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ABSTRACT

This thesis deals with the analysis and robust simulation of mathematical models

describing Zika virus disease. Some background information about the occurrences

of this disease and most recent literature indicating some research gaps is presented.

Governing models are very complex and their analytical solutions are hard to obtain.

This necessitates the use of robust numerical methods. Several models from literature

are presented in this work. One particular model is further studied in details for

the purpose of understanding key qualitative features of the solutions of these types

of models. These features are essential when we wish to develop a robust numerical

method. After studying these properties on the dynamics of the solution for a particular

model, we developed a novel numerical method, known as the non-standard �nite

di�erence method (NSFDM). A detailed theoretical analysis of this method, which is

in line with necessary qualitative features of the solution of the governing model, is

also presented. Finally, extensive numerical results showing competitiveness of this

new method, as compared to other classical methods, are provided. In particular, we

have shown how classical methods fail when the discretization step-size is large whereas

NSFDM still gives excellent in such cases.
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Chapter 1

General introduction

1.1 Introduction

Zika virus (also known as ZIKV) was �rst discovered from sentinel rhesus monkey

caged in the Zika forest near Entebbe Peninsula in Uganda in 1947, during a routine

surveillance for yellow fever conducted by the East African Virus Research Institute

[9, 75]. The word �Zika� comes from the Luganda language, which means overgrown

[77]. The single stranded ribonucleic acid (RNA) virus is an arbovirus from the class

of �aviviridae that is mainly transmitted to humans by the bites of infected female

Aedes mosquitoes genus [5, 33]. These types of mosquitoes are also responsible for

the transmission of other viruses such as dengue fever, Chikungunya, yellow fever,

and Japanese encephalitis and are mainly found in tropical and subtropical regions

[25]. Zika virus transmission is endemic to tropical and subtropical regions due to

the prevalence of the mosquitoes in those regions, and the role of climate change due

to global warming is suspected to be one of the leading contributors to the rising of

mosquito-borne diseases [77].

1
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CHAPTER 1. GENERAL INTRODUCTION 2

1.1.1 History of Zika virus disease

The Zika virus became widely known during the South American outbreak in 2015,

which started from the Easter Island in 2014 then moved to the Caribbean and to the

Central and South American countries, which was documented as the largest outbreak

of the virus since its discovery in 1947 [18].

Thus far, the Zika virus has found its way almost across the whole world, invading

a total of 65 countries and territories since its discovery in Uganda [26]. In 1947, the

Zika virus was identi�ed in mosquito Aedes africanus in the Zika forest and four years

later, it was discovered in humans for the �rst time in Uganda and its neighboring

countries, Tanzania and Nigeria [75]. Other African countries that reported isolated

cases of human infected by the virus are countries such as Senegal, Ivory Coast, Gabon,

Egypt, Central African Republic and Sierra Leone [25, 33].

Outside of Africa, the virus was identi�ed from A. Aegypti mosquitoes in Malaysia in

1966, and later in central Java, Indonesia and other Asian countries such as Cambodia,

India, Indonesia, Malaysia, Pakistan, Philippines, Singapore, Thailand, and Vietnam

reporting several cases of the infection [72, 74]. Not much was known about the virus

until the 2007 outbreak in Gabon, Yap Island and some of the Islands of Federated

States of Micronesia where approximately 8 000 cases of infection of the virus were

reported [33]. In October 2013, a ZIKV outbreak was documented in French Polyne-

sia, South Paci�c (with an estimated 70% of the population a�ected), New Caledonia,

and the Cook Islands, followed by the outbreak in 2014 in Easter Island and Vanuatu,

Solomon Islands, Samoa, and Fiji in 2015 [25, 31, 81]. It is believed that the virus

entered South American and subsequently the whole American continent during the

2014 World Cup soccer games [74]. The outbreak lasted for a period of two years from

2015 to 2016 spreading across the 14 Brazilian states with an estimate of 1 300 000

cases reported. The Pan American Health Organization predicted that roughly 550

http://etd.uwc.ac.za/



CHAPTER 1. GENERAL INTRODUCTION 3

Figure 1.1.1 Zika virus spread map from Uganda to South America

million people were likely to be infected by the Zika virus in the Americas [26].

The Zika virus is believed to be one of the leading course of close to 6000 cases of

microcephaly (a condition where a baby's head is much smaller than expected as a

result of an under-developed brain) in Brazil, 200 Guillain-Barré syndrome (sickness of

the nervous system in which a person's own immune system damages the nerve cells,

causing muscle weakness, and sometimes, paralysis) cases in Columbia and 118 GBS

(Guillain-Barré syndrome) cases in El Salvador in newborns between 2015 and 2016.

The Zika virus is believed to be one of the leading course of close to 6000 cases of mi-

crocephaly in Brazil, 200 GBS cases in Columbia and 118 GBS cases in El Salvador in

newborns between 2015 and 2016. It is worth noting that the virus is believed to have

two distinct lineage, the African lineage that was �rst detected in Uganda in 1947 and

the Asian lineage detected in Malaysia in 1966 which is believed to responsible for most

outbreak occurred outside Africa [36]. Due to the increase of the cases microcephaly

and other neurological diseases resulting from the infection by the virus the World

Health Organization (WHO) was prompted to declare a public health emergency of

international concern [5].

http://etd.uwc.ac.za/



CHAPTER 1. GENERAL INTRODUCTION 4

1.1.2 Symptoms of Zika virus disease

Most people that are infected with Zika virus do not show symptoms, only about 20

percent of them have shown some mild symptoms lasting from two to seven days with

no cases of death reported that are associated with a direct infection of the virus in

the recent large outbreaks [25]. The symptoms includes fever, arthralgia, muscle and

joint pain, malaise, headache, edema of extremities, retro-orbital pain, conjunctival

hyperaemia and maculopapular rashes usually spreading downward from the face to

the limbs and frequently pruritic, vertigo, myalgia, and digestive disorder and it has

been associated with neurological and autoimmune complications and con�rmed that

it causes Guillain-Barré syndrome (GBS) and congenital infection which can course

microcephaly and maculopathy [8, 33, 50].

A proper laboratory diagnostic test is essential to diagnose if a patient is infected

with Zika virus or not, see [56]. There are two methods used to diagnose the virus,

the direct method where the viral genome is detected using a method known as the

RT-PCR (where RT stands for reverse transcription and PCR for polymerase chain

reaction) in the body �uids and the indirect method where the Zika virus antibodies

are detected in the blood [21].

1.1.3 Transmission of Zika virus disease

The ZIKV is mainly transmitted to humans by Aedes mosquitoes, however the virus

can also be transmitted through other means as well, as studies has revealed. The RNA

of the virus has been found in the blood, semen, urine, saliva, amniotic �uid, breast

milk and cerebro-spinal �uid of infected individuals [26]. A case of a sexually trans-

mitted Zika virus was reported 2008 in Colorado, USA, of a male infecting a female

through a virginal sexual intercourse and in the Western Hemisphere ZIKV outbreak

in 2016 cases of sexual transmission were also con�rmed [75]. In total 9 countries

have reported cases of sexual transition of the virus including Chile, France and New

http://etd.uwc.ac.za/



CHAPTER 1. GENERAL INTRODUCTION 5

Zealand [67]. The fact that traces of the virus have been found in the semen even after

the virus had disappeared in the blood of an infected person, that indicates that the

virus can live longer in the semen [77].

The recorded cases of sexual transmission were cases of the transmission from a male to

a sexual partner via vaginal or anal intercourse, and it is still unknown if the virus can

be transmitted from female to male [26]. Zika virus has gotten more attention for its

e�ects in babies that are born from mother who are infected with the virus during the

course of pregnancy resulting in the increase in the number of cases of microcephaly

and other neurological disorder in newborns. A pregnant woman can transmit the virus

to a fetus. It is still unknown though as to how the Zika virus courses microcephaly, but

the presence of the virus from brain tissues of the a�ected fetus has been identi�ed [77].

The ability of the virus to live in non-human primates possess a great di�culty in

annihilating it completely among a population [9]. The potential danger of Zika virus

spreading to other regions that the virus did not exist before as it was seen with other

viruses transported by the same type of mosquitoes is greater, since the mosquitoes

that carries the virus can be found in most part of the world. Other factors that per-

petuate outbreaks of infectious diseases are huge human gathering like sports events,

religious activities and other forms of entertainment. People travelling to such activi-

ties become at risk of contracting and bringing the viruses at their home regions where

these vectors that transmit the viruses exist [18]. The study of the outbreaks of ZIKV

has shown that infections occur across all age group [25].

1.1.4 Preventions and Control of Zika virus disease

At the moment there is no vaccine, treatment and a quick way to diagnose virus from

infected people [25]. Prevention measures include preventing mosquito bite by the use

of protective clothing, bed-nets, mosquito-proo�ng of houses, insect repellents, insec-
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CHAPTER 1. GENERAL INTRODUCTION 6

ticides etc. [77]. ZIKV can be also transmitted via sexual contact, it is necessary to

practice safe sex during an outbreak [3]. Avoiding mosquito bites during an outbreak

is also necessary to prevent any further spread of the virus [8]. During an outbreak,

pregnant women are advised against travelling to areas were the thread of the virus

exist, and sexual active women living in a�ected areas need to use contraceptives and

must take measures to avoid mosquito bites [45]. More information on the Zika virus

disease can be found in [22, 30, 32, 38, 65, 71, 76].

In the next section, we present a brief literature review on the modelling of Zika virus

disease.

1.2 Literature Review

To study the transmission dynamics of Zika virus disease, deterministic mathematical

models have been presented in [20, 25, 37, 39, 57, 58, 61, 62] and some of the references

therein. Most of these models used a susceptible, exposed, infected, recovered (SEIR)

model framework for the human population and susceptible, exposed, infected (SEI)

model framework for the vector (mosquito) population. However, in some instances,

models such as the ones described in [20] and [58] were an SI-SI type of model frame-

work was used with the recovered and the exposed compartment have been omitted.

The exposed compartment is left out due to the fact that the period between the in-

fection and the appearance of the �rst symptoms is short.

Optimal control strategies to reduce the spread of the virus with a minimal cost have

been investigated by some of the authors such in [20] and [58] as well. Here we give

a literature on the mathematical modelling of the Zika virus and on the discretization

of epidemic mathematical models using a robust method known as the nonstandard

�nite di�erence (NSFD) method.

http://etd.uwc.ac.za/



CHAPTER 1. GENERAL INTRODUCTION 7

The model presented in [20] for example uses an SI type of model for both the human

population and mosquito population to describe the dynamics of Zika virus disease. In

the model, only consider the susceptible and infected humans and mosquitoes. The ba-

sic reproduction number R0 of the system is derived using a well-known method called

the next generation matrix method developed in [73] and a sensitive analysis of the

model in terms of some of the important parameters a�ecting the basic reproduction

number is performed. The authors found that some parameters such as the natural

death rate of mosquitos and the contact rate between human and mosquitos a�ects the

basic reproduction number R0 when large. Control measures that were investigated to

prevent the spread of the Zika virus such as the use of clothes, mosquito nets, window

screens to prevent mosquito bites, increasing the autoimmunity and use of insecticide

through source reduction to kill the mosquitos were found to be very e�ective in re-

ducing the spread of Zika.

Another SI-SI type of a Zika virus model is presented in [58] where the infected individ-

uals are further subdivided into two sub-classes, the infected individuals and isolated

individuals. These isolated individuals are infected individuals that are diagnosed

and placed in isolation to avoid any further contact with the susceptible human and

mosquito population. Treatment is then given to the isolated individuals to treat only

the symptoms that they display because of the unavailability of treatment for Zika

disease as of yet. In the model, the transmission of Zika virus through sexual contact is

also considered. Furthermore, in their model, a distinction is made between individu-

als that are dying a natural death and individuals that are dying due to the Zika disease.

The qualitative features of the model are investigated and the local stability analy-

sis is performed. Their numerical results show that as the human-induced death rate

of mosquitoes is increased, the infected mosquito population reduces. It is also observed

that an increase in the mosquito biting rate produced an increased transmission rate.

R0 increases as the biting rate increases and decreases as the human-induced death on

http://etd.uwc.ac.za/



CHAPTER 1. GENERAL INTRODUCTION 8

mosquito rate increases. It is then concluded that the increase in the recovery rate,

human-induced death on the mosquito population and isolation of infected individuals

decreases the spread of the virus.

The model described in [20] and the one described in [58] does not consider the re-

covered compartment for the human population. However, during the recent large

outbreaks such as the one in French Republic and in Brazil, cases of death due to the

Zika infection were not reported and even hospitalization of infected individuals was

rare [33, 54]. This implied that infected individuals do recover from the infection even

without seeking medical attention. The model presented in [10] is an SIR-SI type of a

model designed to study the dynamic transmission of the Zika virus between human

and mosquitos. This model is used to study the dynamical transmission of Zika virus

with some optimal control strategies (prevention, treatment and insecticide). Unlike

the model presented in [20] and [58], infected individual do recovers from the infection.

The qualitative features of the model (positivity of solutions, the equilibrium points

and the basic reproduction number) were investigated and the stability analysis of

the model at the equilibrium points was investigated �rst without the optimal control

strategies and then with the optimal control strategies. The basic reproduction number

of the model indicates that the spread of Zika virus is reduced by the increase of the

recovery rate and natural death of human and mosquito population. It is found that a

combination of all the control strategies (prevention, treatment and insecticide control)

yields the best result in combating the disease.

The model presented in [34] is an SEIR-SI deterministic compartmental model to de-

scribe the transmission dynamics of Zika virus disease between humans and mosuitos

in the Brazil, Cape Verde and Colombia population. In the model, the exposed human

compartment is added. These exposed humans are infected humans that are not yet

infectious. The qualitative features of the model are investigated and to simulate the
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model, data collected by the World Health Organisation (WHO) is used to study three

di�erent cases, Colombia, Cape Verde Brazil as case 1, 2 and 3, respectively.

In addition to the model described in [34], the model in [39] described a Zika model

where the exposed vector compartment is added. The qualitative features of the model

and the local stability of the equilibrium points are investigated with the aid of the

Routh-Hurwitz criteria.

Another model presented in [16] o�ers a similar type of model framework to the one

presented in [39] where only the transmission of the virus by mosquito vectors is consid-

ered for the Zika virus outbreak in Rio de Janeiro. Data taken from the epidemiological

reports of the Ministry of Health in Brazil was used to a�rm the representativeness of

the described model. It is discovered that due to the lack of information in the report

by the Ministry of Health, it made it di�cult to choose the right set of parameters and

hence that in some instances the model did not �t the data. A model calibration using

a non-linear curve �tting procedure was used to analyse the necessary parameters in

the model to �t the data.

The qualitative features such as the positivity of the solution, the disease free equi-

librium point and the basic reproduction number and the local stability analysis of

the model at the disease free equilibrium point were investigated. An economical as-

sessment of the intervention strategies (such as the use of bed-nets, condoms, Indoor

Residual Spraying (IRS), symptoms treatments) was done using optimal control and

cost e�ectiveness analysis. Runge-Kutta method was used in the simulations to obtain

numerical results for the sub-combination of the control measures and cost e�ectiveness

analysis. It is then discovered that the control strategies that were more cost e�ective

were the use of bed-nets, treatment and IRS.

Another SEIR-SEI compartmental model framework for the human and mosquito pop-

http://etd.uwc.ac.za/



CHAPTER 1. GENERAL INTRODUCTION 10

ulation, respectively, is presented in [42]. The model takes into account the develop-

mental stages in a typical life cycle of the mosquitos (egg, larva, pupa, and adult). In

the model, susceptible humans get infected by being bitten by infected adult female

mosquitos and susceptible mosquitos get infected by biting infected human. To �ght

against the wide spread of Zika virus into the population, two intervention strategies

were investigated: the reduction of mosquito biting rate and the reduction of female

mosquito population using relevant methods. The basic reproduction number was used

to investigate the e�ect of the intervention on the spread of the Zika virus in the popula-

tion. It is found that intervention strategies used such as the reduction of the mosquito

biting rate, larvae carrying capacity and adult vector population, and the increase of

adult vector mortality rate can reduce the scale of the Zika virus infection.

