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Chapter 1. Literature and software review

1.1 General Aspects of EST data

1.1.1. What is an EST?

An Expressed Sequence Tag or EST is a single pass read from a randomly selected

cDNA clone. A typical EST represents only a tiny portion of an entire gene. Initially

ESTs were intended to merely identify the expressed gene. Adams et al. (1991)

published a widely read article describing use of ESTs in 1991. The process by which

ESTs are manufactured requires the construction of an mRNA library. Baldo et al.

(1996) have provided a detailed description of how libraries are constructed and how

normalization and library subtraction can be used to increase relative representation of

less abundantly transcribed mRNAs. An average size of EST libraries ranges typically

from 1000 to 10 000 entries (clones). It is estimated, that from 10 to 30 thousand

different genes are expressed in a particular cell, depending of the cell type, with an

average number of approximately 300 000 mRNA molecules per cell. Thus, an EST

library cannot be regarded as a proper representation of the gene expression pattern of

a tissue (Vingron and Hoheisel, 1999). An EST library represents only a coarse

grained snapshot of the mRNA contents of a certain tissue at a certain moment.

Especially, low-expression genes are underrepresented. In some cases EST libraries

have been 'normalized', i.e. some additional procedures (usually self-hybridization) has

been applied to reduce the representation of highly expressed genes. Normalization

enhances the probability of finding clones deriving from rarely expressed genes, but, in

tum, distorts the picture of expression pattern in particular tissue.
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1.1.2 EST Manufacture

The reverse transcriptase used to manufacture each cDNA in the library will eventually

fall off the template (Figure 1), and this will terminate the production of the eDNA.

Thus a series of length-differentiated 3' delimited cDNA fragments may be produced

for each mRNA that is a viable template in the library. The length of the cDNA will

vary, and this is an important factor for development of coverage for each mRNA

template of an available gene. Clones are sequenced a single time, from one or both

ends of the DNA insert, using universal primers, which are complementary to the

vector at the multiple cloning sites. The M 13 forward primer may be located near the

5' or the 3' end of the cloned insert, depending on how the inserts were directionally

cloned. Consequently, untranslated regions on the ends of the genes tend to be over-

represented by sequence tags. Only a few hundred readable bases are produced from

each sequencing read, and yet a full gene transcript may be several thousands of bases

long. In publicly available databases, EST length varies from less then 20 to over 7000

base pairs, with an average length of 360 base pairs and standard deviation of 120 base

pairs (data from dbEST, Genbank reI. 104). Obviously, not all of these sequences are

true single-read tags, but they are submitted and accepted as such, bringing extra

complications to the EST database analysis. There are also countless variations in the

EST generation technique. One of the most significant is using random primers, which

results in production of fragments without direction, originating from different non-

overlapping parts of the same mRNA (Kapros et aI., 1994). ESTs thus provide a "tag

level" association with an expressed gene sequence, trading quality and total sequence

length for the high quantity of genes, which can be tagged in a given amount of time.

2
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Figure 1. Manufacture of a typical EST.

1.1.3. EST data accumulation

A large scale and systematic public effort to isolate all human genes began in 1993

when the Integrated Molecular Analysis of Genomes and their Expression (IMAGE)

consortium was formed to create, collect and characterize cDNA libraries from various

tissues and different state of normalization (Lennon et aI., 1996). This initiative gained

significant momentum when Merck & Co. provided funding to the Washington

University Genome Sequencing Center to partially sequence clones from the IMAGE

cDNA libraries to generate expressed sequence tags. EST sequences are submitted to

dbEST - a special division of Genbank (Boguski et aI., 1993). Currently over 2 131

391 ESTs are present, including 1497807 human, 486434 mouse, 53636 Soybean and

52829 Zebrafish ESTs (data from 03.09.2000). This information is updated daily and

3
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available at http://genome.wustl.edu/est/EST_WEB_TOTALS.html.

1.1.4. EST data quality.

Generation of EST data results in 'low quality' sequence information. A single read is

generated for each EST, and as such will contain errors from its generation at each

step. These can include clone orientation, associated clone ID chimeras and missing 3'

and 5' reads. Because data are single-pass unedited sequences, they are also subject to

errors caused by compressions and base-calling problems resulting in frame shifts.

Reference to the Washington University website

(http://genome.wustl.edu/est/est_general/disclaimer.html) details common aspects of

EST error. It also claims that clones are sequenced with a typical accuracy of 98%.

Occasionally, a longer than average polyA tail at the 3' end of a clone prevents

obtaining sequence from the 3' end. Due to the sheer number of clones processed

(about 5,000 per week), no manual editing is done on the resulting data. Sizing of the

inserts is performed by restriction digestion; agarose gels are imaged and insert sizes

determined by computer analysis.

Before submission to the public databases, like Genbank, analysis of the ESTs is

performed using an automatic processing script developed by Ms. LaDeana Hillier

(lhillier@watson.wustl.edu). Most of bacterial and mitochondrial sequences are

removed, and the ESTs are compared to the NCB! non-redundant (nr) database using

BLASTX (see "contaminating sequences"). The sequences are annotated with respect

to tissue and library source, 5' or 3' read, database similarities, and range of high

4
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quality data, and submitted directly to the NCBI dbEST database. EST sequence has

regions of high quality very close to regions of low quality, where quality can be

defined as the number of correctly sequenced bases within a known window of

reference. It is possible to utilize poor quality sequence as long as relevant strategies

for maximizing their utility are taken.

An attempt of quantitative estimation of data quality has been undertaken in (Hillier et

aI., 1997). Later studies on the ESTs tend to follow the same technique (Marra et aI.,

1999). As a measure of quality they have estimated the frequencies of inverted cDNA

inserts by comparing mouse ESTs with mouse mRNA set. 53303 matches,

representing 84% of the mRNA set were identified. Most matches were to the correct

strand, although as much as 6% of matches were to the complement (wrong) strand.

For 4% of matches (2 out of 3) at least 2 ESTs mapped to the same position on the

wrong strand, suggesting that the match resulted from some non-random events during

library construction. Consequently, it was estimated that only 2% of the wrong strand

matches might have resulted from failures in directional cloning or human error

(Marra et al., 1999).

1.1.5 Discoveries from the EST databases

As a rich source of discovery EST libraries immediately attracted attention of many

scientists. During the last decade hundreds of research projects have employed EST

data in some form, either as a primary data or a supplementary source of information.

Examples include:

5
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-EST information is used in gene structure prediction (Jiang and Jacob, 1998)

-EST data is used to study alternative splice sites and alternative polyadenylation

(Gauntheret et al., 1998)

-EST data is used in analysis of correlated patterns of gene expression (Ewing et aI.,

1999, Heyer et al., 1999)

-EST databases are used for SNP data mining (Picoult-Newberg et aI., 1999)

-EST data is used for in silico differential display, which allows detecting the genes,

specifically expressed in particular tissue (Pietu et aI., 1999, Hawkins et aI., 1999) or

behaving differently in n~rmal and diseased state (Schmitt et aI., 1999).

1.2 The importance of EST clustering

With the easy access to technology to generate expressed sequence tags (ESTs),

several groups have sequenced from thousands to several hundred thousands of ESTs.

Currently the majority of the coding portion is in the form of expressed sequence tags

(ESTs), and the need to discover the full length cDNAs of each human gene is

frustrated by the partial nature of this data delivery. There is significant value in

attempting to consolidate gene sequences as they are produced, in lieu of a yet-to-be-

completed reference sequence. Unfortunately, most EST data remains unprocessed,

and thus does not provide the important high value sequence consensus information

that it contains. The low quality sequence data provided can be much improved on,

and in order to achieve quality information, pre-processing, clustering and post-

processing of the results is required. One goal of the EST study projects is the

construction of gene indices, where all transcripts are partitioned into index classes

6
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such that transcripts are put into the same index class if and only if they represent the

same gene or gene isoform. Raw ESTs are assigned to clusters according to their

sequence similarity or annotation (such as clone information). Accurate gene indexing

facilitates gene expression studies as well as inexpensive and early gene sequence

discovery through the assembly of ESTs that are derived from genes that have yet to be

positionally cloned or obtained directly through genomic sequencing.

1.3 Overview of EST clustering

The early clustering procedure as it was initially described by (Hillier et al., 1996) is

two-fold. ESTs are first submitted to a fast pair-wise sequence comparison to build up

rough clusters. Then the initial clusters are treated by a slow, but accurate alignment

procedure. This general concept of clustering has gained acceptance in the field and

most of the EST -related projects do it in some form on the initial stages of data

preparation.

EST clustering is performed as a process that utilizes 'clustering information' that is

less and less definitive. Initially sequence identity provides a good guide to cluster

membership. Shared annotation provides joining information that can be of more

variable quality. Thus the number of accurately clustered ESTs is heavily dependent

on a strategy that can assign cluster membership based on verifiable criteria; sequence

identity is currently the most useful of these. Clustering can be performed with or

without sequence consensus generation. It is preferable, although more difficult, to

manufacture a consensus sequence from each cluster.

7
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An overview of a modem clustering procedure was undertaken in a tutorial on the EST

clustering, presented at ISMB99, Heidelberg (Hide et al, 1999b). Figure 2 depicts the

principal stages of the clustering process.

Clustering Steps

Pre-
pocesslllg

i
Initial

Alignments
Conscnsi

Ex-press ed Forrns

---_/\_--

(_ ....•.... _.-oj

L_J
Repeats
Vector
Mask

Figure 2. Basic clustering steps.

The steps suggested in EST clustering are as follows:

1.3.1 Preprocessing

Sequences are masked for repeats and vectors, and formatted for the clustering engine.

Sequence quality is often assessed at this step. A minimum number of residues are

accepted above a known quality threshold. For example, SANBI's STACKPack

8
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accepts only masked sequence data 'above 50bp in length, NCB! discards ESTs with a

window of less than 100bp of 'clean' data,

1.3.2 Initial clustering

An initial clustering is performed based on a fast measure of high sequence identity,

like D2, ESTs having a high degree of similarity, detected by such fast, although rough

measure are grouped in one cluster. Clusters, formed on this stage require further

verification,

1.3.3 Assembly

Assembly can be either part of the initial clustering (as used in some high-stringency

supervised clustering systems) or separated into clustering followed by assembly

performed by a specialist assembly package such as PHRAP (with assessment of

residue quality turned off) or CAP3,

1.3.4 Alignment processing

Aligned clusters, particularly those generated by a loose clustering engine, need to be

processed for errors and alternate forms of expressed sequences, Consensus generation

may be a result of this step (as in STACK), or a consensus can be accepted directly

from the assembly step,

1.3.5 Cluster joining

Once clustered, clusters and/or cluster consensi can be further associated by additional

9
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information contained in annotation, such as clone ID.

1.3.6 Output

Defining an output format for the clustering process is problematical. Information

required often includes alignment (alternate splices, polymorphism and error

assessment), raw cluster membership, and contextual links. Nonetheless, results must

be easily incorporated into existing software packages, which in general have not been

designed to support the complexity or evolving nature of clustered EST data.

1.4 What is an EST cluster?

One of the most explicit definitions of an EST cluster is following:

A cluster is fragmented EST data (DNA or protein) and (if known) gene sequence

data, consolidated, placed in correct context and indexed by gene such that all

expressed data concerning a single gene is in a single index class, and each index class

contains the information for only one gene (Burke et aI., 1998).

Yet in real life all EST clustering systems available for review have a slightly different

meaning or add some specific flavor to the concept of an EST cluster. Even STACK

clusters, produced by the authors of this definition, don't fit it exactly: Up until version

2.31 of STACK ignored mRNA and genomic DNA information, even if it was

available. STACK has also limited the scope of its clustering engine to a particular

tissue prior to index manufacture, built upon tissue clustering. Other systems don't use

tissue of origin as one of the clustering criteria, keeping it as additional information

10
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only (Bouck et al., 1999). The meaning of an EST cluster also depends on the way the

alternative gene variants are apprehended. TIGR Human Gene Index (HGI) separates

each alternative variant to a separate cluster (Adams et al. 1995). Unigene keeps all

variants in one group as long as they have some common part, but produce no

consensus.

1.5 EST clustering and Statistical cluster analysis

Bya most general definition cluster analysis is a process of division of a set of objects

into smaller subsets, which are uniform in some sense. The number of subsets can be

given or unknown at the start of the process (Aivazyan et al., 1989). The term of

cluster analysis was initially introduced by Tryon (Tryon, 1939). To formalize the

problem of cluster analysis, the objects are represented as points in a corresponding

space. In such space, the objects that belong to one cluster are situated on relatively

small distance to each other. The fundamental question of a cluster analysis is a choice

of statistical metric of similarity or dissimilarity between the objects, which defines the

space.

