
--
Static MySQL Error Checking

By

Mohammad Shuaib Zarinkhail

July 2010

A thesis submitted in fulfillment
of the requirements for the degree of

Magister Scientiae

Department of Computer Science

University of the Western Cape

Supervisor: James Connan

https://etd.uwc.ac.za/

Contents

Contents i
List of Figures v
List of Tables vi
Glossary VIlI

Keywords x
Database x
Abstract xi
Declaration xii
Acknowledgments xiii
Chapter 1: Introduction 1
1.1 Background 1
1.2 Problem Statement 2
1.3 Research Objectives 3
1.4 Research Questions 4
1.5 Thesis OUtline 4
Chapter 2: Database Systems 7
2.1 Data base System Cycle 7
2.1.1. Users 8
2.1.2. Database 9
2.1.3. The DBMS and Application Programs 9
2.2 The DBMS (In General) 10
2.2.1. DBMS Functions 11
2.2.2. DBMS Types (by number of users) 15
2.2.3. DBMS Types (byusage) 16
2.3 RDBMSs 17
2.3.1. RDBMS Structure 17
2.4 Summary 19
Chapter 3: MySQL 20
3.1 Query Languages 21
3.2 SQL 21
3.3 SQL History 22
3.4 MySQL History 23
3.5 MySQL Functions 24
3.5.1. Control Flow Functions ~ 24
3.5.2. String Comparison Functions 26
3.5.3. Case Sensitive String Comparison Functions 27
3.5.4. Using INSTRO for String Comparison 27
3.5.5. Using LIKE for String Comparison 29
3.5.6. Using LOCATEO for String Comparison 31
3.5.7. Using REPLACEO for String Comparison 34

https://etd.uwc.ac.za/

3.5.8. Using STRCMPO for String Comparison 36
3.5.9. Using SUBSTRING_INDEXO for String Comparison 37
3.5.10. Case Sensitivity in Regular Expressions 39
3.5.11. Case Sensitivity in the Command Line .41
3.6 Summary 42
Chapter 4: SQL Errors and Error Checkers 43
4.1 SQL Errors 43
4.1.1. SQL Semantic Errors 44
4.1.2. SQL Syntax Errors 44
4.1.3. SQL Error Checking 45
4.1.4. SQL Static Error Checking .45
4.1.5. Semantic Integrity Support in ORDBMS .47
4.2 SQL Error Checkers 48
4.2.1. eSQL 48
4.2.2. AsseSQL 49
4.2.3. SQLator 50
4.3 SQL Teaching and Error Checking Tools 52
4.3.1. SQL-Tutor 52
4.3.2. Acharya 53
4.3.3. WinRDBI-A Relational Database Educational Tool.. 55
4.4 Other Error Checkers 58
4.4.1. ESC/Java 58
4.4.2. Lint 59
4.4.3. LCLint 59
4.4.4. Spec# 59
4.4.5. ESClfIaskell 60
4.5 Summary 60
Chapter 5: Common MySQL Errors 62
5.1 Errors-Case Sensitivity 62
5.2 Case Sensitivity Errors in Searches 63
5.3 Case Sensitivity Errors in User-defined Variable Names 64
5.4 Errors-MySQL Modes 66
5.4.1. The ANSI_QUOTES Mode 67
5.4.2. The IGNORE SPACE Mode 68
5.4.3. Other Modes for MySQL 70
5.4.4. Combination of Different MySQL Modes Simultaneously 73
5.5 MySQL Error Classification 78
5.5.1. Errors-SQL-DDL 78
5.5.2. Errors-Database Definition 79
5.5.3. CREATE DATABASE-using IF NOT EXISTS 79
5.5.4. ALTER DATABASE -using IF EXISTS 81
5.5.5. DROP DATABASE -using IF EXISTS 81
5.5.6. Errors-Table Definition 83
5.5.7. Errors-CREATE TABLE 83
5.5.8. Errors-CREATE TABLE SELECT 84

11

https://etd.uwc.ac.za/

5.5.9. Errors-ALTER TABLE 85
5.5.10. Errors-DROP TABLE 88
5.5.11. Errors-SQL-DML 91
5.5.12. Errors-INSERT Data 91
5.5.13. Errors-INSERT NULL Values 92
5.5.14. Errors-IGNORE used with INSERT 92
5.5.15. Errors-Retrieve Data 93
5.5.l6. Errors-Subqueries 93
5.5.l7. Errors-Temporary Tables 96
5.5.18. Errors-UPDATE Data 97
5.5.l9. Errors-IGNORE used with UPDATE 98
5.5.20. Errors-DELETE Data 98
5.5.21. Errors-IGNORE used with DELETE 99
5.6 Errors-Transaction Control and Locking Tables 102
5.6.1. Errors-SAVEPOINTS 103
5.6.2. Errors-LOCK TABLES 103
5.7 Errors-Using NULL Values 106
5.8 Summary 108
Chapter 6: Research Methodology 110
6.1 Evaluating Students' MySQL Code 111
6.1.1. Students' Group Project 111
6.1.2. Our Database - the 'HOSPITAL' 112
6.1.3. Using the 'HOSPITAL' Database 113
6.2 Data Collection (What, How, Who) 113
6.2.1. The Collected Data 113
6.2.2. The Collection of the Data 114
6.2.3. The Collector of the Data 114
6.3 Summary 115
Chapter 7: Results 116
7.1 MySQL Error Types-Syntactic, Semantic and Logic 117
7.2 Student Errors-SQL-DDL 118
7.3 Student Errors-SQL-DML 122
7.4 Student Errors-Transaction Control and Locking Tables 129
7.5 Student Errors-Total Number of Errors in All Cases 132
7.6 Analysis ofResults 134
7.7 Theoretical Analysis 134
7.8 Analysis of the Exact Results : 135
7.9 Summary 137
Chapter 8: Conclusion and Future Work 138
8.1 Static Error Checker for SQL-Offline 139
8.2 Static Error Checking ofSQL - Online 140
8.3 Concluding Notes 141
Appendix A 142
A-I The 'HOSPITAL' database code in MySQL syntax 142
A-LI. Database definition commands 142

iii

https://etd.uwc.ac.za/

A-1.2 Table definition commands 142
A-1.4. Relationship commands 145
A-1.4. Data entry commands 147
Appendix B 151
B-1. Sample MySQL Queries 151
Appendix C 153
C-1. MySQL Versions 153
Appendix D 155
D-1 Raw Data 155
References 159

IV

https://etd.uwc.ac.za/

List of Figures

Figure 2-1 Database System Cycle 7

Figure 2-2 RDBMS Structure 18

Figure 4-1 Trigger Execution and Constraint Checking .47

Figure 4-2 Architecture of Acharya 53

Figure 4-3 Acharya Interface Shot on Problem Solving 55

Figure 4-4 WinRDBI Architecture 56

Figure 4-5 WinRDBI User Interface 58

Figure 7-1 Analysis of Student Errors in create, update and delete Database

and Table Commands 119

Figure 7-2 Analysis of Student Errors in alter Table Command 121

Figure 7-3 Analysis of Student Errors in Table and View related Commands 122

Figure 7-4 Analysis of Student Errors in data entry Commands 124

Figure 7-5 Analysis of Student Errors in data retrieve Commands - Part 1 125

Figure 7-6 Analysis of Student Errors in data retrieve Commands - Part 2 126

Figure 7-7 Analysis of Student Errors in data retrieve Commands - Part 3 127

Figure 7-8 Analysis of Student Errors in data retrieve, update, delete

and truncate Commands 128

Figure 7-9 Analysis of Student Errors in transaction and rollback Commands 130

Figure 7-10 Analysis of Student Errors in rollback, savepoint ..

and rollback to savepoint Commands 131

Figure 7-11 Analysis of Student Errors in all Commands 133

v

https://etd.uwc.ac.za/

VI

List of Tables

Table 2-1 DBMS Examples and their Provider Names ll

Table 4-1 Percentages of agreed responses to Statements in the Online Test

Evaluation Questionnaire 50

Table 5-1 MySQL Modes and their supported DBMS Versions 71

Table 5-2 The structure of'tbIOne' Table 86

Table 5-3 MySQL Data Definition Errors (SQL-DDL) 90

Table 5-4 MySQL Data Manipulation Errors (SQL-DML) 101

Table 5-5 MySQL Transaction Control Errors (SQL-TCL) 106

Table 7-1 Percentages of Student Errors in create, update and delete Database and

Table Commands 119

Table 7-2 Percentages of Student Errors in alter Table Command 120

Table 7-3 Percentages of Student Errors in Table and View related Commands .. 121

Table 7-4 Percentages of Student Errors in data entry Commands 123

Table 7-5 Percentages of Student Errors in data retrieve Commands - Part 1 124

Table 7-6 Percentages of Student Errors in data retrieve Commands - Part 2 126

Table 7-7 Percentages of Student Errors in data retrieve Commands - Part 3 127

Table 7-8 Percentages of Student Errors in data retrieve, update, delete and truncate

Commands 128

Table 7-9 Percentages of Student errors in transaction and rollback Commands .. 130

Table 7-10 Percentages of Student Errors in rollback, savepoint and rollback to

savepoint Commands 131

Table 7-11 Percentages of Student Errors Totals in all Commands 133

Table C-l MySQL versions and features for different series 154

Table D-l Student Errors in Data Definition Commands (SQL-DDL) 156

Table D-2 Student Errors in Data Manipulation Commands (SQL-DML) 157

Table D-3 Student Errors in Transaction Control Commands (SQL-TCL) 158

Table D-4 Student Error Totals in all commands 158

https://etd.uwc.ac.za/

Glossary

AACE

Acharya

ACID

ANSI

API

ASP

AsseSQL

C

C#

CLI

DB2

DBA

DBMS

DML

DRC

ERD

ESClHaskell

ESC/Java

eSQL

GUl

HTML

IDE

Association for the Advancement of Computing in Education

A tool for teaching SQL

Atomicity, Consistency, Isolation and Durability

American National Standards Institute

Application Programming Interface

Active Server Page

An online tool to check SQL

'C' programming language

'C Sharp' programming language

Call Level Interface

Database 2

Database Administrator

Database Management System

Data Manipulation Language

Domain Relational Calculus

Entity Relationship Diagram

Extended Static Checker for Haskell programming language

Extended Static Checker for JAVA

A tool for teaching SQL

Graphical User Interface

HyperText Markup Language

Interface Design Enhancement

viii

https://etd.uwc.ac.za/

lIS

ITS

LCLint

Lint

mSQL

ORDBMS

RDBI

RDBMS

Spec#

SQL

SQLator

SQLDCL

SQLDDL

SQLDML

SQL-Tutor

Tcl

TRC

UoD

UWC

VB

WinRDBI

Internet Information Server

Intelligent Tutoring System

A tool for program development

A tool for checking C program code

Mini SQL

Object Relational Database Management System

Relational Database Interface

Relational Database Management System

A tool for checking C# program code

Structured Query Language

An online workbench for teaching SQL

SQL Data Control Language

SQL Data Definition Language

SQL Data Manipulating Language

A knowledge based system which is used to support learning SQL

Tool command language

Tuple Relational Calculus

the Universe of Discourse

University of the Western Cape

Visual Basic

An educational tool for SQL

IX

https://etd.uwc.ac.za/

x

Keywords

Database

Structured Query Language (SQL)

MySQL

Static Checking

Coding Tools

Software Maintenance

Program Conventions

Error Checker Tools

https://etd.uwc.ac.za/

Abstract

Coders of databases repeatedly face the problem of checking their Structured Query

Language (SQL) code. Instructors face the difficulty of checking student projects and

lab assignments in database courses.

We collect and categorize common MySQL programming errors into three groups:

data definition errors, data manipulation errors, and transaction control errors. We

build these into a comprehensive list of MySQL errors, which novices are inclined

make during database programming. We collected our list of common MySQL errors

both from the technical literature and directly by noting errors made in assignments

handed in by students. In the results section of this research, we check and

summarize occurrences of these errors based on three characteristics as semantics,

syntax, and logic.

These data form the basis of a future static MySQL checker that will eventually assist

database coders to correct their code automatically. These errors also form a useful

checklist to guide students away from the mistakes that they are prone to make.

Xl

https://etd.uwc.ac.za/

xii

Declaration

I declare that Static MySQL Error Checking is my own work, that it has not been

submitted for any degree or examination in any other university, and that all the

sources I have used or quoted have been indicated and acknowledged by complete

references.

Mohammad Shuaib Zarinkhail

Signed: ~:I~._. _._. '._- _~~_. -:__'_"-:_-=-:":_--:_' ::_--_~_)_._.. Date: October 2010

https://etd.uwc.ac.za/

Acknowledgments

I would like to thank my supervisor and all the instructors and professors at the UWC

who helped me to complete my research. This was difficult for the team at UWC to

supervise our program from a very great distance. I am happy and grateful to Mrs

Verna Connan, the postgraduate administrator at the UWC, for her kind and active

guidance during our program.

I would like to thank my family members, especially my kind father, for their

support. They let me complete this work. My father is really the greatest instructor

in my life.

My special thanks to my colleagues here in Kabul University, who gave me enough

time to complete my thesis.

X111

https://etd.uwc.ac.za/

Chapter 1

Introduction

Computer Science is a wide and important field of study. Almost all aspects of

human life are highly influenced by computers and computerized systems [44].

Databases and their usage are important [36, p. 2]. Relational databases are widely

used and are a crucial component of business and scientific systems [37] [45, p.133].

Databases are used in banking, airlines, credit card transactions, finance, human

resource management, sales, and manufacturing. Databases are also used in

education by universities, research academies, schools, and telecommunications

departments. Massive search engines rely on rapid database access, i.e. Google,

MSN, Yahoo, and so on. Electronic mail, registering users, and many other activities

regarding email facilities are stated and used through databases.

1

1.1 Background

A database is a computerized collection of logically related records of persistent data

and their definitions [14, p. 11]. According to a survey, there were ten million active

databases in the world in 2004 [27]. Databases could be created by Database

Management Systems (DBMSs) in large, medium and small sizes. Structured Query

Language (SQL) is the most common query language used by Relational Database

Management Systems (RDBMSs) [45, p. 135]. SQL is mostly taught in educational

areas like schools, universities and academies. SQL programs are prone to errors.

These errors could be semantic errors, syntax errors or logic errors.

https://etd.uwc.ac.za/

Previous research in this field includes "Static error checking of C applications" [3],

"Extended static checking for Java" [21], "How to write system-specific, static

checkers in Metal" [10]. Some errors only manifest themselves at run time under

specific conditions, or when the system reaches certain states. These errors are

difficult to detect and are normally either semantic or logic errors. One technique for

detecting run-time errors is to extract rules from commonly made errors. These rules

can then be applied to code segments in order to determine whether they meet some

rule-specific constraints [10]. SQL, like other coding languages, should have related

rules. According to those rules, it should be possible to recognize and highlight

errors for the user statically.

2

Most ofDBMSs use SQL for their functionalities. MySQL is a DBMS that uses SQL

commands. An early version of MySQL was developed in May 1995 [38, p. 6].

Students in database classes do MySQL programming. They also make MySQL

queries. The students use generated queries to retrieve data from databases, and to

insert and update data to database tables. Class work includes developing databases,

using databases, inserting data into databases, updating data within databases,

deleting data from databases, and finally retrieving data from databases. During class

work, their programs may have errors. The errors that students make can either be

semantic, syntax or logic errors.

1.2 Problem Statement

Teachers and instructors of database classes face problems when checking students'

work. The MySQL code generated by students may have errors. The error codes in

students' projects do not run on computers. Therefore, the MySQL code developed

by students needs static checking.

During database course work, students often implement small and medium projects in

MySQL. Teachers and instructors do not easily detect the mentioned kinds of SQL

https://etd.uwc.ac.za/

errors, especially semantic errors. Finding these errors can also be very time

consuming.

Another significant problem is that different students or student groups may submit

the same copy of code for their assignments. When this happens, it reveals student

dishonesty in classes. Kabul University, where we conducted this research, has large

classes. The average number of students per class is 75. Finding code similarities in

such big classes is a difficult and almost impossible task, which could be done by

statically checking MySQL code.

1.3 Research Objectives

First, a general study of databases is needed where we explain the general terms

including Database Management Systems (DBMSs), database files and database

users. Then we do an in-depth study of SQL and MySQL where MySQL types,

functionalities, functions and its proneness to errors are explained.

Finding common MySQL errors is another important part in this research. This

project should come out with a comprehensive list of common MySQL errors.

Similarly, common MySQL errors that database students make during class

assignments are included in this document. Also, the errors are grouped and

statistically analyzed.

3

This research focuses on methods, which can be used for designing a software-tool.

This tool will fmd the common errors that students make while designing and

implementing databases in MySQL. The software will analyze the code and

highlight the errors to the users. Most of the users of this tool will be instructors and

teachers in the educational and academic areas. In conclusion, this research will

provide some background on error checking, investigate its relation to SQL and

discuss the results of applying error checking to MySQL.

https://etd.uwc.ac.za/

An outcome of this research is a categorized list of common errors that students make

during MySQL programming. Also, methods for error checking which can be

implemented in a software tool are proposed. This will enable users to quickly and

easily mark projects and rectify errors. This project contributes to the field of

databases by both providing a comprehensive list of common errors as well as

providing methods for designing a tool to detect such errors.

1.4 Research Questions

The following are two main questions that state the research problem:

1. What errors do students make when programming MySQL In a database

course?

2. How can these errors be classified?

Similarly, we have two supporting questions to the main questions as:

1. Do any patterns emerge?

2. What can be learned from this analysis?

4

1.5 Thesis Outline

In Chapter 1, an introduction to the research field is given and the problem and

research questions are explained. This chapter includes a short background of the

field of study and shows its relationship to the topic of this research. Problem

statement, research objectives and research questions are included in this chapter.

Chapter 1 also describes the structure of the thesis including each chapter and each

appendix individually. A glance to the chapter topics and purpose of each chapter is

explained here.

https://etd.uwc.ac.za/

We give an overview of database management systems and include a broad study of

the database field in Chapter 2. Individual topics including databases, database

management systems, their types and their functionalities are added to this chapter.

Chapter 2 is one of the introductory chapters in this thesis and its existence helped us

to complete the chapters following it where some of them focus on the theoretical

analysis of MySQL errors.

Chapter 3 explains SQL in general and MySQL in particular and starts by explaining

query languages. This chapter includes a deeper study of SQL history and MySQL

history compared to Chapter 2. MySQL functions, regular expressions, command

line commands and their relation to error occurrences are explained in this chapter.

Chapter 3 focuses on a specific DBMS and is used as a vehicle to explain specific

points concerning MySQL.

5

Chapter 4 explains the common SQL errors and their types. It surveys some of the

existing error checkers and discusses some of the SQL teaching tools that are

employed. Semantic integrity support in object relational database management

systems is another topic of Chapter 4. This chapter is added to our document as an

advanced part of our work. The main reason for having Chapter 4 is to explain two

different objectives of our research, MySQL common errors as well as error checkers.

The error checkers are used to highlight, detect or prevent programming errors

occurring in source code.

Chapter 5 focuses on common MySQL errors. This is a big chapter. The error types,

which are explained in this chapter, depend on case sensitivity issues in searches and

in user-defined variable names. MySQL modes and chances for error occurrence are

discussed there. MySQL error classification, which is based on the types of

commands, is described in this chapter. There is a big propensity for errors to occur

in MySQL general commands. Chapter 5 includes many topics about specific errors.

https://etd.uwc.ac.za/

Chapter 6 includes our methodology for achieving the research goals and answering

the research questions. This chapter explains what we have done in this project.

Chapter 6 explains the breakdown of our work in three stages: study of database field

and experiments, evaluating of students' generated code to statically count errors in

the code, and the data collection explaining the (what, how, and who) terms.

Chapter 7 describes the results of our work. In this chapter we have analyzed and

categorized the students' errors. The listed errors in this chapter are grouped and are

shown in tables. Each table shows around 10 errors and a histogram is appended for

each table. Chapter 7 is a compilation of the results of this research.

Finally, in Chapter 8 we give our conclusions, and discuss the future work in this

field. We also propose a couple of methods for designing an error checker for SQL.

As stated, the error checker can be designated for a single user and be used offline or

it can be multi-user tool. The multi-user version mayor may not be used online.

There are four appendixes. Appendix A includes the sample database code named

the 'HOSPITAL'. This code is based on the MySQL syntax and students had to

develop this database ab initio. Appendix A includes four groups of commands for

the sample database 'HOSPITAL': i.e. database definition, table definition,

relationships, and data entry commands. Appendix B includes the list of sample

queries that are requested from students. The students had written those queries

against the sample database called 'HOSPITAL' explained in Appendix A. In

Appendix C the features of different versions of MySQL are contrasted. Appendix

D tables student errors.

6

https://etd.uwc.ac.za/

I User(s) I.__~

Chapter 2

Database Systems

The database systems chapter starts with some theory taken from C.I. Date's book

titled "An Introduction to Database Systems" published in 2004 [14]. The theory

specifies a cycle in which database system elements are divided into four groups:

users, databases, application programs and DBMS. Each element of the database

system cycle is explained separately. The relational database management system

(RDBMS) is also discussed as a sub part of DBMS. The chapter concludes with a

brief summary of the literature review and the chapter topics.

2.1 Data base System Cycle

A database system consists of four major parts: database, application programs,

DBMS and users [14, p. 7]. We can call them the database system cycle. This cycle

is shown below. Sometimes, application programs and DBMS are shown in one box

and treated as a single entity in the database system cycle.

Application
Programs

DBMS t-..-..-t·1 Database I

Figure 2-1 Database System Cycle

The above chart shows a database system cycle. According to the chart, DBMS is a

software layer between databases and database users. Users can create, modify, edit

or delete databases by DBMSs.

7

https://etd.uwc.ac.za/

2.1.1. Users

Database users are categorized in four different types [45, p. 13]. They are

differentiated by the way they expect to interact with the system.

Application programmers are people who have enough technical

knowledge of databases. Application programmers write application

programs within a database internal structure (metadata). There are

special types of programming languages, called fourth-generation

languages. These languages combine necessary control structures like:

for loops, while loops, and if-then-else statements, with the DML

statements [45, p. 14]. Fourth-generation languages often include

special features to facilitate the generation of forms and the display of

data on the screen. A majority of commercial database systems use a

fourth-generation language.

8

Sophisticated users interact with the system and form their requests in

a database query language like SQL. This category of users does not

write database programs, they simply formulate queries in SQL.

Sophisticated users submit each query to a query processor. The query

processor then breaks down the DML statements into instructions that

the storage manager understands. Data analysts, who submit queries

to explore data in a system, belong to this category of users.

Specialized users are also sophisticated users. This category writes

specialized database applications while they are not in a traditional

data-processing framework. Computer-aided design systems,

knowledge base and expert systems, systems that store data with

complex data types i.e. graphic data, audio data, and environment-

modeling systems are examples of such specialized database

applications.

https://etd.uwc.ac.za/

Naive users are end users with less knowledge of databases. They just

use the system by invoking application programs or objects in a

database system. Application programmers previously write those

application programs and database objects.

2.1.2. Database

A database is an organized collection of logically related data, data definitions,

relationships, indexes, views and other parts of computerized data. Basically,

databases are created from relations. A relation is a two-dimensional data table

consisting of records and fields. Each field in a relation has a unique name and a

specified data type and domain. Each record in a relation contains data about only

one entity instance. The order of fields and the order of records within a relation are

irrelevant. Each cell can be NULL or can have only one value.

2.1.3. The DBMS and Application Programs

A DBMS is a collection of interrelated data and a set of programs to access the data

[45, p. 1]. DBMS is software by which a database can be created; data to the

database can be inserted, updated, retrieved, and deleted. Some DBMSs use

application programs for these purposes. This topic is explained in more details.

Application programs are an important component in database management systems.

DBMS developer companies create application programs and include them in their

software products. These programs are treated as built-in objects in DBMSs. In the

same way, a category of database users called application programmers are also able

to write application programs to simplify database usage.

9

https://etd.uwc.ac.za/

10

2.2 The DBMS (In General)

The DBMS is an important part in a database system [36, p. 2]. A DBMS is a layer

of software between users and a database, which creates databases and stores,

updates, deletes, and retrieves data in databases [14, p. 9]. Synonyms for DBMS are

'database manager', and 'database server'. DBMSs handle all requests for accessing

data in a database. Adding, removing, and updating tables in a database, retrieving

data from a database, and many other functions are implemented by DBMSs. A

general function of the DBMS is 'the shielding of database users from hardware level

details' . DBMSs provide users with a perception of the database that is elevated

somewhat above the hardware level. It also supports user operations that are

expressed in terms of that higher-level perception.

