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ABSTRACT 

Development and Validation of a Pharmacogenomics Profiling Panel Suitable for 

Personalizing Metformin Therapy 

L. Xhakaza 

MSc Thesis, Department of Biotechnology, University of the Western Cape 

 

The burden of non-communicable diseases (NCDs) in South Africa is predicted to 

increase substantially in the next decades if the necessary preventative measures are 

not taken. The two most common NCDs associated with rapid mortality increase 

are diabetes mellitus (DM) and hypertension (HTN). Both of these diseases, i.e DM 

and HTN, can be a result of a combination of modifiable risk factors (behavioral) 

and non-modifiable risk factors (genetic, physiological, and environmental). New 

strategies implemented to manage these diseases should include addressing both 

modifiable and non-modifiable risk factors for patients with NCDs. The aim of this 

study was to contribute to the reduction of incidence of uncontrolled T2DM among 

patients taking metformin as a first-line anti-diabetic drug, through the development 

of individualized therapy for this drug. When implemented, this could be one of the 

healthcare strategies to address non-modifiable risk factors for patients with T2DM 

as an important NCD. The first objective of the study was to explore the prevalence 

and risk factors of DM and HTN in South Africa, especially within the 

economically disadvantaged population. A cross-sectional analytical study was 

conducted in the Cecilia Makiwane Hospital serving the residents of Mdantsane 

from July 2017 – October 2017. Socio-demographic data, anthropometric 

measurements, triplicate blood pressure, fasting blood glucose and lipogram 
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analysis were obtained from 265 outpatients (18 years and older). Multivariate 

analysis showed “no salt intake”, “never smoke”, “normal” triglyceride and 

decreased high-density lipoprotein levels were significantly associated with a 

reduction of DM with adjusted odds ratio of 0.12 (95% CI:0.03-0.43; p=0.001), 

1.23 (95% CI: 0.73-2.06; p=0.013) and 0.16 (95% CI: 0.21-1.29; p=0.003), 

respectively. Underweight and normal-weight were significantly associated with a 

decreased risk of hypertension with odds ratio of 7.98 (95% CI: 2.02- 31.53; 

p=0.003) and 19.17 (95% CI: 2.53-145.20; p=0.004), respectively. More 

importantly, this investigation highlighted the extent of uncontrolled DM and HTN 

among resource-constrained patients receiving treatment in Cecilia Makiwane 

hospital, serving the rural areas in Mdantsane. The second objective of the study 

was to evaluate the suitability of nineteen pharmacogenomics biomarkers for 

individualized metformin therapy for T2DM patients. A genetic association study 

was conducted to investigate the level of association between nineteen 

pharmacogenomics biomarkers (SNPs) and response to metformin treatment, and 

to evaluate their suitability for individualizing metformin therapy for diabetic 

patients from the Bantu populations. Two multiplex MassARRAY systems (Agena 

BioscienceTM) were designed and optimized by Inqaba Biotechnical Industries 

(Pretoria, South Africa), and used for the genotyping of the selected SNPs for 140 

T2DM outpatients. The CT genotype of the FMO2 rs12752688 polymorphism was 

significantly associated with increased response to metformin therapy (OR= 0.33, 

95% CI [0.16-0.68], p-value= 0.003). A moderate association was also found 

between the GA genotype of SLC47A2 rs12943590 and a decreased response to 

metformin therapy (OR= 2.29, 95% CI [1.01-5.21], p- value=0.048   for   the   
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heterozygous   GA   genotype.   The   FMO2   rs12752688 polymorphism is 

suggested to be included in pharmacogenomics profiling systems developed to 

individualize metformin therapy for diabetic patients from the Bantu populations. 
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Chapter One 

Literature review 

 

1.1. Introduction 

South Africa is one of the countries experiencing an increasing burden of non-

communicable diseases (NCDs). NCDs are the major source of mortality and 

morbidity, which is estimated to surpass the burden of infectious diseases by 2035. 

Past decades studies have been focusing on infectious diseases and much less 

research has been conducted on NCDs (WHO, 2018a; Dalal et al, 2011; Omoleke, 

2013 Levitt et al, 2011). The world health organization (WHO) estimates that seven 

out of ten deaths are to occur due to these diseases by the year 2020 with the 

prevalence of the four related clusters diseases i.e. cardiovascular diseases (CVD), 

cancer, diabetes mellitus (DM) and chronic respiratory diseases. Approximately 

three-quarter of all NCDs deaths occur in low- and middle- income countries 

(including South Africa) (WHO, 2018a; Lozano et al, 2012; Lim et al, 2012). 

Moreover, in South Africa, NCDs occurs in both rural and urban areas however, 

most studies are done in urban areas (Mayosi et al, 2009). In 2016, it had 265000 

(51%) of NCDs death from countries deaths (WHO, 2016). Therefore, since these 

diseases are recognized as a public health problem, countries need to implement 

strategies to better the economic growth and development in South Africa (Spire et 

al, 2016; Phaswana et al, 2013). 
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1.2. Health burden of DM and HTN as major NCDs in South Africa 

The two most common NCDs associated with rapid mortality increase are diabetes 

mellitus (DM) and hypertension (HTN). They frequently occur in the same 

individuals in clinical practice. The presence of HTN does increase the risk of new-

onset of DM, as well as DM does promote the development of HTN (Mohan et al, 

2013; Volpe et al, 2015). DM is associated with elevated blood glucose levels 

whilst HTN is defined as sustaining a blood pressure of ≥140/90 mmHg (Anwer et 

al, 2011; Sowers, 2003; Shah and Afzai, 2013; Suh et al, 2009; Grossman and 

Grossman, 2017). Comorbid HTN and DM are associated with high rates of 

macrovascular and microvascular complications. DM is commonly accompanied 

by other CVD risk factors, such as hypertension, obesity, and dyslipidemia. CVDs 

are the most common cause of death in people with DM (Lorber, 2014).  
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 1.3. Risk factors for DM and HTN 

 Both these diseases, i.e. DM and HTN are medical conditions also known as non-

infectious diseases that result from the combination of modifiable- risk 

(behavioural) and non-modifiable- (genetic, physiological, and environmental) 

factors (Alberti et al, 2007) (As shown in figure 1.1). Hence, in the following 

section, we discuss these specific risk factors with respect to DM and HTN.  

 

Figure 1.1. Schematic diagram of modifiable and non-modifiable risk factors associated with DM 

and HTN (Taken from Alberti et al, 2007; Issaka et al, 2018). 

 

1.3.1. Modifiable risk factors of DM and HTN 

Since the majority of studies are done in the western countries a little is known 

about DM natural history coexisting with HTN and the clinical significance of these 

studies in African countries (Unwin et al, 2001; Levitt, 2008). In South Africa, 

about 56% of individuals between the ages of 15 – 64 years are assumed to have at 

least one modifiable risk factor for chronic diseases of lifestyle.  These specific 
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Alcohol consumption 

Physical inactivity 

 

Gender 

Family history 
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lifestyle factors play an important role in the occurrence of DM and HTN. DM and 

HTN are often linked to an increase in age and their coexistence increases in elderly 

individuals (Alberti et al, 1998; Wilson et al, 2005; Conen et al, 2007). The 

behavioral risk factors for both these diseases include unhealthy diet, obesity, 

physical inactivity, tobacco use, and harmful consumption of alcohol (Steyn et al, 

1997; Bradshaw, n.d; Alberti et al, 2007), and in terms of disability-adjusted life 

years (DALYs), attributable are associated with NCDs (Feigin, 2016).  

 

Overweight and obesity are risks factors which are linked to all four major NCDs 

(i.e. CVD, cancer, DM and chronic respiratory diseases) (Kim and Oh, 2013). In 

addition, obese people are also at risk of contracting HTN, although the majority of 

studies on DM (Issaka et al, 2018) and being overweight and/or obese increases the 

development of insulin resistance and progression of the disease.  Furthermore, 

WHO indicated that almost 90% of patients with DM and HTN have excess body 

weight (He et al, 2009b; Davy and Hall, 2004). In the sub-Saharan African 

countries, South Africa is observed to be the top one with the highest rate of 

overweight or obesity, with nearly 70% women and 39% men who are overweight 

(Ng et al., 2014). Recent studies have however shown the level of overweight 

and/or obesity in men also increase (Ardington and Case, 2009). While the overall 

level of being overweight and /or obese in South Africa is observed to be high in 

women as compared to men and with approximately 68% of women above 35 years 

old are overweight or obese based on body mass index (BMI) rate. BMI is an 

independent risk factor for both DM and HTN, defined as a measure of dividing 

weight by height squared and commonly used in the overweight and obese 
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classification in adults (National Department of health, 2017; Cois and Day, 2015: 

Issaka et al, 2018).  

 

Furthermore, Unhealthy diets include sugars, salts, and fat intakes are associated 

with CVD (risk factor is HTN), DM and other types of cancers. These diets include 

overweight and /or obesity that are associated with elevated high blood pressure, 

bad cholesterol, and resistance to the action of insulin. South Africans have shifted 

from traditional diets such as stable grains, vegetables, and fruits to the western diet 

which is cheap, energy-dense and nutritional-poor and processed foods. 

Furthermore, it has been observed that by the next coming years “western diets’ 

will have been used across the world leading to an increased level of unhealthy diets 

(Bourne et al, 2002; Igumbor et al, 2012; World Cancer Research Fund 

International and The NCD Alliance, 2014; Kunene and Taukobong, 2017).  

 

Unhealthy diets are often linked with poor physical activity. Regardless of 

strategies or attempts to decrease physical inactivity level, only a few adults and 

children in high-income countries engage in physical activity to maintain or 

improve health and physical well-being. Physical inactivity is associated with HTN 

and it is also a known risk factor for obesity and diabetes (Church, 2011; Kruger et 

al, 2005). Blood cholesterol and blood pressure are maintained with physical 

activity that leads to reduced cholesterol improving the low-density lipoprotein 

(LDL) to high-density lipoprotein (HDL) cholesterol and lowering triglycerides (Qi 

et al, 2008; Asif, 2014; Colberg et al, 2010; Kwon and Lee, 2017). Therefore, 

healthy diets and physical activity are less likely to be at the risk of contracting 
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chronic diseases. Moreover, the traditional diets which were used in the past 

decades must be implemented back.  

 

Alcohol consumption and tobacco use also play a role in the development of DM 

and HTN, and they are both are risk factors that can be easily prevented. The 

consumption of alcohol results in an increased risk of chronic liver disease, heart 

failure and certain types of malignancies (Mukong et al, 2017; Ezzati and Riboli, 

2013). Whilst, Tobacco use leads to lung cancer, heart diseases, renal failure, and 

stroke. Implementations and strategies control legislation have been comprehended 

resulting in a reduction in tobacco use (department of health, 2004a; Shisana et al, 

2013; Reddy et al, 2015). The same decline has been observed for also consumption 

of alcohol as indicated for tobacco use. Recently, the alcohol per capita 

consumption is 6.4 liters per person and expected to be 7.0 liters increase in 2025 

worldwide unless the strategies to reduce the prevalence of alcohol consumption 

are successful (WHO, 2018b).   

 

Moreover, in South Africa, alcohol consumption is approximately 5 million liters 

of alcohol annually, equivalent to 9-10 liters pure alcohol per person (Seggie, 2012) 

and tobacco use is estimated to kill 44000 South Africans every year (Teare et al, 

2018; Drope et al, 2018). The evaluation of these risk factors indicates the need for 

lifestyle changes that could lead to a reduction in morbidity and mortality caused 

by NCDs. This gives concerns about the prevalence of heavy episodic drinking and 

tobacco use in South Africa.  
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1.3.2. Non-modifiable risk factors of DM and HTN 

Non-modifiable risk factors contribute to the global burden of NCDs and are risks 

factors that cannot be reduced or controlled by intervention age, gender, ethnic 

background and family history (genetics). The risk of developing DM and/or HTN 

is significantly high when one of your family relatives is diabetic or hypertensive. 

In numerous family studies, the hereditary nature of these diseases is well 

established (Ranasinghe et al, 2015; Manning et al, 2016). Generally, DM and HTN 

occur in middle-aged adults, most frequent 45 years of age. However, recently 

health practitioners are diagnosing more and more children and adolescents with 

DM. Moreover, the older a person grows, the more likely are to suffer from heart 

disease and DM. Although all the risk factors mentioned cannot be changed, they 

can be managed early by educating people about a healthy lifestyle. According to a 

study done by Mass and Appelman, (2010), states that males are at higher risk of 

heart disease than female until the age of 75 although in other studies the difference 

remains the same (Maas and Appelman, 2010; Bots et al, 2017). These factors are 

important as they also affect prevention and treatment approaches towards the 

burden of NCDs (Manning et al, 2016) and these factors must be targeted at the 

early stage in order to reduce NCDs (Darnton et al, 2004; Singh et al, 2017).  

 

     1.4. Diabetes mellitus  

Diabetes mellitus (DM) is a group, which is characterized by hyperglycemia 

resulting from defects in insulin secretion, insulin action, or both (Association, 

2010). DM can lead to multiple diseases such as coronary artery disease, 

impairment of physical and cognitive function and/or death (Mohan et al, 2013; 

http://etd.uwc.ac.za/
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Alwan, 2011). There are two main types of DM; type 1 diabetes mellitus (T1DM) 

described as the inability to produce insulin, while type 2 diabetes mellitus (T2DM) 

produced insulin is not sufficient for its function, mainly due to environmental and 

lifestyle risks factors (Dostalek et al, 2012, Olokoba et al, 2012). It was previously 

described that a healthy lifestyle and physical activity can prevent the development 

of T2DM (Asif, 2014, Chasan-Taber, 2015).  

 

Microvascular and macrovascular complications are associated with long term 

complications of DM (Stratton et al, 2000; IDF, 2009). Diabetic patients with 

microvascular complications suffer from neuropathy leading to damage of the 

nervous system, nephropathy leading to chronic renal damage and retinopathy 

resulting to loss of vision leading to blindness (Stratton et al, 2000; Fong et al, 

2004; Silva et al, 2017; Beckman and Creagar, 2016). Microvascular complications 

lead to mortality in diabetic patients with CVD, stroke and vascular peripheral 

disease (Silva et al, 2017; Beckman and Creagar, 2016). In addition, the risk of the 

macrovascular disease under the diagnosis of DM with hyperglycemia has already 

been increased. Therefore, the identification of factors contributing to these 

complications enables these complications to be controlled and can lead to a 

significant reduction in morbidity, mortality and cost of health care. 
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     1.5. Type 2 Diabetes Mellitus (T2DM): Epidemiology and 

Pathophysiology 

The prevalence of T2DM is increasing at an alarming rate globally. Because of this 

trend, it is rapidly becoming an epidemic in some countries of the world with the 

number of people affected to double in the next decade or years (WHO, 2016). 

T2DM accounts for major cases (90-95%) of diabetes (Dastalek et al, 2012; 

Pollastro et al, 2015; Topić, 2014; Cook et al, 2007) and is the major cause of renal 

failure, obesity, stroke and cardiovascular disease (Todd and Florez, 2014). 

Moreover, it is one of the leading causes of morbidity and mortality, consuming a 

significant proportion of public health expenditure. 

 

1.5.1. Epidemiology of T2DM  

At present, 422 million people are diagnosed with DM and this number is estimated 

to reach 642 million by the year 2045. In the year 2010, an estimated 316 million 

people had impaired glucose tolerance and are at high risk from the diseases. 

Approximately 200 million people worldwide are affected with T2DM, including 

more than a quarter of elderly living in developed countries (Lorenzati et al, 2010). 

Due to population growth, aging, urbanization and increased prevalence of obesity 

and physical inactivity, the number of people with DM is increasing and about 5 

million people died of DM in 2015 globally (Steyn et al, 1997; Kengne et al, 2013; 

Peer et al, 2014; Ogurtsova et al, 2017). In the year 2009, DM was estimated to 

have caused approximately 8000 blindness and 2000 amputation cases of each year 

worldwide (Bertram et al, 2013). Moreover, the prevalence of DM in men is higher 

than in women, but more women have DM than men (Wild et al, 2004; WHO, 
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2016). In the African region, an estimated 15.5 million adults between 20 and 79 

years of age have DM, representing a regional prevalence of 2.1- 6.7% (IDF, 2017). 

Some of the most populous countries in Africa have the highest number of DM 

patients, including South Africa (1.8 million), Democratic Republic of Congo (1.7 

million), Nigeria (1.7 million) and Ethiopia (2.6 million) (IDF, 2009). DM indicates 

a significant burden on the South African health system due to its association with 

several microvascular and macrovascular complications (Pheiffer et al, 2018).  

 

1.5.2. Pathophysiology for T2DM 

Defective insulin secretion is central to the pathophysiology of T2DM. To maintain 

normal glucose levels, insulin secretion varies over a wide range in response to 

insulin sensitivity (Skyler et al, 2017). In general, plasma glucose levels in a narrow 

and well-balanced range known as homeostasis are maintained. Physiological 

conditions usually occur in this way; glucose from the diet or carbohydrate 

breakdown in the intestine and absorbed into the bloodstream (Shah et al., 2000) 

leading to an increase in blood glucose. This triggers insulin secretion from the 

pancreatic β cells by binding to specific receptors and facilitating the entry of 

glucose from the blood into the cells. The cells then use glucose for energy resulting 

in a decrease of blood glucose level (Shah et al, 2000). 

 

There are mechanisms that lead to insufficient insulin production resulting in 

secretion by destroying pancreatic β cells. This influences insulin secretion and 

releases less insulin on demand, which is called insulin resistance which at the end 

lead to the development of T2DM (Holt, 2004; Baynest, 2015; Zaccardi et al, 2016; 

http://etd.uwc.ac.za/



Chapter 1 
 

11 

 

Lee and Halter, 2017; Jin, 2009). It causes an imbalance in glucose production and 

glucose intake (Lee and Halter, 2017; Shah et al, 2000; Boden, 1996) and this result 

in hyperglycemia (as shown in Figure 1.2). Nevertheless, hyperglycemia itself can 

damage pancreatic β-cell function and worsen insulin resistance, leading to 

hyperglycemia malicious cycle that exacerbates the metabolic state (Yki-Järvinen, 

1992; Li et al, 2004).  

 

Figure 1.2. Pathophysiology of T2DM (Belleza, 2016). 

 

A number of genetic, environmental and behavioral risk factors are responsible for 

this problem. Thus, insulin resistance results in peripheral tissue, mainly liver, 

muscle and adipose (Holt, 2004; Baynest, 2015; Zaccardi et al, 2016; Lee and 

Halter, 2017; Jin et al, 2009). In addition, there are also several counter-regulatory 

hormones known to increase blood glucose include glucagon, growth hormone, 

catecholamines and glucocorticoids. This could lead to major comorbidities, such 

as CVD and stroke (Mealey and Ocampo, 2007).  
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     1.6. Drug treatment of type 2 Diabetes Mellitus (T2DM) 

1.6.1. Diagnosis of T2DM 

Diagnosis of T2DM is carried out on the basis of guidelines provided by the 

American Diabetes Association (ADA) and/or the World Health Organisation 

(WHO). These guidelines are consistent with single raised glucose reading, 

although in patients with microvascular complications with the following classic 

hyperglycaemia symptoms (polyuria, polydipsia, blurred vision, fatigue and weight 

loss) and these complications are to be noted when patients are diagnosed with 

T2DM (Cox and Edelman, 2009; Freeman and Cox, 2006; WHO, 2006; Kumar et 

al, 2016). Due to these factors, the ADA and the WHO lowered the diagnosis of 

T2DM recommended guidelines (Inzucchi, 2012).   

 

The most common tests used to diagnose diabetes are fasting blood glucose (FBG), 

postprandial blood glucose (PBG) and glycosylated hemoglobin (HbA1c). These 

diagnostic tests have recommended diagnostic cut point criteria for FBG (5.6-6.9 

mmol/L), PBG (>7.8 mmol/L) and HbA1c (≥6.5%) (SEMDSA, 2017), furthermore, 

WHO criteria cut point is slightly different to the ADAs (American Diabetes 

Association, 2015). The first diagnostic tests are the glucose and urinal test that 

determines whether glucose is present. This criterion for diagnosis is applied not 

only to adults but also to children (Emancipator, 1998). Healthy patients who have 

one or more risk factors such as obesity, HTN and family history of DM should be 

screened (Inzucchi, 2012; WHO, 2015c).   
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1.6.2. Major classes of anti-diabetic drugs 

The initial therapies recommended to prevent T2DM at an early stage are dietary 

and lifestyle modifications, yet the use of oral antidiabetic drugs plays an important 

role. These interventions and pharmacotherapy lead to the maintenance of glucose 

control and prevention of complications associated with disease (Sherifali et al, 

2010). The major classes of oral anti-diabetic drugs (OADs) include sulfonylureas 

(SUs), thiazolidinediones (TZDs), biguanides, meglitinides, insulin and glucose-

like peptide (Inzucchi et al, 2015). 

 

1.6.2.1 Sulfonylureas (SUs) 

Sulfonylureas (SU) are one of the most widely used classes of oral hypoglycemic 

agents (Topić, 2014). These SU drugs include Glibenclamide, tolbutamide, 

glimepiride, and gliclazide (Topić, 2014). Even with good efficacy, these drugs 

were associated with a number of side effects, such as weight gain and 

hypoglycemia risk (Klein et al, 2014; Pollastro et al, 2015).  

 

SUs drugs can increase the insufficient production and secretion of insulin. SUs 

enhance the release of insulin from pancreatic β-cells by binding the plasma 

membrane sulfonylurea receptor I (SURI) to the ATP k+ channel (KATP), which 

leads to the closure of the potassium channel on the β-cell islet. The inhibition of 

potassium efflux and the depolarization of the plasma membrane leads to the 

opening of channels of voltage gate (Shyng and Nichols, 1997; Semiz et al, 2013; 

Dawed et al, 2016). Resulting in the influx of calcium and a corresponding increase 

in intracellular calcium levels causing insulin to be released from β-cells. KATP is 
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a heterooctamers protein complex assembled from potassium inward rectifier 6.2 

(Kir6.2) subunit and SUR1, encoded by KCNJII (potassium inwardly-rectifying 

channel, subfamily J, member II) and ABCC8 (ATP-binding cassette transporter 

sub-family C member 8) genes respectively (Semiz et al, 2013; Li et al, 2014; 

Dawed et al, 2016).  

 

1.6.2.2. Thiazolidinediones (TZDs) 

Thiazolidinediones (TZDs), also known as glitazones, are an anti-diabetic drug that 

acts by activating their molecular target, nuclear peroxisome proliferator-activated 

receptors (PPARs) (Topić 2014). They have been synthesized to minimize the side 

effects of other diabetic drugs. TZDs improve patients ' insulin sensitivity and 

reduce hyperglycemia by reducing the fatty acid concentration and lipid access in 

the liver and muscles. The main side effects of TZDs include hypertension, hepatic 

steatosis and microalbuminuria (Karalliedde and Buckingham, 2007). The 

approved TZD drugs include troglitazone, pioglitazone, and rosiglitazone. 

However, troglitazone was removed from the market due to severe hepatotoxicity 

(Topić, 2014; Dawed et al, 2016). TZDs exact mechanisms are unclear, however, 

they primary activate PPARγ target in adipose tissue and affects glucose and lipid 

metabolism. (Topić, 2014; Semiz et al, 2014; Pollastro et al, 2015) 

 

1.6.2.3. Biguanides 

The Biguanides class of anti-diabetic drugs includes metformin, phenformin, and 

buformin. Buformin was introduced for the first time in 1958, while metformin 

(Glucophage) and phenformin were made available only in1975 (Bailey, 1992; 
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Bastaki, 2005). Both phenformin and buformin were discontinued in 1970 due to 

toxicity and high incidence lactic acidosis. Although the structure of metformin is 

more like phenformin (Figure 1.3), it has a very low incidence of lactic acidosis in 

diabetic patients (Sambol et al, 1996; Powers and D'Allesio, 2011; Tarasova et al, 

2012; Wang et al, 2003). These drugs are developed from galegine, a guanidine 

derivative found in Galega Officinalis. Metformin was approved by FDA (Food 

and Drug Administration) in 1994 (Cruzan, 1994; Goodarzi and Bryer-Ash, 2005) 

and it was recommended to be used as first-line drug therapy in treatment of 

diabetes by International Diabetes Federation (IDF) and the American Diabetes 

Association and European association, and by researchers despite their adverse 

effects (Reitman and Schadt, 2007; Todd and Florez, 2014).  

Figure 1.3. Representative of the biguanides antidiabetic class: the chemical structures of the 

biguanides drugs (Desai, 2000). 
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1.7. Metformin as a first-line anti-diabetic drug 

Metformin does not have any chemical or pharmacological relationship with any 

other class of oral antihyperglycemic agents (Ramanjireddy et al, 2011). It is a small 

water-soluble basic compound (molecular weight=129Da), which exists in 

physiological pH as an organic cation and has an insignificant binding to plasma 

proteins (Kovo et al, 2008; Graham et al, 2011). Metformin has been recommended 

as a T2DM first-line drug for over than 20 years, although its mechanism is tentative 

(Bailey, 1996; Shu et al, 2007). However, it is known that its mechanism of action 

is by indirectly activating AMPK (AMP-activated protein kinase) via the upstream 

kinase regulator (Viollet et al, 2012; Todd and Florez, 2014, Zhou et al, 2001). It is 

actively transported by organic cation transporters (OCTs), plasma membrane 

monoamine transport (PMAT) and multidrug and toxins extrusion protein (MATE) 

(Figure 1.4) (Du Plessis et al, 2015; Becker et al, 2009b; Shikata et al, 2007).  

 

Metformin is used to treat hyperglycemia by improving the sensitivity of insulin 

while reducing hepatic gluconeogenesis (Violette et al, 2012; Goswami et al, 2014; 

Chen et al, 2015a). Furthermore, it has beneficial effects on cardiovascular diseases, 

impaired glucose tolerance and insulin-sensitizing polycystic ovary syndrome and 

resulting in also less weight gain (Kirpichnikov et al, 2002; Janci et al, 2012). 

Metformin has an advantage over sulfonylurea; it does not lead to hypoglycemia or 

hyperinsulinemia as monotherapy in T2DM or healthy patients. However, the most 

common adverse effects such as gastrointestinal and lactic acidosis have been 

reported (Amod, 2012; Powers and D'Allesio, 2011) and these effects usually occur 

in the early stages of treatment.  
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1.7.1. Gastrointestinal and Lactic acidosis adverse effects 

There have been frequent reports on gastrointestinal side effects resulting from 

metformin therapy. Gastrointestinal side effects include diarrhea, abdominal pain, 

flatulence and bloating (Defronzo, 1999; Haupt et al, 1991; Tarasova et al, 2012; 

Fatima et al, 2018; Du et al, 2018). Though these side-effects are often transient 

and can be managed by reducing the dosage used and patients are also advised to 

administer the drug with meals, though, about 5% of these patients turn to recur 

even at a lower dosage (Cusi and DeFronzo, 1998; Hermann, 1979; Mkele, 2013). 

The accumulation of metformin during treatment could also cause serious 

metabolic complications such as lactic acidosis. The latter complication is 

characterized by anorexia, vomiting, abdominal pain, thirst, and nausea. Lactic 

acidosis associated with metformin is very low and it is fatal in approximately 50% 

of cases when it occurs (Papanas and Maltezos, 2009). It usually occurs due to 

overdose or in some contraindicated condition such as cardiovascular collapse, 

acute myocardial infarction, congestive heart failure or chronic metabolic acidosis, 

including diabetic ketoacidosis and liver dysfunction (Mkele, 2013). 