If all objects are sampled from a general set with a common covariation matrix, the

most appropriate choice of distance is a Machalanobis-type metric: The other most

common metries are Euclidean or Hamming metric for binary spaces. There are

dozens of different metries and modifications, developed for different cases of data,

each developed specifically to make the best possibly representation of the real life

meaning of the data and allow a sensible interpretation of the result.

11
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Unlike many other statistical procedures, cluster analysis methods are mostly used

when we do not have any a priori hypotheses, but are still in the exploratory phase of

research. In a sense, cluster analysis finds the "most significant solution possible."

Hence, another crucial point in cluster analysis is a choice of a measure for clustering

quality. This metric is optimized during the clustering procedure and often called a

"linkage rule". Most often this metric is built on the basis of some inter-cluster

distance measure. If this measure is correctly selected for the particular data, then the

further the resulting clusters are from each other the better. A list of most widely used

metries is given on the Statistica web site (http://www.statsoft.com/textbook/).

Comprehensive analysis of various inter-cluster distance measures, as well as

clustering algorithms has been performed (Aivazyan et al., 1989).

Clustering of ESTs as it's seen by bioinformatisists is not exactly classical cluster

analysis as understood by statisticians. Only a few papers, (Eisen et al., 1998, Heyer et

al., 1999) have correctly stated the problem in statistical terms and scrupulously

defined all metries and criteria. These works were devoted to the cluster analysis of

genome-wide expression patterns. Although closely related, work of Esisen has

pursued differing goals, discrete from clustering of raw EST data, which prevents a

direct comparison to major EST clustering systems such as TIGR Gene Index,

Unigene, STACK, DOTS and others. None of the other works available for the review

has a publication or a documentation file, stating the problem in correct statistical

terms and defining the objects, the space, the metries for inter-object and inter-cluster

distance and the cluster quality measure. All algorithms currently used for EST are

12
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heuristic. Apart from the educational background of the developers, there are a few

factors that pre-determine this approach.

In cluster analysis practically all statistical aspects are about classification and

justification of classification of the object with complicated relationships. This may be

why the word "clustering" is often used in case of ESTs instead of cluster analysis. In

the case of clustering the fundamental problem is the selection of a metric that is

reduced to a simple binary digit, i.e. sequences either match or don't. ESTs are put in

one cluster if they have near identical matches. Essentially, the fragments put together

are assumed to belong to the same DNA and possible mismatches are mostly resulting

from misreads and represent noise. The inter-cluster distance, as well as inter-object

distance is also reduced to binary - in an ideal situation, the clusters of ESTs related to

one gene should be infinitely close to each other while those related to different genes

are infinitely distant and no intermediate states should make sense. Following the

simplification of a distance measure, the problem of clustering quality estimation also

reduces to a trivial task: the closer we get to detecting all exactly matching fragments

the better. Thus, from the statistical point of view, all available for review systems for

clustering ESTs, utilize a trivialized version of cluster analysis. The criteria used for

clustering can be traced to the nearest neighbor type of linkage rule (in case of

STACK, for example) or furthest neighbor - multiple linkage type (Sanigene, TIGR

HG!).

This may not be exactly true III some cases of stringent clustering as stringent

13
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clustering involves consensus generation and relies on some form of consensus to

represent a whole cluster during the clustering procedure. The majority of research

projects, which include of EST clustering, use readily available software. Initially

developed for shotgun contig assembly, it works fine on relatively small data sets. For

example, TIGR Gene Assembler (Sutton et al., 1995) was used to cluster 5692 EST

from poplar P.tremetula x tremuloides (Sterky et al., 1998) and CAP2 was used to

assemble ESTs for the Prostate Expression Database (Hawkins et aI., 1999). For a

reliable assembly it's important to make pair-wise alignments in a certain order to keep

the resulting consensus representative. Some similarity/dissimilarity measure, or, in

other words a distance between the sequences, typically determines this order. Yet in

all these cases the distance measure and linkage rule remain hidden inside third-party

programs and are not stated as a part of the EST analysis.

1.6 Supervised and unsupervised clustering

Clustering methods can be divided in two general classes, supervised and

unsupervised clustering. In supervised clustering, objects are classified with respect to

known reference objects, or "seeds". In unsupervised clustering, no pre-defined objects

are used and the number of resulting clusters is typically unknown until the end of the

clustering procedure. Some EST clustering systems are strictly or partly supervised,

like TIGR Gene Index and IMAGene, some are totally unsupervised like STACK and

some use a combination of two approaches, like Unigene. In the systems, using some

form of supervision, a genomic DNA and/or an mRNA sequence data is as a core used

to build up ESTs.

14
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1.7 Stringency of EST clustering

Stringency is a single parameter, which in some form can be traced in most of the

systems for EST clustering. Although it can be rarely found as a single parameter,

stringency is always present in description of the clustering process as a set of criteria

used to detect matching ESTs. More stringent clustering occurs when more strict rules

are applied to assign an EST to a particular cluster. Stringency is closely related to the

problem of inter-object and inter-class distance. More stringent clustering typically

produces smaller number of clusters with shorter consensus sequence (if produced at

all), but each cluster has much better quality. Less stringent or "loose" clustering tends

to produce bigger clusters at a cost of possible inclusion of para logous expressed genes

and lower fidelity data.

Clustering systems using BLAST as sequence comparison engines often use score,

generated by BLAST as a stringency measure. In (Schmitt et aI., 1999) authors define

stringency level as E<10-4 and 95% of sequence identity. In (Wolfsberg and

Landsman, 1997), stringency level is chosen at p<10·87 plus additional manual

selection of matching ESTs with higher Pvalues. (Hishiki et aI., 2000) have used

FASTA (Pearson and Lipman, 1988) to compare ESTs and percentage of identity as a

measure of stringency. They consider EST matching if they have 95% of identity in an

overlap longer then 50bp or 70% of tag length and the overlap started with a GATe.

(Gauntheret et aI., 1998) have chosen to use a combination of BLAST score and

identity percentage from FASTA alignment. Any pair of ESTs scored over 150 with

<10 mismatched positions at either extremity and >95% identity was clustered.

15
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Figure 3. Constraints placed on the alignment quality and coverage of the aligned region to reduce

problems caused by chimerical sequences. Data from Wagner et al. Abstracts 1999 Genome

Sequencing and Biology, P340, Cold Spring Harbor Laboratory.

1.8 Contaminating sequences

The first study of inclusion of contaminating sequences in public database (Genbank)

in 1992 has already stated that the problem grows faster than the size of the database

itself (Lamperti et al., 1992). Vector fragments were found in 0.23% of all sequences

available at the time. Improved methods of vector identification, applied in GSDB

(Harger et aI., 1998) reveal slightly more vectors in the same data set - 0.3%. This was

also confirmed by (Miller et al., 1998), who studied vector contamination dynamics in

Genbank from 1982 to 1996 (partial). The percentage of contaminated sequences

shows a persistent increase and ranges from 0% in 1982 and 1984 to 0.57% in 1995.

Surprisingly, the percentage of contaminated ESTs over the years is lower then the

average for Genbank (ranging from 0.1 to 0.3 per cent) and even decreases in period

from 1992 to 1996, despite of a dramatic increase of available sequences (from 7345

in 1992 to 493816 in 1996). In the classic work on analysis of Human ESTs (Hillier et

al., 1997) have given a quantitative estimation of the level of contamination in the EST
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libraries. To assay library quality, EST sequences were screened against databases of

bacterial sequences, mitochondrial sequences and vector sequences. All libraries

contained mitochondrial sequences ranging from a high of 16% of ESTs to a low of

less then 1% of ESTs. Some libraries are found to contain as much as 20% of bacterial

contamination. A search of entire EST subset of EMBL against vector database,

performed by (Miller et aI., 1999) gave an estimated contamination level of 0.27%,

which is generally in line with the previous studies (Lamperti et aI., 1992, Harger et

al., 1998).

A.
le+6 ~--------------------------------------------------------~

le+4
~
t"I
C

"::Ir::1' le+3~
<Il....
0

ó
Z

le+2

~ Vector-contaminated
_ Database

le+5

le+ I

Ie+O

B.
1982 83 84 85 86 87 88 89 90 91 92 93 94 95 96 1997OrrryOOOOOOOOQ
o .11 0 .38 .12 .13 .35 .31 .52 .50 .31 .50 .57 .30 .15 na

% vector contamination
Figure 4 (A) Yearly number of sequences and vector-contaminated sequences (y-axis) submitted to Genbank from

1982 to 1997 (x-axis). (B) The percent of vector contamination in the database for each of the years indicated in (A).

No vector-contaminated sequences were found for 1982 and 1984. Data for 1996 are partial (trough June-August),

and data for 1997 have not been analyzed. From Seluja et aI., (1999)

17

www.etd.ac.za



The most comprehensive collection of cloning vectors is VectorDB, which can be

found at http://vectordb.atcg.com/vectordb. Although this site has search facility, there

is no single file with a collection of possible contaminating sequence samples for

download. Having such a collection is important for local searches and cleaning of an

EST dataset for further analysis. A collection of cloning vectors, specifically prepared

for this purpose IS available from NCBI ftp site:

ftp://ncbi.nlm.nih.govlblastidb/vector.Z. NCBI also maintains an online web-based

tool for searching and masking out vanous contaminating sequences:

http://www.ncbi.nlm.nih.govN ecScreeniVecScreen.html. VecScreen pages of NCB!

web site contain comprehensive documentation for the search engine and database

together with a thorough description of possible sources and the potential

consequences of contamination. A good collection of links to cloning vector-related

resources In the Internet can be found at

http://www.biosupplynet.com/cfdocslbtklbtklist.cfm?category=67.

1.8.1 Repeats

Unlike cloning vector fragments, repeats cannot be regarded as contaminating

sequences. All of the human genome can be roughly divided in two fractions of DNA:

repetitive and unique sequence. Traditionally, a portion of the unique fraction is

thought to comprise the obvious functional constituents of our genome, including

exons, introns, and regulatory DNA elements. Interest of biologists is sharply focused

on these parts of genome and clustering of EST pursues the goal to unite pieces of
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urnque sequences contained in tags together. With the exception of telorneric and

centromeric repeat sequences, the functional significance of the vast majority of the

repetitive fraction is less clear. Presence of the repetitive sequence fraction in the ESTs

obscures the similarity of the unique parts and represents a serious challenge for

clustering. On the other hand, clustering can be used as a tool to detect new repeats,

not characterized yet by other methods.

Since the early experiments of re-association kinetics of single-stranded human DNA

(Britten and Kohne 1968), various gradations of repetitiveness have always been

recognized on the basis of both the copy number and the degree of sequence similarity.

The number of repeats range from the prolific (LINES, SINES, -satellite, etc., in the

100,OOO's)to the relatively few. By virtue of the fact that multi-gene families exist,

genes themselves may be repetitive in nature. Many of the most well studied members

of gene families (hemoglobins and HOX genes), however, appear to be sufficiently

divergent (Ohno, 1999) or localize to discrete clusters of tandem arrays (rRNA genes,

HLA genes, immunoglobulin gene segments). These are often distinguished based on

the sequence divergence of individual members or their clustered position within the

human genome. The term "unique" DNA, therefore, is relative, determined largely by

what we already know about any given genome. The basic paradigm regarding the

repetitive and unique nature of DNA sequence underlies any effort to sequence a

genome. In fact, the reason that any genome can be sequenced and assembled is that

there is sufficient unique sequence interdigitated among the repetitive fraction, the

repetitive fraction is sufficiently divergent, and/or the repetitive fraction can be
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distinguished as such (Eichler, 1998). In case of EST clustering, distinguishing the

repetitive fraction is just as vital. Detection of paralogous genes and assigning of their

tags to one or separate clusters is determined by clustering stringency (see above).

High-copy interspersed repeats (LINE, SINE) must be excluded from consideration.

In newly sequenced genomes, such as plant and other eukaryote systems, repeat

sequences represent a common and frustrating clustering problem. Repeat databases

provide a resource against which repeats can be detected. The repeat databases are

dependent on continuing curation and detection of novel repeats in genomes and thus

provide a valuable resource. Since the early 90's, the most comprehensive (and

practically unchallenged) repeat collection - Repbase, has been supported by Genetic

Information Research Institute (http://www.girinst.org) (Jurka et al., 1992, 1998).

1.8.2. Microsatellite repeats and low complexity sequences

Microsatellites are tandemly repeated sequences of 2-6 bp (Tautz 1993). They have

been used extensively for genetic mapping and forensic and population studies.

However, much remains unknown about the possible functions microsatellites may

have in the genome and about their patterns of sequence variation and mutation.

Variation in the sequence of microsatellite alleles may affect the interpretation of

genetic mapping and population studies in which microsatellites are used.