DBMSs prepare facilities for users in a database system to create and manipulate

databases. Inserting data into a database is also handled by DBMSs. Deleting data

without side effects, updating data in databases and retrieving data from databases are

other available operations implemented by DBMSs. Many software companies

produce DBMSs. The following lists some of the DBMSs with their provider

company names.

DBMS Name Provider Name
DB2 mM Corporation
FileMaker FileMaker Incorporation
Firebird Firebird Project
Ingress INGRESS Corporation
Microsoft Access Microsoft Corporation
Microsoft SQL Server Microsoft Corporation
MySQL Server SUN Microsystems
Oracle Oracle Corporation
PostgreSQL PostgreSQL Global Development Group
SQLite Dr Richard Hipp
Sybase Adaptive Server Enterprise Sybase Corporation

https://etd.uwc.ac.za/

Table 2-1 DBMS Examples and their Provider Names

Many DBMSs with different facilities and functionalities exist.

2.2.1 DBMS Functions

DBMSs implemented various functions. These functions generalize the usage of the

DBMSs and facilitate their implementation. Examples of these functions are: data

dictionary management, data storage management, optimization and execution, data

transformation and presentation, security management, multi-user access control,

backup and recovery management, data integrity management, database access

language and Application Programming Interfaces (APIs), database communication

interfaces, and performance.

11

1. Data Dictionary Management: DBMSs provide a data dictionary function.

The data dictionary part is a database by itself. It contains data about data,

also called 'metadata' or 'descriptors'. The definitions of the data

elements and their relationships called metadata need to be stored in the

data dictionary. DBMSs do this and manage the data dictionary.

Examples of data dictionary management functions implemented by a

DBMS are the immediately recording of any changes in a database

structure or data abstraction and removing structural and data dependency

from the system.

2. Data Storage Management: DBMSs accept data definitions in source and

convert them to the appropriate object form. Therefore, a DBMS must

include a DDL processor or a DDL compiler for each version of the data

definition language (DDL). DBMSs must also understand and analyze the

DDL statements, for example, to fmd an index through a database.

DBMSs create complex structures through which data storage is

performed. Regarding this functionality, users do not need to defme and

https://etd.uwc.ac.za/

program the physical data characteristics. A modern DBMS separately

stores data and its related forms, such as screen definitions, report

definitions, data validation rules, procedural codes, structures for

video/picture formats.

12

3. Data Manipulation: DBMSs accept requests to retrieve, update, or delete

existing data in a database or add new data to a database. Therefore, a

DBMS must include a DML processor or a DML compiler to support the

data manipulation language (DML). The DML processor prepares

accessibility for implementing DML commands in a database.

DML commands are categorized as planned or unplanned requests:

a. The physical structure of the database should be designed by the

Database Administrator (DBA) to expect planned requests.

Therefore, planned requests always guarantee good performance

and come out with a complete result.

b. An unplanned request is like an ad-hoc query, for which the need

was unknown before. Unplanned requests are requested on

demand. In such cases, the basic design of a database mayor may

not suit that kind of request. Unlike a planned request, the

performance of an unplanned request in a database is not

guaranteed.

Generally, planned requests are characteristic of operational or production

applications while unplanned requests are more based on decision support

applications.

4. Optimization and Execution: DBMSs process DML requests with an

optimizer component. The optimizer determines an efficient way of

https://etd.uwc.ac.za/

13

requesting implementation. A run-time manager is designed to control the

execution of the optimized requests.

5. Data Transformation and Presentation: Storing data in a database

implemented by a DBMS is maintained independently. Hence, DBMSs

translate logical requests to physical commands, and store and retrieve

data from databases. DBMS and/or database users do not need to

distinguish between the logical and physical formats of data. DBMSs

provide software independence and data abstraction application programs.

6. Security Management: DBMSs monitor user requests and reject attempts

that violate the security and integrity constraints defmed by the database

administrators (DBAs). This functionality is implemented at compile time

or at run-time. DBMSs have security systems that enforce user and data

security; also, these systems determine data privacy within the database.

The extracted rules could be:

which users access the database

which data items may be accessed by which user

which operations, like read, add, update, or delete the user may

perform

These terms are especially important in multi-user database systems.

7. Multi-user Access Control: Since multiple users use most of the large

databases, it is important to keep up data integrity and data consistency.

DBMSs provide this facility by using sophisticated algorithms. By using

this method, DBMS guarantee the integrity of the databases.

https://etd.uwc.ac.za/

8. Backup and Recovery Management: DBMSs must enforce certain

recovery and control concurrency. This is done by a related software

component called the transaction manager. This component is not part of

the DBMS. DBMSs provide backup and data recovery facilities for

databases. These aspects guarantee the data safety and data integrity

within a database. Recovery management often occurs after abrupt events

like power failure or a disk sector crashing.

9. Data Integrity Management: DBMSs usually enforce integrity rules for

eliminating integrity related problems like data redundancy and data

consistency. Solving the data integrity problem is generally important in

transaction-oriented DBMSs.

10. Database Access Language and Application Programming Interfaces:

DBMSs use a query language to access data in a database. A query

language is a non-procedural language. 1 The query language used by the

DBMS contains two components: DDL (Data Definition Language) and

DML (Data Manipulating Language). One defines the structural part and

the other allows users to extract data from a database. Programmers can

also access the database using procedural languages like COBOL, Pascal,

Visual BASIC and others.

14

11. Database Communication Interfaces. DBMSs can connect end-users to

databases via networks both local and worldwide. DBMS can accept user

requests in a computer network environment and prepare the data and

information. DBMSs provide user access to databases through the

Internet, using internet browsers for the front end. In this case

communication can be prepared in different ways such as:

I In non-procedural languages users specify what must be done without specifying how it is to be done.

https://etd.uwc.ac.za/

15

The end user can fill in screen forms and refine hislher query.

Automatically published data to the screen by the DBMS. So that any

user can view it in a web browser.

Connect the DBMS to a third party system and provide information by

receiving emails and notes.

The overall purpose of DBMS is to present a user interface while hiding basic and

necessary structures from the user.

2.2.2 DBMS Types (by number of users)

Different types of DBMSs depend on the number of users, the database site

location(s), and the expected type and its usage extents [39, p. 21].

A DBMS could be a single-user or be a multi-user system. Single-user DBMSs are

designed to create and manipulate small and medium size databases. Single-user

DBMSs have different functions to create, use and manipulate a database by one user

at a time. Some DBMSs are used as both single-user and multi-user DBMSs. Single-

user DBMSs are mostly installed on personal computers or laptops and called

'Desktop DBMSs'.

Multi-user DBMSs are used for larger databases. Multi-user DBMSs have two types

of database design. The first type is called 'Workgroup Databases' and they can be

used by less than about fifty users at a time. Other types of multi-user DBMSs are

designed for many more than fifty simultaneous users and they are known as

'Enterprise DBMSs'.

https://etd.uwc.ac.za/

DBMSs are also categorized by site location(s). DBMSs could support a database

only on a single site or they can support databases spread over separate sites. Again,

it depends on the location, the usage, the number of users, and the capabilities of a

database system. A database supported by a DBMS at a single site is called a

centralized DBMS. A database distributed by a DBMS over many different sites is

called a distributed DBMS.

16

DBMSs can be classified into different categories in terms their type of use and the

extent of their use. Transactions like product or service sales and payments are

examples of DBMSs that are used in day-to-day operations. In such cases the time is

the most important aspect and the transactions must be recorded immediately. Such

DBMSs are known as transactional DBMSs or product DBMSs.

Another category of DBMSs could be based on decision making. This category will

require having accurate information stored in the database. Examples of such

DBMSs are in sales forecasts, market positioning, and some other fields. These

databases need large disk storage space to store and backup data. For this kind of

DBMSs the term data warehouse is used. Data warehouses store huge amounts of

information including the history of a field.

2.2.3 DBMS Types (by usage)

DBMSs are designed to create and use databases. The main functionalities of these

DBMSs are the same. The usability and qualification of DBMSs are quite different.

This difference is assigned in DBMS names. DBMS different types are:

Relational Database Management System (RDBMS)

Object Relational Database Management System (ORDBMS)

https://etd.uwc.ac.za/

Object Oriented Database Management System (OODBMS)

2.3 RDBMSs

The relational data model is the primary data model for commercial databases [46],

[49]. This data model is simpler than the other data models such as the network data

model or the hierarchical data model. The relational data model eases the use of

databases for programmers.

The relational data model is implemented by a RDBMS. Arguably, the most

important feature and advantage of the RDBMS is to let the user operate in a logicical

way [39, p. 24]. All the complex physical details of a database are managed by the

RDBMSs.

A RDBMS is different from a regular DBMS. The main difference between a DBMS

and a RDBMS is the usage of a set-oriented database language by the RDBMS [47, p.

8]. Set-oriented languages use most of the set operations. These operations include

union, intersection, difference, selection, projection, divide, multiply, and join.

Examples of set-oriented methods are relational-algebra and relational-calculus.

Other types of set-oriented languages do exist and are used [11]. Most RDBMSs use

SQL as a set-oriented or group-oriented database language.

2.3.1 RDBMS Structure

17

A relational data model consists of a collection of relations. Each relation has a

unique name. Relations (also called tables) contain two dimensional data. Relations

consist of attributes' and tuples'. Each attribute in a relation has a name and a data

type. The name of each attribute within a relation is unique. The order of attributes

2 Synonyms for attribute are column and field.
3 Synonyms for tuple are row and record.

https://etd.uwc.ac.za/

and the order of tuples within a relation are irrelevant. A tuple in a relation represents

a relationship among a set of values. Each cell in a relation can only contain one

single value.

18

The structure of a typical RDBMS is shown below [36, p. 14]. Different layers,

shown in Figure 2-1, are explained in more detail.
QUERIES

l
Query Optimization and Execution

Relational Operators
Files and Access Methods] These layers must

Buffer Management consider concurrency

Disk Space Management control and recovery

I
JDB-

Figure 2-1 RDBMS Structure

The lowest layer, called disk space manager, is a place for storing data. Higher layers

allocate, de-allocate, read, and write data and database structures. The next part is the

buffer manager, which partitions the available main memory into pages or frames.

The buffer manager brings pages and frames from memory to read and implement

requests from transactions. The 'Files and access methods' layer holds software that

supports the concept of a file in a database.

The 'Relational Operators' is another layer. Operators in this portion of evaluate

queries against the data. They can retrieve and edit data stored in a specific database.

Query optimization and execution is done at the very top layer in a DBMS structure.

ORDBMSs are an example of extending relational database systems to support

https://etd.uwc.ac.za/

broader classes of applications and to provide a bridge between the relational and

object-oriented tracks in the database environment [36, p. 631].

2.4 Summary

In this chapter we have reviewed database systems in general. Database system cycle

including users, database, DBMS and application programs were explained. DBMS

structure, functions and types wer~ discussed, and we have explained relational

database management systems (RDBMSs).

19

https://etd.uwc.ac.za/

20

Chapter 3

MySQL

Our research focuses on finding common MySQL errors that students make in

database courses. In this chapter we describe the MySQL DBMS and the database

language SQL that is used by MySQL. We go into MySQL and SQL fairly deeply

and describe their history shortly.

MySQL is a popular open source database management system [42], [43]. It is

widely used in the educational arena for teaching databases. Besides education,

MySQL software is used commercially. MySQL is ubiquitous. MySQL is usually

employed as a backend and a separate user interface is designed to access the

database in the front end. User interfaces are designed through websites and object

oriented programming languages like Visual Basic, Java, C Sharp (C#), Python and

soon.

MySQL Server is used by client-server systems [50]. In client-server systems, the

database is placed on one machine. Its structures and data can be stored physically in

one or many computers in a network. The database is accessible from other

computers or terminals connected to that network.

MySQL is a relational database management system [52]. It can store database tables

on different machines and relates those tables to each other. MySQL code can enter

data into database tables, update data within database tables and retrieve data from

database tables. MySQL uses a Structured Query Language (SQL) for implementing

commands. SQL is a query language, which is used by most DBMSs [45, p. 135].

https://etd.uwc.ac.za/

3.1 Query Languages

Query languages are used to request data from a database. Query languages are

categorized in two groups: procedural query languages and nonprocedural query

languages. Inprocedural languages all operations are programmed sequentially. On

the other hand, nonprocedural languages do not need their operations in a logical

sequence. Users can enter what they want with no need to describe any specific

procedure. Most DBMSs offer a query language that includes both procedural and

nonprocedural elements. SQL is a good example and is a very common and widely

used query language. As stated earlier MySQL uses SQL statements for

implementing its commands.

The relational algebra has procedural operations and its operators are used via SQL.

The Tuple Relational Calculus (TRC) and the Domain Relational Calculus (DRC) are

nonprocedural. These languages provide fundamental techniques for extracting data

from a database.

3.2 SQL

SQL is a standard database language [47, p. 15]. It is most widely used by

commercial databases and it is the most popular commercial query language to

RDBMSs [36, p. 32], [43]. SQL is a data sub-language rather than being a complete

programming language [27, p. 51]. SQL cannot be used independently. It does not

create menus, special report forms, overlays, pop-ups, or any of other utilities and

screen devices usually expected by end users. SQL makes database applications

more powerful.

21

SQL works with any application that requires the manipulation of data stored in a

relational database. Almost all relational software supports SQL coding. lts

https://etd.uwc.ac.za/

statements are used with scripting languages like VBScript. Some other

programming languages like JAVA and C# also can use SQL as a database language.

SQL is text oriented and can be run from a simple command line. SQL statements

can be used to defme database structure, query data from a database, update data in a

database, delete data from a database, and fmally control data in a database.

SQL is a standard database language [25], [34]. SQL statements are used to

manipulate and retrieve data from relational databases. A programmer or database

administrator can do the following with SQL:

Modify database structure

Change system security settings

Add user permissions to databases and tables within databases

Query a database to retrieve information

Update contents of databases

And many other activities

3.3 SQL History

SQL was originally developed for IBM's DB2 product in San Jose, California [47, p.

7]. SQL was developed at IBM corporation in the SEQUEL _XRAM and System_R

projects in 1970s [14, p. 85], [27, pp. 51, 52], [36, p. 181], [38, p. 23], [45, p. 135],

[47, pp. 7, 8].

22

https://etd.uwc.ac.za/

In 1980s, Oracle Corporation launched the world's first publicly available

commercial SQL system [38, p. 24]. Other companies like Sybase, Informix, and

Microsoft used implementations of SQL-based RDBMSs. At that time SQL was not

a standard language.

SQL was approved by the American National Standards Institute (ANSI) in 1986.

During 1989, ANSI approved another version ofSQL called SQL-89 [47, p. 19]. The

next version of SQL was SQL-92 and this version was approved by ANSI in 1992

[27, p. 52]. It is also called SQL-2. SQL-3 was released in the late 1990s. SQL-3 is

more object-oriented but it did not become popular in the commercial area. SQL-2 is

still widely used [27, p. 52].

SQL-2 (ANSI 1992) extended this language to an international standard. There are

three levels of SQL compliances: entry, intermediate, and full [47, p. 20].

3.4 MySQL History

MySQL is an advanced form of Mini SQL (mSQL). mSQL had problems with

speed. The speed of processing data in this DBMS was not convenient. Another

problem with this software was its flexibility. mSQL was not flexible enough for use

in database applications. Therefore, a new DBMS was developed. The Application

Programming Interface (API) for MySQL is similar to the API of mSQL. MySQL

covers all the functionalities of mSQL plus additional capabilities. Compared with

mSQL, MySQL is more flexible.

23

Monty Widenius was the co-founder of MySQL. 'My' was his daughter's name. For

this simple reason he named the new developed DBMS software MySQL. MySQL

has many editions released in a serious of different versions. These differences are

highlighted in Appendix C. Newer versions usually enhance older versions.

https://etd.uwc.ac.za/

3.5 MySQL Functions

MySQL uses functions to retrieve data from a database and to insert or update data.

MySQL functions include built-in functions and user-defmed [13] or stored functions

[2], [22]. Some MySQL functions are prone to errors. In this part, we review the

group of MySQL functions, which are treated as case sensitive and may cause errors

in MySQL code.

3.5.1 Control Flow Functions

MySQL control flow functions are used in many ways. They are used to find and

retrieve data, update data, delete data, and in some cases enter data into a database.

This group of functions facilitates users to track data easily through MySQL

databases. There are not too many of these functions, but they are very useful in

databases. Some examples of their syntax and use follows:

IF(expression1, expression2, expression3)

The result of this function is a comparison between the values given in

expressions. If expression 1 is true, the result of the function IS

expression2; and if expression 1 is false, then the result IS

expression3.

CASE value

24

WHEN compare_value1 THEN result1

WHEN compare_value2 THEN result2

ELSE result END

https://etd.uwc.ac.za/

When this function is called, the I;)BMS compares the given value in the

command to compare_value1, if they match the result1 displays; if they

do not match, control tests the value after the next WHEN keyword. If

compare_value2 is true, then result2 ensues; fmally, if there was no

match in compare values the result after the ELSE keyword is shown.

25

The ELSE keyword is optional, if there is no ELSE clause then the result

is NULL. The CASE, WHEN, THEN, and END parts are required in this

function. The number of WHEN-THEN clauses in CASE functions can

be repeated, but there must be at least one such clause.

IFNULL(expression1, expression2)

This function also compares values. Control flow functions can get values

or expressions directly from the keyboard or they can get data from

database tables or views. When expressions or values are set for these

functions, then they compare values and yield results.

The IFNULL function compares expression1 to expression2 for NULL

values. If expression1 is NULL, the function shows expression2 in the

result. If expression1 is not NULL, then the result is expression1.

NULLlF(expression1, expression2)

This function also compares the two expressions or values given m

parentheses. If they are equal, the result is NULL. If expression1 is not

equal to expression2, then the result of this function is expression 1.

Generally, the control flow functions are not case sensitive. Any letter cases can be

used for values and expressions in these functions. Normally, no case sensitive errors

occur. However, starting from MySQL 3.23.51 in control flow functions, if one or

https://etd.uwc.ac.za/

more of the expressions or values used in the function is case sensitive; then the result

of the function is also case sensitive. In this case, if the result of the function is not

treated as case sensitive, an error will occur.

3.5.2 String Comparison Functions

There are many string functions in MySQL. String functions are used for different

purposes. They are used to find, update, delete, and sometimes retrieve data within

database tables. Some functions are used for comparison of string values in

databases.

The general MySQL functions are not case sensitive. MySQL string functions, as a

subpart of MySQL general functions, are not case sensitive. But sometimes, MySQL

string functions used for comparison of string values are case sensitive. Case

sensitivity of these functions relates to their special uses in databases. We describe

the case sensitivity issue of string comparison functions in Section 3.5.3.

The following list shows the group of string comparison functions, which treat values

as case sensitive:

26

INSTR(string, substring)

LOCATE(substring, string)

REPLACE(string, from-string, to-string)

STRCMP(expression1, expression2)

SUBSTRING_INDEX(string, delimiter, count)

These functions are explained briefly with examples in the next section.

https://etd.uwc.ac.za/

27

3.5.3 Case Sensitive String Comparison Functions

If any expression in a string comparison is treated as case sensitive, the comparison

by itself and its result is treated as case sensitive. If a comparison between two

strings is executed; in general it is not case sensitive. However, if one or both of the

operands are binary strings, then the result is evaluated as case sensitive. In such

cases when binary strings are used and a positive result (TRUE) is expected, both

operand strings should use exactly the same letter cases.

The following examples show results for comparison of case sensitive and case

insensitive strings and their results as TRUE (1) or FALSE (0):

3.5.4 Using INSTRO for String Comparison

The INSTRO function is used for string comparison in MySQL. This function is

case insensitive unless a binary string appears in one or both of its arguments. This

function uses two arguments or values. These values are entered directly by users or

can be extracted from database tables. Data may be directly entered by users or may

be extracted from database tables. Strings from both of these methods may be used in

string comparison functions. Other commands, which are used for string comparison,

can also use strings from these two sources.

The general syntax of the INSTRO function is as follows:

INSTR(string, substring)

The result of this function yields the position of substring in the main string. The

arguments of INSTRO are in the opposite order of the arguments of LOCATEO.

The LOCATEO function is explained later.

https://etd.uwc.ac.za/

Some examples of this function follow. Using binary strings only causes case

sensitive checks on strings. If they do not match exactly the result is erroneous.

-> SELECT INSTR('Kabul University', 'University');

- > 7

Means that the substring 'University' starts from the 7th character of 'Kabul

University' .

-> SELECT INSTR('Kabul University', 'university');

- > 7

Means the substring 'university', all in lowercase letters, starts from the 7th position

in 'Kabul University' main string.

-> SELECT INSTR('Kabul University', BINARY 'University');

- > 7

Means the 'University' substring starts from the 7th position in 'Kabul University'

and it is true even when using a binary string (case sensitivity).

28

-> SELECT INSTR('Kabul University', BINARY 'university');

- > 0

Means the substring 'university' all in lowercase letters, does not match in 'Kabul

University', because in this example the INSTRO treats values as case sensitive. The

reason is the usage of binary check for comparing strings.

https://etd.uwc.ac.za/

-> SELECT INSTR('Kabul University', BINARY 'U');

- > 7

The 'U' substring is the 7th character of 'Kabul University' and is true using a binary

string, i.e. it is case sensitive.

-> SELECT INSTR('Kabul University', BINARY 'u');

- > 4

The 'u' substring in lowercase, located in the 4th location of 'Kabul University'. The

result of the function in this example is case sensitive.

If any or both values in INSTRO function are NULL, the result of the function

becomes NULL as well. This is illustrated in the following example.

-> SELECT INSTR('Kabul University', NULL);

- > NULL

29

One value or string is NULL the result is also NULL.

Shortly, if one or both components of the INSTRO function are used to check binary

arguments, the result is case sensitive. This leads to errors. To prevent such errors,

users need to be aware of this to make correct MySQL queries.

3.5.5 Using LIKE for String Comparison

The LIKE keyword is also used for string comparison in MySQL queries. Similar to

other string comparison functions and commands; the LIKE does case insensitive

https://etd.uwc.ac.za/

comparisons. Only if a binary string is used, the letters of LIKE argument values are

treated as case sensitive.

The following examples show the usage of the LIKE keyword and its role regarding

case sensitivity and preventing errors.

-> SELECT 'Kabul' LIKE 'KABUL';

- > 1 # means TRUE

-> SELECT 'Kabul' LIKE binary 'KABUL';

- > 0 # means FALSE

-> SELECT binary 'Kabul' LIKE 'KABUL';

- > 0 # means FALSE

-> SELECT binary 'Kabul' LIKE binary 'KABUL';

- > 0 # means FALSE

30

-> SELECT binary 'Kabul' LIKE binary 'Kabul';

- > 1 # means TRUE

If one or both operands in a comparison string operation are NULL, the result is

NULL, independent of case sensitivity. The following examples show results of such

cases:

-> SELECT binary 'Kabul' LIKE binary NULL;

https://etd.uwc.ac.za/

- > NULL

-> SELECT NULL LIKE 'KABUL';

- > NULL

3.5.6 Using LOCATEO for String Comparison

The LOCATEO function also uses string comparison. This is a MySQL function.

Use of this function is very similar to the INSTRO function described above. Most

of the rules and characteristics which are applicable to INSTRO are exactly the same

as for the LOCATEO function. One difference is in the order of strings, and another

difference is in the setting of the position for the start of the comparison.

In LOCATE the substring comes first, the main string second. This is reversed in the

INSTRO and is a source of errors.

The LOCATEO function can be called as follows.:

LOCATE(substring, string)

LOCATE(substring, string, position)

The result of this function yields the position of substring within main string. The

substring argument appears prior to the main string argument. The first variation,

shown above, does a normal comparison and finds a matching substring in the main

string. The second variation of the syntax gives the option for the user to define the

position of the character in the string from where the comparison starts. This is

essential for finding further occurrences of a substring in the main string.

31

https://etd.uwc.ac.za/

The following are examples of the LOCATEO function. Only binary checking of

strings causes case sensitive errors.

-> SELECT LOCATE('University', 'Kabul University');

- > 7

Means the 'University' substring starts at the 7th position of 'Kabul University'.

-> SELECT LOCATE('U', 'Kabul University');

- > 4

Means the substring 'U' is located in the 4th position of 'Kabul University'.

-> SELECT LOCATE('U', 'Kabul University', 5);

- > 7

Means the 'U' letter as substring, checked from the 5th position, located in the 7th

position in 'Kabul University'.

-> SELECT LOCATE('U', 'Kabul University', 9);

- > 0

Means the 'U' letter as substring, starting at the 9th position, is not matched in 'Kabul

University' .

