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ABSTRACT 

The occurrence and spread of Invasive Alien Plants (IAPs) is a threat to global water resources 

and natural ecosystems due to high water use rates. With the current climate change projections 

and their ability to survive extreme environmental conditions, these species pose a huge threat to 

grazing resources, water availability and ecosystems in general. Routine monitoring and 

understanding their distribution and potential vulnerable areas is fundamental as it provides the 

requisite baseline information to guide clearing efforts and other related management and 

rehabilitation initiatives. It is therefore, imperative to detect, map and monitor the distribution of 

these species to provide baseline information, which can be useful to guide clearing efforts and 

mitigating unintended impacts and any further proliferation. The aim of the study was, therefore, 

to detect and model the distribution of IAPs, using multisource data that is remote sensing, 

bioclimatic and environmental data to assess how the projected climate changes and variability 

will affect their distribution in Heuningnes catchment in the Western Cape, South Africa. 

Heuningnes catchment is part of the Cape Floristic Region in the Western Cape, which is one of 

the key global biodiversity hotspots. To achieve this, firstly, the ability of two multispectral 

satellite datasets (i.e. Landsat 8 OLI and Sentinel 2 MSI) to detect and map the current 

distribution of IAPs was assessed. The results showed that both the two sensors have the ability 

to detect and map IAPs within the catchment, although Sentinel 2 obtained slightly higher 

accuracies in terms of the overall accuracy assessment methods. For example, IAPs were 

mapped with an accuracy of 71% from Sentinel 2 and 65% for Landsat 8 data. However, the 

McNemar’s statistical test results showed no significant difference in the overall classification 

between the two sensors (p-value = 0.53). Secondly, the current and future potential distribution 

of IAPs were modelled using three different Species Distribution Models (SDMs) namely the 

Boosted Regression Trees (BRT), Maxent, Random Forest (RF) and their ensemble which 

combined all the three models. Two Representative Concentration Pathways (RCPs) climate 

projections were used for best-case (RCP 2.6) and worse-case (RCP 8.5) atmospheric carbon 

concentration to assess the anticipated potential distribution of IAPs. All the SDMs produced the 

highest IAPs predictive results. Specifically, RF yielded an Area Under Curve (AUC) value of 

0.94 and True Skill Statistics (TSS) value of 0.84, Maxent an AUC value of 0.92 and TSS value 

of 0.82 and BRT an AUC value of 0.89 and TSS value of 0.70. Further, the overall results 

indicated that currently, IAPs cover approximately 9% of the catchment area and are likely to 

increase to 11% under the influence of climate change. In addition, the mean diurnal range, 
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maximum temperature of the warmest quarter and precipitation of the warmest quarter were the 

most important climatic variables in predicting the future potential distribution of IAPs. The 

findings of this study highlight the relevance of spatially explicit multisource data in determining 

the occurrence, spread and areas at risk of infestation to provide baseline information useful in 

the eradication and rehabilitation frameworks for the affected areas.  

Keywords: Biodiversity hotspots; Cape Floristic region; ecosystem restoration; satellite data; 

species distribution modelling; water scarcity. 
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1. Chapter One 

1.1 Introduction 

Invasive Alien Plants (IAPs) are plant species occurring in a non-native environments 

spreading across large geographic ranges posing negative impacts in newly found 

environments (Preston et al., 2018). These species propagate across the landscape with or 

without the anthropogenic or natural interference (Asner et al., 2008a, Asner et al., 2008b). 

The success of IAPs is characterised by the ability to outgrow and replace native species, 

change disturbance regimes and fundamental ecosystem processes (Asner et al., 2008a). The 

lack of strong natural preventive mechanisms for IAPs results in successful competition with 

natural indigenous species resulting rapid spread (Enright, 2000; Rawlins et al., 2011). As 

such, IAPs will increase and continue to spread even with no new further introductions 

because of naturalisation (Wilson et al., 2013). 

Historically, the spread of IAPs has strongly been globally linked to anthropogenic influences 

such as disturbances, species movement and plantations for particular benefits although such 

a process may be natural (Sharma et al., 2005; Parker et al., 2017). For example, the lack of 

adequate forest resources in South Africa has led to the introduction of alien tree plant 

species for several benefits such timber and stabilization of sand dunes (King, 1943, Midgley 

et al., 1997, Bennett and Kruger, 2015). As a result, a significant number of alien plant 

species have currently established in South Africa (Bennet and Kruger, 2015). These plant 

species then became invasive, spreading uncontrollably beyond the established areas with the 

associated negative impacts to natural ecosystems that include threat to economic losses, 

biodiversity and water resources amongst other impacts (Le Maitre et al., 2002, Le Maitre et 

al., 2020, Van Wilgen et al., 2001). The impacts of IAPs on water resources may create 

conservation challenges in regions like South Africa that are ecologically diverse and partly 

semi-arid due to frequent occurrences of droughts and disturbed rainfall patterns (Bennet and 

Kruger, 2015). The dense stands of these species where natural vegetation is displaced, result 

in reduction of surface water runoff, decline in groundwater reserves and increased 

evapotranspiration (van Wilgen et al., 2008, Van Wilgen et al., 2001). This is of great 

concern in regions like Southern Africa where the annual rainfall is on average below the 

global average (990 mm), considering their affinity for water resources and ability to 

outcompete other plant species (Malisawa and Rautenbach, 2012, Matchaya et al., 2019, 

Nhamo et al., 2019, Sun et al., 2019). For instance, the southwestern regions of South Africa 
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are susceptible to high concentrations of biological plant invasions and are identified as some 

of the highly invaded areas (Ntshidi et al., 2018, Kotze et al., 2010). It has also been reported 

that the majority of these invasions occur in the wetter regions of the country like the Western 

Cape (Van Wilgen et al., 2001). Recently, South Africa has been strongly affected by water 

shortages that have been a result of global climatic variability. Therefore, the impacts of IAPs 

on water resources in invaded regions will result in severe water losses, thereby threatening 

water security with the worsening climate conditions. 

Biological invasions occurring across a wide range of bioclimatic conditions respond 

significantly to regional and global climate change (Huang and Asner 2009). The spatial 

distribution of IAPs is, therefore, influenced by climatic conditions. Projected future climate 

conditions characterised by a declining rainfall and an increase in temperatures may result in 

further spread and new establishment of IAPs in previously unaffected areas. This is because 

global climate change can alter species range limits that might promote the expansion of 

IAPs, thereby further exacerbating their impacts, a great concern for conservation 

management (Haeuser et al., 2017). Similarly, other environmental changes such as land use 

and topography can also mediate the rate and spatial pattern of alien plants promoting the 

process of invasions (Higgins et al., 2004; Huang and Asner, 2009). Some habitats such as 

those that are fertile, with high availability of water are substantially vulnerable to alien plant 

invasions (Arianoutsou et al., 2013, Pysek et al., 2010). This makes the wetter regions in 

South Africa very vulnerable to the impacts due by their spread. It is thus essential to 

understand the extent of invasion and environmental factors that drive the spread of IAPs to 

determine their distribution shifts under future climatic conditions (Guan et al., 2020). 

Understanding how these species respond to particular environments is key in identifying 

factors influencing their distribution and thus effective management to mitigate the spread 

through informed decisions. Therefore, an understanding of these factors can be enhanced 

through early and routine detection, modelling and mapping of their spatial distribution. 

To achieve this, there is an increasing need to develop and implement robust approaches to 

facilitate the management of IAPs. These approaches should be able to frequently monitor 

their ongoing spread to provide guidance in clearing endeavours and reduce their impacts 

effectively (Hulme et al., 2009). Currently, the advanced development of technological tools 

and instruments such as remote sensors and species distribution models (SDMs) are some 

innovative approaches and techniques that can be advantageous to achieve this task. Remote 
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sensing remains a vital tool for frequently detecting and mapping of the spatial distribution 

IAPs in order to mitigate and rehabilitate the invaded landscapes (Mutanga, et al., 2018). The 

improved sensor characteristics also facilitate accurate detection and discrimination of these 

species from other land cover types. The derived maps showing invaded areas are important 

for decision making to manage species occurrence and spread as well as scaling their impacts 

(Shaw, 2005; Bradley, 2013). Similarly, SDMs have been increasingly used to determine the 

ecological response of alien plant species in order to understand their invasion process 

(Guisan and Thuiller, 2005, Booth, 2018). The underlying principle behind SDMs is to relate 

the occurrence of species to environmental variables to obtain ecological and evolutionary 

insights (Elith and Leathwick, 2009, Higgins et al., 1999). Unlike remote sensing, which only 

uses spectral characteristics to detect the spatial distribution of these species, these models 

use statistical approaches to model the probability occurrence based on a set of bioclimatic, 

environmental and topographic variables. The assumption behind the statistical approach for 

predicting species distribution is that the response of the current species distribution is 

influenced by a set of environmental factors (Higgins et al., 1999). However, integrating 

remotely sensed data with other spatial datasets in SDMs yields high classification results, 

thus more accurate predicted distribution of species (Rozenstein and Karnieli, 2011). 

Therefore, adopting this approach has a great potential and positive impact in management 

strategies, through understanding of the magnitude and extent of alien plant invasions to 

justify eradication and control (Le Maitre et al., 2002). 

The abundance of invasive species continues to grow regardless of the growing efforts of 

eradication and management (Müllerová, Pergl and Pyšek, 2013). Once IAPs become 

established, eradication is often difficult and expensive with the possibility of previously 

cleared invaded areas resulting in secondary invasions (Denslow, 2007, Ogden and 

Rejmanek, 2005). The early detection of invasive species for management efforts is often 

difficult to achieve and the management of invaded areas demands significant efforts and 

resources (Muthukrishman et al., 2018). To avoid the associated negative impacts, strategic 

management of IAPs is required (Terblanche et al., 2016). Thus, predicting invasion risk 

areas will help to justify and prioritize control (lodge et al., 2006). This can be achieved by 

using and implementing knowledge sound approaches such as remote sensing techniques and 

Species Distribution Models (SDMs) to understand the occurrence and evolution of these 

species. Therefore, detecting the current and potential distribution of future invasions will 
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greatly contribute in active monitoring and management of IAPs to reduce the impacts they 

pose on water resources to meet current and future demands. 

1.2 Aim and objectives 

The aim of this study was to detect and model the distribution of alien invasive plants using 

satellite remote sensing, environmental and climatic data. 

The specific objectives are: 

1. To compare the performance of Landsat 8 and Sentinel 2 multispectral data in 

detecting and mapping invasive alien plants in the Heuningnes Catchment, Western 

Cape province of South Africa. 

2. To predict the potential distribution of IAPs in the catchment using multisource data 

for best-case (RCP2.6) and worse-case (RCP8.5) climatic projection scenarios. 

1.3 Research questions  

● How does varying sensor characteristics affect the detection and mapping of IAPs at 

catchment scale? 

● What is the influence of remote sensing data in prediction distribution of IAPs using 

SDMs?  

