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ABSTRACT 

Wetlands are highly productive systems that act as habitats for a variety of flora and fauna. 

Despite their ecohydrological significance, wetland ecosystems are under severe threat as a 

result of environmental changes (e.g. the changing temperature and rainfall), as well as 

pressure from anthropogenic land use activities (e.g. agriculture, rural-urban development 

and dam construction). Such changes result in severe disturbances in the hydrology, plant 

species composition, spatial distribution, productivity and diversity of wetlands, as well as 

their ability to offer critical ecosystem goods and services. However, wetland degradation 

varies considerably from place to place, with severe degradation occurring particularly in 

developing regions, such as sub-Saharan Africa, where Land Use and Land Cover changes 

impact on wetland ecosystems by affecting the diversity of plant species, productivity, as 

well as the wetland hydrology. These impacts are further exacerbated by poor management 

practices, which lead to their under-utilisation and an over-reliance on them for people’s 

livelihoods. Although wetlands threats are well-documented, the focus has only been directed 

on larger wetland ecosystems, under the Ramsar Convention, rather than on the over-utilised 

and isolated small wetlands. Currently, the distribution and status of small wetlands remains 

poorly understood, particularly unprotected wetlands that support human livelihoods. This 

has been largely due to the lack of accurate spatial resolution and robust techniques, as well 

as reliable data sources, which are necessary for wetland estimation and continuous 

monitoring on a small and large scale. The crop of new-generation satellite sensors i.e. 

Landsat 8 Operational Land Imager (OLI) and Sentinel-2 Multi-Spectral Imager (MSI) data, 

which have a unique sensor design and improved sensing characteristics, is perceived to 

provide new prospects for the mapping and monitoring of the extent and condition of 

wetlands. The accurate monitoring of changes in the spatial extent, hydrological dynamics, 

vegetation species diversity and productivity patterns of wetland ecosystems provides critical 

information on the factors that are causing their deterioration. Therefore, this study aimed at 

assessing the impacts of land use and land cover change on wetland productivity and the 

hydrological processes, using remotely-sensed dataset. The study was conducted in Maungani 

wetland located in Limpopo Province of South Africa. To achieve this, historical Landsat 

data were used to assess the wetland changes over a period of 36 years (1983-2019). During 

the study period, the Maungani wetland lost 728 400 ha, mainly due to built-up areas and 

agricultural fields. The changes within the wetland were mapped with a high Overall 

classification Accuracy (OA), ranging from 77.55% to 92.69%. Furthermore, Sentinel-2 MSI 
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was used to model the diversity and productivity of the wetland vegetation species, by using 

diversity indices. The findings showed that the diversity and biomass of the wetland 

vegetation species can be estimated with a high accuracy by using Sentinel-2 MSI data. For 

instance, the model performances ranged from a r2 of 0.54 (54.72%) (RMSEP = 0.572 gm-2) 

to r2 of 0.84 (84%) (RMSEP = 0.067 gm-2), respectively. Furthermore, the red-edge bands, 

centered at 750 nm (B5), 740 nm (B6), 783 nm (B7) and 863 nm (B8a), were identified as the 

most influential variables in estimating wetland vegetation biomass and species diversity. The 

capabilities of Sentinel-2 MSI and the derived spectral indices were also used to assess the 

hydrological dynamics of wetlands and the extent of inundation. The results revealed that 

monthly meteorological data have influenced the status of the water presence and inundation 

in the Maungani Area. In addition, the vegetation configurations and moisture content 

demonstrated that the wetland inundation declined during the dry months (May, June and 

July). The presence of water was also associated with increased rainfall during the wet 

season. The extent of wetlands declined during the drier period, due to less rainfall (0.20-0.60 

mm) and a decreased actual evapotranspiration (9.90 mm-10.43 mm). The findings of this 

study underscore the relevance of new-generation Sentinel-2 MSI data for estimating and 

mapping the presence of wetland water, vegetation diversity and biomass, particularly in 

small wetlands that are non-Ramsar sites. The spatially-explicit and periodic information 

offered by satellite remote sensing demonstrated a unique opportunity for documenting and 

understanding the ecohydrological dynamics of small and neglected wetlands. This 

information is beneficial for the development of tailor-made wetland management strategies 

and for a possible rehabilitation framework for unprotected wetland ecosystems, which was 

previously a challenging task, when using broadband multispectral sensors.  

 

Keywords: Anthropogenic activities; change detection; ecohydrological modelling; 

livelihoods; satellite data; wetland agriculture; wetland status 
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1.1. Importance of Small Wetland Ecosystems in the African Context 

Wetlands are described as areas with low water levels that are often near the ground surface 

and that are characterised by hydrophytic plants during the growing season (Barducci et al., 

2009; Liu et al., 2020). They exist where the soil is either saturated or inundated with 

available water for varying durations (seasonal, inter-annual and decal) and frequencies (Reis 

et al., 2017; Chatanga, 2019; Zhang et al., 2020). Wetlands experience periodic flood 

inundation, which exhibits changes in the spatial distribution and temporal duration (Zhao et 

al., 2015). They occur in different landscapes across the globe and occupy approximately 9.2 

million km2, with 1.3 million km2 being found in Africa (Melendez-Pastor et al., 2010; 

Rebelo et al., 2010; Kabiri et al., 2020). Only 146 wetlands in Africa have been recognised 

by the Ramsar Convention as having international importance (Gardner et al. 2018; Xu et al. 

2019); however, unprotected (small) wetlands that support neighbouring and predominantly 

rural communities are continuously being ignored. Small wetlands are productive ecosystems 

that serve the impoverished communities in developing regions, especially in sub-Saharan 

Africa (Rebelo et al., 2010; Marambanyika et al., 2017). Because of their ecological 

complexity, wetlands contribute in a diverse way (socially, economically, aesthetically and 

ecologically) to the livelihoods of millions of people by providing several benefits (grazing, 

irrigation, agricultural practices and a water supply) (Rabelo et al., 2010). Small wetlands 

support the livelihoods of many more rural and poor households than the large wetlands 

under the Ramsar Convention.  

 

Despite their vast expanse and benefits for sustaining human well-being, many wetlands 

remain threatened by anthropogenic activities and environmental change. Anthropogenic land 

use activities complicate the functionality of ecosystems and reduce the spatial extent of the 

existing small wetlands. Anthropogenic land use change, such as rural-urban expansion and 

rapid population growth, put more pressure on these systems, which results in their 

deterioration, in terms of their spatial extent (Brody, 2013). Farmers in developing regions 

depend extensively on unprotected wetlands for subsistence agricultural purposes which, in 

turn, have a cumulative impact on the catchment hydrology. Verhoeven and Setter (2010) 

demonstrated that farmers degrade wetland ecosystems by converting large portions of 

wetland into agricultural fields, due to their fertile and rich soil, the extent of inundation, as 

well as their water availability. The over-extraction of water for irrigation purposes drains the 

spatial extent of wetlands and hampers the hydrological regime, which results in a shift of 

dominant vegetation, by reducing the species frequency, their richness and evenness, as well 

http://etd.uwc.ac.za/ 
 



3 
 

as the loss of sensitive species (Elton et al., 2011). In addition, the changing climatic 

conditions, such as the rising temperatures, changes in the rainfall patterns and evaporation, 

further influence the disruption of the wetland processes (a reduced inundation area and a loss 

of water through evapotranspiration). The rate of wetland degradation is further exacerbated 

by the lack of conservation skills and a lack of knowledge by wetlands users, on a local scale. 

However, where information is available, it is often geared towards the relatively large 

wetlands and there is less focus on understanding the value of smaller wetlands, probably 

because they are considered to be insignificant. A lack of up-to-date and reliable spatial 

information on wetland loss, degradation and fragmentation threatens the biodiversity and 

functioning of the ecosystem, which further complicates the management of wetland 

ecosystems. Therefore, the detection, mapping and monitoring of small wetlands provides the 

required baseline information for ecological restoration and conservation efforts.  

 

Traditionally, wetland management efforts rely on non-periodic surveys that are costly and 

laborious, and consequently, their application lacks spatial representation; it therefore 

becomes challenging for continuous monitoring, particularly in relatively small areas. To 

alleviate these limitations, remotely-sensed data have since emerged as the most suitable 

primary data source for mapping and monitoring wetlands conditions at varying spatial 

scales. By using remotely-sensed data, the LULC changes and their associated impacts on 

small wetland ecosystems can be traced and quantified. Given the scarcity of ground data or 

the lack of data access, due to institutional restrictions, remotely-sensed data therefore 

provide unique opportunities for wetland monitoring, particularly in data-scarce 

environments.  

 

1.2. The Remote Sensing of Small Wetland Ecosystems 

Remote sensing has been a valuable tool for evaluating land use and land cover (LULC) 

change since the 1960’s (Taramelli et al., 2010; Tiner, 2015). Several satellite sensors, with 

varying spatial and temporal resolutions, have been widely used for the modeling and 

monitoring of LULC changes (Wang et al., 2012; Sun et al., 2014; Watson et al., 2014), 

wetland areas (Dronova et al., 2015; Mizuochi et al., 2017; Dzurume et al., 2021), invasive 

aquatic plant species (Thamaga and Dube, 2019), hydrological dynamics (Hiyama et al., 

2017; Xie et al., 2015; Mondal and Pal, 2018), vegetation abundance and productivity 

(Lumbierres et al., 2017), as well as the carbon cycle and climate warming in wetland 

environments (Raymond et al., 2013; Kreplin et al., 2021). Other studies have reviewed 
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remote sensing applications on wetland ecosystems and addressed issues of wetland 

degradation, classification, change detection, as well as vegetation abundance and 

productivity (Gxokwe et al., 2020; Thamaga et al., 2021). The use of remotely-sensed data 

and modelling techniques is critical for assessing the effects of LULC transformation on 

freshwater resources in data-scarce watersheds. Long-term hydrological monitoring is 

essential for evaluating the human and environmental impacts and wetland health, which are 

critical for their management and restoration. The spatial extent and temporal value of 

wetlands need to be understood well, since they determine their usage and contribute to 

human livelihood profiles and conservation. This knowledge is critical in decision-making 

and can reduce the unsustainable use of wetland ecosystems (Turpie, 2010). Although studies 

have shown the capabilities of remote sensing in the monitoring and mapping of wetlands, 

the focus has been directed mostly on larger wetlands that have been designated by the 

Ramsar Convention, while neglecting the small wetland ecosystems, despite them playing a 

critical role in developing regions. Using newly-developed satellite sensors, such as Landsat 

and Sentinel data, for the monitoring and assessment of small wetland ecosystems provides 

new opportunities for understanding their ecohydrological dynamics. Several studies have 

demonstrated the strength of newly-launched satellite images in the characterisation, mapping 

and monitoring of various species (Dube and Mutanga, 2015a; Thamaga and Dube, 2019). 

For example, Thamaga et al. (2019) observed the capabilities of Sentinel-2 MSI data in 

mapping and monitoring seasonal aquatic invasive alien plant species, with a high 

classification accuracy. Due to improvements in the new satellite sensors, they are perceived 

to provide avenues for the monitoring and mapping of small wetland ecosystems (ecosystem 

change, vegetation diversity and productivity, hydrological dynamics), which was previously 

difficult to accomplish with broadband satellite sensors.  

 

1.3. Aims and Objectives 

The main aim of this study is to assess and monitor the impacts of Land Use and Land Cover 

(LULC) change on the productivity and hydrological condition of wetlands, using remote 

sensing and geospatial analytics.  

 

The objectives of this study are as follows: 

(i) to provide an overview of remote sensing application in wetland ecosystems and to 

assess the impacts of LULC change on wetlands; 
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(ii) to evaluate the state of the environment of small wetland ecosystems and to estimate 

the remaining percentage of wetlands in the Limpopo Transboundary River Basin;  

(iii) to quantify the species diversity in wetlands in the Limpopo Transboundary River 

Basin as a proxy of the wetland conditions, using a remotely-sensed dataset; and  

(iv)  to monitor the impacts of LULC on the wetland hydrological dynamics of the 

Limpopo Transboundary River Basin. 

 

1.4. Structure of the Research  

This thesis consists of seven chapters. Apart from the first chapter, which focuses on the 

general introduction, and the last chapter, which contains a synthesis of the research work, 

this thesis consists of four stand-alone papers (Chapter 2, 3, 4 and 5). The review paper 

(Chapter 2) published, two (Chapter 3 and 4) manuscript are accepted and one manuscript 

under review in different journals and they answer each objective in this study. Therefore, 

each paper is comprised of an individual Introduction, Materials and Methods, Results and 

Discussion section. The published chapters have their own style, according to the publishing 

journal. Although attempts were made to conform to a general style in the thesis, there may 

be some overlapping and repetition in some of the sections. 

 

Chapter One: This chapter provides a general overview of the research background and it 

outlines the objectives and structure of the thesis. 

 

Chapter Two: Information on the state-of-the-art methods in optical imagery for the 

successful detection of surface water are combined and presented in this chapter.  

 

Chapter Three: This chapter evaluates the capability of Landsat datasets in detecting and 

mapping the state of the Maungani wetland ecosystem. The information of the wetlands has 

changed over time (1983-2019) and was extracted by using Landsat datasets and the Support 

Vector Machine (SVM).  

 

Chapter Four: Integrated Sentinel-2 MSI datasets and species diversity indices i.e. 

Margalef, Pielou, Shannon-Wiener and Simpson, are used to model the wetland vegetation 

species diversity and productivity in this chapter.  
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Chapter Five: This chapter assessed the wetland ecohydrological dynamics using monthly 

(July 2020-June 2021) Sentinel-2 MSI datasets and spectral indices i.e. the Normalised 

Differences Moisture Index (NDMI), the Normalised Difference Phenology Index (NDPI) 

and the Modified Normalised Difference Water Index (MNDWI). Climate data i.e. rainfall, 

temperature and evapotranspiration were used to assess the extent of water coverage and 

inundation. 

 

Chapter Six: This chapter synthesises and consolidates the findings, the discussions and the 

overall conclusions of the four preceding chapters. Based on the limitations pointed out in the 

study, this chapter also makes recommendations (perspectives) for future research. Lastly, the 

Reference List is provided to acknowledge the work of other authors that was used in this 

thesis. 
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CHAPTER TWO 

ADVANCES IN SATELLITE REMOTE SENSING OF THE 

WETLAND ECOSYSTEMS IN SUB-SAHARAN AFRICA 

 

 

 

 

This chapter is based on: 

 

Thamaga K.H., Dube, T., Shoko, C., 2021. Advances in satellite remote sensing of the 

wetland ecosystems in sub-Saharan Africa. Geocarto International, 1-19. 

https://doi.org/10.1080/10106049.2021.1926552. 
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Abstract 

Wetlands are highly-productive systems that act as habitats for a variety of fauna and flora. 

Despite their ecohydrological significance, wetland ecosystems are under severe threat from 

the global environmental changes, as well as from the pressure of anthropogenic activities. 

Such changes result in severe disturbances in the composition of plant species, their spatial 

distribution, productivity and diversity, as well as their ability to offer critical ecosystem 

goods and services. However, wetland degradation varies considerably from place to place, 

with severe degradation occurring in developing regions, especially in sub-Saharan Africa. 

This is due to poor management practices, which lead to their under-utilization and the over-

reliance on them for livelihoods. The lack of monitoring and assessment in this region has 

therefore led to the lack of a consolidated and detailed understanding of the rate of wetland 

loss. For example, the lack of up-to-date and reliable spatially-explicit information further 

complicates the management of wetland ecosystems in semi-arid tropical environments. To 

monitor, understand and document the wetland degradation rate, it remains imperative that 

remote sensing is used for the accurate estimation and precise mapping of present and 

historical information. Similarly, there is a need to develop robust methodologies to precisely 

assess and monitor wetland degradation, the ecohydrological processes and the condition of 

wetlands over space and time. This work, therefore, provides a comprehensive overview of 

the remote sensing applications that are used for the monitoring and mapping of wetland 

ecosystems. It also highlights the strengths and challenges associated with the use of satellite 

data for the purpose of wetland monitoring. The spatially-explicit and periodic information 

offered by satellite remote sensing provides a unique opportunity for documenting and 

understanding wetlands, the ecohydrological processes and the environmental conditions. 

 

Keywords: Human influence; remote sensing; satellite data; spatial resolution; species 

diversity; wetland degradation; wetland productivity 
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2.1 Introduction 

Wetlands are distinctive, complex ecohydrological systems that occur within a wide range of 

climatic and topographical environments. They constitute one of the world’s most productive 

and important natural resources. Wetlands fall under central public management and they are 

recognized as an integral part of a productive ecosystem that is capable of supporting the 

2030 UN Agenda on Sustainable Development Goals (SDGs) (Kakuba and Kanyamurwa, 

2021). The wetland hydrophytic vegetation species, hydromorphic soil and hydrology are a 

critical part of wetland ecosystems, and they contribute towards the provision of fundamental 

goods and services. For instance, wetlands offer food and a habitat for species, they maintain 

the water quality, they recharge the aquifers and control soil erosion, climate regulation and 

carbon storage (McCartney et al., 2010; Adam et al., 2012; Wood et al., 2013; Meli et al., 

2014; Scott et al., 2014; Sieben et al., 2016). They also provide a wide variety of goods for 

local communities, including reeds for weaving, grazing for domestic stock and services to 

downstream consumer facilities, such as flood attenuation and nutrient retention (Mutanga et 

al., 2012; Dadson et al., 2017; Mahdavi et al., 2017). In sub-Saharan Africa, wetlands are 

predominantly significant sources of forage for livestock, which support the livelihoods for 

most rural communities, as well as for the vast wildlife populations (Marambanyika and 

Beckedahl, 2016). Despite covering 6% of the earth’s surface, wetlands offer about 40% of 

the regulatory services (Marambanyika and Beckedahl, 2016; Reis et al., 2017). However, 

not all wetland ecosystems provide regulatory services; their unique wetland services depend 

on the type of wetland and their location and positioning within a catchment (Hu et al., 2017; 

Slagter et al., 2020). Due to their response to climate variability, precipitation, 

evapotranspiration and anthropogenic activities, the surface water level and groundwater 

recharge in wetland ecosystems vary seasonally. 

 

Despite their associated ecohydrological benefits, the quantity and quality of wetlands are 

vulnerable to changes, as a result of the intensified anthropogenic and natural global changes 

(Sieben et al., 2016; Sutton et al., 2016; Xie et al., 2017; Bhaga et al., 2020; Novoa et al., 

2020). The ongoing transformation and alterations in the landscape, due to global warming, 

urban development and agricultural expansion, significantly affect their ecological attributes. 

For example, the Ngiri-Tumba-Maindombe in the western Congo Basin, in the Democratic 

Republic of the Congo, is apparently under threat due to pressure from the rapid population 

growth and illegal activities that have led to the over-exploitation of wetland resources (Xu et 

al., 2019). On the other hand, land use and land cover changes alter the hydrological 
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processes, thus influencing the flow regime, aquifer recharge and water storage within the 

catchment (de Medeiros et al., 2019). The remaining portions of the wetland are exposed to a 

wide range of stress-inducing changes i.e. infrastructure development, hydrological changes, 

excess nutrient inputs and invasive species (Oliver-Cabrera and Wdowinski, 2016; Hu et al., 

2017). These cause a dramatic reduction and deterioration of the natural landscape, which, in 

turn, complicate the functionality of wetlands and have significant repercussions that are 

amplified in their ecological, socioeconomic and cultural benefits (Hu et al., 2017). 

Therefore, in order to safeguard their ecohydrological systems, it is critical to understand the 

threats to wetland ecosystems, their characteristics, their species diversity (richness and 

evenness), as well as their productivity, soil and hydrology. 

 

There is a growing interest in developing new operational frameworks, as well as spatially- 

explicit and sound tools, to assess the wetland health conditions. Having accurate 

information, by monitoring the wetland status, is therefore the first step in determining the 

ecological integrity of a wetland. Dennison et al. (1993) highlighted that wetland vegetation 

remains an exceptional indicator for the first signs of any biophysical or chemical 

degradation in a wetland environment. However, the characterization of the spatial patterns 

and the extent of wetlands is often challenging, due to their heterogeneous nature (Szantoi et 

al., 2013). Previous studies used traditional methodologies, based on ground-based 

measurements, to assess and monitor wetland ecosystems, for example, the wetland 

hydrology, the soil, the species richness and evenness, the species composition and the 

aboveground biomass (Luo et al., 2017). These measurements were recognized as the most 

direct and accurate method of assessing and monitoring wetland ecosystems and their 

diversity. Although the traditional approaches provide the most accurate results, these 

methods are generally not effective, due to their limited spatial representation. Similarly, the 

inherent distribution and composition of heterogeneous species (Szantoi et al., 2013) are very 

difficult to capture. In addition, these techniques are time-consuming, labour-intensive and 

costly, besides being difficult to carry out effectively to assess the spatial extent of wetlands, 

especially across large areas over time (Psomas et al., 2011; Adam et al., 2012; Han et al., 

2015; Orimoloye et al., 2018). Therefore, the derived wetland information lacks the required 

spatial and temporal representation, and hence there is a limited understanding of the 

dynamics of soil, water and wetland vegetation within these ecosystems. It is important to 

track wetland ecosystems on a spatial and periodic basis, as this offers comprehensive 

information that can lead to the sustainable conservation of ecosystem services. 

http://etd.uwc.ac.za/ 
 



11 
 

 

The availability of automated, reliable and near-real-time remotely-sensed data has emerged 

as the most critical data source for gathering spatially-explicit information on the condition, 

distribution and spatial configuration of wetland ecosystems, both on a local and a global 

scale. The spatial distribution of wetlands varies at different times and can be analysed with 

the aid of multi-spectral and hyperspectral remote sensing satellite images, such as Landsat, 

MODIS, SPOT and RapidEye. Some of these images have high spectral and spatial 

characteristics, which enable the enhanced monitoring and mapping of wetland ecosystem 

characteristics. When compared to conventional labour-intensive field investigations, remote 

sensing information not only saves time, but it also enhances the prospect of characterizing 

wetland species through spectral and texture analytics (Vasconcelos et al., 2002; Kokaly et 

al., 2003; Roberts et al., 2003). Recent advances in remote sensing data have shown their 

high potential for examining land use and land cover changes that threaten the functioning 

and services provided by wetland ecosystems (Pettorelli et al., 2017). In addition, advances in 

sensor technology have contributed to the acquisition of freely-available satellite imagery, 

such as the Sentinel dataset. For example, Sentinel-2 MSI is characterized by a finer spatial 

resolution (10 m) and a higher spectral resolution (13 spectral bands including red edge 

strategic bands), which are essential for the extraction of wetland ecosystem characteristics, 

with varying geographical coverage (285 km) for the evaluation of wetland dynamics (Truus, 

2011; Adelabu et al., 2014; Orimoloye et al., 2018). Remote sensing technology allows for 

repetitive image acquisitions over the same area that are required for the detection of 

temporal changes and patterns in wetland ecosystems. For instance, Sentinel-2 offers 

remotely-sensed data at a high revisit frequency of between five and nineteen days. 

 

In the light of the advantages associated with the use of remotely-sensed data, researchers in 

sub-Saharan Africa have used both passive optical sensors and active sensors to map and 

delineate the spatial distribution of wetlands, in order to understand their status under the 

changing environmental and anthropogenic pressures. Knowing the past and current 

distribution of small wetlands in sub-Saharan Africa could help to understand their 

development, or the trends and improvements, as well as their contribution to ecosystem 

goods and services. In addition, it is critical for obtaining the status of degradation, vegetation 

cover, species diversity, water level, erosivity, and the rate of sedimentation, in order to 

ensure informed decision-making for proper wetland protection and restoration programs 

(Davidson et al., 2018; Gxokwe et al., 2020). However, major attempts are now being made 
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to integrate geospatial data products (i.e. water, soil moisture and vegetation) into various 

land surface models to enhance the monitoring and evaluation of wetland ecosystems. 

