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Abstract
We introduce the concept of an algebraically closed field with emphasis of the basic model-theoretic
results concerning the theory of algebraically closed fields. One of these nice results about algebraically
closed fields is the quantifier elimination property. We also show that the theory of algebraically closed
field with a given characteristic is complete and model-complete. Finally, we introduce the beautiful
Ax-Grothendieck theorem and an application to it.
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1. Introduction
Model theory explores the duality between any language of the mathematical objects and its meaning.
Theorems of model theory connect theories, that are a collection of sentences, and models, which are
mathematical structures that satisfy those sentences. This duality in model theory is similar to the
duality in algebra, one between formal and symbolic structures in model parallel with polynomials and
algebraic structures such as algebraically closed fields in algebra.

The shared history of model theory and algebra extends back to the first half of the 20th century when
logicians started to understand that model theory was remarkably able to handle the algebraic structures.
From that day forward, the algebraic model-theoretic has got its own name by verifying more algebraic
results. In the middle of the 20th century, Alfred Taraski [Marker et al.] led the study of fields from a
model-theoretic aspects. He developed the method of quantifier elimination. Quantifier elimination is
a powerful tool in the model-theoretic investigation of the algebraic structures. A theory is said to have
the quantifier elimination property if every formula is equivalent to a formula with no quantifiers. We
will introduce a useful test for quantifier elimination as a result of the back and forth method which
was developed in the fifties and sixties by Ronald Fraïssé [Tent and Ziegler]. We study the concept
of completeness which states that a theory is complete if it proves every sentence or its negation. We
simplify a test for verifying whether a theory is complete or not, this test depends on checking if any
two models of the theory are elementarily equivalent, then the theory is complete. Last but not least
in this part, we give the proof of model-completeness as a consequence of quantifier elimination, a
theory is model complete if every embedding of one model in another is an elementary embedding. We
introduce a simple model-theoretic proof of the Ax-Grothendieck theorem via a transfer principle, We
use the principle of Lefschetz, which allows the transfer of true sentences in algebraically closed fields
of infinitely many prime characteristics to algebraically closed fields of characteristic 0.

The thesis consists of three main parts. Firstly, we give a fully detailed introduction of the fundamental
algebraic concepts that needed in studying the structure of algebraically closed fields. Secondly, we
introduce the basic concepts of model theory. Model theory is a powerful tool in mathematical logic
used in studying the mathematical structures. Then we give a suitable language of the algebraically
closed fields and study some important keys in model theory such as quantifier elimination, completeness,
and model completeness. Last but not least, we introduce the beautiful Ax-Grothendieck theorem and
an application to it in other areas of science.

In Chapter 2, we start by introducing all the necessary algebraic concepts needed to study the alge-
braically closed fields (ACF) which have an important property which states that every non-constant
polynomial in its polynomial ring has a root in it. We show the existence of algebraically closed field
extension for every field and show that it is necessary to be an infinite set. Moreover, we expose the
property that any two transcendental bases of an algebraically closed field have the same cardinality.
Finally, if K1 and K2 are two algebraically closed field extensions of F1 and F2 respectively, with the
property that tr.deg(K1/F1) = tr.deg(K2/F2), then every isomorphism of fields between F1 and F2
extends to an isomorphism between their algebraically closed fields K1 and K2.

In Chapter 3, we give in detail all the basic notation of model theory which is necessary for the following
chapters. Model theory is the first theory studies mathematical objects as a language and expressing
the mathematical objects as a structure and give every structure a suitable language. Model theory
studies the duality between languages and interpretations. Theorems in model theory relate theories,
which expressed as a set of first-order sentences, and models are mathematical objects for which those
sentences are true.
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In Chapter 4, we start by introducing a suitable language for the algebraically closed fields, and some
model-theoretic properties of algebraically closed fields as quantifier elimination, model-completeness
and completeness of algebraically closed fields with a given characteristic are proven.

In Chapter 5, we give a brief introduction about the Ax-Grothendieck theorem which states that every
injective polynomial map f : Cn → Cn is bijective. The idea of the proof depends on the fact that every
injective self map of finite sets is bijective. We prove algebraically that every self injective polynomial
map of the algebraic closure of a finite field K is bijective. Then we prove the Ax-Grothendieck theorem
with the notation of first-order logic as a model-theoretic aspect. Finally, we give a brief idea about the
concept of cellular automaton and the theorem Garden of Eden as an application to the Ax-Grothendieck
theorem.
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2. Algebra
In this chapter we introduce all the knowledge of algebra which is necessary for the study of algebraically
closed fields and algebraic closure operator.

2.0.1 Definition. A field is a non-empty set K with two binary operations + and · such that:

1. (K,+) is abelian group.

2. (K \ {0}, ·) is abelian group.

3. x · (y + z) = (x · y) + (x · z) ∀x, y and z in K.

2.1 Field Extension
The results in this section are mainly from Fraleigh (2003) and Lang (2002).

2.1.1 Definition. A subset F of a field K is called a subfield of K if it satisfies the field axioms with
respect to the same operations of K and we write F ≤ K.

2.1.2 Definition. Stewart (2015) A field K is called a prime field if it has only trivial subfields.

2.1.3 Definition. Stewart (2015) If K is a field, the prime subfield of K is the intersection of all the
subfields of K.

2.1.4 Theorem. Stewart (2015) Every field K has a prime subfield which is either isomorphic to the
rational field Q or the field Zp of integers modulo a prime number p.

Proof. The proof of this theorem is given in [Stewart] Theorem 16.9.

2.1.5 Definition. A field K is said to be an extension field of a field F if F ⊆ K and F itself is a field
with respect to the same operations with K.

We denote K/F to mean that K is a field extension of F . We classify the elements of a field extension
into two different categories as follows:

2.1.6 Definition. An element α in an extension field K/F is algebraic if there exists a nonzero poly-
nomial p(x) in F [x] such that p(α) = 0. An element α is transcendental element over F if α is not
algebraic over F .

2.1.7 Example. The element π in C is algebraic over R being a zero of x − π in R[x] while π is
transcendental over Q.

2.1.8 Definition. An extension field K/F is called simple extension if there exist α in K such that
K = F (α).

2.1.9 Remark. We use F [x] to denote the polynomial ring over F while F (α) is to give the field
extension of F by adjoining the element α.

3
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2.1.10 Example. The complex field C is a simple extension of R since we have C = R(i).

2.1.11 Definition. An extension field K/F is algebraic extension if every element of K is algebraic
element over F .

2.1.12 Theorem. If K/F is an extension field and α in K is algebraic over F then F (α)/F is algebraic
extension .

Proof. The proof of this theorem is given in [Fraleigh] Theorem 29.18.

2.1.13 Definition. If K/F is an extension field of finite dimension n as a vector space over F , then K
is a finite extension of degree n over F , denoted by [K : F ] = n.

2.1.14 Theorem. Every finite extension field K/F is algebraic extension.

Proof. The proof of this theorem is given in [Fraleigh] Theorem 31.3.

2.1.15 Theorem. If K/E is finite field extension and E/F is finite1field extension then K/F is finite
field extension.

Proof. The proof1of this theorem is given in [Fraleigh] Theorem 31.4.

2.1.16 Example. We1have1that [Q(
√

2,
√

3) : Q(
√

2)] = 21and [Q(
√

2) : Q] = 2 are1finite1field1extensions
then [Q(

√
2,
√

3) : Q] = 4 is a finite field extension.

2.1.17 Theorem. Let K/F .be an.extension1field, and α in K be an1algebraic1element over F . Then
there exists an irreducible polynomial p(x) in F [x] such that α is a zero of p(x). This p(x) is uniquely
determined up to a constant factor in F and is a polynomial of1minimal1degree ≥ 1 having α as a zero.

Proof. The proof of this theorem is given in [Fraleigh] Theorem 29.13.

2.1.18 Definition. Let K/F be an1extension field, and α in K be an algebraic element over F . The
unique1monic irreducible1polynomial which is of minimal degree ≥ 1 having α1as a zero is the irreducible
polynomial for α over F denoted by irr(α, F ). The degree1of α over F is the degree of irr(α, F ) and
denoted1by deg(α, F ).

2.1.19 Example. The degree1of
√

2 over the field1Q, denoted by deg(
√

2,Q) = 2 since
√

2 is zero of
the unique1monic1irreducible polynomial of minimal degree ≥ 1, x2 − 2 in Q[x].

2.1.20 Corollary. If K/F is an extension field, α in K is an algebraic element over F and β in F (α)
then deg(β, F ) divides deg(α, F ).

Proof. The proof of this corollary is given in [Fraleigh] Corollary 31.17.

We use Corollary (2.1.20) to check the existence of zeros of some polynomials in a field or not.