 

1.8. Metformin Pharmacodynamics and Pharmacokinetics 

1.8.1. Drug transporters  

Membrane transporters are a class of membrane proteins found in all organisms, 

responsible for cell homeostasis sustainability and may be key determinants of the 

safety, efficacy and pharmacokinetic profile of a drug. They control the influx of 

essential nutrients and ions and the efflux of cellular waste, xenobiotic and 

environmental toxins (Giacomini et al., 2010). Membrane transporters can 
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potentially contribute to drug permeability in cells and to drug access to their 

pharmacological and toxicological targets (Russel, 2010). Over the last 20 years, a 

large number of membranes have been identified as therapeutic goals in the 

treatment of various types of diseases such as DM, major depression, HTN and 

constipation, etc.  (Liang et al, 2015; Brockmoller and Tzetkov, 2008). Membrane 

transporters are also drug resistance determinants and are important in the 

absorption, distribution and elimination of compounds as transportation- mediated 

drug-drug interaction (DDI) (Kushuhara and Sugiyama, 2009; Müller and Fromm, 

2011; Russel, 2010). 

 

Drug-drug interaction is defined as the combination of two or more drugs in which 

one drug has a high efficiency because of the presence of the other drug (Liang et 

al, 2015). Possible DDI sites that may influence the pharmacokinetics profile are 1) 

gastrointestinal absorption, 2) binding of plasma and/or tissue proteins, 3) carrier-

mediated transportation across plasma membranes and 4) metabolism. Drug 

interaction results in adverse effects in patients and is caused by changes in 

absorption, distribution, metabolism and elimination (ADME) (Liang et al, 2015).  

 

Both the kidney and the livers are responsible for drug and xenobiotic elimination 

(Evans and McLead, 2003; Meyer Zu Schwabedissen et al, 2010). It was also found 

that the intestine, liver and kidney are the main organs that determine drug 

absorption, distribution and elimination. The regulation of the absorption, 

distribution and excretion of many medicines is said to play an important role in 

protein transport. These medicines are actively secreted through a two-step 
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membrane transport process involving separate systems on the epithelial cell brush 

and basolateral membranes (Kusuhara and Sugiyama, 2009; Russel, 2010). The 

carriers in human organisms are the largest family of these transporter proteins; 

ATP - binding cassette and solute carrier transporters (SLCs). These proteins are 

among the most widely studied transporters involved in the disposition and effect 

of drugs (Evans and McLead, 2003). 

 

In the case of metformin, the main drug transporters involved in the transport of 

this drug include the organic cation transporters (OCTs) and multidrug and toxin 

extrusion (MATEs). These transporters have been shown to directly influence the 

pharmacodynamics as well as the pharmacokinetics of the drug Becker et al, 2009b; 

He et al, 2015; Shokri et al, 2016). 

 

1.8.2. Metformin pharmacodynamics 

As mentioned above, metformin mainly involves the suppression of excess glucose 

production by reducing gluconeogenesis, reducing basal and postprandial plasma 

glucose (PPG) (Hundal et al, 2000). It stimulates glucose intake, insulin signaling, 

reduces the production of fatty acids and triglycerides and β-oxidation of fatty acids. 

However, its molecular mechanism of action remains unknown. Researchers have 

explained the mechanisms by phosphorylation and activation of AMPK in the liver 

when metformin is administered. AMPK is known as a major lipid and glucose 

metabolism regulator and is activated via the liver kinase B1 (LKBI; also known as 

Serine/Threonine Kinase 11 - STK11) kinase regulator. LKBI activation of AMPK 

is not direct targets of metformin yet metformin direct target is not fully explained. 
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Furthermore, metformin reduces ATP synthesis in some studies and inhibits the 

mitochondrial respiratory chain complex I, which eventually leads to AMPK 

activation by increasing the cellular ratio of adenosine monophosphate  (AMP): 

adenosine phosphate (ATP) (Todd and Florez, 2014; Foretz and Viollet, 2011; 

Hardie, 2007; Zhou et al, 2001). Moreover, the activation of AMPK in other studies 

leads to increased uptake of glucose by stimulation of glucose transporter type 4 

(GLUT4) (encoded by gene SLC4A2) translocation activity (Todd and Florez, 

2014; Shu et al, 2007). 

 

1.8.3. Metformin pharmacokinetics 

Metformin is a hydrophilic organic cation drug; it serves as a substrate for drug 

transporters (Distefano and Watanabe, 2010; Graham et al, 2011). The PMAT 

(encoded by SLC29A4)-transports metformin in the intestine lumen as the 

membrane is made up of lipid and it is taken up by OCT1 (encoded by SLC22A1) 

and OCT3 (encoded by SLC22A3) into the hepatocytes (Zhou et al, 2007; Todd and 

Florez, 2014). Both OCT1 and OCT3 drug transporters are expressed on the 

basolateral membrane of hepatocytes. In the kidney, metformin is not fully 

absorbed or taken up in the cell through renal epithelial cells by OCT2 and excreted 

into the urine via MATE 1 (SLC47A1) and the MATE 2 (SLC47A2) (Todd and 

Florez, 2014).  OCT2 (encoded by SLC22A2) regulates the accumulation of 

metformin in the basolateral membrane kidney and plays a major role in the 

extraction of metformin into urine via tubular secretions (Roth et al, 2011; Tarasova 

et al, 2012). MATE 1 and MATE 2 facilitates metformin excretion from 
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hepatocytes and renal epithelium into bile and urine, respectively (Distefano and 

Watanabe, 2010 Kimura et al, 2005a; 2005b) (Figure 1.4).  

 

 

Figure 1.4. Schematic diagram indicating OCT and MATE transporting route. Drugs are digested 

into the intestine where they are transported by the Plasma Membrane Monoamine Transporter 

(PMAT) into the enterocyte. OCT1 transports the drug out of the intestine into the hepatocyte. OCT1 

and OCT3 transport the drug(s) out of the intestine into the hepatocytes. MATE1 and MATE2 

transport the drug(s) from the hepatocytes into the kidney towards the tubular ducts (bile and urine) 

for excretion, which facilitated by OCT2 (Dawed et al, 2015).  

 

1.9. Pharmacogenomics of metformin response in T2DM 

1.9.1. Variability in metformin response in T2DM. 

As previously described, metformin is the first line drug prescribed to T2DM 

patients (Wang et al, 2003; Gong et al, 2012). Despite its excellent efficacy and 

safety profile, about 30-40% of these patients who have taken metformin failed to 

reach the fasting glucose level (He et al, 2015; Huang and Florez, 2011). Research 

suggests that this variation in response to metformin treatment can be attributed to 

the presence of SNPs in the drug targets, drug transporters and metabolizing 
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enzymes (Avery, 2009, Mashahit et al, 2014). Thus, these SNPs are responsible for 

inter-individual variability in pharmacokinetics, efficacy and therapeutic drug 

toxicity (Du Plessis et al, 2015; Umamaheswaran et al, 2014). Genetic variations 

in drug transporters are increasingly being recognized as a possible mechanism that 

can explain the inter-individual variability in drug efficacy and toxicity (Shu et al, 

2007). Information of SNPs commonly associated with metformin therapy 

response, including those listed in Table 1.1., is available on the 

Pharmacogenomics Knowledge Base [PharmGKB (http: //www.pharmgkb.org)], 

and other specialized databases, as well as the literature. 

 

1.9.2. Pharmacogenomics Knowledge Base (PharmGKB) 

The Pharmacogenomics Knowledge Base (PharmGKB) is a Web-based database 

that aims to aid researchers in understanding how genetic variation among 

individuals contributes to differences in reactions to drugs (Whirl‐Carrillo et al, 

2012). The level of evidence score consists of several criteria such as replication of 

the association, P value and odds ratio, if available. The criteria’s are divided into 

four levels (1-4), level 1 and 2 are divided into A, and B subtypes. In level 1, the 

annotation involves a variant-drug combination in which the majority of evidence 

shows an association of the patient drug response (Whirl‐Carrillo et al, 2012). The 

association must be replicated in more than one cohort with significant P values 

and, preferably, with a strong effect size. In level 2, the annotations are for variant–

drug combinations with moderate evidence of an association. The association for 

level 2 annotations must be replicated but may include negative studies as well 

(Whirl‐Carrillo et al, 2012). In level 3, annotations are based on a single significant 
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(not yet replicated) study or annotation for a variant-drug combination evaluated in 

multiple studies but lacking clear evidence of an association. For level 4, the 

annotations are based on a case report; on a study that did not achieve significance 

but is biologically plausible; or in vitro, molecular, or functional assay evidence 

(Whirl‐Carrillo et al, 2012). 

 

1.9.3. Association of genetic variants and metformin response 

Numerous studies investigated the associations between the genetic variants of 

OCTs and MATEs drug transporters and the clinical pharmacokinetics or efficacy 

of metformin. Furthermore, only a few studies explore genetic variation for 

metformin pharmacodynamics, which likely reflects the uncertainty surrounding 

the molecular mechanism of response (Todd and Florez, 2014).  

 

Previous studies have shown that the non-synonymous variant in the SLC22A1 gene 

is highly polymorphic and affects its functionality (Nies et al, 2011; Todd and 

Florez, 2014). A recent study by Umamaheswan et al. (2014) investigated the 

influence of genetic variation in SLC22A1; an rs622342 variant on metformin 

response in T2DM patients in South India, and has shown that it was a significant 

modulator in metformin response (Umamaheswaran et al, 2014). In another study, 

this variant was found to be associated with a blood glucose lowering effect of 

metformin (Becker et al, 2009b).  A larger cohort of studies is needed to validate 

what was predicted by Umamaheswaran et al. (2014); Becker et al. (2009b), on an 

rs622342 variant with regards to the association to metformin response. This variant 

was reported to influence the pharmacodynamics response of metformin suggesting 
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a reduction in transport activity associated with a higher reduction in HbA1c 

(Meyer Zu Schwabedissen et al, 2010). However, in attempting to replicate the 

finding of Becker et al. (2009b) to a small cohort of the Rotterdam study, no 

association was found between this variant and change in HbA1c after 6 month’s 

therapy (Becker et al, 2009b; Tkáč et al, 2013).  

 

Becker et al, (2009b) identified that the rs22899669 variant reduces the functioning 

of SLC47A1, delaying transport and elimination of metformin and eventually 

improving the glucose-lowering effect (Becker et al, 2009b). However, Tkáč et al. 

(2013), found it difficult to elucidate the effect of this variant on the mechanism for 

metformin action since the SLC47A1 rs22899669 is a non-coding intronic variant 

(Tkáč et al, 2013). He et al. (2015) identified that this non-coding variant 

(rs22899669) is in linkage disequilibrium with more than one SNP. These findings 

could be important in future treatment for T2DM.  In addition to this, the variant 

rs594709 has been shown to influence the therapeutic efficacy of metformin in 

lowering glucose levels, decreasing serum lipid and improving insulin sensitivity 

(Xiao et al, 2016). Moreover, several previous studies have also reported an 

association between metformin pharmacokinetics and an intronic variant of 

MATE1 rs2289669 and promoter variants of MATE-2K (rs34834489, rs12943590) 

(Stocker et al, 2013, Becker et al, 2009b; Chung et al, 2013). 

 

Variant rs12943590 was shown to be a significant associated with poor glycaemic 

response to metformin in newly diagnosed T2DM patients (Choi et al, 2011). 

Moreover, in other studies, it was also shown to be associated with reduced 
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metformin response in diabetic patients due to pharmacokinetics mechanism and 

pharmacodynamics (Shocker et al, 2013; Christensen et al, 2013). Another SNP in 

OCT2 (rs316019) was shown to be associated with reduced renal and secretory 

clearance of metformin (Tarasova et al, 2012). Other SNPs investigated in this 

study were also associated with metformin side effects (Tarasova et al, 2012).  

 

A role of OCT3 was studied by Chen et al. (2010c) and identified six non-

synonymous variants through sequencing analysis and only three were identified 

(i.e T44M (rs8187715), T400I (rs8187725) and V423F (1267G>T) to be 

significantly associated with the altered response of metformin action (Chen et al, 

2010c). Moreover, there are candidate gene studies that report an association with 

metformin response and efficacy. A genome-wide approach in assessing variants 

involved in metformin was hypothesized.  The GoDARTS and UKPDS groups 

conducted an investigation on the genetics of metformin response in Scottish 

individuals with T2DM and incident metformin use. The ATM (ataxia 

telangiectasia mutated) candidate gene has an SNP rs11212617 that was identified 

to have a potential to achieve HbA1c level>7% by the UK participants with T2DM 

(Van Leeuwen et al, 2012). Nevertheless, other variants have been reported to be 

associated with the function reduction in both in vivo and vitro in OCT1 

(Christensen et al, 2015). Even though, some studies show a contradictory for the 

association between the KCJII variant and SU response in combination with 

metformin. This variant has been shown to have a significantly increased risk 

failure in the SU response. In other studies, no evidence was observed of the 
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associated of SU with a decrease in HbA1c for long-term treatment (Klein et al, 

2014).  

 

Only a few studies have examined the influence of variants in FMO (1-6) on 

metformin response and effectiveness. The FMO (Flavin-containing 

monooxygenase) group is an example of the metabolizing enzymes focused on in 

the study. FMO is nicotinamide Adenine Dinucleotide Phosphate Hydrogen 

(NADPH) dependent flavoenzymes that catalyze the oxidation of nucleophilic 

nitrogen, sulfur and phosphorus atoms in a wide variety of drugs and/or pesticides. 

Three enzyme forms, FMO1 found in fetal liver, FMO2 in adult liver, and FMO3 

(located in the liver) are encoded by chromosome- clustered genes 1q23-q25 

(Ziegler, 2002; Van Berkel, 2005; Phillips et al, 1995). FMO4 and FMO5 are 

expressed in various tissues, whilst FMO6 is mostly located in kidneys, heart, 

testes, uterus, and liver (Uehara et al, 2017).  

 

However, FMO5 exhibits similar catalytic activities in rabbit, guinea pig and human 

FMO5 enzymes, which are distinct from those of other FMOs. It is not considered 

as a drug-metabolizing enzyme in contrast to other forms but it is a paralog gene 

derived from FMO2. Among its related pathways are metabolism of xenobiotic by 

cytP450 and pharmacodynamics (Overby et al, 1995; Dolphin et al, 1998). 

Breitenstein et al. (2015), identified FMO5 appears to be marginally significantly 

associated with decreases in glycemic response after exposure to metformin, 

representing an EHR-driven pharmacogenetics hypothesis that could represent a 
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novel mechanism for the biotransformation of metformin that has been previously 

unidentified (Breitenstein et al, 2015) 
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Table 1.1 Information of SNPs commonly associated with metformin therapy response. 

SNP ID Amino acid 

change 

Gene Types of gene Drug Clinical 

phenotype 

Type Level of 

evidence a 

References 

rs10213440 30362A-G PPARGCIA - Metformin - Efficacy - Tkáč et al, 

2015 

rs11212617 5285C-A ATM 

(C11orf65) 

Serine/ 

threonine 

protein kinase 

Metformin DM, T2DM Efficacy 2B Van 

Leeuwen et, 

2012 

rs12208357 R61C SLC22A1 Drug transporter Metformin - Metabolism

/PK 

3 Shu et al, 

2008, Dujic 

et al, 2017 

rs12943590 130G-A SLC47A2 Drug transporter Metformin DM Efficacy, 

metabolism/

PK 

3 Stocker et 

al, 2013, 

Chung et al, 

2013, 

Christensen 

et al, 2015 

rs2617102 4606687A>C CSMDI - Metformin - Efficacy - Breitenstein 

et al, 2015 

rs594709 160134722G-A SLC22A1 Drug transporter Metformin DM, T2DM Efficacy 4 Xiao et al, 

2016 
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rs784892 10246G-A AMHR2 - Metformin DM Efficacy, 

metabolism/

PK 

3 Goswami et 

al , 2014 

rs784888 11870G-C SPI Protein non-

coding gene 

Metformin DM, T2DM Efficacy, 

metabolism/

PK 

3 Goswami et 

al, 2014, 

Santoro et 

al, 2018 

rs34399035 1285G-A SLC47A2 Drug transporter Metformin - Metabolism

/PK 

- Choi et al, 

2011 

rs2282143 Pro341Leu SLC22A1 Drug transporter Metformin - Metabolism

/PK 

3 Yoon et al, 

2013 

rs12752688 171182499C-T FMO2 Drug 

metabolizing 

enzymes 

Metformin - Efficacy - Breitenstein 

et al, 2015 

rs1920145 171076659T-C FMO3 Drug 

metabolizing 

enzymes 

Metformin - - - Breitenstein 

et al, 2015 

rs2076322 133-126A-G FMO4 Drug 

metabolizing 

enzymes 

Metformin - Efficacy - Breitenstein 

et al, 2015 

rs2076828 698C-G SLC22A3 Drug transporter Metformin - Efficacy 3 Chen et al, 

2015a 
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rs2289669 337-158G-A SLC47A1 Drug transporter Metformin DM, T2DM, 

POS 

Efficacy 3 He et al, 

2015, Xiao 

et al, 2016, 

Tkáč et al, 

2013 

rs34059508 Gly465Arg SLC22A1 Drug transporter Metformin - Dosage, 

metabolism/

PK 

- - 

rs5219 Lys23Glu KCNJII - Metformin/ 

glibenclami

de 

DM, T2DM Efficacy 2A Sesti et al, 

2006, 

rs7541245 860C-A FMO5 Drug 

metabolizing 

enzymes 

Metformin DM Efficacy 3 Breitenstein 

et al, 2015 

rs8187725 T400I SLC22A3 Drug transporter Metformin - Metabolism

/PK 

4 Chen et al, 

2010c 

The selected SNPs were taken from the following databases: Pharmacogenomics Knowledgebase (http://www.pharmgkb.org), the UCSF-PMT. 

(http://www.pharmacogenetica.usfc.edu /) database and NCBI-SNP database (http://www.ncbi.nih.gov). POS - Polycystic ovary syndrome. DM – Diabetes Mellitus. T2DM – 

Type 2 Diabetes Mellitus.  a. data of the level of evidence from (Whirl‐Carrillo et al, 2012). 
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1.10.  Precision medicine and pharmacogenomics profiling systems 

Over the past decades, advances in pharmacogenomics have yielded new tools in 

evaluating the susceptibility and prognosis of disease as well as an unprecedented 

opportunity to individualize drug therapy (Benjeddou, n.d). New medicines are 

increasingly targeted to specific patient populations and adding much-needed 

firepower to the therapeutic armamentarium, particularly in commonly occurring 

chronic diseases such as cancer, diabetes and rare diseases (Benjeddou, n.d). Our 

knowledge of genetic contributors to a variable in new and existing drugs has 

expanded dramatically with the movement towards clinical pharmacogenomics 

implementation (Johnson, 2013).  Hence, pharmacogenomics plays a role in the 

development of rational means to optimize drug therapy with regards to the 

genotype of the patient (Aneesh et al, 2009). Pharmacogenomics, the core element 

of precision medicine, is the study of genetic variation and drug response, it has not 

only facilitated patient treatment outcomes but also increased the understanding at 

the molecular level of both disease and traditional pharmaceutics (Pirazzoli and 

Recchia, 2004; Bhathena and Spear, 2008; Eichelbaum et al, 2006). The 

understanding of human genetic findings and inter-individual variations in drug 

response has recently revealed new opportunities for personalized treatments (Issa, 

2007). Precision medicine may be described, broadly, as the tailoring of 

therapeutics to individual genetic profiles (Rich and Cefalu, 2016). It is a treatment 

aimed at the needs of a specific patient based on the genetic, biomarker, or 

phenotypic character (Jameson and Longo, 2015). Genetic variants related to drug 

ADME has been linked to inter-individual variability in drug efficacy and adverse 

effects. Hence, the identification of pharmacogenomics biomarkers has the 
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potential of optimizing treatment for individuals, and base on the new medical care 

paradigm of precision medicine (Arbitrio et al, 2018).  

 

Biomarkers are defined as a characteristic that is measured and evaluated as an 

indicator of normal biological processes, pathogenic processes or pharmacologic 

responses to a therapeutic intervention (Biomarkers Definitions Working Group, 

2001; Frank and Mittendorf, 2013). Moreover, biomarkers are used to identify 

patients who are likely to have an adverse event to a specific drug and help reduce 

adverse effects such as toxicity (Frank and Mittendorf, 2013).  Biomarkers can be 

generally distinguished in two forms i.e. prognostic and predictive biomarkers 

(Adelstein et al, 2011; Jackson and Sood, 2011). Prognostic biomarkers are used as 

indicators of disease prognosis where general information is provided about the 

prospective success of treatment, independent of the use of specific pharmaceutical 

treatment options. In contrast, predictive biomarkers confer for prediction and 

monitoring of clinical response in the establishment of patients groups for drug 

treatment response. Furthermore, predictive biomarkers are divided into three forms 

i.e. resistant, response and risk biomarkers (Jackson and Sood, 2011).   

 

Currently, biomarkers are used in genetic test kits to screen and monitor patients 

for variations in genes that influence individual response to drugs. Identifying if a 

patient carries any of genetic variants will assist in prescribing a personalized drug 

therapy, decreasing the chances of adverse drug events and increasing the 

effectiveness of the drug. (Liu et al, 2019; Ginsburg and Haga, 2019). Biomarkers 

are used also in obstetrics and pediatrics such as newborn screening and prenatal 
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screening and diagnosis and have been shown to be effective in clinical practice 

(Liu et al, 2019; Ginsburg and Haga, 2019). In addition, some pharmaceutical 

companies report biomarker strategies in research and development aiming to refine 

drug targets for selected patient populations. They also examine chemical 

compounds to identify and understand how different forms of enzymes break these 

compounds down. This leads to avoiding toxicity and improve efficacy when 

adjusting the dose of a drug based on individual genotype (Hodgson and Marshall, 

1998; Pistoi, 2002; Ginsburg and Phillips, 2018).   

 

Pharmacogenomics undoubtedly promotes the development of targeted therapies, 

as demonstrated by the approval of the several drugs by the FDA and the European 

Medicines Agency. There are currently a number of genotyping methods namely 

real-time multiplexed PCR or microarray-based assays in performing genetic 

screening of known pharmacogenomics biomarkers (Adelstein et al, 2011; Mizzi et 

al, 2014). This has led to the development of a number of commercial and in-house 

developed pharmacogenomics’ profiling systems, which are currently being used 

for the optimization of patient drug therapies. The current commercial 

pharmacogenomics profiling assays include, among others, AmpliChip CYP450 

Test™ (Roche Diagnostics, Basel, Switzerland) and Spartan RX CYP2C19 

‘bedside’ (Spartan Biosciences, Ottawa, Ontario, Canada) (Crews et al, 2012; 

Shahin and Johnson, 2013; Arranz et al, 2013) 
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1.10.1. Micro-assay AmpliChip CYP450 Test™ assay and optimization of 

warfarin treatment 

Warfarin is an anticoagulant used for the prevention of thrombosis related 

complication such as stroke and pulmonary embolism among patients with atrial 

fibrillation (Wadelius et al, 2007; Wigle et al, 2017). Patients receiving warfarin 

anticoagulation require frequent monitoring of blood clotting activity, measured by 

the prothrombin time (expressed as an international normalized ratio (INR)), 

particularly in the immediate period after the initiation of warfarin therapy 

(Musunuru et al, 2012; Martin, 2009). Vitamin K epoxide reductase complex 

subunit 1 (VKORC1) is the target enzyme warfarin, which has been significantly 

associated with warfarin sensitivity and reduced dose requirements. Warfarin has 

two isomers designated S and R with equal amounts. The more potent one is S-

warfarin, which is metabolized principally by CYP2C9, whilst the R-warfarin is 

metabolized by CYP1A2, CYP2C19, and CYP3A4 (Crews et al, 2012). There are 

two genes i.e. cytochrome P450 2C9 (CYP2C9) and VKORC1 known to be 

involved in outcomes related to warfarin therapy that accounts for more than one-

third of the inter-individual variation in stable therapeutic dosing of warfarin (Issa, 

2007; Musunuru et al, 2012). The three most important variants shown to have 

clinical implications for warfarin dosing and prevention of adverse events are the 

polymorphism of VKORC1 (rs9923231) and CYP2C9 (rs1799853, rs1057910) 

gene.  

 

There is a significant risk associated with warfarin therapy: if the dose is low, it 

leads to thromboembolism and if the dosage is too high, then it causes bleeding. 
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The visibility of metabolizing enzyme CYP450 testing was raised substantially with 

the FDA approval of the AmpliChip® CYP450 test, developed by Roche Molecular 

Diagnostics, Inc. (Arranz et al, 2013). The AmpliChip® CYP450 test utilizes DNA 

microarray technology to analyze patient genotypes for CYP450 genes CYP2D6 

and CYP2C19 (De Leon et al, 2006). Patients who possess homozygous alleles 

(wild type) metabolize warfarin completely whilst carriers of the allelic variants 

have less capacity. The carriers of allelic variants require lower doses when tested 

(Surendiran et al, 2008).  

 

1.10.2. Spartan RX CYP2C19 ‘bedside’ assay and optimization of clopidogrel 

therapy 

Clopidogrel is an oral antiplatelet prodrug prescribed to inhibit blood clots, which 

can lead to heart attack and stroke. The prodrug is metabolized by CYP2C19 into 

the active form (Kitzmiller et al, 2011). The CYP2C19 gene variants i.e. rs4244285, 

rs4986893, and rs12248560, are known to be associated with increased and 

decreased response to clopidogrel respectively (Brown and Pereira, 2018). Under 

clopidogrel pharmacogenomics profiling system, patients who carry homozygous 

allele variants rs4244285 and rs4986893 are poor metabolizers whereas patients 

with heterozygous allele are classified as intermediate metabolizers. Both these 

metabolizers lead to an increased risk of ischemic events, in particular, stent 

thrombosis and intraprocedural thrombotic events during percutaneous 

intervention. Poor metabolizers’ patients experience reduced effectiveness of the 

drug at standard dosing and alternative therapy must be considered for these 
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patients. Patients with wild type alleles confer to the desired metabolism (Brown 

and Pereira, 2018; Musunuru et al, 2012).  

 

The Spartan RX CYP2C19 is bedside DNA test that identifies carriers of the 

CYP2C19*2 (rs4244285) gene with the use of buccal swab. The CYP2C19*2 

variants are associated with the poor clopidogrel response. Patients who carry this 

variant are prescribed with an alternative drug instead of clopidogrel treatment. The 

Spartan RX CYP2C19 is used to eliminate poor response to treatment (Crews et al, 

2012; O’Connor et al, 2012). Although non-genetics factors such as age, obesity, 

gender play a part in the effect of the platelets function (Brown and Pereira, 2018) 

and other studies gave a suggestion that platelets activity testing should be 

considered in clopidogrel drug therapy. Nevertheless, genotyping may be useful to 

patients with a high risk of blood clots than the ones at lower risk (Brown and 

Pereira, 2018). Even though routine CYP2C19 testing it is not recommended, there 

are challenges with implementing pharmacokinetics guided therapy in clinical 

practice and no firm recommendations have been established regarding dose 

adjustments for CYP2C19 status (Amin et al, 2017; Knauer et al, 2015). 

 

1.10.3 Pharmacogenomics assays to predict response to statins’ therapy 

Statins are drugs used in lowering the concentration of LDL and prevent major 

coronary events (Musunuru et al, 2012, Kitzmiller et al, 2016). However, statins are 

associated with the higher risk of myotoxicity or myopathy with a higher dosage 

than recommended at the start of treatment (Musunuru et al, 2012; FDA, 2011). 

Therefore, the development of pharmacogenomics tests, which could predict 
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response to statin therapy, might have significant clinical implications. Research 

has shown genomic markers i.e. solute carrier organic anion transporter family 

member 1B1 (SLCO1B1), Kinesin-like family 6 (KIF6) and cytochrome P450 3A 

(CYP3A), which might assist in the therapy choice of patients initiating statins. For 

example, SLCO1B1 is a predictive marker that is a significant barrier for optimal 

adherence of statin-related myopathy. Approximately 50% of statin-related 

myopathy is associated with simvastatin attributed to SLCO1B1 genetic variant 

(Canestaro et al, 2012, Kitzmiller et al, 2016).  