If a binary string or substring is included, these operations or comparisons are case

sensitive. In such cases, if the BINARY keyword is missing, unexpected results and

32

errors occur.

https://etd.uwc.ac.za/

- > 7

-> SELECT LOCATE(BINARY 'University', 'Kabul University');

Means the 'University' substring starts at the 7th position of 'Kabul University'.

-> SELECT LOCATE(BINARY 'U', 'Kabul University');

- > 7

Means the letter 'U', as an uppercase letter and as a substring after binary checking or

case sensitive checking is found at the 7th position of 'Kabul University'.

-> SELECT LOCATE(BINARY 'U', 'Kabul University', 5);

- > 7

33

Means the letter 'U' searching from the 5th position is found at 7th position in 'Kabul

University'.

-> SELECT LOCATE(BINARY 'U', 'Kabul University', 9);

- > 0

Here, the letter 'U'starting from the 9th position, is not found in 'Kabul University'.

If any or both arguments of this function are NULL, its result becomes NULL. This

is illustrated in the following example.

-> SELECT LOCATE('University', NULL);

- > NULL

https://etd.uwc.ac.za/

The main string in this example as an argument is NULL the result is also NULL.

Briefly, if one or both arguments of the LOCATEO function are binary, the result is

case sensitive. This leads to errors. To prevent such errors, users need to be careful

and made aware of their danger in MySQL queries.

3.5.7 Using REPLACEO for String Comparison

REPLACEO can update strings in MySQL. This function is the only MySQL

function that always performs case sensitive comparisons. It replaces old strings by

new strings and all its checking is case sensitive.

If a user simply uses this function carelessly, i.e., he ignores case sensitivity, errors

are inclined to happen. To prevent errors such as these, users should always be aware

of letter cases. For this function, all the letters of a string should match exactly.

Otherwise, the operation and value that a user expects will not result. From the

viewpoint of error checking, this function has to be marked in red so that users are

made aware to be careful with its usage.

The syntax of REPLACEO function follows:

REPLACE(string, from-string, to-string)

This function first checks the main 'string' for occurrences of 'from-string', then it

replaces all matched samples in the 'to-string'. The following are examples of

REPLACEO functions where all results are case sensitive.

34

-> SELECT REPLACE('KBL University', 'KBL', 'Kabul');

- > Kabul University

https://etd.uwc.ac.za/

In this example the from-string 'KBL' matches part of the main string, and changes

the to-string as is expected.

-> SELECT REPLACE('KBL University', 'kbi', 'Kabul');

- > KBL University

Here the from-string 'kbl' does not match to any part of the main string; therefore, it

does not change the resulting to-string giving an unexpected result.

Regarding the usage of NULL arguments in this function, it is important to note that

if any string, main-string, from-string, or to-string is NULL, the result is also

NULL. The following example illustrates this.

-> SELECT REPLACE('KBL University', 'KBL', NULL);

- > NULL

In this example, the to-string is NULL. Therefore, the result of this query is NULL.

In summary, the REPLACEO function always treats values and strings as case

sensitive. For users, this function is error prone. These are not syntax errors, they are

lexical errors which users should be warned to avoid. Prevention of this kind of

errors has to be included in the software tool. The tool should take strings used in the

REPLACEO function, and change the letter case of these strings to all possible

forms, then return the result to the DBMS. The DBMS should use all matches in the

REPLACEO function and return the expected results for users.

35

https://etd.uwc.ac.za/

3.5.8 Using STRCMPO for String Comparison

The STRCMPO function was fully case sensitive before MySQL 4.0. In recent

versions of MySQL, the usage of the STRCM PO function is not case sensitive.

However, if we use binary strings in any version of MySQL, then the result returned

is case sensitive. When using NULL values for any or both of strings within the

function the result yields NULL.

The general syntax for the STRCMPO function is as follows:

STRCM P(expression 1, expression2)

It compares two strings. If both strings are the same, the result of the function is

zero; if expression1 is less than expression2, the result is -1; otherwise, the result

of this function is 1.

The following are examples of STRCMPO function:

-> SELECT STRCMP('abc', 'ABC');

- > 0 # means both strings are equal

-> SELECT STRCMP('abc', binary 'ABC');

36

- > 1 # means both strings are not equal

-> SELECT STRCMP('abc', 'abed');

- >-1 # means 'abc' is smaller than 'abed' string

-> SELECT STRCMP('abcd', 'abc');

https://etd.uwc.ac.za/

- > 1 # means 'abed' is neither smaller nor equal to 'abc' string

-> SELECT STRCMP ('abc', NULL);

- > NULL # means at least one string is NULL in the function

Based on the above paragraphs, MySQL errors occur easily when coding STRCMP

functions. These errors relate especially to the use of binary strings in these

functions. If a binary string is used in a string function, all letters that are directly

typed or taken from columns of relations in a database, are case sensitive. If their

letter-case is different, the result of a query will become incorrect and a logical error

ensues.

37

3.5.9 Using SUBSTRING_INDEXO for String Comparison

The SUBSTRING_INDEXO searches for a delimiter in given data. When data

matches the delimiter, one or more parts of a string are returned. The string can be

entered directly by a user or can be taken from a database source (table).

All comparisons of this function are case sensitive. If case sensitivity is ignored

while using the SUBSTRING_INDEXO function, then errors will occur. To prevent

case sensitive errors in this function, users should avoid letters in different letter

cases. The delimiter string letters should match exactly.

The following is the syntax of this function:

SUBSTRING_INDEX(string, delimiter, count)

It returns a substring extracted from the main string and delimiter is looked up in

string; count is an integer and can be positive or negative. The sign of the count

https://etd.uwc.ac.za/

determines the direction of comparison and can be either from the end when count is

negative or from the start when it is positive.

The following are some examples using this function:

-> SELECT SUBSTRING_INDEX ('John Black', , ',1) AS 'First Name';

- > John

Means: show one occurrence of 'John Black' that ends with space delimiter.

-> SELECT SUBSTRING_INDEX ('John Black',", -1) AS 'Last Name';

- > Black

Means show one occurrence of' John Black' that ends with space delimiter searching

from the end.

-> SELECT SUBSTRING_INDEX ('Black, John', " " 1) AS 'Last Name';

- > Black

38

This example uses a comma and a space instead of only a space.

-> SELECT SUBSTRING_INDEX ('Afghanistan', 'istan', 1) AS

Country_Nation;

- > Afghan

Removes 'istan' from 'Afghanistan' giving 'Afghan'.

https://etd.uwc.ac.za/

-> SELECT SUBSTRING_INDEX ('AFGHANISTAN', 'istan', 1) AS

Country_Nation;

- > NULL

This yields a NULL because SUBSTRING is case sensitive.

Note: Usage of this function and other string comparison functions may be performed

on different data sources that include more than one record. In this document, we

only have shown these functions on single strings. The last example can be

implemented on a table that includes country names like 'Afghanistan', 'Tajikistan',

'Uzbekistan', 'Turkmenistan', etc.

3.5.10 Case Sensitivity in Regular Expressions

The REGEXP operation is also used for pattern matching in MySQL. The RUKE is

a synonym for the REGEXP command. REGEXP and RUKE are fully case

sensitive prior to MySQL 3.23.4. In recent versions of MySQL, REGEXP and

RUKE are case sensitive only when a binary string is compared with another string.

If a binary string is used as operand with the REGEXP command, it should match in

case; otherwise, errors and unexpected results ensue.

The REGEXP / RUKE syntax is:

expression REGEXP pattern

expression RUKE pattern

The expression and pattern can be written directly in the command line or can be

referenced in a data source. If any or both operands, expression or pattern is

binary, the comparison will be case sensitive.

39

https://etd.uwc.ac.za/

The following examples show the usage of REGEXP operation and its possible error

occurring in MySQL code:

-> SELECT 'Kabul' REGEXP 'KABUL';

- > 1 # means TRUE

-> SELECT 'Kabul' REGEXP binary 'KABUL';

- > 0 # means FALSE

-> SELECT binary 'Kabul' REGEXP 'KABUL';

- > 0 # means FALSE

-> SELECT binary 'Kabul' REGEXP binary 'KABUL';

- > 0 # means FALSE

This operation can also be negated by using NOT. The negated REGEXP, or NOT

RLiKE are shown below.

-> SELECT 'Kabul' NOT REGEXP 'KABUL';

- > 0 # yields FALSE

40

-> SELECT 'Kabul' NOT REGEXP binary 'KABUL';

- > 1 # yields TRUE

If one or both operands of REGEXP or RLiKE operators are NULL, the result is

NULL, Independent of case sensitivity.

https://etd.uwc.ac.za/

3.5.11 Case Sensitivity in the Command Line

Option names and letters used in the command line are case sensitive. For example,

lowercase 'v' and uppercase 'V' that are used in the command line are different. The

lowercase 'v' corresponds to 'Verbose' and the uppercase 'V' is used for 'Version'.

These two cannot be swapped.

Each command has two forms: a long form and a short form. The short forms of the

MySQL commands are case sensitive and the long forms of these commands are not

case sensitive. For example, we can use the '\t' command to start a session file and

use the '\T' to stop recording to the session file. These two commands can be written

in long forms as 'tee' and / or 'notee'. The first two commands are case sensitive and

have opposite effects. The second two are case insensitive. We can write them as

'TEE', 'Tee' and also 'NoTee' or 'NOTEE'.

The following are used in the command line:

\b means 'back space'

\8 means the 8 letter by itself

\n means disable pager (nopager) end of line

\N means NULL value

\c clears the recent command

\C switches to another charset

\r reconnects to the Server

41

https://etd.uwc.ac.za/

\R reconfigures the MySQL prompt, its long form is prompt

\g sends a command to the Server, its long form is go

\G sends a command to the Server and displays results vertically,

its long form is ego

To prevent or reduce case sensitive errors in command line operations, users need to

be familiar with the letter cases for short commands. Short options are included in

computer programs to make coding easy for users. Computer users, especially in the

database field, can use short options in command lines from user terminals. These

options are as short as two characters.

Every alphabetic letter has two showcases, uppercase and lowercase. To have more

options for command line operations, almost each letter may be used for two different

options. One option is with the lowercase of a letter and the other option is with the

uppercase of that letter. In general, users have to be serious with the usage of letter

cases for short options in command line operations.

3.6 Summary

In this chapter we described MySQL and explained query languages. A quite general

study of SQL as a widely used query language [43] was introduced and the history of

SQL and MySQL were discussed. We also gave a complete view of MySQL

functions, regular expressions and command line operations for MySQL. While

MySQL functions were explained, we also described potential errors. Most error

occurrences are related to case sensitivity issues in MySQL queries. The case

sensitivity and error proneness of MySQL queries were clearly explained. Similarly,

MySQL versions and differences between them were explained. We described some

similarities, additions and omissions in MySQL versions.

42

https://etd.uwc.ac.za/

Chapter 4

SQL Errors and Error Checkers

This chapter focuses on SQL errors and the existing error checkers for database

languages. Errors may occur in any program. SQL code as any common

programming language may contain errors. In this chapter, common SQL errors and

types of errors are explained. Methods for SQL error checking at runtime (dynamic)

and before runtime (static) are discussed. Then some of the SQL teaching and error

checking tools are explained. The chapter continues discussion on error checkers for

other programming languages and the chapter concludes with a summary.

43

4.1 SQL Errors

The general structure of an SQL statement has three parts: SELECT, FROM, and

WHERE. Errors can occur in any of these parts at run time. These errors are

grouped as data manipulation errors of MySQL. The errors are based on the six

fundamental SQL select statement clauses, i.e. SELECT, FROM, WHERE,

GROUP BY, HAVING, and ORDER BY [26]. The mentioned errors are checked

as semantic errors, syntax errors, and logic errors.

A basic implementation of the SQL-Tutor system described in [34] discovers and

analyzes syntax and semantic errors. As mentioned above, SQL errors are grouped

into separate categories. These categories are based on the elements commonly found

in the SQL select statement, i.e. table names, attributes, prefixes, symbols, and

https://etd.uwc.ac.za/

aggregate functions. SQL can answer a task to be solved if it has a correct query

format.

4.1.1 SQL Semantic Errors

Programs sometimes have errors. These errors could be semantic errors, syntax

errors or logic errors. Semantic errors occur when a user creates a syntactically

correct statement in a program, but the statement does not reflect the user's aims

correctly [26]. Semantic errors can be categorized into cases where:

the task is known in order to detect that the query is incorrect and

there is enough evidence that the query is incorrect, no matter what the

task is.

Semantic errors return an empty set for a query. Most DBMSs do not show error

messages while semantic errors occur. Designing a tool for fmding semantic errors in

SQL-statements, like the program lint for C [28] would be useful. Such a tool would

be invaluable for teaching and for application software development. A good error

message could speed up the debugging process of code.

4.1.2 SQL Syntax Errors

Syntax errors are errors with the actual syntax of a language [26]. Misspelling a

keyword is an example of such errors. Syntax and logic errors usually occur at

runtime. Hence they are called potential run-time errors [51]. Recently, Minock

defined a standard logical notation that is more restricted [32]. This method is closed

under syntactic query difference.

44

https://etd.uwc.ac.za/

Syntax errors and some semantic errors can be detected by static error checking

methods. The current status of this field and related topics include static error

checking methods and static error checking tools. Methods and tools for static error

checking are used to prevent such errors. These methods and tools are explained in

the forthcoming paragraphs.

4.1.3 SQL Error Checking

SQL statements are only checked for correctness at runtime [31]. If the code has

errors, they are uncovered at runtime. Call level interfaces usually offer significant

power of SQL [31]. These interfaces accept dynamically generated SQL statements,

but they provide no static syntax or static type checking. Language extensions like

SQLJ [1] provide static syntax and static type checking. Persistent object systems

allow stored data to be treated as objects but they do not expose the full power of the

database engine.

Using a database engine through a Call Level Interface (CLI) involves constructing

SQL statements. These statements are built with string concatenation and

replacement. This method lets the user develop dominant queries with enough

flexibility. The resulting queries are checked for correctness only at runtime when

they are sent to the database engine.

45

This method of creating SQL statements can cause many types of problems and errors

[31]. Examples of some common errors are bad syntax such as data type variance,

misspelled column names, and unknown tables.

4.1.4 SQL Static Error Checking

Static error checking can improve software quality and productivity [21]. Static code

analysis can help a team's ability to deliver a high-quality product or program. It will

https://etd.uwc.ac.za/

not change the face of software development, nor will it turn poor code into good

code or weak programs into better programs. However, when database experts agree

that a method and tool is useful, it can be used for doing code cleanup, then that work

will guarantee the correctness of the code and will be able to show exactly where the

problem is and suggest extremely localized fixes of the problem. Static error

checking can discover errors and improve awareness of errors by raising the errors at

an early phase of the coding.

Static code analysis is a critical part of the bug-finding process. Static code analysis

tools are like smarter compilers, better language libraries, new-and-improved

software methodologies, high-level dynamic languages, modem Interface Design

Environments (IDEs), automated unit test runners, code generators, document tools

and any number of other software tools that have shown up over the past few

decades.

Most database courses in the educational field, especially computer SCIence, use

MySQL for implementing student projects [12], [30]. In these cases, instructors and

teachers are responsible for checking the database code generated by students. This

checking should be precise, accurate and efficient.

46

Student skills can be improved by having a competitive classroom environment.

Students in a competitive classroom try to do better and be the best among their

peers. In a competitive environment, students take advantage of their natural

inclination of comparing themselves to others. Similarly, in competitive classrooms

even high-performing students are stimulated to higher levels of learning and

performance.

Instructors and teachers also need to uncover suspicious similarities between the code

generated by students. This similarity in parallel assignments may be a result of

student plagiarism.

https://etd.uwc.ac.za/

4.1.5 Semantic Integrity Support in ORDBMS

Semantic integrity support in Object Relational Database Management Systems

(ORDBMSs), explained in [49], surveys the state of the art of semantic integrity

constraints, and provides an overview and comparison of semantic integrity support

in the new SQL standards. Figure 4-1 shows the processing order of declarative

constraints and triggers.

SQL-Statement

Determine Set of Affected Rows

Execute BEFORE Triggers Error

Error

Error

Apply NO ACTION Rules
and Evaluate Constraints Error

Execute AFTER Trigger Error

Figure 4-1 Trigger Execution and Constraint Checking

47

https://etd.uwc.ac.za/

Static error checking is a good option for analyzing and detecting errors in program

source code in object-oriented languages. Similar research for object oriented

languages, like Java and the C family has already been completed [51]. Flanagan

showed the possibility of applying an extended static checker (named ESC/Java) for

Java [19], [21].

4.2 SQL Error Checkers

SQL queries are tested on database engines against data. If the query fails, no DBMS

provides a clear feedback to the users [5]. Such feedback is important to clear up and

give opportunities to the users to develop their skills in SQL queries. The following

software is used for teaching SQL. Besides, the software can be used to provide basic

ideas for prototyping SQL error checkers. Some of the tools provide feedback and

notes to their users. The users of this software should be familiar with the methods

that provide feedback. The same methods can be used for error detecting and may

work well for the proposed SQL error checkers.

4.2.1 eSQL

eSQL is a tool for teaching SQL. This tool was proposed in 1997 [25]. eSQL is not

used for query evaluation or consideration. eSQL does not show a query result,

instead, it visualizes query implementation in series of images. It displays a step by

step process of how a query outcome results. eSQL is designed for teaching

databases rather than for developing them. This system has a simple data store and a

parser, which are coded in C. The Graphical User Interface (GUl) of this system is

designed in the tool command language Tcl/TK. It is mostly used for rapid

prototyping, scripting applications, GUls and testing. Tcl/TK is extensively used on

embedded systems platforms [48].

48

https://etd.uwc.ac.za/

eSQL has a text-editing area where commands and queries are typed or pasted.

Further, the tool may process the code from this area to show its results. It also has a

message area for the system. This area displays messages relating the execution

status of the queries. Additionally, eSQL has menus, and a separate area to display

the full path and names of the current schema and file ofSQL commands.

4.2.2 AsseSQL

AsseSQL is an online tool, which provides feedback and notes [35]. This tool allows

entry and execution of queries by users. The tool provides immediate response and

feedback on users' queries. Then, it indicates to users how accurate their queries are

and the correctness of the solutions provided by the users. The AsseSQL does not

provide any comments or suggestions for improvement. Users can only guess and

solve problems within their queries. This tool is mainly helpful for instructors and

teachers to check queries and code generated by their students but it is not helpful for

students to edit and find errors in their queries.

AsseSQL was evaluated by students in a survey and its usage was verified by this

survey [35]. A structured questionnaire was prepared and issued to the students who

participated in an online test via AsseSQL [35]. The results of this evaluation,

including questions, are shown in Table 4-1. Ninety two percent of students, who

took the test, completed the questionnaire.

Question Statement %Agreed

Q1 I was more motivated to practice SQL because of the online test than with 85
a written assignment

Q2 I was more motivated to practice SQL because of the online test than with 85
a written test.

Q3 Practicing SQL queries interactively and online helped me to improve my 92
SOL query skills.

Q4 I preferred taking the online SQL test to taking a written SQL test. 88

49

https://etd.uwc.ac.za/

Question Statement % Agreed

Q5 I preferred taking the online SQL test to submitting a written SQL 84

Assignment.
Q6 I have an accurate idea of my ability to construct SQL queries after taking 78

the online test.
Q7 The time given for the test was reasonable. 67

Q8 The Marking was consistent and fair. 87

Table 4-1 Percentages of agreed responses to Statements in the Online Test Evaluation
Questionnaire

Julia and Raymond [35] mentioned that the next version of AsseSQL will be

improved. It will make cheating difficult. The new model will respond to user

queries in a second scenario database. This database is not be visible to the users.

Answers on the second database will be exactly the same as the first database but its

data will be slightly different. This system also will use binary marking on user

answers. It will mark an answer either as 'correct' or 'incorrect'. No partial marks

will be given to an answer or a query.

4.2.3 SQLator

SQLator was created at the University of Queensland, Australia in 2004 [41]

functioning in a similar way to the previous tool AsseSQL. This tool is basically an

online learning workbench [41]. SQL commands are categorized into three groups:

Database Definition Language (SQL DDL), Data Manipulating Language (SQL

DML), and Data Control Language (SQL DCL). SQLator focuses on the SELECT

statement, which belongs to the SQL DML part of the SQL commands. Similar to

AsseSQL, SQLator also does not provide comments or suggestions for improvement

to the users. SQLator and AsseSQL both can only apply binary grading (correct /

incorrect) to queries and code [35], [41]. Users' misunderstanding and further

learning could not be corrected by the Binary grading methods.

50

SQLator provides several sample databases for learners to choose from and uses a

fully generic Equivalence Engine [41]. This engine judges whether a proposed

https://etd.uwc.ac.za/

solution in a query corresponding to the English statement is correct or not. SQLator

system databases describe a business scenario and they contain hundreds of English

statements. These statements describe the query requirements regarding SQL rules.

SQLator has different categories of users, i.e. teachers, students, and administrators.

Since, SQLator is an online tool and is accessible via the Internet; its users can access

it from anywhere. A username and password issued by the tool administration and

the authentication for each category of user is also determined. SQLator has three

major technology components [41]:

Web Application - The web provides access for users. The tool uses

Active Server Page (ASP) with static HyperText Markup Language

(HTML) pages. The system is hosted by a Microsoft Internet Information

Server 5.0 (lIS 5.0).

SQLator Engine - The main part of the SQLator tool is the equivalence

engine. This component is registered at the lIS server and implements the

core functionalities of the system.

SQLator Databases - This component contains the SQLator main database

and sub databases. The databases are stored on Microsoft SQL Server

2000 DBMS. These databases record user data and hundreds of the

English language statements used in comparisons within queries.

The above tools were primarily developed and described for the general Computer

Science and Information Systems field. They were not specific to the Relational

database theory, and none of them provide detailed implementation information.

51

https://etd.uwc.ac.za/

4.3 SQL Teaching and Error Checking Tools

There are numerous software-packages used as teaching tools. They are designed

specifically for SQL query formulation skills. Examples of such software are SQL-

Tutor [33], Acharya [5], and WinRDBI [15]. SQL-Tutor is a problem solving

environment. It supports acquisition of domain knowledge bases as feasible forms.

SQL-Tutor lets users practice using these systems and learn from them. Some web

sites are available for helping users to improve their query skills, e.g. www.sglator.

com, www.sglcourse.com [35].

Existing SQL teaching methodologies only explain the conceptual part of the SQL for

a limited group of examples [7], and do not have enough practice exercises.

4.3.1 SQL-Tutor

SQL-Tutor is a knowledge based system [33], [34]. This system is used to support

users and students in learning SQL. SQL-Tutor is an intelligent teaching system.

This system has been shown to a number of database teachers and they became very

interested in it [34]. With this system, an important improvement in problem solving

performance on the post-test of queries was achieved [7]. SQL-Tutor includes three

types of learning: conceptual method, problem solving method, and Meta learning

method.

SQL-Tutor demonstrates concepts and preliminaries of SQL to its users. This is also

a problem solving tool. It supports acquisition of domain knowledge in a declarative

form using constraints. Also, it provides support for strengthening practical

knowledge. SQL-Tutor assists users and students to solve problems by arguing

against errors. Finally, SQL-Tutor supports Meta learning on self-explanation by

preparing error messages and sending corrected solutions back to users.

52

https://etd.uwc.ac.za/

http://www.sglator.
http://www.sglcourse.com

4.3.2 Acharya

Acharya is another system used for teaching and testing SQL statements. Acharya is

an Intelligent Tutoring System (ITS) [5]. This ITS is composed of three main

modules:

The Expert module deals with the domain knowledge of the system.

The Student module works with the knowledge base of students for a

specific topic and updates the student models.

The Instructor module, then, checks the Student modules and based on

their outputs, finds the weak points of the teaching and selects new

strategies for the future.

This Acharya system uses truth table processing by which SQL SELECT statements

are analyzed and corrected. Users get feedback on their work from the system [26].

Acharya architecture is Internet based with support for SQL problem solving. This

tool is used via an object oriented interface in the front-end and POSTgreSQL in the

back-end. Java servlets are used to implement queries entered by users. Figure 4-2

shows the main architecture of the Acharya tool.

L J-I Student Module I+-Student

1 Databases-. (Including
Problems,

Student Interface Pedagogical Solutions)
+- +-Module

Figure 4-2 Architecture of Acharya

53

https://etd.uwc.ac.za/

The Acharya user interface is accessible via a window with three areas that are

always visible to its users. The upper part of the interface window shows the

structure of the database including table-names, their attributes and possible links

between tables. Similarly, text explaining the problem to be solved is displayed in

this upper part of the window.