Similar to the model presented in [42], an SEIR-SEI model framework in which the

human population is �rst divided into male and female subgroups like in the model

presented in [13] is described in [3] to study the transmission dynamics of Zika virus

disease via vector-borne and sexual (both heterosexual and homosexual) transmission

spread. Both the female and male population are partitioned into susceptible, exposed,

infected and recovered class and the mosquito population is partitioned into suscepti-

ble, exposed and infected class. In the model, male humans are infectious to both males

and females, and female humans are assumed to be infectious to males. In the analysis

of the model, the positivity analysis of the solution, basic reproduction number, disease

free and endemic equilibrium points and their local and global stability analysis was

investigated for the sub-models (i.e. mosquito transmission route only model, sexual

transmission route only model) and the full model and some numerical results were

given to support the analysis.

About 80% of people infected with Zika do not show any symptoms [25]. In the model

presented in [62] infected individuals are divided into asymptomatic and symptomatic.

An SEIR-SEI type of a model for the human and mosquito population, respectively.
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In the model, the exposed compartment cover the incubation phase where the individ-

uals are infected but not yet infectious and the infectious individuals (asymptomatic

infected and symptomatic) are assumed to have a di�erent infection rate towards sus-

ceptible mosquitos. The infectious individual are assumed to be cable of passing the

virus to susceptible human via sexual contact and the susceptible mosquitos can get

the virus as well by biting these infected individuals.

As a control measure, two prevention measures recommended by World Health Organ-

isation (WHO) and Central Disease Control (CDC) were incorporated to their model,

namely: the Insecticide-Treated Mosquito Nets (ITN) and Indoor Residual Spraying

(IRS). The ITN will obviously a�ect the mosquito biting rate, so this e�ect was in-

corporated into the model as a parameter measured as a percent (1 − ITN) against

the transmission rate from susceptible to exposed individuals, where ITN = 1 implied

that the mosquitos will totally fail to bite susceptible individuals and the virus will

only spread via sexual contact and ITN = 0 implied the nets have no e�ect at all

on preventing of the mosquitos from biting susceptible individuals. Indoor Residual

Spraying (IRS) is used to reduce the population of the mosquitos. It is also assumed

that recovered individuals are partially immune to the disease and therefore in the

model, once individuals recover from the infection, they are assumed to be no longer

susceptible to the virus due to the lack of evidence of such cases where an individual

gets infected by the virus after recovery.

To analyse the model in [62], the basic reproduction number is derived using the next

generation matrix approach in the present of both the sexual transmission and vec-

tor transmission, in the presence of only the vector transmission without any sexual

transmission and in the presence of only the sexual transmission without any vector

transmission. The fourth order Runge-Kutta method for solving system of Ordinary

di�erential equations was used in their simulation. Computations were done in the

presence and absence of the control measures (ITN and IRS), with a large value of
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the sexual transmission rate, and for a complete intervention were the exposed and

infected mosquito population were totally eliminated from the population with only

the sexual transmission presents. In each case, a plot of the basic reproduction number

is o�ered. The results show that in the total absence of the interventions, the spread of

the virus is much faster and with a complete intervention (mosquitos totally eradicated

from the population), where virus is dependent on the sexual transmission only, the

spread is much slower.

The model presented in [37] is a similar type of model to the one presented in [62].

The model was used to study the dynamical transmission of Zika virus during French

Polynesia outbreak between the year 2013 to 2014. Infected human are subdivided

into symptomatically and asymptomatically infected. In the model, unlike in the one

presented in [62], both symptomatically and asymptomatically infected humans are

assumed to transmit the Zika virus to mosquitos at the same rate. Due to the fact

that the average human life span is longer than that of the outbreak, both the human

birth and mortality rate are ignored in their model. The basic reproduction number

R0 is derived and a sensitive analyses on the parameters of the model is performed.

A model to study the transmission dynamics of Zika virus disease in the population of

Colombia, El Salvador, and Suriname during the 2015-2016 outbreak is presented in

[66]. In the model, susceptible human become infected after being bitten by infected

mosquitos and susceptible mosquitos get infected by biting infected (both symptomatic

and asymptomatic) human, sexual transmission is ignored in the model. Exposed hu-

man are assumed to be not infectious to susceptible mosquitos. The human birth and

death rate is ignored as well in the model. The next generation matrix method is

used to calculate the basic reproduction number of the system. In the model, they

calculated the population at risk of getting the infection for each respective country

instead of assuming the whole population in each country was susceptible. This was

done by taking into consideration the presents of the Aedes mosquitos and the geog-
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raphy of the respective countries. The parameters of the model were then estimated

using the Bayesian computation and the data was taken from Pan American Health

Organization database.

In [51] a deterministic model to describe the dynamic of the Zika virus transmission and

to study the e�ectiveness of some optimal control strategy incorporated in the model

as an intervention measure against the spread of the Zika virus similar to the one in

[66] is presented. The following information was incorporated in the model: Birth rate

and natural and disease induced death rate, asymptotically infected human can trans-

mit the virus through sexual contact, treatment is given to symptomatically infected

human as a control measure and some human recovery natural without treatment,

susceptible mosquitos become infected by biting symptomatically infected human, the

reduction of the mosquito population is caused by natural death and by indoor residual

spray (IRS) as a control measure, the contact rate between asymptomatic individuals

and susceptible individual is greater than the contact rate between symptomatic and

susceptible due to the fact that the symptomatic are aware of the disease and may use

protections, recovered human gain temporary immunity or no immunity at all.

Another deterministic model is presented in [61] to describe the dynamics of the trans-

mission of Zika virus. In the model, the sexual transmission of the virus from infected

individuals to susceptible individual was included. The qualitative features of the model

and the stability analysis of the equilibrium points were investigated. The sensitivity

analysis revealed that the most sensitive parameters was the rate at which exposed

mosquito move to infectious class, the rate at which mosquito infect human and the

rate at which infected human infect susceptible mosquito.

To investigate Zika transmission between adult and newly born babies a determin-

istic compartmental model were the human population is split into adults subgroup

and newly born babies subgroup is presented in [4]. The human populations (both
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adult and newly born babies) are partitioned into susceptible, exposed, asymptomatic

and symptomatic (born with and without microcephaly) infected and recovered class.

The dynamic features of model are considered in [3] for the full model. A global sen-

sitivity analysis is performed to assess the impact of uncertainty and the sensitivity

of the outcomes of the numerical simulations to variations in each parameter of the

model. The sensitive analysis led to the assessment of some control strategies to control

certain parameters and their e�ectiveness as targets. These control strategies include

mosquito-reduction strategies, personal protection strategy, combined mosquito con-

trol and personal protection strategy and delayed pregnancy. The combined strategy

is found to be the most e�ective strategy to reduce the transmission of Zika.

In the work done in [25], exposed individuals were found to be infectious to both

human and mosquitos, but at a lower rate than symptomatically infected individu-

als. Convalescent individuals can also transmit the virus to human through sexual

intercourse. Asymptomatically infected individuals in their study were assumed to be

non-infectious to human and mosquitos due to the lack of evidence and individuals

after the convalescent stage are left immunised from the virus for life.

A model that incorporated all the information is presented, like the model presented

in [62], an SEIR type of model for human and SEI type of model for mosquitos to

study the dynamic transmission of the virus. In their model, they have an additional

compartment called the convalescent stage were symptomatically infected individual

are on the process of recovery from the infection. The infected population is subdi-

vided into four compartments: the exposed, symptomatically infected, convalescent

and asymptomatically infected compartment. The exposed individuals are assumed to

be infectious to susceptible humans via sexual contact due to viremia and virusemenia

occurring before the end of the incubation period.

The symptomatically infected were assumed to be infectious to both humans and
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mosquitos during the incubation phase lasting two days to a week. Individuals in

the convalescent stage were also found to be infectious to susceptible humans via sex-

ual contact, due to the persistence of the virus in the urine, and semen even after

it disappears from blood. The lack of evidence of the transmission of the virus from

asymptomatically infected to susceptible humans and mosquitos led to the assumption

that asymptomatically infected are not infectious. Since the epidemiological dynamics

duration is shorter than the demographical change of that of the human population,

birth and mortality rates are ignored in their model as well.

In the paper, data from the outbreak of the Zika virus in Brazil, Colombia and El

Salvador was used in the numerical simulations. The basic reproduction number was

used to study the e�ects of certain parameters using the numeric data.

Another SEIR-SEI type of a deterministic model is described in [57] to study the

dynamic transmission of Zika virus for two patches, namely Rio de Janeiro and Miami.

The model was used to investigate if the visitors from Miami to the Carnival in Febru-

ary 2016 and the Olympics in August of 2016 in Rio de Janeiro would be able contract

the virus and bring it back to Miami and course an outbreak. To study the impact

of the visitors to both events, a group of 100 people is taken from the population of

Miami for both event and added to the population of Rio de Janeiro and allowed to

interact with the human and mosquito population and a subpatch was used to monitor

these visitors. The basic reproduction number R0 was then calculated for the model

and a plot showing a counter-cyclical condition in both hemispheres shows that R0 is

greater in February and in August for patch 1 and patch 2, respectively.

A sensitive analysis was then performed on the change in the biting rate and the

number of visitors to the events. The sensitive analysis was only performed for the

parameters of patch 2 (Miami) and it was �rst discovered that if the parameters are

kept the same for both patches, there will be an outbreak in Miami which will see an
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approximate of three forth of the population getting infected. However, if the number

of people visiting is reduced by 10%, the size of the outbreak will reduce to 35% of the

population getting infected and increased 10 times will results in more than 90% of

the population of Miami infected. The model is also discovered to be more sensitive to

the change in the rate of bites by mosquito than in the number of bites per human. In

the qualitative features of the model, only the basic reproduction number of the model

was calculated.

We have already discussed some of the models developed by several authors above

to describe the dynamics of Zika virus disease. However, not much work has been done

by these authors on the discretization of these models in their work. The importance of

the discretization of continuous models lies on the fact that during an epidemic, data is

recorded in a discrete time interval (daily, monthly or yearly) and therefore, discrete-

time epidemic models gives a more practical scenario than the continuous one in [29].

Continuous models have been discretized in [19], [44], [55] and [28] using a method

clled as the nonstandard �nite di�erence (NSFD) method known for its robustness. A

comparison between the numerical method and other well-known numerical method

such as the Euler method and Range Kutta method.

In [19] for example, an NSFD scheme is constructed to solve an SIR epidemic model

with vaccination. For the discrete model, the positivity of the solution and the global

stability at the equilibrium points was investigated. In the numerical simulation, a

comparison between the behaviour of the NSFD scheme and the Range-Kutta of order

4 (RK4) at the equilibrium points was carried out for di�erent step-sizes and it is ob-

served that the NSFD methods converges and preserves the positivity of the solution

even for a greater step-size while the RK4 fails to converge and gives negative solution

for a large step-size.

Another NSFD methods is constructed in [28] to solve a smoking model in Spain.
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In the paper, the qualitative features of the model such as the basic reproduction num-

ber and the equilibrium points is studied. After constructing the NSFD methods for

the model, then the convergence of the numerical scheme to the equilibrium points is

investigated by computing a table showing the spectral radii of the jacobian matrix of

the system at the equilibrium points and compare the results with those obtained from

the Euler scheme.

The results shows that the Euler scheme will diverges as the step-size increases to

7 and beyond, whereas the NSFD scheme will converge for a larger step-size. The nu-

merical results also shows that the Euler and the standard fourth order Runge-Kutta

generates heavy oscillations with negative values when the step-size is 7 and diverges

for a step-size of 10. It is then concluded that the NSFD preserves numerical stability,

its solution remain positive and is dynamic consistency for even a larger step-size.

In [44] an NSFD method is used to solve numerically a mathematical model for a

Cholera epidemic dynamics. In the paper, a mathematical model already develop to

study transmission dynamics of the Cholera virus in Zimbabwe during the period of

2008 to 2009 is modi�ed. Then the basic reproduction number and the local and global

stability of the disease free equilibrium point was investigated.

Numerical simulations of the numerical method was carried out �rst with di�erent

step-sizes and initial conditions, and then a comparisons between the NSFD methods,

Euler method and Runge-Kutta method of order 4 was done by �rst comparing the

spectral radii of the Jacobian matrix of the system at the disease free equilibrium for

di�erent step-sizes ` and then by plotting the results for each method with di�erent

initial conditions. The numerical results shows that when the step-size ` increases both

Euler and RK4 methods diverge whereas the NSFD method converges. It is then con-

cluded that the NSFD methods produces better results.
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In [55] a work similar to the work in [44] is done. In the paper an NSFD method

is constructed to solve a HIV transmission dynamics model. The qualitative features

of the continuous model, such as basic reproduction number, disease free equilibrium

point and the endemic equilibrium point were �rst investigated. In the construction of

the NSFD methods two cases were presented, the �rst one the denominator function

used is the normal step-size function (NSFD-I) and the second case a non-classical

denominator function di�erent from the step-size function (NSFD-II).

The �xed points of the NSFD scheme are obtained and a note that the equilibrium

points of the continuous system and then perfumed a numerical stability analysis of

the �xed points are the same. It is also further shown that the NSFD-II methods

gives better results for a larger step-size by o�ering tables and plots comparing it

with the NSFD-I method and other well-known methods such as the ODE45 and the

Runge-Kutta method of order 4 which diverge when the step-size increases. It is then

concluded that the NSFD methods gives better results which are consistent with the

continuous system, converges to the right equilibrium points even with large step-size

and preserves the positivity of the solution.

Di�erent models have been developed to gain insight into the transmission dynam-

ics of Zika virus disease, as some of them are already mentioned above. Qualitative

analysis of some of these models was investigated and some numerical computations

have been performed to gain deep understanding on the e�ect of certain parameter in

the model. These models are of the form of systems of non-linear di�erential equations.

The use of di�erential equations in epidemic modelling gives rise to the need to study

the models using numerical method as we have already seen from some author's work

above.

In the next section we present models already developed by some authors to describe

the dynamic of Zika virus.
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1.3 Some recent Zika virus disease models

In this section we present di�erent Zika virus models.

1.3.1 SI-SI model describing the dynamics of Zika virus disease

The Zika model described by Oluyo and Adeyemi in [58] subdivides the human popu-

lation Nh(t) into susceptible Sh(t), infected Ih(t) and isolated Q(t), such that, Nh(t) =

Sh(t)+Ih(t)+Q(t), and the mosquito population Nm(t) is into two subclasses, namely;

the susceptible Sm(t) and the infectious Im, such that, Nm(t) = Sm(t) + Im(t). The

model equations are as follows,

dSh
dt

= β1(1− θIh)− µ1Sh − (bτ1Im + τ2Ih)Sh + γ(Ih +Q),

dIh
dt

= (bτ1Im + τ2Ih)Sh + θβ1Ih − (µ1 + σ1 + γ)Ih − ρIh,

dQ

dt
= ρIh − (µ1 + σ1 + γ)Q,

dSm
dt

= β2 − (u2 + σ2)Sm − bτ3IhSm,

dIm
dt

= bτ3IhSm − (µ2 + σ2)Im.


(1.3.1)

with the initial conditions: Sh(t0) = Sh0, Ih(t0) = Ih0, Q(t0) = Q0, Sm(t0) = Sm0 and

Im(t0) = Im0.

In the model, humans are recruited into the susceptible class Sh through birth or immi-

gration at a rate of β1 and out through an natural death rate of µ1. To join the infected

class Ih, susceptible human receive a bite from an infected mosquito at a biting rate of

b with the probability that a bite results in transmission of disease to human τ1 or by

becoming infected through sexual contact with the infected individuals at a rate of τ2.