 

Genetic variation in SLCO1B1 in relation to single dose statin plasma 

pharmacokinetics have suggested that two nonsynonymous SNPs (rs4149056 and 

rs2306283), alter statin plasma clearance. Patients with SLCO1B1 gene variant(s) 

are more likely to have severe muscle pain and/or weakness when taking statins 

(simvastatin). Moreover, alternative therapy or less simvastatin dosage is 

recommended when prescribing to patients with these two SNPs. Another example 

of a biomarker considered for the statins pharmacogenomics profiling assays is 

KIF6 (Canestaro et al, 2012; Musunuru et al, 2012; Gelissen, and McLachlan, 

2014), in terms of efficacy and genetic predisposition to possible adverse effects 

even though that aspect remains difficult (Musunuru et al, 2012; Gelissen, and 

McLachlan, 2014). A recent study done concluded that rs20455 variants in the KIF6 

gene influence patient responses to simvastatin and atorvastatin treatment (Ruiz-

Iruela, et al, 2018). However, FDA has not recommended any test in relation to 

statins yet, as more studies must be conducted. Larger studies are needed to 
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determine the effectiveness of pharmacogenomics testing in the type of statin, dose, 

and concomitant use of other drugs in various patient populations set by. 

 

More evidence is produced on abnormal metabolizers due to high genetic variation 

in individuals, which leads to a significant risk of ADRs and/or decrease in efficacy 

(Mukerjee et al, 2018). In Africa, precision medicine mechanisms are still at a 

premature stage. The majority of pharmacogenomics biomarkers with potential are 

discovered in small sample studies, which often need statistical validation in a large 

cohort of study. In fact, presently many tests and kits are for research use only 

(Zanger and Schwab, 2013; Evans and Relling, 1999). In addition, the need to be 

consideration of ethnic differences in the population in targeted genotyping that 

results in a limitation of genomic variants selection and missing others in a specific 

population (Mukerjee et al, 2018). For example, rs83495 and rs9035037 is 

implicated in the response to warfarin therapy and are commonly in Caucasians but 

not frequent in African-Americans (Li et al, 2009). Identifying pharmacogenomics 

biomarkers will assist clinicians to personalize medical care and point out the best 

drug and optimal dose for the specific individual (Matimba, 2009 Ph.D. thesis). 
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 1.11. Summary and main objectives of the study 

South Africa is one of the countries experiencing an increasing burden of non-

communicable diseases (NCDs). NCDs are the major source of mortality and 

morbidity, which is estimated to surpass the burden of infectious diseases by 2035. 

The two most common NCDs associated with rapid mortality increase are diabetes 

mellitus (DM) and hypertension (HTN). They frequently occur in the same 

individuals in clinical practice. Both of these diseases, i.e DM and HTN, can be a 

result of a combination of modifiable risk factors (behavioral factors) and non-

modifiable risk factors (genetic, physiological, and environmental). The burden of 

NCDs in South Africa is predicted to increase substantially in the next decades if 

the necessary preventative measures are not taken. Therefore new strategies are 

needed to effectively manage these diseases, which include addressing both 

modifiable and non-modifiable risk factors for patients with NCDs. 

 

The aim of the current study was to develop and validate a pharmacogenomics 

profiling panel suitable for the individualizing metformin therapy for patients from 

the Bantu populations in South Africa. The individualization of metformin therapy 

has the potential to reduce the incidence of uncontrolled T2DM among patients 

taking this first-line anti-diabetic drug. 

 

The main objective of part 1 of the study (Chapter 2) was to explore the prevalence 

and risk factors of DM and HTN in South Africa, especially within the 

economically disadvantaged population. More importantly, the extent of 

uncontrolled DM and HTN among resource-constrained patients receiving 
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treatment in Cecilia Makiwane hospital, serving the rural areas in Mdantsane. In 

part 2 of the study (Chapter 3), nineteen pharmacogenomics biomarkers were 

evaluated for their suitability for individualized metformin therapy for T2DM 

Patients. A genetic association study was conducted to investigate the level of 

association between nineteen pharmacogenomics biomarkers (SNPs) and response 

to metformin treatment, and to evaluate their suitability for individualizing 

metformin therapy for diabetic patients from the Bantu populations. 
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Chapter Two 

Socio-demographic and modifiable risk factors of 

diabetes and hypertension among resource constrained 

patients from rural areas in Mdantsane Township in 

South Africa 

2.1. Abstract 

Introduction: Diabetes mellitus and hypertension have been identified as the 

leading causes for the rise in non-communicable diseases worldwide.  The four 

major risk factors contributing to the non-communicable diseases burden are: 

tobacco use, physical inactivity, unhealthy diets and alcohol consumption.  Insight 

into the effects that risk factors have on non-communicable diseases such as  

diabetes mellitus and hypertension is crucial for effective management and 

treatment of these diseases in under-studied populations. Aim: To demonstrate the 

socio-demographic and modifiable risk factors of diabetes mellitus and 

hypertension among South Africans adult residing in resource-constraint 

Mdantsane Township.  Methods: A cross-sectional analytical study was conducted 

in the Cecilia Makiwane Hospital serving the residents of Mdantsane from July 

2017 – October 2017. Relevant data on socio-demographic, anthropometric 

measurements, triplicate blood pressure , fasting blood glucose and lipogram 

analysis were obtained from 265 outpatients (18 years and older).  Results: 

Multivariate analysis shows no salt intake, never smoke, normal triglyceride and 

normal high-density lipoprotein levels were significantly associated with reduced 

risk of DM with adjusted odds ratio of 0.21 (95% CI: 0.08-0.61; p=0.004), 0.12 
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(95% CI:0.03-0.43; p=0.001), 1.23 (95% CI: 0.73-2.06; p=0.013) and 0.16 (95% 

CI: 0.21-1.29; p=0.003), respectively. Underweight and normal-weight were 

significantly associated with a lower risk of hypertension with odds ratio of 7.98 

(95% CI: 2.02- 31.53; p=0.003) and 19.17 (95% CI: 2.53-145.20; p=0.004), 

respectively. Conclusion: The impact of diabetes mellitus and hypertension to 

society can be drastically reduced with simple lifestyle changes.  Thus, preventative 

strategies need to be addressed for large-scale screening and better management of 

these diseases to reduce the burden of Diabetes mellitus and hypertension in South 

Africa and worldwide. 
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 2.2. Introduction 

Non-communicable diseases (NCDs) have currently been identified as the leading 

cause of death worldwide.  In the past decade developing countries have shown a 

dramatic increase in NCDs (Van de Vijver et al, 2014; WHO, 2016).  The burden 

of NCDs in South Africa has increased over the past years resulting in an estimated 

37% of all-cause mortality and 16% of disability-adjusted life years (Alberts et al, 

2005; Puoane et al, 2012; Maimela et al, 2016).  Currently, diabetes mellitus (DM) 

and hypertension (HTN) are the two most prevalent NCDs associated with the rapid 

increase in mortality (WHO, 2015a; Kearney et al, 2005; Opie and Seedat, 2005, 

Centers for disease control and prevention, 2012; WHO, 2012).   

 

DM is defined as a chronic health condition associated with elevated blood sugar 

levels (American diabetes association, 2014; Pradeep and Haranath, 2014), whilst 

HTN is characterized by a systolic blood pressure ≥ 140 mmHg and diastolic blood 

pressure ≥ 90 mmHg (WHO, 2016). DM often co-exists with HTN since they both 

share common disease mechanisms and in some instances, the one condition 

exacerbates the other (Dokumnu et al, 2018). Currently, 425 million people are 

diagnosed with diabetes, whilst it is estimated that over a billion people worldwide 

are affected with HTN (WHO, 2016; IDF, 2016).  Both diseases have strongly been 

associated with an increased risk of kidney failure, obesity, stroke, blindness, nerve 

damage and cardiovascular diseases (CVD) (WHO, 2016; Todd and Florez, 2014; 

Williams, 1994; WHO, 2003; 2015c). 
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DM and HTN have been shown to have a major impact on public health funding 

consuming a significant proportion of public health spending (Kearney et al, 2005)  

However, these are described as lifestyle diseases, thus they can be prevented or 

managed by drugs and lifestyle modification (Diabetes Prevention Program 

Research Group, 2002; Griffin et al, 2011; Herman et al, 2015).  Modifiable risk 

factors associated with DM and HTN include tobacco use, alcohol consumption, 

physical activity and unhealthy diets (Forouzanfar et al, 2016).   Low- and middle-

income countries are the most affected by these risk factors (Adeniyi et al, 2016; 

WHO, 2010). 

 

In South Africa, the burden of NCDs is predicted to increase substantially in the 

next decades if the necessary preventative measures are not taken (Mayosi et al, 

2009). Furthermore, strategies need to be implemented to effectively manage these 

diseases (Ntuli et al, 2015).   Currently, there are limited studies exploring the 

prevalence and risk factors of DM and HTN in South Africa, especially within the 

economically disadvantaged population.  To address the aforementioned problem, 

the current study was initiated to evaluate the socio-demographic and modifiable 

risk factors of DM and HTN in Cecilia Makiwane hospital, serving the rural areas 

in Mdantsane.  This study generates local influential factors that contribute to the 

development of these diseases. Modifiable risk factors found significantly 

associated with diabetes and/or hypertension will be used to promote health 

education as primary prevention.  
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 2.3. Materials and Methods 

2.3.1. Study area and design 

A cross-sectional analytical study was conducted in the Cecilia Makiwane Hospital 

(Mdantsane, South Africa) from July 2017 – October 2017.  Mdantsane is located 

in the Buffalo Municipality and is a low-income residential township with a 

population of approximately 150000 (Census, 2011). The objectives of the study 

were explained to all participants and each participant signed a consent form 

indicating voluntary participation in the study.  Information sheets were provided 

in both English and IsiXhosa languages.  Prior to sampling, participants underwent 

a physical examination and medical history data were recorded. 

 

2.3.2. Study population and sampling 

Inclusion criteria for participants in this study were individuals aged ≥18 years and 

have been diagnosed with hypertension and/or diabetes for more than a year prior 

to the study. Exclusion criteria included pregnant women, patients diagnosed with 

type 1 diabetes and acute illnesses.  Age, gender, monthly income, level of 

education, lifestyle profile (i.e. physical activity and diet), family history of disease 

prevalence, smoking status and alcohol status were obtained through the interview 

from all of the participants.  The use of anti-hypertensive and antidiabetic 

medications along with the duration of disease(s) was obtained from the patients’ 

medical records.  Eligible participants (N=265) were recruited sequentially at the 

study setting over the study period.  
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2.3.3. Data collection 

A trained research nurse conducted anthropometric measurements of weight to the 

nearest 0.1 kg, height to the nearest of 0.1 cm using a stadiometer, waist 

circumference, hip circumference, and upper-arm circumference was measured 

using a tape measure.  Measurements were taken with all participants wearing 

minimal clothing and no shoes. Blood pressure (BP) was measured using a 

validated automated digital blood pressure monitor (Microlife® BP A100 Plus).  

BP was recorded in triplicate and the average was used for analysis at each visit.  

Blood glucose was measured using Accutrend ® test strips.  Body mass index 

(BMI) for each patient was calculated as weight (kg) divided by height (m2) and 

was categorized based on WHO criteria (year): underweight (<18.5 kg/m2), normal 

weight (18.5-24.9 kg/ m2), overweight (25.0-29.9 kg/ m2) and obese (30 or greater 

kg/ m2).  Patients with systolic BP (SBP) of ≥ 140 mmHg and ≥ 90 diastolic BP 

(DBP) were identified as hypertensive and patients with systolic and diastolic BP 

below 140 mmHg and 90 mmHg respectively were identified as normotensive.     

 

2.3.4. Laboratory assessment 

Fasting venous blood was obtained for all patients.  The lipid profile [which 

includes: total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL) 

and high-density lipoprotein (HDL)] for each participant was categorized according 

to the guidelines of the Heart and Stroke Foundation of South Africa (Maimela et 

al, 2016; The Heart and Stroke Foundation, 2017). In addition to this, the 

glycosylated hemoglobin (HbA1c) was assayed from blood samples of diabetic 

participants (Amod, 2012).  All blood samples were sent to the clinical laboratory 
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center, i.e. National Health Laboratory Services (NHLS) of Cecilia Makiwane 

hospital and the East London private hospital.  

 

2.3.5. Statistical analysis 

Statistical analysis was performed using Statistical Package for Social Science 

(SPSS) version 25 for Windows (SPSS Inc., Chicago, IL, USA).  The clinical 

laboratory data and anthropometric measurements were expressed as mean (n) ± 

standard deviation (SD).  Differences between groups were assessed using a chi-

square test for statistical significance.  Risk factors associated with DM and HTN 

are presented as percentages with the odds ratios (ORs) and 95% confidence 

intervals (CIs).  The p-value ≤0.005 were considered statistically significant. 
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 2.4. Results 

In the study cohort, a total of 265 outpatients (of which n=175 were female and 

n=90 were male) were interviewed during a 3-month study (Table 2.1).  The mean 

ages of men and women were 59.96±11.19 and 61.32±11.60 years, respectively.  

Other demographic, anthropometric and clinical laboratory measurements of the 

study participants are indicated in (Table 2.1).  

 

Table 2.1. Characteristics of the study subjects (n=265). 

Parameter Female (n=175) Male (n=90) Total (n=265) 

Age (years) 59.96±11.19 61.32±11.6 60.42±11.32 

Weight (Kg) 87.45±21.46 81.62±16.06 85.46±19.94 

Height (cm) 159.93±6.22 168.10±11.66 162.72±9.30 

BMI (Kg/m2) 34.18±8.27 29.77±12.93 32.68±10.29 

HbA1c (%)* 10.40±2.80 

(n=85) 

10.48±3.91 

(n=32) 

10.42±3.12 

(n=117) 

FBG (mmol/l)* 12.65±5.11 

(n=85) 

13.11±3.92 

(n=32) 

12.78±4.80 

(n=117) 

Systolic (mmHg)  155.67±20.53 157.04±21.65 156.14±20.88 

Diastolic 

(mmHg)  

92.56±13.18 93.87±13.45 93.00±13.26 

Heart rate (pbm) 84.14±13.60 80.01±14.43 82.74±13.99 

TC (mmol/L) 5.02±1.27 4.53±1.14 4.86±1.25 

HDL (mmol/L) 1.30±0.36 1.35±0.44 1.31±0.39 

LDL (mmol/L) 2.63±1.14 2.35±0.98 2.54±1.09 

TG (mmo/L) 1.71±1.01 1.88±1.06 1.77±1.03 

BMI – Body Mass Index, HbA1c - glycated hemoglobin, FBG-Fasting blood glucose, TC – Total 

Cholesterol, HDL – high-density lipoproteins, LDL – Low-Density Lipoproteins, TG – 

Triglycerides, CRT – Creatinine, GFR -  glomerular filtration rate. n – Total number of 

samples/patients, P-value > 0.05. * HbA1c and RBG were only measured for patients diagnosed 

with DM thus n vary. Values are presented as means ± standard +error of the mean 
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Table 2.2 and 2.3 indicates the socio-demographic and modifiable risk factors of 

non-diabetic and diabetic groups as well as among non-hypertensive and 

hypertensive groups. It is important to note that approximately 40% of the study 

cohort was co-morbid. In both NCDs, the proportion of females is higher than 

males, however, gender was only shown to be significantly associated amongst 

diabetic patients (p-value = 0.043). Amongst diabetic patients, smoking status; salt 

intake, TG and HDL were all significantly associated with disease incidence with 

p-values of 0.015; 0.004, 0.012 and 0.003 respectively (Table 2.2). All other 

factors, i.e. age, educational level, physical activity, alcohol consumption, TC and 

LDL were not significantly associated with DM (Table 2.2). BMI was the only 

modifiable risk factor that showed significant association amongst hypertensive 

patients with a p-value of <0.0001 (Table 2.3). Factors not significantly associated 

with HTN were: gender, age, educational level, smoking status, physical activity, 

salt intake, and alcohol consumption, TC, TG, LDL and HDL (Table 2.3). 
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Table 2.2. Socio-demographics and Modifiable risk factors among diabetes (n=265). 

 

Variables 

 

Subgroups 

Group  

X2, P-Value Non-diabetic Diabetic 

n = 148 % n=117 % 

Gender Male 58 39.2 32 27.4  

4.08, 0.040 Female 90 60.8 85 72.6 

Age Less than 50 years 28 18.9 16 13.7  

1.30, 0.260 More than 50 years 120 81.1 101 86.3 

Educational 

level 

Uneducated 12 8.2 8 6.8  

4.78, 0.190 Primary 34 23.1 29 24.8 

Secondary 97 66.0 70 59.8 

High education 4 2.7 10 8.5 

Smoking 

status 

Never smokers 99 66.9 91 77.8  

8.45, 0.015 Quit smokers 29 19.6 22 18.8 

Current smokers 20 13.5 4 3.4 

Physical 

activity 

More than 3 times / 

week 

8 5.4 8 6.8  

0.25, 0.880 

1-2 times/ week 119  92  

No physical activities 21 80.4 17 78.6 

Salt intake No salt intake 11 14.2 18 14.5  

11.15, 0.004 

 

Normal salt intake 103 7.4 88 15.4 

Increased salt intake 34 69.6 11 75.2 

Alcohol 

consumption 

Never drank 78 23.0 64 9.4 3.63, 0.160 

 Quit drinking 40 52.7 39 54.7 

Occasional drinker 30 27.0 14 33.3 

BMI 

(Kg/m2) 

<18.5 4 20.3 3 12.0  

 

0.28, 0.960 

18.5-24.9 21 2.7 17 2.6 

25.0-29.9 37 14.2 32 14.7 

30 86 25.0 64 27.6 

TC 

(mmol/L) 

Increased 52 58.1 59 55.2  

0.15, 0.700 Normal 96 35.1 58 50.4 

TG 

(mmol/L) 

Increased 52 64.9 59 49.6  

6.28, 0.012 Normal 95 35.4 58 50.4 

HDL 

(mmol/L) 

Decreased 74 64.6 36 49.6  

8.81, 0.003 Normal 69 51.7 73 33.0 

LDL 

(mmol/L) 

Increased 50 48.3 38 67.0  

0.05, 0.820 Normal 98 33.8 79 32.5 

TC= Total Cholesterol, TG= Triglyceride, HDL= High density lipoprotein, LDL= Low density lipoprotein, mmol= 

mill mole, L= litre 
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Table 2.3: Factors affecting the modifiable risk factors of hypertension in study subjects 

(n=265). 

 

Variables 

 

Subgroups 

Group  

X2, P-value Non-

hypertensive 

Hypertensive 

n = 13 % n= 252 % 

Gender Male 6 46.2 84 33.3 0.91, 0.34 

 Female 7 53.8 168 66.7 

Age Less than 50 years 4 30.8 40 15.9 1.98, 0.16 

 More than 50 years 9 69.2 212 84.1 

Educational 

level 

Uneducated 0 0 20 8.0  

 

1.46, 0.69 
Primary 4 30.8 59 23.5 

Secondary 8 61.5 159 63.3 

High education 1 7.7 13 5.2 

Smoking 

status 

Never smokers 8 61.5 182 72.2  

1.17, 0.56 Quit smokers 4 30.8 47 18.7 

Current smokers 1 7.7 23 9.1 

Physical 

activity 

More than 3 times / 

week 
0 0 16 6.3  

0.88, 0.64 

1-2 times/ week     

No physical activities 11 84.6 200 79.4 

Salt intake No salt intake 2 15.4 36 14.3  

1.84, 0.40 Normal salt intake 0 0 29 11.5 

Increased salt intake 10 76.9 181 71.8 

Alcohol 

consumption 

Never drank 3 23.1 42 16.7 3.32, 0.19 

 

 
Quit drinking 4 30.8 138 54.8 

Occasional drinker 5 38.4 74 29.4 

BMI 

(Kg/m2) 

<18.5 4 30.8 40 15.9 21.34, 

<0.0001 

 
18.5-24.9 2 15.4 5 2.0 

25.0-29.9 6 46.2 32 12.7 

30 1 7.7 68 27.1 

TC 

(mmol/L) 

Increased 4 30.8 146 58.2  

0.001,  0.98 Normal 5 38.4 98 38.9 

TG 

(mmol/L) 

Increased 8 61.5 154 61.1  

0.69, 0.41 Normal 4 30.8 107 42.5 

HDL 

(mmol/L) 

Decreased 9 69.2 145 57.5  

2.37, 0.12 Normal 2 15.4 108 44.6 

LDL 

(mmol/L) 

Increased 8 61.5 134 55.4  

0.04, 0.85 Normal 4 30.8 84 33.3 

TC= Total Cholesterol, TG= Triglyceride, HDL= High density lipoprotein, LDL= Low density lipoprotein, 

mmol= mill mole, L= litre, statistically significant are in bold (p-value-0.05) 
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Table 2.4 and 2.5 represents results of univariate and multivariate analysis for 

diabetes and hypertension. The univariate results show an association between 

diabetes and smoking status, salt intake, TG and HDL (Table 2.4). The results gave 

an indication that smoking status has an impact on diabetes using current smokers 

as the baseline, those who have quit smoking had significantly lesser odds (p-value 

= 0.055) of diabetes, while the odds of those who never smoked was even further 

reduced (p- value = 0.001) (Table 2.4). Furthermore, no salt intake, normal TG and 

normal HDL-C levels demonstrated significantly higher odds (p-value < 0.01) in 

decreasing the risk of diabetes. Gender was not significantly associated with 

diabetes (p-value = 0.210). In table 2.5, participants who are overweight (as per 

WHO standards) have a higher risk of hypertension (p-value = 0.580). A decreased 

in BMI in comparison to obese has higher odds in decreasing the risk of 

hypertension (p-value=0.004 and p-value=0.006). 

 

 

Multivariate logistic regression analysis showed that after adjusting for all 

significant factors, “increased salt intake” and “never smoked” were significantly 

associated with DM and BMI was significantly associated with HTN (Table 2.4 

and 2.5). 
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Table 2.4. Univariate and multivariate analysis for risk factors of diabetes status 

 

Factors  
Diabetic 

N (%) 

Non-

Diabetic 

N (%) 

Unadjusted Odds 

ratio 

Adjusted odds 

ratio 

 

P-

value 

Gender  

Male 58 (39.2) 32 (27.4) 1 1  

Female 90 (60.8) 85 (72.6) 1.71 (1.01-2.89)* 1.55 (0.78-3.1) 0.212 

Salt intake 

Increased salt 

intake 

34 (30.0) 11 (9.4) 1 1  

Normal salt 

intake 

103 (69.6) 88 (75.2) 2.64 (1.26-5.52) 0.55 (0.24-1.25) 0.153 

No salt intake 11 (7.4) 18 (15.4) 5.06 (1.84-13.92)* 0.21 (0.08-0.61)* 0.002* 

Smoking status 

Current 

smokers 

20 (13.5) 4 (3.4) 1 1  

Quit smoking 29 (19.6) 22 (18.8) 0.83 (0.44-1.54) 0.27 (0.07-1.03) 0.055 

Never smoke 99 (66.9) 91 (77.8) 0.26 (0.08-0.88)* 0.12 (0.03-0.43)* 0.031* 

TG- Cholesterol 

Increased level 52 (35.1) 59 (50.4) 1 1  

Normal level 96 (64.9) 58 (49.6) 0.53 (0.33-0.87)* 1.23 (0.74-2.06) 0.013* 

HDL-Cholesterol 

Decreased 

level 

74 (51.7) 36 (33.0) 1 1  

Normal level 69 (48.3) 73 (67.0) 0.46 (0.27-0.77)* 0.16 (0.21-1.29) 0.003* 

Statistically significant are in bold (*P-value <0.05) 
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Table 2.5. Univariate and multivariate analysis for risk factors of hypertension 

Factors Hypertensive 

N (%) 

Non-

hypertensive 

N (%) 

Unadjusted Odds 

ratio 

Adjusted odds 

ratio 

P-

value 

BMI 

>30 4 (30.8) 146 (58.2) 1 1  

25.0-29.9 1 (7.7) 68 (27.1) 1.86 (0.20-17.0) 0.58 (0.06-5.40) 0.635 

18.5-24.9 6 (46.2) 32 (12.7) 0.15 (0.04-0.55)* 7.98 (2.02-31.53)* 0.003* 

<18.5 2 (15.3) 5 (2.0) 0.07 (0.01-0.47)* 19.17 (2.53-145.2)* 0.004* 

Smoking status 

Current smokers 1 (4.2) 23 (9.1) 1 1  

Quit smoking 4 (7.8) 47 (18.7) 0.51 (0.05-4.83) 3.29 (0.31-34.89) 0.323 

Never smoke 8 (4.2) 182 (72.2) 0.99 (0.12-8.27) 3.41 (0.34-34.70) 0.300 

Alcohol consumption 

Occasional drinker 4 (30.8) 40 (15.9) 1 1  

Quit drinking 5 (38.4) 74 (29.3) 0.68 (0.17-2.66) 0.54 (0.12-2.38) 0.417 

Never drank 4 (30.8) 138 (54.8) 0.29 (0.07-1.21) 0.38 (0.08-1.74) 0.212 

Statistically significant are in bold (*P-value <0.05) 
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2.5. Discussion 

The African region has been identified to have the highest burden of DM and HTN 

(IDF, 2016; WHO, 2015b).   In Africa, DM is estimated at 15.5 million adults aged 

between 20-79 years (IDF, 2017) and HTN is estimated at 46% in adults >25 years 

(WHO, 2015b).  The ever-increasing numbers of individuals diagnosed with these 

diseases are of great concern across the world especially in middle- and low-income 

countries (WHO, 2015b). The present study highlights the burden and associated 

risk factors of DM and HTN in Mdantsane, a resource-constrained township of 

South Africa.   

 

South Africa has been reported to have the highest incidence of DM in the African 

continent (IDF, 2016).  Amongst the modifiable risk factors, a significant association 

with decreased risk was shown with no tobacco intake, no salt intake, normal level TG and 

HDL. Tobacco smoking is well established as a risk factor for multiple diseases and 

has been associated with DM in multiple cohort studies (US Department of Health 

and Human Services, 2004a; Willi et al, 2007; Cassano et al, 1992).  The present 

study showed that smoking was associated with the probability of developing DM.  

This finding is consistent with previous studies conducted in Korea (Jee et al, 2003; 

Kim and Oh, 2013). Current smokers and ex-smokers display a greater probability 

of developing DM than non-smokers, however, in this study, the increased risk of 

ex-smokers were not statistically significant.  Previous studies conducted by Jee et 

al. (2010) and Hur et al. (2007) also reported the increased risk of ex-smokers as 

insignificant (Jee et al, 2010; Hur et al, 2007).   
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WHO (2016) recommends that patients with DM should reduce their dietary salt 

intake (WHO, 2016). The precise relationship between dietary salt intake and DM 

is not well defined; however, excessive salt intake is well associated with 

hypertension and CVDs.  In the present study, increased salt intake was 

significantly associated with the incidence of DM.  Previous studies also 

demonstrated an association between high dietary salt intake and DM (Hu et al, 

2005; Ekinci et al, 2010; 2011). Increased TG levels have been associated with an 

increased risk of DM (Experience of an international collaborative group, 1982; 

Nomura et al, 1991; Sorlie and Feileib, 1982) and in this study cohort, similar 

results were observed.  

 

In addition, this study also found that the odds of having DM were increased with 

a decrease in HDL.  Similar findings have been reported in African (Motala et al, 

2011; Tagoe and Amo-kodieh, 2013; Sumner et al, 2010; Fagot-Campagna et al, 

1999), European (Njølstad, 1998) and United States communities (Haffner et al, 

1990; Montonen et al, 2011). Lower levels of HDL concentrations have been 

associated with many diseases such as CVDs (Gordon et al, 1977, Gordon et al, 

1989; Sharrett et al, 2001; Karadag et al, 2009), nephropathy (Morton et al, 2012) 

and coronary heart disease (Kucharska-Newton, 2008; Filippatos and Elisaf, 2013). 