● Which environmental and climatic factors influence the distribution of IAPs in the 

Heuningnes catchment in the Western Cape, South Africa? 

● How will the distribution of IAPs change with projected changes of climatic conditions? 

1.4 Conceptual framework 

This study utilises the application of Geographic Information System (GIS), remote sensing 

and Species Distribution Models (SDMs) in detecting, modelling and mapping the 

distribution of IAPs.  

Figure 1.1 shows the conceptual framework of the study in determining the current 

distribution of IAPs and the suitable areas based on current and future climatic conditions. 

The outputs of the study are likely to be informative in managing the spread of IAPs. The 

first objective is focused at comparing the ability of Landsat 8 and Sentinel 2 in detecting the 

spatial distribution of IAPs and discriminating these plant species from other land cover 
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types, particularly vegetation types. The two new generation multispectral satellite data sets 

vary in spatial and spectral resolution with Sentinel 2 having improved characteristics 

compared to Landsat 8. Therefore, it is critical to identify a better platform for accurate 

detection and mapping of these species and determine to what extent these sensors vary in 

detecting and discriminating IAPs. The output results will be two classified satellite images, 

which show the current extent and distribution patterns of IAPs. Further, the satellite image, 

which discriminated IAPs better than the other, will then be incorporated in objective two, 

which is to model and determine the suitable areas for IAPs distribution under best-case and 

worse-case climate projections. Multisource data namely bioclimatic, environmental and the 

incorporation of remote sensing data were used for modelling the current and future suitable 

areas of IAPs for both best-case and worse-case climate scenarios. Remote sensing satellite 

data was incorporated to improve the discrimination ability, thus improving the model 

predictions and providing reliable estimates by using multiple strong predictive SDMs. The 

important predictor variables, which largely facilitate and contribute to the spread of IAPs, 

were also determined. 

 

Figure 1.1: Conceptual framework of the study. 
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1.5 Significance of the study 

Timeous information on the distribution IAPs is needed in order to inform management 

practices in clearing IAPs. The study provides spatially explicit framework for IAPs detection 

and mapping. It also provides an explicit approach for the development of proactive 

management strategies to help mitigate the spread and impacts of these species. Further, this 

study also provides a baseline information on the spatial distribution of IAPs in Heuningnes 

catchment. Such information is useful for the identification of priority areas for targeted 

clearing of IAPs in line with the global and local biodiversity conservation initiatives. This 

will thus contribute into making informed decisions on effective management approaches and 

proactive monitoring for the spread of IAPs to prevent further spread in future.  

1.6 Study area description 

1.6.1 Location 

The Heuningnes catchment is located within the Overberg region in the Western Cape 

Province in South Africa (Figure 1.2). It lies between the latitudes 34°19` S  and 34°50` S 

and longitudes of 19°35` E and 20°18` E, covering a relatively small area of approximately 

1 938 km² (Bickerton, 1984). This catchment forms the southernmost part of the African 

continent and divides the Indian Ocean and Atlantic Ocean. The catchment has five 

quaternary catchments (G50B, G50C, G50D, G50E and G50F) with three inland towns 

Bredasdorp, Napier, Elim and three coastal towns Cape Agulhas, Struisbaai and Molshoop. 

The elevation ranges in catchment varies from sea levels up to approximately 837 m above 

sea level (Figure 1.2) (Mazvimavi et al., 2018). The lower part of the catchment is relatively 

flat and gentle with the southwestern areas characterised by mostly coastal lowlands at less 

than 60 m. The upper part in the northeast of the catchment is mountainous with gradual and 

steeper slopes.  
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Figure 1.2. The location of Heuningnes catchment showing situated in Cape Agulhas, 

Western Cape, in South Africa. 

The catchment lies within a Mediterranean climate region characterised by hot dry summers 

(November to March) and wet cold winter seasons (May to August) caused by orographic 

effects due to the presence of mountains (Midgely et al., 2003). The mean maximum 

temperatures in summer can reach up to 27 °C with mean minimum temperatures below 10 

°C (Mkunyana et al., 2018). The average annual rainfall in the catchment is 500 mm/year 

(Kraaij et al., 2009) but varies from 400 mm/year in the lowlands to 675 mm/year in the 

mountains, which form the headwaters. Most of the rainfall occurs during winter and the 

annual average A-pan evaporation rate is 1445 mm/year. The cold fronts experienced in this 

area are associated with westerly winds and the moisture during the year is transported from 

the Indian Ocean onto the southern mountains and coastal plains of the region (Midgeley et 

al., 2003). 

1.6.2 Hydrology 

The catchment has a complex hydrological system characterised by several tributaries, 

wetlands and pans (Figure 1.2). The Kars River and the Nuwejaar River, which passes 
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through the Soetendalsvlei, are the main tributaries of the Heuningnes River. The Kars River 

runs 75 km to its confluence to Soetendalsvlei while the Nuwejaar River runs 55 km from its 

primary source to Soetendalsvlei (Marnewick et al., 2015). The pans and wide floodplains 

dominate on the southwestern part of the catchment that is low lying. The Soetendalsvlei is 

the largest lake in the catchment with about 3 km wide and 8 km long and drains into the 

Heuningnes River that joins the Indian Ocean. Other pans include the Voevlei (4 km by 1.7 

km), Soutpan (1.3 km by 1.9 km), Longpan (1 km by 0.5 km), and Roundepan (0.6 km by 0.4 

km). The major lakes are found on the low-lying areas located on the south and east of the 

catchment (Mkunyana et al., 2018).  

1.6.3 Geology 

The geology is dominated by the Bredasdorp, Bokkeveld and Table Mountain Group. The 

Bredasdorp beds which consist of calcite sand dunes underlie the majority of the low-lying 

areas that are located south and lower east of the catchment where the major lakes are found 

(Mkunyana et al., 2018). The Table Mountain Group quartzite and sandstones dominate the 

Kars River upper catchment while the Bredasdorpberge shale dominates in the southern parts 

and the Bokkeveld shale occurs in the undulating northern parts. The Malmesbury and the 

Peninsula Granite, which intruded the Malmesbury group and exposed because of uplift and 

erosion dominates the upper catchment of the Nuwejaars River. The soils in the catchment 

comprise of mainly material derived from sandstone with uncommon occurrence of 

calcareous soils (Midgeley et al., 2003). The coastal platforms are associated with the duplex 

soils, where sands overlie heavier subsoils (Midgeley et al., 2003).  

1.6.4 Land cover, biodiversity and conservation 

The major land uses are dryland crop cultivation (wheat, barley, canola), livestock production 

(cattle and sheep), vineyards, and growing of indigenous flowers (Mazvimavi, 2018; 

Mkunyana et al., 2018).  The land cover of the plain is mostly characterised by farmlands, 

and shrubs. The build-up area is not very extensive, making the large proportion of the area 

largely natural (Apedo, 2015). This catchment is species and endemic-rich as it forms part of 

the Cape Floristic Region which is rich in biodiversity. The established plant endemics are 

often within a restricted range (Midgeley et al., 2003). The sclerophyllous shrub, fynbos is 

the main indigenous vegetation, with species belonging to Proteaceae, Ericaceae, 

Restionaceae and Irididaceae families (Munica and Rutherford, 2006; Privett, 2002; Bek et 
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al., 2013; Midgeley et al., 2003; Tylor, 1978). There are five protected areas within the study 

area namely the De Mond nature reserve, Heuningnes private nature reserve, Andrewsfield 

private nature reserve, Agulhas national park and Heuningberg nature reserve.  

1.6.5 Management of the established IAPs 

The National Invasive Alien Plant Survey done by Kotzé et al. (2010) and work by Le Maitre 

et al. (2000) showed that the Cape Agulhas area of the Western Cape Province of South 

Africa had the greatest proportion of over 60% of the land area being affected by IAPs. The 

Heuningnes catchment, which is situated in this region, is one of the severely affected 

catchments by IAPs. Eucalyptus, Pinus and Acacia (Acacia longifolia, A. cyclops and A. 

saligna) are the most dominant species in the Heuningnes catchment (Nowell, 2011). These 

IAPs threaten the ecosystem and protected areas, with frequent fires and clearing activities 

taking place to control the spread of these species. Previous studies in this catchment found 

that these IAPs mostly occurred along riparian zones and hillslopes and were rapidly 

spreading (Mazvimavi, 2018; Mkunyana, 2018). The landowners in this catchment formed a 

forum to coordinate and implement clearing of IAPs on a continuous basis. Therefore, both 

the Working for Water Programme and landowners require information about changes on an 

annual basis of areas with IAPs, in order to identify areas for prioritised clearing. Due to this 

demand for information about the spatial distribution of IAPs, the Heuningnes catchment was 

selected for the study presented in this dissertation.   

1.7 Thesis outline  

General outline of the structure 

This dissertation is comprised of five chapters which include two standalone manuscript 

articles (chapter two and three) that are based on each objective. These two standalone 

manuscripts have been presented as published in scientific journals to retain their original 

content with minor changes. However, repetition of some content or overlaps may occur due 

to coherence of each standalone manuscript to the overall aim of the study. But this has been 

reduced to minimum. 
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1.7.1 Chapter One 

This chapter provides an overall overview about the background of the research conducted on 

the subject. It also presents research questions, as well as outlines the main aim and 

objectives of the study.  

1.7.2 Chapter Two 

Accurately detecting the distribution of IAPs is important in understand their current spatial 

distribution. This chapter is based on objective one of the dissertation which is to detect the 

abundance and distribution of IAPs by assessing the ability of the two multispectral satellite 

datasets namely Landsat 8 and Sentinel 2 in discriminating these species from other land 

cover types. Both satellite datasets are readily available for earth observation application such 

as land cover monitoring with Sentinel 2 having higher spatial and spectral resolution than 

Landsat 8. Having Landsat 8 providing long historical data at a coarser resolution, the 

recently launched Sentinel 2 provides an opportunity for species detection at improved 

resolution that can be advantageous for small-scale mapping and eradication and clearing 

initiatives.  

1.7.3 Chapter Three 

The spread of IAPs is likely to expand rapidly in the future due to projected climatic changes 

that can will great negative impact on water resources as a result of expected reduction in 

rainfall. This chapter is based on objective two, which focuses on the prediction of areas 

within the Heuningnes catchment that are favourable to the growth of IAPs using multisource 

data. Further, the chapter provides detail on the key factors that largely contribute to the 

spread of IAPs in the catchment. The combined use of SDMs with remote sensing data in 

modelling the spatial distribution of IAPs is investigated. Having identified a better sensor 

with suitable spectral and spatial from the previous chapter, Sentinel 2 data was used to 

improve model predictions.  

