
 
 

 

 

Multispectral remote sensing of the impacts of drought and 

climate variability on water resources in semi-arid regions of the 

Western Cape, South Africa 

by 

TD Bhaga 

 

Supervisor:                     Prof T Dube 

Co-supervisor:                Dr M Shekede 

 

A thesis submitted in fulfilment of the requirements for the degree of Magister Scientiae 

Faculty of Science 

Department of Earth Science  

Environmental and Water Science 

University of the Western Cape 

November 2021 

http://etd.uwc.ac.za/ 
 



ii 
 

ABSTRACT 

The occurrence of droughts is a threat to global water resources and natural ecosystems, with 

the impact being more profound in semi-arid environments. The frequency of droughts is likely 

to increase because of climate change, and this poses a huge threat to the available water 

resources, to livelihoods and to ecosystems. Routine drought monitoring is fundamental for 

developing an early warning system and an area-specific drought mitigation and adaptation 

framework. Surface waterbodies, especially those in arid and semi-arid environments, are 

vulnerable to the impacts of drought. The development of moderate-resolution sensors, such as 

the Landsat 8 Operational Land Imager (OLI) and the Sentinel-2 Multispectral Instrument 

(MSI), allow new opportunities to monitor droughts and their impact on surface waterbodies. 

This work, therefore, assesses the extent to which remote sensing datasets can be used to 

monitor the impacts of drought on the surface water resources in the Western Cape, South 

Africa, over a period of five years (2016-2020). To achieve this, two multispectral datasets, 

namely Landsat-8 OLI and Sentinel-2, were tested to assess their ability to monitor the impacts 

of drought on the water resources. Specifically, multispectral indices, namely the Normalised 

Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), the Normalised 

Difference Water Index (NDWI), the Modified Normalised Difference Water Index (MNDWI) 

and the Land Surface Water Index (LSWI+5), as well as drought indices (e.g. namely the 

Standardised Precipitation Index (SPI) and the Water Requirement Satisfaction Index (WRSI)), 

were evaluated to determine the most suitable method for detecting surface waterbodies and 

for monitoring droughts. These indices were correlated with the available evapotranspiration 

(ET) products and in-situ climate data to provide a holistic approach for monitoring a drought 

and its impacts on the surface waterbodies. Furthermore, the study sought to assess the impacts 

of the ET rates in selected sub-catchments in the study area, by using ET products and in-situ 

data. Comparatively, Sentinel-2 MSI outperformed Landsat-8 OLI in the mapping of surface 

waterbodies, with an Overall Accuracy (OA) of 77% and 71%, respectively. This observation 

was further confirmed by the Analysis of Variance (ANOVA), which showed significant 

differences (α = 0.04) between the performance of the two sensors. In addition, the study 

demonstrated that the surface size of waterbodies was extremely small during the drought 

period, and that high ET rates and low precipitation rates were recorded during the same period, 

which highlighted the drought conditions. However, during the 2018 wet season, the rate of 

precipitation increased and the ET rates decreased; this trend continued in 2019 and 2020, 

resulting in an increase in the surface water resources. It can thus be concluded that new-
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generation multispectral sensors provide new opportunities for drought detection and surface 

water monitoring, which was previously a challenge, due to the limited spectral, spatial and 

temporal resolutions.  

Keywords: Climate change; drought; evapotranspiration; multispectral indices; satellite data; 

surface waterbodies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/ 
 



iv 
 

PREFACE 

This research study was conducted in the Department of Earth Sciences, in the Faculty of Natural 

Sciences, at the University of the Western Cape in South Africa, from February 2020 to October 

2021, under the supervision of Professor Timothy Dube. 

 

Full name: Trisha Deevia Bhaga          Signature:            Date:  24/11/2021 

 

As the candidate’s Supervisor, I certify the aforementioned statement and have approved this thesis 

for submission. 

 

Full name: Prof. Timothy Dube                           Signature: ……………..         Date:  ……………….. 

 

Full name: Dr Munyaradzi Davis Shekede       Signature: ……………..       Date:  ……………….. 

 

 

 

 

 

 

 

 

 

 

 

 

 

24/11/2021

24/11/2021

http://etd.uwc.ac.za/ 
 



v 
 

 

DECLARATION 

 

I declare that this thesis, entitled “Multispectral remote sensing of the impacts of drought 

and climate variability on water resources in semi-arid regions of the Western Cape, 

South Africa” is my own work, that it has not been submitted before, for any degree or 

examination, at any other university, and that all the sources that I have used, or quoted, have 

been indicated and acknowledged by means of complete references. 

 

Full name: Trisha Deevia Bhaga 

 

Signed:                     Date:  24/11/2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/ 
 



vi 
 

 

PUBLICATIONS AND MANUSCRIPTS 

The following manuscripts have been submitted and published in international peer-reviewed 

journals and presented in a local conference. The co-authors played a role in reviewing and 

improving the manuscript, with my contribution being the largest: 

 

1. Bhaga, T.D., Dube, T., Shekede, M.D. and Shoko, C. (2020). Impacts of Climate 

Variability and Drought on Surface Water Resources in sub-Saharan Africa, using 

Remote Sensing: A Review. Remote Sensing, 12(4184) 

doi:https://doi.org/10.3390/rs12244184. 

2. Bhaga, T.D., Dube, T. and Shoko, C. (2020). Satellite monitoring of surface water 

variability in the drought-prone Western Cape, South Africa. Physics and Chemistry of 

the Earth. In press. doi:https://doi.org/10.1016/j.pce.2020.102914. 

3. Bhaga, T.D., Dube, T. and Shekede, M.D. 2021. Assessing the utility of Landsat-8 OLI 

and Sentinel-2 MSI satellite data to monitor the impacts of drought on surface water 

resources in the Western Cape Province, South Africa. GIScience & Remote Sensing. 

[Under review] 

The research was presented at the following online conference:  

1. The Geo-Information Society of South Africa WC AGM on the 6th of October 2021, South 

Africa 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/ 
 



vii 
 

ACKNOWLEDGEMENTS 

My thanks, first and foremost, goes to God and my Guru, for giving me the opportunity, ability 

and strength to undertake this research study. 

Secondly, I would like to thank the National Research Foundation (NRF) for funding my 

project and for affording me the opportunity to undertake it. 

Thirdly, I would like to express my deepest gratitude to my esteemed supervisors, Prof Timothy 

Dube and Dr Munyaradzi Shekede. Thank you for believing in me and for your endless 

guidance, patience, assistance and countless reviews and advice on how to improve this study. 

This dissertation would not have been possible without your help. Prof, thank you for grooming 

me to become a critical thinker, for always pushing me to do my best and for exposing me to 

opportunities. Thank you for always availing yourself for consultations and for your support. I 

would not be here without your guidance.  

Fourthly, I would like to extend my gratitude to my friends and family for their help, support 

and motivation throughout my entire journey. I would be ungrateful if I did not thank the 

Departmental Staff who have helped me and taught me so much over the years. Thank you to 

my colleagues and friends - Tanushri Govender, Jazquelyn Govender, Danielle Cloete, 

Shaylene Faro, Candice Williams and Kgomosto Neville Mashigo, for your all your help, for 

your continued support and for the journey that we have shared since our second year.  

Finally, I would like to thank my biggest source of my strength, motivation and support, 

namely, my mother, father and sisters. I am blessed to have such a supportive family. I would 

not be where I am today without your continuous love and support. Thank you for always 

keeping me driven and for motivating me to follow my dream. I will be forever indebted to you 

for giving me the opportunities and experiences that have made me who I am. You have stood 

by me through the highs and lows, and for that, I will always be grateful.  

 

 

 

 

 

 

http://etd.uwc.ac.za/ 
 



viii 
 

DEDICATION 
 

 

 

This dissertation is dedicated to my: 

 

Mother, Mrs S. Bhaga, 

Father, Mr A. Bhaga, 

Sisters, Meenal and Rekha Bhaga,  

as well as the 

Bhaga, Dana and Govender families.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/ 
 



ix 
 

Table of Contents 

ABSTRACT ............................................................................................................................... ii 

PREFACE ................................................................................................................................. iv 

DECLARATION ....................................................................................................................... v 

PUBLICATIONS AND MANUSCRIPTS ............................................................................... vi 

ACKNOWLEDGEMENTS ..................................................................................................... vii 

DEDICATION ....................................................................................................................... viii 

LIST OF FIGURES ................................................................................................................. xii 

LIST OF TABLES ................................................................................................................. xiii 

ABBREVIATIONS ................................................................................................................ xiv 

CHAPTER 1 .............................................................................................................................. 1 

INRODUCTION ........................................................................................................................ 1 

1.1 Introduction ....................................................................................................................... 1 

1.2 Aims and Objectives ........................................................................................................ 3 

1.3 Research Questions .......................................................................................................... 4 

1.4 Conceptual Framework .................................................................................................... 4 

1.5 Description of Study Area ............................................................................................... 5 

1.6 Thesis Outline ................................................................................................................... 6 

    1.7     References ................................................................................................................... 7 

CHAPTER 2 ............................................................................................................................ 11 

IMPACTS OF CLIMATE VARIABILITY AND DROUGHT ON SURFACE WATER 

RESOURCES IN SUB-SAHARAN AFRICA, USING REMOTE SENSING: A REVIEW . 11 

Abstract 11 

2.1 Introduction ..................................................................................................................... 13 

2.2 The Importance of Monitoring the Impact of Climate Variability and Droughts on 

the Water Resources in Sub-Saharan Africa .............................................................................. 14 

2.3  Materials and Methods ................................................................................................. 15 

http://etd.uwc.ac.za/ 
 



x 
 

Literature Search ............................................................................................................................ 15 

2.4 Definitions, the Occurrence and Impacts of Droughts and Climate Variability .... 17 

2.5 Advancements in Remote Sensing Systems and their Role in the Monitoring of 

Droughts, Climate Variability and Surface Water Resource in Sub-Saharan Africa ............ 29 

2.6 Remote Sensing Products for the Monitoring of Droughts and Climate Variability

 39 

2.7 Current Remote Sensing-based Approaches for Monitoring Drought and Surface 

Water Resources ............................................................................................................................. 42 

2.7.1 Traditional drought and surface waterbody monitoring techniques ........................ 43 

2.7.2 Remote sensing techniques for drought monitoring .................................................. 44 

2.8 Challenges of Remote Sensing in the Monitoring of Droughts, Climate Variability 

and Surface Water Resources and Possible Future Research Directions................................ 57 

2.9 Future Research Directions and Recommendations .................................................. 57 

2.10 Conclusions ..................................................................................................................... 59 

2.11     References .......................................................................................................................... 59 

CHAPTER 3 ............................................................................................................................ 73 

ASSESSING THE EXTENT TO WHICH LANDSAT-8 OLI AND SENTINEL-2 MSI 

SATELLITE DATA CAN BE USED TO MONITOR THE IMPACTS OF DROUGHT ON 

WATER RESOURCES IN THE WESTERN CAPE PROVINCE OF SOUTH AFRICA ..... 73 

Abstract 73 

3.1 Introduction ..................................................................................................................... 74 

3.2 Methods and Materials .................................................................................................. 77 

3.3 Climate data acquisition ................................................................................................ 81 

3.4 Accuracy Assessments ................................................................................................... 83 

3.5 Results .............................................................................................................................. 84 

3.5.1 Seasonal and spatial distribution of surface waterbodies .......................................... 84 

3.5.2 Detection of drought occurrence ................................................................................ 900 

http://etd.uwc.ac.za/ 
 



xi 
 

3.6 Accuracy Assessment of the Satellite-derived Waterbodies and Drought                      

Detection and Mapping Indices .................................................................................................... 93 

3.7 Discussion ....................................................................................................................... 96 

3.8 Conclusion ..................................................................................................................... 100 

3.9     References ............................................................................................................... 101 

CHAPTER 4 .......................................................................................................................... 108 

A SYNTHESIS:  MULTISPECTRAL REMOTE SENSING OF THE IMPACTS OF 

DROUGHT AND CLIMATE VARIABILITY ON WATER RESOURCES ....................... 108 

4.1 Introduction ................................................................................................................... 108 

4.2 Summary of Findings ................................................................................................... 109 

4.3 Conclusion ..................................................................................................................... 110 

4.4 Recommendations ........................................................................................................ 111 

4.5 References ..................................................................................................................... 111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/ 
 



xii 
 

LIST OF FIGURES 

Figure 1. 1: Conceptual framework of the study. ……………………………………………...5 

Figure 1. 2: Locational map of the study area. …………………………………..……...…..….6 

Figure 2. 1: The number of journal article publications on drought monitoring, using remote 

sensing, on surface water monitoring, using remote sensing, and the impacts of droughts and/or 

climate variability.………………………………………………………………….………...16 

Figure 2. 2: Global drought map, calculated by using the Global Precipitation Climatology 

Centre (GPCC) Drought Index, indicates the risk of drought occurrence globally, with the red 

zones showing high risk areas and the blue zones indicating low risk areas (Source: National 

Integrated Drought Information System (NIDIS)…………………………………………….20 

Figure 3. 1: Map of the study area. .......................................................................................... 78 

Figure 3. 2: Workflow summary of Surface waterbody mapping and accuracy assessment... 84 

Figure 3. 3: Performance of the four indices applied to different pre-processed images obtained 

by Landsat-8 (i) and Sentinel 2 (ii). a) 2016 dry season, b) 2016 wet season, c) 2017 dry season, 

d) 2017 wet season, e) 2018 dry season, f) 2018 wet season, g) 2019 dry season, h) 2019 wet 

season, i) 2020 dry season and j) 2020 wet season………………………………………..…..87 

Figure 3. 4: Performance of the VCI applied to different pre-processed images obtained by 

Landsat-8 (a) and Sentinel-2 (b) for years 2016 to 2020 for the dry season (i) and wet season 

(ii). ............................................................................................................................................ 89 

Figure 3. 5: Monthly rainfall with evapotranspiration rates for the Western Cape, South Africa

.................................................................................................................................................. 91 

Figure 3. 6: Monthly temperatures recorded in the Western Cape. ......................................... 91 

Figure 3. 7: Standardised Precipitation Index values for the study area for years 2016 to 2020.

.................................................................................................................................................. 92 

Figure 3. 8: Water Requirement Satisfaction Index values for the study area for years 2016 to 

2020.......................................................................................................................................... 92 

Figure 3. 9: Overall model classification performance for the dry season (a) and wet season (b) 

based on the Landsat-8 (i) and Sentinel-2 (ii) derived indices. ............................................... 94 

Figure 3. 10: RMSE (m2) of the VCI applied to pre-processed Landsat-8 and Sentinel-2 data.

.................................................................................................................................................. 95 

Figure 3. 11: RMSE (m2) of SPI for years 2016 to 2020. ........................................................ 95 

Figure 3. 12: RMSE (m2) of WRSI for years 2016 to 2020. ................................................... 95 

 

http://etd.uwc.ac.za/ 
 

file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007098
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007099
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007100
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007100
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007100
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007100
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007102
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007102
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007102
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007103
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007103
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007104
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007105
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007105
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007106
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007106
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007107
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007107
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007108
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007108
file:///C:/Users/Trisha/Downloads/MSc%20Trisha%20Bhaga.docx%23_Toc80007109
https://d.docs.live.net/d7b056070409fe5c/Documents/Masters%20Thesis%20Draft%20Trisha%20Bhaga.docx#_Toc80007110


xiii 
 

LIST OF TABLES 

Table 2.1: Occurrence and impacts of major recorded droughts in Africa from the 1900s. No 

data available for Equatorial Guinea, Gabon, and Sierra Leone. ……………………..………21 

Table 2.2: Summary of remote sensors discussed. …………………………….………...…...35 

Table 2.3: Drought indices used and their performance in previous studies. ………….……...48 

Table 2.4: Surface waterbody indices used and their performance in previous studies. ...…….52 

Table 3.1: Spectral and spatial characteristics of Landsat-8 OLI and Sentinel-2 MSI used for 

this study. …………………………………………………………….………………………79 

Table 3.2: Selected indices used to detect and map drought occurrence and surface waterbodies 

from Landsat-8and Sentinel-2 datasets. …………………………………….………………..81 

Table 3.3: SPI categories for drought classification. …………………………………………82 

Table 3.4: WRSI drought severity classes. …………………………………………………...83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/ 
 



xiv 
 

 

ABBREVIATIONS 

ANOVA         Analysis of Variance                          

AVHRR     Advanced Very High Resolution Radiometer 

AWEInsh        Automated Water Extraction Index for non-shadowed regions 

AWEIsh     Automated Water Extraction Index for shadowed regions 

DEM   Digital Elevation Model 

ET   Evapotranspiration 

ETM      Enhanced Thematic Mapper 

EVI       Enhanced Vegetation Index 

LSWI+5                                     Modified Land Surface Water Index  

MNDWI Modified Normalised Difference Water Index 

MODIS      Moderate Resolution Imaging Spectrometer 

MSI   Multi-spectral Imager 

NDVI   Normalised Difference Vegetation Index 

NDWI   Normalised Difference Water Index 

NIR Near Infrared 

OA    Overall Accuracy 

OLI Operational Land Imager 

PA   Producers' Accuracy 

RMSE Root Mean Square Error 

SAR    Synthetic Aperture Radar 

SPI Standardised Precipitation Index 

SPOT Satellite Pour l’Observation de la Terre 

SWIR     Shortwave Infrared 

TOA Top of Atmosphere 

UA User’s Accuracy 

USGS     United States Geological Survey 

VCI   Vegetation Condition Index 

WRSI   Water Requirement Satisfaction Index 

http://etd.uwc.ac.za/ 
 



1 
 

CHAPTER 1                                                                                               

INRODUCTION 

1.1 Introduction 

Droughts are a creeping natural hazard that affect agriculture, water resources, environmental 

flows and livelihoods (Sheffield et al., 2012). Climate change and global warming have 

increased the frequency and severity of droughts by increasing the evapotranspiration (ET) rate 

and the land surface temperatures, which both have a negative influence on precipitation 

(Varghese et al., 2021). Africa’s climate is highly variable, with an inter-annual rainfall 

variability in southern Africa of >40% in the drier western areas (Mason & Tyson, 2000). 

Therefore, droughts have a severe impact on rainfall-dependent sectors across the continent 

(Gommes & Petrassi, 1996; Masih et al., 2014). These impacts are further worsened by the 

high rate of poverty and the dependence on rain-fed agriculture, which affect people, animals, 

the environment and the economy (Masih et al., 2014). 

A review of literature shows that droughts are a recurring phenomenon on the African 

continent. For example, Burkina Faso, where more than 80% of the population is dependent on 

subsistence farming, experienced severe drought episodes from 2015 to 2019, which led to 

water shortages, malnutrition and food insecurity (Bhaga et al., 2020). In 2019, 2.3 million 

people in Zimbabwe required food aid, due to food shortages caused by the drought (WFP, 

2019). During 2019, the drought conditions in Zambia led to food shortages and a disruption 

in hydropower generation (Mwenda, 2019). The Western Cape Province in South Africa 

experienced below-average rainfall over the period from 2015-2017, which led to the worst 

drought and water shortages since 1904 (Friederike et al., 2018). The lack of rainfall is a key 

driver of the droughts that are experienced in the Western Cape.  

The Western Cape water supply systems depend mostly on rainfall and are thus vulnerable to 

climate variability and change. The water supply reservoirs that rely on runoff from the source 

catchments, which, in turn, rely on wet season precipitation, were heavily impacted during the 

drought experienced from the end of 2015 through to mid-2018. This led to a water shortage 

and the inability to meet the demand for water by approximately 3.7 million people in Cape 

Town and the agricultural sector in the Western Cape. The low runoff rates led to a hydrological 

drought and affected the reservoir storage, due to higher-than-normal temperatures, a lower 
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relative humidity and a higher evapotranspiration rate (Botai et al., 2017). Consequently, there 

was a 31.7% decrease in the harvest, from 1 098 200 tons to 749 800 tons, from 2016 to 2017 

(The Western Cape Government: Department of Agriculture, 2017), as the waterbodies could 

not meet the water demand in the province. The agricultural sector also suffered severe losses, 

with R525 million and at least 50 000 jobs being lost in wine production (Evans, 2017). The 

deciduous fruit crop decreased by 20% and less than 50% of onions were planted in Ceres, 

which resulted in a loss of approximately R40 million in wages of agricultural workers. 

Therefore, droughts affect the local and national South African economy and lead to increased 

unemployment and production losses, an increase in food prices, as well as many other socio-

economic impacts (Botai et al., 2017).  

Droughts are traditionally monitored by using paleoclimatology and climatological data 

(d'Andrimont & Defourny, 2018). Paleoclimatolgy uses the past climatic conditions to 

understand the past climates by using historical data records of ice sheets, tree rings, sediments, 

rocks, diatoms and corals, to predict the future climatic conditions (Bhaga et al., 2020). 

Climatological data, such as rainfall, river flow, soil moisture and ET rates, are recorded and 

used as a means of validating drought conditions, by comparing the historic values and the 

climatic conditions experienced at the time that they were recorded. However, the use of 

paleoclimatology is time-consuming; thus the use of remotely sensed data is a promising 

method for the detection and monitoring of droughts in a time-efficient manner.  

The physically-based techniques that are used to monitor surface water resources include the 

manual measurement of water levels, by using floats, sensors, buoy systems and pressure type 

equipment, as well as ultrasonic and radar techniques (Chapuis, 1998; Janke et al., 2006). 

However, these methods are costly, time-consuming and prone to human error; in addition, the 

equipment is prone to theft and damage and it may be problematic to install in remote or 

mountainous areas (Li et al., 2013). The use of remotely sensed data has recently been on the 

rise, as it provides a viable alternative for the monitoring of water resources, in terms of 

quantity and quality (Li et al., 2013). For example, the literature shows that remote sensing is 

more advantageous than the traditional methods for surface water monitoring, because of its 

ability to make high-frequency and repeatable observations at a low cost (Li et al., 2013). With 

the development of freely available, medium-resolution satellites, such as the Landsat series 

and Sentinel-2, the potential for monitoring droughts and surface water resources is high, due 

to the higher spatial, spectral and temporal resolution. The use of remotely sensed data, 

specifically spectral water indices derived from multispectral sensors, is a promising approach, 
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because it has multi-band features, it has a wide coverage, it offers repeatable observations and 

it can be applied at various spatial scales, in both data-rich and data-poor areas (Masocha et al., 

2018; Palmer et al., 2015). This means that droughts can be predicted in time to set up coping 

measures, to prevent water restrictions and to prevent an increase in water tariffs. The use of 

satellite data is cost-effective, and the results that are produced will be easier for decision-

makers to interpret. 

