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Abstract

One of the main challenges of cosmology is to unveil the nature of dark energy

and dark matter. They can be constrained with baryonic acoustic oscillations

(BAO) and redshift space distortions, amongst others. Both have character-

istic signatures in the dark matter power spectrum. Biased tracers of dark

matter, such as neutral hydrogen, are used to quantify the underlying dark

matter density field. It is generally assumed that on large scales the bias of the

tracer is linear. However, there is a coupling between small and large scales of

the biased tracer which gives rise to a significant non-linear contribution on

linear scales in the power spectrum of the biased tracer. The Hydrogen Inten-

sity and Real-time eXperiment (HIRAX) will map the brightness temperature

of neutral hydrogen (HI) over BAO scales thanks to the intensity mapping

technique. We forecasted cosmological parameters for HIRAX taking into

account non-linear corrections to the HI power spectrum and compared them

to the linear case. We used methods based on Fisher matrices. We found

values for the bias to error ratio of the cosmological parameters as high as 1

or 7, depending on the noise level. We also investigated the change in peaks

location on the baryonic acoustic oscillations signal. The value of the shift

goes up to∆k = 10−2h/Mpcwith a reduction of amplitude of the BAO features

from 16.33% to 0.33%, depending on the scales.

Keywords: Baryonic acoustic oscillation, Fisher matrices, Cosmology.
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Chapter 1

Introduction

Relativistic Cosmology aims to determine the structure of the Universe using re-

sults from astronomical observations and knowledge derived from physical experi-

ment (Ellis 1975). To implement an experiment on how to constrain or how to make

a measurement of some quantities, we need an observable. Neutral hydrogen, which

is the most abundant baryonic element of the Universe, is an obvious choice for such

studies.

We can use a radio-telescope to collect the signal from the sky and then retrieve

information from it to conduct our studies. Due to the spin-flip transition, neutral

hydrogen emits radiation which lies in the radio range of electromagnetic waves.

This is called the 21cm line. Observations can be deformed, biased or even incorrect

due to several facts like cosmological lensing (Er et al. 2013), the Sunyaev Zel’dovich

effect (Carlstrom et al. 2002) or redshift space distortions (Nock et al. 2010).

This project is based on cosmology using baryonic acoustic oscillations which leaves

an imprint in the matter density field. We will consider non-linear corrections to

the matter power spectrum and the HI power spectrum. Why do we care about

non-linearity? The nonlinear domain appears to be a gold mine of cosmological

information (Tegmark 1997). Some perturbation techniques will be required at

1
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1.1 Background Cosmology

that point. By taking into account non-linearities on the power spectrum of neu-

tral hydrogen we are going to use a forecasting method to estimate cosmological

parameters, which are our ultimate aim.

1.1 Background Cosmology

In this chapter, we list some of the major concepts of cosmology and describe

the formation and evolution of the Large Scale Structure. Lastly, we describe our

target tracer of the large scale structure, neutral hydrogen, along with one dedicated

technique of observation and several experiments either already observing or being

built.

1.1.1 The Cosmological Principle

The basic hypothesis of a Standard Cosmological theory is that all the points of the

Universe have to be essentially equivalent: this hypothesis is required in order to

avoid any privileged observer. This assumption is called the Cosmological Principle

and relates to the concept of Homogeneity and Isotropy. The spatial distribution of

visiblematter in theUniverse on large scales should be statistically homogeneous. By

homogeneous, we mean that any spot in the Universe has the same conditions as any

other. The Cosmological Principle also implies the condition of spherical symmetry

with respect to every position, so the Universe is isotropic. The distribution of light

in the Universe is statistically isotropic with respect to the barycentre of the Solar

system (Schwarz 2010). This Isotropy, which is a symmetry under rotation, implies

that there is no preferred direction in the Universe.Homogeneity and isotropy are

complementary concepts. A homogeneous medium is not necessarily isotropic nor

is the impression of isotropy at one location an evidence for the overall homogeneity

of the Universe as shown in Figure 1.1. Observations confirm that we can see that

2
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1.1 Background Cosmology

the distribution of matter is homogeneous and isotropic on large spatial scales on

the order of ∼ 100 Mpc/h (Park et al., Scrimgeour et al. 2017, 2012).

Figure 1.1 Illustration of how homogeneity and isotropy are equivalent in (a) three
dimensions and in (b) two dimensions. In the first example of each, unique direction
is picked out but translation invariance is maintained. In the second example of
each, all directions are the same (rotation invariance) but a radial gradient exists.
Image credits: James Schombert. From the website of Oregon University 2

The extended Cosmological Principle includes two additional points. Firstly, if

the Hubble expansion were not uniform (the Universe grows with the same rate at

every location in every direction) it would be in conflict with the statement that the

Universe’s state would be everywhere and in each direction the same. Secondly, if

the physical laws are not the same throughout the Universe or throughout cosmic

history, we have a problem in formulating a cosmological theory.

In summary, all physical quantities measured by a comoving observer are spatially

homogeneous and isotropic. This formulation leads us to the Friedmann models, in

section 1.1.4, which are successful in describing the expansion of the Universe.

1.1.2 Einstein field equations

Einstein field equations describe gravity as a result of spacetime being curved by

mass and energy. It is the pillar of general relativity which is a theory of gravity

as geometry. Einstein field equations map the geometry of spacetime to the matter

3
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1.1 Background Cosmology

and energy in the Universe. The distribution of mass and energy on the curvature

of spacetime is given by the following Einstein field equations (i.e. equation 1.1):

Gµν =
8πG
c4 Tµν , (1.1)

where Gµν is called the Einstein Tensor and is derived from the Riemann tensor

Rαβµν. Gµν contains information about the geometry of spacetime. Mathematically,

the Einstein tensor, Gµν, is given by:

Gµν = Rµν −
1
2
gµνR , (1.2)

where Rµν and R are respectively the Ricci tensor and Ricci scalar, such that R =

gµνRµν and gµν is the metric. The stress-energy tensor Tµν describes the density

and flux of energy and momentum in spacetime. To balance the expansion of the

universe Einstein also added a term on the left hand side of equation 1.1. This term

is called the cosmological constant and is symbolized by Λ. Thus the full Einstein

field equations take the form:

Rµν −
1
2
gµνR + Λgµν =

8πG
c4 Tµν . (1.3)

Equation (1.3) describes actually how the presence of mass (energy) determines

the geometry of space and conversely how the geometry of space determines the

motion of mass (energy). The solutions of these equations are the components of

the metric tensor gµν which describes the spacetime geometry. From equation (1.3),

which governs the Universe, we get different equations for its components. One of

these are the Friedmann equations which describe the expansion of an isotropic and

homogeneous Universe.

4
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1.1 Background Cosmology

1.1.3 The Friedmann-Lemaitre-Robertson-Walker metric

On large spatial scales, where the Universe is homogeneous and isotropic, it can

be described by the Friedmann-Lemaitre-Robertson-Walker metric (Scrimgeour et

al. 2012). The metric is given by gµν, so that the line element is ds2 = gµνdxνdxµ.

The dimensionless expansion factor a(t) specifies the growth of the Universe with

respect to time. It is defined such that at present time a0 = 1. In other words, it

specifies the distance s(t) between two fundamental observers (a set of observers in

different locations, all of whom are at rest with respect to the matter in their vicinity

3), with the present-day distance s0 :

s(t) = a(t)s0 . (1.4)

With a time-dependent expansion factor a(t) the spacetime interval is

ds2 = c2dt2 − gi j dxidx j = c2dt2 − a2(t)hi j dxidx j . (1.5)

where gi j = a2(t)hi j . In a curved space time, we have

dx2 =
dr2

1 − kr2 + r2dθ2 + r2sin2θdΦ2 , (1.6)

such that the spacetime interval is written as:

ds2 = c2dt2 − a2(t)
[

dr2

1 − kr2 + r2dθ2 + r2sin2θdΦ2
]
. (1.7)

The line element ds in equation (1.7) is a geodesic line joining two configurations

(events) in the Universe within the framework of Robertson-Walker metric. k (may

take one of these values: -1, 0, 1) is the curvature constant which sets the geometry

3https://ned.ipac.caltech.edu/level5/Peacock/Peacock3_1.html

5
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1.1 Background Cosmology

of the Universe (k = -1 corresponds to an open Universe, k = 0 corresponds to a flat

Universe, k = +1 corresponds to a closed Universe).

1.1.4 Friedmann equations

In general, the stress-energy tensor Tµν could be complicated, but we will focus on

the simple case of an ideal perfect fluid, which seems to describe the background

Universe (assumed to be nearly homogeneous and isotropic on large scales) quite

well (Das et al. 2018). For an ideal perfect fluid,

Tµν = diag (−ρ, p, p, p) , (1.8)

where ρ is the energy density of the fluid and p is the pressure. So we now have

everything we need to describe the background Universe in the framework of general

relativity. The components of the Ricci tensor Rµν and the Ricci scalar are thus given

as:

R00 = −
3 Üa
a
, (1.9)

Ri j =

(
Üa
a
+

2 Ûa2

a2 +
2k
a2

)
δi j, (1.10)

R = 6
(
Üa
a
+
Ûa2

a2 +
k
a2

)
, (1.11)

where δi j is the Kronecker delta, which is defined to be 1 for i = j and zero otherwise.

By taking the temporal components of equation 1.3 and demanding component by

component equality, we have:

R00 −
1
2
g00R + Λg00 =

8πG
c4 ρu0u0 , (1.12)
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−3
Üa
a
+ 3
Üa
a
+ 3

(
Ûa
a

)2
+ 3

k
a2 −

Λ

3
=

8πG
c2 ρ . (1.13)

We get another equation 1.14 from Ri j , since all of the Ri j are the same,

Üa
a
= −

4πG
3

(
ρ + 3

p
c2

)
+
Λc2

3
. (1.14)

By introducing the Hubble parameter H = Ûaa , as a function of the component of the

Universe,
H2

H2
0
=
Ωr,0

a4 +
Ωm,0

a3 +ΩΛ,0 +
Ωk,0

a2 , (1.15)

where

Ωk,0 = 1 − (Ωr,0 +Ωm,0 +ΩΛ,0) .

The densities Ωr, Ωm, ΩΛ and Ωk , which respectively are defined as radiation-

density, matter-density, dark energy density and curvatures density as follows,

Ωm =
8πGρm

3H(t)2
,

Ωr =
8πGρr

3H(t)2
,

ΩΛ =
Λ

3H(t)2
,

Ωk = −
k

a(t)2H(t)2
,

such that at the initial time (t = 0),

Ωm,0 = Ωm |t=0,Ωr,0 = Ωr |t=0,Ωk,0 = Ωk |t=0,ΩΛ,0 = ΩΛ |t=0 .

Equation 1.13 and Equation 1.14, are known as Friedmann equations, and can be
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1.1 Background Cosmology

written as,

H2 =
8πG

3
ρ −

k c2

a2 +
Λ c2

3
, (1.16)

ÛH + H2 = −
4πG

3

(
ρ + 3

p
c2

)
+
Λc2

3
. (1.17)

Friedmann equations lead to the equations of the expansion of the Universe at dif-

ferent epochs : radiation dominated, matter-dominated, and cosmological constant

dominated.