The infected individuals that are diagnosed are then place in isolation at a rate of ρ to

prevent further contact with the rest of the human and mosquito population and given

treatment to treat the symptoms displayed since no Zika disease treatment is available.
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The Isolated individuals are assumed to be no longer infecting any susceptible humans

or mosquitos due to the isolation. Isolated individuals Q and infected individuals Ih

are still susceptible to the virus at the rate γ. Both Infected individuals and isolated

individuals moves out of the infected class Ih and isolated class Q, respectively through

a natural and disease induced death rate of µ1 and σ1, respectively. Mosquitoes are

recruited into the susceptible class Sm at a birth rate of β2 and out of both the sus-

ceptible Sm and infected class Im at a natural and diseases induced rate of µ2 and σ2,

respectively. Susceptible mosquitoes leave the susceptible class Sm to join the infected

class Im by bitting infected humans at a rate of b with the probability that a bite

results in transmission of the virus to a susceptible mosquito τ3.

1.3.2 SIR-SI model describing the dynamics of Zika virus dis-

ease with the impact of infective immigrants

The model presented by Ayana and Koya in [6] focuses on the impact of symptomatic

and asymptomatic infective immigrants during the spread of Zika virus. In their model,

the human population is divides in to the susceptible individuals Sh, the symptomatic

and asymptomatic infected individuals I1 and I2, respectively, and the recovered indi-

viduals Rh, and the mosquito population is divided into two host compartment, the

susceptible and infected mosquitoes. The model equations are as follows;

dSh
dt

= ΛhNh − bφIv(Sh/Nh)− µhSh,

dI1
dt

= b ∈ φIv(Sh/Nh) + p1I1 − (µh + σ)I1,

dI2
dt

= b(1− ∈)φIv(Sh/Nh) + p2I2 − (µh + σ)I2,

dRh

dt
= σ(I1 + I2)− µhRh,

dSv
dt

= ΛvNv − bθI1(Sv/Nh)− bγI2(Sv/Nh)− µvSv,

dIv
dt

= bθI1(Sv/Nh) + bγI2(Sv/Nh)− µvIv,



(1.3.2)
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where Nh = Sh + I1 + I2 + Rh, Nv = Sv + Iv and the initial conditions Sh(0) = Sh0,

I1(0) = I10, I2(0) = I20, Rh(0) = Rh0, Sv(0) = Sv0 and Iv(0) = Iv0. From the model,

humans are recruited to the susceptible at a rate Λh and leave the susceptible com-

partment Sh through a natural death µh or by being infected by the virus through a

bite by an infected mosquito at a biting rate of b with the bite resulting to an infection

at a rate of φ to join either the symptomatic infected or the asymptomatic infected at

a rate of ∈ or (1− ∈), respectively. Furthermore, individuals joins the symptomatic

and asymptomatic infected compartment I1 and I2, respectively, by immigrating in to

the population while infected with the virus at a rate of P1 and P2, respectively, and

exit the infected (symptomatic and asymptomatic) compartment through a natural

death or by recovering from the infection at a rate σ to joint the recovered individuals

compartment Rh. Recovered individuals leaves the recovered compartment Rh only

through natural death.

For the vector population, mosquitoes are recruited to the susceptible compartment

Sv at a rate Λv and exit through a natural death rate µv or by being infected from

biting either a symptomatic or asymptomatic infected individual at a biting rate b with

the bite resulting in the mosquito being infected at a rate of θ for symptomatic and γ

for asymptomatic to join the infected compartment Iv. Mosquito leaves the infected

compartment Iv through a natural death rate.

1.3.3 SEIR-SEI model describing the dynamics of Zika virus

disease

The model under investigation is the model presented by Oleson et al. in [57] to de-

scribe the transmission of Zika virus between mosquitos to humans which constitute

of 7 host compartments. The model describes the transmission of Zika virus in Rio

de Janeiro and in Miami: patch 1 and 2, where patch 1 represents the population

dynamics for Rio de Janeiro and patch 2 represent the population dynamics for Miami.
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The human population (N i
H) has four di�erent compartmental classes, the susceptible

(SiH), exposed (Ei
H), infectious (I iH) and recovered group (Ri

H) and the vector popula-

tion has three di�erent compartmental classes, the susceptible (Siv), exposed (Ei
v) and

the infectious (I iv).

In the model, humans enter the susceptible class through birth at the birth rate of

νiH and exit the class either by natural death at a rate of µiH or by joining the exposed

human class Ei
H through acquiring the Zika virus via a mosquito bite at a rate of biH

where the density-dependent average number of bites on a human by mosquitoes per

unit time is given as biH(N i
V /N

i
H) and probability that a mosquito is infectious Iiv

N i
v
and

its bite will successfully transmit the virus to a susceptible human at a probability

rate of βiH . Exposed humans leave the exposed class Ei
H either by natural death or by

becoming infected to join the Infected humans class I iH at a rate of αH and leaves the

infected humans class b or recovery at the recovery rate of γiH to join the recovered class

Ri
H . Recovered human are then immune to the virus and can only exit the recovered

class through death from natural causes. Similarly, mosquitos enter the susceptible

Figure 1.3.1 Transmission of Zika virus from an infected vector (mosquito) to a sus-
ceptible human and back to a susceptible vector. Dotted arrows indicate bites while
solid arrows indicate a transfer between di�erent compartments [57].

class SiH through birth at the birth rate of νiv and exit the susceptible class by natural
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death at a death rate of µiv or by becoming infected through bitting an infected human

at a biting rate of biv with biv(N
i
V /N

i
H) being the density-dependent average number

of bites per mosquito on humans per unit time and a probability
IiH
N i
H
that a human is

infectious and that the mosquito will successfully contract the virus with probability

rate of βiv to join the exposed class E
i
v. Exposed mosquitos leave the exposed mosquitos

class either by natural death or by becoming infected to join the Infected mosquitos

class I iv at a rate of αv and leave the infected mosquitos class through a natural death.

The model equations are as follows:

dSiH
dt

= νiHN
i
H − biH(N i

v/N
i
H)
βiH
N i
v

I ivS
i
H − µiHSiH ,

dEi
H

dt
= biH(N i

v/N
i
H)
βiH
N i
v

I ivS
i
H − αiHEi

H − µiHEi
H ,

dIHi

dt
= αiHE

i
H − γiHI iH − µiHI iH ,

dRi
H

dt
= γiHI

i
H + µiHR

i
H ,

dSiv
dt

= νivN
i
v − biv(N i

v/N
i
H)

βiv
N i
H

I iHS
i
v − νivSiv,

dEi
v

dt
= biv(N

i
v/N

i
H)

βiv
N i
H

I iHS
i
v − αivEi

v − µihEi
v,

dI iv
dt

= αivE
i
v − µivI iv,



(1.3.3)

where N i
H = SiH + Ei

H + I iH +Ri
H and N i

v = Siv + Ei
v + I iv.

Two notes must be made from Oleson [57]: The �rst one is that, in order to re�ect

the quality between the total number of bites by mosquitoes on humans and the total

number of bites on humans by mosquitoes, the bite rates biH(N i
v/N

i
H) and biv(N

i
v/N

i
H)

must satisfy the constancy constraint:

biHN
i
H = bivN

i
v, (1.3.4)

see [57] for more details. The second note is that, since the mosquito population does

not remain constant throughout the year, a time-dependent cyclical death rates was
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created by Oleson for both patches that shows a maximum death rate of the mosquitoes

in winter for each region. For µiv,max and µ
i
v,max for i = 1, 2, the time-dependent cyclical

death rates is given as

µ1
v(t) =

1

2

[(
µ1
v,min − µ1

v,max

)
sin

(
2πt

365

)
+ µ1

v,max + µ1
v,min

]
, (1.3.5)

for patch 1 and as

µ2
v(t) =

1

2

[(
µ2
v,min − µ2

v,max

)
sin(

2π(t− 183)

365
) + µ2

v,max + µ2
v,min

]
, (1.3.6)

for patch 2, with an average birth rate νiv taken to be the midpoint between the

maximum and minimum death rates µiv,max and µ
i
v,min, respectively, to make sure the

mosquito population remain stable in a long run. See [57] for details.

The following table present the parameter description and the estimated values

with the initial population estimation for both patches taken from [57].

1.3.4 SEIR-SEI model describing the dynamics of Zika virus

disease with the in�uence of sexual transmission and pre-

ventive measures

The model described by Padmanabhan et al. [62] divides the human population Nh

into �ve subclasses, namely: The susceptible (Sh), exposed (Eh), asymptomatically

infected (Ih,s), symptomatically infected (Ih,a) and recovered (Rh), and the mosquito

population Nm into susceptible (Sm), exposed (Em) and infected (Im).
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Table 1.3.1 Description of the model parameters and their values for SEIR-SEI model
taken from [57]

Parameter Description Values
Human population
νH Human birth rate 1/19,210
µH Human death rate 1/45,625
1/αH Human incubation period 5.9
1/γH Human infectious period 5.9
βH Vector (Mosquito) to Human

transmission probability
0.42

bmaxH Max bites per human 19
Vector(Mosquito) population
νv Vector (Mosquito) birth rate 1/7.8
µminv Vector (Mosquito) minimum

death rate
1/9.3

µmaxv Vector (Mosquito) maximum
death rate

1/6.5

1/αv Vector (Mosquito) incubation pe-
riod

10.5

βv Human to Vector (Mosquito)
transmission probability

0.42

bmaxv Max bites by Vector (Mosquito) 0.5
Initial values
Patch 1: Rio de Janeiro (i = 1)
S1
H Susceptible human 12,902,000
E1
H Exposed human 129,020

I1H Infected human 0
R1
H Recovered human 0

S1
v Susceptible mosquitos 9,000,000
E1
v Exposed mosquitos 0

I1v Infectious mosquitos 0
Patch 2: Miami (i = 2)
S2
H Susceptible human 5,817,000
E2
H Exposed human 0

I2H Infected human 0
R2
H Recovered human 0

S2
v Susceptible mosquitos 60,000,000
E2
v Exposed mosquitos 0

I2v Infectious mosquitos 0
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The model equation are as follows:

Ṡh = −bmh(1− ITN)ShIm − bh(Ih,a + Ih,s)Sh,

Ėh = bmh(1− ITN)ShIm + bh(Ih,a + Ih,s)Sh − νhEh,

İh,s = (1− q)νhEh − γh,sIh,s,

İh,a = qνhEh − γh,aIh,a,

Ṙh = γh,sIh,s + γh,aIh,a,

Ṡm = µmNm − µmSm − bhm(1− ITN)Sm(Ih,s + Ih.a)

− (h · ITN + j · IRS)Sm,

Ėm = −νmEm − µmEm + bhm(1− ITN)Sm(Ih,s + Ih,a)

− (h · ITN + j · IRS)Em,

İm = νmEm − µmIm − (h · ITN + j · IRS)Im,



(1.3.7)

with Nh = Sh + Eh + Ih,a + Ih,s +Rh and Nm = Sm + Em + Im.

In the model, the individuals leave the susceptible class by becoming exposed to

the infection through sexual contact with asymptomatic Ih,a or symptomatic Ih,s in-

fected individuals at a rate of bh or by being bitten by Infectious mosquitos Im at a

rate of bmh. However, the contact rate between susceptible and infectious mosquitos is

reduced by the use of Insecticide-Treated Mosquito Nets (ITN). Exposed individuals

become asymptomatic Ih,a infected or symptomatic Ih,s infected at a rate of (1−q) and

q,respectively, and they recover at a rate of γh,a and γh,s, respectively. For the mosquito

population, the mosquitoes leaves the susceptible Sm, exposed Em and infected class

Im at a death rate of µm, by the use of Insecticide-Treated Mosquito Nets (ITN),

by the use of Indoor Residual Spraying (IRS) at a rate of h and j, respectively, or

by bitting the infectious humans at a rate of bm,h to join the exposed class Em. The

exposed mosquitoes become infected at a rate of νv.

In the next section we give the outline of the thesis.
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1.4 Outline of the thesis

The outline of the research is as follows. In Chapter 2, we present the qualitative analy-

sis of the Zika model (1.3.3) presented by Oleson in [57], the basic reproduction number

and the equilibrium points and both the local and global analysis of the equilibrium

points and a summary of the results. In Chapter 3, we construct and analyse a robust

nonstandard �nite di�erence numerical method to simulate the model, we start by the

general philosophy of the method, then the derivation and analysis of proposed numer-

ical method. In Chapter 4, we give comparative numerical results and discussions on

them. Finally, some scope for further research is presented in Chapter 5.
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Chapter 2

Qualitative analysis of the SEIR-SEI

model describing the dynamics of Zika

virus disease

In this chapter we will determine basic reproduction number R0 and the disease free

equilibrium point (E0) and endemic equilibrium (Ee) of the system and their local and

Global stability analysis.

In the next section, we deal with the positivity of the solution.

2.1 Positivity of the solution

It is biological reasonable that in any epidemic model, when starting with nonnega-

tive initial conditions, say SiH(0), Ei
H(0), I iH(0), Ri

H(0), Siv(0), Ei
v(0), I iv(0) for our model

(1.3.3), the solutions SiH(t), Ei
H(t), I iH(t), Ri

H(t), Siv(t), E
i
v(t), I

i
v(t) remains to be non-

negative for all t ∈ [0;∞). The following lemma states the condition in which the solu-

tion SiH(t), Ei
H(t), I iH(t), Ri

H(t), Siv(t), E
i
v(t), I

i
v(t) will remain nonnegative when starting

with nonnegative initial conditions.

28
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Lemma 2.1.1 The solution (SiH(t), Ei
H(t), I iH(t), Ri

H(t), Siv(t), E
i
v(t), I

i
v(t)) of the model

(1.3.3) will remains nonnegative when starting with the initial conditions

(SiH(0), Ei
H(0), I iH(0), Ri

H(0), Siv(0), Ei
v(0), I iv(0)) for all t > 0.

Proof. Let X i = (SiH(t), Ei
H(t), I iH(t), Ri

H(t), Siv(t), E
i
v(t), I

i
v(t))

T and

f(X i) = (f1(X
i), f2(X

i), f3(X
i), f4(X

i), f5(X
i), f6(X

i), f7(X
i)). Model (1.3.3) can

then be express in the following way;

Ẋ i = f(X i),

where

f(X) =



f1(X
i)

f2(X
i)

f3(X
i)

f4(X
i)

f5(X
i)

f6(X
i)

f7(X
i)


=



νiHN
i
H − biH(N i

v/N
i
H)

βiH
N i
v
I ivS

i
H − µiHSiH

biH(N i
v/N

i
H)

βiH
N i
v
I ivS

i
H − αiHEi

H − µiHEi
H

αiHE
i
H − µiHI iH

γiHI
i
H + µiHR

i
H

νivN
i
v − biv(N i

v/N
i
H) βiv

N i
H
I iHS

i
v − νivSiv

biv(N
i
v/N

i
H) βiv

N i
H
I iHS

i
v − αivEi

v − µihEi
v

αivE
i
v − µivI iv


.

We note the following

dSiH(t)

dt
|SiH=0 = νiHN

i
H > 0,

dEi
H(t)

dt
|EiH=0 = ki1I

i
vS

i
H > 0,

dI iH(t)

dt
|IiH=0 = αiHE

i
H > 0,

dRi
H(t)

dt
|RiH=0 = γiHI

i
H > 0,

dSiv(t)

dt
|Siv=0 = νivN

i
v > 0,

dEi
v(t)

dt
|Eiv=0 = ki2I

i
HS

i
v > 0,

dI iv(t)

dt
|Iiv=0 = αivE

i
v > 0.



