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Abstract
This research project delves into the problem of heteroskedasticity in the linear regression model. Hav-
ing defined the problem and its consequences for estimation and inference, a comprehensive literature
review of existing methods for diagnosing and correcting for heteroskedasticity is undertaken, with
special emphasis on heteroskedasticity tests.

New theory on the statistical properties of the Ordinary Least Squares residuals is developed, lead-
ing to new models for estimating linear regression error variances. The most important of these models
is the Auxiliary Linear Variance Model, which is further classified into sub-types (e.g., clustering, lin-
ear, penalised polynomial, spline). Model fitting techniques are discussed, which reduce to quadratic
programming problems. An Auxiliary Nonlinear Variance Model is also developed, which can be fit-
ted using a maximum quasi-likelihood method. Techniques for tuning of model hyperparameters and
feature selection are discussed. Bootstrap methods of obtaining interval estimates for error variances
are also proposed. A new heteroskedasticity test is constructed based on the auxiliary linear variance
model.

To make existing and new methods of handling heteroskedasticity more accessible to the practi-
tioner, a new package called skedastic has been developed for R statistical software. Its functionality
is described in detail.

Various empirical results are obtained using Monte Carlo simulation experiments. A comparison
between heteroskedasticity tests is made using an average excess power over size metric. The new
error variance estimation methods are assessed under a variety of conditions in terms of four distinct
mean squared error metrics, and are found to outperform existing methods under some conditions.
Coverage probabilities of bootstrap confidence intervals are estimated. Finally, illustrative case studies
are undertaken with three real-world data sets.

The new variance models are found to be competitive methods for handling heteroskedasticity
in linear regression. Possible avenues for further refining the new methods are proposed for future
research.

Keywords— model assumptions, model adequacy, Monte Carlo simulation, bootstrap, power, robustness,
variance estimation
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A Note to the Reader
Here are a few preliminary remarks to ensure the reader has a pleasant experience navigating within this
document. Numerous entities within the document are cross-referenced using clickable hyperlinks (sections
and subsections down to the fourth level; equations; figures and tables; some numbered list items; acronyms).
These hyperlinks will appear in blue font. Clicking on a hyperlink will take the reader to the location in the
document where that entity is defined.

Suppose the reader encounters an acronym on page 100 of the thesis and does not remember what it stands
for. The reader can click on the acronym’s blue hyperlink and will be taken to the List of Acronyms. Now,
the reader knows what the acronym stands for, but suppose s/he does not remember what page s/he was
on! No problem: the reader can go back to the previous location by pressing Alt ← on the keyboard. This
is equivalent to the Previous View option on the Page Navigation submenu accessible from the View tab in
Adobe Acrobat.1

1Note that Alt Gr ← does not have the same function as Alt ←.
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1 Introduction
When applying statistical models to data, model adequacy—verifying that the assumptions of a model are
satisfied—is an important consideration. Equally important is to have access to robust methods that retain
good statistical properties in the event that model assumptions are violated. This research project focuses on
the violation of a particular assumption of a particular statistical model. The specific case that will be studied
is heteroskedasticity—the violation of the assumption of homoskedasticity or homogeneity of variances—in the
linear regression model.2 Having broadly sketched out the context of this study, it is necessary to provide some
background on the linear regression model, its assumptions, and some of its statistical characteristics, so that
the research problem and objectives can be properly framed.

The classical linear regression model is a very widely used statistical method for analysing relationships
between a continuous response variable and one or more predictor variables. This research project is devoted
to the study of addressing heteroskedasticity in the linear regression model: detecting it, estimating it, and
correcting for it in the estimation of and inference on the model parameters.

In this introductory chapter, the linear regression model will be defined, along with some important vector
and matrix quantities. The classical assumptions of the linear model will be stated and heteroskedasticity
defined. This will be followed by an overview of estimation theory pertaining to the linear regression model,
both under the full classical assumptions and under heteroskedasticity.

Next, special attention will be given to the model residuals, since these are of great importance for detecting
and modelling heteroskedasticity. Statistical properties of the ordinary least squares residuals will be stated
and, in some cases, proven. Other types of residuals will be introduced.

Turning to the problem of inference, the distributions of quantities of interest under the full classical
assumptions will be stated and the t-test for inference on model parameters derived. The distributions of
quantities of interest will likewise be derived under heteroskedasticity, and the effect of heteroskedasticity on
the validity of the t-test discussed. A brief introduction to the notions of leverage and influence in the linear
model will be provided, along with the related concepts of studentised residuals and Cook’s Distance.

With all of this background in hand, the introduction will end with a statement of the research problem
and an enumeration of the research objectives.

1.1 The Linear Regression Model
1.1.1 Definition and Basic Notation

The linear regression model is specified in matrix form as follows:

y = Xβ + ϵ, (1.1)

where y is an n-vector of observed responses (sometimes referred to as the regressand or dependent variable),
β = [β1, β2, . . . , βp]′ is a p-vector of unknown constant parameters, X is an n × p observed predictor matrix
(sometimes referred to as the design matrix), and ϵ is an n-vector of unobserved random errors or disturbances.
Conventionally, X has a column of ones as its first column (corresponding to the model intercept), and the
remaining columns, X·j , j = 2, 3, . . . , p, are n-vectors of predictor variables (sometimes referred to as regressors,
covariates, design variables, explanatory variables, or independent variables).3 In the case of simple linear
regression (where there is only one predictor variable), the notation x = [x1, x2, . . . , xn]′ will also be used for
the predictor variable. It is normally required that n > p (ideally, n≫ p). (1.1) can also be referred to as the
Data Generating Process (DGP) of the response y.

Let β̂ denote any statistical estimator of β. The predicted or fitted response vector (subject to the estimator
β̂) is defined as ŷ := Xβ̂, and the residual vector (an observable predictor of the random errors) is defined as
e := y − ŷ. Throughout this document, ◦ denotes the Hadamard product (elementwise product) of two vectors
or matrices. Thus the vector of squared residuals will be denoted e ◦ e.

