticles since it is able to provide 

monodispersed nanoparticles with well control over their size and shape along with their 

chemical homogeneity. Additionally, to obtain the desired physicochemical properties, 

protective agents, surfactants, polyelectrolytes or polymers are often used in conjunction with 

the hydrothermal method (Ajitha et al., 2016). For example, (Yi et al., 2011) used the 

hydrothermal process to synthesise novel nano-porous Ag particles through the reduction of 

Ag+-EDTA complex by polyethylene glycol as the reducing agent for electro-reduction of 

H2O2 in alkaline media. On the other hand, (Lu et al., 2011) used a facile hydrothermal 

synthesis process without the extra introduction of other reducing or protective agents to 

prepare well-stable Ag nanoparticles with diameter of 5 nm from an aqueous solution AgNO3 

and poly [(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-vinylpyrrolidone)] 

(PQ11). From their report it was discovered that stable Ag nanoparticles-embedded films on a 

bare electrode surface can arise from such dispersions and these nanoparticles show remarkable 

catalytic performance for the detection of H2O2.  

 

Recently, a variety of Ag nanoparticles based nanocomposites have been prepared through the 

chemical reduction of silver ion to construct H2O2 sensor, including graphene-Ag 

nanoparticles, polyaniline-Ag nanoparticles, carbon nanotubes-Ag nanoparticles, Iron Oxide- 

Ag nanoparticles, multi-wall carbon nanotube (MWCNT)-Ag nanoparticles and single wall 

carbon nanotubes (SWCNT)-Ag nanoparticles (Zhao et al., 2009; Lorestani et al., 2015; Qi & 

Zheng, 2016; Sang et al., 2017; Kumar et al., 2018). Using a simple one-step hydrothermal 

method without a reducing agent, Lorestani and team (Lorestani et al., 2015) were able to 

fabricate a novel sensing composite of Ag nanoparticles-reduced graphene oxide (RGO)-

carbon nanotube (MWCNT). It was found that a uniform distribution of the nanosized Ag 

nanoparticles can be achieved using silver ammonia complex as the precursor instead of 

commonly using the AgNO3. The composite exhibited excellent electro catalytic activity for 

the reduction of H2O2. An interesting work was reported by Sun and colleagues (Tian, Liu & 

Sun, 2010) where the preparation of supramolecular micro fibrils of o-phenylenediamine 

(OPD) dimers was based on the oxidation of OPD monomers by FeCl3. The subsequent 

treatment of such micro fibrils with AgNO3 aqueous solution transforms them into nanofibers 

decorated with spherical Ag nanoparticles with sizes in the range of 5-20 nm leading to a non-
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enzymatic H2O2 sensor. After He and colleagues proved electrochemical deposition to be the 

least expensive, highly productive and readily adoptable method to synthesise Ag 

nanoparticles, it has been used to synthesise Ag nanoparticles for H2O2 sensors. A novel H2O2 

sensor was developed by electrodepositing Ag nanoparticles on a glassy carbon electrode 

modified with three-dimensional DNA networks by Kang and his team. The electrochemical 

results showed that such sensor had favourable catalytic ability to reduction of H2O2. The 

hybrid nanoparticles exhibited a narrow size distribution (Cui et al., 2008). Bui and colleagues 

(Bui et al., 2010) reported using an electrochemical deposition method to pattern Ag 

nanoparticles on flexible transparent SWCNT films. The patterned Ag nanoparticles were then 

used as electrodes to detect H2O2.  

 

Besides electrodeposition and chemical reduction methods, many other methods have been 

used to prepare Ag nanoparticles, such as UV irradiation method, microwave assisted reduction 

method, chemical plating method and green synthesis of Ag nanoparticles. For example, in a 

study conducted by Vasileva and his team (Vasileva et al., 2011), a green approach was used 

to prepare stable and uniform starch-stabilized Ag nanoparticles with an average diameter of 

14.4±3.3 using ultrasound mediated reduction of AgNO3 by D-glucose. These nanoparticles 

exhibited a catalytic activity in the reduction of H2O2. The feasibility of the non-enzyme H2O2 

sensor was exhibited in all these works. 

 

2.4.3 Metal Oxide nanoparticles  

Currently, the group of the most important nanomaterials includes simple metal oxides such as 

titanium oxide (TiO2), zinc oxide (ZnO), copper oxide (CuO), magnesium oxide MgO, 

aluminium oxide (Al2O3), manganese oxide (MnO2) and iron oxide (Fe3O4, Fe2O3) (Chen et 

al., 2014).  These are finding increasing application in many fields of science, engineering and 

technology industries. They are used in photocatalytic treatment of wastewater and pesticide 

degradation (TiO2), in rubber and textile industries (ZnO), in medical applications (CuO, 

Fe2O3), for the removal of dyes from aqueous solutions (Al2O3), in lithium-ion batteries and 

sensors (MnO, Fe2O3,Fe3O4) (Chen et al., 2005; Mital & Manoj, 2011; Liu et al., 2013; 

Kołodziejczak-radzimska & Jesionowski, 2014; Dhawale, Khobragade & Kulkarni, 2018; 

Khatoon, Mantravadi & Nageswara, 2018). Due to their limited size and high density of edge 

surfaces, oxide nanoparticles display exceptional physicochemical properties. Particle size, 

morphology, crystalline structure of any nanomaterial strongly influences the use and 
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performance of the material for different properties and applications. Therefore, developing 

methods for the synthesis of metal oxide nanoparticles, where there is control over particle size 

and crystalline structure of the products is very important. Preparation methods are the first 

prerequisite for any novel nanoparticulated metal oxide. Methods for synthesising metal oxide 

nanoparticles are divided into three main groups: solution-phase (e.g. co-precipitation, sol-gel, 

micro emulsion, hydrothermal/solvothermal), solid-state (e.g. milling and precipitation) and 

lastly vapour-phase methods (e.g. spray pyrolysis and flame or plasma based methods) (Smith 

et al., 2015).  As previously stated, each method has its merits and demerits.  

In summary, uniform metal oxide nanoparticles with excellent control over particle, size 

distribution, dispersion and morphology can be produced by solid-phase methods, particularly 

those that employ surfactants or non-aqueous solvents. Nonetheless, organic impurities can be 

a problem and for certain applications (e.g. sensing) the capping agents are a complication that 

needs to be removed in order to access the oxide surface (Marcos Fernández-Garcia, 2007). To 

produce industrial quantities solution-state methods are favoured because of their cheap, fast 

and easily scaled protocols. However, these methods (milling or sonication) can also introduce 

impurities as well as cause strain on the crystalline structure. Lastly, vapour-phase methods are 

very successful when it comes to synthesizing one dimensional nanostructures but they are 

very costly when it comes to equipment and the energy needed to vaporize the reagent. 

Basically, no technique is the best for every application, most routes are successful for certain 

applications and certain nanomaterial (Corr, 2014). Equipment also plays a vital role for 

synthesis of specific metal oxide nanoparticles and in some cases it can be a challenge. In this 

study, hydrothermal synthesis was used to synthesize the desired material.  Hydrothermal 

method falls under the solution-phase method. This method involves thermal decomposition 

of metal complexes from high temperatures either by boiling in inert atmosphere or using a 

sealed reactor usually an autoclave, with the help of pressure. Advantages of the hydrothermal 

process include low cost, mild reaction condition and easily controlling the device by changing 

experimental parameters such as pressure, temperature and time. However, these nanoparticles 

suffer from strong aggregation during synthesis and since high temperatures and pressures are 

used,  the risk of solid state fusion in addition to agglomeration is high .To control the particle 

size growth and agglomeration, suitable surfactants are usually added to the reaction media in 

order to improve the hydrothermal process (Guo et al., 2015).  
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2.4.3.1 Iron oxide nanoparticles: Introduction and properties  

Ferric irons or iron (III) oxides are the most important iron ores in industry. They are basically 

composed of iron (Fe), oxygen (O) or/and hydroxide (OH) but vary in valency of iron and 

crystalline structure.  Ferric iron has four polymorphs, two of them are found in nature as 

minerals hematite (α-Fe2O3) and maghemite (γ-Fe2O3), but the other two can be synthetic 

nanoparticles (β-Fe2O3, ε-Fe2O3) each polymorph unique from the other in terms of structure, 

properties making them suitable for specific applications (Saragi et al., 2017). For example, 

hematite (α-Fe2O3) is the most stable with rhombohedral structure, low cost, high resistance to 

corrosion, non-toxic and environmentally friendly. It also possesses n-type semiconducting 

properties with 2.1 eV band gap and its weakly ferromagnetic. The magnetic properties of 

hematite systems relay on pressure, particle size and magnetic intensity (Jayanthi et al., 2015). 

Hematite nanoparticles have been applied in sensor, catalysis and batteries because of these 

afore mentioned properties (Kopanja et al., 2016).  

As typical metal oxide nanoparticles hematite nanoparticles can be synthesised as mentioned 

above. For example (Lassoued et al., 2017) synthesized hematite nanoparticles using the co-

precipitation method. These nanoparticles resulted in particle size of 21 nm, this was achieved 

when very low concentrations of the precursor were 0.05 M. On the other hand, using the 

hydrothermal method (Pervaiz, Gul & Anwar, 2013) synthesised hematite nanoparticles with 

particle size ranging from 50-100 nm. Fe2O3 nanoparticles suffers from a number of demerits 

for example, relatively low electron transfer rates and low conductivity, both which could 

significantly affect its activity. Preparing Fe2O3 nanoparticles in the use of conducting supports 

have been the only alternative. Lately, effort has been made on the study of hematite 

composites blended with metals or other meta oxides, since this may produce new or/and 

enhanced materials with novel physicochemical that could not be achieved by either material 

alone, yielding novel performances in many applications. For example,  (Liu et al., 2015a) 

synthesised Fe2O3-RGO hybrid material using a one pot hydrothermal method for the removal 

of malachite green (MC) in water. The excellent capacity of Fe2O3-RGO to remove MG from 

water is ascribed to the synergetic adsorptive effect between Fe2O3 (15 nm diameter) and RGO. 

Among these hematite composites, bifunctional noble metal/iron oxides has also raised 

attention with potential applications, such as Ag-Fe2O3 nanoparticles (catalysis and 

antibacterial applications) (Gao, Chen & Jiang, 2013; Kumar et al., 2017). In a study to 

investigate the electrocatalytic properties of Ag-Fe2O3 nanoparticles, (Pan, Tang & Chen, 

2013) used a hydrothermal method to synthesised Ag-Fe2O3 nanoparticles for p-nitrophenol 
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detection.  The results showed an enhanced catalytic performance in comparison with the bare 

GCE. Moreover, p-nitrophenol could be reduced at lower peak potentials on the GCE modified 

with Ag-Fe2O3 nanoparticles. Even though there are a number of applications reported on 

Fe2O3 nanocomposite, this thesis will only focus on hematite based sensors for the detection of 

H2O2 species. 

 

2.4.3.2 Fe2O3 nanoparticle based H2O2 sensors 

As previously stated that Fe2O3 nanoparticles suffer from low electron transfer rates and low 

conductivity, this demerit can hinder its application as the H2O2 sensor. To avoid this (Wang, 

Shen, et al., 2014) used a hydrothermal method to decorate Fe2O3 with average size of 21 nm 

on  RGO sheets without adding any reducing agents for H2O2 detection. Electrochemical 

impedance spectroscopy (EIS) and linear sweep voltammetry were used to investigate the 

electrochemical performance of Fe2O3/RGO.  In the presence of H2O2, this composite exhibited 

notable catalytic reduction at -0,22 V vs Ag/AgCl and showed no response in the absence of 

H2O2, indicating catalytic reduction of H2O2. In contrast the bare Fe2O3 nanoparticles and RGO 

showed very low activities under the same conditions. EIS was employed to prove electron 

transfer kinetics of the ferric hybrids, the semi-circular for Fe2O3/RGO compared to Fe2O3 

nanoparticles, almost similar to that of RGO. This indicated that the electron transfer 

performance of the ferric hybrid was significantly enhanced, which could make the catalytic 

reduction of H2O2 much easier and more efficiently than Fe2O3 without RGO supports. This 

sensor had a detection limit of 1 M and a high sensitivity of 129.9 (A/Mm/cm2). Also using 

the hydrothermal method (Zhang & Zheng, 2017) were able to successfully disperse AgNP 

onto the Fe2O3/RGO composite to yield Ag-Fe2O3-RGO nanocomposite for the detection of 

H2O2. Electrochemical investigations indicated that the obtained Ag–Fe2O3–RGO 

nanocomposites had excellent electrocatalytic performance toward H2O2 reduction. The linear 

range for H2O2 was estimated to be from 1.6 × 10−6 to 5.7 × 10−2 mol L−1 with a sensitivity of 

50.8 μA mM−1 cm−2 and a detection limit of 0.5 μmol L−1.  
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2.4.4 Polyoxometalates  

2.4.4.1 Classification and Historical Background   

Polyoxometalates (POMs), are a class of nanometre sized inorganic polyanions mainly formed 

from oxides of molybdenum (Mo), tungsten (W), vanadium (V) and less frequently tantalum 