 

This work provides a comprehensive overview of remote sensing applications for the 

monitoring and mapping of wetland ecosystems (wetland vegetation, species diversity, 

productivity, hydrology, soil), and it highlights the strengths and challenges associated with 

the use of satellite data. To meet the above-mentioned aim, related literature information was 

acquired from wetland, ecology, water and remote sensing journals. Numerous keywords and 

expressions are used, including the following: ‘wetland’, ‘water-level monitoring’, ‘wetland 

hydrological processes’, ‘wetland-catchment linkage’, ‘hydrological modelling’, 

‘hydrophytic vegetation’, ‘vegetation diversity’, ‘biodiversity’, ‘species richness and 

evenness’, ‘wetland productivity’, ‘wetland plant species’, ‘aboveground biomass (AGB)’, 

‘remote sensing’, ‘satellite data’ and ‘Synthetic Aperture Radar’ (SAR). 

 

In order to retrieve information during literature search, articles published in international 

peer-reviewed journals were selected via the relevant search engines. These included the 

following: the ‘ISI Web of Science’, ‘Google Scholar’, ‘Photogrammetric Engineering and 

Remote Sensing’, ‘GIScience and Remote Sensing’, ‘Applied Earth Observation and 

Geoinformation’, ‘IEEE Applied Earth Observations and Remote Sensing’, ‘SCOPUS’, 

‘Wetland Ecology’, ‘Hydrology’, ‘Ecology’, ‘Ecohydrology and Hydrobiology’, ‘African 

Ecology’ and other internationally-recognized remote sensing and wetland science journals. 

Due to a limited number of studies on remote sensing applications, particularly in the sub-

Saharan region, the review was not limited to a specific criterion. Consequently, all studies 

that utilized remote sensing for wetland monitoring and assessment were considered. 

 

2.2 Geographical Distribution of Wetland Ecosystems 

Globally, wetlands occupy an area of nearly 9.2 million km2, with 1.3 million km2 of these 

are found in Africa (Melendez-Pastor et al., 2010; Rebelo et al., 2010; Kabiri et al., 2020). 

Finlayson et al. (2011) also showed that estimates of the spatial extent of wetlands across the 

world, including Africa, differ across various studies, due to the different definitions of 

wetlands and the approaches that are used to delineate them. The common types of wetland 

found in sub-Saharan Africa include dambos, lakes, reservoirs, freshwater marshes, 

floodplains, swampy forests, flooded forests, coastal wetlands, pans, brackish/saline wetlands 

and intermittent wetlands (Gxokwe et al., 2020). These wetlands vary according to the 
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topography or landscape characteristics and climatic regimes, and they support diverse and 

unique wetland habitats (Space Applications Centre (SAC) 2011; Rebelo et al., 2017). Xu et 

al. (2019) highlighted that about 2 303 of global wetlands are designated under the Ramsar 

Convention. They are referred to as wetlands of international importance (Ramsar Secretariat, 

2013) and are unevenly distributed in different parts of the world (Figure 2.1). As shown in 

Figure 2.1, Europe has the largest number of sites, with a total of 1 004 occupying 44% of the 

Ramsar sites, 397 (17%) are in Africa, 146 (6%) in South America, 368 (16%) in Asia, 309 

(13%) in North America and 79 (4%) in the Oceania region (Rebelo et al., 2010; Ramsar 

Secretariat, 2013; Davidson et al., 2018; Gardner et al., 2018; Xu et al., 2019). Despite the 

number of wetlands designated under the Ramsar Convention, there are many other small and 

unprotected wetlands that potentially perform an incredible function for their neighbouring 

communities, but they are continuously ignored in the policy process. As a result, some of 

these wetlands have already been threatened, degraded and lost, due to uncontrolled 

activities, both natural and anthropogenic. According to the National Biodiversity 

Assessment for South Africa (NBASA), which was carried out in 2011, wetlands occupy 

only 2.4% of the country’s total area. However, 48% of these ecosystems are critically 

endangered, 12% are endangered, 5% are vulnerable, while 35% are the least affected 

(MacFarlane et al., 2014). 

 

 

Figure 2.1 Global wetland distribution designated under Ramsar (Xu et al., 2019) 
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2.3 Factors influencing Wetland Degradation 

Wetlands have a long history of transformation, destruction and degradation. Estimates 

suggest that about 50% of the global wetland areas have been degraded in the 20th century 

(Jogo and Hassan, 2010; van Dam et al., 2013). The remaining wetlands are under threat 

from anthropogenic activities and the impact of climate change, despite robust regulations for 

their protection and conservation or restoration (TEEB, 2013). Literature demonstrates that 

there are multiple factors that degrade wetland ecosystems and maintain their survival. The 

anthropogenic factors include agriculture, reclamation, water use, infrastructure development, 

environmental pollution and the unsustainable use of wetland resources (Ramsar Convention 

Secretariat (RCS), 2010; Vörösmarty et al., 2010; van Asselen et al., 2013; Gardner et al., 

2018; Xu et al., 2019). Such factors affect the hydrology, soil, species diversity, productivity 

and composition of wetlands (Klemas, 2013). Gardner et al. (2018) stated that pollution 

caused by population growth and socio-economic development is a major factor leading to 

their degradation and loss. Rebelo et al. (2010) showed that a gradual cause of wetland 

destruction is primarily the need for flat, fertile land with a water supply, to be used for 

agricultural purposes (both for cultivation and livestock production). These studies concur 

with the work conducted by Slagter et al. (2020), who found that South Africa has lost, and 

continues to lose, wetlands due to dam construction, overgrazing, pollution, crop production, 

urbanization, erosion, development and the poor management of land resources. The loss of 

connective rivers also contributes to the rate of wetland degradation (IPCC, 2013; Tiner et 

al., 2015; Oliver-Cabrera and Wdowinski, 2016). 

  

Climate change is also a major threat to wetlands, particularly changes in the rainfall patterns 

and global warming (Boon et al., 2016). These changes result in significant biodiversity 

configurations and wetland biochemical processes, which are quite variable over space and 

time, both on a local and a global scale (Dawson et al., 2011; Bellard et al., 2012). The rising 

temperatures may aid the invasion of warmer-water species into older zones and these species 

out-compete the dominant species. Climate change is also considered to be a cause for habitat 

destruction, a shift in species composition and habitat degradation in the existing wetlands 

(Titus et al., 2009). Moreover, acute pollution and siltation have exaggerated these sensitive 

systems in recent times (van Asselen et al., 2013; Li et al., 2014). 

 

It has been estimated that much wetland acreage from the existing inland and coastal marshes 

has been lost since the early 1900s, with about 56% to 65% having been lost through the 
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conversion to agricultural production in Europe and North America, 27% in Asia and 6% in 

South America (Prigent et al., 2012), while China has lost about 23% of its freshwater 

swamps, 16.1% of its lakes, 15.3% of its rivers and 51.2% of its coastal wetlands (Niu et al., 

2012). In Africa, a notable decrease in wetland areas has also been observed. For example, in 

Tanzania, the extent of wetlands has shrunk by 18% (Nguyen et al., 2017). In other parts of 

the African continent, estimates of the degraded wetland acreage are a challenge and still 

rudimentary, due to the lack of historical documentation and monitoring of these ecosystems 

(Marambanyika and Beckedahl, 2016; Grenfell et al., 2019; Xu et al., 2019; Stephenson et 

al., 2020). The decrease in the extent and quality of wetlands has caused many populations of 

wetland-dependent species to decline (Zhang et al., 2020). Although other strategies are in 

place to protect them, many wetland ecosystems still suffer from degradation through 

eutrophication, reduced water availability, as well as the impacts of weeds and pests (Gopal, 

2016). Other major causes of wetland destruction, more specifically in sub-Saharan Africa, 

are mainly due to the lack of awareness of planners, natural resource managers and wetland 

users (Ellery et al., 2003). A lack of conformity between government policies in the areas of 

economics, environment, biodiversity conservation and development planning are one of the 

reasons for the continued degradation of these systems (Turner et al., 2000), while a lack of 

action taken to conserve wetlands, as well as poor governance and management, further 

complicate the management strategies (Kumar et al., 2013). The monitoring of wetland 

hydrology, soil and vegetation is becoming a major concern, due to the rise in anthropogenic 

activities in wetlands. 

 

2.4 The Role of Remote Sensing Applications in Wetland Ecosystem Mapping 

Since the 1960s, remote sensing observations, in particular satellite imagery, have served as 

the most useful tool for gathering information on land cover change or mapping features in 

wetland regions, on climate warming in wetland ecosystems, on species diversity and 

productivity and on hydrological processes in wetlands (O’Grady and Leblanc, 2014; 

Prospere et al., 2014; Brisco et al., 2015; Tiner et al., 2015; Guo et al., 2017). Remotely-

sensed datasets and approaches provide frequent data with varying footprints and resolutions, 

which are more a practical and economical means for addressing the issues of wetland 

identification, delineation, classification, hydrophytic vegetation or biomass, hydromorphic 

soil, hydrology and vegetation characteristics, productivity and density (Mansour et al., 

2013). Literature gathered from peer-reviewed remote sensing journals shows that remote 

sensing applications have progressed remarkably over the years, due to technological 
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advances that have led to efficient data processing (Figure 2.2) in the mapping and 

quantification of wetland ecosystems (i.e. forested wetlands or swamps, marshes) in sub-

Saharan Africa. Most of these studies have focused mainly on wetland ecosystems that are 

designated under the Ramsar Convention, but they have neglected the small or unprotected 

wetlands, which serve their neighbouring communities. There has been an increase in the 

application of remote sensing for wetlands under Ramsar (r2 = 0.88), compared to those that 

are non-Ramsar sites (r2 = 0.66). This highlights the fact that limited studies use remote 

sensing for small wetland ecosystems, which provide a lifeline for rural communities, 

particularly in sub-Saharan Africa (Guo et al., 2017; Osorio et al., 2020; White et al., 2020). 

The reason for this is because, in most cases, the smaller wetlands, when compared to image 

spatial resolutions, largely result in spectral mixing, and hence, there is a failure to derive 

accurate and highly-informative information, particularly from coarse resolution or 

broadband satellite images, like MODIS. Progress in remote sensing data usage (from aerial 

photography to multispectral scanners) in the mapping and monitoring of wetlands 

ecosystems is thus linked to the availability of freely-accessible satellite images (i.e. Landsat, 

Sentinel), as well as the recent technological capabilities (improved spatial, spectral and 

temporal resolution) that can rapidly detect and map wetlands on a large scale. Most of the 

studies conducted in Africa have used the multispectral remote sensing datasets. These new 

cutting-edge technologies substitute the use of aerial photographs, which are not practically 

possible for acquiring information from large areas (Thamaga and Dube, 2019). Therefore, 

based on the literature that was examined, most of the wetland studies used aerial 

photographs and the Landsat and MODIS datasets (Landmann et al., 2010; Adam et al., 

2012; Hladik and Alber, 2012; Mutanga et al., 2012; Tiner et al., 2015; Guo and Guo, 2016; 

Gxokwe et al., 2020). These sensors (Figures 2.3 and 2.4) were mainly applied in mapping 

and monitoring the extent of wetlands, the impacts of LULC, as well as for wetland 

classification. However, the use of remote sensing for determining wetland vegetation, soil 

and hydrology, remains understudied. 
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Figure 2.2 Progress of remote sensing publications in mapping wetland ecosystems in Africa 

 

Previous studies have confirmed the effectiveness of satellite remote sensing tools for 

wetland monitoring and classification (Berlanga-Robles et al., 2011; Rapinel et al., 2015; 

Mahdianpari et al., 2018). These approaches have effectively addressed the large-scale 

historical challenges for managing and mapping wetlands synoptically, compared to 

conventional approaches (e.g. accessibility and repeatability), which are time-consuming and 

labour-intensive. Given the capability of the sensors to collect synoptic observations more 

often, remote sensing techniques have become effective in studying, identifying and 

quantifying wetland ecosystems (i.e. plant species, diversity and productivity, as well as 

hydrological estimation) (Li et al., 2013; Han et al., 2015; Lou et al., 2016; Pande-Chhetri et 

al., 2017; Chen et al., 2018), from small- to large-scale projects with spatially-continuous 

coverage, from several satellite datasets (Kuenzer et al., 2011; Tiner et al., 2015). 

Nevertheless, remotely-sensed satellite datasets (Table 2.1) with varying spatial resolutions of 

less than 10 m to several kilometres have been used globally to detect wetland ecosystems 

(Laba et al., 2010; Betbeder et al., 2015; Liu and Abd-Elrahman, 2018). 
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Figure 2.3 The number of satellite images used to the study wetland ecosystem 
 

 

0

5

10

15

20

25

30

35

N
o
. 

o
f 

s
tu

d
ie

s

Wetland extent Species diversity

LULC impacts wetland ciassification

 

Figure 2.4 Monitoring and mapping wetlands using remotely sensed data 
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Table 2.1 Remote sensing sensor specifications and associated acquisition cost per 

square meter 
  
Sensor 

 

Spectral 

bands 

 

GSD 

 (m) 

  

Description 

Swath-

width 

(km) 

Frequency 

(days) 

Cost of 

image 

acquisition 

(US $/km2) 

Landsat 

Thematic Mapper 

(TM) 

7 30 
120 

Band (1-5 & 7) 
Band 6 

185 26 Free 

Landsat  

Enhanced 

Thematic Mapper 

plus (ETM+) 

8 30 
15 

Band (1-7) 
Band 8 

185 18 Free 

MODIS 36 250 

500 

1000 

Band (1-2) 

Band (3-7) 

Band (8-36) 

2330 1-2 Free 

Sentinel-2 13 10 

 

20 

60 

Band (2,3,4 & 8) 

Band (5, 6, 7, 8a, 11 

and 12) 

Band (1,9 & 10) 

290 5 free 

RapidEye 5 5 All bands 77 1 (off nadir) 

/ 5.5 (nadir) 

US $1.28 

Système Pour 

I’Observation de 

la Terre 5 (SPOT 

5) 

High-Resolution 

Stereoscopic 

(HRS) 

High Resolution 

Geometric (HRG) 

Vegetation (VGT) 

 

 
5 

 

 
10 

  

  
Band (1-3) 

 

 
60 

 

 
2.5 

 

 
US $5.15 

Quickbird 5 20 
2.40 

Band 4 
All multi-spectral 

bands 

16.8 1-3.5 US $24 

World View-2 8 2 
0.48 

All multi-spectral 
bands 

Panchromatic band 

16.4 1.1 US $28.5 

World View-3 8 1.24 

 

0.31 

All multi-spectral 

bands 

Panchromatic 

13.1 1 US $29 

 

Broadband multispectral and hyperspectral images can be acquired with different 

characteristics that provide new insights or approaches for assessing wetlands. The 

availability of affordable and freely-accessible remote sensing data has marked a new 

beginning for the continuous mapping and comprehensive monitoring of wetland ecosystems. 

For instance, Landsat, which has a long history of spatial data archival, has been used in a 

variety of wetland studies, including wetland classification, mapping and change detection 

(Guo et al., 2017). Long-term change detection enables researchers to better understand the 

trends and gradual changes of wetlands, to analyse the changing dynamics, and to protect the 

wetlands. Rebelo et al. (2010), Adam et al. (2012) and Gxokwe et al. (2020) have provided 

comprehensive reviews of remote sensing datasets and methods for wetland characterization. 

Overall, previous studies have also shown that the probability of satellite remote sensing is 

critical for detecting information on permanently flooded, or intermittently exposed and open 

water surfaces; however, a knowledge gap still exists, particularly on the mapping and 

monitoring of small wetlands (unprotected wetlands). 

http://etd.uwc.ac.za/ 
 



20 
 

2.5 Remotely-sensed Applications on Wetland Hydrology and Soil 

Hydrology and hydromorphic soils sustain wetland ecosystems, but wetlands are being 

drained for irrigation purposes and dams have been constructed for drinking water. On the 

other hand, pollution in wetland ecosystems has affected the fertility of the soil, soil moisture 

and carbon sequestration, as well as the water quality, thereby exerting pressure on these 

systems (van Asselen et al., 2013; de Klein and van der Werf, 2014; Xiaolong et al., 2014; 

Zhang et al., 2015; Were et al., 2019). Remote sensing data provide an effective and efficient 

tool for detecting the extent of the water bodies and the quality of the soil. MODIS, with its 

high temporal resolution, has shown its significant advantages in mapping the extent and 

changes in wetlands over time (Ordoyne and Friedl, 2008). In North-Central Namibia, 

Mizuochi et al. (2017) identified the surface water distribution by using the Modified 

Normalised Difference Water Index (MNDWI) of the MODIS image and the Normalized 

Difference Polarization Index (NDPI) of the Advanced Microwave Scanning Radiometer 

Observing System (AMSR-E). On the other hand, Zoffoli et al. (2008) used AVHRR NDVI 

to analyse the seasonal and annual wetland changes over time and showed that NDVI can 

provide useful information on the wetland surface water. Klein et al. (2015) mapped open 

water bodies daily, by using the MODIS time series data and the threshold technique, which 

depicts the annual water changes. Frazier et al. (2003) used Landsat images to assess and 

describe the relationship between flow regulation and the inundation of flood plain wetlands 

before and after flood occurrence. The results of their study highlighted that river regulation 

could reduce the duration and frequency of inundation. Other sensors, such as Sentinel and 

SPOT, have been employed to examine wetland hydrological regimes and to map the extent 

of wetlands at various scales, with satisfactory results (Davranche et al., 2010, 2013; Muro et 

al., 2016; Xing et al., 2018; Bhatnagar et al., 2020; Slagter et al., 2020). Indices, such as the 

Land Surface Water Index (LSWI) and the NDWI, have been extensively used to improve 

accuracies. For instance, the LSWI is known to be sensitive to the total amount of liquid 

water in the vegetation and the associated soil background. Using hydrological models, such 

as the Soil Water Assessment Tool (SWAT), HECRAS and Geo-rus, together with satellite 

data, the soil and climatic information seems to be promising for assessing the wetland 

hydrology, as well as the soil quality and quantity. 

 

2.6 Wetland Plant Species Characterization 

Remote sensing has the ability to analyse, map and monitor wetland plant species at all 

scales, using various satellite datasets. Ecologically-based studies have demonstrated the 
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benefits of using multi-remote sensing sensors (both active and passive) include providing a 

wide range of data at varying resolutions and having the ability to extract various 

physiological, chemical and phenological characteristics of a species, in order to determine 

wetland plant species (Ustin and Gamon, 2010; Pau et al., 2013). The retrieved information, 

using remotely-sensed data, provides spatially-explicit data on the dynamics, structure, 

annual precipitation, hydrological pathways and local physiological cycle of wetland species 

(Gallant, 2015). In addition, remote sensing techniques provide information on inaccessible 

areas, which cannot be accessed during field surveys, and this contributes to the enhanced 

estimation of the wetland plant species and to understanding and identifying the key factors 

that have an impact on wetland biodiversity and biomass. The method of remote sensing for 

estimating the vegetation in wetland ecosystems has not been used in much detail, especially 

in developing regions. The detection, delineation and mapping of wetland plant species 

remains a challenge with multispectral satellite imagery, due to the lack of spatial resolution 

of most satellites, with respect to the small and sharp vegetation units that are present within 

wetland ecosystems (Brisco et al., 2017). Therefore, the spectral mixing of several vegetation 

species in various proportions, using multispectral imagery, remains a challenge (Zomer et 

al., 2009). Moreover, the use of wide spectral bands from coarse multispectral imagery for 

mapping wetland species remains difficult, due to the spectral overlap among species, since 

healthy vegetation species typically show similar spectral responses in the visible and near-

infrared region, due to the similarities and limited basic components that contribute to their 

spectral reflection.  

 

2.6.1 The mapping of wetland vegetation using remote sensing data 

Wetland vegetation can be used to reflect the status of wetland ecosystems, and biomass 

estimates can provide basic information about a particular wetland. Having a knowledge of 

the wetland plant species types, productivity and diversity is key, in terms of the planning, 

conservation and protection of the ecosystem functions. Spatially-explicit information on 

wetland vegetation is retrieved from satellite imagery and serves as the baseline evidence that 

is needed for the monitoring and assessment of the status and health of wetlands. Wilen et al. 

(2002) noted that satellite remote sensing images offer much better results of the wetland 

plant species. Hence, these could be critically used for the prioritization of different purposes, 

including planning, environmental impact assessments, wetland assessment and monitoring, 

the detection of alien plant species, the water flow and level, rehabilitation, and the analysis 

of trends in the wetland status, in order to enhance the conservation of wetland ecosystems 
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(Wilen et al., 2002; Zheng et al., 2014). Mutanga and Skidmore (2004), Zheng et al. (2014) 

and Wu et al. (2018) highlighted the fact that the estimation, monitoring and mapping of 

wetland species biomass (aboveground biomass) is required for studying nutrient allocation, 

species diversity, productivity and the carbon cycle. Furthermore, Mutanga and Skidmore 

(2004) and Adam et al., (2012) emphasized that, despite the wetlands exhibiting discrete 

light-reflectance characteristics centred in the visible or infrared region of the 

Electromagnetic Spectrum Radiation (EMR), achievements in estimating the biochemical and 

biophysical parameters in some ecosystems have revealed that the remaining challenges are 

strongly affected by water, atmospheric conditions and soil. The use of vegetation indices, 

such as NDVI, EVI and NDWI, offers opportunities that can supersede the effects of the soil 

background, the atmospheric composition and the zenith angle effects, while improving the 

vegetation signal, when estimating wetland plant species (Mutanga et al., 2012; Ramoelo et 

al., 2015; Sibanda et al., 2015). The high-resolution vegetation mapping of wetland 

complexes, with accurate distribution and population estimates for different functional plant 

species, can be used to analyse the vegetation dynamics, to quantify the spatial patterns of 

vegetation evolution, to analyse the effects of environmental changes on vegetation and to 

predict the spatial configuration of species diversity. 

 

2.6.2 Mapping species diversity in wetland environments 

Many predominantly upland regions encompass small patches of wetland habitats, which 

hold great potential for the conservation of biological diversity; however, these areas have 

received little recognition (Nicolet, 2003; de Meester et al., 2005). These wetlands can 

contribute disproportionately to the landscape-level diversity, since they often have high 

levels of species richness (alpha diversity) and spatial variations in community composition 

(beta diversity) (Tiner, 2003; de Meester et al., 2005). Wet habitation patches that are 

surrounded by uplands, support unique species assemblages, which are different from those 

of large-scale wetlands (Nicolet, 2003; de Meester et al., 2005). These communities often 

include rare regional species, and they can serve wetland specialists in landscapes where 

major wetlands are being destroyed, degraded or absent (Nicolet, 2003). Few studies on the 

species diversity of small wetlands have focused on a single wetland category, such as 

seasonal pools with mineral soils, riparian areas in headwater streams (Hagan et al., 2006) or 

groundwater seepage. The snapshots from a single image lack details. However, these 

wetlands often defy simple classification and the distinctions among wetland types remain 

largely arbitrary and inconsistent, with inherent differences in the wetland vegetation species 
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often resulting in spectral overlaps. To understand how small wetlands contribute to the plant 

diversity of regional species, we need to consider all the wet areas within a landscape and 

identify them, based on their vegetation composition. Different indices for determining 

species diversity have been developed. These include the widely-used Shannon-Wiener Index 

(H’), the Simpson diversity index (1-D), Fisher’s alpha - a diversity index (a), the Menhinink 

richness index (DMn), the Margalef richness index (DMg) and the Sheldon (Buzas and 

Gibson) evenness index (E3) (Kent and Cocker, 1992; Barajas-Gea, 2005; Mitchell et al., 

2006; Janisova et al., 2014; Caranqui et al., 2016; Yaranga et al., 2018). These indices can 

thus be used to quantify diversity of species within a wetland. Integrating the diversity 

indices with remotely-sensed data i.e. Landsat, Sentinel, Worldview, provides a better 

understanding of the condition of wetlands and their functioning, in general. 