1.7.4 Chapter Four 

This chapter provides a detailed synthesis of the main findings of the study. The chapter also 

further includes major conclusions and recommendations drawn from the dissertation.  
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2. Chapter Two 

Use of multispectral satellite datasets to improve ecological understanding of the 

distribution of Invasive Alien Plants (IAPs) in a water-limited catchment, South Africa 

 

Abstract 

Invasive Alien Plants (IAPs) pose major threats to biodiversity, ecosystem functioning and 

services. The availability of moderate resolution satellite data (e.g. Sentinel 2 Multispectral 

Instrument and Landsat 8 Operational Land Imager) offers an opportunity to map and 

monitor the occurrence and spatial distribution of IAPs. The use of two multispectral remote 

sensing datasets to map and monitor IAPs in the Heuningnes catchment, South Africa, was 

therefore investigated using the maximum likelihood classification algorithm. It was possible 

to identify areas infested with IAPs using remote sensing data. Specifically, IAPs were 

mapped with a higher overall accuracy of 71% using Sentinel 2 MSI as compared to using 

Landsat 8 OLI, which produced 63% accuracy. However, both sensors showed similar 

patterns in the spatial distribution of IAPs within the hillslopes and riparian zones of the 

catchment. This work demonstrates the utility of the two multispectral datasets in mapping 

and monitoring the occurrence and distribution of IAPs, which contributes to improved 

ecological modelling and thus to improved management of invasions and biodiversity in the 

catchment. 

Keywords: Agroecosystems; catchment scale; fynbos-dominated ecosystems; satellite data; 

water scarcity. 

This chapter is based on the following manuscript: 

Mtengwana, B., Dube, T., Mkunyana, Y.P., Mazvimavi, D. 2020. The use of multispectral 

satellite data to improve ecological understanding of the distribution of Invasive Alien Plants 

(IAPs) in a water-limited catchment, South Africa. African Journal of Ecology. 2020;00:1-8. 

https://doi.org/10.1111/aje.12751. 

The research work was also presented at both international conferences:  

• 20th WaterNET/WARFSA/GWP-SA Symposium, October 2019, Johannesburg, South 

Africa  

• 20th SAEON Indibano, September 2019, St. Francis, South Africa 
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2.1 Introduction 

The spreading of invasive alien species is a global problem. A review by Turbelin et al 

(2017) established that in terms of the number of occurrences of alien species, the USA, New 

Zealand, Australia and South Africa were the leading countries.  However, small island states 

such as the Reunion, French Polynesia, and Fiji were highly affected with number of alien 

species ranging from 914 to 6890 species per 100,000 km2. Alien species out-compete and 

cause a decline in the number of indigenous species. Terrestrial alien plants also increase the 

frequency and intensity of fires (Pyšek et. al., 2012; van Wilgen and Richardson, 2012). 

Initially, Invasive Alien Plants (IAPs) were introduced in different countries for economic 

development and to curb environmental problems. For example, Prosopis was introduced in 

Sudan to curb desertification. In South Africa they were introduced during the 19th century 

for the supply of timber (e.g. Eucalyptus, Pines), fodder (e.g. Acacias, Prosopis) and 

stabilization of dunes (Acacia) (Bennet and Kruger, 2015). However, these species have 

become problematic and expand at unprecedented rates. For example, in South Africa, the 

condensed area covered by the different IAPs is currently equivalent to 8% of the country’s 

total land area and 16% of the Western Cape Province (Le Maitre et al., 2000). 

South Africa is predominantly semi-arid to arid, with an average annual rainfall of 

approximately 464 mm/year of which 8% forms surface runoff. Mountainous areas, which 

cover 8% of South Africa’s land area generate over 50% of the surface runoff and are 

considered to be strategic water source areas for the whole country (Nel et. al., 2013). 

However, the spread of IAPs into these mountainous areas is a major threat to the availability 

of water resources. Le Maitre et al. (2000) estimated that the presence of IAPs causes 7% 

decrease in the available water due to the increase of transpiration losses. The most 

problematic IAPs in South Africa are the Australian Acacia, Eucalyptus and Pinus genera 

(Chamier et al., 2012, Dzikiti et al. 2013a,b, and Meijninger and Jarmain, 2014). Studies done 

in the Cape Agulhas showed that IAPs were consuming water equivalent to the long-term 

average runoff (Mazvimavi, 2018, Mkunyana, et. al 2018). Due to the considerable adverse 

effects of IAPs on water resources, the South African government launched the Working for 

Water Programme in 1996 focusing on clearing IAPs (Le Maitre et. al., 2000). Landowners 

such as those in the Cape Agulhas are also involved in clearing programmes. The 

effectiveness of clearing programmes depends on knowledge about the spatial distribution of 

IAPs. This requires routine monitoring since the spatial distribution of IAPs often rapidly 
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increases over a year in some locations. National surveys of the spatial distribution have been 

undertaken, e.g. Southern African Plant Invaders Atlas (Henderson, 1998, Versfeld et al., 

1998), National Invasive Alien Plant Survey (Kotzé et al., 2010). However, such surveys 

undertaken after a lengthy period e.g. 10 years, do not provide information necessary for 

implementing effective clearing on an annual basis. The availability of remote sensing data 

offers the opportunity to monitor the changes in the spatial distribution of IAPs on an annual 

basis and thus assist in identifying areas to be targeted for routine clearing. 

 

Data from Landsat 8 OLI (LT8), which has a spatial resolution of 30 m and a 16-day revisit 

time, and Sentinel 2 MSI (S2), with the spatial resolution of 10 to 20 m and a 5-days revisit 

time, offer an opportunity to establish the spatial distribution of IAPs at time intervals 

suitable for developing routine clearing programmes. For example, a study by Dube et al. 

(2017a) showed that the spatial distribution of IAPs could be established using Landsat 7 

data. The study presented in this paper, thus, has the objective of evaluating the feasibility of 

determining the spatial distribution of IAPs in the Heuningnes catchment, South Africa both 

using LT8 and S2 satellite data. The study used the datasets from the two satellites in order to 

identify which data source would be more appropriate for accurately mapping the distribution 

of IAPs in the catchment. 

2.2  Materials and methods 

2.2.1 Field data collection 

This study required ground data on the occurrence of IAPs in order to assist in the 

classification and validation of land cover types from satellite images. Therefore, ground data 

were collected during August 2018 that coincided with flowering period of most IAPs in the 

catchment. A plot size of 30 m × 30 m was used to collect GPS locational data on individual 

species within the plot. This was solely informed by other works in literature that have 

compared the two satellite sensors in vegetation mapping or other-related types of works 

(Abdullah et al., 2019, Clark, 2017, Forkuor et al., 2018). Species locations were recorded, 

using the eTrex 10 Garmin GPS with an error margin of 3.65 m (Garmin, 2019). Three 

hundred and sixty-five ground truth points representing different land cover types were 

identified and recorded. The minimum distance between the GPS points was at least 100 

meters to avoid over sampling and adequately capture the species distribution. The observed 
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vegetation classes included cultivated lands, natural shrubs (fynbos), alien shrubs and 

invasive tree species namely Acacia cyclops, A. longifolia, A. saligna, Eucalyptus, Hakea and 

Pines. Figure 2.1 shows typical IAPs co-occurring within the Heuningnes catchment.  

 

Figure 2.1. Typical examples of IAPs co-occurring in the Heuningnes catchment. 

2.2.2 Satellite data acquisition 

The LT8 and S2 satellite datasets with varying spatial and spectral resolution were acquired 

to assess their capabilities in discriminating IAPs (Table 2.1). The LT8 image was obtained 

from the online USGS earth observation database (http:/earthexplorer.usgs.gov). The S2 

images were obtained from the European Space Agency Copernicus hub.  

Table 2.1. Spatial and spectral characteristics of selected Landsat 8 and Sentinel 2 bands. 

Landsat 8 Sentinel 2 

Band 
Spectral 

width (nm) 

Resolution 

(m) 
Band 

Spectral 

width (nm) 

Resolution 

(m) 

Coastal 16 30 Blue 65 10 

Blue 60 30 Green 35 10 

Green 57 30 Red 30 10 

Red 37 30 RE-1 15 20* 

NIR 28 30 RE-2 15 20* 

SWIR 1 85 30 RE-3 20 20* 

SWIR 2 187 30 NIR 115 10    
NIR-narrow 20 20*    

SWIR 1 90 20*    
SWIR 2 180 20* 

*indicates bands that were resampled to 10 m. 
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Three image scenes with minimal cloud cover (T34HCG, T34HDG, and T34HCH) of S2 

Level-1C products, covering the study area were acquired for the 24th of August 2018. The 

LT8 scene (Path 174/Row 84) that fitted the entire study area and with minimal cloud cover 

was obtained for 18 July 2018. The selected images for both satellites had a cloud cover of 

less than 2%. The preferences of cloud free images resulted in a five-week difference 

between images obtained from the two satellites, in which it was assumed that no major land 

cover changes occurred within this period.  

2.2.3 Image processing and classification 

Figure 2.2 summarizes the process taken to classify the satellite images. The atmospheric 

correction for both LT8 and S2 images was done using the Dark Object Subtraction 1 

(DOS1) (Chavez 1988). The S2 images contained radiometric and geometric corrections 

which include orthorectification and spatial registration (ESA, 2015). Further, images from 

both S2 and LT8 were then re-projected to the Universal Transverse Mercator (UTM) 34 

South based on the World Geodetic System (WGS) 84 Spheroid. In S2, the 20 m vegetation 

red edge bands (5, 6, 7 and 8a) were resampled using the nearest neighbour technique (Baboo 

and Devi, 2010) to match the 10 m spatial resolution of the visible (VIS) spectrum bands 

(band 2 to 4) and the Near Infrared (NIR) band 8. The image scenes were further mosaicked 

to form a single image scene covering the entire catchment. The mean mosaicking operation 

was applied where images overlapped. It was assumed that since the image scenes were taken 

on the same day, the averaging of the mean would have a minimal to no difference. For the 

LT8 data, only bands 1 to 7, which constitute the Coastal, Visible and Near Infrared regions 

were used. Image band composites were generated using the common geographic information 

systems tools. The study area was then extracted from the mosaicked and layer stacked image 

scenes prior to the classification of IAPs.  
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Figure 2.2. Flow chart showing process taken to classify Landsat 8 and Sentinel 2. 

The surveyed ground truth points were overlaid on the composite image to create training 

samples and signature files for image classification. The image classification process made 

use of raw spectral bands to identify different land cover classes in order to discriminate IAPs 

from other land cover types. The supervised maximum likelihood classification was used 

(Sisodia, Tiwari and Kumar, 2014). The following metrics were used to assess the accuracy 

of image classification; overall accuracy, user and producer accuracy, errors of commission 

and the errors of omission (Coluzzi et al., 2018). The allocation of agreements and 
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disagreements were determined following Pontius and Millones (2011). The McNemar’s test 

was performed to determine if there were any statistical differences between the two 

classified images. However, the class areas detected were not reflective of the true estimated 

size based on the actual acquired accuracies because each land cover type is subjected to 

accuracy errors. Therefore, the areal extent was further analysed by considering accuracies 

and errors of each class using the user’s accuracy to ascertain the reliability of the model. It is 

recommended that estimation of the areas invaded should be quantified based on the 

reference data as it provides the best assessment of ground conditions (Olofsson et al., 2014). 