The monitoring of surface water availability is important for water resources management 

because it can help to predict droughts, flooding and water availability conditions (Jacobs et 

al., 2016). Since the drought in the Western Cape from 2015 to 2019, the monitoring of surface 

water levels has become vital for determining how much water is available for use. Using 

remotely sensed images for the monitoring of water quantity is common; however, it remains 

rudimentary, and this has affected water resource allocation and planning. The hydrological 

drought that struck the Western Cape had an impact on the water resources, on agricultural 

activities, on the economy and on daily lives; therefore, a study that investigates the impacts of 

drought on water resources will help to predict droughts and their effect on the province. 

A study that investigates water availability in response to climatological data, such as rainfall 

and evapotranspiration, will help to predict drought conditions in a timely, reliable and cost-

effective manner, which is vital for drought mitigation and adaptation strategies, as well as for 

water resource allocation. A study that combines remotely sensed data with climatological data 

will allow results that are far more accurate and will serve as a means of correlating the different 

data sets, which will assist researchers and decision-makers in monitoring the availability of 

surface water and drought detection. This is crucial, as droughts are becoming more frequent 

(Liu et al., 2020). 

1.2 Aims and Objectives 

1.2.1 Aim 

The aim of this study is to assess the extent to which remote sensing datasets can be used to 

monitor the impacts of drought on water resources in the Western Cape, South Africa. 

1.2.2 Objectives 

The specific objectives of this study are: 

a) To develop a model for the retrieval and tracking of changes and the impacts of drought 

and climate variability on surface waterbodies from the multispectral archival data; and 
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b) To assess the impacts of drought and climate variability or evapotranspiration rates in 

selected sub-catchments, using the available ET products and in-situ data. 

1.3 Research Questions 

The following research questions will be addressed: 

a) How accurate are remote sensing datasets for monitoring and detecting surface water 

resources in the semi-arid regions of the Western Cape, South Africa? and 

b) To what degree can the spatial and temporal changes of sub-catchments be described? 

1.4 Conceptual Framework 

This study uses Geographic Information Systems (GIS) and remote sensing techniques to 

detect and map the occurrence of a drought and its impact on the surface waterbodies in the 

Western Cape, South Africa. Figure 1.1 shows the conceptual framework for the detection and 

mapping of droughts and surface waterbodies. The outputs of this study are likely to be 

informative for drought management in the semi-arid regions of the Western Cape, South 

Africa.  
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Figure 1.1 Conceptual framework of the study 

1.5 Description of Study Area 

The Western Cape Province of South Africa has a Mediterranean climate, which is 

characterized by hot, dry summers (November to March) and cold, wet winters (May to 

August), due to the orographic effects created by the presence of mountains (Midgley et al., 

2003; Mkunyana et al., 2018). The temperatures range from 23°C in the summer to 13°C in 

the winter (Mkunyana et al., 2018), and it receives an annual rainfall of approximately 500 

mm/year (Midgley et al., 2003). The main land cover types in the area are predominantly 

croplands, grasslands, fruit trees, winelands, built-up areas and roads. The surface waterbodies 

situated in the Cape Metro, Cape Winelands, Overberg and Garden Route regions were 

considered for this study (Figure 1.2). These waterbodies are important for sustaining the 

domestic and commercial water services, including agriculture, electricity generation and 

hydrological ecosystems. This region was hit by a severe drought from 2016 to 2018, which 

led to water restrictions that reached Level 6b on 1st February 2018 (Muller, 2018). This means 
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that water consumption was limited to 50 litres, or less, per person per day, and the use of 

boreholes was discouraged, in order to preserve the groundwater resources (City of Cape Town, 

2018). This emphasises the importance of monitoring the availability and variability of surface 

water in this region.  

 

Figure 1.2 Locational map of the study area 

1.6 Thesis Outline 

This thesis consists of four chapters that are aimed at understanding the use of remote sensing 

in the detection of droughts and the monitoring of water resources. This study contains one 

paper that has been published in an international peer-reviewed journal, while the other paper 

is under review. Each chapter consists of stand-alone Introduction, Materials and Methods, 

Results and Discussion sections. Although attempts were made to conform to a general style 

in this dissertation, there may be overlapping and repetition in some of the sections.  

Chapter One introduces the general background of the study and highlights the importance of 

drought monitoring, which is followed by the research problem, the research questions, as well 

as the aim and objectives 
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Chapter Two reviews the application and challenges in the detection and monitoring of the 

impacts of climate variability and drought on surface water resources in sub-Saharan Africa, 

using remote sensing. 

Chapter Three assesses the accuracy of detecting and monitoring the impacts of climate 

variability and droughts on surface water resources, using Landsat 8 OLI and Sentinel 2 MSI 

data. This chapter also focuses on ET data, which is correlated to the seasonal and annual 

variations in the surface waterbodies. This chapter presents the data collection and data analysis 

methods, followed by the results and a discussion of the major findings.  

Chapter Four presents a detailed synthesis of the main findings of the study. It also answers the 

research questions and provides recommendations for future studies, based on the limitations 

that are pointed out. 
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CHAPTER 2 

IMPACTS OF CLIMATE VARIABILITY AND DROUGHT ON 

SURFACE WATER RESOURCES IN SUB-SAHARAN AFRICA, USING 

REMOTE SENSING: A REVIEW 

Abstract 

Climate variability and recurrent droughts have caused a remarkable strain on the water 

resources in most regions across the globe, with the arid and semi-arid areas being the hardest 

hit. The impacts have been most notable on the surface water resources, which are already 

under threat from massive abstractions, due to the increased demand, poor conservation and 

unsustainable land management practices. Drought and climate variability, as well as their 

associated impacts on the water resources, have gained increased attention in recent decades, 

as nations seek to enhance mitigation and adaptation mechanisms. Although the use of satellite 

technologies has, of late, gained prominence in generating timely and spatially explicit 

information on the impacts of drought and climate variability across different regions, they are 

somewhat hampered by the difficulty of detecting the evolution of droughts, due to their 

complex nature, their varying scales, the magnitude of their occurrence and the inherent data 

gaps. Several recent studies have been conducted to monitor and assess the impacts of climate 

variability and droughts on the water resources in sub-Saharan Africa, using different remotely 

sensed and in-situ datasets. This study provides a detailed overview of the progress that has 

been made in tracking droughts by using remote sensing, including its relevance in the 

monitoring of climate variability and the impact of hydrological droughts on the surface water 

resources in sub-Saharan Africa. This study also discusses the traditional and remote sensing 

methods for monitoring climate variability, hydrological droughts and water resources, and it 

tracks their application and key challenges, with a particular emphasis on sub-Saharan Africa. 

In addition, the characteristics and limitations of various remote sensors and their importance 

in the monitoring of climate variability and drought are discusses. The application of drought 

and surface water indices, namely the Standardized Precipitation Index (SPI), the Palmer 

Drought Severity Index (PDSI), the Normalized Difference Vegetation (NDVI), the Vegetation 

Condition Index (VCI), the Water Requirement Satisfaction Index (WRSI), the Normalized 

Difference Water Index (NDWI), the Modified Normalized Difference Water Index 

(MNDWI), the Land Surface Water Index (LSWI+5), the Modified Normalized Difference 

Water Index (MNDWI+5), the Automated Water Extraction Index (shadow) (AWEIsh) and the 
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Automated Water Extraction Index (non-shadow) (AWEInsh) are also discussed. The key 

scientific research strides are also highlighted, as well as the knowledge gaps that require 

further investigation. While progress has been made in advancing the application of remote 

sensing with regard to water resources, this review indicates the need for further studies to be 

conducted, in order to assess the impacts of drought and climate variability on the water 

resources, especially in the context of climate change and the increased water demand. The 

results of this study suggest that Landsat-8 and Sentinel-2 satellite data are likely to be the best-

suited for monitoring climate variability, hydrological drought and surface waterbodies, due to 

their availability at a relatively low cost, as well as their impressive spectral, spatial and 

temporal characteristics. The most effective drought and water indices are SPI, PDSI, NDVI, 

VCI, NDWI, MNDWI, MNDWI+5, AWEIsh and AWEInsh. Overall, the findings of this study 

emphasize the increasing role and potential of remote sensing in generating spatially explicit 

information regarding the impact of droughts and climate variability on surface water 

resources. However, future studies should also consider spatial data integration techniques, 

radar data, precipitation, cloud computing and machine learning or Artificial Intelligence (AI) 

techniques, in order to improve the understanding of the impacts of climate and drought on 

water resources across various scales. 

Keywords: aridity; climate change; drought assessment; satellite-derived metrics; satellite data; 

sub-Saharan Africa; water quantity 

This chapter is based on the following manuscript: 

Bhaga, T.D., Dube, T., Shekede, M.D. and Shoko, C. 2020. Impacts of Climate Variability 

and Drought on Surface Water Resources in sub-Saharan Africa, using Remote Sensing: A 

Review. Remote Sensing, 12(4184):  https://doi.org/10.3390/rs12244184 
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2.1 Introduction 

Droughts are complex and naturally-occurring hazards that result from climate variability and 

climate change and that leads to a change in the water balance, due to drastic decrease in 

precipitation over an extended period (Du et al., 2013; Keshavarz et al., 2014; Huang et al., 

2017). Droughts occur in all climatic zones, irrespective of the normal precipitation rates and 

trends of a region (Slette et al., 2019), and their onset and cessation are difficult to detect, 

which renders them highly unpredictable, unlike other natural disasters (Park et al., 2017). 

Characterizing the impact of droughts is difficult, because they differ spatially and temporally 

(Wilhite et al., 2007). Atmospheric climatic events, such as the El Nino Southern Oscillation 

(ENSO), may cause an increase in the frequency and intensity of droughts (Verner et al., 2018). 

The lack of precipitation, the high evapotranspiration rate and the over-exploitation of water 

resources can lead to droughts (Bhuiyan, 2004). The impacts of droughts are diverse and can 

be either direct or indirect. For example, they result in crop and biodiversity losses, the loss of 

livestock/wildlife, disruptions in hydropower generation, food losses, malnutrition, famines 

and even death. In 2011, poor rains in Mauritania led to drought conditions that caused poor 

harvests, the loss of livestock and an increase in food prices (World Health Organization, 

2013). In 2015, a drought impacted farming in Mali, which led to starvation and 300 000 people 

suffering from food insecurity (Giannini et al., 2017). In Cote d’Ivoire, a drought in 2018 led 

to 70% of the dams that supply the cities running dry (The New Humanitarian, 2019). In 2018, 

approximately 3.7 million people in South Africa were affected by a drought, which was 

caused by below-average precipitation rates (Otto et al., 2018). At the end of 2019, more than 

2.6 million in Madagascar were affected by a drought, which resulted in severe food shortages 

and led to a famine (Haile et al., 2019). In Lesotho, approximately 500 000 people were 

threatened with hunger in 2020, and it is estimated that more than 30% of the population will 

experience acute food insecurity due to the ongoing drought conditions (Moyo, 2020). 

Therefore, in order to reduce and mitigate these impacts, there is a need for droughts and 

climate variability to be monitored more effectively. Surface water resources are the major 

source of freshwater for the agricultural, drinking, sanitation and energy requirements of many 

countries in sub-Saharan Africa (Sheffield et al., 2018). However, previous studies by Wilhite 

et al. (2007), Sheffield et al. (2018), Huang et al. (2018) and Zhou et al. (2017) have 

demonstrated that surface waterbodies are vulnerable to climate change and that surface water 

resources need to be monitored more accurately, for the following reasons: (i) to determine 

their condition, (ii) to assess the influence of drought conditions and climate variability on the 
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availability of water, and (iii) to ensure their sustainable utilization. This paper therefore seeks 

to provide a detailed overview of the progress of remote sensing applications in monitoring the 

impact of climate variability and droughts on surface water resources in sub-Saharan Africa. 

It first highlights the importance of monitoring the impact of climate variability and drought 

on the water resources in the region, which is followed by the details of how the relevant 

literature was searched and consulted, before highlighting the key advances in scientific 

research, as well as the knowledge gaps that require further investigation. 

2.2 The Importance of Monitoring the Impact of Climate Variability and Droughts 

on the Water Resources in Sub-Saharan Africa 

During the first two decades of the 21st century, 79 big global cities, including some cities in 

sub-Saharan Africa, experienced severe drought conditions (Zhang et al., 2019). It is projected 

that the occurrence of drought events is likely to increase and become more intense in the 

future, due to climate change and climate variability, and that this will pose an additional strain 

on the water supply (Sheffield et al., 2012; West et al., 2019). Droughts affect both the quantity 

and quality of water. In terms of water quality, a reduced flow results in a decrease in organic 

matter, nutrients and sediment pathways in the surface water streams (Sorensen, 2017). The 

reduced flows can, in turn, affect the stability of the wetlands and their ability to provide a 

habitat for wildlife and aquatic species. Droughts can also cause an intrusion of saline water 

into the groundwater system, a decrease in the groundwater level, as well as water supply 

problems, which result in limited water being available to support and sustain the various 

social, environmental and economic services. In this regard, reducing the environmental and 

socio-economic impacts of droughts and climate variability, as well as to work towards 

creating drought resilient societies remains a global priority (Hagenlocher et al., 2019). 

Monitoring climate variability and droughts is essential for the planning and management of 

water resources for various social, environmental and economic services, including public 

supply and sanitation, ecosystems, hydro-electricity, mining and agriculture (Huang et al., 

2018). Understanding the different dimensions of droughts, such as historical droughts in the 

region, their impacts and their occurrence, is also a crucial step towards developing effective 

models to predict and investigate the different types of drought (Panu & Sharma, 2002). The 

prediction of drought occurrence permits drought preparedness (Abiodun et al., 2019) and 

necessitates the development of drought-specific contingency plans, such as water restrictions 

and the use of alternative water sources (Botai et al., 2017). 
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Waterbodies are vulnerable to climate change, and therefore, they need accurate, timely and 

routine monitoring (Du et al., 2014). This will help to determine the onset of drought 

conditions, in order to come up with mitigation and adaptation strategies and to avoid the loss 

of lives and crops, as well as famines (Masocha et al., 2018). On the other hand, monitoring 

the size and dynamics of waterbodies are also vital for water resource management, to 

determine how much water is available for maintaining the ecological state of the surrounding 

ecosystems (Sorensen, 2017). In addition, monitoring the number of water resources can be 

used to predict droughts, which is useful in arid and semi-arid areas, particularly in sub-

Saharan Africa. 

Thus far, much scientific research work has been conducted on the monitoring of droughts and 

the associated impacts of climate variability (AghaKouchak et al., 2015; Mishra & Singh 

2010); however, the advancements in remote sensing applications and data processing 

techniques, particularly in sub-Saharan Africa, remain poorly documented. In the past, 

droughts have been monitored by using paleoclimatology, satellite data, physically-based 

techniques, e.g. floats, sensors, buoy systems, pressure type equipment, as well as ultrasonic 

and radar techniques and the inferences from climate variability modelling studies. Therefore, 

to achieve the objective of this work, this chapter will describe the methods used in reviewing 

and synthesizing the relevant literature before identifying the key research advancements, as 

well as the knowledge gaps that warrant further investigation. 

2.3  Materials and Methods 

Literature Search 

In order to gather and determine the most relevant literature for this particular study, different 

search strategies were adopted. The literature search consisted of English peer-reviewed 

articles and relevant reports on droughts in sub-Saharan Africa that were published between 

1900 and 2020. The relevant articles were identified by using targeted searches in Google 

Scholar, Scopus and the Web of Science. The criteria for the selection included the following: 

(i) the use of remote sensing in the monitoring of droughts, climate variability and surface 

water; (ii) the geographical location and year of occurrence; and (iii) the publication of this 

information in a scientific journal. This review omitted research that did not use geospatial 

technologies. Each article was assessed according to the accuracy of the results and the year of 

publication. The articles were then grouped into three main categories, namely: (i) drought 

monitoring, using remote sensing, (ii) surface water monitoring, using remote sensing, and (iii) 
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the impacts of drought/or climate variability (Figure 2.1). In the drought monitoring category, 

it was interesting to observe that the use of remote sensing constituted more than half of the 

review material and consisted mostly of remote sensing data. Much of this work focused on 

drought risk assessments and drought severity mapping, using various indices. The third and 

final category, namely the impact of droughts, consisted of articles analysing the effects of 

droughts on various sectors in different countries in sub-Saharan Africa. 

Various online reports and articles were also consulted, in order to tabulate the occurrence of 

droughts in the region from 1900 to 2020 (Table 2.1). 

 

Figure 2.1 The number of journal article publications on drought monitoring, using 

remote sensing, on surface water monitoring, using remote sensing, and the 

impacts of droughts and/or climate variability 

Overall, the literature showed that the use of remote sensing for the monitoring of droughts 

and surface waterbodies has increased significantly in recent years. However, remote sensing 

applications have not diversified, as there are still many gaps in the research, which suggests 

that its applicability has not been fully tested or exploited for monitoring purposes. 

Furthermore, not enough studies have been conducted by using remote sensing for the 

monitoring of droughts and surface waterbodies, with only approximately 18 000 articles on 

the use of remote sensing in drought monitoring being published from 2010 to 2019 (Figure 
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2.1). This observation implies that remote sensing has to be harnessed, to advance its scientific 

contribution to, and application in, various areas. These areas include, but are not limited to, 

drought monitoring, surface waterbody monitoring and climate variability, especially in 

Africa. 

2.4 Definitions, the Occurrence and Impacts of Droughts and Climate Variability 

To date, several definitions of a drought have been proposed, depending on the perspective 

from which it is being assessed (Wilhite et al., 2007). For instance, the Food and Agriculture 

Organization (1983) defines a drought as “the percentage of years with a poor crop yield, due 

to the lack of soil moisture”, whereas the World Meteorological Organization (1986) describes 

it as “a sustained, extended deficiency in precipitation”. On the other hand, the UN Secretariat 

(1994) defines it as “a naturally-occurring phenomenon that exists when precipitation is 

significantly below the normal recorded levels, causing serious hydrological imbalances that 

adversely affect land resource production systems”. Thus, it is important to note that the 

definitions of drought vary significantly across different fields, depending on the variables, 

such as the concepts, the observational parameters and the measurement procedures used to 

describe this phenomenon, which lead to different categorizations (Bhuiyan, 2004). Droughts 

are usually classified into four different categories (Wilhite et al., 2007; Mishra & Singh, 2010; 

Guo et al., 2020), namely, meteorological, hydrological, agricultural and socio-economic 

droughts (Michaelides et al., 2009). Recently, a groundwater drought was proposed as the fifth 

category by Mishra & Singh (2010). However, few studies have been conducted on 

groundwater droughts. 

A meteorological drought occurs when there is a lack of precipitation over an extended period 

of time (Park et al., 2017; Botai et al., 2017; Park et al., 2016). Prolonged meteorological 

droughts lead to a decrease in the soil moisture content, which can result in agricultural 

droughts (Park et al., 2017). When the streamflow, groundwater or the total water storage is 

below the long-term mean, a hydrological drought occurs (Jiao et al., 2019), resulting in low 

stream flows and reservoir levels (Park et al., 2017). This means that a given water source 

cannot supply the amount of water that is required for its intended use, which leads to a limited 

water supply (Huang et al., 2017). In contrast, an agricultural drought occurs when there is a 

deficit in the soil moisture (Du et al., 2013). A lack of water in the soil and subsoil that is 

caused by insufficient precipitation affects the crop growth, thereby causing a decrease in crop 

yields (Du et al., 2013; Botai et al., 2017; Jiao et al., 2019). Soil moisture is dependent upon 
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several factors, such as the actual evapotranspiration and the potential evapotranspiration, as 

well as the physical and biological properties of soil and the biological characteristics of 

specific plants (Urban et al., 2018). A socio-economic drought occurs when the drought 

process affects production, because the water resources cannot meet the demand for water, 

which leads to a shortage of certain economic goods (Du et al., 2013). In this regard, the 

demand for economic goods is greater than the supply, due to a shortage in the water supply 

(Mishra & Singh, 2010). Thus, a socio-economic drought is driven by the previous three 

drought categories (Park et al., 2017). For a groundwater drought, the lack of precipitation and 

the high evapotranspiration rate result in low soil moisture, which leads to a low groundwater 

recharge (Eltahir & Yeh, 1999; Yeh et al., 2006). A low groundwater recharge, in turn, causes 

low groundwater levels, thereby reducing the groundwater discharge (Mishra & Singh, 2010). 

As the total amount of available groundwater is difficult to determine, this drought category is 

usually defined by a decrease in the groundwater level, groundwater storage and groundwater 

recharge or discharge (Marsh et al., 1994). 

Drought-related impacts are complex, as they have an effect on various water-dependent 

sectors, such as recreation and tourism, energy and transportation, as well as the environment 

(Wilhite et al., 2007). The impacts of drought are classified as direct or indirect. For example, 

a reduction in crops, land degradation, deforestation, an increase in the fire hazard, reduced 

energy production, a decline in the water levels, increased mortality rates of fauna, and damage 

to wildlife and aquatic ecosystems, are all examples of the direct impacts (Wilhite et al., 2007; 

Haile et al., 2019). A decrease in the water level can lead to water shortages, and therefore, the 

water supply will be disturbed. Many countries experience drought-induced crop failures and 

water shortages during drought periods (Park et al., 2016). The indirect impacts are the 

consequences of the abovementioned direct impacts. Decreases in the crop, rangeland and 

forest productivity can lead to farmers and agricultural businesses running at a loss, thereby 

causing a decrease in food and timber, unemployment and an increase in the crime rate (Wilhite 

et al., 2007). Indirect losses often exceed the direct losses, since these can cascade to other 

critical socio-economic sectors. 