 

2.6.3 Wetland productivity and assessment 

Wetland productivity is the positive increase in the vegetation species biomass per unit. This 

not only reflects the condition of the vegetation, but it is a central variable for carbon cycling 

(Luyssaert et al., 2007). It was revealed in different studies (Cramer et al., 2001; Klemas, 

2013; Yin et al., 2017) that wetland productivity changes in the volume and measure of 

prospective resource products have received attention from a rising number of researchers in 

the context of global change. Wetland productivity is also a function of climate variability 

and hydrological fluctuations. For example, fluctuations in the water table provide a better 

understanding of wetland conditions and their functioning, in general, with increased climate 

variability strongly affecting wetland vegetation productivity. Work by Rivera-Monroy et al. 

(2019) highlighted the fact that the Louisiana Wetland in the Gulf of Mexico has lost 4 900 

km2 of wetland area since the early 1930s. Furthermore, the study showed that, despite the 

relevance of wetland biomass and the net primary productivity procedures in wetland 

ecosystems assessment, there is a lack of vegetation simulation models for forecasting the 

trends of biomass and productivity. A long-term overview of the wetland simulation models 

with remote sensing datasets can provide a better understanding of wetland plant 

productivity. 

 

2.7 Analytical Algorithms for evaluating Wetland Ecosystems and Conditions, using 

Remote Sensing 

Several algorithms and remotely-sensed datasets offer opportunities for classifying and 

quantifying wetland ecosystems. These algorithms can be broadly categorized into the 
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threshold method, an unsupervised and supervised classification, an object-based 

classification, a principal component analysis and a hybrid classification (Dronova et al., 

2015; Villa et al., 2015; Liu and Abd-Elrahman, 2018). The Artificial Neural Network 

(ANN) (Kumar et al., 2013), Decision Tree (DT) (Khosravi et al., 2017), Random Forest 

(RF), CART and Support Vector Machine (SVM) (Xie et al., 2017) are also non-parametric 

supervised machine-learning techniques that are commonly used for land cover classification. 

In addition, digital data from satellite imagery enable efficient and rapid classifications by 

using automated methods that have been shown to improve the accuracy, rather than simple 

aerial photo interpretations (Tiner et al., 2015). The use of remote sensing techniques has 

been explored over large wetland regions. For instance, it has been applied in species and 

cover type assessments, canopy density or Leaf Area Index (LAI) estimations (Wang et al., 

2012), biomass monitoring (Mutanga et al., 2012; Byrd et al., 2014) or on quantities related 

to plant productivity and stress (Amani et al., 2017). The newly-advanced methodologies, 

such as drones, the Google Earth Engine cloud-based platform and Artificial Intelligence (AI) 

have been adopted to understand wetland ecosystems around the world (Alonso et al., 2016; 

Xie et al., 2019). Wu et al. (2019) stated that moderate resolution satellite imagery cannot be 

used as a stand-alone method for wetland delineation; however, they integrated an automated 

approach to delineate the extent of wetland inundation at a watershed scale, using the Google 

Earth Engine. The outcomes of the algorithm not only delineated the current state of the 

wetland, but it also demonstrated critical information on the hydrological dynamics. Other 

studies used drone technology to assess the ecological integrity of wetlands. Dıaz-Delgado et 

al. (2019) showed that derived thematic maps from drone data are a very valuable input for 

assessing the wetland hydrology, soil, habitat diversity, wetland health, dynamics and 

wetland productivity by wetland-related managers or researchers, as frequently as desired. 

These advanced algorithms are scalable for mapping and quantifying wetland inundation on a 

small and larger geographical scale. The integration of multispectral remote sensing imagery, 

together with automated algorithms, enhances image classification and also provides a 

practical, frequent and required framework, which plays a critical role in delineating the 

inundation dynamics of wetlands.  

 

The increase in the use of remote sensing data in mapping wetland ecosystems is linked to 

their ability to offer a variety of new applications that can quickly and synoptically monitor 

and manage large areas. Table 2.2 shows the recent studies that have indicated that the use of 

satellite imagery provides the most reliable primary data for the detection, monitoring and 
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mapping of wetland ecosystems. For example, Nhamo et al. (2017) mapped wetlands in 

Mpumalanga by using Landsat 8 and the MODIS-based NDVI and found that the extent of 

the wetlands had declined by 19%. Nineteen percent of the degraded land has been mainly 

replaced by urban and agricultural development, which has affected the ecohydrological 

processes and functions. In a different study, Orimoloye et al. (2018) assessed the potential of 

Landsat data for understanding the status of the Isimangaliso Wetland in South Africa. The 

results obtained from the study showed that the extent of the wetland had shrunk from 

655.416 km2 (1987) to 429.489 km2 (2017), and that an overall classification accuracy of 

97.55% and a kappa coefficient of 0.941 were achieved. Berhane et al. (2019) showed that 

the integration of the machine-learning techniques, Landsat and Pleiade-1B, improved the 

mapping of wetland ecosystems, by obtaining an overall classification accuracy of 93%, with 

a Kappa coefficient of 0.92. 

 

2.8 The Implications of the Remote Sensing of Wetland Vegetation and Productivity 

Mapping 

Despite the robust and advanced remote sensing techniques and modelling algorithms, the 

spatial assessment of wetland ecosystems at various spatial scales remains a challenging task. 

This is primarily due to the heterogeneous nature of wetland ecosystems that are difficult to 

capture, especially when using broadband and coarse spatial resolution sensors. In addition, a 

high similarity of vegetation spectral characteristics has been noted, due to wetland 

fragmentation, which contributes to the confusion in species mapping (Corcoran et al., 2013; 

Peimer et al., 2017; Wu et al., 2018). A major reason for this difficulty is that although each 

of the wetland species has several distinctive characteristics, they share some ecological and 

phenological similarities (Boon et al., 2016) with non-wetland plant species (Henderson & 

Lewis, 2008). Therefore, this makes it difficult to spectrally distinguish some of the wetland 

plants from non-wetland plant species, when using remote sensing imagery (Amani et al., 

2017). Furthermore, the accuracy of monitoring and assessing the impacts of LULC changes 

on wetland ecosystems is mainly limited by the imaging characteristics of remotely-sensed 

data, as well as the algorithms that have been developed by different studies or for a specific 

application scale. 

 

Previous studies treated all vegetation communities as one single type, or they focused only 

on a short period (Dronova et al., 2012; Chen et al., 2014; Han et al., 2015). Vegetation 

species vary and these variations influence their functions within a wetland. In this regard, 
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they generally view these species as a single type, which then masks considerable 

information that is critical for understanding the dynamics of wetland ecosystems. Wetland 

vegetation varies over time; hence, focusing on a particular period is inadequate for the 

implementation of sustainable regulations and policies for its conservation. Nevertheless, 

other researchers have attempted to adopt the long-term monitoring of wetland species. For 

example, Ballanti et al. (2017) used Landsat imagery to identify the changes within the 

watershed and wetland ecosystems in the Nisqually River Delta over a period of 58 years. 

Their findings revealed that the emergent marsh wetlands increased by 79% (188.4 ha) as a 

result of the rehabilitation strategies implemented in 2009. Furthermore, it was highlighted 

that, despite the wetland gains in 2009, 35% of the marsh wetland was lost between 1957 and 

2015, due to the river shifting and the erosion patterns. A study by Son et al. (2015) used the 

Landsat dataset to identify the changes between 1979 and 2013 (a period of 34 years) in 

Vietnam. The results indicated that 16% of the wetland ecosystems were lost because of 

anthropogenic activities. In assessing the vegetation characteristics of the wetland, the study 

found that alien plant species dominated the wetland areas and demonstrated the critical role 

of remote sensing in wetland change detection, as well as for future monitoring. Although 

long-term data have been used in some studies to identify different vegetation communities, 

the phenological disparities between the different years that are associated with inter-annual 

water level changes were not considered (Chen et al., 2014; Gallant, 2015; Hu et al., 2017; 

Wu et al., 2018). The transition of different vegetation communities within a wetland over 

the years, remains largely unknown. Similarly, the processes or causes of these drastic 

changes are poorly documented, and consequently, high vegetation fragmentation is observed 

when classifying these wetland ecosystems (Henderson and Lewis, 2008). 

 

In summary, wetlands have high intra-class and low inter-class variability, which makes their 

classification challenging. The use of advanced remote sensing images with an improved 

resolution, coupled with modelling techniques, can enhance the classification of wetland 

ecosystems. Furthermore, wetlands lack a defined boundary, and their borders are almost 

fuzzy, since they transition gradually from a wetland to other land cover classes, such as 

upland or open water, or even other types of wetlands (Dronova, 2015). In addition, the 

proximity of the ecotone to the wetlands is sometimes very narrow, which makes its detection 

or discrimination from wetlands difficult (Gallant, 2015). Therefore, the quality of the image 

interpretation and feature extraction methodologies in assessing wetlands should be 

considered (Dronova, 2015). Remote sensing satellite images are also restricted to a specific 

http://etd.uwc.ac.za/ 
 



27 
 

spatial resolution, which might limit the detection of small wetlands (Ozesmi and Bauer, 

2002). Despite these limitations, some notable research efforts have investigated applications 

of remote sensing data for regular wetland monitoring. There is a need to use freely-available 

sensors, such as Landsat and Sentinel, which have a high revisit time, that cover a large 

swath-width, that have an improved resolution and that are authoritative in solving the noted 

limitations relating to the monitoring, estimation and mapping of wetland ecosystems. 
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Table 2.2 Summary of recent remote sensing applications in mapping wetland ecosystems 

Sensor(s) Study Image analysis 

technique(s) 

Major findings Reference 

Pléiade-1B, 

Landsat-8 

Wetlands along 

the Etrix River in 

North Xinjiang, China 

Random forest (RF) 

Normalized Difference 

Vegetation Index 

(NDVI) 

RF classifier achieved an overall accuracy of 93% with a Kappa 

coefficient of 0.92. 

Tian et al. (2016) 

Landsat TM, 

Landsat 

8 OLI, 

Landsat 8 TIRS, 

Isimangaliso Wetland – 

KwaZulu-Natal, South 

Africa 

Normalized Difference 

Water Index (NDWI) 

Wetland extent shrunk from 655.416 Km2 (1987) to 429.489 

Km2 (2017) during the study period. The study revealed that other land 

cover features increased from 2149.911 Km2 to 2375.838 Km2 in 1987 

and 2017. The classified imagery managed to achieve an overall 

classification accuracy of 97.55% and a Kappa coefficient of 

0.94. NDWI revealed that there is a depletion of water in the study area 

mainly due to environmental and human interferences. 

Orimoloye et al. 

(2018) 

RADARSAT-2, 

TerraSAR-x 

ALOS-1 & 2 

Sentinel-1 

Newfoundland and 

Labrador (NL) Wetlands 

of Canada 

Random Forest 

classifier 

RADARSAT-2 was superior to the other sensors used in terms 

of accuracies except for TerraSAR-x for which the user accuracy 

was higher than that of RADARSAT-2. 

Mahdavi et al. 

(2017) 

MODIS 

Landsat 8 

  

Witbank Dam 

Catchment 

in Mpumalanga Province 

NDWI 

  

The delineated wetlands show a declining extent from 2000 to 2015, 

which could worsen in the coming few years if no remedial action is 

taken. Current efforts to demarcate wetland extent varied time-series 

trend analysis. The wetland area declined by 19% during the period of 

study. 

Nhamo et al. (2017) 

WorldView-2 South American Object-based Image 

Analysis approach, 

Overall classification accuracy was 81%, and the Kappa index was 

78.10%. 

Gonzalez et al., 

2019 

WorldView-2 Selenga River Delta of 

Lake Baikal, Russia 

Nonparametric machine-

learning algorithms (DT, 

RB, and RF) 

RF classification outperformed both the DT and RB methods, 

achieving overall classification accuracy of more than 81%. 

Berhane et al., 

(2019) 

RapidEye Peninsula, 

Newfoundland and 

Labrador, Canada. 

Random Forest and 

Support Vector Machine 

The top three convnets (ResNetV2, ResNet50, 

and Xception), provide high classification accuracies of 96.17%, 

94.81%, and 93.57%, respectively. The 

classification accuracies obtained using Support Vector Machine 

(SVM) and Random Forest (RF) is 74.89% and 

76.08%. InceptionResNetV2 found to be superior to all 

other convnets. It can be suggested that the integration of Inception 

and ResNet are efficient for classifying complex remote sensing 

scenes such as wetlands. 

Mahdianpari et al. 

(2018) 
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2.9 Future Investigations into Improved Wetland Ecosystem Conservation 

Significant progress has been made in the application of remote sensing techniques in 

wetland ecosystems research. Remote sensing techniques play a critical role in detecting and 

mapping areas that are impacted by different forms of anthropogenic and natural activities. 

Hence, the use of remote sensing to detect and map wetland ecosystems across sub-Saharan 

Africa has gained attention over the past decade. While several studies have successfully 

utilized remotely-sensed data in wetland research, there are still challenges that need to be 

addressed. Spatial studies on these ecosystems require versatile and robust computational 

methods to help deal with non-linear relationships, high-order interactions and missing data. 

Despite these difficulties, the methods used for mapping the distribution of wetlands should 

be clear to understand and easy to interpret. Wetland ecosystems are important to society and 

there is a need to establish digital efforts for wetland conservation. Furthermore, the wetland 

resource surveys, legislation, management and research need to be revised, since there is still 

much work to be done to protect wetlands in the future.  

 

2.10 Conclusion 

Several scholars have studied various characteristics and functions of wetland ecosystems, 

the impacts of land use and land cover changes, as well as the delineation and degradation of 

these ecosystems. Most studies have focused on estimating and mapping the biophysical and 

biochemical parameters of vegetation in those wetlands that are recognized under the Ramsar 

Convention; however, little emphasis has been placed on small and unprotected wetlands, 

which also play a critical role for their adjacent communities. Little attention has therefore 

been focused on the wetland hydrology, soil, vegetation quantification, species 

characteristics, species diversity and productivity of these smaller wetlands. The 

quantification and frequent mapping and monitoring of these wetlands across diverse 

landscapes is required for sustainable and effective wetland management control and for the 

formulation of governmental policies that promote their ecological preservation under 

increased pressure from human interference and climate change. However, long-term 

ecological studies have revealed that human activities continue to affect the wetland water 

levels and vegetation composition, as well as the structure, productivity, diversity and 

functioning of the ecosystems, for decades after these activities have ceased. A new crop of 

robust satellite sensors, e.g. Landsat, which have an improved spatial resolution and a high 

record of archival data, provides the most needed spatial tool for detecting, monitoring and 

understanding the status of wetlands at a low cost. There is a data gap, or undocumented 
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information, on the state of wetlands in developing regions, which further complicates the 

management strategies and policy development. Therefore, this review provides insights for 

wetland-related managers and it emphasizes the urgent need to shift towards the use of cheap 

and readily-available techniques for assessing and controlling wetland degradation, especially 

the small wetlands dotted across under-resourced regions. Furthermore, there is a need for 

future studies to utilize new and advanced satellite imagery, coupled with the use of robust 

machine-learning algorithms, such as the Google Earth Engine (GEE), a principal component 

analysis, to improve modelling for well-informed management decisions on wetland 

ecosystems. 
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CHAPTER THREE 

 

EVALUATING THE IMPACTS OF LAND USE AND LAND COVER 

CHANGE ON UNPROTECTED WETLAND ECOSYSTEMS IN THE 

ARID TROPICAL AREAS OF SOUTH AFRICA, USING THE 

LANDSAT DATASET AND SUPPORT VECTOR MACHINE 
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Abstract 

We explored the impacts of the Land Use and Land Cover (LULC) change dynamics on the 

condition and status of the unprotected Maungani wetland, which is located in the arid, 

tropical parts of the Limpopo Province, South Africa. The long-term Landsat archival data 

series was used to map and quantify the impacts of LULC changes on the wetland, on a nine-

year basis, over a period of 36 years (1983-2019). A multi-source satellite image analysis was 

performed, using the Support Vector Machine (SVM) algorithm and advanced spatially- 

explicit geographic information system tools. In addition, post-classification maps for the 

Maungani wetland area were analysed to provide a quantitative assessment and a detailed 

overview of the rate of change. The study findings showed that the spatial extent of the 

wetland area declined severely during the period under study. The introduction of settlements 

and agricultural activities was the major driver of change in the area. By the year 2019, the 

wetland had an estimated spatial extent of 3 450 800 ha, which had increased from 1 073 500 

ha in the year 1983. The built-up area increased by 934 300 ha (37.51%), other vegetation 

also increased by 375 400 ha (15.07%) and agriculture increased by 373 700 ha (15%), 

resulting in a 728 300 ha decrease in the wetland area between 1983 and 2019. The changes 

within the wetland were mapped with a high Overall classification Accuracy (OA), ranging 

from 77.55% to 92.69%. The findings of this work provide critical insights and baseline 

information about the state of unprotected wetlands in the rural parts of the Limpopo 

Province, South Africa. This information is useful for the development of tailor-made 

wetland management strategies and a possible rehabilitation framework for unprotected 

wetland ecosystems.   

 

Keywords: Drivers of wetland conversion; rural development; support vector machine; 

temporal change; wetland degradation. 
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3.1 Introduction 

Most wetlands are located adjacent to fresh or salt water and are characterised by hydric soil 

that experiences wet saturation conditions, either periodically during the rainy season, or 

permanently all year round (Tiner et al., 2015; Adeli et al., 2020). Although wetlands occupy 

approximately 6% of the earth’s surface, they are among the most productive and 

ecologically-diverse ecosystems globally. In their natural condition, wetlands support many 

environmental and socio-economic services to neighbouring communities, which are, to some 

extent, primarily largely controlled by the variations in inundation and soil saturation patterns 

(Dubeau et al., 2017; Thamaga et al., 2021). These ecosystems are irreplaceable and play a 

critical role by controlling floods, moderating the micro-climatic, maintaining and improving 

the water quality and protecting against erosion and carbon sequestration (Chandler et al., 

2017; Calhoun et al., 2017; Materua et al., 2018). For instance, in sub-Saharan Africa, 

wetlands provide a basis for the human livelihoods of many communities living around these 

ecosystems (Rabelo et al., 2010; Horwitz and Finlayson, 2011). For example, communities 

around the Yala Swamp in Western Kenya were found to depend on it for drinking, cooking 

and washing, while 86% of the population relies on it for the building materials that are 

gathered from the wetland, such as clay, sand, wood and papyrus (Schuyt, 2005). It was noted 

that in areas with a strong seasonal and interannual hydro-climatic variability, wetland 

inundation provides suitable conditions for perennial crop production in arid tropical 

environments. Most arid tropical regions experience erratic rainfall patterns, which lead to 

crop failure, and hence, there has been a shift towards the utilisation of wetlands, which are 

characterised by fertile soils and optimal moisture conditions for the sustenance of rural 

livelihoods.  

 

Despite these benefits, wetlands in the arid tropical regions remain the most fragile and 

frequently-threatened ecosystems, by both natural and anthropogenic processes. Natural 

processes, such as global warming, discharge patterns, precipitation changes and extreme 

weather conditions expedite wetland degradation (Singh et al., 2016; Malak and Hilarides, 

2016; Mohammadimanesh et al., 2018). In sub-Saharan Africa, for example, the rising water 

scarcity, as well as prolonged and severe droughts, are major threats to wetland ecosystems. 

Many wetlands are increasingly vulnerable to changes in the population patterns and are 

frequently affected by the Land Use and Land Cover (LULC) processes. The conversion of 

wetlands to agricultural land threatens the ecohydrological functions of wetlands, particularly 

when large-scale drainage alterations occur (Mohammadimanesh et al., 2018; Chen et al., 
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2020). According to Symeonakis and Drake (2010) and Sakane et al. (2011), the degradation 

of upland fields and the increasing rainfall variability due to climate change, push farmers to 

cultivate crops in wetland areas, where water is readily-available for crop irrigation. The 

conversion of wetlands, particularly small wetlands, into agricultural land and settlements, is 

expected to occur on flat terrains or in areas with a gentle slope, as they are largely suitable 

for crop cultivation and the construction of infrastructure. When land is transformed, small 

patches of wetland in the converted area are likely to be lost or to disappear, depending on the 

rate of conversion. On the other hand, the factors associated with anthropogenic disturbances 

and improvements in unprotected wetland ecosystems include eutrophication, direct pollution 

through agrochemicals, sewage waste pollution from the neighbouring peri-urban settlements 

and hydrological changes that are caused by excessive abstraction for industrial or domestic 

purposes (Malak and Hilarides, 2016; Russi et al., 2016; Dlamini et al., 2021). Siachalou et 

al. (2014) highlighted that the conversion of land to agricultural fields and settlement spaces 

for development, limits the geographical scale of wetland areas, while complicating their 

ecological functions. A study conducted by van Asselen et al. (2013) revealed that 

agricultural development, economic growth and population density are the main causes of 

wetland transformation and the most frequently-observed factors that perpetuate the 

degradation process. This is consistent with studies by Lambin and Meyfroidt (2010), 

Nkonya et al. (2016) who noted that the overexploitation of natural resources and unregulated 

infrastructure development placed much pressure on wetland ecosystems, due to the 

unsustainable utilisation of wetland ecosystems, which leads to a great loss of their ecological 

functions. These threats disrupt the ecohydrological stability of wetlands and have major 

consequences, such as an increase in wetland degradation, changes in the wetland’s 

hydrological system, ecological diversity and ecosystem services, all of which contribute to 

the destruction of wetlands (McCarthy et al., 2018, Jaramillo et al., 2018). The observed land 

degradation trends in arid tropical areas therefore require accurate, continuous and up-to-date 

information about the extent and status of the condition of wetlands, particularly unprotected 

wetland systems, to help comprehend the spatio-temporal pattern of the existing land use and 

land cover activities in the proximity of wetland systems. 

 

Details on the spatio-temporal extent of unprotected wetlands, as well as their status, remain 

scanty, especially on a localised scale in Sub-Saharan Africa (Lee et al., 2001). As a result, 

quantifying wetland transition patterns and land cover classification, over a smaller to a larger 

spatial scale, is critical for understanding their distribution and health status. Due to the 
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remoteness, vastness and the highly-dynamic nature of wetlands, field-based measurements 

for the continuous monitoring of wetlands remain impractical, especially in data-scarce 

environments. These methods are costly, time-consuming, labour-intensive and they lack 

spatial representation, given the size of the wetlands (Gao et al., 2010; Adeli et al., 2020). 

Furthermore, Lin et al. (2018) have indicated that sampling errors have proved to be a major 

drawback when collecting wetland data, due to their inaccessible location. Therefore, given 

the inaccessibility of in situ wetland data, there is a pressing need to establish suitable and 

reliable tools that have the appropriate spatial and temporal scales and monitoring 

capabilities. 

 

Remote sensing remains the critical alternative tool for addressing the challenging task 

involved with ground-based methods. It renders an operational, repeatable and integrated 

mapping framework that screens the spatial degree and condition of wetlands across small to 

larger landscapes (Lin et al., 2018). Remote sensing satellite imagery enables access to the 

historical and up-to-date information that is needed to characterize wetland ecosystems; it 

provides an inventory for monitoring and evaluating the impacts of LULC changes on 

unprotected wetlands, and it is also a practical and cost-effective means of doing so 

(Robertson et al., 2015). Satellite mapping helps to identify baseline information on 

ecosystem health of wetlands, to diagnose the threats and pressures to wetlands, to monitor 

any changes in their magnitude and state and to inform enhanced decision-making and 

management strategies.  