The areas covered by IAPs were thus estimated from the classified images. The areal extents 

of IAPs were assessed by considering accuracies and errors of each class using the user’s 

accuracy to assess the reliability of classification results. The correlation analysis of the areas 

covered by different land cover types estimated from S2 and LT8 was undertaken. 

2.3 Results 

2.3.1 Comparison of satellite-derived IAPs distribution at catchment scale  

A visual comparison of classification done from the S2 and LT8 images showed similar 

spatial distribution of IAPs within the catchment (Figure 2.3). IAPs occurred mostly on the 

hillslopes and riparian zones. As expected, the occurrence of IAPs was limited in areas 

dominated by crop cultivation, such as the northern part of the catchment. Landowners are 

likely to clear any woody plant emerging in cropped lands. The IAPs were widespread on the 

hillslopes of the Koue Mountains, on the north-western part, and Bredasdorp Mountains on 

the central part. The distribution of areas affected by the IAPs tended to be widespread and 

patchy, particularly on the southern part on LT8 when compared to the S2 mapping results.  
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Figure 2.3. Landsat 8 (a) and Sentinel 2 (b) classified images showing discrimination of IAPs from other land cover classes. 
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2.3.2 Classification accuracy assessments  

Table 2.2and Table 2.3 show the accuracy metrics for the classified images of Landsat 8 and 

Sentinel 2. The classification of LT8 image (Table 2.2) had an overall accuracy of 63% 

whereas 71% was observed for the S2 image (Table 2.3). For IAPs, the S2 classification 

obtained better user’s accuracy (UA) (67%) and producer’s accuracy (PA) (90%), while these 

accuracy metrics were 56% and 65%, respectively for the LT8 image. The natural vegetation 

class was mapped, with a similar UA of 58% for both S2 and LT8. However, the PA for the 

natural vegetation were 83% for S2 and 41% for LT8.  

When considering the accuracy differences in class detection within the same satellite, the 

LT8 similarly represented IAPs and the natural vegetation with a negligible difference in UA 

(1.27%), but with better PA than natural vegetation due to high omission error. Using the S2, 

the UA and PA for IAPs were both greater than that of the natural vegetation, with 

differences of 9.58% and 6.91%, respectively. Overall, the results showed that the S2 

performed better than the LT8, when comparing the capability of detecting and mapping both 

IAPs and natural vegetation.  

The allocation of agreements for the IAPs were higher than the allocation disagreement 

measures (i.e. commission and omission) for both the S2 and LT8 classified images (Figure 

2.4 (a) and (b)). However, the allocation of agreements for the S2 (Figure 4(b)) were 

generally higher when compared to those of the LT8 (Figure 2.4 (a)), for all the land cover 

types. Overall, the classification of the S2 image had lower disagreements than that of the 

LT8, across the land cover types. Classification of LT8 had an overall disagreement of 37%, 

while this was 29% for the S2. The omission for the natural vegetation mapped from the LT8 

was very high, at 14% when compared to the 2% for the S2. This could explain the low PA 

for the natural vegetation in the LT8 image classification results. The classification of the 

LT8 had a greater quantity and allocation disagreement (19%) when compared to that of the 

S2 (15%). The results showed that the S2 was slightly better than the LT8, at detecting and 

discriminating the IAPs. However, the McNemar’s statistical test results showed that the 

performance between the two sensors was not significantly different (p-value = 0.5254). 
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Table 2.2. Error matrix results for Landsat 8 OLI image classification. 

Table 2.3. Error matrix results for Sentinel 2 image classification. 

L8 IAPs Built up Water Cultivation Natural vegetation Bare surfaces Burnt areas Total UA (%) 

IAPs 31 8 0 1 13 2 0 55 56 

Built up 0 21 0 1 4 5 0 31 68 

Water 5 4 31 2 6 7 0 55 56 

Cultivation 2 1 1 51 11 0 0 66 77 

Natural vegetation 6 5 0 5 34 8 1 59 58 

Bare surfaces 4 7 0 4 5 44 0 64 69 

Burnt areas 0 3 0 0 10 2 14 29 48 

Total 48 49 32 64 83 68 15 359   

PA (%) 65 43 97 80 41 65 93     

Overall accuracy (%) 63 

S2 IAPs Built up Water Cultivation Natural vegetation Bare surfaces Burnt areas Total UA (%) 

IAPs 37 11 0 2 1 4 0 55 67 

Built up 1 26 0 0 0 5 0 32 81 

Water 2 7 35 1 1 5 0 51 69 

Cultivation 1 9 0 56 1 4 0 71 79 

Natural vegetation 0 5 0 1 30 15 1 52 58 

Bare surfaces 0 4 1 8 1 55 0 69 80 

Burnt areas 0 1 0 0 2 10 16 29 55 

Total 41 63 36 68 36 98 17 359   

PA (%) 90 41 97 82 83 56 94     

Overall accuracy (%) 71 
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Figure 2.4. Allocation of agreements and disagreements for (a) Landsat 8 and (b) Sentinel 2. 
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2.3.3 Estimation of the spatial coverage of IAPs as detected by LT8 and S2 

The area covered by the IAPs based on the classification of the LT8 images was 

approximately 22% of the catchment area (~31424 hectares), while the estimated based on 

the S2 was 13% (~17945 hectares) Table 2.4.  It is further shown that the accurately detected 

area for IAPs was approximately 17 712 hectares (13%) and 12 072 hectares (9%) by the LT8 

and S2, respectively. LT8 showed a major difference between the total detected and the 

accurately detected area, while S2 still retained the 9% cover for the IAPs. It can also further 

be observed that the area occupied by the IAPs as derived from the LT8 was greatly 

overestimated when compared to that of the S2. However, the correlation test between the 

derived areas generated from the two satellites showed a strong relationship between the 

detected (0.86), accurately detected (0.87) and the undetected (0.91) areas. The opposite was 

observed for the overestimated areas with a very weak agreement (0.26) between the 

estimated areas for the two satellites. Both satellite images showed an overestimation in 

different classes. In total, LT8 obtained a higher overestimation percentage compared to S2. 

Table 2.4. Areal estimates of land cover types for Landsat 8 and Sentinel 2 based on 

classification results in hectares and percentages. 

 

  

Area (hectares) 

Detected 
Accurately 

Detected 
Not Detected Overestimation 

LT8 S2 LT8 S2 LT8 S2 LT8 S2 

IAPs 31424 17945 17712 12072 
1371

2 
5873 11129 1751 

Built up 5703 9867 3863 8017 1840 1850 3259 5795 

Water 1534 1216 865 835 669 382 48 34 

Cultivation 66197 76367 51152 60233 
1504

5 
16134 13446 13476 

Natural 

vegetation 
70503 49191 40629 28379 

2987

4 
20812 41622 8198 

Bare surfaces 13301 37810 9144 30138 4156 7672 4694 16590 

Burnt areas 4898 1169 2365 645 2534 524 327 69 

Total 193561 193565 125730 140319 
6783

1 
53245 74526 45913 

IAPs Area (%) 16 9 14 9 20 11 15 4 

Correlation 0.86 0.87 0.91 0.26 

Accurately Detected (user’s accuracy), Not Detected (omission error), Overestimated 

(commission error) 
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2.4 Discussion 

The main aim of this chapter was to detect and map the spatial distribution of IAPs, using the 

LT8 and S2 multispectral remote sensors in the Heuningnes catchment, the Western Cape, 

South Africa. The accurate detection of the IAPs is important to provide accurate information 

on their occurrence and their spatial distribution for the rehabilitation of the affected areas 

and related-management strategies. 

The results showed that the S2 images provided a better representation of the distribution of 

the IAPs and the other land cover types in comparison to the LT8 images. The observed 

results showing the capability of the S2, in this study are confirmed by other recent studies, 

which have demonstrated its unique ability to outperform the LT8, with better accuracies. 

Thamaga and Dube (2018) also found that S2 performed better in discriminating water 

hyacinth when compared to the LT8.  Rajah et al. (2018) reported that the S2 images were 

appropriate for the mapping invasive species across different seasons.  

The higher spatial and spectral resolutions of the S2 when compared to the LT8, contributes 

to the improved detection of the IAPs.  The higher spatial resolution of the S2 reduced the 

problem of mixed pixels, while the spectral resolution contributed to the better classification 

of the IAPs because of the improved classes’ discrimination (Li et al., 2019). This is also 

evident in this study that used 10 bands for the S2, and 7 bands for the LT8 for the image 

classifications. The S2 has an increased number of four red edge (RE) bands and two near-

infrared (NIR) when compared to the LT8. This increased the ability of the S2 to discriminate 

vegetation (Cho et al., 2012; Shoko and Mutanga, 2017). Consequently, the S2 had an 

improved discrimination of the IAPs and the natural vegetation class when compared to the 

LT8 image. This is evident from the comparison of the overall, user’s and producer’s 

accuracy metrics.  Other studies have also found that the use of the near-infrared (NIR), red 

edge (RE) and shortwave infrared (SWIR 1, SWIR 2) bands improved the discrimination of 

different vegetation types (Astola et al., 2019, Li et al., 2019, Forkuor, 2018, Thamaga and 

Dube, 2018, Dube et al., 2017). 

On the other hand, the LT8 showed more overestimation of the IAPs than the S2 image. The 

high overestimation by the LT8 is evident when analysing the differences in the distribution 

of the IAPs in comparison to the S2 because the commission errors and omission errors were 

general higher for the LT8 than the S2. This can be ascribed to the inability of the sensor to 
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distinguish between the species and the surrounding vegetation, due to the lack of these 

bands. This is evident in this study because the user accuracy for the natural vegetation and 

the IAPs were similar, although negligible. Possibly, the use of the robust algorithms is 

required for the detection and monitoring of the IAPs and the use of the combination of both 

the VIs and spectral bands to improve classification, when using Landsat data series 

(Thamaga and Dube, 2018, Matongera et al., 2017), 

Both the LT8 and S2 had a similar distribution pattern of the invaded areas, thus showing the 

capability of both satellites in detecting the IAPs and other classes, within the catchment 

despite the slight differences in the classification accuracies. The McNemar’s statistical test 

results confirmed that the classification performance between the two sensors was not 

significantly different (p-value = 0.5254). This observation therefore implied that both the S2 

and LT8 can equally be used to map the occurrence of the IAPs, with a reasonable certainty. 

This was also the case for Sánchez-Espinosa and Schröder (2019), were the distribution of 

the LULC was similar between the two satellites. The larger patterns of dense stands of the 

IAPs were similarly detected by both satellite images than the sparse and relatively smaller 

patches to pixel sizes of the respective satellites. The finer spatial resolution of the S2 has 

allowed for the better detection and mapping of the IAPs at locations with relatively small or 

sparse vegetation coverages. The LT8 has a greater limitation over the S2 in adequately 

detecting the smaller patches of the IAPs. However, the two satellite datasets provide time-

scale and spatial complementarity required for ecological monitoring. 