The middle part has all six SQL SELECT statement clauses, i.e. SELECT, FROM,

WHERE, GROUP BY, HAVING, and ORDER BY [26]. These clauses are shown

as labels with entry boxes. Users do not need to remember all query clauses and their

order within a query. They just need to enter query parts as they solve the problem

proposed by the system. Additionally, some navigation buttons are located in this

part of the window. These buttons are labeled as 'Done', 'Clear', 'Hint', 'Knowledge

Level', and 'Next Problem' .

The third part displays the results. The results are shown separately as 'Diagnosis

result of problem', and 'Result of problem'. The second box in this area, 'Result of

problem', only displays the result of the problem query if it is correct. In case of an

error in the user's solution, a hyperlink to course materials is displayed.

Acharya has 70 diagnostic rules describing different possibilities between student

solutions and expert solutions. This tool supports almost all SQL constructs, which

are related to database querying. Only update constructs are not handled [5].

54

Acharya uses a manually created database. This database stores problems and their

solutions provided by experts. The problems from the database are retrieved by users

to practice and solve them. Manually tracking such a database system is difficult

work. To automatically generate exercise problems, questions and answers, the

Acharya system will be further developed [5].

https://etd.uwc.ac.za/

Figure 4-3 is a screen shot from the interface window with a three table database, a

problem statement, a solution by users, a diagnosis result of the problem, and a

suggesting hyperlink: to related course materials as explained.

55

Figure 4-3 Acharya Interface Shot on Problem Solving

4.3.3 WinRDBI-A Relational Database Educational Tool

Similar to the previous tool, RDBI is an educational tool. It assists students to test

their queries, which are written in formal relational query languages, i.e. Relational

https://etd.uwc.ac.za/

Algebra, Domain Relational Calculus (DRC), and Tuple Relational Calculus (TRC)

[15]. RDBI is a relational database interpreter, which prepares direct feedback for its

users.

RDBI was initially developed for student projects, which linked databases to logic

programming [15]. This tool is written in Quintus Prolog, an implementation of

Prolog. SQL statements are parsed and converted to Prolog code and then

implemented by the tool.

RDBI usage, as an educational tool, is limited to users who had Quintus Prolog

installed in their machines. WinRDBI is a graphical version of RDBI for Windows

[15] that does not require Quintus Prolog, and introduced a graphical interface.

The WinRDBI architecture is illustrated in Figure 4-4. The user interface of the tool

is coded in Visual Basic 4.0, and the relational database is coded in Arnzi! Prolog.

User Relational
Interface 1< Database

Interpreter

~~
"".... -...... "....
r-....- r-..... /

Schema&
Database Prolog
Extension Source

<, / <, ./

Figure 4-4 WinRDBI Architecture

56

https://etd.uwc.ac.za/

The WinRDBI user interface has the following main components [15]:

Query Definition

The Query Definition component accepts queries in one of the four supported

languages: Relational Algebra, DRC, TRC, and SQL. Users can choose the

language they want to use by selecting a radio button. An 'Execute', executes the

entered query code. The results and feedback are displayed in the Query-Result

component.

Query Results

The Query Result component is used to view the results and can be navigated

horizontally and vertically. Data shown by this component is read-only and

cannot be edited.

Relations

The list of the relations from the current session is displayed in the Relations

component. This list is vertically scrollable. Users can view relation-instances

and/or relation-definitions by single or double clicking on the relation name.

57

Relation Instances

Relation instances and definitions are shown in the Relation-Instances

component. The Relation-Instances component is horizontally and vertically

scrollable and its data cannot be directly edited.

Figure 4-5 shows the user interface view of the WinRDBI tool.

https://etd.uwc.ac.za/

Figure 4-5 WinRDBI User Interface

4.4 Other Error Checkers

58

4.4.1 ESC/Java

ESC/Java is an experimental compile-time program checker, which finds common

programming errors in Java programs. This tool provides a simple annotation

language, which can express design decisions formally. ESC/Java also warns of

potential runtime errors found in the code. ESC/Java's annotations are simple

statements. Functional verification is not required [21]. Programmers can specify

their own design decisions and it gives them the option to issue warnings if the

program violates those design decisions. Houdini [20] is an example, which uses

ESC/Java as a subroutine in inferring annotations [21].

https://etd.uwc.ac.za/

4.4.2 ~Unt

Lint [28], as a specialized checker that finds broader classes of errors in C programs,

such as stylistic errors, type errors and logic errors, but it is prone to making mistakes

[9]. Lint detects features of the C program files which are likely to be bugs, or non-

portable, or wasteful. It also checks the type usage of the program more strictly than

C compilers. The usage of functions is checked, for example finding functions that

return values in some places and not in others, functions called with varying numbers

of arguments, and functions whose values are not used or whose values are used but

none returned.

Flanagan also mentions that Lint, as a static error checker, only detects a limited class

of errors [21].

4.4.3 ~C~Unt

Besides these techniques, there are tools like LCLint [17], [18], which are useful in

program development. Static error checking of C applications [3] is a similar method

to static error checking in Java. Three other examples of static error checking

methods are: symbolic execution [6], [8], abstract interpretation [12], and symbolic

model checking [8].

Recent work by researchers from Stanford University shows that an effective

technique for finding errors is a heuristic scan for irregularities in the program source

code [16].

59

4.4.4 Spec#

Another similar system IS Spec# and its automatic verifier Boogie [4] that IS

applicable to the C# language.

https://etd.uwc.ac.za/

Some methods of error checking do not require complete verification [9]. The

checkers using these methods are: LCLint, Aspect [23], extended static checkers [21],

[40], [51], and the Monadic second-order logic checker [24].

4.4.5 ESC/Haskell

Previous work focuses primarily on object-oriented programming languages like

Java, and C++. Haskell is the only functional programming language for which a

static error checking method exists [51].

Recently, an extended static error checking method for Haskell, named ESClHaskell,

was implemented. Haskell is a strong functional programming language and this is

the only error checker implemented on a functional programming language [51]. A

functional programming language does not contain 'assignment' or 'go to' statements

and a pure functional programming language has no side effects on the system on

which it runs [29].

The mentioned static checkers work in a very similar way to what is already being

done in many modem language compilers like the JAVA and the C# compilers.

These tools implement basic semantic checking that verify the program sense. With

this checking, source code demonstrates whether it works as intended or has errors.

For example, program code is checked for possible security flaws, memory

management leaks or synchronization issues like deadlock, access to shared data

outside critical sections, etc.

4.5 Summary

60

This chapter has explained the general terms regarding SQL errors. It pointed to the

error prone places within SQL code. Different types of SQL errors and possibilities

for error occurrence are discussed. SQL error checking and different methods

https://etd.uwc.ac.za/

including static error checking is explained. Semantic integrity support in ORDBMS

was another topic in this chapter.

We have discussed some error checkers in the Computer Science and Information

Systems fields. The mentioned error checkers are related to the database language

and to other computer languages. SQL error checkers that are explained in this

chapter, have limited options. However, error checkers for other languages have

quite complete options to detect errors. Additionally, a couple of teaching tools for

SQL were explained. Some of these tools have error an checking facility as well as

teaching and/or visualizing SQL commands in screen shots.

61

https://etd.uwc.ac.za/

62

Chapter 5

Common MySQL Errors

This chapter discusses the MySQL common errors. Case sensitivity errors in

searches and in user-defined variable names are explained. Errors in various MySQL

modes are included. Also, data definition, data manipulation and transaction control

and locking table commands and their status for being error prone are discussed. All

three categories of errors are summarized in tables. The chapter concludes with a

summary and gives error totals for different classes of MySQL commands.

5.1 Errors-Case Sensitivity

Most MySQL commands are not case sensitive. This has a relationship with the

operating system in which the MySQL DBMS is running. The operating systems,

which use case sensitive file names, also use case sensitive identifiers and MySQL

commands. The newer versions of MySQL are case insensitive even with identifiers

and alias names. The previous versions of MySQL-before MySQL 4.l.l-have

case sensitive database names, table names and their alias names.

On UNIX platforms and UNIX based operating systems, some of the MySQL

commands and keywords are case sensitive. The following code shows a difference

between using uppercase and lowercase letters in a single query:

SELECT * FROM tone WHERE TONE.id = 1

The above code generates an error while using MySQL 4.1.1 or its earlier versions in

UNIX based operating systems. In this code, both the table reference and field

https://etd.uwc.ac.za/

reference are written in two different letter cases. The table name is by itself an

identifier. For the table reference, lowercase letters are used as 'tone' and for field

reference, uppercase letters are used as 'TONE.id'.

As stated earlier, errors are often platform dependent. MySQL platforms are

dependent on the version of the DBMS and the operating system. Some operating

systems are case sensitive. This was explained in Chapter 3. Similarly, DBMSs can

be used in different modes. Each mode has its own rules and characteristics.

MySQL modes are explained later in this chapter. Another aspect of a platform is the

hardware and storage media used for databases.

If users do not understand the platform they are using, error detection and correction

becomes difficult.

63

5.2 Case Sensitivity Errors in Searches

By default, MySQL searches are not case sensitive in the Windows operating system

platforms. In UNIX based operating systems, database identifiers and alias names are

case sensitive. Database identifiers include database names and table names. It

means that if a database name is 'dbone' written in lowercase letters, a database

name with a different letter case should not be used for this database. Searching and

referencing 'dbone', as 'DBOne' or 'DBONE' expressions cannot be used. The

keywords of MySQL code are not case sensitive. They can either be typed in

lowercase, uppercase, title case, or mixed case.

When searching a database running on a UNIX platform to retrieve data and extract

information from that database, errors can occur when referencing the identifier

names. MySQL keywords are not case sensitive. Thus, the focus is to detect and

prevent search errors in UNIX operating systems. The names of databases and the

names of relations or tables within databases must be case consistent.

https://etd.uwc.ac.za/

Since the alias names before MySQL 4.1.1 are case sensitive, the following query

cannot run in older versions of MySQL DBMSs. The usage of alias names in

different letter-cases causes this problem. Instead of lowercase 'a' only, both

uppercase 'A' and lowercase 'a' can be used. The lowercase 'a' is an alias name for

table 'tone' in the active database.

-> SELECT col1 FROM tone AS a WHERE a.id = 101 OR A.id = 102;

Column names and index names are not case sensitive. Similarly, alias names for

regular columns and for indexed columns are also not case sensitive. Column names,

index names and their alias names can be typed in any letter case.

In conclusion, to prevent case sensitivity errors, it is always better to use lower case

letters for identifiers in MySQL databases. Other formats like using uppercase

letters, title case methods, etc. can also be used. However, to use a standard method

that can be ported to different platforms and will always work, a good idea is to use

lowercase letters. Lowercase letters should be used for identifiers of database names

and table names within databases. This should be standard practice in database

development.

64

5.3 Case Sensitivity Errors in User-defined Variable Names

DBMS users can define variables in each session. Values can be stored in user

defined variables. Then these values are accessible. User defined variables are

temporary. At user exit, these variables are automatically dropped.

In a multi user database, one user cannot see variables defined by another user. User

defmed variables have been supported in MySQL from version 3.23.6. User defmed

variables are written as '@variable_name'. Before MySQL 5.0, user variable names

https://etd.uwc.ac.za/

are case sensitive. Using these versions, case sensitivity for variable names is an

issue. Users need to be take care to avoid case sensitivity errors in such platforms.

The following is the syntax for defining variables and setting values to them:

SET @variable_name = expression [, @variable_name =
expression] ...

Using the SET keyword for defining variable is one way to do this. There are other

methods to define and use variables in a session. In this syntax, there is no space

between '@' symbol and 'variable_name'.

The following example defines and accesses variables.

-> SET @Length = 4, @Width = 3;

-> SELECT @Iength * @width AS Area;

- > 12

65

This query takes values for its two arguments from defined variables, and then

multiplies the values and shows their result in the Area column.

In new versions of MySQL, where variable names are not case sensitive, the result of

the example query is correct. However, in older versions-before MySQL 5.O--the

result of this operation is NULL. This is why the variable names in the given

example may have different letter cases.

In general, if a string search or comparison is case sensitive and used in a query, that

query is prone to errors. In such cases, query results should check to find and detect

https://etd.uwc.ac.za/

errors. This can be done after running a query. To find the errors related to case

sensitivity, the MySQL code needs to be checked while it is in text mode.

As a result of previous discussions, case sensitive errors mostly occur with binary

searches, comparisons, and implementation of data. It is worth mentioning that in

some cases the only way we can do an exact search in a database is by using binary

arguments in queries. This includes searches and pattern matches. The results of

these operations can further be used to update, delete or retrieve data from a database.

Based on the importance of binary operations in databases, we cannot ignore binary

operations in database queries. Then, case sensitive errors in database queries result

directly only when using binary operations. To find and prevent such errors, we

should first check and find the binary operations in a query, then we can detect and

prevent case sensitive errors in databases.

5.4 Errors-MySQL Modes

Different kinds of errors may occur while using identifier names in MySQL code.

These errors may take place using database, table, index, column and alias name

formats. Identifiers can be quoted or used unquoted in MySQL. If a MySQL

reserved word is used for an identifier, or if an identifier includes some special

characters or an identifier consists from more than one word, it should be quoted.

Otherwise, using quotations for identifier names is optional.

66

Note: The identifier quotation character in MySQL is the back tick '",

MySQL uses different modes. Each mode has its own characteristics and methods

for writing symbols and formats. For example, if the version of MySQL does not

support double quotes, the following command will cause an error.

-> CREATE TABLE "TOne" (ColOnel NT);

https://etd.uwc.ac.za/

Quoting of identifiers started in MySQL from version 3.23.6. Before this version of

MySQL, identifiers could not include special characters, reserved words or spaces.

Starting from MySQL 4.1, modes can set for different users or clients individually.

Each user can set the MySQL mode with which they like to work. From this version

onwards, MySQL modes can be set by using the SET command. This can be done at

run time. The syntax of the SET command follows:

SET Sal_MODE = 'ModeName';

Any user can run this command at any time. The 'ModeName' can be any supported

mode of MySQL. The default mode for MySQL is empty: while no mode is set or

changed. Each user can change MySQL modes for their own use. This change does

not affect other users or clients who are using the same database. If a user wants to

set the default mode of MySQL after any changes, this is done by setting an empty

string in the above command.

However, there are some options to be added to the 'SET' command. We can add

GLOBAL or SESSION options to a SET command. Using the GLOBAL option

sets changes to all users. Using the SESSION option sets changes to the specific

user who issues this command. For using GLOBAL option in SET command,

'super' privileges are required.

67

The following topics describe some of the MySQL supported modes and their role in

detecting / preventing errors.

5.4.1 The ANSI QUOTES Mode

Setting this mode in MySQL causes the DBMS to accept double quotes (") and single

quotes (') besides back ticks for identifiers. Normally, MySQL uses back ticks (') for

https://etd.uwc.ac.za/

68

quoting identifiers. If we use double quotes or single quotes for identifiers in

MySQL, it causes errors. Similarly, if we use back ticks for identifiers while the

ANSI_QUOTES mode is activated, MySQL still accepts commands and no error

occurs.

Strings should not be quoted in double quotes in this mode. While the

ANSI_QUOTES mode is active, strings are quoted using single quotations. Double

quoted strings are not acceptable. Normally, MySQL supports both single quotes and

double quotes for strings.

Aliased names are not affected by setting the ANSI_QUOTES mode. We can use

either back ticks, single quotes or double quotes for alias names. This was introduced

in MySQL version 4.0.0.

5.4.2 The IGNORE SPACE Mode

This mode allows spaces between a FUNCTION name and the left parenthesis "("that

delimits the start of the function's arguments. Only MySQL built-in functions allow

these spaces. The user-defined functions do not allow this space.

When the IGNORE_SPACE mode is active, built-in function names are treated as

MySQL reserved words. In this case, if we use the name of a built-in function for an

identifier, it causes an error. When using any built-in function name as the name of a

database, table, or column within a database, it should be quoted. If it is not quoted

an error occurs.

The following examples show the usage of a MySQL built-in function name as an

identifier in two states, normal mode and IGNORE_SPACE mode:

-> SET SQl_MODE = ";

https://etd.uwc.ac.za/

-> Query OK, ...

The MySQL mode is equated to an empty string, means MySQL uses no mode. This

is default.

-> CREATE TABLE PI (Co11 INT, Col2 CHAR(20»;

-> Query OK ...

No error occurs. A table with the name of a MySQL built-in function PlO is created.

-> DROP TABLE PI;

-> Query OK ...

Removes the new created table named PI, from the database.

Now, we will try the same commands when the IGNORE_SPACE mode activated:

-> SET SQl_MODE = IGNORE_SPACE;

69

-> Query OK, ...

The MySQL mode is changed to the IGNORE_SPACE mode. It means that

MySQL uses the built-in function names as reserved words and can not be used for

identifiers.

-> CREATE TABLE PI (Co11 INT, Col2 CHAR(20»;

-> Error ...

https://etd.uwc.ac.za/

An error occurred:since the name PI is the name of a built-in function and is a

reserved word in MySQL. Therefore, it cannot be used for table name. If we want to

use this for identifiers, it must be quoted with the back tick characters.

To prevent this error and create the table by using PI word as identifier, we have to

use the following code:

-> CREATE TABLE 'PI' (Col1 INT, Col2 CHAR(20»;

-> Query OK ...

Now, no error occurs. A table named as a MySQL built-in function name is created.

In summary, the IGNORE_SPACE mode can be activated in MySQL. In this mode,

the MySQL built-in function names can be written separately from their parentheses

while calling functions. These names become special words of MySQL and are

treated as MySQL reserved words. If users forget this point and use reserved words

as usual words, errors ensue. To prevent such errors, users should be aware of using

quotations for these words. This was introduced in MySQL version 4.0.0.

70

5.4.3 Other Modes for MySQL

There are some other modes in MySQL that users can set. Setting a specific mode of

MySQL can be done by using the SET command. The syntax of the SET command

and some examples of activating a MySQL mode has been previously explained. The

GLOBAL or SESSION options are activated with a SET command. Each option

has its own usage and needs special rights for users. Error! Reference source not

found. lists MySQL modes and their support from different versions of MySQL.

https://etd.uwc.ac.za/

No. ModeName From MySQL Version

1 ANSI_ QUOTES 4.0.0
2 IGNORE_SPACE 4.0.0
3 NO_AUTO_VALUE_ON_ZERO 4.1.1
4 NO_DIR_IN_CREATE 4.1.1
5 NO_FIELD_OPTIONS 4.1.1
6 NO KEY OPTIONS 4.1.1_ _
7 NO_TABLE_ OPTIONS 4.1.1
8 NO UNSIGNED SUBTRACTION 4.0.2_ _
9 ONLY FULL GROUP BY 4.0.0_ _ _
10 PIPES_AS_CON CAT 4.0.0
11 REAL AS FLOAT 4.0.0

Table 5-1 MySQL Modes and their supported DBMS Versions

Two important modes of MySQL, number 1 and 2 in the table that often cause errors,

have been explained. We now briefly discuss the entire nine modes of MySQL,

number 3 to 11 from Error! Reference source not found., and their usage in

database field.

3. The NO_AUTO_VALUE_ON_ZERO Mode

This mode affects the 'auto incremented' column in a table.

71

4. The NO_DIR_IN_CREATE Mode

This mode ignores all index and data directory directives.

5. The NO_FIELD_OPTIONS Mode

https://etd.uwc.ac.za/

This mode does not allow printing the MySQL specific column options in the result

of the SHOW CREATE TABLE command.

6. The NO_KEY_OPTIONS Mode

This mode does not allow printing the MySQL specific index options in the result of

SHOW CREATE TABLE command.

7. The NO_TABLE_OPTIONS Mode

This mode does not allow printing the MySQL specific table options like ENGINE in

the result of SHOW CREATE TABLE command.

8. The NO_UNSIGNED_SUBTRACTION Mode

This mode does not mark the result of an integer subtraction as unsigned. This

happens when one of the operands is unsigned.

9. The ONLY_FULL_GROUP _BY Mode

72

This mode does not allow SELECT queries which have an aggregate function in

their column reference list and one or more un-aggregated columns are not marked in

the GROUP BY portion. The following example clears this mode's effects and the

example query is invalid in this mode.

-> SELECT Name, Phone, MAX(Salary) FROM tblOne GROUP BY Name;

-> Error ...

In the ONLY_FULL_GROUP _BY mode, the above query results in an error. This

is because all un-aggregated columns should be used after the GROUP BY portion.

https://etd.uwc.ac.za/

To solve this problem, we have to define both the Name and Phone columns after

the GROUP BY as follows:

-> SELECT Name, Phone, MAX(Salary) FROM TOne GROUP BY Name, Phone;

-> Query OK ...

The result of this query is now correct.

10. The PIPES_AS_CONCAT Mode

This mode treats the II symbol as a string concatenation operator. In normal mode

this symbol is used as a synonym for 'OR'. This exactly works like the CONCATO

function in MySQL.

11. The REAL AS FLOAT Mode

This mode treats REAL number as FLOAT numbers. In general mode, REAL is

treated as DOUBLE.

Setting any mode from the preceding list can cause errors in MySQL. Each mode has

its own specifications and usage. When a specific mode is activated in a session, the

user of that session has to be careful with the errors that are likely to occur.

Similarly, if a specific mode is activated with the GLOBAL option, all users of the

system have to be aware and be careful.

73

5.4.4 Combination of Different MySQL Modes Simultaneously

We can activate more than one mode of MySQL at a time and different combinations

of the MySQL modes can be implemented during a specific session or globally on a

https://etd.uwc.ac.za/

system. Similar to setting a single mode, combined modes can also be effective on a

database system.

74

From time to time MySQL modes have been added to versions of MySQL. All

modes are available from MySQL 4.1.1. Therefore, combination of more than one

mode in one time is available since version of MySQL 4.1.1.. Each combination

takes an identifier name and includes a set of modes.

The combined or unique modes in MySQL can be activated using the SET command.

The syntax is exactly the same. For example we can activate the ANSI combination

of modes as follows:

-> SET SQl_MODE = ANSI;

The following groups of different modes can be combined at the same time:

1. The ANSI Combination of MySQL Modes

ANSI is a combination of the following modes:

REAl_AS_FlOAT

PIPES AS CONCAT

ANSI_QUOTES

IGNORE_SPACE

The preVIOUSversions of MySQL-before MySQL 4.1.11-also allowed the

ONl Y_FUll_GROUP _BY mode in this combination but recent versions have only

the listed modes.

https://etd.uwc.ac.za/

2. The DB2 Combination of MySQL Modes

The DB2 is a combination of the following MySQL modes:

PIPES AS CONCAT

ANSI_QUOTES

IGNORE SPACE

NO KEY OPTIONS- -

NO TABLE OPTIONS- -

NO_FIELD OPTIONS

3. The MAXDB Combination of MySQL Modes

This combination group is similar to the previous one and to some other groups as

well. It includes some modes found in other combined groups of MySQL. MAXDB

is a combination of the following MySQL modes:

PIPES AS CONCAT

75

ANSI_QUOTES

IGNORE_SPACE

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

https://etd.uwc.ac.za/

NO_FIELD OPTIONS

4. The MSSQL Combination of MySQL Modes

The MSSQL is a combination of the following MySQL modes:

PIPES AS CONCAT

ANSI_QUOTES

IGNORE SPACE

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO FIELD OPTIONS

5. The MYSQL323 Combination of MySQL Modes

This is equivalent to the NO_FIELD_OPTIONS mode.

6. The MYSQL40 Combination of MySQL Modes

Like the previous mode, this mode is also equivalent to NO_FIELD_OPTIONS.

7. The ORACLE Combination of MySQL Modes

76

The ORACLE is a combination of the following MySQL modes:

PI PES_AS_CON CAT

https://etd.uwc.ac.za/

ANSI_QUOTES

IGNORE SPACE

NO_KEY_OPTIONS

NO TABLE OPTIONS- -

NO FIELD OPTIONS

8. The POSTGRESQL Combination of MySQL Modes

77

The POSTGRESQL is a combination of the following MySQL modes:

PIPES AS CONCAT

ANSI_QUOTES

IGNORE_SPACE

NO KEY OPTIONS- -

NO TABLE OPTIONS- -

NO FIELD OPTIONS

Combining different modes of MySQL in one command and using them in a single

session is more critical. Most of these combined forms include different modes.

Each mode has different rules and uses different formats. When a specific group of

combined modes is activated, users need to have enough knowledge of each mode

included in the group. In such cases, different uncommon errors may occur in

https://etd.uwc.ac.za/

5.5 MySQL Error Classification

MySQL code. To prevent those errors, users have to be prepared and check their

code before running it.