2.1.21 Example. There.is.no element in Q(
√

2)1that is a root of x5 − 2 since deg(
√

2,Q) = 2 while a
root of x5 − 2 is of1degree 5 over1Q but 5 - 2.
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2.1.22 Theorem. Let K/F be an extension field which is algebraic then a finite number of elements
α1, . . . , αn in K exists with K = F (α1, . . . , αn) if and only if K/F is an extension which is finite.

Proof. The proof of this theorem is given in [Fraleigh] Theorem 31.11.

2.1.23 Theorem. Fraleigh (2003) If K/E is an algebraic field extension and E/F is an algebraic field
extension. Then K/F is an algebraic field extension.

Proof. If K/E is an algebraic field extension, then for every α in K there exists a minimal polynomial
p(x) = a0 + a1x + · · · + anxn where ai in E and p(α) = 0. Let F1 = F (a0, a1, . . . , an) is a finite
extension of F since each ai in E is algebraic over F . We have F1(α) = F (a0, a1, . . . , an)(α) is a finite
extension of F1, hence F1(α) is a finite extension of F by Theorem (2.1.15) which states that a finite
extension of a finite extension is a finite extension over the original field. Finally F1(α) is algebraic over
F by Theorem (2.1.14) which states that every finite extension is algebraic extension, so α is algebraic
over F .

2.1.24 Corollary. Lang (2002) If K is a field with F as a finite subfield of K and α is an algebraic
element over F , then F (α) is finite.

Proof. The proof of this corollary is in [Lang].

2.2 Algebraically Closed Fields (ACF)
In this section our goal is to prove the existence of an extension field which is algebraically closed for
every field. The results in this section are mainly from Fraleigh (2003) and Lang (2002).

2.2.1 Definition. Lang (2002) A field K is said to be ACF if1every1polynomial p(x) in K[x] with
degree ≥ 1 has a1zero in1K.

2.2.2 Example. The complex field C is ACF.

2.2.3 Theorem. A field K is ACF if and only if every non-constant polynomial p(x) in K[x] factors
into linear factors.

Proof. The proof of this theorem is given in [Fraleigh] Theorem 31.15.

2.2.4 Corollary. An ACF has no proper algebraic extension.

Proof. The proof of this theorem is given in [Fraleigh] Corollary 31.16.

2.2.5 Proposition. Lang (2002) Suppose that F be1a1field. If f is a1polynomial1of1degree ≥ 1 in
F [x], then1there is an1extension K/F in which f has a1root.

Proof. The proof on this theorem is given in [Lang] Proposition 2.3.

2.2.6 Remark. Lang (2002) Let K/F be an extension1field. If1σ : F → E is an1embedding of a1field
F into a field E, then σ induces an isomorphism of F with its image σF , written as F σ. Similarly, Let
f be a polynomial in F [x] that has a root in K. If τ : K → L is an extension of σ, then we obtain that
a zero of τσ is a zero of fσ.

https://etd.uwc.ac.za
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Now we are going to reach our goal of this section.

2.2.7 Theorem. Lang (2002) Let1K be a field then1there1exists an ACF that has K as a subfield.

Proof. Lang (2002) Construct.a field E1 which is an1extension1of1K such that1every polynomial f(x)
of degree ≥ 1 in1K[x] admits a zero as follows:

For each polynomial f(x) in K[x] with deg(f(x)) ≥ 1, we associate new variables xf and construct
the set S of all the xf that are zeros for every f(x) in K[x]. It is clear that the set S and the set of all
polynomials f(x) in K[x] are in bijection.

We construct K[S] as a polynomial ring such that the1ideal generated by all the polynomials f(xf ) in
K[S] is not a unit ideal. To show that it is1not1unit, we can assume contrarily that it is unit so that
there exists a finite linear combination of elements in this ideal which is 1. Then we have

g1f1(xf1) + · · ·+ gnfn(xfn) where gi in K[S]

Replacing xfi
by xi for simplicity, the polynomials gi will have only finite number of variables, say

x1, . . . , xN where N ≥ n. So our linear combination can be written as follows:
n∑
i=1

gi(x1, . . . , xN )fi(xi) = 1.

Assume that F is a finite1extension in which1each polynomial f1, . . . , fn admits a zero, say αi in F is
a zero of fi for i = 1, . . . , n and αi = 0 for all i > n. Substituting by αi in the linear combination, we
have

0 =
n∑
i=1

gi(α1, . . . , αN )fi(αi) = 1

which is contradiction.

Now, assume that m be a maximal1ideal of1K[S] containing the ideal1generated by1all the1polynomials
f(xf )1in K[S] so that K[S]/m is a field. Consider1the canonical1map

σ : K[S]→ K[S]/m.

So for any1polynomial f(x) in K[S] with deg(f(x)) ≥ 1, by applying Remark (2.2.6), the polynomial
fσ has a zero in1K[S]/m which is an1extension of σK, since for every field K and a polynomial f(x)
in K[x] with deg(f(x)) ≥ 1 there exists an extension E1/K in which f(x) has a zero.

Finally by1induction we can obtain a1chain of1fields

E1 ⊂ E2 ⊂ . . . En ⊂ . . .

such that every f(x) in En[x] with deg(f(x)) ≥ 1 has1a zero in En+1. Let E =
⋃
n
En , it is clear that

E is a field, since if we have two elements a, b in the set E then n exists such1that a and b in En which
implies1that a+ b and a · b in En, this does not depend on how we choose n such that a and b are in
En and it shows that we have a E as a field.

Now, each polynomial1f(x) in E[x] which has coefficients in one of the subfields En has a zero in En+1
and hence there is a zero in E.

https://etd.uwc.ac.za
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2.2.8 Proposition. Any ACF is infinite.

Proof. Let F be any finite field, p(x) = 1 +
∏
a∈F

(x − a) be any polynomial in F [x]. We see that

p(a) = 1 6= 0 for every a in F so there is no zero for this polynomial in F and hence F is not ACF.
Thus any ACF must be infinite.

The following is called the fundamental1theorem of1algebra.

2.2.9 Theorem. The complex field C is ACF.

Proof. The proof of this theorem is in [Fraleigh] Th 31.18.

2.3 Algebraic Closure
The main results of this section are mainly from Lang (2002). Our goal in this section is to prove the
existence of algebraic closure for every field and showing that any two algebraic closures over the same
field are isomorphic.

2.3.1 Definition. Let K/F be an extension1field then K̄F = {α ∈ K : α algebraic1over F} is the
algebraic closure of F in K.

The following gives an equivalent definition for algebraic closure.

2.3.2 Definition. Any field extension K/F such that K is an algebraic extension of F and K is ACF
is called the algebraic closure of F .

We denote K̄ to express the algebraic closure of a field K.

2.3.3 Theorem. Lang (2002) Let K be a field then there is an extension K̄ of K which is ACF and
this extension is algebraic over K.

Proof. By Theorem (2.2.7), we proved that for every field K there is a field extension E/K which
is ACF. Construct K̄ to be the1union of all the algebraic subextensions1of E over K, therefore K̄ is
an1algebraic extension1over K.

To prove that K̄ is ACF, if f(x) in1K̄[x] with deg(f(x)) ≥ 1 so since E is ACF, f(x) has a1root α in
E and α is algebraic1over K̄, then α in K̄ which means that K̄ is ACF. Finally we obtained that K̄ is
algebraic1over K and ACF. Hence K̄ exists as the algebraic1closure of K.

The following is to prove that any two algebraic closures of a field F are isomorphic via an isomorphism
which leaves F fixed.

2.3.4 Theorem. Lang (2002) Let K be a1field, E/K be an algebraic1extension, and σ : K → L be
an embedding1of K into an ACF L. Then an1extension of σ to an1embedding of the1extension E in L
exists. If E is ACF and L is algebraic1over σK, then any such1extension of σ is isomorphic of E onto
L.

Proof. The proof of this theorem is given in [Lang] Theorem 2.8, the proof depends on Zorn’s lemma.

https://etd.uwc.ac.za
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2.3.5 Corollary. Let X,Y be two algebraic closures of a field K and τ : X → Y be an embedding over
K. Then τ is an isomorphism.

Proof. Let τ be a homomorphism that leaves K fixed. By Theorem (2.3.4), since X is an ACF then
τX is an ACF and τX ⊂ Y . Since Y is algebraic over K so Y is algebraic over τX, let y in Y so y
algebraic1over τX which implies that y ∈ τX and hence Y ⊂ τX. Finally we obtain Y = τX so τ is
an isomorphism.

2.4 Algebraic Closure Operator
In this section our goal is to define a closure operator inside ACF and check its properties. The results
of this section are mainly from Tent and Ziegler (2012).