Although levels of TC and LDL in diabetic individuals are reportedly comparable 

with that found in non-diabetics, low levels of HDL and elevated TG have been 

reported in T2DM patients as the probable cause of CVD (Gordon et al, 1977; 1989; 

Sharrett et al, 2001). It has also been observed that HDL alone might not be a good 

indicator of increased DM risk since most of the subjects had lower total 
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cholesterol.  Moreover, lower levels of HDL in the present study might be because 

of the lower cholesterol. 

 

A high BMI is a risk factor that is often associated with DM (Al-Nsour, 2012), 

however, in this study; it was significantly associated with HTN since DM and HTN 

co-exist in approximately 40% of the study cohort, this could be an explanation for 

this observation.  Furthermore, many studies suggest that a high BMI contributes 

to hypertension (Vasan et al, 2002; Redon et al, 2008; Rudetsikira et al, 2012; 

Mulenga et al, 2013; Reddy and Prabhu, 2005). It is well established that smoking 

increases the risk of hypertension; however, the significance of this association may 

differ between populations (Dhungana et al, 2016). In this study, no significant 

association was observed between hypertension and smoking status.  These findings 

are contrary to other studies (Pandey et al, 2009; Shanthirani et al, 2003; Singh et 

al, 2011, Mohan et al, 2007).   
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 2.6. Summary 

It can be concluded that there is a significant burden of DM and HTN in the rural 

areas of Mdantsane, Eastern Cape.  In summary, a lower risk of DM was associated 

with no “salt intake”, “never smoke”, and normal levels of TG and HDL whilst a lower risk 

of hypertension was associated with decreased BMI. Development of best practices for 

affordable and effective programs in screening, prevention, detection and treatment 

of DM and HTN is essential.  In order to reduce the burden of NCDs, 

comprehensive intervention strategies should be implemented across the country. 

Future studies with a larger sample size should be done to identify or generate local 

modifiable risk factors for the development of DM and HTN.  
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Chapter Three 

Evaluation of the Suitability of Nineteen 

Pharmacogenomics Biomarkers for Individualized 

Metformin Therapy for Type 2 Diabetes Patients 

 

3.1. Abstract 

Introduction: Type 2 diabetes mellitus is a progressive metabolic disease 

characterized by relative insulin insufficiency and insulin resistance resulting in 

hyperglycemia. Metformin is currently a first-line drug used to treat type 2 diabetes. 

Despite its widespread use, there is considerable variation in response to metformin; 

with more than one-third of the patients failing to achieve adequate glycaemic 

control. Numerous studies have reported the involvement of single nucleotide 

polymorphisms and their interactions in genetic pathways i.e. pharmacodynamics 

and pharmacokinetics of the drug. Aim: to investigate the genetic association 

between nineteen pharmacogenomics biomarkers (SNPs) and response to 

metformin treatment, and to evaluate their suitability for individualizing metformin 

therapy for diabetic patients.  Methods: Two multiplex MassARRAY systems 

(Agena BioscienceTM) were designed and optimized by Inqaba Biotechnical 

Industries (Pretoria, South Africa), and used for the genotyping of the selected 

SNPs for 140 T2DM outpatients. Results: The CT genotype of the FMO2 

rs12752688 polymorphism was significantly associated with increased response to 

metformin therapy (OR= 0.33, 95% CI [0.16-0.68], p-value= 0.003). A moderate 

association was also found between the GA genotype of SLC47A2 rs12943590 and 
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a decreased response to metformin therapy (OR= 2.29, 95% CI [1.01-5.21], p-

value=0.048 for the heterozygous GA genotype. Conclusion: To our knowledge, 

this is the first study that investigated the association between genetic variants and 

responsiveness to medication for diabetic patients from the indigenous Bantu- 

population of South Africa. The FMO2 rs12752688 polymorphism is suggested to 

be included in pharmacogenomics profiling systems developed to individualize 

metformin therapy for diabetic patients from the Bantu populations.  
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 3.2. Introduction 

The prevalence of diabetes mellitus (DM) is increasing at an alarming rate and 

imposing a burden on the economy worldwide (Pheiffer et al, 2018; WHO, 2018b). To 

date, diabetes remains the leading cause of premature deaths and cardiovascular 

diseases globally (IDF, 2017; Ogurtsova, 2017). Currently, 415 million people in the 

world are living with diabetes and the number is expected to increase to 629 million by 

the year 2045, and about 55% of these cases are expected to be of type 2 diabetes 

mellitus (T2DM) (IDF, 2017). According to the International Diabetes Federation 

(IDF), 15.5 million adults in Sub-Saharan Africa between the ages of 20 and 79 are 

living with diabetes, with the highest prevalence observed amongst adults between the 

ages of 55 and 65.  Moreover, within the Southern African region, there is a high 

prevalence of T2DM and has increased significantly in the last decade, particularly in 

urban dwelling populations (IDF, 2017). 

 

T2DM, also referred to as insulin-independent diabetes, is a progressive metabolic 

disease that is characterized by obesity, impaired insulin action, insulin secretory 

dysfunction and increased endogenous glucose output (White, 2003; Donath et al, 

2005; Nieto-Vazquez et al, 2008; Tara et al, 2008; Abdul-Ghani and DeFronzo, 2010; 

Babu et al, 2013). Diet and other lifestyle modifications are usually the initially 

implemented therapies in T2DM management (Inzucchi et al, 2012).  However, the 

use of oral anti-diabetic (OAD) drugs plays a key role in disease progression and 

management (Sharifali et al, 2010; Daniels et al, 2016). The commercially available 
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OADs include biguanides such as metformin, sulfonylureas (SUs), thiazolidinediones 

(TZDs), meglitinides, insulin and glucose-like peptides. Amongst these drugs, 

metformin remains the most commonly prescribed anti-diabetic drug worldwide 

(Daniels et al, 2016; Inzucchi et al, 2015). Despite metformin’s widespread use, its 

mechanism of action is not fully understood. Even so, studies have shown that it 

alleviates hyperglycemia without imposing the risk of hypoglycemia (Hundal et al, 

2000, Johnson et al, 2002; Bruijstens et al, 2008; Cho et al, 2015; Roumie et al, 2016). 

Metformin exerts its anti-diabetic properties through inhibiting the production of 

hepatic glucose, reducing intestinal glucose absorption, and improving glucose uptake 

and utilization in peripheral tissue (Hundal et al, 2000; Cho et al, 2015; Argaud et al, 

1993). Moreover, the drug is also known to improve, oxidative stress, insulin 

resistance, endothelial dysfunction and fat distribution in T2DM patients (Alexandre 

et al, 2008; Wang et al, 2013; Kristensen et al, 2014; Duca et al, 2015; Chen et al, 

2015b). 

 

The estimated percentage of adherence in T2DM patients ranges from 36% - 93% on 

6-24 months treatment (Cramer and Pugh, 2005; García-Pérez et al, 2013). Thus far, 

about one-third of patients fail to obtain acceptable glycaemic control with metformin 

monotherapy (Fonseca, 2009; Diabetes Prevention Program Research Group, 2012; 

Desai et al, 2012). Literature suggests that inter-individual variability in the efficacy 

together with adverse drug reactions are common amongst patients undergoing 

metformin therapy. These differences are brought by a variety of factors such as 
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gender, age, body weight, lifestyle and most likely genetic factors. Genetic variations 

in drug metabolizing enzymes, as well as drug transporters, have been shown to 

account for the differences in drug response among patients (Evans and Johnson, 

2001). Furthermore, genetic variation presented by drug transporter genes such as 

organic cation transporters (OCTs) and multidrug and toxin extrusion (MATEs) which 

are involved in metformin transport, have been shown to directly influence the 

pharmacodynamics as well as the pharmacokinetics of the drug Becker et al, 2009b; 

He et al, 2015; Shokri et al, 2016). 

 

Although some variants presented in the form of SNPs have been accounted for, there 

is still a large number that has not been associated with the T2DM phenotype or 

metformin use, particularly in populations of African origin. The African population 

presents a great genetic variation in comparison to non-African populations (Krause, 

2015). The South Africa population presents diverse genetic variability, which has 

offered unique opportunities to researchers in the field of human and medical genetics 

(Krause, 2015; Jacobs et al, 2014). The genetic diversity presented by the indigenous 

populations of South Africa is relevant for improving diagnostic techniques as well as 

the efficacy of treatment for complex medical conditions such as DM, cardiovascular 

diseases and cancer. Moreover, studying the genetic variation within these populations 

is relevant in the context of precision medicine, which aims to customize healthcare, 

with medical decisions, treatments, practices, or products being tailored to the 

individual patient.  Therefore, the aim of this study was to investigate the genetic 

association between nineteen pharmacogenomics biomarkers (SNPs) and response to 
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metformin treatment and to evaluate their suitability for individualizing metformin 

therapy for diabetic patients from the indigenous Bantu population of South Africa. 

 

 3.3. Material and Methods 

3.3.1. Patients and study design  

All participants were briefed about the project and a consent form was completed and 

submitted by each participant before the experiment was conducted. Ethical clearance 

for this study was obtained from the Senate Research Committee of the University of 

the Western Cape (Ethics approval number BM/16/5/19) 

 

3.3.2. Patient selection 

A total of 140 T2DM outpatients belonging to the indigenous Bantu (Swati, Xhosa and 

Zulu) population groups of South Africa were recruited from Cecilia Makiwane 

Hospital (East London, Eastern Cape) and Piet Retief Hospital (Mkhondo, 

Mpumalanga). Patients recruited were 18 years or older, and were on continuous 

metformin treatment for at least 6 months. Pregnant patients, as well as those who were 

undergoing treatment for conditions such as Type 1 diabetes mellitus (T1DM), 

malignancies, chronic kidney and liver diseases, were excluded from the study. 

Demographic information, socioeconomic profile, family history, as well as the dietary 

background were obtained using questionnaires. Clinical data such as anthropometric 

measurements, blood pressure, serum glycosylated hemoglobin (HbA1c) and 

prescription of drugs, was obtained from each patient’s medical file. 
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3.3.3. Sample collection 

Fasting venous blood was collected to measure: HbA1c levels and lipid profiles. 

Genomic samples were collected in the form of buccal swabs and frozen at -20 °C until 

further use. For each patient, HbA1c was measured within 6-month (baseline) and 12-

month (follow up) periods. Based on the HbA1c levels, patients (taking up to 2550 mg 

of metformin per day) were divided, according the classification used by Kashki et al. 

(2015), CDE (2018) and Amod (2017), to: (1) responder group (decrease in HbA1c 

values less than 8% at 12 months compared to baseline prior to the study) and (2) non-

responder group (increase in HbA1c values more than 8% at 12 months compared to 

baseline prior to the study). HbA1c averages of the responders and non-responders are 

shown in Figure 3.1.  

 

Figure 3.1. A scatter plot illustration of HbA1c categories for T2DM patients. An HbA1c percentages 

category versus responders and the non-responder patient’s on metformin therapy. 
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3.3.4. DNA isolation 

Genomic DNA was extracted from buccal swabs samples using a standard salt-lysis 

procedure (Lahiri, 1991). Samples were stored at -20 °C until further use. DNA 

quantification was conducted using a NanoDrop™ 2000/2000c Spectrophotometers 

(Thermo Scientific™) and Gel Doc™ EZ Gel Documentation System (BIO-RAD, 

USA).  

 

3.3.5. Selection of pharmacogenomics biomarkers 

Nineteen Single nucleotide polymorphisms associated with response to metformin 

treatment for T2DM were selected using the Pharmacogenomics knowledge base 

(www.pharmgkb.org), Ensembl (http://www.Ensembl.org), as well as an extensive 

survey of recent literature. 

 

3.3.6. Genotyping  

Two multiplex MassARRAY systems (Agena BioscienceTM) were designed and 

optimized by Inqaba Biotechnical Industries (Pretoria, South Africa), and used for the 

genotyping of the selected SNPs for 140 T2DM outpatients.  Figure 3.2 shows an 

example of one SNP variant which was genotyped using MassARRAY®System 

IPLEX extension reaction.  
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Figure 3.2. Examples of genotype call for FMO2: rs12752688 by the electropherogram of 

MassARRAY®. a).The genotype call for a homozygous wild-type sample for FMO2: rs12752688.  b) 

The genotype call for a heterozygous sample for FMO2: rs12752688. The arrows indicate the 

nucleotide(s) of interest.  

 

 

3.3.7. Statistical analyses 

Statistical analyses were performed using Microsoft Excel version 10.0.40820 and 

Medcalc version 2.2.0.0. Data were expressed as mean (n) ± standard deviation (SD) 

and percentages (%) for continuous and categories variables respectively. Minor allele 

frequency (MAF) and Hardy-Weinberg equilibrium (HWE) test were calculated for all 

the SNPs. Associations between alleles and genotypes and response to metformin were 

measured using odds ratios (ORs), 95% confidence interval (95%CI) and p-value 

derived from unconditional logistic regression. P-value <0.05 was considered 

significant. 
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 3.4. Results  

3.4.1. Clinical and laboratory characteristics of study participants 

This study included 106 (76%) women and 34 (24%) men patients with a mean age of 

59.9 ± 11.2 years. The patients were split into two groups: controlled (n=53) and 

uncontrolled (n=87). The clinical and biochemical characteristics of the controlled and 

uncontrolled study groups on metformin therapy are shown in Table 3.1.  

 

Table 3.1. Clinical and biochemical characteristics of the study participants with 

controlled and uncontrolled metformin response 

Parameter Controlled(n=53) Uncontrolled (n=87) p-value 

Gender (F/M) 36/14 57/30 - 

Ethnicity 

 

Xhosa1 18 63 - 

Zulu2 21 28 - 

Swati2 6 4 - 

Age 60.7 ±11.0 58.3 ±11.4 0.470 

Weight (Kg) 85.8 ±  19.5 85.4 ± 19.1 0.833 

Height (cm) 162.1 ±  7.8 163.1 ± 7.7 0.479 

BMI 31.9 ±  8.4 30.4 ± 10.7 0.304 

HbA1c  

 

6 months 7.6 ± 2.0 11.0 ± 2.0 <0.001 

12 months 6.7 ± 1.2 11.5 ± 2.9 <0.001 

RBG 9.4 ± 3.9 14.5 ± 6.6 <0.001 

Systolic mmHg 147.0 ± 24.0 153.5 ±  23.9 0.130 

Diastolic mmHg 83.9 ± 15.5 90.3 ±  13.7 0.018 

TC (mmol/L) 4.4 ±  1.1 5.0 ±  1.1 0.001 

HDL (mmol/L) 1.2 ±  0.4 1.2 ±  0.4 0.672 

LDL (mmol/L) 2.3 ±  0.9 2.8 ±  0.9 0.007 
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TG (mmo/L) 2.0 ±  1.2 2.3  ±  1.1 0.215 

Creatinine 157.7 ± 383.1 79.3  ± 29.5 0.317 

GFR 41.7 ± 21.5 52.6 ± 25.0 0.313 

Kg – Kilograms, cm – centimeter, BMI - Body Mass Index, HbA1c – Glycated Haemoglobin levels, RBG 

–Random blood sugar, TC Total Cholesterol, HDL – High-density lipoprotein, LDL – Low-density 

lipoprotein, TG –Triglycerides, CRT - Creatinine and GFR - Glomerular filtration rate. Values are 

presented as means ± standard error of the mean.1. Cecilia Makiwane Hospital, 2. Piet Retief Hospital  

 

 

 3.4.2. Comparison of minor allele frequency of nineteen SNPs in the Bantu to 

other world populations 

The MAF observed for the selected SNPs were compared to world populations i.e. 

Luhya, Yoruba, African American, Japanese, British and Chinese Dai. SNPs rs784888 

and rs784892 were mostly observed in African populations as compared to other ethnic 

non-African groups (Table 3.2). Variant rs8187725 was not observed in the Bantu 

population either in the other chosen subpopulations (Table 3.2). The allelic 

frequencies of the investigated SNPs were in accordance with HWE (p>0.05) except 

for rs2617102 (p=0.002), rs1920145 (p=0.043) and rs2076828 (p=0.030) (Table 3.3). 

Moreover, only p-values below 0.00263157 (0.05/19) would be considered significant 

after a Bonferroni correction application (Butler, 2005). Therefore, all the SNPs are in 

accordance with HWE by showing no deviation from HWE except for rs2617102. The 

HWE analysis suggests that the study population does not change from one generation 

to the next and does not occur by chance alone (Hardy, 1908; Lee et al, 2008; Dorak, 

2014; Butler, 2005; Nei & Kumar, 2000).
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Table 3.2. Comparison of minor allele frequencies (MAF) of the nineteen selected SNPs of the Bantu population to other ethnic groups.  

 

Gene 

 

dbSNP 

 

Variant 

 

M > m 

MAF 

Bantu Luhya* Yoruba* 
Africa 

American* 
Japanese* British* Chinese Dai* 

PPARGC1A 4:23864716 
rs10213440 

intronic 
T > C 21.7 20.7 28.2 19.7 19.7 18.1 24.2 

ATM 

C11orf65 
11:108412434 

rs11212617 

intronic 
C>A 17.5 18.7 18.1 36.9 40.4 59.3 39.2 

SLC22A1 6:160122116 
rs12208357 

missense 
C>T 0.4 0 0 1.6 0 6.0 0 

SLC47A2 17:19716685 
rs12943590 

5 UTR 
G>A 16.2 18.7 16.2 22.1 38.0 26.6 44.1 

CSMD1 8:4606687 
rs2617102 

intronic 
A>C 12.3 15.7 19.9 10.7 8.2 13.7 12.4 

SLC22A1 6:160134722 
rs594709 

intronic 
A>G 27.3 28.8 25.5 32.0 19.2 39.0 34.9 

AMHR2 12.53429100 

rs784892 

intronic 
G>A 35.6 33.8 37.0 17.2 0 0 0 

SP1 12:53430724 
rs784888 

intronic 
G>C 41.6 39.4 43.5 20.5 0 0 0 

SLC47A2 17:19681658 
rs34399035 

Missense 
C > T 0 0 0 0 0 0.5 0 

SLC22A1 6:160136611 
rs2282143 

missense 
C>T 7.2 6.6 9.3 4.1 15.4 2.2 12.4 

FMO3 1:171076659 

rs1920145 

intergenic 

variant 

T>C 53.6 46.0 51.9 41.0 54.8 35.2 50.0 
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Table 3.2. Continued 

FMO2 1:171182499 

rs12752688 

intergenic 

variant 

C > T 20.1 20.2 17.1 19.7 1.4 9.9 3.2 

FMO4 1:171322878 
rs2076322 

intronic 
A>G 24.3 21.2 26.9 24.6 1.4 12.6 0.5 

FMO5 1:147209857 
rs7541245 

intronic 
C>A 5.8 6.1 6.0 4.9 0 3.3 0 

SLC22A3 6:160451754 
rs2076828 

3 UTR 
C>G 34.2 48.0 51.4 40.2 52.9 37.4 52.2 

SLC47A1 
17: 

19560030 

rs2289669 

intronic 
G>A 2.9 2.0 0 9.8 37.0 45.1 58.1 

SLC22A1 6:160154805 
rs34059508 

Missense 
G > A 0 0 0 0 0 3.8 0 

ABCC8 

KCNJ11 
11:17388025 

rs5219 

Missense 
T>C 0 0.5 0 13.9 33.2 26.4 22.6 

SLC22A3 6:160437122 
rs8187725 

Missense 
C > T 0 0 0 0 0 0 0 

*. - The MAF of all the SNPs in Luhya, Yoruba and African American was taken from Data from the 1000genomes project (http://www.internationalgenome.org), the 

Pharmacogenomics Knowledgebase (http://www.pharmgkb.org), the UCSF-PMT. (http://www.pharmacogenetica.usfc.edu/) database and NCBI-SNP database 

(http://www.ncbi.nih.gov). DbSNP - a database of single nucleotide polymorphisms number (http://www.ncbi.nlm.nih.gov/snp), M - Major allele, m - Minor allele, MAF - 

Minor allele frequency. Bantu (Xhosa, Zulu and Swati). 
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Table 3.3. Hardy-Weinberg chi-square test for nineteen genetic variants in the Bantu 

population 

Locus DF X2 HWE p 

rs10213440 1 1.538 0.215 

rs11212617 1 0.221 0.638 

rs12208357 1 0.002 0.966 

rs12752688 1 1.938 0.164 

rs12943590 1 1.054 0.305 

rs1920145 1 4.730 0.043 

rs2076322 1 0.975 0.323 

rs2076828 1 4.730 0.030 

rs2282143 1 0.835 0.361 

rs2289669 1 0.124 0.725 

rs2617102 1 9.475 0.002 

rs34059508 Monomorphic 

rs34399035 Monomorphic 

rs5219 Monomorphic 

rs594709 1 2.093 0.148 

rs7541245 1 0.699 0.403 

rs784888 1 1.655 0.198 

rs784892 1 0.019 0.890 

rs8187725 Monomorphic 

HWE - Hardy-Weinberg equilibrium, statistically significant is shown in bold (X2 –

ChiSq: <3.84, p-value - <0.05) 

 

3.4.3. Genetic association analysis of metformin response 

The analysis of the association between SNPs and response to metformin therapy for 

diabetes in Bantu patients is shown in Table 3.4.  The table presents the associations 

between alleles, as well as genotypes, and response to metformin measured using odds 

ratios (ORs), 95% confidence interval (95% CI) and p-value derived from 

unconditional logistic regression. P-value <0.05 was considered significant. 
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Four out of six missense SNPs (i.e. rs34059508, rs34399035, rs5219 and rs8187725) 

were monomorphic in this study population (Table 3.2., Table 3.3., and Table 3.4.). 

The SLC22A1 rs12208357, SLC22A1 rs2282143 and SLC47A1 rs2289669 displayed 

only heterozygous genotypes within the study population (Table 3.4). However, for 

the above-mentioned variant SNPs, none of these heterozygous genotypes were 

significantly associated with metformin response (p>0.05). The CT genotype of the 

FMO2 rs12752688 polymorphism was significantly associated with increased response 

to metformin therapy (OR= 0.33, 95% CI [0.16-0.68], p-value= 0.003). A moderate 

association was also found between the GA genotype of SLC47A2 rs12943590 and a 

decreased response to metformin therapy (OR= 2.29, 95% CI [1.01-5.21], p-

value=0.048 for the heterozygous GA genotype (Table 3.4). No significant 

associations were found between the remaining SNPs and response to metformin 

treatment for the study population (Table 3.4). 
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Table 3.4. Association between SNPs and responsiveness of metformin therapy for diabetic Bantu patients. 

SNP ID   Responders n 

(%) 

Nonresponders n 

(%) 

OR (95% CI) P-value 

rs10213440 Genotype CC 3 (5.7) 6 (7.0) 1 (Reference)  

TC 18 (40.0) 26 (30.2) 0.72 (0.16-3.27) 0.673 

TT 36 (60.3) 54 (62.8) 0.75 (0.18-3.19) 0.697 

Allele C 21 (19.8) 38 (22.1) 1 (Reference)  

T 87 (80.2) 134 (77.9) 0.85 (0.47-1.55) 0.597 

rs11212617 Genotype CC 36 (67.9) 60 (71.4) 1 (Reference)  

AC 16 (30.2) 21 (25.0) 0.79 (0.36-1.70) 0.543 

AA 1 (1.9) 3 (3.6) 1.80 (0.18-17.96) 0.617 

Allele C 88 (83.0) 141 (83.9) 1 (Reference)  

A 18 (17.0) 27 (16.1) 0.94 (0.49-1.80) 0.843 

rs12208357 Genotype CC 53 (100) 85 (98.8) 1 (Reference)  

CT 0 1 (1.2) 1.88 (0.08-46.93) 0.701 

Allele C 106 (100) 171 (99.4) 1 (Reference)  

T 0 1 (0.6) 1.86 (0.08-46.15) 0.704 

rs12943590 Genotype GG 42 (79.2) 55 (63.2) 1 (Reference)  

GA 10 (18.9) 30 (35.6) 2.29 (1.01-5.21) 0.048 

AA 1 (1.9) 1 (1.1) 0.76 (0.05 – 12.57) 0.850 

Allele G 94 (88.7) 140 (81.4) 1 (Reference)  

A 12 (11.3) 32 (18.6) 1.79 (0.88-3.65) 0.109 

rs2617102 Genotype AA 45 (83.9) 65 (76.5) 1 (Reference)  

AC 8 (16.1) 14 (16.5) 1.21 (0.47-3.13) 0.692 

CC 0 6 (7.0) 9.03 (0.50-164.33) 0.137 

Allele A 98 (92.5) 144 (84.7) 1 (Reference)  

C 8 (7.5) 26 (15.3) 2.21 (0.96-5.09) 0.062 

rs594709 Genotype AA 24 (45.3) 45 (52.3) 1 (Reference)  

AG 27 (50.9) 36 (41.9) 0.71 (0.35-1.44) 0.342 

GG 2 (3.8) 5 (5.8) 1.33 (0.24-7.39) 0.742 
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Allele A 75 (70.8) 126 (73.3) 1 (Reference)  

G 31 (29.2) 46 (26.7) 0.88 (0.52-1.51) 0.651 

rs12752688 Genotype CC 24 (45.3) 62 (72.1) 1 (Reference)  

CT 27 (50.9) 23 (26.7) 0.33 (0.16-0.68) 0.003 

TT 2 (3.8) 1 (1.2) 0.19 (0.02-2.23) 0.188 

Allele C 75 (70.8) 147 (85.5) 1 (Reference)  

T 31 (29.2) 25 (14.5) 0.41 (0.23-0.75) 0.004 

rs784888 Genotype GG 17 (39.5) 26 (34.2) 1 (Reference)  

CG 18 (41.9) 34 (44.7) 1.24 (0.43-2.85) 0.621 

CC 8 (18.6) 16 (21.1) 1.31 (0.46-3.72) 0.615 

Allele G 52 (60.5) 86 (57.6) 1 (Reference)  

C 34 (39.5) 66 (43.4) 1.17 (0.69-2.01) 0.560 

rs784892 Genotype GG 23 (43.4) 34 (39.5) 1 (Reference)  

AA 7 (13.2) 11 (12.8) 1.06 (0.36-3.15) 0.912 

AG 23 (43.4) 41 (47.7) 1.21 (0.58-2.52) 0.612 

Allele G 69 (65.1) 109 (63.4) 1 (Reference)  

A 37 (34.9) 63 (36.6) 1.08 (0.65-1.79) 0.771 

rs2289669 Genotype GG 50 (94.3) 80 (95.2) 1 (Reference)  

AG 3 (5.7) 4 (4.8) 0.83 (0.18-3.88) 0.816 

Allele G 103 (97.2) 164 (97.6) 1 (Reference)  

A 3 (2.8) 4 (2.4) 0.84 (0.18-3.82) 0.819 

rs2076828 Genotype CC 23 (43.4) 45 (52.3) 1 (Reference)  

CG 21 (39.6) 28 (32.6) 0.68 (0.32-1.45) 0.320 

GG 9 (17.0) 13 (15.1) 0.74 (0.28-1.98) 0.547 

Allele C 67 (63.2) 118 (68.6) 1 (Reference)  

G 39 (36.8) 54 (31.4) 0.786 (0.47-1.31) 0.355 

rs2076322 Genotype AA 25 (47.2) 52 (62.7) 1 (Reference)  

AG 25 (47.2) 30 (36.1) 0.58 (0.28-1.18) 0.131 

GG 3 (5.6) 3 (3.6) 0.48 (0.09-2.55) 0.390 

Allele A 75 (70.8) 134 (78.8) 1 (Reference)  

G 31 (29.2) 36 (21.2) 0.65 (0.37-1.13) 0.130 
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OR – odds ratio, CI – confidence interval, 1 (Reference) – wild type (ancestral), statistically significant (p-value<0.05). 

rs2282143 Genotype CC 44 (83.0) 75 (87.2) 1 (Reference)  

CT 9 (17.0) 11 (12.8) 0.72 (0.28-1.87) 0.495 

Allele C 97 (91.5) 161 (93.3) 1 (Reference)  

T 9 (8.5) 11 (6.7) 0.74 (0.29-1.84) 0.513 

rs1920145 Genotype CC 10 (18.9) 25 (29.8) 1 (Reference)  

CT 34 (64.2) 47 (51.1) 0.55 (0.23-1.30) 0.175 

TT 9 (16.9) 15 (19.1) 0.67 (0.22-2.01) 0.472 

Allele C 54 (50.9) 96 (55.7) 1 (Reference)  

T 52 (49.1) 76 (44.3) 0.82 (0.51-1.34) 0.429 

rs34059508 Genotype GG 53 (100) 87 (100) - 

Allele G 106 (100) 174 (100) - 

rs34399035 Genotype CC 53 (100) 88 (100) - 

Allele C 106 (100) 176 (100) - 

rs5219 Genotype CC 51 (100) 83 (100) - 

Allele C 102 (100) 166 (100) - 

rs7541245 Genotype CC 48 (90.6) 75 (88.2) 1 (Reference)  

AC 5 (9.4) 9 (10.6) 1.15 (0.36-3.64) 0.810 

AA 0 1 (1.2) 1.93 (0.08-48.28) 0.690 

Allele C 101 (95.3) 159 (93.6) 1 (Reference)  

A 5 (4.7) 11 (6.4) 1.40 (0.47-4.14) 0.546 

rs8187725 Genotype CC 53 (100) 86 (100) - 

Allele C 106 (100) 172 (100) - 
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3.5. Discussion 

The aim of the study was to investigate the genetic association between nineteen 

pharmacogenomics biomarkers (SNPs) and response to metformin treatment, and to 

evaluate their suitability for individualizing metformin therapy for diabetic patients. 