1.1.5 Distances

The most used distances in cosmology and radio astronomy are comoving distance,

angular diameter distance and luminosity distance. The comoving distance is the

distance between two objects that remains constant in time if these objects have the

speed of the Hubble flow. On the line of sight, we have D‖ such that,

D‖ =
c

H0

∫ z

0

dz
E(z)

, (1.18)

where E2(z) =
H2

H2
0
=
Ωm,0

a3 +ΩΛ,0 +
ΩK,0

a2 . On the transverse direction to the line

of sight where two events are at the same redshift but separated by some angle δθ,

the distance between them is equal to D⊥δθ where the transverse comoving distance

D⊥ is given by,

D⊥ =



c
H0

1√
ΩK

sinh[
√
ΩK Dc

H0
c ], ΩK > 0

Dc, ΩK = 0

c
H0

1√
|ΩK |

sin[
√
|ΩK |Dc

H0
c ], ΩK < 0 .

(1.19)
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1.1 Background Cosmology

The angular diameter distance DA is defined as the ratio of an object’s physical

transverse size to its angular size. If we know a object’s size, its angular width will

tell us its distance from the observer. However, DA can also be calculated at a given

redshift z using the following equation,

DA =
D⊥

1 + z
. (1.20)

Another type of distance, the luminosity distance, DL , is related to the intrinsic

luminosity L, is defined as the total energy radiated from an object per second.

Luminosity distance is given as follows,

DL =

√
L

4πS
. (1.21)

The relation between luminosity distance DL and angular diameter distance DA is

given as follows,

DL = (1 + z)2DA . (1.22)

1.1.6 The energy content of the Universe

TheUniverse contains non-relativisticmatter in the formof ordinary, baryonicmatter

(i.e protons, neutrons, and electrons) as well as dark matter, which is practically

pressureless, weakly interacting and cold4. Dark matter does interact gravitationally

with other forms of matter. It is called dark matter because it does not interact in

the electromagnetic window.

The Universe is homogeneous, isotropic and accelerating, so general relativity (GR)

is unambiguous about the need for some sort of dark energy source 5. The Dark

energy can be considered as a negative pressure as its equation of state is given

4https://www.hindawi.com/journals/aa/2011/604898/
5http://www.astro.caltech.edu/~george/ay21/readings/carroll.pdf
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1.1 Background Cosmology

by p = ωρ where ω = −1. Actually, a number of two-parameter descriptions of ω

can give the dark energy parameters as function of redshift ω = ω0 + ωa (1 − a) =

ω0 + ωaz/(1 + z). The evolution of dark energy density ρΛ with the expansion of

the Universe for this equation of state parameters is then given by,

ρΛ
ρΛ,0

= (1 + z)(1+ω0+ωa) exp
[
−

3ωaz
(1 + z)

]
. (1.23)

By substituting the equation of state (with ω = −1) in the second Friedmann equa-

tion 1.14 with k= 0 shows that it produces a constant positive acceleration,

Üa
a
=

8πG
3

ρΛ > 0 . (1.24)

That is, the effect of theCosmological Constant on theUniverse expansion is opposite

to the one caused by standard gravitating matter. Current observations suggest that

the Cosmological Constant is the dominant component of energy content of the

Universe, with ΩΛ = 0.6889± 0.0056 (Planck Collaboration et al. 2018). Although

the first evidence for darkmatter was discovered in the 1930s, it was not until the early

1980s that astronomers became convinced that most of the mass holding galaxies

and clusters of galaxies together is invisible to our instruments. In the standard

model of Cosmology, dubbed ΛCDM model, in which the Universe consists of

∼ 5% ordinary baryonic matter, ∼ 27% dark matter, and ∼ 68% dark energy (Planck

Collaboration et al. 2018). Following Klypin et al. 2011, the Universe is spatially

"flat" so its geometry is Euclidian, its expansion is not affected by curvature. The

main foundations of the standardΛCDMmodel of cosmology are that: the redshifts

of the galaxies are due to the expansion of the Universe plus peculiar motions;

the cosmic microwave background radiation ( in section 1.2.3) and its anisotropies

derive from the high energy primordial Universe when matter and radiation became

decoupled; and the formation and evolution of galaxies can be explained also in
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1.2 Structure formation

terms of gravitation within inflation, dark matter, dark energy scenario (López-

Corredoira 2017). In the framework of ΛCDM model, cosmological parameters,

which are a set of parameters whose measured values characterize the observed

Universe (Baumann et al. 2009), and their physical origin are given in table 1.1

Label Definition Physical Origin
Ωb Baryon Fraction Baryogenesis
ΩCDM Dark Matter Fraction TeV-Scale Physics
ΩΛ Cosmological Constant Unknown
τ Optical Depth First Stars
h Hubble Parameter Cosmological Epoch
As Scalar Amplitude Inflation
ns Scalar Index Inflation

Table 1.1: Following Baumann et al. 2009, the parameters of the concordance
cosmology model are listed. We assume a flat Universe, i.e. Ωb +ΩCDM +ΩΛ = 1;
if not, we must include a curvature contribution Ωk . Likewise, the conventional
cosmology includes the microwave background and the neutrino sector. Both these
quantities contribute toΩtotal, but at a (present-day) level well belowΩb, the smallest
of the three components listed above. The number and energy density of photons
is fixed by the observed black body temperature of the microwave background.
The parameter h describes the expansion rate of the Universe today,H0 = 100
h Km s−1 Mpc−1.

1.2 Structure formation

In the framework of ΛCDM, the structure of the Universe began with small density

fluctuations, which are a very small initial deviations from the homogeneous FLRW

model, and grew under the action of gravity leading to the Large Scale Structure

at the present day. In this section, we develop the Newtonian theory of structure

formation to explain how do structures grow in the universe and how can we describe

them. At epochs when these deviations are very small, they can be treated as

perturbations around the smooth background, while we keep only terms of first
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1.2 Structure formation

order in perturbation quantities. This is called "linear theory" and the regime where

this approach is valid is called "linear regime". In Newtonian perturbation theory,

which works provided we consider density variations on length scales smaller than

the Hubble length c/H(t) and weak gravitational field, a universe filled with self-

gravitating fluid is governed by the basic hydrodynamical equations of Newtonian

physics (Dodelson 2003):

∂tρ + ∇ · (ρv̄) = 0 , (1.25)

∂t v̄ + (v̄ · ∇)v̄ = −
1
ρ
∇P − ∇φ, (1.26)

∇2φ = 4πGρ . (1.27)

Where ρ(t, r) is the matter density, v(t, r) is the velocity field, P(t, r) is the pressure

and φ(t, r) represents the gravitational potential. The first equation 1.25 is called

the continuity equation which describes the conservation of mass. The second

equation 1.26 is the Euler equation, which follows fromNewton’s second law applied

to the fluid. The third equation 1.27 is the Poisson equation which relates the

gravitational potential φ, in Euler equation, to the distribution of mass. We use the

homogeneous solutions to equations 1.25, 1.27, ρ̄(t), v̄(t), P̄(t), φ̄(t) and then add

small, spatially dependent perturbations,

ρ = ρ̄ + δρ,

v = v̄ + δv ,

P = P̄ + δP ,

φ = φ̄ + δφ .

(1.28)
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1.2 Structure formation

We start with a static space while neglecting the effect of gravity (v = 0 and φ = 0)

so the background terms, ρ̄ and P̄, are constant. For first order perturbations, the

continuity and Euler equations become respectively,

∂tδρ + ∇ · (ρ̄δv) = 0 , (1.29)

and

ρ̄∂tδv + ∇δP = 0. (1.30)

Combining the partial time derivative of continuity equation and the gradient for the

Euler equation:

∂2
t δρ = −∂t∇ · (ρ̄δv) ,

∂t∇ · (ρ̄δv) + ∇
2δP = 0

=⇒ ∂2
t δρ = ∇

2δP.

(1.31)

Since we have four unknowns, but only three equations we must impose an extra

condition for the system. We solve this by restricting to the adiabatic perturbations,

for which the pressure perturbation is related to the density perturbation by the speed

of sound cs in the medium: δP = c2
s δρ. Equation (1.31) becomes,

∂2
t δρ − c2

s∇
2δρ = 0. (1.32)

Turning on gravity we obtain the source term for the Euler equation

∂2
t δρ − c2

s∇
2δρ = 4πG ρ̄δρ, (1.33)

with the perturbed Poisson equation ∇2δφ = 4πGδρ.
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1.2 Structure formation

Since we live in an expanding Universe, we need to be able to describe the fluid in

an expanding space. We define again (for this section we use the following notation)

the relation between r the physical coordinate and x the co-moving coordinate

r = ax. (1.34)

The velocity field can be described by

v = Hr + u, (1.35)

with Hr being the Hubble flow and u the proper velocity. The gradient in co-moving

coordinates becomes

∇r = a−1∇x (1.36)

and the relation between time derivatives at a fixed x and fixed r becomes(
∂

∂t

)
r
=

(
∂

∂t

)
x
+

(
∂x
∂t

)
r
· ∇x =

(
∂

∂t

)
x
+

(
∂a−1r
∂t

)
r
· ∇x =

(
∂

∂t

)
x
−Hx · ∇x . (1.37)

Substituting Eq. 1.36 and Eq. 1.37 into Eq. 1.25, we obtain[
∂

∂t
− H · ∇

]
[ρ̄(1 + δ)] +

1
a
∇ · [ρ̄(1 + δ)(Hax + v)] = 0 (1.38)

where

δ ≡
δρ

ρ̄
(1.39)

is defined as the fractional density perturbation or density contrast. At zeroth order

fluctuations we have
∂ρ̄

∂t
+ 3H ρ̄ = 0, (1.40)

note that ∇x · x = 3. At first order fluctuations (linear in δ and v = 0) we get

14

https://etd.uwc.ac.za/



1.2 Structure formation

[
∂

∂t
− H · ∇

]
[ρ̄δ] +

1
a
∇ · [ρ̄Haxδ + ρ̄v] = 0, (1.41)

which can be re-written as[
∂ρ̄

∂t
+ 3H ρ̄

]
δ + ρ̄

∂δ

∂t
+
ρ̄

a
∇ · v. (1.42)

The first term is zero by Eq. 1.40, therefore

Ûδ = −
1
a
∇ · v. (1.43)

A similar process for the Euler equation (Eq. 1.26) gets us:

Ûv + Hv = −
1

a ρ̄
∇δP −

1
a
∇δφ , (1.44)

and the Poisson equation (Eq. 1.27) becomes

∇2δφ = 4πGa2 ρ̄δ. (1.45)

Combining the partial time derivative of Eq. 1.43 with the gradient dot product of

Eq. 1.44 and Eq. 1.45 we obtain the time evolution for perturbations,

Üδ + 2H Ûδ +
(
c2
s
a2 − 4πG ρ̄

)
δ = 0 . (1.46)

In the comoving wave, k, space equation 1.46 becomes:

Üδk + 2H Ûδk +

(
k2c2

s
a2 − 4πG ρ̄

)
δk = 0 . (1.47)

In the absence of expansion, H = 0, this equation tells us that the growth of δ is
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governed by the perturbation in the gravitational potential (first term on the right-

hand side, which comes from the Poisson equation for δφ) and the pressure (the

second term on the right-hand side, where the sound speed reveals that this term has

its origin in the pressure perturbation). Gravity makes δ grow, while pressure tries

to prevent it. One can show that the perturbations grow exponentially with time or

oscillate as sound waves depending on whether their wave number is greater than or

less than the Jeans wave number,

kJ = a(t)

√
4πG ρ̄
cs

. (1.48)

For k > kJ we have sound waves, for k < kJ we have collapse. The expansion adds a

sort of friction term on the left-hand side: The expansion of the Universe slows the

growth of perturbations down. In linear theory the growth of initial perturbations

is self-similar. The overdense regions (δ > 0) increase their density their density

contrast over the course of time, while underdense regions (δ < 0) decrease their

density contrast.