2.4.1 Definition. Let S be a nonempty set, a function cl : P(S)→ P(S) is called a pregeometry if it
satisfying the following properties, for any set A,B ⊆ S and a, b in S

1. A ⊆ cl(A) (cl is extensive).

2. If A ⊆ cl(B) then cl(A) ⊆ cl(B) (cl is transitive).

3. If a in cl(A) then there1exists a1finite A0 ⊆ A such that a in cl(A0) (cl is finite character).

4. If a in cl(A ∪ {b}) \ cl(A) then b in cl(A ∪ {a}) (exchange principle).

2.4.2 Definition. A subset A of a pregeometry is closed if A = cl(A).

2.4.3 Definition. A pregeometry is called a geometry if the singletons and the empty set are closed.

2.4.4 Definition. Let (S, cl) be a pregeometry, a subset A ⊆ S is called :

1. an independent if a is not in cl(A \ {a}) for all a in A.

2. a generating set if S = cl(A).

3. a basis if A is independent generating.

We define a closure operator (pregeometry) inside an ACF as follows:

2.4.5 Definition. Let K be ACF, A ⊂ K and b ∈ K, we say that b is algebraic over A, and we write
b in acl(A), if b belongs to an algebraic1extension of the subfield of K generated1by A. Equivalently,
b in acl(A) if there is a non-constant polynomial p(x) with coefficients in the subfield of K generated
by A such that p(b) = 0.

In the following1theorem we will prove1some few properties

2.4.6 Theorem. Let K be ACF, we have the following:

1. A ⊆ acl(A) for all A ⊆ K (acl extensive )

2. If A ⊆ B then acl(A) ⊆ acl(B) for all A,B ⊆ K (acl monotonic).

3. acl(A) = acl(acl(A)) for all A ⊆ K.

https://etd.uwc.ac.za
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4. A ⊆ acl(B) then acl(A) ⊆ acl(B) (acl transitive).

5. If a in acl(A) then there1exists finite A0 ⊆ A such that a in acl(A0) (acl finitary).

6. If b in acl(A ∪ {c}) \ acl(A) then c in acl(A ∪ {b}) for all b, c in K (Exchange principle).

Proof. 1. Let a in A then a is a zero of the polynomial x− a which has coefficients in the subfield
generated by A so a in acl(A).

2. Let a in acl(A), then there exists a nonzero polynomial p(x) = anx
n + · · · + a0 where ai in A

and P (a) = 0 but since ai in A ⊆ B and p(a) = 0 then a in acl(B).

3. To show that acl(acl(A)) = acl(A), by considering acl(acl(A)) as an algebraic field extension of
the algebraic extension acl(A), using Theorem (2.1.23) which states that algebraic extension of
algebraic extension is algebraic over the original set A so acl(acl(A)) = acl(A).

4. It is given that A ⊆ acl(B) then acl(A) ⊆ acl(acl(B)) since cl is monotonic and we have
acl(acl(B)) = acl(B) and hence acl(A) ⊆ acl(B).

5. If a in acl(A), then1there exists an irreducible1polynomial p(x) = bnx
n + · · · + b0 such that

bn, . . . , b0 in the ring generated by A and with a as one, among finitely many roots so a finite
subset A0 of A is enough to generate bn, . . . , b0, and hence we obtain that a in acl(A0).

6. Assume that b in acl(A∪{c}) then there exists a nonzero polynomial p(x, y) in K[x, y] such that
p(b, c) = 0 while p(x, c) is not zero for the variable x. If we have that c is not in acl(A ∪ {b}),
it follows that p(b, y) = 0 for all the variables y so there exists nonzero polynomial p(x, y) where
p(b, y) = 0 for every variable y which implies that b in acl(A) since if b is not in acl(A), this
means that the polynomial p(x, y) is zero polynomial, and hence we obtain a contradiction.

2.5 Transcendence Degree
The main result in this section is Theorem (2.5.4) which is mainly from Hungerford (1980).

2.5.1 Definition. Let K/F be an extension field of F . A subset S of K is algebraically independent
over F if for some positive integer n, there exists a nonzero polynomial p(x) in F [x1, . . . , xn] such that
p(s1, . . . , sn) 6= 0 for some distinct s1, . . . , sn in S. A subset S of K is algebraically dependent over F
if it is not algebraically independent over F .

2.5.2 Definition. Let K/F be an extension field. A transcendence basis of K over F is a subset S ⊆ K
which is maximal algebraically independent.

2.5.3 Example. For any α in K/F , {α} is algebraically dependent over F if and only if α is algebraic
over F .

2.5.4 Theorem. Let A and B be any two transcendental basis of an extension field K/F . If A is finite
then |A| = |B|.

Proof. The proof depends on the fact of the exchange principle that for the two transcendental bases
A and B, if we take any element {a} in A then there is an element {b} in B with the property that
(A \ {a}) ∪ {b} is again a transcendental basis of K.

https://etd.uwc.ac.za
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Let A = {a1, . . . , an} and we take A′ = {a2, . . . , an}. By claiming that there is an element b in B,
say b = b1 such that {b1, a2, . . . , an} is a transcendental basis. To check that, if every element of
B is algebraic over F (A′) then K is algebraic over F (B) and hence algebraic over F (A′) which is
contradiction.

Thus, there is an element b in B, say b = b1 so that we have b1 is transcendental over F (A′). Hence
B′ = {b1, a2, . . . , an} is algebraically independent but since A is maximal algebraically independent then
a1 is algebraic over F (B′). It follows that K is algebraic over F (b1, a1, . . . , an) and hence is algebraic
over F (B′). We can continue in this process until we obtain a transcendental basis {b1, . . . , bn} ⊂ B
thus |B| = |A|.

2.5.5 Definition. Let K/F be an extension field. The transcendence1degree of K over F denoted by
tr.deg(K/F ) is the cardinality of any transcendence basis of K over F .

2.5.6 Example. We have that tr.deg(Q(
√

2, e)/Q) = 1 since
√

2 is algebraic while e is transcendental.

2.5.7 Example. We have that tr.deg(Q(π, e)/Q) is either 1 or 2, it is still not precise since it is not
clear yet whether e and π are algebraically dependent or not.

2.5.8 Theorem. Hungerford (1980) If K1 and K2 are two ACF extensions of the fields F1 and F2
respectively where

tr.deg(K1/F1) = tr.deg(K2/F2).

Then every isomorphism of fields σ : F1 → F2 extends to an isomorphism τ : K1 → K2.

Proof. The proof of this theorem is in [Hungerford] Theorem 1.12.

https://etd.uwc.ac.za



3. Model Theory
In this chapter, we study the basic notation of model theory, we study the concepts of language,
structures, theory and so on. A language is a set of relations, functions, and constant symbols, it is a
new way of looking at mathematical objects abstractly by some tools such as formulas, variables, and
terms, then we associate an interpretation to the language to describe any element of the structure
mathematically using logic especially first-order logic. We move on to study the properties of a theory
such as quantifier elimination and completeness. The main results in this chapter are mainly from
Marker (2002), Deloro (2013) and Boxall (2017).

3.1 Basic Notation of Model Theory
In this section, we introduce the basic concepts for model theory.

3.1.1 Definition. Deloro (2013) A first-order language LM is a set consists of the three following
mutually disjoint subsets:

1. The collection of all relation symbols RL.

2. The collection of all constant symbols CL.

3. The collection of all function symbols FL.

with the function pL : RL ∪ FL → Z>0 which called the arity function, for every function and relation
symbol it gives the number of arguments it takes. Note that any set of RL, FL, and CL can be empty.

3.1.2 Example. Boxall (2017) Consider LR = {+,−, ·, 1, 0, <} to be the language of real numbers
where 1, 0 are constant symbols, +, · are function symbols with arity 2 while − is function symbol with
arity 1 and < is relation symbol with arity 2.

3.1.3 Definition. Boxall (2017) Suppose L be a first-order.language, we define an.L-structure.M as a
pair (M, I) where M is a nonempty set called the underlying.set and I is a function.which.assigns.every
element of L to an appropriate structural feature of M called the interpretation of L in M as follows:

1. For.each constant.symbol c, I(c) is in M .

2. For.each n-ary relation.symbol R, I(R) is a subset.of Mn.

3. For.each n-ary function.symbol f , I(f) : Mn →M is a function.

11
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3.1.4 Example. Boxall (2017) Suppose that M = R and L = LR, we define the.interpretation I of LR
in M = R as follows:

I(0) in R is the number zero.
I(1) in R is the number one.
I(+) : R2 → R is the standard addition operation
I(·) : R2 → R is the standard multiplication operation.
I(−) : R→ R is the standard unary minus operation.
I(<) ⊆ R2 is the set of all tuples (a, b) where a is less than b by the usual ordering.