Two multiplex MassARRAY systems (Agena BioscienceTM) were designed and 

optimized by Inqaba Biotechnical Industries (Pretoria, South Africa), and used for the 

genotyping of the selected SNPs for 140 T2DM outpatients from the Bantu population 

group. The cohort of patients was divided into two groups; patients with controlled 

(responsive) and patients with uncontrolled (nonresponsive) diabetes following the 

treatment with metformin. The HbA1c was used as a marker for treatment response 

(Figure 3.1). In previous studies, the targeted treatment for a response for diabetes has 

been defined in a number of ways. According to Shikata et al. (2007), Umamaheswaran 

et al. (2014) and Sherifali et al. (2010) their treatment success was defined as ability to 

reach treatment target by 0.5 – 1.5% HbA1c reduction (Shikata et al, 2007; 

Umamaheswaran et al, 2014; Sherifali et al, 2010). In some studies, the treatment 

success was defined as the ability to achieve HbA1c≤7% treatment target (Becker et 

al, 2009a; Florez et al, 2012; Godarts et al, 2015; Van Leeuwen et al, 2012). For this 

study, considering that some patients had hypertension, the treatment target was 

defined as follows: HbA1c ≤8% for responders and HbA1c ≥8% for non-responders as 

suggested by the study done by Kashki et al. (2015). This is also accepted by clinical 

guidelines due to other comorbidities e.g. hypertension and dyslipidemia (Kashki et al, 

2015; CDE, 2018; Amod, 2017). 
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Metformin is often the first drug used to treat newly diagnosed type 2 diabetic patients, 

and it is widely prescribed worldwide. Metformin is effective as monotherapy and in 

combination with nearly every other therapy for type 2 diabetes, and its utility is 

supported by data from a large number of clinical trials (Sanchez and Inzucchi, 2017; 

Maruthur et al, 2016). However, despite its exceptional efficacy and safety profile, 

about 38% of type 2 diabetes patients who have taken metformin failed to reach target 

fasting glucose level (Reitman and Schadt, 2007). Recent studies suggest that 

interpatient variability in response to metformin therapy could be related to 

polymorphisms in the OCT genes and/or the MATE genes, as well as other genetic 

variants (Avery et al, 2009). 

 

In the present study, nineteen SNPs with some clinical evidence of association with 

response to metformin treatment for T2DM were selected using the Pharmacogenomics 

knowledge base (www.pharmgkb.org), Ensembl (http://www.Ensembl.org), as well as 

an extensive survey of literature. In addition to the association analysis, the observed 

MAF for the SNPs were also compared to world populations i.e. Luhya, Yoruba, 

African American, Japanese, British and Chinese Dai. All the SNPs showed no 

deviation from HWE except for rs2617102 (Table 3.2). Among all the genetic variants 

included in the study, there was a significant association between responsiveness to 

metformin therapy for only for 2 SNPs; FMO2 rs12752688 and SLC47A2 rs12943590 

(Table 3.4). 
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An investigation conducted by Breitenstein et al, (2015) on variants cross FMO genes 

(rs13376631, rs12752688, rs1920145 and rs7541245), has shown no association was 

between FMOs variants and glycaemic response of metformin except for FMO5 

rs7541245 (Breitenstein et al, 2015). Nevertheless, this study has identified a potential 

role of FMO2 rs12752688 C/T in metformin efficacy (Table 3.4). This variant 

rs12752688 is a known rare SNP in the FMO gene and is majorly expressed in lungs 

and fat cells in most mammals and other non-human primates, but rarely in the human 

populations (Hines et al, 2003; Yueh et al, 1997; Dolphin et al, 1998; Krueger et al, 

2001). However, because of its intergenic location its exact role is not clear. This 

suggests that more studies are needed to validate these findings, imperative to elucidate 

the relationship between the FMO genes’ function and T2DM, as well as to define these 

enzymes’ clinical relevance. 

 

The promoter variant SLC47A2 rs12943590 showed a considerable influence on 

metformin response (Table 3.4). A recent study conducted by Phani et al, (2018) has 

shown that this variant is expected to alter function or expression of the SLC47A2 

transporter gene (Phani et al, 2018). In addition, according to a study conducted by 

Choi, 2011, on unrelated healthy patients from four major ethnic groups (i.e. European 

Americans, Africans American, Chinese Americans and Mexican Americans), 

SLC47A2 rs12943590 showed a significant association with poor glycaemic response 

to metformin (Choi et al, 2011). Others studies have demonstrated that this variant is 

associated with poor plasma glucose control of metformin when assessed by 

differences in HbA1c levels (Stocker et al, 2013).  
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The KCNJ11 variant rs5219 has been showed to have clinical relevance on both 

metformin and SUs drug response in diabetic patients. Conflicting results were 

reported by other studies (Sesti et al, 2006, Gloyn et al, 2001, Holstein and Beil, 2009, 

Pearson et al, 2006; Siklar et al, 2011). Sesti et al (2006) showed that patients with the 

rs5219 variant had a higher probability of treatment failure when treated with a 

combination of SU and metformin (Sesti et al, 2006). Another study done on this 

variant (rs5219) showed a reduced response to SU in carriers of KCNJ11 23Lys coding 

allele thus increasing HbA1c level (Holstein and Beil, 2009). A prior study done by 

Gloyn et al. (2001) on the Caucasian population, however, showed no association to 

the SU therapy (Gloyn et al, 2001; Holstein and Beil, 2009). Moreover, other studies 

have reported that diabetic patients with this variant respond better to pharmacotherapy 

with SUs as compared to insulin (Pearson et al, 2006; Siklar et al, 2011). For this study 

rs5219 was observed to be monomorphic (Table 3.2 and 3.3). Therefore, no conclusion 

could be made regarding the association between this SNP and response to metformin 

treatment. 

 

The role of OCT3 rs8187725 was investigated in the present study and was found to 

be monomorphic in the study cohort, as well as in the other Sub-Saharan African 

populations (Table 3.3). This is a rare variant and in some studies, it was shown to 

have a very low allele frequency (Sakata et al, 2010; Chen et al, 2010c). A study 

conducted by Jacobs, (2014) showed similar findings on Xhosa and Cape Coloured 

populations; where this variant was also not observed (Jacobs, 2014 Ph.D. thesis). 

However, in other studies, it has been associated with the pharmacokinetics of 
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metformin in healthy individuals (Tzvetkov et al, 2001).  Chen et al. (2010b) have also 

successfully replicated this association (Chen et al, 2010b). Given the prevalence of 

T2DM in South Africa and the widespread use of metformin as a therapeutic, the 

distribution of this variant in the indigenous African populations requires further 

investigation. The in vivo effect of OCT3 rs8187725 on metformin pharmacokinetics 

and efficacy must be assessed when identified in other South African and/or any other 

indigenous African population since it has not yet been demonstrated.  
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3.6. Summary 

A total of 117 Xhosa T2DM outpatients were recruited from Cecilia Makiwane 

Hospital (Chapter 2) and only 81 T2DM patients were on metformin monotherapy. 

Due to small sample size, 49 Zulu and 10 Swati T2DM patients were included to 

include a total of 140 T2DM patients in the present study. The focus of this study was 

to investigate the genetic association between nineteen pharmacogenomics biomarkers 

(SNPs) and response to metformin treatment and to evaluate their suitability for 

individualizing metformin therapy for T2DM patients from indigenous Bantu 

populations of South Africa. The FMO2 rs12752688 polymorphism was significantly 

associated with increased response to metformin therapy. A moderate association was 

also found between SLC47A2 rs12943590 and a decreased response to treatment with 

metformin for T2DM. Therefore, it is suggested that the FMO2 rs12752688 

polymorphism should be included in pharmacogenomics profiling systems developed 

to individualize metformin therapy for diabetic patients from the Bantu populations. 
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Chapter Four 

Conclusion and future prospectus 

South Africa is one of the countries experiencing an increasing burden of NCDs. 

NCDs are the major source of mortality and morbidity, which is estimated to 

surpass the burden of infectious diseases by 2035. The two most common NCDs 

associated with rapid mortality increase are DM and HTN. They frequently occur 

in the same individuals in clinical practice. Both of these diseases, i.e. DM and 

HTN, can be a result of a combination of modifiable risk factors (behavioral factors) 

and non-modifiable risk factors (genetic, physiological, and environmental). The 

burden of NCDs in South Africa is predicted to increase substantially in the next 

decades if the necessary preventative measures are not taken. Therefore new 

strategies are needed to effectively manage these diseases, which include 

addressing both modifiable and non-modifiable risk factors for patients with NCDs. 

 

Diabetes mellitus and hypertension have been identified as one of the leading causes 

for the rise in non-communicable diseases worldwide.  The four major risk factors 

contributing to the NCDs burden are: tobacco use, physical inactivity, unhealthy 

diets and alcohol consumption. Insight into the effects that risk factors have on 

NCDs such as  diabetes mellitus and hypertension is crucial for effective 

management and treatment of these diseases in under-studied populations. In 

addition, numerous studies have reported the involvement of genetic 

polymorphisms and their interactions in genetic pathways (i.e. pharmacodynamics 

and pharmacokinetics), in treatment outcomes, predominantly observed metformin 

therapy. Despite its widespread use, there is considerable variation in response to 
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metformin; with more than one-third of the patients failing to achieve adequate 

glycaemic control. The aim of the current study was to develop and validate a 

pharmacogenomics profiling panel suitable for the individualizing metformin 

therapy for patients from the Bantu populations in South Africa.  

 

As a preliminary measure, the prevalence of risk factors for DM and HTN in South Africa 

was explored within an economically disadvantaged population group. The extent of 

uncontrolled DM and HTN was investigated among 140 resource- constrained patients 

receiving treatment in rural areas. A significant burden of DM and HTN was observed 

where a reduced risk of DM was associated with no “salt intake”, “never smoke”, and 

normal levels of TG and HDL whilst a reduced risk of hypertension was associated with 

decreased BMI.  In order to reduce the burden of NCDs, the development of best 

practices for affordable and effective programs in screening, prevention, detection 

and treatment of DM and HTN is essential. In addition, comprehensive intervention 

strategies should be implemented across the country.  

 

Subsequently, nineteen pharmacogenomics biomarkers were evaluated for their 

suitability for individualized metformin therapy for T2DM Patients. A genetic 

association study was conducted to investigate the level of association between 

nineteen pharmacogenomics biomarkers (SNPs) and response to metformin 

treatment, and to evaluate their suitability for individualizing metformin therapy for 

diabetic patients from the Bantu populations. The individualization of metformin 

therapy has the potential to reduce the incidence of uncontrolled T2DM among 

patients taking this first-line anti-diabetic drug. 
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The FMO2 rs12752688 polymorphism was significantly associated with increased 

response to metformin therapy. A moderate association was also found between 

SLC47A2 rs12943590 and a decreased response to treatment with metformin for 

T2DM. To our knowledge, this is the first study that investigated the association 

between genetic variants and responsiveness to medication for diabetic patients 

from the indigenous Bantu population of South Africa. The FMO2 rs12752688 

polymorphism is suggested to be included in pharmacogenomics profiling systems 

developed to individualize metformin therapy for diabetic patients from the Bantu 

populations. It may be concluded that better assessment of disease risk, further 

understanding of disease mechanisms, and the optimization of therapy are 

paramount to reduce the burden of DM and HTN in South Africa, and worldwide. 

 

The following limitations need to be considered; the cross-sectional design and 

recruitment of participants from one study center might have limited the 

generalization of the findings. An inconclusive report was observed due to the lack 

of adequate glycemic control amongst a large number of patients within the 12 

months of study and the different use of HbA1c baselines definition obtained from 

many similar studies. Moreover, the genetic risk guide in the future must be 

improved; the definition of DM and classification of subtypes of DM should be 

more precise. Poor adherence displayed by the T2DM patients prescribed with 

metformin is assumed as a critical challenge resulting in relapse on treatment 

(unsuccessful treatment). This challenge is a known problem for healthcare 

professionals. For this study, patient responses were relied upon; however, patients 

tend to be reluctant to adhere to treatment and are dishonest during healthcare 
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professionals’ follow-ups, which may have affected the results of the study. In 

addition, the importance of variations in different populations and with the 

consideration of the diversity in African populations should be highlighted. It is 

ideal to obtain a large sample scale in identifying the association between 

polymorphisms and T2DM in a population. 

 

http://etd.uwc.ac.za/



 

87 
 

References 

Abdul-Ghani, M. A., & DeFronzo, R. A. (2010). Pathogenesis of insulin resistance 

in skeletal muscle. BioMed Research International, 2010. 

Adelstein, B. A., Dobbins, T. A., Harris, C. A., Marschner, I. C., & Ward, R. L. 

(2011). A systematic review and meta-analysis of KRAS status as the 

determinant of response to anti-EGFR antibodies and the impact of partner 

chemotherapy in metastatic colorectal cancer. European Journal of Cancer, 

47(9), 1343-1354. 

Adeniyi, O. V., Yogeswaran, P., Longo-Mbenza, B., & Ter Goon, D. (2016). 

Uncontrolled hypertension and its determinants in patients with concomitant 

type 2 diabetes mellitus (T2DM) in rural South Africa. PLoS One, 11(3), 

e0150033. 

Al-Nsour, M., Zindah, M., Belbeisi, A., Hadaddin, R., Brown, D. W., & Walke, H. 

(2012). Prevalence of selected chronic, noncommunicable disease risk factors 

in Jordan: results of the 2007 Jordan Behavioral Risk Factor Surveillance 

Survey. Preventing Chronic Disease, 9. 

Alberti, K. G. M. M., & Zimmet, P. F. (1998). Definition, diagnosis and 

classification of diabetes mellitus and its complications. Part 1: diagnosis and 

classification of diabetes mellitus. Provisional report of a WHO 

consultation. Diabetic Medicine, 15(7), 539-553. 

Alberti, K. G. M. M., Zimmet, P., & Shaw, J. (2007). International Diabetes 

Federation: a consensus on Type 2 diabetes prevention. Diabetic Medicine, 

24(5), 451-463. 

http://etd.uwc.ac.za/



 

88 
 

Alberts, M., Urdal, P., Steyn, K., Stensvold, I., Tverdal, A., Nel, J. H., & Steyn, N. 

P. (2005). Prevalence of cardiovascular diseases and associated risk factors 

in a rural black population of South Africa. European Journal of 

Cardiovascular Prevention and Rehabilitation, 12(4), 347-354. 

Alexandre, K. B., Smit, A. M., Gray, I. P., & Crowther, N. J. (2008). Metformin 

inhibits intracellular lipid accumulation in the murine pre‐adipocyte cell line, 

3T3‐L1. Diabetes, Obesity and Metabolism, 10(8), 688-690. 

Alwan, A. (2011). Global status report on noncommunicable diseases 2010. World 

Health Organization. 

Alwi, Z. B. (2005). The use of SNPs in pharmacogenomics studies. The Malaysian 

journal of medical sciences: Malaysian Journal of Medical Sciences, 12(2), 

4. 

American Diabetes Association. (2015). 2. Classification and diagnosis of diabetes. 

Diabetes Care, 38(Suppl 1), S8-S16. 

American Diabetes Association. (2014). Standards of medical care in diabetes-

2014. Diabetes Care. 37(Suppl 1), S14-80. 

Amin, A. M., Sheau Chin, L., Azri Mohamed Noor, D., Kader, S. A., Ali, M., Kah 

Hay, Y., & Ibrahim, B. (2017). The personalization of clopidogrel antiplatelet 

therapy: The role of integrative pharmacogenetics and 

pharmacometabolomics. Cardiology Research and Practice, 2017. 

Amod, A. (2012). The 2012 SEMDSA guideline for the management of type 2 

diabetes. Journal of Endocrinology, Metabolism and Diabetes in South 

Africa, 17(1), 61-62. 

http://etd.uwc.ac.za/



 

89 
 

Amod, A. (2017). The Society for Endocrinology, Metabolism and Diabetes of 

South Africa Type 2 Diabetes Guidelines Expert Committee. The 2017 

SEMDSA Guideline for the Management of Type 2 Diabetes Guideline 

Committee. Journal of Endocrinology, Metabolism and Diabetes of South 

Africa. 21(1) (Suppl 1), S1-S196. 

Aneesh, T. P., Sekhar, S., Jose, A., Chandran, L., & Zachariah, S. M. (2009). 

Pharmacogenomics: the right drug to the right person. Journal of Clinical 

Medicine Research, 1(4), 191. 

Anwer, Z., Sharma, R. K., Garg, V. K., Kumar, N., & Kumari, A. (2011). 

Hypertension management in diabetic patients. European Review for Medical 

and Pharmacological Sciences, 15(11), 1256-1263. 

Arbitrio, M., Di Martino, M., Scionti, F., Barbieri, V., Pensabene, L., & Tagliaferri, 

P. (2018). Pharmacogenomic Profiling of ADME Gene Variants: Current 

Challenges and Validation Perspectives. High-Throughput, 7(4), 40. 

Ardington, C., & Case, A. (2009). Health: Analysis of The NIDS Wave 1 Dataset. 

Discussion Paper No. 2. Cape Town: Southern Africa Labour and 

Development Research Unit. 

Argaud, D., Roth, H., Wiernsperger, N., & LEVERVE, X. M. (1993). Metformin 

decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated 

rat hepatocytes. European Journal of Biochemistry, 213(3), 1341-1348. 

Arranz, M. J., Perez, V., Perez, J., Gutierrez, B., & Hervas, A. (2013). 

Pharmacogenetic Applications and Pharmacogenomic Approaches in 

Schizophrenia. Current Genetic Medicine Reports, 1(1), 58-64. 

http://etd.uwc.ac.za/



 

90 
 

Asif, M. (2014). The prevention and control the type-2 diabetes by changing 

lifestyle and dietary pattern. Journal of Education and Health Promotion, 3. 

Association, A.D. (2010). Diagnosis and classification of diabetes mellitus. 

Diabetes Care, 33(Suppl 1), S62-S69. 

Atlas, I.D. (2016). International Diabetes Federation 7th Edition, 2015.  

Atlas, I.D. (2017). International Diabetes Federation 8th Edition, 2017.  

Avery, P., Mousa, S. S., & Mousa, S. A. (2009). Pharmacogenomics in type II 

diabetes mellitus management: Steps toward personalized 

medicine. Pharmacogenomics and Personalized Medicine, 2, 79. 

Babu, P. V. A., Liu, D., & Gilbert, E. R. (2013). Recent advances in understanding 

the anti-diabetic actions of dietary flavonoids. The Journal of Nutritional 

Biochemistry, 24(11), 1777-1789. 

Bailey, C. J., & Turner, R. C. (1996). Metformin. New England Journal of 

Medicine, 334(9), 574-579. 

Bailey, C. J., Wilcock, C., & Day, C. (1992). Effect of metformin on glucose 

metabolism in the splanchnic bed. British Journal of Pharmacology, 105(4), 

1009-1013. 

Bastaki, A. (2005). Diabetes mellitus and its treatment. International Journal of 

Diabetes and Metabolism, 13(3), 111. 

Baynest, H.W. (2015). Classification, Pathophysiology, Diagnosis and 

Management of Diabetes Mellitus. Journal of Diabetes and Metabolism. 6(5), 

1-9. 

Becker, M. L., Visser, L. E., Van Schaik, R. H., Hofman, A., Uitterlinden, A. G., 

& Stricker, B. H. C. (2009b). Genetic variation in the multidrug and toxin 

http://etd.uwc.ac.za/



 

91 
 

extrusion 1 transporter protein influences the glucose lowering effect of 

metformin in patients with diabetes mellitus: a preliminary 

study. Diabetes.745-749.  

Becker, M. L., Visser, L. E., Van Schaik, R. H. N., Hofman, A., Uitterlinden, A. 

G., & Stricker, B. H. C. (2009a). Genetic variation in the organic cation 

transporter 1 is associated with metformin response in patients with diabetes 

mellitus. The Pharmacogenomics Journal, 9(4), 242. 

.Beckman J.A., & Creager M.A. (2016). The Vascular Complications of 

Diabetes. Circulation Research, 118, 1771-1785 

Belleza, M. (2016). Diabetes Mellitus. https://nurseslabs.com/diabetes-mellitus/. 

Accessed: 22 January 2019 

Benjeddou, M. (n.d). Person communication: Bibliography. 

https://www.uwc.ac.za/Biography/Pages/Mongi-Benjeddou.aspx. Accessed: 

15 February 2019. 

Benjeddou, M. (2010). Solute Carrier Transporters: Pharmacogenomics Research 

Opportunities in Africa. African Journal of Biotechnology, 9(54), 9191-9195.  

Bertram, M. Y., Jaswal, A. V., Van Wyk, V. P., Levitt, N. S., & Hofman, K. J. 

(2013). The non-fatal disease burden caused by type 2 diabetes in South 

Africa - 2009. Global Health Action, 6(1), 19244. 

Bhathena, A., & Spear, B. B. (2008). Pharmacogenetics: improving drug and dose 

selection. Current Opinion in Pharmacology, 8(5), 639-646. 

Boden, G. (1996). Fatty acids and insulin resistance. Diabetes Care, 19(4), 394-

395. 

http://etd.uwc.ac.za/

https://nurseslabs.com/diabetes-mellitus/


 

92 
 

Bots, S. H., Peters, S. A., & Woodward, M. (2017). Sex differences in coronary 

heart disease and stroke mortality: a global assessment of the effect of aging 

between 1980 and 2010. BMJ Global Health, 2(2), e000298. 

Bourne, L. T., Lambert, E. V., & Steyn, K. (2002). Where does the black population 

of South Africa stand on the nutrition transition?. Public Health 

Nutrition, 5(1a), 157-162. 

Bradshaw, D., Steyn, K., Levitt, N., & Nojilana, B. (n.d) Non-Communicable 

Diseases. Women, 60, 72. 

Breitenstein, M.K., Wang, L., Simon, G., Ryu, E., Armasu, S.M., Ray, B., 

Weinshilboum, R.M., & Pathak, J. (2015). Leveraging an electronic health 

record-linked biorepository to generate a metformin pharmacogenomics 

hypothesis. AMIA Summits on Translational Science Proceedings, 2015, 26. 

Brockmöller, J., & Tzvetkov, M. V. (2008). Pharmacogenetics: data, concepts and 

tools to improve drug discovery and drug treatment. European Journal of 

Clinical Pharmacology, 64(2), 133-157. 

Brown, S. A., & Pereira, N. (2018). Pharmacogenomic impact of CYP2C19 

variation on clopidogrel therapy in precision cardiovascular 

medicine. Journal of Personalized Medicine, 8(1), 8. 

Bruijstens, L. A., Van Luin, M., Buscher-Jungerhans, P. M., & Bosch, F. H. (2008). 

Reality of severe metformin-induced lactic acidosis in the absence of chronic 

renal impairment. The Netherlands Journal of Medicine, 66(5), 185-90. 

Butler, J.M. (2005). Forensic DNA typing: biology, technology, and genetics of 

STR markers. Elsevier Academic Press, London.  

http://etd.uwc.ac.za/



 

93 
 

Canestaro, W.J., Brooks, D.G., Chaplin, D., Choudhry, N.K., Lawler, E., Martell, 

L., Brennan, T., & Wassman, E.R., 2012. Statin pharmacogenomics: 

opportunities to improve patient outcomes and healthcare costs with genetic 

testing. Journal of Personalized Medicine, 2(4), 158-174. 

Cassano, P. A., Rosner, B., Vokonas, P. S., & Weiss, S. T. (1992). Obesity and 

Body Fat Distribution in Relation to the Incidence of Non-lnsulin-dependent 

Diabetes Mellitus: A Prospective Cohort Study of Men in the Normative 

Aging Study. American Journal of Epidemiology, 136(12), 1474-1486. 

CDE. (2018). Clinical guidelines 2018. www.cdediabetes.co.za/. 2018. Accessed 

30 October 2018. 

Centers for Disease Control and Prevention. (2012). CDC. Vital signs: awareness 

and treatment of uncontrolled hypertension among adults--United States, 

2003-2010. MMWR. Morbidity and mortality weekly report. 61, 703. 

Chasan-Taber, L. (2015). Lifestyle Interventions to Reduce Risk Of Diabetes 

Among Women With Prior Gestational Diabetes Mellitus. Best Practice & 

Research Clinical Obstetrics & Gynaecology. 29(1), 110-122. 

Chen, E. C., Liang, X., Yee, S. W., Geier, E. G., Stocker, S. L., Chen, L., & 

Giacomini, K. M. (2015a). Targeted disruption of organic cation transporter 

3 attenuates the pharmacologic response to metformin. Molecular 

Pharmacology, 88(1), 75-83. 

Chen, H., Li, J., Yang, O., Kong, J., & Lin, G. (2015b). Effect of metformin on 

insulin-resistant endothelial cell function. Oncology Letters, 9(3), 1149-1153. 

Chen, L., Pawlikowski, B., Schlessinger, A., More, S.S., Stryke, D., Johns, S.J., 

Portman, M.A., Chen, E., Ferrin, T.E., Sali, A. & Giacomini, K. M. (2010c). 

http://etd.uwc.ac.za/



 

94 
 

Role of organic cation transporter 3 (SLC22A3) and its missense variants in 

the pharmacologic action of metformin. Pharmacogenetics and 

Genomics, 20(11), 687. 

Chen, L., Takizawa, M., Chen, E., Schlessinger, A., Segenthelar, J., Choi, J.H., Sali, 

A., Kubo, M., Nakamura, S., Iwamoto, Y. & Iwasaki, N. (2010b). Genetic 

polymorphisms in organic cation transporter 1 (OCT1) in Chinese and 

Japanese populations exhibit altered function. Journal of Pharmacology and 

Experimental Therapeutics, 335(1), 42-50. 

Chen, S., Zhou, J., Xi, M., Jia, Y., Wong, Y., Zhao, J., Ding, L., Zhang, J. & Wen, 

A. (2013). Pharmacogenetic variation and metformin response. Current Drug 

Metabolism, 14(10), 1070-1082. 

Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, 

G.J., Murray, L.W., Richardson, J.S., & Richardson, D. C. (2010a). 

MolProbity: all-atom structure validation for macromolecular 

crystallography. Acta Crystallographica Section D: Biological 

Crystallography, 66(1), 12-21. 