SQL commands are divided into three groups: SQL-DDL (data definitions), SQL-

DML (data manipulations), and SQL-DCL (data controls). Errors may occur in any

of these groups. Database administrators use the data control part of the SQL

commands. One of our research goals is to find and categorize students' and novices'

errors in MySQL; therefore, we have focused on the first two groups i.e. SQL-DDL

and SQL-DML. The SQL-DCL commands and their related errors are ignored.

Additionally at the end of this chapter, we have explained transaction control

statements and their proneness to errors.

We have categorized MySQL errors into three main groups: data definition errors,

data manipulation errors, and transaction control errors. All the mentioned categories

of errors are further checked as semantic, syntax, and logic forms of errors.

5.5.1 Errors-SQL-DDL

The data definition commands of MySQL are used to define, update and delete

databases, database objects and their relationships within MySQL databases. The

data definition commands also edit the structures of database tables including fields,

data types, constraints, indexes and so on. The SQL-DDL part covers the following

commands:

CREATE ...

ALTER .

DROP .

78

https://etd.uwc.ac.za/

RENAME ...

We have summarized the data definition errors of MySQL in Table 5-1 at the end of

this part. We used a unique reference to identify each error in the list. The

identification for the listed errors in this part is combined of 'DO', which stands for

'data definition', and a two digit number started from '01'. Similarly, errors related

to other parts have their own identification format. For example, the ID for the data

manipulation errors consists from 'OM', stands for data 'manipulation', plus two

digits started from '01 '; and the ID for the transaction control errors consists from

'TC' and two digits. Each section errors are summarized in a table at the end of that

section.

5.5.2 Errors-Database Definition

A database is a computerized collection of logically related data, data definitions,

data relationships, and data retrieval methods. Databases are created via DBMSs.

MySQL gives opportunity of defining / creating databases, altering databases, and

dropping databases. These activities are implemented through CREATE

DATABASE, ALTER DATABASE, and DROP DATABASE commands. In any of

these controls errors are possible.

5.5.3 CREATE DATABASE-using IF NOT EXISTS

79

To prevent errors when creating a new database, we use the IF NOT EXISTS

keywords prior to the database name in the command. This is implemented in

MySQL 3.22 and later versions of this DBMS. Three commands are used for this

purpose.

The first command just creates a database named dbOne. The second command

again tries to create the same file dbOne that resulted with an error. The third

https://etd.uwc.ac.za/

command first checks if any database with the same name exists. If there is no such

database, then the dbOne database is created. The second command might be

implemented if a database by the name dbOne exists in the system. However, this

command will cause an error. The third command does not create a database, if a

database with the name dbOne exists in the system. No error occurs.

-> CREATE DATABASE dbOne;

-> Query OK ...

With no error the dbOne database is created. This database was not in the system.

-> CREATE DATABASE . dbOne;

-> ERROR ...

An error occurred. The dbOne database is already in the system. Itwas created by

the previous command.

-> CREATE DATABASE IF NOT EXISTS dbOne;

-> Query OK ...

80

No error occurs even if 'dbOne' is in the system. The DBMS engine checks for the

existence of dbOne. If it were in the system, the CREATE DATABASE operation

is canceled and no error occurs.

In conclusion, we can add the IF NOT EXISTS keyword to most of the data

definition commands of MySQL: i.e. SQL-DDL. This option prevents DBMS

errors from occurring. This group of keywords is placed exactly between the main

https://etd.uwc.ac.za/

command and the identifier object name within a database. Examples, of these forms

have been explained.

5.5.4 ALTER DATABASE ...-using IF EXISTS

This command changes the overall characteristics of an existing database. If the

database does not exist an error occurs. To prevent such error the IF EXISTS

keyword is used. The IF EXISTS keyword is placed before the database name

within the command.

The ALTER DATABASE command was added in MySQL version 4.1.1. Beginning

from MySQL 4.1.8, a user can alter the active database. From this version onwards,

the database name may be omitted from the ALTER DATABASE command without

any error. In such cases, the ALTER command changes the default database.

5.5.5 DROP DATABASE ...-using IF EXISTS

Like other MySQL commands, users need privileges to use DROP DATABASE. If

a database does not exist or if the command is mistyped, errors will occur. To

prevent errors regarding the existence of a database, we use the IF EXISTS option

before the database name in the command. This option was added in MySQL 3.22

and is in later versions. From MySQL 4.1.2, the DROP DATABASE command

summarizes the number of tables removed within the deleted database.

81

-> CREATE DATABASE dbOne;

-> Query OK ... # The dbOne database is created

-> USE dbOne; # The dbOne database is activated / used

https://etd.uwc.ac.za/

-> CREATE TABLE tOne (ID INT, Name VARCHAR(30»;

-> Query OK ... # The tOne table is created

-> CREATE TABLE tTwo (Company Char(20), Address VARCHAR(20»;

-> Query OK ... # The tTwo table is created

-> DROP DATABASE dbOne;

-> Query OK, 2 rows affected ...

No error occurs. The dbOne database is removed and the number of deleted tables,

tOne and tTwo, is returned.

-> DROP DATABASE dbOne;

-> Error ... # The tOne table is created

An error occurs. The dbOne database was already removed by the previous

command and it is not in the system. For preventing this error, the following

command can work.

82

-> DROP DATABASE IF EXISTS dbOne;

-> Query OK ...

No error occurs. The dbOne database is not in the system; however, adding the IF

EXISTS keywords before the database name prevents errors occurring.

The DROP DATABASE command deletes all structures in a database, i.e. relations,

relationships, indexes, rules, userdata, and the database by itself.

https://etd.uwc.ac.za/

5.5.6 Errors-Table Definition

Tables or relations are the basic structures within a database that store data in

database files. Tables can be created by MySQL commands. Their structure can be

updated or changed in MySQL. Similarly tables can be deleted from a database.

Every operation on database tables, including 'CREATE TABLE .. .', 'ALTER

TABLE .. .', and 'DROP TABLE .. .' can cause errors.

5.5.7 Errors-CREATE TABLE ...

If a table already exists and the user tries to create a new table with the same name in

current database, an error occurs. To prevent this kind of errors, we need to use the

'IF NOT EXISTS' option. See the following examples.

-> CREATE TABLE tblOne (ID INT);

-> Query OK ... # No error occurs.

-> CREATE TABLE tblOne (ID INT);

83

-> ERROR ...

An error occurs: the table already exists.

-> CREATE TABLE IF NOT EXISTS tblOne (ID INT);

-> Query OK ...

No error occurs. The DBMS first checks the existence of a table with the specified

name in the command. If the table does not exist, it will be created, otherwise it will

https://etd.uwc.ac.za/

not be created. The command will be ignored and a warning will be shown instead of

an error message.

5.5.8 Errors-CREATE TABLE ... SELECT ...

The CREATE TABLE ... SELECT ... command creates a table within current

database and directly enters data to this table. The data is retrieved from existing

tables or views. The SELECT part of this command can be any query with all

supported options. If any syntax or typing errors occur in this query, then the table

will not be created.

The following two examples show two different statements for defining the table

tblTwo, one is correct and the other is not:

-> CREATE TABLE tblTwo (Name CHAR(25), Value INT) SELECTT *

FROM tblOne;

-> ERROR. ..

Table tblTwo will not be created. The problem is with the syntax of the query where

the SELECTI keyword is mistyped.

This command has a typing error in the subsequent query and an error occurs

Therefore, table tblTwo is not created. In the following example, the syntax error in

the subsequent query is solved. With no error, table 'tTwo' will be created and will

take values from the result of the query.

-> CREATE TABLE tblTwo (Name CHAR(25), Value INT)

84

SELECT * FROM tblOne;

https://etd.uwc.ac.za/

-> Query OK... # Table tblTwo is created.

When referencing function or expression columns in the 'CREATE TABLE ...

SELECT .. .' statement, the function calls and expressions in referenced tables or

views should be clearly aliased. If alias names are not used for the original columns,

errors will occur and the tables will not be created or the command might cause

undesirable results. The following is an example.

-> CREATE TABLE tblThree (Department CHAR(10), TotalStuds INT)

SELECT Department, COUNT(StuName) AS TotalStuds FROM tblTwo

GROUP BY Department;

-> Query OK ...

No error occurs and the table is created and gets data from another table as well.

The result of this command is correct. The 'tbIThree' table is created. Data from the

result of its subsequent query is entered to this table.

85

5.5.9 Errors-ALTER TABLE ...

The ALTER TABLE is one of the MySQL commands that enable users to edit the

structure of an existing table within a database. This command can add or delete

columns, set or drop indexes, change the type of a column, rename a column in a

table. The ALTER TABLE command can even change the name of an existing table

in a database. Under the circumstances described below, ALTER TABLE may cause

errors.

ALTER TABLE-ADD / DROP PRIMARY KEY ...

https://etd.uwc.ac.za/

The ALTER TABLE command can be used to set or drop a primary key in an

existing database table. Each table can have only one primary key. Multiple primary

keys defined for a single table using this command cause errors to happen. The same

command for setting a specific primary key may not be used twice. The following

examples show this kind of error.

-> DESCRIBE tblOne;

-> Query OK ...

Table 5-2 shows the structure of table tblOne.

Field Type Null Key Default Extra

ID int(11) No °
Name char(10) Yes NULL

Sal decimal(10,0) No °
Table 5-2 The structure of tblOne Table

The tblOne does not have a primary key. We can use the following command to set

the primary key for this table.

-> ALTER TABLE tblOne ADD PRIMARY KEY (ID);

-> Query OK ... # No error occurs

The previous command sets the ID field of table one as the primary key of that table.

Running the following two commands causes errors.

86

https://etd.uwc.ac.za/

-> ALTER TABLE tblOne ADD PRIMARY KEY (ID);

-> ERROR. ..

An error occurs. This table already has its primary key.

-> ALTER TABLE tblOne ADD PRIMARY KEY (Name);

-> ERROR ...

An error occurs. This table already has its primary key.

Therefore, when a table has a primary key, it can be altered only by removing it and

replacing it. If it is important to change a primary key of a table to another column or

to a group of columns, first remove the existing primary key from the table, before

adding the new key. This action also can be done by the ALTER TABLE command

in MySQL.

-> ALTER TABLE tblOne DROP PRIMARY KEY;

The following example shows the usage of the ALTER TABLE for removing

primary key of an existing table in a database.

-> Query OK ...

No error occurred; the primary key oftblOne is removed.

After implementing this command, tblOne does not have a primary key. If a table

does not have a primary key and we run the MySQL command to drop its primary

key, an error occurs. The following example shows this kind of error in MySQL.

87

https://etd.uwc.ac.za/

-> ALTER TABLE tblOne DROP PRIMARY KEY;

5.5.10 Errors-DROP TABLE ...

-> ERROR ...

An error occurs because tblOne does not have primary key.

The DROP TABLE command is used to remove one or more tables from a database.

The following is the syntax for this command

88

DROP TABLE TableReferences

This command can be executed on one table at a time or on tables using a single

command. If a table in the reference list does not exist, then the DBMS produces an

error. The following example shows a simple use of this command:

- > DROP TABLE tblOne, tblTwo;

-> Query OK ...

Assume both tables exist in the system. No error occurs and both tables are removed.

-> DROP TABLE tblOne, tblThree;

-> ERROR ...

Assume tblOne does not exist (it is removed by the previous command). An error

occurs in this command. The error arises because of a non existent table i.e. tblOne

in this command; other tables mentioned in the command will be removed from the

database.

https://etd.uwc.ac.za/

The DROP TABLE can also use the IF EXISTS option. If this option is added to

the DROP TABLE command, no error will occur. The IF EXISTS option was

added in MySQL version 3.22 and can be used from that version up to the newest

version.

-> Query OK ...

-> DROP TABLE IF EXISTS tblOne, tblFour;

Assume tblOne does not exist; it was already removed by the first command. Still

no errors happen. Using the IF EXITS option, the DBMS checks for the table names

typed in command line, if they exist they drop if not, the command is ignored.

The complete list of errors related to the data definition commands of MySQL is

shown in Table 5-3. The identification for the data definition errors consists from

DO, stands for data definition, plus a number.

89

https://etd.uwc.ac.za/

90

Table 5-3 MySQL Data DefInition Errors (SQL-DDL)

https://etd.uwc.ac.za/

5.5.11 Errors-SQL-DML

The data manipulating commands of MySQL are used to enter, update, retrieve, and

delete userdata within database tables. The SQL-DML statements are an important

part on MySQL and cover the following commands:

INSERT .

SELECT .

UPDATE .

DELETE .

TRUNCATE ...

Errors in SQL-DML commands are further classified into three parts: SELECT,

FROM, and WHERE. Some groups also include errors in sub parts after the

WHERE condition in a query, i.e. GROUP BY, HAVING, and ORDER BY.

We have summarized the data manipulation errors of MySQL in Table 5-4 at the end

of this discussion. The unique ID for these errors is combined from 'OM', stands for

'data manipulation', and two digits started from '01'.

5.5.12 Errors-INSERT Data

The 'INSERT INTO ... SELECT ... ' command in MySQL 3.23 always has

IGNORE enabled. The newer versions of MySQL (4.0.1 and up) do not ignore

errors. Instead, when errors arise in these versions the database stops inserting data.

To solve problems in these new versions of MySQL, users need to use the IGNORE

option in their queries.

91

https://etd.uwc.ac.za/

If a value to a unique field or an index field is inserted for many times, errors occur.

To prevent such kind of errors we can add the 'ON DUPLCIATE KEY UPDATE .. .'

option to the INSERT command. This option can be used with the 'INSERT ...

SELECT' command.

5.5.13 Errors-INSERT NULL Values

If a NULL value is inserted into a column that has 'NOT NULL' constraint, two

different events ensue: first, if the INSERT command is for one record, an error

occurs. Second, if the INSERT command is for multiple records or the 'INSERT

INTO ... SELECT .. .' command is used, the implicit default values are entered for

each column. For example, a 'Q' zero is inserted for numeric columns, an ' , empty

string is inserted for string type columns and zero is inserted for date/time columns.

5.5.14 Errors-IGNORE used with INSERT

The IGNORE keyword can be added as an option to the INSERT command in

MySQL. This option prevents errors and causes MySQL to ignore errors when

inserting records of data into database tables. This option only ignores errors, which

are related to inserting data. These errors are changed to warnings. Other kinds of

errors, such as syntax errors and logic errors are not influenced by this option.

For example, if an INSERT command is implemented on data which duplicates a

unique index field in a table and the IGNORE option is not used errors will occur

and data will not be entered into the table. This is important for multi-line insert

operations. In a multi-line insert if an error occurs, from that point no other data

entry is done. However, if the IGNORE option is included, in a multi-line INSERT

command, if values are mismatched, no errors will occur; and the values that are

valid for entry, before and after the invalid values, will normally be inserted into the

database tables.

92

https://etd.uwc.ac.za/

93

5.5.15 Errors-Retrieve Data

The MySQL data retrieve command is the SELECT query. By the SELECT query,

we can fmd and retrieve any part of data from databases. The database queries are

consisted from three main clauses i.e. SELECT, FROM and WHERE. Errors can

occur in any of these parts. In general, MySQL statements are influenced by the six

clauses in queries. These clauses include the three parts of a MySQL command plus

GROUP BY, HAVING and ORDER BY [26] keywords in a query. Data retrieval

commands of MySQL can have errors in any of the six mentioned parts within a

query. Each error occurrence can be semantic, syntactic, or logical.

5.5.16 Errors-Subqueries

Subqueries are used to retrieve data from database tables, queries, and views. Using

subqueries, we can create complicated queries in an easy to understand format.

Subqueries give more facilities to MySQL users to manipulate data within databases.

Similar to most of other parts in MySQL, subqueries also can have errors.

There are some errors that apply only to subqueries in databases. These errors are

shortly explained and exampled below:

Number of columns from subquery

If a subquery is used as an operand in an outer query, it should reference exactly

one column with a specific value. The value has to be determined by the

WHERE clause within the subquery. The following examples explain this:

-> SELECT (SELECT coiOne, coiTwo FROM tblTwo) FROM tblOne;

-> ERROR ...

https://etd.uwc.ac.za/

In such cases an error occurs. Here, the result of the subquery should be a single

value taken from one column.

-> SELECT (SELECT coiOne FROM tblTwo) FROM tblOne;

-> ERROR ...

Again an error occurs. The result of the subquery is now limited to one column

which is okay. The problem is with the resulting values of this query. If'tbITwo' has

one record, then there will be no error; otherwise the result should be limited to one

value. This is explained in the following example.

-> SELECT (SELECT coiOne FROM tblTwo WHERE coiTwo = '112')

FROM tblOne;

-> Query OK ...

The results of the main query and the subquery are both correct.

Number of rows from a subquery

When a subquery is used as an operand in another query, the result of the subquery

should be one row. If they are more than one rows, then an error will occur.

Limiting the result of a query to one row also called SELECTION and can be done

by using the WHERE clause in that query. This was illustrated in the previous

example. We also have other methods that use the result of a subquery within

another query.

94

The following examples show the use of results of a subquery with limited values:

https://etd.uwc.ac.za/

-> ERROR ...

-> SELECT * FROM tblOne WHERE coiOne = (SELECT coiOne FROM

tbITwo);

An error occurs. Column one from table one is compared with the column one from

table two. Here, one value or one row is needed to be compared with column one

from table one's value. To make this query work and prevent an error, the example

should be changed as follows:

-> SELECT * FROM tblOne WHERE coiOne = ANY (SELECT coiOne

FROM tblTwo);

-> Query OK ...

This query runs and no errors occur. In this query, the value of column one from

table one is compared to any value from column of table two. If they match, the

result of the main query is printed.

Table use in subquery

Subqueries can be used to update, delete, and retrieve data. Data comparison can be

done and data can be updated by subqueries. When a subquery is used for update,

table reference is important. A table, which is used to be updated, can not be used in

a subquery in the same command. If this is done an error occurs.

95

In the following example usage of the same table for update and subquery reference

is prohibited. If this query runs, an error occurs.

-> UPDATE tblThree SET coiOne = (SELECT MIN(coiTwo) FROM

tbIThree);

https://etd.uwc.ac.za/

-> ERROR ...

An error results from this query. Table 3 is used to be updated and referenced in the

subquery. This is not allowed.

5.5.17 Errors-Temporary Tables

Temporary tables can be created by users in a MySQL database. Syntax for creating

temporary tables is exactly the same as for base tables. The only difference is with

the addition of the TEMPORARY keyword in this command. The following

example shows the syntax for creating a temporary table named 'tmpTable1' in the

active database.

CREATE TEMPORARY TABLE tmpTable1 (ID INT, Name CHAR(10»;

Temporary tables are dropped when a session is closed or connection to the Server is

lost.

Temporary tables store data. Data can be retrieved from these tables. We can use

more than one temporary table in one query. Similarly, we can use a combination of

base tables and temporary tables in a single query. However, we can not use a

temporary table more than once in a single query. The following example causes an

error in MySQL.

-> SELECT * FROM tmpTable1, tmpTable1 AS TableOne;

96

-> ERROR ...

An error occurs. The tmpTable1 is a temporary and can not be used twice in one

query.

https://etd.uwc.ac.za/

5.5.18 Errors-UPDATE Data

Errors occur when userdata changes are made to a table. These changes can be

through INSERT statements or by UPDATE commands. The changes might violate

values of primary keys, unique keys, indexes, or foreign keys within database tables.

If a transactional storage engine is used for a table, such errors will automatically roll

back. In addition, if a non transactional storage engine is used, in case of any error or

violation the update process terminates.

The UPDATE command may cause errors in some special cases. For example, the

data update in the following command causes an error and will not be completed, the

ID field is unique within tbl Five:

-> UPDATE tblFive SET ID = ID + 1;

-> ERROR ...

This update will not take place while the ID field stores unique values.

To prevent these kinds of errors, we can set the updating order by using the ORDER

BY option. This option can be expended by using the ASe (ascending) or DESe

(descending) options. ASe is the default order for this command and may be

omitted. This option was added from MySQL 4.0.0. An UPDATE can be done in

descending order by using DESe, as follows.

-> UPDATE tblFive SET ID = ID + 1 ORDER BY ID DEse;

-> Query OK ...

This update operation on table five will take place. Values of the ID field will be

updated in reverse order.

97

https://etd.uwc.ac.za/

5.5.19 Errors-IGNORE used with UPDATE

MySQL supports the IGNORE keyword to be used in combination with the

UPDATE command. If this keyword is used, even if an error or violation happens

with constraints, the update process will not stop. Only the error records will be

ignored and the remaining records will be updated.

The row actually affected by update commands are shown after implementing each

command. There are also some commands that return a number of warnings and

errors. For example, in MySQL we can use 'SHOW ERRORS' and 'SHOW

WARNINGS' commands. These commands were added and became applicable in

recent releases of MySQL 4.1 and later.

5.5.20 Errors-DELETE Data

The DELETE command in MySQL is used to delete data from existed tables in

databases. This command supports multiple options. The DELETE command works

like a query in a database. Queries are used for different purposes in databases.

Queries explicitly do read only operations on data stored in database tables. In

contrast, the DELETE command removes data from database tables. We can use

different conditions to use this command.

The following is the syntax and example of DELETE command in MySQL:

- DELETE FROM TableReferences WHERE conditions

-> DELETE FROM tblOne;

-> Query OK ... # All records from 'tbiOne' are deleted.

98

https://etd.uwc.ac.za/

DELETE supports some modifiers by which this command can be used in better

ways. IGNORE is one of the modifiers for the DELETE command and can be

added as an option to the DELETE command.

5.5.21 Errors-IGNORE used with DELETE

The 'IGNORE' option was added starting from MySQL 4.1.1 and uses as a

modifier to the DELETE command in MySQL. This option prevents errors and

causes MySQL to ignore errors when deleting rows of data from database tables.

This option only ignores errors, which are related to deleting data. These errors

are changed to warnings. Other kinds of errors, such as syntax errors and logic

errors are not influenced by this option.

The complete list of errors related to the data manipulation commands of MySQL is

shown in Table 5-3 and Table 5-4. The identification for the data manipulation errors

consists from 'OM', stands for data definition, plus a number.

missed One column is treated as alias name for another
Use of column alias name in a where condition

99

https://etd.uwc.ac.za/

Implemented on a NULL column, un-expected results
shown

DM44 Select / instn) / main string
binary checked

The main string is binary checked and mismatched the sub
string - different letter cases

DM45 Select / instrï) / sub string
binary checked

DM46 Select strings
binary "U~'''I\.\.u

The sub string is bmary checked and mismatched the main
string - different letter cases
Both strings / arguments of the function are binary checked
and mismatched - different letter cases
Any of the argument strings of the function is NULL the
result is NULL

DM47 Select / instn) / NULL
values

100

https://etd.uwc.ac.za/

/ locateï) / sub string
binary checked

DM49 Select / locateï) / main string
binary checked

DM50 Select / Iocateï) / both
strings binary checked

DM51 Select / locateï) / NULL
values

DM52 Select / replacer) function

DM53 Select
check

DM54 Select / strcmpï) / Null
values

DM55 Select / substring_indexO
function

DM56 Select / substring_indexO /
Null values

DM57 Select
comparison

DM58 Select / like / NULL values

DM59 Select / rlike string
comparison

DM60 Select / rlike / NULL values

DM61
comparison

DM62 Select / regexp / NULL
values

DM63 Select / the same column
names or aliases / order by

DM64 Select / limit missed

Any of the argument strings of the IS NULL the
result is NULL

The sub string is binary checked and mismatched the main
string - different letter cases
The main string is binary checked and sub
string - different letter cases
Both stnngs arguments of the function are binary checked
and mismatched - different letter cases
Any of the argument strings of the function is NULL the
result is NULL
Any difference In cases between all three arguments:
string, from string and to string
Any or both of the two arguments of this function are binary
checked - different letter cases

Any difference in letter cases between the first two
arguments: string and delimiter
Any of the first two arguments function is NULL the
result is NULL
One or more operands of the like comparison operator is
binary checked - different letter cases
Any of the operand strings operation IS NULL the
result is NULL
One or more operands of the rlike comparison operator is
binary checked - different letter cases
Any of the operand strings operation IS NULL the
result is NULL
One or more operands of the regexp comparison operator is
binary checked - different letter cases
Any of the operand strings operation IS NULL
result is NULL
Use of similar column names with the order by clause in one
query (ambiguous columns)

Use of negative number as argument

Table 5-4 MySQL Data Manipulation Errors (SQL-DML)

101

https://etd.uwc.ac.za/

5.6 Errors-Transaction Controland LockingTables

In MySQL statements, local transactions and table locks can be used. These

commands are used safely to update, delete or insert userdata within database tables

in a specific session. TRANSACTION or LOCK TABLES can set by users

individually. These commands can only be used for tables, which use transaction

safe DBMS engines.