 

Thus far, several studies have used various satellite datasets for wetland characterization, as 

well as for monitoring, mapping and assessing the associated LULC changes over time, at 

varying spatial and temporal resolutions (Lin et al., 2018; Munishi and Jewitt, 2019). Satellite 

imagery, such as Landsat, ASTER, SPOT, AVHRR and MODIS, provide long-term spatial 

data archives for ecological assessment, monitoring and management purposes (Nagendra et 

al., 2013; Robinson et al., 2016; Muavhi and Mavhungu, 2020). These images have been 

used in various studies, for example, on LULC change, wetland monitoring and extent 

mapping, biomass estimation and mapping, soil moisture applications, inundation mapping 

and water level monitoring (Chatziantoniou et al., 2017; Yirsaw et al., 2017; Connolly, 2018; 

Ligate et al., 2018; Munishi and Jewitt, 2019; Mudereri et al., 2019; Slagter et al., 2020; Basu 

et al., 2021), amongst others. Davranche et al. (2010) used SPOT-5 and Landsat TM datasets 

to detect and classify wetlands by using the Decision Tree technique, and their findings 
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revealed that the combination of different knowledge bases and techniques provides an 

effective and promising method for the identification and classification of wetlands. In 

addition, Hettiarachchi et al. (2015) used Landsat images to map wetland degradation, and 

the findings revealed that urbanization, industrialization and the expansion of agriculture 

were the major threats influencing wetland degradation. In contrast, Bassi et al. (2014) found 

that the loss of the spatial extent of wetlands in India was due to the rapid population growth 

in the remote areas. Jiang et al. (2015) stated that agricultural expansion and urban 

development in China resulted in extensive wetland degradation. Due to their large spatial 

extents, they remain the spatial data of choice for capturing accurate information in 

heterogeneous environments.   

 

In this study, we therefore hypothesize that determining the past and present status of 

unprotected wetlands could help and guide environmental managers in their efforts to 

conserve wetland areas in a sustainable manner. Previous studies related to wetland 

monitoring, mapping and assessment have only focused on large wetlands that are designated 

under the Ramsar Convention, and they neglect unprotected wetlands (non-Ramsar), which 

are also of global importance (Hu et al., 2018; Munguía and Heinen, 2021; Xi et al., 2021). 

Thus, this study aims to map the impacts of land use and land cover change dynamics on the 

condition and status of the unprotected Maungani wetland, using the Landsat data series, as 

well as geospatial techniques, such as statistical analysis and Support Vector Machines 

(SVM), and to measure the LULC changes that affected the Maungani wetland during the 

1983 to 2019 period (36 years). We therefore assume that the findings of this study will 

enhance the capacity and knowledge of environmental managers, policymakers, and local 

governments, in order to minimize the human footprint on unprotected wetlands in semi-arid 

tropical areas, particularly in sub-Saharan Africa. 

 

3.2 Materials and Methods 

3.2.1 Description of the Study Area 

This research was carried-out in  Maungani wetland, which lies adjacent to the Dzindzi River, 

a tributary of Levuvhu River within the Luvumbu quaternary, in the Limpopo Transboundary 

River Basin (LTRB) of the Limpopo Province, South Africa. The study area is located within 

a longitude of 30°26'30'' E, 22°59'05'' S and a latitude of 30°25'45'' E, 22°58'45'' S and 

(Figure 3.1). The Maungani wetland occupies a geographical area of approximately 2 490 

700 ha. The rainfall and temperature are influenced by the Soutpansberg Mountains. The 
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temperature of the region ranges between 18°C and 37°C, with the mean annual rainfall being 

between 7 mm and 642 mm each year. The annual average relative humidity is 75%. The 

distribution of wetland vegetation is strongly influenced by the environmental gradients, with 

mixed vegetation types appearing at high altitudes and Acacia-Themeda bush growing on the 

plains. Various seasonal storms exist; however, these quickly dry up as the dry season sets in. 

The wetland is characterised by stamp lands, as well as marshy vegetation. In addition, it is 

dominated by the Thelypteris interrupta, Phragmites australis and Eichinochloa pyramidalis 

plant species, amongst others. Agriculture, the rearing of livestock and subsistence farming 

are the primary economic activities in the area. The Maungani wetland is home to 

approximately 142 000 people who live in the surrounding communities (StatsSA, 2011). The 

major land cover types in the selected study site include wetland vegetation, water, other 

vegetation, built-up areas, agricultural land and bare land.  

 

 
Figure 3.1 Map of the Maungani Wetland in the Limpopo Province of South Africa 

 

3.2.2 Field data collection 

The data used in this study were collected from the 03rd – 10th of October 2019 (Figure 3.2). 

This period was selected because of its suitability to detect, to discriminate, and thereafter to 

distinguish, the wetland from other vegetation species in the area. During the field data 

collection, the Trimble hand-held Global Position Systems (GPS) at submeter accuracy were 

used to record LULC feature coordinates within the Maungani wetland. The collected 

ground-based data are detailed in Table 3.1. In addition, these data were used to validate the 
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LULC classification and evaluate the precision of classified images. The sample locations of 

LULC were created, using Hwath’s analysis in a GIS environment and they were then 

imported into the Trimble GPS, in order to navigate us to the specified spots. A total of 350 

sample points (50 per land cover class) were collected for each class.  

 

 

Figure 3.2 An illustration of the Maungani wetland landscape (photo by K.H. Thamaga) 

 

Table 3.1 Description of land use land cover classes used in the study 

LULC class Description of land use land cover classes 

Agriculture Agricultural or cultivated lands and farmlands. 

Built-up Built-up comprises all developed land, including residential, commercial 

and socio-economic infrastructure.  

Bare land This is the area without or with little vegetation cover. 

Forest Land covered with relatively tall trees with at least a 20% canopy, mainly 

dominated by shrub lands and forest nursery. 

Other 

vegetation 

Mixed grassland, vegetation lands, vegetation on customary land. This class 

also consist of unmanaged land areas that are not characterised in any of the 

above classes. 

Water River, streams and waterbodies.  

Wetland  Area is covered with by water and hydrophytic vegetation in either rivers, 

streams, lakes or catchments. 
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3.2.3 Satellite image acquisition and pre-processing 

Field data that coincide with remote sensing satellite data (Landsat 5 TM and 8 OLI) were 

attained and used to investigate the LULC, as well as change dynamics of the Maungani 

wetland. Landsat satellite images were selected because they have sufficient archival data, 

they are freely accessible and because of their reported performance in other land cover 

classifications and wetland analysis studies (Jin et al., 2017; Fashae et al., 2020). For this 

study, five scenes of cloudless Landsat 5 TM and one Landsat 8 OLI satellite imagery time-

series data, dating from 1983 to 2019, with 9-year intervals, covered the study area, and they 

were acquired from the United States Geological Survey (USGS) data portal 

(http://glovis.usgs.gov).  

 

Preceding to the classification process, Landsat images were imported into the ENVI 

software (Harris Geospatial Solutions, Herndon, VA, USA, version 5.3). The Fast Line-of-

sight Atmospheric Analysis of Spectral Hypercube (FLAASH) radiative transfer model was 

used for atmospheric corrections made to images during the study period (Mushore et al., 

2016). Images were orthorectified and geometrically corrected by using randomly selected 

ground control points (GCPs) (350). Selected bands from Landsat images (Table 3.2 and 

Table 3.4) were also used. Bands 1 (coastal aerosol), 6 and 7 (thermal band), 9 (water 

vapour), 8 (panchromatic), 9 (SWIR – cirrus), 10 (LWIR-1) and 11 (LWIR-2) were excluded 

from the analysis, due to their spatial resolution (60 and 120 m) and their relevance relating 

to the detection of atmospheric features (Drusch et al., 2012; Hagolle et al., 2015). The 

spectral bands have been considered to be inapplicable in vegetation monitoring (Immitzer et 

al., 2016). The Blue, Green, Red, NIR and SWIR 1 and 2 bands were used in this study.  
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Table 3.2 2015-2019 Landsat 8 Operational Land Imager (OLI) band specifications used 

for 2019 

Band name Centre of electromagnetic region (µ) GSD(m) 

1. Coastal/Aerosol 0.433 – 0.453 30 

2. Blue 0.452 – 0.512 30 

3. Green 0.533 – 0.590 30 

4. Red 0.636 – 0.673 30 

5. NIR 0.851 – 1.879 30 

6. SWIR – 1 1.566 – 1.651 30 

7. SWIR – 2 2.107 – 2.294 30 

8. Panchromatic 0.500 – 0.680 15 

9. Cirrus 1.360 – 1.390 30 

10. LWIR-1 10.6 – 11.2 100 

11. LWIR-2 11.5 – 12.5 100 

*NIR –Near Infra-red, SWIR – Shorter Wave Infrared, LWIR – Lower 

Wave Infrared. The six bands highlighted in bold were used in the study 

for the analysis 

 

Table 3.3 Landsat 5 TM band specifications used for the year 1983 and 2010 

Band name Centre of electromagnetic region (µ) GSD (m) 

1. Blue 0.45 – 0.52 30 

2. Green 0.52 – 0.60 30 

3. Red 0.63 – 0.69 30 

4. NIR 0.76 – 0.90 30 

5. SWIR – 1 1.55 – 1.75 30 

6. SWIR – 2 2.03 – 2.35 30 

7. Thermal  10.40 – 12.50 120 

*NIR – Near Infrared, SWIR – Shorter Wave Infrared. The bolded bands 

are used in the study and the band not written in bold was not used for the 

analysis 

 

3.2.4 Image classification 

The Support Vector Machine (SVM) classifier embedded in ENVI 5.3 was used to assess the 

impacts of LULC changes affecting the Maungani wetland for the years 1983, 1992, 2001, 

2010 and 2019. The SVM is a supervised, non-parametric statistical machine learning 

technique that used to classify high-dimensional data. It is suitable for image classification 

when a limited number of training data is available. Comparative studies assessed the 

performance of supervised classifiers and found that SVM classifier produced higher 

accuracy results than other supervised classifiers such as Maximum Likelihood, Mahalanobis 

Distance, Minimum Distance, Spectral Angle mapper, Random Forest (Jia et al., 2014; 
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Muavhi, 2020). The SVM Classifier appear to be advantageous in the presence of 

heterogeneous classes for which only few training data are used than other machine learning 

classifiers which require additional training dataset as the input dimensionality increases (Yu 

et al., 2013; Muavhi, 2020). It locates the optimal hyper-plane between two classes to 

separate them in a new high-dimensional feature space by taking into account only the 

training samples that lie on the margin of the class distributions known as support vectors.  

The SVM, is a method produced to solve pattern recognition and nonlinear function 

estimating problem (Sahu et al., 2015). SVM was implemented using the Radial Basis 

Function (RBF) kernel characterised by default gamma of 0.33, penalty parameter of 100.00, 

pyramid level was set at 0 and classification probability threshold was also 0. Although its 

performance was tested on large scale mapping, using SVM in this study will provide a clear 

view on the rate of small wetland status.   

 

3.2.5 Classification accuracy assessment 

The derived LULC change maps for the years 1983, 1992, 2001, 2010 and 2019 were 

assessed for accuracy. The field data samples were divided into those for training (70%) and 

testing (30%). The field data samples were divided into 70% training (245 points) and 30% 

testing (105 points). The principle behind separating data into 70/30 is because they 

represented a large training data set, while the remaining data were preserved to compute 

accuracy statistics (Adjorlolo et al., 2013; Adelabu et al., 2014). An error matrix was used to 

assess the accuracy of the classification process (the overall, user and producer accuracy) 

relative to the reference data. Further, the error matrix provided a comprehensive evaluation 

of the agreement, omission and commission amongst the classification results and training 

data, with evidence on how the classification errors occurred (Pontius and Millones, 2011). 

We then computed the statistical analysis (a one-way Analysis of Variance: ANOVA test) to 

check for any significant differences (α = 0.05) among the derived spectral reflectance for 

each of the different land covers.  

 

3.2.6 Change detection analysis and post-classification 

The existing LULC types occupying the Maungani wetland were evaluated for the time-frame 

of the study and expressed as the amount for the entire study area. This allowed for the 

assessment and estimation of the LULC changes within the 1983-1992, 1992-2001, 2001-

2010, 2010-2019 and 1983-2019 time periods. The post classification comparison was used 

as the change detection techniques. This approach is a comparative analysis of satellite 
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images belonging to different times classified as independently from each other. Advantage 

of this method is that it gives information about the magnitude and direction of change.  

Although both images come from the same sensor, spectral differences are expected to occur 

in the same land use/cover classes due to changes in atmospheric conditions, sun angle. even 

if the time interval is very small in multi-time data (Munyati, 2000). Based on the post 

classification comparison technique, the change is identified based on pixel-by-pixel basis by 

overlapping LULC maps belong to different dates obtained by the classification technique. At 

the end of the process, the number of areas which have undergone change and which class 

has changed can be identified. An overall change detection map, from 1983-2019, was 

produced to show the LULC conversion. This type of analysis was very useful in identifying 

the various changes in the LULC classes, such as the increase in built-up areas and the high 

decrease in the extent of the wetland. 

 

3.3  Results 

3.3.1 Satellite-derived wetland land use land cover change (1983-2019) 

Derived maps were produced, using SVM, in order to understand the rate of conversion for 

the period between 1983 and 2019 (see Figure 3.3). It was observed that in 1983 the wetland, 

other vegetation, bare land and agriculture dominated the entire study area. Wetland areas 

were found in all directions, other vegetation occupied the larger part in the south, and 

agriculture occupied the western parts of the wetland. In 1992, a considerable portion of 

agriculture had been converted to forest. Although the wetland covered a larger area in 2001, 

part of its areal extent was replaced mainly by vegetation or bush encroachment. During 2010 

and 2019, there was a sharp increase in the built-up area, which replaced a large portion of 

the wetland area. In 2010, the area under agriculture increased, when compared to the year 

2002, particularly on the western side of the study area. Overall, the maps showed a decline 

in wetland coverage, which was replaced by built-up areas. 

http://etd.uwc.ac.za/ 
 



43 
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(d) 
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Figure 3.3 Spatial distributional pattern of identified land use land cover change maps for the 

period between (a) 1983, (b) 1992, (c) 2001, (d) 2010 and (e) 2019 

(e) 
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Table 3.4 Summary of the land use land cover area coverage between 1983 and 2019 (area in ha) 

 

LULC types 

Total change in area 

1983 1992 2001 2010 2019 

Area % Area % Area % Area % Area % 

Agriculture 201 900 8.11 286 800 11.51 175 100 7.03 406 400 16.32 373 700 15 

Bareland 352 100 14.13 348 100 13.98 389 300 15.63 207 000 8.31 289 000 11.60 

Built up 79 100 3.17 901 00 3.62 121 400 8.87 402 000 16.14 934 300 37.51 

Forest 115 800 4.65 115 000 4.62 153 700 6.17 208 800 8.38 171 400 6.89 

Other vegetation 668 400 26.84 680 400 27.32 685 100 27.51 511 700 20.54 375 400 15.07 

Water 100 0.0004 5 000 0.20 22 100 0.89 40 400 0.16 18 900 0.08 

Wetland 1 073 500 43.10 965 300 38.75 944 100 37.90 750 900 30.15 345 100 13.85 
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3.3.2 Spatio-temporal change analysis of wetland area over time  

The spatio-temporal change analysis of the wetland area has been presented in Figure 3.4 and 

Table 3.4. During the study period, five (5) thematic maps were derived by using the SVM 

classifier to assess the change dynamics of the Maungani wetland area for the years 1983, 

1992, 2001, 2010 and 2019. This wetland experienced significant change due to 

anthropogenic activities. In the year 1983, the wetland was the dominant land feature type, 

covering 43.10% (10 734 900 ha) of the total area, followed by other vegetation that covered 

668 400 ha (26.84%). It was also observed that in the western part of the study site, 

agricultural land occupied an area of about 201 900 ha (8.11%), and in the eastern part, the 

concentration of built-up areas was 79 100 ha (3.17%), respectively. It can be observed from 

the map that the wetland area decreased by 108 200 ha, to 965 300 ha (38.76%), in 1992, 

when compared with areal coverage in 1983. Overall, there was an increase in areas with 

vegetation, in bare land and built-up areas, which covered an area of 680 400 ha (27.32%), 

286 800 ha (11.52%) and 90 100 ha (3.62%), respectively. On average, the wetland shrunk 

greatly, with much of the area being replaced by bushy vegetation (27.32%) in the south 

towards the eastern part of the study site and bare land (13.97%). It was observed that more 

than 50% of wetland area was lost to other land cover classes from 2001, with 944 100 ha 

(37.90%) of the wetland remaining. Other vegetation covered 685 100 ha, mainly in the east 

and south of the study site ha (27.51%), with bare land covering 389 300 ha (15.63%) and a 

consistent increase in built-up areas, which occupied approximately 8.87% of the wetland. In 

the year 2010, the wetland area remained at 750 900 ha (30.15%), with an increase in the 

vegetation and built-up areas occupying major parts of the wetland, with an aerial extent of 

511 700 ha (20.54%) and 402 000 ha (16.14%), respectively. In addition, during the year 

2019, the results revealed that the wetland was impacted by other LULC changes. Only 345 

100 ha (13.85%) of the wetland remained unaffected. When compared to the year 1983, the 

Maungani wetland lost approximately 728 300 ha in 2019. This observation was further 

confirmed by the results in Figure 3.6, which show the trends of the wetland change and other 

LULC changes that occurred within the study area. The overall classification during the study 

period (1983-2019) showed that the wetland area lost 728 300 ha of its spatial extent to 

vegetation covered areas with 375 400 ha (15.07%), and built-up areas with 934 300 ha 

(37.51%), respectively.  
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Figure 3.4 Time series variation of land use land cover change and wetland dynamics from 

1983 to 2019 

 

3.3.3 Accuracy assessment derived from thematic maps 

Based on ground-truth data and Google Earth imagery, the derived satellite images of the 

wetland area were validated (Figure 3.6). Between 1983 and 2019, the SVM classifier 

achieved higher overall classification accuracies, ranging from 77.55% to 92.24% (see Table 

3.5). During the years 1983, 1992, 2001, 2010 and 2019, the overall classification accuracies 

achieved were 87.76%, 77.55%, 92.24%, 91.43% and 83.67%, respectively, which indicate 

that there was agreement between the reality on the ground and the satellite-derived images. 

However, in this study, the accuracies of the producers and users generating LULC maps 

were satisfactory and ranged from 42.86% to 100%. The commission, agreement, and 

omission errors (see Figure 3.5) were found to be the lowest for the year 2001 and ranged 

between 0% and 3%.  
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Table 3.5 Derived land use land cover classification accuracies: Overall Accuracy (OA), 

Producer Accuracy (PA) and User Accuracy (UA) between the years (a) 1983, 

(b) 1992, (c) 2001, (d) 2010 and (e) 2019 

1983 [a] Agriculture 

Bare 

land Forest 

Other 

vegetation Water Wetland 

Built 

up Total 

UA 

(%) 

Agriculture 23 0 1 0 0 11 0 35 65.71 

Bare land 0 35 0 0 0 0 0 35 100 

Forest 0 0 31 0 4 0 0 35 88.57 

Other 

vegetation 0 0 0 32 0 2 1 35 91.43 

Water 0 0 0 0 35 0 0 35 100 

Wetland 5 0 0 0 0 30 0 35 85.71 

Built up 0 2 0 2 2 0 29 35 82.86 

Total 28 37 32 34 41 43 30 245 87.76 

PA (%) 82.14 94.59 96.88 94.12 85.37 69.77 96.67   

 

1992 [b] Agriculture 

Bare 

land 

Built 

up Forest 

Other 

vegetation Water Wetland Total 

UA 

(%) 

Agriculture 24 0 0 2 1 3 5 35 68.57 

Bare land 0 32 0 0 3 0 0 35 91.43 

Built up 0 8 24 0 3 0 0 35 68.57 

Forest 4 0 0 29 0 2 0 35 82.86 

Other 

vegetation 0 0 2 0 32 0 1 35 91.43 

Water 0 1 0 4 0 26 4 35 74.29 

Wetland 4 0 0 0 1 7 23 35 65.71 

Total 32 41 26 35 40 38 33 245 77.55 

PA (%) 75 78.05 92.31 82.86 80 68.42 69.79   

 

2001 [c] Agriculture 

Bare 

land 

Built 

up Forest 

Other 

vegetation Water Wetland Total 

UA 

(%) 

Agriculture 31 0 0 4 0 0 0 35 88.57 

Bare land 0 34 0 0 0 0 1 35 97.14 

Built up 0 0 34 0 1 0 0 35 97.14 

Forest 2 0 0 28 0 5 0 35 80 

Other 

vegetation 0 0 0 0 35 0 0 35 100 

Water 0 0 0 1 0 34 0 35 97.14 

Wetland 1 0 0 0 4 0 30 35 85.71 

Total 34 34 34 33 40 39 31 245 92.24 

PA (%) 91.18 100 100 84.85 87.50 87.18 96.77   
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2010 [d] Agriculture 

Bare 

land 

Built 

up Forest Water Wetland 

Other 

vegetation Total 

UA 

(%) 

Agriculture 34 0 0 0 0 1 0 35 97.14 

Bare land 0 31 0 1 1 0 2 35 88.57 

Built up 0 3 32 0 0 0 0 35 91.43 

Forest 0 0 0 35 0 0 0 35 100 

Water 0 0 0 1 34 0 0 35 97.14 

Wetland 1 1 0 0 0 30 3 35 85.71 

Other 

vegetation 0 0 0 0 0 7 28 35 80 

Total 35 35 32 37 35 38 33 245 91.43 

PA (%) 97.14 88.57 100 94.59 97.14 78.95 84.85   

 

2019 [e] Agriculture 

Bare 

land 

Built 

up Forest 

Other 

Vegetation Water Wetland Total 

UA 

(%) 

Agriculture 15 0 0 0 0 20 0 35 42.86 

Bare land 0 32 0 0 3 0 0 35 91.43 

Built up 0 2 30 1 1 1 0 35 85.71 

Forest 0 0 0 32 0 3 0 35 91.43 

Other 

Vegetation 0 0 0 0 35 0 0 35 100 

Water 9 0 0 0 0 26 0 35 74.29 

Wetland 0 0 0 0 0 0 35 35 100 

Total 24 34 30 33 39 50 35 245 83.67 

PA (%) 62.50 94.12 100 96.97 89.74 52 100   
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Figure 3.5  Commission, omission error depicted in (a) 1983, (b) 1992, (c) 2001, (d) 2010 

and (e) 2019 

 

3.3.4 Increase and loss of land use land cover (net-change) 

The spatial information in Figure 3.6 and Table 3.6 for the period under study revealed that 

both gains and losses occurred within the boundary of Maungani wetland boundary. The net-

changes, as a result of gains or losses for each LULC type between 1983-1992, 1992-2001, 

2001-2010 and 2010-2019, are depicted in Figure 3.5. We realised that much of the wetland 

was lost (108 200 ha) between 1983 and 1991, while the agriculture and built-up areas 

increased by 78 000 ha and 11 100 ha, respectively. Between 1991 and 2001, the agriculture 

and wetland areas lost 118 200 ha and 71 900 ha, respectively, while the built-up areas (31 

300 ha) and bare lands (41 200 ha) gained in their spatial extent. Between 2001 and 2010, the 

wetland (193 200 ha), bare lands (173 400 ha) and other vegetation (182 300 ha) lost the most 

spatial extent, whereas between 2001 and 2010, the built-up areas (280 600 ha) and 

agriculture (231 300 ha) gained a larger proportion. Furthermore, the wetland (405 800 ha) 

and other vegetation (136 300 ha) suffered the greatest declines between 2010 and 2019. The 

built-up and agricultural areas covered an aerial extent of 532 400 ha and 82 000 ha, 

respectively. The wetland lost an aerial extent of about 728 400 ha between 1983 and 2019. 