(Ta), niobium (Nb) or a mixture of these elements in their high (configuration d0 or d1) 

oxidation states (Mercier et al., 2015). Depending on their chemical composition, POMs can 

be split into three broad classes (Ammam, 2013):  

a) Heteropolyanions (HPAs), with general formula [𝑋𝑥𝑀𝑚𝑂𝑦]𝑞− (x ≤  m) 

b) Isopolyanions (IPAs), with general formula [𝑀𝑚𝑂𝑦]𝑝−, 

c) Molybdenum-brown (Mo-brown) and Molybdenum-blue (Mo-Blue) reduced POM 

clusters 

Where metal M, also called addenda atom or polyatom, is positioned at the centre of the 

polyhedral (formed by the addenda atom coordinated by the oxygen ligands (O)), MOx, and 

the polyhedra are all bonded together through their corners or their edges and seldom their 

faces (Mallick, Rana & Parida, 2012). Because they are composed of only one metal type and 

oxygen atoms with no internal heteroanion/heteroatom, IPAs are much unstable than HPAs 

counterparts. Despite that, IPAs also possess fascinating physical properties such as high 

charges, making them attractive units for use as building blocks. Related to Molybdenum blue 

type species, the composition of Mo-Blue or Mo-brown, first reported in 1783 was greatly 

unknown until 1995, where a very high nuclearity cluster (Mo154) with a ring topology was 

synthesised and characterized structurally by Muller et al. Varying the pH and augmenting the 

number of reducing agent along with the inclusion of a ligand like acetate facilitated the 

formation of Mo132, a spherical ball-like cluster. As a result, one of the most thrilling advances 

in POM chemistry with potential spin-off application in nanoscience are represented by this 

high reduced POM clusters. For HPAs, the polyhedra are assembled around a heteroatom, X, 

usually, heteroanions such as 𝑆𝑂4
2− or 𝑃𝑂4

3− with their symmetry following that of the central 

heteroatom. They possess Keggin [𝑋𝑀12𝑂40]2−and Wells-Dawson [𝑋2𝑀18𝑂62]4−anion 

structures and are the most reported and explored class of POMs (Chen & Barteau, 2016). They 

are attractive units for building blocks due to the fact that they have high charges and strongly 

acid surfaces (Gupta, Aberg & Carrizosa, 2017).  
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Figure 2.3 : stick and ball presentation of the two most reported and explored HPAs, namely 

(a) Keggin [𝑋𝑀12𝑂40]2− and (b) Well-Dawson [𝑋2𝑀18𝑂62]4−. Where the magenta, red and 

grey balls represent the heteroatom, oxygen atoms and the addenda atoms respectively 

(Ivanova, 2014).  

 

Historically, the first report of POM, the phosphomolybdate, dates back to the work of 

Berzelius, who in 1826 recognised the formation of ammonium salt of [𝑃𝑀12𝑂40]3−, a light 

yellow crystalline solid from the reaction of ammonium molybdate (𝑁𝐻4)2𝑀𝑜𝑂4 with an 

excess of phosphoric acid (Pope & Müller, 1991). Following Berzelius initial report, Svanberg 

and Struve used this compound for the determination of phosphorus in analytical chemistry in 

1848. In 1862, Marignac discovered the first heteropolytungstates and provided analytical 

composition of the 12:1 heteropoly species. Although hundreds of polyoxometalates were 

synthesised during the next half-century, little progress was made in understanding their 

structures. It was Keggin who in 1933 solved the structure of the related anion [𝑃𝑊12𝑂40]3− 

by powder x-ray analysis which now bears his name (Poblet, López & Bo, 2003) . Since then, 

a range of different types of POMs have been synthesized including Lindqvist ([𝑀6𝑂19]n−), 

Anderson [𝑥𝑀6𝑂24]n−, Dawson [𝑋𝑀18𝑂62]n− , Waugh [𝑋𝑛+𝑀9𝑂32(10 − 𝑛)− structures. 

However, Keggin and Dawson structures are the most widely used anion clusters as shown in 

Figure 2.3. And in this thesis we will only focus on a Keggin type and try to review details of 

its structure and physicochemical properties. Examples of Keggin type HPAs include 12-

phosphotungstic acid, 12-silicomolybdic acid, 12-silicotungstic and in this thesis 12-

phosphomolybdic acid was used. 

 

a b 
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2.4.1.2 Keggin anion structure  

As already stated in section 2.4.4.1, the Keggin ion has the general formula [𝑋𝑀12𝑂40]2−, 

featuring tetrahedral anion XO4 surrounded by twelve edge- and corner-sharing octahedra, 

MO6 (M= Mo or W) with a diameter of 1.2 nm. The Keggin structure has four different types 

of oxygen atoms as shown in Figure 2.4 (Ivanova, 2014). The four central oxygen (Oa) atoms 

X-O-M, two bridging types (Ob and Oc): (Oc) twelve edge-bridging oxygen atoms that bridge 

two Mo atoms sharing a central oxygen atom (M-O-M), (Ob) twelve corner-bridging oxygen 

atoms that bridge Mo not sharing a central oxygen atom and lastly twelve terminal oxygen 

atoms (Od) bound to a single Mo atom (M=O). The bonds display distinctive infrared bands 

around 500 to 1100 cm-1 range (Gumerova & Rompel, 2018). 

 

 

 

 

Figure 2.4: Ball and stick representation of Keggin anion (Red: Oxygen, Magenta: addenda 

atom, orange: heteroatom). 
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Figure 2.5: Polyhedral representation of the crystal structures of all the isomers of the Keggin 

anion: (, β, γ, δ and ε isomers). The green polyhedral shows the M3O13 units, rotated 60 with 

respect to -isomer. The yellow spheres represent the heteroatom and the red spheres are oxo-

ligands. The coordinating ligands allowing the formation of the d isomer are represented by 

the black ball and blue stick (Sartzi et al., 2015).  

 

Interestingly, this arrangement permits the formation of the structural isomers with the -

Keggin ion, being one of the five isomers as demonstrated in Figure 2.5 which then undergoes 

a 60° rotation of one, two, three and four M3O13 triads to give respectively give the β, γ, δ and 

ε isomers respectively (López et al., 2001). This rearrangement of the triads affects the overall 

atomic and electronic structure and electrostatic repulsion between these units. However, due 

to the number of edge-sharing octahedra increasing these structures are energetically 

unflavoured. As a result, the most commonly found Keggin structure is the isomer with only 

few examples of the energetically favoured β, γ, δ and ε isomers. Due of the number of possible 

isomers and the dissimilarity of addenda and heteroatoms, structural and compositional control 

can obviously be achievable; these aspects make Keggin anions attractive compounds for 

studies ranging from acidity and catalysis to electrochemistry and redox activity.  
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2.4.4.3 Properties and Applications of HPAs 

The size, composition, structure and charge diversifications of POMs has led to numerous 

properties. For example, HPAs such as 12-phosphomolybdic acid and 12-silicotungstic are 

very strong acids in aqueous solution. In a study conducted by Kulikov et al it was found that 

the acidity of 12-phosphotungsteric acid is stronger than that of unusual minerals (H2SO4 and 

HClO4) (Petit & Bandosz, 2009). Because of this, POMs are used in homogenous catalyst 

reactions. Another most important property of HPAs is their flexible redox properties and their 

structures can remain unchanged after a multi-electron redox process (Yokuş et al., 2016). The 

electrochemical behaviour of POMs in acidic media involves one or two electron reversible 

reductions to produce reduced POMs, or so-called heteropoly blues owing to their changed 

colour (Yola et al., 2015). In reduced forms, their electron and proton transfer and/or storage 

abilities make them act as efficient donors or acceptors of several electrons without structural 

change (Zhang et al., 2012). However, bulk form of Keggin heteropoly acids have limited 

number of catalytic applications since they are associated with certain drawbacks.  Pure HPAs 

have high water solubility and very low surface areas (as low as< 10 m2/g), which hinders 

accessibility to their strong acidic sites limiting their stability and catalytic activities (Kim & 

Shanmugam, 2013). Numerous research studies on the electrochemistry of immobilizing HPAs 

on solid supports indicated that the physicochemical properties HPAs are retained after 

immobilization. Hence immobilizing or dispersing them onto various supports or entrapping 

them into various matrices such as nanoparticles, polymers and carbon based materials is 

expected to increase the number of active centres and improve their catalytic activity resulting 

in new or enhanced modified electrochemical properties for potential use in the sensing 

industry (Chi & Dong, 1995; Kang et al., 2009; Li, Zhang, et al., 2010; Zhou & Han, 2010; 

Lin, Hu & Song, 2017). For example, (Zhang et al., 2012) prepared GO nanosheets and POM 

such as H3PW12O40 (PTA) into a multilayer film via a layer-by-layer inkjet printing method. 

The PTA/GO chemical sensor displayed good electrocatalytic activity for the oxidation of 

Dopamine. On the other hand, (Chen, Liu, et al., 2013) used a photochemical reduction method 

to construct a H3PMo12O40 (PMoA)-RGO nanocomposite to investigate its electrocatalytic 

activity in acid solution. The electrochemical properties investigated through cyclic 

voltammetry indicate that the PMoA-RGO modified glassy carbon electrode has high 

electrocatalytic activity via a fast, surface-controlled electron transfer process. The results 

indicated that the introduction of RGO not only increased the electroactive surface area but 

also facilitated the electron transfer due to its high electric conductivity. Even though there are 
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a number of sensing application reported on HPAs for different analytes, this thesis will only 

focus on Keggin ion-based sensors that are devoted to the detection of H2O2 species. 

 

2.4.4.4 POM based H2O2 sensor  

As previously stated above, one of the methods of modifying HPAs is to support them on high 

surface area or neutral acidic media. In this this regard, the group of (Haghighi, Hamidi & 

Gorton, 2010) formed a robust and stable film containing 1:12 phosphomolybdic acid (PMo12) 

and n-octylpyridinum hexafluorophosphate ([C8Py][PF6]) on a modified multi wall carbon 

nanotube glassy carbon electrode (GCE/MWCNTs) through a dip-coating procedure for the 

detection of H2O2 and Iodate. In this study, cyclic voltammetry was used to examine the 

electrocatalytic activity of this composite. The GCE/MWCNTs/[C8Py][PF6]-PMo12 exhibited 

good electrocatalytic activity towards H2O2 reduction but there was no response observed on 

GCE/MWCNTs/[C8Py][PF6] for H2O2. The catalytic effect appeared on the reduction peak of 

the second redox pair (II–II) of PMo12, which corresponds to the reduction process from two-

electron to four-electron reduced species. The modified electrode showed the ability for 

hydrogen peroxide and iodate detection at reduced overpotential with many desirable 

properties including low detection limit, high sensitivity, short response time (<2 s) and 

satisfactory linear concentration range. The main limitation of the proposed electrode, which 

is common in the most POM-modified electrodes, is the loss of its stability and catalytic 

activity at pH around 7 as polyoxometalates decompose normally very rapidly above pH 3. 

This drawback limits the utilization of POM-modified electrodes for the fabrication of 

biosensors where biological elements such as enzymes are used. Shown below are the three 

pairs of redox peaks i.e. (I–I), (II–II) and (III–III) corresponded to the oxidation and reduction 

of PMo12 through two-, four- and six-electron processes, respectively.  

 

𝑃𝑀𝑜12𝑂40
3− + 2𝑒− + 2𝐻+ → 𝐻2𝑃𝑀𝑜12𝑂40

3−                                               (2.4) 

𝐻2𝑃𝑀𝑜12𝑂40
3− + 2𝑒− + 2𝐻+ → 𝐻4𝑃𝑀𝑜12𝑂40

3−                                          (2.5) 

𝐻4𝑃𝑀𝑜12𝑂40
3− + 2𝑒− + 2𝐻+ → 𝐻6𝑃𝑀𝑜12𝑂40

3−                                           (2.6) 

 

 (Yang et al., 2016a) through a simple manner constructed POM-g-RGO nanohybrids by 

mixing a highly efficient electrocatalytic polyoxometalate (POM) namely phosphomolybdic 

acid hydrate (H3PMo12O40) with polymetric ionic liquid functionalized (PIL)-RGO for the 

electrochemical detection of H2O2 and glucose. CV measurement where used investigate the 

electrochemical behaviour of this nanohybdrid using 0.5 M H2SO4 as an electrolyte. Compared 
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to the PIL-RGO which had no peaks, the POM-g-RGO showed an increased current response 

on increasing the scan rate and had three pairs of well-defined redox peaks.  

 

Figure 2.6: CV curves of POM-g-rGO electrode at scan rate of 50 mV/s in absence and 

presence of H2O2 (Yang et al., 2016b). 

