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Abstract 

This work aimed at assessing the response of wetland vegetation productivity to the 2014-2017 

climate-induced drought at the Soetendalsvlei wetland system in the Western Cape province of 

South Africa. To achieve this objective, firstly a literature review on the progress of remotely 

sensed data applications in assessing and monitoring wetland vegetation productivity was 

conducted. The review elaborates on the role of remote sensing in monitoring and assessing 

wetland vegetation productivity, with a detailed discussion of the climate change and 

variability impacts on wetland vegetation productivity. Accurate assessment results are 

produced when suitable processing techniques are selected as well as appropriate spatial and 

spectral resolution for extracting spectral information of wetland vegetation productivity. 

Secondly, wetland vegetation changes and productivity status was assessed using multi-

temporal resolution Landsat series imagery and Normalized Difference Vegetation Index 

(NDVI) during the wet and dry seasons for the period between 2014 and 2018. The results 

presented that wetland vegetation spatial distribution and productivity status was greatly 

affected by drought over the years of the study period. The area under vegetation in the 

Soetendalsvlei wetland drastically declined from 0.13 to 0.07 km2. The highest derived 

productivity status value (NDVI = 0.5) for wetland vegetation was observed during the year 

2014 but progressively declined over the years. For an in-depth understanding of drought 

impacts on wetland vegetation productivity, the study also statistically linked the derived 

productivity status results to the corresponding rainfall and evapotranspiration (ET) observed 

during the study period. Wetland vegetation productivity status showed a significant (r=0.8-

0.92) and positive correlation to the amount of rainfall received over the same period, whereas 

with ET the relationships showed an opposite trend (r=-0.7 to -0.5). This study indicated a 

commendable classification model performance because the accuracy assessment methods 

were ± 80% for all the remotely sensed derived wetland vegetation mapping results. Results of 

this study highlight the importance of integrating remotely sensed data and climate variability 

information in assessing wetland vegetation seasonal and long-term variations. Such 

information can help in decision-making on the conservation of wetlands and effective 

monitoring of wetland ecosystems. 

Keywords: Climate change; climate variability; wetlands; wetland vegetation; wetland 

monitoring; satellite data; multi-date analysis; wetland condition 
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Chapter One 1 

Background and context 2 

1.1. Introduction 3 

Wetland vegetation is a major component of South African wetland ecosystems that cover 4 

approximately 2.4% of the country’s area (Rebelo et al., 2019). Plants in wetlands play an 5 

important role in the environmental functioning of these ecosystems through the provision of 6 

ecosystem services such as food and critical habitat for organisms that live in or near water 7 

resources, such as algae, macro-invertebrates, amphibians, fish, and birds (Clarkson et al., 8 

2013; Palta et al., 2017). Wetland plants help to improve water quality through the uptake of 9 

nutrients, metals, and other contaminants (Dhote and Dixit, 2009). In addition, wetland 10 

vegetation plays an important role in river catchments both directly and indirectly by 11 

contributing to flood control, drought relief, water storage, soil protection, erosion control, 12 

sustained stream flow, recreation & tourism, climate change mitigation and adaptation amongst 13 

others, and therefore have important conservation value (Erwin, 2009; Russi et al., 2013). 14 

However, the ecosystem services provided by wetland vegetation are facing several pressures 15 

due to the impacts of climate change and variability induced drought. 16 

Climate-induced drought is commonly recognized as one of the most important drivers of 17 

affected wetland vegetation (Garssen et al., 2014). A reduced amount of precipitation entering 18 

into a wetland ecosystem usually decreases wetland vegetation productivity (Herbert et al., 19 

2015). Wetland vegetation productivity is largely controlled by the amount and timing of 20 

precipitation and corresponding seasonal fluctuations in soil water content (Zhao et al, 2011). 21 

With less precipitation, there will be less interception as wetland vegetation becomes stressed, 22 

as well as less infiltration and percolation (Love et al., 2010). Water tables will fall (Berland et 23 

al., 2017) and increased evapotranspiration (Fan et al., 2014). This, together with the decrease 24 

in transpiration, will reduce the valuable functions performed by wetland plants (Watson et al., 25 

2018). Quantifying wetland vegetation productivity and spatial distribution is a crucial 26 

technical task essential for understanding the impacts of climate change and variability induced 27 

drought on wetland environments (Fang et al., 2017). There is a critical need to understand 28 

how drought affects wetland vegetation productivity because drought severity and drought 29 

associated wetlands disturbances are expected to increase with climatic change (Abdel-Hamid 30 

et al., 2020).  31 
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As climate change exerts increasing pressures on wetland ecosystems, improved methods for 32 

monitoring wetland vegetation productivity across a range of spatial and temporal scales will 33 

be vital for understanding and addressing responses of wetlands to disturbances such as drought 34 

(Finlayson et al., 2013). Effective mapping will provide tangible evidence about the condition 35 

of wetland vegetation and will be essential in informing evidence-based decision making, 36 

assessing progress towards targets, and in environmental reporting (Wegscheidl et al., 2017). 37 

Monitoring wetland vegetation productivity requires regular availability of data (Russi et al., 38 

2012). Remote sensing methods offer timely, up-to-date, and relatively accurate information 39 

for effective and sustainable management of wetland vegetation (Adam et al., 2010).  40 

Remote sensing has been a popular tool for mapping wetland vegetation (Kaplan and Avdan, 41 

2018). Satellite multispectral imagery can be used to assess wetland vegetation dynamics which 42 

in turn can be linked to rainfall variability of a region under investigation (Tiner et al., 2015). 43 

Literature shows that Landsat satellite imagery has been used to successfully map wetland 44 

vegetation across the planet (Hansen et al., 2013; Chen et al., 2017). Landsat satellites provide 45 

freely available and repeat coverage of spatially continuous measurements collected in a 46 

systematic, and objective manner (Ahmadian et al. 2016). Several studies produced reasonable 47 

results that prove that Landsat imagery enables the mapping of wetland vegetation at both 48 

regional and national scale with high temporal, spatial, and improved spectral resolution 49 

(Rapinel et al., 2015; Aslan et al., 2016; Gao et al., 2016; Zhou et al., 2016; Balogun et al., 50 

2020; Mao et al., 2020). However, more research is needed to enhance the understanding of 51 

wetland vegetation response to climate-induced drought, particularly, in the Southern African 52 

region (Kusangaya et al., 2015). Thus, the main objective of this study was to investigate the 53 

response of wetland vegetation to the 2015-2017 drought at the Soetendalsvlei wetland system 54 

in the Western Cape province of South Africa. 55 

1.2. Problem statement 56 

Drought is reported to have severe adverse effects on wetland vegetation productivity (Moor 57 

et al., 2017). One of the main functions of wetland vegetation is water storage, which is slowly 58 

released into a catchment system over a period of time (Miguez‐Macho and Fan, 2012). This 59 

storage ability will be seriously affected by a drought and the period time that it will be able to 60 

decant into a catchment system will decrease exponentially (Hrachowitz et al., 2016). During 61 

the storage period in a wetland, numerous attributes of the water are changed, led mostly by 62 

the purification of the water during the period it is stored in a wetland, including a vast amount 63 

of cleaning and purification of the water content (Roa‐García et al., 2011). This process is 64 
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facilitated by wetland vegetation as well as the sequencing of excess heavy metals, which are 65 

removed (Thakur et al., 2016). The process is greatly enhanced by the anaerobic condition of 66 

the vegetation in the system. With the amount of water released into a catchment system 67 

decreasing, the water quality will also diminish in its clarity and quality (Zhang et al., 2020). 68 

Certain impurities that would have been changed by wetland vegetation will also start declining 69 

and the amount of contaminated water entering the system will increase (Dan et al., 2017). The 70 

functionality of the wetland will be overall affected as the drought severity increases, as the 71 

amount of water released will diminish and its dilution effect to the catchment will start 72 

lessening, affecting the whole catchment (Mani and Kumar, 2014). Since South Africa remains 73 

in the grip of a 100-year drought (Bhaga et al., 2020; Bhaga et al., 2020; Sunter et al, 2018), 74 

there is a need to investigate the impact this climatic phenomenon had on wetland ecosystems. 75 

Wetland science is less than seventy years old, not enough research on a larger scale has been 76 

undertaken to provide an exact amount of all the effects a drought will have on wetland 77 

vegetation in general (Junk, 2013). Owing to the fact that up to 90% of the wetland research 78 

has been focusing on the purification of polluted systems by building biomimicry artificial 79 

wetlands using the same plant species that occur in that area or country. So far, information on 80 

the impacts of droughts and climate variability on wetland vegetation productivity remains 81 

limited. However, for informed management of these ecohydrological systems, understanding 82 

wetland vegetation as well as how it responds to these events is therefore imperative.  83 

1.3. Aims and objective of the study 84 

1.3.1. Aim 85 

The aim of this study was to determine how wetland vegetation responds to drought at the 86 

Soetendalsvlei wetland system in the Western Cape province of South Africa. 87 

1.3.2. The objectives of the study were therefore to: 88 

I. Provide a critical evaluation of scientific literature on the use of remote sensing 89 

techniques in assessing wetland vegetation productivity 90 

II. Characterize and assess vegetation changes in the Soetendalsvlei wetland to understand 91 

the impact of the 2014-2018 drought. 92 

III. Examine the relationship between wetland vegetation productivity and rainfall 93 

variability. 94 
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1.4. Research questions 95 

I. What are the key scientific knowledge gaps and research progress made on the 96 

assessment of wetland vegetation productivity using remote sensing techniques? 97 

II. What was the status and distribution of wetland vegetation in the Soetendalsvlei 98 

wetland before, during, and after the long-term drought? 99 

III. How did climate change and variability affect wetland vegetation productivity? 100 

IV. Is there a correlation between drought trend results and wetland vegetation 101 

productivity? 102 

1.5. Significance of the study 103 

Wetland ecosystems perform valuable ecological functions (Meli et al., 2014). For instance, 104 

they act as a water source and regulate runoff, and more importantly, they function as nutrient 105 

filters and sinks by filtering suspended solids. They directly support millions of people through 106 

the provision of critical ecosystem goods and services (Gunderson et al., 2016). Apart from 107 

these important environmental services, wetlands are also valuable in terms of recreation, 108 

scientific, educational, and cultural values. Understanding that wetlands are a special type of 109 

landscape, that they are widespread, and that they provide both environmental and cultural 110 

benefits to society, it is therefore clear that wetlands conservation is essential. As the rate of 111 

wetland degradation and losses increases due to drought, it is imperative that tailor made 112 

strategies are devised and put in place to conserve these ecosystems from further deterioration. 113 