1.1.2 The Hat Matrix and the Annihilator Matrix

Certain matrices are of special importance in the linear regression model. The ‘hat’ or ‘projection’ matrix
H = X(X ′X)−1X ′ = (hij), denoted in some literature by P , is an n× n hat matrix satisfying ŷ = Hy; that

2On ‘heteroskedasticity’ (as opposed to ‘heteroscedasticity’) as the preferred spelling, see Paloyo (2011).
3Herein, X′

i· denotes the ith row of X, i = 1, 2, . . . , n, while X·j denotes the jth column of X, j = 1, 2, . . . , p.
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is, it projects the observed response vector onto the predicted or fitted response vector. The matrix H is
symmetric (hij = hji) and idempotent (HH = H). From the commutative property of the trace operator, it
follows that tr(H) = p. Moreover, like all idempotent matrices other than the identity matrix, H is singular.
This can easily be proven by contradiction. Assume that H has inverse H−1 such that H−1H = In. Then,

H−1H = H−1HH (by idempotence)
= InH (by inverse assumption)
= H ̸= In (contradicts inverse assumption).

The annihilator matrix, denoted here by M = (mij) (in some literature by Q), is an n× n matrix defined
as M := In −H, where In is the identity matrix. The name ‘annihilator’ comes from the property that
MX = 0; that is, M ‘annihilates’ the design matrix. Like H, the matrix M is symmetric and idempotent,
and therefore singular; its trace is tr(M) = n− p.

1.1.3 Classical Linear Model Assumptions

The exact list of assumptions for the multiple linear regression model varies from one text to another.4 Certain
assumptions are already inherent in (1.1), such as linearity in the parameters β, and correct specification of
the model. Another assumption that is often made is that the predictors are fixed or nonstochastic (they do
not vary in repeated samples).5 This assumption is reasonable in an experimental context, but not in the
case of observational data. To avoid making this assumption, all statistical results can be conditioned on the
predictor matrix. To enable concise notation, all statistical results herein should be taken as conditioned on
X and/or any other relevant predictor matrix that is introduced.6

With this conditioning approach and the assumptions built into (1.1) (i.e., that it gives the true data
generating process and thus that the linear predictor Xβ is correctly specified), the following are the remaining
model assumptions.

A1. The error terms all have conditional mean zero (E(ϵ) = 0). This directly implies that the conditional
mean response equals the linear predictor (E(y) = Xβ).

A2. The error terms all have the same conditional variance, ω > 0 (Var(ϵi) = ω, i ∈ {1, 2, . . . , n}). This is
known as the assumption of homoskedasticity.

A3. The error terms are all conditionally uncorrelated (Cov(ϵi, ϵj) = 0, i ̸= j). This is known as the assump-
tion of no autocorrelation.

A4. No predictor can be expressed as a linear combination of other predictor(s). This is known as the
assumption of no perfect multicollinearity. Another way of stating this assumption is that the predictor
matrix X must have rank p.7

A5. The joint distribution of the error terms, conditioned on the corresponding predictor values, is multi-
variate Normal (Gaussian).

Let Ω = (ωij) be the variance-covariance matrix of the random errors, Cov(ϵ),8 and let ω = diag(Ω).9
Then A2-A3 can be stated jointly by the expression Ω = ωIn, where ω > 0 is a scalar,10 while A1-A3 and
A5 can be stated jointly by the expression ϵ ∼ N(0, ωIn). Note also that A3 and A5 together imply that the

4See, for example, Berry (1993) and Gujarati (2018).
5In some treatments of multiple linear regression, a weaker version of this assumption is used, namely that for each

i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}, Cov(ϵi, Xij) = 0 (the predictors are uncorrelated with the errors).
6Thus, in assumption A1, for instance, E(ϵ) is really E(ϵ|X).
7Sometimes a separate assumption is made stating that all predictors have some variation in value. However,

provided that the model has an intercept (X contains a column of ones), this follows from the assumption of no perfect
multicollinearity, since another column with no variation in value would be expressible as a scalar multiple of the
intercept.

8For conciseness, the notation Cov(v) is used for the variance-covariance matrix of a random vector v, i.e.,
Cov(v) = Cov(v, v) = E

[
(v − E(v)) (v − E(v))′].

9Herein, diag(A), where A = (aij) is a square matrix, denotes a vector whose elements are the diagonal elements of
A. diag {v}, where v is a vector, denotes a diagonal matrix with v as its diagonal.

10Note that, by A1, Cov(ϵ) can also be written as E(ϵϵ′). Since, by definition, Cov(y) = Cov(ϵ), it also follows from
A2-A3 that Cov(y) = ωIn.
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errors ϵ are mutually independent, due to the property that the components of a normally distributed random
vector are independent if and only if they are uncorrelated (Gut 2005, Theorem 5.3).

Although not formally part of the classical linear model assumptions, a modified and more general version
of A5 is introduced here, along with a further assumption, as follows.

A5′. The error terms, conditioned on the corresponding predictor values, all have the same cumulative distri-
bution function (CDF) (though not necessarily the same parameter values).

A6′. The third and fourth moments of the conditional distribution of the error terms exist and are finite
(E (ϵs

i ) <∞ for s = 3, 4).

1.1.4 Definition of Heteroskedasticity

Throughout this research, it is assumed that A1 and A3-A4 hold. The primary focus is on the violation of A2,
known as heteroskedasticity. (A5 may, on occasion, be relaxed as well). The problems of heteroskedasticity
and autocorrelation are sometimes treated together, since they are both violations of assumptions concerning
Ω. A separate treatment of heteroskedasticity can be justified by noting that, while autocorrelation is often
encountered in time series data, it is in practice rare in cross-sectional data (Berry 1993, pp. 71-73). Thus,
unless the data contains spatial variables where spatial autocorrelation might occur (Anselin and Bera 1998,
p. 237), an a priori assumption of no autocorrelation may be reasonable. Heteroskedasticity, on the other
hand, is a frequently observed problem in linear models fitted to cross-sectional data (Gujarati 2018, p. 106).
When A2 is relaxed but A3 retained, Ω is assumed to be an n× n diagonal matrix with ith diagonal element
ωii = ωi.