Moreover, droughts and climate variability have severe consequences on the environment, on 

the economy and on human wellbeing (Frischen et al., 2020), and the impacts are linked 

through couplings in the land-atmosphere processes (Park et al., 2016). Groundwater resources 

become stressed when the region experiences an extended period with a decreased rate in 

precipitation and high temperatures, which, in turn, affect the groundwater recharge (Bhuiyan, 
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2004). For example, droughts across the globe, particularly in sub-Saharan Africa (Haile et al., 

2019), affect the surface water and groundwater resources, which lead to a lack of water supply, 

a reduction in the water quality, crop failure and a change in the riparian habitats (Slette et al., 

2019). When droughts occur in developed countries that have adequate coping mechanisms, 

the economic losses can be alleviated by means of contingency funds or insurance schemes. 

However, in poor countries, like those in Africa and South America, droughts can lead to food 

shortages and famines (Frischen et al., 2020). 

The frequency of droughts in East Africa (EA) has doubled since 2005, from once every six 

years to once every three years (Haile et al., 2019); and between 2008 and 2010, droughts 

affected over 13 million people in EA (Muller, 2014). Djibouti, Eritrea, Ethiopia and Somalia, 

also known as the Horn of Africa (HOA), experienced a severe drought from 2010–2011, 

which caused food insecurity, famine and malnutrition, and this affected approximately 20 

million people and led to a significant loss of life (Qu et al., 2019). The droughts in Somalia, 

Kenya and Ethiopia led to socio-economic instability, with Somalia alone recording 250 000 

deaths during the same period (Haile et al., 2019; Qu et al., 2019) (Table 2.1). 

Droughts have been recurring in sub-Saharan Africa over the past 30 years (Muller, 2014). 

During the 1991/1992 drought, agricultural production in Zimbabwe was reduced by 45% and 

the Gross Domestic Product (GDP) decreased by 11% (Du et al., 2013; Maphosa, 1994), which 

led to severe food insecurity and famine, due to its dependence on rain-fed agriculture 

(Frischen et al., 2020). The Western Cape of South Africa experienced a severe drought from 

2015–2018 (Du et al., 2013; Zhou et al., 2017; Sousa et al., 2018) and dam levels dropped to 

approximately 20%, which affected ±3.7 million people (Abiodun et al., 2019). Water 

restrictions reached Level 6b, which means that the consumption of water was limited to 50 L, 

or less, per person per day, and the use of boreholes was discouraged, to preserve groundwater 

resources, while the use of non-potable water was encouraged to water fields and gardens (City 

of Cape Town, 2018; Muller, 2018). A detailed summary of the occurrence and impacts of the 

major recorded droughts in sub-Saharan Africa is provided in Table 2.1. Overall, West Africa 

has experienced the highest number of droughts, followed by East Africa, whereas Central 

Africa has experienced the least number of droughts. As for the individual countries, Tanzania 

in East Africa recorded the highest number of droughts. Figure 2.2 also indicates the global 

risk of drought occurrence, based on the Global Precipitation Climatology Centre (GPCC) 

Drought Index. It can be observed that the majority of countries in sub-Saharan Africa are 
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high-risk areas for the occurrence of droughts. This further emphasizes the need for the 

continuous monitoring of droughts in the region. 

 

Figure 2.2 Global drought map, calculated by using the Global Precipitation Climatology 

Centre (GPCC) Drought Index, indicates the risk of drought occurrence 

globally, with the red zones showing high risk areas and the blue zones 

indicating low risk areas (Source: National Integrated Drought Information 

System (NIDIS) 

Moreover, the occurrence of droughts affects several Sustainable Development Goals (SDGs) 

envisaged in the United Nations 2030 agenda (Zhang et al., 2019), namely, Goal 1: “No 

poverty”, Goal 2: “Zero hunger”, Goal 6: “Clean water and Sanitation”, Goal 11: “Sustainable 

cities and communities”, Goal 12: “Responsible production and consumption”, Goal 13: 

Climate action” and Goal 15: “Life on land” (Nilsson et al., 2016; Zhang et al., 2019). 
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Table 2.1 Occurrence and impacts of major recorded droughts in Africa from the 1900s. No data available for Equatorial Guinea, Gabon 

and Sierra Leone 

Region/Country Drought Years Number of 

Events 

Droughts Effects 

North Africa  32  

Algeria 

1910–1920; 1945–1947; 

1973–1980; 1981–1983; 

1999–2002 

5 

90% loss of livestock in 1945; decrease in groundwater levels, 

shallow wells, dry springs, wildfires, crop loss and production 

loss, causing a famine in 1966. 

Egypt 

1972–1973; 1978–1987; 

1990–2002; 2010–2011 4 

Unemployment rates increased, as 55% of the population were 

employed by the agricultural sector and riparian vegetation was 

severely affected. 

Libya 1945; 1950s; 1960s 3 
The 1945 drought led to the loss of cattle. The details are not 

available, due to political issues and poor record-keeping 

Morocco 

1917–1920; 1930–1935; 

1945–1950; 1981–1984; 

1991–1995; 1999–2003; 

2015–2016; 2018 

8 

Disruptions in the water supply, agricultural sector and cereal 

production. In 1999, approximately 275 000 people were affected, 

and the economic damage was $900 million. 

Sudan 

1967–1973; 1980–1984; 

1985–1993; 2008–2009; 

2011–2012; 2017–2019 

6 

Approximately 7 million people suffered from severe food 

insecurity in 2019, and approximately 21 000 people are 

experiencing famine conditions. In 2016, Sudan experienced 

agricultural losses of over 2 million dinars ($900 million). 

Tunisia 

1961–1969; 1987–1988; 

1993–1995; 1999–2002; 

2000–2008; 2015–2016 

6 

Disruption in water supply, increase in salinity in water retention 

and decreased production of grains and forages. 

Central Africa  22  

http://etd.uwc.ac.za/ 
 



Table 2.1. Cont. 

22 
 

Angola 
1981–1985; 2004–2006; 

2012–2013; 2019 
4 

Approximately 1.8 million people and 2.3 million people were 

affected by the drought in 2012 and 2019, respectively, leading to 

food insecurity and malnourishment. 

Cameroon 
1971; 1990; 2001; 2005; 

2011–2015 
5 

Cereal production fell by 30 000 tons in 2011, when compared to 

2010, leading to inflation. In 2015, 2.7 million people suffered 

from food insecurity. 

Central African 

Republic 1963; 1983 2 

75% of Central African people rely on agriculture for their 

livelihoods, while 1.9 million people experienced severe 

food insecurity. 

Chad 

1966–1967; 1969; 1993–1997; 

2001–2005; 2012–2013; 

2017–2018 

6 

Droughts and food insecurity affected approximately 3.4 million 

people, leading to high unemployment rates, as most people were 

employed in the agricultural sector and are dependent upon 

subsistence farming. 

Democratic 

Republic (DR) 

of Congo 

1978; 1983; 2017–2020 3 

The 2017 drought period affected hydro-electric power 

generation and left 13.1 million people severely food 

insecure. 

 

Region/Country Drought Years Number of 

Events 

Droughts Effects 

Sao Tome and 

Principe 
1947; 1983 2 

Droughts led to food insecurity and severe famine and affected 

about 93 000 people. 

West Africa  83  

Benin 
1977; 1984; 1992; 2010–2013; 

2017–2019 
5 

In 2017, approximately 80% of the population that was dependent 

on the agricultural sector was unemployed. 
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Burkina Faso 
1968–1974; 1976; 1995; 1998; 

2001; 2011; 2015–2019 
7 

The drought in 2016 led to water shortages and affected 2 million 

people, as over 80% of the population relied on subsistence 

farming, which led to malnutrition and food insecurity. 

Republic of 

Cabo Verde 

1941–1943; 1947–1948; 1969; 

1977; 1998; 2002; 2015–2019 
7 

The drought in the 1940s killed approximately 45 000 people 

due to starvation, and Santiago lost 65% of its population. In 

2017, most farmers lost most of their production, which caused 

severe food insecurity in 2018. 

Cote d’Ivoire 

1970–1974; 1976–1993; 

2000–2005; 2006–2010; 

2015–2019 

5 

The drought in 2005 caused disruptions in the agricultural sector, 

reducing the harvests, per capita incomes and water supply. In 

2018, the dams that supply 70% of cities ran dry. 

Gambia 1968–1974; 2012; 2016–2019 3 

The 2012 drought led to 70% of crop failure, triggering food 

insecurity and high unemployment rates, as 78% of the population 

is employed by the agricultural sector. 

Ghana 

1980–1984; 1997–1998; 

2006–2007; 2010–2012 4 

Approximately 35% of total food production was destroyed in the 

1980s, leading to food shortages, and in 2006 there was a 

disruption of hydropower. 

Guinea 
1980; 1998; 2015–2016; 

2018–2019 
4 

Droughts led to the disruption of income, interruptions in the 

agricultural sector, and disturbed river regimes, and 2.5 million 

people were affected in 2016 and suffered severe food 

shortages. 

Guinea Bissau 

1910; 1940; 1969; 1980; 2002; 

2004–2006 6 

In 2002, a drought affected 100 000 people, and 32 000 people in 

2004 suffered from food security through disruptions in the 

production of agriculture and livestock. 

Liberia 

1972–1973; 1983–1984; 

1991–1992; 2019 4 

In 2019, 360 000 children under the age of five suffered from 

acute malnutrition due to extreme food shortages, which led to 

famine and death. 
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Mali 
1982–1984; 2001; 2005–2006; 

2010–2011; 2017–2019 
5 

The droughts impacted farming, leading to starvation. In 2015, 

300 000 people suffered from food insecurity. Mali experienced 

severe food shortages, which led to famine in 2019. 

 

Region/Country Drought Years Number of 

Events 

Droughts Effects 

Mauritania 

1910–1916; 1940s; 1968–

1974; 1976–1978; 1993–1997; 

2010–2012; 2017–2019 

7 

In 2011, a drought led to poor harvests, the loss of livestock and 

an increase in food prices, and in 2012 approximately 700 000 

people in southern regions were affected by food shortages, while 

in 2017 and 2018, 379 000 and 350 000 people, respectively, were 

food insecure. 

Niger 

1966; 1980; 1988–1990; 1997; 

2001; 2005–2007; 2009; 2010–

2012 

8 

Recurrent droughts led to food crises, the loss of livestock and 

desertification; in 2010, 8 million people needed food, due to the 

failure of crops. 

Nigeria 
1911–1914; 1951–1954; 1972–

1973; 1984–1985; 2007; 2011 
6 

Crop and livestock production are a source of income for many 

people in Nigeria. In 2010, 65% of the population worked in the 

agricultural sector, and the drought caused an increase in the 

unemployment rate. 

Senegal 

1979; 1980; 2002; 2011; 2014; 

2017–2018 6 

In 2018, a drought left 245 000 people food insecure and 23 000 

children suffering from severe acute malnutrition, due to crop 

failure and the loss of livestock. 

Togo 

1942–1943; 1971; 1976–1977; 

1980; 1982–1983; 1989 6 

Severe famine due to a decrease in agricultural yields, the death of 

livestock and a decrease in agricultural revenue. 71% of Togolese 

were vulnerable to food security. 

East Africa  64  
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Burundi 1999; 2003–2005; 2008–2010 3 

In 2004, a drought affected 2 million Burundians and affected the 

agricultural sector, which is the main source of livelihood for 90% 

of the population. 

Comoros 1981; 2011–2012 2 Droughts affected food security and led to food shortages. 

Djibouti 
1980–1983; 1988; 1996–1999; 

2005; 2008–2014 
5 

In 2014, approximately 250 000 people were affected by more 

than four years of consecutive droughts, and 18% of the 

population suffered from malnutrition, due to crop and livestock 

losses. 

Eritrea 
1993; 1998–1999; 2000–2004; 

2008 
4 

In 2004, 600 000 Eritreans were affected by drought, and 19% of 

the population suffered from acute malnutrition. 

Ethiopia 

1973–1979; 1984–1985; 1997–

1999; 2005; 2008–2009; 2015–

2020 

6 

Continuous droughts led to crop failure, which caused food 

insecurity and famine. In 1984, the drought led to famine, which 

killed approximately 1 million people. In 2017, 7.7 million 

Ethiopians experienced severe famine and needed emergency food 

aid. 

Kenya 

1971–1975; 1994–1996; 1999–

2000; 2004–2006; 2008–2012; 

2016–2020 

6 

Droughts have led to disruptions in hydropower generation, 

increasing unemployment rates and the loss of lives, crops and 

livestock. In 2010, 10 million people were at risk of being food 

insecure, due to failed harvests from the drought conditions. 

 

Region/Country Drought Years Number of 

Events 

Droughts Effects 

Madagascar 

1981; 1988; 2000–2002; 

2005–2007; 2010–2012; 

2015–2020 

6 

In 2016, 1.1 million Malagasy suffered from food insecurity due 

to crop failure, as agricultural production was 90–95% lower 

than usual. At the end of 2019, more than 2.6 million Malagasy 

were affected by drought. 
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Mozambique 
1991–1992; 2001–2003; 

2005–2007; 2016–2019 
4 

In 2010, 81% of Mozambicans relied on agriculture for food 

and employment, therefore increasing the unemployment rate 

and food shortages. By 2019, more than 60 000 Mozambicans 

were affected, and in some areas 60% of crops were lost. 

Rwanda 

1976; 1984; 1989; 1996; 1999; 

2003; 2016–2019 7 

More than 100 000 Rwandese were affected by drought in 2016 

due to crop failure, which led to food shortages, and by 2017, 6.7 

million Rwandese received food aid. 

Somalia 
1964; 1999; 2004; 2005; 2008; 

2010–2020 
6 

The worst recorded drought after 60 years was experienced 

between 2010 and 2011, as more than 250 000 people died, and in 

2017, 2.1 million Somalians were displaced by drought, and 6.7 

million people suffered from food shortages. 

Tanzania 
1996; 1999–2002; 2004–2006; 

2011; 2016–2019 
10 

In 2011, Tanzanians were affected by water and food shortages, 

and in 2017 the agricultural sector suffered a loss of 

approximately $200 million, causing food prices to increase by 

12%. 

Uganda 
1998–1999; 2005, 2008; 

2010–2011; 2014–2019 
5 

At least 200 000 Ugandans are affected every year due to drought 

conditions, and in 2010, the drought caused $1.2 billion of 

damage, which was equivalent to 7.5% of Uganda’s GDP. 

Southern Africa  53  

Botswana 
1981–1984; 1990; 2005; 

2012–2013; 2014–2020 
5 

In 2015, some areas experienced decreased water pressure and the 

water supply was cut-off in some areas, and in 2019, 40 000 cattle 

died and it led to a 70% drop in land cultivation. 

Lesotho 
1968; 1983; 1990; 2002; 2007; 

2011; 2015–2020 
7 

In 2019, approximately 71 000 people suffered from food 

insecurity, and in 2020 approximately 500 000 people were 

threatened with hunger; it is estimated that more than 30% of the 

population will experience acute food insecurity. 
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Malawi 

1987; 1991–1992; 2001–2002; 

2005–2007; 2012; 2016–2017 6 

In 2016, maize production decreased by 12%, leading to food 

shortages. In 2017, 6.5 million Malawians were food insecure due 

to poor agricultural seasons. 

Mauritius 1999; 2011–2013 2 
The agricultural sector lost $160 million in 1999 due to crop 

failure, and in 2011, only 15–20% of the harvest was viable. 

 

Region/Country Drought Years Number of 

Events 

Droughts Effects 

Namibia 
1981; 1990; 1995; 1998; 2001; 

2002; 2013; 2015–2020 
8 

In 2013, 463 581 people suffered from food insecurity, and in 

2019. the Agricultural Bank of Namibia’s employment 

opportunities from the agricultural sector decreased from 34% in 

2012 to 23%. 

Seychelles 1998–1999; 2010–2011 2 The 1998 drought led to the bleaching of 90% of the coral reefs. 

South Africa 
1964; 1986; 1988; 1990; 1995; 

2004; 2015–2019 
7 

The worst drought experienced in 30 years occurred in 2015, and 

in 2018, approximately 3.7 million South Africans were affected 

by drought, leading to cut-offs of water supply in certain areas and 

to nation-wide water restrictions. 

Swaziland 

1981; 1984; 1990; 2001; 2007; 

2014–2020 5 

In 2016, 80 000 cattle died and maize production dropped by 67% 

between 2015 and 2016, while in 2017, 308 059 people suffered 

from food insecurity. 

Zambia 

1981; 1983; 1990–1995; 

1999–2002; 2004–2005; 2015–

2020 

6 

The drought in 1981 led to a disruption in maize production, 

which led to severe famine, and in 2019, 1.3 million people 

needed food aid, as maize production dropped from 2.4 million 

tons to 2 million tons, and there was a disruption in hydropower 

generation. 
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Zimbabwe 
1981–1983; 1986–1987; 1991–

1992; 2010–2011; 2015–2020 
5 

In 2019, 2.3 million Zimbabweans needed food aid; maize 

production dropped by more than 70%, compared to 2017/18, and 

the death of livestock affected 2.2 million people in cities and 5.5 

million people in rural villages. 
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Droughts and climate variability cannot be completely understood without understanding 

their impacts on the environment and on society (Bijeesh & Narasimhamurthy, 2020). It is 

important to monitor the trends and to profiling their impact on the surface water resources, 

as this helps to make informed decisions in order to address and mitigate the impacts (Abiy 

et al., 2019). Understanding the impacts of historical droughts can assist with future 

predictions or the development of possible adaptation and mitigation measures. 

Advancements in technology and using remotely sensed data has expanded our ability to 

monitor droughts and surface water resources. Thus, the use of remote sensing to monitor 

droughts and/or climate variability and surface water resources has been on the rise, which is 

promising for the future. 

2.5 Advancements in Remote Sensing Systems and their Role in the Monitoring of 

Droughts, Climate Variability and Surface Water Resource in Sub-Saharan 

Africa 

Before the launch of satellites, aerial photographs were taken on board low-orbiting aircraft 

to map the spatial distribution of land cover types. The first Landsat satellite was launched in 

1972, and since then, remote sensing has been used to monitor changes in the land surface 

and to provide accurate information to ecologists, geologists, hydrologists, forest managers 

and soil scientists (Menarguez, 2015). Historically, aerial photography provided high-

resolution spatial data, but with a low frequency, and the images were only updated every 

few years, with a limited spectral range. However, with the improvements in technology, 

aerial photography now provides high-resolution spatial data, with a high temporal frequency 

and a wide spectral range (Huang et al., 2018). 

Currently, various satellites are in orbit, which provide data at different resolutions; they can 

be used for the monitoring of water resources, as well as for assessing droughts and climate 

variability. The different sensors are provided in Table 2.2. For example, the Moderate 

Resolution Imaging Spectroradiometer (MODIS) has a swath width of 2 330 km, a revisit 

period of 1–2 days, and 36 spectral bands, with a spatial resolution of 250–1000 m (Table 

2.2) (Huang et al., 2018). Surface waterbodies are usually detected at 500 m by using the 

Green and Shortwave Infrared (SWIR) bands of MODIS, which have a spatial resolution of 

500 m; therefore, the detection of surface waterbodies that are smaller than 4 km2 is 

problematic (Che et al., 2015; Li et al., 2013). Since there are numerous surface waterbodies 

in Africa that are smaller than 4 km2, they are likely to be poorly detected when using these 
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data, thereby rendering MODIS unsuitable for such applications. Although the sensor has 

limitations for small waterbodies, MODIS can record the frequency and distribution of cloud 

cover, and it can measure other properties, such as the distribution and size of aerosols in the 

atmosphere, liquid water and ice clouds. MODIS also measures the photosynthetic activity 

of land and marine plants (phytoplankton), which makes this satellite suitable for monitoring 

lakes. A study conducted by Moser et al. (2014) monitored the surface waterbodies in 

Burkina Faso by using MODIS data to generate a time series from 2000 to 2012, with a 

temporal frequency of eight days. The results were validated by using Landsat imagery to 

create a water mask, and an accuracy of 75.7% was achieved. In a different study, 

d’Andrimont and Defourny (2018) used MODIS data to monitor surface waterbodies across 

the entire African continent, from 2004 to 2010, using daily observations. They used a surface 

water detection method to derive indicators that describe the location, temporal 

characteristics and inter-annual variations. The results were cross-validated with the existing 

maps and water products, and a commission error of less than 6% was associated with the 

findings. In addition, studies by Caccamo et al. (2011), Klisch and Atzberger (2016), Qu et 

al. (2019) and Henchiri et al. (2020) found that MODIS data were successfully used to 

monitor meteorological, hydrological and agricultural drought conditions in Australia, China, 

Kenya, North and West Africa and the Horn of Africa. Henchiri et al. (2020) conducted a 

study in North and West Africa to evaluate the performance of the MODIS data used to 

monitor meteorological and agricultural droughts from 2002–2018. The spatial correlation 

analysis indicated that the Drought Severity Index (DSI) was unreliable in the detection of 

meteorological droughts in North and West Africa; however, an association analysis between 

the Normalized Vegetation Supply Water Index (NVSWI) and the Normalized Difference 

Vegetation Index (NDVI), as well as the NVSWI and DSI, efficiently monitored the 

meteorological and hydrological droughts in that region. Qu et al. (2019) used MODIS data 

from the years 2000 to 2017 to monitor the meteorological and agricultural drought 

conditions in the Horn of Africa (HOA). The results of the study indicated that the croplands 

deteriorated due to the drought conditions, and there was therefore an urgent need for 

sustainable solutions to assist with the timely monitoring of droughts and to determine the 

severity of food security. Studies by Yan et al. (2010) and Berge-Nguyen and Cretaux (Berge-

Nguyen & Cretaux, 2015) used MODIS data to detect floodplain inundation from 2001 to 

2006 and from 2000 to 2013, respectively. A study by Berge-Nguyen and Cretaux (2015), 
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monitored floodplain inundation over the Inner Niger Delta, using MODIS data from 2000–

2013. They were able to describe inundations in the delta and to separate the flooded areas in 

the Inner Niger Delta into open water and the mixture of water and dry land. This study 

indicated that the MODIS data are able to detect surface waterbodies and to monitor the 

earth’s surface efficiently, due to its short repeat time and wide coverage. However, its coarse 

spatial resolution causes a low accuracy, which may make it unsuitable for monitoring 

droughts and climate variability, as well as smaller surface waterbodies. 