In addition, there was a strong relationship between the estimation of the accurately detected 

areas. But the improved spatial and spectral resolutions in the S2 satellite data has provided 

the opportunity for more accurate detection and quantification of the areas invaded by the 

IAPs (Sánchez-Espinosa and Schröder, 2019). The detection and determination of the spatial 

extent of the IAPs is valuable as it provides the requisite baseline information for mitigating 

and rehabilitating the invaded landscapes (Mutanga, et al., 2018). Mapping the spatial 

distribution of the IAPs is also important for conservation, and the allocation of resources for 

management and planning purposes (Masocha & Skidmore, 2011). The spatial understanding 

of the extent and distribution of the IAPs is important for providing the appropriate 

management strategies (Matongera et al., 2017). The use of the S2 can have a better 

implication for the management of the IAPs at catchment scale, as it has the potential to 

provide more detail and accurate information. This information can help in decision making 
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to inform the clearing and rehabilitation of these IAPs in invaded areas. The freely available 

multispectral data of the S2 can reduce the cost of management practises when determining 

the spatial extent of these IAPs (Rajah et al., 2018, Matongera et al., 2017). 

2.5 Conclusion 

This study assessed the potential use of the Landsat 8 OLI and Sentinel 2 MSI data in 

mapping the IAPs. Both sensors were capable to detect and map areas where alien invasive 

plants were mostly dominant, particularly, within the hillslopes and riparian zones of the 

catchment. However, the Sentinel 2 demonstrated more potential in the overall classification 

of the species. The Landsat 8 was not able to detect small patches of alien invasive plants, 

within the catchment. The unique capability of the Sentinel 2 MSI to discriminate these IAPs 

is attributed to its improved spatial resolution and the presence of the red-edge band, which is 

critical in enhancing the ability to distinguish between different types of vegetation, among 

other bands that include the NIR and SWIR. Overall, the findings of this work can be used 

for more extensive analyses of the occurrence and the environmental impact of invasive 

species and aid in proving the extensive reliability of using the easily accessible and cost-

efficient satellite data, as a surrogate for in-situ measurements in remote areas. Further, these 

results can be used as a baseline information for the IAPs eradication programmes such as 

Working for Water.  
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3. Chapter Three 

Modelling the current and future potential distribution of invasive alien plants (IAPs) in 

the Heuningnes catchment, South Africa under projected climatic scenarios using 

species distribution models 

 

Abstract 

The spread of Invasive Alien Plants (IAPs) into new ecosystems requires accurate, constant 

and near-real time monitoring particularly under the changing climate to ensure ecosystems 

integrity and resilience. In this study, bioclimatic, environmental and Sentinel 2 multispectral 

satellite data were used to map and model areas at risk from IAPs invasions in the 

Heuningnes catchment, South Africa. Four Species Distribution Models (SDMs) namely; 

Boosted Regression Trees (BRT), Maximum Entropy (MaxEnt), Random Forest (RF) and the 

ensemble model were used to map and model the current distribution and future potential 

catchment areas likely to be affected by IAPs. Different climatic scenarios from the 

Community Climate System Model (CCSM4) were considered in modelling the future 

distribution of IAPs within the catchment. These scenarios were for the best-case and worse-

case atmospheric carbon Representative Concentration Pathways (RCP) 2.6 and 8.5 for the 

2050 time step (average for 2041-2060). The BRT predicted the spatial distribution of IAPs 

with an AUC of 0.89, Maxent 0.92 and RF at 0.94. Comparatively, all the models were 

successful in modelling the potential distribution of IAPs in all scenarios. It has been 

established that the predicted distribution of IAPs will expand under the influence of climate 

change in the catchment. Riparian zones, bare areas and natural vegetation, which is rich in 

biodiversity will greatly be affected. The mean diurnal range (Bio2), the warmest quarter 

maximum temperature (Bio5) and the warmest quarter precipitation (Bio18) were most 

important bioclimatic variables in modelling the spatial distribution IAPs in the catchment. 

The study demonstrated the importance of multi-source data and multiple predictive models 

in mapping and modelling the current potential future IAPs distribution within the 

Heuningnes. Results from this study are valuable and provide the baseline for effective 

management and continued monitoring of the further spread of IAPs within the Heuningnes 

catchment. 
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3.1 Introduction 

Globally, Invasive Alien Plants (IAPs) pose a great threat to biodiversity and species 

extinction following habitat loss (Wilcove et al., 1998). The establishment and success of 

IAPs into new ecosystems is mainly caused by environmental change as a result of 

anthropogenic influences and changes in climate (Buckley and Catford, 2016). It is expected 

that the increase in temperatures will facilitate and accelerate the spread of IAPs while 

reducing the resilience of natural vegetation (Tarabon et al., 2018, Ncube et al., 2020). This is 

likely to increase areas of invasion risk due to massive losses in biodiversity as a result of the 

projected species range shifts or extinctions. This is of great concern for the conservation and 

preservation of native species and water resource management (Haeuser et al., 2017).  

The African continent, with highly variable precipitation and already warmer temperatures, 

makes it most vulnerable to the expected worsening climate change conditions and the 

associated impacts. (IPCC, 2014, Kotir, 2010). It is predicted that the increase in 

temperatures for the African continent will rise by a magnitude of between 3°C and 6°C 

before the end of the century (Serdeczny et al., 2016). Many regions in southern Africa will 

experience sharp increases in temperatures and frequent droughts (IPCC, 2014). The regions 

at high elevation will warm at a faster rate with a greater increase in daily minimum 

temperatures than maximum temperatures on the lower lying counterparts (Bandopadhyay, 

2016, Niang et al., 2014). These changes will likely trigger mass extinctions due to the loss of 

the biological conditions suitable for most species resulting in opportunistic spread of IAPs. 

Therefore, there is a great and urgent need to accurately model and predict the current and 

potential future distributions to empirically prioritise areas for control, mitigation and 

adaptation (Estes et al., 2010).  

Localised modelling of IAPs provides critical insights into the processes driving vegetation 

dynamics, community structure and the general functioning of ecosystems, including 

anticipated impacts (Muniz et al., 2016). It has been shown that the use of Species 

Distribution Models (SDMs) to predict habitat suitability for alien and native species under 

provides useful information on the response of species to climate change. For instance, both 

(de la Hoz et al., 2019) and (Hoveka et al., 2016) observed that some plant species may 

decrease in extent while others increase due to climate change. Vorsino et al (2014) also 

showed that the vulnerability of ecosystems to climate change and IAPs can be successfully 
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determined using SDMs. These studies have used complex machine learning models such as 

the Maximum entropy (MaxEnt), Boosted Regression Trees (BRT) and Random Forest (RF) 

coupled with ‘presence-only’ data because of their robustness, the ability to produce good 

predictive performances, versatility to handle autocorrelations and complex interactions 

(Crase et al., 2011; Fourcade et al., 2014; Gils et al., 2012). Lately, the ensemble modelling 

approach has become relatively popular because of its ability to combine multiple models’ 

predictive strengths, thus increasing the predictive modelling abilities (Mudereri et al., 2020a, 

Ng et al., 2018). Further, the ensemble of RF and MaxEnt were preferred for mapping the 

distribution of alien Chromolaena odorata and Mikania micrantha to reduce spatial 

uncertainties of the predictions due to their reported performance (Nath et al., 2019). While it 

is common to use only bioclimatic predictors, incorporating remotely sensed data and 

environmental variables such as topography, land cover and other geographical data generally 

improves the predictive ability of models (West et al., 2017, Truong et al., 2017, Vorsino et 

al., 2014). Therefore, coupling the recently improved Sentinel 2 multispectral data, with 

strategically placed bands with other environmental variables has the potential to increase 

species discrimination and improve the performance of SDMs. Several studies have already 

demonstrated that adding remotely sensed data from Sentinel 2 improves modelling, 

classification and predictions (Forkuor et al., 2017, Ndlovu et al., 2018, Mudereri et al., 2019, 

Malahlela et al., 2019).  

Therefore, this study aimed to explore the use of multi-source data viz. bioclimatic, 

topographic and Sentinel 2 data as predictor variables in modelling the distribution of IAPs in 

varying climatic scenarios to improve the understanding of the potential impacts at catchment 

scale with MaxEnt, RF, BRT and their respective ensemble model. Additionally, the study 

sort to establish the key climatic factors and their influence on the IAPs distribution under 

current and projected future climatic conditions. Modelling IAPs under different projected 

climate scenarios allows better evaluation and anticipation of the future changes in 

distribution, thus effective management (Tarabon et al., 2018). Also, the information derived 

from SDMs about areas that are susceptible to invasion by IAPs can aid in effective 

management and control. 
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3.2 Materials and methods 

3.2.1 Reference field data 

A total of 244 ‘presence-only’ occurrence data of the IAPs were collected during the period 

between 17th and 19th September 2019. The reference data was collected using a purposive 

sampling approach that targeted areas of dense (>30 trees) IAPs stands identified along the 

roads and accessible site areas. For each IAP stand identified, a handheld Garmin eTrex 

Global Positioning System (GPS) device was used to record the reference of the occurrence 

points at an error margin of ±3 m. The points were collected at the approximate centre of 

each of the dense IAPs stands to eliminate the edge-effect. Each of the sampling unit was of 

approximately 30 m x 30 m dimensions.  

3.2.2 Predictor variables 

3.2.2.1 Sentinel 2 data acquisition and pre-processing 

The Sentinel 2 data, processing level-1C of the 24th of August 2018 was freely downloaded 

from the USGS Earth Explorer platform (http:/earthexplorer.usgs.gov) in three granules 

namely T34HCG, T34HDG and T34HCH. These tiles were mosaicked into a single scene 

that covered the entire study area. Level 1C data from Sentinels are provided as Top of the 

Atmosphere (TOA) reflectance, already orthorectified in cartographic geometry in tiles of 

100 km2, UTM/WGS84 projection. The Sentinel 2 data were converted to level 2A images 

(atmospherically corrected and surface reflectance) using the Sen2Cor processor in SNAPVR 

v6.0 software executed using the default parameter settings. The image was acquired on the 

day of low cloud cover (<5%) and alignment with the period when the field reference data 

was collected and the availability from the sensor’s archive. The bands that were considered 

in modelling the distribution of IAPs are indicated in Table 3.1. In addition, these bands were 

used to classify major land cover classes, which included IAPs, natural vegetation, cultivated 

lands, water, build up and bare surfaces with an overall accuracy of 71%. The data were 

resampled to 30 m spatial resolution together with the bioclimatic and environmental 

variables. This was to provide a fine spatial resolution of the potential of distribution of IAPs, 

following Ndlovu et al. (2018).  