Microsatellite repeats are remarkably variable by number of copies, small deletions,

insertions and single base mutations inside the repeat (Bull et aI., 1999). This

variability and multiplicity of the microsatellite repeats makes their recognition by
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comparison to a sample, stored in a database, ineffective.

Low complexity sequence is a more general term for stretches of DNA with or without

detectable repetitive structure. Lack of a certain consensus makes them impossible to

detect by comparison to a sample. But like interspersed repeats, microsatellite repeats

and low complexity regions also have the potential to provide an artifactual basis for

cluster membership. The problem is more significant for strategies that employ

alignabie similarity in the first pass cluster assignment. Word based cluster assignment

can be modified to provide low weight to low complexity words. The latest version of

BLAST (Altshul et al., 1997) widely used as a sequence comparison engine in EST

clustering, is capable of filtering out low complexity sequences. In the new EST

clustering applications being developed at SANB! (see Chapter 2) and elsewhere, there

is no need for masking of low-complexity DNA as such regions tend to have a highly

redundant oligonucleotide composition. Because these sequence comparison

algorithms scale oligonucleotides according to their potential information content,

highly redundant oligos are given very low weight and low-complexity regions are

therefore excluded from consideration.

1.9 Masking strategies

The most effective method to remove contaminants is to compare each read against a

reference database of repeats RepBase (J.Jurka et a1.1998) and vector sequences

(VecBase, http://vectordb.atcg.com or vector collection at NCBI,

ftp://ncbi.nlm.nih.gov/blast/db/vector.Z) using an algorithm that is reasonably fast and
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accurate. XBLAST (NCBI tools, ftp://ncbi.nlm.nih.gov/toolbox/ncbi_tools) and Cross-

Match, an implementation of the Smith-Waterman-Gotoh algorithm developed by Phil

Green have been used successfully, with Cross-match demonstrating greater flexibility

and sensitivity than XBLAST. DUST is used for masking repetitive sequences at

NCB! (http://www.ncbi.nlm.nih.gov/UniGene/build.html).It·s also able to reveal and

mask low-complexity sequences. Another recent development, RepeatMasker (Smit,

AFA & Green, P. unpublished results), available from Washington University

(http://ftp.genome.washington.edu/RM/RepeatMasker.html) is also able to mask huge

amounts of data and recognize low-complexity DNA, for example stretches consisting

of >84% of CA or >87 GT (default settings). There is also an additional program

called "sputnik" (http://bozeman.mbt.washington.edu/sputnik.html) designed to reveal

potential simple repeats, often annotated like (CGAA)n. From the algorithmic point of

view RepeatMasker is a convenient wrap-around, based on the same CrossMatch of

Phil Green. There are also other programs, specifically designed for masking repetitive

sequences, like Censor (J.Jurka et al., 1996), available from Genetic Information

Research Institute (http://www.girinst.org). Censor is available via the Web interface

or mailing server and allows "censoring" (i.e. masking) of query sequence(s) against

databases of human, rodent and plant repeats. Although this software is developed by

the same organization as the database of repetitive sequences (Repbase), censor is not

a widely used masking tool for EST clustering. This may be as a result of complicated

procedure of obtaining source code, a lack of current maintenance and performance on

huge data sets.
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In cases where a direct identity is found with a repeat or vector subsequence a 'mask

residue' can be substituted into the read. The resulting runs of NNNNs or XXXXXs

will be ignored by most clustering engines (Figure 3a and 3b). A problem arises when

an EST library is presented that is from a novel organism for which the repeats have

not been characterized. In this instance it may be necessary to employ 'blind' repeat

masking if an algorithm is available. Repeat masking is necessary if the repeats are

large enough to represent a source for artifactual contamination. An exploitable feature

of sequence contamination in loose unsupervised clustering is that, if the tools work as

intended, then the contaminated sequences and all related sequences will be clustered

together. There is no automatic method to identify a contaminated cluster, but once it

is identified only that cluster needs to be decomposed into its original sequences and

re-processed (no other cluster will be affected by the sequences in the contaminated

cluster).
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>T27784 g609882 I T27784 CLONE_LIB: Human Endothelial cells. LEN:
337 b.p. FILE gbest3.seq 5-PRIME DEFN: EST16067 Homo sapiens eDNA
5' end
AAGACCCCCGTCTCTTTAAAAATATATATATTTTAAATATACTTAAATATATATT
TCTAATATCTTTAAATATATATATATATTTNAAAGACCAATTTATGGGAGANTTG
CACACAGATGTGAAATGAATGTAATCTAATAGANGCCTAATCAGCCCACCATGTT
CTCCACTGAAAAATCCTCTTTCTTTGGGGI IIIICTTTCTTTC IIIIIIGATTTT
GCACTGGACGGTGACGTCAGCCATGTACAGGATCCACAGGGGTGGTGTCAAATGC
TATTGAAATTNTGTTGAATTGTATACI IIIICACI IIIIGATAATTAACCATGTA
AAAAATG

>T27784 g609882 I T27784 CLONE_LIB: Human Endothelial cells. LEN:
337 b.p. FILE gbest3.seq 5-PRIME DEFN: EST16067 Homo sapiens eDNA
5' end
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxXXXXXTATTTNAAAGACCAATTTATGGGAGANTTGCA
CACAGATGTGAAATGAATGTAATCTAATAGANGCCTAATCAGCCCACCATGTTCTC
CACTGAAAAATCCTCTTTCTTTGGGGI IIIICTTTCTTTC IIIIIIGATTTTGCAC
TGGACGGTGACGTCAGCCATGTACAGGATCCACAGxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxXXXXXXXAACCATGTAAAAAAT
G

Figure 5. Example of an EST sequence in FASTA format and same sequence after masking vs. Repbase
and Yecbase.

1.10 EST Clustering methods

Small projects, clustering of a few dozens or hundreds or even thousands of ESTs are

indeed 'trivial' and can be approached by standard tools of contig assembly or even

multiple alignment. The real challenge is the amount of data, available now in public

and private databases and waiting to be clustered. Taking into account these millions

of ESTs, obtaining the trivial binary distance between fragments is far from a trivial

job even for available supercomputers. Modem tools of sequence comparison (Smith-

Waterman, FASTA, BLAST) are mostly built for a different purpose: searching. They

are all different variations of an alignment algorithm, i.e. correct position of sequence
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elements (nucleotides or groups of nucleotides) against each other maximizes some

score. The purpose of this process is to detect and measure quantitatively the similarity

(distance) between any 2 sequences compared. Smith-Waterman is the most

exhaustive and computationally expensive tool, deriving the best sensitivity and

detecting weak similarities. FASTA and BLAST are less sensitive and trade some

sensitivity for speed. As mentioned previously, the distance measure in EST clustering

is reduced to binary, it is therefore only necessary to detect a near or perfect match.

Extension penalties and gapping manipulation become less important in an initial

assessment of pair-wise identity. It is therefore important to 'head for speed' over

sensitive comparison. Use of a banded Smith-Waterman on already compared clusters

is an approach that is tenable for further consensus generation.

1.10.1 Clustering with contig assembly tools

Conventional "shotgun" sequencing produces a large number of fragments, highly

redundant and with various degree of overlapping. The following assembly relies on

overlapping alignment of the called nucleotide bases to recreate a representation of the

original DNA sequence. This makes the task of shotgun sequence assembly very close

to EST clustering, even though it was originally developed for genomic DNA

sequencing. Algorithmically most of the shotgun assembly tools are build to the same

principal schema as early EST clustering tools: they are generally two-fold,

implementing a fast procedure for rough detection of sequence matches and thorough

post-processing with accurate, but slow alignment and consensi generation. All the

shotgun assemblers referenced except ACEmbly use a hashed query sequence
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algorithm for finding initial matches. Some of the more sophisticated programs are

able to make use of ancillary information such as basecall probability estimates, clone

orientation and length estimates to improve the quality of the contigs produced,

especially in the presence of repetitive DNA. These developments make shotgun

assembly tools even more similar to EST clustering systems. Relevant programs

include Gap4, (Bonfield et al, 1995), CAP3 (http://genome.cs.mtu.edu/cap/cap3.html)

and Phrap.

Gap4 (http://www.mrc-lmb.cam.ac.uklpubseq/overview.html) implements a simple

and relatively slow algorithm where new shotgun reads are compared against contig

consensus sequences looking for hash hits that extend the contigs in a greedy fashion.

The program is memory efficient and scales to megabase-sized YAC assembly

projects with more than 10,000 reads. Gap4 can read and extend contigs produced by

other programs e.g.. Phrap, and CAP2.

Phrap (http://bozeman.genome. washington.edu/index.html) has incorporated error

probability information deeper into assembly and editing than any other assembly

package. Alignments are stored in detail, as a directed graph in RAM, leading to large

memory requirements (1 GB for a YAC assembly). A consensus sequence is extracted

by using a mosaic approach where the best read in any multiple alignment is directly

copied to the result. Phrap has no specific features to handle EST idiosyncrasies like

alternative splicing etc. Assemblies are relatively fast, however a single sequence

addition requires all previous calculations to be repeated. An optimized and
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parallelised version ofPhrap is commercially available (http://www.spsoft.com/).

CAP3 (Huang, 1999; http://genome.cs.mtu.edu/cap/cap3.html) is a third generation of

CAP family, after CAP (Huang, 1992) and CAP2 (Huang, 1996). This program is

relatively slow, but tends to produce longer consensi contigs with fewer internal errors.

CAP3 can utilize ancillary information to guide sequence assembly: mate-pairs, clone

size, orientation/location, and basecall error estimates. CAP3 is used at MIPS (Munich

Information Centre for Protein Sequences) to assemble Unigene clusters

(http://www.mips.biochem.mpg.de/proj/human)

PEDB: the Prostate expression database contains clustered ESTs and full-length

eDNA derived from more than 40 human prostate eDNA libraries, which represent a

wide spectrum of normal and pathological conditions. Contaminating sequences and

repeats are removed on the pre-processing stage using a core program called

AnalDemon (http://www.mbt.washington.edu/PEDB/software). AnalDemon first

employs CrossMatch (P.Green, unpublished) to screen the ESTs for vectors and

regions similar to complete E.coli genome. Then RepeatMasker (Smit, unpublished) is

used for masking interspersed repeats and low-complexity regions. EST assembly and

clustering is done by CAP2 (Huang, 1996). All resulting clusters are annotated by

searching the Unigene, Genbank and dbEST using BLAST. All programs, used in

production of PEDB are hold together by a system of PerlS scripts. The database is

accessible via the web at http://www.mbt.washington.edu/PEDB. The differential

expression of each EST species can be viewed across all libraries using a Virtual
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Expression Analysis Tool (VEAT), a graphical user interface written in Java for inter-

and intra-library species comparisons.

TIGR Assembler, is a relatively fast sequence assembly program that has been proven

in assembly of a diverse collection of repetitive microbial genomes (Sutton et aI,

1995). It employs a standard rapid oligonucleotide content comparison to reduce

search time. Pair-wise comparisons generate a list of potential (end- )overlaps. Non-

repeat fragments seed subsequent assembly of listed overlaps. Memory usage for the

query hashing stage is 32 * 4n bytes where n is the word size (oligo size) e.g. 512 MB

for l2-mer oligos. Four criteria control the match decision: minimum length of

overlap, maximum number of local errors, percentage of best possible score, and

maximum length of overhang. TIGR use a combination of BLASTN and TIGR

Assembler to produce their own consensus sequences. This combination is relatively

slow: multiple-months to produce THC (Tentative Human Consensus) sequences for

all the human ESTs (Quackenbush et aI., 2000). The THC database is biased towards

splitting EST clusters due to this stringent assembly stage (Burke et aI., 1998). The

strictness of matching criterion has the advantage of often preventing chimerism and

contamination from tainting index groups but results in a more fragmented

representation of the data that is less able to incorporate error prone sequence. This

strictness often disallows the combination of sequences with sufficient diversity so that

sufficiently divergent ESTs that sample alternative splice forms of the same gene are

kept in different assemblies but they are linked as being splice variants in those cases
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where the ESTs match sequenced genes with known isoforms in EGAD (Expressed

Gene Anatomy Database).

ACEmbly (http://alpha.crbm.cnrs-mop.fr) is a fast hashed-database program where

oligos are sampled from all sequences and used to prime alignments and then

assemblies. ACEmbly fragment ordering is initially based on a distance metric

calculated from the number of oligos two sequences have in common divided by their

total number of sampled oligos. This procedure is fast, but prone to errors with

repeated sequences.

To date the majority of research projects that involve EST clustering employ readily

available shotgun assembly tools. These tools are very accurate, well established and

developed and work very well on small-scale data from hundreds to tens of thousands

of ESTs. The conventional shotgun assemblers are also widely used to assemble

clusters of ESTs in specialized EST clustering systems.