Decision makers, planners, and water resource managers have to understand the impact drought 114 

has on wetland productivity. 115 

Remote sensing offers freely available, realistic, and reliable products that can be used for 116 

mapping and assessing wetland vegetation productivity over time and space. This study 117 

proposes a spatial explicit methodology for mapping and assessing wetland vegetation 118 

productivity and their responses to environmental threats such as droughts and climate 119 

variability. Such information will provide an in-depth understanding of the relationships 120 

between wetland vegetation and rainfall variability, and this can assist in the effective 121 

management of wetlands specifically those under threat. Furthermore, the results of the study 122 

will provide a baseline for future research on similar or related studies. In addition, spatially 123 

explicit information about the response of wetland ecosystems to environmental change will 124 

contribute to wetland protection and restoration initiatives. The study will also contribute to 125 

the literature on remote sensing wetland vegetation productivity, and impacts of climate change 126 

and variability on wetland vegetation productivity. 127 
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1.6. Study area 128 

1.6.1. Description of the study area  129 

The study focused on the Soetendalsvlei wetland system found in the Heuningnes Catchment, 130 

which occurs in the southernmost region of South Africa (Figure 1). The catchment covers an 131 

area of about 1 401 km2 (Hoekstra and Waller 2014) and lies within the Mediterranean climatic 132 

zone. The area receives most of its rainfall during the winter season (mid-May to late August). 133 

The temperatures in the area vary significantly throughout the year, with an average range of 134 

10ºC in winter and 28ºC in summer and a mean annual rainfall of 500mm (Roberts, 2005). The 135 

study site is a natural freshwater lake which is about 8 km long and a width of up to 3 km, it 136 

occurs along the Nuwejaars River, between Elim and Soetendalsvlei. It is one of the major 137 

lakes in the catchment (~20 km2) and South Africa's second-largest freshwater lake after Lake 138 

Chrissie (Hoekstra & Waller 2014).  139 

The area is considered a biodiversity hotspot because of the unique animals, flora, and 140 

landscapes found in the region. It is home to a highly threatened lowland fynbos type of 141 

vegetation and a prominent area for twitches (Gordon et al. 2012). The indigenous fauna and 142 

flora of the region form the basis of the fishing and tourism sectors of the economy (Gordon et 143 

al. 2011). Marine resources such as linefish, rock lobster, and abalone as well as the bait species 144 

contribute a huge amount to the Western Cape economy, with the industry worth over R1.3 145 

billion per year (Turpie et al. 2003). Both the film industry and tourism are dependent on natural 146 

resources with an estimated 24% of foreign visitors to the region being attracted by its scenic 147 

beauty. Direct revenue is also generated from the fynbos through harvesting and cultivation of 148 

indigenous rooibos tea, wildflowers like proteas, buchu for its aromatic oils, reeds for 149 

thatching, and various traditional and commercially marketed medicinal plants (Braschler et 150 

al. 2010). 151 
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 152 

 153 

Figure 1:  Location of the Soetendalsvlei in the Heuningnes Catchment, South Africa 154 

1.7. Structure of the research 155 

This dissertation consists of four chapters. 156 

1.7.1. Chapter one 157 

This chapter provides the background of the research conducted on the subject. It also presents 158 

the main aim and objectives of the study, as well as outlines the problem statement and research 159 

questions. 160 

1.7.2. Chapter two 161 

The remote sensing of wetland vegetation is a key requirement for global change research. This 162 

chapter provides a detailed review of wetland vegetation productivity using remote sensing 163 

methods. Firstly, the review elaborates on the impacts of climate change and climate variability 164 

on wetland vegetation productivity. The significance of remote sensing in monitoring and 165 

assessing wetland vegetation productivity is explained in detail. The relevance of available 166 

remote sensing sensors in determining seasonal and long-term variations of wetland vegetation 167 

is also explored. The challenges of remote sensing and progress on wetland vegetation 168 
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monitoring are provided and the potential of remote sensing vegetation indices for assessing 169 

wetland vegetation productivity is also discussed. 170 

1.7.3. Chapter three 171 

Wetland vegetation mapping presents valuable information for understanding the response of 172 

ecosystems to global climate change through quantification of vegetation distribution and 173 

condition. The chapter is based on the two objectives of the study, which focus on mapping 174 

and assessing changes in vegetation health and distribution between the years 2014 to 2018 175 

and examining the relationship between wetland vegetation productivity and rainfall 176 

variability. Readily available time series of Landsat 8 OLI images were used to acquire more 177 

information about the distribution and extent of vegetation on the site. Estimation of NDVI for 178 

the wet and dry seasons was used for extracting wetland vegetation health and cover 179 

information. This chapter also comprises detailed comparison information explaining how the 180 

amount of rainfall entering into an ecosystem affects the health and distribution of vegetation. 181 

1.7.4. Chapter four 182 

This chapter provides a detailed synthesis of the main findings of the study. Major conclusions 183 

and recommendations drawn from the dissertation are also included. 184 

  185 
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Chapter Two 345 

Remote sensing of wetland vegetation productivity: A review 346 

Abstract 347 

A literature review on the progress of remotely sensed data applications in assessing and 348 

monitoring wetland vegetation productivity was conducted. The review elaborates on the role 349 

of remote sensing in monitoring and assessing wetland vegetation productivity, with a detailed 350 

discussion of the climate change and variability impacts on wetland vegetation productivity. 351 

Firstly, the review highlights the importance of remote sensing in monitoring and assessing 352 

wetland vegetation productivity. The relevance of available remote sensing sensors in 353 

determining seasonal and long-term variations of wetland vegetation is also discussed in detail. 354 

The potential of remote sensing vegetation indices for assessing wetland vegetation 355 

productivity is explored and challenges of remote sensing and progress on wetland vegetation 356 

monitoring are provided. The review also elaborates on the impacts of climate change and 357 

climate variability on wetland vegetation productivity. It can be concluded that the remote 358 

sensing of wetland vegetation has some particular challenges that require careful consideration 359 

in order to obtain accurate wetland information. These include an in-depth comprehension of 360 

factors affecting the relationship between wetland vegetation and electromagnetic radiation in 361 

a certain environment, selecting suitable processing techniques as well as appropriate spatial 362 

and spectral resolution for extracting spectral information of wetland vegetation. 363 

Keywords: wetlands; wetland vegetation; remote sensing; mapping; vegetation indices; 364 

climate change; climate variability. 365 

2.1. Introduction 366 

Wetlands are recognized as one of the richest and most productive ecosystems on earth. 367 

Associated with wetlands are a wide range of specially adapted plant species giving food and 368 

shelter to a variety of animal life (Desta et al., 2012; Gxokwe et al, 2020). Nearly all of the 369 

wetland plants are a valuable food source for wetland wildlife (Cronk and Fennessy, 2016). 370 

Animals such as waterfowl, turtles, muskrats, and fish feed on the plants as well as their seeds 371 

(Bakker et al., 2016). Wetland vegetation creates habitats for these animals as well as other 372 

birds, snails, and insects (van der Valk, 2012). They provide safe breeding and nesting grounds 373 

for these and many other creatures (Jedlikowski et al., 2016). Wetland vegetation serves many 374 

useful purposes. It not only soaks up water that would otherwise cause flooding but slows the 375 

flow as well. It also helps to prevent coastal erosion and also filters out pollutants and sediment 376 
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(Malaviya and Singh, 2012). Wetland vegetation productivity is, however, decreasing rapidly, 377 

due to increased pressure resulting from human and natural threats such as droughts, flooding, 378 

global warming, drainage, overgrazing, pollution, damming to form lakes or ponds, agricultural 379 

land management, converting other lands to agriculture, adding pavement, or diverting water 380 

flow, which affects the soil’s hydrological condition (Bassi et al., 2014; Twilley et al., 2016). 381 

While wetlands act as a buffer against weather occurrences, extreme conditions can diminish 382 

vegetation productivity and increase pollution from runoff (Sarkar et al., 2016). Pollution enters 383 

the water table through pesticides, sediment, sewage, fertilizers, and many other forms, it 384 

degrades wetlands and water quality (Shutes, 2001). Again, wetland vegetation act as a natural 385 

filter for polluted water, but it can only absorb so much. Once a wetland is polluted, it is 386 

difficult for wetland plants to clean it up. Global warming is also a threat to wetlands (Tiner, 387 

2016). A study by the Pew Center on Global Climate Change found that as air temperatures 388 

rise, so do water temperatures (Poff et al., 2002). Because warmer waters are more productive, 389 

wetlands may end up overrun by algae, which degrades water quality and poses health 390 

problems to humans and animals (Jenny, 2020). The algae bloom known as red tide releases 391 

toxins, which have killed thousands of fish (Richlen et al., 2010). Eating affected shellfish can 392 

expose humans to these toxins (Marques et al., 2010). Breathing the air near a red tide can also 393 

cause respiratory issues in some people (Hoagland et al., 2014). Also, many fish rely on cooler 394 

water to survive and can die out when smaller lakes or ponds warm-up (Brönmark and Hansson, 395 

2017). Elevated temperatures also lead to reduced precipitation, which reduces the amount of 396 

runoff provided to wetlands (Jeppesen et al., 2009). The functionality of wetland vegetation 397 

will be overall affected as the amount of natural and anthropogenic factors combined with 398 

global processes increase (Kirwan and Megonigal, 2013). Therefore, monitoring wetland 399 

vegetation productivity becomes vital, to ensure their sustainability in maintaining ecosystem 400 

services. 401 

Vegetation productivity indicates spatial distribution and change of vegetation cover, 402 

throughout this literature review, it is considered as the health of wetland vegetation. Wetland 403 

vegetation productivity monitoring is undertaken for forestry plantations around the globe, 404 

environment reporting, targeting investment, meeting international obligations, targeting 405 

investment, and meeting international obligations, sustainable farming certification, and land 406 

management (Kelly and Tuxen, 2009; Taddeo et al., 2019). Monitoring the state of vegetation 407 

productivity is a key requirement for wetland ecosystems management research (Lee and Yeh, 408 

2009). It is an important technical task for managing natural resources as vegetation provides 409 
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a base for all living beings and plays an essential role in affecting global climate change 410 

(Canisius et al., 2019). Vegetation mapping also presents valuable information for 411 

understanding the natural and man-made environments through quantifying vegetation cover 412 

from local to global scales at a given time point or over a continuous period (Mu et al., 2020). 413 

It is critical to obtain current states of vegetation cover in order to initiate vegetation protection 414 

and restoration programs (Thakur et al., 2012). Better conserving plant communities. Strong 415 

preference has been given to acquire updated data on vegetation cover changes regularly or 416 

annually to better assess the environment and ecosystem (Xie et al., 2008). 417 

Given the diversity of needs, contexts, and purposes, many different programs have been 418 

developed for monitoring wetland vegetation productivity. Traditional methods such as field 419 

surveys, literature reviews, map interpretation, collateral, and ancillary data analysis, however, 420 

are not effective to acquire vegetation covers because they are time consuming, date lagged, 421 

and often too expensive (Gil et al., 2011; Gxokwe et al., 2020). The technology of remote 422 

sensing offers a practical and economical means to study vegetation cover changes, especially 423 

over large areas (Langley et al. 2001; Nordberg and Evertson 2003). Because of the potential 424 

capacity for systematic observations at various scales, remote sensing technology extends 425 

possible data archives from the present time to over several decades back (Alonso et al., 2017). 426 