In the framework of general relativity, we consider the gravitational potential φ(®k, a)

that is solution of the Bardeen equation (Appendix B.1) and proportional to its initial

value Φp®k back to inflation period. It is written as from the book of Dodelson 2003

:

φ(®k, a) = φp®k × [ Transfer function (k)] × [ Growth function (a)] , (1.49)

where the evolution of the perturbations during the transition from radiation-

dominated era to matter-dominated era given in figure 1.2 is described by the

"Transfer function (k)" in equation (1.49) is given by :

T(k) =
φ(k, alate)

φLarge−scale(k, alate)
. (1.50)
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Here alate is related to the matter dominated epoch. And for the different values of

mode k we have: T(k) ∼ 1 at very large scales (where k → 0) and T(k) ∼ 0 at very

small scales (where k →∞ ).

Figure 1.2 The evolution of gravitational potential Φ for 3 different modes. The
wavenumber is indicated by the label and the epoch at which the mode enters the
Hubble radius is indicated by a small arrow. The top most curve is for a mode which
stays outside the Hubble radius for most of its evolution. The other two modes
show the decay of φ after the mode has entered the Hubble radius in the radiation
dominated epoch.

1.2.1 The dark matter power spectrum

In this section we outline the methods used to measure the power spectrum from

the distribution of dark matter particles. We start from the definition of the power

spectrum. Let ρ(x) be the dark matter density field and ρ the mean density. Then
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the density contrast δ(x) can be expressed as

δ(x) =
ρ(x) − ρ

ρ
. (1.51)

From statistical homogeneity, 〈ρ(x)〉 = ρ and 〈δ〉 = 0. As we saw in section 1.2,

we can use the linear theory to predict the evolution of an overdensity field. To

compute the power spectrum, we introduce the two point correlation function

ξ(x1, x2) = 〈δ(x1)δ(x2)〉 that also allows one to compute the variance of any linear

function of the random field. ξ(x1, x2) is positive if the density perturbation has

the same sign at both x1 and x2, and negative when there is overdensity at one and

underdensity at the other. Thus, it probes how density perturbations at different

locations are correlated with each other. Due to statistical homogeneity, ξ(x1, x2)

can only depend on the difference r = x2 − x1, so we redefine ξ as

ξ(r) = 〈δ(x)δ(x + r)〉 . (1.52)

The Fourier transform of ξ(r) is the power spectrum,

P(k) =
∫

d3rexp(−ik · r)ξ(r) , (1.53)

which is related to the density field in k-space by,

〈δ(k1)δ(k2)〉 = P(k1)(2π)3δD(k1 + k2) , (1.54)

where δD is the Dirac delta function.
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1.2.2 The Large Scale Structure

The Large Scale Structure (LSS) of the Universe is the filamentary structure made

by dark matter, also commonly called the cosmic web. Its origin arises from the

CMB anisotropies: some places in the Universe were less dense while others were

overdense. The latter accreted matter while the former were depleted. It underwent

a hierarchical process that is shown in Figure 1.3: it shows the evolution of the

LSS from redshift z = 18 to redshift z = 0. While the dark matter distribution

is relatively homogeneous at redshift 18 it becomes much more heterogeneous as

redshift decreases. In addition, we can see that the most dense region got more and

more dense until forming an extremely dense knot that is fed by many filaments.

On large scales, this evolution process is linear but on smaller scales, the scales of a

cluster roughly, the evolution process becomes highly non-linear.

Figure 1.3The cosmicweb from theMillennium Simulation of theΛCDMat several
redshifts. It shows the evolution of the distribution of dark matter.
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To probe the large-scale structure and to understand the patterns within it, one

needs galaxy redshift surveys. This remains one of the key tools being used to get

cosmological information and to reveal the structure of the observable Universe.

We present in figure 1.4 a map of the large-scale structure of the Universe from the

Sloan Digital Sky Survey (SDSS). In the image, each dot is a galaxy and the colour

bar shows the local density.

Figure 1.4 Slices through the SDSS 3−dimensional map of the distribution of galax-
ies. Earth is at the center, and each point represents a galaxy, typically containing
about 100 billion stars. Galaxies are colored according to the ages of their stars, with
the redder, more strongly clustered points showing galaxies that are made of older
stars. The outer circle is at a distance of two billion light years. The region between
the wedges was not mapped by the SDSS because dust in our own Galaxy obscures
the view of the distant Universe in these directions. Image from SDSS website 6.
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1.2.3 The Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is a blackbody radiation which is the

afterglow of the Big bang. The early Universe consists of a hot plasma of photons,

electrons and baryons: the primordial soup. It is so hot and dense that the mean free

path of photons was extremely small, therefore the Universe was opaque. As the

Universe expanded and cooled adiabatically, electrons combined with protons and

formed hydrogen atoms. This recombination event happened when the temperature

was around 3000 K and the Universe was approximately 379,000 years old. Photons

began to travel freely through space, resulting in the decoupling of matter and

radiation. These photons have continued cooling with the expansion of the Universe:

theCMB frequency spectrum is now at a temperatureT = 2.725 K. While it is almost

a perfect blackbody, it displays anisotropies with ∆T/T ∼ 10−5. These anisotropies

are the seeds of the large scale structure (see Sect. 1.2.2). Those anisotropies have

been measured by several telescopes over the past 30 years: the latest one is the

Planck satellite which mapped the sky almost 5 times over 4 years from the far-

infrared to millimeter wavelengths. The resulting map of the anisotropies is shown

in figure 1.5. Those anisotropies contain information on the history of the Universe,

therefore on the cosmological model. One of the main aims of the Planck satellite

was to measure the power spectrum of the anisotropies which is shown in figure 1.6.

This power spectrum is able to constrain many of the cosmological parameters that

describe the formation and the evolution of Universe: for instance the fraction of

baryonic matter, dark matter and dark energy, etc. Although, dark matter and dark

energy is not well understood.
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1.2 Structure formation

Figure 1.5Map of the Cosmic Microwave Background with Planck satellite. Image
credit: European Space Agency, Planck Collaboration. Taken from NASA website
7.

Figure 1.6 This figure depicts the power spectrum of temperature fluctuations in the
Cosmic Microwave Background as a function of angular scale. Image credits: ESA
and the Planck Collaboration8.
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1.2.4 Baryon Acoustic Oscillations

Before recombination, the Universe was made of a hot and dense plasma in which

there were acoustic waves: the radiation pressure from the CMB prevents the ionized

gas fromclustering and this pressure leads to relativistic soundwaves. At decoupling,

those waves were frozen in the matter distribution, they are the wiggles seen in the

power spectrum of the CMB. The first peak at 1 degree is the scale of the sound

horizon s ∼ 150/(1 + z)Mpc and it is a "standard ruler" of the Universe. The scale

can be computed in the following way:

s =
∫ trec

0
cs(1 + z)dt =

∫ ∞

zrec

csdz
H(z)

, (1.55)

where cs = [3(1 + 3ρb/ργ)]
−1/2 is the sound speed. Accurately measuring the scale

of the first peak enables constraints on the Hubble parameter, H, and the knowledge

of the redshift evolution of H leads to constraints on the acceleration of the expansion

of the Universe, and therefore on dark energy. The BAO scale can also be measured

in the 2-point correlation function of any biased tracer of matter, the real-space

counterpart of the power spectrum. It has been measured for the first time in the

SDSS data by Eisenstein et al. 2005 and is shown in Fig. 1.7. The BAO peak at a

redshift z appears at an angular separation ∆θ = rd/[(1 + z)dA(z)] and at a redshift

separation ∆z = rd/dH(z), where dA and dH = c/H are the angular and Hubble

distances, respectively, and rd is the sound horizon at the drag epoch. For instance,

if we respectively know the size of an object along the line of sight (L‖) and across

the sky (L⊥) then we can measure the Hubble parameter H and the angular diameter

distance dA separately, such that:

L‖ =
c∆z
H(z)

, (1.56)
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L⊥ = (1 + z)dA(z)∆θ . (1.57)

Figure 1.7 The Baryon Acoustic Peak (BAP) in the correlation function. The BAP
is visible in the clustering of the SDSS LRG galaxy sample, and is sensitive to the
matter density (shown are models with Ωmh2 = 0.12 (green), 0.13 (red) and 0.14
(blue), all with Ωbh2 = 0.024). The purple line without a BAP is the correlation
function in the pure CDM model. From Eisenstein et al. 2005.

Figure 1.8 shows that BAOs are a standard ruler, which allows measurements of

cosmological distances as functions of redshift to be performed, because we can

find both dA(z) and H(z) separately.
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1.3 Cosmology with neutral hydrogen

Figure 1.8The radial length of an object is given by c
dz

H(z)
where dz is the difference

in redshift between the front and back of the object while the transverse size of the
object is dA(z)θ, where θ is its angular size. If, as in the case of BAO, one can
theoretically determine the diameter, one has the bonus of finding dA(z) and H(z)
separately. From the paper of Bassett and Hlozek 2009.

1.3 Cosmology with neutral hydrogen

1.3.1 Neutral hydrogen in the Universe

Hydrogen constitutes about 75% of the elemental mass of the Universe 9 which

is about 16% of the total matter (dark matter and baryonic matter). One of the

most promising ways to observe the Universe is by detecting the 21cm emission

from cosmic neutral hydrogen (HI) through radio-telescopes (Zamudio-Fernandez

9http://www.elementsdatabase.com/Hydrogen-H-1-element/

25

https://etd.uwc.ac.za/

http://www.elementsdatabase.com/Hydrogen-H-1-element/
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et al. 2019). It has been argued that HI can be used as a tracer of the large scale

structure and observations can be used to constrain cosmological parameters with

a special emphasis on observations of the baryon acoustic oscillations in the power

spectrum (Bagla et al. 2010, Wyithe and Loeb 2009, Wyithe et al. 2009). Following

Zwaan et al. 2005, the HI content can be estimated more directly through emission

in the Hyperfine transition at low redshifts and the observations in the local Universe

indicate a much lower neutral Hydrogen content than seen at z > 1.

1.3.2 Observing neutral hydrogen

Neutral hydrogen has some physical properties that enable its observation. The most

important of its properties is the spin flip transition: neutral hydrogen consists of

one proton and one electron that have spin, therefore they have magnetic moments.

The spin of the electron can have two states, "up" or "down". Similarly, the proton

also has its spin either "up" or "down". It yields to four dynamical states of the

total spin. HI has a spin one-half which only allows two possible states, parallel and

anti-parallel.
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1.3 Cosmology with neutral hydrogen

Figure 1.9 Spin-flip transition from parallel to anti-parallel which results in the
emission of a photon at a wavelength of 21 cm. Image credits: Pearson Prentice
Hall, Inc.

This is a hyperfine structure. The anti-parallel state is more stable than the parallel

one and, thus, its energy is lower. So the transition from the parallel state to the

anti-parallel one emits the following amount of energy E ∼ 10−6 eV (Bradt 2008).

Its relaxation gives an emission line at the specific frequency ν ≈ 1420.4 MHz.

Such a photon with radio wavelengths experiences minor absorption while travelling

through the atmosphere. Therefore it can be observed on Earth.