The built-up area was found to be the most dominant feature class, occupying 855 300 ha of 

the total area. In the same period, other vegetation (393 000 ha) lost its spatial coverage over 

the same time-frame, while agriculture gained coverage by 171 800 ha and 855 300 ha, 

respectively. 
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Figure 3.6 Total area and amount of land use land cover changes (Net change: gains/losses) 

on wetland area between 1983 and 2019 

 

Table 3.6 demonstrates the percentage loss of wetlands to other LULC types between 1983 

and 2019. The spatial extent of wetlands has experienced a massive modification, compared 

to other LULC types, during the period of study. Over the period of 36 years, 728 300 ha of 

the wetland area was lost. The majority of the wetland was lost to 784 500 ha of built-up 

areas and 22.97% of agricultural land. 

 

Table 3.6 Land use land cover change transition between land cover classes 1983 to 2019 

Initial state 

(1983)/Final state 

(2019) 

 Transition of change between LULC classes 

Agriculture Bare lands Built up Forest Other 

vegetation 

Water Wetland 

Agriculture 171 800 21 700 296 700 257 900 -294 700 373 700 -699 700 

Bare land 87 100 -63 100 209 900 173 200 -379 500 288 900 -784 500 

Built up 732 500 582 300 855 300 818 500 265 900 934 300 -139 100 

Forest -30 500 -180 700 92 300 55 600 -497 100 171 400 -902 000 

Other vegetation 173 500 23 300 296 300 259 600 -293 000 375 400 -698 000 

Water -2 000 -350 200 -77 200 -113 900 -666 500 11 900 -1 071 500 

Wetland 143 200 -69 800 266 000 229 300 -323 300 345 100 -728 300 
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3.3.5 Change detection measurements that occurred over a 36-year period 

The spatial extent of the Maungani wetland has declined over the years, compared to other 

LULC types. In Figure 3.7, it can be observed that there has been a major transformation in 

the wetland between 1983 and 2019, due to the rapid population growth and anthropogenic 

activities. In Figure 3.8, it can be observed that the wetland (2550.19 ha), other vegetation 

(4190.47 ha) and bare land (1949.67 ha) were largely converted to built-up areas. The LULC 

cover transition replaced the wetland area, particularly in the low-lying areas. Pockets of 

wetland were also converted into other LULC classes.   
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Figure 3.7 Overall land use and land cover conversion during the monitoring period (between 

1983 to 2019) 
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Figure 3.8  Area of the Maungani wetland ecosystem converted into other land use and land 

cover classes  

 

3.4 Discussion 

The present study investigated the impacts of LULC change dynamics on the unprotected 

Maungani wetland, which is located in the semi-arid tropical regions of the Limpopo 

Province, South Africa. The freely-available Landsat satellite data and Support Vector 

Machine enabled the study of the wetlands and LULC changes between 1983-2019 (a 36-

year period). 
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3.4.1 Wetland dynamics in relation to other land use and land cover changes 

between 1983 and 2019 

The findings obtained from the study showed that the Maungani wetland has been subjected 

to continuous decline over the last 36 years (1983-2019). The wetland shrunk by 74.94% 

between 1983 and 2019. On the other hand, the built-up areas continuously expanded into the 

wetland area and it was confirmed that 10.40% of wetland was lost to these areas. The loss of 

wetland to built-up areas is mainly attributed to population growth in the area. The population 

growth raised from 53 376 in 1996, 58 149 in 2001 and 618 462 in 2011 which increased 

demand for land for residential purposes or economic development in the vicinity of 

Maungani (STATSSA, 2011). In agreement with the 2011 census data, the national 

population, which includes the Maungani local community, was reported to have increased to 

51.8 million in 2011 (STATSSA, 2011). Other studies have also shown that the built-up areas 

are one of the major threats to unprotected wetland ecosystems. Wang et al. (2012), for 

example, revealed that urbanisation and the influx of migrants have resulted in a sharp 

decline in regional ecological land in China. The ecological value of wetland ecosystems that 

occur in areas with a rapid population growth and economic development is lower, as in the 

Maungani area; however, a similar effect has been observed in other areas e.g. in Ethiopia 

and Zimbabwe (Dubeau et al., 2017; Marambanyika et al., 2017). As depicted by the 1983 

image, the population growth rate was low to the south and to the east of the wetland, when 

compared to high influx in the built-up areas in 2019, which shows the influence of the rapid 

population growth.   

 

On the other hand, the least areal coverage of wetland was converted to forest (3.41%), bare 

land (8.60%) and other vegetation (9.24%) between the year 2000 and 2019. During the study 

period, it was also observed that there was a gradual increase in the deterioration of the 

wetland near the built-up area south-east of it, when compared to other areas of the study. 

The increase in infrastructural development in the built-up area fuelled the loss of the spatial 

extent of the wetland. These is due to the flat terrain, because when the wetland gets dry, 

people occupy and develop the land. The drying of the land is associated with the decreased 

precipitation pattern and increased climatic conditions, as a result of climate change, which 

puts pressure on the extent of the wetland. Furthermore, human interference worsens the 

ecological condition of the Maungani wetland. Despite the high loss of its spatial extent, the 

wetland gained 2.37% from other vegetation and 0.92% from water. The wetland lost its 
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major cover and other land cover types, such as water (37.08%), forest (33.99%), cultivated 

land (25.16%), as well as bare land (26.15%). In 2015, it was observed that there was an 

increase in the development of settlements to the south-east of the wetland, when compared 

to other portion of the study. Bare land dominated the north-east of the study area and, in 

2019, a large portion of this area was converted to a built-up area. Urban development has a 

major influence on wetland shrinkage. Similar trends were observed in other parts of the 

continent. Studies by Mhlanga et al. (2014) and Chikodzi and Mufori (2018) showed that 

human activities transformed the wetland hydrology in parts of the Harare metropolitan 

district in Zimbabwe, reducing their spatial extent, as these ecosystems were replaced by 

buildings or developments that affected the wetland retention, and eventually led to a loss of 

habitat for the aquatic species. In South Africa, Phethi and Gumbo (2019) found that poverty 

and population growth were the driving forces behind wetland mismanagement. They 

revealed that the cultivation of crops, road construction and built-up development, during the 

period from 1978 to 2004, were the main activities that contributed to the deterioration of the 

Makhitha wetland, located in the Limpopo Province. On the other hand, Orimoloye et al. 

(2020) conducted a spatial pattern of the Isimangaliso Wetland by using Landsat data 

between 1987 and 2017 and witnessed a significant change in the extent of the wetland 

during the study period (from 655.42 km2 to 429.49 km2). Climate change, built-up areas and 

agricultural activities were found to be the major factors that replace the extent of wetlands.  

 

3.4.2 Long-term wetland monitoring, using Landsat data 

Mapping the spatial patterns of wetland areas over time is critical for detecting and 

monitoring the LULC changes and for understanding their effects on the integrity and 

ecological functioning of wetland. The use of a freely-accessible, accurate and reliable 

remote sensing dataset i.e. Landsat, with a 30-m spatial resolution, has enabled the mapping 

of the spatial extent of LULC in unprotected wetlands that are surrounded by rural 

communities. This will enable researchers and other wetland managers to investigate the 

spatial transformation of wetland over particular time periods (i.e. 1983-2019). Our approach 

supplements the wetland characterization systems that have demonstrated the use of multi-

temporal mapping of wetland areas for understanding the pattern of LULC changes degrading 

wetland ecosystems (Gómez-Rodríguez et al., 2010; Rover et al., 2011; Knight et al., 2013).  

Gabrielsen et al. (2006) employed a time-series approach in their analysis, which resulted in 

temporal wetland predictions regarding the probability of wetland inundation, and it is more 

successfully characterises wetlands as ephemeral inclines. Their strategy effectively uses 
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high- and moderate-resolution data to measure the likelihood of wetland inundation and the 

prospect that wetlands may be wet over time. Multi-temporal approaches derived by 

Gabrielsen et al. (2006) produced lower prediction errors of Rapid Eye 3.1–15% and Landsat 

0.3–1.5% in the Northern Great Plains of the USA. 

 

The Landsat data series has shown its capabilities for depicting and accurately mapping 

complex wetland areas and the surrounding LULC dynamics. The information depicted by 

Landsat images is critical for aquatic and wetland management and decision-making, 

especially in regions that have a restricted network system of field observation frameworks in 

place (Thamaga and Dube, 2019). The findings of this study are consistent with previous 

investigations and they underscore the precision and strength of using Landsat data for long-

term mapping in wetland-related studies, LULC quantification, biomass estimation, crop and 

fire mapping, aquatic plant species and urban development (Dube and Mutanga, 2015; 

Robinson et al., 2016; Dube et al., 2018; Rampheri et al., 2020). Jin et al. (2017) 

demonstrated the unique strength and superiority of Landsat missions, as well as their 

practical viability in accurately mapping, detecting and monitoring the spatio-temporal 

changes for wetland assessment over-time. Although the imagery has been used in larger 

areas, particularly the wetlands recognised by the Ramsar Convention (Mozumder and 

Tripathi, 2014), its application in small and unprotected wetlands serving the surrounding 

communities remains limited and under-studied. This demonstrated the ability of Landsat to 

map wetland conditions, using publicly-available data, especially in data-scarce regions, such 

as in the semi-arid tropical regions of the sub-Saharan Africa, and it would greatly assist in 

accurately deriving, monitoring and reporting on the health condition and rate of degradation 

of wetlands. 

 

Although the study provides an insightful overview of the state of unprotected wetlands in the 

arid tropical regions of sub-Saharan Africa, the understanding of these ecosystems could be 

better depicted through the integration of multi-source data, including the perceptions of 

indigenous communities as well as seasonal dynamics. In addition, considering that wetland 

LULC characterisation was done by using broadband and spatial resolution satellite data, 

some inherent changes could have been missed. The 30-m spatial resolution of Landsat is 

associated with spectral mixing, which results in its poor discrimination ability. In this regard, 

spatially-explicit methodologies must be explored that focus on analysing changes in the soil 

moisture, different types of vegetation or indices, as well high-resolution data. More so, there 
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is need to include climate and soil data, so as to determine whether these changes are solely 

linked to anthropogenic activities. For example, the study showed that there was also an 

increase in vegetation (bush encroachment) in the wetland and that this may be due to climate 

variability and climate change (Bhaga et al., 2020). A review study by Bhaga et al. (2020) 

demonstrated that climate variability and recurrent droughts have caused remarkable strain on 

water resources in most regions across the globe, with the arid and semi-arid areas being the 

hardest hit and that this is likely to have an effect on the wetland conditions. This assertion is 

further strengthened by the work of Gxokwe et al. (2020), who noted that wetlands are 

degrading at a rapid rate globally, due to the environmental changes. Lastly, we assume that 

the provision of information on the accuracy of individual maps is likely to be insufficient, 

and hence there is a need for further studies to consider accuracy assessment of land use 

change, by using stratified estimation (Olofsson et al., 2013; Olofsson, et al., 2014). Robust 

and transparent statistical approaches for assessing accuracy and estimating the areas of 

change are critical for ensuring the integrity of land change information. It is therefore 

imperative to adopt the holistic monitoring of wetlands, as well as an assessment framework 

that includes climate and environmental data in the long-term mapping and modelling of 

wetland changes and their possible degradation. 

 

3.4.3 Implications for wetland conservation and land use and land cover management 

The complexities of wetland ecohydrological processes necessitate a profound interpretation 

of LULC transition, as these changes influence the spatial extent of wetlands, the diversity, 

the waterflow, and ultimately, the proliferation of alien plant species. According to the 

findings of this study, the extent of the wetland ecosystem area is diminishing rapidly. This 

information provides the requisite baseline information required by environmental and 

wetland managers to devise sustainable intervention measures and strategies to curb the 

further deterioration of ecohydrological systems from the possible threats emanating from 

both anthropogenic and natural causes. These necessitate responsive management strategies 

to stop or reverse the rate of degradation or loss of wetlands, especially unprotected wetlands 

that have been overlooked in policy formulation. Increased management strategies, with an 

emphasis on wetland rehabilitation and restoration, are not backed up by adequate integrated 

data collection, reliable information and reviews. Uncertainty over the previous policy 

outcomes for LULC change and wetlands, as well as recent attempts to strengthen their 

protection, pose critical concerns about their ecological significance. Ecosystem managers 

need to strengthen their implementation policies to conserve wetland ecosystems, and to 
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minimise the rate of their shrinkage, the extension of urban landscape patterns must be 

regulated.  

 

3.5 Conclusions 

This work explored the impacts of LULC change on wetland ecosystems in the Maungani 

wetland, which is located in the semi-arid tropical regions of South Africa. The integrated 

time-series Landsat data and Support Vector Machine algorithms were used to depict and 

model the historical LULC and wetland change for a period of 36 years (1983-2019) to 

overcome the degradation and to contribute towards the sustainable management of these 

wetland ecosystems. There has been a widespread conversion of wetlands during the period 

of study. Based on our findings, the following conclusions were drawn. 

• The Maungani wetland has undergone significant changes in terms of the LULC 

change dynamics over the years (1983 to 2019).  

• Derived thematic maps show that the degraded wetland size has been largely replaced 

by built-up areas.  

• The Maungani wetland has shrunk dramatically from 1 073 500 ha (43.10%) in 1983 

to 345 100 ha (13.85%) in 2019. 

Overall, the findings of this study demonstrated the use of historical and archival Landsat 

data series for understanding the effects of LULC change on the spatial extent of wetlands 

located in semi-arid tropical regions of sub-Saharan Africa. The Landsat data-series offers the 

novel, accessible and up-to-date information that is required for the accurate monitoring of 

LULC change dynamics. The rate of degradation and encroachment by other LULC changes, 

especially on unprotected wetlands, plays a critical role in the surrounding communities. 

Furthermore, this work shows that there has been a steady deterioration of the Maungani 

wetland over the past 36 years. As a result, in order to combat the challenges of LULC 

change for the sustainability of the catchment areas, this work recommends a holistic 

framework approach in the management of wetland resources. This comprehensive 

information can be used as a guideline for future LULC assessments, monitoring and 

planning.  
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CHAPTER 4 

 

MODELLING WETLAND VEGETATION USING INTEGRATED 

SENTINEL-2 MSI AND DIVERSITY INDICES IN SEMI-ARID 

REGIONS 
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Abstract  

Wetland vegetation is a key indicator of the health status of vegetation in small wetland 

ecosystems. The accurate estimation of wetland species diversity is therefore critical for 

monitoring the ecosystem behaviour, in order to understand the changes in vegetation 

distribution and productivity patterns. Monitoring wetlands, given their vulnerability to 

anthropogenic pressures, including those associated with climate change, hydrodynamics and 

sewage waste disposal, will improve the management of these wetland systems. In this study, 

the plant species diversity and biomass were estimated, using the new generation Sentinel-2 

MSI data. The study was conducted in the Maungani wetland, which is situated in the 

Limpopo Province of South Africa. Four species diversity indices (e.g. the Margalef, Pielou, 

Shannon-Wiener and Simpson indices), Sentinel-2 derived spectral bands and vegetation 

indices were used to estimate the wetland vegetation diversity and biomass across the study 

area. The findings of this study showed that the diversity and biomass of vegetation species 

can be estimated with a high accuracy by using Sentinel-2 data. For instance, the model 

performances ranged from a r2 of 0.54 (54.72%) (RMSEP = 0.572 gm-2) to r2 of 0.84 (84%) 

(RMSEP = 0.067 gm-2), respectively. Further, the red-edge bands centered at 750 nm (B5), 

740 nm (B6), 783 nm (B7), as well as 863 nm (B8a), were identified as the most influential 

variables in the estimation of wetland vegetation biomass and species diversity. The Margalef 

index (least) and Simpson index (highest) were identified as the most important diversity 

indices in estimating the diversity of wetland vegetation species across the Maungani 

wetland. Using Sentinel-2 derived thematic maps, the Simpson diversity index map showed a 

higher distribution of species diversity. Overall, the findings of this study underscore the 

relevance of new generation Sentinel-2 MSI data in estimating and mapping wetland 

vegetation diversity and biomass, particularly in small wetlands that are non-Ramsar sites. 

 

Keywords: Biomass estimation; Maungani wetland; Red-edge region; Sensor resolution; 

diversity index; Species richness
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4.1 Introduction 

Wetland vegetation is an excellent indicator that ascertains the vegetation health condition of 

small (unprotected) wetland ecosystems, and it characterises the stages of species diversity 

and productivity (Adam et al., 2010; Allan et al., 2013). Wetland vegetation is dependent on 

the presence of water and climate change, particularly rainfall variability, is expected to have 

a substantial influence on these ecosystems and their associated species. While wetlands 

account for a comparatively limited proportion of the total productivity, their contribution is 

nonetheless irreplaceable. The ecological value of wetlands varies, but they are of great 

importance to the surrounding communities. For example, these wetlands maintain 

groundwater storage, biodiversity conservation, weather patterns, human health and 

livelihoods, as well as the nutrient cycle (Mudd et al., 2009; Marambanyika et al., 2017; 

Thamaga et al., 2021). For instance, sub-Saharan Africa is predominantly rural, and the 

majority of communities in these areas rely on wetlands for their livelihoods, which puts 

pressure on these systems. The distribution of wetland vegetation influences the pattern of 

grazing and wildlife/livestock, especially during the dry season (Zomer et al., 2009). 

However, the species diversity and productivity within a wetland reflects the complexities of 

their physical, chemical and human habitats (Moss, 2008). According to Gichuki et al. 

(2001), there is a substantial relationship between the quality of the environment, the species 

diversity and the productivity of wetland vegetation, with large coupling effects occurring in 

regions that are vulnerable to anthropogenic alterations within a wetland. As a result, wetland 

vegetation is one of the most significant biophysical features that distinguishes wetland 

species, and it is required for research on wetland species diversity, productivity and 

ecohydrological stress. 

 

Unprotected wetlands, particularly those found in developing regions, are largely affected 

due to the poor regulations and land use management systems that are in place. The species 

diversity of wetland vegetation can be impacted by environmental disturbances to the extent 

that the ecosystem is dominated by few native plant species or other competing species (van 

de la Chenelière et al., 2014). Several studies (van de la Chaneliere et al., 2014; Bhatnagar et 

al., 2020; Thamaga et al., 2021) have demonstrated that the composition of wetland 

vegetation species diversity is primarily influenced by the slope, aspect, altitude, 

hydrodynamics and anthropogenic activities. Precipitation, drought and increased 

temperature variability have impacted the species abundance, dominance, richness and 

evenness in wetland ecosystems. Thus, the emergence of vascular and nonvascular plant 
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species within demarcated wetlands exemplifies the occurrence of anthropogenic disruptions 

in catchment areas (Asef et al., 2016). The growing population continues to put great 

pressure on wetlands and the rate of degradation is increasing over time, particularly in 

developing regions (Tariku and Abebayehu, 2011; Hagos et al., 2014; Marambanyika et al., 

2017). It is recognised that wetland areas and water systems are at a substantial risk of 

eutrophication, extensive siltation, resulting in the elimination of native plant species and the 

encroachment of invasive alien plant species, which has a major effect on species diversity in 

freshwater environments (Dube et al., 2017, Thamaga and Dube, 2018a), and it reduces the 

ecological value of wetland ecosystems. On the other hand, Burns and Schallenberg (2001) 

highlighted the fact that agriculture, livestock grazing and wildfires may lower the species 

diversity in wetland environments, and Marambanyika et al. (2021) pointed out that, drought 

and increased population growth in Zimbabwe has forced people to migrate to, or expand, 

their agricultural fields in wetland areas. This has a devastating effect and results in the 

deterioration of spatial extent of wetlands, which could lead to the extinction of biodiversity, 

thereby decreasing the species diversity. Lastly, the changing climate alters the normative 

trends and processes by amplifying the environmental stresses, and it can have a cascading 

effect on the ecological response, wetland vegetation diversity and productivity, and, 

ultimately, its resilience. Understanding the distribution and characteristics of wetland 

vegetation will therefore help in their preservation and in the sustainable management of 

species diversity, under observed environmental changes. Thus, rapid and efficient estimation 

of wetland vegetation species diversity is required, particularly in small wetland ecosystems. 

 

Traditionally, the methods of estimating wetland vegetation diversity were based on field 

measurements. However, these methods lack spatial representation, and they are often time-

consuming, labour-intensive in large-scale areas, expensive and inefficient (Adam et al., 

2010; Lumbierres et al., 2017; Thamaga et al., 2021). Since field measurements are 

challenging when it comes to the detection and mapping of wetland ecological information 

over larger areas (Klemas, 2013), remote sensing technologies emerged as an alternative 

method for solving these limitations. The integration of remote sensing datasets and plot data 

can provide the continuous local- to regional-scale monitoring and mapping of wetland 

vegetation diversity, in order to understand its health status and the dynamic changes. A study 

by Meng et al. (2016) demonstrated that remote sensing satellite datasets have drawn 

significant attention in the derivation of information on species diversity by enabling 

convenient data acquisition, while retaining an acceptable accuracy. Recent satellite remote 
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sensing techniques for estimating wetland vegetation include optical remote sensing sensors, 

radio detection and ranging (Radar), light detection and ranging (Lidar), as well as 

hyperspectral data. Predicting species diversity, from a small to a large geographical scale, 

remote sensing data has become feasible in the current scientific community, as a result of the 

expanding spectrum of publicly- and easily-accessible remote sensing products (Kassahun et 

al., 2014).  

 

Satellite images have the advantage of covering wider areas, which provides an opportunity 

to derive landscape-scale biomass and other related species data. Hyperspectral and 

multispectral satellite images have been applied in mapping species diversity. Despite the 

performance of hyperspectral data, their numerous narrow bands make them sensitive in 

detecting and mapping species diversity characteristics (Adam et al., 2010). However, the 

costs attached to hyperspectral data acquisition and their larger areal coverage make it 

unsuitable for the estimation of wetland vegetation species diversity in financially-

constrained regions (Kassahun et al., 2014). Cheap and freely-available multispectral satellite 

data have demonstrated their potential in mapping and the detection of vegetation distribution 

(Mutanga et al., 2015; Shoko and Mutanga, 2017; Fatoyinbo et al., 2018). Several sensors 

from different platforms, such as RapidEye, IKONOS, Landsat series, MODIS, and SPOT, 

with varying spatial resolutions, were used for the estimation of species diversity, primary 

productivity, leaf area index and biomass, and their capabilities in retrieving information on 

wetland species diversity have been observed (Chen et al., 2018; Schug, et al., 2020).  