For this advantage, enormous efforts have been made by researchers and application specialists 427 

to delineate vegetation cover from local scale to global scale by applying remote sensing 428 

imagery (Kampe et al., 2010). Increasing demand for information at broader scales has seen 429 

the application of spatial modelling (Zerger et al., 2009) as well as many remote sensing studies 430 

for mapping and monitoring wetland ecosystems (Slagter and Reiche 2020, Kaplan and Avdan 431 

2019; Long et al 2007). The use of remote sensing for ecological monitoring of wetlands has 432 

been reviewed comprehensively (Mahdavi et al 2018; Guo et al 2017; Zhao et al 2015; Kuenzer 433 

et al 2011; Henderson and Lewis, 2008; Ozesmi 2002). The reviews focus on wetland 434 

classification, biomass estimation, mangrove ecosystems, water quality, sea-level rise, wetland 435 

presence, extent, and restoration, but they do not consider the role of remote sensing 436 

applications in discriminating and mapping wetland vegetation productivity.  437 

A literature review based on the use of remotely sensed techniques to monitor wetland 438 

vegetation productivity is discussed in detail in this study. Initially, the review highlights the 439 

importance of remote sensing in monitoring and assessing wetland vegetation productivity. 440 

The relevance of available remote sensing sensors in determining seasonal and long-term 441 

variations of wetland vegetation is also discussed in detail. The potential of remote sensing 442 
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vegetation indices for assessing wetland vegetation productivity is explored and challenges of 443 

remote sensing and progress on wetland vegetation monitoring are provided. The review also 444 

elaborates on the impacts of climate change and climate variability on wetland vegetation 445 

productivity. 446 

As climate change place increasing pressures on wetland ecosystems, improved methods for 447 

monitoring vegetation across a range of spatial and temporal scales will be vital for 448 

understanding and addressing changes to vegetation. Effective mapping will provide tangible 449 

evidence about the condition of wetland vegetation and will be essential in informing evidence-450 

based decision making, assessing progress towards targets and in environmental reporting. 451 

2.2. Impacts of climate change and variability on wetland vegetation productivity 452 

Wetland vegetation has the highest carbon density, which makes them play an important role 453 

in global climate change and variability, and biogeochemical and carbon cycles (Junk et al., 454 

2013). They are the most valuable part of a wetland providing many beneficial ecosystem 455 

services. Among all wetland vegetation services, water purification, flood control, and climate 456 

change mitigation are the most important services for human communities (Mitsch and 457 

Gosselink, 2007; Mungur et al., 2018). Since the 1950s, global climate systems have shown an 458 

unprecedented change (Oleksy et al., 2020). The earth's surface has experienced a warmer 459 

climate for each of the past three decades successively. Between 1880 and 2012, the land and 460 

ocean surface temperatures have increased by approximately 0.85 °C (range between 0.65 and 461 

1.06 °C) according to Van Ruijven et al. (2014). Wetland plants play an important role in 462 

climate change, because of their capacity to modulate atmospheric concentrations of 463 

greenhouse gases such as methane, carbon dioxide, and nitrous oxide, which are dominant 464 

greenhouse gases contributing to about 60%, 20%, and 6% of the global warming potential, 465 

respectively (Bernstein et al., 2007). 466 

Many different factors (biotic and abiotic) influence the function of wetlands. Climate change 467 

has been identified as a major threat to wetlands (Osland et al., 2016). It can influence a wetland 468 

ecosystem by changing hydrological patterns as well as through increasing temperature, which 469 

in turn can alter the biogeochemistry of the ecosystem (Erwin, 2009; Stewart et al., 2013). 470 

Wetlands have been identified as one of the most productive ecosystem types; they can actively 471 

accumulate and sequester carbon as plant biomass or organic matter in soil through 472 

photosynthesis (Alongi, 2012). The waterlogged state of wetlands causes inefficient 473 

decomposition that surpasses the rate of production. This anoxic condition brings about an 474 
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enormous measure of carbon gathering in wetlands, which makes them a sink of carbon (Laiho, 475 

2006). 476 

The hydrological fluctuation of wetlands is inevitable because they are often located in a 477 

transition zone between a terrestrial and an aquatic ecosystem (Dronova et al., 2011). Although 478 

they have been known to be resilient to change in general, they may still be highly susceptible 479 

to hydrological changes, especially when this change is exacerbated by other sources of 480 

disturbance such as climate change and variability (Bernstein et al., 2007). Climate change and 481 

variability can affect wetland vegetation by direct and indirect effects of rising temperature, 482 

changes in rainfall intensity and frequency, extreme climatic events such as drought, flooding, 483 

and the frequency of storms (Michener et al., 1997; Leigh et al., 2015). Altered hydrology and 484 

rising temperature can change the biogeochemistry and function of wetland vegetation to the 485 

degree that some important services might be turned into disservices (Salimi et al., 2021). This 486 

means that the plants will no longer provide a water purification service and adversely they 487 

may start to decompose and release nutrients to the surface water causing problems such as 488 

acidification, brownification, and eutrophication in the water bodies (Roulet and Moore, 2006; 489 

Stets and Cotner, 2008; Kritzberg et al., 2018). 490 

Decomposition exceeding wetland vegetation productivity rate because of climate change and 491 

variability might result in a shift from a sink to a source of carbon, namely; carbon dioxide and 492 

methane emissions to the atmosphere (Laiho, 2006; Flanagan and Syed, 2011). With warmer 493 

conditions, more nitrous oxide emissions from wetlands might happen due to higher microbial 494 

activity and higher nitrification and denitrification rate as well (Huang et al., 2013; de Klein 495 

and van der Werf, 2014). To analyze all of these changes in a wetland, a comprehensive 496 

monitoring system is needed to understand how wetland vegetation responds to the stresses 497 

and how they can be adapted to future climate change. 498 

The study of climate change and variability impact on wetland vegetation productivity is one 499 

of the most critical challenges scientists are facing. According to Stewart et al. (2013), the 500 

impact of climate change and variability on wetland vegetation productivity can be assessed 501 

by using numerous approaches such as remote sensing tools. 502 

2.3. The importance of remote sensing in monitoring and assessing wetland vegetation 503 

productivity 504 

Wetland mapping has been used to determine the spatial extents of vegetation for monitoring 505 

and assessment (Hess et al., 2015). Traditionally, it has involved carrying out on-site analysis 506 

http://etd.uwc.ac.za/ 
 



19 
 

(Kusler, 2012) that provided detailed data sets. However, due to the inaccessibility of wetland 507 

ecosystems, it has always meant that collected data be extrapolated to describe the conditions 508 

in unmapped areas (Ndirima, 2007). Moreover, location, inaccessibility, the variation in sizes, 509 

and costs related to additional personnel, time, and equipment has rendered such efforts less 510 

valuable (Harvey & Hill, 2001; Garone, 2011). 511 

Increasingly, remotely sensed data is being used for wetland vegetation mapping and 512 

monitoring (Hessa et al, 2003; Wu, 2017). This is because remote sensing is cost effective and 513 

it provides a synoptic view, multi-temporal and multi-spectral coverage (Bryson et al., 2013). 514 

Such remotely sensed data is interpreted visually through automated image classification 515 

(Zalazar, 2015) to help understand wetland vegetation productivity dynamics. Using time series 516 

data does not only map the spatial distribution of wetland vegetation but also assess its 517 

dynamics. 518 

Studies based on optical remote sensing have demonstrated this capability owing to their long 519 

period of data acquisition. Such studies have also shown that it is possible to map wetland 520 

ecosystems at high accuracy. For example, LaRocque et al. (2020) produced a wetland map for 521 

Southern New Brunswick in Canada using a combination of Landsat data, ALOS-1 PALSAR, 522 

Sentinel-1, and LiDAR, and achieved an overall accuracy classification of 97.67%. Similarly, 523 

Harvey and Hill (2001) using SPOT, and Landsat data in Australia achieved accuracies of over 524 

70% for each. In recent years, ASTER is increasingly recognised as a source of remote sensing 525 

data because of its high spatial resolution (Amani et al., 2018). Similarly, high temporal 526 

resolution sensors, MODIS and NOAA-AVHRR, have been applied with a preference for 527 

MODIS due to high spatial resolution (Huete et al., 2002) and data quality (Pettorelli et al., 528 

2005). Use of Radar in wetland vegetation mapping has been minimal though well 529 

demonstrated in literature (Ozesmi and Bauer, 2002; Horrit et al., 2003; Taft et al., 2004; 530 

Henderson and Lewis, 2008; Dabboor and Brisco, 2018). 531 

While most of the above data sources are sufficient for single-time mapping, monitoring 532 

wetland vegetation productivity requires regular availability of data. Studies (Ozdogan and 533 

Gutman, 2008; Hansen et al., 2008; Liu et al., 2010; Huang et al., 2013; Setiawan et al., 2014; 534 

Wondrade et al., 2014; Arnous and Green, 2015; Andrew and Warrener, 2017; Monegaglia et 535 

al., 2018; Islam et al., 2018) have demonstrated the fundamental importance of multi-temporal 536 

remotely sensed data in assessing vegetation dynamics. Nevertheless, the need for multi-537 

temporal data brings into perspective the question of affordability and availability. This drives 538 
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the consideration of freely available sources like Landsat 8 OLI. Currently, Landsat 8 OLI is 539 

preferred for wetland vegetation productivity monitoring due to its narrower NIR band that 540 

avoids water absorption regions of the spectrum, and increased chlorophyll sensitivity in the 541 

red band (Ke et al, 2015). The derived data is used to calculate vegetation indices (VIs) for 542 

monitoring. 543 

Vegetation indices are mathematical combinations that quantify plant vigor for each pixel in a 544 

remote sensing image (Xue and Su, 2017). Fang et al. (2014) argue that they help isolate green 545 

photosynthetically active signals from the spatially and temporally mixed pixels for meaningful 546 

inter-comparisons of vegetation activity. They include the NDVI, Land Surface Water Index 547 

(LSWI), Enhanced Vegetation Index (EVI), normalized water vegetation index (NWVI); soil-548 

adjusted, modified soil-adjusted, and transformed soil-adjusted vegetation indices (SAVI, 549 

MSAVI, and TSAVI) (Reed, 2006; Zhang and Zhou, 2019). Among these, NDVI is the most 550 

commonly used and relies on the absorption of red radiation by chlorophyll and other leaf 551 

pigments in the red spectrum, and strong scattering in the infrared spectrum (Dogan et al., 552 

2009). Its application is broad and includes the assessment of biomass, fraction of absorbed 553 

photosynthetically active radiation (FAPAR), green cover, and leaf area index (Ndungu et al., 554 