1.10.2 Alignment scoring methods: BLAST and FASTA

BLAST is an algorithm efficiently implemented on many platforms. Although not

developed specially for clustering, BLAST sequence comparison is widely used

initially in EST clustering because it's readily available and flexible enough to be

tuned for the task with a change of default parameters (Hide et al., 1999). Using the

standard BLAST II application, available from NCBI anonymous FTP, it is possible to

set up a stringent match set of parameters as follows:
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-e expectation value set to 0

-G cost to open a gap can be increased,

-E cost to extend a gap can be increased,

-q mismatch penalty increased

-r match reward increased

-a number of processors to use can be adjusted,

-W (word size, found on NCBI web) set up for longer words (default 11)

FASTA is less widely used, but can be also applied for the same purpose. Generally, it

allows the same type of variation in parameters as BLAST - increasing the k-tup

parameter to increase speed and raising a threshold to pick up only the strongest

similarity.

There are many clustering systems employing conventional sequence comparison tools

and this number is growing.

Examples of systems, usmg BLASTN or FASTA for clustering include, but not

limited to: INCA (Graul and Sadee, 1997, http://itsa.ucsf.edu/-gram/home/inca/)

SEALS (http://www.ncbi.nlm.nih.gov/Walker/SEALS/), Zymogenetics' REX (Yee and

Conklin, 1998) and the anonymous tools used to produce Gene-express, and the Merck

Gene Index. The BLASTN/F ASTA algorithms were designed for searches for local

similarity and homology, which is a different goal from a search for alignments

consistent with overlap/contiguity. In consequence, the script wrappers put around the
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homology searches have three functions: to run the search, to parse the search results

and to enforce the clustering stringency parameter (or set of criteria), discussed above.

These extra match criteria cannot be handled directly by the database searching

programs so later, more sensitive and slower pair-wise sequence alignments may be

run to improve the comparison accuracy (Merck Gene Index) (Williamson et al.,

1995).

Glaxo's "Dynamic" assembler (Gill et al, 1997) uses interactive rounds of BLASTN

searches of EST databases to identify possible overlapping sequences, which are fed to

Gap (Bonfield et aI, 1995) for Greedy assembly. This approach was quick to

implement, and effective for simple assemblies but suffers from pauses between each

round of assembly. Greedy assembly is prone to errors with repetitive sequence

regions; static HTML output limits interactivity/editing and alternative BLASTN

alignments displayed simultaneously in one alignment may cause confusion for the

user.

The original UniGene implementation (Boguski and Schuler, 1995, Schuler et al,

1996) relied on a BLASTN-like hash based search to identify pairs of sequences with

at least two 13-mer words separated by no more than two bases. Then these sequence

pairs were aligned more accurately within aIO-base window either side of the

diagonal identified by the oligo match. The alignment was scored +1 for a nucleotide

identity, -2 for a mismatch, -1 for a gap, and 0 for an N ambiguous base. An alignment

quality was calculated by dividing the score by the alignment length and had to exceed
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0.91 to be accepted. An extra constraint was that the aligned region had to extend

within 35 bases of the end of either sequence. Unigene itself only accepts data of

known good quality, (high quality base count, presence of poly-A tail etc.) so not all

ESTs that might pass the above alignment criteria are ever checked for matches.

Explicit lists of excluded sequences (>200,000) are not published nor assemblies,

alignments or consensus sequences. Sources for Unigene include Genbank Genomic,

dbEST and Genbank mRNAs. Genbank Genomic sequences are electronically spliced

exons (vGenes). Initial clustering is performed by comparing the set of gene sequences

(mRNA or genomic sequences, many of which are complete CDSs) with itself.

Sequence pairs that are sufficiently similar are grouped together to form initial

clusters. EST to gene links and EST-to-EST links are added to these clusters. The set

of ESTs IS compared with the set of genes using WHALE

(http://nucleus.cshl.org/meetings/98genome_ absstat.htrn), and sufficiently similar

sequence pairs are added to the clusters. Unigene is available online at

http://www.ncbi.nlm.nih.govlUniGene with extra descriptions at

http://www.ncbi.nlm.nih.gov/Schuler/Papers/ESTtransmap/

IMAGEne is focused on clustering only IMAGE clones of known genes (Cariaso et

al., 1999). A special Perl script running at the pre-processing stage selects human

IMAGE clones from all Genbank dbEST. Currently IMAGE clones comprise over

75% of all human dbEST sequences. The pre-processing stage also includes formatting

of initial FASTA files into BLAST-searchable database with the pressdb utility. No

repeat masking is reported in the paper, mentioning only the efforts to introduce one.
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For the clustering procedure, IMAGEne uses a combination of BLAST and FASTA

with wraparound scripts. Matches are detected by BLAST and extracted from the

BLAST -searchable database. The speed of BLAST is balanced by the quality of

FASTA, as only matches, confirmed by FASTA are accepted. The next stage of

processing is alignment by SIM (http://globin.cse.psu.edu). A Perl script is used to

compare each EST to its associated gene. These alignments are then constructed into a

multiple alignment table, in which the known gene serves as a consensus sequence.

Since IMAGEne is intended as a tool for re-arraying, its ability to pick the best clone is

crucial. All clones within a cluster are sorted by preference; the highest one is

considered the tentative candidate for Master Array. The factors affecting the

preference are: coverage of the coding area, reliability rating of the library and the

length of the clone. Results of IMAGEne processing are available for browsing and

BLAST search via the web (http://www-bio.llnl.gov/imagene/binlsearch).

BodyMap, a human and mouse gene expression database (Hishiki et aI., 2000) is

constructed from 3' EST data, produced locally at Osaka University and University of

Tokyo. As of July 1999, BodyMap contained 159 429 human and 123 468 mouse

ESTs. Before clustering sequences are rigorously pre-processed to maintain the quality

of data. All sequences with >5% Ns, not starting with GATC or having more then one

GATC are eliminated. Sequences, having >90% in an overlap longer then 50bp or

70% of the EST length with libraries of vector and ribosomal sequences are also

eliminated. The lengths of ESTs in BodyMap are determined primarily by the location

of MboI sites in the cDNAs, and those sequences with GATC site located within 20bp
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of the polyA tail are separated out because they are considered too short for gene

identification. Finally, repetitive sequences are masked out after comparison to

Repbase using BLAST. Clustering of the pre-processed ESTs is done based on

FASTA search results with very high stringency. Two ESTs are considered belonging

to one cluster only if they have >95% identity in an overlap longer then 50bp or 70%

of the tag length and the overlap starts with GATe. Each cluster during the clustering

process is represented by one sequence. Approximately 1000 sequences are selected

from each library and compared to each other to form the "primary" clusters. All ESTs,

similar enough to the representative sequences of the "primary" clusters form

"secondary" clusters. As a result of the similarity searches, all clusters are indicated

with their recurrence in all libraries in BodyMap, their identity in Genbank and their

corresponding Unigene sequences. All data are stored in a relational database

(Sybase). BodyMap serves as computerized multi-tissue mRNA. It can be searched by

nucleotide sequence, keywords, Genebank accession numbers and Unigene IDs.

BodyMap is accessible via the web at http://bodymap.ims.u-tokyo.ac.jp.

"An encyclopedia of mouse genes" (Marra et al., 1999) contains a clustered set of 295

053 mouse ESTs. Repeats are masked with RepeatMasker program (A. Smit,

unpublished). Clustering is performed using BLAST2 (http://blast.wustl.edu) to

compare all ESTs to each other. All similarities with P values better then 10-99 were

evaluated to ensure they met 97% identity and >50bp overlap thresholds. Only those

ESTs matching consistently with all cluster members were considered, making an

encyclopedia of mouse genes an example of super-stringent clustering approach. Then
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the EST clusters were compared to known mouse mRNA sequences using the same

BLAST2, as was used for comparison between ESTs. As about 39% of the original

ESTs were from libraries, prepared from embryonic tissue and 59% of original ESTs

were from later stages of development, the resulting database offers a broad overview

of genes, differentially expressed in ontogenesis. The database has also been used for

massive inter-genomic comparison to Homo sapiens and Caenorhabditis elegans, both

at nucleotide and protein level.

EbEST is designed to automate EST -bases analysis on uncharacterized human

genomic sequences (Jiang and Jacob, 1998). It aims at facilitating gene discovery by

extracting as much gene structure information as possible from ESTs. The principal

part of EbEST is EST clustering, which serves mainly to reduce the redundancy by

separating all ESTs into non-overlapping clusters. Pre-processing includes masking

repeats with RepeatMasker (Smit, unpublished). Initial matches between ESTs are

detected by BLAST. The stringency is empirically determined, >90% identity and over

100bp overlap or >95% identity and more then 60bp overlap. Following gapped

alignment is done with CrossMatch, which is based on modified Smith-Waterman

algorithm (P. Green, unpublished). EbEST is currently provided as a web server

(http://EbEST.ifrc.mcw.edu)

1.10.3 Purpose-built alignment based clustering methods

The field has recently seen the emergence of many new algorithms in development,

but dedicated production algorithms are still few. We will not attempt at this time, to
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review the entirety, as there is a growing level of new material that has been very

recently appearing.

ICA tools were developed as part of the UK human genome-mapping project, (AIwen,

1990). This group of algorithms was one of the first to become available, and has been

used at major sequencing centers and is useful for data reduction. According to Jeremy

Parsons, the ICA tools are a set of programs that could be of use to anyone doing

medium-to-large scale DNA sequencing projects. The system has several tools but was

originally designed for database redundancy and adapted for genomic fragments and

finally EST fragments The ICAtools is a specialized hashed-query sequence clustering

package. ICAass (one of the latest ICAtools - http.z/www.ebi.ac.uk/sjparsons) uses a

FASTA-like search but uses an asymmetric scoring scheme designed to measure

redundancy, rather than directly discover overlaps. ICAss uses a BLASTN type of

algorithm to perform 'database pruning' to assess whether one sequence is a sub-set of

another. N2tool constitutes a dedicated clustering tool that relies on indexing. It uses

an indexed file format and local alignment to compare all the submitted sequences

with each other to find those, which share any region of similarity. ICAtool indexes

DNA sequences into clusters, which share local sequence similarities. ICAass takes a

size-sorted (longest first) file of sequences and searches for those sequences that are

approximately repeated within the length of another. ICAmatches attempts to explain

why sequences have been clustered together by using novel sequence alignment.

N2tool has been utilized in the Washington University Merck EST manufacture, for

identification of artifactual sequences. A new generation of these tools is being
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developed and employed at EBI, and employs CORBA and Java for database

interrogation (http://corba.ebi.ac.uk/EST/jesam/jesam paper.html)just (Parsons and

Rodriguez-Tome, 2000). All code is ANSI C, runs on many UNIX variants (and

ported to MacOS), and is free to academics and industry. Memory usage scales linearly

with database size, but computation time scales quadratically.

CLEANUP (Grillo et al, 1996) is similar to the ICAtools but performs a unique

hashed-query pair-wise sequence comparison, which makes it slower than ICAass.

Query sequences are encoded as hashed oligos along with one base mutated versions

of the oligos to enhance query sensitivity. The largest published data set: 2400

Drosophila sequences, was self-compared in 160 seconds. All code is written in C and

publicly available.

1.10.4 Non-alignment based scoring methods

RAPID (Rapid analysis of Pre-Indexed Data structures; Miller et al., 1999 and

http://www.bioinf.man.ac.uk/rapidl) uses oligo frequencies to alter the significance of

oligo matches before scoring particular pair-wise matches. No clustering is offered but

the program has been tested on the analogous problem of removing redundancy and

contamination from DNA sequence databases. RAPID uses Receiver Operator

Characteristic (ROC) curves to tune parameters such as oligo size to get database

search results with maximal specificity to the query. Rapid is memory intensive but

relatively fast.

37

www.etd.ac.za



D2-cluster (Hide et aI., 1994, 1997) is a word multiplicity comparison method that

utilizes an agglomerative algorithm that has been specifically developed for rapidly

and accurately partitioning transcript databases into index classes by clustering ESTs

and full-length sequences according to minimal linkage or "transitive closure" rules.