Of special interest for this research is the case, commonly seen in practice with observational data, where
the ith error variance, i = 1, 2, . . . , n, is a function of some observed covariates Zij , j = 1, 2, . . . , p′; that is,
ωi = g(Z′

i·), where g is a continuous, twice-differentiable, positive real-valued function. The auxiliary design
matrix Z could be identical to X (in which case p′ = p), but may also consist of a subset of columns of X,
and/or other covariates not in X. By convention, Z will be assumed to include a column of ones as its first
columm. An auxiliary design matrix that does not include a column of ones will be denoted as Z−1.

1.1.5 Estimation of Model Parameters under Assumptions A1-A4

1.1.5.1 Ordinary Least Squares
The Ordinary Least Squares (OLS) estimator of β is denoted by

β̂OLS =
(
X ′X

)−1
X ′y, (1.2)

where A4 ensures that X ′X is invertible. The name ‘least squares’ refers to the fact that this estimator
minimises the sum of squared residuals, SSresidual =

(
y −Xβ̂

)′ (
y −Xβ̂

)
, with respect to β. A derivation of

β̂OLS is given in Appendix A.1.

1.1.5.2 The Gauss-Markov Theorem

The Gauss-Markov Theorem states that, under Assumptions A1-A4 (A5 not required), β̂OLS is the Best Linear
Unbiased Estimator (BLUE) of β (Wooldridge 2013). That is, among the class of linear unbiased estimators
of β, β̂OLS has the smallest variance. A proof of the theorem is given in Appendix A.2. Note that (1.3) also
follows from the proof:

Cov(β̂OLS) = ω(X ′X)−1. (1.3)

1.1.5.3 Maximum Likelihood Estimator

The Maximum Likelihood (ML) estimator of the parameter vector θ = [β′, ω]′ under homoskedasticity (A1-A5)
is, as derived in Appendix A.3,

θ̂MLE =

[
(X ′X)−1

X ′y
1
n

e′e

]
. (1.4)

3
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That is, β̂OLS is the ML estimator of β, while the mean of the squared OLS residuals, ω̄ = n−1e′e, is the
ML estimator of the common error variance ω. However, ω̄ is not the most widely used estimator of ω under
homoskedasticity because it is biased. That distinction belongs to the unbiased estimator,

ω̂ub = (n− p)−1e′e, (1.5)
whose unbiasedness property is discussed in §3.1.1. The ub subscript denotes that this is an unbiased

estimator of ω.

1.1.6 Estimation of Model Parameters under Heteroskedasticity

1.1.6.1 Ordinary Least Squares

As the conditional expectation of the response, E(y), is unaffected by heteroskedasticity, β̂OLS remains an
unbiased estimator. Moreover, the argument of §1.1.5.1 still holds, meaning that β̂OLS still minimises the sum
of squared residuals.

However, the variance-covariance matrix of the OLS estimator is now given by,

Cov(β̂OLS) = (X ′X)−1X ′ΩX(X ′X)−1. (1.6)
β̂OLS is still a consistent estimator of β (Greene 2012). However, the argument of §1.1.5.2 that β̂OLS is the

BLUE no longer applies. This leads us to consider alternative estimators of β under heteroskedasticity.

1.1.6.2 Weighted Least Squares
Under heteroskedasticity (with A1, A3-A4 still satisfied), SSresidual, which was minimised in §1.1.5.1 to
obtain β̂, no longer has the same utility as a model precision metric, because observations with larger
variances will exert a disproportionate influence on it. A modified metric could thus be considered,

SSW
residual =

(
y −Xβ̂

)′
W
(
y −Xβ̂

)
=

n∑
i=1

wiie
2
i , where W is some diagonal matrix with nonnegative diago-

nal elements wii, i = 1, 2, . . . , n.
Following an argument analogous to that by which the OLS estimator is derived (see Appendix A.1), it can

be shown that minimising SSW
residual with respect to β yields the Weighted Least Squares (WLS)11 estimator,

β̂WLS =
(
X ′W X

)−1
X ′W y. (1.7)

A generalisation of the Gauss-Markov Theorem holds under A1, A3-A4, by which β̂WLS is the BLUE of
β under heteroskedasticity, provided that W = Ω−1 (i.e., wii = ω−1

i , i = 1, 2, . . . , n). This result is proven in
Appendix B.

It can henceforth be assumed that the weight matrix in β̂WLS is W = Ω−1. It also follows from the proof
of the generalised Gauss-Markov theorem that,

Cov(β̂WLS) =
(
X ′Ω−1X

)−1 . (1.8)

1.1.6.3 Maximum Likelihood Estimator
Under A1 and A3-A5, it is not possible to derive an explicit expression for the ML estimator of the (n+ p)-
vector θ = [β′,ω′]′, since only n observations are available. However, the ML method does lead to a mutual
relation between the parameters:

θ̂1,MLE =
[

β̂MLE
ω̂MLE

]
=
[(

X ′Ω−1X
)−1

X ′Ω−1y

(y −Xβ) ◦ (y −Xβ)

]
, (1.9)

where Ω is a diagonal matrix with ith diagonal element ωi. If the ωi are known, the ML estimator of β
will be β̂WLS, defined previously in (1.7). For a derivation of (1.9), see Appendix B.1.

11The term Generalised Least Squares (GLS) is used in the literature for the problem of minimising SSW
residual where

W is not a diagonal matrix. WLS is thus a specialised version of GLS. Interest herein is primarily in WLS and not
GLS, since A3 is assumed throughout.
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1.1.6.4 Infeasibility of Weighted Least Squares

Under the classical model assumptions, the BLUE, β̂OLS, is feasible, being a function of observed variables.
When A2 does not hold, however, the BLUE, β̂WLS, is a function of the observed variables and the error
variances ωi, i = 1, 2, . . . , n. Hence, apart from the highly exceptional occasion where the error variances are
known, the WLS estimator is infeasible: it cannot actually be computed. WLS is thus more useful as a
theoretical construct than to the practitioner. Modifications to the WLS estimator to make it ‘feasible’ will be
introduced in §2.2.1.