 

This behaviour was due to the efficient and fast charge transfer between rGO and POM. This 

nanohybrid was incorporated into a flow-injection device to evaluate the electrocatalytic 

reduction of H2O2 in the presence and absence of 10 mM H2O2. The electrocatalytic of 

reduction mechanism of H2O2 was as follows: 

𝐻2𝑂2 + 𝑒− → 𝑂𝐻𝑎𝑑 + 𝑂𝐻− 

𝑂𝐻𝑎𝑑 + 𝑒− → 𝑂𝐻− 

2𝑂𝐻− + 2𝐻+ → 2𝐻2𝑂 

 

When H2O2 was introduced, the POM-g-rGO showed an increase in cathodic reduction peak 

which indicated a high electrocatalytic ability of POMs in POM-g-RGO. In particular, the 

POM-g-RGO had a 5s response time with high sensitivity of 95.5 (A/Mm/cm2) and had a 

large range of detecting limit (100 M – 20 M).  Furthermore, the distribution of the POM on 

rGO Surface was found to permit the multiple reversible redox reaction. Hence introduction of 

the POM onto the RGO makes this sensor’s electrochemical performance an excellent and 

developmental candidate for different types of electrochemical sensing.   
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CHAPTER 3 

EXPERIMENTAL & PROCEDURE 

 

Chapter review 

This chapter starts by outlining the chemicals used to construct the Ag-Fe2O3/POM/RGO 

composite. It further discusses in detail the experimental procedures involved in the fabrication 

of the materials namely, AgFe2O3 nanoparticles, POM/RGO nanocomposite, RGO, GO and 

the novel Ag-Fe2O3/POM/RGO composite. It then closes with a summary of the 

instrumentation and experimental techniques used to characterize the synthesized materials.  
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3.1 Materials and Chemicals  

The list of chemicals used vis-a-vis their molecular formula, % purity and the manufacturer is 

presented in Table 3.1 

Chemical 

Compound 

Molecular Formula Purity (%) Company 

Graphite powder C Extra pure Merck Pty(LTD) 

Sulphuric Acid H2SO4 95.0 -98.0 Sigma Aldrich 

Potassium 

Permanganate 

KMnO4 ≤ 99.9 Sigma Aldrich 

Hydrogen Peroxide H2O2 30 Sigma Aldrich 

Sodium Borohydride NaBH4 ≤ 99.9 Fluka Analytical 

Ethanol C2H5OH 99.9 Kimix 

Acetone CH3∙CO CH3 99 Kimix 

Silver nitrate AgNO3 99.0 Sigma Aldrich 

Polyvinyl Alcohol (C2H4O)x - Sigma Aldrich 

Isopropyl C3H8O - Sigma Aldrich 

Ethylene glycol C2H6O2 99.8 Sigma Aldrich 

Phosphomolybdic 

acid hydrate 

H3Mo12O40P∙xH2O - Sigma Aldrich 

Ferric chloride FeCl3∙6H2O 99 Kimix 

Urea CH4N2O 95 Fluka Analytical 

Nafion® 117 sol - 5 Aldrich chemical 

Potassium Bromide KBr - Sigma Aldrich 

Potassium Chloride KCl - Sigma Aldrich 
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3.2 Cell setup and Synthesis  

3.2.1 Cell arrangement 

Figure 3.1 shows pictures of (a) coiled platinum wire used as a counter electrode, (b) a glassy 

carbon electrode (3 mm diameter) used as a working electrode, (c) a Silver/Silver Chloride 

electrode saturated (SSCE) in a 3 M Potassium Chloride solution used as a reference electrode 

and (d) a three electrode electrochemical cell setup used in this study. These electrodes were 

purchased from a company called BASS (Analytical Instruments, USA). Cyclic voltammetry 

(CV), electrochemical impedance spectroscopy (EIS) and amperometry (AMP) measurements 

were performed using Palms Sens working station (Bioanalytical Systems, USA). 

 

 

 

 

 

 

 

 

Figure 3.1: Pictures showing the assemblage of electrodes and the electrochemical cell system. 

(a) coiled platinum wire, (b) a glassy carbon electrode (3 mm diameter) u, (c) a SSCE 

(Silver/Silver Chloride electrode) and (d) a three electrode electrochemical cell setup used in 

this study 

A B 

C D 
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3.2.2 Preliminary treatment of the electrode  

The surface of the bare glassy carbon electrode was polished prior to fabrication, in order to 

remove any traces which may affect the rate of electron transfer.  Mechanical polishing is the 

most common method in which a micro cloth (brown soft velvety texture) is used with 0,05, 

0,3 and 1 µm alumina polishing powders respectively. The electrode is placed face down on 

the micro cloth pad, using a smooth, circular motion and an even pressure, the electrode is then 

moved all over the pad while making a figure-8 motion as shown in figure 3.2. After 5-10 

minutes the electrode was rinsed with copious amount of distilled water and was sonicated for 

15 minutes with ethanol and distilled water to ensure complete removal of the alumina 

particles.  It was then dried under Argon gas to be ready for use. This process was done before 

and after conducting CV , AMP and EIS measurements.  

 

Figure 3.2: Electrode polishing process  
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3.2.3 Preparation of Solutions  

Ethanol Solution  

50 % of ethanol solution was prepared by mixing 25.5 ml of 98 % ethanol with 24.5 ml of 

distilled water. The obtained 50 ml solution was sonicated for 5 minutes before use.  

Nafion Solution  

1 % of Nafion solution was prepared by mixing 2 ml of 5% Nafion® 117 solution with 8 ml of 

distilled water. The 10 ml solution was sonicated for 5 minutes to carefully mix the solution.  

0.5 M H2SO4 solution  

0.5 M solution was prepared by mixing 27.74 ml of 98 % of H2SO4 with 972.26 ml of distilled 

water in a 1 L Standard Flask. This was used as an electrolyte for all electrochemistry 

measurements.  

Phosphate buffer solution (PBS) 

A buffer solution of 0.1 M and pH 7.4 was prepared by dissolving 8.895 g of disodium 

hydrogen orthophosphate (Na2HPO4) and 7.81 g of sodium dihydrogen orthophosphate 

(Na2H2PO4) separately in 500 mL deionized water. Then the salt solution was mixed according 

to the Henderson-Hasselbach equation to obtain the required pH level. This was used for the 

application of the sensor.  

3.2.4 Synthesis of Graphene Oxide (GO)  

The synthesis of graphene oxide was conducted using the Modified Hummers method 

(Loryuenyong et al., 2013). 50 ml of concentrated H2SO4 was added to 2g of graphite powder 

into a 250 under stirring at room temperature. The flask was cooled to 0°C in an ice bath 

followed by a slow addition of 7 g KMnO4. The flask was allowed to warm to room 

temperature. The flask was removed from the ice bath and the reaction temperature was raised 

to 35 °C. The reaction mixture was stirred with a Teflon coated magnetic stirrer for 2 h. After 

which it was cooled in an ice bath and 120 ml of H2O was added as well as a slow addition of 

20 ml H2O2 (30 % wt.) until gas evolution stopped. The reaction mixture was left to stir 

overnight. The resulting yellow brown suspension was extensively washed with ethanol and 

water and was centrifuged to remove residual exfoliated graphite. The material that was 

obtained was vacuum dried at 65°C overnight to give GO.  
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3.2.4.1Formation mechanism of GO  

The active species to oxidize graphite is dimanganese heptoxide (Mn2O7) which is obtained 

via the reaction of monometallic tetra oxide ion MnO3
+ and tetraoxomanganate (viii) ion 

(MnO4
-) as  shown by equation (3.1) below (Emiru & Ayele, 2017).  

                  𝐾𝑀𝑛𝑂4 + 3𝐻2𝑆𝑂4 → 𝐾+ + 𝑀𝑛𝑂3
+ + 𝐻3𝑂+ + 3𝐻𝑆𝑂4

−                                   (3.1) 

                           𝑀𝑛𝑂3
+ + 𝑀𝑛𝑂4

− → 𝑀𝑛2𝑂7                                                                      (3.2) 

The transformation of MnO4 into a more reactive form Mn2O7 will certainly help oxidize 

graphite powder as shown by equation (3.3) below.  

      𝑀𝑛2𝑂7 + 𝐻2𝑆𝑂4 + 𝐶 (𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒) → (
𝐶 − 𝑂 − 𝐶

𝐶 − 𝑂𝐻
𝐶𝑂𝑂𝐻

) + 𝑀𝑛𝑂5 +  𝐻2𝑂 + 𝑆𝑂4
−2           (3.3) 

 

3.2.4.2 Reduction of GO 

In a typical reduction, 1 g of GO was dispersed finely in 200 ml distilled water and stirred by 

ultrasonic treatment for 3 h. After three hours, 2 g of NaBH4 was added to the GO suspension 

while stirring. The solution was then heated in an oil bath at 80-100 °C under a water cooled 

condenser for 12 h. Water level was kept during the reduction. RGO was precipitated by 

centrifugation at 4500 revolutions per minute (rpm) for 15 minutes The supernatant was 

discarded and the precipitate of RGO was washed three times with acetone, ethanol and 

distilled water, respectively. The product was dried in a vacuum oven for 24 h. Figure 3.3 

shows the difference in the colour of the product obtain for GO and RGO when dispersed in 

water (Loryuenyong et al., 2013). The fabrication procedure is presented in Scheme 3.1 

showing the process of combinations of atoms and the electrochemical reactions taking place.  

 

Figure 3.3: Colour comparison of 1.8 mg.ml-1 of graphene oxide (brown) and reduced 

graphene oxide (black), respectively.  
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Scheme 3.1: Fabrication procedure of the representative GO using the Hummers method and 

reduction by sodium borohydride modified from (Rowley-Neale et al., 2018) 

3.2.5 Synthesis of POM/RGO nanocomposite 

Using a method developed by (Kim & Shanmugam, 2013), POM/RGO composite was 

prepared with a slight modification. 1 g of RGO was dispersed into 800 ml water containing 8 

ml of ethylene glycol by ultra-sonication for 30 minutes. 10 g of POM was added to the solution 

and the system was subjected to an additional 10-minute stirring and ultra-sonication. The 

mixture was irradiated under (300 W) UV light for 2 h. The concentration of the reduced POM 

can be controlled by varying the irradiation time. Subsequently, the mixture was stirred in the 

dark at room temperature for 48 h, the colour changed from yellowish-brown to a blue-black 

colour. The blue-black solution was centrifuged and washed with ethanol and distilled water 

three times to remove the unabsorbed POM. It was then dried in an oven at 80 °C for 12 h. The 

Scheme 3.2 below shows the intercalation process of the POM into the crevices of the RGO. 

 

http://etd.uwc.ac.za/



38 
 

 

Scheme 3.2: Fabrication procedure of the representative POM/RGO nanocomposite (Kim & 

Shanmugam, 2013) 

3.2.6 Synthesis of Ag-Fe2O3/POM/RGO nanocomposite  

20 ml aqueous solution of 1.8 mg.ml-1 POM/RGO was mixed with 0.084 g of AgNO3 (0.5 

mmol) and 0.80 g of Fe(NO3)3·9H2O (2 mmol) while stirring, for 15 minutes. To this 1.08 g of 

CH4N2O (0.018 M) and 2 g of PEG (0.5 mmol) were added and the above mixture was 

sonicated for 30 minutes at 25 °C. After sonication for 30 minutes, about 80 mL distilled water 

was added to the resulting solution and transferred into a 100 mL Teflon-lined stainless steel 

autoclave, and heated at 180 °C in an electric oven for 8 h. The resulting black product was 

cooled to room temperature, washed with deionized water and ethanol several times by 

centrifugation. Finally, the product was dried at 60 °C in a vacuum oven for 8 h and was 

labelled Ag-Fe2O3/POM/RGO nanocomposite. For comparison, bare Ag-Fe2O3 nanocomposite 

were prepared under similar conditions without addition of POM/RGO. Fe2O3 nanoparticles 

were also synthesized under similar conditions without adding AgNO3 and POM/RGO. 

Scheme 3.3 presents the fabrication procedure for the representative quaternary Ag-

Fe2O3/POM/RGO nanocomposite. 
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Scheme 3.3: Fabrication procedure of the representative quaternary Ag-Fe2O3/POM/RGO 

nanocomposite 

 

To ease the reading, Table 3.2 features all materials prepared in this study together with their 

methods of preparation. The total synthesised materials amounts to 7, consisting of four bare 

materials and 3 composites. In order to distinguish between the composites which were 

synthesised by “one pot” and “step by step procedure”, who different types of styles were used. 

Symbol “-” was used for those that were prepared by “one pot” e.g. “Ag-Fe2O3 nanoparticles” 

and symbol “/” was used for those prepared by “step by step” procedure e.g.  “POM/RGO”. 

The symbol “//” was used to distinguish the deposition of the materials onto the working 

electrode e.g. “POM/RGO//GCE” 
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Table: 3.2: Summary of synthesized materials in this study 

Abbreviation  Modification Preparation 

GO  Modified Hummers method Modified Hummers 

method 

RGO Reduction by NaBH4 Reflux condenser 

POM/RGO POM deposited on the surface of 

RGO 

Uv light irradiation  

Ag NP’s Ag NP’s stabilized by PVA Chemical method 

Fe2O3 NP’s  Fe2O3 NP’s protected by PEG Hydrothermal method 

Ag-Fe2O3  Ag and Fe2O3 NP’s Hydrothermal method 

Ag-Fe2O3/POM/RGO Ag-Fe2O3 NP’s are decorated on 

POM at the surface of RGO 

One pot hydrothermal 

method 

 

3.3 Instrumentation  

The surface morphologies of the prepared materials were probed by High resolution 

Transmission Electron Microscopy (HRTEM Tecnai F20) and Scanning Electron Microscopy 

(Auriga HR). Energy Dispersive X-ray Spectroscopy (EDXS) was used to verify the weight 

percentages of the synthesised materials. Ultraviolet-Visible (UV-Vis) spectroscopy was used 

to analyse the chemical structure of the samples. A Fourier Transform Infrared Spectroscopy 

(FTIR) was used to get the vibrational spectra of the molecules in the samples. The structures 

were analysed by X-ray Diffraction (XRD). Electrochemical studies were recorded using 

PalmSensor. All the electrochemical tests were carried out 3 times and all the measurements 

were taken at room temperature.  