2019; Chidodo et al., 2019). 555 

Time series of vegetation indices have also been used to generate spectral profiles for revealing 556 

vegetation health changes (Ozyavus, 2015). This involves the use of algorithms to assess 557 

transition dates: green-up, maturity, senescence, and dormancy (Zhang et al., 2010) both in 558 

natural and cultivated environments (Rajah et al., 2019; Zhang et al., 2019; Wu et al., 2021). 559 

More so, when correlated with environmental variables they help understand the spatial-560 

temporal variations of vegetation that are related to climate change and variability (Wang et 561 

al., 2018). Remotely sensed data provide valuable means for monitoring and assessment of 562 

wetland vegetation productivity and also helps in understanding its seasonal changes, in 563 

addition to revealing its relationship with climate change and variability. Time series of 564 

vegetation indices have also been used to generate spectral profiles for revealing vegetation 565 

health changes (Ozyavus et al., 2015). This involves the use of algorithms to assess transition 566 

dates: green-up, maturity, senescence, and dormancy (Zhang et al., 2010) both in natural and 567 

cultivated environments (Rajah et al., 2019; Zhang et al., 2019; Wu et al., 2021). More so, 568 

when correlated with environmental variables they help understand the spatial-temporal 569 

variations of vegetation that are related to climate change and variability (Wang et al., 2018). 570 
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2.4. The relevance of available remote sensing sensors in determining seasonal and long-571 

term variations of wetland vegetation 572 

Historically, aerial photography was the first remote sensing technique to be used for assessing 573 

seasonal and long-term variations of wetland vegetation (Cowardin 1974; Shima 1976; 574 

Howland 1980, Madison 1981; Pillay 2001; Miyamoto 2004; Mahdavi et al., 2018). According 575 

to these studies, aerial photography is the most useful remote sensing method for detailed 576 

wetland mapping because of its minimum mapping unit. However, aerial photography is not 577 

feasible for determining seasonal and long-term variations of wetland vegetation on a regional 578 

scale (Martínez, and Gilabert, 2009). In addition, aerial photography is considered impractical 579 

for monitoring that requires continual validation of information because it is time-consuming 580 

to process and costly (Mlambo et al., 2017). 581 

Presently, a range of remote sensing images are available for mapping and assessing seasonal 582 

and long-term variations at different levels (Zheng et al., 2015). Numerous space-borne and 583 

airborne sensors from multi-spectral to hyperspectral sensors function within the different 584 

optical spectrum, with different spatial resolutions ranging from sub-metre to kilometers and 585 

with different temporal frequencies alternating from 30 minutes to weeks or months have been 586 

developed (Nagendra et al., 2013). Among them, aerial photography, Landsat TM, and SPOT 587 

images were ordinarily researched in mapping wetland vegetation seasonal changes. Image 588 

analysis methods commonly used include digital image classification such as supervised and 589 

unsupervised classification (Lee et al., 2011; Sghair and Goma, 2013; Lane et al., 2014; Amani 590 

et al., 2019), and vegetation index clustering (Yang, 2007; Mtshali, 2015; Walter and Mondal, 591 

2019; Eid et al., 2020).  592 

Mosime and Tesfamichael (2017) did a comparison of SPOT and Landsat TM data in 593 

classifying wetland vegetation in the Klipsriersberg Nature Reserve of South Africa. Their 594 

results showed that the overall accuracy of SPOT images was higher than Landsat images. 595 

They concluded that SPOT imagery is recommended to map wetland vegetation diversity in a 596 

localized area. But neither Landsat TM nor SPOT data were effective to determine seasonal 597 

and long-term variations of wetland vegetation. McCarthy et al. (2005) in Botswana found that 598 

the high spatial and temporal variation in vegetation in the Okavango Delta makes eco-region 599 

classification from Landsat TM data unsatisfactory for achieving land cover classification. In 600 

Australian heterogeneous floodplain wetlands, Landsat TM has proven to be a potential source 601 

of defining vegetation density, vigor, and moisture status, but not efficient for assessing subtle 602 

changes of wetland vegetation (Thomas et al., 2015).  603 

http://etd.uwc.ac.za/ 
 



22 
 

SPOT and Landsat TM satellite images have proven deficient for determining seasonal and 604 

long-term changes of vegetation in detailed wetland environments (Sirin et al., 2018). This is 605 

due to the broad nature of the spectral wavebands with respect to the sharp ecological gradient 606 

with narrow vegetation units in wetland ecosystems, and the lack of high spectral and spatial 607 

resolution of optical multispectral imagery, which restricts the detection and mapping of 608 

vegetation seasonal variations in densely vegetated wetlands (Fensham and Fairfax, 2002). 609 

Although these studies produced reasonable results on mapping wetland vegetation at a 610 

regional scale and vegetation communities, more research is needed to explore the benefits of 611 

incorporating bathymetric and other auxiliary data to improve the accuracy of assessing 612 

wetland vegetation seasonal and long-term variations. 613 

Hyperspectral imagery proved to be useful in determining wetland vegetation seasonal and 614 

long-term variations with higher accuracy. For example, Judd et al. (2007) used hyperspectral 615 

image data for mapping wetland vegetation. They examined the utility of airborne 616 

hyperspectral imagery in mapping salt marsh vegetation in Humboldt Bay, California, USA. 617 

Overall accuracy among salt marsh vegetation was assessed at 85.1%. Zhang (2014) also 618 

explored a combination of hyperspectral and LIDAR systems for vegetation mapping in the 619 

Florida Everglades. A synergy of hyperspectral imagery with all LIDAR-derived features 620 

achieved the best result with an overall accuracy of 86 percent and a Kappa value of 0.82 based 621 

on an ensemble analysis of three machine-learning classifiers. The study shows the promise of 622 

the synergy of hyperspectral and LIDAR systems for mapping complex wetlands. These studies 623 

prove that hyperspectral images produce accurate information for wetland vegetation 624 

monitoring. However, hyperspectral imagery is time-consuming to process, expensive to 625 

acquire, even when small areas are covered (Adam et al., 2010). Innovative methods that take 626 

advantage of the relatively large coverage and high spatial resolution of the fine sensors and 627 

the high spectral resolution of hyperspectral sensors could result in more accurate assessment 628 

models of wetland vegetation at a reasonable cost. 629 

Determining wetland vegetation seasonal and long-term modifications requires regular the 630 

availability of data, improved spatial and spectral resolution. With availability of free images 631 

acquired by Landsat-8 OLI and Sentinel-2 remote sensing satellites, it becomes possible to 632 

enable temporal resolution of an image every 3-5 days, and therefore, to develop next-633 

generation wetland vegetation products at higher spatial resolution (30 m). Bhatnagar et al. 634 

(2020) mapped wetland vegetation communities’ ecological condition inside Ireland wetlands 635 

using Sentinel-2 data. 10 bands of Sentinel-2 Level-2 data and 3 indices, Normalised 636 

http://etd.uwc.ac.za/ 
 



23 
 

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Normalised 637 

Difference Water Index (NDWI) were used to create vegetation maps of each wetland using 638 

Bagged Tree (BT) ensemble classifier and graph cut segmentation also known as MAP 639 

(maximum a posteriori) estimation. An overall classification accuracy up to 87% depending on 640 

the size of the vegetation community within each wetland has been achieved which suggests 641 

that the proposed method is appropriate for wetland health monitoring. Tieng et al. (2019) 642 

mapped the spatial distribution of Cambodia’s mangrove forest derived from 30 m x 30 m 643 

spatial resolution and polygon spatial extent from Landsat 8 (L8) image. Random Forest (RF) 644 

Classifier, a supervised classification technique, was applied to three L8 images Archive Pre-645 

Collection Level-1 (L8 OLI/TIRS) collected in December 2014, February 2015, and April 646 

2015. Statistical analysis indicates the total area of mangrove forest cover reached 73,240ha 647 

with an overall classification accuracy of 98.2%, 97.9%, and 99.5% for three periods and the 648 

validation overall accuracy were 91.5%, 89.1%, and 97.6%, respectively. Their findings 649 

suggest that L8 imagery can be used to estimate long-term changes in mangrove forests in 650 

Cambodia with higher accuracy. The results of this study may be useful to assist decision-651 

making in planning for mangrove ecosystem restoration initiatives, evaluation of ecological 652 

services, and in better estimation of carbon stock in a mangrove forest. These studies produced 653 

reasonable results that prove that Landsat 8 and Sentinel 2 enable the mapping of wetland 654 

vegetation at both regional and national scales with a high temporal, spatial and improved 655 

spectral resolution, which is a fundamental requirement for assessing wetland vegetation 656 

seasonal and long-term dynamics. Table 1 provides a detailed summary of remote sensing 657 

studies on mapping wetland vegetation productivity. 658 

Table 1: Summary of remote sensing applications in assessing and mapping wetland vegetation 659 

Sensor Image Analysis 

Technique 

Results References 

Sentinel 2 Bagged Tree (BT) 

ensemble classifier  

Overall classification accuracy=87%  Bhatnagar et al. 

(2020) 

Landsat 8 Random Forest (RF) 

Classifier 

Overall classification accuracy of 

98.2%, 97.9% and 99.5% for three 

periods and the validation overall 

accuracy were 91.5%, 89.1% and 

97.6%, respectively. 

Tieng et al. 

(2019)  
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SPOT 5, 

SPOT 6, 

Landsat 7, 

Landsat 8 and 

Sentinel 2 

Object-oriented, 

trees, minimum 

distance, and neural 

networks 

classification 

methods 

Overall accuracies for minimum 

distance and object-oriented 

method=95.00% and  94.58% better 

than neural network and trees 

methods= 88.96% and 80.83% 

Sirin et al. 

(2018) 

Landsat 8 

OLI SPOT 7 

Unsupervised 

classification 

SPOT accuracy assessment (Overall 

accuracy=71%; kappa=0.58) Landsat 

8 OLI accuracy assessment (Overall 

accuracy=53%; kappa=0.35) 

Mosime and 

Tesfamichael 

(2017)  

Landsat 7 

ETM+  and 

Landsat 5 TM 

Unsupervised 

classification, NDVI, 

NDI, and Normalised 

Difference Water 

Index (NDWI) 

Landsat imagery overall accuracies 

were 93% and 95% for a small and 

large inundated area. Producer’s and 

user’s accuracies=94–99% 

Thomas et al. 

(2015) 

Hyperspectral 

and lidar  

Machine learning 

classifier 

overall accuracy=86%; Kappa=0.82 Zhang (2014)  

Airborne 

hyperspectral 

imagery 

Linear spectral 

unmixing (LSU) 

Overall accuracy=85.1%, r2 = 0.32 to 

r2 = 0.53 

Judd et al. 