Agglomerative clustering method means that every sequence begins in its own cluster

and the final clustering is constructed through a series of mergers that may be

described in terms of minimal linkage, sometimes called single linkage or "transitive

closure". The term transitive closure refers to the property that any two sequences with

a given level of similarity will be in the same cluster, hence A and B are in the same

cluster even if they share no similarity but there exists a sequence C with enough

similarity to both A and B. The criterion for joining clusters is the detection of two

sequences that share a window of (Window _Size) bases that is (Stringency) percent or

more identical. The only criterion for clustering is sequence overlap and source or

annotation information is not used. To detect the overlap criterion we use the d2

algorithm and set parameters and threshold values as described in (Tomey et al, 1990;

Hide, et aI, 1994; Wu et aI, 1997). The initial and final state of the algorithm is a

partition of the input sequences where each sequence is in a cluster and no sequence

appears in more than one cluster. D2-cluster uses an approach of word matching

within a window, together with a measure of the multiplicity (if any) of that word

within a window. The principal concept is that it doesn't attempt an alignment, not

even in a reduced form. The results of comparison are derived directly from the

comparison of word composition (word identity and multiplicity) of 2 sequence

windows. Thus, the algorithm can be significantly faster than BLAST. Speed comes
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with a price: to collect significant statistics, the fragments must be long enough (about

100 bp) and only very high similarities can be detected (above 90% identity within a

window). D2-cluster is used to produce initial loose clusters in STACK clustering

system. We have determined that results of d2_cluster alone are between 8% and 20%

less fragmented than Unigene (Burke et al., 1999) and the STACK datasystem

produces clean clusters that are 16% less fragmented than Unigene (Miller et al, 1999).

The ESTate system for EST clustering has been developed at HGMP

(http://www.hgmp.ac.uk) by Guy Slater as part of his Ph.D. research project. ESTate

includes a number of tools for EST analysis, 2 of them specifically developed for

clustering. Precluster is a fast word-scoring program, employing VFSMs (Virtual

Finite State Machines) and an efficient word-matching algorithm to enable all-against-

all matching in of a group of sequences in sub-quadratic time. The scores generated are

simply the number of matching words between sequences. The results (which may be

large) are written out in a compressed binary format, and can later be used by for EST

clustering by the program estcluster. Estcluster uses a graph theory approach to allow

rapid generation of high quality clusters.

1.10.5 Pre-indexing methods

The size of the datasets has effectively precluded their use on workstations

architectures. Indexing is one approach that allows for less computationally intense

operations. In the field of exact string matching techniques have been developed that

preprocess text in such a way that, upon searching a pattern, only a small parts of that
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text actually need to be explicitly accessed. Since in the clustering applications one

imposes a very stringent match criterion, the hope is to draw on these techniques in

order to further improve the efficiency of database searching algorithms. Candidates

are sophisticated indexing data structures like suffix trees (McCreight, 1976), suffix

arrays (Manber and Myers, 1993) or Patricia trees (Knuth, 1973), that allow

performance of queries in time proportional to the length of the query string while

being as independent as possible of the size of the searched text.

Quite a few attempts have been made to adapt these techniques to the similarity

searches needed for biological purposes. Martinez (Martinez, 1983), for example, gave

the first application of a position tree in molecular biology. This data structure requires

about 16 times the space needed to store the original data which clearly may create

serious problems when applied to large data collections. The first sub-linear expected

time algorithms were proposed by Chang and Lawler (Chang and Lawler, 1994) and

Ukkonen (Ukkonen, 1992). They use a suffix tree of the query sequence but still scan

the database.

Myers (Myers, 1994) suggested a sub-linear (in the database size) search algorithm

that is centered on an index built on the database sequences. The query sequence is

split into small subsequences and words from a neighborhood of these are located in

the index. The IBM product FLASH (Califano and Rigoutsos, 1993) takes advantage

of that large "probabilistic" index where not all k-tuples are considered, but only some

of them are randomly chosen. They report a 18GB index for a 100 million-residue
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database, which makes such an approach impractical for large databases.

A few publicly available tools are currently in development and will be available in the

near future. For instance, 'QUASAR' was announced at RECOMB99(Burkhardt, et al

1999). It is termed' Q-gramm Alignment based on suffix arrays'. This algorithm is

designed to quickly detect sequences with high similarity to the query in a context

where many searches are conducted on one database. The database is presented in the

pre-processed (indexed) form and similarity detection is based on the exact matching

of short sub-strings (q-gramms) (Burkhardt, et al 1999).

The speed of sequence comparison comes with a price. Pre-indexed comparison relies

heavily on the principle that similar sequences are built of similar oligonucleotides.

This is generally true, but makes this comparison very imprecise. All indexing-based

clustering algorithms without exception include a thorough pair-wise alignment on

some stage. QUASAR, for example, employs slightly modified publicly available code

from NCB! tools package (Burkhardt, personal communication). All pre-indexing

systems try to find the optimal balance between speedy rough comparison and reliable,

but slow "conventional" alignment tools. On the other hand, sub-linear computation

complexity, promised by pre-indexing, is the most promising way to make a

breakthrough in performance. This addition is not necessarily an alternative; it can be

used as an additional module in existing systems. Most probably all of them will

include some form of pre-indexing in the years to come.
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Chapter 2

Challenges of EST clustering and choice of strategy

Recently, the growth rate of sequence data in genomic databases has already surpassed

the growth rate of computer performance, mostly due to introduction of high

throughput sequencing technologies like EST manufacture and to a multiplicity of

genome sequencing projects. So far the existing clustered EST databases manage to

cope with the deluge of data, but only with a help of high-end computer facilities.

Projection of this situation into the future suggests that the progress of computer

hardware design may not be sufficient. New algorithms are required to mitigate this

problem.

2.1 Computational bottlenecks

The whole process of EST clustering is staged. The stages as they are found in

contemporary clustering systems are reviewed in Chapter 1 (Figure 2). Let's make a

brief review of this process from the computational point of view:

2.1.1 Preprocessing

Data apprehension, reformatting, quality assessment and temporal storage don't require

high computational power. Big data sets may demand high volume storage facilities

and fast disk systems. Repeat and vector masking, typically included in this stage,

requires much more computation. To perform masking at least nrv times Nest acts of

sequence comparison are required, where nrv is a number of samples in vector and
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repeat data sets and Nest is a number of ESTs to be masked. Unlike the EST data, the

number of known repeats and cloning vectors, used in sequencing projects is relatively

stable and grows slowly. Computational complexity of masking grows linearly with

the number of ESTs. The problem is compounded by the growing number of 'novel'

genomes for which repeats have not yet been characterized.

2.1.2 Initial clustering

Clustering requires a number of inter-sequence comparisons, estimated as Nest times

Nest. Even though pre-indexing algorithms allow N2 est comparisons to be performed as

a sub-quadratic, this stage remains the most computationally expensive. In the case of

linear- and super-linear sequence comparison algorithms (based on some form of pair-

wise alignment) the time required to complete N2est comparisons depends quadratically

on the total length of the initial EST data set. Pre-indexing methods rely on word

comparison and require less then c = kn; time. In any case «: inter-object (EST)

distance measures are required for cluster analysis.

2.1.3 Assembly

Assembly is performed on a larger number of much smaller data sets partitioned from

the initial data on the initial clustering stage. Computation complexity of cluster

assembly stage can be estimated as

c = kI (nclu) t 'where nc/u is number of clusters consisting of i ESTs.
i=l:
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Each cluster assembly requires multiple applications of computationally expensive

precise alignments, but the small size of clusters compared to the initial number of

ESTs makes this computation relatively fast. Typically, after initial clustering only up

to 30% of all initial ESTs are-assigned to clusters, while most of initial ESTs remain

singletons (see Fig.14 for example). Singletons are automatically excluded from

cluster assembly. Less stringent initial clustering produces bigger clusters, but has a

high level of false positive results. Cluster assembly can easily rectify this, but the time

required to complete this stage grows quadratically with cluster size. Each cluster can

be processed independently from the others; hence, this stage is easily optimized for

parallel processing but requires careful memory management.

2.1.4 Alignment processing

Alignment processing doesn't involve heavy computations. It merely processes the

results (usually text files), produced on the earlier stages.

2.1.5 Cluster joining and Output

Neither joining of clusters nor output involves significant computations. Cluster

joining is performed according to the information contained in annotation, for example

clone ID. This involves only single-read text processing.

Although the layout of stages may vary in different clustering systems, the most

computationally challenging step is one that includes the highest number of inter-

sequence comparisons. Hence, the most significant improvement to the clustering
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performance can be done if the algorithm of pair-wise sequence companson IS

improved.

2.2 Choice of strategy for clustering system

Many of the systems reviewed in Chapter 1 are based on the purpose-built algorithms,

which is a clear indication that sequence comparison is considered as a bottleneck of

EST clustering by many developers.

Some latest developments in the EST clustering systems give preference to fast sub-

linear algorithms. The sheer speed of sequence comparison is the obvious advantage of

this family of algorithms. There are also some disadvantages. First of all, the speed

comes at a price of precision. A higher false-positive rate is compensated by a

thorough alignment at the subsequent cluster assembly stage. False-negative cases,

once dropped, are hard to detect. To cut the probable loss of matching sequence pairs,

clustering programs have to be tuned to higher sensitivity. As a result, the slow cluster

assembly stage gets overloaded with sequences that can't be aligned (i.e. False-

positives). Many fast sub-linear algorithms require an extensive pre-clustering

procedure. Apart from being resource consuming, this stage is also a difficult parallel

optimization. Pre-calculated index tables need to be adjusted with each update of the

initial data set. A clustering system, built around a fast, but imprecise sub-linear

algorithm would require lots of compensatory mechanisms and additional routines.

Complex structure obstacles further development of the clustering system as a whole.
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In spite of the seemingly obvious choice of the fastest possible algorithm we have

chosen another strategy. Although the linear class algorithms are generally slower then

sub-linear, they have some advantages as a basis of an EST clustering system. A more

precise algorithm would produce much less false-positive and false-negative results in

the first place. Sensitivity to small regions of local similarity can improve quality of

results by detecting short, but non-random overlaps between EST fragments and reach

much longer resulting consensi. Detecting small similarity regions, even if

accompanied by much longer non-similar stretches, is crucial for detecting alternative

gene variants.

The best algorithm to serve the purpose of EST clustering would be an algorithm that:

Is faster than contemporarily alignment searching algorithms;

More precise that contemporary work-scoring algorithms;

Sensitive to short areas of similarity;

• Produces a metric that can be used as inter-object distance measure for clustering;

Has a good potential for future development, like parallel optimization.

The next Chapter 3 describes the new sequence comparison algorithm, developed to

meet the specific demands of EST clustering.
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Chapter 3.

Linear algorithm for sequence comparison.

3.1 General Idea

The general idea of the proposed fast linear algorithm is based on the following

observation: Suppose we have a query polymeric sequence (DNA, for example) Sq.

Weare to compare this query sequence to a sequence Sb - say, taken from a data bank

- to reveal their possible similarity. Suppose we know all overlapping subsequences

(words) of a certain length, which are found in Sq and Sb. There is a non-zero

probability that a particular word, found in Sq, also happens in Sb. If sequences Sq and

Sb are similar, the probability of a word to be found in both sequences is higher,

otherwise it's lower. This is the fundamental idea of oligo-based sequence comparison

algorithms. But coincidence of words is a weak overall measure of similarity. Clearly,

the more coincident words between two sequences, the more probable the similarity of

the two sequences. Finally, some algorithms rely partly on multiple word coincidence

(like one used in D2_CLUSTER) (Tomey et aI., 1990).

If we compare two sequences of different length, the probability of finding a

coincident word is different, i.e. in a short sequence Sb, each word coinciding with a

word from Sq, makes a bigger contribution towards a decision that two sequences are

similar. In an extreme case, if the length of Sb is equal to the word length, single (and,

the only) coincident word is enough to say that Sq has a 100% local similarity to Sb.

Ideally, the shorter both sequences are, the more informative their word coincidence is.
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But, in case of single-word or a few-word sequence Sb, there is no limitation on the

size of Sq.

Words, coincident between Sb and Sq, and found within a short range of each other are

presumed to be more informative. To consider only such words we introduce a short

frame sliding by one position along Sb. Then we compare the words found in Sq to the

words found in each frame of Sb. The frame containing no or small number of

coinciding words is most probably unrelated to Sq. Naturally, the frame containing

many or even all words coinciding to Sq most probably indicates a region of local

similarity.

This assumption is true only in cases where only a fraction of all possible words are

realized in Sq. Otherwise if all or almost all possible variants were found in Sq, any

word, found in any frame of Sb would be coincident and their input would be non-

informative. Thus, there is some limitation on the length of Sq and, correspondingly,

the length of words, used in comparison, so that words remain reasonably rare.

Finally, we can conclude, that a high number of words, coincident between Sq and a

short frame in Sb, indicate a probable zone of local similarity, providing that the words

are informative (not too abundant).

3.2 Weighted hash-table.

One of the most appropriate ways to store and access the information about words of
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definite length found in a sequence (Sq) is by use of a hash table (H). A hash table is a

two-dimensional rectangular table with number of rows equal to the number of all

possible oligos on length n, and two columns. For example, for 8-tuples (words of 8

letters), the number of rows would be 65536. One of the columns contains a number

(hash value) of a word; the other column bears the value that corresponds to that word.