3.1.5 Definition. Boxall (2017) Let M = (M, IM ) and N = (N, IN ) be any two L-structures,
f : M → N be a function and define for T ⊆ Mn, f(T ) = {(f(t1), . . . , f(tn)) : (t1, . . . , tn) in T}.
We call f to be an L-structure isomorphism if the following holds:

1. The function f is bijective.

2. For R in RL, we have f(IM (R)) = IN (R).

3. For S in FL with k-arity, we have f(IM (S)(m̄)) = IN (S)(f(m̄)) for all m̄ in Mk.

4. We have f(IM (c)) = IN (c) for all c in CL.

3.1.6 Definition. Deloro (2013) The collection of L-terms of a first-order language L is defined as
follows:

1. Every constant symbol c is a term.

2. Every variable symbol x, y, z, . . . is a term.

3. For every function symbol f with n-ary and x1, . . . xn are terms, we have f(x1, . . . , xn) is a term.

3.1.7 Definition. Marker (2002) We define an atomic L-formula to be one of the following forms:

1. If t1 and t2 are terms then t1 = t2 is an atomic formula.

2. If R is an n-ary relation symbol and t1, . . . , tn are terms, then R(t1, . . . , tn) is a formula called
the atomic formula.

Note that we use the word formula to mean a first-order formula.

3.1.8 Definition. Marker (2002) The collection of L-formulas is defined to be one of the following:

1. If φ is an atomic L-formula then ¬φ is a formula.

2. If φ and ψ are two atomic formulas then φ ∧ ψ, φ ∨ ψ, φ→ ψ and φ↔ ψ are formulas.

3. If φ is a formula and x is a variable symbol, then using quantifiers as follows ∀xφ and ∃φ produces
formula again.

3.1.9 Definition. Boxall (2017) A formula is called quantifier-free formula if it has no quantifier.
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3.1.10 Definition. Boxall (2017) For a language L and a formula φ, a subformula of φ is a formula
which occurs within φ. An appearance of a variable x in a formula φ is called bound if it belongs to a
subformula ψ of the form ∃xψ or ∀xψ. An appearance of x in φ is free if it is not bound. A variable
x is called a free variable of a formula φ if it appears in φ at least one time as a free variable. If φ is a
formula with free variables t1, . . . , tn, we write φ as φ(t1, . . . , tn).

3.1.11 Definition. Deloro (2013) A formula that has no free.variable is.called a.sentence.

3.1.12 Example. Consider the formula φ which is given by x+ y = 0, then x, y are free variables and
we write φ(x, y) while in the formula ψ which is given by ∀x∃y(x+ y = 0) there is no free variable and
hence ψ is a sentence.

3.1.13 Definition. Deloro (2013) Let M be an L-structure. If φ(x1, . . . , xn) be an L-formula and
a1, . . . , an in M such that the property of φ is.true for a1, . . . , an in.M , we say that M satisfies
φ(a1, . . . , an).and we writeM |= φ(a1, . . . , an).

Any sentence in an L-structureM is either true or false, if a sentence φ is true in L-structureM we
say thatM models φ and write it asM |= φ.

3.1.14 Example. Deloro (2013) Let M = (R, I) where I is the standard interpretation so we have
M |= ∀x∃y(x+ y = 0) whileM 6|= ∃x(x · x = −1).

3.1.15 Definition. Marker (2002) Let M = (M, IM ) and N = (N, IN ) be two L-structures. An
L-embedding f : M → N is a one-to-one map f : M → N such that the interpretation.of L in M
coincides with the interpretation of L in N . If M ⊆ N then we call eitherM a substructure of N or
N is an extension ofM, written asM⊆ N .

3.1.16 Definition. Marker (2002) Let M = (M, IM ) and N = (N, IN ) be two L-structures, we call
an.L-embedding f :M→N to be elementary embedding if

M |= φ(a1, . . . , an) if and only if N |= φ(f(a1), . . . , f(an))

for any L-formulas φ and all a1, . . . , an in M .

IfM is a substructure.of N , thenM is an elementary substructure of N , written asM� N .

3.1.17 Definition. Deloro (2013) We define a set of sentences in a language L to be an L-theory.

The following is mainly from Marker (2002), if T be an L-theory and φ be an L-sentence. A proof.of φ
from T is a finite.sequence of.L-formulas ψ1, . . . , ψn such that ψi follows.from ψ1, . . . , ψi−1 by logical
rules for each i, we write T ` φ if there exists a proof of φ from T . For example of a simple logical.rules
is that from the two L-sentences φ and ψ, we may conclude φ ∧ ψ. A set of sentences is said to be
consistent if there is no proof of a contradiction.

3.1.18 Definition. Marker (2002) An L-theory T is satisfiable if there exists an L-structure M such
thatM |= φ for all φ in T .

3.1.19 Theorem. Marker (2002)(Completeness and soundness) A set of sentences is consistent if and
only if it is satisfiable.
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Proof. The proof of this theorem is given in [Marker] Corollary 2.1.3.

3.1.20 Theorem. Marker (2002)(compactness theorem) An L-theory T is consistent if and only if every
finite subset of T is consistent.

Proof. The proof of this theorem is in [Marker] Theorem 2.1.4.

3.1.21 Definition. The deductive closure of an L-theory T is the set of all sentences which are true in
every model of T .

3.1.22 Lemma. Marker (2002) Let T be an L-theory and φ be an L-sentence. If T |= φ, then A |= φ
for some.finite A ⊆ T .

Proof. Suppose that A be a finite subset of T with A 6|= φ, thus A ∪ {¬φ} is satisfiable. Therefore
T ∪ {¬φ} is finitely satisfiable. Hence by using the Compactness Theorem (3.1.20), T 6|= φ.

3.1.23 Definition. Marker (2002) Let M be an L-structure. A set X ⊆ Mn is definable if and
only if.there exists an L-formula φ(x1, . . . , xn, y1, . . . , ym) and b̄ = (b1, . . . , bm) in Mm such that
X = {ā = (a1, . . . , an) ∈Mn :M |= φ(a1, . . . , an, b1, . . . , bm)}.

3.2 Quantifier Elimination
Quantifier elimination is a very important tool in mathematical logic because it is a concept of simplifi-
cation. In model theory, it is used to characterize many theories such as completeness, completeness in
model theory is a nice property for any L-theory which states that an L-theory is complete if any two
L-structures satisfy the same sentences.

3.2.1 Definition. Marker (2002) An L-theory T has quantifier elimination if for every formula φ(x)
there exists a formula without quantifiers ψ(x) with the property that T |= ∀x[φ(x)↔ ψ(x)].

3.2.2 Example. Marker (2002) Let ψ(a, b, c, d) be the formula

∃x∃y∃z∃w(x · a+ y · c = 1 ∧ x · b+ y · d = 0 ∧ z · a+ w · c = 0 ∧ z · b+ w · d = 1)

This formula is exactly expressing the existence of a matrix
(
x y
z w

)
which is inverse of the matrix(

a b
b d

)
so this formula can be written as a quantifier-free formula for any field F as follows:

F |= ψ(a, b, c, d)↔ ad− bc 6= 0

3.2.3 Proposition. Marker (2002) IfM is a substructure of N where a in M and φ(x) is a quantifier-
free formula, then M |= φ(a) if and only if N |= φ(a). This means that quantifier-free formulas are
preserved under substructure and extension also.

Proof. The proof of this proposition is in [Marker] Proposition 1.18.
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3.2.4 Theorem. Marker (2002) Let L be a language with a constant symbol c, T be an L-theory with
the property that any two models of T have a common substructure and φ(x) be an L-formula. Then
the following are equivalent:

(1) There is a quantifier-free formula ψ(x) with the property that T |= ∀x[φ(x)↔ ψ(x)].

(2) If M and N are two models of T with common substructure A with a in A, then M |= φ(a) if
and only if N |= φ(a).

Proof. Marker (2002) Firstly, we prove that (1) implies (2) as follows:

LetM and N are two models of T and a in A such that A is a common substructure ofM and N .
By (1), we have a quantifier-free.formula ψ(a) such that

M |= φ(a) if.and.only.ifM |= ψ(a). (3.2.1)

We have quantifier-free formulas are preserved under substructure as stated in Proposition (3.2.3) then
A |= ψ(a), similarly since quantifier-free formulas are preserved under extension as stated in Proposition
(3.2.3) then N |= ψ(a) so by property (1), we have

N |= ψ(a) if.and.only.if N |= φ(a). (3.2.2)

Now, from equations (3.2.1) and (3.2.2), we obtain that

M |= φ(a) if and only if N |= φ(a).