Cho, K., Chung, J. Y., Cho, S. K., Shin, H. W., Jang, I. J., Park, J. W., Yu, K. S., & 

Cho, J. Y. (2015). Antihyperglycemic mechanism of metformin occurs via 

the AMPK/LXRα/POMC pathway. Scientific Reports, 5, 8145. 

Choi, J.H., Yee, S.W., Ramirez, A.H., Morrissey, K.M., Jang, G.H., Joski, P.J., 

Mefford, J.A., Hesselson, S.E., Schlessinger, A., Jenkins, G., & Castro, R. A. 

(2011). A common 5′‐UTR variant in MATE2‐K is associated with poor 

response to metformin. Clinical Pharmacology and Therapeutics, 90(5), 674-

684. 

http://etd.uwc.ac.za/



 

95 
 

Christensen, M. M. H., Højlund, K., Hother-Nielsen, O., Stage, T. B., Damkier, P., 

Beck-Nielsen, H., & Brøsen, K. (2015). Steady-state pharmacokinetics of 

metformin is independent of the OCT1 genotype in healthy 

volunteers. European Journal of Clinical Pharmacology, 71(6), 691-697. 

Christensen, M.M., Pedersen, R.S., Stage, T.B., Brasch-Andersen, C., Nielsen, F., 

Damkier, P., Beck-Nielsen, H., & Brøsen, K. (2013). A gene–gene interaction 

between polymorphisms in the OCT2 and MATE1 genes influences the renal 

clearance of metformin. Pharmacogenetics and Genomics, 23(10), 526-534. 

Chung, J.Y., Cho, S.K., Kim, T.H., Kim, K.H., Jang, G.H., Kim, C.O., Park, E.M., 

Cho, J.Y., Jang, I.J., & Choi, J. H. (2013). Functional characterization of 

MATE2-K genetic variants and their effects on metformin 

pharmacokinetics. Pharmacogenetics and Genomics, 23(7), 365-373. 

Church, T. (2011). Exercise in obesity, metabolic syndrome, and diabetes. Progress 

in Cardiovascular Diseases, 53(6), 412-418. 

Cois, A., & Day, C. (2015). Obesity trends and risk factors in the South African 

adult population. BMC Obesity, 2(1), 42. 

Colberg, S.R., Sigal, R.J., Fernhall, B., Regensteiner, J.G., Blissmer, B.J., Rubin, 

R.R., Chasan-Taber, L., Albright, A.L., & Braun, B. (2010). Exercise and 

type 2 diabetes: the American College of Sports Medicine and the American 

Diabetes Association: joint position statement. Diabetes Care, 33(12), e147-

e167. 

Cook, M. N., Girman, C. J., Stein, P. P., & Alexander, C. M. (2007). Initial 

monotherapy with either metformin or sulphonylureas often fails to achieve 

http://etd.uwc.ac.za/



 

96 
 

or maintain current glycaemic goals in patients with type 2 diabetes in UK 

primary care. Diabetic Medicine, 24(4), 350-358. 

Conen, D., Ridker, P. M., Mora, S., Buring, J. E., & Glynn, R. J. (2007). Blood 

pressure and risk of developing type 2 diabetes mellitus: The Women's Health 

Study. European Heart Journal, 28(23), 2937-2943. 

Cox, M. E., & Edelman, D. (2009). Tests for screening and diagnosis of type 2 

diabetes. Clinical Diabetes, 27(4), 132-138. 

Cramer, J. A., & Pugh, M. J. (2005). The Influence of Insulin Use on Glycemic 

Control: How well do adults follow prescriptions for insulin? Diabetes 

Care, 28(1), 78-83. 

Crews, K. R., Hicks, J. K., Pui, C. H., Relling, M. V., & Evans, W. E. (2012). 

Pharmacogenomics and individualized medicine: translating science into 

practice. Clinical Pharmacology & Therapeutics, 92(4), 467-475.Cruzan S. 

(1994). Food and Drug Administration (FDA). 

https://web.archive.org/web/20070929152824/http://www.fda.gov/bbs/topic

s/ANSWERS/ANS00627.html. Accessed: 23 May 2016 

Cusi, K., & Defronzo, R.A. (1998). Metformin: A Review of Its Metabolic Effects. 

Diabetes Reviews. 6, 89-131. 

Dalal, S., Beunza, J.J., Volmink, J., Adebamowo, C., Bajunirwe, F., Njelekela, M., 

Mozaffarian, D., Fawzi, W., Willett, W., Adami, H.O., & Holmes, M. D. 

(2011). Non-communicable diseases in sub-Saharan Africa: what we know 

now. International Journal of Epidemiology, 40(4), 885-901. 

http://etd.uwc.ac.za/

https://web.archive.org/web/20070929152824/http:/www.fda.gov/bbs/topics/ANSWERS/ANS00627.html
https://web.archive.org/web/20070929152824/http:/www.fda.gov/bbs/topics/ANSWERS/ANS00627.html


 

97 
 

Darnton-Hill, I., Nishida, C., & James, W. P. T. (2004). A life course approach to 

diet, nutrition and the prevention of chronic diseases. Public Health 

Nutrition, 7(1a), 101-121. 

Daniels, M.A., Kan, C., Willmes, D.M., Ismail, K., Pistrosch, F., Hopkins, D., 

Mingrone, G., Bornstein, S.R., & Birkenfeld, A. L. (2016). 

Pharmacogenomics in type 2 diabetes: oral antidiabetic drugs. The 

Pharmacogenomics Journal, 16(5), 399. 

Davy, K. P., & Hall, J. E. (2004). Obesity and hypertension: two epidemics or 

one?. American Journal of Physiology-Regulatory, Integrative and 

Comparative Physiology, 286(5), R803-R813. 

Dawed, A. Y., Zhou, K., & Pearson, E. R. (2016). Pharmacogenetics in type 2 

diabetes: influence on response to oral hypoglycemic 

agents. Pharmacogenomics and Personalized Medicine, 9, 17. 

De Leon, J., Susce, M. T., & Murray-Carmichael, E. (2006). The amplichip™ 

cyp450 genotyping test. Molecular Diagnosis and Therapy, 10(3), 135-151. 

DeFronzo, R. A. (1999). Pharmacologic therapy for type 2 diabetes mellitus. Annals 

of Internal Medicine, 131(4), 281-303. 

Desai. (2017). Http://Www.People.Vcu.Edu/~Urdesai/Bigu.Htm; 2017. Accessed: 

13 November 2018 

Desai, N.R., Shrank, W.H., Fischer, M.A., Avorn, J., Liberman, J.N., Schneeweiss, 

S., Pakes, J., Brennan, T.A., & Choudhry, N. K. (2012). Patterns of 

medication initiation in newly diagnosed diabetes mellitus: quality and cost 

implications. The American Journal of Medicine, 125(3), 302-e1. 

http://etd.uwc.ac.za/

http://www.people.vcu.edu/~Urdesai/Bigu.Htm


 

98 
 

Dhungana, R. R., Pandey, A. R., Bista, B., Joshi, S., & Devkota, S. (2016). 

Prevalence and associated factors of hypertension: a community-based cross-

sectional study in municipalities of Kathmandu, Nepal. International Journal 

of Hypertension, 2016. 

Diabetes Prevention Program Research Group. (2012). Long-Term Safety, 

Tolerability, and Weight Loss Associated with Metformin in the Diabetes 

Prevention Program Outcomes Study. Diabetes Care. 731-7.  

Diabetes Prevention Program Research Group. (2002). Reduction in the incidence 

of type 2 diabetes with lifestyle intervention or metformin. New England 

Journal of Medicine. 346(6), 393-403. 

Distefano, J.K., and Watanabe, R.M. (2010). Pharmacogenetics of Anti-Diabetes 

Drugs. Pharmaceuticals. 3(8), 2610-2646.  

Dokunmu, T. M., Yakubu, O. F., Adebayo, A. H., Olasehinde, G. I., & Chinedu, S. 

N. (2018). Cardiovascular Risk Factors in a Suburban Community in 

Nigeria. International Journal of Hypertension, 2018. 

Dolphin, C. T., Beckett, D. J., Janmohamed, A., Cullingford, T. E., Smith, R. L., 

Shephard, E. A., & Phillips, I. R. (1998). The flavin-containing 

monooxygenase 2 gene (FMO2) of humans, but not of other primates, 

encodes a truncated, nonfunctional protein. Journal of Biological 

Chemistry, 273(46), 30599-30607. 

Dorak, M.T. (2014). Basic Population Genetics. 

Donath, M. Y., Ehses, J. A., Maedler, K., Schumann, D. M., Ellingsgaard, H., 

Eppler, E., & Reinecke, M. (2005). Mechanisms of β-cell death in type 2 

diabetes. Diabetes, 54(suppl 2), S108-S113. 

http://etd.uwc.ac.za/



 

99 
 

Dostalek, M., Akhlaghi, F., & Puzanovova, M. (2012). Effect of diabetes mellitus 

on pharmacokinetic and pharmacodynamic properties of drugs. Clinical 

Pharmacokinetics, 51(8), 481-499. 

Doug, S. (2017). What’s New in SPSS Statistics 25 and Subscription. 

Https://Developer.Ibm.Com/Predictiveanalytics/2017/07/18/Spss-25-

Subscription-Summary/. 2017. Accessed: 13 November 2018 

Downing, G. (2001). Biomarkers Definitions Working Group. Biomarkers and 

Surrogate Endpoints. Clinical Pharmacology and Therapeutics, 69, 89-95. 

Drope J, Schluger N, Cahn Z, Drope J, Hamill S, Islami F, Eriksen, M., & Mackay, 

J. (2018). The Tobacco Atlas. Atlanta: American Cancer Society and Vital 

Strategies. 2018. 

Du, Y. T., Rayner, C. K., Jones, K. L., Talley, N. J., & Horowitz, M. (2018). 

Gastrointestinal symptoms in diabetes: prevalence, assessment, pathogenesis, 

and management. Diabetes Care, 41(3), 627-637. 

Du Plessis M, Pearce B, Jacobs C, Hoosain N., & Benjeddou M. (2015). Genetic 

Polymorphisms of the Organic Cation Transporter 1 Gene (SLC22A1) Within 

the Cape Admixed Population of South Africa. Molecular Biology Reports. 

42(3):665-672.  

Duca, F. A., Côté, C. D., Rasmussen, B. A., Zadeh-Tahmasebi, M., Rutter, G. A., 

Filippi, B. M., & Lam, T. K. (2015). Metformin activates a duodenal Ampk–

dependent pathway to lower hepatic glucose production in rats. Nature 

Medicine, 21(5), 506. 

Duong, J.K., Kumar, S.S., Kirkpatrick, C.M., Greenup, L.C., Arora, M., Lee, T.C., 

Timmins, P., Graham, G.G., Furlong, T.J., Greenfield, J.R., & Williams, K. 

http://etd.uwc.ac.za/



 

100 
 

M. (2013). Population pharmacokinetics of metformin in healthy subjects and 

patients with type 2 diabetes mellitus: simulation of doses according to renal 

function. Clinical Pharmacokinetics, 52(5), 373-384. 

Dyer, A. (1982). Circulating cholesterol level and risk of death from cancer in men 

aged 40 to 69 years: experience of an international collaborative 

group. JAMA: The Journal of the American Medical Association, 248(21), 

2853-2859. 

Eichelbaum M., Ingelman-Sundberg M. & Evans W.E. (2006). Pharmacogenomics 

and individualized drug therapy. Annual Review of Medicine.Vol 57. 119–

137 

Ellis, J.A., & Ong, B. (2017). The Massarray® System for Targeted SNP 

Genotyping. In Genotyping. Humana Press, New York, NY, 77-94 

Emancipator, K. (1998). Laboratory Diagnosis and Monitoring of Diabetes 

Mellitus. Clinical Chemistry Check Sample CC 98-5. Chicago, IL: ASCP. 

Ekinci, E. I., Cheong, K. Y., Dobson, M., Premaratne, E., Finch, S., Macisaac, R. 

J., & Jerums, G. (2010). High sodium and low potassium intake in patients 

with type 2 diabetes. Diabetic Medicine, 27(12), 1401-1408. 

Ekinci, E. I., Clarke, S., Thomas, M. C., Moran, J. L., Cheong, K., MacIsaac, R. J., 

& Jerums, G. (2011). Dietary salt intake and mortality in patients with type 2 

diabetes. Diabetes Care, DC_101723. 

Ensembl database (http://www.Ensembl.org). Accessed: December 2018 

Evans, W. E., & Relling, M. V. (1999). Pharmacogenomics: translating functional 

genomics into rational therapeutics. Science, 286(5439), 487-491. 

http://etd.uwc.ac.za/

http://www.ensembl.org/


 

101 
 

Evans, W. E., & Johnson, J. A. (2001). Pharmacogenomics: the inherited basis for 

interindividual differences in drug response. Annual Review of Genomics and 

Human Genetics, 2(1), 9-39. 

Evans, W.E., & Mcleod, H.L. (2003). Pharmacogenomics—Drug Disposition, 

Drug Targets, and Side Effects. New England Journal of Medicine, 348(6), 

538-549. 

Ezzati, M., & Riboli, E. (2013). Behavioral and dietary risk factors for 

noncommunicable diseases. New England Journal of Medicine, 369(10), 

954-964. 

Fagot-Campagna, A.N., Knowler, W.C., Narayan, K.M., Hanson, R.L., Saaddine, 

J., & Howard, B.V. (1999). HDL cholesterol subfractions and risk of 

developing type 2 diabetes among Pima Indians. Diabetes Care. 22(2), 271-

4. 

Fahrmayr, C., Fromm, M. F., & König, J. (2010). Hepatic OATP and OCT uptake 

transporters: their role for drug-drug interactions and pharmacogenetic 

aspects. Drug Metabolism Reviews, 42(3), 380-401. 

Fatima, M., Sadeeqa, S., & Nazir, S. U. (2018). Metformin and its gastrointestinal 

problems: A review. Biomedical Research, 29(11), 2285-9. 

FDA. (2011). FDA Drug Safety Communication: new restrictions, 

contraindications, and dose limitations for Zocor (simvastatin) to reduce the 

risk of muscle injury. 

http://www.fda.gov/Drugs/DrugSafety/ucm256581.htm. Accessed: 28 

March 2019. 

http://etd.uwc.ac.za/



 

102 
 

Feigin, V. (2016). Global, Regional, and National Comparative Risk Assessment 

of 79 Behavioural, Environmental and Occupational, and Metabolic Risks Or 

Clusters of Risks, 1990-2015: A Systematic Analysis for the Global Burden 

of Disease Study 2015." The Lancet 388.10053, 1659-1724. 

Filippatos, T. D., & Elisaf, M. S. (2013). High density lipoprotein and 

cardiovascular diseases. World Journal of Cardiology, 5(7), 210. 

Florez, J.C., Jablonski, K.A., Taylor, A., Mather, K., Horton, E., White, N.H., 

Barrett-Connor, E., Knowler, W.C., Shuldiner, A.R., Pollin, T.I., & Diabetes 

Prevention Program Research Group. (2012). The C allele of ATM 

rs11212617 does not associate with metformin response in the Diabetes 

Prevention Program. Diabetes Care, DC_112301. 

Fong, D. S., Aiello, L. P., Ferris, F. L., & Klein, R. (2004). Diabetic 

retinopathy. Diabetes Care, 27(10), 2540-2554. 

Fonseca, V.A. (2009). Defining and Characterizing the Progression of Type 2 

Diabetes. Diabetes Care. Suppl 2, S151-6.  

Foretz, M., & Viollet, B. (2011). Regulation of Hepatic Metabolism by AMPK. 

Journal of Hepatology. 54(4), 827-829.  

Forouzanfar, M.H., Afshin, A., Alexander, L.T., Anderson, H.R., Bhutta, Z.A., 

Biryukov, S., Brauer, M., Burnett, R., Cercy, K., Charlson, F.J., & Cohen, A. 

J. (2016). Global, regional, and national comparative risk assessment of 79 

behavioural, environmental and occupational, and metabolic risks or clusters 

of risks, 1990–2015: a systematic analysis for the Global Burden of Disease 

Study 2015. The Lancet, 388(10053), 1659-1724. 

http://etd.uwc.ac.za/



 

103 
 

Frank, M., & Mittendorf, T. (2013). Influence of pharmacogenomic profiling prior 

to pharmaceutical treatment in metastatic colorectal cancer on cost 

effectiveness. Pharmacoeconomics, 31(3), 215-228. 

Freeman, H., & Cox, R.D. (2006). Type-2 Diabetes: A Cocktail of Genetic 

Discovery. Human Molecular Genetics, 15, R202-R209.  

García-Pérez, L. E., Álvarez, M., Dilla, T., Gil-Guillén, V., & Orozco-Beltrán, D. 

(2013). Adherence to therapies in patients with type 2 diabetes. Diabetes 

Therapy, 4(2), 175-194. 

Gelissen, I. C., & McLachlan, A. J. (2014). The pharmacogenomics of statins. 

Pharmacological Research, 88, 99-106. 

Giacomini, K.M., Huang, S.M., Tweedie, D.J., Benet, L.Z., Brouwer, K.L., Chu, 

X., Dahlin, A., Evers, R., Fischer, V., Hillgren, K.M., & Hoffmaster, K. A. 

(2010). Membrane transporters in drug development. Nature Reviews Drug 

Discovery, 9(3), 215-236. 

Glauber, H. S., Rishe, N., & Karnieli, E. (2014). Introduction to personalized 

medicine in diabetes mellitus. Rambam Maimonides Medical Journal, 5(1), 

E0002.  

Ginsburg, G. S., & Haga, S. B. (2019). Foundations and Application of Precision 

Medicine. In Emery and Rimoin's Principles and Practice of Medical 

Genetics and Genomics (pp. 21-45). Content Repository Only! 

Ginsburg, G. S., & Phillips, K. A. (2018). Precision Medicine: From Science to 

Value. Health Affairs (Project Hope), 37(5), 694-701. 

Gloyn, A. L., Hashim, Y., Ashcroft, S. J. H., Ashfield, R., Wiltshire, S., & Turner, 

R. C. (2001). Association studies of variants in promoter and coding regions 

http://etd.uwc.ac.za/



 

104 
 

of beta‐cell ATP‐sensitive K‐channel genes SUR1 and Kir6. 2 with Type 2 

diabetes mellitus (UKPDS 53). Diabetic Medicine, 18(3), 206-212. 

Goodarzi, M. O., & Bryer‐Ash, M. (2005). Metformin revisited: re‐evaluation of its 

properties and role in the pharmacopoeia of modern antidiabetic 

agents. Diabetes, Obesity and Metabolism, 7(6), 654-665. 

Gong, L., Goswami, S., Giacomini, K. M., Altman, R. B., & Klein, T. E. (2012). 

Metformin pathways: pharmacokinetics and 

pharmacodynamics. Pharmacogenetics and Genomics, 22(11), 820. 

Gordon, D.J., Probstfield, J.L., Garrison, R.J., Neaton, J.D., Castelli, W.P., Knoke, 

J.D., Jacobs Jr, D.R., Bangdiwala, S., & Tyroler, H. A. (1989). High-density 

lipoprotein cholesterol and cardiovascular disease. Four prospective 

American studies. Circulation, 79(1), 8-15. 

Gordon, T., Castelli, W. P., Hjortland, M. C., Kannel, W. B., & Dawber, T. R. 

(1977). High density lipoprotein as a protective factor against coronary heart 

disease: the Framingham Study. The American Journal of Medicine, 62(5), 

707-714. 

Goswami, S., Yee, S.W., Stocker, S., Mosley, J.D., Kubo, M., Castro, R., Mefford, 

J.A., Wen, C., Liang, X., Witte, J., & Brett, C. (2014). Genetic variants in 

transcription factors are associated with the pharmacokinetics and 

pharmacodynamics of metformin. Clinical Pharmacology & 

Therapeutics, 96(3), 370-379. 

Graffelman, J., & Weir, B. S. (2016). Testing for Hardy–Weinberg equilibrium at 

biallelic genetic markers on the X chromosome. Heredity, 116(6), 558. 

http://etd.uwc.ac.za/



 

105 
 

Graham, G.G., Punt, J., Arora, M., Day, R.O., Doogue, M.P., Duong, J., Furlong, 

T.J., Greenfield, J.R., Greenup, L.C., Kirkpatrick, C.M., & Ray, J. E. (2011). 

Clinical pharmacokinetics of metformin. Clinical Pharmacokinetics, 50(2), 

81-98.  

Griffin, S.J., Borch-Johnsen, K., Davies, M.J., Khunti, K., Rutten, G.E., Sandbæk, 

A., Sharp, S.J., Simmons, R.K., Van den Donk, M., Wareham, N.J., & 

Lauritzen, T. (2011). Effect of early intensive multifactorial therapy on 5-year 

cardiovascular outcomes in individuals with type 2 diabetes detected by 

screening (ADDITION-Europe): a cluster-randomised trial. The 

Lancet, 378(9786), 156-167. 

Grossman, A., & Grossman, E. (2017). Blood Pressure Control In Type 2 Diabetic 

Patients. Cardiovascular Diabetology. 16(1), 3.  

Haffner, S. M., Stern, M. P., Hazuda, H. P., Mitchell, B. D., & Patterson, J. K. 

(1990). Cardiovascular risk factors in confirmed prediabetic individuals: does 

the clock for coronary heart disease start ticking before the onset of clinical 

diabetes?. Jama, 263(21), 2893-2898. 

Hardie, D. G. (2007). AMP-activated protein kinase as a drug target. Annual Review 

of Pharmacology and Toxicology, 47, 185-210. 

Hardy, G. H. (1908). Mendelian proportions in a mixed population. Classic papers 

in genetics. Prentice-Hall, Inc.: Englewood Cliffs, New Jersey, 60-62. 

Haupt, E., Knick, B., Koschinsky, T., Liebermeister, H., Schneider, J., & Hirche, 

H. (1991). Oral antidiabetic combination therapy with sulphonylureas and 

metformin. Diabete and Metabolisme, 17(1 Pt 2), 224-231. 

http://etd.uwc.ac.za/



 

106 
 

He, L., Vasiliou, K., & Nebert, D. W. (2009a). Analysis and update of the human 

solute carrier (SLC) gene superfamily. Human Genomics, 3(2), 195. 

He, R., Zhang, D., Lu, W., Zheng, T., Wan, L., Liu, F., & Jia, W. (2015). SLC47A1 

gene rs2289669 G> A variants enhance the glucose-lowering effect of 

metformin via delaying its excretion in Chinese type 2 diabetes 

patients. Diabetes Research and Clinical Practice, 109(1), 57-63. 

He, Y.H., Jiang, G.X., Yang, Y., Huang, H.E., Li, R., Li, X.Y., Ning, G., & Cheng, 

Q. (2009b). Obesity and its associations with hypertension and type 2 diabetes 

among Chinese adults age 40 years and over. Nutrition, 25(11-12), 1143-

1149. 

Herman, W.H., Ye, W., Griffin, S.J., Simmons, R.K., Davies, M.J., Khunti, K., 

Rutten, G.E., Sandbaek, A., Lauritzen, T., Borch-Johnsen, K., & Brown, M. 

B. (2015). Early detection and treatment of type 2 diabetes reduce 

cardiovascular morbidity and mortality: a simulation of the results of the 

Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen-

Detected Diabetes in Primary Care (ADDITION-Europe). Diabetes Care, 

dc142459. 

Hermann, L. S. (1979). Metformin: a review of its pharmacological properties and 

therapeutic use. Diabete and Metabolisme, 5(3), 233-245. 

Hines, R. N., Luo, Z., Hopp, K. A., Cabacungan, E. T., Koukouritaki, S. B., & 

McCarver, D. G. (2003). Genetic variability at the human FMO1 locus: 

significance of a basal promoter yin yang 1 element polymorphism (FMO1* 

6). Journal of Pharmacology and Experimental Therapeutics, 306(3), 1210-

1218. 

http://etd.uwc.ac.za/



 

107 
 

Hodgson, J., & Marshall, A. (1998). Pharmacogenomics: will the regulators 

approve?. Nature biotechnology, 16. 

Holstein, A., & Beil, W. (2009). Oral antidiabetic drug metabolism: 

pharmacogenomics and drug interactions. Expert Opinion on Drug 

Metabolism and Toxicology, 5(3), 225-241. 

Holt, R. I. (2004). Diagnosis, epidemiology and pathogenesis of diabetes mellitus: 

an update for psychiatrists. The British Journal of Psychiatry, 184(S47), s55-

s63. 

Hu, G., Jousilahti, P., Peltonen, M., Lindström, J., & Tuomilehto, J. (2005). Urinary 

sodium and potassium excretion and the risk of type 2 diabetes: a prospective 

study in Finland. Diabetologia, 48(8), 1477-1483. 

Huang, C., & Florez, J. C. (2011). Pharmacogenetics in type 2 diabetes: potential 

implications for clinical practice. Genome Medicine, 3(11), 76. 

Hundal, R.S., Krssak, M., Dufour, S., Laurent, D., Lebon, V., Chandramouli, V., 

Inzucchi, S.E., Schumann, W.C., Petersen, K.F., Landau, B.R., & Shulman, 

G. I. (2000). Mechanism by which metformin reduces glucose production in 

type 2 diabetes. Diabetes, 49(12), 2063-2069. 

Hur, N. W., Kim, H. C., Mo Nam, C., Ha Jee, S., Lee, H. C., & Suh, I. (2007). 

Smoking cessation and risk of type 2 diabetes mellitus: Korea Medical 

Insurance Corporation Study. European Journal of Cardiovascular 

Prevention & Rehabilitation, 14(2), 244-249. 

Iafrate, A.J., Feuk, L., Rivera, M.N., Listewnik, M.L., Donahoe, P.K., Qi, Y., 

Scherer, S.W., & Lee, C. (2004). Detection of large-scale variation in the 

human genome. Nature Genetics, 36(9), 949. 

http://etd.uwc.ac.za/



 

108 
 

Igumbor, E.U., Sanders, D., Puoane, T.R., Tsolekile, L., Schwarz, C., Purdy, C., 

Swart, R., Durão, S., & Hawkes, C. (2012). “Big food,” the consumer food 

environment, health, and the policy response in South Africa. PLoS 

Medicine, 9(7), e1001253. 

International Diabetes Federation (IDF). (2009). IDF Diabetes Atlas, 4th Ed. 

Www.Diabetesatlas.Org. 2009; Accessed May 8, 2013. 

Inzucchi, S. E. (2012). Diagnosis of diabetes. New England Journal of 

Medicine, 367(6), 542-550. 

Inzucchi, S.E., Bergenstal, R.M., Buse, J.B., Diamant, M., Ferrannini, E., Nauck, 

M., Peters, A.L., Tsapas, A., Wender, R., & Matthews, D. R. (2012). 

Management of hyperglycaemia in type 2 diabetes: a patient-centered 

approach. Position statement of the American Diabetes Association (ADA) 

and the European Association for the Study of Diabetes 

(EASD). Diabetologia, 55(6), 1577-1596. 

Inzucchi, S.E., Bergenstal, R.M., Buse, J.B., Diamant, M., Ferrannini, E., Nauck, 

M., Peters, A.L., Tsapas, A., Wender, R., & Matthews, D. R. (2015). 

Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered 

approach: update to a position statement of the American Diabetes 

Association and the European Association for the Study of Diabetes. Diabetes 

care, 38(1), 140-149. 

Issa A. M. (2007). Personalized medicine and the practice of medicine in the 21st 

century. McGill Journal of Medicine: an international forum for the 

advancement of medical sciences by students, 10(1), 53-7. 

http://etd.uwc.ac.za/



 

109 
 

Issaka, A., Paradies, Y., & Stevenson, C. (2018). Modifiable and emerging risk 

factors for type 2 diabetes in Africa: a systematic review and meta-analysis 

protocol. Systematic Reviews, 7(1), 139. 

Jackson, D. B., & Sood, A. K. (2011). Personalized cancer medicine—advances 

and socio-economic challenges. Nature reviews Clinical oncology, 8(12), 

735. 