(2007)  

 660 

2.5. The potential of remote sensing vegetation indices for assessing wetland vegetation 661 

productivity 662 

Remotely sensed data of growth, vigor, and their dynamics from wetland vegetation can 663 

provide extremely useful insights for applications in environmental monitoring, biodiversity 664 

conservation, and other related fields (Chiloane et al. 2020; Chiloane et al., 2021; Kuenzer et 665 

al., 2014). Wetland vegetation productivity can be assessed through Vegetation Indices (VIs) 666 

obtained from remote sensing-based canopies (Adam et al., 2010). VIs are quite simple and 667 

effective algorithms for quantitative and qualitative evaluations of vegetation cover, vigor, and 668 

growth dynamics, among other applications (Muraoka et al., 2013). They are generated by 669 

combining data from multiple spectral bands into a single value (Vila et al., 2014). SVIs are 670 

also designed to enhance the vegetation signal in remotely sensed data and provide an 671 

approximate measure of live, green vegetation amount (Gonsamo Gosa, 2009). The rationale 672 
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for VIs is to exploit the unique spectral signature of green vegetation as compared to the 673 

spectral signatures of other earth materials. Green leaves have a distinct spectral reflectance 674 

pattern in the Near-Infrared (NIR) and visible (VIS) wavelengths (Svotwa, et al., 2012). 675 

Reflectance in the red and blue regions is very low, with a slightly higher bump in the green 676 

(Dana et al., 1999). This is why leaves appear green to human eyes. In the NIR, the spectral 677 

response of green leaves is much greater than in any portion of the visible (Hunt et al., 2011). 678 

Other materials such as bare soil, sand, exposed rock, concrete, or asphalt, generally show a 679 

steady rise in reflectance as wavelength increases from the visible to the near-infrared (Heiden 680 

et al., 2007).  681 

VIs integrate spectral information from the red and NIR reflectance (Zhao et al., 2005). Red 682 

reflectance is sensitive to chlorophyll content and the NIR reflectance is sensitive to the 683 

mesophyll structure of leaves (Houborg and Boegh, 2008). In a given image scene, the greater 684 

the difference between the red and NIR reflectance, the greater the amount of green vegetation 685 

present (Miura et al., 2006). Small differences between the red and near-infrared reflectance 686 

indicate a pixel containing mostly bare soil or other non-vegetated classes (Ganguly et al., 687 

2012). Spectral vegetation indices are related to several biophysical variables of interest to 688 

many researchers, including Leaf Area Index (LAI), percent vegetation cover, green leaf 689 

biomass, fraction of absorbed photosynthetically active radiation (fAPAR), photosynthetic 690 

capacity, and carbon dioxide fluxes (Xie et al., 2018). VIs have the ability to discriminate 691 

wetland vegetation from other landcover classes, assess its condition, and map percent 692 

vegetation cover, a fundamental method to analyze wetland vegetation productivity. 693 

The most common vegetation index is the NDVI. The adoption of VI including the most widely 694 

used NDVI is another method to assessing wetland vegetation productivity using optical 695 

remote sensing devices (Xie et al., 2008). The principle of applying NDVI in the assessment 696 

of wetland vegetation productivity is that wetland vegetation is highly reflective in the near-697 

infrared and highly absorptive in the visible red (Jensen et al., 2019). The contrast between 698 

these channels can be used as an indicator of the status of the vegetation found in wetland 699 

ecosystems (Stratoulias et al., 2018). In other words, NDVI is a biophysical parameter that 700 

correlates with the photosynthetic activity of vegetation. In addition to providing an indication 701 

of the greenness of the vegetation (Wang and Tenhunen 2004), NDVI is also able to offer 702 

valuable information on the dynamic changes of wetland vegetation given that multiple-time 703 

images are analyzed.  704 
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NDVI is a good indicator to reflect periodically dynamic changes of wetland vegetation 705 

(Geerken et al. 2005). Wetland vegetation productivity can be assessed through dynamic 706 

signals of NDVI (Lenney et al. 1996). For example, Wilson and Norman (2018) did an Analysis 707 

of vegetation recovery surrounding a restored wetland using the normalized difference infrared 708 

index (NDII) and NDVI at Cienega San Bernardino, an important wetland in southeastern 709 

Arizona and northern Sonora, Mexico. In the study, NDVI was used analyze spatial and 710 

temporal trends in vegetation greenness. NDVI was better able to track changes in vegetation 711 

in the study area. Eid et al 2020 also carried out a study to evaluate the dynamics of land cover 712 

change using three change scenes of recent and past satellite data from 1990 to 2019 at El-713 

Burullus wetland, in Egypt. NDVI was employed to assess the changing scenario of the area. 714 

Results indicated that vegetated land has increased significantly with a concomitant shrinkage 715 

in the water body and open soil during the study period. Narumalani et al 2009 characterized 716 

the patterns and trends of wetland vegetation for an area around Island Lake in the Sandhills 717 

of Nebraska, in the USA. In this study, NDVI was used to examine the variation of wetland 718 

vegetation across different terrain features within the landscape. NDVI trends over the 11-year 719 

period were determined and average NDVI values along with standard deviation were 720 

computed for each year. The highest mean NDVI was recorded for the marsh, while the lowest 721 

occurred on the dune top. Results also showed that the marsh was prone to higher variation in 722 

NDVI from year to year than any of the other terrain types. Ju and Bohrer 2020 classified 723 

wetland vegetation based on NDVI time series generated from NASA’s Classification of 724 

wetland vegetation based on NDVI time series generated from HLS dataset Yang Ju a, b, Gil 725 

Bohrera, ba Environmental Science Graduate Program b Department of Civil, Environmental 726 

and Geodetic Engineering Abstract Harmonized Landsat Sentinel-2 (HLS) dataset at Lake Erie 727 

in Ohio. Miranda et al 2018 studied the changes of vegetation cover of the Pantanal wetland 728 

detected by vegetation index: a strategy for conservation. The objective of this study was to 729 

analyze the vegetation cover of the Pantanal in the period of 2000, 2008 and 2015, and to make 730 

a projection for 2030. Therefore, NDVI from the sensor MODIS was analyzed and the 731 

transition matrix was calculated by the DINAMICA EGO. The results of the study indicated 732 

alterations of the vegetation cover of the Pantanal, with an increase of short vegetation in the 733 

evaluated period. The projection pointed out that in 2030 the Brazilian Pantanal wetland area 734 

will be covered by 78% of short vegetation and only 14% of dense (arboreal-shrubby) 735 

vegetation. 736 
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All the above studies prove that NDVI can be used to assess spatial-temporal variations of 737 

wetland vegetation, and this makes NDVI the most valuable VI for monitoring the growth 738 

condition of wetland plants. Although these studies produced reasonable results on assessing 739 

wetland vegetation productivity through NDVI, more research is needed to explore the benefits 740 

of incorporating bathymetric and other auxiliary data to improve the accuracy of mapping 741 

wetland vegetation variations. 742 

2.6. Challenges of remote sensing and progress on wetland vegetation monitoring 743 

Wetland vegetation is not as easily as terrestrial vegetation, which occurs in enormous 744 

stratification. This is because of the steep environmental gradients that produce short ecotones 745 

and sharp demarcation between the vegetation units that make wetland vegetation exhibit high 746 

spatial and spectral variability (Adam and Mutanga 2009). Furthermore, the reflectance spectra 747 

of wetland vegetation canopies are often combined with reflectance spectra of the underlying 748 

soil, hydrologic regime, and atmospheric vapor (Lin and Liquan 2006). When wetland classes’ 749 

reflectance spectra combine, image classification becomes complicated and result in a 750 

reduction in the spectral reflectance, especially in the near to mid-infrared regions where water 751 

absorption is stronger (Adam et al., 2012). Thus, the current methods used to map terrestrial 752 

plants using optical remote sensing, may not be able, either spectrally or spatially, to 753 

successfully assess wetland vegetation because the performance of near to mid-infrared bands 754 

are decreased by the occurrences of underlying wet soil and water (Klemas, 2013). However, 755 

hyperspectral narrow spectral sensors offer the potential to assess wetland vegetation of 756 

wetland vegetation (Ouyang et al., 2013). 757 

Significant progress has been made in applying remote sensing sensor data and methods in the 758 

mapping of wetland vegetation. However, there are still challenges to be addressed in many 759 

aspects. First, traditional digital imagery from multi-spectral scanners is subject to limitations 760 

of spatial and spectral resolution compared to narrow vegetation units that depict wetland 761 

ecosystems (Lu et al., 2018). Second, despite the fact that hyperspectral sensors are able to 762 

effectively map wetland vegetation, the reflectance of wetland vegetation is influenced by its 763 

biochemical and biophysical properties (Guo et al., 2017). Additionally, these properties are 764 

directly influenced by environmental factors and therefore the unique spectral signature of 765 

wetland vegetation has become questionable. In addition, spectral variations can also occur 766 

because of soil and water background, precipitation, and topography.  767 
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A third research challenge is that in most African countries such as South Africa there are only 768 

a handful of studies that have used hyperspectral data to map wetland vegetation variations due 769 

to high cost and poor accessibility (Mutanga and Kumar, 2007). Despite these shortcomings, 770 

there is no doubt that remote sensing techniques could play a vital role in the assessment and 771 

monitoring of wetland vegetation effectively by selecting appropriate spatial and spectral 772 

resolution as well as suitable processing techniques for extracting vegetation productivity 773 

information. From a research perspective, however, there are a number of most important 774 

challenges in the application of remote sensing in wetland species that need to be addressed.  775 

First, the most current remote sensing techniques in mapping vegetation have been undertaken 776 

in arid and semi-arid regions with low vegetation cover and less complexity within the 777 

vegetation unit. These techniques are therefore of little use for narrow vegetation units that 778 

characterize wetland ecosystems. The additional research effort is needed to adopt more 779 

classification techniques to improve the accuracy of the spatial resolution of the current 780 

sensors, which varies from 20 to 30 m (Adam et al, 2010; Seaton et al., 2020; Seaton et al., 781 

2021).  Second, in the southern African region, more research is needed to enhance the ability 782 

in assessing the response of wetland vegetation productivity to climate change and climate 783 

variability, which have been overlooked in scientific research. A third research prospect is the 784 

availability of hyperspectral sensors that could allow the mapping of both variations and the 785 

health of wetland vegetation. This will enhance a fundamental understanding of the spatial 786 

distribution of wetland vegetation and its productivity, which could lead to the development of 787 

early warning systems to detect any subtle changes in wetland systems such as signs of stress 788 

and to develop techniques to classify wetland ecosystem conditions based on vegetation quality 789 

and quantity. 790 

2.7. Conclusion 791 

Given the state of decline of wetland vegetation productivity due to climate change and 792 

variability, improved monitoring over a range of temporal and spatial scales is immediately 793 

required. The assessment of wetland vegetation productivity necessitates cost-effective 794 

methods because monitoring wetland vegetation productivity requires systematic obtainability 795 

of data. In addition, more research is needed to develop the ability in assessing the response of 796 

wetland vegetation productivity to climate change and variability in the Southern African 797 

region. Remote sensing methods have proven very valuable in advancing the field of wetland 798 

vegetation monitoring at their relative scales of application. However, to produce precise and 799 

reliable wetland vegetation assessment and monitoring results, you need to effectively select 800 
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appropriate spatial and spectral resolution as well as suitable processing techniques for 801 

extracting vegetation productivity information. This review has assessed the role of mapping 802 

and assessing wetland vegetation productivity using remote sensing techniques in detail, 803 

including impacts of climate change and variability on wetland vegetation productivity. It can 804 

be concluded that climate change and variability will severely affect wetland vegetation 805 

productivity. There is a need for a comprehensive monitoring system to understand how 806 

wetland vegetation responds to the disturbances and how they can be adapted to future climate 807 

change. Current technological advancements such as the increasing free availability of satellite 808 

image time series, will likely enable further research in mapping and monitoring wetland 809 

vegetation productivity across a range of scales. Remote sensing may provide an improved 810 

understanding of complex spatial processes and patterns of wetland vegetation, which is 811 

important for natural resource management and quantifying vegetation productivity status 812 

across a range of scales.813 
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Chapter Three 