HI 21 cm is generally seen in emission but it can also be seen in absorption

against continuum radio sources. Let us consider a cloud of spin temperature T and

opacity τν placed in front of a radio source with temperature Ts and the brightness

temperature of the antenna Tb,

Tb(ν) = Tse−τν + T(1 − e−τν ) . (1.58)

27

https://etd.uwc.ac.za/



1.3 Cosmology with neutral hydrogen

Then, the excess brightness temperature from the cloud is,

∆Tb(ν) = Tb(ν) − Ts = (T − Ts)(1 − e−τν ) . (1.59)

So, ∆Tb(ν) = T −Ts if τν >> 1 and ∆Tb(ν) = (T −Ts)τν if τν << 1. Hence, we have

an emission line if:

T >> Ts , (1.60)

and we have an absorption line if :

T << Ts . (1.61)

Here we will only consider HI in emission.

1.3.3 HI line Intensity Mapping

HI line intensity mapping (IM) is a novel observation technique capable of map-

ping the large-scale structure of the Universe in three dimensions by using HI as a

biased tracer of the dark matter density field. This is achieved by measuring the

intensity of the redshifted 21 cm line over the sky in a range of redshifts without

the requirement to resolve individual galaxies. The observable is the HI integrated

intensity from hundreds of galaxies in one single large voxel (3D pixel). Therefore,

instead of getting galaxies as dots we get a map of fluctuations of intensity as shown

in Figure 1.10. Such a technique allows the observations of volume scales of the

Universe that have not been probed yet as shown in Figure 1.11. The IM survey of

SKA1-mid will observe a volume 3 times larger than the one of the galaxy survey

of the Euclid satellite. This volume gives access to extremely large scales. On those

scales, inflation can be tested due to accurate measurements of spatial curvature and
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1.3 Cosmology with neutral hydrogen

primordial non-Gaussianity. On linear scales, the BAO peaks and the redshift space

distortions can be measured to determine the expansion and growth of the Universe.

21 cm IM can also be used to probe the epoch of reionization which cannot be

obtained by means other than the use of spectral emission lines (Morales and

Wyithe 2010). IM studies can be used in conjunction with optical or infrared

galaxy surveys to study the physics of the late-time Universe. The idea is to com-

bine different types of surveys so that their systematics can be mitigated and their

constraining power augmented (e.g., Pourtsidou 2016; Wolz et al. 2017; Hall and

Bonvin 2017; Carucci 2018).

The advantages of HI IM compared to optical galaxy surveys are: (i) the redshift

comes directly from the measurement of the redshifted 21 cm line; and (ii) HI

is expected to be a good tracer of mass with minimal bias (e.g., Padmanabhan et

al. 2015; Pénin et al. 2018).

Figure 1.10 The left panel shows the distribution of galaxies, represented by white
dots. While on the right panel we have the intensity map such that pixel intensity
corresponds to joint emission frommultiple galaxies. With the courtesy of Francisco
Villaescusa https://franciscovillaescusa.github.io/im.html.
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1.3 Cosmology with neutral hydrogen

Figure 1.11 This plot shows survey volumes and redshift range for various current
and future surveys. From the paper of of Santos et al. 2015.

1.3.4 HI intensity mapping experiments

We present in this section several experiments that are or will carry out HI intensity

mapping surveys. The Square Kilometer Array (SKA) is a radio observatory built

both in South Africa and Australia. It is comprises of two instruments, SKA-LOW

at low frequencies in Australia and SKA-Mid in South Africa. SKA1-LOW with

frequencies between 50 and 350 MHz is dedicated to the study of the Epoch of

Reionization. The HI line beyond z ∼ 3. SKA1-Mid is dedicated to the study of

galaxies and the large scale structure up to that redshift. There are numerous science

cases with the SKA, amongst others: detection of radio transients, heliospheric

physics, cosmic magnetism, galaxy evolution, testing Einstein general relativity and

cosmology. Its first light is planned for the 2020s.
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Figure 1.12 An artistic impression of SKA telescope. From the SKA website 10 .

MeerKAT is an array of 64 13.5-meter dishes in the Karoo Desert in South Africa

which observes in mid radio wavelength. It is the pathfinder of SKA-1 Mid and

its first light was in 2018. An intensity mapping survey with MeerKAT, known as

MeerKLASS is planned (Santos et al. 2017): 4000 deg2 over 4000 hours with the

L-band receivers (900 - 1670 MHz). The main aim is measuring the BAO peaks

with unprecedented accuracy.

Figure 1.13 Picture of the Meerkat Radio Telescope. From reddit website11 .

The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a radio
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telescope array that will map nearly all of the southern sky in radio continuum and

neutral hydrogen line emission over a frequency range of 400 to 800 MHz. These

wavelengths correspond to a redshift range of 0.8 to 2.5 and HIRAX’s primary goal

is to measure the BAO wiggles over this redshift range. It will be an interferometer

that comprises roughly 1000 six-meter dishes placed in a close-packed, redundant

configuration, and will be deployed at the SKA site in the Karoo desert. HIRAX

is highly complementary to the Canadian Hydrogen Intensity Mapping Experiment

(CHIME). Both have the same primary purpose but with different observing tech-

nologies. CHIME consists of four adjacent 20 m × 100 m cylindrical reflectors

oriented north-south in the same wavelength range. The telescope detects and mea-

sures HI.

Figure 1.14 Image of the 1000-dish HIRAX telescope. From Quantum leap Africa
website 12 .
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Figure 1.15 Image of the Canadian Hydrogen Intensity Mapping Experiment
(CHIME) which has been officially granted Square Kilometre Array (SKA)
pathfinder status since 21 November 2018. From SKA telescope website 13 .

Lastly the BAO from Integrated Neutral Gas Observations (BINGO) telescope is a

40-meter single dish telescope which is currently in construction in Brazil. It will

operate in the frequency range from 0.96 GHz to 1.26 GHz which is equivalent to

redshifts 0.13 and 0.48. Its primary purpose is also the measurement of the BAO

wiggles with intensity mapping. Its first light is planned in the 2020s.

Figure 1.16 On the left is a picture of the Castrillon quarry which is the proposed
site of the BINGO telescope. On the right is an engineering drawing of the telescope
with primary, secondary and focal plane array of horns in position. The black box
in the right hand figure is approximately the plane of the picture on the left. From
the paper of of Battye et al. 2016 about the update on the BINGO 21 cm intensity
mapping experiment.
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Chapter 2

The HI Power Spectrum

The power spectrum can be seen as a Fourier transform of the correlation function of

density fluctuations. What is measured in HI intensity mapping is a combination of

the cosmological 21cm brightness temperature power spectrum and the instrumental

noise. In the Post-reionization era, one can make the assumption that all HI resides

in the dark matter halos (Villaescusa-Navarro et al. 2015). Under this assumption,

and following- the spirit of the halo model in Cooray and Sheth 2002, we can then

predict the shape and amplitude of the HI power spectrum, in real space, if we have

the following ingredients: the halo mass function, n(M, z), the halo bias, b(M, z),

the linear matter power spectrum Plin,m(k), and the HI mass function MHI(M, z)

which gives the average HI mass in a dark matter halo of mass M at redshift z. On

large, linear, scales the HI power spectrum in real-space does not depend on the

MHI(r |M, z) function, but only on MHI(M, z), and it is given by,

PHI(k, z) = T2b2
HI(z)Pm(k, z) , (2.1)
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2.1 The linear HI power spectrum

where the HI bias, bHI(z) is given by,

bHI(z) =

∫ ∞
0 n(M, z)b(M, z)MHI(M, z)dM∫ ∞

0 n(M, z)MHI(M, z)dM
. (2.2)

2.1 The linear HI power spectrum

The average signal on the sky is the HI brightness temperature that writes (Battye

et al. 2013)

T b(z) = 566 h
(

H0
H(z)

) (
ΩHI(z)
0.003

)
(1 + z)2 µK , (2.3)

where the HI density fraction is defined as ΩHI = ρHI/ρc,0 with ρc,0 is the critical

density of the Universe today. The fluctuating part is

T(z, x) = T(z) (1 + δm(x)) , (2.4)

where δm(x) is the matter density fluctuation at position x, hence, in Fourier space,

〈T(z, k)T?(z, k′)〉 = (2π)3PHI(k, z)δ3(k − k′) , (2.5)

where PHI(k, z) is the HI power spectrum. Following Kaiser 1987, the linear term

in redshift space is ,

P11
HI(k, µ) = T

2 [
b1 + f µ2]2

P11
m (k) , (2.6)

with µ = k‖/k, b1 the HI linear or first order bias, Pm(k) the linear power spectrum

of matter, and f the linear growth rate. We compute the former using the transfer

function of Eisenstein and Hu 1998 and we use f (z) = Ωm(z)γ with γ = 0.55 for

ΛCDM (Linder, Peebles 2005, 1980).
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2.2 The non-linear power spectrum of HI

The HI linear bias is

bHI
1 (z) =

√
PHI(z)
Plin(z)

. (2.7)

It measures the clustering of HI with respect to the clustering of dark matter and it

can be computed analytically in the framework of the halo model. The non-linear

contributions to the power spectrum can be derived using perturbation theory.

2.2 The non-linear power spectrum of HI

With a full one-loop derivation of the HI brightness temperature in Perturbation

Theory Bernardeau et al. 2002, the power spectrum of HI in real space at redshift z

is ,

PHI(z, k) = P11
HI(z, k) + P22

HI(z, k) + P13
HI(z, k) , (2.8)

where P11
HI(z, k) is the linear power spectrum (tree level) while P22

HI(z, k) and P13
HI(z, k)

are the non-linear corrections. For clarity purposes we will not specify the redshift

dependence in the following. From Umeh et al. 2016 and Umeh 2017 the three

terms of PHI(k) are

P11
HI(k) = T

2
b2

1 P11
m (k) , (2.9)

P22
HI(k) =

T
2

2

∫
d3k1

(2π3)

[
b1 F2(k1, k2) + b2

]2
× P11

m (k2) P11
m (k1) , (2.10)

P13
HI(k) = T

2
b1

{ (
b3 +

68
21

b2

)
σ2
Λ

P11
m (k) + b1 P13

m (k)
}
, (2.11)

where k2 = |k1 − k|, b1, b2, and b3 are the linear, second and third order HI biases,

respectively. The latter are the higher order terms of the bias expanded in Taylor

series, which means that the HI bias is local. F2 is the non-linear density kernel
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defined in equation 2.25. Finally σΛ, the variance of the dark matter field, is

σ2
Λ
=

∫ kmax

kmin

d3k
(2π)3

Pm(k) . (2.12)

For simplicity, we set kmax to the non-linear dispersion scale, kNL = 0.2 h(1 +

z)2/(2+ns) Mpc−1 with ns the spectral index.