 

As newer sensors, with finer spatial and temporal resolutions and increased spectral 

information have become available, optical sensors remain one of the most interesting 

options for vegetation estimation. Advancements in broadband multispectral satellite sensors 

have increased their potential to improve the efficiency of retrieving vegetation attributes 

(Thamaga and Dube, 2019). The recent launch of Sentinel-2 MSI offers new avenues for 

investigating the capabilities of remote sensing for fine-scale diversity classifications and 

supporting complex wetland vegetation monitoring. Sentinel-2 MSI is freely accessible, 

which makes it simple for researchers with limited resources to utilise the data and to 

supplement it with other freely-available datasets, such as the Landsat data series. In many 

developing regions, like Africa, which lack the financial means to secure commercially-based 

remote sensing satellite images, Sentinel-2 provides a suitable alternative, with an excellent 

spatial resolution.  The presence of strategically-positioned spectral bands, such as the red 
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edge, which were previously a feature of high-resolution commercial sensors, such as 

Worldview 2, IKONOS, and others, has its own set of advantages that might enable the 

delicate detection of species diversity. Its enhanced sensing capabilities have shown 

significant potential in vegetation detection, mapping and monitoring (Shoko and Mutanga, 

2017). Studies have advocated that enhanced spatial resolution from the Sentinel data series 

have helped to reduce the uncertainty and improved the accuracy of vegetation mapping and 

species diversity at a finer scale (Chen et al., 2018). Pandit et al. (2018) explored the 

potential of Sentinel-2 data in predicting forest biomass, and the biomass estimation model 

scored an r2 = 0.81, as well as an RMSE = 25.57 t ha-1. Shoko et al. (2018) performed a 

comparative study using the Landsat 8 OLI, Sentinel-2 MSI and Worldview 2, to measure C3 

and C4 grasses Above Ground Biomass (AGB). The spatial information derived and 

performance of Sentinel-2 MSI from different studies need to be tested in wetland 

ecosystems in order to understand their vegetation dynamics and diversity. Sentinel-2 data 

have the potential to make a substantial contribution to wetland species diversity and AGB 

monitoring, mapping and estimation. Therefore, this study seeks to estimate the wetland 

vegetation species diversity and map wetland vegetation AGB in the Maungani wetland, 

which is located in the Limpopo River Transfrontier Basin. The study sought to estimate the 

species diversity using different satellite derivatives and in-situ data. 

 

4.2 Materials and Methods 

4.2.1 Field sampling and wetland vegetation species data collection 

Field data collection was carried out between the 12th and 16th of February 2020 (Figure 4.1). 

The data collection time-frame was during the maximum growth or peak productivity of 

wetland vegetation interaction effects, and it was characterised by moderate and high 

precipitation. At each sampling location, a square quadrant (1 m by 1 m) made up of wire 

was randomly placed and the spatial coordinates at the centre of each quadrant were 

recorded, using a Trimble hand-held Global Positioning System (GPS) receiver at a sub-

metre accuracy. The field campaign visited 40 plots distributed across the study area. The 

quadrant was separated by an interval of at least 10 m along transects (ensuring that the 

corners of each plot correspond to Sentinel-2 MSI pixels), to measure the species abundance 

and to minimise auto-correction. The herbaceous species in the quadrants have been 

identified and their percentage of groundcover was determined. Within each quadrant, the 

vegetation was harvested and sealed in a plastic bag in the field, and the raw vegetation was 

then measured and recorded immediately in the laboratory, using a digital scale. After 
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replacing the plastic bags with brown bags, the sample vegetation was initially dried in an 

oven at 80°C for 36 hours, or until a constant weight was achieved, and then the dry biomass 

weight was determined. The following species were identified during the field surveys (see 

Table 4.1):  

 

Table 4.1 List of wetland vegetation classes identified in sampling plots using  

 taxonomic keys 

Family Names No. of Species 

Amaryllidaceae Crinum macowani 1 

Cyperaceae Carex austroafricana, Cyperus difformis, 

Cyperus dive, Cyperus latifidius, Cyperus 

sexangularis, Schoenoplectus brachyceras 

6 

Lamiaceae Mentha longifolia 1 

Nymphaeaceae Nymphaea nouchalia var.coerulea, 1 

Poaceae Phragmites australis, Short mixed C3 and C4 

grass, Setaria megaphylla 

3 

Thelypteridaceae Cyclosorus intteruptus 1 

Typhaceae Typha capensis 1 

Xyridaceae Xyris capensis 1 

 Total 15 
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(b) (a) 

(c) 

 

Figure 4.1  (a) Cutting of wetland vegetation species within a 1 m by 1 m quadrant 

(represented by red box), (b) raw vegetation carried in a plastic bag, and (c) 

species productivity and diversity in the Maungani wetland 
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4.2.2 Satellite image acquisition and pre-processing 

Sentinel-2 MSI, which is a sun-synchronous and polar-orbiting satellite image that covers the 

study area, was used. The level 1C product, single scene of the Sentinel-2 image was 

retrieved from the European Space Agency (ESA) Copernicus Open Access Hub 

(https://scihub.copernicus.eu/). The image was delivered orthorectified at a Top of 

Atmosphere (TOA) reflectance in Universal Transverse Mercator (UTM) projection with the 

World Geodetic System (WGS). Sentinel-2 MSI imagery has a swath width of 290 km2 and 

provides 13 spectral bands at varying spatial resolutions, ranging from 10 m (visible and 

narrow NIR bands), 20 m (red edge, NIR and SWIR bands) and 60 m (costal aerosol, water 

vapour and cirrus bands) (see Table 4.2). For this study, we utilised 10 spectral bands (2, 3, 4, 

5, 6, 7, 8, 8A, 11 and 12) for analysis. Costal aerosol, water vapour and cirrus bands were 

excluded from the analysis, due to their relevance in the detection of atmospheric features, 

and they were considered to be inappropriate for vegetation mapping and monitoring 

(Thamaga and Dube, 2019). The raw satellite image was pre-processed in the Sentinel 

Application Platform (SNAP) tool for atmospheric correction, using the Sen2cor module in 

SNAP software. The spectral bands (red edge, NNIR and SWIR) were resampled to 10 m, 

based on the nearest neighbourhood technique using sen2cor module, to ensure that all bands 

had a comparable spatial resolution and to determine the advantage of a higher resolution, for 

compatibility purposes and for further analysis. Ten (10) spectral bands were stacked, using 

composite bands under raster processing, and randomly generated sample points (using 

Hwath tool) were employed to extract multi-values in the ArcGIS 10.6 environment.  

 

4.2.3 Vegetation indices and species diversity estimation models 

Traditionally, field observations have been directly linked to wall-to-wall remote sensing 

data, using statistical models for the estimation of wetland vegetation species diversity. In 

this present study, spectral reflectance (10 spectral bands) derived from Sentinel-2 MSI for 

each quadrant were used to calculate 13 selected vegetation indices (Table 4.3), in order to 

estimate diversity and productivity of the wetland vegetation species. The spectral reflectance 

is critical for classifying wetland vegetation species because it can be applied to record the 

biophysical and biochemical attributes of vegetation, such as biomass. The spectral band and 

derived vegetation indices were reported to have been extensively applied by previous studies 

to predict and capture vegetation attributes over larger areas (Shoko and Mutanga, 2017; 

Ramperi et al., 2020). These indices capture the sensitivity of vegetation features, while 

maximising the influence of confounding factors, such as soil background and atmospheric 
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effects or illumination (Xue and Su, 2017). For instance, EVI is sensitive to high biomass 

regions, due to its correction factor that eliminates the influence of aerosols and canopy 

backgrounds, while GNDVI is sensitive to variations in chlorophyll. Vegetation indices are 

based on the capacity of plants to significantly reflect incident electromagnetic signals in the 

NIR band, when compared to optical bands. These proxies have been applied in wetland 

vegetation-related studies (Rokni et al., 2014; Mahdavhi et al., 2017; Eid et al., 2020). 

 

Table 4.2 Sentinel-2 Multi-Spectral Imager satellite characteristics. The spectral bands 

utilised in this study for analysis are shown in bold letters 

Band No. and name Central wavelength (nm) Bandwidth (nm) Spatial resolution (m) 

1 – Costal aerosol 443 20 60  

2 – Blue 490 65 10  

3 – Green 560 35 10  

4 – Red 665 30 10  

5 – VRE 1 705 15 20  

6 – VRE 2 740 15 20  

7 – VRE 3 783 20 20  

8 – NIR 842 115 10  

8a – NNIR 865 20 20  

9 – Water vapor 945 20 60  

10 – SWIR – Cirrus 1380 30 60  

11 – SWIR 1 1610 90 20  

12 – SWIR 2 2190  180  20  

*VRE: Vegetation Red Edge, NIR: Near Infra-Red, NNIR: Narrow Near Infra-Red, SWIR: Short 

Wave Infra-Red 
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Table 4.3 Vegetation indices that were utilised in the present study with their respective 

formulae, as well as references 

Vegetation index  Formula  Reference 

EVI  2.5 * ((NIR – Red)/(1 + NIR + 6Red – 7.5Blue)) (Huete et al. 1997; Gao et al., 2000) 

SAVI  ((NIR – Red) * (1 + L))/(NIR + Red + L) (Huete 1988) 

NDVI  (NIR – Red)/(NIR + Red) (Liu and Huete, 1995) 

VARIg (Green – Red)/green + Red – Blue Gitelson et al., 2002 

ARVI  (NIR – (2*(Red – Blue)))/(NIR + (2*(NIR – Blue))) (Kaufman and Tanré 1992) 

PVI  NIR/NIR + R (Richardson and Weigand, 1977) 

GNDVI  (NIR – Green)/(NIR + Green) (Gitelson et al., 1996) 

OSAVI  (NIR – Red)/(NIR + Red + 0.16) (Rondeaux et al., 1996) 

DVI  NIR – Green (Tucker, 1979) 

CIgreen (NIR/Red) – 1 (Gitelson et al. 2005) 

MSR ((NIR/Red) -1)/((NIR /Red)1/2 + 1) (Chen, 1996) 

NDVI45 (Red edge1 – Red)/(Red edge 1 + Red) Delegido et al., 2011 

S2REP 705 + 35 *((((NIR + R)/2) - RE1)/(RE2 - RE1)) Frampton et al., 2013 

*Enhanced Vegetation Index (EVI), Simple Adjusted Vegetation Index (SAVI), Normalised Different Vegetation 

Index (NDVI), Visible Atmospherically Resistant Index green (VARIg), Atmospherically Resistant Vegetation 

Index (ARVI), Perpendicular Vegetation Index (PVI), Green Normalized Difference Vegetation Index (GNDVI), 

Atmospherically Resistant Vegetation Index (ARVI), Renormalized Difference Vegetation Index (RDVI), 

Difference Vegetation Index (DVI), Greenness Index (GI), Visible Atmospherically-Resistant Index, Green 

chlorophyll index, (NDI45), Sentinel-2 Red-edge Position (S2REP), Modified Simple Ratio (MSR) 

 

4.2.4 Wetland species diversity estimation indices 

To quantify the wetland vegetation species diversity indices, the Shannon-Wiener, Simpson, 

Margalef and Pielou presented in Table 4.4 were used for the evaluation process. For each 

plot placed in this study, the species diversity, richness and evenness were determined by 

calculating the selected indices and the list of species available. The diversity indices were 

chosen because of their frequent use in vegetation species modelling. According to the 

suggestions of Brown et al. (2013), the richness, variety and evenness of species were 

determined. These were determined for each plot by computing the Shannon-Wiener index 

and identifying the species. The percentage of the plot filled by species i is denoted as pi, and 

this value indicates the relative abundance of species i. The pi was used to compute H’, which 

is a proxy for species diversity, as shown in the following formulae:   
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Table 4.4 The diversity indices used to quantify the wetland vegetation species 

Diversity 

Index 

Equation Description Reference  

Shannon-

Wiener 

index 

H' =  The Shannon-Wiener index articulates the 

existence of the ith species in a community, 

its values typically range from 0 to 3.5, with 

the values correlating to more species 

diversity. Lower numbers imply a lower 

degree of species diversity found in the 

region, and it occurs when all species are 

present in equal numbers.  

 

 

Shannon and 

Wiener 

(1949)  

 

Simpson 

index 

D2 = 1/  The Simpson index estimate the likelihood 

that two individuals chosen randomly from a 

sample will belong to the same species. The 

index has a value between 0 and 1, and the 

higher value, the greater the sample variety. 

The index indicates the likelihood that two 

individuals drawn at random from a sample 

will be of different species.  

 

 

 

Simpson 

(1949) 

Margalef 

index 

R1 =  The Margalef index estimates the variety of 

species present within a certain area. It is 

also determined by the amount of vegetation 

present in the defined region.  

 

Margalef 

(1958) 

Pielou 

index 

J’ =  The Pielou index is used to measure the 

relative frequency of species groups. The 

index can have a quantity of 1 (all species 

are equally abundant) and 0 (only one type 

of species). The higher value, the greater the 

species diversity, and the lower the value, 

the lower the species abundance.  

 

Pielou (1975) 

 

4.2.5 Regression algorithm used for wetland vegetation prediction 

In this study, the Multiple Linear Regression (MLR) method, which is statistical method that 

uses the spatial distribution of dependent variables, by means of linear combination, to 

predict the outcomes of the independent variables. The technique was utilised to determine 

the factors, and the contribution of these components were determined by a repeated iterative 
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regression analysis and significance testing. The MLR is a widely-used method that is used to 

construct regression models for various prediction applications i.e. grasslands, forests and 

wetland estimation (Hu et al., 2020).  

 

4.2.6 Model assessment for wetland vegetation species diversity 

In order to assess the effectiveness of the model in estimating the accuracy of the diversity 

and productivity of wetland vegetation species, the following three criteria were chosen: 

determination of coefficient (r2) (Equation 1), the Root Mean Square Error (RMSE) and the 

Mean Absolute Error (MAE) (Equation 2). R2 is utilized to determine the collinearity 

between the predicted and observed vegetation values (the measure of the proportion of 

variance of a predicted outcome) (Husch et al., 2003). RMSE (Equation 3) is a standard 

metric for measuring the differences between the estimated value by the model and the actual 

biomass values; however, it is easily influenced by outliers (Chai and Draxler, 2014). It is 

suggested that the MAE be used with RMSE for determining the variations of errors in the 

model (Bui et al., 2016). The RMSE and MAE values close to 0 and an R2 value close to 1 

indicate that the model is an accurate predictor. The most accurate model yields a high value 

of the r2 and a low RMSE. The Akaike Information Criterion (AIC) was also used to assess 

the model complexity i.e. a low AIC highlights the most parsimonious model. From each 

analysis, using the field-based measurement, a better model was identified, and the selected 

model and its associated variables were then used to produce wetland vegetation diversity 

maps for the study area. 

 

        Equation 1 

        Equation 2 

         Equation 3 

 

Where  is the ith simulated wetland vegetation value,  is the real wetland vegetation 

value among the tested sample points,   is the average simulated wetland vegetation for all 

the tested points, and n is the size of the tested samples. 
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4.3 Results 

4.3.1 Wetland vegetation species diversity estimation models, based on all spectral 

bands and vegetation indices 

Considering the potential of the MLR algorithm for predicting the wetland vegetation species 

diversity, the model with all input variables provided satisfactory results. The prediction of 

the diversity of wetland vegetation species is dependent on the combination of selected 

vegetation indices and spectral bands derived from Sentinel-2 MSI. In this study, 13 

vegetation indices, along with ten spectral bands, were required in this analysis to extract the 

values against the species diversity indices. The wetland vegetation species diversity and 

abundance estimation (Figure 4.2) were derived from the vegetation indices, using Sentinel-2 

image yield coefficient of determination (r2) value of 0.66 (65.69%), RMSE = 37.78 m g-2, 

and an AIC of 302.361 for dry biomass. The Shannon-winner index yielded an r2 value of 

0.64 (63.78%), an RMSE of 0.246 m g-2 and an AIC of 99.824. The Simpson index achieved 

the best relationship for predicting and estimating species diversity with r2 of 0.84 (84.36%), 

an RMSE = 0.067 m g-2 and an AIC of 204.497. The Margalef index yielded an r2 value of 

0.53 (52.72%), an RMSE of 0.572 m g-2 and an AIC of 11.662. The Pielou index yielded an 

r2 value of 0.70 (69.19%), an RMSE of 0.159 m g-2 and an AIC of 134.913. The variable 

performance of the wetland species diversity indices that are presented in Figure 4.2, 

illustrated that the Simpson index has the strongest MLR in estimating wetland vegetation 

species, with the Margalef index having a lower r2, respectively. 

 

http://etd.uwc.ac.za/ 
 



76 
 

 

Figure 4.2  Predicted results for: (a) Above Ground Biomass (AGB), (b) Shannon-Wiener 

Diversity Index, (c) Simpson Diversity Index, (d) Pielou Evenness  Index and 

(e) Margalef Richness Index based on selected variables from remotely sensed 

dataset, using MLR 
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4.3.2 Variable of importance measures 

The Variable of Importance (VIP) of the individual predictor variables for species diversity 

estimation models, combined with the remote sensing dataset and vegetation indices, as 

presented in Figure 4.3, had VIP magnitude of change ranging between 0.3 and 4.6, 

respectively. It can be observed in Figure 4.3 (a) that PVI, Red-Edge 2, OSAVI and NDVI 

were the top four largest contributors with Red, NDVI45, Blue and Red-Edge 2 in Figure 4.3 

(b). On the other hand, AVIR, NIR, Green and near NIR were identified as the best variables 

using the Simpson index, MSr, Red, SWIR-1 and S2REP were the best with the Pielou index, 

and lastly, in the Margalef index, NDVI45, MSR, S4REP and red-edge 2 were ranked the 

major top-five contributors. Following the VIP results, Red-Edge 2 band was found to be the 

most variable in improving the estimation of wetland vegetation diversity.   
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Figure 4.3 Variable importance derived from: (a) Above Ground Biomass (AGB), (b) 

Shannon-Wiener Diversity Index, (c) Simpson Diversity Index, (d) Pielou 

Evenness Index and (e) Margalef Richness Index. The relative importance of 

variables in the multisource dataset. The variables are ranked based on their 

contribution to the MLR model 

 

 

http://etd.uwc.ac.za/ 
 



79 
 

4.3.3 Mapping wetland vegetation using Sentinel-2 MSI and diversity index 

The wetland vegetation species diversity derived maps in Figure 6a-e demonstrate that the 

diversity pattern (evenness and richness) is consistent within the area of study. It can be 

observed from Figure 4.4a that there is a high concentration of AGB in the northern and 

western parts of the Maungani wetland. The concentration of AGB can also be observed in 

the centre towards the southern site of the Maungani wetland. The Shannon-Wiener thematic 

map (Figure 4.4b) illustrates a low distribution of vegetation diversity, with a medium 

concentration at the centre of the wetland. The Simpson Index (Figure 4.4c) managed to 

depict a higher vegetation species diversity in the entire Maungani wetland area. A lower 

distribution of species diversity can be observed in the northern portion. The Pielou Evenness 

Index (Figure 4.4d) illustrates a lower, medium and higher species diversity distribution. A 

lower concertation can be observed in the northern side, with a medium diversity 

concentration in the southern site and a higher species concentration at the centre of the 

study. Figure 4.4e shows how the Margalef Index managed to depict a higher species 

diversity in the northern portion and a medium concentration at the centre of the study area, 

towards southern side. 
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(a) (b) 

(c) (d) 
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Figure 4.4 Remotely sensed derived wetland species diversity distribution maps for the 

Maungani wetland ecosystem: (a) Above Ground Biomass (AGB), (b) 

Shannon-Wiener Diversity Index, (c) Simpson Diversity Index, (d) Pielou 

Evenness Index and (e) Margalef Richness Index 

 

 

4.4 Discussion 

Small unprotected wetland ecosystems serve the surrounding communities and have multiple 

functions; however, their ecological and environmental conditions are not yet fully 

understood. Therefore, accurate and reliable information on the diversity of vegetation 

species in unprotected wetlands is essential for catchment managers, land use planners and 

conservation managers, in order to ensure sustainable wetland management (policy-making, 

strategic planning, rehabilitation). The estimation of wetland vegetation species by using 

satellite images remains challenging because of a number of factors that impact the 

relationship between the field data and remote sensing variables. The use of the recently-

launched remote sensing data is very critical in detection, monitoring and mapping of 

vegetation species diversity. In this study, Sentinel-2 MSI and MLR were explored to 

estimate the diversity of wetland vegetation species in the Maungani wetland of Limpopo 

Province, South Africa.  

 

(e) 
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4.4.1 Wetland vegetation species diversity estimation 

Fifteen vegetation species were identified in the Maungani wetland and these belonged to 

eight (8) families, namely, Cyperaceae and Poaceae. The presence of these species indicate 

that the wetland is rich in species diversity. A number of factors influence the diversity (i.e. 

abundance, richness and evenness) of vegetation species, particularly in small wetlands; they 

include the hydrodynamics, elevation, grazing, and anthropogenic activities. Hosieni et al. 

(2016) showed that the destruction and degradation of wetlands leads to a reduction in 

species richness and evenness. Therefore, in order to understand the wetland landscape, it is 

imperative to assess the species diversity by using various biodiversity indices such as a 

diversity index (Shannon-Wiener index and Simpson index), a species richness index 

(Margalef index) and a species evenness index (Pielou index).  

 

The results of the Simpson index showed that the vegetation species diversity was high in the 

wetland. In the northern and western parts of the study area, the Shannon-Wiener Index 

demonstrated a lower diversity of vegetation species, while at the centre of the study there is 

a moderate to high species diversity. This is because the Shannon-Wiener Index describes the 

uncertainty of individual species. A higher uncertainty of a species represents a high 

diversity, while a lower uncertainty represents a lower diversity. This index is widely used in 

the biodiversity field to measure the diversity of ecosystems. Simpson’s diversity index is 

more sensitive to dominant species, while the Shannon-Wiener’s diversity index is more 

sensitive to rare species (Boyle et al. 1990). Generally, the Simpson Index ranges between 0 

and 1. However, the higher diversity values that range between 0.6 and 0.9 demonstrate a 

mature and stable wetland community, while the lower values, closer to zero, show that the 

wetland community is under stress conditions, exhibiting low diversity (Dash, 2017). This 

diversity index always exhibits higher values where a smaller number of vegetation species 

dominate the community and when the dominance is mainly by large number of species 

(Whittaker, 2014). Based on species diversity indicators, it can be concluded that the 

Simpson index is associated with an increase in the number of individuals and the number of 

species. In addition to its relative simplicity, the use of this indicator can also give a good 

understanding of species diversity within an ecosystem. The diversity of the study area 

supports mainly the distribution of Typha capensis, Phragmites australis, Cyperus 

sexangularis and Cyperus dive, which dominate the whole area. Based on our results, the 

dominance of a single species was mainly a result of disturbance. For instance, the use of 
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fertilisers by small-scale farmers and the anthropogenic activities around the Maungani 

wetland contributed to the dominance of a single species. 

 

The Margalef and Pielou Indices displayed an evenness and richness in the vegetation 

species. The results derived from the Margalef Index map showed that the wetland vegetation 

species is rich. This index depends on a number of vegetation species being present within 

the demarcated area under study and it has no limited value for representing species richness. 

It takes only one component of diversity (species richness) into consideration, which reflects 

its sensitivity to the identified sample size. Our results are therefore consistent with the field 

observations. On the other hand, the Pielou Index showed a low to medium distribution of 

species richness in the northern part of the study area. However, a low to moderate mean 

annual precipitation reduces or lowers the diversity of the wetland vegetation species. The 

geology, hydrodynamics and drought periods in the northern parts of the wetland are likely to 

have influenced species diversity in the area. Our results concur with a study by Shackleton 

(2000), who highlighted that an increase in species richness and evenness is influenced by the 

increased average to high precipitation in the area. It has been reported that the diversity of 

vegetation and its spatial distribution have a significant impact on the functioning of wetland 

ecosystems.  