3.3.1 Electrochemical studies  

 PalmSens was used to investigate and determine the electrochemistry of the modified 

electrode’s electrochemical activity for the detection of H2O2. Included in the PalmSensor, the 

PalmSens software can run useful DC techniques such as Cyclic voltammetry (CV), 

chronoamperometry (CA) and chronopotentiometry (CP).  For the detection of H2O2 CV was 

used and CP was used to determine the linear range, limit of detection, limit of quantification, 

selectivity and sensitivity of the H2O2 modified sensor.  
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3.3.1.1 Cyclic voltammetry (CV) 

Cyclic voltammetry (CV) is one of the important and sensitive electroanalytical methods to 

study the redox processes, understanding reaction intermediates and obtaining stability of 

reaction products. Cyclic voltammetry provides crucial information regarding the 

thermodynamics and kinetics of redox processes based on varying the applied potential in both 

forward and reverse directions while monitoring the current. The peak potentials and peak 

currents of the cathodic and anodic peaks are two important parameters in a cyclic 

voltammogram (Wang, 2006). If the electron transfer process is fast when compared to other 

processes (such as diffusion), the reaction is said to be electrochemically reversible and the 

peak separation is:  

                                    ∆𝐸𝑝 = 𝐸𝑝𝑎 − 𝐸𝑝𝑐 =
2.303𝑅𝑇

𝑛𝐹
                                   (3.4) 

In this work, the electrochemical performance of modified electrodes based on different 

composites was examined using cyclic voltammetry method in the presence and absence of 1 

mM H2O2 in 0.5 M H2SO4 using PalmSens electrochemical workstation (Bioanalytical 

Systems, USA) monitored on PSTrace software at a potential window of -0,2 V to 0,8 V. This 

was done to understand the redox reactions of the synthesised composites in Table 3.2 and to 

get information about the unique electrochemical behaviour of the composites and the electron 

kinetic differences between the individual components (RGO, POM) and the nanocomposites.  

 

3.3.1.2 Amperometry (AMP) 

In this technique, a constant potential is applied to a working electrode and the current is 

measured as a function of time. The constant potential is commonly selected (based on the CV 

experiments) such that the resulting current is mass transport limited, thus at steady state, it 

represents a concentration of the electro-active species, which is the analyte of interest or can 

be correlated to its concentration (Guy & Walker, 2016). Amperometry is based on study of 

the sensor response to a change of substrate concentration, which is referred as titration. It 

involves the current measurements of a sensor under constant polarisation immersed in a buffer 

solution, while changing the analyte concentration (stepwise) (Honeychurch, 2012). The 

results were plotted on a current versus time curve. The time between the changes of analyte 

concentration is determined by the properties of the sensor, namely by the time required for the 

current to reach equilibrium state. Solution was stirred to provide faster convective transport 

of the analyte to the electrode surface. 
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3.3.1.3 Electrochemical impedance spectroscopy  (EIS) 

The electrochemical impedance spectroscopy is a more general concept of resistance and has 

become very popular nowadays as a complementary technique for the characterization of 

electrode processes at complex interfaces. Electrochemical impedance spectroscopy is 

measured by applying AC potential with small amplitude (5 to 10 mV) to an electrochemical 

cell and measuring the current flowing through the working electrode. An electrode-solution 

interface undergoing an electrochemical reaction is treated as an electronic circuit consisting 

of a combination of resistors and capacitors (ref). By using this useful technique, the study of 

any intrinsic material property or specific processes that could influence the 

conductivity/resistivity of an electrochemical system is possible.  

 

For electrochemical sensing, impedance techniques are useful to observe changes in electrical 

properties arising from biorecognition events at the surfaces of modified electrodes. In this 

work, this technique was used to analyse different modified electrodes with a frequency 

ranging from 0.1 to 1×105 Hz in 0.5 M H2SO4 solution. 

 

3.3.2 Spectroscopic  

3.3.2.1 A Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier Transform-Infrared Spectroscopy (FTIR) is an analytical technique that is used to 

measure the absorption of infrared radiation by the sample of interest versus wavelength to 

identify molecular components and structures. It modulates the wavelength from a broadband 

infrared source using an interferometer (Amir et al., 2013; Munajad, Subroto & Suwarno, 

2018). The intensity of reflected or transmitted light is measured by a detector as a function of 

its wavelength. The signal obtained from the detector is an interferogram, which must be 

analysed with a computer using Fourier transforms to obtain a single-beam infrared spectrum. 

The FTIR spectra are usually presented as plots of intensity versus wavenumber (in cm-1). 

Wavenumber is the reciprocal of the wavelength. The intensity can be plotted as the percentage 

of light transmittance or absorbance at each wavenumber. 

In this work, the FTIR spectra of the samples were recorded at ~293 K on a PerkinElmer FT-

IR spectrometer at a weight ratio in the 4000-300 cm-1 region.  The samples were prepared 

using the KBr pellet method, typically 0.015 g of each synthesised material and 0.4 g of a pre-

dried KBr were grounded in a mortar using a pestle to give a homogeneous mixture. The 
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mixture was then pelletized by application of 7 tons of pressure. The resultant product was 

scanned on a Perkin Elmer Paragon 1000 PC FTIR spectrometer.   

3.3.2.2 Ultraviolet-Visible spectroscopy (Uv-Vis) 

UV-Visible spectroscopy (UV-Vis) is a spectroscopic technique that measures the extinction 

(scatter + absorption) of light passing through a sample. It refers to absorption spectroscopy in 

the ultraviolet-visible spectral region meaning, it uses light in the visible and adjacent (near-

(UV) and near-infrared (NIR) ranges) (Weckhuysen, 2004). Because nanoparticles have unique 

optical properties that are sensitive to shape, size, concentration, agglomeration state and 

refractive index near the nanoparticle surface, UV-Vis becomes a reliable and valuable tool for 

the characterization, identification and studying the nanomaterials. In addition, UV-Vis is 

selective, sensitive, fast and simple for different types of nanoparticles and only needs a short 

period of time for the measurement with no calibration required for the particle characterisation 

of colloidal suspension (Zhang, Liu, et al., 2016).  

In this work the UV-Vis spectra of the samples were recorded on Thermo Electron Corporation, 

Nicolet evolution 100 UV-Vis instrument. The colloidal suspension of each sample synthesised 

was at a concentration of 1mg/ml. Typically throughout the work, 10 mg of the material was 

dissolved in 50 % ethanol solution of 10 ml to make the suspension. Ethanol was chosen as a 

solvent because of its cut-off wavelength which as no significant interference on the 

wavelengths of the materials to be studied and that all the materials could be easy dissolved in 

ethanol.   

3.3.2.3 X-ray Diffraction (XRD) 

X-ray diffraction (XRD) is one of the most popular non-destructive analytical techniques for 

the analysis of both organic and inorganic crystalline materials. It is used to measure phase 

identification of a crystalline material, particle size, and to find structural imperfections in a 

sample from wide range of materials such as polymers, metals, proteins and minerals (Bykkam 

et al., 2015). In this work, a Brucker AXS (Germany) D8 advanced diffractometer unit, with a 

Cu-K radiation tube having wavelengths of K1 1.54065 Å and a Lynx Eye position sensitive 

detector was used to record the data. The scanning was done in the 2θ range of 0.5° to 130° 

with step size of 0.034°.  The XRD’s working principle is based on Bragg’s law. When X-rays 

of wavelength λ are incident at an angle θ on a crystal lattice, a section of these beams will be 

scattered in all directions. The necessary and sufficient condition for constructive interference 

is known as Bragg’s law equation (3.5). According to the law, scattered waves originating 
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from each atom will be in phase with each another. Scheme 3.4 shows the geometric 

requirements for this condition.  

                                                                𝑛𝜆 = 2𝑑𝑠𝑖𝑛Ɵ                                                  (3.5) 

Where,  

λ = the X-ray’s wavelength  

d  = the spacing of the crystal layers  

Ɵ = the incident angle  

n  = an integer    

 

The principle of Bragg’s law is applied in the construction of instruments such as Bragg 

spectrometer, which is often used to study the structure of crystals and molecules. All aspects 

of this formula are introduced in Schematic 3.4, dhkl is the interplanar spacing as a function of 

the Miller indices (h, k, and l) as well as the lattice parameters. Usually, diffraction experiments 

were applied at a fixed wavelength; therefore, measurement of the diffraction angles enables 

the calculation of the associated dhkl and then the lattice constants (Das et al., 2010). 

 

 

Scheme 3.4: Schematic of the diffraction of an X-rays beam by parallel atomic crystalline 

material (Bykkam et al., 2015) 

 

3.3.2.4 Energy Dispersive X-ray Spectroscopy (EDXS) 

Energy Dispersive X-Ray (EDX), sometimes called EDS or EDAX, is a qualitative and quantitative 

X-ray technique used to measure the elemental composition of solid surfaces. They are used in 

conjunction with Electron Microscopy instruments (Scanning Electron Microscopy or 

Transmission Electron Microscopy) instruments (Wenner et al., 2017). The EDX spectra of the 

samples were collected using EDAX liquid nitrogen cooled Lithium doped silicon detector 

instrument. The atomic number of the element within the sampling volume can be correlated 
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to the intensity of backscattered electrons generated by the electron bombardment. Therefore, 

elemental information can be qualitatively determined. The emitted specific X-rays from the 

sample serve as finger prints giving elemental data of the samples, including quantitative and 

semi-quantitative information, as well as line profiling and spatial distribution of elements 

(MEHRVAR & ABDI, 2004). 

3.3.2.5. Raman spectroscopy  

Raman spectroscopy is a spectroscopic technique used to observe vibrational, rotational and 

other low-frequency modes in a system. Raman spectroscopy is commonly used to provide a 

fingerprint by which molecules can be identified. It relies on inelastic scattering or Raman 

scattering of monochromatic light, usually from a laser in the visible, near infrared, or near 

ultraviolet range. The laser light interacts with molecular vibrations, phonons or other 

excitations in the system, resulting in the energy of the laser photons being shifted up or down. 

The shift in energy gives information about the vibrational modes in the system (Gurvinder 

Singh Bumbrah, 2016). Typically, a sample is illuminated with a laser beam. Electromagnetic 

radiation from the illuminated spot is collected with a lens and sent through a monochromator. 

Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh 

scattering) is filtered out, while the rest of the collected light is dispersed onto a detector by 

either a notch filter or a band pass filter (King et al., 2016). Spontaneous Raman scattering is 

typically very weak and as a result, the main difficulty of Raman spectroscopy is separating 

the weak inelastically scattered light from the intense Rayleigh scattered laser light. 

  

The Raman spectra were obtained using Dilor XY Raman spectrometer with a Coherent Innova 

Argon laser employing different excitation wavelength for each synthesised material and are 

stated in Chapter 4. In this study Raman spectroscopy was used to study the vibrational 

information of the synthesized materials. A Raman Micro 200, Perkin Elmer precisely 

Spectrometer LabRAM HR800 (Spectrum software), with an output laser power of 50% was 

used to record the data. Raman analysis was conducted on powdered samples without any prior 

sample preparation. The spectra were recorded over a range of 50 to 3270 cm-1 using an 

operating spectral resolution of 2.0 cm-1. The spectra were averaged with 20 scans, at an 

exposure time of 4 s.  
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3.3.3 Microscopic  

3.3.3.1 High resolution Transmission Electron Microscopy (HRTEM) 

High Resolution Transmission Electron Microscopy (HRTEM) is a technique in which a high 

intensity beam of electrons passes through a sample of interest and is able to determine its 

properties. Properties of most nanomaterials such as quantum dots nanotubes and nanowires 

are studied using HRTEM imaging. HRTEM analysis can also determine the elemental 

composition of the sample of interest. In this study, HRTEM was used to obtain the internal 

structure, crystallinity (lattice fringes) and the elemental composition of the synthesized 

nanomaterials. HRTEM analysis were performed by casting a drop of the synthesized material 

on a copper-nickel grid and dried under a lamp to evaporate the solvent for 15 min. 

Transmission electron micrographs (TEM) were collected using an FEI Tecnai G2 20 field 

mode at an accelerating voltage of 200kV from (Eindhovea, Netherlands) 

3.3.3.2 High resolution Scanning Electron Microscopy (HRSEM) 

High resolution Scanning Electron Microscopy (HRSEM) is an extremely useful tool for 

establishing the surface morphology and elemental composition of materials. Typically, an 

electron beam produced by an electron gun travels through a vacuum and scans over a selected 

area on the surface of the sample. As the electron beam scans the surface of the sample, a 

topographical and morphological representation of the surface is revealed. It then forms three 

types of images due to secondary electrons which are detected due to their low energies. Many 

researchers have used HRSEM to examine the morphology and microstructure of 

nanomaterials. In this study, HRSEM was employed to investigate the surface morphology and 

to obtain the elemental composition of the synthesised nanomaterials in Table 3.2. SEM 

images were obtained using AURIGA HIGH RESOLUTION Scanning electron microscope 

from Zeiss Oxford. The images were collected at 5 kV with a working distance of 6 mm. The 

sample was placed on a carbon supported by alumina and sputter coated for 30 min with a gold-

palladium alloy to make the samples conductive. 
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3.3.3.3 Atomic Force Microscopy  

Atomic Force Microscopy (AFM) is a technique that is used to map the surface (soft or hard, 

synthetic or natural) of a material on a nanoscale using a micro fabricated cantilever as a 

scanning probe. Three-dimensional topographies of the surface with spatial resolutions of 

angstrom or nanometre scales are revealed by the AFM image (Omidi et al., 2017). A sharp 

probing tip at the end of a spring-like cantilever is used to interact with the sample.  When the 

probing tip automatically travels through the surface, the forces between the sample and the tip 

gives information about the topography of the sample (Kyeyune, 2017). In this study a 

Nanosurf easyScan 2 AFM system was used to analyse the structures and the morphology of 

the samples (materials).   