1.1.7 Model Residuals

1.1.7.1 OLS Residuals

The OLS residuals, eOLS = y −Xβ̂OLS, can also be written as eOLS = My or as eOLS = Mϵ.12 For the sake
of brevity, eOLS will usually be denoted herein by e.

1.1.7.2 OLS Residuals under Classical Linear Model Assumptions
Consider the OLS residuals e under A1-A4. Firstly, it is easily shown that e is an unbiased predictor of ϵ; that
is, E(e) = E(ϵ) = 0:

E(e) = E(Mϵ) = M E(ϵ) = 0.
Secondly, the variance-covariance matrix of e can be derived as follows:

Cov(e) = E(ee′) = E(Mϵϵ′M ′)
= M E(ϵϵ′)M (by symmetry of M)
= ωM (by A1-A4 and idempotence of M). (1.10)

In scalar form,

Var(ei) = E(e2
i ) = ωmii = ω(1− hii), (1.11)

where mii is the ith diagonal element of M and hii is the ith diagonal element of H (as defined in §1.1.2).
Similarly,

Cov(ei, ej) = ωmij , i ̸= j, (1.12)
and thus

ρij = Corr(ei, ej) = mij√
miimjj

= − hij√
(1− hii)(1− hjj)

. (1.13)

Thirdly, it can be proven that e is the Best Linear Unbiased Predictor (BLUP) of ϵ under assumptions
A1-A4. The proof is similar to the proof of the Gauss-Markov theorem (see Appendix A.2) and is outlined in
Appendix B.2.

1.1.7.3 OLS Residuals under Heteroskedasticity
How are the OLS residuals affected when A1 and A3-A4 hold but A2 does not? The result E(e) = 0 remains.
The covariance matrix, however, becomes

Cov(e) = E(ee′) = E(Mϵϵ′M ′)
= M E(ϵϵ′)M (by symmetry of M)
= MΩM . (1.14)

12Note, however, that this does not mean that the unobserved random errors can be recovered from the OLS residuals
using the transformation ϵ = M−1e, because M is singular.
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By working through the matrix multiplication, the result in (1.14) can be expressed in scalar form as,

Var(ei) = E(e2
i ) = (MΩM)ii =

n∑
k=1

ωkm
2
ik, i ∈ {1, 2, . . . , n} , (1.15)

and

Cov(ei, ej) =
n∑

k=1

ωkmikmkj , i ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . , n} , i ̸= j. (1.16)

Moreover,

Corr(ei, ej) =

n∑
k=1

ωkmikmkj√√√√ n∑
k=1

ωkm
2
ik

n∑
ℓ=1

ωℓm
2
jℓ

= ρij . (1.17)

Note that (1.15) and (1.16) can also be expressed in terms of the elements of H:13

Var(ei) = E(e2
i ) = m2

iiωi +
∑
k ̸=i

ωkm
2
ik = (1− hii)2ωi +

∑
k ̸=i

ωkh
2
ik, (1.18)

and
Cov(ei, ej) = ωimiimij + ωjmjjmij +

∑
k /∈{i,j}

ωkmikmkj

= −hij [ωi(1− hii) + ωj(1− hjj)] +
∑

k /∈{i,j}

ωkhikhkj . (1.19)

Note that, following an argument analogous to that of Horn et al. (1975)—who are, however, working with
WLS rather than OLS—E(e2

i ) can be simplified as follows:

E(e2
i ) = (1− hii)2ωi +

∑
k ̸=i

ωkh
2
ik

= (1− 2hii)ωi +
n∑

k=1

ωkh
2
ik

= (1− 2hii)ωi + ci, where (1.20)

ci =
n∑

k=1

X ′
i·(X ′X)−1Xk·ωkX ′

k·(X ′X)−1Xi·

= X ′
i·(X ′X)−1X ′ΩX(X ′X)−1Xi· = (HΩH)ii.

Working from (1.15), the sum of squared residuals e′e has conditional expectation given by (1.21) under
heteroskedasticity:

13Since mii =
n∑

k=1

m2
ik, it can be shown that

∑
k ̸=i

h2
ik = (1− hii)hii. From this it follows that (1−hii)2, the coefficient

of ωi in (1.18), exceeds the sum of all the other coefficients as long as hii <
1
2

. This will in general be true in most cases,

particularly when the sample size n is large relative to p, since the average hii value is p

n
. Thus, with the exception of

very high-leverage observations, Var(ei) will be dominated by the first term in (1.15) and (1.18).
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E(e′e) =
n∑

k=1

n∑
i=1

ωim
2
ki

=
n∑

i=1

ωi

n∑
k=1

m2
ki

=
n∑

i=1

ωimii =
n∑

i=1

ωi(1− hii). (1.21)

1.1.7.4 WLS Residuals

Define HΩ = X (X ′W X)−1
X ′W = X

(
X ′Ω−1X

)−1
X ′Ω−1 as a WLS generalisation of the hat matrix de-

fined previously in §1.1.2. The generalised annihilator matrix is similarly defined as MΩ = In −HΩ. The
key properties of these matrices are preserved under this generalisation. Both matrices are symmetric and
idempotent, and their traces remain p and n− p respectively. Furthermore, the relations ŷWLS = HΩy (where
ŷWLS = Xβ̂WLS) and eWLS = MΩy = MΩϵ hold (where eWLS = y − ŷWLS).

In consequence of this, it can be shown, using the same approaches as those taken in §1.1.7.3, that the
following results hold (under A1, A3-A4) concerning the WLS residuals eWLS:

E(eWLS) = 0 (1.22)
and

Cov(eWLS) = MΩΩMΩ. (1.23)

It follows that, in scalar form,

Var(ei,WLS) = E(e2
i,WLS) = (MΩΩMΩ)ii =

n∑
k=1

ωkm
2
ik, i ∈ {1, 2, . . . , n} , (1.24)

and

Cov(ei,WLS, ej,WLS) =
n∑

k=1

ωkmikmkj , i ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . , n} , i ̸= j, (1.25)

where mik is the (i, k)th element of MΩ.