 

4.4.2 Performance of Sentinel-2 MSI-derived data in estimating wetland vegetation 

species diversity and productivity 

Sentinel-2 images played a critical role in estimating and mapping the diversity of wetland 

vegetation species and helped to understand the state of species richness and abundance in the 

unprotected wetland in the Maungani area. The results showed the capability of strategically-

positioned bands in strengthening the sensor for estimating and modelling wetland species 

diversity. These results concur with other vegetation and diversity estimation studies that 

have used the Sentinel dataset (Thamaga and Dube, 2019; Pandit et al., 2019). The presence 

of Red-edge bands in Sentinel-2 benefited the detecting, mapping and estimation of the 

diversity of wetland vegetation. For this purpose, the performance of Sentinel-2 and Landsat 

8 in estimating wetland vegetation species was investigated. The derived results showed that 

Sentinel-2 performed better than Landsat 8. Thamaga and Dube (2018b) observed similar 

observations where Sentinel-2 outcompeted Landsat 8 in detecting and mapping water 

hyacinth in a narrow river system. Red-edge bands were the most sensitive to vegetation 

estimation and this can be attributed to the physiochemical properties of wetland vegetation 
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species. The results also imply that Sentinel-2 spectral bands that are integrated with the 

vegetation indices, mapped out vegetation species diversity for the entire study area. This 

study supports Asner and Martin’s (2016) findings that species biochemical and biophysical 

characteristics might aid in the mapping of the distribution of invasive species. The maps 

derived from the study show that there are lows and highs in the dominance and evenness 

patterns of species diversity in the Maungani wetland area. Based on our ecological 

knowledge, climate change scenarios, land use activities and invasive plant species altered 

the dominant structure of wetland ecosystem (Kardol et al., 2010; Forrestel et al., 2015). 

Furthermore, climate change patterns resulting from droughts, increased the temperatures and 

influenced the dominance and evenness of the species distribution, rather than its richness.  

 

4.4.3 Implications for wetland species conservation 

The rapid population growth, agricultural activities, water level fluctuation changes, livestock 

grazing, as well as climate change, remain a challenge in developing regions, particularly in 

areas near unprotected wetlands. For instance, increasing droughts have led to the risk of 

wetland vegetation degeneration and shrinkage at lower elevations. Furthermore, Li et al. 

(2018) highlighted that the increasing nutrient concentrations during the dry season because 

of the reduced water levels, leading to eutrophication, which affects the wetland diversity.  

However, in managing the vegetation diversity of unprotected wetland species, an in-depth 

understanding is required of the water quality and complexity of the ecohydrological 

environment. Furthermore, in data-scarce locations like sub-Saharan Africa, obtaining precise 

and reliable information on the geographic distribution, configuration, and propagation rates 

remains a problem. Therefore, a better understanding of wetland biodiversity may benefit 

from the spatial environmental factors that affect the ecosystem. 

 

4.5 Conclusion 

The study aimed at modelling vegetation species diversity by integrating the Sentinel-2 MSI 

dataset and diversity indices in the unprotected Maungani wetland. Based on our findings, we 

conclude that:  

•  Variable predictors, such as the Simpson index, had the strongest relationship in 

estimating wetland vegetation, compared to the Margalef Index, which had a lower r2.  

• The presence of red-edge bands was also found to be the most reliable for enhancing 

the estimation, mapping, monitoring and management of wetland vegetation in 
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unprotected wetlands that are still lacking in data scarce regions i.e. African regions, 

in the face of climate change.   

• Furthermore, the results highlighted the relevance of Sentinel-2 data, which have the 

potential to contribute to more robust and evidence-based information that can assist 

in policy-making in conservation and the sustainable use of wetland ecosystems.  

Overall, the mapping and monitoring of species diversity, using the Sentinel-2 dataset and 

biodiversity indices, are critical because they can provide benefits for the planning, 

conservation and rehabilitation of wetlands. The link between remotely-sensed variables and 

vegetation diversity confirms the capabilities of Sentinel-2 MSI for the conservation process, 

particularly for screening, in order to locate the biodiversity hotspots.
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Abstract 

The presence of water within small wetlands serves as a determining factor that influences 

their biodiversity, productivity and functionality. Small wetlands remain largely unprotected; 

hence, they are more sensitive to frequent exposure to environmental modifications, and are 

less resilient to the changing rainfall patterns, climate change and variability, droughts and 

changing land use practices. Accurate and up-to-date spatial and temporal information on 

changes in the surface water and the extent of inundation becomes imperative for the proper 

management of these wetlands. Therefore, this study sought to extract and monitor 

ecohydrological dynamics (surface water and inundation extent) of wetlands, using monthly 

Sentinel-2 MSI remotely-sensed datasets. These dynamics were assessed for the period 

between July 2020 and June 2021, using the Modified Normalised Difference Water Index 

(MNDWI), the Normalised Difference Moisture Index (NDMI) and the Normalised 

Difference Phenology Index (NDPI) derived from Sentinel-2 MSI data. The results showed 

that the rainy season (Dec 2020-Feb 2021) had a larger water coverage extent (10948 m2 

(0.05%) to 31594 m2 (0.13%)), when compared to the dry season (July 2020: 19157 m2 

(0.04%) and June 2021:14429 m2 (0.03%)). The extent of the surface area declined during the 

dry period, due to less rainfall (0.20 mm) and the decreased actual evapotranspiration (9.90 

mm-10.43 mm). Furthermore, the NDPI showed a high concentration of wetland vegetation 

between October 2020 and April 2021. On the contrary, a higher moisture content was 

observed between December 2020 and April 2021. The increase in vegetation concentration 

and moisture content reflects the spatial extent of the inundation. The extent of the wetland 

water, soil moisture and vegetation condition were assessed with a high overall accuracy that 

ranged between 70.83% and 97.36%. Overall, the results indicated that small wetlands are 

characterised by significant variations in the levels of inundation and productivity throughout 

the year.  

 

Keywords: Agricultural practices; Climate variability; High resolution satellite data; 

Inundation extent; Moisture variation; Surface water presence; Wetland 

productivity
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5.1 Introduction 

Wetlands are distinctive and complex ecohydrological systems that occur within a wide range 

of climatic and topographic environments (Olefeldt et al., 2017; Thamaga et al., 2021). They 

are defined as areas that have a low water level, frequently near the ground-surface, and that 

are characterised by the presence of hydrophytic vegetation during the growing period 

(Barducci et al., 2009). Wetlands arise when the soil is flooded or inundated with water for 

various time periods (seasonal, inter-annual and decal) and at different frequencies (Li et al., 

2015; Zhang et al., 2020). Their ecological processes are impacted by water-related processes 

that regulate the surface water and groundwater recharge, as well as dissolved water and 

inputs and outputs of material. Despite covering a smaller proportion of land (3%--8%), 

unprotected wetlands distributed across sub-Saharan Africa offer several ecohydrological and 

socio-economic benefits (Tiner et al., 2015; Marambanyika & Beckedahl, 2016; Gxokwe et 

al., 2020; Dzurume et al., 2021). These wetlands, for example, support the livelihoods of 

neighbouring rural communities, and often-poor households, with water, particularly in 

water-scarce areas. Small wetlands play a critical role in rural economics, as they sustain 

thousands of smallholder farmers more than larger protected wetlands (Azumi, 2010; Tanko, 

2013). In Southern and Central Africa, ‘dambos’ continue to support water provision, 

seasonal agriculture, grazing and fishing (Wood and Thaw, 2013). In areas where access to 

water is scarce or limited during dry season, such as in the highlands of Ethiopia, wetlands 

regulate the hydrological cycle and enhance water availability in the region (Finlayson et al., 

2005). Water availability within wetlands serves as a baseline factor that influences the 

biodiversity hotspots of wetland ecosystems. The water presence and spatial extent of a 

wetland reflect its hydroperiod, which is the period of water level fluctuations that take place 

in a wetland over time (temporary, seasonal or permanent) (Jackson et al., 2014). Small 

wetlands, on the other hand, are under tremendous pressure and are being radically 

transformed to non-wetland habitats, which may lead to expansion, owing to both 

anthropogenic activities (water diversion, intensive agricultural and industrial development, 

as well as water abstraction) and natural processes (rainfall variability, evapotranspiration, 

drought and climate change). 

 

Despite their vast expanse and benefits, small wetland ecosystems are highly vulnerable, they 

undergo immense pressure from natural and anthropogenic activities and their survival is 

being threatened. For instance, Marambanyika and Sibanda (2020) demonstrated that the 

spatial extent of wetlands in Zimbabwe decreased by 3.6% in the 1980s, when compared with 
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1.8% in 2015. On the other hand, Thamaga et al. (2021) illustrated that the Maungani 

wetland in South Africa lost 43.10% (728 400 ha) of its spatial extent between 1983 and 

2019. These studies highlighted that a decline in wetland areas has been mainly attributed to 

an increase in the built-up areas. Other studies have revealed that unprotected wetlands are 

extremely sensitive to natural and anthropogenic land-use changes, due to changes in the 

hydrological regime, which directly threatens the ecosystem and the animals that rely on 

them (Bhanga et al., 2020; Wanjala et al., 2020). Natural processes, including a change in 

temperature, rainfall patterns, evapotranspiration, the drought rate and erosion have fast-

tracked wetland water losses (Xia et al., 2017; Chen et al., 2018). It was noted that river 

channels and the associated floodplain wetlands signify spatial and temporal hydrological 

changes, because flooding and the drought rates affect the area of inundation (Lambs, 2020). 

A decrease in the water table alters the interaction between the surface and groundwater and 

frequently shrinks the hydrological regimes of flood plain wetlands (Li et al., 2018). On the 

other hand, anthropogenic modifications resulting from dam construction and increased rural-

urban development because of the increased population growth, alter the hydrological 

regimes in stream channels and riparian wetlands, which causes changes in ecohydrological 

dynamics of wetlands (Millennium Ecosystem Assessment (MEA), 2005). Gordon et al. 

(2010) reported that wetlands are being drained and approximately 27% of them are being 

lost, due to intensive agricultural practices. Furthermore, processes, such as desiccation, 

salinization, eutrophication, contamination and the emergence of alien plant species, disrupt 

biodiversity, spatial extent, water quality and availability of wetlands (Thamaga and Dube, 

2018b; 2019). With the changing climate expected to dramatically affect South Africa’s 

precipitation patterns, wetlands will be more critical than ever in mitigating the adverse 

effects of severe events, such as floods and the drought rate (Knoesen et al. 2009). To date, 

the hydrological dynamics of small wetlands serving nearby communities remains poorly 

quantified and managed, due to the lack of management prioritization. Therefore, there is a 

need to accurately and frequently monitor small wetlands, to put proper management 

practices in place and to support the sustainable management of wetland water resources.  

 

The accurate extraction of wetland water and the extent of inundation is of great significance 

for the planning, monitoring and protection of these systems. Monitoring wetland 

ecohydrological dynamics by using traditional techniques has proven to be ineffective, owing 

to problems in capturing the spatio-temporal variability and sampling mistakes. In addition, 

these methods are expensive, laborious and restricted in their geographical coverage 
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(Thamaga and Dube, 2019; Thamaga et al., 2021). The use of satellite-based remote sensing 

as an alternative can accurately detect and monitor small to larger wetlands in real-time, 

providing hydrological information, inundation spatial extent over time, especially in areas 

where in-situ datasets are limited (Tanko, 2013). Some sensors, such as Landsat datasets, 

Sentinel-2 and MODIS, have proved themselves to be promising in studies on wetland 

inundation, surface water estimation, water quality and the hydrological cycle (Chiloane et 

al., 2020; Dzurume et al., 2021).  

 

Previous studies utilised various methods to distinguish, map and monitor the distribution of 

wetlands, surface waterbodies, inundation, and non-water areas (Niemuth et al., 2010; 

Wright, 2010). Some of the water delineation methods used include the thresholding, 

Decision Tree, classification and inter spectral relation methods (Mondal and Pal, 2018). 

Furthermore, appropriate spectral bands were combined, using various algebraic operations, 

to enhance their capabilities to differentiate water coverage areas from non-water bodies. 

Water indexing techniques to extract surface water bodies include the Water Ration Index 

(WRI), Tasselled Cap Wetness (TCW), the Automated Water Extraction Index (AWEI), the 

Normalised Difference Water Index (NDWI), the Land Surface Water Index (LSWI), the 

Modified NDWI (MNDWI), and the Water Index (WI) (Chiloane et al., 2020). The 

efficiency of indices for the extraction of water bodies was assessed, using the overall 

accuracy and kappa coefficient (Poulin et al. 2010). These indices perform differently in 

extracting surface water or in inundation areas. For instance, the study by Chiloane et al. 

(2020) tested multiple indices in the Kgalagadi Transfrontier Park of Southern Africa to pan 

inundation and the associated seasonal changes within the park. The results of the study 

showed that the MNDWI outperformed other indices in extracting pan inundation. In this 

study, we sought to extract and monitor the surface water and inundation area of small 

wetlands, using monthly Sentinel-2 MSI datasets for the period between July 2020 and June 

2021. We further assessed the variability in wetland productivity by using the newly 

developed normalised difference phenology index (NDPI) as a proxy for vegetation 

condition.  

 

5.2 Materials and Methods 

5.2.1 Ancillary data 

In this study, the field data was collected between 2nd and 5th June 2021 and (60) points for 

non-water areas and open water surfaces were recorded. For other months between July 2020 
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to May 2021 the high spatial resolution of Google Earth Images was used to generate feature 

points. Meteorological datasets, mainly the monthly average rainfall data and mean 

temperature, were acquired from the South African Weather Services (SAWS) 

(https://www.weathersa.co.za/) for the Thohoyandou AWS station from July 2020 to June 

2021. In addition, the monthly actual evapotranspiration (ET) was obtained from the MODIS 

data. The ET data was extracted on a monthly basis, between July 2020 and June 2021, and 

ET was used to assess the amount of evaporation and transpiration lost in the Maungani 

wetland. Meteorological and ET data were used to infer on the observed satellite-derived 

wetland ecohydrological dynamics i.e. the inundation extent, surface water variability and 

vegetation condition. The characteristics of wetland inundation and surface water are 

presented in Table 5.1. Vegetation cover within the wetland shows areas where it is 

temporarily or permanently inundated. 

 

5.2.2 Satellite image acquisition and pre-processing 

Dry and wet seasonal monthly Sentinel-2 MSI images for the period between July 2020 and 

June 2021, were retrieved from the European Space Agency (ESA) Copernicus Open Access 

Hub (https://scihub.copernicus.eu/).  The raw satellite images were pre-processed using the 

Sentinel Application Platform (SNAP) tool for atmospheric, geometric and radiometric 

corrections, by using the Sen2Cor module in SNAP software, before being used for the 

computation spectral metrics. All the Sentinel-2 MSI data were converted to the Top of 

Atmosphere (TOA) reflectance value and to correct the Bottom of Atmosphere (BOA) value. 

Subsequently, Bands 1, 9 and 10 were excluded from the datasets. Lastly, the images were 

then resampled at 10 m, using a bilinear technique, and they were sub-set to the extent of the 

study site. 
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Table 5.1 Wetland characterisations considered in studying wetland inundation and 

surface water 

 Permanently moist Temporarily flooded Permanently flooded 
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Table 5.2 Characteristics of Sentinel-2 used in the study 

# Bands Wavelength (µm) Resolution (m) 

1 Coastal/ 0.43 – 0.46 60 

2 Blue 0.44 – 0.54 10 

3 Green 0.55 – 0.58 10 

4 Red 0.65 – 0.68 10 

5 RE1 0.70 – 0.73 20 

6 RE2 0.73 – 0.75 20 

7 RE3 0.77 – 0.79 20 

8 NIR 0.76 – 0.90 10 

8A NIR narrow 0.86 – 0.88 20 

9 Water vapor 0.94 – 0.96 60 

10 Cirrus 1.36 – 1.39 60 

11 SWIR – 1 1.54 – 1.68 20 

12 SWIR – 2 2.08 – 2.32 20 
 

5.2.3 Topographic position 

The topographic position in this study was utilised as an additional indication of the presence 

of wetlands. The Digital Elevation Model (DEM) is frequently utilised to generate 

topographic metrics, such as elevation, slope, aspect and curvature. In this study, the DEM 

downloaded from https://dwtkns.com/srtm30m/ was used to derive the Topographic Wetness 

Index (TWI), which is a hydrological measure that is determined by the flow speed and 

concentration of water flow at a watershed point (Buchanan et al., 2014). The TWI is also an 

index for soil moisture, which affects the growth and composition of vegetation (Gábor et al., 

2020). The value of TWI specifies the amount of water held in slope component materials, 

which might affect and influence the slope instability. The aspect is given in degrees (0 and 

360) pointing north, and it is calculated in radians and then sine converted to range, from -1 

to 1. The slope stability factor has a significant impact on the flash flood process. This is 

influenced by the drainage system and the amount of rain that falls. TWI quantifies the 

inclination of grid cells for the collection and accrual of water (Sörensen et al., 2006). This 

index has been successfully used for studying vegetation patterns and predicting the spatial 

distribution of plants (Sørensen et al., 2006). Soil type data were retrieved from the ISRIC 

data hub (http://data.isric.org/), and the TWI equation (Equation 1) is defined as:  

 

       Equation (1) 
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Where A is the upslope contributing area and  is the local slope angle. The higher the TWI 

of a cell, the higher is the tendency to accumulate water and/or to inundate an area.   

 

5.2.4 Measuring wetland hydrology and inundation dynamics, using derived spectral 

indices 

In order to assess the wetland hydrological dynamics for a twelve-month period (from July 

2020-June 2021), the MNDWI (Equation 1) (after Xu, 2006) was applied to identify, 

discriminate and measure the surface water from the non-water pixels within the study area. 

The MNDWI is dimensionless and ranges from -1 and 1, with a greater MNDWI value 

indicating a high-water content. These indices provide the accurate extraction of open water 

features, compared to the standard NDWI. According to Ji et al. (2009), detecting variations 

in the water surface is a tough task, when using a single threshold value, owing to the 

dynamic nature of the land cover component that alters, based on the sub-pixels. The bands 

were chosen to enhance the reflectance of the water features, by using a green light 

wavelength, and to reduce the poor reflection of SWIR by water features by taking advantage 

of the high reflectance of the vegetation and soil features in the SWIR band (Du, 2016). 

MNDWI value is calculated by using the following equation (Equation 2):  

 

      (Equation 2) 

 

The Normalised Difference Moisture Index (NDMI) shows the moisture variations of the 

land surface; it is highly correlated with the water content of the vegetation and is a good 

indicator of vegetation change (Rouse et al., 1974). The NDMI (Bernstein 2012) values range 

between -1 and 1. The positive value represents a high moisture content, while the negative 

value represents a lower moisture level. NDMI uses NIR and SWIR-1 bands (see Equation 3) 

below:  

 

       (Equation 3) 

 

The wetland vegetation was assessed by using the Normalised Difference Phenology Index 

(NDPI) (Wang et al., 2017). The NDPI is reliable and outperforms NDVI in distinguishing 

plants from the background, which theoretically enables it to be used for spring phenology 

monitoring. The NDPI (Equation 4) integrates the NIR, red and SWIR bands to extract 
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vegetation information. It ranges between -1 and 1, where a value closer to -1 represents a 

low vegetation concentration, while a value closer to +1 represents a high vegetation 

concentration. 

 

     (Equation 4) 

 

5.2.5 Accuracy analysis 

The field data points (60) for non-water areas and open water surfaces were derived by using 

the high spatial resolution of Google Earth Images. For the duration of this study, sample 

points were used to validate the water presence within the Maungani wetland. The extracted 

multi-values for MNDWI, NMDI and NDPI were then used to derive classification 

accuracies. The derived ecohydrological dynamics were then compared with the 

climatological and ET data to establish the trends and to infer on the observed wetland 

conditions. 

 

5.3 Results 

5.3.1 Monthly extraction of surface water derived by using MNDWI 

The water presence and inundation extent of the wetland were extracted from Sentinel-2 

derived indices. The satellite-derived wetland water availability varies significantly across the 

area under study (Figure 5.1 and 5.2). A high-water presence was recorded in the summer 

season (December 2020 to February 2021) with an area of 10 948 m2 (0.05%), 29 772 m2 

(0.12%) and 31 594 m2 (0.13%), followed by August 2020 and September 2020, which 

covered an area of 12 711 m2 (0.05%) and 19 157 m2 (0.08%), respectively. In July 2020, 

water covered an area of 10 312 m2 (0.04%), in August 2020 it covered 12 711 m2 (0.05%) 

and in September the area increased to 19 157 m2 (0.08%). During the study period, less 

water coverage was observed during dry period, which had experienced less precipitation and 

an increased temperature variability. The least water presence was observed in November 

2020, when it covered 5 295 m2 (0.02%). 
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Figure 5.1 Monthly surface water coverage depicted from July 2020 to June 2020 

 

 
Figure 5.2 Seasonal variation in wetland water coverage derived using modified normalised 

difference water index 
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5.3.2 Monthly variation of wetland vegetation distribution in relation to the 

inundation periods, using NDPI 

The monthly variations in the wetland vegetation condition results varied from 0.75 (higher) 

to -0.49 (low). Figure 5.3 shows that there was a higher concentration of wetland vegetation 

in the northern part of the wetland, with a medium to low configuration in the centre to 

southern parts in July and August 2020, respectively. In September 2020, the larger 

dominating part of the wetland area had less cover than the northern part, which had a 

medium cover. Wetland vegetation with medium cover was observed from the centre to 

southern parts of the Maungani wetland in October 2020. In November 2020, a gradual rise 

was observed. Furthermore, the months of December 2020 to April 2021 had a higher 

vegetation configuration than the other months selected in this study. In May and June 2020, 

there was a reduction in vegetation from the centre of the study towards the southern part of 

the wetland. The monthly variation, rainfall, temperature and evapotranspiration trends have 

an influence on the reduction of vegetation productivity in the wetland. 

 

http://etd.uwc.ac.za/ 
 



99 
 

 

Figure 5.3  Monthly variation in Normalised Difference Phenology Index (NDPI) as a proxy 

for wetland vegetation condition 
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5.3.3 Monthly variation of moisture within the Maungani wetland area 

Figure 5.4 shows the monthly distribution of the moisture content in the Maungani wetland 

area, using NDMI. The retrieved findings varied from as low as -0.80 to 0.55. There was 

evidence that the months between December 2020 and April 2021 experienced medium to 

high amounts of moisture. In July and August 2020, a high, moderate and low moisture 

content was observed in the northern, middle and southern parts of the study, while in 

October 2020, November 2020 and June 2021, a reduction in the moisture content was 

observed in the northern part of the study area. The findings showed that the month of 

September had the lowest moisture content, compared to the other months.  
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Figure 5.4  Monthly moisture variation depicted between July 2020 and June 2021 
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5.3.4 Accuracy assessment derived to extract surface water coverage, moisture and 

vegetation distribution 

During the study period, overall classification accuracy (Figure 5.5) was used to assess the 

extraction capabilities of the NDMI, NDPI and MNDWI. The NDPI achieved an overall 

accuracy that ranged from 70.83% to 91.65%, respectively, while the NDMI extracted the 

moisture within the wetland with a high overall accuracy of 95.63% and 73.47%. Lastly, 

MNDWI achieved an overall accuracy of 78.31% and 97.36%.  

 
Figure 5.5 Overall classification accuracies achieved from the different combination of the 

three algorithms (NDPI, NDMI and MNDWI) and Sentinel-2 sensors 

 

5.3.5 Relationship between rainfall pattern, temperature and evapotranspiration 

Figure 5.6 shows a monthly rainfall and mean temperature trend within the Maungani 

wetland. The results shows that the wetland area experiences both low and high rainfall and 

temperatures. The rainfall was found to be higher during the wet period in December 2020, 

January 2021 and February 2021, with 18.44 mm, 20.45 mm and 12.85 mm, respectively. 

During the drier periods, the rainfall was lower, ranging from 0.20 mm in May 2021 to 0.60 

mm in July 2020. On the other hand, it can be observed that mean monthly temperature 

ranged between 16.15°C in July and 25.65°C in December. 