(2.1.1)
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It then follows by Lemma 2.1 of [43] that the set

Di =

{
(SiH , E

i
H , I

i
H , R

i
H , S

i
v, E

i
v, I

i
v) ∈ <7

+ : N i
H ≤

νiHN
i
H

µiH
, N i

v ≤
νivN

i
v

µiv

}
, (2.1.2)

is invariant set.

Lemma 2.1.2 The solution set {SiH(t), Ei
H(t), I iH(t), Ri

H(t), Siv(t), E
i
v(t), I

i
v(t)} for t >

0 is contained and bounded in the closed set (2.1.2).

Proof. Di�erentiating

N i
H(t) = SiH(t) + Ei

H(t) + I iH(t) +Ri
H(t)

and

N i
v(t) = Siv(t) + Ei

v(t) + I iv(t),

we obtain the following

dN i
H

dt
=
dSiH
dt

+
dEi

H

dt
+
dI iH
dt

+
dRi

H

dt

and
dN i

v

dt
=
dSiv
dt

+
dEi

v

dt
+
dI iv
dt
,

respectivily. Hence, from (1.3.3),we obtain

dN i
H

dt
= νiHN

i
H − µiHN i

H(t) (2.1.3)

and
dN i

v

dt
= νivN

i
v − µivN i

v(t). (2.1.4)

The di�erential equation (2.1.3) can be solved as follows;

∫
1

νiHN
i
H − µiHN i

H(t)
dN i

H(t) =

∫
dt,
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− ln|ν
i
HN

i
H − µiHN i

H(t)|
µiH

= t+ c,

N i
H(t) =

νiHN
i
H

µiH
− A

µiH
e−µ

i
H t,

where

A = νiHN
i
H − µiHN i

H(0).

We have the solution

N i
H(t) =

νiHN
i
H

µiH
(1− e−µiH t)−N i

H(0)e−µ
i
H t.

Similarly, the di�erential equation (2.1.4) has the solution

N i
v(t) =

νivN
i
v

µiv
(1− e−µivt)−N i

v(0)e−µ
i
vt.

Since
dN i

H

dt
≤ νiHN

i
H − µiHN i

H(t)

and
dN i

v

dt
≤ νivN

i
v − µivN i

v(t),

it follows that as t→ 0, N i
H(t) ≤ νiHN

i
H

µiH
and N i

v(t) ≤
νivN

i
v

µiv
. From the two results above,

lemma (2.1.1) and (2.1.2), we have the following result.

Theorem 2.1.3 The feasible region (2.1.2) is positive invariant with respect to the

system (1.3.3) with non-negative initial conditions.

The next section we determine the equilibrium point of the dynamic system.

2.2 Equilibrium points

A dynamic system usually has two equilibrium points, namely: the disease free equi-

librium point and the endemic equilibrium point. These equilibrium points can be
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obtained by setting the model equation of the system to zero. Hence, to calculate the

equilibrium points of our dynamic system, we set the right-hand sides of the model

equations of model (1.3.3) to zero [3]. We obtain

νiHN
i
H − ki1I ivSiH − µiHSiH = 0,

ki1I
i
vS

i
H − (αiH + µiH)Ei

H = 0,

αiHE
i
H − (γiH + µiH)I iH = 0,

γiHI
i
H − µiHRi

H = 0,

νivN
i
v − ki2I iHSiv − µivSiv = 0,

ki2I
i
HS

i
v − (αiv + µiv)E

i
v = 0,

αivE
i
v − µivI iv = 0,



(2.2.1)

where

ki1 = biH(N i
v/N

i
H)
βiH
N i
v

and

ki2 = biv(N
i
v/N

i
H)

βiv
N i
H

.

The dynamic system has two equilibrium points, the disease free equilibrium point E0,i

and the endemic equilibrium point Ee,i.

2.2.1 Disease Free Equilibrium

The Disease Free equilibrium point (DFE) E0,i, is de�ned to be the equilibrium state

solution where there is total zero infection in the human population. To obtain the

DFE of the system (1.3.3), we set I iH = 0 , then equation 3,4,6 and 7 of (2.2.1) gives

Ei
H = 0, Ri

H = 0, Ei
v = 0 and I iv = 0, respectively. Equation 1 and 5 gives SiH =

νiH
µiH
N i
H

and Siv = νiv
µiv
N i
v. However, since N i

H = SiH + Ei
H + I iH + Ri

H and N i
v = Siv + Ei

v + I iv,

at the DFE point, N i
H = SiH and N i

v = Siv. This implies that at the DFE
νiH
µiH

= 1 and
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νiv
µiv

= 1. Therefore, the DFE point is given as

E0,i = (SiH , E
i
H , I

i
H , R

i
H , S

i
v, E

i
v, I

i
v) = (N i

H , 0, 0, 0, N
i
v, 0, 0).

2.2.2 Endemic Equilibrium

The Endemic Equilibrium point (EE) of a system is a positive steady state solution

where the disease persists in the population. It can be obtained by solving the equations

of (2.2.1) simultaneously. Due to the complexity of the calculation of the endemic

equilibrium point of our system (1.3.3), with the aid of MATLAB, we abtain the

endemic equilibrium point to be

Ee,i = (S?iH , E
?i
H , I

?i
H , R

?i
H , S

?i
v , E

?i
v , I

?i
v ),

where

S?,iH =
(N i

H)2µiv(α
i
v + µiv)T

i
H

N i
vα

i
Hb

i
vβ

i
vQ

i
H

,

E?,i
H =

−N i
Hν

i
v(M

i
H − P i

H)

N i
vα

i
Hb

i
vβ

i
v(α

i
H + µiH)Qi

H

,

I?,iH =
−N i

Hν
i
v(M

i
H − P i

H)

N i
vb
i
vβ

i
v(α

i
H + µiH)Qi

H

,

R?,i
H =

−N i
Hγ

i
Hν

i
v(M

i
H − P i

H)

N i
vb
i
vβ

i
vµ

i
H(αiH + µiH)(γiH + µiH)Qi

H

,

S?,iv =
N i
H(αiH + µiH)(γiH + µiH)T iv

αivb
i
Hβ

i
HQ

i
v

,

E?,i
v =

−νiv(M i
H − P i

H)

αivb
i
Hβ

i
H(αiv + µiv)Qv

,

I?,iv =
−νiv(M i

H − P i
H)

biHβ
i
Hµ

i
v(α

i
v + µiv)Q

i
v

,



(2.2.2)
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with

T iH = N i
Hα

i
Hγ

i
Hν

i
v +N i

Hα
i
Hµ

i
Hν

i
v +N i

Hγ
i
Hµ

i
Hν

i
v +N i

H(µiH)2νiv +N i
vα

i
Hb

i
vβ

i
vν

i
H ,

Qi
H = N i

Hα
i
vµ

i
Hµ

i
v +N i

Hµ
i
H(µiv)

2 +N i
vα

i
vb
i
Hβ

i
Hν

i
v,

M i
H = (N i

H)2αiHα
i
vγ

i
Hµ

i
Hµ

i
v + (N i

H)2αiHα
i
v(µ

i
H)2µiv + (N i

H)2αiHγ
i
Hµ

i
H(µiv)

2

+ (N i
H)2αiH(µiH)2(µiv)

2 + (N i
H)2αivγ

i
H(µiH)2µiv + (N i

H)2αiv(µ
i
H)2µiv

+ (N i
H)2γiH(µiH)2(µiv)

2 + (N i
H)2(µiH)3(µiv)

2,

P i
H = (N i

v)
2αiHα

i
vb
i
Hb

i
vβ

i
Hβ

i
vν

i
H ,

Qi
v = N i

Hα
i
Hγ

i
Hν

i
v +N i

Hα
i
Hµ

i
Hν

i
v +N i

Hγ
i
Hµ

i
Hν

i
v +N i

H(µiH)2νiv +N i
vα

i
Hb

i
vβ

i
vν

i
H ,

T iv = N i
Hα

i
vµ

i
Hµ

i
v +N i

Hµ
i
H(µiv)

2 +N i
vα

i
vb
i
Hβ

i
Hν

i
v.


In the next section, we derive the basic reproduction number for the dynamic system

using the next genaration method.

2.3 Calculation of the basic reproduction number R0

The basic reproduction number is de�ned to be the average of secondary infections

generated by a single infectious individual during their entire infectious life in a com-

pletely susceptible population [73]. If R0 < 1, then each infected individual will infect

less than one new individuals during their entire infectious life and the disease will die

out, and on the other hand, R0 > 1, then each infected individual will infect more than

one individual during their infectious life and the epidemic invades the population. In

other words, R0 measures the potential of the possible outbreak.

To calculate the basic reproduction number for our system (1.3.3), we employ a well

known method called the Next Generation matrix Method presented in [73]. We �rst

�nd the reduced model of the dynamic system (1.3.3) by considering only the infected

host compartments, namely: the exposed and infected host compartments for both
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human and mosquitos population. The reduced model is as follows;

dEi
H

dt
= biH

(
N i
v

N i
H

)
I iv
N i
v

βiHS
i
H − αiHEi

H − µiHEi
H ,

dIHi

dt
= αiHE

i
H − γiHI iH − µiHI iH ,

dEi
v

dt
= biv

(
N i
v

N i
H

)
I iH
N i
H

βivS
i
v − αivEi

v − µivEi
v,

dI iv
dt

= αivE
i
v − µivI iv.


(2.3.1)

The reduced model (2.3.1) can be written in matrix form as

dxk(t)

dt
= Fxk(t)− Vxk(t), (2.3.2)

where k = 1, 2...,m with m representing the number of infected host compartments

and x = (x1, x2, x3, ..., xm)T . The matrix F is called the infection matrix and its (k, j)

entry represents the number of new infection at stage j caused by contact with infected

individuals in stage i, and the matrix V is called the transition matrix and its (k, j)

entry represents the rate individuals in stage k move to stage i [73]. For our reduced

model (2.3.1), we set:

F i =


biH

(
N i
v

N i
H

)
Iiv
N i
v
βiHS

i
H

0

biv

(
N i
v

N i
H

)
IiH
N i
H
βivS

i
v

0

 and V i =


αiHE

i
H + µiHE

i
H

−αiHEi
H + γiHI

i
H

αivE
i
v + µivE

i
v

−αivEi
v + µivI

i
v

 . (2.3.3)
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The partial derivatives of F and V , with respect to Ei
H , I

i
H , E

i
v and I

i
v are partitioned

as follow;

F i =

[
∂F ik
∂xj

]

=


0 0 0 biH

(
N i
v

N i
H

)
SiH
N i
v
βiH

0 0 0 0

0 biv

(
N i
v

N i
H

)
Siv
N i
H
βiv 0 0

0 0 0 0

 (2.3.4)

and

V i =

[
∂V ik
∂xj

]

=


αiH + µiH 0 0 0

−αiH γiH + µiH 0 0

0 0 αiv + µiv 0

0 0 −αiv µiv

 , (2.3.5)

for 1 ≤ k, j ≤ m . Evaluating F i and V i at the disease free equilibrium point E0,i =

(N i
H , 0, 0, 0, N

i
v, 0, 0), we obtain

F i =

[
∂F ik
∂xj

]

=


0 0 0 biHβ

i
H

0 0 0 0

0 bivβ
i
v

(
(N i

v)
2

(N i
H)2

)
0 0

0 0 0 0

 (2.3.6)
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and

V i =

[
∂V ik
∂xj

]

=


αiH + µiH 0 0 0

−αiH γiH + µiH 0 0

0 0 αiv + µiv 0

0 0 −αiv µiv

 . (2.3.7)

The inverse of V i is

(V i)−1 =


1

αiH+µiH
0 0 0

αiH
(γiH+µiH)(αiH+µiH)

1
γiH+µiH

0 0

0 0 1
αiv+µ

i
v

0

0 0 αiv
µiv(α

i
v+µ

i
v)

1
µiv

 . (2.3.8)

The basic reproduction number R0,i is then given by the dominant eigenvalue (also

called the spectral radius ρ(F (V i)−1) of the matrix F (V i)−1 below,

F (V i)−1 =


0 0

αivb
i
Hβ

i
H

µiv(α
i
v+µ

i
v)

biHβ
i
H

µiv

0 0 0 0

αiHb
i
vβ
i
v(N

i
v)

2

(γiH+µiH)(αiH+µiH)(N i
H)2

bivβ
i
v(N

i
v)

2

(γiH+µiH)(N i
H)2

0 0

0 0 0 0

 . (2.3.9)

Hence

R0,i =
√
RHV,i(t)RV H,i(t), (2.3.10)

where

RHV,i =
αiH

αiH + µiH
biH(N i

v/N
i
H)βiv

1

γiH + µiH
,

and

RV H,i =
αiv

αiv + µiv
biv(N

i
v/N

i
H)βiH

1

µiv
.
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It must be noted that RHV,i(t) represents the number of new mosquito infections that

are caused by the one exposed human and RV H,i(t) representing the number of sec-

ondary infections in humans that are caused by one of the infected mosquitoes [57].

In the next section, we look at the local stability of the steady state solution of the

dynamic system.

2.4 Local stability analysis of the model

In this section we study the local stability of the dynamic system (1.3.3) at the disease

free equilibrium E0,i and the endemic equilibrium point Ee,i.

2.4.1 Local stability of the Disease Free Equilibrium

Theorem 2.4.1 The disease free equilibrium point E0,i of (1.3.3) is locally asymptot-

ically stable if R0,i < 1 and unstable otherwise.

Proof. To prove this result we compute the jacobian matrix of the dynamic system

(1.3.3).

Let

f i1 =
dSiH
dt

= νiHN
i
H − k1I ivSiH − µiHSiH ,

f i2 =
dEi

H

dt
= biH(N i

v/N
i
H)
βiH
N i
v

I ivS
i
H − αiHEi

H − µiHEi
H ,

f i3 =
dIHi

dt
= αiHE

i
H − γHIH − µiHI iH ,

f i4 =
dRi

H

dt
= γiHI

i
H + µiHR

i
H ,

f i5 =
dSiv
dt

= νivN
i
v − k2I iHSiv − νivSiv,

f i6 =
dEi

v

dt
= biv(N

i
v/N

i
H)

βiv
N i
H

I iHS
i
v − αivEi

v − µihEi
v,

f i7 =
dI iv
dt

= αivE
i
v − µivI iv.