3.3.3.4 Small Angle X-ray Scattering (SAXS) 

SAXS is an accurate, non-destructive analytical method used to determine the structure of a 

particle system in terms of average particle sizes or shape. It usually requires only a minimum 

of sample preparation and the materials can be solid or liquid and can contain solid, liquid or 

gaseous domains (so called particles) of the same or another material in any combination.  

Usually, X-rays are sent through the sample (transmission mode) and every particle that 

happens to be inside the beam will send out signal. Thus, average structure of all illuminated 

particles in bulk material is measured. Application areas include biological materials, 

polymers, colloids, nanocomposites, metals, chemicals and can be found in research as well as 

quality control (Schnablegger & Singh, 2013). 

In this study SAXS was used to determine the shape and the size of the Ag-Fe2O3 nanoparticles 

in the novel composite. The sample was prepared by dispersing Ag-Fe2O3/POM/RGO in 

ethanol solution. Small Angle X-rays Scattering was obtained from Anton Paar GmbH (Anton-

Paar Str 20 A-8054 Graz).  

 

 

 

 

 

 

http://etd.uwc.ac.za/



48 
 

CHAPTER 4 

RESULTS AND DISCUSSION 

 

Chapter overview 

This chapter reports the characterization of the synthesized materials (GO, RGO, POM/RGO, 

Ag, Fe2O3, Ag-Fe2O3) and the novel Ag-Fe2O3/POM/RGO. These include spectroscopic and 

microscopic characterization techniques. It further discusses the electro-analysis of these 

materials by analytical techniques such as CV and EIS. Before reporting on the POM/RGO 

composite, characterizations of GO and RGO were reported to confirm the reduction process. 

As a result, this chapter kicks off with the comparison between GO and RGO. After, the results 

of POM/RGO are discussed to confirm the deposition of the POM onto the RGO sheets. This 

chapter then closes with the Ag-Fe2O3/POM/RGO results.  

4.1 GO and RGO 

4.1.1. Ultraviolet-visible spectroscopy  

 

Figure 4.1: UV-vis spectra of GO and RGO 
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To check the efficiency of the reduction process, the UV-vis absorption spectra of aqueous 

suspensions of GO and RGO are presented in Figure 4.1. The absorption peak of GO shows 

two bands. The main maximum absorption band of GO observed at 222 nm can be attributed 

to π→π* electron transitions of aromatic C-C bonds in the GO plane. The second shoulder 

band at 291 nm corresponds to n→π* transition of C=O bonds (Smarzewska & Ciesielski, 

2014) . After the reduction process to RGO, the maximum absorption band of GO at 222 nm 

have shown a bathochromic shit to 265 nm suggesting the reduction of GO and confirms 

restoration of the electronic conjugation within the graphene sheets. Moreover, the shoulder 

located at 291 nm in the structure of GO was not observed in the absorption of RGO this is due 

to the removal of oxygen-containing functional groups (Wei et al., 2012). 

4.1.2. Fourier Transform Infrared Spectroscopy (FTIR) 

 

Figure 4.2: FTIR spectra of GO and RGO 

The FTIR spectrum of the GO and RGO are shown in Figure 4.2. This is a suitable tool to 

determine the functional groups present before and after the reduction process. GO exhibits a 

broad peak at 3126 cm-1 which is assigned to O-H stretching vibrations mode. Other peaks 

centred at 1718 cm-1, 1577 cm-1, 1218 cm-1 and 1068 cm-1 are attributed to C=O stretching, sp2 

hybridized C=C group, C-O vibration of epoxy or alkoxy groups, and finally CO-O-CO 
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anhydride group respectively (Lavin-Lopez et al., 2016). It is obvious from the RGO spectrum 

that the intensities of oxygen containing functional groups are almost invisible suggesting the 

effective reduction of GO. As observed in the spectra of RGO the peak at 3126 cm-1 assigned 

to O-H stretching disappeared , the peak at 1737 cm-1 is related to phenol C=C sp2 stretching 

and the bands at 1538 cm-1 and 1224 are related to C-O and C-OH respectively (Chettri et al., 

2017). In other words, FTIR confirms the partial reduction of GO to RGO.  

 

4.1.3. Raman spectroscopy  

 

Figure 4.3: Raman spectra of GO and RGO obtained using excitation wavelength of 533 nm.   

The reduction of GO to RGO was further investigated by Raman spectra. Figure 4.3 shows the 

Raman spectra of GO and RGO. Usually two main bands exist in the spectra of graphite or 

graphene-based materials, i.e. the G band assigned to the first order scattering of the E2g phonon 

from sp2 carbon (graphite lattice), and the D band arising from the structural imperfections 

created by the hydroxyl (-OH) and the epoxide groups on the carbon basal plane (Bo et al., 

2014; King et al., 2016).  As shown in the spectra of GO, the D band is located at 1345 cm-1 

and the G band is located at 1570 cm-1.  In comparison with GO, the spectra of RGO is similar 
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to that of the former but showing higher intensity of the D band compared to the G band.  A 

hypsochromic shift of 8 cm-1 to 1337 cm-1 can be observed for the D and also the G band shows 

a hypsochromic shift of 12 cm-1 to 1582 cm-1 in the RGO spectra due to the recovery of the sp2 

domain (Shang et al., 2012). The increase of ID/IG ratio from 1.14 (GO) to 1.28 (RGO) after 

reduction indicates the removal of most oxygen containing functional groups. Another possible 

reason is the increased fraction of graphene edges, which could also contribute to the increase 

in the ID/IG ratio (Liu et al., 2011a). These observations further confirm the formation of new 

graphic domains after the reduction process.  

 4.1.4. X-ray Diffraction (XRD) 

 

Figure 4.4: XRD spectrum of GO and RGO 

The XRD pattern of GO and RGO are presented in Figure 4.4. GO exhibits a (001) diffraction 

peak at 2Ɵ = 13.1° with a corresponding interlayer distance of 0.34 nm, this relatively large 

interlayer spacing of GO is due to the intercalation of water molecules and the formation of 

oxygen containing functional groups between the layers of graphite (Lavin-Lopez et al., 2016). 

After the reduction process, a new broad (002) diffraction peak is observed at 2Ɵ = 25° 

corresponding to a layer by layer distance of 0.18 nm. This indicates that after the reduction 
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process, the interlayer distance decreases due to the removal of oxygen containing functional 

groups, resulting in restacking of the RGO sheets (Emiru & Ayele, 2017). In addition, both the 

GO and RGO pattern show a (100) diffraction peak at 2Ɵ = 42.62° and 2Ɵ= 42.86° respectively 

indicating a short range order in stacked graphene sheets (Chettri et al., 2017). Moreover, a 

weak peak at 2Ɵ = 13.1° is seen for RGO which suggests partial reduction of GO. These 

observations are in agreement with literature (Emiru & Ayele, 2017) and they confirm the 

reduction of GO. 

After confirming the reduction process with the above characterizations the RGO was used to 

synthesize the POM/RGO composite as stated in Chapter 3. The characterization of the 

POM/RGO is discussed below.  

4.2 POM/RGO composite  

4.2.1 Ultraviolet-Visible spectroscopy (UV-Vis spec) 

 

 

Figure 4.5: UV-vis absorbance spectra of RGO, POM, and POM/RGO 

The formation of the POM/RGO hybrid material could be explained with the help of UV-

visible spectra. Ethanol was chosen as a solvent because of its low 200 nm cut-off value and 
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its stability for several number of days with both POM and RGO support. They have shown to 

form POM-shells, which contain up to 100s of individual POMs. For heteropolyoxomoybdates 

an absorption band usually observed between 200 and 400 nm with the main band centred at 

310 form (Mo6+) in octahedral coordination (Gupta, Aberg & Carrizosa, 2017). However, the 

absorption spectra of POM showed no significant band in the visible region. On the other hand, 

the absorption spectra of POM/RGO show a strong band at 309 nm which corresponds to 

O→M charge transfer transitions. Moreover, the second intense band at 244 nm assigned to 

the transition of dp of electrons from M=Od bond showed a hypsochomic shift (form the 

spectra of RGO) due to the formation of the POM/RGO composite. These λmax values of 

POM/RGO are the same with that of POM and RGO with slight shifting, which is in agreement 

with earlier reports (Mallick, Rana & Parida, 2012; Zhang et al., 2012),suggesting the presence 

of phosphomolybdic acid and RGO in the composite.  

4.2.2 Fourier Transform Infrared Spectroscopy (FTIR)  
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Figure 4.6: (a) FTIR spectra of POM, RGO and POM/RGO; (b) enlarged FTIR spectra of 

POM and POM/RGO over the range of 2000-500 cm-1. 

To further understand the interaction between POM and RGO, pure POM, RGO and 

POM/RGO were obtained, and the corresponding results are represented in Figure 4.6 (a). Pure 

POM exhibited characteristic peaks at 1054 cm-1, 964 cm-1, 834 cm-1 and 600 cm-1 assigned to 

the stretching vibrations of the central-atom-oxygen (P-O) bond, the asymmetric stretching of 

the peripheral-atom-terminal oxygen (Mo-O) bond, vertex Mo-O-Mo bond and edge Mo-O-

Mo bond respectively (Mallick, Rana & Parida, 2012). In the POM/RGO spectrum, the 

absorption at 1578 cm-1 is assigned to graphene skeletal vibration. The enlarged FTIR spectra 

of POM and POM/RGO over the range of 2000-500 cm-1 are presented in Figure 4.6 (b). 

Compared with POM, the peaks attributed to POM/RGO are observed at 1071 cm-1, 928 cm-1, 

847 cm-1 and 670 cm-1. The shifting of these peaks is due to the presence of strong interaction 

between RGO and POM (Yuan et al., 2015a). 

. 
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4.2.3 X-ray Diffraction (XRD) 

 

Figure 4.7: XRD spectrum of RGO, POM and POM/RGO 

The XRD results of the prepared materials are shown in Figure 4.7. To demonstrate the 

formation of POM/RGO composite the XRD patterns of POM and RGO nanocomposites were 

also included. XRD characteristic peaks of phosphomolybdic from its hydrate form 

(H3Mo12O40P∙xH2O) can be observed above, these patterns are similar to characteristic peaks 

of the monoclinic Keggin structure (Li, Zhang, et al., 2010; Paul et al., 2015). However, no 

distinct diffraction peaks of POM observed in the XRD spectra of POM/RGO, which further 

suggest that POM clusters are highly dispersed on the surface of the RGO in the composite 

(Yuan et al., 2015b). The mentioned spectrum reveals that POM has been successfully 

immobilized on the surface via UV-irradiation.  
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4.2.4 Raman Spectroscopy 

 

 

Figure 4.8: Raman spectra of RGO and POM/RGO obtained using excitation wavelength of 

533 nm. 

From the Raman spectra of POM/RGO and RGO in Figure 4.8, the D and G bands of 

POM/RGO showed some red shifts from 1337 cm-1 to 1352 cm-1 and 1580 cm-1 to 1593 cm-1, 

respectively. This result is attributed to the strong interaction between RGO and POM in the 

nanocomposite (Chen, Liu, et al., 2013). Furthermore, there is an increment in the ID/IG value 

from RGO to POM/RGO (1.27). This indicated that introduction POM onto the graphene sheet 

results in increased disorder, defects and sp2 domain sites on the sheets owning to the electron 

movement from the POM to the RGO sheets. These observations are similar to previous reports 

(Kim & Shanmugam, 2013).  
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4.2.5 Atomic Force Microscopy (AFM) 

 

Figure 4.9: AFM images of RGO (a) and POM/RGO (b). 

The surface morphologies of the RGO and POM/RGO were characterized using AFM. Figure 

4.9 (a and b) gives a typical AFM tapping mode of the surface of GCE drop coated with 

POM/RGO and RGO.  The RGO sheets form a casually organised sheets which are parallel to 

the surface. Comparing Figure 4.9 (a) and (b), the POM/RGO, have a roughness than RGO. 

The POM individual clusters are fully dispersed onto the RGO sheet resulting in their 

arrangement on the RGO sheets. We also noticed that the RGO is not observed in Figure 4.9 

a) 

b) 
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(b), this is because the POMs are highly dispersed onto the sheets making it difficult to see the 

RGO.   

4.2.6.  Transmission Electron Microscopy (TEM) 

 

Figure 4.10: (a)TEM image of POM/RGO and EDX analysis of POM/RGO (b). 

In order to support the observation from AFM, TEM was used to investigate the surface 

morphology of the synthesized nanocomposite. The morphology of POM/RGO in Figure 4.10 

a) 

b) 

http://etd.uwc.ac.za/



59 
 

(a) reveals that the nature of RGO is highly beneficial to provide high surface area on the glassy 

carbon electrode (GCE). The dispersed POM clusters (zoomed image) indicate that POM 

strongly interacted with the RGO. Particularly, particles at some regions or edges were 

observed. This might result in aggregation of POM though strong interaction with some oxygen 

containing functional groups on the RGO. Schweger and his colleagues reported that POM 

clusters interact with oxygen containing functional groups of activated carbons (Kim & 

Shanmugam, 2013). The dark spots marked with red arrows are POM individual clusters 

dispersed on the RGO sheet. These results are in agreement with the AFM results. EDX 

analysis of POM/RGO confirms the formation of the nanomaterial. The C, from RGO and the 

P, Mo and O from the POM are observed in the EDX. 