Secondly, we prove that (2) implies (1) as follows: Assume that IfM and N are two.models of T with
common substructure A with a in A, thenM |= φ(a) if.and.only.if N |= φ(a).

If we suppose that T |= ∀xφ(x) then we can expresses it as follows T |= ∀x[φ(x) ↔ c = c]. Similarly,
if T |= ∀x¬φ(x) then we can expresses it as follows T |= ∀x[φ(x) ↔ c 6= c], thus we can assume that
both T + {φ(x)} and T + {¬φ(x)} are satisfiable (consistent).

Let

Γ(x) = {ψ(x) : ψ is quantifier-free formula and T |= ∀x[φ(x)→ ψ(x)]} (3.2.3)

We can add some constant symbols d1, . . . , dm to the language L where d = d1, . . . , dm has the same
length as x. Our goal is to show that T + Γ(d) |= φ(d).

Claim that T+Γ(d) |= φ(d)

We prove the claim by.contradiction as follows, assume contrarily that T +Γ(d)+{¬φ(d)} is consistent.
LetM |= T + Γ(d) + {¬φ(d)}. Suppose that A is a substructure.ofM.generated by the constant d.
The atomic.diagram of A is given as follows:

Diag(A) = {ψ(d) : ψ is either an atomic L-formula or its negation is an atomic L-formula and A |= ψ(d)}
(3.2.4)

Let ∑
= T +Diag(A) + {φ(d)},

if
∑

is not satisfiable then by the Compactness Theorem there exists a finite subset of T , say ψ1(d), . . . , ψn(d)
in Diag(A) with the property that

T |= ∀x[
n∧
i=1

ψi(x)→ ¬φ(x)], this implies that T |= ∀x[φ(x)→
n∨
i=1
¬ψi(x)].
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Therefore, by Proposition (3.2.3), we obtain that
n∨
i=1
¬ψi(x) in Γ(x).

SinceM |= T , thenM |=
n∨
i=1
¬ψi(d) and since as we know that quantifier-free formulas are preserved

under substructure, thus A |= ¬ψi(d) for some i, hence we obtain a contradiction with the definition
of Diag(A). Consequently,

∑
is satisfiable.

Moreover, if we assume that N |=
∑

then N |= φ(d). Since Diag(A) ⊆
∑

so we may assume that
A ⊆ N . Also, since we have M |= ¬φ(d) and by using (2), we obtain that.N |= ¬φ(d) which is
a.contradiction. Therefore.T + Γ(d) |= φ(d).

Finally, by the Compactness Theorem there is a finite subset of T , ψ1(x), . . . , ψn(x) in Γ(x) where

T |= ∀x[
n∧
i=1

ψi(x)→ φ(x)].

This implies that

T |= ∀x[
n∧
i=1

ψi(x)↔ φ(x)] where
n∧
i=1

ψi(x) is a quantifier.free formula.

Now, we have shown the existence of a formula without quantifiers ψ(x) with the property that

T |= ∀x[φ(x)↔ ψ(x)] which is exactly (1).

The following shows that one can prove quantifier elimination by removing one existential quantifier at
a time.

3.2.5 Theorem. Marker (2002) Let L be a language, T be an L-theory such that for every quantifier-
free L-formula θ(x,w), there is a quantifier-free formula ψ(x) where T |= ∀x[∃wθ(x,w) ↔ ψ(x)].
Then, T has the property of quantifier elimination.

Proof. Marker (2002) Our goal is to show that every L-formula φ(x) is equivalent to a quantifier-free
formula, we will do that by induction on the complexity of φ(x). If φ(x) is a quantifier-free formula,
then it is clear that there is nothing to show.

The base step of the induction is the case that, if the formula φ(x) has only one quantifier, so the
quantifier is either existential as φ(x) ≡ ∃wθ(x,w) or universal as φ(x) ≡ ∀wθ(x,w) where θ(x,w) is a
quantifier-free formula. In the case of the existential quantifier, by our.assumption property, there exists
a quantifier-free formula ψ(x) with the property that

T |= ∀x[∃wθ(x,w)↔ ψ(x)] then T |= ∀x[φ(x)↔ ψ(x)].

In the case of the universal quantifier, we may rewrite the formula as φ(x) ≡ ¬[∃w¬θ(x,w)]. So we
have¬φ(x) ≡ ∃w¬θ(x,w), here similarly by our assumption, there exists a quantifier-free formula ψ1(x)
with the property that

T |= ∀x[∃w¬θ(x,w)↔ ψ1(x)]
T |= ∀x[¬φ(x)↔ ψ1(x)]
T |= ∀x[φ(x)↔ ¬ψ1(x)].
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The induction hypothesis: assume that every L-formula with n quantifier is equivalent.to a formula
without.quantifiers where n > 1.

The induction step: our goal is to prove that every formula φ(x) with n + 1 quantifier then we can
rewrite φ(x) either existential as φ(x) ≡ ∃wθ(x,w) or universal as φ(x) ≡ ∀wθ(x,w) where θ(x,w)
is any formula with n quantifier. By the induction assumption, we have that θ(x,w) is equivalent
to a quantifier-free formula and by the base step of our induction we have φ(x) is equivalent to a
quantifier-free formula.

We use Theorems (3.2.4) and (3.2.5) to have the following quantifier elimination test.

3.2.6 Corollary. Marker (2002) Let L be a language with at least one constant symbol d and T be an
L-theory such that any two modelsM and N of T have a common substructure A. Suppose that for
every quantifier.free.formula φ(x,w), if a in A and b in M such thatM |= φ(a, b) , then there exists c
in N such that N |= φ(a, c). Then T has the quantifier elimination property.

Proof. Assume that if a in A and b in M such that M |= φ(a, b), then there exists c in N satisfying
N |= φ(a, c). This is just property (2) of Theorem (3.2.4) for the formula ∃wφ(x,w). By the equivalence
between property (1) and property (2) of Theorem (3.2.4), then there is a quantifier-free formula ψ(x)
with the property that

T |= ∀x[∃wθ(x,w)↔ ψ(x)].

Hence, by using Theorem (3.2.5), we show that T has the property of quantifier elimination.

3.3 Completeness
The main results in this section are mainly from Marker (2002).

3.3.1 Definition. Deloro (2013) Any two L-structuresM and N are called elementarily equivalent if
they satisfy the same sentences, that means

M |= φ if and only if N |= φ for any L-sentence φ

and we writeM≡ N .

3.3.2 Example. Deloro (2013) We have the complex field structure (C,+,−, ·, 0, 1) and the real field
structure (R,+,−, ·, 0, 1) are not elementarily equivalent since the sentence ∃x(x · x+ 1 = 0) which is
true in the complex structure but false in the real structure.

The two structures (Q, <) and (R, <) are elementarily equivalent since they satisfy the same sentences.

3.3.3 Theorem. Any two isomorphic L-structures are elementarily equivalent.

Proof. The proof of this theorem is in [Marker] Theorem 1.1.10.

3.3.4 Definition. Marker (2002) Let L be a language, an L-theory T is called complete theory if for
any sentence ψ, either T |= ψ or T |= ¬ψ.
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3.3.5 Proposition. Marker (2002) An L-theory T is complete if and only if for any two modelsM and
N of T and any L-sentence ψ, we haveM |= ψ if and only if N |= ψ. This means that an L-theory
T is complete if and only if any two models are elementarily equivalent.

Proof. Firstly, we assume that T be a complete L-theory and M be a model of T with M |= ψ for
some L-sentence ψ. If we assume that T |= ¬ψ, thenM |= ¬ψ but this contradicts that T is complete
so T |= ψ, and hence N |= ψ for any other modelM of T . This shows that any two modelsM and
N of a complete theory T are elementarily equivalent.

Conversely, assume that any two models M and N of an L-theory T are elementarily equivalent and
let ψ be an L-sentence. IfM |= ψ, then for every model N |= T , we obtain that N |= ψ, therefore

T |= ψ. (3.3.1)

Otherwise, ifM 6|= ψ, thenM |= ¬ψ, and hence

T |= ¬ψ. (3.3.2)

Now, from (3.3.1) and (3.3.2), we showed that if for any two models of an L-theory T are elementarily
equivalent, then the theory T is complete.

3.3.6 Theorem. Marker (2002) Let L be a language with at least one constant symbol c, if T is
an L-theory satisfying the quantifier elimination property and any two models of T have a common
substructure, then T is a complete theory.

Proof. SupposeM and N are two models of T with a common.substructure A, let φ be any L-sentence
in T . Because of the quantifier.elimination property, there exists a quantifier.free sentence ψ where

M |= (φ↔ ψ), also N |= (φ↔ ψ).

So if we assume that
M |= φ thenM |= ψ.

Because quantifier-free formulas.are preserved.under.substructure and we have that A is a substructure
ofM then

A |= ψ.