The transaction control commands of MySQL are used to keep safe the data update,

insert and delete processes. The SQL-TCL covers the following commands:

START TRANSACTION ...

BEGIN ...

ROLLBACK

COMMIT

SAVEPOINT ...

ROLLBACK TO SAVEPOINT ...

RELEASE SAVEPOINT ...

We have summarized the transaction control errors of MySQL in Table 5-5 at the end

of this discussion. The unique ID for these errors is combined from TC, stands for

'transaction control', and two digits started from 01.

In each transaction, one or more SAVEPOINTS can be set. Users can commit their

changes, or they can roll back their changes up to a specific savepoint.

102

https://etd.uwc.ac.za/

5.6.1 Errors-SAVEPOINTS

Using savepoints for transaction safe tables and using the InnoDB in MySQL DBMS,

started from MySQL versions 4.0.14 and 4.1.1. Syntax for setting savepoints in

MySQL follows:

SAVE POINT Identifier

ROLLBACK TO SAVEPOINT Identifier

In one session, more than one savepoint can be set. A user can roll back from each

stage to any savepoint that has been set. As a general rule, the COMMIT keyword

stores and implements all changes given by users. If a ROLLBACK is done to a

SAVEPOINT that is not defmed, then an error occurs. The ROLLBACK command

without arguments never produces errors. Errors occur only if the ROLLBACK

refers to an unknown savepoint identifier as its argument.

5.6.2 Errors-LOCK TABLES

The LOCK TABLES command is used explicitly for keeping transactions within

database tables. This command also speeds up the update process on MySQL tables.

The following is the syntax for the LOCK TABLES command:

- LOCK TABLES table_reference READ, table_reference WRITE ...

- UNLOCK TABLES # Releases tables to their normal stages

If a table is locked with a specific right and a user wants to access that table, errors

occur. The following examples show the potential errors when using the LOCK

TABLES command.

103

https://etd.uwc.ac.za/

-> LOCK TABLES tblOne READ;

-> Query OK ...

This command locks all other tables, only the tblOne can be read in the current

session.

-> SELECT * FROM tblOne;

-> Query OK...

Since tblOne is released and can be read, the command does not cause any errors.

-> SELECT * FROM tblTwo;

-> ERROR ...

An error occurs. Table tblTwo is locked for reading.

When tables are locked, one table can not be used twice in one query. Tables are

accessible only through their names or their alias names. The following examples

show these cases and causes of potential errors in these commands:

-> LOCK TABLES tblOne WRITE, tblOne AS t1 READ;

-> Query OK ...

This command locks all other tables, only tblOne accepts data entry and the same

table can be read by its alias name t1 in the current session.

-> INSERT INTO tblOne SELECT * FROM tblOne;

104

https://etd.uwc.ac.za/

-> ERROR ...

An error occurs. Table tblOne is locked for reading through its own name.

-> INSERT INTO tblOne SELECT * FROM tblOne AS t1;

-> Query OK ...

No error occurs. Table tblOne is locked for data entry by its own name and this table

is locked for reading by its alias name 't1'.

The complete list of errors related to the transaction control commands of MySQL is

shown in Table 5-5. The identification for transaction control errors is 'TC'followed

by a two digit number.

Try to rollback after any data definition command is run
SQL DDL commands could not be rolled back; additionally,
these commands do implicit commit
Any changes before these commands are committed and are
not rolled back

105

https://etd.uwc.ac.za/

Table 5-S MySQL Transaction Control Errors (SQL-TCL)

5.7 Errors-Using NULL Values

In MySQL numeric functions and arithmetic operations, if incorrect values are used

errors occur. In most of these cases, NULL values are shown in the result line of

those queries. The following cases happen with the incorrect use of numeric

functions and arithmetic operations inMySQL.

Division by zero produces NULL values in results. The following examples show

this result:

-> SELECT 400 / 0;

-> NULL # Returns NULL

-> SELECT 400 / (1-1);

-> NULL # Returns NULL

-> SELECT 400 DIV 0;

106

-> NULL # Returns NULL

All mathematical functions inMySQL return NULL when any error occurs.

https://etd.uwc.ac.za/

-> SELECT MOD(1, 0);

-> NULL # Returns NULL

As stated in the arc sine and cosine of X, if the X range is not between -1 and 1 an

error occurs and NULL is shown in the result:

-> SELECT ASIN(1.1);

-> NULL # Returns NULL

-> SELECT ASIN(1);

-> 1.5707963267949 # Returns the expected result (no error)

-> SELECT ACOS(1.1);

-> NULL # Returns NULL

-> SELECT ACOS(O);

-> 1.5707963267949 # Returns the expected result (no error)

Similarly, if unexpected values are requested as cotangent for an angle, errors occur.

-> SELECT COT(O);

-> NULL # Returns NULL

-> SELECT COT(-8);

-> 0.14706506394948 # Returns the expected result (no error)

107

https://etd.uwc.ac.za/

If any argument in the CONVO function is NULL, the result will be NULL.

-> SELECT CONV(12, 16, NULL);

-> NULL # Returns NULL

-> SELECT CONV(12, NULL, 2);

-> NULL # Returns NULL

-> SELECT CONV(12, 16,2);

-> 10010 # Returns the expected result

The square root of any negative number causes NULL values in the results.

-> SELECT SQRT(-4);

-> NULL # Returns NULL

-> SELECT SQRT(4);

-> 2 # Returns the expected result (no error)

108

5.8 Summary

In this chapter we described common MySQL errors and discussed case sensitivity in

searches and in MySQL modes. We have also classified and explained MySQL

common errors in three groups: data definition, data manipulation and transaction

control errors. Examples for each group are included in this chapter. A list of

possible errors is attached at the end of each part. The data definition errors list

https://etd.uwc.ac.za/

includes 38 errors; the data manipulation errors list shows 72 errors, and the

transaction control errors list has 22 errors. The total number of MySQL common

errors in this research exceeding 132. This chapter concludes by the usage of NULL
values and their proneness to errors.

109

https://etd.uwc.ac.za/

Chapter 6

Research Methodology

In this chapter we explain the methods by which we aim to achieve our goals and

answer the research questions. There are three main activities in this research. First,

an extensive study of the database field is done and MySQL software is studied.

Case sensitivity in MySQL and its proneness to errors in MySQL commands is

analyzed and evaluated under various MySQL modes. Second, we analyze portions

of MySQL code that are generated by students. As a result of these two activities, the

third main activity is to collect, analyze and group common MySQL errors and the

frequency of those errors in a fixed number of cases.

SQL and MySQL have been studied quite intensively. MySQL functions and

possibility of error occurrence in those functions are explained in Chapter 3. SQL

DDL commands including database definition commands and table definition

commands and the likelihood of errors occurring is another topic in the theoretical

part of our work.

110

Chapter 5 has highlighted the kinds of errors that can be made by database developers

using MySQL. In order to investigate which of these errors novice developers are

prone to make and how frequently these errors are made the following was done. We

want to know the exact occurrence and the frequency of the studied errors of MySQL

in real life. For this we have evaluated students' generated SQL code that is run on

different sample queries.

https://etd.uwc.ac.za/

6.1 Evaluating Students' MySQL Code

Our undergraduate students do two database courses. The first course covers

database concepts and the second course applies MySQL. These courses are

mandatory at Kabul University in Afghanistan and are attended by about 60 students

in each course. We have been teaching these two courses for the last five years.

Students are divided into groups of 2 to 3 and each group designs and implements a

database project. To complete this research we have asked different queries from

these students. Then, the produced queries are checked for occurrence of common

errors and mistakes that students make.

6.1.1 Students' Group Project

A medium sized database, which has around 20 tables, indexes, relationships and

views, is developed by these students annually. During the first course (Database

Concepts), they start developing this database from scratch. Their instructor gives the

introductory information to students regarding the field, for which the database is

planned. Students write the Universe of Discourse (UoD) for that topic and develop

business rules as well. Based on those business rules, the Entity Relationship

Diagram (ERD) for the database is designed. Then, initially the proposed database is

implemented in the Microsoft Access database management system.

The MySQL is taught in the second database course at Kabul University. In the

MySQL course, students continue their project from the previous database course.

The pilot test of the project has been passed and the database has been implemented

in Access. In this course, student groups implement the database using MySQL. This

includes:

defming database and tables include data types for each field

111

https://etd.uwc.ac.za/

setting primary keys, indexed fields and constraints

creating relationships between tables

defining the Referential Integrity Constraints (RICs) and cardinality,

based on the business rules determined in the first stages of the project

inserting sample data records into database tables

6.1.2 Our Database - the 'HOSPITAL'

One of the goals of this research is to find and record common MySQL errors that

students make. The HOSPITAL database is chosen for student work in database

courses. This database is developed by our students during their class assignments

over two semesters.

MySQL code for the fmal copy of the HOSPITAL database may be found in

Appendix A. All the database defmition and table definition commands in MySQL

syntax are written there. Primary keys, indexes, constraints and relationships

between tables are noted. The data entry commands, which include sample data for

the database, are also shown in Appendix A.

These relationships are based on business rules that students develop practically

during their work in the 'Database Concepts' course. We teach them and help them

to do this work exactly like the Access HOSPITAL database that is explained in the

Appendix A.

112

https://etd.uwc.ac.za/

6.1.3 Using the 'HOSPITAL' Database

Students in two separate classes implement the HOSPITAL database. The total

number of students in these classes exceeds one hundred. A set of MySQL commands

is requested from students. Each student wrote the requested queries and submitted

their results individually. Furthermore, the code segments generated by students are

used and analyzed for potential errors. After analyzing the errors, their final results

are frequently classified into groups and recorded. This classification is based on the

type of the errors and the commands where the errors occur.

6.2 Data Collection (What, How, Who)

Data on MySQL code is extracted from students' practical work in database courses.

The collected data is analyzed to determine potential errors that may occur at run

time. The results of analyzing that data is further classified into groups. The grouped

data is checked for three types of errors: syntax, semantic and logic. The final results

are shown in Chapter 70fthis document.

6.2.1 The Collected Data

We have collected data from students' practical work in database courses at Kabul

University. Tens of different queries are requested from students. The query requests

were in simple text and should be implemented on the HOSPIT AL sample database.

In response to the requested queries, students were writing SQL code. This activity

continued for one semester, which is around 16 weeks of lecture.

There are two options for implementing queries in our courses. One option lets

students run their queries before submitting the final answer sheets. The other option

is to use a text editor or plain paper and type or write the SQL code. For this

research, we encouraged our students to use the second option and submit their work

113

https://etd.uwc.ac.za/

6.2.2 The Collection of the Data

before running the code in MySQL. Therefore, most of the data items are in hard

copies and some are in soft copies written in a text editor.

The data needed for this research is SQL code that produces errors. One of the main

objectives for this research was to find common errors and probable mistakes that

students make during a SQL course. Therefore, data was collected for this purpose.

We used different methods that include physical collection of errors harvested from

written/printed papers and collected copies of students' SQL software.

The instructor gives query requests to students during lab hours. Students were

responsible for writing SQL code to reflect the requested queries. The query requests

are based on the HOSPITAL database, which they developed themselves. At the end

of the lab hour, students handed over their work written or typed on paper. Then, the

collected data was analyzed and student mistakes were found by hand and SQL errors

were collected for this research. The frequencies of errors that occurred were

recorded for each typical coding error.

The instructor(s) distribute query requests on the HOSPITAL database to students.

Students work on the requested queries, develop queries and prepare a soft copy of

their work. The soft copies are submitted to their instructors(s) through network or

by email before a specific deadline. These two were the methods of collecting data

used in this research.

114

6.2.3 The Collector of the Data

The author of this document collected most the data for this research. He is an

Assistant Professor in the Department of Computer Science in Kabul University.

Database courses are taught in that department to 3rd year students. For the last five

https://etd.uwc.ac.za/

years, this researcher taught the database courses at Kabul University. For a period of

two years code generated by students for a number of queries was collected, analyzed

and checked for mistakes.

6.3 Summary

We have explained the methods used to find common MySQL errors in this chapter.

The chapter started with a study of databases and MySQL and also covered how we

compiled a list of common MySQL errors. It also included experiments in MySQL.

The MySQL code generated by students and the probability of making an error in that

code is another part of this research. The methodology for finding errors was

explained. We had also discussed the terms that: what the students were asked to do,

what data was collected, how the data was collected and who was the collector of the

data for this research.

115

https://etd.uwc.ac.za/

Chapter 7

Results

This chapter starts by recapping MySQL error types as syntactic, semantic and logic

errors. Student errors are checked and recorded in different scripts. The recorded

errors are shown in Appendix D as raw data. The errors are described using the

percentages of students that made the error and they are classified by types of error.

The errors are also charted. The analysis is based on the percentage of matching

errors. Student errors are marked by an identity code, which shows the type of an

error. The total number of student errors, as a result of this research, is explained at

the end of this chapter. In addition, an analytical chart explaining the total number of

errors is included there. The chapter concludes with a summary of its contents.

Our research focuses on the MySQL errors that students are inclined to make in their

class work. During this project, two classes of Kabul University were chosen.

According to the lists of errors for each category explained in Chapter 5, we have

checked and analyzed most of those errors in the work of students. All this was done

statically. The sample queries are attached in Appendix B.

We chose 70 samples of code for occurrences of each error. For a couple of errors,

which are more general, we have used 140 samples. The total number of checked

samples reaches 6510. Some of the checks are implemented on an individual script

and some other checks are grouped and each group is checked on a single command.

The number of occurrences is recorded in tables for each error. Each occurrence is

checked for syntactic errors, semantic errors and for logical errors. We have analyzed

each error based on their three statuses, i.e. syntax, semantic and logic. A total

116

https://etd.uwc.ac.za/

number of checks and error occurrence for each section is recorded in three tables:

Table D-l, Table D-2, and Table D-3. The grand total for all the error occurrences

errors based on three different statuses is recorded in Table D-4. A percentage of

error occurrences, based on the raw data, is analyzed and shown in a series of tables

indicating error occurrences in all three types of commands are shown in section 7.5.

Accordingly, the analyzed report charts for the errors are shown in a series of figures

in this chapter.

7.1 MySQL Error Types-Syntactic, Semantic and Logic

MySQL code like other languages in the Computer Science and Information Systems

fields is error prone. Each error can be checked for syntactic, semantic or logic form.

Syntactic errors in a command or code portion are deviations from the required

syntax of that command in a language [26]. Missing a keyword, missing part of a

keyword, even missing a letter from a keyword in a command are cases where syntax

errors occur. Misspelling of commands is another issue for occurrence of syntax

errors.

Semantic errors are another form of error in MySQL programming. These errors

relate directly to the meaning of a command or to the meaning of the requested data

by a command. Sometimes, a user types a syntactically correct sentence, but the

program does not yield the expected results. This happens when the sentence or the

command has a semantic problem. Semantic errors may occur in two forms in a

command. First, the requested task seems correct but the query by itself is incorrect.

Second, the query is correct but still there is no confidence in the results.

117

Logical errors are another type of error. Like the previous two forms, an error in

MySQL code could be logical. Logical errors are usually seen at runtime. Before

running a command, recognizing such errors is not an easy task. Statically analyzing

https://etd.uwc.ac.za/

MySQL code to find logical errors seems a little tricky. Humans tracing the code,

however, find this possible.

MySQL commands are generally categorized as data definition, data manipulation

and data control commands. In the following, we have checked MySQL commands

under each of the three categories and analyzed errors as syntax, semantic or logic

forms. Results for each individual command are recorded and tabled.

7.2 Student Errors-SQL-DDL

The MySQL data definition commands can have errors. In Chapter 5, we have

explained this category of MySQL errors. In this part, we have checked this group of

errors against students' work. In this survey we encounter error occurrences for all

three states: syntactic, semantic and logic. Percentages of data definition errors are

shown in the following three tables. Some of the listed errors from Chapter 5, which

rarely occur, are ignored for checking students' work. The error identifier shows the

selected errors in our survey.

Table 7-1 shows the percentage of errors occurring in create, update and delete

database and table commands in MySQL. The raw data for these cases is recorded in

Table D-1, Appendix D. In this table we used 6 scripts for 10 cases. The first 3

errors are checked individually on different scripts. Four cases: DD05, DD06, DD07

and DD08 are checked on one script. The next two are checked on another script

and the last case is checked on a different script.

118

https://etd.uwc.ac.za/

Table 7-1 Percentages of Student Errors in create, update and delete Database and Table
Commands

The above table is analyzed and its analytical chart is shown in Figure 7-1.

• Syntax Errors

• Semantic Errors

l1li1 Logic Errors

0001 0003 0004 0005 0006 0007 0008 0009 001O 0011

Figure 7-1 Analysis of Student Errors in create, update and delete Database and Table

Commands

119

https://etd.uwc.ac.za/

Another part of data definition errors are shown in Table 7-2. Similar to the previous

table, the raw data for these cases is recorded in Table D-1, Appendix D. In this table

we used 8 scripts for 11 cases. The first 2 cases are checked individually on different

scripts. Four cases: DD17, DD18, DD19 and DD20 are checked on one script. The

remaining 5 cases are checked on 5 individual scripts.

Table 7-2 Percentages of Student Errors in alter Table Command

Figure 7-2 shows the analytical report on percentage of error occurrence for the

previous table.

120

https://etd.uwc.ac.za/

• Syntax Errors

• Semantic Errors

• Logic Errors

0012 0015 0017 0018 0019 0020 0021 0022 0023 0024 0030

Figure 7-2 Analysis of Student Errors in alter Table Command

The last part of data defInition errors are related to tables and views in databases. The

percentage and results of these errors are shown in Table 7-3. The raw data for this

table can be found in Table D-l, Appendix D. In this table we used 6 scripts for 7

cases. The first 3 cases are checked individually on different scripts. Two cases:

DD34 and DD35 are checked on one script. The remaining 2 cases are checked on 5

individual scripts.

Table 7-3 Percentages of Student Errors in Table and View related Commands

121

https://etd.uwc.ac.za/

• Syntax Errors

• Semantic Errors

!III Logic Errors

The analytical results based on the percentage of error occurrence for previous table

is shown in Figure 7-3.

0031 0032 0033 0034 0035 0037 0038

Figure 7-3 Analysis of Student Errors in Table and View related Commands

We have checked, analyzed and reported on the number and percentage of the

students' MySQL errors for the data defination commands. The total errors in this

section are 38 and we checked 28 out of this number in students' work. The other 10

errors occur rarely and they are ignored in this research. We have selected 20 scripts

and checked the 28 cases of error occurrence in data definition commands. All these

scripts are written by more than 70 students and we chose 70 samples out of them.

7.3 Student Errors-SQL-DML

The MySQL data manipulation commands form an important part of the database

field. Many errors can occur in these commands. In Chapter 5, the MySQL DML

errors are listed. Here, we check these errors in students' class work and match cases

of this category of errors. The occurred errors are classified into three cases as

syntactic, semantic and logic errors. The results for occurrences of these errors are

122

https://etd.uwc.ac.za/

Table 7-4 shows the insert and replace commands and the percentage for the

syntactic, semantic and logic error occurrence in these commands. The raw data for

these cases is recorded in Table D-l and Table D-2, Appendix D. In the table below

error cases are checked individually on 3 different scripts.

listed in Table D-2, Appendix D. Their percentages and the analytical report charts

are explained shortly in the forthcoming paragraphs.

Table 7-4 Percentages of Student Errors in data entry Commands

Similarly, Figure 7-4 shows a histogram of error percentages of the insert and replace

data entry commands in MySQL.

123

https://etd.uwc.ac.za/

• Syntax Errors

• Semantic Errors

• Logic Errors

OMOl OM02 OM03 OM04 OMOS OM08 OM09 OMlO

Figure 7-4 Analysis of Student Errors in data entry Commands

The following table lists the percentages of student errors in a SELECT query. The

SELECT query is used to retrieve data from database tables. The raw data for these

cases is recorded in Table D-1 and Table D-2 in Appendix D. InTable 7-5 we used

4 scripts for 10 cases. The first and the fourth cases in this table are checked

individually in two different scripts. The second and third cases are checked in one

query and the last 6 errors are checked in one script.

Table 7-5 Percentages of Student Errors in data retrieve Commands-Part 1

124

https://etd.uwc.ac.za/

• Syntax Errors

• Semantic Errors

IIIl Logic Errors

The analytical result as percentage level of the occurred errors In data retrieval

commands are shown in Figure 7-5.

OMll OM12 OM13 OM14 OM15 OM17 OM18 OM19 OM20 OM21

Figure 7-5 Analysis of Student Errors in data retrieve Commands-Part 1

Another part of data retrieval cammands and error occurrence relate to other parts of

SELECT statement. Also, subqueries and error occurrence in subqueries are explain-

ed in this part. Table 7-6 shows the error occurrence in students' work. The raw data

for these cases are recorded in Table D-1 and Table D-2 in Appendix D. In the table

below, we used 3 scripts for 10 cases. The first 5 errors are checked in one script.

The sixth case is checked in another script. The last 4 error cases are checked on one

script.

125

https://etd.uwc.ac.za/

Table 7-6 Percentages of Student Errors in data retrieve Commands-Part 2

The analyzed form of errors in previous table is shown in Figure 7-6.

40.00% +--i!!I----

30.00% +-...J1!1----

• Syntax Errors

• Semantic Errors

• Logic Errors

20.00%

10.00%

0.00%

DM22 DM23 DM24 DM25 DM26 DM27 DM28 DM30 DM31 DM32

Figure 7-6 Analysis of Student Errors in data retrieve Commands-Part 2

We can combine different data sets using the SELECT command inMySQL.

Similarly, we can implement data aggregation functions on a database's data in

MySQL. Errors may occur in any parts of these commands in SELECT statement.

Student errors are listed in Table D-2, Appendix D. Table 7-7 shows the percentage

of these errors. Like most of other parts in this research, also this is checked on

works of 70 students based on all 3 types of errors: syntactic, semantic and logic. In

the bellow table, we used 7 scripts for 10 cases. The first 3 cases are checked

126

https://etd.uwc.ac.za/

individually on 3 different scripts. The next 4 errors are checked in one script and the

last 3 are checked on three different scripts.

Table 7-7 Percentages of Student Errors in data retrieve Commands-Part 3

Figure 7-7 shows the analytical results of Table 7-7.

• Syntax Errors

• Semantic Errors

ml Logic Errors

DM34 DM36 DM37 DM38 DM40 DM41 DM42 DM43 DM52 DM55

Figure 7-7 Analysis of Student Errors in data retrieve Commands-Part 3

The last part of data manipulation and the percentage error occurrences in this part

are noted in Table 7-8. The raw data for these errors are shown inTable D-2,

127

https://etd.uwc.ac.za/

Appendix D. In this table, we used 4 scripts for 8 cases. The first 3 errors are

checked in one script. Another error, DM66, is checked on one script. Other two

couples are checked on two scripts, one different script is used for each couple of

errors.

Table 7-8 Percentages of Student Errors in data retrieve, update, delete and truncate Commands

The analyzed results and the percentage chart of the occurred errors are shown in

Figure 7-8.

• Syntax Errors

• Semantic Errors

II1IILogic Errors

DM63 DM64 DM65 DM66 DM67 DM68 DM70 DM71

Figure 7-8 Analysis of Student Errors in data retrieve, update, delete and truncate Commands

128

https://etd.uwc.ac.za/

Most of the data manipulation errors, listed in Table 5-4, are checked in students

work. Each error is checked in 70 different students' class work. We have also

checked these errors under three circumstances, i.e. syntax, semantic and logic. The

number of occurrences for each case is listed in tables in Appendix D. Similarly, we

have analyzed the data of each table and reported in charts. This is done on a

percentage basis for each error.

The total number of errors in this section is 72 and we checked 46 out of this number

in students' work. The other 26 errors occur rarely and they are ignored in this

research. In this section, we have used 22 different scripts and checked 46 cases of

data manipulation errors.

7.4 Student Errors-Transaction Control and Locking Tables

The MySQL transaction control and locking commands can have errors. Chapter 5

explains occurrence of these errors. Table 5-5 lists all the errors that may counter in

this part of MySQL commands. In this section, we check these errors in students'

class work and find the matched cases of this category of errors. The errors occurring

are classified into three classes as syntactic, semantic and logic errors. The raw data

for error occurrences is noted in Table D-3, Appendix D. Results for the occurrence

of these errors, their percentage and the analytical charts are explained shortly in the

forthcoming paragraphs.

The following Table 7-9 shows the error occurrence in transaction control and

rollback statements of MySQL. In this table, we used 8 scripts for 9 cases. The first

2 errors are checked in one script. The other cases are appear separately on different

scripts.

129

https://etd.uwc.ac.za/

Table 7-9 Percentages of Student errors in transaction and rollback Commands

The analytical results based the percentage of the occurred errors from the previous

table are shown in Figure 7-9.