The Advanced Very High Resolution Radiometer on-board National Oceanic and 

Atmospheric Administration satellite (NOAA/AVHRR) has a coarse resolution, but has a 

high temporal resolution of 0.5 days and a relatively high spatial resolution of 1 100 m (Table 

2.2) (Huang et al., 2018). NOAA/AVHRR was designed to monitor the ocean and the 

atmosphere. Unganai and Kogan (1998) were able to monitor meteorological drought 

conditions in southern Africa by using NOAA/AVHRR data. However, heavy cloud 

contamination reduced the accuracy of the results. Anyamba and Tucker (2005) calculated 

the Normalized Difference Vegetation Index (NDVI) by using NOAA/AVHRR data in the 

Sahel, situated in Northern Africa, from 1981 to 2003, to improve the understanding of the 

persistence and spatial distribution of meteorological drought conditions. Rojas et al. (2011) 

used the NOAA/AVHRR-derived NDVI and the Vegetation Health Index (VHI) for Africa, 

to monitor agricultural droughts from 1981 to 2009 and to observe changes in the climate. 

The study demonstrated the use of these sensors to identify high risk areas for droughts, 

though the coarse resolution led to a low accuracy in small study areas. The NOAA/AVHRR 

data may therefore not perform optimally in monitoring drought and climate variability, due 

to their coarse resolution and susceptibility to cloud contamination. On the other hand, the 

Medium Resolution Imaging Spectrometer (MERIS) was designed to monitor ocean and land 

surfaces by using optical sensors to detect water or floods. It has a spectral resolution of 300 

m, has 15 spectral bands and a temporal resolution of three days (Table 2.2). This satellite 

only has a 10-year data record, ranging from 2002 to 2012, and is therefore not recommended 

for the long-term monitoring of surface waterbodies (Huang et al., 2018), due to its limited 

data records and its failure to provide near real-time data. MERIS data have been applied in 

water quality monitoring, especially in southern Africa. For instance, a study by Matthews et 

al. (2010) used MERIS data to monitor the water quality and cyanobacteria-dominated algal 

blooms in near-real-time in Zeekoevlei, a lake situated in Cape Town, South Africa. Chawira 
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et al. (2013) efficiently monitored the water quality in two lakes in Zimbabwe, namely 

Chivero and Manyame, from 2011 to 2012, and found that MERIS is suitable for the near-

real-time monitoring of water quality parameters, due to its ability to predict chlorophyll-a 

(R2 = 0.91). 

 

The Systeme Probatoire d’Observation dela Tarre (SPOT) has four to five spectral bands, 

with a relatively high spatial resolution ranging from 5.5 to 20 m and a temporal resolution 

of 26 days (Table 2.2) (Huang et al., 2018). However, the data is not freely available, thereby 

limiting its application in the detection of surface waterbodies and flood inundation. Haas et 

al. (2009) used SPOT data to monitor temporary waterbodies in sub-Saharan West Africa 

from January 1999 to September 2007. The data had an overall accuracy of 95.4% and 

produced satisfactory results. IKONOS, RapidEye and Quickbird are commercially 

available, high spatial resolution sensors, but due to their small scene coverage and low revisit 

time, only small surface waterbodies can be detected (Table 2.2). They are thus unable to 

detect large surface waterbodies, and their performance in urban and mountainous areas is 

weak, due to shadows, thus limiting their application in surface water monitoring on a large 

spatial scale (Huang et al., 2018). 

As previously mentioned, the first Landsat mission was launched in 1972 and has since been 

supplying medium-resolution images (Bijeesh & Narasimhamurthy, 2020). Additional 

Landsat satellite missions were launched in the late 1970s and 1980s (USGS, 2020). The 

early Landsat satellites consisted of the Multispectral Scanner (MSS) sensors, followed by 

the Thematic Mapper (TM) on Landsat 4 and Landsat 5. Landsat 7 was launched in 1999 and 

was comprised of the Enhanced Thematic Plus (ETM+) (USGS, 2020). These Landsat 

missions were often used to detect surface waterbodies and changes on the earth’s surface 

(Bijeesh & Narasimhamurthy, 2020). Landsat 8 was launched in February 2013 and consists 

of the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). Landsat 8 

has a spatial resolution of 30 m and a 15 m panchromatic band, which is a greyscale image 

that covers the red, green and blue portions of the electromagnetic spectrum (Forkour et al., 

2018). It has a temporal resolution of 16 days and a swath width of 185 km, with nine 

reflective wavelength bands, and six of these bands are designed for land application (Table 

2.2). It has a push-broom nature of scanning the earth’s surface, which means that the satellite 

scans along the track design, therefore improving the sensitivity of critical surface features 
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and reducing the problem of saturation. Although many studies have been conducted by using 

the Landsat OLI data to monitor and detect surface waterbodies, few of these have been 

conducted in Africa, and most of the studies have focused on monitoring the water quality. 

Zhou et al. (2017) and Masocha et al. (2018) successfully applied the OLI data to detect and 

monitor surface waterbodies, with a high accuracy. These results from various studies 

indicate that Landsat satellites have a relatively high spectral and spatial resolution, which is 

ideal for tracking land use and land cover change caused by climate change, droughts, 

wildfires, urbanization and other natural and human-caused changes. The use of these data 

for drought or climate variability monitoring remains rudimentary, particularly in sub-

Saharan Africa, despite its potential to revolutionize and improve our understanding of the 

region. 

The Sentinel-2 sensor, which was launched in June 2015, provides the required spatial data 

continuity for climate variability and drought monitoring, in addition to SPOT and Landsat 

missions, among others (Bijeesh & Narasimhamurthy, 2020). It consists of a Multispectral 

Instrument (MSI) and has 13 reflective wavelength bands, four 10 m visible and near-infrared 

(NIR) bands, six 20 m red edge, near infrared and shortwave infrared (SWIR) bands, and 

three 60 m bands (Bijeesh & Narasimhamurthy, 2020). Sentinel-2 has a temporal resolution 

of five days and has a swath of 290 km (Table 2.2). The data from the sensor have been used 

extensively in the monitoring of surface waterbodies (Yang et al., 2017; Zhou et al., 2017; 

Forkour et al., 2018). Forkour et al. (2018) used Sentinel-2 MSI data to map the Land Use 

and Land Cover (LULC), and to differentiate between waterbodies and non-waterbodies, in 

Burkina Faso, and it achieved an overall accuracy of 94.3%. In addition, different studies 

were conducted by Dotzler et al. (2015), Laurin et al. (2016), Urban et al. (2018) and Puletti 

et al. (2019) to monitor drought conditions, using Sentinel-2 data. For example, Dotzler et al. 

(2015) used the Sentinel-2-derived Photochemical Reflectance Index (PRI), Moisture Stress 

Index (MSI), Normalized Difference Water Index (NDWI) and Chlorophyll Index (CI) to 

analyse the response of deciduous trees to drought conditions in the Donnersberg region, in 

Germany. The results highlighted the benefits of the high spectral resolution of Sentinel-2 

data for monitoring droughts and climate variability. A study by Urban et al. (2018) used 

Sentinel-1/-2 and Landsat 8 data from March 2015 to November 2017 to investigate the 

spatiotemporal dynamics of surface moisture and vegetation structure. The study found that 

it is vital to use land cover and vegetation information for analysing the dynamics of surface 
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water and for understanding the effects of droughts on surface waterbodies, and it is therefore 

suited for monitoring droughts and climate variability, particularly in southern Africa. In 

another study, Laurin et al. (2016) used Sentinel-2 data to differentiate forest types, dominant 

tree species and the water used by plants in Ghana, by using various indices. The results were 

generated by using a Support Vector Machine and achieved an overall accuracy of 92.34%. 

These high accuracies indicate that this sensor is suitable for monitoring waterbodies, 

droughts and climate variability, due to its high spectral, spatial, and temporal resolution and 

therefore its use and application needs to be tested further in Africa; more particularly, in sub-

Saharan Africa. 
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Table 2.2 Summary of remote sensors discussed 

Sensor 

Swath 

Width 

(km) 

Temporal 

Resolution 

(Days) 

Number 

of 

Bands 

Spatial 

Resolution 

(m) 

Data 

Availability 
Uses Challenges 

Moderate 

Resolution 

Imaging 

Spectroradiometer 

(MODIS) 

2330 1–2 36 250–1000 
1999–

present 

Measures distribution and 

size of aerosols, liquid 

water and ice clouds, can 

also measure phytoplankton 

activity, floods, surface 

waterbodies and droughts. 

Coarse spatial resolution, 

therefore, cannot detect 

waterbodies smaller than 

4 km2. 

National Oceanic 

and Atmospheric 

Administration’s 

Advanced Very 

High Resolution 

Radiometer 

(NOAA/AVHRR) 

2900 0.5 5 1100 
1978–

present 

Able to monitor 

floods, surface 

waterbodies, clouds, 

sea surface 

temperature and 

vegetation greenness. 

Coarse spatial resolution 

and susceptible to cloud 

contamination. 

Medium 

Resolution 

Imaging 

Spectrometer 

(MERIS) 

1150 3 15 300 2002–2012 

Monitors ocean and land 

surfaces, water quality and 

occurrence of floods. 

Has a 10-year data record 

and therefore cannot be 

used for long-term and 

near real-time monitoring. 

Systeme 

Probatoire 

d’Observation 

dela Tarre 

(SPOT) 

60 26 4–5 20–5.5 
1986–

present 

Used to detect surface 

waterbodies and flood 

inundation. 

Data is not freely available 

and can only detect small 

waterbodies, due to small 

scene coverage. 
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IKONOS 11 1.5–3 5 1–4 
1999–

present 

Can map natural disasters, 

land cover changes and 

almost all aspects of 

environmental studies. 

Data is not freely available 

and can only detect small 

waterbodies, due to small 

scene coverage. 

RapidEye 77 1–5.5 5 5 
2008–

present 

Can be used in agriculture, 

forestry, mining and 

hydrological studies. 

Data is not freely available 

and has limited application 

for monitoring large 

waterbodies, due to small 

scene coverage. 

Quickbird 16.8/18 1–3.5 5 0.61–2.24 2001–2015 

Used for environmental 

studies to monitor changes 

in land use, agriculture and 

forests. 

Has a 14-year data record 

and data is not freely 

available. 

Table 2.2. Cont. 

Sensor 

Swath 

Width 

(km) 

Temporal 

Resolution 

(Days) 

Number 

of 

Bands 

Spatial 

Resolution 

(m) 

Data 

Availability 
Uses Challenges 

Landsat 1 185 18 4 60 1972–1978 

Designed to monitor the 

earth’s resources, such as 

water resources and 

agriculture. 

Problem of cloud cover. 

Landsat 2 185 18 4 80 1975–1982 

Used to monitor changes on 

land surfaces, seas and water 

resources. 

Technical issues caused it 

to be decommissioned. 

Landsat 3 185 18 4 80 1978–1983 

Designed to extend data 

acquisition of the earth’s 

resources by Landsat 1 

and 2. 

Became decommissioned. 

due to equipment failure. 
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Landsat 4 185 16 7 30 1982–1993 

Designed to provide global 

satellite data on the earth’s 

resources. 

Banding affected data. 

Landsat 5 185 16 7 30 1984–2013 

Used to observe and 

monitor earth’s land and 

coastal areas. 

Data loss occurred due to 

technical issues. 

Landsat 6 185 16 8 15–30 1993 
Designed to continue the 

Landsat mission. 
Failed to reach orbit. 

Landsat 7 185 16 8 15–30 
1999–

present 

Aimed to improve and 

extend medium-resolution 

data record of the earth’s 

surfaces. 

Issues of cloud cover 

affects data. 

Landsat 8 185 16 9 15–30 
2013–

present 

Designed to continue to 

provide medium-resolution 

data of the earth’s surfaces 

and monitor land changes, 

due to climate change, 

urbanization, drought, 

wildfires and other natural 

and human-caused changes. 

Clouds contaminate 

images. 

Sentinel-1 400 6–12 1 5 
2014–

present 

Developed to provide 

data continuity for the 

SPOT and Landsat 

missions and used to 

monitor changes on the 

earth’s surface. 

Satellite images may suffer 

from cloud contamination. 

Table 2.2. Cont. 
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Sensor 

Swath 

Width 

(km) 

Temporal 

Resolution 

(Days) 

Number 

of 

Bands 

Spatial 

Resolution 

(m) 

Data 

Availability 
Uses Challenges 

Sentinel-2 290 5 13 10–60 
2015–

present 

Used for land monitoring for 

mapping land cover and 

detecting land changes and 

to monitor vegetation and 

burned areas. 

Cloud contamination 

affects images. 

Sentinel-3 1270 1–27 21–11 300–1000 
2016–

present 

Designed to measure sea 

surface topography, as well 

as sea and land surface 

temperature for 

environmental and climate 

monitoring. 

Data missing due to 

anomalies. 

Sentinel-4 8 0.1 3 
0.5 nm–0.12 

nm 

2019–

present 

Designed to monitor air 

quality trace gases and 

aerosols over Europe. 

Only monitors Europe and 

does provide global data. 

Sentinel-5 2670 16 7 5.5–7 
2017–

present 

Aimed to monitor trace gas 

concentrations for 

atmospheric chemistry and 

climate changes. 

Data anomalies due to 

issues onboard. 

Sentinel-5P 2600 1 7 8–50 
2018–

present 

Designed to provide data 

delivery for atmospheric 

services between 2015–

2020. 

Data anomalies due to 

issues onboard. 
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The above review shows that there has been an increase in the number of studies that are 

applying remote sensing data in the monitoring of the quantity and quality dynamics of 

surface water resources, as well as drought and climate variability. However, in resource-

constrained regions such as Africa, most studies have taken advantage of the readily-available 

satellite data, such as NOAA/AVHRR, MODIS and Landsat, as well as the relatively long-

term data record of some of the sensors e.g. Landsat (>40 years). Unlike the aforementioned 

sensors, IKONOS, SPOT and QuickBird have a coarse temporal resolution and are 

commercially available, thereby limiting their application in water-related studies in 

resource-constrained environments such as Africa. Deciding on which data set to use will 

depend on the type of study and the scale of monitoring. Therefore, there is a need to test the 

applicability of freely-available satellites for monitoring water resources, droughts and 

climate variability over large areas. With the technological advancements, sensors that have 

a higher temporal, spectral and spatial resolution need to be designed to integrate multi-

datasets for monitoring water resources and to make remote sensing a more viable option. 

2.6 Remote Sensing Products for the Monitoring of Droughts and Climate 

Variability  

With the advancements in technology, there has been an increased use of satellite images for 

various water-related studies (Bijeesh & Narasimhamurthy, 2020). For instance, 

advancements in the development of water indices, in analysis or integration techniques, and 

in the availability of multi-temporal and multi-spectral images, mean that it is easier to detect 

changes in surface waterbodies (Du et al., 2014). It also enables the monitoring of various 

aspects of hydrology, such as precipitation, evapotranspiration, soil moisture, groundwater, 

water quality and surface water variability. Although rain gauges are the main source of 

rainfall data, the networks are inadequate in many sub-Saharan African countries, due to their 

sparse distribution. The limited networks are therefore unable to provide reliable data and to 

produce detailed rainfall information over a large spatial scale. On the other hand, rainfall 

can be estimated by using satellite data, which provide information in near real-time and give 

more spatially distributed estimates (Michaelides et al., 2009). The most common satellites 

used to estimate precipitation are the Climate Hazards Group Infra-Red Precipitation with 

Stations (CHIRPS), the Tropical Rainfall Measuring Mission (TRMM), the Meteosat-8, 

Geostationary Operational Environmental Satellite (GOES), the Tropical Applications of 

Meteorology using Satellite data and ground-based observations (TAMSAT) and the Special 
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Sensor Microwave Imager (SSM/I) (Jin et al., 2013). Dinku et al. (2018) compared the 

performance of the CHIRPS data, the African Rainfall Climatology Version 2 (ARC2) and 

the TAMSAT data over Ethiopia, Kenya, Somalia, Uganda, Rwanda and Tanzania, and the 

results indicated that CHIRPS had the highest accuracy, although it often overestimated the 

precipitation. In addition, a study by Seyama et al. (2019) evaluated TAMSAT data in 

southern Africa to accurately estimate the precipitation and found that the algorithm needs 

improvement in the accurate detection of high precipitation events. Measuring 

evapotranspiration is important for modelling hydrological processes and climate change and 

for estimating evapotranspiration by using physically-based methods (Chappell et al., 2013). 

Using remote sensing techniques to estimate evapotranspiration has been done by using 

various sensors, such as the AVHRR, MODIS and Landsat (Chappell et al., 2013). A study 

by Kiptala et al. (2013) used MODIS data and the Surface Energy Balance Algorithm of Land 

(SEBAL) model to estimate the actual evapotranspiration for 16 land use types from 2008 to 

2010 in the Upper Pangani River Basin, which is shared by Kenya and Tanzania. The study 

indicated that there was a good agreement of the different validations and it achieved a 

correlation coefficient of 0.74. On the other hand, Alemayehu et al. (2017) used daily MODIS 

data and Global Land Data Assimilation System (GLDAS) to effectively estimate the 

evapotranspiration in the Mara River Basin, which is shared by Kenya and Tanzania. 

Soil moisture is vital for understanding and predicting the variations in surface temperature, 

droughts, floods, the impacts of climate change and weather forecasting (Roback et al., 2000). 

Soil moisture controls the rate and amount of precipitation infiltrating into the soil and 

recharging into aquifers (Muller, 2014). Remote sensing techniques are preferred over 

ground-based methods for monitoring soil moisture, as they have a wider spatial scale 

(Muller, 2014). In this regard, the Normalized Difference Vegetation Index (NDVI) and Land 

Surface Temperature (LST) are the most common parameters used to remotely estimate soil 

moisture, with MODIS, Landsat and Soil Moisture Active Passive (SMAP) being the most 

popular satellites (Fontanet et al., 2018). For example, Xulu et al. (2018) used the MODIS-

derived Normalized Difference Vegetation Index (NDVI) and precipitation data for 

KwaMbonambi, northern Zululand, from 2002 to 2016, to understand the effects of droughts 

on the forest resources, by using remote sensing techniques. The results were validated by 

using multiple linear regression and Mann–Kendall tests, which proved to be reliable 

indicators for temporal drought conditions and which efficiently characterized the plantations 
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and their response to climate variability. A study by Ugbaje and Bishop (2020) used remote 

sensing observations of soil moisture and ancillary climatological data to assess the impact 

of hydrological controls on the vegetation greenness dynamics over Africa, from 2003 to 

2015. To do this, the study used daily soil moisture data from the European Space Agency 

Climate Change Initiative data portal, which was resampled to co-register with the MODIS 

EVI data. The accuracy was assessed by comparing the out-of-bag prediction of EVI against 

the observed values, and it was found that it is one of the robust ways of assessing the 

importance of hydrological variables. 

Groundwater is a vital component of the hydrological cycle, as it contributes significantly to 

the water resources, as well as to agriculture and to the health of ecosystems (Yeh et al., 

2006). Despite the increasing use of remote sensing-based methods for monitoring 

groundwater, such as the Gravity Recovery and Climate Experiment (GRACE) and Thermal 

Airborne Spectrographic Imager (TASI), traditional methods are still popular for studying 

the groundwater–surface water interactions (Agutu et al., 2019). Munch & Conrad (2007) 

combined remote sensing and GIS techniques to create a GDE (Groundwater Dependent 

Ecosystem) probability rating map for the Sandveld region in South Africa, by using Landsat 

TM imagery. The results provided useful information and it proved to be a cost-effective 

solution; however, the imagery was unsuitable for the detailed mapping of GDE features. 

Nanteza et al. (2016) integrated the GRACE and Lake altimetry data within a soil moisture 

model to compare GRACE-derived groundwater storage changes to in-situ groundwater 

observations in East Africa, from 2003 to 2011. The results proved that GRACE data are 

efficient in monitoring groundwater resources in data-scarce and hydrologically-complex 

regions. The results indicated a 0.6 correlation between GRACE-derived data and in-situ 

data, which suggests that the results are fairly accurate, despite the overestimation of 

groundwater by GRACE. A similar study by Bonsor et al. (2018) found that changes in 

groundwater storage of 12 sedimentary aquifers in Africa could be monitored by using 

GRACE data, combined with the physical datasets derived from Land Surface Models 

(LSMs). In another study, Agutu et al. (2019) found a strong link between GRACE-derived 

groundwater changes and climate variability in the Greater Horn of Africa, based on a 10-

year dataset. Specifically, GRACE-derived groundwater changes correlated well (R2 = 0.7) 

with the results from the WaterGap Hydrological Model (WGHM), which further indicates 

the potential of GRACE in groundwater monitoring. Using the GRACE data from 2003 to 
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2016, Frappart (2020) characterized the dynamics in groundwater storage that occurred in the 

major North African transboundary aquifers. In the study, a moderate correlation (R2 = 0.5) 

was observed between GRACE and the Tindouf Aquifer System (TAS), with the correlation 

being attributed to the small size of the system. This implies that the coarse spatial resolution 

of GRACE is problematic for monitoring the groundwater resources of small areas. A recent 

study by Skaskevych et al. (2020) assessed the feasibility of the GRACE-based estimation of 

groundwater storage changes in the Ngadda Catchment in the Lake Chad Basin and 

demonstrated that GRACE-based modelling is a cost-effective method for monitoring 

groundwater changes. While important insights have been gained from using this sensor, its 

coarse resolution limits its application over finer spatial scales. There is therefore a need to 

improve the spectral, spatial and temporal resolutions of this sensor, in order to overcome 

some of its shortfalls and to enable its use in the monitoring of water resources, drought and 

climate variability in near real-time. In fact, the potential of high-resolution images, i.e. 

Landsat-8 and MODIS, in the monitoring of groundwater is promising, as demonstrated by 

Nhamo et al. (2020) in a study that quantified groundwater use by crops in the Venda-

Gazankulu region of the Limpopo Province, South Africa. 