Similarly, because A is a substructure of N and quantifier.free formulas are preserved under extension,
so

N |= ψ.

Now, for any sentence φ and any two modelsM and N with a common substructure A, we have that

M |= φ implies that N |= φ.

FinallyM and N satisfy the same sentences and hence T is complete.
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In the following, we give an example of an incomplete L-theory that can be modified to be complete.

3.3.7 Example. Consider the theory of groups whose axioms are exactly the group axioms so that a
model of this theory is just any group. The theory of groups is not complete because of the existence
of commutative and non-commutative groups, so the sentence

ψ ≡ ∀x∀y(x ∗ y = y ∗ x)

is a sentence for which the theory of groups T has the property that neither T |= ψ nor T 6|= ψ.

We can modify this theory to be complete as follows:

If we add the following axioms to the theory:

1. The first axiom is ∃x∃y(x 6= y ∧ x 6= 1 ∧ y 6= 1) which shows the existence of two different
elements with the identity.

2. The second axiom is ∀x∀y(x = 1∨ y = 1∨x ∗ y = 1) which shows that each of the two elements
different from the identity is inverse of the other.

Now, the only model of this modified theory is the cyclic group of order 3, thus for any sentence ψ in
the language of groups, we have either T |= ψ or T 6|= ψ and hence the modified theory is now complete
theory.

3.4 Model-Completeness
In this section. we introduce the concept of model-completeness which is one of the immediate conse-
quences of the quantifier elimination property.

3.4.1 Definition. Marker (2002) An L-theory T is model-complete if all the embeddings are elementary
embeddings, this means that ifM and N are any two models of T such thatM⊆ N , thenM� N .

3.4.2 Theorem. Marker (2002) If an L-theory T admits the quantifier elimination property, then T is
model-complete.

Proof. To show that T is a model-complete theory, we need to show that ifM and N are two models
of T such thatM⊆ N , thenM� N which means thatM is an elementary substructure of N .

LetM and N are two models of the theory T which has quantifier elimination whereM⊆ N and φ(x̄)
be any L-formula with ā in M . Because of quantifier elimination, there exists a quantifier-free formula
ψ(x̄) with the property that

M |= φ(ā) if and only ifM |= ψ(ā). (3.4.1)

Since quantifier-free formula.are preserved.under.extension, we have

M |= ψ(ā) if.and only.if N |= ψ(ā). (3.4.2)

Therefore, from (3.4.1) and (3.4.2), we obtain that

M |= φ(ā) if and only if N |= φ(ā) (3.4.3)

which shows thatM� N and hence T is model-complete.
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3.4.3 Remark. Marker (2002) The converse of Theorem (3.4.2) is not necessarily true, so there is an
L-theory which is model-complete and does not have the quantifier elimination, we can consider the
theory of ACFA as an example. We give the definition of ACFA in the following

3.4.4 Definition. Kamensky (2009) A difference field is the pair (K,σ) where K is a field and σ is an
endomorphism of K. A difference field (K,σ) |=ACFA if and only if the following conditions hold:

1. The field K is an ACF.

2. The endomorphism σ is an automorphism.

3. If V is an irreducible variety over K, and if V σ is the image of V under σ, and if S is an irreducible
closed subvariety of V × V σ such that the projection maps S → V and S → V σ are dominate,
and if T is a proper closed subvariety of S, then there exists some v in V with (v, σ(v)) in S \ T .

3.4.5 Example. The theory of DLO (discrete linear orders) with a bottom but no top is not model-
complete since we can find two modelsM and N such thatM⊆ N butM � N as follows:

Consider the two models Z≥1 and Z≥0 where Z≥1 ⊆ Z≥0, if we take the sentence φ(y) ≡ ∃x(x < y),
then Z≥0 |= φ(1) while Z≥1 6|= φ(1). Therefore Z≥1 � Z≥0, this means that there exists substructure
which is not elementary, and hence the theory is not model-complete.

Note that for the language L = {<, f,=} where < and = are 2-arity relation symbols with a single
unary successor function symbol f , we define the theory of DLO (discrete linear orders) by the following
axioms:

1. ∀x(x 6< x).

2. ∀x∀y(x < y ∨ x = y ∨ y < x).

3. ∀x∀y∀z(x < y ∧ y < z → x < z).

4. ∀x∀y(x < y)↔ s(x) = y ∨ s(x) < y (Every non-maximal element has a successor).

5. ∀x∃y(x = s(y)) (Every non-minimal element has a predecessor).
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4. Model Theory of ACF
In this chapter, our goal is to introduce a suitable language L for the algebraically.closed fields to discuss
some properties of the algebraically.closed fields such as quantifier.elimination, completeness.and model-
completeness. The main results in this chapter can be found in Marker (2002).

4.1 ACF Language
In this.section, we introduce a suitable language to the theory of algebraically closed fields.

4.1.1 Definition. Let Lr = {+, ·, 0, 1} be the language of rings, where + and · are function symbols
with arity equal 2 and 0 and 1 are two constant symbols. The ring axioms are given by the following:

1. Addition is associative

∀x∀y∀z((x+ y) + z = x+ (y + z)).

2. Multiplication is associative

∀x∀y∀z((x · y) · z = x · (y · z)).

3. Addition is commutative

∀x∀y(x+ y = y + x).

4. Distributive law

∀x∀y∀z(x · (y + z) = x · y + x · z).

5. Additive inverse

∀x∃y(x+ y = 0).

6. Additive identity

∀x(x+ 0 = x).

7. Multiplicative identity

∀x(x · 1 = x).

8. Integral domain property

∀x∀y(x · y = 0 =⇒ x = 0 ∨ y = 0).

If we add the following two axioms we obtain the theory of fields.

9. Multiplication is commutative

∀x∀y(x · y = y · x).

10. Multiplicative inverse property

∀x∃y(x = 0 ∨ x · y = 1)

So any set K satisfying the previous axioms is a field and we say it models a field, written as K |=field.
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4.1.2 Definition. If we add the following algebraically.closed property that every non-constant polyno-
mial has a zero to the axioms of fields, we obtain the algebraically closed field axioms

∀x1 . . . ∀xn∃y(yn + x1y
n−1 + · · ·+ xn = 0) where yn = y · y · · · · y︸ ︷︷ ︸

n-times

.

4.1.3 Definition. Any set K satisfying the axioms of algebraically closed fields is called a model of
ACF and we write K |= ACF .

4.1.4 Remark. The algebraically closed field theory ACF does not give any information about the
characteristic of the ACF models. Let φn be the sentence

∀x[x+ x+ · · ·+ x︸ ︷︷ ︸
n-times

= 0].

So let ACFp be ACF∪{φp} where p is a prime number and ACF0 is ACF∪{¬φn} where n = 1, 2, 3, . . . .

We use ACFp to give the theory of algebraically closed fields of characteristic p, where p is either a
prime number or zero.

4.2 Quantifier Elimination for ACF
In the following, we study the quantifier elimination property for ACFp.

4.2.1 Example. The theory of fields does not have the quantifier elimination property.

We prove that by giving the following counter example, let the real field R and the rational field Q with
the rational field Q as a common substructure, consider the formula ψ(b) which is ∃a(a · a = b). It is
clear that

R |= ψ(3) while Q 6|= ψ(3)

Thus from Theorem (3.2.4), ψ has no equivalent quantifier-free formula φ.

4.2.2 Theorem. Marker (2002) The theory of ACFp has quantifier.elimination property.

Proof. Let K and L be two algebraically closed fields containing F as a common subfield which is the
prime subfield of K and L.

We will use Corollary (3.2.6) as follows, we will take ā in F , b in K and φ(x̄, y) is a quantifier.free
formula such that K |= φ(ā, b). If we are able to show the existence of c in L such that L |= φ(ā, c)
then we are sure that ACFp admits quantifier.elimination.

Since φ(ā, b) is a quantifier.free formula, we can rewrite it for simplicity as a disjunctions of.conjunctions
of atomic.formulas, we can write any atomic formula θ(x1, . . . , xn) in the language of rings Lr as the
polynomial f(x1, . . . , xn) = 0 and the negated atomic formulas are of the form f(x1, . . . , xn) 6= 0 where
f in Z[X1, . . . , Xn] so we can consider f(ā, y) as a polynomial in the polynomial ring F [Y ].

Now, we can express φ(ā, y) as follows

φ(ā, y)↔
k∨
j=1

(
n∧
i=1

fi(y) = 0 ∧
m∧
i=1

gi(y) 6= 0).
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Since we have K |= φ(ā, b) then

K |=
n∧
i=1

fi(b) = 0 ∧
m∧
i=1

gi(b) 6= 0.