• Syntax Errors

• Semantic Errors

III logic Errors

TCOl Te02 TeOG Teal TCOS rcos Tela Tell TC12

Figure 7-9 Analysis of Student Errors in transaction and rollback Commands

The second and the last part of the transaction errors inMySQL are shown in Table

7-10. The raw data for these cases is recorded in Table D-1, Table D-3, and

Appendix D. In this group, for a couple of errors we used two scripts. We used 10

scripts for 8 error cases. The two errors TC 17 and TC 18, each one are checked in

130

https://etd.uwc.ac.za/

two different scripts. In addition, the other six cases are checked on 6 different

scripts.

Table 7-10 Percentages of Student Errors in rollback, savepoint and rollback to savepoint
Commands

Figure 7-10 shows the analyzed results of Table 7-10.

• Logic Errors

• Syntax Errors

• Semantic Errors

TC13 TC14 TC1S TC16 TC17 Te18 TC2l TC22

Figure 7-10 Analysis of Student Errors in rollback, savepoint and rollback to savepoint
Commands

131

https://etd.uwc.ac.za/

The errors in this section number 22 and we have found 17 out of these occurred in

students' work. The other 5 errors are rare and we have ignored them. Totally 16

scripts are used for checking cases of the transaction control sections errors.

Most of the transaction control errors are checked in students work. Some errors are

checked in 70 different students' class work and a couple of them are checked in 140

samples of code. Each error is checked under three cases i.e. syntactic, semantic and

logic. The number of occurrences for each case is listed in tables. In addition, we

have analyzed and reported on percentage of error occurrence for all tables. This is

shown in charts.

7.5 Student Errors-Total Number of Errors in All Cases

We have checked the MySQL errors that students and novices make during class

work. This process was implemented on students work from two classes in different

years. The total number of students chosen for this purpose was from two classes

each class containing 70 students. We have checked MySQL code portions that these

students had generated. This checking was based on the three forms of semantic,

syntactic and logic of each error. The previous three sections indicated three general

types of MySQL commands and error occurrence in those commnds. All the results

were shown clearly in data tables and appended to our document in Appendix D. The

results are also mapped in charts with a percentage or occurrence. In general, we

have used 58 different scripts and checked 91 cases of data definition, data

manipulation and transaction control errors.

In this section we show the totals for each category of MySQL commands including

data defmition, data manipulation and transaction control commands. Additionally,

we have included the grand total for all the commands that we checked during this

research. The raw data for the totals may be found at the end of Appendix D.

132

https://etd.uwc.ac.za/

Table 7-11 shows the percentages of totals and the grand total for all the checked

commands.

Total- Transaction Control Errors - TCL
36 17Total - Data Manipulation Errors - DML 14

8 918
Grand Total-All Checked Errors 15 30 17

Table 7-11 Percentages of Student Errors Totals in all Commands

Figure 7-11 shows the analyzed results of Table 7-11.

Iii logic Errors

• Syntax Errors

• Semantic Errors

Total- Data Total- Data Total - Transaction GrandTotal - All
Definition Errors - Manipulation Errors - Control Errors - TCL Checked Errors

DOL DMl

Figure 7-11 Analysis of Student Errors in all Commands

133

https://etd.uwc.ac.za/

7.6 Analysis of Results

We have checked the MySQL errors that students make in a database course. The

results of this checking is explained fully in preeeeding sections of this chapter.

Ninty one cases of error occurrence is checked on 58 sample scripts written for

MySQL DBMS. Each script was written by more than 70 students. We have

checked each case for three different types of errors: syntactic, semantic and logic.

Therefore, we have analyzed error cases in our results which are based on these three

types.

7.7 Theoretical Analysis

We have explained MySQL errors and categorized these errors in three groups: DDL,

DML and TCL. Our expectations for error occurrence differ for each part. In this

section, we want to theoretically analyze error occurrences in any of these parts.

The practice that we want to use is based on meaning, usage and expected results for

commands in different categories. These factors may show the expectations of

percentages that are resulted from the commands. In data definition commands

(DDL), syntax errors and logic errors may occur in an equal percentage. The chances

for semantic errors occuring is not that much. Due to the nature of these commands,

we expect more syntax and logic errors and fewer semantic errors. For example, a

create or alter table command may have syntax or logic errors. Semantic errors in

these commands occur rarely.

DML commands may have the same number of syntax and logic errors. However,

chance for logic errors is a little bit more than the syntax error. Semantic errors are

also inclined to occur in these commands. After theoretical analysis, our expectation

for error occurrence in data manipulation commands shows 40% logic, 35% syntax

and 25% semantic errors.

134

https://etd.uwc.ac.za/

7.8 Analysis of the Exact Results

Transaction control commands (TCL) commands of MySQL appear in a different

form compared to the previous two categories. These commands work under

different conditions and result in specific types of tables. If a user is not fully aware

of these conditions, s/he may make more errors while using TCLs. Therefore, the

TCL commands may be inclined to contain a higher number of logical errors in

comparison to the DDL and DML commands. Our expectations are 60% logic, 25%

syntax and 15% semantic errors.

Table 7-1 is chosen as an example for data analysis. In raw data, illustrated in Table

D-1, Appendix D, shows that in the first line for "0001 Create table" we have

checked 70 cases. In this command, 2 syntax errors, 0 semantic errors and 10 logic

errors occured. This means that 12 of the 70 checked cases contained errors, which

means 17.14% contained errors. These errors can be broken down as 16.67% syntax

errors and 83.33% logical errors. Semantic errors for this case is 0.00%.

135

If we do this for the whole of Table 7-1, then we see that 60% of students made errors

with DDll while only 4.29% made errors with DD7 and DD08. We can also see

that DD08 was the only one where no syntax errors were made. DD06 and DD08

were the only ones where most of the errors were semantic. DD04-09 had no logic

errors. According to these cases the following question may arise:

Why do the students make different errors with different commands?

To answer this question, we can say one of the reasons is the type of the commands.

For example, DD04 is the Use command. The user needs to type 'Use OBname;'.

In this command, there is not much room for logic or semantic errors. Therefore, we

expect syntactic errors and the result is also the same. 11.43% of students either

misspelled 'use' or 'OBname' or left out the ';' symbol at the end of the command. If

https://etd.uwc.ac.za/

we had an editor/IDE that did word completion and was able to predict the names of

databases, then these errors could be avoided.

In Table 7-11, we have the total percentage of error occurrence for every category of

MySQL commands that are explained in this document: DDL, DML and TCL. DLL

has a close number of syntax (36.46%) and logic (39.58%) errors and slightly fewer

semantic (23.96%). This result was expected. Theoretically, the data definition

commands have less semantic errors. MySQL commands for defining database

structures may have syntax errors. In our survey, we found 105 syntax errors from

1960 cases in students code. Similarly, we have encountered 114 logical errors and

only 69 semantic errors from 1960 cases in 20 scripts. These results are close to our

theoretical analysis explained in the previous section.

DML has 36.29% syntax, 17.06% semantic amd 46.65% logic errors. The percentage

of syntax errors in this category is almost the same as the syntax errors in data

definition commands. It shows that students make the same number of syntax errors

in both cases. More interesting point in these commands is in occurrence of logic

errors. The percentage of logical errors exceeded 46.65%; in contrast, the percentage

of the semantic errors decreased to 17.06%. Again, this is result expected. In our

theoretical analysis, we were expecting 40% for logic, 35% for syntax and 25% for

semantic errors. The resulting figures only match the syntax errors. Two other parts

are different.

The data manipulation commands are mostly relate to the user's thinking. When

some information is requested from a user to export from a database, the user needs

to query data. For this purpose, users have different ideas and use different options

and methods for their work. Most of the queries that users write, may have correct

syntax and meaning. However, those queries may be logically incorrect and cause

unexpected results. These are the cases where the percentage of the logic errors is

higher in this category of commands compared to DDL.

136

https://etd.uwc.ac.za/

TCL has 7.69% syntax, 8.97% semantic and 83.33% logic errors. This category of

errors are mostly logical. The difference in percentage is high. This is result

expected. Our theoretical analysis shows a moderated difference of error occurrences

between the two forms: syntactic and semantic errors. The logic errors are

theoretically expected to have a higher percentage: 60% logic, 25% syntax and 15%

semantic.

Logic errors in transaction control commands may occur in different cases. For

example, students tried to rollback changes on non-transactional tables. They tried to

rollback some general commands of the data defintion section through which table

structures are updated, and some other similar cases.

Overall there are 29.54% syntax, 17.16% semantic, 53.3% logic errors. If one could

build a perfect syntax checker for MySQL, about 30% of student errors could be

prevented.

7.9 Summary

Chapter 7 is one of the important chapters presented here. We have explained the

final results of the students' work in MySQL. The MySQL code portions, which

were developed by our students, have been checked for common errors. The

checking was based on our classification from Chapter 5. The results on error

occurrence of students' work were checked for the three cases: syntactic, semantic

and logic. Further, we have analyzed the results on percentage of error occurrence.

Theoretical analysis as well as the exact analysis of results are done. The percentage

analyses are shown in histograms. In total we have reported the errors that have

occurred in 10 tables, which are further displayed in 10 charts. In short, this chapter

started with the evaluation of data defmition errors and continued through data

manipulation errors; and it ended by analyzing transaction control errors.

137

https://etd.uwc.ac.za/

Chapter 8

Conclusion and Future Work

This research has made important findings regarding static error checking in the

database field. We started with a general database study and came up through query

languages to MySQL database management system. SQL and MySQL history and

functions are explained. Case sensitivity of MySQL commands and functions and

their proneness to errors in different platforms is explained. Then a complete

literature survey was done. The survey includes SQL error checking tools and some

other error checkers for different computer languages.

We have compiled a reasonably complete list of common MySQL errors that students

and novices make in database courses. The errors that we found are categorized in

three groups. The groups are based on the MySQL commands where they can occur.

Every group covers a sufficient number of errors. The collected and grouped errors

of MySQL can be used as a valuable asset for future work in database field.

Most of the listed errors are checked in students' class work. We chose two classes

of Kabul University where databases are taught in two semesters for the 3rd year of

Computer Science. Each error is checked in three common cases of error occurrence:

syntactic, semantic and logic. The frequency of error occurrence for each case is

recorded and showed in the thesis. Then, the results are analyzed and a percentage of

the occurred errors are mapped in separate charts. The percentage is based on the

number of code portions that we checked and the frequency of errors in each case.

138

In this research, we have checked different errors that may occur in SQL code. The

errors are listed and grouped. Categorization of errors in groups was based on the

https://etd.uwc.ac.za/

type of each command in SQL. Then we have recorded occurrence of errors in three

forms: syntactic, semantic and logic. As a trailer of our work, this activity can be

changed to re-categorize SQL errors as preventable error and non-preventable error

groups. This can help developers of error checkers to recognize errors by preventable

and non-preventable errors. Then they can design their tool to use only the first

group of errors that can be prevented. This may differ for individual tools.

Specifications of a tool can determine the preventable and non-preventable errors in

SQL.

The fInal results of our analyses shows that there are 29.54% syntax, 17.16%

semantic, 53.3% logic errors. If one could build a perfect syntax error checker for

MySQL, about 30% of student errors could be prevented. The question arises: what

can be done to avoid semantic and logic errors?

Similarly, the listed errors in this research may be used to determine whether they are

predictable or detectable. Each group of predictable errors and detectable errors can

enrich the design of an error checker tool.

Developing a tool that could determine semantic and/or logic errors is possible.

However, this tool will not be that complete to be used in general cases. This kind of

tool can be developed for a specific database in a limited field. This is possible only

if all the rules in that specific field are included in the tool's knowledge base. For

every little change, the tool may need to be updated.

139

We propose the following two directions for future work.

8.1 Static Error Checker for SQL--Offline

A static SQL error checker can be developed and installed on an individual machine

to be used by a single user. The error checking tool should have facilities to find and

https://etd.uwc.ac.za/

highlight common SQL syntax errors. It may optionally have suggestions to correct

errors for its users. Its suggestions can make it more interesting. Our findings from

this research can be used for designing such a tool.

The proposed tool can be used for self evaluation; it can be useful for general

database users and students. It can also be used for fmding similarities in students'

homework that is very important for database instructors. We hope our results of this

research, especially the lists of the errors, can be feasible for implementing the

proposed error check for SQL.

The proposed Static Error Checker for SQL can have the following options and

functionalities:

140

Check a group of sample errors. lts developer may include the sample

errors to be checked.

It can have an additional box/menu option where it can accept new sets of

errors. Checking of the code can be done on any set of errors.

8.2 Static Error Checking of SQL - Online

A comprehensive error checker for SQL could be programmed. This tool can have

broader functionalities comparing to the previous one. The tool can check SQL

syntax errors based on the results of this research. Online technologies and facilities

can be used for designing such a tool. User access can be controlled by issuing a

username and password for its users. The online error checker can be designed in

two forms.

1. To be uploaded to the Internet

2. To be used in a small or medium network (local)

https://etd.uwc.ac.za/

It can have an accuracy level and give a survey option. The survey can

show the frequency of any occurred error.

The first type can have a control board. An option to record the errors that users

make by using the tool can further be analyzed. Those results will be helpful for

upgrading the tool to satisfy its users. The second one can also record the errors that

users make. All the recorded results will be good data for future improvements of the

tool.

The proposed online tool can have the following options and functionalities:

Like the AsseSQL explained in [35], it can provide feedback and notes

to the users.

Un1ike the AsseQL [35], this tool can provide solutions to the users.

8.3 Concluding Notes

141

This research was a good experience for its researcher. During the research, valuable

experiments and experiences made significant improvements in the career of the

researcher. We hope the results of this research can be used as a valuable asset in

academic arena, especially in database field in the world.

https://etd.uwc.ac.za/

Appendix A

A-I The 'HOSPITAL' database code in MySQL syntax

The code of the 'HOSPITAL' database is divided into four sections.

A-I.I.Database definition commands

The following commands drop database 'HOSPITAL' if it exists, then the database is

created and activated as the defaults database.

DROP DATABASE HOSPITAL:
CREATE DATABASE HOSPITAL:

USE HOSPITAL

A-1.2 Table definition commands

The following commands create tables within the active database 'HOSPITAL'.

CREATE TABLE PERSON (

Person_ID INT PRIMARY KEY,
Name VARCHAR(40),

DoB DATE,
Phone CHAR(14),
Address VARCHAR(40),

city VARCHAR(15)

):

CREATE TABLE EMPLOYEE (
Employee_ID INT PRIMARY KEY,

Date_Hired DATE,

Salary INT,
Care_Center_Name VARCHAR(30)

):

CREATE TABLE NURSE (

Qualification VARCHAR(40),

142

https://etd.uwc.ac.za/

Nurse_ID INT PRIMARY KEY

):

CREATE TABLE TECHNICIAN (

Skill VARCHAR(30),

Technician_ID INT PRIMARY KEY

):

CREATE TABLE STAFF (

Job_Class VARCHAR(20),
Statf_lD INT PRIMARY KEY

):

CREATE TABLE PATIENT (

Register_Date DATE,
Patient_ID INT PRIMARY KEY

):

CREATE TABLE OUTPATIENT (
Out_Patient_ID INT PRIMARY KEY

):

CREATE TABLE RESIDENT_PATIENT (

Admission_Date DATE,

Admission_Fee INT,
Res_Patient_ID INT

»

CREATE TABLE PHYSICIAN (

Pager_Number INT,
Specialty VARCHAR(15),
Physician_ID INT PRIMARY KEY

):

CREATE TABLE VISIT (

Visit_Date DATE,

Comments VARCHAR(50),
Out_Pat_ID INT,

Phys_ID INT

):

143

CREATE TABLE TREATMENT (
Treatment_ID INT PRIMARY KEY,

Treatment_Name VARCHAR(30)

):

CREATE TABLE TREAT (

Treat_Date DATE,
Treat_Time TIME,

Result VARCHAR(15),

Patient_ Treatment_ID INT,

https://etd.uwc.ac.za/

Physician_Treatment_ID INT,
Treat_Treatment_ID INT,

Treat_Charges INT
);

CREATE TABLE CARE_CENTER (

Name VARCHAR(15) PRIMARY KEY,

Building_Num INT

);

144

CREATE TABLE BUILDING (
Building_Number INT PRIMARY KEY,

Building_Name VARCHAR(40),
Building_Code INT

);

CREATE TABLE VACCINE_CENTER (
Vaccine_Center_Name VARCHAR(20) PRIMARY KEY,

Building_Num INT
);

CREATE TABLE LABORATORY (
Lab_Name VARCHAR(20) PRIMARY KEY,

Builing_Num INT
);

CREATE TABLE BED (
Bed_Number INT PRIMARY KEY,
Room_Number INT

);

CREATE TABLE ITEM (
Item_Number INT PRIMARY KEY,

Descryption VARCHAR(50),

Unit_Cost DOUBLE
);

CREATE TABLE CONSUME (

Quantity INT,
Date DATE,

Total_Cost DOUBLE,

Item_Number INT,
Patient_ID INT

);

CREATE TABLE REFER (

Refer_Physician_ID INT,

Refer_Patient_ID INT

);

https://etd.uwc.ac.za/

A-lA. Relationship commands

The following commands add pnmary keys and relationships between the

,HOSPITAL' tables.

ALTER TABLE EMPLOYEE
ADD FOREIGN KEY (Employee_ID) REFERENCES PERSON (Persen_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE EMPLOYEE
ADD FOREIGN KEY (Care_Center_Name) REFERENCES CARE_CENTER (Name)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE PATIENT
ADD FOREIGN KEY (Patient_ID) REFERENCES PERSON (Person_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE PHYSICIAN
ADD FOREIGN KEY (Physician_ID) REFERENCES PERSON (Persen_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE TECHNICIAN
ADD FOREIGN KEY (Technician_ID) REFERENCES EMPLOYEE (Employee_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE STAFF
ADD FOREIGN KEY (Staft_ID) REFERENCES EMPLOYEE (Employee_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE NURSE
ADD FOREIGN KEY (Nurse_ID) REFERENCES EMPLOYEE (Employee_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE RESIDENT _PATIENT
ADD FOREIGN KEY (Res_Patient_ID) REFERENCES PATIENT (Patient_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE RESIDENT_PATIENT
ADD PRIMARY KEY (Admission_Date, Res_Patient_ID);

ALTER TABLE OUTPATIENT
ADD FOREIGN KEY (Out_Patient_ID) REFERENCES PATIENT (Patient_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE TREAT
ADD FOREIGN KEY (Patient_Treatment_ID) REFERENCES PATIENT (Patient_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE TREAT
ADD FOREIGN KEY (Physician_Treatment_ID) REFERENCES PHYSICIAN (Physician_ID)

145

https://etd.uwc.ac.za/

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE TREAT
ADD FOREIGN KEY (Treat_Treatment_ID) REFERENCES TREATMENT (Treatment_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE VISIT
ADD FOREIGN KEY (Out_Pat_ID) REFERENCES OUTPATIENT (Out_Patient_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

AL TER TABLE VISIT
ADD FOREIGN KEY (Phys_ID) REFERENCES PHYSICIAN (Physician_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE CARE_ CENTER
ADD FOREIGN KEY (Building_Num) REFERENCES BUILDING (Building_Number)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE VACCINE_CENTER
ADD FOREIGN KEY (Building_Num) REFERENCES BUILDING (Building_Number)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE LABORATORY
ADD FOREIGN KEY (Builing_Num) REFERENCES BUILDING (Building_Number)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE BED
ADD COLUMN (Care_Center_Name CHAR(15));

ALTER TABLE BED
ADD FOREIGN KEY (Care_Center_Name) REFERENCES CARE_CENTER (Name)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE CONSUME
ADD FOREIGN KEY (Item_Number) REFERENCES ITEM (Item_Number)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE CONSUME
ADD FOREIGN KEY (Patient_ID) REFERENCES PATIENT (Patient_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE NURSE
ADD COLUMN(cc_inCHARge VARCHAR(30));

ALTER TABLE NURSE
ADD FOREIGN KEY (cc_inCHARge) REFERENCES CARE_CENTER(Name)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE REFER
ADD PRIMARY KEY (Refer_Physician_ID, Refer_Patient_ID);

ALTER TABLE REFER
ADD FOREIGN KEY(Refer_Physician_ID) REFERENCES PHYSICIAN (Physician_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

ALTER TABLE REFER
ADD FOREIGN KEY(Refer_Patient_ID) REFERENCES PATIENT (Patient_ID)

ON DELETE NO ACTION ON UPDATE CASCADE;

146

https://etd.uwc.ac.za/

A-I.4. Data entry commands

The following commands enter data to the 'Hospital' tables.

INSERT INTO PERSON VALUES (1, "Feda", "1954-05-11", 70039, "City", "Kabul");

INSERT INTO PERSON VALUES (2, "Kabir", "1962-07-09", 70013, "Dist2", "Hirat");
INSERT INTO PERSON VALUES (3, "Mahbooba", "1945-04-01", 70018, "Dist5", "Kabul");

INSERT INTO PERSON VALUES (4, "Sabir", "1976-04-13", 70002, "Dist1", "Kabul");

INSERT INTO PERSON VALUES (5, "Raihana", "1964-03-07", 70003, "City", "Ningarhar");
INSERT INTO PERSON VALUES (6, "Karima", "1959-04-12", 70004, "City", "Kabul");
INSERT INTO PERSON VALUES (7, "Latifa", "1959-07-21", 70005, "Dist6", "Kabul");

INSERT INTO PERSON VALUES (8, "Rustam", Null, 70033, "Dist12", "Kabul");
INSERT INTO PERSON VALUES (9, "Farhad", "1953-09-19", 70034, "Center", "Maydan");

INSERT INTO PERSON VALUES (10, "Rabia", "1976-07-05", Null, "Dist1", "Kabul");
INSERT INTO PERSON VALUES (11, "Usman", "1978-09-08", 77883, "Dist1", "Kabul");
INSERT INTO PERSON VALUES (12, "Lutfullah", "1976-03-08", 79158, "Dist7", "Kabul");

INSERT INTO PERSON VALUES (13, "Fawzia", "1978-03-08", 0, "Dist12", "kabul");
INSERT INTO PERSON VALUES (14, "Javid", "1974-06-11", 79893, "Dist9", "Kabul");
INSERT INTO PERSON VALUES (15, "Rasoul", "1985-09-12",72236, "Dist8", "kabul");

INSERT INTO PERSON VALUES (16, "Ourban", "1977-01-01",0, "Dist5", "Kabul");
INSERT INTO PERSON VALUES (17, "Farooq", "1974-09-01", 75503, "Dist11", "kabul");
INSERT INTO PERSON VALUES (18, "Zeeba", "1974-07-17", 75023, "Jalabad", "Ningarhar");

INSERT INTO PERSON VALUES (19, "Oadria", "1959-03-19", 75360, "City", "Kabul");
INSERT INTO PERSON VALUES (20, "Arman", "1979-07-21", 70395, "Dist16", "Kabul");

INSERT INTO PERSON VALUES (21, "Roshan", Null, 75633, "Dist12", "Kabul");
INSERT INTO PERSON VALUES (22, "Karima", "1973-11-16", Null, "Center", "Jalalabad");
INSERT INTO PERSON VALUES (23, "Rabani", "1952-09-12", Null, "Dist21", "Kabul");
INSERT INTO PERSON VALUES (24, "Usman", "1962-01-10", 70027, "Dist7", "kabul");
INSERT INTO PERSON VALUES (25, "Latif', "1956-03-08", 79958, "Dist1", "kabul");

INSERT INTO PERSON VALUES (26, "Kamela", "1978-03-24", Null, "City", "kabul");
INSERT INTO PERSON VALUES (27, "Jabar", "1984-08-19", 79164, "Charikar", "Parwan");
INSERT INTO PERSON VALUES (28, "Moheb", "1985-11-12", 72223, "Dist18", "kabul");

INSERT INTO PERSON VALUES (29, "Oarib", "1987-01-15", Null, "City", "Hirat");
INSERT INTO PERSON VALUES (30, "Kamal", "1984-11-01", 50324, "Dist1", "kabul");

INSERT INTO PERSON VALUES (31, "Ruqia", Null, Null, "Dist8", "kabul");
INSERT INTO PERSON VALUES (32, "Hadia", "1985-01-01", Null, "City", "Hirat");

INSERT INTO PERSON VALUES (33, "Jamshid", "1982-11-30", 70043, "Dist1", "kabul");

INSERT INTO PERSON VALUES (34, "Gulab", "1992-01-15", Null, "City", "Hirat");