4.2.7 Scanning Electron Microscopy (SEM) 

 

 

Figure 4.11: SEM images of RGO (a) and POM/RGO (b) at a scale view of 200.  

The morphology of POM/RGO nanocomposite was investigated by SEM as shown in Figure 

4.11. For comparison, a SEM image of RGO was included. As shown in Figure 2 (a) the surface 

of RGO nanosheets was smooth, with the sheets of RGO being visible. In the Figure 4.11 (b) 

the POM nanoparticles were randomly deposited on the surface of RGO, which indicates that 

there was a strong interaction between POM and RGO. This confirms the AFM results.  

 

 

a b 
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4.2.8 Cyclic voltammetry (CV) 
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Figure 4.12: (a) CV of POM/RGO/GCE (a) in 0.5 M H2SO4 solution with different scan rate 

from a to j (10, 20,30,40,50,60,70, 80, 90, 100 mVs-1). CV curves (b) shows the redox peak 

current versus the square root of scan rate of POM/RGO. (c) The comparison CV between 

POM, GCE and POM/RGO at a scan rate of 30 mVs-1. 

Table 4.1: The electrochemical parameters of POM/RGO/GCE IN 0.5 M H2SO4  

POM/RGO 

peaks 

Epa Epc Ep1/2 ΔE 

1 0.37 0.32 0.34 0.05 

2 0.23 0.19 0.21 0.04 

3 0.11 0.08 0.09 0.03 

4 -0.02 0 -0.011 -0.02 

Where Epa and Epc are anodic and cathodic peak potentials, respectively. The mean peak 

potentials are E1/2 = (E pa+ Epc)/2  
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To conduct CV measurements 1 mg of POM/RGO was dispersed in 1 ml ethanol solution to 

generate a homogeneous black mixture. Subsequently, 3 l of the suspension was dropped onto 

a GCE and dried at room temperature to form POM/RGO/GCE. Figure 4.12 (a) shows the CV 

of POM/RGO modified GCE in the 0.5 M H2SO4 solution. In (a), the POM/RGO/GCE at 

different scan rates showed three reversible redox peaks and one weak irreversible peak at E1/2 

0.35 V, 0.21 V, and -0,1 V as shown in Table 4.1 and the peak separation potential of these 

peaks are no more than 60 mV. These results were in agreement with those reported by 

(Manivel & Anandan, 2011; Chen, Liu, et al., 2013). Redox peaks one, two and three 

corresponds to the reduction and oxidation via two-, four-, and six-electron process, 

respectively, which is demonstrated by the following equations (2.4 -2.6) (Wang, Han, et al., 

2014): 

𝑃𝑀𝑜12𝑂40
3− + 2𝑒− + 2𝐻+ → 𝐻2𝑃𝑀𝑜12𝑂40

3− 

𝐻2𝑃𝑀𝑜12𝑂40
3− + 2𝑒− + 2𝐻+ → 𝐻4𝑃𝑀𝑜12𝑂40

3− 

𝐻4𝑃𝑀𝑜12𝑂40
3− + 2𝑒− + 2𝐻+ → 𝐻6𝑃𝑀𝑜12𝑂40

3− 

 

The peak currents are proportional to scan rate as shown in Figure 4.12 (b), a linear relationship 

can be observed between anodic/cathodic peak currents vs (scan rate)1/2 which can be supported 

by R2 = 0.9598 for cathodic and R2 = 0.9676 for anodic (using redox couple 2), this indicated 

that the reaction of POM on the surface of RGO was controlled by surface redox process. For 

comparison, the CV of bare GCE and POM modified GCE are also given in Figure 4.12 (c). 

There are no redox peaks observed on the bare electrode in the potential range from +0.8 to -

0.2 V. For the POM modified GCE, three reversible couples are observed. The POM/RGO 

modified GCE was similar to that of POM modified GCE, although the intensities of the peaks 

were obviously strengthened, indicating that the introduction of RGO did not only play a role 

in increasing the electroactive surface area but also facilitated electron-transfer due to its high 

electric conductivity. Electrochemical behaviour of POM/RGO showed a fast, surface 

controlled electron transfer process. 
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4.2.9 Electrochemical impedance spectroscopy (EIS) 

 

 

Figure 4.13: (a) Nyquist plot of bare glassy carbon electrode, RGO and POM/RGO. To clearly 

see the difference, POM/RGO and RGO EIS are presented in (b). Insert plot POM/RGO and 

the fitted circuit.  

a) 

a) 
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EIS is an effective method for probing the features of surface modified electrodes. It is capable 

of giving useful information about defects/holes exist on the modified surfaces, the kinetics 

and mechanism of the film formation processes and surface coverage. Figure 4.13 

(a) represents the impedance plot (Nyquist diagram) of the bare GCE, RGO/GCE and the 

POM-RGO/GCE in 0.5 M H2SO4 solution and Figure 4.13 (b) shows the Nyquist diagram of 

RGO and POM. In addition, the inset plot on Figure 4.13 (b) shows the experimental data that 

are fitted to standard Randles equivalent circuits for POM/RGO surface analysis which 

comprises the solution resistance (Rs), the charge transfer resistance (Rct), the constant phase 

element (CPE) and in addition W for the Warburg element which is in a series connection to 

Rct in the case of POM-RGO/GCE. The EIS graph (curve of GCE) demonstrated that the value 

of charge transfer resistance (Rct) of bare GCE was calculated to be 75 ohm. When the bare 

GCE was modified with RGO, the value of Rct was lower (11 ohm) (curve RGO). Because of 

the lower value, we can say that the RGO increases the rate of electron transfer. When POM 

was modified with RGO, the value of Rct of POM-RGO/GCE was lower than that of RGO/GCE 

(curve of POM/RGO/GCE) (5 ohm). Thus, the addition of POM shows the increase of catalytic 

activity. These performances were attributed to the large surface area and the synergistic effect 

of POM and RGO.  

‘The prepared composite was used as a surface for depositing the Ag-Fe2O3 nanopaticles” 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/

https://www.sciencedirect.com/science/article/pii/S0925400516305226#fig0035


65 
 

4.3 Novel Ag-Fe2O3/POM/RGO  

4.3.1 Ultraviolet-Visible spectroscopy (Uv-Vis spec) 

 

 

Figure 4.14: UV-vis spectra of Ag-Fe2O3/POM/RGO and Ag-Fe2O3/POM/RGO. Insert plot of 

Ag and Fe2O3 nanoparticles UV-vis spectra.   

The formation of Ag-Fe2O3 nanoparticles and the novel Ag-Fe2O3/POM/RGO nanocomposite 

during the hydrothermal method were monitored by UV-Vis spectra in Figure 4.14. Pure Ag 

and Fe2O3 nanoparticles were also synthesised for comparison and an insert plot is presented 

to clearly see their individual absorbance’s. From the inset plot, pure Ag nanoparticles and 

Fe2O3 nanoparticles show absorbance peaks at about 407 nm (Liu et al., 2011b) and 550 nm 

(Jang et al., 2009), respectively. In the Uv-Vis spectra of Ag-Fe2O3 nanoparticles the 377 nm 

peak assigned to Ag showed a bathochromic shift to 450 nm shoulder in the Ag-

Fe2O3/POM/RGO spectrum. It was research that this peak position and shape are attributed to 

the surface plasmo resonance of the Ag nanoparticles (Van der Horst et al., 2015). The red shift 

of this peak can be due to the change in the dielectric environment and electron density of the 

Ag induced by the RGO sheets (Gao, Chen & Jiang, 2013; Geetha Bai et al., 2016). On the 

other hand, the shoulder assigned to Fe2O3 at 535 also show a bathochromic shift to 589 nm. 

This weak band for Fe2O3 corresponds to the ligand field transition of Fe3+  or the d-d transition 

(Narasimharao, Al-Shehri & Al-Thabaiti, 2015). A weak shoulder band at 312 nm was also 
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observed possibly from the deposition of the Ag-Fe2O3 nanoparticles in the surface of 

POM/RGO due to agglomeration of the nanoparticles (Zhang, Bi, et al., 2016). This 

agglomeration is in accordance with the TEM results.  

4.3.2 Fourier Transform Infrared Spectroscopy (FTIR) 

 

 

Figure 4.15: FTIR spectra of (a) POM/RGO, (b) Ag-Fe2O3 nanoparticles and (c) novel Ag-

Fe2O3/POM/RGO nanocomposite. 

FTIR spectroscopy was used to investigate the structural change in bonding related to a) 

POM/RGO, b) Ag-Fe2O3 and c) novel Ag-Fe2O3/POM/RGO composites as shown in Figure 

4.15. The POM/RGO and Ag-Fe2O3 composites were included for comparison sake. In the 

spectrum b) of Ag-Fe2O3 strong absorption bands at 540 cm-1 and 470 cm-1 attributed to the 

Fe-O bond are observed (Xiao et al., 2015; Hu et al., 2018). These absorption bands are still 

present in spectrum c) of Ag-Fe2O3/POM/RGO but are more sharp. In addition, the peak at 540 

cm-1 can be credited to the lattice absorption of iron oxide, indicating the strong interaction of 

the nanoparticles with the ester O. The absorption peaks (1071 cm-1, 928 cm-1, 847 cm-1 and 

670 cm-1) in spectrum a) of POM/RGO are also present (1098 cm-1, 941 cm-1, 840 cm-1 and 

709 cm-1) in spectrum c) but with slight shifting. These are due to the oxygen functional groups 
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in POM/RGO interacting with the Fe2O3 nanoparticles (Zhang & Zheng, 2017). From the Ag-

Fe2O3 spectrum b), the weak absorption bands at 1473 cm-1 and 1384 cm-1, 1635 cm-1 are 

mainly responsible for reduction of Ag.  These peaks are also present in the novel 

nanocomposite spectrum, with the absorbance band at 1384 cm-1  being associated with the 

stretch vibration of functional groups such as -C-O-C-, -C-O-, -C=C, C=O (Press, 2011; Geetha 

Bai et al., 2016). These values are in agreement with reported literature and hence confirm the 

formation of the novel composite.  

4.3.3 X-ray Diffraction (XRD) 

 

 

Figure 4.16: XRD patterns of POM/RGO, Ag-Fe2O3 nanoparticles and Ag-Fe2O3/POM/RGO. 

The chemical components and the crystalline structure of the novel Ag-Fe2O3/POM/RGO 

nanocomposite was investigated using XRD as shown in Figure 4.16. For comparison the XRD 

patterns of Ag-Fe2O3 nanoparticles and POM/RGO were also included. As shown above, the 

curve of Ag-Fe2O3/POM/RGO consists of peaks with 2Ɵ values of 30.3°, 35.6°, 58.7°, 62.9° 

and 53.7° which are assigned to diffraction from the (220), (311), (400), (422) and (533) planes 

of rhombohedral crystalline lattice Fe2O3 phase (JCPDS card no 33-0664) (Hu et al., 2018). 

Meanwhile, five peaks diffraction peaks at 38.1°, 44.4°, 48.9°, 77° and 79.4° well indexed to 

(111), (200), (220), (311) and (222) planes of Ag cubic structure (JCPDS card no 04-0783) 
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(Zhang & Zheng, 2017). Additionally, the intensities of the diffraction peaks are increased in 

the novel nanocomposite and the diffraction peaks are slightly shifted this might be due to the 

interaction between oxygen functional groups of POM/RGO and Fe2O3. In comparison with 

the POM/RGO pattern, the diffraction peak of POM/RGO is not observed in the Ag-

Fe2O3/POM/RGO indicating that the surface is fully decorated by Ag-Fe2O3 nanoparticles 

(Aal, Ionov & Alim, 2018). On the basis of the XRD results in can be concluded that the novel 

nanocomposite was successfully synthesized.  

4.3.4 Raman Spectroscopy  

 

 

Figure 4.17: Raman spectra of POM/RGO, Ag-Fe2O3 nanoparticles and novel Ag-

Fe2O3/POM/RGO obtained using excitation wavelength of 533 nm, 632.8 and 632.8 

respectively.  

From the Raman spectra on Figure 4.17 of Ag-Fe2O3/POM/RGO the D and G band of shows 

a bathochromic shift from 1352 cm-1 to 1466 cm-1, and from 1593 cm-1 to 1733 cm-1, 

respectively. The ID/IG band of the Ag-Fe2O3/POM/RGO is (2.488) higher compared to that of 

(1.27) POM/RGO indicating the presence of sp3 defects with the sp2 carbon network after the 

hydrothermal method in the novel composite (Liu et al., 2015b).   In the 200-600 cm-1 range, 

from the spectrum of Ag-Fe2O3 nanoparticles, the characteristic Fe-O bands of Fe2O3 are 
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observed, which are centred at 402 cm-1 and 408 cm-1. These peaks can also be observed from 

the spectrum of Ag-Fe2O3/POM/RGO but with a slight shifting to 403 cm-1 and 483.70 cm-1, 

which confirm the formation of Fe2O3 nanoparticles in the novel composite (Kumar et al., 

2017).  The Ag-Fe2O3/POM/RGO results also showed a vibration band at 281 cm-1 that can be 

assigned to an Ag-O mode and a vibration band at 1117 cm-1 for Ag mode (Van der Horst et 

al., 2015). These confirm the success of the hydrothermal synthesis of Ag-Fe2O3/POM/RGO 

composite.  