In redshift space, the 3D power spectrum of HI on linear and quasi-linear scales at

scale k, and µ, the cosine of the angle between the line of sight and the separation

vector k, writes

PHI(k, µ) = P11
HI(k, µ) + P22

HI(k, µ) + P13
HI(k, µ) . (2.13)

Following Kaiser 1987, the linear term in redshift space is given by equation 2.6

Following Umeh et al. 2016 and Umeh 2017 the one-loop corrections are

P22
HI(k, µ) =

T
2

2

∫
d3k1

(2π)3
[
b1 F2(k1, k2) + µ

2G2(k1, k2) + b2 + KR(k1, k2)
]2

× P11
m (k2) P11

m (k1) , (2.14)

P13
HI(k, µ) = T

2 (
b1 + µ

2 f
)
×

{ [(
b3 +

68
21

b2

)
σ2
Λ
+ IR(k, µ)

]
P11

m (k)

+
[
b1 P13

m (k) + µ
2 f P13

θ (k)
]}
, (2.15)
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2.2 The non-linear power spectrum of HI

where P13
m (k) and P13

θ (k) are the third order matter power spectrum and velocity

field power spectrum, respectively. Their expressions along with that of IR(k, µ) are

P13
m (k) =

1
252

k3

4π2 P11
m (k)

∫ ∞

0
dr P11

m (kr)
[12

r2 − 158 (2.16)

+ 100 r2 − 42 r4 +
3
r3 (r

2 − 1)3(7r2 + 2) log
����1 + r
1 − r

���� ] ,
P13
θ (k) =

1
84

k3

4π2 P11
m (k)

∫ ∞

0
dr P11

m (kr)
[12

r2 − 82

+ 4 r2 − 6 r4 +
3
r3 (r

2 − 1)3(r2 + 2) log
����1 + r
1 − r

���� ] . (2.17)

The last component of the P13
HI(k, µ) is

IR(k, µ) =
k3

(2π)2

∫
drP11(kr) (2.18)

× µ2 f ([b2B1(r) + b1B2(r)]

+ µ2 f 2 [
b1B3(r) + B4 + µ

2(b2
1B5(r) + f B6(r))

]
) ,

with

B1(r) =
1
6
,

B2(r) =
1

84

[
−2(9r4 − 24r2 + 19) +

9
r
(r2 − 1) log

(
1 + r
|1 − r |

)]
,

B3(r) = −
1
3
,

B4(r) = −
1

336 r3 [2(−9 r7 + 33 r5 + 33 r3 − 9 r)

+ 9(r2 − 1) log
(

1 + r
|1 − r |

)
] ,

B5(r) =
1

336 r3 [2 r(−27 r6 + 63 r4 − 109 r2 + 9)

+ 9(3 r2 + 1)(r2 − 1) log
(

1 + r
|1 − r |

)
] .
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Lastly, in this framework, the full 1-loop matter power spectrum in real space is

PNL
m (k) = P11

m (k) + P22
m (k) + P13

m (k) , (2.19)

where the second order term writes

P22
m (k) =

1
2

∫
d3k1

(2π)3
F2

2 (k1, k2)P11
m (k2) P11

m (k1) . (2.20)

In redshift space, the full 1-loop matter power spectrum is

PNL
m (k, µ) = P11

m (k, µ) + P22
m (k, µ) + P13

m (k, µ) , (2.21)

P11
m (k, µ) =

[
1 + f µ2]2

P11
m (k) , (2.22)

P22
m (k, µ) =

1
2

∫
d3k1

(2π)3
[
F2(k1, k2) + µ

2G2(k1, k2) + KR(k1, k2)
]2

× P11
m (k2) P11

m (k1) , (2.23)

P13
m (k, µ) =

(
1 + µ2 f

) {
IR(k, µ) P11

m (k) +
[
P13

m (k) + µ
2 f P13

θ (k)
] }

.(2.24)

Finally, several kernels are involved in the computation of the P22
HI(k, µ) term : G2

induced by peculiar velocities at second order and KR arises from non-linear mode

coupling velocity-velocity and velocity-density (Bernardeau et al. 2002). Their

expressions are:

F2(k1, k2) =
5
7
+

1
2

k1 · k2
k1k2

[
k1
k2
+

k2
k1

]
+

2
7

[
k1 · k2
k1k2

]2
, (2.25)

G2(k1, k2) =
3
7
+

1
2

k1 · k2
k1k2

[
k1
k2
+

k2
k1

]
+

4
7

[
k1 · k2
k1k2

]2
, (2.26)
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2.2 The non-linear power spectrum of HI

KR(k1, k2) = f b1µ
2
1 + f b1 µ

2
2 + µ1µ2

[
f b1

k1
k2
+ f b1

k2
k1

]
+ f 2

[
2µ2

1 µ
2
2 + µ1µ2

(
µ2

1
k1
k2
+ µ2

2
k2
k1

)]
. (2.27)

10 3 10 2 10 1 100

k/h Mpc 1
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104

P k
 (M

pc
/h

)3

Matter power spectra from CAMB at z = 1
Linear
Non-liner

Figure 2.1 This figure shows the matter power spectrum from CAMB at z = 1. It
shows that the non-linear contribution is only relevant at small scales. The non-linear
scales are calculated using the CAMB Halofit option.
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Figure 2.2 This figure shows the components of the HI power spectrum, at z = 1,
using our perturbation theory calculations. The red solid line is the first order
term, P11

HI(k), which is the linear power spectrum. The blue solid line,P22
HI(k), is the

second order non-linear contribution to the total power spectrum. The light blue,
P13

HI(k), refers to the third order component of the power spectrum. It is negative and
therefore removes the amplitude of the linear one. Therefore, the amplitude of the
total power spectrum, PTOT

HI (k), given by the black solid line is much smaller than
the red one. PTOT

HI (k) = P11
HI(k) + P22

HI(k) + P13
HI(k).

Fig. 2.1 shows the linear and non-linear power spectra of matter at z = 1. We

recover that the non-linear contribution is significant only at small scales. Fig. 2.2

shows the linear and non-linear components of the HI power spectrum. Contrary

to our expectations, both P22
HI(k) and P13

HI(k) terms have significant contributions on

linear scales. In addition, in the case of HI, the component P13
HI(k) is negative which

removes power from the power spectrum. As shown by Pénin et al. 2018, even on

linear scales the bias is scale dependent. This depends on the HI biases: bHI
n which

can be computed analytically with the halo model associated to a halo occupation

distribution. We also note that the scale dependence of the bias models is significant

because the coupling between small and large scale modes.
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2.3 Halo model and halo occupation distribution

The halo model is an analytical framework that describes the clustering of dark

matter on both linear and non-linear scales. It relies on the assumption that all dark

matter lies in halos which are spherical virialized objects (Cooray and Sheth 2002).

It relies on two main ingredients: the halo mass function dn/dM which is the

number of halos with respect to the halo mass and the associated n−th order halo

biases bh
n(M), Fig. 2.3. Both are measured in N-body simulations and we use the

prescriptions of Sheth and Tormen 1999. The comoving density of HI writes

ρHI =

∫
dM

dn
dM

MHI(M) . (2.28)

The n-th order HI biases are

bHI
n =

1
ρHI

∫
dM

dn
dM

bh
n(M)MHI(M) , (2.29)

where MHI(M) is the relation between the HI mass and the halo mass. Fig. 2.3

shows an example of a set of biases. Note that only the first order bias is always

positive while the two others change sign. All of them increase for high halo masses.

We will use the terms linear and first order bias interchangeably.
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Figure 2.3 This figure shows a set of halo biases from the first order up to third
order. We can see that only the first order bias is always positive while the two others
change sign. The magnitude of the biases increase with the mass of the halo. There
is also a small kink in each line, especially the blue line, at logM ∼ 12.5 which can
be considered as a cutoff. Beyond logM ∼ 12.5 halo biases become higher and go
to infinity.

Dark matter halos are filled with galaxies or HI through the halo occupation dis-

tribution (HOD) which describes the number of galaxies within a halo of a certain

mass or, in our case, the relationship between the HI mass and the halo mass. The

distribution of HI within the Large Scale Structure is rather unclear today. It is

believed that in the post-reionization era most of HI lies within galaxies while only a

negligible fraction is diffuse (Seehars et al. 2016). It is often simply parametrised by

relating themass of HI to themass of its host darkmatter halo through a simple power

law including, or not, a cut-off at small and high halo masses. We compile here

several HI mass and halo mass relations that have been used or estimated using both

hydrodynamical simulations and parametrised models fitted on data measurements.

We also consider a DLA model.

1. Bagla10: One relation that has been widely used is that of Bagla et al. 2010.

43

https://etd.uwc.ac.za/
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It has been inspired from quasar observations and assumes that there is no HI

in high mass halos:

MHI(M) =
f3 M

1 + M
Mmax

, (2.30)

where f3 comes from the normalisation toΩHI. This prescription is commonly

used for studies of 21 cm intensity mapping amongst others, Seehars et al.,

Sarkar et al., Villaescusa-Navarro et al. 2016, 2016, 2014. Mmin and Mmax are

the limits for a dark matter halo to host HI. They assume that only halos

with 30 km/s < vcirc <200 km/s host HI, which translates to lower and upper

bounds, Mmin and Mmax, through

vcirc = 30
√

1 + z
(

M
1010M�

)1/3
km/s . (2.31)

2. AGN: Nevertheless, Villaescusa-Navarro et al. 2016 measured the MHIMh

relation in hydrodynamical simulations including AGN feedback and show

that there is HI in halos that have vcirc >200 km/s. They measured MHI(M) =

eα Mγ and fit α and γ up to redshift 2.

3. DLA50: A prescription adapted from DLA studies (Barnes and Haehnelt,

Barnes and Haehnelt 2010, 2014) by Padmanabhan et al. 2016

MHI(M) = α fH,c M exp

[
−

(
vc,0

vc(M)

)3
]

exp

[
−

(
vc(M)
vc,1

)3
]
, (2.32)

where α is the ratio of HI within halos and cosmic HI, fH,c = (1 − Yp)Ωb/Ωm

is the cosmic hydrogen fraction with Yp the cosmological helium fraction by

mass, and vc(M) is the virial velocity of a halo (Bullock et al. 2001):

vc(M) = 96.6 km/s
(
∆vΩmh2

24.4

)1/6 (
1 + z
3.3

)1/2 (
M

1011M�

)1/3
, (2.33)

44

https://etd.uwc.ac.za/



2.3 Halo model and halo occupation distribution

where ∆v, the mean overdensity of the halo, is taken to be 200. For DLAs,

Padmanabhan et al. 2016 considered vc,0 = 50 km/s and an infinite vc,1.

They fitted α to measurements between redshift 0 and 4 (column density

distributions, biases, ΩHI and the incidence rate).

4. 21cm: Padmanabhan et al. 2016 adapted Eq. 2.32 to 21 cm IM observations

using ad-hoc velocity cuts vc,0 = 30 km/s and vc,1 = 200 km/s. Similarly to the

DLA50 model, Padmanabhan et al. 2016 fitted α on the same measurements.

Note that in both latter cases the slope is fixed and equal to unity which is

higher than what is measured in hydro-simulations.

5. HOD A: Padmanabhan and Kulkarni 2017 improved Eq. 2.32 by introducing

a flexible slope, β, as well as the velocity cut-offs:

MHI(M) = α fH,c M
(

M
1011h−1M�

) β
exp

[
−

(
vc,0

vc(M)

)3
]

× exp

[
−

(
vc,1

vc(M)

)3
]
, (2.34)

where α, β, vc,0, and vc,1 are free parameters and fitted on data measurements.

6. HOD B: Lastly, Padmanabhan et al. 2017 fitted an updated version of Eq.

2.34,

MHI(M) = α fH,c M
(

M
1011h−1M�

) β
exp

[
−

(
vc,0

vc(M)

)3
]
, (2.35)

on all the available measurements including galaxy clustering. Their free

parameters are β and α.

All these prescriptions are shown in Fig. 2.4 at z = 1. They vary in shape, amplitude,

and slope. Clearly the DLA50 scheme favours high halo masses as compared to the
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2.3 Halo model and halo occupation distribution

other models. We limit our analysis to z = 1, the values of the free parameters are

given in Table 2.1.