Table 3.1. Spectral and spatial characteristics of the Sentinel 2 data. The predictors marked in 

bold were used in fitting the three SDMs. 
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Band 

number 
Description 

Central 

wavelength 

(nm) 

Width Resolution 
Potential 

application 

B1 Coastal aerosol 443 20 60 Atmosphere 

B2 Blue 490 65 10 Atmosphere 

B3 Green 560 35 10 Vegetation 

B4 Red 665 30 10 Vegetation 

B5 Red-edge (RE1) 705 15 20 Vegetation 

B6 Red-edge (RE2) 740 15 20 Vegetation 

B7 Red-edge (RE3) 783 20 20 Vegetation 

B8 
Near-infrared 

(NIR1) 
842 115 10 Vegetation 

B8a 
Narrow Near-

infrared (NIR2) 
865 20 20 Vegetation 

B9 Water vapour 945 20 60 Atmosphere 

B10 Cirrus 1375 30 60 Atmosphere 

B11 
Short wave 

infrared 
1610 90 20 Vegetation 

B12 
Short wave 

infrared 
2190 180 20 Vegetation 

4.2.2.2 Topographic data 

The details of topographic variables considered in predicting the distribution of IAPs are 

presented in Table 3.2. A 30 m spatial resolution Digital Elevation Model (DEM: 

https://dwtkns.com/srtm30m/) was used as the elevation variable and also to generate the 

aspect, slope, Topographic Wetness Index (TWI) and Topographic Position Index (TPI). 

Aspect and slope were generated from the DEM using Quantum GIS through the terrain 

analysis plugin (QGIS Development Team 2019). Terrain variables influence soil type, soil 

moisture, sun angle, precipitation hence the occurrence of vegetation components (Perring, 

1956, Perring, 1959, Bennie et al., 2006). The soil type data was retrieved from ISRIC data 

hub (http://data.isric.org/) and used because small spatial scales can be greatly influenced by 

the land cover (Luoto et al., 2007). TWI is an index for soil moisture which affects vegetation 

composition (Gábor et al., 2019). TWI has also been successfully used for studying 

vegetation patterns and predicting the spatial distribution of plants (Sørensen et al., 2006). 

The TWI was derived based on equation 1:      

     (1) 
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where a is the local upslope area and tanβ is the slope (Beven and Kirkby, 1979)  

TPI is generally used to categorise landform types in an area and describes the biophysical 

processes occurring on landscapes, which can be key in predicting habitat suitability and 

species distribution (Weiss, 2001, Seif, 2014) It is defined as the difference between the 

elevation of a cell in a DEM and a mean elevation of neighbouring cells (Weiss, 2001). 

Equation 2 shows the calculation of TPI. 

     (2) 

where  is the elevation of the DEM point being evaluated,  is the elevation of the pixel 

grid and  is the total sum of the surrounding points (Mokarram et al., 2015). 

4.2.2.3 Bioclimatic data 

Bioclimatic data have been widely used in species distribution models to determine and 

explain factors driving species distributions (Gallardo et al., 2017, Booth, 2018, Ndlovu et al., 

2018). The bioclimatic data is derived from monthly rainfall and temperatures and can 

explain the potential species distributions by providing biologically meaningful variables 

which convey annual and seasonal mean climate conditions as well as intra-year seasonality 

(O’Donnell and Ignizio, 2012, Hijmans et al., 2005). A total number of 19 bioclimatic 

variables (Table 3.2) representing each scenario for the current (1950–2000) and future 

climate (2050) were freely obtained from WorldClim (http://www.worldclim.org/) at 30 arc 

seconds spatial resolution (~1 km x 1 km). The obtained future climate scenarios were based 

on the fourth Community Climate System Model (CCSM4) projections commonly referred to 

by other studies (Gent et al., 2011), Mohammadi et al., 2019). Only two of the four 

atmospheric carbon Representative Concentration Pathways (RCPs) namely RCP 2.6 

(minimum emission) and RCP 8.5 (maximum emission) proposed by the Intergovernmental 

Panel on Climate Change (IPCC) were selected to show the possible minimum and maximum 

impacts respectively. The RCP scenarios represent the minimum and maximum radioactive 

forces of 2.6 and 8.5 watts/m2 for the CO2 concentrations by 2050 (IPCC, 2014) 

It is predicted that climate change will result in changes in temperatures and precipitation 

across the globe. The future bioclimatic variables based on the best-case and worse-case 
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RCPs for temperature and precipitation were used to determine how the projected climate 

changes will vary to the current climate. Additionally, the change in the most important 

bioclimatic variables was also calculated. This was achieved by subtracting the projected 

climatic conditions of the variables from the current climatic conditions (Ncube et al., 2020). 

The results showed whether there is an increase or decrease in changes in the projected 

climate to determine how the variations affect the predicted distribution. 

Table 3.2. The bioclimatic predictor variables used for modelling species distribution. The 

predictor variables in bold were selected for final modelling after removing highly correlated 

variables. 

variable 

Code 

Environmental variable description Unit 

Bio1 Annual mean temperature 0C 

Bio2 Mean diurnal range 0C 

Bio3 Iso-thermality  

Bio4 Temperature seasonality  

Bio5 Maximum temperature of the warmest month 0C 

Bio6 Minimum temperature of the coldest month 0C 

Bio7 Temperature annual range 0C 

Bio8 Mean temperature of wettest quarter 0C 

Bio9 Mean temperature of driest quarter 0C 

Bio10 Mean temperature of warmest quarter 0C 

Bio11 Mean temperature of coldest quarter 0C 

Bio12 Annual precipitation Mm 

Bio13 Precipitation of wettest month Mm 

Bio14 Precipitation of driest month Mm 

Bio15 Precipitation seasonality  

Bio16 Precipitation of wettest quarter Mm 

Bio17 Precipitation of driest quarter Mm 

Bio18 Precipitation of warmest quarter Mm 

Bio19 Precipitation of coldest quarter Mm 

Aspect Direction of the slope - 

Elevation Altitude above sea level M 

Slope Angle of inclination degrees 

TPI Topographic index - 

TWI Moisture index - 

Land cover Thematic land cover classes - 

Soil types soil characteristics - 
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3.2.3 Collinearity test for the bioclimatic variables 

The problem associated with multicollinearity between predictor variables in SDMs is the 

inflation of coefficient standard errors, making some significant variables insignificant  often 

resulting in model overfitting (Akinwande et al., 2015). The coefficient of Pearson’s 

correlation and the Variance Inflation Factor (VIF) were used to eliminate highly correlated 

variables among the predictor variables (Akinwande et al., 2015). The collinearity threshold 

was set at | r | > 0.7 (Dormann et al., 2013, Makori et al., 2017). The VIF measures the 

degree in which multicollinearity has increased the slope estimate variance based on squaring 

multiple correlation coefficient derived from regressing predictor variables against each other 

(Plant, 2012). The ‘usdm’ package in R-software was used for eliminating variables with 

high VIF and thus modelling the distribution (Naimi et al., 2014; R Core Team, 2019). The 

threshold was set at th = 0.7 where values greater than the threshold are considered to be 

highly correlated within a model (Kyalo et al. 2018; Dormann et al., 2013). Therefore, all 

variables identified as having high correlation based on the set thresholds were removed for 

model fitting.  

A total number of 12 variables selected for the current and future prediction. Only the land 

cover derived from Sentinel 2 satellite bands was eligible for model parameterization 

excluding the raw spectral bands. All data sets used were projected to WGS84 coordinate 

system and clipped to the area of the catchment using QGIS version 3.8.2. The selected 

variables used for final modelling were then resampled to 30 m pixel size. Several studies 

have shown that the SDMs improved model prediction at 30 m pixel (Manzoor et al., 2018; 

Ross et al., 2015). 

3.2.4 Predicting the distribution of IAPs in Heuningnes catchment 

A total number of 1 000 pseudo-absence points created automatically within the SDM 

package in R were used against the collected ‘presence-only’ occurrence. The use of 

presence-only models with pseudo-absence has been widely been applied considering the 

applicability of obtaining ‘absence data’ (Downie et al., 2013). Only three modelling 

techniques namely; the BRT, RF and MaxEnt were used from the 15 modelling techniques 

available within the ‘sdm’ package. The BRT model uses a maximum likelihood approach to 

merge multiple models to improve on a single regression tree (Elith et al., Hastie 2008). In 

the RF model, prediction is produced by selecting the class with the highest random 
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combinations in a multiple decision tree (Bangira et al., 2019). The MaxEnt model predicts 

the species distribution by finding the maximum entropy of the spatial distribution i.e largest 

spread (Merow et al., 2013). Table 3.3 summarizes the relevant functions and packages used 

in predicting IAPs distribution for the three models. These models produce relatively high 

accurate results and complex predictions (Abdel-Rahman et al., 2013; Barakat et al., 2018; 

Makaya et al., 2019; Mudereri et al., 2019). 

Table 3.3. R packages and functions for the three models used in predicting IAPs distribution. 

Model algorithm 
‘sdm’  

syntax 
Package Reference 

Boosted regression trees ‘brt’ ‘gbm’ (Elith et al., 2008) 

Random forest ‘rf’ ‘randomForest’ (Liaw et al., 2002) 

MaxEnt ‘maxent’ ‘dismo’ (Phillips et al., 2006) 

Ensemble ‘ensemble’ ‘sdm’ (Naimi and Araújo, 2016) 

 

An ensemble approach was further used to harmonize the variations produced by the different 

model predictions. Ensemble models fit and maximize the prediction accuracy of different 

SDM models by combining the highest performance of all the models while minimizing their 

weaknesses (Araújo et al., 2019). The TSS is a reliable measure to combine different models 

compared to AUC which is biased and highly sensitive to the proportional extent of the 

observations (Kyalo et al., 2018). Therefore, the weighted average TSS approach was used to 

produce the ensemble model since it improves the predictive ability of the model when 

compared to the use of the mean or median (Jafarian et al., 2019; Naimi and Araújo, 2016). 

The threshold was set to TSS = 0.7 for the models to qualify for inclusion in the ensemble. 

The variable importance values to determine the predictor variables that were most relevant 

in predicting the distribution of IAPs was computed, using the randomization method which 

computes the Pearson’s correlation between references predictions and the shuffled variable 

(Benesty et al., 2009).  

A geographic information system was used to further process the outputs of all three models 

with their respective ensembles for analysis. The three predictive models and their respective 

ensemble models were used to calculate the suitable areas for the occurrence of IAPs in the 

form of a binary raster image i.e. < 0.3 unsuitable and ≥ 0.3 suitable. The total number of 

pixels in each category was then used to estimate the suitability or unsuitability coverage of 

the catchment.  
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3.2.5 Model evaluation 

Measuring the performance of the model is an important aspect to test the reliability of the 

outcomes (Fois et al., 2018). The accuracy of the models was tested, using a 10-fold cross-

subsampling approach (Wells and Tonkyn, 2018). In this study, the performance of the 

models was measured using the Area Under Curve (AUC) of the Receiver Operating Curve 

(ROC) of and True Skill Statistics (TSS) (Allouche et al., 2006). The AUC values range 

between 0 and 1, where inaccurate models have values closer to 0 and perfect models are 

closer to 1 with 0.5 being no better than random predictions. Generally, models with an AUC 

value ≥ 0.7 demonstrate high predictive abilities (Mohammadi et al., 2019). The TSS is 

defined as the product of sensitivity and specificity that explains commission and omission 

errors performed by a model (Kyalo et al., 2011). Sensitivity is defined as the proportion of 

true positives and specificity is the proportion of false positives  (Grenouillet et al., 2011). 