Use of remotely sensed derived metrics to assess wetland vegetation responses to climate 

variability induced drought at the Soetendalsvlei wetland system in the Western Cape 

province of South Africa 

Abstract 

Wetland areas are the most vital ecosystems and they provide important functions towards 

stabilizing the environment. Hydrological processes in these wetland systems directly affect 

the productivity of plants. Therefore, assessing vegetation response to climate variability 

induced drought is vital in wetlands. In this study, the subtle changes in vegetation distribution 

were used as a proxy to examine and quantify the extent of drought impacts on wetland 

ecosystems within the Heuningnes catchment, South Africa. First, vegetation health 

information was extracted by calculating the normalized difference vegetation index (NDVI) 

during the wet and dry seasons for the period between 2014 and 2018. The derived NDVI 

results were further statistically linked to the corresponding rainfall and evapotranspiration 

(ET) observed during the study period. An analysis of NDVI results revealed that gradual 

vegetation health change occurred across the study area. The highest derived NDVI (0.5) for 

wetland vegetation was observed during the year 2014 but progressively declined over the 

years. Change in vegetation health indicated a significant (α = 0.05) and positive correlation to 

the amount of rainfall received over the same period. The results of this study showed that 

healthy vegetation deteriorated between the study periods due to the 2015-2017 Western Cape 

drought. 

Keywords: drought; evapotranspiration; Heuningnes catchment; NDVI; wetland extent; 

vegetation health. 

3.1. Introduction 

Wetlands are amongst the Earth’s most productive ecosystems. Although they merely occupy 

6.2 to 7.6% of the land surface, wetlands are a valuable natural resource of considerable 

scientific value because they are associated with high biological diversity (Ndirima 2007; 

Sghair and Goma 2013; Kuria et al. 2014). Wetlands within the Heuningnes catchment are 

important as natural ecosystem remnants facilitating nutrient cycling, cleaning, and the 

purification process of water, as well as provide scenic attractions for tourists and wildlife 

habitats (Melendez-Pastor et al. 2010; Chen et al. 2014). Long-term threats to these wetlands 

include agricultural development, droughts, urban development, climate change, and 
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variability as well as other impacts associated with it, such as alien invasion species (Orimoloye 

et al. 2019; Rebelo et al. 2019). Wetlands are vulnerable and particularly sensitive to 

fluctuations in the quantity of water supply. In this respect, changes in precipitation due to 

climate change also pose great challenges to wetland conservation (Erwin 2009). 

Inadequate rainfall can induce significant declines in overall plant productivity and even lead 

to high rates of plant mortality (Touchette et al. 2007; Yu et al.2019). Plants are excellent 

indicators of wetland conditions for many reasons including their relatively high levels of 

species richness, rapid growth rates, and direct response to environmental change (Cronk and 

Fennessy 2009; Chatanga and Sieben 2019). Many alterations to the environment that act to 

degrade wetland ecosystems cause shifts in plant community composition that can be 

quantified easily (Ehrenfeld 2000). Insufficient water supply may lead to the depletion of soil 

moisture (Bordi and Sutera 2007), which will further have adverse effects on the growth and 

health of plants. Increases in temperature also affect wetland systems by accelerating the rate 

of evaporation and transpiration (Abtew and Melesse 2013). Therefore, the ability to map and 

assess wetland vegetation productivity in detail, especially in response to climate change, will 

always be an objective in the management of wetland ecosystems.  

Monitoring the response of vegetation to drought is important for the sustainable conservation 

of wetland ecosystems as it is related to the condition of the water supply. However, continuous 

observation and investigation based on physical methods remains restricted to small 

geographic coverage, for a specific period and it focuses mainly on individual species (Hooper 

et al. 2005; Guo et al. 2017). In addition, research done physically can be resource-intensive 

and problematic when the study area is remote and hazardous (Daryadel and Talaei 2014). 

Similarly, developing models for monitoring wetland vegetation at individual levels remains 

impractical, especially in light of the global effects of climate change (Xie 2008). Drought 

indices such as Palmer Drought Severity Index (PDSI) and Standardized Precipitation Index 

(SPI) become unreliable because of their dependence on accuracy of ground observed 

meteorological inputs that provide sparsely (Zhao et al. 2017) and possess poor spatial 

resolution at a regional scale, especially, in areas where a few of ground observations are 

available. 

Recent advancements in satellite remote sensing, as powerful means of Earth's surface 

assessment, have provided efficient, reliable, and affordable monitoring tools for identifying, 

describing, and mapping the distribution of wetland vegetation with various spatial, temporal, 
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and spectral resolutions at wide scales from local to global (Jones et al. 2009; Kaplan et al. 

2019). In particular, the normalized difference vegetation index (NDVI), precipitation, and 

evapotranspiration (ET) products may provide valuable information to understand the wetland 

ecosystems response to drought because meteorological data obtained from ground observation 

stations often have poor spatial resolutions (Wan et al. 2004). The NDVI picks up the frequency 

that the plant leaf releases in order to measure its vigor of the plant’s health (Xue and Su 2017; 

Onyia et al. 2018). Sensors typically capture some combination of visible and near-infrared 

light using narrow filters to increase the sensitivity and specificity of the measurements (Lapray 

et al. 2014). When a plant becomes dehydrated or stressed, the spongy layer of the plant 

collapses, and its leaves reflect less NIR light, yet they still reflect the same amount of light in 

the visible range (Jacquemoud and Ustin 2019). Thus, vegetation health is one of the most 

crucial factors to look at when studying the response of wetland ecosystems to drought. 

Investigating the relationship between NDVI and ET or precipitation can infer water stress 

from different plants. This is because sufficient water promotes efficient transpiration and cool 

plant, while water deficiency promotes closing plant stomata and intense transpiration rate, 

thus, lower ET represents the stronger evaporative cooling for pixels with the same NDVI 

(Petropoulos et al. 2009; Yu et al. 2019). As an approach towards assessing wetland vegetation 

response to climate variability induced drought at the Soetendalsvlei in the Heuningnes 

Catchment, South Africa, this study mapped and assessed changes in vegetation health and 

distribution between the years 2014 to 2018, and also examined the relationship between 

wetland vegetation productivity and rainfall variability. 

3.2. Materials and Methods 

In this study, time series of Landsat images were used to acquire more information about the 

extent and distribution of vegetation in the site. Landsat 8 (L8) Operational Land Imagery 

(OLI) Level 1 data acquired for the period of January 2014 to December 2018 were used, freely 

available from https://earthexplorer.usgs.gov/. The data are available every 16 days with a 

spatial resolution of 30m, different bands of the sensor and its specifications are available in 

Table 2. Cloud-free images and images with less than 10% cloud cover were selected. Two 

images representing wet and dry seasons for each year were obtained and details of these data 

are provided in Dube and Mutanga (2014). Band 4 (Red) and 5 (NIR) were used for the 

estimation of NDVI for the wet and dry seasons of each selected year (Tucker 1979). The L8 

images were atmospherically corrected using FLAASH atmospheric correction method. The 

selection of the drought monitoring period was informed by the documented literature and 
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information on the onset of drought (Botai et al. 2017; Leslie and Richman 2018; Otto et al. 

2018). 

Evapotranspiration (ET), and Precipitation data were acquired from 

https://wapor.apps.fao.org/catalog/1. The ET data was delivered on a dekad (10-days basis) and 

is mainly the sum of soil evaporation, canopy transpiration, and evaporation from rainfall 

intercepted by leaves. The value of each pixel represents the average daily ET in a given dekad 

(Sazib et al. 2018). Precipitation dataset was obtained from CHIRPS (Climate Hazards Group 

InfraRed Precipitation with Station), a quasi-global rainfall dataset, starting from 1981 up to 

the near present. For CHIRPS, the value of each pixel represents the average of daily 

precipitation in the dekad expressed in mm (Funk et al. 2015). 

Table 2: Specifications of the satellite images used for spatial assessment of vegetation 

Year 
Date of 

Acquisition 

Image Scene Detail 
Path/ Row 

Land Cloud 

Cover (%) 

2014 

June 21 
LC81740842014172L

GN01 
174/84 0.36 

24 December 
LC81740842014348L

GN01 
174/84 0.02 

2015 

8 June 
LC81740842015159L

GN01 
174/84 0.76 

17 December 
LC81740842015351L

GN01 
174/84 0.09 

2016 

25 May 
LC81740842016146L

GN01 
174/84 0.3 

3 December 
LC81740842016338L

GN01 
174/84 0.01 

2017 

29 June 
LC81740842017180L

GN01 
174/84 0.63 

6 December 
LC81740842017340L

GN00 
174/84 3.04 

2018 
18 July 

LC81740842018199L

GN00 
174/84 1.97 

25 December LC8174082018359L 174/84 0.64 

http://etd.uwc.ac.za/ 
 

https://wapor.apps.fao.org/catalog/1


51 
 

GN00 

3.2.1. Extraction of Vegetation Cover 

Since there is great variation in vegetation distribution within a given year, in order to obtain 

abundant cover information about vegetation productivity, wet and dry season vegetation cover 

in each year was considered for this particular study. In this study, the wet season stretches 

from May to October and November to April for the dry season. To map and extract the wetland 

vegetated area and other land cover features that are water and non-vegetated areas within the 

Soetendalsvlei wetland, the Normalized Difference Vegetation Index: NDVI (Nir - Red/Nir + 

Red) was calculated. The red and NIR electromagnetic signals (bands) help to differentiate a 

plant from a non-plant and healthy plants from the stressed plants as well as water from other 

surface features (Lima et al. 2020). The computed NDVI values ranged from -1 through 0 to 1, 

where  -ve values approaching -1 correspond to water, values close to zero (-0.1 to 0.1) depict 

barren areas e.g. rockoutcrops, sand, bare surfaces, and +ve indicate plant health (Bhandari 

2012; Wang et al. 2018). Since the derived water and vegetation exhibited unique and distinct 

NDVI values, we then reclassified the derived NDVI images into three classes (non-vegetated 

water, and vegetation) using the common geographic information tools as detailed in remote 

sensing literature (Wang et al. 2018; Wilson and Norman 2018; El-Gammal et al. 2014).  