2.7 Current Remote Sensing-based Approaches for Monitoring Drought and 

Surface Water Resources 

Droughts and surface waterbodies can be monitored by using traditional physically-based 

methods and/or remote sensing methods. Physically-based methods for the monitoring of 

droughts include paleoclimatology and recording meteorological data, such as rainfall, river 

flow and soil moisture (d'Andrimont & Defourny, 2018). Paleoclimatology takes advantage 

of the past climatic conditions by using data records from ice sheets, tree rings, sediments, 

rocks, diatoms and corals to understand the past climates and to predict future climate 

conditions (Bruckner, 2020). However, the most common paleoclimatic datasets used for 

drought monitoring are tree rings and peat lands. Physically-based methods of surface water 

monitoring are in-situ measurements, which include the manual measurement of water levels 

using equipment such as floats, sensors, buoy systems, pressure type equipment and 

ultrasonic and radar techniques (Chapuis, 1998; Janke et al., 2006; Donald et al., 2008). 

Remote sensing uses cameras on satellites and airplanes, as well as sonar systems on ships, 

to obtain remotely sensed images, by measuring their reflected and emitted radiation at a 

distance to detect and monitor the physical characteristics (USGS, 2020). Computer models 
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use paleoclimate data as a framework on which to base these models (Bruckner, 2020). 

However, physically-based methods are costly, time-consuming and the equipment cannot 

be installed in remote or mountainous areas, thus the use of satellite data for monitoring 

surface waterbodies is increasing, due to its ability to make high-frequency and repeatable 

observations at a low cost (Li et al., 2013). 

2.7.1 Traditional drought and surface waterbody monitoring techniques 

Dendroclimatology is the study of determining past climates from tree rings. The use of tree 

ring data is widely used in the highland and lowland environments of the Mediterranean 

Basin, the Middle East and Asia. Although it is often used as a means to validate remote 

sensing data in other countries (Bradley, 2011), this method is not often used for drought 

studies in sub-Saharan Africa, because there are still many methodological problems 

pertaining to its use (Wils et al., 2011). Measuring and recording the surface water levels can 

be done by using various types of recording sensors, which are often used across Africa, such 

as bubblers, pressure transducers and ultrasonic sensors; the results from these sensors can 

be recorded directly into a data logger, or into a specialized flow meter (Donald et al., 2008). 

Bubblers are sensors in which air, or an inert gas, is forced through a small bubble line that 

is submerged in a river channel, and they measure the water level by determining the pressure 

needed to force air bubbles out of the line (West et al., 2019). Pressure transducers use a 

probe that is fixed to the bottom of the channel and that senses the pressure of the overlying 

water (Donald et al., 2008). Ultrasonic sensors, or ground-based weather radar, are placed 

above the flow stream and transmits a sound pulse that is reflected by the surface of the flow, 

and the time it takes between sending the pulse and receiving an echo determines the water 

level (Donald et al., 2008). The ground-based weather radar has been used to detect 

precipitation by sending out pulses of microwave energy in narrow beams that scan in a 

circular motion, and when these pulses encounter precipitation particles, the energy is 

scattered in all directions, and some of this energy is sent back to the radar (World Bank 

Group, 2020). The energy that is measured is then used to estimate the intensity, altitude, 

type of precipitation and motion. These different types of recording sensors provide the 

measurements of dam levels and other surface waterbody levels, such as rivers and lakes. 

These measurements indicate changes in the water levels, and if there is a drastic drop in the 

water levels associated with low levels of precipitation, it could mean that there is an onset 
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of drought conditions. Rain gauges are the most common physically-based method for 

measuring the amount of precipitation received (World Bank Group, 2020). Rain gauge 

measurements are point-based and measure the amount of precipitation received at a specific 

location. They can be classified into non-recording rain gauges and recording rain gauges. 

Non-recording rain gauges collect precipitation, but do not record the amount of precipitation, 

while recording rain gauges automatically record the amount of precipitation on graph paper 

and note the duration of rainfall events. However, manual measurements are not effective, 

due to human error and point-based measurements that might not be representative of the 

entire area, as precipitation might fall more, or less, intensely at the location of the gauge 

(Alsdorf et al., 2007). Physically-based readings are often difficult to record during drought 

periods as the accuracy of the readings decreases; however, if the water levels are high, they 

are easier to record (Huang et al., 2018). Damage to equipment may also induce measurement 

errors. As the measuring equipment is in direct contact with the water, its life span is limited, 

due to the chemical and physical properties of water, such as corrosion, underwater pressure 

and the composition of the water. This causes physically-based techniques to be costly and 

time-consuming (Nirupam et al., 2015). 

2.7.2 Remote sensing techniques for drought monitoring 

Due to its wide coverage, repeatable observations, multi-band features, as well as its 

applicability on a local and global scale, both in data-rich and data-poor areas, the use of 

remotely sensed data and, more specifically, the spectral water indices derived from 

multispectral sensors, is a promising approach for the monitoring of droughts (Xulu et al., 

2018; Palmer et al., 2015). Remote sensing is an important tool that provides consistent and 

continuous data (Rhee et al., 2010; Jiao et al., 2019). Radar altimetry has been used for more 

than 10 years to monitor the elevation changes in surface waterbodies, such as inland seas, 

lakes, rivers and wetland zones (Crétaux & Birkett, 2006). Altimetry data can be used to 

monitor changes in the surface water storage (Khaki & Awange, 2020). The surface water is 

measured with a repeatability that varies from 10 to 35 days, depending on the satellite 

(Crétaux & Birkett, 2006). Weather conditions do not affect the data collection; however, 

altimetry does not have a global view and has several limitations. Varying topography and 

complex terrains reduce the accuracy of the elevation data, and the target size and surface 

roughness affect the accuracy of altimetry-derived data, which therefore limits global 
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surveying (Crétaux & Birkett, 2006). The use of altimetry data is limited to the monitoring 

of rivers that are wider than 1 km, due to its low temporal and spatial resolution, and thus the 

accurate monitoring of smaller waterbodies is challenging (Sulistioadi et al., 2015). Recent 

studies have focused on developing indices for the reliable detection of droughts and for 

identifying surface waterbodies by using satellite data (Huang et al., 2017). These indices are 

applied in the early detection of the onset, intensity, cessation, duration and spatial extent of 

droughts, as well as in mapping the surface waterbodies (Huang et al., 2017). A suite of 

indices exists, and each has its own advantages and weaknesses (Jiao et al., 2019). In this 

study, a number of indices were selected, based on their performance, as reported in literature 

(Tables 2.3 and 2.4). 

Advances in remote sensing and its associated indices (algorithms) provide an alternative 

source of data. These indices are obtained from satellite-based infrared (IR), passive 

microwave (PMW) or spaceborne precipitation radar (PR) data. Drought conditions can be 

identified by using a drought index, which assesses the effects of a drought, as well as its 

intensity, duration, severity and spatial extent (Abiy et al., 2019). These drought indices use 

meteorological data, such as precipitation, temperature and soil moisture data (Henchiri et 

al., 2020). Meteorological droughts have been detected by using the Standardized 

Precipitation Index (SPI), the Palmer Drought Severity Index (PDSI), the Standardized 

Precipitation Evapotranspiration Index (SPEI) and the Enhanced Vegetation Index (EVI) 

(Zhang et al., 2019). The indices used to detect hydrological droughts include the Palmer 

Drought Severity Index (PDSI), the Normalized Difference Vegetation Index (NDVI), the 

Anomaly Vegetation Index (AVI), the Normalized Difference Water Index (NDWI), 

Normalized Difference Drought Index (NDDI) and the Temperature Condition Index (TCI) 

[102]. Agricultural droughts can be detected by using the Palmer Drought Severity Index 

(PDSI), the Drought Severity Index (DSI), the Evapotranspiration Deficit Index (ETDI), the 

Vegetation Condition Index (VCI) and the Standardized Precipitation and Evaporation Index 

(SPEI) (Su et al., 2016). Many indices have been developed for drought monitoring; however, 

the indices considered in this study are SPI, PDSI, NDVI, VCI and WRSI, which is based on 

their widespread use (Table 2.3). 

The Standardized Precipitation Index (SPI) was developed by McKee et al. (1993) to monitor 

the status of droughts in Colorado and has since been used to monitor dry and wet conditions 

over various time scales (Wu et al., 2001). It is based on the long-term precipitation records 
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for the study period and is then fitted to a probability distribution to ensure that the mean SPI 

is zero for the study period and location (McKee et al., 1993). Palmer (1965) developed the 

Palmer Drought Severity Index (PDSI) to quantify and compare the spatial and temporal 

drought characteristics across various regions (Jacobi et al., 2013). It uses precipitation and 

temperature data to estimate the moisture supply and demand within two soil layers. The 

Normalized Difference Vegetation Index (NDVI) measures the photosynthetic ability and 

productivity of plants, which is the difference between the near-infrared and red bands (Xulu 

et al., 2018). It has been widely used to evaluate drought conditions across the globe (Dong 

et al., 2014; Qu et al., 2019; Henchiri et al., 2020). The Vegetation Condition Index (VCI) 

was developed by Kogan (1995) to detect and track droughts by focusing on their impact on 

the vegetation. It records changes in the vigour of the vegetation by using the visible band 

and near-infrared bands, and compares it with the historical data. The VCI provides 

information on prolonged and short-term droughts. The Water Requirement Satisfaction 

Index (WRSI) was developed by the Food and Agriculture Organization (Bijeesh & 

Narasimhamurthy, 2020). The WRSI is the ratio of the actual evapotranspiration to the 

potential evapotranspiration and indicates the performance of crops, based on the water 

availability during the growing season (Legesse & Suryabhagavan, 2014; Suryabhagavan, 

2017). It is used to monitor crop production in regions that suffer from famines. 

Surface waterbodies can be identified by using optical sensors or microwave sensors. Optical 

sensors are used to calculate the differences between the spectral bands, and microwave 

sensors are dependent upon the reflection of water surfaces, relative to surrounding land 

surfaces; however, the return signals can be reduced by the waves on the water’s surface 

(Huang et al., 2018).  There are many methods of extracting surface waterbodies from remote 

sensing imagery, based on the principle of comparing the low reflectance of water, to land 

cover types with a higher reflectance in infrared channels. Water indices can be used to 

extract surface waterbodies, which are calculated from two or more bands, to distinguishing 

between waterbodies and non-waterbodies (Li et al., 2013; Zhou et al., 2017; Xulu et al., 

2018). Many indices have been developed; however, only the following seven indices will 

be considered for this study, based on their performance in previous studies: the Normalized 

Difference Water Index (NDWI), the Modified Normalized Difference Water Index 

(MNDWI), the Land Surface Water Index VI (LSWI+5), the Modified Normalized 
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Difference Water Index VI (MNDWI+5), the Automated Water Extraction Index shadow 

(AWEIsh), and the Automated Water Extraction Index non-shadow (AWEInsh) (Table 2.4). 

The NDWI was introduced by McFeeters (1996) and it extracts waterbodies from the satellite 

data. Waterbodies have positive values and non-waterbodies have zero or negative values, 

and they are enhanced and suppressed, respectively (Sarp & Ozcelik, 2017). The MNDWI 

was proposed by Xu in 2006 [113] to improve the accuracy of the NDWI in built-up areas 

(Huang et al., 2018). The Near Infrared (NIR) band in the NDWI was replaced with the 

Shortwave Infrared (SWIR) band, because it reflects the subtle characteristics of water better 

(McFeeters, 1996), and it is less sensitive to the sediment concentrations in water than the 

NIR band (Sarp & Ozcelik, 2017). The LSWI+5 was introduced by Menarguez (2015) and is 

derived from the LSWI; it uses the NIR and SWIR portions of the electromagnetic spectrum. 

It was developed to identify flooding and waterbodies. MNDWI+5 was also introduced by 

Menarguez (2015) and uses the NIR and red bands to map flooding or clear water (Zhou et 

al., 2017). The AWEI, which can detect waterbodies, was introduced by Feyisa et al. in 2014. 

It includes two indices: the AWEInsh, is applied when there are no shadows, and the AWEIsh 

is applied to distinguish between the water pixels and shadow pixels. 

However, the results of these indices are region-specific, and therefore certain indices will 

yield low accuracies due to cloud cover, pixel mixing and shadows in mountainous or built-

up areas. Some indices also need to be used in conjunction with other indices and/or 

meteorological data, as they cannot account for factors such as evapotranspiration, runoff and 

infiltration. Therefore, the indices need to be improved, in order to improve the monitoring 

conditions, which will be useful for detecting the onset, duration and end of droughts. 
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Table 2.3 Drought indices used and their performance in previous studies 

Drought Index Reference of 

Study 

Key Findings Limitations of Index 

Standardized 

Precipitation Index 

(SPI) 

Tirivarombo 

and Hughes 

(2011) 

Rainfall data from 1960 to 2002 was used to 

calculate SPI for selected parts of the Zambezi 

River Basin, in Africa, for a comparative 

analysis of the relationship between 

agricultural droughts and food security. 

Needs to be used with other indices, because 

it does not account for the deficits caused by 

evapotranspiration, infiltration and runoff. 

Chisadza et al. 

(2015) 

SPI calculated for the Mzingwane Catchment, 

in the Limpopo River Basin, situated in 

southern Africa, by using rainfall data from 

1999 to 2013 to determine the severity of 

droughts. 

Achieved poor results over short study 

periods and achieved highly accurate results 

over longer study periods. 

Khezazna et al. 

(2017) 

SPI indices calculated for 13 rainfall stations 

in the Seybouse Basin, Algeria, to differentiate 

between dry, normal and wet periods to 

analyse variations in the annual rainfall over 

the basin. 

Required historical rainfall data. 

Tirivarombo et al. 

(2018) 

SPI was able to detect temporal variations of 

droughts in the Kafue Basin, in northern 

Zambia. 

SPI to be used with caution to characterize 

droughts, as it only uses rainfall data and not 

temperature data, and temperature data is 

important for characterizing droughts. 

Lawal et al. 

(2019) 

Used SPI to quantify the severity of droughts 

in southern Africa. 

Low accuracy achieved in regions where 

precipitation was low and over short time 

periods. 

Kalisa et al. 

(2020) 

Calculated SPI over East Africa from 1920 to 

2015. Adequately estimated dryness or 

wetness, and the study that proved it can be 

Results highly variable for shorter time 

scales; however, for longer time scales, 
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used to assess drought intensity, especially in 

drought-prone regions. 

results were more accurate, therefore 

should be used for long-term studies. 

 

 

 

 

 

 

 

 

 

Palmer Drought 

Severity Index 

(PDSI) 

Mehta et al. 

(2014) 

PDSI was correlated with the PDSI forecast by 

the MIROC5 Earth System Model (ESM) from 

1961 to 2019–2020, to assess the accuracy of 

predictability across southern Africa. This 

method achieved efficient results. 

Higher accuracies over longer study periods. 

Decadal results were more accurate. 

Zeleke et al. 

(2017) 

PDSI obtained from station- and satellite-

based observation data sets from the Ethiopian 

National Meteorological Agency (EMA) for 

drought monitoring in Ethiopia from 1979 to 

2014. Accurate data indicated the drought 

periods. 

Only accounted for drought impacts, based on 

temperature and precipitation data. 

Asfaw et al. 

(2018) 

PDSI data collected from Climate explorer: 

KNMI Climate Change Atlas and used to 

analyse extent of meteorological drought from 

1951–2013. Detected increase in drought years 

since the 2000s, in the Woleka sub-basin, 

situated in Ethiopia. 

Short-term application is problematic, due to 

lower accuracies, compared to long-term 

application. 

Orimoloye et al. 

(2019) 

PDSI used to identify the susceptibility of 

Cape Town, South Africa, to drought. 

Less accurate in areas with extremely dry 

vegetation. 

Ogunrinde et al. 

(2020) 

PDSI detected a hydrological drought 

approximately 12 months before the low flow 

occurred in the River Niger in Nigeria. 

More effective in long-term monitoring of 

meteorological drought impacts than short-

term monitoring. 
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Normalized 

Difference 

Vegetation Index 

(NDVI) 

Gelassie (2012) 

Analysed NDVI to monitor the development of 

biomass in Amhara, Ethiopia, and found that 

NDVI can be used to estimate crop yields. 

Noise presence due to cloud cover and 

shadows, which decreased the NDVI values. 

Tonini et al. 

(2012) 

NDVI data collected by using SPOT 4 and 

SPOT 5 satellites from 1998 to 2009, and 

accurately identified which areas are more 

prone to drought in the Tigray region, Ethiopia. 

Accuracies affected by the atmosphere, 

aerosol scattering, snow and cloud cover. 

Chisadza et al. 

(2015) 

Evaluated vegetation condition and tracked 

drought severity and occurrence by using the 

GEONETCast ten-day composite, SPOT 

VEGETATION, NDVI (S10 NDVI) over the 

Beitbridge, Esighodini, Mangwe and Mwenezi 

districts in Zimbabwe, from 1998 to 2013. 

Background brightness led to lower 

accuracies. 

Klisch & Atzberger 

(2016) 

NDVI was calculated in Mandera and Garissa, 

Kenya, using MODIS data and successfully 

monitored vegetation. 

High noise interference due to cloud cover. 

Lawal et al. 

(2019) 

NDVI used to understand impacts of droughts 

on southern African vegetation and achieved 

efficient results. 

Errors in seasonal NDVI data due to different 

algorithms used to translate measured 

wavelengths. 

Qu et al. 

(2019) 

NDVI data derived from MODIS was used to 

investigate drought conditions in the Horn of 

Africa (Djibouti, Eritrea, Ethiopia and 

Somalia) from 2000 to 2017. 

Mainly sensitive to vegetation greenness, 

therefore limited in monitoring drought 

directly. 
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Vegetation 

Condition Index 

(VCI) 

Unganai & Kogan 

(1998) 

AVHRR/NOAA data was successfully able to 

monitor the temporal and spatial characteristics 

of drought conditions in southern Africa. 

Cloud cover affected the drought signal. 

Gelassie (2012) 

Examined spatial drought by using the VCI 

and found that drought can be detected and 

mapped in the Amhara region, Ethiopia, from 

1999 to 2009. 

Drought conditions can be monitored during 

the growing season. 

Ghoneim et al. 

(2017) 

Used MODIS data to calculate the VCI and to 

assess spatial and temporal distribution of 

drought occurrence in Tunisia from 2000–2013 

and accurately identified drought periods. 

Problematic with the occurrence of excessive 

rain. 

Qu et al. 

(2019) 

Investigated agricultural drought by calculating 

the NDVI from the MODIS data from 2000 to 

2017 in the Horn of Africa (Djibouti, Eritrea, 

Ethiopia and Somalia) and achieved a 95% 

accuracy. 

Cloud contamination affected accuracy. 

Frischen et al. 

(2020) 

The VCI used to assess vegetation health and 

drought conditions in Zimbabwe, from 1989 to 

2019 and found it detects the drought 

dynamics 

Not suited for analysing one single season. 

Water 

Requirement 
Gelassie (2012) 

The spatial distribution of droughts was 

examined by using the WRSI in Amhara, 

Ethiopia. 

Ground truthing for crops and detailed crop 

calendar is essential, as well as a water 

balance calculation. 
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Satisfaction Index 

(WRSI) 
Moeletsi & Walker 

(2012) 

The WRSI was used to quantify droughts in 

the Free State Province, South Africa, which 

affect rain-fed maize production. 

The WRSI values in semi-arid areas are 

locality-dependent. 

Jayanthi et al. 

(2014) 

The WRSI was used to monitor crop 

productivity in Southern Africa. 

Limited hazard and exposure data; therefore, 

a long-term synthetic rainfall record had to be 

generated. 

Legesse & 

Suryabhagavan 

(2014) 

The WRSI was used to assess the spatio-

temporal variation in agricultural drought 

patterns in the East Shewa Zone, Ethiopia, and 

found to be a good indicator of agricultural 

drought. 

Showed good results for agricultural drought, 

but further investigation is required for other 

types of droughts. 

 

Table 2.4      Surface waterbody indices used and their performance in previous studies 

Surface 

Waterbody 

Index 

Reference of 

Study 
Key Findings Limitations of Index 

Normalized 

Difference 

Water Index 

(NDWI) 

El-Asmar et al. 

(2013) 

Used MSS, TM, ETM+ and SPOT images to 

obtain the NDWI data to quantify change in 

the Burullus Lagoon in Egypt between 1973 

and 2011, and accurately noted changes in 

size. 

Had to apply radiometric normalization to 

adjust solar angles. 

Masocha et al. 

(2018) 

Had an overall accuracy of 77% when 

extracting surface waterbodies from Landsat-8 
Cannot suppress the signal from built-up 

features efficiently. 
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OLI data in the Mutiriki Catchment, 

Zimbabwe. 

Orimoloye et al. 

(2019) 

Used Landsat 8 data to derive the NDWI to 

assess drought occurrence in Cape Town, 

South Africa, from 2014 to 2018, and mapped 

changes in waterbodies. Results agreed with 

dam levels recorded by the City of Cape 

Town. 

Does not consider soil type, 

geographic location and climate zone. 

Asfaw et al. 

(2020) 

NDWI used to note changes in Lake Ziway, 

Ethiopia, from 2009 to 2018, using Landsat 

ETM+/OLI data and obtained an overall 

accuracy of 91%. 

Problematic in urban areas with a higher 

reflectance. 

Fujihara et al. 

(2020) 

Calculated the NDWI by using Landsat-8 data 

to classify land cover types in the Gash River, 

Sudan, and achieved a Kappa coefficient of 

0.960, which is reasonably good. 

Problematic in built-up areas, water features 

often confused with built up areas. 

 

Modified 

Normalized 

Difference Water 

Index 

(MNDWI) 

El-Asmar et al. 

(2013) 

MNDWI data obtained from MSS, TM, 

ETM+, and SPOT images to quantify change 

in the Burullus Lagoon in Egypt between 

1973 and 2011, and accurately noted changes 

in size. 

Radiometric normalization applied to adjust 

solar angles. 

Malahlela 

(2016) 

Landsat-8 data was used to calculate the 

MNDWI to extract waterbodies in South 

Africa, the Republic of Congo and 

Classified shadows as waterbodies. 
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Madagascar from 2013 to 2015, and achieved 

an overall accuracy of 78.4%. 

Masocha et al. 