The TSS values range between −1 to +1, where values closer to +1 demonstrates a perfect 

agreement between the observations and predictions while TSS ≤ 0 indicates no agreement 

and thus poor modelling performance (Allouche et al., 2006, Somodi et al., 2017).   

3.2.6 Process taken to model the potential distribution of IAPs  

Figure 3.1 shows the four stages that were considered in modelling the distribution of IAPs 

and the respective processes undertaken at each modelling stage. The stages included input 

data which involved data collection and consideration of predictor variables to be included. 

This was followed by the predictor variables preparation for modelling, using the three 

selected models and their ensemble. Finally, the important bioclimatic variables were 

identified and the outputs of the potentially suitable habitats ensemble were obtained for the 

three climate scenarios. The mapping of risk areas was produced to identify ecosystems that 

are likely to be affected by the predicted distribution in order to consider the potential 

impacts.  
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Figure 3.1. Flow chart showing processes undertaken to determine current and future suitable 

habitats for IAPs. 

3.3 Results 

3.3.1 Land use and land cover across the catchment using Sentinel 2 data 

Figure 2.3 (b) shows the distribution of IAPs and other land use and land cover classes across 

the catchment in Sentinel 2 data. The majority of the land use within the catchment is 

cultivation, especially within the northern parts. IAPs are predominantly within the central 

belt, whereas natural vegetation occupies the southern parts of the catchment, with some bare 

surface areas, with absence of vegetation. Also, among the different quaternary catchments, 

G50B seems to be the most invaded by IAPs compared other quaternary catchments. G50D 

and G50E are greatly characterised by cultivated lands with some extent of invaded areas. 

G50C is characterised by occurrence of wetlands of varying sizes. 

3.3.2 Changes in projected bioclimatic conditions 

The calculated changes show that the annual mean temperatures will increase for both RCP 

2.6 and RCP 8.5 (Table 3.4). However, the CCMS4 model shows that RCP 2.6 has a greater 
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magnitude of increment in annual mean temperature compared to RCP 8.5 projection. The 

annual precipitation also shows a general decrease in both future RCPs, with an increase in 

mean for RCP 8.5. Therefore, the catchment is expected to receive lower rainfall and 

increased temperatures. 

Table 3.4. Projected changes in bioclimatic variables for 2050 in Heuningnes catchment. 

Positive values show an increase while negative values show a decrease by a specified 

magnitude. 

Parameter 

  
Changes 

Current RCP 2.6 RCP 8.5 

Annual Mean Temperature (°C) Min 14.55 1.97 1.55 

Mean 16.83 2.25 1.75 

Max 17.67 2.34 1.84 

Annual Precipitation (mm) Min 427 -28.00 -18.00 

Mean 487 -7.00 9.00 

Max 619 -26.00 -4.00 

3.3.3 Model performances for predicted species distribution under current climatic 

Using the ROC, the patterns of the smoothened graphs of the ten replicated ROCs showed 

that RF and MaxEnt were relatively consistent in their prediction amongst the model 

replicates compared to BRT. The ROCs (Figure 3.2) show that RF (AUC = 0.93 and TSS = 

0.82) yielded the highest accuracy metrics for both AUC and TSS followed by MaxEnt with 

BRT obtaining the least accuracies. Further, all models show high values of the specificity 

and sensitivity as demonstrated by the high values of TSS produced by both RF and Maxent 

(TSS > 0.8). All reported accuracies are based on current bioclimatic climatic variables. 

Accuracy was not measured for 2050 variables due to lack of presence data for the future 

timestamp period.  
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Figure 3.2. Results of the ROC for (a) RF (b) MaxEnt and (c) BRT. The red curve represents 

the smoothened mean AUC using the training data, while the blue curve depicts the 

smoothened mean AUC using the test data from the 10-fold cross-validation sampling. 

3.3.4 SDMs selected important IAPs distribution predictors  

Land cover was the most important variable in predicting current species distribution across 

all models (Figure 3.3). Soil type was the second important variable in both RF and Maxent, 

with aspect as the third most important variable. Sentinel 2’s Band 8 (NIR centred at 842 nm) 

was among the least important variables in all three models. 

 

Figure 3.3. Variable of importance measure for the prediction of IAPs under the current 

climatic scenario. 

The important variables for future climate were similar for RF and BRT except for aspect and 

Bio18 with Maxent showing different variable importance (Figure 3.4). The land cover was 

the most important non-climatic variable across all the models while TPI was the least 

important variable. Bio18, Bio2 were the most important bioclimatic variables for RF and 

BRT, while for MaxEnt, it was Bio2 and Bio5. Notably, the variable of importance for the 

Maxent model was importantly dominated by bioclimatic factors. The variation among the 

variable importance predictors between the models can be accounted for by the unique 

statistical approaches of each model. Also, the comparison of these variables across the 
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models shows the influence of climate in predicting species distributions and land cover as a 

fundamental driver of habitat suitability.  

 

Figure 3.4. Variable of importance measure for the prediction of IAPs under the future 

climatic scenario. 

3.3.5 Prediction of potential distribution 

The predicted distributions vary across the models but show a similar pattern with suitable 

areas greatly occurring in the central regions of the catchment (Figure 3.5). However, BRT 

predictions show very distinct spatial differences at the southern part of the catchment when 

compared to both the MaxEnt and RF in all three climatic scenarios. Maxent shows the 

expansion of IAPs in RCP8.5 while showing a contraction in the RCP2.6 relative to the 

current prediction. This contraction is also observed in both future climate scenarios in RF. 

However, the future suitable areas for the occurrence of IAPs will expand in both the RCP2.6 

and RCP8.5. This expansion of IAPs is shown to be towards southeast part of the catchment, 

along the riparian zones in the G50B sub-catchment, with great intensity. Overall, BRT 

shows clear spatial differences from the predicted suitable areas detected by MaxEnt and RF 

SDM models. 
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Figure 3.5. Predicted suitability maps derived using the three SDMs used and their respective ensemble to predict the potential distribution of 

IAPs. The red areas represent suitable habits and green areas unsuitable areas. 
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3.3.6 Estimated areas for the potential habitat of IAPs in Heuningnes catchment 

Figure 3.6 shows the estimated areas suitable for the occurrence and spread of IAPs. The 

BRT model shows that the estimated areas suitable for IAPs currently is 14.32% and this will 

increase by a negligible 0.01% for RCP 2.6 and decrease to 14.28% in RCP 8.5. For MaxEnt, 

it is expected that the suitable habitats will decrease to 12.67%, for RCP 2.6 and increase to 

13.21% under RCP 8.5 from the current predicted 13.12%. RF shows a decrease from the 

current 10.64% suitable areas in both RCP 2.6 and RCP 8.5 to 9.97% and 9.63% respectively. 

Nevertheless, RCP 2.6 shows a greater decrease than RCP 8.5. Generally, the percentage of 

the estimated areas vary across all the three individual models. However, the overall 

predictions using an ensemble model show that there will be an increase in suitability areas 

for IAPs in both RCP 2.6 and RCP 8.5 by 1.21% and 0.25%, respectively.  

 

Figure 3.6. Estimated suitable areas (%) for the occurrence of IAPs distribution in 

Heuningnes catchment for current and RCP 2.6 and RCP 8.5 climate scenarios. 
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3.3.7 The potential risk of invasion by IAPs in the Heuningnes catchment 

The results of the predicted IAPs distribution demonstrate the future invasion range and 

potential negative impacts, which could result due to the spread of IAPs (Figure 3.7). It is 

shown that the currently most infested sub-catchments (G50B, G50D and G50E) are most 

vulnerable to further spread of IAPs. The areas adjacent to the Jan Swartskraal and Koue 

rivers will be greatly be affected. These rivers upstream feed lower catchment, and invasion 

could mean reduced streamflow downstreams. The areas adjacent to the major wetlands 

(Voevlie and Soetendalsvlei) showed some extent of suitable areas, which could potentially 

invade the wetlands in future. The areas surrounding the settlements are susceptible to 

invasion. The protected areas likely to be considerably invaded are those with already 

established IAPs, hence these areas do not show great extent of susceptibility.  

 

Figure 3.7. Potential risk area map posed by IAPs in the Heuningnes catchment, using 

ensemble predictions. 

3.4 Discussion 

The continued naturalization and spread of IAPs creates a major concern on how climate 

change will alter and affect the distribution of these species. Climate change is expected to 
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alter the dynamics and ecological niches of many species (Lazo-Cancino et al., 2020). As a 

result, this can even be more detrimental to ecosystem’s provision services with the impacts 

severely affecting both biodiversity and hydrological systems (Otieno et al., 2019). This 

study aimed to investigate how climate change might affect the distribution of IAPs under the 

best-case (RCP2.6) and worse-case (RCP8.5) climate projections by applying the SDM 

approach, using BRT, MaxEnt, RF and the ensemble. It is imperative to explore different 

models to identify the models that can accurately predict the species distribution to develop 

optimized model approaches (Beaumont et al., 2016, Araújo et al., 2019, Warren et al., 

2019). To achieve this, multisource datasets were used to predict the potential suitable areas 

for IAPs at 30 m spatial resolution in Heuningnes catchment, South Africa. 

3.4.1 Predicted and estimated future distribution patterns of IAPs 

The overall predicted distribution showed that IAPs abundance will increase towards planes, 

particularly riparian zones, mostly in sub-catchment G50B where most invasion currently 

occurs. This was also reported by (Kotzé et al., 2010) that Acacias are likely to occur within 

river flood plains. Some parts of the cultivated and natural vegetated areas also show great 

suitability for IAPs These findings are in line with (Gutierres et al., 2011) who found that 

these species can be associated with lowlands, agricultural lands and margins of lakes. 

Furthermore, it was estimated that the suitable potential habitats of IAPs currently cover ~ 

9% of the study area and will increase to ~11%. This increase conveys that the suitable 

habitats have not been fully invaded and such will continue under the influence of the 

changing climate. Notably, it had been pointed that IAPs have not reached equilibrium in 

South Africa (Rouget et al., 2004). Therefore, it is likely that the potential suitable areas for 

IAPs in this study have been underestimated due to sampling effort, predicted suitable areas 

not showing some of the currently invaded areas and the small difference between the 

currently invaded areas and future predicted suitable habitats for 2041 to 2060. This is also 

because the dominant Acacia species are known for rapidly spreading. 