1.1.7.5 Best Linear Unbiased Scalar-Covariance-Matrix Residuals
Under homoskedasticity, the OLS residuals have covariance matrix ωM and not ωIn. Thus the OLS residuals
are not themselves homoskedastic or uncorrelated even when the errors are. This creates a problem when
using the OLS residuals for heteroskedasticity diagnostics. Graphical diagnostics may suffer, because when
heterogeneity in the squared OLS residuals appears on a plot (for instance), one cannot be certain whether
one is seeing evidence of heterogeneity in the error variances or merely heterogeneity in the diagonal elements
of M . The heterogeneity of residual variances can be corrected using a simple transformation eim

−1/2
ii , which

will have constant variance ω under A1-A4. However, this does not solve the problem of autocorrelation in the
OLS residuals, which may hamper inferential diagnostics since it is easier to construct null distributions from
independent or at least uncorrelated random variables.

Theil (1965, 1968) sought to address this problem. Specifically, he considered a class of linear unbiased
predictors of ϵ of the form e = Ay (see §1.1.7.2) such that Ay has a scalar (conditional) covariance matrix.
Thus, some increase in the mean squared prediction error is permitted in order to achieve residuals that are
uncorrelated. This class of residuals may be termed ‘LUS’ (linear unbiased scalar-covariance-matrix).

Theil (1965) noted from the outset that, besides compromising on the mean squared prediction error, this
approach requires that the scalar covariance matrix will (like M) be of rank n−p and not n, because p degrees
of freedom are inevitably lost due to estimation of β. The scalar covariance matrix (with the constant factored
out) will thus consist of n − p ones and p zeroes on the diagonal, and zeroes elsewhere. One can, however,
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choose which p errors are ‘sacrificed’ (not predicted), by specifying an (n− p)× n selection matrix J ′ obtained
by deleting any p rows from In. However, a restriction applies to the choice of J ′: if X0 denotes the p× p
submatrix of X consisting of those rows of X corresponding to the rows deleted from In to obtain J ′, then
X0 must be nonsingular.

Among the class of ‘LUS’ residual vectors u, Theil (1965, 1968) derived the ‘best’ in the sense of minimising
the mean squared error for predicting J ′ϵ, that is for predicting those n− p errors that have not been jettisoned:

E
[
(u− J ′ϵ)′(u− Jϵ)

]
.

Because p errors are being ignored, the ‘LUS’ constraints can also be restated as:

(i) u = A′y for some n× (n− p) matrix A;
(ii) E(u− J ′ϵ) = 0 (which implies that A′X = 0 and u = A′ϵ); and

(iii) Cov(u) = ωIn−p (which implies that A′A = In−p).

Theil (1965) shows that the solution to this optimisation problem, which he dubs the Best Linear Unbiased
Scalar-Covariance-Matrix (BLUS) residuals (here denoted eBLUS), is achieved by A = MJ(J ′MJ)−1/2, where
(J ′MJ)−1/2 is the positive definite square root of (J ′MJ)−1. An accessible version of the proof, which uses
Lagrange multipliers but follows similar logic to the proof in Appendix B.2 that the OLS residual vector is the
BLUP of the random error vector, can be found in Magnus and Sinha (2005).

Huang and Bolch (1974) note that the optimal A matrix that gives rise to the BLUS residuals satisfies
(1.26) and (1.27), where aij is the (i, j)th element of A:

n∑
i=1

aijaik = 0, (1.26)

and
n∑

i=1

(aijaik)2 ̸= 0, (1.27)

for all j ̸= k. They are then able to show that, while the BLUS residuals are by definition uncorrelated, they
are independent if and only if A5 holds. The implication is that, if the errors are not normally distributed,
the BLUS residuals are not mutually independent, and may not perform better than the OLS residuals in
heteroskedasticity diagnostics in that case.

Using the moment-generating function (MGF) technique employed in §1.1.8, it can be demonstrated that
the BLUS residuals are normally distributed under A1-A5. Since eBLUS = A′y,

MeBLUS (t) = My(At)

= exp
{

β′X ′At + ω

2 (At)′At
}

= exp
{

(A′Xβ)′t + ω

2 t′A′At
}

= exp
{

0′t + ω

2 t′t
}

.

It follows that eBLUS ∼ N(0, ωIn−p).
There are other types of residuals that have been used in connection with the linear regression model,

such as recursive residuals (Magnus and Sinha 2005), but these will not be discussed here as they will play no
further role in the study.

1.1.8 Inference on Model Parameters under Assumptions A1-A5

Assumptions A1-A5 enable construction of exact confidence intervals and hypothesis tests on β. It was noted
in §1.1.3 that A1-A5 together entail that ϵ ∼ N(0, ωIn). Since y differs from ϵ only by a location shift of Xβ,
it follows immediately that y ∼ N(Xβ, ωIn). Now, the MGF of a random vector x ∼ N(µ,Σ) is given by
(1.28) (Kotz et al. 2000, p. 108):
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MX(t) = E
(
exp
{

X ′t
})

= exp
{

µ′t + 1
2 t′Σt

}
. (1.28)

It follows immediately from A1-A5 that ϵ has MGF Mϵ(t) = exp
{

0′t + ω

2 t′t
}

and that y has MGF

My(t) = exp
{

β′X ′t + ω

2 t′t
}

.
Any linear function of a normally distributed random vector is also normally distributed (Gut 2009, The-

orem 3.1). Thus, it follows from the normality of y that the random vectors β̂OLS = (X ′X)−1X ′y, ŷ = Hy,
and e = My are all normally distributed under A1-A5. Writing the MGFs of these random vectors in the
form of (1.28) is a convenient way to derive their mean vectors and variance-covariance matrices. One can
therefore make use of a property of joint MGFs that, if Y is a random vector and A is a nonstochastic matrix,
MAY (t) = MY (A′t).14 Accordingly, the following exact distributional results can be derived under A1-A5:

β̂ ∼ N(β, ω(X ′X)−1), (1.29)
ŷ ∼ N(Xβ, ωH), and (1.30)
e ∼ N(0, ωM). (1.31)

More details on these three results are given in Appendix B.3. These distributional findings are consistent
with the earlier finding (§1.1.7.2) that, under A1-A4, E(e) = 0 and Cov(e) = ωM . Note, however, that because
M is singular, the joint probability density function (PDF) of e does not exist: e has a ‘degenerate’ multivariate
normal distribution.