Numbering of the oligos is done the simplest way. Each letter of the 4-letter code is

numbered, A=O, T=l, G=2, C=3. Then each word of length n is presented as a base4

number. To obtain the hash value of the word we only need to convert base4 to a

decimal number.

In fact, as long as all hash values are placed in ascending order, the hash table H is

realized as a linear array, where the offset itself is a hash value. Each element of this

array thus contains a value, associated with a corresponding oligonucleotide.

Initially we fill values corresponding to words In the table H with estimated

frequencies of the words, found in Sq.

Hi=N/LSq

N; - number of words with hash value i, found in Sq;

LSq - length of Sq

Then all values of the hash table H are differentially weighted. The purpose of this

weighting is to assign different weight to the words with different information content.

Obviously, some words, like those containing just repeats of one letter, give us much
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less information than those of greater complexity. Words abundant in a sequence Sq

are likely to be less informative than words found only once or a few times in a

sequence. Also, words scattered along the query sequence Sq in a more or less uniform

way can tell us much less about local similarity, then those found in some parts of Sq

only.

Various weighting can be applied in different implementations of this algorithm. In an

implementation used for EST clustering we limited weighting down to only 2 criteria:

a) All words, composed of only one letter, found in Sq, assigned 0 weight.

b) Weights of all words, found in Sq more than 5 times are lowered. The degree may

vary, but in this work empirically selected division by 2 was applied.

After a weighting procedure, we have an initial hash table, H, transformed to a

weighted hash table Hw that is used further in sequence comparison.

3.3 Similarity function profile

To perform an initial comparison of sequence Sb to sequence Sq, we apply a short

frame W to Sb, starting from the first letter. Each word of length n, found in W is

compared to the hash table Hw and the results are summarized, i.e. add weights from

Hw, corresponding to hash values of words, found in W:

i=O,w

w • width(number of words) of frame W
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Then we slide the frame W repeatedly along Sb by one letter at a time, calculating a

similarity function F(Wj) for each frame Wi. As a result, we have a profile of an

heuristic local similarity function F(Wj) (Fig. 6). Higher values of the local similarity

function correspond to regions with higher probability of local similarity (more

informative coincident words), while lower values correspond to regions with less

coinciding words or less informative coincident words, hence less probability of local

similarity.

A thresho/l:.'

o n

sequence offset

B
threshold

n

local similarity region

o
sequence offset

Figure 6. Example of a local similarity function profile along the test sequence. A shows a similarity

function for two unrelated sequences; B shows an example of a similarity function for two sequences

with local similarity region.

3.4 Local similarity function value distribution

Generally, the profile of the heuristic local similarity function F(Wj) is sufficient to
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detect local similarity regions. To do it, we only need to establish a threshold value for

F(Wj), as it proposed in the original algorithm (Strelets et aI., 1994). This approach has

a few significant drawbacks, especially if applied in a sequence-clustering context. For

instance, it's hard to estimate a general similarity between sequences. One single figure

defining a distance between two given sequences is essential for EST clustering. The

original algorithm detects only short regions within 2 sequences, which might be

similar. There is no defined relationship between the number of potential similarity

regions where the similarity function exceeds the threshold or the value of the

similarity function above the threshold and the similarity score. Selection of a

threshold value in the original algorithm is also empirical. For example, we can

compare 2 nucleotide sequences and find that there are 3 regions where the similarity

function value is above the selected threshold. This discovery still leaves open the

question whether the sequences are related, i.e. their similarity can be confirmed by

alignment with certain percentage of identity. How many local similarity regions are

enough to put two sequences in one cluster? How long should these regions be and by

how much should they exceed the threshold? Can the probability of making the right

choice (in other words the probability of missing the existing similarity or detecting

the similarity of unrelated pair of sequences) be estimated?

To overcome these difficulties we propose to transform the similarity function F(Wj)

values to a distribution form (DF). This distribution can be easily calculated in

categorized form, with the number of base pairs within a frame W taken as a number

of categories (Fig. 7). Then, using this approach we can compare the distribution
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obtained in a sequence comparison experiment (DFex) with some general distribution

DFg containing the expected values of the similarity function F(Wj). Probabilities of

sequence similarity and selection threshold can be estimated based on the proximity of

those distributions.

# of frames
in category

A

.----
.---- .---- I--

.----

-
.----

I--

-
.----

I-- n ,..--, Category #20

# of frames
in category

B

Figure 7. Examples of categorized distribution (OFex) of similarity function F(Wi) values in case of

unrelated sequences (A) and sequences with a similarity region (B).

As a first step we need to estimate the general distribution. For this purpose we have

conducted the following experiment. A sequence was taken from dbEST database. The

sequence is chosen randomly, the only criterion used is that it should represent a

typical EST, i.e. have a typical length of 300-400 base pairs and have no long single

letter stretches. Such stretches, for example resulting from repeat masking can't affect
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the local similarity function, because all single letter words are assigned 0 weight on

the preprocessing stage. Although not involved in the similarity search process, single

letter stretches may reduce the effective sequence length. For each selected sequence a

random counterpart was generated using a simple technique (i.e. keeping the ratio of

base pairs, found in the original sequence). Then the original sequence was compared

and the distribution DFex obtained. This process was iterated 100000 times. Then the

DFg was estimated as

DFg(i)= mede DFex(i) )

Once the general expected distribution for non-similar sequences has been estimated,

the same distribution for sequences, containing a region of significant local similarity

(DFgs) was produced. This distribution was generated by conducting the same

experiment as it was done previously for DFg, but with one difference. After we

generate a random counterpart for a sequence, we introduce a short local similarity

region by copying a contiguous stretch of nr base pairs at a random location from one

sequence to another. The length of this local similarity patch and the number of

possible mismatches may vary in accordance to the sensitivity of the sequence

comparison we'd like to achieve. To select a threshold specific for EST clustering

we've introduced local similarity patches of length 40 base pairs with no mismatches.

3.5 Weight factors and general similarity index.

Having two sets of experimental data, one set containing no signal (local similarity
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region) and the other set, containing the signal, we have a classic situation of two

contrasting sets for discriminant analysis. Discriminant analysis is used to determine

which variables discriminate between two or more naturally occurring groups. In this

work we've generated 100 000 objects in each set. As long as we have experimental

distributions DFg(i) and DFgs(i) already in categorized form, we can compare them as

Euclidean vectors of size w. To convert variation of different categories of DFg and

DFgsto one scale we normalize it by standard deviation:

DF(i)nonn=DF(i)/cr(DF(i))

Then we stretch an imaginary line through the centers of the two contrasting sets. The

general expected distributions DFg and DFgs can be taken as the centers of those two

sets. We project all the objects of each set to this imaginary line by a simple formula:

lV

IDF(i) * (DFg(i) - DFgs(i))
XU) = ..:_i=..::...O--;========--

lVI (DFg (i) - DFgs(i))
i=O

Having projections of all objects of both sets on the single line we can estimate and

plot the distribution of probability of XCi)along the line. For Xg(i) and Xgs(i) we have

two partly overlapping distributions (Fig. 8). The degree of overlapping depends on

the conditions of experiment, like the length of oligonucleotide chosen or the size of

introduced similarity region. Given two distributions, we can select the threshold

value, which separates them. We can also make a rough estimation of the expected
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numbers of false positive and false negative results, evaluating the relative parts of

distributions Xg(i) and Xgs(i), that appear on the opposite sides of the threshold. In this

work we have selected the threshold to make the algorithm more sensitive. For the

threshold we've taken the leftmost value of 100 000, obtained in the experiment.

Nevertheless, the number of false-positive values (cases, having no introduced

similarity region, but having projection value above the selected threshold) was

reasonably low - under 4% of the total number of negative cases (100 000).

Figure 8. Partly overlapping distributions Xg (generalized for non-similar sequences) and Xgs

(generalized for sequences with introduced similarity region).

The projections of obtained distributions are single-figure measures, shown to be

enough to characterize similarity of a given pair of sequences. In our further work we

use such a projection as a general similarity index. The linear coefficients in the

equation of the line, coming through the points DFg and DFgs can be used as weight

factors. We only need to take into account the scaling factors, i.e. standard deviation

values we applied to the data to equalize variation scales in different categories. In this
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adjusted form the weight coefficients can be applied to any new distribution DF(Wj) in

order to calculate the general similarity index, which can be compared to the threshold.

Statistic analysis of the simulated data proves the estimation, given on Figure 8. We

don't know exactly the canonic form of neither Xg nor Xgs. High values of skewness

and kurtosis suggest it's different from normal. High kurtosis is even good for our

purpose, as those two distributions have higher peaks and tend to have very thin

overlapping ends. Table 1 shows some basic descriptive statistic for the distributions

x, and Xgs.

Median Mean Std. Dev. Skewness Kurtosis

Xg 0.038 0.046 0.036 6.119 47.677

Xgs 0.366 0.429 0.175 3.493 14.392

Table I. Descriptive statistics for generalized distributions Xg and Xgs, calculated from the 1000

simulations.

The purpose of generation of distribution Xg and Xgs is to learn to distinguish the

samples that belong to one of them. From this point of view it is more significant to

know how much these distribution overlap, regardless of the distribution type. Figure 9

illustrates the degree of overlapping for two sets of simulated data (with and without

similarity region).
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Figure 9. Box and whiskers plot of simulated Xg (left) and Xgs (right) distributions, 1000 samples

each. Medians are plotted as dots, boxes contain 90% of the samples. Two sets overlap by less then 1%

of each (I % margins are plotted as whiskers).

3.6 Summary of the algorithm

Description of the algorithm development and the code, implemented to perform

experiments and produce pre-calculated linear coefficients are quite extensive (over 10

pages of text and over a 1000 lines of C code correspondingly). Nevertheless when

comparing two sequences, the algorithm is very compact and can be described in a few

steps:

• Take a query sequence

• Calculate query sequence hash table

• Process hash table to adjust the weights
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• Slide a short frame along the test sequence and calculate the distribution of local

similarity function values

• Calculate the general similarity index as scalar multiplication of local similarity

function distribution and pre-calculated weight factors

• Compare the general similarity index to the threshold value

3.7 Sensitivity and computational complexity estimation

There are a number of factors that affect the sensitivity of the algorithm. First of all, it

depends on the word length selected for analysis. But the dependence doesn't conform

the general rule of FASTA and BLAST (Pearson and Lipman, 1988, Altschul et al.,

1990) - the shorter word, the higher sensitivity. Using relatively long words (of length

8 bp or more) makes the algorithm less sensitive to the similarity regions broken by

single nucleotide substitutions because each substitution can change up to 8

oligonucleotides. Such regions may be very similar when aligned, but share little or no

common 8-tuples. This problem is general for the algorithms relying on fast word

comparison. But, unlike alignment algorithms, this algorithm also loses sensitivity

when words that are too short are selected. Shorter words are more abundant - hence

the probability of finding them within a short distance for stochastic reason is also

higher. Using shorter words reduces the signal to noise ratio and increases the number

of false-positive cases. Using the weighted hash table can help the problem. This is

another factor affecting the algorithm sensitivity. Using more sophisticated weighting

scheme, selecting most informative words may provide a reasonable signal to noise

ratio even with the shorter word length (5-6 bp), which reduces substitution
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intolerance.

Another way to increase sensitivity to weak similarities is to consider imperfect

matches. This would mean that if no perfectly matching words are found between the

frame (W) and the weighted hash table (Hw), the words, different by one or more

letters could also contribute to the similarity function (Fw). With this feature

introduced this algorithm could be as sensitive as BLAST, which also counts the

imperfect word matches. But for quick detection of matching ESTs this excess

sensitivity is not required, while additional calculations may slow down the process.

For the sake of speed this possible extension of the algorithm is not implemented.

The sensitivity of the algorithm is has thus been pre-determined at the development

phase. The algorithm uses weight factors and a threshold value pre-calculated in

experiments with model sequences with and without introduced local similarity area.

By varying parameters of the experiments, like similarity area length and number of

mismatches, we can develop sets of weight factors, tuned for different levels of

sensitivity. Particularly, for use in an EST clustering application, weight factors were

optimized to detect overlapping regions of at least 40 base pairs with no deletions and

up to 2 mismatches (95% identity). This stringency level was chosen based on the

experience of other EST clustering systems (See Chapter 1.7). Selection of a threshold

value can serve the same purpose. Using a particular combination of weight factors

and threshold gives us the ability to estimate sensitivity in terms like "we are able to

recognize sequence pairs, having similarity regions of length X, containing up to Y
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possible mismatches with about N% of false positive and M% of false negative".

This algorithm, like its prototype, also has a linear computation complexity in cases

where one sequence is compared against many i.e. the computation time depends

linearly on the database size. This is a typical situation for any massive database

search. The query sequence is processed only once. The same hash table (Hw) can be

reused many times. This makes the general computation complexity dependent on the

database size only.