Model Parameters b1 b2 b3 beff THI × 104 K
Bagla10 None 0.93 -0.41 0.62 0.80 1.65
AGN α = 0.73, γ = 2 0.91 -0.27 0.41 0.82 12.14
21cm α = 0.15 0.96 -0.42 0.60 0.81 2.43
HOD A log vc,0 = 1.58 , log vc,1 = 3.14, α = 0.17 , β = −0.5 1.00 -0.35 0.38 0.82 4.38
HOD B log10 vc,0 = 1.56 , α = 0.09 , β = −0.58 0.96 -0.37 0.49 0.85 2.55
DLA50 α = 0.13 1.64 0.56 -1.27 1.74 49.94

Table 2.1: Free parameters of the MHIMh prescriptions along with the associated
HI biases and mean temperatures at z = 1. These models, except DLA50, fit to the
GBT results (Masui et al. 2013) which show that the linear bias of HI is expected to
be ∼ 0.65 to ∼ 1 at z ≤ 1.

Figure 2.4 This figure shows the relations between the HI mass and the halo mass
at z = 1. They vary in shape, amplitude, and slope. Clearly the DLA50 scheme
favours high halo masses as compared to the other models. We limit our analysis to
z = 1, the values of the free parameters are given in Table 2.1

Redshift dependencies of the HI biases of HOD B, b1 and b2, from equation 2.2 are

presented in figure 2.5.
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2.3 Halo model and halo occupation distribution

Figure 2.5 Evolution of the HI biases of HODBwith respect to the values of redshift
which is given in equation 2.2. n = 1, 2, 3 respectively for first order b1, second
order b2, third order b3 HI biases. We can see that only the first order bias is always
positive while the two others change sign.

Figure 2.6 shows the scale dependence of the HI bias.

Figure 2.6 Solid line shows the scale dependence of the HI bias given by the ratio√
PTOT

HI /P
11
m /T̄HI . Horizontal dashed lines are the linear biases for each MHIMh

models computed with equation 2.7.
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Chapter 3

Methodology

One of the main objectives of HI surveys and more widely, galaxy surveys, is to

measure the matter power spectrum and in particular the BAO wiggles. Those

measurements are carried out under the assumption that the power spectrum of

the biased tracer is linear but we have seen in the previous chapter that non-linear

contributions can affect linear scales. Therefore the estimations of the cosmological

parameters might be biased. We will measure this bias for several cosmological

parameters focusing on an intensity mapping survey which will be carried out by the

planned HIRAX experiment, which is aimed at measuring the BAO around z ∼ 1.

In this chapter, we will first explain the design of the HI survey as well as the

measurements of the HI power spectrum using this survey. Lastly, we will explain

the formalism of the Fisher matrix we use to compute the biases on the cosmological

parameters, when assuming that non-linearities in the power spectrum are negligible.

We will consider the following cosmological parameters: density of dark matter

(Ωm), baryon density (Ωb), Hubble parameter (h), the spectral index (ns), and the

amplitude of mass fluctuations (σ8).
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3.1 HIRAX survey design

3.1 HIRAX survey design

Number of dishes 1024
Dish diameter 6m
Survey area 10000 deg2

Operating frequency 400MHz - 800MHz
redshift range 0.8 - 2.5
System temperature 50 K

Table 3.1: This table gives the HIRAX telescope characteristics. The observation
time is 8760 hours which cover 10000 square degrees. These values serve as an
input for our experimental design from which we obtain the characteritics of our
survey given in table 3.2.

The establishment of the Hydrogen Intensity and Real-time Analysis eXperiment

(HIRAX) is proposed consisting of an array of 32×32 radio telescopes and requires

an area of approximately 400 m × 400 m to install each 6 m diameter dishes with

3 m gaps in between dishes 1. This makes HIRAX a compact array and therefore,

to a good approximation, we can assume that the minimum baseline is close to

the dish diameter. In this section we consider an HI intensity mapping survey for

HIRAX. The specifications of HIRAX are listed in table 3.1. Since HIRAX is an

interferometer, the largest scale it can probe is set by its minimum baseline and its

instantaneous field of view (FoV = ∆θ2) is set by its dish size, e.g. ∆θ ∼ (λ/D),

where λ is the wavelength of the observation (0.21(1+ z)m for 21 cm observations).

For HIRAXwe have D=6m, which gives∆θ = 4.5◦ at z = 1 (or a FoV of 20.25deg2).

Although the HIRAX survey is planned to observe a large fraction of the sky (25%

of the sky that HIRAX can cover, which is 10000 deg2), we can divide that area into

patches of the size of the FoV since HIRAX will not probe scales larger than that.

It is then safe to use the flat sky approximation for those patches.

1https://www.sarao.ac.za/wp-content/uploads/2019/03/SKA-IEMP-Chapter-2.
pdf
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3.1 HIRAX survey design

The angular diameter distance DA at the same redshift (z = 1) are used to compute

the transverse comoving size L⊥,

L⊥ = (1 + z)DA(z)∆θ = Dc(z)∆θ . (3.1)

The comoving distance Dc (z) = (1 + z)DA (z) can be written as

Dc(z) = χ(z) = c
∫ z

0

dz′

H(z′)
. (3.2)

Along the line of sight, we have the comoving size L| | which can be calculated within

a redshift bin ∆z centred at z = 1,

L| | = χ(z + ∆z/2) − χ(z − ∆z/2) = c
∫ z+∆z/2

z−∆z/2

dz′

H(z′)
. (3.3)

For this survey, we will consider a redshift interval (frequency range) so that we have

a square box in comoving coordinates, e.g. L⊥ = L| |. For small redshift intervals,

we can assume H(z) to be constant, therefore:

L| | = ∆χ ≈ c
∆z

H(z)
. (3.4)

The bin size of the mode ∆k is set by the length of the box:

∆k =
2π
L| |

. (3.5)

Following Grasshorn Gebhardt et al. 2019, the number of Fourier modes is given by

Nk that is written as follow,

Nk =
Vbox

(2π)3
∆Vk . (3.6)
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3.2 Simulating HI power spectrum for the HIRAX instrument

With ∆Vk (k,∆k) being the volume in Fourier space contributing to the estimation

of the power spectrum and the Fourier bin can be also written as ∆k = 2π/(Vbox)
1
3 .

In this study, we divide our survey into patches of Nboxes given by the following

equation,

Nboxes =
Survey area
(∆θ)2

. (3.7)

We add instrumental noise, in section 3.2, from the HIRAX telescope with the

characteristics given in table 3.1 . Table 3.2 sums up the characteristics of the

survey calculated from these equations at z = 1,

H(z) 123.248 Km s−1 Mpc−1

Comoving distance Dc(z) 3303.83 Mpc
∆θ 0.0785 rad= 4.5◦ (small angle approximation)
Comoving size L| | = L⊥ 259 Mpc = 174 Mpc/h
bin size ∆k ≈ kmin 0.02425 Mpc−1 = 0.036132h Mpc−1

redshift bin ∆z 0.1064
Nboxes 494

Table 3.2: Assumed survey characteristics calculated from the values in table 3.1 and
several equations explained above. The dish size sets∆k while theminimumbaseline
sets kmin. Usually kmin is larger than ∆k. Saying they are equal is an approximation
only valid for compact arrays which is the case of HIRAX as explained in section 3.1.

3.2 Simulating HI power spectrum for the HIRAX

instrument

To compute the HI power spectrum we use the models explicitly stated in chapter

2 and we compute the error bars for a measurement with the HIRAX survey. We

start by deriving the power spectrum variance. Besides a normalization due to the

51

https://etd.uwc.ac.za/



3.2 Simulating HI power spectrum for the HIRAX instrument

window function, an estimator for the power spectrum may be written as [57],

Pobs
HI =

1
Nk

Nk∑
i=1
|δ(ki)|

2
����
|ki−k |≤∆k

, (3.8)

where δ(ki) is a Fourier transform of the density field in position space, ∆k is the

k bin size and Nk is the number of independent k-modes available per bin. This

estimator is unbiased because

〈
Pobs

HI (k)
〉
=

1
Nk

Nk∑
i=1

〈��δ(ki)
��2〉 = 〈��δ(ki)

��2〉 = PHI(k) , (3.9)

where PHI(k) is the underlying HI power spectrum. The variance of this estimator

is given by:〈(
Pobs

HI (k) − PHI(k)

PHI(k)

)2〉
= 1−2

〈
Pobs

HI (k)
〉

PHI(k)
+

1
N2

k PHI(k)2

Nk∑
i=1

Nk∑
j=1

〈
δ(ki)

∗δ(ki)δ(k j)
∗δ(k j)

〉
.

(3.10)

Assuming that the density field is a Gaussian random variable with its variance given

by: 〈
δ∗i δ j

〉
=PHI(k)δi j . (3.11)

We use Wick’s theorem for evaluating the last double summation over i an j in

equation 3.10. We got,

Nk∑
i=1

Nk∑
j=1

〈
δ∗i δiδ

∗
j δ j

〉
=

Nk∑
i=1

Nk∑
j=1

[〈
δ∗i δi

〉 〈
δ∗j δ j

〉
+

〈
δ∗i δ j

〉 〈
δ∗j δi

〉
+

〈
δ∗i δ
∗
j

〉 〈
δiδ j

〉]
= N2

k |PHI(k)|2 + Nk |PHI(k)|2 . (3.12)
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3.2 Simulating HI power spectrum for the HIRAX instrument

Recall equation 3.12 and substitute the value of this summation to equation 3.10 to

get the expression of the variance in equation 3.13,〈(
Pobs

HI (k) − PHI(k)
)2

〉
=

PHI(k)2

Nk
= σ(k)2 , (3.13)

which yields the formula to compute the error bar of the HI power spectrum in

equation 3.14,

σ (k) =
PHI(k)
√

Nk
. (3.14)

Actually the formula being calculated in equation 3.14 is only for one box (one

patch) of the sky. So the variance for the whole survey (see 3.2) of Nboxes is as

follows: 〈(
Pobs

HI (k) − PHI(k)
)2

〉
=

PHI(k)2

Nk Nboxes
= σ (k)2 , (3.15)

which gives the actual error for the noise free power spectrum,

σ (k) =
PHI(k)

√
Nk
√

Nboxes
. (3.16)
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3.2 Simulating HI power spectrum for the HIRAX instrument

10 1

k[h/Mpc]

103

104

P H
I[M

pc
/h

]3

Error bars without noise

Figure 3.1 HI power spectrum with error bars and no instrumental noise. For a
HIRAX type survey at z ∼ 1.

Including the noise from the instrument the formula in equation 3.16 becomes as

follows:

σ (k) =
(PHI + PNoise)
√

Nk
√

Nboxes
. (3.17)

In order to calculate the noise power spectrum for HIRAX, we will need to know the

uv distribution of the interferometer. This is a function of the dish distribution and

the amount of time spent observing a certain patch of the sky. In order to proceed,

we used the results from the code developed in Witzemann et al. 2018. From it, we

obtain fractional errors,
σp

P
, on the HI power spectrum for HIRAX, where P is the

HI power spectrum at a given z and σp is the error on the power spectrum including

noise and cosmic variance (and already factoring in the field of view and survey area,

e.g. using equation 3.16). As shown in figure 3.2,
σp

P
is already given at different

redshifts. We need to interpolate these values to our target redshift z = 1. Moreover,

the error here was calculated assuming a different redshift and k bin, which changes
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3.2 Simulating HI power spectrum for the HIRAX instrument

the cosmic variance. So we need to rescale as follows,

σP =

σP

P
PHI√

dz
′

dz

√
dk
′

dk

, (3.18)

such that dz = 0.1064 (see table 3.2) and dz
′

= 0.2.