Jacobs, C.W. (2014). Pharmacogenomics of solute carrier transporter genes in the 

Xhosa population. Thesis for the degree of Doctor of Philosophy, University 

of the Western Cape, South Africa.  

Jacobs, C., Pearce, B., Du Plessis, M., Hoosain, N., & Benjeddou, M. (2014). 

Genetic polymorphisms and haplotypes of the organic cation transporter 1 

gene (SLC22A1) in the Xhosa population of South Africa. Genetics and 

Molecular Biology, 37(2), 350-359. 

Jameson, J. L., & Longo, D. L. (2015). Precision medicine—personalized, 

problematic, and promising. Obstetrical and gynecological survey, 70(10), 

612-614. 

Janci, M. M., Smith, R. C., & Odegard, P. S. (2012). Polycystic ovarian syndrome: 

metformin or thiazolidinediones for cardiovascular risk reduction?. Diabetes 

Spectrum, 25(4), 229-237. 

Jee, S. H., Foong, A. W., Hur, N. W., & Samet, J. M. (2010). Smoking and risk for 

diabetes incidence and mortality in Korean men and women. Diabetes Care. 

33(12), 2567-2572.  

Jin, W.Z., & Patti, E.M. (2009). Genetic Determinants and Molecular Pathways in 

The Pathogenesis of Type2 Diabetes. Clinical Science. 116, 99-111. 

http://etd.uwc.ac.za/



 

110 
 

Johnson, J. A. Pharmacogenetics in clinical practice: how far have we come and 

where are we going?. Pharmacogenomics. 2013; 14(7):835-43. 

Johnson, J. A., Majumdar, S. R., Simpson, S. H., & Toth, E. L. (2002). Decreased 

mortality associated with the use of metformin compared with sulfonylurea 

monotherapy in type 2 diabetes. Diabetes Care, 25(12), 2244-2248. 

Karadag, F., Ozcan, H., Karul, A. B., Yilmaz, M., & Cildag, O. (2009). Sex 

hormone alterations and systemic inflammation in chronic obstructive 

pulmonary disease. International Journal of Clinical Practice, 63(2), 275-

281. 

Karalliedde, J., & Buckingham, R. E. (2007). Thiazolidinediones and their Fluid-

Related Adverse Effects. Drug Safety, 30(9), 741-753. 

Kashi, Z., Masoumi, P., Mahrooz, A., Hashemi-Soteh, M. B., Bahar, A., & 

Alizadeh, A. (2015). The variant organic cation transporter 2 (OCT2)–T201M 

contribute to changes in insulin resistance in patients with type 2 diabetes 

treated with metformin. Diabetes Research and Clinical Practice, 108(1), 78-

83. 

Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. 

(2005). Global burden of hypertension: analysis of worldwide data. The 

Lancet, 365(9455), 217-223. 

Kengne, A. P., Echouffo-Tcheugui, J. B., Sobngwi, E., & Mbanya, J. C. (2013). 

New insights on diabetes mellitus and obesity in Africa–Part 1: prevalence, 

pathogenesis and comorbidities. Heart, 99(14), 979-983. 

http://etd.uwc.ac.za/



 

111 
 

Kim, H. C., & Oh, S. M. (2013). Noncommunicable diseases: current status of 

major modifiable risk factors in Korea. Journal of Preventive Medicine and 

Public Health, 46(4), 165. 

Kimura, N., Okuda, M., & Inui, K. I. (2005a). Metformin transport by renal 

basolateral organic cation transporter hOCT2. Pharmaceutical 

Research, 22(2), 255-259. 

Kimura, N., Masuda, S., Tanihara, Y., Ueo, H., Okuda, M., Katsura, T., & Inui, K. 

I. (2005b). Metformin is a superior substrate for renal organic cation 

transporter OCT2 rather than hepatic OCT1. Drug Metabolism and 

Pharmacokinetics, 20(5), 379-386. 

Kirpichnikov, D., McFarlane, S. I., & Sowers, J. R. (2002). Metformin: an 

update. Annals of Internal Medicine, 137(1), 25-33. 

Kitzmiller, J. P., Groen, D. K., Phelps, M. A., & Sadee, W. (2011). 

Pharmacogenomic testing: relevance in medical practice: why drugs work in 

some patients but not in others. Cleveland Clinic Journal of Medicine, 78(4), 

243-57. 

Kitzmiller, J.P., Mikulik, E.B., Dauki, A.M., Murkherjee, C., & Luzum, J.A. 

(2016). Pharmacogenomics of statins: understanding susceptibility to adverse 

effects. Pharmacogenomics and Personalized Medicine, 9, 97. 

Klein, D. J., Battelino, T., Chatterjee, D. J., Jacobsen, L. V., Hale, P. M., Arslanian, 

S., & NN2211-1800 Study Group. (2014). Liraglutide's safety, tolerability, 

pharmacokinetics, and pharmacodynamics in pediatric type 2 diabetes: a 

randomized, double-blind, placebo-controlled trial. Diabetes Technology and 

Therapeutics, 16(10), 679-687. 

http://etd.uwc.ac.za/



 

112 
 

Knauer, M. J., Diamandis, E. P., Hulot, J. S., Kim, R. B., & So, D. Y. (2015). 

Clopidogrel and CYP2C19: pharmacogenetic testing ready for clinical prime 

time?. Clinical Chemistry, 61(10), 1235-1240. 

Kovo, M., Haroutiunian, S., Feldman, N., Hoffman, A., & Glezerman, M. (2008). 

Determination of metformin transfer across the human placenta using a dually 

perfused ex vivo placental cotyledon model. European Journal of Obstetrics 

& Gynecology and Reproductive Biology, 136(1), 29-33. 

Krause, A. (2015). Understanding the genetic diversity of South Africa's 

peoples. SAMJ: South African Medical Journal, 105(7), 544-545. 

Kristensen, J. M., Treebak, J. T., Schjerling, P., Goodyear, L., & Wojtaszewski, J. 

F. (2014). Two weeks of metformin treatment induces AMPK-dependent 

enhancement of insulin-stimulated glucose uptake in mouse soleus 

muscle. American Journal of Physiology-Endocrinology and 

Metabolism, 306(10), E1099-E1109. 

Krueger, S. K., Yueh, M. F., Martin, S. R., Pereira, C. B., & Williams, D. E. (2001). 

Characterization of expressed full-length and truncated FMO2 from rhesus 

monkey. Drug Metabolism and Disposition, 29(5), 693-700. 

Kruger, H. S., Puoane, T., Senekal, M., & Van Der Merwe, M. T. (2005). Obesity 

in South Africa: challenges for government and health professionals. Public 

Health Nutrition, 8(5), 491-500. 

Kumar, R., Nandhini, L. P., Kamalanathan, S., Sahoo, J., & Vivekanadan, M. 

(2016). Evidence for current diagnostic criteria of diabetes mellitus. World 

Journal of Diabetes, 7(17), 396. 

http://etd.uwc.ac.za/



 

113 
 

Kunene, S. H., & Taukobong, N. P. (2017). Dietary habits among health 

professionals working in a district hospital in KwaZulu-Natal, South 

Africa. African Journal of Primary Health Care and Family Medicine, 9(1), 

1-5. 

Kucharska-Newton, A. M., Rosamond, W. D., Schroeder, J. C., McNeill, A. M., 

Coresh, J., & Folsom, A. R. (2008). HDL-cholesterol and the incidence of 

lung cancer in the Atherosclerosis Risk in Communities (ARIC) study. Lung 

Cancer, 61(3), 292-300. 

Kusuhara, H., & Sugiyama, Y. (2009). In vitro-in vivo extrapolation of transporter-

mediated clearance in the liver and kidney. Drug Metabolism and 

Pharmacokinetics, 24(1), 37-52. 

Kwon, H. J., & Lee, H. J. (2017). Effect of vigorous physical activity on blood lipid 

and glucose. Journal of Exercise Rehabilitation, 13(6), 653-658. 

Lahiri, D. K., & Nurnberger Jr, J. I. (1991). A rapid non-enzymatic method for the 

preparation of HMW DNA from blood for RFLP studies. Nucleic Acids 

Research, 19(19), 5444. 

Lambert, E.V., & Kolbe-Alexander, T. (2005). Physical Activity and Chronic 

Diseases of Lifestyle in South Africa. Chronic Diseases of Lifestyle in South 

Africa, 2005, 1995, 23-32. 

Http://Www.Mrc.Ac.Za/Chronic/Cdlchapter3.Pdf. Accessed: 19 November 

2018 

Landau, S. A. (2004). Handbook of Statistical Analyses Using SPSS. : CRC.  

http://etd.uwc.ac.za/

http://www.mrc.ac.za/chronic/cdlchapter3.pdf


 

114 
 

Leabman, M. K., & Giacomini, K. M. (2003). Estimating the contribution of genes 

and environment to variation in renal drug clearance. Pharmacogenetics and 

Genomics, 13(9), 581-584.  

Lee, P. G., & Halter, J. B. (2017). The pathophysiology of hyperglycemia in older 

adults: clinical considerations. Diabetes Care, 40(4), 444-452. 

Lee, S., Kasif, S., Weng, Z., & Cantor, C. R. (2008). Quantitative analysis of single 

nucleotide polymorphisms within copy number variation. PLoS One, 3(12), 

e3906. 

Levitt, N. (2008). Diabetes in Africa: epidemiology, management and healthcare 

challenges. Heart, 94, 1376-1382. 

Levitt, N. S., Steyn, K., Dave, J., & Bradshaw, D. (2011). Chronic 

noncommunicable diseases and HIV-AIDS on a collision course: relevance 

for health care delivery, particularly in low-resource settings—insights from 

South Africa–. The American Journal of Clinical Nutrition, 94(6), 1690S-

1696S. 

Li, Y., Xu, W., Liao, Z., Yao, B., Chen, X., Huang, Z., Hu, G., & Weng, J. (2004). 

Induction of long-term glycemic control in newly diagnosed type 2 diabetic 

patients is associated with improvement of β-cell function. Diabetes 

Care, 27(11), 2597-2602. 

Li, J., Wang, S., Barone, J., & Malone, B. (2009). Warfarin pharmacogenomics. 

Pharmacy and Therapeutics, 34(8), 422-427 

Li, Q., Liu, F., Zheng, T. S., Tang, J. L., Lu, H. J., & Jia, W. P. (2010). SLC22A2 

gene 808 G/T variant is related to plasma lactate concentration in Chinese 

http://etd.uwc.ac.za/



 

115 
 

type 2 diabetics treated with metformin. Acta Pharmacologica Sinica, 31(2), 

184. 

Li, Q., Chen, M., Zhang, R., Jiang, F., Wang, J., Zhou, J., Bao, Y., Hu, C., & Jia, 

W. (2014). KCNJ 11 E23K variant is associated with the therapeutic effect of 

sulphonylureas in C hinese type 2 diabetic patients. Clinical and 

Experimental Pharmacology and Physiology, 41(10), 748-754. 

Liang, Y., Li, S., & Chen, L. (2015). The physiological role of drug 

transporters. Protein and cell, 6(5), 334-350. 

Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., Shibuya, K., Adair-Rohani, H., 

AlMazroa, M.A., Amann, M., Anderson, H.R., Andrews, K.G., & Aryee, M. 

(2012). A comparative risk assessment of burden of disease and injury 

attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–

2010: a systematic analysis for the Global Burden of Disease Study 2010. The 

Lancet, 380(9859), 2224-2260. 

Liu, X., Luo, X., Jiang, C., & Zhao, H. (2019). Difficulties and challenges in the 

development of precision medicine. Clinical Genetics. 

Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., 

Abraham, J., Adair, T., Aggarwal, R., Ahn, S.Y., & AlMazroa, M. A. (2012). 

Global and regional mortality from 235 causes of death for 20 age groups in 

1990 and 2010: a systematic analysis for the Global Burden of Disease Study 

2010. The Lancet, 380(9859), 2095-2128. 

Lorber, D. (2014). Importance of cardiovascular disease risk management in 

patients with type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and 

Obesity: Targets and Therapy, 7, 169. 

http://etd.uwc.ac.za/



 

116 
 

Lorenzati, B., Zucco, C., Miglietta, S., Lamberti, F., & Bruno, G. (2010). Oral 

hypoglycemic drugs: pathophysiological basis of their mechanism of 

actionoral hypoglycemic drugs: pathophysiological basis of their mechanism 

of action. Pharmaceuticals, 3(9), 3005-3020. 

Maas, A. H., & Appelman, Y. E. (2010). Gender differences in coronary heart 

disease. Netherlands heart journal: monthly journal of the Netherlands 

Society of Cardiology and the Netherlands Heart Foundation, 18(12), 598-

602. 

Maimela, E., Alberts, M., Modjadji, S. E., Choma, S. S., Dikotope, S. A., Ntuli, T. 

S., & Van Geertruyden, J. P. (2016). The prevalence and determinants of 

chronic non-communicable disease risk factors amongst adults in the Dikgale 

health demographic and surveillance system (HDSS) site, Limpopo Province 

of South Africa. PLoS One, 11(2), e0147926. 

Manning, K., Senekal, M., & Harbron, J. (2016). Non-communicable disease risk 

factors and treatment preference of obese patients in Cape Town. African 

Journal of Primary Health Care and Family Medicine, 8(1), 1-12. 

Martin, J.H. (2009). Pharmacogenetics of warfarin - is testing clinically indicated?.  

Experimental and Clinical Pharmacology, 32:76-80. 

Maruthur, N.M., Tseng, E., Hutfless, S., Wilson, L.M., Suarez-Cuervo, C., Berger, 

Z., Chu, Y., Iyoha, E., Segal, J.B., & Bolen, S. (2016). Diabetes medications 

as monotherapy or metformin-based combination therapy for type 2 diabetes: 

a systematic review and meta-analysis. Annals of Internal Medicine, 164(11), 

740-751. 

http://etd.uwc.ac.za/



 

117 
 

Mashahit, M.A., Abdelghafar, N.K., Ezzat, G.M., & Mansour, L.A. (2014). 

Multidrug and Toxin extrusion protein (MATE1) gene polymorphism and 

therapeutic effects of metformin in type 2 diabetes mellitus in Egypt. Journal 

of Applied Medical Sciences, 3(4),73-84. 

Matimba, A. (2009). Pharmacogenetics of African populations: Variation in major 

drug metabolising enzyme genes and potential impact on personalised 

medicine. Thesis for the degree of Doctor of Philosophy. University of Cape 

Town, South Africa. 

Mayosi, B. M., Flisher, A. J., Lalloo, U. G., Sitas, F., Tollman, S. M., & Bradshaw, 

D. (2009). The burden of non-communicable diseases in South Africa. The 

Lancet, 374(9693), 934-947. 

Mealey, B. L., & Ocampo, G. L. (2007). Diabetes mellitus and periodontal 

disease. Periodontology 2000, 44(1), 127-153. 

Meyer zu Schwabedissen, H. E., Verstuyft, C., Kroemer, H. K., Becquemont, L., & 

Kim, R. B. (2010). Human multidrug and toxin extrusion 1 

(MATE1/SLC47A1) transporter: functional characterization, interaction with 

OCT2 (SLC22A2), and single nucleotide polymorphisms. American Journal 

of Physiology-Renal Physiology, 298(4), F997-F1005. 

Mizzi, C., Peters, B., Mitropoulou, C., Mitropoulos, K., Katsila, T., Agarwal, M.R., 

Van Schaik, R.H., Drmanac, R., Borg, J. & Patrinos, G. P. (2014). 

Personalized pharmacogenomics profiling using whole-genome sequencing. 

Pharmacogenomics, 15(9), 1223-1234. 

Mkele, G. (2013). A review of metformin and its place in the diabetes 

guidelines. South African Family Practice, 55(6), 504-506. 

http://etd.uwc.ac.za/



 

118 
 

Mohan, V., Deepa, M., Farooq, S., Datta, M., & Deepa, R. (2007). Prevalence, 

awareness and control of hypertension in Chennai-the Chennai urban rural 

epidemiology study (CURES–52). Journal of Association of Physicians of 

India, 55, 326-32. 

Mohan, V., Seedat, Y. K., & Pradeepa, R. (2013). The Rising Burden Of Diabetes 

And Hypertension In Southeast Asian And African Regions: Need For 

Effective Strategies For Prevention And Control In Primary Health Care 

Settings. International Journal of Hypertension. 409083. 

Morton, J., Zoungas, S., Li, Q., Patel, A.A., Chalmers, J., Woodward, M., 

Celermajer, D.S., Beulens, J.W., Stolk, R.P., Glasziou, P., & Ng, M. K. 

(2012). Low HDL cholesterol and the risk of diabetic nephropathy and 

retinopathy: results of the ADVANCE study. Diabetes Care, DC_120306. 

Montonen, J., Drogan, D., Joost, H.G., Boeing, H., Fritsche, A., Schleicher, E., 

Schulze, M.B., & Pischon, T. (2011). Estimation of the contribution of 

biomarkers of different metabolic pathways to risk of type 2 

diabetes. European Journal of Epidemiology, 26(1), 29-38. 

Motala, A. A., Esterhuizen, T., Pirie, F. J., & Omar, M. A. (2011). The prevalence 

of metabolic syndrome and determination of the optimal waist circumference 

cutoff points in a rural South African community. Diabetes Care, 

DC_101921. 

Mukerjee, G., Huston, A., Kabakchiev, B., Piquette-Miller, M., van Schaik, R., & 

Dorfman, R. (2018). User considerations in assessing pharmacogenomic tests 

and their clinical support tools. NPJ Genomic Medicine, 3(1), 26. 

http://etd.uwc.ac.za/



 

119 
 

Mukong, A. K., Van Walbeek, C., & Ross, H. (2017). The Role of Alcohol and 

Tobacco Consumption On Income-Related Inequality In Health In South 

Africa, Economic Research Of South Africa. Lifestyle and income-related 

inequality in health in South Africa. International Journal for Equity in 

Health, 16(1), 103. 

Mulenga, D., Siziya, S., Rudatsikira, E., Mukonka, V. M., Babaniyi, O., Songolo, 

P., & Muula, A. S. (2013). District specific correlates for hypertension in 

Kaoma and Kasama rural districts of Zambia. Rural and Remote 

Health, 13(3), 2345.  

Müller, F., & Fromm, M. F. (2011). Transporter-mediated drug–drug 

interactions. Pharmacogenomics, 12(7), 1017-1037. 

Musunuru, K., Roden, D.M., Boineau, R., Bristow, M.R., McCaffrey, T.A., 

Newton‐Cheh, C., Paltoo, D.N., Rosenberg, Y., Wohlgemuth, J.G., Zineh, I. 

& Hasan, A. A. (2012). Cardiovascular pharmacogenomics: current status 

and future directions—report of a National Heart, Lung, and Blood Institute 

Working Group. Journal of the American Heart Association, 1(2), e000554. 

National centre of biotechnology information – single nucleotide polymorphisms 

(NCBI-SNP) database. http://www.ncbi.nih.gov. 

National Department of Health (NDOH), Statistics South Africa (Stats SA), South 

African Medical Research Council (SAMRC)., & ICF. (2017). South Africa 

Demographic and Health Survey 2016: Key Indicators Pretoria, South Africa 

and Rockville, Maryland, USA: Ndoh, Stats SA, SAMRC, and ICF. 

Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., 

Mullany, E.C., Biryukov, S., Abbafati, C., Abera, S.F., & Abraham, J. P. 

http://etd.uwc.ac.za/

http://www.ncbi.nih.gov/


 

120 
 

(2014). Global, regional, and national prevalence of overweight and obesity 

in children and adults during 1980–2013: a systematic analysis for the Global 

Burden of Disease Study 2013. The Lancet, 384(9945), 766-781. 

Nei, M., & Kumar, S. (2000). Molecular Evolution and Phylogenetics. Oxford 

university press. 

Nie, N. H., Bent, D. H., & Hull, C. H. (1975). SPSS: Statistical package for the 

social sciences. 

Nies, A. T., Koepsell, H., Damme, K., & Schwab, M. (2011). Organic cation 

transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance 

in drug therapy. In Drug Transporters. Springer, Berlin, Heidelberg. 105-167 

Nieto-Vazquez, I., Fernández-Veledo, S., Krämer, D. K., Vila-Bedmar, R., Garcia-

Guerra, L., & Lorenzo, M. (2008). Insulin resistance associated to obesity: 

the link TNF-alpha. Archives of Physiology and Biochemistry, 114(3), 183-

194. 

Njølstad, I., Amesen, E., & Lund-Larsen, P. G. (1998). Sex differences in risk 

factors for clinical diabetes mellitus in a general population: a 12-year follow-

up of the Finnmark Study. American Journal of Epidemiology, 147(1), 49-58. 

Nomura, A. M., Stemmermann, G. N., & Chyou, P. H. (1991). Prospective study 

of serum cholesterol levels and large-bowel cancer. JNCI: Journal of the 

National Cancer Institute, 83(19), 1403-1407. 

Ntuli, S. T., Maimela, E., Alberts, M., Choma, S., & Dikotope, S. (2015). 

Prevalence and associated risk factors of hypertension amongst adults in a 

rural community of Limpopo Province, South Africa. African journal of 

primary health care & family medicine, 7(1), 1-5.  

http://etd.uwc.ac.za/



 

121 
 

O'Connor, A. S., Hulot, J. S., Silvain, J., Cayla, G., Montalescot, G., & Collet, J. P. 

(2012). Pharmacogenetics of clopidogrel. Current Pharmaceutical Design, 

18(33), 5309-5327. 

Oeth, P., Del Mistro, G., Marnellos, G., Shi, T., & Van den Boom, D. (2009). 

Qualitative and quantitative genotyping using single base primer extension 

coupled with matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry (MassARRAY®). In Single Nucleotide Polymorphisms. 

Humana Press, Totowa, NJ, 307-343 

Ogurtsova, K., Da Rocha Fernandes, J.D., Huang, Y., Linnenkamp, U., Guariguata, 

L., Cho, N.H., Cavan, D., Shaw, J.E., & Makaroff, L. E. (2017). IDF Diabetes 

Atlas: Global estimates for the prevalence of diabetes for 2015 and 

2040. Diabetes Research and Clinical Practice, 128, 40-50. 

Ohta, K. Y., Inoue, K., Hayashi, Y., & Yuasa, H. (2006). Molecular identification 

and functional characterization of rat multidrug and toxin extrusion type 

transporter 1 as an organic cation/H+ antiporter in the kidney. Drug 

Metabolism and Disposition, 34(11), 1868-1874. 

Olokoba, A. B., Obateru, O. A., & Olokoba, L. B. (2012). Type 2 diabetes mellitus: 

a review of current trends. Oman medical journal, 27(4), 269-273.  

Omoleke, S. A. (2013). Chronic non-communicable disease as a new epidemic in 

Africa: focus on The Gambia. Pan African Medical Journal, 14(1). 

Opie, L. H., & Seedat, Y. K. (2005). Hypertension in sub-Saharan African 

populations. Circulation, 112(23), 3562-3568. 

Overby, L. H., Buckpitt, A. R., Lawton, M. P., Attaasafoadjei, E., Schulze, J., & 

Philpot, R. M. (1995). Characterization of Flavin-Containing 

http://etd.uwc.ac.za/



 

122 
 

Monooxygenase-5 (FMO5) Cloned from Human and Guinea-Pig: Evidence 

That the Unique Catalytic Properties of FMO5 Are Not Confined to the 

Rabbit Ortholog. Archives of Biochemistry and Biophysics, 317(1), 275-284. 

Pandey, A., Patni, N., Sarangi, S., Singh, M., Sharma, K., Vellimana, A. K., & 

Patra, S. (2009). Association of exclusive smokeless tobacco consumption 

with hypertension in an adult male rural population of India. Tobacco Induced 

Diseases, 5(1), 15. 

Papanas, N., & Maltezos, E. (2009). Metformin: a review of its use in the treatment 

of type 2 diabetes. Clinical Medicine Therapeutics, 1, CMT-S1085. 

Peakall, R. O. D., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. 

Population genetic software for teaching and research. Molecular Ecology 

Notes, 6(1), 288-295. 

Peakall, R., & Smouse, PE. (2012). Genalex 6.5: Genetic Analysis in Excel. 

Population Genetic Software for Teaching and Researchdan Update. 

Bioinformatics 28, 2537e2539. 

Pearson, E.R., Flechtner, I., Njølstad, P.R., Malecki, M.T., Flanagan, S.E., Larkin, 

B., Ashcroft, F.M., Klimes, I., Codner, E., Iotova, V., & Slingerland, A. S. 

(2006). Switching from insulin to oral sulfonylureas in patients with diabetes 

due to Kir6. 2 mutations. New England Journal of Medicine, 355(5), 467-477. 

Peer, N., Kengne, A. P., Motala, A. A., & Mbanya, J. C. (2014). Diabetes in the 

Africa Region: an update. Diabetes Research and Clinical Practice, 103(2), 

197-205.  

Phani, N.M., Vohra, M., Kakar, A., Adhikari, P., Nagri, S.K., D'Souza, S.C., 

Umakanth, S., Satyamoorthy, K., & Rai, P. S. (2018). Implication of critical 

http://etd.uwc.ac.za/



 

123 
 

pharmacokinetic gene variants on therapeutic response to metformin in Type 

2 diabetes. Pharmacogenomics, (0). 

Pharmacogenomics Knowledgebase (pharmgkb). http://www.pharmgkb.org. 

Accessed March 2017. 

Phaswana-Mafuya, N., Peltzer, K., Chirinda, W., Musekiwa, A., Kose, Z., & 

Hoosain, E. (2013). Self-reported prevalence of chronic non-communicable 

diseases and associated factors among older adults in South Africa. Glob 

Health Action, 6, 20936. 

Pheiffer, C., Pillay-van Wyk, V., Joubert, J. D., Levitt, N., Nglazi, M. D., & 

Bradshaw, D. (2018). The prevalence of type 2 diabetes in South Africa: a 

systematic review protocol. BMJ Open, 8(7), e021029. 

Phillips, I.R., Dolphin, C.T., Clair, P., Hadley, M.R., Hutt, A.J., McCombie, R.R., 

Smith, R.L., & Shephard, E. A. (1995). The molecular biology of the flavin-

containing monooxygenases of man. Chemico-biological Interactions, 96(1), 

17-32. 

Pirazzoli, A., and Recchia, G. (2004). Pharmacogenetics and Pharmacogenomics: 

Are They Still Promising? Pharmacological Research. 49(4), 357-361.  

Pistoi, S. (2002). Facing your genetic destiny, part II. Scientific American, 1200-

1205. 

Pollastro, C., Ziviello, C., Costa, V., & Ciccodicola, A. (2015). Pharmacogenomics 

of drug response in type 2 diabetes: toward the definition of tailored 

therapies?. PPAR research, 2015,415149.  

Powers, A. C., & D’Alessio, D. (2011). Endocrine pancreas and pharmacotherapy 

of diabetes mellitus and hypoglycemia. Goodman and Gilman’s The 

http://etd.uwc.ac.za/

http://www.pharmgkb.org/


 

124 
 

Pharmacological Basis of Therapeutics 12th edition. Edited by Brunton LL, 

Chabner BA, Knollman BC. New York: McGraw Hill Publishers, 1237-1274. 

Pradeep, T., & Haranath, C. (2014). A Review on Diabetes Mellitus Type 

II. International Journal of Pharma Research & Review, 3(9), 23-29. 

Puoane, T., Tsolekile, L., Caldbick, S., Igumbor, E., Meghnath, K., & Sanders, D. 

(2012). Chronic non-communicable diseases in South Africa: Progress and 

challenges. South African Health Review.  13, 115-126.  

Qi, L., Hu, F. B., & Hu, G. (2008). Genes, environment, and interactions in 

prevention of type 2 diabetes: a focus on physical activity and lifestyle 

changes. Current Molecular Medicine, 8(6), 519-532. 