Two further results, together with (1.29), allow construction of an exact t-test for significance of individual
parameters (e.g., of the null hypothesis βj = 0 for j ∈ {1, 2, . . . , p}). The first of these results is,

ω−1e′e ∼ χ2(n− p). (1.32)
The second result required for construction of the exact t-test is the independence of β̂ and ω̂ub. Proofs of

both of these results are given in Appendix B.4. Thus, under the null hypothesis βj = 0, from the definition
of Student’s t distribution,

Tβ̂j
= β̂j − 0√

ω(X ′X)−1
jj

√
e′e

ω(n−p)

= β̂j√
ω̂ub(X ′X)−1

jj

∼ t(n− p), j ∈ {1, 2, . . . , p}, (1.33)

where β̂j is the jth element of β̂OLS. Thus, Tβ̂j
can be used for an exact test of the null hypothesis βj = 0

against the alternative βj ̸= 0, j ∈ {1, 2, . . . , p}. Similarly, an exact (1 − α)100% confidence interval for βj is
given by,

β̂j ± tα/2,n−p

√
ω̂ub(X ′X)−1

jj , (1.34)

where (X ′X)−1
jj is the jth diagonal element of (X ′X)−1.

1.1.9 Invalidity of Classical Hypothesis Tests under Heteroskedasticity

Consider the situation of A1 and A3-A5 (homoskedasticity is violated but the other classical linear model
assumptions hold). The normality of the random vectors β̂OLS, ŷ, and e still holds, but their moments are
different than under homoskedasticity. The MGF technique introduced in §1.1.8 can be used to derive these.

It follows immediately from the assumptions that ϵ has MGF Mϵ(t) = exp
{

0′t + 1
2 t′Ωt

}
and that y has

MGF My(t) = exp
{

β′X ′t + 1
2 t′Ωt

}
. Hence, using properties of MGFs, it can be shown that,

14This property follows straightforwardly from the definition of the joint MGF:

E(exp
{

(AY )′t
}

) = E(exp
{

Y ′A′t
}

) = MY (A′t).
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β̂OLS ∼ N(β, (X ′X)−1X ′ΩX(X ′X)−1), (1.35)
ŷ ∼ N(Xβ,HΩH), and (1.36)
e ∼ N(0,MΩM). (1.37)

These three results are derived explicitly in Appendix B.5. They align with the results on the moments of
e obtained in §1.1.7.3.

Under heteroskedasticity, β̂ is still an unbiased and consistent estimator of β, but the conditional variances
of the elements of β̂ are different than under homoskedasticity. Thus, the standard error estimates used in the
test statistic and confidence interval formulas (1.33) and (1.34) are no longer valid (Greene 2012, Wooldridge
2013).

Approaches in the literature to inference on linear regression model parameters under heteroskedasticity
will be discussed in §2.4.

1.1.10 Leverage and Influence in the Linear Model

1.1.10.1 Leverage Scores

The ‘hat matrix,’ H = X(X ′X)−1X ′, was introduced previously in §1.1.2. Since ŷ = Hy, it follows that
∂ŷ

∂y
= H. Accordingly, one can interpret hij , the i, jth element of H, as measuring the degree of influence

exerted by the jth observed response on the ith predicted response. The diagonal elements hii are measures of
self-influence and are referred to as ‘leverage scores’; observations with high leverage are particularly influential.
Since each hii can be written as a quadratic form, X ′

i·(X ′X)−1Xi· (where X ′
i· denotes the ith row of X), it

follows that hii ≥ 0 for all i ∈ {1, 2, . . . , n}. Moreover, the symmetry and idempotence properties of H imply

that hii =
n∑

j=1

h2
ij ≥ h2

ii, from which it follows that hii ≤ 1. Cook and Weisberg (1982) further show that,

for models with an intercept, hii ≥
1
n

. The extreme case hii = 1 implies that hij = 0, j ̸= i and that yi = ŷi

(ei = 0).

Rencher and Schaalje (2008) show from properties of the trace that
n∑

i=1

hii = p, which implies that the

average leverage score is p

n
. Cook and Weisberg (1982) express the hii in terms of the eigenvalues and

eigenvectors of X ′X , where X is a n× (p− 1) centered design matrix without the intercept column, having
ith row X ′

i·. Specifically, if µ2 ≥ µ2 ≥ . . . ≥ µp denote the eigenvalues of X ′X and p2,p2, . . . ,pp denote the
corresponding eigenvectors, one can write,

hii = 1
n

+
p∑

k=2

(p′
kX i·)2

µk
(1.38)

= 1
n

+ X ′
i·X i·

p∑
k=2

cos2(θki)
µk

, (1.39)

where θki is the angle between pj and X ′
i·, and cos(θki) = p′

kX ′
i·√

X ′
i·X i·

. On this basis, they argue that hii is

large if (1) X ′
i·X i· is large (X ′

i· is far from the centre of the design distribution), and (2) X ′
i· is substantially

in the direction of an eigenvector corresponding to an eigenvalue of X ′X .
Fidell and Tabachnick (2003) give an alternative expression for hii in terms of Mahalanobis distance. Define

the squared Mahalanobis distance of the point X i· with reference to the empirical mean vector X̄ and the
empirical covariance matrix S as,

MH2(X i·; X̄ ,S) =
(
X i· − X̄

)′
S−1 (X i· − X̄

)
. (1.40)

Then, the ith leverage score, i = 1, 2, . . . , n, can be written as,
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hii = 1
n

+ MH2(X i·; X̄ ,S)
n− 1 . (1.41)

Note that the mean vector X̄ = 0 in this case since the X matrix has been centered. Moreover, in this
case S = (n− 1)−1X ′X .