Sliding a short frame by one position through the tested sequence IS also very

inexpensive from the computational point of view. It requires only a few more

operations then required for hashing all the words in a sequence. Calculation of a local

similarity function adds very little, since it takes only few simple integer arithmetic

operations for each position of a sliding frame. The algorithm can be implemented

very effectively using a sliding frame technique. Only the effect of incoming and

leaving positions for each frame shift is calculated. Consequently, the speed of this

algorithm doesn't depend on the length of words used for comparison.

3.8 Algorithm parameters and evaluation

The algorithm was developed and optimized specifically for certain types of

applications. First of all it should provide a sequence comparison mechanism for an

EST clustering project. In some sense comparing ESTs to each other is easier than

many other cases of similarity search. We only need to select pairs that are in fact
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identical or almost identical copies of each other or overlapping fragments of the same

sequence. Excessive sensitivity may bring to one cluster some evolutionary or

functionally related sequences instead of copies of the same sequence. To establish a

sensitivity landmark we've taken the results of D2_cluster program (Hide et al, 1994).

By the properties of the sequence comparison algorithm, used in D2, it recognizes

sequences having over 96% identity in 150bp span. The algorithm we develop was

targeted to get the results at least not worse then those achieved by D2_cluster.

The weight factors were calculated on the generated training contrast sets of size 100

000 each. Real ESTs were randomly picked from dbEST for the initial sequence. The

non-similar counterpart sequence was generated randomly with the same base pair

ratio as in the original sequence. For the set, containing positive signal, a region of 40

base pairs was copied from the original sequence to it's non-similar counterpart at

random location, starting from 0 to n-40 (where n is the length of the sequence). Two

single nucleotide mismatches were introduced within the similarity region.

The length of the frame W is the principal parameter that has to be optimized for the

best performance. The whole algorithm development is largely heuristic and there is

no formula to designate a connection between frame length and sensitivity.

Nevertheless, the optimal frame length for detection a given type of local similarity

region (40 base pairs) can be selected by a Monte-Carlo approach, as it was done for

pre-calculated weight factors (see 3.4 and 3.5). To perform this experiment we

selected a measure to assess the quality of resolution between two generalized
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distributions Xg and Xgs, obtained in a computer experiment with a given length of

frame W. This measure doesn't need to be absolute, but it must distinguish less

overlapping distributions from more overlapping. We used the percentage of objects,

found in the overlapping part of distributions Xg and Xgs as a measure of resolution

quality. All frame lengths from 16 to 40 base pairs were repeatedly tested and the best

result for each value is saved, along with the corresponding set of weight factors. The

best results achieved with the frame length 22 (oligonucleotide length 6) and this

frame length was further used in EST clustering applications.

3.9 Implementation

The algorithm is implemented in a form of a set of subroutines and data structures,

assembled in a range of applications. All development was done with a standard e and

primary implementation is also done in e (ANSI standard). The code is written in

order to provide both effectiveness and portability. For the sake of portability

potentially platform-dependent operations (like bit-field operations) were avoided. To

utilize this code in EST clustering application e++ classes were developed to wrap

around the basic e code.

3.10 Applications

A number of applications have been developed to take advantages of the algorithm:

3.10.1 Search for similar sequences in a databank

The method is applicable to searching of databases for near identical or identical
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matches. This implementation strategy can take advantage of the new algorithm's

speed. Sensitivity of the algorithm can be a problem in the cases of distantly related

sequences, especially if mutations are distributed evenly, leaving no conservative

regions (see 3.7). This problem can be solved by a compensatory mechanism at the

application level. The method can make use of two algorithms: it performs the

preliminary search with the new fast algorithm and then qualifies the selected

sequences by a thorough alignment (Strelets et aI., 1992). The new implementation

follows the same strategy, only enhanced by introduction of the new sequence

comparison algoritm.

3.10.2 Masking repetitive and vector sequences from the data set

A masking implementation takes two data sets as initial data, a set of raw sequences

and a set of the "junk" sequences i.e. cloning vectors, repeats or other sequences,

which should be replaced in the raw sequence by a neutral symbol. The resulting file

contains the same sequences, as in initial file, where all occurrences of local similarity

regions are substituted by 'X' letters. This application doesn't need a high sensitivity to

weak similarities. Instead, only highly similar regions need to be revealed. Masking a

set of sequences from the potential contamination by fragments of cloning vectors and

repetitive sequences is a required procedure before similarity search or clustering of

nucleotide sequences. In many cases, like EST clustering, the volume of data makes

masking a tough job. High performance of the new algorithm makes it a good

candidate for this purpose.
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3.10.3 Clustering of ESTs.

Two applications, implementing two different clustering strategies are developed.

These strategies were described in the ISMB99 tutorial on EST clustering (Hide et al.

1999) as "loose" and "stringent". "Loose" clustering relies on third-party software for

cluster assembly and consensus generation. This allows using very low stringency

threshold on the clustering stage and achieving higher sensitivity. "Stringent" approach

includes thorough alignment and consensus generation on the clustering stage to

produce verified clusters in the first place. These implementations are discussed in

Chapter 4.
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Chapter 4

Application to Clustering

We have explored two different strategies in clustering, both "loose" and "stringent",

as described above. Thus, we developed two separate applications for each of the

strategies.

4.1 Stringent clustering

In this approach each original EST sequence read from input file is placed in a separate

cluster. The process starts with a number of clusters equal to the number of initial

ESTs, each cluster containing one sequence only. The clusters are represented by

complex data structures. The principal data fields of these clusters include the list of

the original ESTs, the "searchable" sequence and the consensus sequence (Fig.lO).

The "searchable" sequence represents the cluster in comparison between clusters:

when a cluster is a singleton it's a copy of the only member sequence, otherwise it can

be either a copy of the consensus sequence or a concatenation of the non-redundant

parts of the member sequences (in case of chimerical or alternatively processed

sequences).
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typedef struct{
SEQUENCE *searchable_seq;
SEQUENCE *searchable_seq_complement;
OLIGOTABLE *table;
OLIGOTABLE *table_complement;
struct SEQLIST *list;
struct SEQLIST *current;
int number;
float threshold;

}CLUSTER;
struct CLUSTERLIST{

struct CLUSTERLIST *prev;
struct CLUSTERLIST *next;
CLUSTER c;

} ;
Figure 10. The principal data structures of the stringent clustering program.

All clusters are arranged in a bi-directional dynamic list. All members of the list are

repeatedly compared against each other. When clusters are compared, only

"searchable" sequences are used. Comparison is performed by application of the fast

linear algorithm described earlier in this work. Each time a match is found two clusters

are merged, their member lists are concatenated and the "searchable" sequence is

renewed to make better representation for all members. In an ideal situation this

sequence is simply the consensus, but in the case of ESTs it's often quite different. To

produce both "searchable" and consensus sequence a pair-wise alignment procedure is

used. Currently the C code from (Strelets et al., 1992) is used. Each cluster in the

dynamic list is compared against the rest of the list in a cycle. This cycle is repeated

until no match is found for any of the clusters. Because the list of clusters shrinks with

every cluster merge, the main cycle shortens and the clustering process accelerates.
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output the results

Figure 11. Basic algorithms of the stringent clustering program

The stringent clustering strategy has certain advantages as well as complications. First

of all, it produces assembled clusters with consensi and doesn't require further

computationally extensive cluster assembly stage. With a typical occurrence of

matching sequences in big EST datasets this method is also faster: it accelerates with

every match found. But the main advantage of this approach is scalability. The whole

set of initial EST data could in principal be divided onto any number of small datasets

and processed separately and asynchronously on separate CPUs. After the clustering

process in each subset is completed, they could be merged and the process repeated on

the merged sets to pick up possible matches between subsets. To optimize this parallel

processing, the subset size should be chosen as large enough to contain a reasonable

number of matches in order to benefit from data shrinkage during the clustering and
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small enough to be processed by a given machine in a reasonable time. The details of

this approach have not been explored, but the implementation would be amenable to a

mixed or single architecture environment.

4.2 Loose clustering

In this approach we read all initial EST sequences and place each one in a separate

cluster. All clusters are arranged in a dynamic list and represented by a data structure,

similar to that of stringent clustering described above. Then every cluster is compared

against every other and the results of comparison are stored in a form of a match list,

where every record contains numbers of sequences in a matching pair. Once

comparison is done, clusters, or connectivity groups are extracted from the pair list by

a recursive procedure. This approach is practically the same as that of D2_cluster,

which is currently used in production of the STACK database. This approach also has

a number of complications - it requires subsequent cluster assembly, it's slower than

the "stringent" implementation and takes more effort for parallel optimization, to name

a few. But the main advantage is that it produces results, very similar to those of

D2_cluster, thus it's very easy to quantitate and qualify in terms of already established

criteria. As such, the algorithm could be quickly implemented in existing systems such

as the STACK _pack system, effectively, a plug-in to replace D2-cluster. Thus an

improvement in clustering could be performed with relatively little expense in terms of

extra development.
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read ESTs

place each EST in a
separate cluster

i=O

take cluster i

compare to cluster j

store i and j numbers
for the matching pair

read matching pairs

convert pairs into
connectivity groups
(clusters)

Figure 12. Basic algorithm for loose clustering program

4.3 Parameter space evaluation

output the results

Most of the parameters for clustering have been determined statistically during

development of the sequence comparison algorithm (see 3.8). The only parameter

which remains to be set for clustering application is the threshold value for the general

similarity index. This parameter affects the stringency of clustering. A higher threshold

value results in more stringent clustering with fewer and smaller clusters and higher
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Figure 13 Effect of stringency threshold variation on the clustering results. The only free parameter in both
loose and stringent clustering applications is the stringency threshold. This picture shows distribution of
cluster size (axis X - categories by cluster size from I to 13, axis Z - number of clusters of certain size,
decimal logarithmic scale) after clustering of 885 human EST with a threshold value (parameter) ranging
from 0.05 to 0.9 (axis Y) with a step ofO.05.

similarity to cluster consensus within clusters. Lower threshold results in bigger

number of bigger clusters, for the price of possibly less representative consensus

sequence. Any specific threshold is more or less arbitrary, setting a point of

equilibrium between higher degree of clustering and higher cluster quality. In terms of
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cluster analysis, for this clustering algorithm the distance between clusters is the

distance between nearest objects (ESTs) that belong to different clusters.

Consequently, one single parameter affects both inter-object (EST to EST within a

cluster) and inter-cluster distance. This parameter (stringency threshold) can have

values between 0 and 1. When stringency threshold approaches 0 every pair of

sequences produce general similarity index above exceeding the threshold. As a

consequence, all initial sequences stick together in one cluster. In the opposite case,

when stringency is too high (approaching 1) even slightly dissimilar sequences

produce similarity index below threshold. The result of over-stringent clustering is all

singletons. The effect of stringency threshold on the number of clusters and cluster

size distribution is given on Fig. 13.

To calibrate against and existing system, we used a set of EST clusters produced by

D2_cluster. 10 raw clusters ranging from 2 to 882 EST were assembled using CAP3

(http://hercules.tigem.it). Then all clusters were used as initial data sets for stringent

clustering and processed repeatedly with a threshold value running from minimal

value, resulting in one cluster to the maximal value, producing only singletons. The

threshold value, corresponding to the number of clusters, nearest to the number of

contigs, generated by CAP3 was taken. The same threshold value was also used for

loose clustering.

There are two measured statistics, which may help to optimize the stringency

parameter. The stringent clustering application calculates the time spent in the
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alignment procedure relative to the general processing time. Under normal conditions

i.e. clustering raw EST data with optimal stringency settings, this figure should be

small. If the amount of time spent in the alignment procedure rises above the

acceptable limit, this means that either the data set is enriched with matching

sequences or that initial fast sequence comparison produces too many false-positive

matches and stringency parameter has to be adjusted. Another measured statistic is

percentage of initially detected matches confirmed by following thorough pair-wise

alignment. This measure characterizes the rate of false-positive matches on the fast

comparison stage. If ratio approaches 100% the stringency is too high and a

considerable number of matches may be lost (Fig. 14). The stringency should be set so

that percentage of confirmed matches stay low while the time, spent in alignment

remains within acceptable limits.
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Figure 14, Effect of parameter (stringency threshold) variation on percentage of similarities confirmed by
alignment, relative time spent on pair-wise alignment and percentage of initial ESTs assigned to clusters
(non-singletons),

4.4 Estimation of clustering performance

Performance of the clustering programs was measured on the same data set, which was

used for D2_cluster. In fact, the algorithm was tested on many different data sets, but

this one particular data set was chosen for evaluation because it makes possible to

compare the new clustering algorithm to the other existing systems. This data set

contains the first 10000 ESTs from the eye tissue subset, prepared for STACK_PACK

system (ftp://ftp.sanbi.ac.za/pub/STACKibenchmarks/benchmarklOOOO.seq.gz).