(2.4.1)

http://etd.uwc.ac.za/



CHAPTER 2. QUALITATIVE ANALYSIS OF THE SEIR-SEI MODEL
DESCRIBING THE DYNAMICS OF ZIKA VIRUS DISEASE 39

The Jacobian matrix of the system J i is as follows:

J i =



∂f i1
∂SiH

∂f i1
∂EiH

∂f i1
∂IiH

∂f i1
∂RiH

∂f i1
∂Siv

∂f i1
∂Eiv

∂f i1
∂Iiv

∂f i2
∂SiH

∂f i2
∂EiH

∂f i2
∂IiH

∂f i2
∂RiH

∂f i2
∂Siv

∂f i2
∂Eiv

∂f i2
∂Iiv

∂f i3
∂SiH

∂f i3
∂EiH

∂f i3
∂IiH

∂f i3
∂RiH

∂f i3
∂Siv

∂f i3
∂Eiv

∂f i3
∂Iiv

∂f i4
∂SiH

∂f i4
∂EiH

∂f i4
∂IiH

∂f i4
∂RiH

∂f i4
∂Siv

∂f i4
∂Eiv

∂f i4
∂Iiv

∂f i5
∂SiH

∂f i5
∂EiH

∂f i5
∂IiH

∂f i5
∂RiH

∂f i5
∂Siv

∂f i5
∂Eiv

∂f i5
∂Iiv

∂f i6
∂SiH

∂f i6
∂EiH

∂f i6
∂IiH

∂f i6
∂RiH

∂f i6
∂Siv

∂f i6
∂Eiv

∂f i6
∂Iiv

∂f i7
∂SiH

∂f i7
∂EiH

∂f i7
∂IiH

∂f i7
∂RiH

∂f i7
∂Siv

∂f i7
∂Eiv

∂f i7
∂Iiv


(2.4.2)

=



−ki1Iiv − µiH 0 0 0 0 0 −ki1SiH
ki1I

i
v −(αiH + µiH) 0 0 0 0 ki1S

i
H

0 αiH −(γiH + µiH) 0 0 0 0

0 0 γiH −µiH 0 0 0

0 0 −ki2Siv 0 −ki2IiH − µiv 0 0

0 0 ki2S
i
v 0 ki2I

i
H −(αiv + µiv) 0

0 0 0 0 0 αiv −µiv


. (2.4.3)

Evaluating the jacobian matrix (2.4.7) of the dynamic system at disease free equilibrium

E0,i we obtain;

JE0,i
=



−µiH 0 0 0 0 0 −ki1N i
H

0 −(αiH + µiH) 0 0 0 0 ki1N
i
H

0 αiH −(γiH + µiH) 0 0 0 0

0 0 γiH −µiH 0 0 0

0 0 −ki2N i
v 0 −µiv 0 0

0 0 ki2N
i
v 0 0 −(αiv + µiv) 0

0 0 0 0 0 αiv −µiv


. (2.4.4)

The eigenvalues of the jacobian matrix JE0,i
are λi = −µiH and the roots of the char-

acteristic equation

λ4,i + Aλ3,i +Bλ2,i + Cλi +D = 0, (2.4.5)
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where

A = a+ b+ c+ d,

B = ab+ ac+ ad+ bc+ bd+ cd,

C = abc+ abd+ acd+ bcd,

D = abcd− αiHαivk1ik2iN i
HN

i
v,

with a = αiH + µiH , b = γiH + µiH , c = αiv + µiv and d = µiv. Finding the roots of

the polynomial (2.4.5) is too complex. We use the Routh-Hurwitz stability criterion

to show that the eigenvalues have a native real part by showing that the roots of the

polynomial lies on the left half plane of the imaginary axes. To show this we only need

to show that A > 0, AB − C > 0, (AB − C)C − A2D > 0 and D > 0. Since all the

parameters are nonnegative, it follows that A > 0 and we also have

AB − C = (a+ b+ c+ d)(ab+ ac+ ad+ bc+ bd+ cd)

− (abc+ abd+ acd+ bcd)

= a2b+ a2c+ a2d+ 2abc+ 2abd+ 2acd+ ab2 + b2d+ b2d+

2bcd+ ac2 + bc2 + c2d+ ad2 + bd2 + cd2 > 0.

Whenever R0,i < 1. It follows that

D = abcd− αiHαivki1ki2N i
HN

i
v

= abcd(1− αiHα
i
vk

i
1k

i
2N

i
HN

i
v

abcd
)

= abcd

(
1− αiHα

i
vb
i
Hb

i
vβ

i
Hβ

i
v(N

i
v)

2

(αiH + µiH)(γiH + µiH)(αiv + µiv)µ
i
v(N

i
H)2

)
= abcd(1−R0,i) > 0.

http://etd.uwc.ac.za/



CHAPTER 2. QUALITATIVE ANALYSIS OF THE SEIR-SEI MODEL
DESCRIBING THE DYNAMICS OF ZIKA VIRUS DISEASE 41

We are now left to show that (AB−C)C −A2D > 0. Applying some basic algebra we

obtain:

(AB − C)C − A2D = (a2b+ a2c+ a2d+ 2abc+ 2abd+ 2acd+ ab2 + b2d+

b2d+ 2bcd+ ac2 + bc2 + c2d+ ad2 + bd2 + cd2)(abc+

abd+ acd+ bcd)− (a+ b+ c+ d)2(abcd(1−Ro))

= a3b2c+ a3bc2 + a2b3c+ ab3c2 + a2bc3 + ab2c3 + a2bcd2 +

ab2cd2 + abc2d2 + 2a2b2c2 + a3b2d+ a3dcd+ a3bd2 +

a2b3d+ ab3cd+ ab3d2 + a2bc2d+ ab2c2 + abc2d2 + a2bd3 +

ab3d2 + 2a2b2cd+ 2a2b2d2 + a3bcd+ a3c2d+ a3cd2 +

a2b2cd+ ab2c2d+ acd2d2 + a2c3d+ abc3d+ ac3d2 + a2cd3 +

abcd3 + ac2d3 + 2a2bc2d+ 2a2bcd2 + 2a2c2d2 + a2b2cd+

a2bc2d+ a2bcd2 + ab3cd+ b3c2d+ b3cd2 + abc3d+

b2c3d+ bc3d2 + abcd3 + b2cd3 + bc2d3 + 2ab2c2d+

2ab2cd2 + 2abc2d2 + 2b2c2d2 + (a3bcd+ ab3cd+

abc3d+ abcd3 + 2a2b2cd+ 2a2bc2d+ 2a2bcd2 +

2ab2c2d+ 2ab2cd2 + 2abc2d2)R0 > 0.

This completes our proof. The disease free equilibrium point E0,i is locally asymp-

tomatically stable if R0,i < 1.

2.4.2 Local stability of the Endemic Equilibrium

Next want to establish the local stability of the endemic equilibrium point Ee,i. We

�rst take note that Ee,i can be expressed in terms of the basic reproduction number

R0,i as:

Ee,i = (S?,iH , E
?,i
H , I

?,i
H , R?,i

H , S
?,i
v , E

?,i
v , I

?,i
v ),

http://etd.uwc.ac.za/



CHAPTER 2. QUALITATIVE ANALYSIS OF THE SEIR-SEI MODEL
DESCRIBING THE DYNAMICS OF ZIKA VIRUS DISEASE 42

where

S?,iH =
(N i

H)2µiv(α
i
v + µiv)T

i
H

N i
vα

i
Hb

i
vβ

i
vQ

i
H

,

E?,i
H =

N3,i
H µiHν

i
vU

i
H

N i
vα

i
Hb

i
vβ

i
v(α

i
H + µiH)Qi

H

(R2
0,i − 1),

I?,iH =
N3,i
H µiHν

i
vU

i
H

N i
vb
i
vβ

i
v(α

i
H + µiH)(γiH + µiH)Qi

H

(R2
0,i − 1),

R?,i
H =

N3,i
H µiHγ

i
Hν

i
vU

i
H

N i
vb
i
vβ

i
vµ

i
H(αiH + µiH)(γiH + µiH)Qi

H

(R2
0,i − 1),

S?,iv =
N i
H(αiH + µiH)(γiH + µiH)T iv

αivb
i
Hβ

i
HQ

i
v

,

E?,i
v =

(N i
H)2µiHν

i
vU

i
H

αivb
i
Hβ

i
H(αiv + µiv)Q

i
v

(R2
0,i − 1),

I?,iv =
(N i

H)2µiHν
i
vU

i
H

biHβ
i
Hµ

i
v(α

i
v + µiv)Q

i
v

(R2
0,i − 1),



(2.4.6)

with

UH = αiHα
i
vγ

i
Hµ

i
v + αiHγ

i
H(µiv)

2 + αiHα
i
vµ

i
Hµ

i
v + αiHµ

i
H(µiv)

2 + αivγ
i
Hµ

i
Hµ

i
v +

γiHµ
i
H(µiv)

2 + αiv(µ
i
H)2µiv + (µiH)2(µiv)

2.

This lead to the following result.

Theorem 2.4.2 For R0,i > 1, there exist a unique endemic equilibrium point Ee,i for

the dynamic system (1.3.3) that is locally asymptomatically stable.

Proof. To prove that the endemic equilibrium point is local asymptomatically stable

we adopt the same approach as in [3]. We show that the jacobian matrix (2.4.7)

evaluated at the endemic equilibrium point Ee,i is sign stable. The jacobian matrix

(2.4.7) at Ee,i gives

JEe,i =
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

−ki1I
?,i
v − µiH 0 0 0 0 0 −ki1S

?,i
H

ki1I
?,i
v −(αiH + µiH) 0 0 0 0 ki1S

?,i
H

0 αiH −(γiH + µiH) 0 0 0 0

0 0 γiH −µiH 0 0 0

0 0 −ki2S
?,i
v 0 −ki2I

?,i
H − µiv 0 0

0 0 ki2S
?,i
v 0 ki2I

?,i
H −(αiv + µiv) 0

0 0 0 0 0 αiv −µiv


. (2.4.7)

We have the following sign pattern: J1,1 = −ki1I?,iv − µiH < 0, J2,2 = −(αiH + µiH) < 0,

J3,3 = −(γiH+µiH) < 0, J4,4 = −µiH < 0, J5,5 = −ki2I
?,i
H −µiv < 0, J6,6 = −(αiv+µiv) < 0,

J2,2 = −µiv < 0, J1,2J2,1 = 0, J1,3J3,1 = 0, J1,4J4,1 = 0, J1,5J5,1 = 0, J1,6J6,1 = 0,

J1,7J7,1 = 0, J2,3J3,2 = 0, J2,4J4,2 = 0, J2,5J5,2 = 0, J2,6J6,2 = 0, J2,7J7,2 = 0, J3,4J4,3 =

0, J3,5J5,3 = 0, J3,6J6,3 = 0, J3,7J7,3 = 0, J4,5J5,4 = 0, J4,6J6,4 = 0, J4,6J6,4 = 0,

J4,7J7,4 = 0, J5,6J6,5 = 0, J5,7J7,5 = 0, J6,7J7,6 = 0. Hence the jacobian matrix is sign

stable and therefore the equilibrium point Ee,i is locally asymptotically stable. In the

next section, we look at the global stability of the steady state solution of the dynamic

system.

2.5 Global stability analysis of the model

In this section we look at the global stability of the disease free equilibrium point and

the endemic equilibrium point of the dynamic system.

2.5.1 Global stability of the Disease Free Equilibrium

Theorem 2.5.1 The Disease Free Equilibrium E0,i of the model (1.3.3) is globally

asymptotically stable whenever R0,i < 1.

Proof. Following the work in [11], we construct the following Lyapunov function.

L = A1E
i
H + A2I

i
H + A3E

i
v + A4I

i
v, (2.5.1)
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where A1 = µiv, A2 = ki1N
i
H , A3 = γiH + µiH and A4 = ki2N

i
v.

The derivative of L with respect to time t, we obtain the following;

dL

dt
= A1

dEi
H

dt
+ A2

dI iH
dt

+ A3
dEi

v

dt
+ A4

dI iv
dt

= A1[k
i
1I
i
vS

i
H − (αiH + µiH)Ei

H ] + A2[α
i
HE

i
H − (γiH + µiH)I iH ] +

A3[k
i
2I
i
HS

i
v − (αiv + µiv)E

i
v] + A4[α

i
vE

i
v − µivI iv]

= [A2α
i
H − A1(α

i
H + µiH)]Ei

H + [A3k
i
2S

i
v −B(γiH + µiH)]I iH +

[A4α
i
v − A3(α

i
v + µiv)]E

i
v + [A1k

i
1S

i
H − A4µ

i
v]I

i
v

= [ki2N
i
vα

i
H − µiv(αiH + µiH)]Ei

H + [(γiH + µiH)ki2S
i
v − ki2N i

v(γ
i
H + µiH)]I iH

+ [ki1N
i
Hα

i
v − (γiH + µiH)(αiv + µiv)]E

i
v + [µivk

i
1S

i
H − ki1N i

Hµ
i
v]I

i
v

= [ki2N
i
vα

i
H − µiv(αiH + µiH)]Ei

H + (γiH + µiH)ki2[(S
i
v −N i

v]I
i
H

+ [ki1N
i
Hα

i
v − (γiH + µiH)(αiv + µiv)]E

i
v + µivk

i
1[S

i
H −N i

H ]I iv.

Since SiH ≤ N i
H and Siv ≤ N i

v,
dL
dt
≤ 0 whenever ki2N

i
vα

i
H ≤ µiv(α

i
H + µiH) and

ki1N
i
Hα

i
v ≤ (γiH +µiH)(αiv+µiv). It follows that since all the parameters are nonnegative,

αiHα
i
vk

i
1k

i
2N

i
HN

i
v ≤ (αiH + µiH)(γiH + µiH)(αiv + µiv)µ

i
v,

or
αiHα

i
vk

i
1k

i
2N

i
HN

i
v

(αiH + µiH)(γiH + µiH)(αiv + µiv)µ
i
v

≤ 1.

Hence

R2
0,i ≤ 1,

which implies

Ri
0 ≤ 1.

Furthermore dL
dt

= 0 whenever SiH = N i
H ,E

i
H = 0, I iH = 0, Ri

H = 0, Siv = N i
v, E

i
v = 0,

I iv = 0. Therefore the largest compact invariant set {(SiH , Ei
H , I

i
H , R

i
H , S

i
v, E

i
v, I

i
v) ∈ D :

dL
dt

= 0} is the singleton E0,i. Hence by LaSalle's invariant principle , E0,i is globally
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asymptotically stable [41]. This completes the proof

2.5.2 Global stability of the Endemic Equilibrium

Theorem 2.5.2 The dynamic system (1.3.3) has an endemic equilibrium point Ee,i

that is global asymptotically stable whenever R0,i > 1.

Proof. Using the same approach as in [35], we de�ne a Lyapunov function as follows:

V = B1

(
SiH − S

?,i
H − S

?,i
H ln

(
SiH
S?,iH

))
+B1

(
Ei
H − E

?,i
H − E

?,i
H ln

(
Ei
H

E?,i
H

))
+ B2

(
I iH − I

?,i
H − I

?,i
H ln

(
I iH
I?,iH

))
+ C1

(
Siv − S?,iv − S?,iv ln

(
Siv
S?,iv

))
+ C1

(
Ei
v − E?,i

v − E?,i
v ln

(
Ei
v

S?,iv

))
+ C2

(
I iv − I?,iv − I?,iv ln

(
I iv
I?,iv

))
,

where B1, B2, C1 and C2 are constant to be determine later. Di�erentiating V with
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respect to time, t, we obtain

dV

dt
= B1

(
1− S?,iH

SiH

)
dSiH
dt

+B1

(
1− E?,i

H

Ei
H

)
dEi

H

dt
+B2

(
1− I?,iH

I iH

)
dI iH
dt

+ C1

(
1− S?,iv

Siv

)
dSiv
dt

+ C1

(
1− E?,i

v

Ei
v

)
dEi

v

dt
+ C2

(
1− I?,iv

I iv

)
dI iv
dt

= B1

(
1− S?,iH

SiH

)(
νiHN

i
H − ki1I ivSiH − µiHSiH

)
+ B1

(
1− E?,i

H

Ei
H

)(
ki1I

i
vS

i
H − (αiH + µiH)Ei

H

)
+ B2

(
1− I?,iH

I iH

)(
αiHE

i
H − (γiH + µiH)I iH

)
+ C1

(
1− S?,iv

Siv

)(
νivN

i
v − ki2I iHSiv − µivSiv

)
+ C1

(
1− E?,i

v

Ei
v

)(
ki2I

i
HS

i
v − (αiv + µiv)E

i
v

)
+ C2

(
1− I?,iv

I iv

)(
αivE

i
v − µivI iv

)
= B1ν

i
HN

i
H

(
1− S?,iH

SiH

)
+B1k

i
1I
i
vS

?,i
H −B1µ

i
HS

i
H +B1µ

i
HS

?,i
H

− B1k
i
1I
i
vS

i
H

E?,i
H

Ei
H

−B1(α
i
H + µiH)Ei

H +B1(α
i
H + µiH)E?,i

H +B2α
i
HE

i
H

− B2α
i
HE

i
H

I?,iH
I iH
−B2(γ

i
H + µiH)I iH +B2(γ

i
H + µiH)I?,iH

+ C1ν
i
vN

i
v

(
1− S?,iv

Siv

)
+ C1k

i
2I
i
HS

?,i
v − C1µ

i
vS

i
v + C1µ

i
vS

?,i
v

− C1k
i
2I
i
HS

i
v

E?,i
v

Ei
v

− C1(α
i
v + µiv)E

i
v + C1(α

i
v + µiv)E

?,i
v

+ C2α
i
vE

i
v − C2α

i
vE

i
v

I?,iv
I iv
− C2µ

i
vI
i
v + C2µ

i
vI
?,i
v . (2.5.2)

At the endemic equilibrium point Ee,i we note that ν
i
HN

i
H = ki1I

?,i
v S?,iH + µiHS

?,i
H ,

νivN
i
v = ki2I

?,i
H S?,iv + µivS

?,i
v , (αiH + µiH)E?,i

H = ki1I
?,i
v S?,iH , (αiv + µiv)E

?,i
v = ki2I

?,i
H S?,iv ,

(γiH +µiH)I?,iH = αiHE
?,i
H and µivI

?,i
v = αivE

?,i
v . Hence, the equation (2.5.2) can be written
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as

dV

dt
= B1k

i
1I
?,i
v S?,iH

(
1− S?,iH

SiH

)
+B1µ

i
HS

?,i
H

(
2− S?,iH

SiH
− SiH
S?,iH

)
+B1k1I

i
vS

?,i
H

− B1k1I
i
vS

i
H

E?,i
H

Ei
H

−B1k1I
?,i
v S?,iH

Ei
H

E?,i
H

+B1k
i
1I
?,i
v S?,iH +B2α

i
HE

i
H

− B2(γ
i
H + µiH)I iH −B2α

i
HE

i
H

I?,iH
I iH

+B2α
i
HE

?,i
H

+ C1k
i
2I
?,i
H S?,iv

(
1− S?,iv

Siv

)
+ C1µ

i
vS

?,i
v

(
2− S?,iv

Siv
− Siv
S?,iv

)
+ C1k2I

i
HS

?,i
v

− C1k2I
i
HS

i
v

E?,i
v

Ei
v

− C1k2I
?,i
H S?,iv

Ei
v

E?,i
v

+ C1k
i
2I
?,i
H S?,iv

+ C2α
i
vE

i
v − C2µ

i
vI
i
v − C2α

i
vE

i
v

I?,iv
I iv

+ C2α
i
vE

?,i
v .