4.3.5 Transmission Electron Microscopy (TEM) 

 

 

Figure 4.18: TEM images of the novel Ag-Fe2O3/POM/RGO composite at different 

magnifications.  

TEM was used to study the surface morphology and the size distribution of the novel Ag-

Fe2O3/POM/RGO nanocomposite. The conditions for obtaining TEM images were discussed 

in Chapter 3. Figure 4.18 show the TEM images of the Ag-Fe2O3/POM/RGO at different 

magnifications. From the TEM image it can be seen that the Fe2O3 and Ag nanoparticles are 

distributed onto the RGO sheet. Figure 4.18 show irregular shaped particles of Fe2O3 with 

diameter 16 nm and Ag nanoparticles of 3 nm. The particle sizes were calculated using a Java-

based image processing programming known as “ImageJ”. These nanoparticles have less 

uniform dispersion with a slight agglomeration. This aggregation might be caused by longer 

reaction time of the hydrothermal method chosen to prepare the novel composite, leading to 

bad dispersion (non-uniform) of the nanoparticles on the POM/RGO surface (Paul et al., 2016). 
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Figure 4.19: EDX spectroscopy of the novel composite (left) and Selected area (electron) 

diffraction (SAED) of Ag-Fe2O3/POM/RGO nanocomposite. 

The chemical component and the structure of Ag-Fe2O3/POM/RGO was examined using EDX 

as shown in Figure 4.19. The EDX pattern of the novel composite suggested that the sample 

is composed of the elements listed in Table 4.2, which confirm the formation of the novel 

composite. The copper peak observed in the EDX of the sample is due to the copper grid that 

was used (as explained in chapter 3). No other impurity element was observed, indicating the 

purity of the novel material. The SAED patterns suggest that the as prepared Ag-

Fe2O3/POM/RGO has high crystallinity.  

Table 4.2: Elements and their corresponding weight % obtained from the EDX of the novel 

nanostructured material. 

Elements Weight % 

C 5.57 

O 20.25 

P 1.1 

Mo 4.23 

Ag 18.24 

Fe 50.61 
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4.3.6 Scanning Electron Microscopy (SEM) 

 

 

 

 

Figure 4.20: SEM images of (a) POM/RGO, (b) Ag-Fe2O3 nanoparticles and (c) Ag-

Fe2O3/POM/RGO.  

The morphology of Ag-Fe2O3/POM/RGO nanocomposite was investigated by SEM as shown 

if Figure 4.20 (c). For comparison, SEM images of (a) POM/RGO and (b) Ag-Fe2O3 were 

included. Figure 4.20 (c) showed a RGO sheet, this was absent in the Ag-Fe2O3, indicating 

that in (c) Ag-Fe2O3 nanoparticles were dispersed onto the POM/RGO surface.  

 

+ 

(a) (b) 

(c) 
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4.3.7 Small angle x-ray scattering (SAXS)  

 

 

Figure 4.21: SAXS analysis of Size distribution of the Ag-Fe2O3 nanoparticles on the Ag-

Fe2O3/POM/RGO nanocomposite by intensity (b). Inset TEM image at 10 nm showing the Ag-

Fe2O3/POM/RGO. (a) size distribution from SAXS in terms of distribution by volume. Inset 

plot SEM and TEM images showing the Ag-Fe2O3/POM/RGO composite.  

SAXS was used to determine the structure of the Ag-Fe2O3 nanoparticles in the Ag-

Fe2O3/POM/RGO novel nanocomposite. Figure 4.21 (a) shows the size distribution of the Ag-

Fe2O3 nanoparticles in terms of volume. The SAXS of the composite shows a dip which goes 

to negative values, this indicates that the nanoparticles are inhomogeneous. Moreover, there is 

(a) 

(b) 
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a second peak in the graph at about 16 nm, after the dip, this second peak tells us that the 

particles are aggregates, i.e. (they stick together). These results correlates with the insert SEM 

and TEM images which show that the particles are not core-shell but they are sticking together.   

In Figure 4.21 (b) the size distribution is in terms of intensity, this indicated that the 

nanoparticles with sizes 16 nm are more intense compared to the 3 nm ones (Schnablegger & 

Singh, 2013). TEM image was inserted to show that the Fe2O3 nanoparticles which were 

calculated by “ImageJ” to be in the range of (15-16) are the more intense.  

4.3.8 Cyclic voltammetry (CV)  

To conduct CV measurements 1 mg of Ag-Fe2O3/POM/RGO was dispersed in 1 ml ethanol 

solution to generate a homogeneous mixture black suspension. Subsequently, 3 l of the 

suspension was dropped onto a GCE and dried at room temperature to form Ag-

Fe2O3/POM/RGO/GCE. Figure 4.22 (a) shows the CV of Ag-Fe2O3/POM/RGO modified 

GCE in 0.5 M H2SO4 solution at scan rates from 10 mV/s to 100 mV/s. From the graph is can 

be observed that as the scan rate increase, there is also an increase in current, this behaviour 

was plotted in the inset graph to calculate the diffusion coefficient. The CV of the novel 

composite was determined to be reversible from equation 4.1 using the parameters on Table 

4.3 . The CV shows three redox peaks, two anodic peaks and one cathodic peak.  
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Figure 4.22: (a) CV of Ag-Fe2O3/POM/RGO/GCE (a) in 0.5 M H2SO4 solution with different 

scan rate from a to j (10, 20,30,40,50,60,70, 80, 90 and 100 mVs-1). Inset Randles-Sevcik plot 

of current vs (scan rate)1/2. 

Oxidation potential at 0.25 V corresponds to the reaction of Ag0 → Ag+ + 1e- (Liu, Zhu, et al., 

2012). This anodic peak is proportional to the scan rate with the regression equation of 

𝐼𝑝2(µ𝐴) = 2.5659 (
𝑚𝑉

𝑠
)

1

2 − 6.517, R2= 0.988. This behaviour indicates that the redox process 

is surface controlled, and that the Ag nanoparticles are on the surface of the POM/RGO sheets 

(Olga S. Ivanova & Francis P. Zamborini, 2010). This anodic peak is in agreement with the 

Ag nanoparticles in the literature (Van der Horst et al., 2015). A well-defined redox peak Epa1 

and Epc were observed at 0.579 V and -0.080 V which corresponds to the Fe3+/Fe2+(Liu et al., 

2017). It is worth noting that the obvious peaks in the CV of the composite confirm that the 

reaction arising from Fe2O3 nanoparticles makes a major contribution on the sensors 

performance. The diffusion coefficient of the nanocomposite was calculated to be 0.000235 

cm2/s, indicating that the Ag-Fe2O3 nanoparticles on the surface of the RGO sheets is 

improved. On the other hand, there were no peaks observed for the POM.   

Table 4.3: Showing parameters obtained from the CV of Ag-Fe2O3/POM/RGO  

Scan 

Rate  

(mV.s-

1)  

Scan 

Rate1/2  

(mV.s-

1)  

Epa1 

(V)  

Ipa1 

(μA)  

Epa2 

(V)  

Ipa2 

()  

Epc 

(V) 

Ipc 

A) 

 ΔEp 

(V) 

10 3.16 0.429 2.120 0.249 1.623 -0.089 -3.72 0.518 

20 4.47 0.449 4.620 0.249 3.530 -0.029 -7.39 0.478 

30 5.48 0.469 6.82 0.249 5.226 -0.009 -11.22 0.478 

40 6.32 0.529 9.77 0.249 7.390 -0.031 -15.16 0.560 

50 7.07 0.559 11.79 0.249 9.001 -0.061 -18.62 0.620 

60 7.75 0.620 13.63 0.250 10.99 -0.089 -21.49 0.709 

70 8.37 0.645 14.63 0.250 12.28 -0.099 -24.71 0.744 

80 8.94 0.680 16.28 0.250 13.60 -0.120 -27.95 0.800 

90 9.49 0.695 17.78 0.250 14.65 -0.130 -31.03 0.825 

100 10.0 0.715 19.45 0.250 14.65 -0.145 -34.08 0.860 

Mean 0.579 11.69 0.250 9.294 -0.080 -19.54 0.659 
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Determination of reversibility:  

                                               𝐼𝑝(𝑎) = 𝐼𝑝(𝑐)                                                  (4.1) 

𝐼𝑝𝑎1

𝐼𝑝𝑐1
=

11.69 𝜇𝐴

−19.54 𝜇𝐴
= 0.59 ≈ 1 

∴ 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙𝑙𝑦 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 

 

Determination of diffusion coefficient: 

                                               𝐼𝑝𝑎 = (2.69𝑥105)𝑛
3

2⁄ 𝐴[𝐶]𝐷
1

2⁄ 𝑉
1

2⁄                         (4.2) 

𝑆𝑜𝑝𝑒 == (2.69𝑥105)𝑛
3

2⁄ 𝐷
1

2⁄  

∴ 𝐷
1

2⁄ =
𝑆𝑙𝑜𝑝𝑒

(2.69𝑥105)𝐴[𝐶]𝑛
3

2⁄
 

∴ 𝐷
1

2⁄ =
𝑆𝑙𝑜𝑝𝑒

(2.69𝑥105)𝐴[𝐶]𝑛
3

2⁄
 

𝐷1/2 =

2.0939
𝜇𝐴

(𝑠/𝑚𝑉)1/2

(2.69𝑥105)(0.283 𝑐𝑚2)[500 𝑚𝑜𝑙 ∙ 𝑐𝑚3](1)
3

2⁄
 

𝐷 = 0.000235 𝑐𝑚2/𝑠 

4.3.9 Electrochemical Impedance Spectroscopy 

In order to analyze the impedance changes of the modified electrode, Electrochemical 

Impedance Spectroscopy was employed. Figure 4.23 depicts the Nyquist plots in 0.5 M H2SO4 

solution. The Nyquist plot of the impedance spectra consists of semicircle portion which at 

higher frequencies correlates to the electron transfer limited process, while on the other hand, 

a linear portion at lower frequencies correlates to the diffusion process. The electron transfer 

resistance (Rct) can be evaluated by using the semicircle diameter. In order to figure out the 

impedance parameters, the Zview 2 software is employed in the simulations. The Rs(CPE[RctW]) 

equivalent circuit model was employed in the simulation of the impedance behaviour of all the modified 

electrodes, from the experimentally gained impedance data. By exploiting the series components, the 

model was developed. The first component is ohmic resistance of the solutions (Rs) and the second one 

is a set of constant phase elements (CPE) and the resistance of layer (Rct).  Rct indicates the 

conductivity of the samples that are in the parallel position with CPE. Additionally, from the 
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diffusion impedance, W which stands for the Warburg element is a series connection to Rct. 

Table 4.4 shows the obtained data of all modified electrodes. The size of the semicircle domain 

and there Ret value was increased. This confirms that the presence of RGO and the Ag-Fe2O3 

nanoparticles on the surface of the electrode limits the electron-transfer on the electrochemical 

probe. It can be seen from the table that the novel composite compared to the others decreases 

suggesting that the nanoparticles were successfully synthesized in the electrode surface 

(Teymourian, Salimi & Khezrian, 2013).  

 

Figure 4.23: (a) Nyquist plot of (1) Ag-Fe2O3 nanoparticles, (2) POM/RGO and (3) Ag-

Fe2O3/POM/RGO novel nanocomposite. Insert plot is the Randels fitted circuit of Ag-

Fe2O3/POM/RGO and the fitted circuit.  

Table 4.4 Summary of electrochemical impedance spectroscopy simulations with fitted circuit 

element parameters in 0.5 M H2SO4 solution.  

Electrode material  Rs(Ω) CPE Rct(Ω) WO Error % 

POM/RGO 12.61 0.96067 545230 - 0.096 

Ag-Fe2O3 Nps 15.7 0.93366 813450 - 0.233 

Ag-Fe2O3/POM/RGO 18.22 0.96354 700.5 0.32 1.430 
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CHAPTER 5 

Ag-Fe2O3/POM/RGO NANOCOMPOSITE AS A PLATFORM FOR H2O2 SENSOR 

 

Chapter overview 

This chapter describes hydrogen peroxide (H2O2) detection using the novel Ag-

Fe2O3/POM/RGO nanocomposite as a platform for enzyme-less electrochemical sensor in PBS 

and different water samples. The developed electrochemical sensor based on Ag-

Fe2O3/POM/RGO showed unique characteristics towards H2O2 detection, which were first 

investigated by cyclic voltammetry (CV). And then the amperometric response to H2O2 

measured at -0.67 V (vs. Ag/AgCl) by Ag-Fe2O3/POM/RGO modified glassy carbon electrode 

(GCE). The calibration curves were found to be linear from 0.3 mM to 3 mM (R) with the 

detection limit of 0.0029 mM (S/N=4). The selectivity was evaluated in water from different 

dam/rivers in the presence and absence of H2O2.           