NDVI thresholds were defined and set for each class and these thresholds were somehow 

informed by literature (Wilson and Norman 2018; Wang et al. 2018). In the study, thus 

thresholds were set as following non-vegetated (NDVI range between -0.21 and 0.19), 

vegetated (NDVI ≥ 0.2), and water (NDVI≤-02).  We then conducted an accuracy assessment 

for the derived classes by computing the user, producer, and the overall accuracies, validation 

was done using ground control points, and Google Earth digitized sample points. Further, the 

derived results were compared to climate data for the areas to determine trends and 

relationships between derived vegetation metrics and climate data. Specifically, correlation 

analysis was used to assess the response of wetland vegetation to drought by evaluating the 

relationship between NDVI results and rainfall variability. The Pearson product-moment 

correlation coefficient, better known as the r was performed to derive the statistical analysis 

results. The coefficient was calculated for the 12 months data for each year from May to April. 

The correlation coefficient was computed as: 

𝑟 =  
∑(𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼)(𝑌𝑖 − 𝑌)

√∑(𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼)2 (𝑌𝑖 − 𝑌)2
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Where Y is the precipitation or ET and NDVI is the normalized difference vegetation index 

and average monthly total precipitation or ET for the years 2014, 2015, 2016, 2017, and 2018 

adopted in this study. Possible values of r range from -1 to +1, with values close to 0 signifying 

the little relationship between the two variables. When r is above 0.5, there is a positive 

relationship between the two variables but there is no significant association. The value ranges 

from 0.8 to 1 represent a positive significant relationship between the two variables. A detailed 

description of the methodology is summarized in figure 2. 
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Figure 2: Methodological workflow used for wetland vegetation mapping and assessment of 

2014-2018 drought impact 

3.3. Results 

3.3.1. Remotely sensed mapping of wetland vegetation  

The results of the study demonstrated that wetland vegetation was greatly affected by drought 

between the years 2014 and 2018 (Figure 3, 4, and 5). For instance, the area under vegetation 

drastically declined in the wetland from 0.13 to 0.07 km2, whereas the area under water 
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declined by 0.85km2. The year 2016 had the highest wetland vegetation cover during the dry 

season and the lowest coverage was observed in the year 2018. Further, the wetland vegetation 

cover varied from 0.13 to 0.07 km2. On the other hand, a similar trend was observed for non-

vegetated areas as they increased by about 97% during the study period. Exceptions were only 

observed between 2014 and 2016 dry seasons where non-vegetated surface area shrank by 

nearly half from only 0.46km2 in 2016. The highest water surface area in the wetland was 

observed during the wet season in 2014. However, from 2014 to 2018, the water surface area 

shrank from 1.34 to 0.49km2 (63%). Comparatively, from 2014 to 2018, the minimum water 

surface area in the wetland was observed during the 2014 dry season period, which coincided 

with the onset of drought that took place during the same year.  

Derived classification results showed that wetland vegetation can be mapped with very high 

accuracies. High classification accuracies in terms of producer, user, and overall accuracies 

were observed (Table 3). For all the remotely sensed derived wetland mapping results, all the 

accuracy assessment methods were ± 80%, demonstrating a commendable classification model 

performance. 
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Figure 3: Remotely sensed derived wetland vegetation for the Sondentalsvlei in the 

Heuningnes catchment, South Africa 

Wet Season
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Figure 4: Remotely sensed derived wetland vegetation for the Sondentalsvlei in the 

Heuningnes catchment, South Africa 

Dry Season
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Figure 5: Detailed statistics on the areal extents and observed changes in wetland vegetation 

between the wet and dry season for the entire monitoring period 

Table 3: Accuracy assessment of Landsat 8 images captured in the years 2014 to 2018 in 

Soetendalsvlei 

  Class 

PA 

(%) 

UA 

(%) 

OA 

(%) Kappa 

2014 Water 92.4 90.7 90.5 0.89 

 
Vegetation 79.3 88.5 

  

 

Non-

vegetated 100 100 
  

2015 Water 97 94.1 91.0 0.9 

 
Vegetation 95.9 85.5 

  

 

Non-

vegetated 93.5 95.6 
  

2016 Water 93.8 93.8 88.4 0.82 

 
Vegetation 89.8 90.1 

  

 

Non-

vegetated 81.3 100 
  

2017 Water 79.5 90.6 87.5 0.8 

 
Vegetation 99.2 77.7 
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Non-

vegetated 83.6 98.3 
  

2018 Water 68.7 100 89.5 0.83 

 
Vegetation 77.1 100 

  

  

Non-

vegetated 95.8 86.5     

PA: Producer’s Accuracy; UA: User’s Accuracy; OA: Overall Accuracy 

3.3.2. NDVI seasonal and inter-annual variations of wetland vegetation 

Seasonal and inter-annual comparisons of wetland vegetation productivity was assessed, using 

the NDVI to determine the impact of drought on wetland vegetation conditions (Figure 6). The 

results showed that NDVI varied significantly between seasons and between the years. Overall, 

the highest NDVI was observed in the year 2014, whereas the years 2015 and 2017 exhibited 

a similar trend. It is, however, important to note that during the same years NDVI from wetland 

vegetation was very low around 0.20 in the wet season. Only the 2017 dry season exhibited a 

bit of recovery with NDVI increasing to around 0.25. However, between 2014 and 2018, the 

impact was largely observed during the 2018 dry season period where NDVI values were below 

0.05. Inter-annual comparisons demonstrated a sharp decline in wetland vegetation 

productivity since the onset of drought in 2014 to 2018 with slight recoveries in between the 

years and seasons. 

 

Figure 6: Seasonal and inter-annual variations and trends in wetland vegetation productivity 

http://etd.uwc.ac.za/ 
 



59 
 

3.3.3. Relationships between derived NDVI and climate data 

The results indicated that wetland vegetation productivity was largely controlled by rainfall 

availability and evapotranspiration rates. The results from table 4 showed high correlations 

between wetland vegetation derived NDVI and rainfall as well as evapotranspiration.  For 

example, for all the years NDVI and rainfall correlations coefficients were high and positive, 

on average above 0.80 whereas for NDVI and evapotranspiration the relationships were 

significantly but above -0.50. Figure 7 further details the observed monthly NDVI, 

precipitation, and evapotranspiration trends for the entire study period. It can be observed that 

evapotranspiration and precipitation controlled or had a bearing on NDVI or wetland 

vegetation productivity. 

Table 4: NDVI vs. Climate data statistical relationships 

Year NDVI vs. Precipitation  NDVI vs. ET 

2014 0.8* -0.70 

2015 0.9* -0.50 

2016 0.92* -0.70 

2017 0.8* -0.60 

2018 0.8* Insignificant association at r = 0.06 

* represents significant positive relationships
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Figure 7: Monthly NDVI, precipitation, and evapotranspiration relationships for the entire period under study 2014-2018
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3.4. Discussion 

3.4.1. Wetland vegetation growth dynamics between the years 2014, 2015, 2016, 2017 and 

2018 

Wetlands comprise notable attributes of species diversity, richness, abundance, and succession, 

and they are therefore considered to be the most dominant and important ecosystems, globally 

(Mitsch et al. 2015). This study examined changes in wetland cover to determine the 

ecosystem’s response to drought by using remote sensing techniques. Work done in this study 

has relevance to the maintenance of ecological processes and quantification of natural disasters 

impacts because it explores: 1) spatial, temporal, and seasonal variations of wetland cover; 2) 

seasonal variability of wetland vegetation health; 3) the link between wetland vegetation 

growth dynamics and rainfall variability to assess the response of wetland ecosystems to 

drought. 

An analysis of classified maps revealed that gradual ecosystem change occurred across the 

study area. Other studies such as that by Middleton and Kleinebecker (2012) done to assess the 

effects of climate change-induced drought on freshwater wetlands, and that of Belle et al. 

(2018) in the eastern Free State, South Africa, confirms that vital wetland productivity 

processes that sustain biodiversity in the ecosystem may be critically affected by the occurrence 

of drought. Climate change-induced drought, especially in arid regions, drives change in 

hydrology and vegetation health, thus affecting ecological processes within the wetland 

ecosystem.  

This study suggests that the decline in vegetation extent and water, and increase non-vegetated 

area in the wetland as a result of rainfall variability. Furthermore, climate change is predicted 

to increase drought, the number of high heat days, and the frequency of severe storms, all of 

which affected wetland ecosystems. Results for wetland transition shown in this study are 

comparable to Ridolfi et al. (2006), who observed that wetland ecosystems are vulnerable to 

disturbances such as a severe drought and may respond to biomass losses with highly 

irreversible catastrophic shifts to unvegetated conditions. Similarly, Nhamo et al. (2017), using 

the Landsat satellite data to delineate wetland extent and assess seasonal variations in South 

Africa from 2000 to 2015, found a continuous decline in wetland area and the minimum value 

was observed in 2015 which coincided with an El Nino associated drought in the study area 

(Rembold et al. 2016; FAO 2016).  
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3.4.2. Impact of meteorological data trends on wetland vegetation productivity 

Based on long-term (5 years) data, this study examined the influence of rainfall variability on 

the productivity of wetland vegetation in the Soetendalsvlei wetland system. The relationship 

between wetland vegetation health and quantity as well as the temporal patterns of rainfall 

variability were assessed and yielded two key results. Firstly, over the past 5 years, NDVI 

(Vegetation health) significantly and positively correlated with precipitation; and secondly, the 

NDVI and ET showed an opposite trend, ET exceeds the amount of precipitation during the 

period of this study. 

The results of this study highlight the importance of rainfall variability on wetland vegetation 

productivity. One explanation is that rain events provide sufficient soil moisture and maintain 

high water availability (Merolla 2012). In arid and semiarid ecosystems, water is typically a 

limiting factor for plant health, and available moisture generally increases plant biomass (Twisa 

and Buchroithner 2019). The photosynthesis of plants depends on water availability, therefore, 

insufficient water availability can minimize the assimilation of carbon, thereby decreasing 

wetland vegetation productivity (Pinheiro and Chaves 2011).  

For instance, the results of the study by Barros and Albernaza (2014) found that an elevation 

in water availability leads to a reduction in wetland vegetation growth rates or the reproductive 

success of many species. Wetland vegetation has highly developed root systems that hold the 

soil in place and filter pollutants, naturally improving water quality (Finlayson et al. 2015). 

Therefore, a drought will likely cause the loss of, or reduction in wetlands and will challenge 

the adaptability, composition, and distribution of wetland plants. Moreover, if wetland 

vegetation productivity is challenged, pollutants could become more concentrated in wetlands 

and this will affect water quality. 