INSERT INTO PERSON VALUES (39, "Munir", "1966-03-22", 70098, "City", "kabul");
INSERT INTO PERSON VALUES (40, "Kabir", "1964-08-29", 75764, "Center", "Logar");
INSERT INTO PERSON VALUES (41, "Mirwais", "1965-11-12", 78763, "Dist2", "kabul");

INSERT INTO PERSON VALUES (42, "Laila", "1985-01-15", 79954, "City", "Hirat");

INSERT INTO PERSON VALUES (43, "Rafiq", "1974-11-01", 70734, "Dist1", "kabul");

INSERT INTO PHYSICIAN VALUES (101, "surgery", 1);

INSERT INTO PHYSICIAN VALUES (102, "General", 2);
INSERT INTO PHYSICIAN VALUES (103, "Childem", 3);

INSERT INTO PHYSICIAN VALUES (104, "General", 4);

147

https://etd.uwc.ac.za/

INSERT INTO PHYSICIAN VALUES (105, "Emergency', 18);
INSERT INTO PHYSICIAN VALUES (106, "Emergency', 19);

INSERT INTO PHYSICIAN VALUES (107, "Surgery", 20);

INSERT INTO PHYSICIAN VALUES (108, "General", 21);

INSERT INTO BUILDING VALUES (1, "Building1", 2001);

INSERT INTO BUILDING VALUES (2, "Building2", 2002);
INSERT INTO BUILDING VALUES (3, "Building3", 2003);

INSERT INTO CARE_CENTER VALUES ("CC1", 1);
INSERT INTO CARE_CENTER VALUES ("CC2", 1);

INSERT INTO CARE_CENTER VALUES ("CC3", 1);

INSERT INTO CARE_CENTER VALUES ("CC4", 1);
INSERT INTO CARE_CENTER VALUES ("CC5", 1);

INSERT INTO CARE_CENTER VALUES ("CC6", 1);
INSERT INTO CARE_CENTER VALUES ("CC7", 2);
INSERT INTO CARE_CENTER VALUES ("CC8", 2);

INSERT INTO CARE_CENTER VALUES ("CC9", 2);
INSERT INTO CARE_CENTER VALUES ("CC10", 2);
INSERT INTO CARE_CENTER VALUES ("CC11", 3);
INSERT INTO CARE_CENTER VALUES ("CC12", 3);

INSERT INTO EMPLOYEE VALUES (5, "1997-02-16", 6000, "CC1");

INSERT INTO EMPLOYEE VALUES (6, "1997-02-16", 6500, "CC3");
INSERT INTO EMPLOYEE VALUES (8, "1986-02-01", 5500, "CC4");
INSERT INTO EMPLOYEE VALUES (9, "1989-05-016", 6000, "CC2");

INSERT INTO EMPLOYEE VALUES (7, "1990-02-01", 6000, "CC6");
INSERT INTO EMPLOYEE VALUES (22, "2002-01-01", 8000, "CC7");
INSERT INTO EMPLOYEE VALUES (23, "1987-03-16", 7200, "CC8");
INSERT INTO EMPLOYEE VALUES (24, "1986-02-16", 8000, "CC5");

INSERT INTO EMPLOYEE VALUES (25, "1988-05-01", 8000, "CC9");
INSERT INTO EMPLOYEE VALUES (26, "2001-07-01",5500, "CC10");
INSERT INTO EMPLOYEE VALUES (39, "1999-05-16",6000, "CC11");

INSERT INTO EMPLOYEE VALUES (40, "1989-07-01",8000, "CC12");
INSERT INTO EMPLOYEE VALUES (41, "1998-05-01",6000, "CC12");
INSERT INTO EMPLOYEE VALUES (42, "2003-02-01", 5000, "CC12");

INSERT INTO EMPLOYEE VALUES (43, "1987-09-01", 7000, "CC6");

INSERT INTO NURSE VALUES ("Nursing", 5, "CC1");
INSERT INTO NURSE VALUES ("Nursing", 6, "CC2");

INSERT INTO NURSE VALUES ("Nursing", 7, "CC3");
INSERT INTO NURSE VALUES ("Primary", 8, "CC4");
INSERT INTO NURSE VALUES ("Nursing", 22, "CC5");

INSERT INTO NURSE VALUES ("Private", 23, "CC6");

INSERT INTO NURSE VALUES ("Higher", 24, "CC7");
INSERT INTO NURSE VALUES ("Nursing", 25, "CC8");

INSERT INTO NURSE VALUES ("Nursing", 26, "CC9");

INSERT INTO NURSE VALUES ("Primary", 41, "CC10");
INSERT INTO NURSE VALUES ("Nursing", 39, "CC11");

INSERT INTO NURSE VALUES ("Nursing", 40, "CC12");

148

https://etd.uwc.ac.za/

INSERT INTO STAFF VALUES ("Admin", 9);
INSERT INTO STAFF VALUES ("Assistant", 5);

INSERT INTO STAFF VALUES ("Admin", 26);

INSERT INTO STAFF VALUES ("Assistant", 22);
INSERT INTO STAFF VALUES ("Admin", 43);

INSERT INTO STAFF VALUES ("Assistant", 39);

INSERT INTO PATIENT VALUES ("2006-07-01",10);

INSERT INTO PATIENT VALUES ("2006-07-02",11);

INSERT INTO PATIENT VALUES ("2006-07-04", 12);
INSERT INTO PATIENT VALUES ("2006-07-04",13);
INSERT INTO PATIENT VALUES ("2006-06-14",14);

INSERT INTO PATIENT VALUES ("2006-06-19",15);
INSERT INTO PATIENT VALUES ("2006-06-22", 16);
INSERT INTO PATIENT VALUES ("2006-06-23",17);

INSERT INTO OUTPATIENT VALUES (10);
INSERT INTO OUTPATIENT VALUES (11);

INSERT INTO RESIDENT_PATIENT VALUES ("2006-07-04", 300, 13);
INSERT INTO RESIDENT_PATIENT VALUES ("2006-06-14", Null, 14);
INSERT INTO RESIDENT_PATIENT VALUES ("2006-06-19", Null, 15);

INSERT INTO RESIDENT_PATIENT VALUES ("2006-06-23", 400,17);

INSERT INTO TREATMENT VALUES (1, "Flu");
INSERT INTO TREATMENT VALUES (2, "Headache");
INSERT INTO TREATMENT VALUES (3, "Bronchit");

INSERT INTO TREAT VALUES ("2006-07-02", "10:00", "Not fine", 10,1,3,500);

INSERT INTO TREAT VALUES ("2006-07-03", "09:30", "Fine", 11,2,1,700);
INSERT INTO TREAT VALUES ("2006-07-05", "11 :00", "Fine", 10, 1,3,550);
INSERT INTO TREAT VALUES ("2006-07-05", "11:30", "Fine", 12, 1,2,1200);
INSERT INTO TREAT VALUES ("2006-07-06", "14:00", "Fine", 13,2,1,800);

INSERT INTO TREAT VALUES ("2006-06-22", "14:00", "Pending", 14, 1,3,450);
INSERT INTO TREAT VALUES ("2006-06-22", "13:30", "Not fine", 15, 2, 2, 1150);
INSERT INTO TREAT VALUES ("2006-06-23", "13:00", "Not fine", 16, 2,1,700);

INSERT INTO TREAT VALUES ("2006-06-25", "11 :00", "Not fine", 17, 2, 3, 500);
INSERT INTO TREAT VALUES ("2006-06-23", "13:30", "Not fine", 15, 2, 1,720);

INSERT INTO TREAT VALUES ("2006-06-23", "08:40", "Good", 14, 2,2,1220);
INSERT INTO TREAT VALUES ("2006-06-24", "13:30", "Good", 15, 1,2,1180);

INSERT INTO BED VALUES (1, 3, "cc2");
INSERT INTO BED VALUES (2, 3, "cc2");

INSERT INTO BED VALUES (3,3, "cc1");

INSERT INTO BED VALUES (4, 2, "cc2");

INSERT INTO REFER VALUES (3,10);

INSERT INTO REFER VALUES (3, 11);
INSERT INTO REFER VALUES (2, 13);

INSERT INTO REFER VALUES (2, 14);

INSERT INTO REFER VALUES (2,15);

149

https://etd.uwc.ac.za/

INSERT INTO REFER VALUES (3, 16);
INSERT INTO REFER VALUES (2,17);

INSERT INTO ITEM VALUES (101, 'Emergency', 350);

INSERT INTO ITEM VALUES (102, 'Tube', 300);

INSERT INTO ITEM VALUES (103, 'Pense', 250);
INSERT INTO ITEM VALUES (104, 'Surgical', 150);

INSERT INTO LABORATORY VALUES ('Lab1', 2);

INSERT INTO LABORATORY VALUES ('Lab2', 2);
INSERT INTO LABORATORY VALUES ('Lab3', 1);
INSERT INTO LABORATORY VALUES ('Lab4', 3);

INSERT INTO TECHNICIAN VALUES ('Lab', 5);
INSERT INTO TECHNICIAN VALUES ('Lab', 7);
INSERT INTO TECHNICIAN VALUES ('First Aid', 8);
INSERT INTO TECHNICIAN VALUES ('Operation Aid', 6);

INSERT INTO CONSUME VALUES (2, "2006-07-14", 20,102,10);

INSERT INTO CONSUME VALUES (1, "2006-06-12",15,102,12);
INSERT INTO CONSUME VALUES (3, "2006-07-21", 30,104,14);

INSERT INTO VACCINE_CENTER VALUES ('Vaccine Center1', 2);
INSERT INTO VACCINE_CENTER VALUES ('Vaccine Center2', 2);
INSERT INTO VACCINE_CENTER VALUES ('Vaccine Center3', 1);
INSERT INTO VACCINE_CENTER VALUES ('Vaccine Center4', 1);

INSERT INTO VISIT VALUES ('2006-07-12', NULL, 10,2);
INSERT INTO VISIT VALUES ('2006-07-13', 'Better', 10,2);
INSERT INTO VISIT VALUES ('2006-07-14', 'Good health', 10, 18);

INSERT INTO VISIT VALUES ('2006-07-12', 'Not good', 11, 1);

150

https://etd.uwc.ac.za/

AppendixB

B-1. Sample MySQL Queries

The following sample queries / commands are requested from our students. The

students asked to run them on the 'HOSPITAL' database. These queries are just

taken as sample and they are a sub part of all the queries.

Recreate the 'HOSPITAL' database

The 'HOSPITAL' database already exists in the system.

Remove the 'dbOne' database from the system.

The 'dbOne' database mayor may not exist in the system.

List person ID, name, phone and city.

List physician Name and Date of Birth whose specialty is surgery.

Field names should change to one in the question.

List name, phone and address for all the patients who do not have phone
numbers. List name, phone and address for all the patients.

List resident patient names, date of admission and phone numbers for the
patients who did not pay admission fees.

List person IDs and city names whose names are started with 'R'.

List the Care Center Names and number of beds each care center have.

List the Care Center Names and number of beds each care center have.

Use 'IN' to list the names of persons who are located in Kabul city.

Use 'BETWEEN' to list the IDs of patients whose treat charges are
between 480 and 820.

151

What is the average fee in resident patients table?

List the largest charges taken by each physician and the physician's pager
number.

https://etd.uwc.ac.za/

List the largest charges taken by each physician and the physician's pager
number, but only where the largest charge is not more than 1160.

List the name of the employees and their salary in order of their salary.
Within each salary, have the names in alphabetical order.

For the following two Queries - subqueries have to be used. Correlated queries are
not needed.

S List the ID and treatment charges of the patient who paid the largest
charges for treatment.

List the data from the treat table for treatments attributed to physicians
living in Kabul.

Create a new table like the person table that has only people who live in
Kabul. Name the new table 'PERSON KBL'.

You have to use one single MySQL command to do this.

Convert 12 from decimal to binary. Use the CONVO function.

Convert 111011011 from binary to octal system. Use the CONVO
function.

Convert AAA from hexadecimal to binary system. Use the CONVO
function.

Convert C12A from hexadecimal to decimal system. Use the CONVO
function.

Find the square root of 16. Use the SQRTO function.

Find the square root of -16. Use the SQRTO function.

152

https://etd.uwc.ac.za/

Appendix C

C-l. MySQL Versions

The following table describes MySQL features in different series.

MySQL Series Features
MySQL3.x - Replication

- Full-text search in MyISAM tables
- Transactions with InnoDB tables
- Referential integrity for InnoDB tables

MySQL4.0 - Delete and update across several tables
- ACID transactions
- Cascading UPDATE andDELETE in foreign key values
- Row level locking of userdata
- Speed enhancement
- Unions
- Full-text search
- Truncate table
- Identity as a synonym for auto-increment keys
- Support for new character set 'latinI_de'
- Multiple table DELETE and UPDATE
- SQL_CALC_FOUND_ROWS and FOUND_ROWSO

functions
- InnoDB database engine support

MySQL 4.1 - Sub-queries
- Unicode support (UTF8 and UCS2 =UTFI6)
- GIS support (GEOMETRY data type, R-tree index)
- Binary trees (B-Trees) for heap tables
- Prepared Statements (SQL commands with parameters)
- Derived tables
- Create table tblTwo LIKE tblOne
- INSERT ... ON DUPLICATE KEY UPDATE ...

153

https://etd.uwc.ac.za/

- Show warnings
- Unicode
- Through the MyISAM storage engine, the OpenGIS spatial

data types for storing geographical data
- File sort behavior
- Large table support
- A number of storage engines were added:

- EXAMPLE
- NDBCLUSTER
-ARCHIVE
-CSV
- BLACKHOLE

- The GROUP CONCA TO aggregate function
MySQL5.0 - BIT data type

- VARCHAR data type with more than 255 characters
- Data dictionary to access system tables
- Instance manager - users can stop or start MySQL services

from operating system
- Index merge
- Stored procedures
- Views
- Optimizer tuning
- Server side cursors
- XA Transactions
- Triggers
- FEDERATED storage engine

MySQL 5.1 - Event scheduler
- Partitioning,
- Pluggable storage engine API
- Plug in API
- Row based applications
- Server log tables

Table C-l MySQL versions and features for different series

154

https://etd.uwc.ac.za/

AppendixD

D-l Raw Data

The following tables show the number of error occurrences for different cases. This

operation is based on the results of our work in Chapter 5. Only the common errors

are checked and the rare ones are ignored. The first three tables have 6 columns each.

Column 1 shows the error id, which is already explained in Chapter 5, column 2 is the

error name. Column 3 shows the total number of scripts checked for errors based on

the scripts that students had written in Kabul University. The last 3 columns show

the type of each occurred error within the total checked samples. The last table

shows the totals for each section and the grand total for the errors occurring in all

cases.

155

https://etd.uwc.ac.za/

Table D-l Student Errors in Data Definition Commands (SQL-DDL)

156

https://etd.uwc.ac.za/

Table D-2 Student Errors inData Manipulation Commands (SQL-DML)

157

https://etd.uwc.ac.za/

Table D-3 Student Errors in Transaction Control Commands (SQL-TCL)

Grand Total - All Checked Errors
18

216Total - Data Manipulation Errors - DML 3220 168 79

195Total - Transaction Control Errors - 1330 21
6510 291 169 525

Table D-4 Student Error Totals in aU commands

158

https://etd.uwc.ac.za/

References

[1] ISO/IEC 9075-10:2000, Information Technology-Database Languages-SQL-

PartlO: Object Language Bindings(SQLlOLB).

[2] M. A. Bain. How to create stored procedures and functions in MySQL

database. [Online] Available at http://database-

rogramming.suitel01.com/artic1e.cfmlmysgl stored procedures and functio

ns, (Accessed June 2010).

[3] C. Barker. Static error checking ofC applications ported from UNIX to

WIN32 systems using LCLint. Bachelor's thesis, University of Virginia,

USA,2001.

[4] M. Barnett, K. Rustan, M. Leino and W. R. Bush. The Spec# programming

system: An overview. Microsoft Research, Redmond, WA, USA, 2004.

[5] S. Bhagat, L. Bhagat, J. Kavalan, and M. Sasikumar. Acharya: An intelligent

tutoring environment for learning SQL. 2002.

[6] R. S. Boyer, B. Elspas and K. N. Levitt. SELECT-A formal system for

testing and debugging programs by symbolic execution. InProceedings of

International Conference on Reliable Software. ACM, 1975.

[7] P. Brusilovsky, S. Sosnovsky, D. H. Lee, M. V. Yudelson, V. Zadorozny, and

X. Zhou. An open integrated exploratorium for database courses. In

159

https://etd.uwc.ac.za/

Proceedings of the 13th annual Conference on Innovation and technology in

computer science education. Madrid, Spain, 2008.

[8] J. R. Burch, E. M. Clarke and K. L. McMillan. Symbolic model checking:

1020 states and beyond. 1992.

[9] W. R. Bush, J. D. Pincus and D. J. Sielaff. A static analyzer for finding

dynamic programming errors. ACM, 2000.

[10] B. Chen, D. Engler and S. Hallem. How to write system-specific, static

checkers in Metal. In Proceedings of the 2002 ACM SIGPLAN-SIGSOFT

workshop for software tools and engineering. South Carolina, USA, 2002.

[11] M. G. Chinwala. Algebraic languages for XML databases. Georgia, 2001.

[12] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints.

ACM,1977.

[13] Darklizener. MySQL user defined functions. [Online] Available at

http://www.codeproject.comIKB/databaselMySOL UDFs.aspx, (Accessed:

April 2010).

[14] C. J. Date. An introduction to database systems. International Edition, 2004.

[15] S. W. Dietrich, E. Eckert, and K. Piscator. WinRDBI: A Windows-based

relational database educational tool. In Proceedings of the 28'hACM SIGCSE

Technical Symposium on Computer Science Education. California, USA,

1997.

160

https://etd.uwc.ac.za/

http://www.codeproject.comIKB/databaselMySOL

[16] D. Engler, D. Y. Chen, S. Hallem, A. Chou and B. Chelf. Bugs as deviant

behavior: A general approach to inferring errors in systems code. ACM, 2001.

[17] D. Evans, J. V. Guttag, J. J. Homing and Y. M. Tan. LCLint: A tool for

using specifications to check code. 1994.

[20] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for

ESC/Java. InProceedings of the International Symposium of Formal Methods

Europe on Formal Methods for Increasing Software Productivity. London,

United Kingdom, 2001.

[18] D. Evans. LCLint User's Guide. Department of Computer Science,

University of Virginia, 2000.

[19] C. Flanagan and J. B. Saxe. Avoiding exponential explosion: generating

compact verification conditions. InProceedings of the 2ffh ACM SIGCSE

Technical Symposium on the Principals of Programming Languages.

California, USA, 1997.

[21] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe and R.

Stata. Extended Static Checking for Java. ACM, 2002.

[22] 1.Gilfillan. 2009. MySQL Stored Functions. [Online] Available at

http://www.databasejoumal.com/features/mysgllarticle.php/3569846/MySQL-

Stored-Functions.htm (Accessed May 2010)

161

[23] D. Jackson. Aspect: detecting bugs with abstract dependencies. 1995.

[24] J. L. Jensen, M. E. Jorgensen, N. Klarlund and M.1.Schwartzbach.

Automatic verification of pointer programs using monadic second-order logic.

https://etd.uwc.ac.za/

InProceedings oftheACM SIGPLAN 1997 Conference on Programming

language design and implementation. Las Vegas, Nevada, USA, 1997.

[25] R. Keams, S. Shead, and A. Fekete. A teaching system for SQL. In

Proceedings of the 2nd Australasian conference on Computer science

education. The University of Melbourne, Australia, 1997.

[26] C. Kenny and C. Pahl. Automated tutoring for a database skills training

environment. InProceedings of the 36th SIGCSE technical symposium on

Computer science education. St. Luis, Missouri, USA, 2005.

[27] D. M. Kroenke. Database Concepts. Prentice Hall Professional Technical

Reference, 2002.

[28] F. Kunst. Lint, a C Program Checker. Vrije Universiteit, Amsterdam, 1988.

[29] B. M. Leavenworth and 1. E. Sammet. An overview of nonprocedural

languages. Before 1985.

[30] H. Lu, H. C. Chan and K. K. Wei. A survey on usage ofSQL. New York,

USA, 1993.

[31] R. A. McClure and I.H. Cruger. SQL DOM: Compile time checking of

dynamic SQL statements. InProceedings of the 27th international conference

on Software engineering. St. Louis, MO, USA, 2005.

162

[32] M. J. Minock. Knowledge representation using schema tuple queries. 2003.

[33] A. Mitrovic. Learning SQL with a Computerized Tutor. InProceedings of

the twenty-ninth SIGCSE technical symposium on Computer science

education. Atlanta, Georgia, USA,1998.

https://etd.uwc.ac.za/

[34] A. Mitrovic. A knowledge-based teaching system for SQL. AACE, 1998.

[35] J. C. Prior and R. Lister. The Backwash Effect on SQL Skills Grading. In

Proceedings of the 9th annual SIGCSE conference on Innovation and

technology in computer science education. Leeds, United Kingdom, 2004.

[36] R. Ragu. Database Management Systems. 1997.

[37] A. Ranganathan, and Z. Liu. Information retrieval from relational databases

using semantic queries. In Proceedings of the 15th ACM international

conference on Information and knowledge management. Arlington, Virginia,

USA,2006.

[38] G. Reese, R. Jay, Yarger, and T. King. Managing & Using MySQL. 2nd

Edition. O'Reilly, 2002.

[39] P. Rob and C. Coronel. DATABASE SYSTEMS: Design, Implementation, and

Management. International Thomson Publishing, 1997.

[40] K. Rustan, M. Leino and G. Nelson. TOOL DEMONSTRATION An

extended static checker for modula-3. Springer Berlin / Heidelberg, 1998.

[41] S. Sadiq, M. Orlowska, W. Sadiq, and J. Lin. SQLator- An online sql

learning workbench. In Proceedings of the 9th annual SIGCSE conference on

Innovation and technology in computer science education. Leeds, United

Kingdom, 2004.

[42] S. Sanders and T. Danciu. 2005. Creating a DBA dashboard for MySQL.

[Online] Available at http://dev.mysgl.com/tech-resources/articles/dba-

dashboard.html (Accessed May 2010)

163

https://etd.uwc.ac.za/

[44] M. Seltzer. Beyond relational databases. ACM, 2005.

[43] R. Schumacher and A. Lentz. 2005. Dispelling the Myths. [Online] Available

at http://dev.mysgl.com/tech-resources/articles/ dispelling- the-myths.html,

(Accessed: June 2010)

[45] A. Silberschatz, H. F. Korth, and S. Sudarshan. DATABASE SYSTEM

CONCEPTS. 4th Edition. McGraw-Hill Higher Education, 2001.

[46] M. Stonebraker and U. Cetinental. One size fits all: An idea whose time has

come and gone. InProceedings of the 21st International Conference on Data

Engineering. IEEE Computer Society, 2005.

[47] R. K. Stephens and R. R. Plew. SAMS Teach YourselfSQL. 3rd Edition.

Sams, 1999.

[48] Tool Command Language. Tool command official website. [Online]

Available at: http://www.tcl.tk/. (Accessed: December 2009).

[49] C. Turker and M. Gertz. Semantic integrity support in SQL: 1999 and

commercial (object-)relational database management systems. Springer-

Verlag New York Inc, 2001.

[50] A. Weiss. The MySQL Model. [Online] Available at

http://www.wdvl.com/Authoring/LanguageslPerllPerlforthe Web/mysgl mode

l.html, (Accessed: March 2010)

[51] D. N. Xu. Extended Static Checking for Haskell. InProceedings of the 2006

ACM SIGPLAN workshop on Haskell. Portland, Oregon, USA, 2006.

164

https://etd.uwc.ac.za/

http://dev.mysgl.com/tech-resources/articles/
http://www.tcl.tk/.
http://www.wdvl.com/Authoring/LanguageslPerllPerlforthe

[52] K.Usman. 2004. Introducing MySQL: A powerful RDBMS. [Online]

Available at http://www.webmasterstop.com/34.html. (Accessed: June 2010)

165

https://etd.uwc.ac.za/

http://www.webmasterstop.com/34.html.

	Title page
	Contents
	List of Figures
	List of Tables
	Glossary
	Keywords
	Abstract
	Declaration
	Acknowledgments
	Chapter one: Introduction
	1.1 Background
	1.2 Problem Statement
	Chapter two: Database Systems
	2.2 The DBMS (In General)
	Chapter three: MySQL

	3.1 Query Languages

	Chapter four: SQL Errors and Error Checkers
	4.1 SQL Errors
	Chapter five: Common MySQL Errors
	5.1 Errors-Case Sensitivity
	Chapter six: Research Methodology
	Chapter seven: Results
	Chapter eight: Conclusion and Future Work
	Appendices
	Bibliography