Now, we have the following two possible cases:

(1) If some of the polynomials fi(b) are nonzero for some i ≤ m then b is algebraic element in F , thus
b in F̄ so which is subset of L, thus we can conclude that b in L. Hence L |= φ(ā, b) and we are
done.

(2) If all the polynomials fi(b) are zero polynomials, we examine
m∧
i=1

gi(b) 6= 0 so that we can find

finitely many zeros because non of the polynomials gi(b) is zero for every i, we call the set of the
possible zeros as A = {a : gi(a) = 0}. Now, we have L \ A is non-empty since L is ACF and by
Proposition (2.2.8) ACF are infinite, then there exists an element c in L \A such that L |= φ(ā, c)
and hence we are done.

4.2.3 Example. Marker (2002)The following two formulas show how quantifier.elimination is useful to
transform a quantifier.formula into a quantifier-free formula as a disjunction.

1. The formula
ψ(b0, . . . , bn) ≡ ∃x(b0 +

n∑
i=1

bix
i = 0)

shows the existence of a zero for the polynomial of n degree with b0, . . . , bn as coefficients, we
know that this formula is true in ACFp for any non-constant polynomial.

Since ACFp has quantifier.elimination so we can find a quantifier.free formula φ such that

φ ≡ b0 = 0 ∨
n∨
i=1

bi 6= 0 where φ↔ ψ.

2. The formula

φ(b0, b1, b2) ≡ ∃x∃y(b2x
2 + b1x+ b0 = 0 ∧ b2y

2 + b1y + b0 = 0) ∧ ¬(x = y)

shows the existence of two distinct zeros for the quadratic polynomial with b0, b1, b2 as coefficients.

Since ACFp has quantifier.elimination and the quadratic polynomial has two distinct zeros in
ACFp if and only if the leading coefficient and the discriminant are not zero. Thus there exists a
quantifier-free formula ψ such that

ψ ≡ b2 6= 0 ∧ b1
2 − 4b2b0 6= 0 where φ↔ ψ.
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4.3 Completeness for ACF
In the following, we study the completeness property for ACFp.

4.3.1 Remark. The theory of algebraically.closed fields.is not.complete because it does not decide.the
characteristic.

4.3.2 Theorem. Marker (2002) The theory of ACFp is a complete theory.

Proof. To prove the completeness of ACFp, we will try to prove that any two models for ACFp are
elementarily.equivalent which means that if K and L are two ACFp models and φ be any sentence then
K |= φ if and only if L |= φ.

Now, if we suppose that K |= ACFp and L |= ACFp, let φ be any sentence in the language Lr. Since
ACFp has quantifier.elimination property so there exists a quantifier.free formula.ψ with the property
that

ACFp |= φ↔ ψ. (4.3.1)

By Proposition (2.2.8) we know that ACFp must be infinite field, also by Theorem (2.1.4) we have that
both K and L have a prime subfield F which is either isomorphic to the field of rationals Q or the field
Zp so we can take the field F as a common subfield of K and L.

Since quantifier-free formula are.preserved under.substructure, so

K |= ψ if and only if F |= ψ. (4.3.2)

Because quantifier-free formula.are preserved.under.extension and we have that L is an extension of F ,
so

F |= ψ if and only if L |= ψ. (4.3.3)

From (4.3.2) and (4.3.3), we observe that

K |= ψ if and only if L |= ψ. (4.3.4)

Finally, from (4.3.1) and (4.3.4) we obtain that

K |= φ if and only if L |= φ (4.3.5)

which means that any two ACFp models are elementarily equivalent K ≡ L and hence ACFp is complete.

4.3.3 Theorem. The theory of ACFp is model-complete.

Proof. The model-completeness of ACFp is just a consequence of Theorem (3.4.2) and (4.2.2).
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5. Ax-Grothendieck Theorem
In this Chapter, we introduce the Ax-Grothendieck theorem which gives a relation between injectivity and
surjectivity of the polynomial map in a finite dimensional complex space. It was proved independently
by James Ax and Alexander Grothendieck in the middle of the 19th century, Rudin also gave a proof of
this theorem using the topological structure. The main results in this chapter are mainly from [Magner],
[Hils and Loeser], and [Marker et al.].

5.1 Algebraic Ax-Grothendieck
5.1.1 Definition. Magner Let K be a field and n be a natural number, a map f : Kn → Kn is a
polynomial map if there exist polynomials f1, . . . , fn in K[x1, . . . , xn] such that

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)).

This means that the individual map in one coordinate consists of polynomials in n variables, so that f
is a collection of n polynomials in K[x1, . . . , xn].

5.1.2 Theorem. Hils and Loeser (2019) If f : Cn → Cn is an injective polynomial map, then f is
bijective.

In the case of n = 1, the theorem can be easily proved as follows.

5.1.3 Proposition. Magner If f : C→ C is an injective polynomial map, then f is bijective.

Proof. Assume that f is injective, then it is non constant.polynomial. Therefore, for any number a in
C, we have f(z)−a is a non-constant polynomial. By using the fundamental.theorem of algebra [2.2.9],
the polynomial f(z)− a has a zero in C which means that f(z)− a = 0 for some z in C and hence f
is surjective.map.

We can study the Ax-Grothendieck theorem as an extension of the fundamental.theorem of algebra, so
we will start with the algebraic version of Ax-Grothendieck as follows:

The following shows that Ax-Grothendieck is true within any finite field.

5.1.4 Proposition. Magner If f : Kn → Kn is an injective polynomial map where K is a finite field
and n is a natural number, then f is bijective.

Proof. The proof of this theorem is clear and it depends on the set-theoretic fact which states that any
injective map from a finite set to itself is necessarily bijective.

5.1.5 Remark. We use f(~x) to express the polynomial map f(x1, . . . , xn) in K[x1, . . . , xn], similarly
we use f(~x, ~y) to express the polynomial map f(x1, . . . , xn, y1, . . . , yn) in K[x1, . . . , xn, y1, . . . , yn].

We use Hilbert’s Nullstellenstaz theorem to check the injectivity and surjectivity properties of polynomials
as algebraic statements as follows:
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5.1.6 Theorem. Hils and Loeser (2019) Let K be an ACF. If f1, . . . , fn in K[x1, . . . , xn] vanishes at
all the points for which {gi} in K[x1, . . . , xn] vanish, then there exist a polynomial Qi and r ≥ 1 such
that

n∑
i=1

giQi = f r

Proof. The proof of this theorem is in [Hils and Loeser] Theorem 3.5.5.

5.1.7 Lemma. Magner If K is an ACF, a polynomial map f : Kn → Kn with f = (f1, . . . , fn)
is.injective if.and only.if there.exists a polynomial.Qi,j in K[x1, . . . , xn, y1, . . . , yn] and natural number
rj .such that

n∑
i=1

(fi(~x)− fi(~y))Qi,j(~x, ~y) = (xj − yj)rj .for all 1 ≤ j ≤ n.

Proof. Firstly, suppose that f is injective, this means that if fi(~x)− fi(~y) = 0.for all i, then.~x− ~y = 0
which means that xj − yj = 0 for all j. If we fix j and by using the hypothesis of Nullstellensatz
(5.1.6), we conclude that the polynomial xj − yj vanishes in the same points at which the collection
of polynomials fi(~x) − fi(~y) in K[x1, . . . , xn, y1, . . . , yn] vanishes because of injectivity. Hence, by
Theorem (5.1.6), we obtain the polynomials Qi,j in

n∑
i=1

(fi(~x)− fi(~y))Qi,j(~x, ~y) = (xj − yj)rj .

Conversely,

if.
n∑
i=1

(fi(~x)− fi(~y))Qi,j(~x, ~y) = (xj − yj)rj ,

and.fi(~x)− fi(~y) = 0 for all i.

Thus.xj − yj = 0 for all j, this implies that.~x− ~y = 0 and hence f is injective.

5.1.8 Lemma. Magner Let K be an ACF. A polynomial map f : Kn → Kn with f = (f1, . . . , fn)
is not surjective if and only if there exists z in Kn and a polynomial R(~x) in K[x1, . . . , xn] such that
(f(~x)− z)R(~x) = 1. We use 1 as a notation to express (1, . . . , 1).

Proof. Firstly, suppose that f is not surjective, so there exists z in Kn such that.f(~x)−z 6= 0 for any ~x
in Kn. Now, by using the Nullstellensatz Theorem (5.1.6) for the constant polynomial 1, we can obtain
a polynomial R(~x) in K[x1, . . . , xn] such that (f(~x)− z)R(~x) = 1.

Conversely, if there is an element z in Kn and a polynomial R in K such that.(f(~x) − z)R(~x) = 1,
then f(~x) 6= z for all ~x in Kn, therefore f is not surjective.