Unfortunately, the assessment of clustering quality is not yet established.

Benchmark 10000 (10000 ESTs from eye tissue set) is only a piece of real data big

enough to represent variations of EST sequence length, repeat and vector sequence
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contamination, typical data quality and redundancy. Nevertheless, benchmark I0000 is

already established de facto standard benchmark for EST clustering software. Until

now it's the only test data set for which results of more then one clustering system are

publicly available. The results of testing of different programs are published on

Internet and can be found at http://www.sanbi.ac.zalbenchmark. The dataset itself can

also be downloaded from the same URL. At least one other clustering system, ESTate,

was also tested on the same benchmarklOOOO dataset (G. Slater, P. Van Heusden,

personal communication). This data set can well serve as a basis to compare the

relative speed of different clustering software. Although we don't have means to

compare the quality of clustering, we suggest that as long as all tested programs

produce similar results, their clustering quality is more or less the same. At least one of

the tested programs, D2_cluster, has been already published as producing if not

absolutely correct, at least valid and useful results from the scientific point of view.

Thus, the other EST clustering systems are expected to produce a similar cluster

structure. As a quick estimation of similarity of the results we propose a distribution of

number of ESTs per cluster. The similarity between distributions doesn't guarantee the

identity of clustering results. On the other hand, dissimilarity of distributions would

be a good indicator of differences in resulting cluster structure. Our experiments show

a remarkable correspondence between the result of D2_cluster and the new clustering

programs, while the new programs are always significantly faster. Figure 15 shows

distributions of cluster size in raw D2_cluster output, D2_cluster output after cluster

assembly stage and the new stringent clustering program output.
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Figure 15. Comparison of cluster size distribution in first 10 000 human EST from eye tissue set.

The number of singletons generated by D2_cluster is 7006, while new program

generates 6531. The biggest cluster defined by D2_cluster has 56 ESTs, but this

cluster is not confirmed (defined as producing a single contig) by the following cluster

assembly, as well as all other clusters with more then 20 members. Three biggest

clusters produced by Clu have 66, 69 and 123 members. The new stringent clustering

program (Clu) produces results with a very similar cluster size distribution (see Fig.

15). The difference is that Clu tends to produce more clusters, clusters of bigger size

and leave less singletons. Quick comparison of the cluster contents shows that new

clustering program (Clu) is more sensitive, especially in shorter sequences. The results

of such comparison are shown in Table 2. Clusters are picked blindly by their numbers
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as they appear in the D2_cluster output. In both cases of disagreement between

D2_cluster and Clu results all ESTs are longer than 100 base pairs (default frame

length parameter in D2_cluster), but sequences missed by D2_cluster are shorter than

the others in the same cluster.
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Stack size ESTs Clu size ESTs difference
Cluster # Cluster #
I 8 T27877 3145 8 T27877

H37900 H37900
H38651 H38651
H38682 H38682
H84662 H84662
H85197 H85197
H89941 H89941
H84148 H84148

2 2 T27878 7763 2 T27878
AA489885 AA489885

3 2 T27889 5505 2 T27889
AAI76889 AAI76889

4 2 T27893 1040 2 T27893
H84548 H84548

5 3 T27897 2240 4 T27897 H92170
H37921 H37921
H40706 H40706

H92170
6 6 T27899 7780 6 T27899

H87764 H87764
H86519 H86519
AA05772I AA05772 I
AAI67121 AAI67121
AA489902 AA489902

7 2 T27904 4532 4 T27904 H40639
AA063476 AA063476 H38672

H40639
H38672

8 4 T27908 4051 5 T27908
H37775 H37775
H85549 H85549
H86568 H86568

H40669
9 3 T27910 4444 3 T27910

H80800 H80800
AA062794 AA062794

lO 6 T27914 6434 6 T27914
AA063475 AA063475
AA057847 AA057847
AAI74102 AAI74102
AA219283 AA219283
AA219467 AA219467

Table 2. Companson of cluster contents between 02 and Clu (new c1ustenng program) results. 10
clusters, produced by D2 from the benchmarklOOOO dataset with numbers from I to lO are compared
against corresponding Clu clusters. Due to the differences in algorithms, clusters containing the same
ESTs have different numbers. In two cases of 10 (clusters #5 and #7) Clu clusters are bigger. Following
alignment (available from the author upon request) confirms that additional ESTs belong to the
corresponding clusters and are clearly alignable.
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The data for performance comparison was obtained in the series of experiments by the

author and Antoine van Gelder in September 1999 (A. van Gelder, personal

communication). Generally, we can conclude that it's reasonable to suggest that

results, produced by new program are similar to those of D2 cluster and can be

equally useful for further research.

Clustering program

D2 cluster Loose Cluster Stringent Cluster

SGI Origin2000
12302 5660 -

(RIOOOO/180MHz)

Platform
Pentium Il/450 17014* 6021 5388

Compaq DS20 5655 2520 -(EV6/500MHz)

*Data for 400MHz CPU

Table 3. Comparison of the clustering software performance. The performance is measured in number of
seconds required to complete clustering process. In case of Stringent clustering this also includes cluster
assembly. First 10000 human EST from eye tissue set are used as initial data.

4.5 Further improvements

Both programs are far from perfection and have good long-term development

perspectives. First of all, there is a big gap between a prototype implementation of a

new algorithm and a working clustering system. The overall performance and

scientific value of the clustering results are determined only in part by the clustering

program. EST pre-processing and further alignment analysis is just as crucial. Thus, an
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algorithm has much better chance to become a production engme if it can be

introduced in a system, which is already working, and proven to give valuable results.

From this point of view, the loose clustering program has good potential for

introduction under the STACK_PACK system as a plug-in to substitute for

D2_cluster. This would require only minor changes In the input and output data

formats. Further optimization is also required on the last stage of clustering (see Figure

11), transforming a list of matching pairs into a connectivity group. This stage is

memory demanding, due to the need of temporal storage of a huge array of matching

EST pairs. Optimization of sorting and processing of this array can significantly

reduce the overall computation time.

Stringent clustering would require more efforts to incorporate into any of existing

systems, including STACK_PACK, but this is not impossible. Current implementation

doesn't keep the alignments of clusters for analysis and generates a cluster consensus

based on unsorted pair-wise alignments only. This program performs both clustering

and cluster assembly, but the quality of results is significantly diminished by its'

implementation. Sequential pair-wise alignment is only tolerable in a prototype-level

testing, as it can't compete in accuracy with the tools, specifically developed for cluster

assembly, like PHRAP, used in STACK_PACK. Improvement of the consensus

generation and introduction of multiple alignment is the priority in father development

of the stringent clustering application. The currently implemented prototype version

uses readily available code for pair-wise nucleotide sequence alignment and consensus

generation (Strelets et aI., 1992). Sequential pair-wise alignment of low-quality EST
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tends to reduce consensus quality and is significantly affected by the order of

alignments. Re-implementation with more sophisticated multiple alignment to

generate more representative consensus can correct this problem.

Another major improvement can make a major performance boost in both stringent

and loose clustering approaches. A pre-processing stage can be easily introduced

without any significant change in the algorithms. This stage can be based on any of the

sub-linear algorithms, discussed in 1.3.2.6. Unlike the systems initially built around

fast sub-linear sequence comparison, our system doesn't experience the problem of

excessive false matches, is not supported by further assembly and doesn't rely on

extensive pre-processing. The additional fast comparison stage should aim not to

detect the matches, but rather to cut most obviously non-matching ESTs from further

companson.
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Chapter 5

Conclusion

Why are linear sequence comparison algorithms still in implementation despite

availability of faster sub-linear algorithms? As it was noted in 1.3.2.6, super-fast

algorithms, based on some form of pre-indexing, are extremely attractive for EST

clustering because of their low computational cost. Traditional algorithms of sequence

comparison are based on the concept of pair-wise alignment, which require the query

to be aligned, even in the most reduced form, to each of the sequences of the database.

This means that the entire database needs to be pumped through the CPU as many

times as the number of queries. Sub-linear algorithms make it possible to go over the

"sound barrier" of sequence comparison and make overall computing time less

dependent from the database size. Yet, a clustering system based on the linear

algorithm of sequence comparison still has a few significant advantages. First of all,

it's more sensitive to local similarities, and gives a better quality results. In addition it

doesn't require database pre-processing. This advantage becomes clear if we consider

the requirement to keep the data in the clustered database up to date. The amount of

EST data tends to grow very fast and each update would require an update of pre-

indexed database. The fast linear algorithm, described in chapter 2 is well suited for

dynamic updates, without extensive re-indexing of the whole data set.

This algorithm retains the sensitivity of alignment-searching algorithms, like FASTA,

while reducing computation to only a few integer operations per base pair. This is
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close to the theoretical maximum of linear algorithm performance and only limited by

the ability of contemporary CPUs to pump the data through. Any further significant

improvement of speed can be achieved only by introduction of a sub-linear algorithm,

based on pre-indexing of the data set. On the other hand, introduction of a sub-linear

"booster" is one of the main development perspectives of the clustering application. In

our opinion it's reasonable to base a clustering system on a fast linear algorithm,

leaving imprecise sub-linear algorithmic applications to a secondary role.

This algorithm developed by the author can be used in both of the present EST

clustering strategies. In order to prove the applicability and estimate the performance

two applications were developed. Loose clustering application is easier to introduce to

the existing STACK_PACK system, while stringent clustering program has bigger

potential for further development.

The eclectic nature of existing EST clustering systems leads to contamination and

errors. Despite thorough masking, fragments of repeats are still found in the STACK

clusters and can be easily detected by BLAST search. Different programs, utilized in

STACK _PACK system use different algorithms of sequence comparison and,

consequently, different similarity measures. Each program (CROSSMATCH,

D2_cluster, PHRAP) utilises a slightly different meaning of sequence similarity and

this one of the potential breaches, letting contaminated sequences into clustering.

Unification of sequence comparison by employment of the same sequence comparison

algorithm on all stages can solve the problem. This was the main idea behind the
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development of a repeat and vector masking program, as well as the development of

the stringent clustering application. If matches, detected by the clustering program

have the same sense as in the cluster assembly stage, this would reduce the redundant

sequence comparison, excluding situations where the cluster, reported by clustering

program is broken into pieces by the assembly stage. If sequence similarity has the

same sense through all the system, it would simplify the system architecture and,

finally, improve its' overall performance.
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Summary

Expressed sequence tag database is a rich and fast growing source of data for gene

expression analysis and drug discovery. Clustering of raw EST data is a necessary step

for further analysis and one of the most challenging problems of modem

computational biology. There are a few systems, designed for this purpose and a few

more are currently under development. These systems are reviewed in the "Literature

and software review". Different strategies of supervised and unsupervised clustering

are discussed, as well as sequence comparison techniques, such as based on alignment

or oligonucleotide compositions.

Analysis of potential bottlenecks and estimation of computation complexity of EST

clustering is done in Chapter 2. This chapter also states the goals for the research and

justifies the need for new algorithm that has to be fast, but still sensitive to relatively

short (40 bp) regions of local similarity.

A new sequence comparison algorithm is developed and described in Chapter 3. This

algorithm has a linear computation complexity and sufficient sensitivity to detect short

regions of local similarity between nucleotide sequences. The algorithm utilizes an

asymmetric approach, when one of the compared sequences is presented in a form of

oligonucleotide table, while the second sequence is in standard, linear form. A short

window is moved along the linear sequence and all overlapping oligonucleotides of a

constant length in the frame are compared for the oligonucleotide table. The result of
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comparison of two sequences is a single figure, which can be compared to a threshold.

For each measure of sequence similarity a probability of false positive and false

negative can be estimated. The algorithm was set up and implemented to recognize

matching ESTs with overlapping regions of 40bp with 95% identity, which is better

than resolution ability of contemporary EST clustering tools.

This algorithm was used as a sequence comparison engine for two EST clustering

programs, described in Chapter 4. These programs implement two different strategies:

stringent and loose clustering. Both are tested on small, but realistic benchmark data

sets and show the results, similar to one of the best existing clustering programs,

02_cluster, but with a significant advantage in speed and sensitivity to small

overlapping regions of ESTs. On three different CPUs the new algorithm run at least

two times faster, leaving less singletons and producing bigger clusters. With parallel

optimization this algorithm is capable of clustering millions of ESTs on relatively

inexpensive computers. The loose clustering variant is a highly portable application,

relying on third-party software for cluster assembly. It was built to the same

specifications as 02_ cluster and can be immediately included into the STACKPack

package for EST clustering. The stringent clustering program produces already

assembled clusters and can apprehend alternatively processed variants during the

clustering process.
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