(2018) 

Landsat-8 OLI data was used to map surface 

waterbodies in the Mutirikwi Catchment, 

Zimbabwe; it achieved an overall accuracy of 

84.3%. 

Higher performance in areas with 

vegetation, compared to other land covered 

surfaces. 

Asfaw et al. 

(2020) 

Used the MNDWI to note changes in Lake 

Ziway, Ethiopia, from 2009 to 2018, using 

Landsat ETM+/OLI data, and obtained 99% 

overall accuracy. 

Misclassified shadows as waterbodies. 

Ndehedehe et al. 

(2020) 

Used Sentinel-2 data to calculate the MNDWI 

to detect changes in the Lake Chad Basin 

from 2015 to 2019, and achieved an overall 

accuracy of 97.4%. 

Sensitive to water content in soil and 

vegetation. 

Slagter et al. 

(2020) 

Used the MNDWI for wetland mapping and 

surface water dynamics in St Lucia wetlands, 

South Africa, using Sentinel-1 and Sentinel-2 

data from 2016 to 2018, and achieved an 

overall accuracy of 87.1%. 

Highly-vegetated areas led to lower 

accuracies. 

Land Surface 

 Water Index 

(LSWI+5) 

Jin et al. 

(2013) 

Used the MODIS data in southern Africa to 

monitor vegetation phenology from 1999 to 

2009, and results agreed with in-situ data. 

Problematic in built-up areas. 

Benefoh et al. 

(2018) 

Used TM, ETM and OLI data to get a 

comprehensive understanding of the Lower accuracies in dry regions. 
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landscape in Ghana from 1986 to 2015. 

Results were correlated with in-situ data and 

achieved an overall accuracy of 82.6%. 

Masocha et al. 

(2018) 

Had an overall accuracy of 86% when 

mapping surface waterbodies in the 

Mutirikwi Catchment, Zimbabwe, and 

outperformed the other indices when applied 

to map surface waterbodies in subtropical 

catchments. 

Further investigation required for 

performance in various climatic zones. 

Ali et al. 

(2020) 

Used LSWI+5 to analyse plant and soil water 

content in various watersheds in Ethiopia 

from 2006 to 2016 from Landsat-7 data. 

Cloud contamination affected results. 

 

Modified 

Normalized 

Difference Water 

Index 

(MNDWI+5) 

Masocha et al. 

(2018) 

Used to map surface waterbodies in the 

Mutirikwi Catchment, Zimbabwe, and had an 

overall accuracy of 79.3%. 

Performed best in vegetated areas. 

Automated Water 

Extraction Index 

(shadow) 

(AWEIsh) 

and 

Automated Water 

Extraction Index 

Feyisa et al. 

(2014) 

Used Landsat-5 data to map waterbodies in 

South Africa, Ethiopia, Denmark, Switzerland 

and New Zealand, and achieved a Kappa 

coefficient of 0.98 and 0.97 in South Africa 

and Ethiopia, respectively. 

Variables that were not tested and could 

affect accuracies, due to variations in the 

angle of the sun, atmospheric composition, 

and biophysical and chemical changes in 

waterbodies. 

Malahlela 

(2016) 

Landsat-8 data was used to extract waterbodies 

in South Africa, Republic of Congo and Classified shadows as water in built-up areas. 
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(non-shadow) 

(AWEInsh) 

Madagascar from 2013 to 2015, and achieved 

an overall accuracy of 83.8%. 

Masocha et al. 

(2018) 

AWEIsh and AWEInsh had an overall accuracy 

of 81.6% and 50.3%, respectively, when 

mapping surface waterbodies in the Mutirikwi 

Catchment, Zimbabwe. 

AWEInsh problematic due to background 

noise and unable to differentiate between 

waterbodies and built-up areas. 

Asfaw et al. 

(2020) 

Used Landsat ETM+/OLI data to note changes 

in Lake Ziway, Ethiopia, from 2009 to 2018, 

and obtained an overall accuracy of 99.2%. 

Problematic in urban areas due to high 

reflectance. 

Danladi et al. 

(2020) 

Used Landsat imagery to delineate coastal 

erosion and accumulation in Nigeria from 

1973 to 2017. 

Problematic in built-up areas. 

Herndon et al. 

(2020) 

Achieved an overall accuracy of 98% when 

using Landsat-8 data to identify waterbodies in 

the Nigerian Sahel. 

Background noise led to misclassification. 
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2.8 Challenges of Remote Sensing in the Monitoring of Droughts, Climate 

Variability and Surface Water Resources and Possible Future Research 

Directions 

 

The vulnerability of Africa to droughts is high, due to poverty and the dependence on rainfed 

agriculture, and therefore, there is a need to monitor droughts in an efficient and timely manner. 

The use of satellite data could significantly improve the monitoring techniques, as well as the 

drought planning and mitigation strategies. Remote sensing is a useful tool for the monitoring 

of droughts and surface water, especially in large areas where there is a limited ability to 

conduct in-situ monitoring, as this approach is cost-effective and repeatable. The use of remote 

sensing, especially in Africa, will provide information on the past, current and future 

conditions of droughts and it will help to understand the need for sustainable monitoring 

solutions. Early drought detection is vital for decision-making and preparedness, and there are 

many satellites that provide meteorological data, such as near-surface air relative humidity and 

vapor pressure deficits, which can improve the early detection of drought and provide vital 

information (AghaKouchak et al., 2015). A major limitation in the use of remote sensing for 

drought and surface water monitoring is the continuity of the data (AghaKouchak et al., 2015). 

Many of the currently-available satellite datasets, such as GRACE, do not have long historical 

records and only provide approximately 10–15 years of data, which might not be enough for 

drought studies, from a climatological perspective; however, these records can be used for 

impact studies (AghaKouchak et al., 2015). The satellites with sufficient records are Landsat, 

GOES and AVHRR-MODIS-VIIRS. A major challenge of satellite data is the background 

noise, which negatively influences the classification of the land use zones. Another challenge 

of using remote sensing data are the sensor uncertainties, which is why models and indicators 

were developed for the uncertainty assessment of satellite-based data. However, with the 

continuous development of algorithms and free access to satellite data, it is a promising 

approach for monitoring the impacts and onset of droughts and various other climatological 

changes (Xulu et al., 2018). 

2.9 Future Research Directions and Recommendations 

This review has shown that remote sensing technology has improved the monitoring of drought 

and water resources, as well as climate variability. However, if the data from earth observations 

are to make a significant impact in resource-poor regions, such as those in sub-Saharan Africa, 
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there are still grey areas that require further research. For instance, most of the aforementioned 

drought monitoring and water detection indices were developed for specific satellite data; 

therefore, with the development of new satellites, new indices need to be developed and tested 

across diverse environments to enhance their use (Huang et al., 2018). There is also a need for 

more studies to be conducted in sub-Saharan Africa, in order to test the remote sensing 

applications and data processing techniques, as well as to improve the drought detection, 

mitigation and monitoring of water resources. Future studies need to be conducted to determine 

which datasets are best-suited for monitoring groundwater resources, as researchers are 

currently struggling with the coarse resolution provided by GRACE, which reduces the 

accuracy of the results over small areas (Frappart, 2020). More studies need to be conducted 

using the Landsat, GOES or AVHRR-MODIS-VIIRS data, as these satellites have historical 

data, which will assist in impact studies, in characterizing patterns and in the future predictions 

of drought models (Bijeesh & Narasimhamurthy, 2020). Indices and satellites also need to be 

developed to reduce the inaccuracies caused by background noise, cloud cover, pixel mixing 

and shadows in mountainous or built-up areas, as mountains and clouds are often classified as 

waterbodies due to their reflectance. Further studies need to also investigate the applicability 

and feasibility of blending remote sensing methods with rain gauge estimates and/or climate 

models and precipitation models, to test whether, and in what way, the blending of these 

datasets reduces the estimation variance. Similarly, the fusion of different remote sensing 

datasets (e.g. active and passive remotely sensed data) with various earth imaging 

characteristics is promising for the improved detection and spatial characterization of droughts 

and water resources. Furthermore, more studies need to be conducted using rain gauge 

estimates integrated with radar data, as radar data is useful for estimating precipitation 

(Chappell et al., 2013). Machine Learning (ML) is another promising field that needs to be 

explored for use in the monitoring of droughts (Bijeesh & Narasimhamurthy, 2020). The 

commonly-used ML algorithms are Artificial Neural Network (ANN), Support Vector 

Machine (SVM), minimum distance classification, maximum likelihood classification, 

regression tree-based algorithms, ISODATA and K-means clustering; however, these methods 

have yet to be tested in sub-Saharan Africa. The use of panchromatic images with a higher 

resolution has been theoretically studied in surface water detection and monitoring, but it still 

needs to be implemented and tested (Bijeesh & Narasimhamurthy, 2020). Future studies could 

also test the effectiveness of integrating Digital Elevation Models (DEMs) with multi-spectral 

data in cloud removal, to enhance water detection and delineation (Chappell et al., 2013). 
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2.10 Conclusions 

Droughts are characterized by various climatological and hydrological parameters, and in order 

to reduce the impacts of droughts and climate variability, these parameters need to be 

understood and monitored in a timely and efficient manner. The occurrence of droughts is 

likely to increase, due to climate change; this means that their impacts need to be analysed, 

based on historical, present and future scenarios, especially in Africa, which is a data-scarce 

continent. The use of remote sensing for the monitoring of droughts and surface water 

resources has become popular, since the launch of satellites with improved spatial, spectral and 

temporal resolutions, which were designed to monitor and detect changes on the earth’s 

surface. However, remote sensing is not being utilized to its full potential, especially in data-

poor areas. Advancements in indices and techniques, and the availability of multi-temporal 

and multi-spectral images, have led to the improvement of the monitoring and detection of 

droughts and surface water resources; however, there is still a need to improve the indices, in 

order to remedy cloud contamination and the problem of shadows in mountainous and built-

up areas. Remotely sensed data have the potential to be used in data-scarce areas, such as 

Africa, where there are a limited number of physical monitoring stations, due to the high costs 

involved and the location. With these advancements available, there is an urgent need for future 

studies to test the applicability of these satellites and indices, in order to improve early drought 

warning systems and preparedness and to assist with proactive decision-making. This approach 

will allow for fast drought identification, which is essential for drought-prone regions like 

Africa, for water resource planning purposes and for helping decision-makers to set appropriate 

measures to alleviate future drought events. 
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CHAPTER 3 

ASSESSING THE EXTENT TO WHICH LANDSAT-8 OLI AND 

SENTINEL-2 MSI SATELLITE DATA CAN BE USED TO MONITOR 

THE IMPACTS OF DROUGHT ON WATER RESOURCES IN THE 

WESTERN CAPE PROVINCE OF SOUTH AFRICA 

Abstract 

Drought is a devastating phenomenon that is increasing in frequency and magnitude. Surface 

waterbodies are highly vulnerable to the impact of droughts, especially those in arid and semi-

arid environments. The availability of moderate-resolution satellite data provides a unique 

opportunity for monitoring surface waterbodies and the impact of droughts on surface water 

resources. In this study, we assessed the extent to which Landsat-8 OLI and Sentinel-2 MSI 

satellite data can be used to track the impact of droughts on the water resources in the Western 

Cape, South Africa. Multispectral indices (the Normalised Difference Vegetation Index 

(NDVI), the Vegetation Condition Index (VCI), the Normalised Difference Water Index 

(NDWI), the Modified Normalised Difference Water Index (MNDWI) and the Land Surface 

Water Index (LSWI+5)), and drought indices (the Standardised Precipitation Index (SPI) and 

Water Requirement Satisfaction Index (WRSI)) were computed to establish the most 

satisfactory method for detecting surface waterbodies and monitoring droughts. These indices 

were used along with climate data, to provide a holistic method for monitoring the impact of 

droughts on surface waterbodies and to successfully detect and map the surface water 

variability from 2016 to 2020. The Sentinel-2-derived NDVI performed the best when mapping 

surface waterbodies, with an overall accuracy of 77.27%; however, LSWI+5 performed poorly, 

due to the misclassification of built-up areas and mountainous areas as surface waterbodies. 

The SPI, VCI and WRSI accurately detected the drought period and had a positive correlation 

with the climate data, which indicated that low rainfall and high evapotranspiration rates were 

experienced during the drought period from 2016 to 2018. These results are key in explaining 

the surface water variability, as well as the impact that droughts have on surface waterbodies 

in the study area. This study indicates the usefulness of using moderate-resolution datasets to 

assess the impact of droughts on surface water resources, which can assist in the management 

of water resources and in the improvement of drought identification and preparedness. 
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3.1 Introduction 

Droughts are a creeping phenomenon and a natural hazard that affect various sectors, such as 

agriculture, hydropower generation, industry and water availability, as well as different aspects 

of the environment (Sheffield et al., 2012; Jang, 2018; Bhaga et al., 2020). It is said that the 

occurrence and intensity of droughts will increase in the future, due to the changing climate 

and the erratic rainfall and that this will lead to a decreasing rainfall rate and an increasing 

evapotranspiration (ET) rate (Panu & Sharma, 2002; Sheffield et al., 2012; Hagenlocher et al., 

2019). Recently, droughts have become more frequent and have expanded over several areas, 

especially over semi-arid regions (Liu et al., 2020). For example, subtropical eastern Australia 

experienced a drought from 2017 to 2019, which affected agricultural practices and the water 

supply (Nguyen et al., 2021). In Senegal, 245 000 people suffered from hunger due to low crop 

yields, as a result of a drought in 2018 (Action Against Hunger, 2018). In 2019, a drought led 

to a decline of more than 70% in maize production in Zimbabwe (Ndlovu & Mjimba, 2021). 

In the past, drought events have wrought havoc across the globe and have remained a recurrent 

phenomenon in sub-Saharan Africa, where 53 severe droughts have been recorded (Mishra & 

Singh, 2010). Seven of these drought episodes occurred in South Africa in 1964, 1986, 1988, 

1990, 1995, 2002-2004 and 2015-2019 (Mishra & Singh, 2010; Bhaga et al., 2020). 

Furthermore, the occurrence of droughts affected a number of Sustainable Development Goals 

(SDGs) between 2015 and 2030 (Zhang et al., 2019), namely, No. 1 (no poverty), No. 2 (zero 

hunger), No. 6 (clean water and Sanitation) No. 11 (sustainable cities and communities), No. 

12 (responsible production and consumption), No. 13 (climate action), No. 15 (life on land) 

and No. 16 (peace and justice) (Nilsson et al., 2016; Zhang et al., 2019; Bhaga et al., 2020). 

Surface waterbodies are often used as a water supply and are vital for humans, animals and 

vegetation (Masocha et al., 2018); however, they are currently vulnerable to climate change 

and variability, as well as to droughts (Zhou et al., 2017; Sheffield et al., 2018). The poor 

management of surface waterbodies and the low precipitation rate can lead to severe water 

shortages, which can be compounded further by the increased susceptibility of the resource to 

climate change, climate variability and droughts (Sheffield et al., 2012; Feyisa et al., 2014). 

Therefore, it is necessary to continuously monitor the waterbodies, in order to detect the onset 

of drought conditions, to determine the availability of water and to ensure its sustainable use.  
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Previously, drought monitoring included the use of paleoclimatology and climatological data, 

such as the precipitation, river flow, soil moisture and evapotranspiration (ET) rates 

(d'Andrimont & Defourny, 2018). Paleoclimatology predicts future climatic conditions by 

analysing and understanding the past climatic conditions (Bhaga et al., 2020). The previous 

methods of monitoring surface waterbodies made use of in-situ measurements by using sensors, 

floats, buoy systems, pressure-type equipment and ultrasonic and radar techniques (Chapuis, 

1998; Janke et al., 2006). However, these methods are costly and time-consuming. The 

equipment is also prone to theft and damage, or it may be problematic to install in inaccessible 

areas (Li et al., 2013). Therefore, the utilization of remotely sensed datasets for monitoring 

droughts and surface waterbodies has the potential to provide repeatable observations (Li et 

al., 2013; Bhaga et al., 2020). 

Using remotely sensed data and multispectral indices allows for the development of spatially-

explicit methods to monitor surface waterbodies and to determine the effect of droughts on the 

water resources. Although numerous studies have investigated the applicability of remotely 

sensed data for surface waterbody monitoring, most of these studies have centred around 

mapping the size of waterbodies (Feyisa et al., 2014; Sarp & Ozcelik, 2017; Masocha et al., 

2018), while not many have been conducted on the monitoring and mapping of surface 

waterbodies in semi-arid environments. This can be attributed to the sparse network of in-situ 

monitoring instruments or the absence of high-resolution spatial data. In addition, the type of 

study being conducted will determine which satellite dataset will be the best one to use, based 

on the temporal, spatial and spectral characteristics of the satellite. The Moderate Resolution 

Imaging Spectroradiometer (MODIS) and the Advanced Very High-Resolution Radiometer 

(AVHRR) are sensors with a coarse spatial resolution of 1 km and might not be suitable for 

surface water monitoring, due to their inability to detect small surface waterbodies. The 

Landsat series and Sentinel 2 have a medium resolution and the data is freely available; 

therefore, they have potential for the monitoring of surface waterbodies as they have a 

relatively higher temporal resolution i.e. 5 to 15 days (Dube & Mutanga, 2015; Seaton et al., 

2020). The use of multispectral water indices seems to be a viable method for classifying 

surface waterbodies, as they are cost-effective, easy to apply and their accuracy is relatively 

high (Seaton et al., 2020).  

Several drought and water indices have been developed and this study will use the following 

indices, based on the results achieved in previous studies: the Normalised Difference Water 
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Index (NDWI), the Modified Normalised Difference Water Index (MNDWI) and the Land 

Surface Water Index (LSWI+5), the Normalised Difference Vegetation Index (NDVI), the 

Vegetation Condition Index (VCI), the Standardised Precipitation Index (SPI) and the Water 

Requirement Satisfaction Index (WRSI). Seaton et al. (2020) used the NDWI, MNDWI and 

NDVI to map the variability of pools along the Breede, Nuwejaars, Tankwa and Touws Rivers 

that are situated in the Western Cape, South Africa, during the 2016–2017 period, by using 

Landsat-8 and Sentinel-2 data. The accuracies ranged from 60 to 86%, which suggests the 

feasibility of using these datasets, and the associated metrics, to detect any variations in the 

surface waterbodies. Benefoh et al. (2018) used LSWI+5 and NDVI to understand the 

landscape of Ghana by using TM, ETM and OLI data from 1986 to 2015, and an overall 

accuracy of 82.6% was achieved. In another study, Jiao et al. (2016) monitored a drought in 

the Continental United States of America by using VCI, NDVI and SPI, and the findings 

indicated that these indices have the potential to monitor drought. Legesse & Suryabhagavan 

(2014) assessed the drought patterns in the East Shewa Zone in Ethiopia by using the WRSI, 

and it was found to be a highly-accurate drought indicator. Similarly, Moeletsi & Walker 

(2012) used the WRSI to classify droughts in the Free State Province in South Africa, and the 

results indicated a high inter-seasonal variability and accurately detected extreme drought 

conditions. The results from these studies have demonstrated the potential of these indices to 

map the occurrence of droughts and surface water variability. A few of these studies have also 

integrated climatic factors, such as rainfall, temperature and ET, to detect the occurrence of 

droughts, and the integration of these multispectral indices with climate data provides a holistic 

approach to the monitoring of droughts and their impacts on the surface waterbodies. However, 

no studies have been conducted by using drought indices and surface water indices to assess 

the effects of a drought on the surface waterbodies in the Western Cape region. By determining 

which dataset is best and using a combination of the drought indices, surface water indices and 

climatic data, researchers and decision-makers will be able to monitor the availability of 

surface water and to improve drought detection. In spite of the improvements in satellite 

remotely sensed data, their ability to detect droughts and to monitor surface waterbodies remain 

unresolved. A study that investigates the consistency between Landsat-8 and Sentinel-2 will 

help data-scarce areas and contribute towards drought mitigation and water resource allocation. 

Therefore, this study tested the use of Landsat-8 OLI and Sentinel-2 MSI data for monitoring 

the impact of droughts on the water resources in the Western Cape Province, South Africa. 
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3.2 Methods and Materials 

3.2.1 Description of the study area 

This study was conducted in the Western Cape Province of South Africa (Figure 3.1) and 

focused particularly on the Cape Metro, Cape Winelands, Overberg and Garden Route regions. 

The Western Cape is situated along the southern-west coast of South Africa and has a 

Mediterranean climate, with warm, dry summers and cold, wet winters. The Western Cape has 

the highest rainfall variability in South Africa and temperatures vary from 23°C in the summer 

to 13°C in the winter. Spatially, rainfall varies from 60 mm/yr to 3345 mm/yr in the 

mountainous regions (Provincial Spatial Development Framework, 2005; Seaton et al., 2020), 

due to the westerly winds and the moisture that is transported from the Indian Ocean onto the 

southern mountains and coastal plains in the Western Cape Region (Mtengwana et al., 2021). 

The waterbodies in the study area are important for the supply of domestic and commercial 

water, as well as for agriculture, ecosystems and for hydro-electric power generation. The 

Western Cape experienced a severe drought from 2015 to 2018, which led to water restrictions 

reaching Level 6b on 1st February 2018 (Muller, 2018), which means that water consumption 

was limited to citizens using 50 litres, or less, per day and borehole water use was discouraged 

in order to protect the groundwater resources (City of Cape Town, 2018). This emphasises the 

importance of monitoring the occurrence of droughts, as well as the availability and variability 

of surface water in this region.  
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Figure 3.1 Map of the study area  

3.2.2 Remote sensing data acquisition and image pre-processing 

The Landsat-8 OLI and Sentinel-2 MSI datasets were acquired for the period between 2016 

and 2020 to coincide with Sentinel-2 data that has been available since 2015. Therefore, 

drought conditions were monitored from 2016 to 2020, due to the limited availability of high-

resolution data. Images were downloaded for both the wet and dry seasons. The cloudless 

images, covering the Cape Metro, Cape Winelands, Overberg and Garden Route regions in the 

Western Cape, South Africa, were acquired freely from the United States Geological Survey 

(USGS) (http://earthexplorer.usgs.gov), with 10 tiles of Landsat-8 OLI and 19 tiles of Sentinel-

2 MSI covering the study area. The Landsat-8 OLI images were downloaded as Level-1, 

GEOTIFF images and these images were projected into the Universal Transverse Mercator 

System, while Sentinel-2 MSI images were downloaded as JPEG2000 images and projected 
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into the Universal Transverse Mercator System. The satellite images underwent atmospheric 

correction, using the Dark Object Subtraction 1 (DOS1) (Masocha et al., 2018; Chen et al., 

2019) tool in Quantum GIS (QGIS) Version 2.18.03. The Sentinel-2 images were corrected by 

using the Sen2Cor pre-processing tool in the Sentinel Application Platform (SNAP) 

(Thamanga & Dube, 2019; Seaton et al., 2020). The 20 m spectral bands of Sentinel-2 were 

resampled to 10 m by using the nearest neighbour resampling method, in order to achieve 

consistency. All tiles were then mosaicked in a GIS environment to form a single image scene. 