Choosing B1 = 1

ki1I
?,i
v S?,iH

, B2 =
αiH+µiH

αiHk
i
1I
?,i
v S?,iH

, C1 = 1

ki2I
?,i
H S?,iv

and C2 = αiv+µ
i
v

αivk
i
2I
?,i
H S?,iv

. We can

rewrite dV
dt

as follows:

dV

dt
=

µiH
k1I

?,i
v

(
2− S?,iH

SiH
− SiH
S?,iH

)
+

µiv
k2I

?,i
H

(
2− S?,iv

Siv
− Siv
S?,iv

)
+ 6− S?,iH

SiH
− S?,iv

Siv
− Ei

HI
?,i
H

E?,i
H I

i
H

− Ei
vI
?,i
v

E?,i
v I iv

− I ivS
i
HE

?,i
H

I?,iv S?,iH E
i
H

− I iHS
i
vE

?,i
v

I?,iH S?,iv Ei
v

.

Since the arithmetic mean is greater than or equal to the geometric mean of the quanti-

ties, dV
dt
≤ 0. Also it can be further noted that dV

dt
= 0 whenever SiH = S?,iH , Ei

H = E?,i
H ,

I iH = I?,iH , Ri
H = R?,i

H , Siv = S?,iv , Ei
v = E?,i

v , I iv = I?,iv . Then, it follows that the equilib-

rium point Ee,i is the only positively invariant set {(SiH , Ei
H , I

i
H , R

i
H , S

i
v, E

i
v, I

i
v) ∈ D :

dV
dt

= 0} of the system (1.3.3) and hence by the asymptotic stability theorem, Ee,i is

globally asymptotically stable [41]. In the next chapter we construct a nonstandard

�nite di�erence method consistent with the dynamic system.
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Chapter 3

Construction and analysis of a

numerical method to simulate the

SEIR-SEI model describing the

dynamics of Zika virus disease

In this chapter we deal with the construction of a robust numerical method known as

the nonstandard �nite di�erence method for the dynamic system and the analysis of

the numerical method.

In the next section, we give a general philosophy of the nonstandard �nite di�erence

method.

3.1 What are these nonstandard �nite di�erence meth-

ods?

In the study of epidemic, mathematical models play a very signi�cant role. These

mathematical models are used to gain an in-depth knowledge about the dynamics of

48
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infectious disease spreading within a population and they can be used to draw some im-

portant conclusions. However, often times these mathematical models uses autonomous

systems of nonlinear ordinary di�erential equations which can be very complicated or

even impossible to solve for an exact solutions. This factor about solving such systems

has resulted in the discretization of these systems using well-known numerical methods.

While an exact solution to the system of nonlinear ordinary di�erential equations might

not be obtainable, with the use of numerical methods, a �nite discrete system of the

model can be constructed and solved using numerical techniques to �nd an approximate

solutions. It is very important therefore that this numerical methods mimic certain be-

havioural features of the original continuous model. However, most of these numerical

methods such as the Euler and Runge-Kutta method often fail to preserve some of the

qualitative properties of the solution corresponding to the original continuous system

such as positivity and the local stability of equilibrium points [28].

To avoid numerical instabilities and inconsistencies generated by standard �nite dif-

ference methods such as Euler method and Runge-Kutta method, a class of robust

numerical methods, known as the Non-Standard Finite Di�erence Method (NSFDM),

which are dynamically consistent with the original di�erential systems was developed

in [47].

The NSFD methods have already being applied to some epidemic models in the

following papers: [1, 2, 7, 14, 15, 17, 19, 23, 27, 29, 44, 55, 60, 69, 70, 78, 79, 84, 85].

These NSFDMs have become very popular and powerful tool to solve systems of non-

linear equations due to the fact that unlike Euler and Runge-Kutta, NSFDM do not

generate oscillations, chaos, and false steady states [55]. These methods are thoroughly

reviewed in the two survey articles [63, 64] where the author has presented di�erent

constructions of these methods provided by numerous researchers in the �eld.

In the next section, we construct a robust Nonstandard Finite Di�erence method for
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the dynamic system.

3.2 Derivation of a robust nonstandard �nite di�er-

ence method to solve the Zika virus disease model

We construct a non-standard �nite di�erence (NSFD) scheme consistent with the con-

tinuous dynamical system of (1.3.3) for the Zika virus to approximate numerically the

model equations of the system. The time domain [a, b] is subdivide in to M number of

small sub-intervals of width ` = tn+1− tn where n = 0, 1, ...,M called the step-size such

that each continuous time variable t is replaced by a discrete time tn = n`. To �nd an

approximate solution Sm,iH , Em,i
H , Im,iH , Rm,i

H , Sm,iv , Em,i
v , Im,iv to SiH , E

i
H , I

i
H , R

i
H , S

i
v, E

i
v, I

i
v

at time t = tn, we construct the discrete model in the following manner:

Sm+1,i
H − Sm,iH

φ(`)
= νiHN

m,i
H − biH

(
Nm,i
v

Nm,i
H

)
Im,iv

Nm,i
v

βiHS
m+1,i
H − µiHS

m+1,i
H ,

Em+1,i
H − Em,i

H

φ(`)
= biH

(
Nm,i
v

Nm,i
H

)
Im,iv

Nm,i
v

βiHS
m+1,i
H − αiHE

m+1,i
H − µiHE

m+1,i
H ,

Im+1,i
H − Im,iH

φ(`)
= αiHE

m+1,i
H − γiHI

m+1,i
H − µiHI

m+1,i
H ,

Rm+1,i
H −Rm,i

H

φ(`)
= γiHI

m+1,i
H − µiHR

m+1,i
H ,

Sm+1,i
v − Sm,iv

φ(`)
= νivN

m,i
v − biv

(
Nm,i
v

Nm,i
H

)
Im,im

Nm,i
H

βivS
m+1,i
v − µivSm+1,i

v ,

Em+1,i
v − Em,i

v

φ(`)
= bv

(
Nm,i
v

Nm,i
H

)
Im,im

Nm,i
H

βivS
m+1,i
v − αivEm+1,i

v − µivEm+1,i
v ,

Im+1,i
v − Im,iv

φ(`)
= αivE

m+1,i
v − µivIm+1,i

v ,



(3.2.1)

where Nm,i
H = Sm,iH + Em,i

H + Im,iH + Rm,i
H , Nm,i

v = Sm,iv + Em,i
v + Im,iv and φ(`) is a

real-valued denominator function satisfying

Φ(`) = `+O(`2) for all ` > 0, (3.2.2)
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as noted in [48].

In the next section, we look at the analysis of the proposed numerical method.

3.3 Analysis of proposed numerical method

To help with the analysis we can simplify (3.2.1) to the following explicit form:

Sm+1,i
H =

φνiHN
m,i
H + Sm,iH

1 + φ(km,i1 Im,iv + µiH)
,

Em+1,i
H =

φkm,i1 Im,iv Sm+1,i
H + Em,i

H

1 + φ(αiH + µiH)
,

Im+1,i
H =

φαiHE
m+1,i
H + Im,iH

1 + φ(γiH + µiH)
,

Rm+1,i
H =

φγiHI
m+1,i
H +Rm,i

H

1 + φµiH
,

Sm+1,i
v =

φνivN
m,i
v + Sm,iv

1 + φ(km,i2 Im,iH + µiv)
,

Em+1,i
v =

φkm,i2 Im,iH Sm+1,i
v + Em,i

v

1 + φ(αiv + µiv)
,

Im+1,i
v =

φαivE
m+1,i
v + Im,iv

1 + φµiv
,



(3.3.1)

where km,i1 = biHβ
i
H(Nm,i

v /Nm,i
H )(1/Nm,i

v ) and km,i2 = bivβ
i
v(N

m,i
v /Nm,i

H )(1/Nm,i
H ).

The positivity of the solution can easily be seen from the explicit form (3.3.1) that start-

ing with non-negative initial conditions Sm,iH (0) ≥ 0, Em,i
H (0) ≥ 0, Im,iH (0) ≥ 0, Rm,i

H (0) ≥

0, Sm,iv (0) ≥ 0, Em,i
v (0) ≥ 0, Im,iv (0) ≥ 0 at t0, since all parameters are positive, that all

solutions of system (3.2.1) subject to initial condition remain non-negative for all n ∈

M .

Following the work in [55] we take two cases of the NSFD methods:
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Case1 : We set φ(`) = `.

Case2 : We de�ne

φ(`) =
e`µ

i
H − 1

µiH
. (3.3.2)

Case 1 is called the NSFD-I and case 2 is called NSFD-II.

The �xed point of the discrete scheme can be obtained by �rst setting,

Sm+1,i
H = f1(S

m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Em+1,i
H = f2(S

m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Im+1,i
H = f3(S

m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Rm+1,i
H = f4(S

m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Sm+1,i
v = f5(S

m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Em+1,i
v = f6(S

m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Im+1,i
v = f7(S

m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ).



(3.3.3)

We can then write (3.3.1) as:

f1(S
m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ) =
φνiHN

m,i
H + Sm,iH

1 + φ(km,i1 Im,iv + µiH)
,

f2(S
m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ) =
φkm,i1 Im,iv Sm+1,i

H + Em,i
H

1 + φ(αiH + µiH)
,

f3(S
m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ) =
φαiHE

m+1,i
H + Im,iH

1 + φ(γiH + µiH)
,

f4(S
m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ) =
φγiHI

m+1,i
H +Rm,i

H

1 + φµiH
,

f5(S
m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ) =
φνivN

m,i
v + Sm,iv

1 + φ(km,i2 Im,iH + µiv)
,

f6(S
m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ) =
φkm,i2 Im,iH Sm+1,i

v + Em,i
v

1 + φ(αiv + µiv)
,

f7(S
m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ) =
φαivE

m+1,i
v + Im,iv

1 + φµiv
.



(3.3.4)
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The �xed points of discrete model are all the point satisfying the following condition,

Sm,iH = f1(S
m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Em,i
H = f2(S

m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Im,iH = f3(S
m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Rm,i
H = f4(S

m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Sm,iv = f5(S
m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Em,i
v = f6(S

m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ),

Im,iv = f7(S
m,i
H , Em,i

H , Im,iH , Rm,i
H , Sm,iv , Em,i

v , Im,iv ).



(3.3.5)

In other words, to calculate the �xed points we can set the right-hand side of the model

equations of (3.2.1) to zero. From this it can be easily veri�ed that the �xed point of

the discrete system are the same as the equilibrium points of the continuous system.

Hence, the model (3.3.1) has the disease free equilibrium point given by

Em
0,i = (Nm,i

H , 0, 0, 0, Nm,i
v , 0, 0).

and the endemic equilibrium point given by

Em
e,i = (Sm?,iH , Em?,i

H , Im?,iH , Rm?,i
H , Sm?,iv , Em?,i

v , Im?,iv ),
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where

Sm?,iH =
(Nm,i

H )2µiv(α
i
v + µiv)T

m,i
H

Nm,i
v αiHb

i
vβ

i
vQ

m,i
H

,

Em?,i
H =

(Nm,i
H )3µiHν

i
vU

m,i
H

Nm,i
v αiHb

i
vβ

i
v(α

i
H + µiH)Qm,i

H

(R2
0,i − 1),

Im?,iH =
(Nm,i

H )3µiHν
i
vU

m,i
H

N i
vb
i
vβ

i
v(α

i
H + µiH)(γiH + µiH)Qm,i

H

(R2
0,i − 1),

Rm?,i
H =

(Nm,i
H )3µiHγ

i
Hν

i
vU

m,i
H

N i
vb
i
vβ

i
vµ

i
H(αiH + µiH)(γiH + µiH)Qm,i

H

(R2
0,i − 1),

Sm?,iv =
Nm,i
H (αiH + µiH)(γiH + µiH)Tm,iv

αivb
i
Hβ

i
HQ

m,i
v

,

Em?,i
v =

(Nm,i
H )2µiHν

i
vU

m,i
H

αivb
i
Hβ

i
H(αiv + µiv)Q

m,i
v

(R2
0,i − 1),

Im?,iv =
(Nm,i

H )2µiHν
i
vU

m,i
H

biHβ
i
Hµ

i
v(α

i
v + µiv)Q

m,i
v

(R2
0,i − 1),



(3.3.6)

with

Um,i
H = αiHα

i
vγ

i
Hµ

i
v + αiHγ

i
H(µiv)

2 + αiHα
i
vµ

i
Hµ

i
v + αiHµ

i
H(µiv)

2 + αivγ
i
Hµ

i
Hµ

i
v+

γiHµ
i
H(µiv)

2 + αiv(µ
i
H)2µiv + (µiH)2(µiv)

2,

Qm,i
v = Nm,i

H αiHγ
i
Hν

i
v +Nm,i

H αiHµ
i
Hν

i
v +Nm,i

H γiHµ
i
Hν

i
v +N i

H(µiH)2νiv +Nm,i
v αiHb

i
vβ

i
vν

i
H ,

Tm,iv = Nm,i
H αivµ

i
Hµ

i
v +Nm,i

H µiH(µiv)
2 +Nm,i

v αivb
i
Hβ

i
Hν

i
v.