The following show that the Ax-Grothendieck theorem is true within the algebraic closure K̄ of a finite
field K.

5.1.9 Theorem. Magner Let K be a finite field with K̄ as its algebraic closure. If f : K̄n → K̄n is an
injective polynomial map, then f is bijective.
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Proof. Suppose contrarily that f : K̄n → K̄n is a polynomial map which is injective and not surjective.
Since f is injective, we can use Lemma (5.1.7) as follows. The system f(~x) = f(~y) where ~x 6= ~y
has no solution over the ACF K̄ so by Lemma (5.1.7), there is a natural number r and a polynomial
Q : K̄n × K̄n → K̄n such that

(f(~x)− f(~y))Q(~x, ~y) = (~x− ~y)r. (5.1.1)

Similarly, because of non surjectivity of f , compared to Lemma (5.1.8), there exists an element z in K̄n

such that f(x) = z has no solution over the ACF K̄. So there exists a polynomial R : K̄n → K̄n such
that

(f(~x)− z)R(~x) = 1. (5.1.2)

If we fix Q, z, and R as above and let k be the field.generated by K and the.coefficients of all the
polynomials f , Q, R, and z where k is a subfield of K̄. Now by Lemma (5.1.7) and Lemma (5.1.8),
we observe that f is descended from K̄ to k, thus f : kn → kn is an injective.polynomial map.which
is not.surjective. Since k is finitely generated and all.the elements.of k are algebraic.over the field.k,
hence k is finite and this is a contradiction with Proposition (5.1.4).

5.2 Ax-Grothendieck in Model Theory
In this section, we introduce a proof of the Ax-Grothendieck theorem in model theory using first-order
logic, the results of this section are mainly from Marker et al. (2017) and Hils and Loeser (2019).

The following theorem is called Lefschetz’s principle.

5.2.1 Theorem. Marker et al. (2017) If φ be any sentence in the.language of.rings, then the following
are equivalent:

1. C |= φ.which means.that φ is.true in the complex field C.

2. ACF0 |= φ.which means.that φ is.true in every ACF with.characteristic 0.

3. ACF0 |= φ.which means.that φ is.true in some ACF with.characteristic 0.

4. ACFp |= φ for.arbitrary large.primes p which.means that there.exists n such that for all p > n such
that φ is true.is some ACF with.characteristic p.

5. ACFp |= φ for sufficiently.large primes.p which.means that there exists arbitrary large prime p where
φ is true in some ACF with.characteristic p.

Proof. It is clear that (1), (2) and (3) are equivalent by the completeness of ACF0 as proved in Theorem
(4.3.2).

The two statements (4) and (5) are clearly equivalent because of the completeness of ACFp. For (2) to
(5), if we suppose that ACF0 |= φ so by Lemma (3.1.22), there is a finite subset A of ACF0 such that
A |= φ, if we choose p large enough, then ACFp |= A. Hence, ACFp |= φ for sufficiently large prime p.

Finally, for (4) to (2), suppose that ACF0 6|= φ. Since ACF0 is complete, then ACF0 |= ¬φ and by
Lemma (3.1.22), there is a finite subset A of ACF0 such that A |= ¬φ. So if we choose p large enough,
we obtain that ACFp |= A and hence ACFp |= ¬φ which means that ACFp 6|= φ by completeness
theorem.
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5.2.2 Theorem. Hils and Loeser (2019) Let K be an ACF0 and n > 0 is a natural number. If
f : Kn → Kn is an injective.polynomial map,.then f is.bijective.

Proof. Let f : Kn → Kn.be a polynomial.map and the coefficients of f be in the algebraic.closure of
K which is K, so there.exists a.formula φ(x1, . . . , xn, y1, . . . , yn) such that for all a1, . . . , an, b1, . . . , bn
in K where

K |= φ(a1, . . . , an, b1, . . . , bn) if and only if f(a1, . . . , an) = (b1, . . . , bn).

We can express the injectivity φinj as the following formula:

(∀x1, . . . , xn∀x′1, . . . , x′n∀y1, . . . , yn)(φ(x1, . . . , xn, y1, . . . , yn) ∧ φ(x′1, . . . , x′n, y1, . . . , yn)→
n∧
i=1

(xi = x′i)).

Similarly, we can express surjectivity φsurj as the following formula:

(∀y1, . . . , yn∃x1, . . . , xn)φ(x1, . . . , xn, y1, . . . , yn).

Now, our goal is to show that
ACF0 |= (φinj → φsurj).

By using Lefchetz’s.principle, it is sufficient to show that ACFp |= (φinj → φsurj).

If we fix a prime.p and a field F |=ACFp. Consider L = acl(∅), since L generated.by the empty.set ∅
so it is an isomorphic.copy of Fp, then L |=ACFp. Since ACFp is complete theory as stated in Theorem
(4.3.2), it is enough to show that L |= (φinj → φsurj).

Assume that L |= φinj and let b1, . . . , bn in L are parameters, we need to find a1, . . . , an such.that
L |= φ(a1, . . . , an, b1, . . . , bn) to prove surjectivity. We have that each bi is algebraic over the empty
set ∅, since the field generated by ∅ is an isomorphic.copy of Fp which is finite, so iterating by Corollary
(2.1.24), there is a finite.field L0 which is subfield of L and contains b1, . . . , bn. Therefore the restriction
g of the map defined by φ is a map from Ln0 to Ln0 where g is injective and Ln0 is finite, hence by
Proposition (5.1.4), f is bijective.

5.2.3 Theorem. Marker et al. (2017) If f : Cn → Cn is an injective polynomial map, then f is bijective
where n is a positive natural number.

Proof. The proof of this theorem is an instant consequence of Theorems (5.2.1) and (5.2.2).

5.3 Application
The results of this section are mainly from Adamatzky (2018). One of the interesting applications of
the Ax-Grothendieck theorem is studying the cellular automaton concept.

Cellular automaton provided a potential solution and is a popular technique to model the.dynamics
of many.processes, since they can predict complex.space pattern.dynamic evolution.using some simple
rules. Cellular automaton has been used in different areas of science, for example physics, theoretical
biology, and microstructure modeling.

5.3.1 Definition. A cellular automaton is a non-linear dynamical.system in which space and time are
discrete, it consists of a regular grid in which every cell occupied a specific state, and there are some
rules for the configuration to pass between different states.
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5.3.2 Definition. An initial state of the grid is stated at time 0 by assigning a state for each cell.

5.3.3 Remark. Note that the rule of configurations is the same for all the cells and does not change
by time, and a sequence of configurations is called pattern.

5.3.4 Definition. For a given cell, we call all the cells that can be reached from this cell by the rules
of configuration as its neighbors.

5.3.5 Example. An example of cellular.automaton is Conway’s.Game of.Life.

5.3.6 Definition. A state in a cellular.automaton is called a “Garden of Eden” if this state can not be
reached from a previous state following the rules, in other words it is a state that can only occur in
generation 0.

5.3.7 Definition. A two.finite patterns.are twins.if one can be substituted.for the other.whenever it
appears in any sequence of applications of the rules without changing in the future states.

5.3.8 Theorem. (Garden of Eden theorem)

1. A cellular.automaton is injective if every pair of distinct.configurations of the automaton remain
different.after a step of the.automaton.

2. A cellular automaton is surjective if it has no Garden of Eden configuration, in other words, if
every configuration has a predecessor.

Proof. The proof of this theorem is in [Adamatzky].

5.3.9 Corollary. Every injective cellular automaton is bijective

Proof. The proof of this theorem is in [Adamatzky].

The Ax-Grothendieck theorem can be used to verify important results in cellular automaton such as
the Garden of Eden theorem, a result which is similar to the Ax-Grothendieck theorem that gives a
relation between injectivity and surjectivity but in cellular automaton. The direct proof of these results
is already known but the proof by the Ax-Grothendieck theorem can be extended to automaton acting
on amenable groups which is important mathematical objects inside the concept of cellular automaton.

5.4 Conclusion
In summary, the theory of algebraically closed fields has various important model-theoretic results such as
quantifier elimination, and.model-completeness as an instant.consequence of the quantifier.elimination
property. Also, the theory of.algebraically closed.fields is not.complete but once we decide.the charac-
teristic.we obtain the theory of ACFp which is complete.theory. Every injective polynomial map within
an n-dimensional complex space is bijective.
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5.5 Future Work
There is much work to investigate the field of complex numbers from the model-theoretic aspect. As
a future work, we are going to study the field of complex numbers with an additional predicate added
to the language to define the subfield of algebraic numbers. This more complicated structure does
not have quantifier.elimination. However, every.formula is.equivalent to a finite boolean.combination of
existential formulas. We are going to prove this with a version of the back and forth argument.
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