The corrected data were then used to compute spectral indices for detecting the surface 

waterbodies. Higher resolution datasets i.e. Google Earth images, were used to assess the 

mapped accuracy of the surface waterbodies from the Landsat-8 and Sentinel-2 data. Details 

of the spectral and spatial characteristics of these satellite images are presented in Table 3.1. 

Table 3.1 Spectral and spatial characteristics of Landsat-8 OLI and Sentinel-2 MSI used 

for this study 

Band Wavelength  Resolution 

Landsat-8 

Blue 0.450-0.515 30 

Green 0.525-0.600 30 

Red 0.630-0.680 30 

Near Infrared (NIR) 0.845-0.885 30 

Shortwave Infrared 1 (SWIR 1) 1.560-1.660 30 

Sentinel-2 

Blue 0.439-0.535 10 

Green 0.537-0.582 10 

Red 0.646-0.685 10 

Near Infrared (NIR) 0.767-0.908 10 

Shortwave Infrared 1 (SWIR1) 1.539-1.681 20 

 

3.2.3 Calculation of indices for detecting drought occurrence and surface waterbodies 

Several indices have been developed to map droughts and surface waterbodies (Mishra & 

Singh, 2011; Huang et al., 2018; Masocha et al., 2018; Seaton et al., 2020) (Table 3.2). These 

indices were developed, based on the absorption and reflectance rates of the waterbodies, and 

they are compared to other materials. The indices are calculated by using several different 

spectral bands to differentiate the waterbodies from the non-waterbodies (Huang et al., 2018; 

Masocha et al., 2018). Two multiband methods, namely the Normalised Difference Vegetation 

Index (NDVI) and the Vegetation Condition Index (VCI), were used to detect and map the 
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occurrence of a drought. Three multiband methods, namely the Normalised Difference Water 

Index (NDWI), the Modified Normalised Difference Water Index (MNDWI) and the Land 

Surface Water Index (LSWI+5), were used to detect and map the surface waterbodies. These 

methods were used to identify and map the occurrence of a drought and the surface waterbodies 

from the Landsat-8 and Sentinel-2 data.  

The NDVI is a vegetation index, but it is also used to detect waterbodies and floods or droughts, 

as it deduces the existence of water by detecting the aboveground biomass (Huang et al., 2018; 

Seaton et al., 2020). The index is computed by using the Near-Infrared (NIR) and red bands 

(West et al., 2019). The VCI is used to detect and track a drought and is able to calculate its 

beginning, magnitude and duration, as well as the impact that it will have on the vegetation 

(Mishra & Singh, 2011; Frischen et al., 2020), by using the NDVI value of the year of interest 

and the minimum and maximum NDVI values of the study period. VCI classes are 

characterised by Kogan’s aridity classification standards (Kogan, et al., 2004). The NDWI was 

introduced by McFeeters  in 1996 (McFeeters, 1996) and delineates surface waterbodies by 

using the green and NIR bands (Feyisa et al., 2014). By using these bands, the land and 

vegetation are suppressed and the waterbodies are enhanced; however, it is known to 

misclassify the built-up areas as water (Asfaw et al., 2020; Seaton et al., 2020). In order to 

address this issue, Xu (2006) developed the Modified NDWI (MNDWI) and used the 

Shortwave Infrared (SWIR) band as an alternative for the NIR band, which further suppresses 

the built-up areas (Feyisa et al., 2014; Asfaw et al., 2020). The Land Surface Water Index 

(LSWI+5) was introduced by Menarguez (2015) by combining the Land Surface Water Index 

(LSWI) with the Enhanced Vegetation Index (EVI) and the NDVI (Menarguez, 2015; Bhaga 

et al., 2020). These indices have been used to assess climate variability, to recognise a drought 

and to assist in water resource management (Huang et al., 2018; Asfaw et al., 2020; Bhaga et 

al., 2020). Where BNIR indicates the Near-Infrared band, Bred indicates the red band. Bgreen 

indicates the green band, BSWIR-1 indicates the first shortwave-infrared band and NDVImin and 

NDVImax indicates the minimum and maximum NDVI values for the study period (Table 3.2). 
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Table 3.2 Selected indices used to detect and map the occurrence of droughts and surface 

waterbodies from Landsat-8and Sentinel-2 datasets 

Index Equation Threshold Reference 

NDVI NDVI = (BNIR - Bred) / (BNIR + 

Bred)  

NDVI < 0 (Rouse et al., 

1973) 

VCI VCI = (NDVI – NDVImin) / 

(NDVImax - NDVImin) * 100 

 (Kogan et al., 

2004) 

NDWI NDWI = (Bgreen - BNIR) / (Bgreen + 

BNIR) 

NDWI>0 (McFeeters, 1996) 

MNDWI MNDWI = (Bgreen - BSWIR-1) / 

(Bgreen + BSWIR-1) 

MNDWI>0 (Xu, 2006) 

LSWI+5 LSWI = (BNIR - BSWIR-1) / (BNIR 

+ BSWIR-1)  

  

EVI < 0.1 and 

(LSWI > NDVI 

or LSWI > EVI) 

(Menarguez, 

2015) 

 

3.3 Climate data acquisition   

Spatial data on the rainfall, temperature, humidity, wind speed and sunshine hours were 

obtained from the online weather database (https://www.timeanddate.com/weather/south-

africa/cape-town/climate) for the years 2016 to 2020, and the ET was derived by using the 

Penman-Monteith method (Trajkovic, 2007), with the formula:  

 

Whereby, Rn is the net radiation, G is the soil heat flux, (es - ea) is the vapour pressure deficit 

of the air, ra represents the mean air density at constant pressure, cp is the specific heat of the 

air, D is the slope of the saturation vapour pressure temperature relationship, g represents the 

psychrometric constant, and rs and ra are the (bulk) surface and aerodynamic resistances. The 

rainfall data were obtained to determine the amount of rainfall variability in the area under 

study, the temperature data were obtained to determine the correlation between the temperature 

and rainfall rates and the evapotranspiration rates were estimated to account for the water loss 

in the area. The climate and ET data were correlated with the derived seasonal and annual 

remotely sensed surface waterbodies, by comparing the size of the surface waterbodies to the 

rainfall and the ET data. The climate and ET data were also used to calculate the drought 
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occurrence indices, which were chosen based on their performance in previous studies 

(Moeletsi & Walker, 2012; Lawal et al., 2019; Bhaga et al., 2020; Kalisa et al., 2020). Two 

indices were used, namely the Standardised Precipitation Index (SPI) and the Water 

Requirement Satisfaction Index (WRSI).  The SPI was introduced by McKee in 1993 (McKee 

et al., 1993), based on the notion that the reduced precipitation rate, compared to the normal 

precipitation rate, is the main cause of the drought conditions. These prolonged periods of 

below-average precipitation rates lead to a shortage of water for numerous natural and human 

needs (Jang, 2018). The SPI has been used to study many aspects of droughts, for example, 

drought prediction, their regularity, spatio-temporal occurrence and climate impact studies 

(Mishra & Singh, 2011). The SPI is based on the precipitation record for the desired study 

period and can be calculated for 3, 6, 9 or 12 months; however, for this study, it was calculated 

every three months, from January 2016 until October 2020, in RStudio by using the SPI 

package and climate data. The obtained SPI values were then classified to establish the degree 

of the drought conditions (Table 3.3) (Jang, 2018). The Food and Agriculture Organisation 

created the WRSI (Legesse & Suryabhagavan, 2014) and specifies the crop performance, based 

on the amount of water available during the growing season. The WRSI is the relationship 

between the actual ET and the potential ET. It was calculated in RStudio by using the climate 

data and the WRSI package for the years 2016 to 2020. The derived WRSI values were also 

classified to determine the extent of the drought conditions (Table 3.4). These indices were 

then correlated with the climate data to provide a holistic approach to drought monitoring and 

its impact on the surface waterbodies. 

Table 3.3  SPI categories for drought classification 
 

SPI VALUES CLASSIFICATION 

2.0+ Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-0.99 – 0.99 Near normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -.199 Severely dry 

-2 and less Extremely dry 

http://etd.uwc.ac.za/ 
 



  

 

83 
 

 

Table 3.4 WRSI drought severity classes 
 

WRSI (%) Drought severity class 

80 - 100 No drought 

70 - 79 Slight drought 

60 – 69 Moderate drought 

50 - 59 Severe drought 

<50 Complete crop failure 

 

3.4 Accuracy Assessments  

Accuracy assessments were conducted for each classified image for the study period, to verify 

the results of the derived classified surface waterbodies and non-waterbodies. Overlaying 800 

randomly-created points (400 for the surface waterbodies and 400 for the non-waterbodies) 

determined the accuracy analysis of the results. The accuracies were assessed, using confusion 

matrices, namely, the user’s accuracy (Equation 3.1), the producer’s accuracy (Equation 3.2), 

the overall accuracy (Equation 3.3) and the Kappa coefficient (Equation 3.4). These accuracy 

metrics were selected based on their ability to indicate the degree of accuracy of the classified 

images (Congalton et al., 1983; Seaton et al., 2020; Dzurume et al., 2021).  Figure 3.2 provides 

a summary of the major steps that were used to identify and map the surface waterbodies. In 

order to test if there were substantial differences, the Analysis of Variance (ANOVA) was used 

in the mapping capability of the remotely sensed estimates. The formulae for each confusion 

matrix are as follows: 

 

User’s accuracy = 
𝑛𝑖𝑖

𝑛𝑖+1
                                                                                                                          (3.1) 

Producer’s accuracy = 
𝑛𝑖𝑖

𝑛+1
                                                                                                                    (3.2) 

Overall accuracy =  
𝛴𝑖=1 

𝑚 𝑛𝑖𝑖

𝑛
× 100%                                                                                                     (3.3)          

Kappa coefficient = 
(total accuracy – random accuracy)

(1− random accuracy)          
                                                                              (3.4) 
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Whereby n is the total number of testing pixels, m is the number of classes, nii is the element 

in the i-th row and the i-th column, ni+ is the sum of the class row and n+i is the sum of the 

class column. 

The Root Mean Square Error (RMSE) was used to assess the accuracy of the VCI, SPI and 

WRSI from 2016 to 2020. The RMSE was calculated as: 

                                                                                             (3.5) 

Where α is the observed value dataset, b is the estimated value dataset and 𝑛 is the number of 

samples.  

 

 

Figure 3.2 Workflow summary of Surface waterbody mapping and accuracy assessment  

3.5 Results 

3.5.1 Seasonal and spatial distribution of surface waterbodies  

Figure 3.3 illustrates the spatial variations in surface waterbodies that were detected by using 

indices computed by using the Landsat-8 (i) and Sentinel-2 (ii) datasets from 2016 to 2020. 
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These images were classified into water (blue) and non-water (white) classes. The four spectral 

water indices, namely the Normalised Difference Vegetation Index (NDVI), the Modified 

Normalised Difference Water Index (MNDWI), the Normalised Water Difference Index 

(NDWI) and the Modified Land Surface Water Index (LSWI+5), were applied to the study area 

to highlight variability of the surface water. Overall, the indices efficiently mapped and 

detected surface waterbodies in the study area by using both sensors. However, the Sentinel-2 

MSI results surpassed the Landsat-8 OLI results. Observations show that both sensors detected 

a high concentration of waterbodies in the south-western parts of the region. As expected, both 

sensors detected more surface waterbodies during the wet season than in the dry season, and 

visually, all the results exhibited comparable patterns of waterbodies. Of the four surface 

waterbody detection indices, the Normalised Difference Vegetation Index (NDVI) showed the 

most promising results in mapping the surface waterbodies in the study area, as they were 

detected with minimal misclassification and, therefore, had the highest accuracy. The Modified 

Normalised Difference Water Index (MNDWI) and the Normalised Water Difference Index 

(NDWI) produced similar results to those of the NDVI. However, the Modified Land Surface 

Water Index (LSWI+5) exaggerated the occurrence of the surface waterbodies and therefore 

had the lowest accuracy, compared to the other indices. The results show that surface 

waterbodies can be discriminated successfully from non-waterbodies across the region of study 

over time, by using these multispectral indices. 

Figure 3.4 shows the performance of the Vegetation Condition Index (VCI) for the years 2016 

to 2020 by using Landsat-8 and Sentinel-2 imagery for the wet and dry seasons, with red 

representing extreme drought, orange is severe drought, yellow representing moderate drought 

and light green representing light drought and green and dark green representing no drought. 

The VCI was compared with the surface water indices and meteorological drought indices, 

namely, the Standardized Precipitation Index and the Water Requirement Satisfaction Index 

(WRSI). Both indices produced similar results for 2018; however, the results for the years 

2016, 2017, 2019 and 2020 differed markedly. Water stress was evident across the study area 

from 2017 to 2018, but the conditions improved during the wet season of 2018, especially in 

the south-western area. The spatial variation in vegetation health is a result of the rainfall 

variability in the region, with the northern regions receiving less rainfall than the southern 

regions. Both satellite datasets detected that the vegetation was extremely impacted by the 
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drought conditions during the 2017 and 2018 dry seasons. The Sentinel-2 results indicate the 

presence of a drought more accurately than those of Landsat-8. 
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(i) 

 

  

a)   LSWI+5              MNDWI              NDVI                    NDWI                                             b)   LSWI+5               MNDWI                NDVI                     NDWI 

                            

c)   LSWI+5              MNDWI              NDVI                    NDWI                                             d)   LSWI+5                  MNDWI              NDVI                    NDWI 

                                                               

 e)   LSWI+5             MNDWI              NDVI                    NDWI                                             f)   LSWI+5                  MNDWI              NDVI                    NDWI 

                                                              

g)   LSWI+5              MNDWI              NDVI                    NDWI                                             h)   LSWI+5                 MNDWI              NDVI                    NDWI 

                                                            

i)   LSWI+5                MNDWI              NDVI                    NDWI                                             j)   LSWI+5                 MNDWI              NDVI                    NDWI 
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(ii) 

 

Figure 3.3 Performance of the four indices applied to different pre-processed images obtained by Landsat-8 (i) and Sentinel 2 (ii): a) 2016 

dry season, b) 2016 wet season, c) 2017 dry season, d) 2017 wet season, e) 2018 dry season, f) 2018 wet season, g) 2019 dry 

season, h) 2019 wet season, i) 2020 dry season, and j) 2020 wet season 

a)  LSWI+5                MNDWI                NDVI                   NDWI                                       b)   LSWI+5                MNDWI                NDVI                   NDWI 

                                                           

c)   LSWI+5                MNDWI                NDVI                   NDWI                                      d)   LSWI+5                MNDWI                NDVI                   NDWI 

                                                       

e)   LSWI+5                MNDWI                NDVI                   NDWI                                      f)    LSWI+5                MNDWI                NDVI                   NDWI 

                                                      

g)   LSWI+5                MNDWI                NDVI                   NDWI                                      h)   LSWI+5                MNDWI                NDVI                   NDWI 

                                                       

i)   LSWI+5                MNDWI                NDVI                   NDWI                                        j)    LSWI+5                MNDWI                NDVI                   NDWI 
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Figure 3.4 Performance of the VCI applied to different pre-processed images obtained by Landsat-8 (a) and Sentinel-2 (b) for the years 2016 

to 2020 for the dry season (i) and wet season (ii)
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i)      2016                2017               2018                   2019                2020                              ii)      2016                2017                2018                   2019                2020 

                                       

 

 

 

 

 

b) 
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3.5.2 Detection of drought occurrence 

The monthly evapotranspiration (ET) rates increased from the years 2016 to 2018, before 

decreasing in 2019 and 2020, with the year 2018 having the highest ET rate, while 2020 

experienced the lowest ET rate (Figure 3.5). The lowest rainfall was recorded in the year 2020, 

with the highest being recorded during 2018 (Figure 3.6). These observed trends could explain 

the derived multispectral results that detected and mapped the occurrence of a drought and the 

surface waterbodies.  

Figure 3.7 shows the Standardised Precipitation Index (SPI) values for every three months, 

from the years 2016 to 2020. The SPI was applied to verify the drought conditions in the study 

area and it was related to other surface water indices and meteorological drought indices. The 

SPI values ranged between -0.99 to 0.99 and indicated almost normal conditions, with values 

lower than -0.99 indicating dry conditions and values higher than 0.99 that indicating wet 

conditions, respectively. January 2018 had the highest SPI value, which confirms the drought 

conditions experienced in early 2018. The year 2020 was classified as a very wet period, 

indicating the end of the drought in the area of study, which confirms the climatological and 

satellite-derived findings. These findings correlate well with the findings derived from the 

surface water indices and the VCI. The results of the Water Requirement Satisfaction Index 

(WRSI) illustrate a moisture deficit during the years 2016 and 2017, which further confirms 

that a drought was experienced during these years (Figure 3.8). The WRSI values increased 

from 2018 until 2020, which correlate with the climatological and multispectral results. When 

the WRSI results were correlated with surface water indices and drought indices, the overall 

results indicate that there was a drought from 2016 until the wet season of 2018. 
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Figure 3.5 Monthly rainfall with the evapotranspiration rates for the Western Cape, South 

Africa 

 

 

 

        Figure 3.6 Monthly temperatures recorded in the Western Cape 
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Figure 3.7 Standardised Precipitation Index values for the study area for the years 2016 to 

2020 
 

 

Figure 3.8 Water Requirement Satisfaction Index values for the study area for the years 

2016 to 2020 
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3.6 Accuracy Assessment of the Satellite-derived Waterbodies and Drought                      

Detection and Mapping Indices 

Figure 3.9 shows the Producer’s Accuracy (PA), the User’s Accuracy (UA), the Overall 

Accuracy (OA) and the Kappa coefficient by using different multispectral indices to identify 

and map the occurrence of droughts and surface waterbodies. Sentinel-2-derived NDVI 

extracted the surface waterbodies with the highest accuracy during the wet and dry seasons. 

The NDVI-derived from Landsat-8 had the best performance for the wet season and the 

Landsat-8-derived MNDWI had the best performance for the dry season. During the dry season 

of 2016, Sentinel-2 data produced the highest accuracy when identifying the surface 

waterbodies. The indices that were used yielded comparable results, except for LSWI, which 

overestimated the presence of surface waterbodies for both satellite datasets and for both 

seasons. The Analysis of Variance (ANOVA) indicated a few differences (Fvalue= 3.40, 

df=399, α = 0.04) when identifying and mapping the surface waterbodies by using multispectral 

indices, which shows that both satellite datasets could identify and map surface waterbodies.  

Figure 3.10 illustrates the Root Mean Square Error (RMSE) for the Vegetation Condition Index 

(VCI), using the Landsat-8 and Sentinel-2 datasets. The Landsat-8-derived VCI outperformed 

the Sentinel-2-derived VCI for both seasons, with the Landsat-8-derived VCI based on the 

2020 dry season having a RMSE value of 76 m2. Furthermore, the RMSE for the Standardised 

Precipitation Index (SPI) calculated every three months, from January 2016 until October 2020, 

shows that July 2020 had the highest RMSE value, followed closely by October 2020 (Figure 

3.11). July 2017 had the lowest RMSE value, which correlates with the SPI results. The SPI 

results for July 2017 do not correlate with the climatological data, as they do not indicate 

drought conditions. However, the climatological data indicate that the region experienced a 

severe drought during July 2017.  