The off-diagonal elements of H can similarly be expressed in terms of the spectral decomposition of X , as
in (1.42) and (1.43):

hij = 1
n

+
p∑

k=2

p′
kX i·p

′
kX j·

µk
(1.42)

= 1
n

+
√

X ′
i·X i·X ′

j·X j·

p∑
k=2

cos(θki) cos(θkj)
µk

. (1.43)

The off-diagonal elements can also be expressed in a way analogous to (1.41), as per (1.44):

hij = 1
n

+ (X i· − 0)′ S−1 (X j· − 0)
n− 1 . (1.44)

Leverage scores hii (or annihilator matrix elements mii = 1− hii) will play a major role in the
heteroskedasticity-consistent covariance matrix estimators to be reviewed in §2.3, as well as in the new er-
ror variance estimation models to be introduced in Chapter 3.

1.1.10.2 Studentised Residuals
If one defines ‘studentisation’ as the division of an estimator by an estimator of its standard error, the internally
studentised OLS residuals ri (assuming A2) can be defined, following Cook and Weisberg (1982), as

ri = ei√
ω̂ub(1− hii)

, i = 1, 2, . . . , n. (1.45)

Cook and Weisberg (1982) show that, under A1-A5, (n−p)−1r2
i follows a Beta distribution with parameters

1/2 and (n− p− 1)/2.
Alternatively, the externally studentised OLS residual ti (again, assuming A2) provides a standardised

estimate of the outlyingness of the ith predicted value that does not depend on the ith observation itself.
Define β̂(−i), i ∈ {1, 2, . . . , n}, as the OLS coefficient estimate obtained when the ith observation is omitted
(sometimes referred to as a jackknife estimate). Similarly, define

ŷi,(−i) = X ′
i·β̂(−i), (1.46)

ei,(−i) = yi − ŷi,(−i), (1.47)
and

ω̂(−i) = (n− p)ω̂ub − e2
i /(1− hii)

n− p− 1 = ω̂ub

(
n− p− r2

i

n− p− 1

)
. (1.48)

The ith externally studentised residual, i = 1, 2, . . . , n, can then be written as,

ti = ei√
ω̂(−i)(1− hii)

= ri

√
n− p− 1
n− p− r2

i

. (1.49)

The studentised residuals are introduced only for the sake of defining Cook’s Distance below, and will not
be directly used in this research.
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1.1.10.3 Cook’s Distance
Cook (1977) proposes “an easily interpretable measure [of outlyingness] that combines information from both
[the internally studentised residual] and [the variance of the OLS residual], and that will naturally isolate
‘critical’ values” (p. 15). This measure, which has become known as Cook’s Distance, is based on the formula
for the confidence ellipsoid for β under A1-A5. It can be expressed in terms of the jackknife OLS parameter
estimate β̂(−i) as,

Di =
(β̂(−i) − β̂)′X ′X(β̂(−i) − β̂)

pω̂ub
. (1.50)

Cook (1977) shows that Di can also be expressed in terms of the OLS and internally studentised residuals,
respectively, as per (1.51) and (1.52):

Di = e2
i

ω̂ub(1− hii)
hii

p(1− hii)
(1.51)

= r2
i

p

hii

1− hii
, (1.52)

where hii/(1 − hii) is, under the classical assumptions, the ratio Var(ŷi)
Var(ei)

, which measures ‘the relative

sensitivity of the estimate, β̂, to potential outlying values at each data point’ (Cook 1977, p. 16).
Cook (1977) provides a modified distance metric that can be used if one is interested only in certain

elements of β. For instance, in the special case where one is interested in only one element βj ,

Di(βj) = r2
i

(
hii − h(−j)

ii

1− hii

)
, (1.53)

where h(−j)
ii is the ith diagonal element of H(−j), the hat matrix constructed from the design matrix with

the jth column omitted.
Cook (1979), building on the earlier work, relates influential observations to the independent variable

hull (IVH), being the smallest convex set containing all of the design points. He notes that ‘a large value of
Di indicates that the associated ith point has a strong influence on the estimate of β’ (Cook 1979, p. 169).
He proceeds to show that the point with largest leverage scores hii must lie on the boundary of the IVH, and
that the hii can thus be thought of as measures of outlyingness (though it does not follow that the point with
largest hii necessarily has the largest Euclidean distance from the centroid of X).

Cook’s Distance will be encountered again in §2.3.8, as one method for estimating the covariance matrix
Ω under heteroskedasticity makes use of it.

1.2 Research Problem
Heteroskedasticity in the linear model—the violation of the assumption of constant error variance—has been
widely researched, both in terms of diagnostic methods and remedial measures. Diagnostic tests continue
to proliferate, but many of these remain in obscurity, inaccessible to practitioners in statistical software.
Meanwhile, the remedial measures vary depending on the end goal (e.g., estimation of the coefficient vector β
vs. inference on its elements). There is a need for a unified approach to handling heteroskedasticity in the linear
model that can be used regardless of the end goal, and that is accessible to practitioners via an R software
package.

1.3 Research Objectives
The objectives of this research project are as follows:

1. To review and catalogue the many heteroskedasticity testing methods that have appeared in the literature
over the past few decades;

2. To program these heteroskedasticity tests and make them accessible to practitioners via a package in R
statistical software;
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3. To evaluate the role (if any) of heteroskedasticity tests in handling the problem of heteroskedasticity in
the linear model;

4. To develop a new method of handling heteroskedasticity in the linear model by direct estimation of the
error variances using a suitable auxiliary regression model;

5. To show empirically, using Monte Carlo (MC) simulations, that the new method performs well relative
to existing methods in terms of meaningful performance metrics;

6. To show empirically, using MC simulations, that the new method is robust in certain meaningful respects;
and

7. To make the new method accessible to practitioners via a package in R statistical software.

1.4 Chapter Summary and Way Forward
Thus far, a thorough background has been provided on the linear regression model, its basic notation and
classical assumptions, the classical approach (under assumptions A1-A5) to estimation of and inference on
parameters, and how estimation and inference are affected by heteroskedasticity. Besides this, two quan-
tities relevant to the study of heteroskedasticity in linear regression—namely, model residuals and leverage
scores—have been introduced and discussed in some detail. With this background in hand, the research
problem was stated and research objectives were set out.