3.4.3. Remote sensing spatial and seasonal variations of wetland vegetation 

Similar to other arid lands, vegetation, precipitation, and ET in the study area is both spatial 

and temporally heterogeneous, making ground-based measurements invaluable. However, the 

study area is remote and the use of in-situ methods can be resource-intensive and problematic 

when the study area is remote and hazardous (Adam et al. 2010). Remote sensing, therefore, 

provides invaluable means of monitoring vegetation to assess environmental conditions in 

wetland ecosystems (Amler et al. 2015). The tool has been popular for collecting 

meteorological data, and offers spatially explicit data as well as repeated observations and 

covers large geographic locations (Boisvenue and White. 2019). 
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Remote sensing images are key data sources for earth monitoring programs considering the 

great advantages that they have (Makapela et al. 2015). For instance, it is more easily obtainable 

to produce and update vegetation inventories over large regions if aided by satellite imagery 

and appropriate imagery analysis. A growing number of studies have examined the response of 

wetland vegetation productivity to drought by using remotely sensed data (Santos et al. 2019; 

Easterday et al. 2019; Adamu et al. 2018; Wilson and Norman 2018; Nhamo et al. 2017). 

However, although remote sensing technology has tremendous advantages over traditional 

methods in vegetation mapping, we should have a clear understanding of its limitations. It is 

important to understand how well will the chosen vegetation index/ drought proxy represents 

actual vegetation community composition. Also, it is critical to determine how effectively 

images from remote sensing capture the distinguishing features of each mapping unit within 

the classification and how well these mapping units are delineated by photo interpreters. A 

well-fit vegetation classification system should be carefully designed according to the objective 

of the study in order to better represent actual vegetation community compositions. 

The capacity to accurately detect wetlands in moderate resolution data from Landsat is desired 

to facilitate understanding of spatial and temporal dynamics of wetlands. Landsat provides the 

highest spatial resolution and longest systematically sampled historical remote sensing record 

dating back to approximately 1984 (Pouliot et al. 2019). Thus, Landsat offers the greatest 

opportunity for understanding wetland change and drivers of these changes. There are only a 

few wetland studies reporting accuracy for small extent applications for similar ecosystems 

and sensors. At the reduced three-class thematic level. Hird et al. (2017) reported an overall 

accuracy of 85% within the Central Canadian Boreal Forest Region, whereas Filatow and 

Carswel (2018) achieved a satisfactory accuracy of 91% in northern British Columbia.  

Vegetation index NDVI was used to detect any significant differences in vegetation cover 

between the years 2014 to 2018. The results indicated that NDVI was able to discriminate 

wetland vegetation from other classes within the study area. Results required for drought 

impacts assessment showed the change in landcover distribution and vegetation productivity 

between 2014, 2015, 2016, 2017, and 2018. These results revealed that the wetland was 

negatively affected by the long-term drought. Temporal remotely sensed data enabled the 

assessment of wetland vegetation health conditions as far as back as 2014, therefore remote 

sensing provided an effective tool in analyzing and determining vegetation changes in wetlands 

under different management regimes. Frequent wetland monitoring is important for timely 

intervention in the case of an identified negative change. Remote sensing has shown its strength 
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in wetland mapping and for monitoring wetland dynamics over time and is thus an important 

tool for wetland management. 

3.5. Conclusion 

Temporal and spatial distribution of wetland cover classes and vegetation cover was assessed 

using NDVI to examine the impact of rainfall variability (drought) on wetland vegetation. 

Results showed a significant variation in the wetland surface area from 2014 to 2018. 

Specifically, vegetation and water decreased significantly over the monitoring period, while 

the extent of the bare surface increased rapidly. Wetland extent mapping was achieved with 

average overall accuracy (85–90%) in this study. Further, Vegetation productivity significantly 

and positively correlated with precipitation over the past five years, while ET showed a 

negative significant relationship, ET exceeds the amount of precipitation during the period of 

this study. From the observation of the whole study period, healthy vegetation has deteriorated 

due to drought that occurred in the study area between the monitoring periods. The amount of 

rainfall entering into an ecosystem is typically a limiting factor for plant health; the results of 

this study highlight the importance of rainfall variability on wetland vegetation productivity. 
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Chapter Four 

Remote sensing the response of wetland vegetation productivity to drought: A synthesis 

4.1. Introduction 

Wetland vegetation provides food and critical habitat for organisms that live in or near water 

resources, such as algae, macroinvertebrates, amphibians, fish, and birds (Schofield et al., 

2018). It improves water quality by taking up nutrients, metals, and other contaminants 

(Masters, 2012). The vegetation strongly influences water chemistry, acting as both nutrient 

sinks through uptake, and as nutrient pumps, moving compounds from the sediment to the 

water column (Bouwman et al., 2013). Plants in wetlands influence the hydrology and 

sediments of wetlands by stabilizing shorelines, modifying currents, and abating the effects of 

flooding (Junk et al., 2013). They also control hydrologic conditions in many ways including 

peat accumulation, water shading, and transpiration (Watson and Adams, 2010). Wetland 

vegetation is the most important component of wetland ecosystems; however, the ecosystem 

services provided by wetland vegetation are facing several pressures due to climate change and 

variability impacts (Erwin, 2009; Arias et al., 2014). Climate change is commonly recognized 

as one of the most important drivers affecting vegetation (Piras et al., 2016). Drying and 

warming climate decreases wetland vegetation productivity is largely influenced by the timing 

and amount of precipitation entering into a wetland ecosystem (Parton et al., 2012; Li et al., 

2013). Mapping distribution, quality, and quantity of wetland vegetation is important for 

wetland protection, management, and restoration (Fu et al., 2017). Remote sensing is valuable 

for assessing wetland vegetation information because it provides repeat coverage of spatially 

continuous measurements collected in a systematic and objective manner (Abdel-Hamid et al., 

2020). Therefore, the objectives of this study were to: 

I. Provide a critical evaluation of scientific literature on the use of remote sensing 

techniques in assessing wetland vegetation productivity 

II. Characterize and assess vegetation changes in the Soetendalsvlei wetland to 

understand the impact of the 2014-2018 drought. 

III. Examine the relationship between wetland vegetation productivity and rainfall 

variability. 

4.2. Remote sensing literature of wetland vegetation productivity 

The impact of climate change and variability on wetland vegetation productivity can be 

assessed by using remote sensing tools. Remote sensing is cost-effective and it provides a 

synoptic view, multi-temporal and multi-spectral coverage. Monitoring wetland vegetation 
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productivity requires the regular availability of data. Multi-temporal remotely sensed data such 

as Landsat 8 OLI plays a fundamental role in assessing wetland vegetation productivity 

information. Landsat 8 OLI is freely available and can help to derive metrics critical for wetland 

vegetation monitoring. Vegetation indices such as NDVI help isolate green photosynthetically 

active signals from the spatially and temporally mixed pixels for meaningful inter-comparisons 

of vegetation characteristics. Time series of vegetation indices are also used to generate spectral 

profiles for revealing vegetation productivity changes. Remote sensing techniques provide 

valuable means for monitoring and assessment of wetland vegetation productivity and also 

helps in understanding its seasonal changes, in addition to revealing the relationship with 

climate change and variability. More research is however required to further determine and 

understand how wetland vegetation responds to climate change and variability in South Africa. 

4.3. Mapping and assessing wetland vegetation changes between the years 2014 to 2018 

in the Soetendalsvlei wetland 

The study aimed at assessing wetland vegetation changes at the Soetendalsvlei wetland before, 

during, and after the climate-induced drought that occurred in the Western Cape Province. The 

study quantified wetland vegetation extent and health in order to analyze the impacts of 

climate-induced drought on wetland vegetation productivity. The results revealed that wetland 

vegetation was greatly affected by drought between the years 2014 and 2018. For example, the 

area under vegetation drastically declined in the wetland from 0.13 to 0.07 km2. Derived 

classification results showed that wetland vegetation can be mapped with very high accuracies 

(± 80%). Inter-annual comparisons of wetland vegetation productivity demonstrated a sharp 

decline in wetland vegetation productivity since the onset of drought in 2014 to 2018 with 

slight recoveries in between the years and seasons. 

4.4. Examining the relationship between wetland vegetation productivity and rainfall 

variability 

Changes in rainfall pose a significant threat to wetlands, causing them to dry out. A low amount 

of rainfall entering into a wetland have an effect on wetland vegetation productivity. Thus, it 

is important to investigate the relationship between wetland vegetation productivity and 

changes in rainfall entering into a wetland ecosystem. Based on the results of the study, high 

correlations between wetland vegetation productivity and rainfall variability have been 

observed.  For example, for all the years’ wetland vegetation productivity and rainfall 

correlations coefficients were high and positive, on average above 0.80 whereas for vegetation 

productivity and evapotranspiration the relationships were significantly but above -0.50. Thus, 
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rainfall and evapotranspiration control a bearing on wetland vegetation productivity. 

4.4. Conclusions 

 Remote sensing tools have the ability to assess and understand seasonal and long-term 

changes in wetland vegetation productivity 

 NDVI can accurately be used to assess spatial-temporal variations of wetland 

vegetation, making the satellite-derived metric to be one of the most valuable models 

for monitoring the growth condition of wetland plants. 

 The accuracy assessment methods were ± 80% for all the remotely sensed derived 

wetland mapping results, indicating a commendable classification model performance. 

 The results of the study showed a significant variation in the wetland surface area from 

2014 to 2018. Thus, the extent of the non-vegetated surface increased rapidly while 

vegetation and water decreased significantly over the monitoring period. 

 Results showed a positive significant relationship between wetland vegetation 

productivity and rainfall during the period of this study, while ET showed a negative 

significant correlation. 

 Healthy vegetation has deteriorated due to drought that occurred in the study area 

 Further, the amount of rainfall entering into a wetland ecosystem is typically a limiting 

factor for wetland vegetation productivity 

 

4.5. Recommendation 

Although the findings of this study demonstrate the relevance of multispectral broadband in 

wetlands characterization and productivity assessment and monitoring over time and space, 

their performance remains a challenge particularly for smaller wetlands, especially if 

predominantly characterized with mixed plant species (Adam et al., 2010; Dronova, 2015; 

Tshabalala, 2020). There is, therefore, a need to consider hyperspectral and new generation of 

multispectral satellites e.g. Sentinel 2 and Worldview 2 images for mapping wetland vegetation 

productivity given its unique sensing characteristics, which include hundreds of narrow bands 

(Li et al., 2017; Transon et al., 2018; Lu et al., 2020). These bands are reported to be sensitive 

to subtle plant biochemical and biophysical properties, which is key for mapping-related 

studies (Turpie et al., 2015; Aneece and Thenkabail, 2018). Further research advancing wetland 

vegetation productivity and associated responses to climate change and variability in South 

Africa are needed. It is important to keep up with the present developments and incorporate the 

latest data which include biophysical aspects e.g. soils, hydrology, and ecological information. 
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Future research on wetland vegetation productivity will also help in keeping track of the 

influence of climate change on South Africa’s scarce water resources and help raise awareness 

for a wide range of environmental issues affecting the nation’s water resources. 
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