10 2 10 1

k [Mpc 1]

10 2

10 1

100

(P
)/P

HIRAX z = 0.2, Sarea=10000 sq. deg., tObs = 8760h

total
z=0.9
z=1.1
z=1.3
z=1.6
z=1.8
z=2.0
z=2.2
z=2.4

Figure 3.2Error to power spectrum ratio computed fromHIRAXat various redshifts.
We interpolate z = 0.9 and z = 1.1 to get our

σp

P
at the desired redshift z = 1.
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3.3 Fisher matrix formalism and biases evaluation

Figure 3.3 HI power spectrum with error bars, including instrumental noise from
HIRAX. The error is high at large scales (small k) due to cosmic variance and large
at small scales (large k) due to the lack of long baselines in the interferometer.

The resulting HI power spectrumwith error bars is shown in figure 3.1 and figure 3.3

without and with instrumental noise, respectively. Without instrumental noise, we

recover the increase of error bars on large scales due to cosmic variance. Instrumental

noise can increase the error bars on both large and small scales due to the baseline

distribution, although for compact arrays like HIRAX we except such noise power

spectrum to be more or less constant in k with a sharp cutoff both on large and

small k. Moreover the ratio of signal to noise with decrease for large k since the HI

signal goes down as the noise stays constant or increases. This can be clearly seen

in figure 3.3. More importantly, the error is quite small over the BAO region.

3.3 Fisher matrix formalism and biases evaluation

Fisher matrix measures the information provided by an experimental set-up for esti-

mation of the parameters (Zimmer 2016). It can be used to calculate the confidence
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3.3 Fisher matrix formalism and biases evaluation

intervals for each parameter or amultidimensional confidence area for all parameters.

So we can say that it is used to predict the error in parameters for a given model, and

without any data required, under the assumption that the likelihood is a multivariate

Gaussian (Fisher 1935). In fact, the Fisher matrix formalism translates errors on

observed quantities measured directly in the survey into constraints on parameters

of interest in the underlying model. To put it more directly, it is the elegant way of

doing propagation of errors in the case of multiple, correlated, measurements and

many parameters (Tegmark et al. 1997). We write the Fisher matrix Fi j as follows,

Fi j =
∑

k

1
σ(k)2

∂X(k)
∂θi

∂X(k)
∂θ j

(3.19)

where σ(k) is the error on the observable X (e.g. power spectrum measurement)

and θi are parameters (e.g. cosmological parameters). To get the equation 3.19,

let θ be a vector of parameters and θ∗ be the fiducial model. We can expand the

likelihood about θ∗:

lnL(θ∗ + δθ) = lnL(θ∗) +
∑

i

∂lnL(θ)
∂θi

����
θ=θ∗

δθi +
1
2

∑
i,j

∂2lnL(θ)
∂θi∂θj

����
θ=θ∗

δθiδθj + ...

(3.20)

The first term is a constant which depends only on the fiducial model. Since, after

many data realisations, we expect the fiducial model to be the point ofmaximum like-

lihood, then by definition the second termwill vanish. The third term is the curvature

matrix or Hessian of the likelihood and defines the Fisher matrix(Fisher 1935):

Fi j =

〈
−
∂2lnL(θ)
∂θi∂θ j

〉
. (3.21)

The angle brackets represent the expectation value. To write the Fisher matrix

in terms of the theoretical predictions for the observables, X, first note that the
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3.3 Fisher matrix formalism and biases evaluation

likelihood is given by:

L =
1√

(2π)N |C |
exp

(
−

1
2

∆TC−1∆
)
. (3.22)

Where∆ = X−d (the difference between the theoretical prediction and themeasured

quantity), C is the data covariance matrix and N is the number of data points.

Substituting this into equation 3.21, we find:

Fi j =
∂XT

∂θi
C−1 ∂X

∂θ j
+

1
2

(
C−1 ∂C

∂θi
C−1 ∂C

∂θ j

)
. (3.23)

If the data covariance matrix, which also includes effects like cosmic variance, is

independent of the parameters, as is often the case (Bassett et al. 2011), and if the

data are uncorrelated, the Fisher matrix becomes:

Fi j =
∂XT

∂θi
C−1 ∂X

∂θ j
=

∑
n

1
σ2

n

∂Xn

∂θi

∂Xn

∂θ j
. (3.24)

Where n is the index over the data. In our case, the observable X is the power

spectrum of neutral hydrogen PHI. The inverse of the Fisher matrix estimates

the parameter covariance matrix. In the case for an unbiased estimator (i.e. the

expected value of θ corresponds to θ∗) and where one does not marginalise over any

parameters, then the expected error satisfies the Cramer-Rao bound: ∆θi ≥ 1/
√

Fii.

In the more realistic case which includes marginalisation, this inequality be-

comes: ∆θi ≥

√
F−1

ii . It can be shown that the error obtained when marginalising

is always greater than or equal to the error obtained without marginalisation. It

should also be noted that in the case where the likelihood is exactly Gaussian, the

Cramer-Rao bound becomes an equality.

The Fisher information matrices can be calculated for different experimental

set-ups allowing the selection of the most informative design. This procedure is
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3.3 Fisher matrix formalism and biases evaluation

called experimental design. The goal is to obtain a parameter estimate that is as

precise as possible, which means that its variance is as small as possible.

Throughout this thesis, we will be concentrating on the full non-linear power spec-

trum. However, the question arises of what will happen to our measurements of the

linear power spectrum instead is assumed in parameter fitting. In the era of high

precision cosmology, this could have a high impact. The Fisher information matrix

approach also allows to calculate how the best fit parameters will be biased by using

the wrong fitting model.

Following Shimon et al. 2013 and Linder 2006, the bias δθi on each cosmological

parameter θi depends on the inverse of the Fisher matrix. Parameter biases δθi

induced from offsets ∆Ok in the observable quantities are calculated using the

Fisher formalism, where maximizing the likelihood leads to (to linear order):

δθ = A∆O = (UTC−1U)−1UTC−1
∆O , (3.25)

where O is the vector of expected observations, C is the covariance matrix of

observational errors, and U =
∂O
∂θ

. Put more simply, when the covariance matrix

is diagonal,

δθi = (F−1
i j )

∑
k

∂Ok

∂θ j

1
σ2

k

∆Ok, (3.26)

and Ok is the kth observable (e.g. power spectrum), ∆Ok is the observational

quantity offset, and F is the Fisher matrix from all observables. In our case and to

linear order, we write equation 3.26 as follows:

δθi =
∑
j,k

F−1
i j
∆PHI(k)
σ(k)2

∂PLIN
HI (k)

∂θ j
, (3.27)

where

∆PHI = PNL
HI − PLIN

HI , (3.28)

59

https://etd.uwc.ac.za/
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such that PNL
HI is the total power spectrum that includes non-linear terms and PLIN

HI is

the linear power spectrum. Even if ∆PHI is small it can still result in a much more

significant bias in parameter inference if the sensitivity of PHI to small variations in

the cosmological model is large.
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Chapter 4

Results and discussion

We are now going to show the results based on the theory of the HI power spectrum

developed in chapter 2 and the methodology of error bars and biases forecasts from

chapter 3. At the end, we will show the effects on the BAO and in particular discuss

the changes in the peak location. Our forecasts in this chapter will be based on the

HIRAX experiment.

4.1 Biases and errors in cosmological parameters

With the results shown in table 4.1 and table 4.2, we bring answers to the following

questions: how well can we measure the cosmological parameters when considering

the non-linear model? How much is the measurement of cosmological parame-

ters biased when using the linear model? We follow the Fisher matrix formalism

developed in the previous chapter. Note that we do not include priors from other

experiments such as Planck.

In table 4.1, we show the results of errors and biases in the cosmological parameters

without including the instrumental noise from HIRAX in the estimation. In the last

column, we have the ratio of the bias to the error that allows us to know whether
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4.1 Biases and errors in cosmological parameters

biases are significant compared to the errors. We found that values of the ratio are at

the same level as the errors and even higher (from 0.348 to 7.351). Ratios of 1 and

above signal that the bias is relevant and may affect our conclusions on what is the

best cosmological model given the data. Most parameters suffer from a strong bias.

Forecast without instrumental noise
Cosmo parameters Error (Non-linear case) Bias Bias/ErrorNL

Ωm 0.2670 0.0071 (∼2.67%) 0.0024 (∼0.93%) 0.348
h 0.67115 0.0089 (∼1.34%) 0.0078 (∼1.17%) 0.873
Ωb 0.0489 0.0018 (∼3.80%) 0.0026 (∼5.33%) 1.402
ns 0.9608 0.0028 (∼0.30%) 0.0063 (∼0.66%) 2.200
σ8 0.826 0.0030 (∼0.37%) 0.0224 (∼2.72%) 7.351
ω0 -1.0 0.0064 (∼0.64%) 0.0126 (∼1.26%) 1.968

Table 4.1: This table gives the forecast results of bias and error in cosmological
parameters without instrumental noise. In the first column, we have the cosmological
parameters whose errors and biases are respectively computed in the second column
and the third column. In the last column, we evaluated the bias to error ratio in order
to see how significant is the bias compared to the error.

Forecast Results with HIRAX instrumental noise
Cosmo parameters Error (Non-linear case) Bias Bias/ErrorNL

Ωm 0.2670 0.0081 (∼3.07%) 0.0017 (∼0.67%) 0.218
h 0.67115 0.0132 (∼1.98%) 0.0053 (∼0.79%) 0.398
Ωb 0.0489 0.0020 (∼4.24%) 0.0015 (∼3.21%) 0.757
ns 0.9608 0.0054 (∼0.56%) 0.0038 (∼0.40%) 0.714
σ8 0.826 0.0133 (∼1.62%) 0.0151 (∼1.83%) 1.129
ω0 -1.0 0.0096 (∼0.96%) 0.0102 (∼1.02%) 1.062

Table 4.2: This table gives the forecast results of bias and error in cosmological
parameters with HIRAX instrumental noise from HIRAX telescope at z = 1 using
equation 3.26. In the first columnwe have the cosmological parameters whose errors
and biases are respectively computed in the second column and the third column. In
the last column we evaluated the bias to error ration in order to see how significant
is the bias compared to the error.

In table 4.2, we include the noise from HIRAX when forecasting biases and errors.
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4.2 Baryonic acoustic oscillations peak

The Biases decrease as expected from the equation 3.27 because the error, σ(k),

increases. For an experiment with errors like HIRAX, it seems that the bias im-

posed on the cosmological parameters due to ignoring the non-linear effects is not

negligible. The situation will get worse if for instance we include further priors. We

also show the fractional variation of the bias to error ratio, which we dubbed "p", in

table 4.3.

Fractional variation of the bias to error ratio p
∆p
p
=
|p1 − p0 |

p0

∆p
p

%

Ωm 0.373 37
h 0.524 52
Ωb 0.460 46
ns 0.675 67
σ8 0.846 84
ω0 0.460 46

Table 4.3: Variation of bias to error ratio. p1, given in the third column of 4.2, is
the ratio of the bias to the error of the forecast with noise from HIRAX. p0, given
in the third column of 4.1, is the ratio of the bias to error of the forecast noise free.
Each value in the third column tells us by how many percent the bias to error ratio
changes once noise is added.

4.2 Baryonic acoustic oscillations peak

We now turn our attention to the Baryon Acoustic Oscillations. Several experiments

are planned to measure this effect with great accuracy in order to probe dark energy.

This includes the HIRAX telescope which is the focus of this thesis. One of the

great advantages of the BAO is that we can get constrains on the angular distance

and Hubble parameter just by using the position of the peaks and troughs. This

is very robust to uncertainties in calibration thus allowing for a much more clean

measurement of dark energy. It is therefore crucial thatwe test the effect of neglecting
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4.2 Baryonic acoustic oscillations peak

the non-linearities we have been considering on the position of the BAO wiggles.