3.3.1 Stability analysis of the �xed points

Theorem 3.3.1 The system (3.2.1) is unconditionally locally asymptotically stable at

the disease free equilibrium, Em,i
0 = (Nm,i

H , 0, 0, 0, Nm,i
v , 0, 0) for the real-valued function

φ(`) = `+O(`2) if R0 ≤ 1, and unstable otherwise.
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Proof. The jacobian matric Jm of the discrete system (3.2.1) is given as;

Jm =



Jm1,1 0 0 0

Jm2,1 Jm2,2 0 0

Jm3,1 Jm3,2 Jm3,3 0

Jm4,1 Jm4,2 Jm4,3 Jm4,4

0 0 Jm5,3 0

0 0 Jm6,3 0

0 0 Jm7,3 0

0 0 Jm1,7

0 0 Jm2,7

0 0 Jm3,7

0 0 Jm4,7

Jm5,5 0 0

Jm6,5 Jm6,6 0

Jm7,5 Jm7,6 Jm7,7


, (3.3.7)
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where

Jm1,1 =
1

Li1 + φkm,i1 Im,iv

,

Jm1,7 = −φk
m,i
1 (φνiHN

m,i
H + Sm,iH )

(Li1 + φkm,i1 Im,iv )2
,

Jm2,1 =
φkm,i1 Im,iv

Li2(L
i
1 + φkm,i1 Im,iv )

,

Jm2,2 =
1

Li2
,

Jm2,7 =
φkm,i1 (φνHN

m,i
H + Sm,iH )

Li2(L
i
1 + φkm,i1 Im,iv )

−

φ2(km,i1 )2Im,iv (φνiHN
m,i
H + Sm,iH )

Li2(L
i
1 + φkm,i1 Im,iv )2

,

Jm3,1 =
φ2αiHk

m,i
1 Im,iv

Li2L
i
3(L

i
1 + φkm,i1 Im.iv )

,

Jm3,2 =
φαiH
Li2L

i
3

,

Jm3,3 =
1

Li3
,

Jm3,7 =
φ2αiHk

m,i
1 (φνiHN

m,i
H + Sm,iH )

Li2L
i
3(L

i
1 + φkm,i1 Im,iv )

−

φ3αiH(km,i1 )2Im,iv (φνiHN
m,i
H + Sm,iH )

Li2L
i
3(L

i
1 + φkm,i1 Im,iv )2

,

Jm4,1 =
φ3αiHγ

i
Hk

m,i
1 Im,iv

Li2L
i
3L

i
4(L

i
1 + φkm,i1 Im,iv )

,

Jm4,2 =
φ2αiHγ

i
H

Li2L
i
3L

i
4

,

Jm4,3 =
φγiH
Li3L

i
4

,

Jm4,4 =
1

Li4
,

Jm4,7 =
φ3αiHγ

i
Hk

m,i
1 (φνiHN

m,i
H + Sm,iH )

Li2L
i
3L

i
4(L

i
1 + φkm,i1 Im,iv )

−

φ4αiHγ
i
H(km,i1 )2Im,iv (φνiHN

m,i
H + Sm,iH )

Li2L
i
3L

i
4(L

i
1 + φkm,i1 Im,iv )2

,

Jm5,3 = −φk
m,i
2 (φνivN

m,i
v + Sm,iv )

(Li5 + φkm,i2 Im,iH )2
,

Jm5,5 =
1

Li5 + φkm,i2 Im,iH

,

Jm6,3 =
φkm,i2 (φνivN

m,i
v + Sm,iv )

Li6(L
i
5 + φkm,i2 Im,iH )

−

φ2(km,i2 )2Im,iH (φνivN
m,i
v + Sm,iv )

Li6(L
i
5 + φkm,i2 Im,iH )2

,

Jm6,5 =
φkm,i2 Im,iH

Li6(L
i
5 + φkm,i2 Im,iH )

,

Jm6,6 =
1

Li6
,

Jm7,3 =
φ2αivk

m,i
2 (φνivN

m,i
v + Sm,iv )

Li6L
i
7(L

i
5 + φkm,i2 Im,iH )

−

φ3αiv(k
m,i
2 )2Im,iH (φνivN

m,i
v + Sm,iv )

Li6L
i
7(L

i
5 + φkm,i2 Im,iH )2

,

Jm7,5 =
φ2αivk

m,i
2 Im,iH

Li6L
i
7(L

i
5 + φkm,i2 Im,iH )

,

Jm7,6 =
φαiv
Li6L

i
7

,

Jm7,7 =
1

Li7
At the disease free equilibrium, Em

0,i = (Nm,i
H , 0, 0, 0, Nm.i

v , 0, 0), the Jacobian matrix
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becomes

Jm
Em,io

=



1
Li1

0 0 0 0 0 −φkm,i1 Nm,i
H (φνiH+1)

(Li1)
2

0 1
Li2

0 0 0 0
φkm,i1 Nm,i

H (φνm,iH +1)

Li2L
i
1

0
φαiH
Li2L

i
3

1
Li3

0 0 0
φ2αiHk

m,i
1 Nm,i

H (φνiH+1)

Li2L
i
3L

i
1

0
φ2αiHγ

i
H

Li2L
i
3L

i
4

φγiH
Li3L

i
4

1
Li4

0 0
φ3αiHγ

i
Hk

m,i
1 Nm,i

H (φνiH+1)

Li2L
i
3L

i
4L

i
1

0 0 −φkm,i2 Nm,i
v (φνiv+1)

(Li5)
2 0 1

Li5
0 0

0 0
φkm,i2 Nm,i

v (φνiv+1)

Li6L
i
5

0 0 1
Li6

0

0 0
φ2αivk

m,i
2 Nm,i

v (φνiv+1)

Li6L
i
7L

i
5

0 0 φαiv
Li6L

i
7

1
Li7


.

Finding the eigenvalues of the Jacobian matrix is to cumbersome. However, we can �nd

the eigenvalues numerically using the set of parameters presented in table 1.3.1 and

the initial condition of patch 1 with b1v = 0.38. The basic reproduction number R0,1 =

0.57855 and the disease free equilibrium point is E0,1 = (13031020, 0, 0, 0, 9000000, 0, 0).

The eigenvalues are as follows;

0.999978082431974 + 0.000000000000000i

0.999978082431974 + 0.000000000000000i

0.884417314275595 + 0.000000000000000i

0.740471581762740 + 0.000000000000000i

0.844622231515447 + 0.114367304538911i

0.844622231515447− 0.114367304538911i

0.980520626808754 + 0.000000000000000i


.

The modulus of largest eigenvalue is 0.999978082431974 which is less than one. The

disease free equilibrium point is stable.

Theorem 3.3.2 The endemic equilibrium of the system (3.2.1), Em
e,i, is uncondition-

ally locally asymptotically stable if R0,i > 1.

Proof. We can �nd the eigenvalues numerically using the set of parameters presented in

table 1.3.1 and the initial conditions of patch 2. The corresponding basic reproduction
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number is R0,2 = 2.0802 and endemic equilibrium point is

Em
e,2 = (1344471.44, 578.29, 578.22, 4471372.05, 29995208.94, 2771.4, 2019.66). Evaluat-

ing the jacobian matrix (3.3.7) at the endemic equilibrium point Em
e,2 with φ(`) = ` =

0.5 we obtain

JmEme,2 =



0.99981 0.00000 0.00000 0.00000 0.00000 0.00000 −0.02424

0.00014 0.85516 0.00000 0.00000 0.00000 0.00000 0.02073

0.00002 0.12385 0.85516 0.00000 0.00000 0.00000 0.00300

0.00000 0.02097 0.14482 0.99998 0.00000 0.00000 0.00051

0.00000 0.00000 −1.91264 0.00000 0.88448 0.00000 0.00000

0.00000 0.00000 1.76419 0.00000 0.00002 0.81583 0.00000

0.00000 0.00000 0.14849 0.00000 0.00000 0.06867 0.88450


,

With the following sets of eigenvalues

0.999978100623357 + 0.000000000000000i

0.726275511712589 + 0.000000000000000i

0.842167836818293 + 0.131572900108535i

0.842167836818293− 0.131572900108535i

0.999916330807311 + 0.002542406511835i

0.999916330807311− 0.002542406511835i

0.884502168340660 + 0.000000000000000i


.

The modulus of largest eigenvalue is 0.999978100623357 which is less than one. The

endemic equilibrium point is stable. Readers may note that the Euler's method for the
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model (1.3.3) reads

Sm+1,i
H − Sm,iH

`
= νiHN

m,i
H − km,i1 Im,iv Sm,iH − µiHS

m,i
H ,

Em+1,i
H − Em,i

H

`
= km,i1 Im,iv Sm,iH − αiHE

m,i
H − µiHE

m,i
H ,

Im+1,i
H − Im,iH

`
= αiHE

m,i
H − γiHI

m,i
H − µiHI

m,i
H ,

Rm+1,i
H −Rm,i

H

`
= γiHI

m,i
H − µiHR

m,i
H ,

Sm+1,i
v − Sm,iv

`
= νivN

m,i
v − km,i2 Im,iH Sm,iv − µivSm,iv ,

Em+1,i
v − Em,i

v

`
= km,i2 Im,iH Sm,iv − αivEm,i

v − µivEm,i
v ,

Im+1,i
v − Im,iv

`
= αivE

m,i
v − µivIm,iv ,



, (3.3.8)

where Nm,i
H = Sm,iH +Em,i

H +Im,iH +Rm,i
H , Nm,i

v = Sm,iv +Em,i
v +Im,iv and ` is the step-size.

The explicit form takes the following form;

Sm+1,i
H = Sm,iH + `(νiHN

m,i
H − km,i1 Im,iv Sm,iH − µiHS

m,i
H ),

Em+1,i
H = Em,i

H + `(km,i1 Im,iv Sm,iH − αiHE
m,i
H − µiHE

m,i
H ),

Im+1,i
H = Im,iH + `(αiHE

m,i
H − γiHI

m,i
H − µiHI

m,i
H ),

Rm+1,i
H = Rm,i

H + `(γiHI
m,i
H − µiHR

m,i
H ),

Sm+1,i
v = Sm,iv + `(νivN

m,i
v − km,i2 Im,iH Sm,iv − µivSm,iv ),

Em+1,i
v = Em,i

v + `(km,i2 Im,iH Sm,iv − αivEm,i
v − µivEm,i

v ),

Im+1,i
v = Im,iv + `(αivE

m,i
v − µivIm,iv ).



(3.3.9)

In the next chapter we perform some numerical simulations of the NSFD methods

and compare with the numerical results obtained by the Euler method.
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Chapter 4

Simulation results and discussions

In this chapter, we present extensive numerical simulation results to demonstrate the

e�ectiveness of proposed numerical method and to see whether it gives the results that

correspond to our theoretical results. We also present some comparisons with the re-

sults obtained by some classical methods such as Euler and RK4. We present tables

showing the spectral radii of the jacobian matrices at the equilibrium points of the sys-

tem for di�erent step-sizes ` to study the convergence of the numerical methods (Euler

method, method NSFD-I and NSFD-II) to the �xed points of the system. It is however

very important to �rst note the impact of a cyclical death rate discussed in Section

(1.3.3) on the basic reproduction number R0,i and on the convergence of the numerical

method to the �xed points of the system. The cyclical death rates implies that the

basic reproduction number R0,i will not remain the same throughout of the year, it will

be higher in summer and lower in winter due to the change of the vector population

density. Figure 4 of [57] shows that the mosquito population is higher between Jan-

uary and June and lower between July and December for patch 1 while for patch 2 is

vice versa. From these observations, it can then be noted the numerical methods will

fail to converge to any �xed point on the system due to the fact that the susceptible

vector population will go up and down between the seasons. Using the NSFD-II with

the parameters in Table 1.3.1, Figure 4.0.1 shows that the basic reproduction number

R0 will not remain constant throughout the year but change with the change in the

60
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population of the vectors for patch 1 and 2, and these results are consistence with the

�ndings in [57]. As highlighted in [57], the fact that the natural death rate for the
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Figure 4.0.1 The basic reproduction number R0 obtained by method NSFD-II for
patch 1 and 2 with a cyclical death rate µiv and ` = 1.

mosquito population is cyclical, it makes it very di�cult to proceed with the analysis

of the behaviour of the numerical methods at the equilibrium points. In order to carry

out this work, we take the assumption of a constant vector population for both patches

throughout the year by taking both the natural birth rate µiv and death rate νiv to be

the average between µiv,min and µiv,max.

In order to study the convergence of the numerical methods to the disease free equi-

librium points E0,i, we use the reduced value biv = 0.38 which is chosen in such a way

that it captures the presence of the two mosquito species (Aedes aegypti and Aedes
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albopictus) that are responsible for the transmission of Zika virus. This reduced biv

is the average between the average Aedes aegypti and Aedes albopictus, see [57]. For

the vector population, it can be seen from �gure 4 of [57] that the vector population

ranges between 9 000 000 to 130 000 000 for patch 1 and between 6 000 000 to 60 000

000 for patch 2. When the vector population is kept at minimum, that is 9 000 000

for patch 1 and 6 000 000 for patch 2, the basic reproduction number with biv = 0.38

is calculated to be R0,1 = 0.57855 and R0,2 = 0.70703 which is less than 1. With these

change of parameters, we expect the numerical methods to converge to the Disease free

equilibrium points.

To study the convergence of our numerical methods to the endemic equilibrium points,

we take a constant vector population of 60 000 000 for patch 1 and 30 000 000 for

patch 2, chosen in such a way that a reasonable mosquito presence in both region is

kept in order to allow a balance interaction between the humans and vectors. In this

case, with biv = 0.5 from the table, the basic reproduction number is R0,1 = 1.9655

and R0,2 = 2.0802 which is greater than 1. The basic reproduction numbers for both

patches will remain the same throughout the year because of the noncyclic death rate.

In order to investigate the convergence of the numerical methods, we compute Table

4.0.1, 4.0.2, 4.0.3 and 4.0.4 below showing the spectral radii obtained from evaluating

the jacobian matrices of the system 3.2.1 and 3.3.9 numerically at the �xed points for

di�erent step-sizes ` for both patches.

With Sv0 = 9000000 for patch1 and Sv0 = 6000000 for patch 2 which is the aver-

age susceptible mosquito population, the numerical disease free equilibrium points are

E0,1 = (13031020, 0, 0, 0, 9000000, 0, 0) and E0,2 = (5817000, 0, 0, 0, 6000000, 0, 0). It

can be seen from Table 4.0.1 and 4.0.2 that the Euler method will only converge to

the equilibrium points for a smaller step-size, but with a large step-size, for example

` = 10 its expected to diverge. However, the NSFD methods (NSFD-I and NSFD-II)
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will converge even for a large step-size of ` = 100. To study the convergence of

Table 4.0.1 Spectral radii of the Jacobian matrix evaluated at E0,1 obtained by Euler,
method NSFD-I and NSFD-IIs for di�erent step-sizes ` for patch 1 with b1v = 0.38 and
Nv = 9000000.

E0,1 Euler NSFD-I NSFD-II
` ρ(h) Comment ρ(h) Comment ρ(h) Comment

0.001 0.99999 Converge 0.99999 Converge 0.99999 Converge
0.01 0.99999 Converge 0.99999 Converge 0.99999 Converge
0.5 0.99999 Converge 0.99999 Converge 0.99999 Converge
1 0.99998 Converge 0.99997 Converge 0.99997 Converge
5 0.99989 Converge 0.99989 Converge 0.99989 Converge
10 2.23516 Diverge 0.99978 Converge 0.99978 Converge
25 7.08790 Diverge 0.99945 Converge 0.99945 Converge
100 31.35161 Diverge 0.99781 Converge 0.99781 Converge

Table 4.0.2 Spectral radii of the Jacobian matrix evaluated at E0,2 obtained by Euler,
method NSFD-I and NSFD-IIs for di�erent step-sizes ` for patch 2 with b2v = 0.38 and
Nv = 6000000.