3.4.2 Important predictor variables in predicting the potential distribution of IAPs 

There was a variation in important predictor variables across the models which can be related 

to the predictive power of the models. This observation suggest that the prediction of suitable 

habitats is dependent on the type of model used. Nonetheless, land cover showed to be an 

important predictor variable for IAPs distribution in BRT and RF with climate variables 
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showing dominantly great importance for Maxent. Studies have shown that land cover is an 

important driver of habitat change (Maron et al., 2012, Tylor et al., 2014). In contrast, land 

cover had minor importance in modelling IAPs distribution in a study conducted by (Terzano 

et al., 2018) on a larger scale. Some studies have also shown that climate predictors are most 

important in predicting species distribution were demonstrated in this study as indicated by 

Maxent model (Nath et al., 2019, Terzano et al., 2018). The incorporation of these important 

variables however has been understood to provide realistic predictions for suitable habits 

(Thalmann et al., 2015).The mean diurnal range, maximum temperature of warmest quarter 

and the precipitation of warmest quarter were considered to be climatically the most 

important predictor variables. Even though remote sensing data facilitates the prediction of 

IAPs over inaccessible areas (Pearce and Boyce, 2006), raw spectral bands showed no 

contribution in prediction of suitable habitats for IAPs except the land cover derived from 

these bands. Other studies were able show relatively considerable contributions of remote 

sensing derived such as vegetation indices. Therefore, the use of remotely sensed derived 

variables may provide more insights into species physiochemical properties for improved 

prediction than raw spectral bands.  

3.4.3 Impacts of IAPs under projected current and future climate changes 

The future climate projections suggest that there will be an increase in the annual mean 

temperature for the catchment while there will be an observable decrease in annual 

precipitation. There has been already observable declines in available water resources and 

rainfall patterns due to climate change drought impacts (Orimoloye et al., 2019). The 

dominant and rapidly spreading Acacia species (A. saligna, A. longifolia and A. cyclops) 

found in the catchment can adapt in these conditions since they show high drought tolerance 

(Traore, 2012). Their increasing spread in riparian zones will largely contribute to the 

reduced streamflows (Prinsloo and Scott, 1999). It has been found that these species are most 

likely dependent on surface water and thus may be a great threat when expanding to these 

areas (Sher et al., 2010). It was also found that the water use of A. longifolia occurring in 

riparian zones in lowlying areas than in hillslopes was dependent on soil moisture and used 

more water (Mkunyana et al., 2018). Protected areas, natural vegetation, particular low 

shrubland (fynbos) is potentially at risk of being invaded causing in biodiversity loss due to 

increased competition for available ecosystem resources. These areas are also currently 
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invaded by IAPs to some extent. Therefore, the predicted future expansion of IAPs will 

exacerbate the negative impacts to the rivers, wetlands and biodiversity of the catchment.  

3.4.4 Model performances in predicting potential distribution of IAPs  

The predictions of the potential distribution of IAPs were better than random (AUC and TSS 

> 0.5) for all three individual models. It was noted that RF produced the highest accuracy 

followed by Maxent and BRT with marginal differences. Similar studies by (Guan et al., 

2020) and (Stohlgren et al., 2010) showed the same pattern with the latter models predicting 

IAPs habitat suitability at relatively high accuracy across the models although based on 

different algorithms (Mohammadi et al., 2019; (Pearce and Boyce, 2006, Downie et al., 

2013). The robustness of these models was further evident in the spatial distribution of 

predicted suitable habitats. All three candidate models predicted a similar distribution pattern 

across all the climatic scenarios in major suitable areas although spatial differences can also 

be observed. This could be attributed to the predictive power of the algorithm approaches 

used by each model (Araujo et al., 2019; Hao et al. 2019). For example, both MaxEnt and RF 

models, which performed better than BRT did not predict suitable habitats along the southern 

catchment boundary in all three climate scenarios. This contradicts with the land cover 

results, which show presence of IAPs occurrence close to build up areas in the southernmost 

part of catchment. This can possibly suggest reduced ability to deal with sampling bias 

towards areas where sampling is most accessible. Even though MaxEnt can handle sparse and 

irregular occurrence data, it assumes that the area of interest is systematically sampled 

(Kramer-Schadt et al., 2013).  

Several studies showed that there is no convincing evidence to suggest that there is an overall 

one model which is better than all (Guo et al., 2019, Hao et al., 2019, Mudereri et al., 2020b). 

Therefore, the use of the ensemble analysis becomes paramount in all predictive modelling 

especially for management (Araujo et al., 2019). As such, the ensemble models was 

successfully used to produce predictions by including only models with a TSS > 0.7 as 

opposed to AUC due to associated criticisms to ensure only strong models are included 

(Allouche et al., 2006). The advantage of ensembles is to minimize the spatial uncertainties 

of the models for each climate scenario to enabled reliable spatial estimates (Downie et al., 

2013, Guan et al., 2020, Pearce and Boyce, 2006). 
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3.5 Conclusion 

Climate change effects characterized by reduced rainfall and increased temperatures will 

facilitate the distribution of IAPs and increase their abundance in the catchment. Riparian 

zones, lowlying areas and natural shrublands are most vulnerable areas and must be 

prioritised in management efforts to reduce the impacts on biodiversity loss and water losses 

through increased evapotranspiration. These results have also demonstrated the combination 

of multiple strong predictive models to reduce spatial uncertainties for realistic suitable 

habitat predictions for effective management practices. The estimated areas suitable for IAPs 

in this study are better than random but may have been underestimated. Further investigation 

is required by considering species-specific potential distribution and more ecologically 

meaningful remotely sensed derived variables as opposed to raw spectral bands. Nonetheless, 

the results provide useful insights in effective management of IAPs and may be used for 

prioritized monitoring. 
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4. Chapter Four  

Spatial modelling of invasive alien plants species distribution in water-limited 

environments using remotely sensed data and climatic scenarios: Synthesis 

4.1 Findings summary 

Firstly, the use of Landsat 8 and Sentinel 2 were assessed in detecting, discriminating and 

mapping IAPs to provide reliable information on the occurrence of IAPs. In this study, the 

results have successfully demonstrated the capability of both Landsat 8 and Sentinel 2 data in 

discriminating and predicting the distribution of IAPs. The results have shown that both 

satellite data sets were able to adequately detect and discriminate IAPs from other land cover 

types. The McNemar’s test showed that there was no significant statistical difference in 

discrimination of IAPs from other land cover types between the two sensors (p-value = 0.53). 

However, Sentinel 2 yielded better overall accuracy results, with improved user’s and 

producer’s accuracy in detecting IAPs compared to Landsat 8. This can be attributed to the 

high spatial and spectral resolution of Sentinel 2 when compared to Landsat 8 data.  The 

coarse spatial resolution of Landsat 8 showed great overestimation for IAPs as compared to 

Sentinel 2, which can result in reduced accuracy in estimation of areas invaded by IAPs in the 

catchment. Overall, the results have demonstrated the improved capability of Sentinel 2 in 

detecting IAPs at catchment scale with less overestimation, thus more accurate for 

quantifying their abundance.  

Secondly, remote sensing data showed a great potential in predicting the future spatial 

distribution of IAPs in the catchment. As a result, it has been observed that land cover 

derived from Sentinel 2 was greatly important in predicting IAPs current and future spatial 

distribution than raw spectral bands. This indicates the need for including more ecologically 

meaningful satellite remote sensing variables in predicting IAPs than the use of only raw 

spectral bands. Further, the mean diurnal range (Bio2), maximum temperature of warmest 

quarter (Bio5) and the precipitation of warmest quarter (Bio18) were the most important 

bioclimatic variables in modelling the spatial distribution IAPs in the catchment. The Bio5 is 

associated with extreme hot temperature conditions while Bio18 is related to the extreme low 

precipitation received during period of low precipitation, indicating that extreme conditions 

drive the spread of IAPs in the catchment. Evidently, the best-case climate projection (RCP 

2.6) associated with higher magnitude of increase in annual temperatures and decrease in 
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rainfall greatly accounts for the largest increase in spread of IAPs than the worse-case 

projection (RCP 8.5). As a result, there will be an increase in suitable areas for IAPs spread in 

the catchment based on the projected climate change scenarios. Further, Sentinel 2 predicted 

that the actual area currently invaded by IAPs in the catchment is approximately 9%. This is 

predicted to increase to approximately 10% under the worse-case climate scenario (RCP 8.5) 

and 11% for the best climate scenario (RCP 2.6). The spread of IAPs will thus move towards 

low-lying areas, especially towards riparian zones and areas adjacent to already highly 

infested areas.  

Overall, the detected and predicted distributions of IAPs in the catchment has been achieved 

at with model accuracy providing reliable and insightful baseline information on the spatial 

distribution of IAPs with the Catchment. Therefore, these results provide necessary 

information for managing the spread of IAPs in catchment and to help reduce the impacts 

posed on water resources including biodiversity. 

4.2 Conclusions 

The results have demonstrated that both Landsat 8 and Sentinel 2 have a great capability in 

detecting and discriminating IAPs. It was possible to determine the distribution patterns of 

these species, using only a simple parametric classifier such as the maximum likelihood 

classification. However, improved image classification results could be obtained, using non-

parametric classifiers with robust algorithms. In addition, the combined use of strong varying 

predictive models such as BRT, MaxEnt, RF, with multisource data predicted the potential 

distribution of these alien species with reduced uncertainties. Specifically, the following were 

concluded based on the objectives and research questions of the study. 

• Sentinel 2 satellite data has an improved detection and discrimination ability with less 

overestimation of IAPs than Landsat 8 data. This can be attributed to the improved 

spatial and spectral resolution of the characteristics of sensor when compared to 

Landsat 8. As a result, it can have a positive impact in management and decision 

making for eradication plans. However, given that Landsat has a long history of earth 

observation, new satellites like Sentinel therefore provide a complementary role. 

• It was predicted that the abundance of IAPs in the catchment will increase under the 

influence of extreme climate change conditions. However, it is possible that the 

http://etd.uwc.ac.za/ 
 



 

 

70 

 

estimated suitable areas have been underestimated given possible sampling bias 

towards accessible areas. 

• The land cover derived from Sentinel 2 had a great influence in predicting the 

potential distribution of IAPs compared to the raw spectral bands.  

• The mean diurnal range, the warmest quarter maximum temperature and the warmest 

quarter precipitation were most important bioclimatic variables in modelling the 

spatial distribution of IAPs in the catchment. This suggest that the spread of these 

species in catchment is greatly influenced by the change in these bioclimatic 

conditions.  

Overall, the results can be useful to provide routine monitoring and effective management of 

the spread of IAPs in the catchment. Thus, this approach can inform eradication plans and 

contribute to towards minimizing their impacts on water resources and the ecosystem 

especially in arid and semi-arid areas. Land managers should focus on monitoring key 

biodiversity areas and riparian zones for clearing of these species to mitigate their spread. 

 

4.3 Recommendations 

• Improve the detection and discrimination IAPs using robust classification algorithms 

such as non-parametric classifies 

• To determine the optimum season for detection and mapping of invasive alien plants 

using time series 

• Model species specific potential distribution of IAPs 

• Incorporating ecologically meaningful satellite derived variables in predicting suitable 

habits such as vegetation indices. 

• Model the distribution of IAPs using alternative Global Circulation Model projections 

and all scenarios to obtain a full insight of the potential distribution of these species.
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