Quillen, D. M., & Kuritzky, L. (2002). Type 2 diabetes management: A 

comprehensive clinical review of oral medications. Comprehensive 

Therapy, 28(1), 50-61. 

RamanjiReddy, T., Dachinamoorthi, D., & Chandrasekhar, K. B. (2011). 

Importance of Merformin with Repaglinide in the Treatment of Type II 

Diabetes Mellitus: A Decadal Review. Asian Journal of Pharmaceutical and 

Clinical Research, 5(1), 1-4. 

Ranasinghe, P., Cooray, D. N., Jayawardena, R., & Katulanda, P. (2015). The 

influence of family history of hypertension on disease prevalence and 

associated metabolic risk factors among Sri Lankan adults. BMC Public 

Health, 15(1), 576. 

Reddy, S. S., & Prabhu, G. R. (2005). Prevalence and risk factors of hypertension 

in adults in an Urban Slum, Tirupati, AP. Indian Journal of Community 

Medicine, 30(3), 84. 

http://etd.uwc.ac.za/



 

125 
 

Reddy, P., Zuma, K., Shisana, O., Jonas, K., & Sewpaul, R. (2015). Prevalence of 

tobacco use among adults in South Africa: Results from the first South 

African National Health and Nutrition examination survey. South African 

Medical Journal, 105(8), 648-655. 

Redón, J., Cea-Calvo, L., Moreno, B., Monereo, S., Gil-Guillén, V., Lozano, J.V., 

Martí-Canales, J.C., Llisterri, J.L., Aznar, J., Fernández-Pérez, C., & 

investigators of the PREV-ICTUS Study. (2008). Independent impact of 

obesity and fat distribution in hypertension prevalence and control in the 

elderly. Journal of Hypertension, 26(9), 1757-1764. 

Reitman, M. L., & Schadt, E. E. (2007). Pharmacogenetics of metformin response: 

a step in the path toward personalized medicine. The Journal of Clinical 

Investigation, 117(5), 1226-1229. 

Rich, S. S., & Cefalu, W. T. (2016). The impact of precision medicine in diabetes: 

a multidimensional perspective. Diabetes Care, 39(11), 1854-1857. 

Roth, M., Obaidat, A., & Hagenbuch, B. (2012). OATPs, OATs and OCTs: the 

organic anion and cation transporters of the SLCO and SLC22A gene 

superfamilies. British Journal of Pharmacology, 165(5), 1260-1287. 

Roumie, C.L., Min, J.Y., Greevy, R.A., Grijalva, C.G., Hung, A.M., Liu, X., Elasy, 

T., & Griffin, M. R. (2016). Risk of hypoglycemia following intensification 

of metformin treatment with insulin versus sulfonylurea. Canadian Medical 

Association Journal, cmaj-150904. 

Ruiz-Iruela, C., Padró-Miquel, A., Pintó-Sala, X., Baena-Díez, N., Caixàs-

Pedragós, A., Güell-Miró, R., Navarro-Badal, R., Jusmet-Miguel, X., 

Calmarza, P., Puzo-Foncilla, J.L. & Alía-Ramos, P., 2018. KIF6 gene as a 

http://etd.uwc.ac.za/



 

126 
 

pharmacogenetic marker for lipid-lowering effect in statin treatment. PloS 

One, 13(10), p.e0205430. 

Russel, F. G. (2010). Transporters: importance in drug absorption, distribution, and 

removal. In Enzyme-and transporter-based drug-drug interactions. Springer, 

New York, NY. 27-49 

Sakata, T., Anzai, N., Kimura, T., Miura, D., Fukutomi, T., Takeda, M., Sakurai, 

H., & Endou, H. (2010). Functional analysis of human organic cation 

transporter OCT3 (SLC22A3) polymorphisms. Journal of Pharmacological 

Sciences, 113(3), 263-266. 

Sambol, N.C., Chiang, J., O'conner, M., Liu, C.Y., Lin, E.T., Goodman, A.M., 

Benet, L.Z., & Karam, J. H. (1996). Pharmacokinetics and 

pharmacodynamics of metformin in healthy subjects and patients with 

noninsulin‐dependent diabetes mellitus. The Journal of Clinical 

Pharmacology, 36(11), 1012-1021. 

Sanchez-Rangel, E., & Inzucchi, S. E. (2017). Metformin: clinical use in type 2 

diabetes. Diabetologia, 60(9), 1586-1593. 

Santoro, A. B., Botton, M. R., Struchiner, C. J., & Suarez‐Kurtz, G. (2018). 

Influence of pharmacogenetic polymorphisms and demographic variables on 

metformin pharmacokinetics in an admixed Brazilian cohort. British Journal 

of Clinical Pharmacology, 84(5), 987-996. 

Schoonjans, F. (2017). MedCalc manual: Easy-to-use statistical software. MedCalc 

Software, Ostend, Belgium. 

Seggie, J. (2012). Alcohol and South Africa's youth. SAMJ: South African Medical 

Journal, 102(7), 587-587. 

http://etd.uwc.ac.za/



 

127 
 

Semiz, S., Dujic, T., & Causevic, A. (2013). Pharmacogenetics and personalized 

treatment of type 2 diabetes. Biochemia Medica: Biochemia Medica, 23(2), 

154-171. 

Sesti, G., Laratta, E., Cardellini, M., Andreozzi, F., Del Guerra, S., Irace, C., 

Gnasso, A., Grupillo, M., Lauro, R., Hribal, M.L., & Perticone, F. (2006). 

The E23K variant of KCNJ11 encoding the pancreatic β-cell adenosine 5′-

triphosphate-sensitive potassium channel subunit Kir6. 2 is associated with 

an increased risk of secondary failure to sulfonylurea in patients with type 2 

diabetes. The Journal of Clinical Endocrinology and Metabolism, 91(6), 

2334-2339. 

Shah, A., & Afzal, M. (2013). Prevalence of diabetes and hypertension and 

association with various risk factors among different Muslim populations of 

Manipur, India. Journal of Diabetes and Metabolic Disorders, 12(1), 52. 

Shah, P., Vella, A., Basu, A., Basu, R., Schwenk, W. F., & Rizza, R. A. (2000). 

Lack of suppression of glucagon contributes to postprandial hyperglycemia 

in subjects with type 2 diabetes mellitus. The Journal of Clinical 

Endocrinology and Metabolism, 85(11), 4053-4059. 

Shahin, M. H., & Johnson, J. A. (2013). Clopidogrel and warfarin pharmacogenetic 

tests: what is the evidence for use in clinical practice?. Current Opinion in 

Cardiology, 28(3), 305. 

Shanthirani, C. S., Pradeepa, R., Deepa, R., Premalatha, G., Saroja, R., & Mohan, 

V. (2003). Prevalence and risk factors of hypertension in a selected South 

Indian population--the Chennai Urban Population Study. The Journal of the 

Association of Physicians of India, 51, 20-7. 

http://etd.uwc.ac.za/



 

128 
 

Sharrett, A. R., Ballantyne, C. M., Coady, S. A., Heiss, G., Sorlie, P. D., Catellier, 

D., & Patsch, W. (2001). Coronary heart disease prediction from lipoprotein 

cholesterol levels, triglycerides, lipoprotein (a), apolipoproteins AI and B, 

and HDL density subfractions: The Atherosclerosis Risk in Communities 

(ARIC) Study. Circulation, 104(10), 1108-1113. 

Sherifali, D., Nerenberg, K., Pullenayegum, E., Cheng, J. E., & Gerstein, H. C. 

(2010). The effect of oral antidiabetic agents on glycated hemoglobin levels: 

a systematic review and meta-analysis. Diabetes Care. 

Shikata, E., Yamamoto, R., Takane, H., Shigemasa, C., Ikeda, T., Otsubo, K., & 

Ieiri, I. (2007). Human organic cation transporter (OCT1 and OCT2) gene 

polymorphisms and therapeutic effects of metformin. Journal of Human 

Genetics, 52(2), 117. 

Shisana, O, Labadarios D, Rehle T, Simbayi L, Zuma K, Dhansay A, Reddy P, 

Parker W, Hoosain E, Naidoo P, Hongoro C, Mchiza Z, Steyn NP, Dwane N, 

Makoae M, Maluleke T, Ramlagan S, Zungu N, Evans MG, Jacobs L, Faber 

M, and SANHANES-1 Team (2013). The South African National Health and 

Nutrition Examination Survey (SANHANES-1). Cape Town: HSRC Press 

Shokri, F., Ghaedi, H., Fard, S.G., Movafagh, A., Abediankenari, S., Mahrooz, A., 

Kashi, Z., & Omrani, M. D. (2016). Impact of ATM and SLC22A1 

Polymorphisms on therapeutic response to metformin in iranian diabetic 

patients. International Journal of Molecular and Cellular Medicine, 5(1), 1. 

Shu, Y., Sheardown, S.A., Brown, C., Owen, R.P., Zhang, S., Castro, R.A., 

Ianculescu, A.G., Yue, L., Lo, J.C., Burchard, E.G., & Brett, C. M. (2007). 

http://etd.uwc.ac.za/



 

129 
 

Effect of genetic variation in the organic cation transporter 1 (OCT1) on 

metformin action. The Journal of Clinical Investigation, 117(5), 1422-1431. 

Shu, Y., Brown, C., Castro, R.A., Shi, R.J., Lin, E.T., Owen, R.P., Sheardown, S.A., 

Yue, L., Burchard, E.G., Brett, C.M., & Giacomini, K. M. (2008). Effect of 

genetic variation in the organic cation transporter 1, OCT1, on metformin 

pharmacokinetics. Clinical Pharmacology and Therapeutics, 83(2), 273-280. 

Shyng, S. L., & Nichols, C. G. (1997). Octameric stoichiometry of the KATP 

channel complex. The Journal of General Physiology, 110(6), 655-664. 

Şıklar, Z., Ellard, S., Okulu, E., Berberoğlu, M., Young, E., Erdeve, Ş.S., Mungan, 

İ.A., Hacıhamdioğlu, B., Erdeve, Ö., Arsan, S., & Öçal, G. (2011). Transient 

neonatal diabetes with two novel mutations in the KCNJ11 gene and response 

to sulfonylurea treatment in a preterm infant. Journal of Pediatric 

Endocrinology and Metabolism, 24(11-12), 1077-1080. 

Silva, E. F. F., Ferreira, C. M. M., & Pinho, L. D. (2017). Risk factors and 

complications in type 2 diabetes outpatients. Revista da Associação Médica 

Brasileira, 63(7), 621-627. 

Singh, A., Bassi, S., Nazar, G. P., Saluja, K., Park, M., Kinra, S., & Arora, M. 

(2017). Impact of school policies on non-communicable disease risk factors–

a systematic review. BMC public health, 17(1), 292. 

Singh, R.B., Fedacko, J., Pella, D., Macejova, Z., Ghosh, S., De, A.K., Begom, R., 

Tumbi, Z.A., Memuna, H., Vajpeyee, S.K., & De Meester, F. (2011). 

Prevalence and risk factors for prehypertension and hypertension in five 

Indian cities. Acta Cardiologica, 66(1), 29-37. 

http://etd.uwc.ac.za/



 

130 
 

Skyler, J.S., Bakris, G.L., Bonifacio, E., Darsow, T., Eckel, R.H., Groop, L., Groop, 

P.H., Handelsman, Y., Insel, R.A., Mathieu, C., & McElvaine, A. T. (2017). 

Differentiation of diabetes by pathophysiology, natural history, and 

prognosis. Diabetes, 66(2), 241-255. 

Sorlie, P. D., & Feinleib, M. (1982). The serum cholesterol-cancer relationship: an 

analysis of time trends in the Framingham Study. Journal of the National 

Cancer Institute, 69(5), 989-996. 

Sowers, J. R. (2003). Recommendations for special populations: diabetes mellitus 

and the metabolic syndrome. American Journal of Hypertension, 16(S3), 

41S-45S. 

Spires, M., Delobelle, P., Sanders, D., Puoane, T., Hoelzel, P., & Swart, R. (2016). 

Diet-related non-communicable diseases in South Africa: determinants and 

policy responses. South African Health Review, 2016(1), 35-42.  

Stats, S. (2011). Statistics South Africa. Formal census.  

Steyn, K., Kazenellenbogen, J. M., Lombard, C. J., & Bourne, L. T. (1997). 

Urbanization and the risk for chronic diseases of lifestyle in the black 

population of the Cape Peninsula, South Africa. Journal of Cardiovascular 

Risk, 4(2), 135-142. 

Stocker, S.L., Morrissey, K.M., Yee, S.W., Castro, R.A., Xu, L., Dahlin, A., 

Ramirez, A.H., Roden, D.M., Wilke, R.A., McCarty, C.A., & Davis, R. L. 

(2013). The effect of novel promoter variants in MATE1 and MATE2 on the 

pharmacokinetics and pharmacodynamics of metformin. Clinical 

Pharmacology and Therapeutics, 93(2), 186-194. 

http://etd.uwc.ac.za/



 

131 
 

Stratton, I.M., Adler, A.I., Neil, H.A.W., Matthews, D.R., Manley, S.E., Cull, C.A., 

Hadden, D., Turner, R.C., & Holman, R. R. (2000). Association of glycaemia 

with macrovascular and microvascular complications of type 2 diabetes 

(UKPDS 35): prospective observational study. British Journal of 

Medicine, 321(7258), 405-412. 

Suh, D. C., Kim, C. M., Choi, I. S., Plauschinat, C. A., & Barone, J. A. (2009). 

Trends in blood pressure control and treatment among type 2 diabetes with 

comorbid hypertension in the United States: 1988–2004. Journal of 

Hypertension, 27(9), 1908-1916. 

Sumner, A.E., Zhou, J., Doumatey, A., Imoisili, O.E., Amoah, A., Acheampong, J., 

Oli, J., Johnson, T., Adebamowo, C., & Rotimi, C. N. (2010). Low HDL-

cholesterol with normal triglyceride levels is the most common lipid pattern 

in West Africans and African Americans with metabolic syndrome: 

implications for cardiovascular disease prevention. CVD Prevention and 

Control, 5(3), 75-80. 

Surendiran, A., Pradhan, S. C., & Adithan, C. (2008). Role of pharmacogenomics 

in drug discovery and development. Indian Journal of Pharmacology, 40(4), 

137. 

Tagoe, D. N. A., & Amo-Kodieh, P. (2013). Type 2 diabetes mellitus influences 

lipid profile of diabetic patients. Annals of Biological Research, 4(6), 88-92. 

Tara, M. D., Pierce, K. A., Roix, J. J., Tyler, A., Chen, H., & Teixeira, S. R. (2008). 

The role of adipocyte insulin resistance in the pathogenesis of obesity-related 

elevations in endocannabinoids. Diabetes, 57(5), 1262-1268.4 

http://etd.uwc.ac.za/



 

132 
 

Tarasova, L., Kalnina, I., Geldnere, K., Bumbure, A., Ritenberga, R., Nikitina-

Zake, L., Fridmanis, D., Vaivade, I., Pirags, V., & Klovins, J. (2012). 

Association of genetic variation in the organic cation transporters OCT1, 

OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the 

gastrointestinal side effects and lower BMI in metformin-treated type 2 

diabetes patients. Pharmacogenetics and Genomics, 22(9), 659-666. 

Teare, J. A., Naicker, N., Albers, P., & Mathee, A. (2018). Prevalence of tobacco 

use in selected Johannesburg suburbs. South African Medical Journal, 108(1), 

40-44. 

The international genome sample resource. 1000 genomes project. 

http://www.internationalgenome.org. Accessed March 2017 

The Heart and Stroke Foundation, South Africa. (2017). The Heart and Stroke 

Foundation, South Africa 2017.  Available from: 

http://www.heartfoundation.co.za/cholesterol/. [Updated November 2018] 

Accessed 19 June 2018.  

The Society for Endocrinology, Metabolism and Diabetes of South Africa Type 2 

Diabetes Guidelines Expert Committee. (2017). The 2017 SEMDSA 

Guideline for the Management of Type 2 Diabetes Guideline Committee. 

Journal of Endocrinology, Metabolism and Diabetes of South Africa. 21(1); 

(Suppl 1): S1-S196. 

Tkáč, I., Klimčáková, L., Javorský, M., Fabianová, M., Schroner, Z., Hermanova, 

H., Babjaková, E., & Tkáčová, R. (2013). Pharmacogenomic association 

between a variant in SLC47A1 gene and therapeutic response to metformin 

in type 2 diabetes. Diabetes, Obesity and Metabolism, 15(2), 189-191. 

http://etd.uwc.ac.za/

http://www.internationalgenome.org/


 

133 
 

Tkáč, I., Javorský, M., Klimčáková, L., Židzik, J., Gaľa, I., Babjaková, E., 

Schroner, Z., Štolfová, M., Hermanová, H., & Habalová, V. (2015). A 

pharmacogenetic association between a variation in calpain 10 (CAPN10) 

gene and the response to metformin treatment in patients with type 2 

diabetes. European Journal of Clinical Pharmacology, 71(1), 59-63. 

Todd, J. N., & Florez, J. C. (2014). An update on the pharmacogenomics of 

metformin: progress, problems and potential. Pharmacogenomics, 15(4), 

529-539. 

Topić, E. (2014). The Role of Pharmacogenetics in the Treatment of Diabetes 

Mellitus/Uloga Farmakogenetike U Lečnju Dijabetes Melitusa. Journal of 

Medical Biochemistry. 33(1), 58-70.  

Tzvetkov, M.V., Vormfelde, S.V., Balen, D., Meineke, I., Schmidt, T., Sehrt, D., 

Sabolić, I., Koepsell, H., & Brockmöller, J. (2009). The effects of genetic 

polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 

on the renal clearance of metformin. Clinical Pharmacology and 

Therapeutics, 86(3), 299-306. 

Uehara, S., Shimizu, M., Uno, Y., Inoue, T., Sasaki, E., & Yamazaki, H. (2017). 

Marmoset flavin-containing monooxygenase 3 in liver is a major 

benzydamine and sulindac sulfide oxygenase. Drug Metabolism and 

Disposition, dmd-117. 

Umamaheswaran, G., Kumar, D. K., & Adithan, C. (2014). Distribution of genetic 

polymorphisms of genes encoding drug metabolizing enzymes & drug 

transporters-a review with Indian perspective. The Indian Journal of Medical 

Research, 139(1), 27. 

http://etd.uwc.ac.za/



 

134 
 

Umamaheswaran, G., Praveen, R. G., Damodaran, S. E., Das, A. K., & Adithan, C. 

(2015). Influence of SLC22A1 rs622342 genetic polymorphism on 

metformin response in South Indian type 2 diabetes mellitus patients. Clinical 

and Experimental Medicine, 15(4), 511-517. 

University of California, San Francisco – Pharmacogenetics of Membrane 

Transporters Database (UCSf-PMT). 

(http://www.pharmacogenetica.usfc.edu/). Accessed March 2017 

Unwin, N., Setel, P., Rashid, S., Mugusi, F., Mbanya, J.C., Kitange, H., Hayes, L., 

Edwards, R., Aspray, T., & Alberti, K. G. M. M. (2001). Noncommunicable 

diseases in sub-Saharan Africa: where do they feature in the health research 

agenda?. Bulletin of the World Health Organization, 79, 947-953. 

US Department of Health and Human Services. (2004a). The health consequences 

of smoking: a report of the Surgeon General. 

US Department Of Health And Human Services. (2004b). The Seventh Report of 

the Joint National Committee On Prevention. Detection, Evaluation, and 

Treatment of High Blood Pressure, 12-15.  

Van Berkel, W. J. H., Kamerbeek, N. M., & Fraaije, M. W. (2006). Flavoprotein 

monooxygenases, a diverse class of oxidative biocatalysts. Journal of 

Biotechnology, 124(4), 670-689. 

Van de Vijver, S., Akinyi, H., Oti, S., Olajide, A., Agyemang, C., Aboderin, I., & 

Kyobutungi, C. (2014). Status report on hypertension in Africa-Consultative 

review for the 6th Session of the African Union Conference of Ministers of 

Health on NCD’s. Pan African Medical Journal, 16(1). 

http://etd.uwc.ac.za/

http://www.pharmacogenetica.usfc.edu/


 

135 
 

Van Leeuwen, N., Nijpels, G., Becker, M. L., Deshmukh, H., Zhou, K., Stricker, B. 

H. C., Uitterlinden, A. G., Hofman, A., Van’t Riet, E., Palmer, C. N. A., & 

Guigas, B. (2012). A gene variant near ATM is significantly associated with 

metformin treatment response in type 2 diabetes: a replication and meta-

analysis of five cohorts. Diabetologia, 55(7), 1971-1977. 

Vasan, R. S., Beiser, A., Seshadri, S., Larson, M. G., Kannel, W. B., D'agostino, R. 

B., & Levy, D. (2002). Residual lifetime risk for developing hypertension in 

middle-aged women and men: The Framingham Heart Study. Jama, 287(8), 

1003-1010. 

Viollet, B., Guigas, B., Garcia, N. S., Leclerc, J., Foretz, M., & Andreelli, F. (2012). 

Cellular and molecular mechanisms of metformin: an overview. Clinical 

Science, 122(6), 253-270. 

Volpe, M., Battistoni, A., Savoia, C., & Tocci, G. (2015). Understanding and 

treating hypertension in diabetic populations. Cardiovascular Diagnosis and 

Therapy, 5(5), 353. 

Wadelius, M., & Alfirevic, A. (2011). Pharmacogenomics and personalized 

medicine: the plunge into next-generation sequencing. 

Wang, D. S., Kusuhara, H., Kato, Y., Jonker, J. W., Schinkel, A. H., & Sugiyama, 

Y. (2003). Involvement of organic cation transporter 1 in the lactic acidosis 

caused by metformin. Molecular Pharmacology, 63(4), 844-848. 

Wang, H., Ni, Y., Yang, S., Li, H., Li, X., & Feng, B. (2013). The effects of 

gliclazide, metformin, and acarbose on body composition in patients with 

newly diagnosed type 2 diabetes mellitus. Current Therapeutic Research, 75, 

88-92. 

http://etd.uwc.ac.za/



 

136 
 

Whirl‐Carrillo, M., McDonagh, E. M., Hebert, J. M., Gong, L., Sangkuhl, K., 

Thorn, C. F., Altman, R. B., & Klein, T. E. (2012). Pharmacogenomics 

knowledge for personalized medicine. Clinical Pharmacology and 

Therapeutics, 92(4), 414-417. 

White, M. F. (2003).  Insulin signaling in health and disease. Science. 302(5651), 

1710-1. 

Wild, S., Roglic, G., Green, A., Sicree, R., & King, H., (2004). Global Prevalence 

of Diabetes: Estimates for The Year 2000 And Projections for 2030. Diabetes 

Care. 27(5), 1047-1053.  

Willi, C., Bodenmann, P., Ghali, W. A., Faris, P. D., & Cornuz, J. (2007). Active 

smoking and the risk of type 2 diabetes: a systematic review and meta-

analysis. Jama, 298(22), 2654-2664. 

Williams, B, (1994). Insulin resistance: the shape of things to come. The Lancet, 

344(8921), 521-4. 

Wilson, P. W., D’agostino, R. B., Parise, H., Sullivan, L., & Meigs, J. B. (2005). 

Metabolic syndrome as a precursor of cardiovascular disease and type 2 

diabetes mellitus. Circulation, 112(20), 3066-3072.  

World Cancer Research Fund International and the NCD Alliance. (2014). Working 

Together To Reduce Nutrition-Related Non-Communicable Diseases, World 

Cancer Research Fund International, 2014, 2nd Edition, 

Https://Www.Wcrf.Org/Sites/Default/Files/PPA_NCD_Alliance_Nutrition.  

Accessed: 02 November 2018. 

World Health Organization & International Society of Hypertension Writing 

Group. (2003). World Health Organization (WHO)/International Society of 

http://etd.uwc.ac.za/

https://www.wcrf.org/Sites/Default/Files/PPA_NCD_Alliance_Nutrition.%20Accessed:%2002%20November%202018


 

137 
 

Hypertension (ISH) statement on management of hypertension. Journal of 

hypertension, 21(11): 1983-1992.  

World Health Organization. (2006). Definition and Diagnosis of Diabetes Mellitus 

and Intermediate Hyperglycaemia: Report of A WHO/IDF Consultation  

World Health Organization & World Health Organization. Burden: mortality, 

morbidity and risk factors. (2010). Global status report on noncommunicable 

disease.  2011.  

World Health Organization. (2012). World health statistics 2012 report. World 

Health Organization. Geneva  

World Health Organization. (2015a). Global status report on noncommunicable 

diseases. Geneva: 2010. World Health Organization:  

World Health Organization. (2015b) World health statistics 2015. World Health 

Organization. 2015 

World Health Organization. (2015c). Global action plan for the prevention and 

control of noncommunicable diseases 2013-2020. 2013. Geneva: World 

Health Organization.  

World Health Organization. (2016). Global Report on Diabetes: World Health 

Organization.  

World Health Organisation. (2018a). Global Status Report on Alcohol and Health 

2018. Geneva 

World Health Organization. (2018b). World health statistics 2018: monitoring 

health for the SDGs, sustainable development goals.  

Xiao, D., Guo, Y., Li, X., Yin, J.Y., Zheng, W., Qiu, X.W., Xiao, L., Liu, R.R., 

Wang, S.Y., Gong, W.J., & Zhou, H. H. (2016). The impacts of SLC22A1 

http://etd.uwc.ac.za/



 

138 
 

rs594709 and SLC47A1 rs2289669 polymorphisms on metformin therapeutic 

efficacy in Chinese type 2 diabetes patients. International Journal of 

Endocrinology, 2016. 

Yki-Järvinen, H. (1992). Glucose toxicity. Endocrine Reviews, 13(3), 415-431. 

Yoon, H., Cho, H. Y., Yoo, H. D., Kim, S. M., & Lee, Y. B. (2013). Influences of 

organic cation transporter polymorphisms on the population 

pharmacokinetics of metformin in healthy subjects. The AAPS 

Journal, 15(2), 571-580. 

Yueh, M. F., Krueger, S. K., & Williams, D. E. (1997). Pulmonary flavin-

containing monooxygenase (FMO) in rhesus macaque: expression of FMO2 

protein, mRNA and analysis of the cDNA. Biochimica Et Biophysica Acta 

(BBA)-Gene Structure and Expression, 1350(3), 267-271. 

Zaccardi, F., Webb, D. R., Yates, T., & Davies, M. J. (2016). Pathophysiology of 

type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgraduate 

Medical Journal, 92(1084), 63-69. 

Zanger, U. M., & Schwab, M. (2013). Cytochrome P450 enzymes in drug 

metabolism: regulation of gene expression, enzyme activities, and impact of 

genetic variation. Pharmacology and Therapeutics, 138(1), 103-141. 

Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, 

J., Doebber, T., Fujii, N., & Musi, N. (2001). Role of AMP-activated protein 

kinase in mechanism of metformin action. The Journal of Clinical 

Investigation, 108(8), 1167-1174. 

http://etd.uwc.ac.za/



 

139 
 

Zhou, M., Xia, L., & Wang, J. (2007). Metformin Transport by a Newly Cloned 

Proton-stimulated Organic Cation Transporter (PMAT) Expressed in Human 

Intestine. Drug Metabolism and Disposition.  

Ziegler, D. M. (2002). An overview of the mechanism, substrate specificities, and 

structure of FMOs. Drug Metabolism Reviews, 34(3), 503-511. 

http://etd.uwc.ac.za/


	Title Page
	Keywords
	Abstract 
	Acknowledgements
	List of Abbreviations 
	Table of Contents
	Chapter One: Literature review
	Chapter Two: Socio-demographic and modifiable risk factors of diabetes and hypertension among resource constrainedpatients from rural areas in Mdantsane Township inSouth Africa
	Chapter Three: Evaluation of the Suitability of Nineteen Pharmacogenomics Biomarkers for Individualized Metformin Therapy for Type 2 Diabetes Patients
	Chapter Four: Conclusion and future prospectus
	References