   

http://etd.uwc.ac.za/ 
 



103 
 

 

Figure 5.6  Monthly mean rainfall and temperature for the period between July 2020 and June 

2021 

 

Figure 5.7 shows the relationship between the monthly (July 2020-June 2021) water extent 

and the actual evapotranspiration (ET). It can be observed that the seasonal variation 

influences the actual ET trends within the wetland, where wet periods experience a higher ET 

than in the drier periods. Meanwhile, a maximum ET value (139.16 mm) was observed in 

December 2020 and a minimum ET value of 9.90 mm in June 2021. During the first six 

months (July-December 2020), a gradual increase in the actual ET trend was observed from 

10.43 mm in August 2020 to a maximum peak of 139.16 mm in December 2020. 

Furthermore, a decline in ET was observed between January and June 2021, from 132.39 mm 

to 9.90 mm. The results also confirmed that the water availability or coverage had a high ET 

estimate between November 2020 and February 2021, compared to the other months.  

http://etd.uwc.ac.za/ 
 



104 
 

 
Figure 5.7 Relationship between the extracted water extent and actual evapotranspiration 

from July 2020 to June 2021 
 

5.4 Discussion  

The increasing number of remotely-sensed datasets provide new opportunities for the 

monitoring of surface water and inundation in small wetland ecosystems in water-stressed 

environments. As a result, this study sought to map and assess the monthly wetland water and 

inundation variations (July 2020-June 2021), using the Sentinel-2 MSI derived Modified 

Normalised Difference Water Index (MNDWI), the Normalised Difference Moisture Index 

(NDMI) and the Normalised Difference Phenology Index (NDPI) in the Maungani wetland of 

the Limpopo Transboundary Basin. Sentinel-2 MSI, with its improved spatial (up to 10 m on 

certain bands) and temporal (a 5-day revisit) resolution, is freely available and provides 

detailed and timely information that is critical to wetland ecologists and water resources 

managers. This information will strengthen the policies, management systems, monitoring 

and quantification of neglected small wetland ecosystems serving neighbouring communities 

and it will improve the rural economy.   

 

5.4.1 Small wetland response due to monthly precipitation and evaporation variability 

Water presence is the main factor controlling ecohydrological dynamics and functionality of 

wetlands. Wetlands respond differently to variations in rainfall, increased evapotranspiration 

and temperature. The findings of the study revealed that rainfall, evapotranspiration, 
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temperature and water coverage trends were higher during the summer months (December 

2020, January 2021 and February 2021), compared to the dry months (July 2020, August 

2020, May 2021 and June 2021). The period facilitated wetland water losses and the reduced 

extent of inundation through evapotranspiration. A study by Zou et al. (2017) showed that 

rainfall increases the soil moisture content, inundation and water availability within wetland 

ecosystems. A clear picture of monthly wetland water fluctuation and inundation area is 

provided during the period of study. The increase in the evapotranspiration rate far exceeds 

the rainfall, hence it has a significant effect on the presence of wetland water (Dini and 

Everard, 2016). The evapotranspiration rates increased during the dry periods, resulting in 

significant wetland water losses and the condition of wetland vegetation (Evenson et al. 

2016). Mathews et al. (2019) highlighted that the spatial extent of wetland inundation is 

dependent on upstream rainfall and on the ambient trends of evapotranspiration and 

infiltration, or groundwater recharge. Furthermore, the impacts of evapotranspiration, due to 

the increased net radiation energy, reduces the vaporised inundation area as well as the 

moisture availability in small wetlands. Wetland water availability and soil moisture during 

the summer months reflects the extent of inundation, which is strongly related to the 

configuration of the vegetation community.  

 

The NDPI results demonstrated similar trends with regard to the inundation extent and 

moisture variability. In cases where the Maungani wetland area experiences less rainfall and a 

reduced inundation extent, it resulted in the disruption of vegetation productivity. When 

dramatic hydrological changes were observed in Poyang Lake in China, it greatly influenced 

the wetland vegetation (Petus et al., 2013). Similar observations were observed by Smith et 

al. (2011) who stated that disconnected streams reduced the water presence and inundation 

extent, which affected the wetland species diversity and productivity. Water shortages during 

low rainfall periods and rising temperatures resulted in prolonged droughts, which led to the 

drying up of small wetland ecosystems. A reduction in the extent of monthly inundation and 

water presence has a significant influence on vegetation productivity of wetlands. The 

encroachment of drought conditions within the wetland areas increases the susceptibility of 

wetland vegetation productivity and complicates the functionality of wetlands.  

 

Water deficits in the wetlands represent a severe threat to ecohydrological systems (Lesk et 

al., 2016). In addition to the climatic factors, anthropogenic land-use activities alter the water 

flow, water availability and extent of inundation. Furthermore, the modifications of the 
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underlying surface characteristics, such as soil moisture, vegetation community, surface 

roughness and temperature, changes water and heat balance at the surface. This has long-term 

implications for the surrounding communities that rely on wetland ecosystems. Excessive 

wetland water withdrawal for irrigation purposes drains the water table beyond its depth and 

it disrupts the vegetation that is dependent on the inundation area, which then deteriorates and 

irreversibly complicates the ecohydrological system (Nevill et al., 2020). Smith et al. (2011) 

highlighted that wetland linked to aquifers undergo diminished inundation because the 

aquifers are drying up, or excessive withdrawals of water are made for agricultural purposes. 

Agricultural malpractices are putting additional strain on the wetlands, which results in the 

ecosystem drying up, and the impacts are being exacerbated by the increasing temperatures, 

with less precipitation (Martin et al., 2020).   

 

Our results showed the applicability of Sentinel-2 MSI and metrics (MNDWI, NDPI and 

NDMI) in assessing the availability of wetland water and the extent of inundation in the 

Maungani wetland. The results were obtained by using MNDWI, NDPI and NDMI, which 

managed to retrieve the water, vegetation, and moisture information with high classification 

accuracies during the study period. Satellite-extracted ecohydrological data provide baseline 

information for creating an early warning of impending transitions. With the information 

gathered from the study, management strategies and decisions can be drawn to protect small 

wetland ecosystems from further degradation. Although developing regions depend heavily 

on the ecohydrological systems, policies that monitor the withdrawal of wetland water need 

to be enforced, in order to regulate the agriculture-related activities in these wetlands.  

 

5.4.2 Implications of using a remotely-sensed dataset to study wetland ecohydrological 

systems 

Existing small wetland ecohydrological systems have deteriorated and/or disappeared, yet 

there is little information available on the extent of wetland water and inundation. 

Furthermore, the hydrological dynamics of unprotected wetlands are influenced by drought or 

erosion, climatic conditions and anthropogenic activities, which contribute to the 

deterioration of wetland ecosystems and make rehabilitation difficult and expensive (Grenfell 

et al., 2019). Monitoring these ecosystems by using Sentinel-2 MSI contributes to a better 

understanding of ecohydrological systems. However, these images have limitations, for 

example, cloud cover during the rainy season, which limit the capability for extracting the 

monthly water presence and the inundation extent (Whitcraft et al., 2015). A five-day 
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overpass period, the frequent cloud cover during the rainy season, as well as shadows, make 

the accurate monitoring and mapping of wetland water and inundation areas difficult. 

 

5.5 Conclusion 

This study assessed the monthly variations of the water presence and inundation areas in 

wetlands, by using the monthly Sentinel-2 MSI dataset. Monthly images, dating from July 

2020 to June 2021, were used to extract the water and inundation areas by using MNDWI, 

NDPI and NDMI. The following conclusions were drawn from the results: 

• During the period of study, MNDWI, NDMI and NDPI achieved overall classification 

accuracies ranging from 70.83% to 98%. 

• The findings revealed that there was a high moisture and phenological coverage 

between October 2020 and April 2021, which indicates the wetness within the 

Maungani wetland area.  

• The results that were derived by using MNDWI showed that the water covering the 

Maungani area varies during the winter (July and August 2020), spring (September) 

and summer seasons (December 2020, January 2021 and February 2021). 

The findings derived from this study provide new insights into small wetland ecosystems. 

Moisture and phenological information provide a better understanding of the wetland 

inundation area, which is critical for devising sustainable management strategies. Adopting 

the use of digital technologies at a local level will be critical for safeguarding small wetlands, 

which remain understudied.   
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CHAPTER SIX 

SYNTHESIS, CONCLUSION AND RECOMMENDATIONS 

 

 

 

 

 

http://etd.uwc.ac.za/ 
 



109 
 

6.1 Introduction 

Wetlands provide distinctive productive ecosystems that offer a wide range of goods and 

services and that influence the functioning of these ecosystems (Martin et al., 2016; Singh et 

al., 2017). The mapping of wetland conditions, ecohydrological dynamics and vegetation 

diversity and productivity, offers valuable information that is required for understanding the 

status of wetlands in the face of climate change and variability in the face of the rising LULC 

changes (Gxokwe et al., 2020; Thamaga et al., 2021). Wetland vegetation is an excellent 

indicator of vegetation health for small (unprotected) wetland ecosystems and characterises 

the stages of species diversity and productivity (Janse, 2019). However, efficient, accurate 

and robust tools are urgently needed for the frequent and timely wetland delineation and 

monitoring of wetlands. The emergence of remotely-sensed data with improved sensing 

characteristics provides new opportunities for capturing vegetation diversity, productivity and 

hydrological dynamics of wetlands, which could be difficult when using the traditional 

approaches. Traditional approaches for the continuous mapping and monitoring of wetlands 

lack spatial representation and are challenging. Remote sensing approaches offer a great 

opportunity to detect and investigate land use change, vegetation patterns and wetland change 

in a spatially-explicit manner. Satellite remote sensing can monitor on a small to large spatial 

scale in near real time, and it can provide observations on change in the wetland ecosystem, 

especially in regions where in situ networks are scarce. 

 

The use of newly-launched satellite images (Sentinel-2 and Landsat 8), with improved 

spectral bands, a revisit cycle and spatial resolution has produced satisfactory results in 

mapping wetland ecosystems. The capabilities of these sensors were tested in different 

studies (Thamaga and Dube, 2018, 2019; Muavhi, 2020) and were perceived to provide 

critical information when applied in wetlands. However, their performance in mapping of 

wetland conditions, ecohydrological dynamics and vegetation diversity and productivity is 

less understood. These sensors opened opportunities for the accurate delineation, mapping 

and monitoring of wetland ecosystems (vegetation diversity and productivity, hydrological 

dynamics and wetland degradation), particularly in small wetlands. Hence, the objectives of 

the study were as follows: 

(i) to provide an overview of remote sensing application in wetland ecosystems and 

to assess the impacts of LULC changes on wetlands; 
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(ii) to evaluate the state of the environment of small wetland ecosystems and to 

estimate the remaining percentage of wetlands in the Limpopo Transboundary 

River Basin;  

(iii) to quantify the species diversity in wetlands in the Limpopo Transboundary River 

Basin, using remotely-sensed datasets, as a proxy of wetland conditions, and 

(iv)  to monitor impacts of LULC on the wetland hydrological dynamics of the 

Limpopo Transboundary River Basin. 

 

6.1.1 An overview of remote sensing application on wetland ecosystem, together with 

the impacts of land use and land cover change that affect the water quality and 

degradation of wetlands 

Several studies have investigated various characteristics and functions of the wetland 

ecosystem, the impacts of LULC changes, delineation, as well as the degradation of these 

ecosystems (Mansour et al., 2013; Marambanyika and Beckedahl, 2016; Gxokwe et al., 

2020). Most studies have focused on estimating and mapping the biophysical and 

biochemical parameters of vegetation in wetlands that are recognized under the Ramsar 

Convention (Kandus et al., 2018; Orimoloye et al., 2018); however, small and unprotected 

wetlands, which also play a critical role in sustaining local communities, have received little 

attention. Very little attention has been directed towards the hydrology, soil, vegetation 

quantification, species characteristics, species diversity and productivity status of these small 

wetlands (literature outlined in Chapter 2). In the face of increased pressure from human 

interference and climate change, estimation, frequent mapping, monitoring of these wetlands 

across diverse landscapes is required for sustainable and effective wetland management 

control, as well as the formulation of governmental policies that promote ecological 

preservation. Long-term ecological studies (Peter et al., 2020; Valdez et al., 2011) have 

found that anthropogenic activities continue to have an impact the water levels, vegetation 

composition, structure, productivity, diversity and functioning of wetland ecosystems, for 

decades after the activities have ceased. A new crop of robust satellite sensors, such as 

Landsat, with improved spatial resolutions and a high record of archival data, provides the 

most needed spatial tool for detecting, monitoring and understanding status of wetlands, at a 

low cost. There is a data gap, or undocumented information, on the state of wetlands in 

developing regions, which further complicates the management strategies and policy 

development. This review, therefore, provides the insights for wetland-related managers and 

it emphasizes the urgent need to shift towards the use of cheap and readily-available 
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techniques for assessing and controlling wetland degradation, especially in small wetlands 

dotted across under-resourced regions.  

 

6.1.2 Evaluation of the state of the environment for wetland ecosystems and the 

estimation of the remaining percentage of wetlands in the Limpopo River Basin 

Studies conducted across African regions that assessed the impacts of LULC change on 

wetlands, demonstrated the potential of using remote sensing datasets (Wang et al., 2011; 

Mwita, 2013). However, these studies applied remote sensing primarily for wetlands 

designated under Ramsar (r2 = 0.88) than non-Ramsar sites (r2 = 0.65) (Thamaga et al., 

2021). These findings highlight that there are limited studies that uses remote sensing to 

monitor small wetland ecosystems that support rural communities (Guo et al., 2017; Osorio 

et al., 2020; White et al., 2020). To retrieve historical information, we need accurate LULC 

mapping to track changes overtime, especially in small wetlands were previously 

undocumented. Satellite data enables efficient and rapid classification of small wetlands with 

improved accuracies. This study took advantage of Landsat satellite images with high 

archival data, which plays a critical role for understanding the status of small wetlands by 

cost-effective monitoring and mapping (demonstrated in Chapter three). Hence, the goal of 

this study was to explore the effects of LULC change on wetland ecosystems in the 

Maungani wetland, which is situated in the Limpopo Transboundary Basin. In this study, the 

integrated time-series Landsat data and Support Vector machine algorithm were used to 

detect and model the LULC changes that occurred between 1983 and 2019, in order to 

overcome the degradation of small wetland ecosystems and contribute towards their 

sustainable management.  

 

During the period of study, there has been widespread conversion of the wetland to built-up 

areas and agricultural fields. Based on the findings, the Maungani wetland has undergone 

significant changes in terms of LULC change dynamics during study period (1983 to 2019). 

Derived LULC change maps showed that the degraded wetland was largely converted into 

built-up areas. The Maungani wetland shrunk dramatically, from 1 073 500 ha (43.10%) in 

1983 to 345 100 ha (13.85%) in 2019. Overall, the findings of this study demonstrated the 

use of historical and archival Landsat data series for understanding the effects of LULC 

changes on the spatial extent of wetlands located in semi-arid tropical regions of sub-Saharan 

Africa. The Landsat data series offers novel, accessible and up-to-date information that is 

required for the accurate monitoring of the land use and land cover change dynamics. The 

http://etd.uwc.ac.za/ 
 



112 
 

rate of degradation and encroachment by other LULC changes, especially with respect to 

unprotected wetlands, play a critical role in surrounding communities. Furthermore, this work 

showed that there has been a steady deterioration of the Maungani wetland over time. 

Therefore, this work recommends a holistic framework approach in the management of 

wetland resources, in order to combat the land use and land cover change challenges, for the 

sustainability of the catchment areas. This comprehensive information can be used as a 

guideline for future LULC assessments, for monitoring and for planning.  

 

6.1.3 Quantification of species diversity in wetlands in the Limpopo River Basin, using 

remotely-sensed data 

The use of multispectral remotely sensed datasets in modelling wetland vegetation species 

diversity and productivity has faced difficulties, resulting in estimation errors due to 

saturation issues and spatial resolution which led to pixel mixing. The emergence of new crop 

of satellite images with more spectral bands and spatial resolution such as Sentinel-2 MSI, 

improved the estimation of wetland vegetation species diversity and productivity. This study 

showed the potential of integrating Sentinel-2 MSI with in-situ data, vegetation indices and 

diversity indices (the Simpson, Shannon-Wiener, Margalef and Pielou indices) to accurately 

estimate wetland species diversity and productivity in the Maungani wetland, is demonstrated 

in Chapter four. The findings showed that variable predictors, such as the Simpson Index (r2 

= 0.84 (84%)), had the strongest relationship in estimating wetland vegetation, with the 

Margalef Index having a lower r2 = 0.54 (54.72%). The presence of red-edge bands was also 

found to be the most variable for enhancing estimation, mapping, monitoring, and 

management of wetland vegetation in data-scarce regions like unprotected wetlands i.e. in 

African regions in the face of climate change and rapid land use change. Moreover, the 

results highlight the relevance of Sentinel-2 data in that they have the potential to contribute 

to a more robust and evidence-based information that can assist in policymaking in 

conservation and in the sustainable use of wetland ecosystems. Overall, species diversity 

mapping and monitoring, using Sentinel-2 dataset and biodiversity indices, are critical 

because they provide benefits for the planning, conservation and rehabilitation of wetland 

ecosystems. The significant relationship observed between remotely-sensed variables and the 

diversity of vegetation species confirms the use of Sentinel-2 MSI for practical application in 

conservation, particularly as a screening tool for identifying biodiversity hotspots.  
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6.1.4 Assessing wetland ecohydrological dynamics in the Limpopo River Basin, using 

remotely-sensed data 

To better understand how monthly climatic conditions, evapotranspiration and precipitation 

influences ecohydrological dynamics in small wetlands, Sentinel-2 MSI and indices were 

used to investigated water availability in relation to vegetation distribution (Chapter Five). 

The use of these indices (MNDWI, NDPI and NDMI) assessed water availability, moisture 

content and phenology. The study assessed the monthly variation of wetland water 

availability and inundation areas, using the Sentinel-2 MSI dataset. The methods used to 

retrieve information include thresholding on individual pixels ignoring the correlation 

amongst neighbouring pixels. Considering that, the individual pixels are not independent 

random variables but a random field, the potential to improve the accuracy of inundation 

extent. The findings showed that monthly satellite images, dating from July 2020 to June 

2021, were used to extract the areas of water availability and inundation, using the Modified 

Normalised Difference Water Indices (MNDWI), the Normalised Difference Phenology 

Index (NDPI) and the Normalised Difference Moisture Index (NDMI). Based on the results, 

the following conclusions were drawn: During the period of study, MNDWI, NDMI and 

NDPI used the achieved overall classification accuracies ranging from 70.83% to 98%, 

respectively. Between October 2020 and April 2021, the findings revealed that there is a high 

moisture and phenological coverage that indicates the wetness within the Maungani wetland 

area. On the other hand, the MNDWI showed that water coverage varies during winter (July 

and August 2020), spring (September) and the summer season (December 2020, January 

2021 and February 2021). These findings provide new insights into small wetland 

ecosystems. The moisture and phenological information retrieved from the study gave a 

better understanding of the wetland inundation area, which is critical for devising sustainable 

management strategies. Adopting the use of digital technologies at a local level will be 

critical in safeguarding small wetlands that have, thus far, remained understudied.  

 

6.2 Conclusion 

Land use and land cover changes influence the spatial, temporal extent and functionality of 

unprotected wetland ecosystems. The main aim of this study was to assess the impacts of land 

use land and cover change on wetland productivity and hydrological processes, by using 

remotely-sensed datasets in Limpopo River Transboundary Basin. The data used in this study 

played a critical role, with the selected and appropriate approaches for wetland change, 

vegetation species diversity and productivity estimation, as well as hydrological dynamics, 
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being based on remotely-sensed data. Furthermore, the findings retrieved during the period of 

study presented the capabilities of remotely-sensed datasets in the detection, mapping and 

monitoring of small wetland status, vegetation species diversity and productivity, surface 

water change and inundation periods. Based on the findings of this study, it can be concluded 

that: 

• Landsat data-series provided critical information for the monitoring of land 

use and land cover change in the unprotected wetland in the Maungani area. 

Within the period of study (1983-2019) that proportion of wetland spatial 

extent was largely reduced by being converted into built-up areas; 

• Landsat satellite images have achieved a higher data in the study of long-time 

changes that occur within wetland ecosystems, and hence, they remain the 

most used dataset; 

• Sentinel-2 MSI, with its increased resolution, managed to detect and map 

water availability, moisture, and inundation area of wetlands with a high 

overall classification accuracy;  

• The findings further revealed that there is a high moisture and phenological 

coverage, which indicates that there was the wetness within the Maungani 

wetland area, between October 2020 and April 2021;  

• The results that were derived using MNDWI showed that water covering the 

Maungani area varies during the winter (July and August 2020), spring 

(September) and summer seasons (December 2020, January 2021 and 

February 2021). The period facilitated wetland water losses and a reduced 

extent of inundation through evapotranspiration; and 

• Lastly, the results showed that the monthly variation in water coverage, 

moisture and inundation area were influenced by the changing climate data i.e. 

the rainfall pattern and temperature.  

Overall, the findings of this study revealed that newly-launched satellite images have the 

potential in the monitoring, delineating and mapping of small wetland ecosystems. The 

findings also provide insights for wetland-related managers, which stresses the urgent need to 

shift towards the use of cheap and readily-available techniques for assessing and controlling 

wetland degradation, especially in small wetlands that are dotted across under-resourced 

regions. The long-term monitoring of wetland ecosystems over space and time has provided 

knowledge that influences the spatial extent of wetlands. The study of wetland vegetation has 
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provided a clear view of the status of vegetation species diversity and productivity, while the 

hydrological dynamics, vegetation distribution and moisture content demonstrated monthly 

changes, due to the climatic conditions. This information contributes to the development of 

well-informed decisions, conservation strategies that can lead to the sustainable utilization of 

wetland ecosystems, particularly anthropogenic land use and climate variability. 

 

6.3  Recommendations 

The present study results contribute to a better understanding of the land use and land cover 

changes in small wetland ecosystems. The retrieval of information on valuable small 

wetlands by using remotely-sensed datasets will assist wetland-related scientists and 

managers in conservation, in the prioritization of policies and in the sustainable use of 

wetlands. These findings offer new opportunities for remote sensing advancements and their 

prospective uses in small wetland ecosystems, which was previously a difficult task, but 

which has been made easier by a new crop of remotely-sensed datasets. The study illustrated 

the capability of Landsat data series in detecting changes in small wetland ecosystems over 

time and space (1983-2019). Furthermore, Sentinel-2 showed its strength in detecting and 

estimating wetland vegetation species productivity, water availability and the inundation 

areas. This study suggests the following recommendations for future research: 

• There is a need for future studies to utilize the new and advanced satellite imagery, 

coupled with the use of robust machine learning algorithms, such as GEE, and the 

principal component analysis, to improve modelling for well-informed management 

decisions on wetland ecosystems. 

• In this study, vegetation species diversity and productivity of wetlands were assessed; 

therefore, there is a need for future research to detect and eliminate alien plant species 

that are present. 

• Future studies need to estimate water loss and how it affects the aquifers. 

• Although this study showed the capabilities of remotely-sensed datasets, it is 

advisable for future studies to integrate climate data, in order to assess the 

ecohydrological behaviour.  

• There is a need for future studies to assess the effects of fertilizers that are being 

applied to agricultural fields on the water quality and vegetation diversity of wetlands.   

• It is advisable for future studies to research the impacts of changing climate on the 

wetland water budget, particularly in smaller wetlands that serve nearby communities, 

by using remotely-sensed datasets. 
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• Future studies need to evaluate all wetland components and land use and land cover 

changed, in order to draw up proper policies and protection strategies. 
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