5.1 Cyclic voltammetry detection of H2O2 (CV) 

 

Figure 5.1: Cyclic voltammetry of H2O2 obtained by Ag-Fe2O3/POM/RGO/GCE in N2 

saturated stirring 0.1 M PBS (pH 6.8) (concentration of H2O2 from a → k: 0, 0.3, 0.6, 0.9, 
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1.3,1.6, 1.9, 2.3, 2.6, 2.9 mM) at scan rate of 0.03 V/s and bare GCE. Insert plot of catalytic 

current of H2O2 versus H2O2 concentrations. 

For the sake of evaluating the electrocatalytic performance of the sensor, cyclic voltammetry 

was used to obtain some parameters. Electrocatalytic reduction of Ag-

Fe2O3/POM/RGO/GCEE and GCE are shown in Figure 5.1. The catalytic activity of Ag-

Fe2O3/POM/GCE is evidently better than that of GCE. Figure 5.1 shows that the CV of Ag-

Fe2O3/POM/RGO/GCE in N2-saturated 0.1 M PBS (pH 6.8) at 30 mV/s scan rate exhibits the 

highest electro reduction activity towards H2O2 detection. In the absence of H2O2, the CV 

(curve b) of Ag-Fe2O3/POM/RGO/GCE is quite similar to the bare electrode (curve a). 

However, as can be seen from the CV curve c), with the addition of H2O2, a reduction peak 

appeared at -62 mV/s, corresponding to the reduction of H2O2. The influence of concentration 

on the CV results of Ag-Fe2O3/POM/RGO/GCE at 30  mV/s scan rate was then studied. It was 

found that when 0, 0.3 0.6, 0.9, 1.3, 1.6, 1.9, 2.3, 2.6, 2.9 mM concentration of H2O2 were 

added the reduction potentials were shifted to more negative values indicating an irreversible 

reduction process and the current responses were increased obviously (Zhang & Zheng, 2017). 

It was found that the reduction of H2O2 on Ag-Fe2O3/POM/RGO/GCE surface had diffusion 

controlled electron transfer process since the cathodic peak current showed a linear relation 

with the square roots of the concentrations (Qi & Zheng, 2016). This relationship is shown as 

the insert plot of Figure 5.1 with R2= 0.992 and a linear relation of 𝐼(𝜇𝐴) =

−76.6[𝐻2𝑂2](𝑚𝑀) − 4.22. These results showed that the composite exhibited notable 

catalytic performance for reduction of hydrogen peroxide. The optimum working potential for 

H2O2 reduction on Ag-Fe2O3/POM/RGO surface was determined by measuring the response 

current of the electrodes at various working potentials ranging from 0 to -1.0 V. 

5.2 Sensor optimization 

From the mentioned experimental results, it can be confirmed that H2O2 can be 

electrochemically reduced in the presence of Ag-Fe2O3/POM/RGO on the surface of the GCE 

. To develop the performance of the sensor, various factors influencing the current response of 

the sensor were investigated. In order to find the best potential, the relationship between the 

reduction current of H2O2 and the applied potential was measured. Finally, -0.67 V was selected 

from the CV results as the optimized potential and used to conduct amperometric detection of 

H2O2.  
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5.3 Amperometric detection of H2O2 

 Figure 5.2 shows the amperometric responses of the Ag-Fe2O3/POM/RGO modified GCE at 

-0.67 V versus SCE as a result of the successive addition of H2O2 to the continuously stirred 

0.1 M PBS solution (pH 6.8) at 25 °C. The experiments were carried out with freshly prepared 

electrodes. As shown in Figure 5.2, the Ag-Fe2O3/POM/RGO was very sensitive to the 

changes in the concentration of H2O2 and responded rapidly. The response time was fast (less 

than 5 s) and with increasing the concentration of H2O2 from 0.3 mM to 3 mM, the current 

increased linearly. In calibration curve, the sensor shows linear section for the response to H2O2 

with the linear regression equation of I = -82.88 (μA. mM−1) + 2.3 (R2= 0.9921) with relative 

standard deviation (RSDs) of 1.8 % for n = 4. The limit of quantification (LOQ) and the limit 

of detection (LOD) of Ag-Fe2O3/POM/RGO were determined by using the following 

equations: 

𝐿𝑂𝐷 =
3𝑆𝐷

𝑏
                           ( 5.1) 

𝐿𝑂𝑄 =
10𝑆𝐷

𝑏
                                                    ( 5.2) 

where b is the slope of the calibration curve and SD is the standard deviation of the blank 

solution as shown in Figure 5.2 (inset). The LOD and LOQ are calculated to be 0.0029 mM 

and 0.0098 mM, respectively. As listed in Table 5.1, the detection limit, linear range and the 

sensitivity of Ag-Fe2O3/POM/RGO is near most of the  other modified electrocatalytic 

materials. 

Table 5.1: Comparison of the performance of the Ag-Fe2O3/POM/RGO sensor with recent 

reported sensor 

Electrode modification Sensitivity 

(A mM-1cm-2) 

Linear range 

(mM) 

Detection limit 

(mM) 

Ref 

Ag /MnOOHRGO - 0.5µM-17.8 

mM 

0.2µM (Bai et al., 2014) 

POM/RGO 95.6 100 M-

20mM 

1.02 M (Yang et al., 2016a) 

Ag/Fe2O3 134.5 0.5 µM- 4. 0 

mM 

0.2 µM (Qi & Zheng, 2016) 

Ag-Fe2O3/POM/RGO 270.96 0.3 – 3.3 0.0029 This work 
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Figure 5.2: Current–time responses of Ag-Fe2O3/POM/RGO with the subsequent addition of 

H2O2 into 0.1 M PBS (pH 6.8) at -0.5 V; (Inset) Calibration curve. 

5.4 Selectivity and stability studies  

In order to explore the selectivity and anti-interference advantages of the sensor, the effect of 

the presence of molecules, which are well known interferants to the detection of hydrogen 

peroxide, on the sensor performance, were investigated. It is known that the presence of these 

species results in a significant change in the response current of the sensors due to their highly 

electroactive nature, especially at relatively high working potentials. Therefore, it is imperative 

to have minimum interference effect to detect H2O2 concentration correctly. The i-t curve of 

Ag-Fe2O3/POM/RGO obtained by the consecutive injection of H2O2, uric acid (UA), glucose 

and ethanol which are considered common interfering species (Yang et al., 2016a) into 0.1 M 

PBS at pH 6.8 at a working potential of -0.67 V vs. SCE is shown in Figure 5.3. When 0.3 mM 

of H2O2 was added, the current response increased significantly. However, after injecting uric 

acid (UA), glucose and ethanol the response current was almost unchanged. While the equal 

concentration of H2O2 was added again, the response increased significantly. As can be seen, 

the mentioned electroactive interfering species is quite negligible which indicates that Ag-
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Fe2O3/POM/RGO has superior selectivity toward H2O2. The use of negative working potential, 

-0.67 V, allowed us to construct interference free Ag-Fe2O3/POM/RGO sensor.  

 

Figure 5.3: Amperometric response of Ag-Fe2O3/POM/RGO upon the successive addition of 

0.3 mM H2O2, uric acid, glucose, and ethanol into 0.1 M PBS (pH 6.8) with an applied potential 

-0.67 V. 

5.4 Repeatability, reproducibility and stability  

The reproducibility, repeatability and stability of the prepared sensor were studied. The long 

term stability of Ag-Fe2O3/POM/RGO sensor was determined by measuring the analytical 

response towards addition of 0.3 mM H2O2 concentration in PBS periodically. The modified 

electrode was stored in the fridge at 4° when not in use and the current was monitored 

periodically for 15 days in a course of three weeks and the results were plotted in Figure 5.4. 

During the first week, the current response showed no considerable decrease, as it can be seen 

from Figure 5.4, after three weeks the sensor retained about 82 % of its initial response, 

showing its excellent long term stability. In order to determine the reproducibility of the sensor, 

five modified electrodes were prepared under the same conditions and the RSD for the current 

response towards 0.3 mM H2O2 was found to be 1.81 % confirming that the results are 

reproducible. The RSD of one sensor for 5 successive assays in determining the current 

response towards 0.3 mM H2O2 was 2.53 %. Hence its repeatability was good.  
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Figure 5.4: Long term stability of Ag-Fe2O3/POM/RGO stored at 4 °C studied over 15 days in 

PBS at pH 6.8 with addition of 0.3 mM H2O2 concentration at -0.67 V. 

5.5 Practical application of the Ag-Fe2O3/POM/RGO sensor  

Table 5.2: Analysis of real sample with sensor at different H2O2 concentration  

Sample Added 

[H2O2]/ mM 

Detected 

[H2O2]/mM 

Recovery 

% 

RSD  

(n=3) 

% 

Bellville WWTP 0 undetected undefined undetected 

0.2 0,205 97.56 2,439 

0.3 0,307 97.72 2,178 

0.4 0,411 97.32 1,931 

 

Kuils river 

system 

0 undetected undefined undetected 

0.2 0,224 89.28 3,802 

0.3 0,299 100.3 3,857 

0.4 0,421 95.01 2,468 

 

Bera river 0 undetected undetected undetected 

0.2 0,223 89.70 4,391 
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0.3 0,254 118.1 3,174 

0.4 0,437 91.53 3,121 

 

Somerset Earth 

dam 

0 undetected undefined undetected 

0.2 0,212 94.34 1,364 

0.3 0,308 97.40 3,376 

0.4 0,421 95.01 0,961 

 

Tygerberg 

reservoir 

0 undetected undefined undetected 

0.2 0,214 93.46 2,812 

0.3 0,314 95.54 1,507 

0.4 0,412 97.09 1,832 

 

Lounens river 

raw Somerset  

0 undetected undefined undetected 

0.2 0,210 95.24 4,167 

0.3 0,299 100.3 3,618 

0.4 0,413 96.85 1,558 

 

UWC sports 

ground 

0 undetected undefined undetected 

0.2 0,215 93.02 1,631 

0.3 0,306 98.04 0,999 

0.4 0,405 98.77 1,928 

 

To measure the repeatability, reproducibility and stability of the chemical sensor, seven water 

samples from different rivers, dams, reservoirs (Table 5.2) were used as real samples for 

performing the detection of H2O2. The determination of H2O2 in the water samples was carried 

out on the Ag-Fe2O3/POM/RGO novel nanocomposite chemical sensor. Initially the water 

samples were measured without adding H2O2 solution. Later H2O2 solutions were successfully 

added to the systems in order to determine the current response through standard addition 

method.  To establish the performance of the sensor in real-life water analysis, we 

investigated its response to wastewater samples. There is still a pressing need to develop 

new strategies that couple with the concentration usually found in the contaminated water 

sites. The wastewater samples were obtained from the City of Cape Town Western Cape 

Scientific Services. The recoveries were evaluated for the wastewater using standard spiking 
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methods where solutions of the three samples were spiked with H2O2 standard solutions of 

three different concentrations. Table 5.2 shows the recovery results of H2O2 after the three 

water samples were spiked with 0.2, 0.3 and 0.4 mM concentrations. The average recoveries 

range from 91.53% to 118.1% with relative standard deviations (RSD) less than 5% based 

on triplicate tests at each concentration. By considering the calculated recovery and relative 

standard deviation (RSD) values, it can be observed that the developed sensor holds possible 

applications in determining certain concentration of H2O2.  
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CHAPTER 6 

CONCLUSION AND RECCOMENDATIONS 

 

The goal of this work was to design a highly sensitive and selective non-enzyme H2O2 

electrochemical sensor. To address this, Ag-Fe2O3/POM/RGO modified GCE electrode was 

prepared based on the combination of metal-metal oxide nanoparticles, polyoxometalate 

(POM) namely phosphomolybdic acid (H3PMo12O40) and reduced graphene oxide (RGO). Ag-

Fe2O3/POM/RGO nanocomposite as the selected sensor platform showed good detection 

towards H2O2 concentrations. POM was used to functionalize RGO and modify its surface 

characteristics. The enhanced electrocatalytic ability of the composite electrode is considered 

to be the result of the large surface area, high conductivity as well as the fast electron transfer 

produced by the POM/RGO surface. This sensor showed good repeatability, reproducibility 

and selectivity towards H2O2 detection. There were no significant current changes during the 

detection of 0.3 mM H2O2 in the presence of normal physiological interferents such as ascorbic 

acid, uric acid, glucose and ethanol. The fabricated sensor’s performance was further evaluated 

in the determination of H2O2 in real samples where the results indicated low RSD values 

ranging from (0.9 to 4.2) % which confirmed high possibility to use the prepared sensor in the 

future for water diagnosis. The prepared composite displayed the highest H2O2 sensing 

performance with a low detection limit of 0.0029 mM and excellent sensitivity value of 270.96 

(A mM-1cm-2) with linear concentration range of (0.3 – 3) mM.    

The synergetic effect of RGO, POM and the Ag-Fe2O3 nanoparticles and providing high 

surface area, high conductivity as well as fast electron transfer of the materials are the main 

factors which increased the performance of the electrode towards H2O2 detection. Based on this 

work, further studies should concentrate on advanced applications of this nanocomposite in 

other diagnostic purposes i.e. measuring H2O2 in the human blood or urine since high levels 

H2O2 can constitute a pathogenic factor in vascular organ damage attendant upon systemic 

hypertension. Other recommendations may include: 

 Blend the POM with any conducting polymer in the same electrode to observe the effect 

it might have in improving the H2O2 sensing performances 

 Using more green methods during the synthesising for better dispersion and less 

agglomeration of composite components. 
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