We use the method given in Bull et al. 2015 to extract the BAO signals. The idea is

to split the power spectrum into the smooth part and oscillatory part. We construct

a preliminary oscillatory function by dividing the sampled P(k) (matter or HI) by

the splined function (not its logarithm), then fit another cubic spline to the result

and find the zeros of its second derivative with respect to k. These are the points at

which the first derivatives of the oscillatory function are maximal/minimal, and in

some sense define "mid-points" of the function and its overall trend. We construct a

cubic spline through these too, and then divide the preliminary oscillatory function

by it to detrend. This leaves fbao(k) as the final result. We start by showing the

expected error on the BAO wiggles in figure 4.1. The high sensitivity of HIRAX

shows that any deviations on the peak positions can bias the results.
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Figure 4.1 Baryonic acoustic oscillations feature with error bars from HIRAX at
z = 1. This figure shows that HIRAX can detect well the BAO for the values of
the mode k that range from ≈ 0.050 [h/Mpc] to 0.325 [h/Mpc], beyond that the
errors bars are high. The dashed red line is the theoretical fit of the BAO features
which shows a good overlap with the data point with error bars noise included from
HIRAX instrument (which include binning).
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4.2 Baryonic acoustic oscillations peak

In figure 4.2 we compare the BAO from the linear and non-linear matter power

spectrum using CAMB. Non-linearity solely affects the amplitude of the signal. On

the other hand, in figure 4.3 we show the BAO signal from the HI power spectrum

from both the linear and non-linear models described previously. We don’t expect

differences between the linear HI BAO and dark matter BAO. For the non-linear HI,

we still see a reduced amplitude of the acoustic oscillations as before. However, we

also notice a phase shifting. We plot the evolution of that shift in figure 4.4. We

see that we have a good overlap of peaks in the first peaks and then the separation

grows at small scales.
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Figure 4.2 Baryonic acoustic oscillations features, fbao =
Pwiggle

mat −Psmooth
mat

Psmooth
mat

, from matter

power spectrum from CAMB. Psmooth
mat is the smooth component of Pwiggle

mat . There is
a reduction of the amplitude but peaks remain at the same location.
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4.2 Baryonic acoustic oscillations peak
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Figure 4.3 This plot shows the baryonic acoustic oscillations features, fbao =
Pwiggle

HI −Psmooth
HI

Psmooth
HI

, from HI power spectrum. Psmooth
HI is the smooth component of Pwiggle

HI .
There is a reduction of the amplitude and change in peak location especially at small
scales compared to Fig 4.2

At large scales we can see, in figure 4.3, that the amplitudes are changing but peaks

(the first and the second peaks) remains at the same location. We expected that as

PHI
13 is a dominant negative component at large scales while PHI

22 is a not significant at

these scales. However, at small scales, peaks of the BAO signal are shifted although

the amplitude almost remain unchanged. These change in peak location is due to

the contribution of PHI
13 on the wiggles. The third order component PHI

13 , which

also carries wiggles, tends to balance with the second order component, PHI
22 , as we

shown in figure 2.2. From figure 4.5 we can see that the amount of the amplitude

suppression at small-scales tend to be smaller than at large scales. The shift of the

peaks starts at k = 0.187 h/Mpc.
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4.2 Baryonic acoustic oscillations peak
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Figure 4.4 This plot show the shift of peaks in magnitude given by the difference
of location of peaks of the BAO features from the linear model and the non-linear
model. The BAO signals are highly shifted at small scales.
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Figure 4.5 This shows reduction in amplitude of BAO features of the non-linear
model compared to the linear model. We can see the variation in percentage given
by the ratio

�� f N L
bao − f LIN

bao

�� / f LIN
bao . The BAO signals get damped at large scales.

The value in percentage of the reduction of the amplitude of the BAO features, in
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4.2 Baryonic acoustic oscillations peak

Figure 4.5 range from 16.33% for the first peak to 0.33% from those at small scales.

For the change of the location of the shift, the value of the shift is from 0 h/Mpc to

0.01 h/Mpc which is a significant value at small scales.

In summary, the first peak and secondary peaks change in amplitude. Further

secondary peaks change in location. For this reason, we get biased in constraining

and forecasting cosmological parameters such as the angular diameter distance and

Hubble, if we use the linear model.
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Chapter 5

Conclusions

In this thesis, I have tested the non-linear model of the power spectrum of the neutral

hydrogen and benchmark it against the linear model. The non-linear HI power

spectrum was calculated with a full one loop correction. The code was implemented

in Python and produces the HI non-linear power spectrum using as input the CAMB

linear matter power spectrum and the different HI bias parameters from the Halo

model.

We aimed to forecast the biases in cosmological parameters and to study the BAO.

The errors are forecasted using the Fisher matrix formalism. We used the biases

formula for a given model according to Shimon et al. 2013 and Linder 2006 which

also depends on the Fisher information matrix Fi j . To implement this study, we

designed a survey of 10,000 squared degrees with Hydrogen Intensity and Real-time

eXperiment (HIRAX). It is a 400-800MHz radio interferometer which will map

most of the southern sky over the course of four years (Nishimichi et al. 2007).

HIRAX will observe unresolved sources of neutral hydrogen via their redshifted

21− cm emission line. Indeed, it is convenient for our study at z = 1 as its redshifts

range from 0.8 to 2.5.

We find that the biases are mostly at the same level as the errors, where the ratio

of the bias to error ranges from 0.218 to 1.129 (going up to a factor of 7 without
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noise). That means that if we do not consider the non-linear components of the HI

power spectrum in our forecast we can get biased in our constraints for cosmological

parameters, although the effect is small given the noise levels. Using the true model

(non-linear model), the accuracy in measurement of cosmological parameters, with

HIRAX, is 0.67% for Ωm, 0.79% for h, 3.21% for Ωb, 0.40% for ns, 1.83% for σ8,

1.02% for ω0.

In order to consider in more detail the effect on parameters that rely on baryon

acoustic oscillations, we also looked at the extraction of the BAO features fbao,

which is the oscillatory part of Pwiggle
HI , from the non-linear HI power spectrum

and compared it to the fbao signal from the HI linear power spectrum in order to

investigate the discrepancy. Here, the Psmooth
HI is obtained following the method in

Bull et al. 2015 (see chap 4). Then we choose two reference values of k that bound

the region in which the oscillations are significant in total HI power spectrum and

find the points at which the first derivatives of the oscillatory function are maximal

or minimal. Then we construct a cubic spline and detrend it to get fbao in Fig 4.3.

Our results about the BAO features show that there is a change in the location of the

peaks (see Fig 4.4). The amount of the shift has a maximum value of 10−2 h/Mpc,

although, the first peak is not shifted at all. We also have noticed a change in the

amplitude of fbao (see Fig 4.5. The reduction of the amplitude is high at the first and

second peaks which goes up to 16.33% and becomes insignificant at small scales.

Briefly, we can affirm that the non-linearities have a significant effect both at large

and small scales. We then should adopt the non-linear model to gain more precision

and accuracy.

Lastly, as a prospect of future work, I believe it is possible to carry out this same

work on the redshift space distortions. In fact, redshift-space distortions has an

effect on the shift of the BAO characteristic scales in a weakly nonlinear regime
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using one-loop correction from perturbation theory (Nishimichi et al. 2007).

Further studies can also be performed at different redshifts and more parameters can

also be considered such as ω0 and ωa. It will be important to confirm that the non-

linear model of the power spectrum is crucial to anyone who works on constraining

dark energy.
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Appendix A

Bias formula derivation from Maximum
Likelihood Estimation (MLE)

Bias formula in equation A.1 is derived from MLE principle.

δθi =
∑
j,k

F−1
i j
∆PHI(k)
σ(k)2

∂PLIN
HI (k)

∂θ j
(A.1)

Assume that we have a function of distribution that follows the the Gaussian law

f (xk ; θ) =
1

(2π |c |)N/2
exp

[
−

1
2
(xk − Hθ)T C−1 (xk − Hθ)

]
(A.2)

where C is the covariance matrix and

xk =

p∑
l=1

hlθl + wk = Hθ + wk (A.3)

so the likelihood function is as follows,

L (x1, x2, ..., xk ; θ) =
1

(2π |c |)N/2
exp

[
−

1
2

k∑
k=1
(xk − Hθ)T C−1 (xk − Hθ)

]
(A.4)

Trying to find the θ = θMLE that maximise L (x1, x2, ..., xk ; θ) given x1, ..., xk is the

same as maximising ln [L (x1, x2, ..., xk ; θ)]

θMLE = argmax[θ] ln [L (x1, x2, ..., xk ; θ)] (A.5)
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Which is equivalent of

θMLE = min[θ]
k∑

k=1
(xk − Hθ)T C−1 (xk − Hθ) (A.6)

θMLE = min[θ] θT HTC−1Hθ − θT HTC−1
k∑

k=1
xk

−

(
k∑

k=1
xk

)T

C−1Hθ +
k∑

k=1
xT

k C−1xk

(A.7)

θMLE = min[θ] θT [
HTC−1H

]
θ − θT HTC−1 x̄

− x̄TC−1Hθ + K
(A.8)

x̄ =
1
k

k∑
k=1

xk

We can complete the square and we have

θMLE = min[θ]
(
θ −

[
HTC−1H

]
HTC−1 x̄

)T
HTC−1H

(
θ −

[
HTC−1H

]
HTC−1 x̄

)
+ K − x̄TC−1H

(
HTC−1H

)−1
HTC−1 x̄

(A.9)

This yields

θMLE =
[
HTC−1H

]−1
HTC−1 x̄ (A.10)

Equation A.10 is the general form of equation A.1. We just need to substitute terms

such that, H = ∂PHI

∂θ , x = ∆PHI and C is related to the covariance matrix of observational

errors .
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Appendix B

Bardeen equation

From Bardeen equation B.1 We can respectively get the matter and radiation densities

contrast in equations B.6, B.7 in the Large scales structure.

Bardeen equation is written as follow,

Φ
′′

+ 3H(1 + c2
s )Φ

′

+ [2H
′

+ (H2 − K)(1 + 3c2
s )]Φ − c2

s∆Φ = 0 (B.1)

and the comoving density contrast is

(∆ + 3K)Ψ =
κ

2
a2ρδc (B.2)

Here Φ = Ψ

Denote y =
a

aeq
then one can show that using the Bardeen equation( B.1) with two

fluids we come up with these three governing equations given as follows:

Φ
′′

+ (7 −
1

1 + y
+

8
4 + 3y

)
Φ
′

2y
+

Φ

(y(1 + y)(4 + 3y))
=

2
(4 + 3y)y2 (δ

c −
yS

1 + y
)

(B.3)

δc = −
4
3
(

k
keq
)2

y2

1 + y
Φ (B.4)

S
′′

+
3y + 2

2y(1 + y)
S
′

=
2

4 + 3y
(

k
keq
)2(δc −

yS
1 + y

) (B.5)
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such that S = δm -3
4δr . Then for each fluid we can write:

δm =
3(1 + y)δc/4 + S

1 + 3y/4
(B.6)

δr =
(1 + y)δc − S

1 + 3y/4
(B.7)

As initial conditions we have : Φ = Φi,Φ
′

= 0, S = 0, S
′

= 0 These initial conditions.

Let ζ be the curvature perturbation.

ζ = Φ +
2

3(1 + ω)H
(Φ
′

+HΦ) (B.8)

For radiation ω =
1
3
then ζ =

3
2
Φrad and for matter ω = 0 then Φrad =

3
5
ζ

Thus,

Φmat =
9
10
Φrad (B.9)
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