E0,2 Euler NSFD-I NSFD-II
` ρ(h) Comment ρ(h) Comment ρ(h) Comment

0.001 0.99999 Converge 0.99999 Converge 0.99999 Converge
0.01 0.99999 Converge 0.99999 Converge 0.99999 Converge
0.5 0.99998 Converge 0.99999 Converge 0.99999 Converge
1 0.99997 Converge 0.99997 Converge 0.99997 Converge
5 0.99989 Converge 0.99989 Converge 0.99989 Converge
10 2.43240 Diverge 0.99978 Converge 0.99978 Converge
25 7.58099 Diverge 0.99945 Converge 0.99945 Converge
100 33.32400 Diverge 0.99781 Converge 0.99781 Converge

our numerical method to the endemic equilibrium Ee,i for both patches, we use the

parameters of Table 1.3.1 with the �xed vector population. The numerical endemic

equilibrium points are

Ee,1 = (3373477.19, 1248.70, 1248.54, 9655045.57, 59990763.70, 5342.75, 3893.54) and

Ee,2 = (1344471.44, 578.29, 578.22, 4471372.05, 29995208.94, 2771.4, 2019.66) for patch

1 and 2 respectively. Table 4.0.3 and 4.0.4 shows the Euler method will fail to converge

to the endemic equilibrium points Ee,i for even a small step-size of ` = 0.001 while the

method NSFD-I and NSFD-II converge even for a larger step-size. Figures 4.0.2 and
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Table 4.0.3 Spectral radii of the Jacobian matrix evaluated at Ee,1 obtained by Euler,
method NSFD-I and NSFD-IIs for di�erent step-sizes ` for patch 1 with b1v = 0.5 and
Nv = 60000000.

Ee,1 Euler NSFD-I NSFD-II
` ρ(h) Comment ρ(h) Comment ρ(h) Comment

0.001 1.00002 Diverge 0.99999 Converge 0.99999 Converge
0.01 1.00029 Diverge 0.99999 Converge 0.99999 Converge
0.5 1.01700 Diverge 0.99998 Converge 0.99998 Converge
1 1.03799 Diverge 0.99997 Converge 0.99997 Converge
5 1.31971 Diverge 0.99989 Converge 0.99989 Converge
10 3.22254 Diverge 0.99978 Converge 0.99978 Converge
25 9.55635 Diverge 0.99945 Converge 0.99945 Converge
100 41.22540 Diverge 0.99781 Converge 0.9781 Converge

Table 4.0.4 Spectral radii of the Jacobian matrix evaluated at Ee,2 obtained by Euler,
method NSFD-I and NSFD-IIs for di�erent step-sizes ` for patch 2 with b2v = 0.5 and
Nv = 30000000.

Ee,2 Euler NSFD-I NSFD-II
` ρ(h) Comment ρ(h) Comment ρ(h) Comment

0.001 1.00003 Diverge 0.99999 Converge 0.99999 Converge
0.01 1.00034 Diverge 0.99999 Converge 0.99999 Converge
0.5 1.01938 Diverge 0.99998 Converge 0.99998 Converge
1 1.04298 Diverge 0.99997 Converge 0.99997 Converge
5 1.34923 Diverge 0.99989 Converge 0.99989 Converge
10 3.26911 Diverge 0.99978 Converge 0.99978 Converge
25 9.67278 Diverge 0.99945 Converge 0.99945 Converge
100 41.69113 Diverge 0.99781 Converge 0.99781 Converge

4.0.3 show that the Euler method and method NSFD-I and NSFD-II will successfully

converge to the disease free equilibrium E0,1 for patch 1 when the step-size is ` = 0.5.

When the step-size is increased to ` = 6, Figure 4.0.4 and 4.0.5 shows that the Euler

method generate oscillation with negative values while method NSFD-I and NSFD-II

converges successfully without generating any oscillation with negative values for the

same step-size.

Figures 4.0.6 and 4.0.6 show that the Euler method and method NSFD-I and NSFD-

II will successfully converge to the disease free equilibrium E0,2 for patch 2 when the

step-size is ` = 0.5. When the step-size is increased to ` = 8, Figure 4.0.8 and 4.0.8

shows that the Euler method generate heavy oscillation with negative values and fails
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to converge to E0,2 while method NSFD-I and NSFD-II converges successfully without

generating any oscillation with negative values for the same step-size.

Figures 4.0.10 and 4.0.11 show that the Euler method and method NSFD-I and

NSFD-II will successfully converge to the endemic equilibrium point Ee,1 for patch 1

when the step-size is ` = 0.5. When the step-size is increased to ` = 5.55, Figure

4.0.12 and 4.0.13 shows that the Euler method generate negative values while method

NSFD-I and NSFD-II converges successfully without generating any oscillation with

negative values for the same step-size.

Figures 4.0.14 and 4.0.15 show that the Euler method and method NSFD-I and

NSFD-II will successfully converge to the endemic equilibrium point Ee,2 for patch 2

when the step-size is ` = 0.5. When the step-size is increased to ` = 5.8, Figure 4.0.16

and 4.0.17 shows that the Euler method generate heavy oscillation with negative values

and fail to converge to Ee,2 while method NSFD-I and NSFD-II converges successfully

without generating any oscillation with negative values for the same step-size.

Figures 4.0.18 and 4.0.19 show that the method NSFD-I and NSFD-IIs converges

to the disease free equilibrium points E0,1 and E0,2 even for a step-size of ` = 50.

Furthermore, both numerical method produces similar results.

Figures 4.0.21 and 4.0.21 show that the method NSFD-I and NSFD-IIs converges

to endemic equilibrium points Ee,1 and Ee,2 even for a big step-size of ` = 1000.

Figures 4.0.22, 4.0.23, 4.0.24 and 4.0.25 are obtained using the parameters of Table

1.3.1 with the cyclical death rates 1.3.5 and 1.3.6 for ` = 0.5 and ` = 6. When the

parameters are not changed, Oleson observed that there is an outbreak in patch 1 that

will infect almost the entire population and visitors to the Carnival will get infected

and the virus with them home in Miami (patch 2) where they will course an outbreak

that will infect more that 75 % of the population. It can be seen that from 4.0.22 that

all the numerical method produces results identical to the ones obtained by Oleson for

patch 1. Figure 4.0.23 shows that the NSFD-I and NSFD-II produces better result than

the Euler method. For ` = 6, Figure 4.0.24 and 4.0.25 shows that the Euler method

produces oscillations and negative solutions while the NSFDs solution remain positive.
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When the b2v is reduced from 0.5 to 0.38, Oleson observes that there will be no outbreak

of the Zika virus in patch 2. Consistent with the results of Oleson, Figure 4.0.26 shows

that according to the NSFD-I and NSFD-II less than 500 people will be infected by

the virus before it dies out, whereas the Euler method produces heavy oscillation and

negative solutions.

In the next chapter, we indicate some scope for further research.
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(a)

(b)

Figure 4.0.2 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the human population of patch 1 with R0,1 = 0.57855
and ` = 0.5. http://etd.uwc.ac.za/
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(a)

(b)

Figure 4.0.3 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the vector population of patch 1 with R0,1 = 0.57855
and ` = 0.5. http://etd.uwc.ac.za/
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(a)

(b)

Figure 4.0.4 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the human population of patch 1 with R0,1 = 0.57855
and ` = 6. http://etd.uwc.ac.za/
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(a)

(b)

Figure 4.0.5 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the vector population of patch 1 with R0,1 = 0.57855
and ` = 6. http://etd.uwc.ac.za/
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(a)

(b)

Figure 4.0.6 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the human population of patch 2 with R0,2 = 0.70703
and ` = 0.5. http://etd.uwc.ac.za/
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(a)

(b)

Figure 4.0.7 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the vector population of patch 2 with R0,2 = 0.70703
and ` = 0.5. http://etd.uwc.ac.za/
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(a)

(b)

Figure 4.0.8 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the human population of patch 2 with R0,2 = 0.70703
and ` = 8. http://etd.uwc.ac.za/
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(a)

(b)

Figure 4.0.9 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the vector population of patch 2 with R0,2 = 0.70703
and ` = 8. http://etd.uwc.ac.za/
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Figure 4.0.10 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the human population of patch 1 with R0,1 = 1.9655 and
` = 0.5. http://etd.uwc.ac.za/
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Figure 4.0.11 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the vector population of patch 1 with R0,1 = 1.9655 and
` = 0.5. http://etd.uwc.ac.za/
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Figure 4.0.12 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the human population of patch 1 with R0,1 = 1.9655 and
` = 5.55. http://etd.uwc.ac.za/
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Figure 4.0.13 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the vector population of patch 1 with R0,1 = 1.9655 and
` = 5.55. http://etd.uwc.ac.za/
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(a)

(b)

Figure 4.0.14 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the human population of patch 2 with R0,1 = 2.0802 and
` = 0.5. http://etd.uwc.ac.za/



CHAPTER 4. SIMULATION RESULTS AND DISCUSSIONS 80

(a)

(b)

Figure 4.0.15 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the vector population of patch 2 with R0,1 = 2.0802 and
` = 0.5. http://etd.uwc.ac.za/
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(a)

(b)

Figure 4.0.16 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the human population of patch 2 with R0,1 = 2.0802 and
` = 5.8. http://etd.uwc.ac.za/
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(a)

(b)

Figure 4.0.17 Pro�les of solutions generated by Euler method (a) and by method
NSFD-I and NSFD-II (b) for the vector population of patch 2 with R0,1 = 2.0802 and
` = 5.8. http://etd.uwc.ac.za/
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(a)

(b)

Figure 4.0.18 Pro�les of solutions generated by method NSFD-I and NSFD-II for the
human and vector populations of patch 1 with R0,1 = 0.57855 and ` = 50.
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(a)

(b)

Figure 4.0.19 Pro�les of solutions generated by method NSFD-I and NSFD-II for the
human and vector populations of patch 2 with R0,2 = 0.70703 and ` = 50.
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Figure 4.0.20 Pro�les of solutions generated by method NSFD-I and NSFD-II for the
human and vector populations of patch 1 with R0,1 = 1.9655 and ` = 1000.
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(a)

(b)

Figure 4.0.21 Pro�les of solutions generated by method NSFD-I and NSFD-II for the
human and vector populations of patch 2 with R0,2 = 2.0802 and ` = 1000.
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Figure 4.0.22 Pro�les of solutions generated by Euler, method NSFD-I and NSFD-IIs
for the human and vector populations of patch 1 with bv = 0.5 and ` = 0.5.
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Figure 4.0.23 Pro�les of solutions generated by Euler, method NSFD-I and NSFD-IIs
for the human and vector populations of patch 2 with bv = 0.5 and ` = 0.5.
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Figure 4.0.24 Pro�les of solutions generated by Euler, method NSFD-I and NSFD-IIs
for the human and vector populations of patch 1 with bv = 0.5 and ` = 6.
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Figure 4.0.25 Pro�les of solutions generated by Euler, method NSFD-I and NSFD-IIs
for the human and vector populations of patch 2 with bv = 0.5 and ` = 6.
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Figure 4.0.26 Pro�les of solutions generated by Euler, method NSFD-I and NSFD-IIs
for the human and vector populations of patch 2 with bv = 0.38 and ` = 6.
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Chapter 5

Concluding remarks and scope for

further research

In the thesis we dealt with the construction, analysis and simulation of a robust nu-

merical method called the nonstandard �nite di�erence method to solve a Zika virus

disease model. We have experimented with two di�erent NSFDMs to explore their

features. Further details on these is beyond the scope of this work.

In the �rst chapter, we gave a brief introduction on Zika virus disease, its history,

symptoms, transmission, prevention and control. We then proceeded by giving liter-

ature review on the studies already done on the Zika virus modelling and provided a

list of Zika models developed by several authors.

In Chapter 2, we studied the qualitative features of the model developed in [57].

These qualitative features included the positivity of the solution, equilibrium points

of the model, the basic reproduction number R0,i and both the local and global sta-

bility of the equilibrium points. In the local stability of the disease free equilibrium

point E0,i, we found that when analysing the eigenvalues of the Jacobean matrix at the

disease free point E0,i, with the aid of the Routh Hurwitz principle, the equilibrium

point is locally asymptotically stable whenever R0,i < 1. In the local stability of the

endemic equilibrium point E?,i
e , we found that the endemic equilibrium point exist and
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is unique whenever R0,i > 1 and by studying the sign patterns of the Jacobean matrix

at the endemic equilibrium E?,i
e , we concluded that it is locally asymptotically stable.

In global stability of the equilibrium points, we constructed a Lyapunov function to

study the global stability of both the equilibrium point and concluded that the disease

free equilibrium point will be globally asymptotically stable whenever R0,i < 1 and the

endemic equilibrium point is globally asymptotically stable whenever R0,i > 1.

In Chapter 3, we constructed a numerical method for a typical Zika virus model.

This method is referred to as the nonstandard �nite di�erence (NSFD) method. We

started by looking at the general philosophy of the NSFD methods. We then proceeded

by designing the numerical method for the model and presented both the implicit and

explicit form of the discrete model. We then found that in the explicit form of the

discrete model, the positivity of the solution is re�ected. Following the work in [55], we

presented two cases for the step-size function. In case 1, the NSFD-I we set φ(`) = `

and case 2, the NSFD-II we set φ(`) = e`µ
i
H−1
µiH

. We then established the �xed points of

the discrete model and found that the discrete model has the same �xed points as the

continuous model. Due to the complexity of �nding the eigenvalues of the Jacobean

matrix analytically for the discrete model, we then calculated the eigenvalues of the

Jacobean matrix at the �xed point numerically by using the perimeters provided by

in [57] which are in Table 1.3.1 with φ(`) = ` = 0.5. It was then established that for

R0,1 = 0.76125 the modulus of the largest eigenvalue is less than a unit and therefore

the disease free equilibrium point Em,1
0 , is stable and for R0,2 = 2.9419 the modulus

of the largest eigenvalue is less than a unit and therefore the endemic equilibrium Em
e,2

point is stable. Lastly, as a conventional method, we constructed the Euler method for

the model and we also provided its explicit form.

In Chapter 4, we �rst provide Figure 4.0.1 containing the plot for the basic repro-

duction number R0,1 and R0,2 obtained using the NSFD-I for both patches showing

the e�ect of the cyclical mosquito death rate µiv on the basic reproduction number.
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In order to study the convergence of the numerical methods to the �xed points of the

system, we assumed a constant vector population by equating the vector death rate µiv

and birth rate νiv and took it to be the average between the maximum vector death rate

µmax,iv and the minimum vector death rate µmin,iv . We then provided spectral redii in

Table 4.0.1, 4.0.2, 4.0.3 and 4.0.4 showing the spectral radii obtained for the Jacobian

matrices evaluated at the disease free and endemic equilibrium points for both patch

1 and 2 using di�erent step-sizes. It is noted from these tables that the Euler method

will only converge for a conveniently small step-size, but as the step-size become larger

it will fail to converge. This is shown by the spectral radii becoming larger than 1 as

the step-size is increased. For the NSFD methods (NSFD-I and NSFD-II), the table

shows that the spectral radii will always remain less than 1 even for a larger step-size

and therefore the numerical method will converge even for a larger step-size. We then

provided �gures to support the results shown in the tables by o�ering plots obtained

using the NSFD-I, NSFD-II and Euler methods. We also noted that not only will the

Euler method fail to converge for a larger step-size but it also fails to preserve the pos-

itivity property of the solution while the NSFD methods does. We then conclude the

chapter by o�ering plots obtained from the numerical methods with a cyclical death

rate µiv for ` = 0.025, ` = 1 and ` = 6 which shows that the methods NSFD-I and

NSFD-II provide reliable results as ` increases.

As far as the scope for further research is concerned, I wish to mention that

• In this thesis we could only concentrate on the construction of a robust numerical

method. The focus was on the e�ect of the step-size on the performance of the

numerical methods. However, to make such methods more robust, we also wish

to investigate the e�ect of the change of parameters and initial conditions to the

model.

• We also wish to explore higher order versions of NSFDMs and to compare the

results with other contemporary higher order methods. This requires a substan-

tial amount of time and should I have a chance to pursue my PhD studies, this

http://etd.uwc.ac.za/



CHAPTER 5. CONCLUDING REMARKS AND SCOPE FOR FURTHER
RESEARCH 95

will be one of my plans.
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