Figure 3.12 shows the RMSE for the Water Requirement Satisfaction Index (WRSI) calculated 

yearly from 2016 until 2020. The year 2018 achieved the highest RMSE of 82.36 m2, which 

correlates with the climatological data, as 2018 received significant rainfall during the wet 

season, which relieved the drought conditions. 
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a(i) 

Index  PA(%) UA(%) OA (%) Kappa coefficient (%) 

 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 

LSWI+5 62.1 53.1 62.7 55.6 57.7 36.5 36.5 37.0 28.5 30.0 57.1 52.1 57.5 52.9 54.0 14.3 4.3 15.0 5.8 8.0 

MNDWI 67.9 83.5 66.0 68.0 75.4 66.3 75.8 70.5 67.5 75.0 67.5 80.4 67.1 67.9 75.3 35.0 60.8 34.3 35.8 50.5 

NDVI 59.4 60.6 63.8 64.2 75.4 79.8 80.3 86.5 79.3 79.5 62.6 64.0 68.8 67.5 76.8 25.3 28.0 37.5 35.0 53.5 

NDWI 58.2 75.0 59.5 60.3 67.4 64.8 89.3 72.8 73.0 80.3 59.1 79.8 61.6 62.5 70.8 18.3 59.5 23.3 25.0 41.5 

b(i) 

Index PA(%) UA(%) OA (%) Kappa coefficient (%) 

 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 

LSWI+5 70.9 59.7 67.2 74.4 66.0 34.8 33.0 40.0 30.5 31.0 60.3 55.4 60.3 60.0 57.5 20.5 10.8 20.5 20.0 15.0 

MNDWI 71.4 62.1 49.3 73.7 75.6 39.3 52.0 41.3 47.8 38.8 61.8 60.1 49.4 65.4 63.1 23.5 20.3 1.3 30.8 26.3 

NDVI 72.0 68.4 70.7 62.3 64.1 75.3 73.5 73.0 61.3 47.8 73.0 69.8 71.4 62.1 60.5 46.0 39.5 42.8 24.3 21.0 

NDWI 73.3 65.1 66.9 67.9 66.2 63.0 66.3 58.5 57.8 54.8 70.0 65.4 64.8 65.3 62.8 40.0 30.8 29.5 30.5 25.5 

a(ii) 

Index  PA(%) UA(%) OA (%) Kappa coefficient (%) 

 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 

LSWI+5 59.8 46.1 66.2 66.3 53.2 35.8 25.0 35.8 27.5 25.3 55.9 47.9 58.8 56.8 51.5 11.8 4.3 17.5 13.5 3.0 

MNDWI 83.2 67.7 70.3 65.5 68.6 78.3 72.8 61.5 68.3 73.8 81.3 69.0 67.8 66.1 70.0 62.5 38.0 35.5 32.3 40.0 

NDVI 79.2 76.6 76.0 70.4 66.9 87.8 80.3 83.8 84.3 81.8 82.4 77.9 78.6 74.4 70.6 64.8 55.8 57.3 48.8 41.3 

NDWI 80.8 71.3 71.4 74.7 70.8 78.8 81.3 76.8 72.3 75.3 80.0 74.3 73.0 73.9 72.1 60.0 48.5 46.0 47.8 44.3 

b(ii) 

Index Producer’s Accuracy (%) User’s Accuracy (%) Overall Accuracy (%) Kappa coefficient (%) 

 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 

LSWI+5 86.3 46.4 64.2 64.7 58.2 28.3 26.0 26.5 27.5 27.5 61.9 48.0 55.9 56.3 53.9 23.8 4.0 11.8 12.5 7.8 

MNDWI 91.1 60.0 75.7 74.6 71.2 46.3 43.5 46.0 52.3 43.3 70.9 57.3 65.6 67.3 62.9 41.8 14.5 31.3 34.5 25.8 

NDVI 79.7 75.2 84.7 78.6 69.6 79.5 67.5 68.0 69.8 61.8 78.1 72.6 77.9 75.4 67.4 59.3 45.3 55.8 50.8 34.8 

NDWI 87.9 78.2 77.6 75.1 77.1 65.3 60.3 62.3 58.0 50.5 78.1 71.8 72.1 69.4 67.8 56.3 43.5 44.3 38.8 35.5 

Figure 3.9 Overall model classification performance for the dry season (a) and wet season (b), based on the Landsat-8 (i) and Sentinel-2 (ii) derived 

indices  
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 2016 2017 2018 2019 2020 

L8 Dry 28 48 70 73 76 

L8 Wet 32 71 66 72 21 

S2 Dry 39 72 75 70 19 

S2 Wet 15 63 65 21 19 

Figure 3.10 RMSE (m2) of the VCI applied to pre-processed Landsat-8 and Sentinel-2 data 
 

 2016 2017 2018 2019 2020 

January 68.02 48.34 73.25 70.16 79.64 

April 69.63 47.54 72.76 73.57 82.91 

July 52.32 29.34 36.92 82.34 84.38 

October 43.87 70.34 68.26 83.35 84.26 

Figure 3.11 RMSE (m2) of SPI for the years 2016 to 2020 

 

 

 

 

 2016 2017 2018 2019 2020 

RMSE value 78.47 67.16 82.36 80.94 79.26 

Figure 3.12 RMSE (m2) of WRSI for years 2016 to 2020 
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3.7 Discussion 

This study examined the use of various multispectral indices obtained from the Landsat-8 OLI 

and Sentinel-2 MSI data to monitor the impacts of the drought on the surface water resources 

in the Cape Metro, Cape Winelands, Overberg and Garden Route regions in the Western Cape, 

South Africa. The climate data and remotely sensed data were integrated to assist with the 

interpretation of the results. The results of the analysis indicated a high surface waterbody 

variability for the study period, which implies the potential of satellite data for monitoring the 

effects of a drought on the surface water resources. Numerous waterbodies were identified by 

Landsat-8 and Sentinel-2 during the wet season, which is expected, as the precipitation is 

higher during the wet season. Both sensors detected few surface waterbodies during the dry 

season in 2017 and early 2018, which indicates a restricted surface water availability across 

the study area and correlates with the recorded climatological data. Climatological reports by 

the Department of Water and Sanitation and the City of Cape Town indicated that this had been 

the worst drought experienced in the area since 2002 (Department of Water and Sanitation, 

2016; City of Cape Town, 2018). Low rainfall rates were recorded from 2016 to mid-2018, and 

2017 was characterized as a drought period, which led to water shortages in the Western Cape. 

High evapotranspiration rates were recorded between the year 2017 and 2018. 

Evapotranspiration is directly linked to temperature and they have a proportional relationship, 

when temperatures are high during the dry season, the ET rates are also high, due to more 

energy being available (Kosa, 2009; Marshall et al., 2012). The availability of surface water 

was severely impacted during this drought period and this could be detected by both sensors; 

therefore, these findings emphasize the need to improve the monitoring of droughts and surface 

water resources. 

Although the multispectral results show visually similar patterns of waterbodies from the 

indices applied to the Landsat-8 and Sentinel-2 images, the LSWI+5 was the exception and had 

the lowest accuracy. This index is centred on the link between vegetation greenness and the 

Enhanced Vegetation Index (EVI), and since most waterbodies are surrounded by vegetation 

and mountainous areas, it is possible that the LSWI+5 index misclassified these land types as 

waterbodies (Chandrasekar et al., 2010; Huang et al., 2018; Bhaga et al., 2020). The LSWI+5 

performed poorly during the wet season and this could be attributed to the index being more 

sensitive to the plant leaf water content and soil water content, which led to the overestimation 
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of the surface waterbodies (Chandrasekar et al., 2010; Jin et al., 2013; Bhaga et al., 2020). The 

tendency of the index to overestimate the area of surface waterbodies has previously been 

documented in literature (Jin et al., 2013; Seaton et al., 2020; Bhaga et al., 2020); therefore, it 

may not be appropriate for mapping surface waterbodies in highly-vegetated environments, 

due to the confusion arising from its sensitivity to the leaf water content.  

The results from the MNDWI, NDVI and NDWI had similar performances, although the 

Sentinel-2-derived NDVI had the highest accuracy, irrespective of the seasonal differences, 

with an overall accuracy of 71.9% for the dry season and 67.6% for the wet season. NDVI is 

sensitive to plant biomass and therefore indicates water stress, which leads to high accuracies 

in mapping surface waterbodies. The NDWI was able to delineate the vegetation and 

waterbodies, as the green band maximises the reflectance of the waterbodies and minimises the 

low reflectance of near-infrared (NIR) reflection of the waterbodies, while simultaneously 

using the high reflectance in the NIR of vegetation and soil. This enhances the surface 

waterbodies and restricts the vegetation and soil features; however, not all built-up features can 

be suppressed and small waterbodies may not be detected (Huang et al., 2018; Bhaga et al., 

2020). The MNDWI was developed in order to identify waterbodies in built-up areas. The 

MNDWI uses the green band and shortwave-infrared (SWIR) band, because it is able to reflect 

the elusive properties of water, which reduces its sensitivity to the presence of sediments in the 

surface waterbodies (Huang et al., 2018), hence the higher accuracy during the dry season, as 

the water is not as turbulent (Li et al., 2013). However, mountainous areas are still misclassified 

as water, due to the low albedos and the effects of shadows from mountainous terrain (Sarp & 

Ozcelik, 2017; Seaton et al., 2020). The MNDWI, NDVI and NDWI had reasonable overall 

accuracies; the lowest accuracy was recorded for the year 2017, which was the year in which 

the lowest rainfall rates and highest ET rates were experienced. The results obtained from 

Sentinel-2 indicate that it outperformed Landsat-8 during both seasons. The complexities of 

mapping surface waterbodies were primarily caused by the mixed pixels at the edges of the 

waterbodies and shadows, due to the neighbouring landscape. These challenges were also 

experienced by Masocha et al. (2018) and Seaton et al. (2020).  

The variations of the detected surface waterbodies were significant over the study period, as 

they decreased in size and dried up, due to the low precipitation rates and high ET. High ET 

rates are experienced, due to higher temperatures, which causes the surface waterbodies to dry 

up. Little rainfall is received throughout the dry season, due to the Mediterranean climate. This 
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was shown by both satellite datasets and it correlates with the studies conducted by the 

Department of Water and Sanitation (2016), City of Cape Town (2018) and Department of 

Water and Sanitation (2018). The volume of surface waterbodies decreased due to the low 

amount of precipitation received in 2016, 2017 and the dry season of 2018, which emphasised 

the drought period experienced by the Western Cape Province (Department of Water and 

Sanitation, 2018; Muller, 2018). The study conducted by the Department of Water and 

Sanitation (2018) indicated that the main dams in the Western Cape, namely, the 

Theewaterskloof, Voëlvlei, Berg River, Wemmershoek, Steenbras Upper and Steenbras Lower 

Dams, all experienced low dam levels in November 2017. Theewaterskloof Dam, which is the 

city’s main water supplier, was only 27.2% full, and the Voëlvlei Dam was 28.5% full. They 

also noted that the Theewaterskloof Dam had high ET rates in 2017 and early 2018, which 

emphasises the drought conditions and further confirms the results of this study. However, after 

the wet season in 2018, the Theewaterskloof Dam level was 57.9% full and the Voëlvlei Dam 

was 96.1% on the 31st October 2018. This corroborates the results of this study, as the rate of 

precipitation increased during the wet season of 2018, which caused the size of the surface 

waterbodies to increase and eased the drought conditions in the Western Cape. The high 

precipitation rates in 2019 and 2020 led to the increased size of the surface waterbodies.  

The Vegetation Condition Index results by Landsat-8 and Sentinel-2 indicated the drought 

conditions experienced by crops in the region of study. The findings showed that a severe 

drought was experienced in 2017 and during the dry season of 2018, which supports the other 

satellite data findings and climatological data. The Landsat-8-derived VCI is more accurate 

than the Sentinel-2-derived VCI, as the Sentinel-2 results overestimated the drought conditions 

and did not relate to the other multispectral and climatological results. The application of the 

Standardized Precipitation Index (SPI) has gained importance as a potential drought indicator 

(Kalisa et al., 2020). The SPI results were used to quantify the drought and these results 

supported the satellite data findings and the climatological data, which classified 2016 and 

2017 as moderately and severely dry. The SPI also classified July (the wet season) as having 

near normal to wet conditions, which is expected, as the study area receives most of its 

precipitation during this month. The SPI results showed that from the wet season of 2018, 

conditions returned to being near normal to wet, due to an increase in precipitation. The Water 

Requirement Satisfaction Index (WRSI) is often applied to study the variations in a drought 

over space and time (Legesse & Suryabhagavan, 2014). Low WRSI values indicate drought 
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conditions, and this was revealed during 2016 and 2017, with 2016 having a value of 60% and 

2017 having a value of 59%, which indicate a moderate and a severe drought, respectively. The 

WRSI values started increasing yearly from 2018, which was confirmed by the climatological 

results, as well as the multispectral results, of this study. The performance of Landsat-8-derived 

VCI and the SPI and WRSI is relatively accurate and achieved acceptable RMSE values, which 

indicates that these indices can be used as drought indicators.  

The findings of this study indicate that Sentinel-2 MSI imagery had a slightly higher accuracy 

in the mapping of the surface waterbodies, in comparison to Landsat-8 OLI imagery. This is 

due to the 10 m spatial resolution, which can detect small waterbodies. The push-broom 

characteristic of Sentinel-2 allows the sensor to scan along the track, which improves its ability 

to detect the surface features (Dube & Mutanga, 2015; Bhaga et al., 2020). The results of this 

study prove that satellite data are suitable for monitoring the impacts of a drought on the water 

resources, with NDVI being the best index for extracting surface waterbodies. The Landsat-8-

derived VCI detected drought conditions more accurately than the Sentinel-2, and the SPI and 

WRSI achieved high RMSE values, which means that they are suitable for detecting drought 

conditions. When combined, our results emphasise the importance of satellite data, not only 

for mapping surface waterbodies, but also for assessing the impacts of a drought on the surface 

water resources. Their ability to do this lays a strong foundation for sustainable water resource 

monitoring and management, as remotely sensed data are freely available at a moderate 

resolution. This is extremely important in drought-prone areas, where access to information is 

costly or scarce.  

Other studies were able to show the considerable contribution made by vegetation indices; 

however, the findings of these were not often correlated with the climatological data. There is 

also inadequate documentation on the use of remote sensing for monitoring the impact of 

droughts on the water resources in the Western Cape and beyond. This study investigated the 

effects of a drought on the surface water resources in the Western Cape by using drought 

indices, surface water indices and climatological data. The results indicate that water 

availability responds to changes in the climatological variables, which will help to predict 

drought conditions in a timely, reliable and cost-effective manner. This is important for water 

resource management, as it is vital for determining how much water is available for use. This 

study was able to correlate the multispectral results of the surface waterbodies with the drought 

multispectral results and with the climatological data and to note a relationship between these 
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datasets, as the climate impacts the surface water resources. When the precipitation rates were 

low, the size of the waterbodies shrunk, and when the size of the waterbodies was extremely 

small over a prolonged period, the region experienced drought conditions. Therefore, the 

climatological data was able to consolidate the remote sensing results. Overall, the outcomes 

of this study provide a new understanding of the application of multispectral indices, 

climatological data and the usefulness of sensors for monitoring the impacts of drought on the 

water resources. The results can be vital in decision-making and in the development of new 

policies. However, the results of the study were also limited, as a result of the misclassification 

of shadows from mountainous regions and built-up areas. In the future, more studies need to 

be conducted over larger areas, in order to test the suitability of using remotely sensed data, 

multispectral indices and climatological data to monitor the impacts of drought on water 

resources on a national level. There is also a need for future studies to improve the indices, so 

that they can differentiate between shadows from mountainous areas and surface waterbodies 

more accurately. 

3.8 Conclusion  

This study investigated the possible application of satellite imagery for monitoring the impacts 

of a drought on the water resources in the Cape Metro, Cape Winelands, Overberg and Garden 

Route regions of the Western Cape, South Africa. Three surface water multispectral indices 

and four drought detection indices were used to establish the most appropriate technique for 

surface water detection and drought monitoring. These indices were closely linked to 

climatological data, such as the evapotranspiration (ET) rate, the precipitation rate and the 

temperature. There appeared to be a relationship between the ET rate, precipitation and the 

detected surface waterbodies. When there was an increase in precipitation, the size of the 

surface waterbodies increased, and when there was an increase in ET, there was a decrease in 

the size of the surface waterbodies. The Sentinel-2-derived NDVI was the most appropriate 

method for identifying and mapping surface waterbodies, with an overall classification 

accuracy of 77.27%, and the Landsat-8-derived VCI was the most accurate method for 

detecting drought conditions. The results of this study show that Landsat-8 and Sentinel-2 

produced similar results for the study region; however, Sentinel-2 generated higher accuracies. 

Most importantly, the outcomes of this study showed the reliability of using freely available 

satellite images for informing water resource management. It is therefore essential to monitor 

drought patterns and their effect on the water resources. Derived information helps to address 
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and mitigate the impacts of a drought on a short- and long-term basis. The application of remote 

sensing provides for rapid drought detection and the near real-time monitoring of water 

resources, which is vital for the water resource management of drought-prone areas.   
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CHAPTER 4 

A SYNTHESIS:  MULTISPECTRAL REMOTE SENSING OF THE 

IMPACTS OF DROUGHT AND CLIMATE VARIABILITY ON WATER 

RESOURCES 
 

4.1 Introduction 

Surface waterbodies are vulnerable to drought and need to be monitored in an efficient manner 

(AghaKouchak et al., 2015). Therefore, there is a need to determine the onset of drought 

conditions, especially in drought-prone regions. Drought prediction and the monitoring of 

surface waterbodies is vital for water resource management, as well as for mitigation and 

adaptation strategies. Although research has been conducted on the detection and mapping of 

droughts and surface waterbodies, many of these studies have not been conducted in sub-

Saharan Africa, and more particularly, not in the Western Cape Province of South Africa. The 

traditional methods used for drought detection and surface waterbody monitoring have been 

challenging because they are time-consuming and costly. The use of MODIS and Landsat 

TM/ETM+ images have previously been used to detect droughts and to map surface 

waterbodies; however, their results are not very accurate in complex environments. With the 

advancements in remote sensing, Landsat-8 and Sentinel-2 have been developed with a high 

spectral, spatial and temporal resolution, and they have been used in recent studies to map 

surface waterbodies with reliable and highly accurate results (Sarp & Ozcelik, 2017; Masocha 

et al., 2018; Seaton et al., 2020; Bhaga et al., 2021). Remote sensing therefore provides new 

opportunities for the accurate detection, mapping and monitoring of droughts and surface 

waterbodies, as well as determining the impact of droughts on surface waterbodies (Varghese 

et al., 2021). Hence, the objectives of this study were: 

a) to develop a model for the retrieval and tracking of the changes and impacts of drought 

and climate variability on surface waterbodies from the multispectral archival data; and 

b) to assess the impacts of drought and climate variability, as well as the 

evapotranspiration rate, in selected sub-catchments, by using the available ET products 

and in-situ data. 
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4.2 Summary of Findings 

Two multispectral remotely sensed data sources (Landsat-8 and Sentinel-2) were assessed for 

the detection and mapping of the impacts of drought on surface water resources, in order to 

provide reliable information on the variability of water resources. The results of this study have 

successfully demonstrated the capability of both satellite datasets to detect and map the 

occurrence of a drought and its impacts on the surface waterbodies. The results showed that 

both satellite datasets are able to adequately detect and map surface waterbodies. The Analysis 

of Variance (ANOVA) showed that there was a significant statistical difference between the 

two sensors in the discrimination of surface waterbodies from non-waterbodies (α = 0.04). 

However, Sentinel-2 yielded better overall accuracy results, with an improved user’s and 

producer’s accuracy in detecting and mapping surface waterbodies, compared to Landsat-8. 

This could be due to the high spectral and spatial resolution of Sentinel-2. The Sentinel-2-

derived Normalised Difference Vegetation Index (NDVI) produced the best overall accuracy 

results and was able to differentiate between the drought periods and normal conditions by the 

variability in surface water size and their occurrence. The Modified Land Surface Water Index 

(LSWI+5) produced the lowest overall accuracy results for both sensors and overestimated the 

occurrence of surface water resources; it was therefore unable to identify drought conditions. 

Overall, the results have demonstrated the improved capability of Sentinel-2 to detect and map 

surface waterbodies with less overestimation, which therefore makes it more accurate for the 

monitoring of surface water resources and for assisting in the detection of droughts.  

Secondly, evapotranspiration (ET) data and climatological data were analysed together with 

the remote sensing data, in order to interpret the results more accurately and to note the 

variability in the surface waterbodies, to indicate either drought or normal conditions. 

Climatological data, namely the Vegetation Condition Index (VCI) and Standardized 

Precipitation Index (SPI), were also used to calculate drought indices, and the Water 

Requirement Satisfaction Index (WRSI) was used to classify the drought conditions. The 

changes in the variability of the surface waterbodies were significant over the study period. 

They decreased in size due to the lack of precipitation and the high ET rates. The volume of 

the surface waterbodies changed in response to the seasonal rainfall; however, due to the low 

precipitation rates in 2016 and 2017, there was no significant increase in the volume of the 

surface waterbodies, which indicated drought conditions. The size of the surface waterbodies 

was extremely small during the dry season of 2018, which emphasized the drought period in 
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the Western Cape. The rate of precipitation increased during the wet season of 2018 and 

continued to increase in 2019 and 2020, which caused the size of the surface waterbodies to 

increase and indicated the end of the drought period.  

Overall, the study demonstrated the use of integrating multispectral and climatological data in 

the detection of droughts and for assessing the impacts of a drought on the water resources. 

This capability provides reliable and vital information on drought conditions and the variability 

of water resources within the study area. Therefore, these results will provide the necessary 

information for the mapping and management of surface water resources and will help to 

provide drought preparedness and mitigation.  

4.3 Conclusion 

The main aim of this study was to assess the extent to which remote sensing datasets can be 

used to monitor the impacts of a drought on the water resources in the Western Cape, South 

Africa. The findings of this study highlighted the capabilities of multispectral remote sensing 

satellite imagery in the detection and mapping of surface waterbodies. Based on the objectives 

of the study, the following findings were obtained:  

• Landsat-8 OLI and Sentinel-2 MSI have the great capability of mapping and detecting 

the occurrence of a drought and its impacts on the surface water resources. However, 

Sentinel-2 outperformed Landsat-8, due to its improved spectral and spatial resolution. 

As a result, it can aid in water resource management and decision-making. 

• Remotely sensed multispectral indices demonstrated their capability to track the 

variability of surface water. 

• The Sentinel-2-derived NDVI yielded the most accurate results. 

• ET, in conjunction with other climatological data, can be used to monitor drought 

conditions and surface water variability. 

• SPI and WRSI can accurately detect drought conditions in the study area. 

• Drought conditions were detected from 2016 to the wet season of 2018, which 

correlates with the conditions experienced in the study area. 

Overall, the results provide for the near real-time monitoring and effective management of 

surface water resources. Thus, this approach can help water resource managers with 

management and drought preparedness, especially in arid and semi-arid regions.  
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4.4 Recommendations   

The results obtained in the present study provide an insight into the impacts of drought on water 

resources and their spatial variability. These results also provide new insights into the 

developments in remote sensing and their potential application in the detection and mapping 

of droughts and their impact on water resources. There is therefore a need to shift towards using 

freely- and readily available remote sensing datasets that have an improved spatial and spectral 

resolution. This study makes the following recommendations for future research: 

• The results of this study suggest that Landsat-8 is not suitable for mapping the spatial 

variations in surface waterbodies; therefore, it is recommended that Sentinel-2 be the 

primary dataset. 

• In the future, more studies need to be conducted over larger areas, to test the suitability 

of using remotely sensed data, multispectral indices and climatological data to monitor 

the impacts of droughts on water resources on a national level. 

• There is a need for future studies to develop indices that improve the differentiation of 

mountainous areas and surface waterbodies, as satellite images are susceptible to 

shadows, built-up areas, cloud cover and pixel mixing. 

• The remote sensing results need to be blended with climatological data to test if this 

will reduce the varying estimations. 

• More studies need to be conducted in sub-Saharan Africa, especially in South Africa, 

to test the applicability of remote sensing for improving drought detection and water 

resource management.  
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