An overview of the remaining chapters runs as follows. In Chapter 2 (Literature Review), a thorough
review of the academic literature will be conducted to take stock of existing methods for detecting and handling
heteroskedasticity. This will facilitate the identification of gaps that provide an opportunity for the development
of new approaches and methods for handling heteroskedasticity.

Chapter 3 (Methodology) opens with some new theoretical results on the statistical properties of squared
OLS residuals. However, the main contribution of this chapter is to propose two new classes of auxiliary
regression models that can be used to estimate the error variances ω in a heteroskedastic linear regression
model.

Chapter 4 (Software Implementation: The skedastic R Package) describes a new package in R statistical
software called skedastic that has been developed specially for this research project. The package has two
main purposes. The first is fill address gaps in software implementation of existing methods for diagnosing and
handling heteroskedasticity (those discussed in the Literature Review chapter). The second is to make the new
methods proposed in the Methodology chapter accessible to practitioners.

Chapter 5 (Results and Discussion) evaluates the empirical performance of the new methods proposed in
the Methodology, using of course the functions included in the skedastic package described in Chapter 4. The
performance is evaluated by means of an extensive set of Monte Carlo experiments. These simulated results
are supplemented by three examples where the new methods are applied to real data sets.

Chapter 6 (Conclusion) summarises the content of the thesis and the contributions of the research, discusses
the extent to which the research objectives have been achieved, and proposes several avenues of possible further
research.
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2 Literature Review
The aim of this chapter is to describe existing diagnostic and remedial methods for handling heteroskedasticity
in the linear regression model. §2.1, the most extensive part of the review, looks at hypothesis testing methods
designed to detect violations of A2. It was mentioned in §1.1.6.2 that WLS is generally infeasible. Accordingly,
various feasible methods of estimating β under heteroskedasticity have been proposed, and these are reviewed
in §2.2.1.

Section 2.3 describes a class of methods for estimating Ω, the variance-covariance matrix of the errors ϵ,
under heteroskedasticity.

Section 2.4 reviews methods of statistical inference on the individual model parameters (elements of β)
under heteroskedasticity. Finally, existing software implementations of the methods discussed in the first four
subsections are reviewed in §2.5.

2.1 Testing for Heteroskedasticity
A heteroskedasticity test is a test of the null hypothesis H0 : ωi = ωj for all i ̸= j, against the alternative hy-
pothesis H1 : ωi ̸= ωj for at least one i ̸= j (recall that ωi is the variance of the ith random error, i = 1, 2, . . . , n).
If A3 is assumed, these hypotheses could also be stated as H0 : Ω ∝ In vs. H1 : Ω ̸∝ In. In some cases the
alternative hypothesis may be more specific, and the hypotheses may be expressed in terms of various other
parameters depending on the heteroskedastic alternative considered.

Table 2.1 provides an overview of heteroskedasticity tests discussed in this section. The table categorises the
tests according to three important characteristics: prior information required (if any), whether hyperparameters
are involved, and the (asymptotic) null distribution of the test statistic. Hence, Table 2.1 is designed to enable
the user to narrow down the options and choose a method or methods suitable for the task at hand.

The ‘Function’ column in Table 2.1 refers to the name of the function in the skedastic R package that
implements the test. This R package was developed by the author for this research project and is discussed
further in Chapter 4.

Some heteroskedasticity tests require prior information about the form of heteroskedasticity that is sus-
pected under the alternative hypothesis. These requirements are summarised in the ‘Prior Info’ column of Table
2.1. A number of tests require the practitioner to specify an n× p′ auxiliary design matrix Z, as introduced
in §1.1.4. These tests assume that, under the alternative hypothesis, the error variances are related—usually
monotonically—to a matrix of nonstochastic or exogenous variables (Glejser 1969, Harvey 1976, Breusch and
Pagan 1979, Cook and Weisberg 1983, Verbyla 1993, Simonoff and Tsai 1994, Zhou et al. 2015). If no such
prior information is available, the auxiliary design matrix can be set to X. The Cook-Weisberg and Simonoff-
Tsai tests are most demanding in this regard, as they also require specification of the functional form of the
relationship between the error variances and Z. Numerous other tests require the user to specify an n-vector of
observed variables called the deflator—typically a column of X—that is believed to be monotonically related
to the error variances (Goldfeld and Quandt 1965, Ramsey 1969, Szroeter 1978, Harrison and McCabe 1979,
Horn 1981, Evans and King 1988, Honda 1989, Carapeto and Holt 2003). Some of these tests can be two-tailed
or one-tailed, depending on whether the direction of relationship between the deflator and the ωi is posited in
the alternative hypothesis. Tests involving a deflator are not very usable in the absence of prior information,
unless there is only one regressor or the user is prepared to run the test repeatedly on each regressor and
adjust p-values to control the family-wise Type I error rate. There are other tests that do not require prior
information about the form of heteroskedasticity, though their power may still vary depending on the nature
of heteroskedasticity present (Bickel 1978, White 1980, Diblasi and Bowman 1997, Wilcox and Keselman 2006,
Račkauskas and Zuokas 2007, Yüce 2008, Li and Yao 2019).

Many of the heteroskedasticity tests also require the user to specify a hyperparameter (or hyperparameters);
that is, a tuning parameter that may strongly influence the test’s performance. The ‘Hyp.’ column of Table 2.1
indicates, for each heteroskedasticity test, whether or not there are any hyperparameters to be set or tuned.
The need for hyperparameters is a strength in the sense that the user has added control over the design of
the test, but a weakness in the sense that additional thought and effort is required. Such a test lacks an
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Table 2.1: Overview of Heteroskedasticity Tests in the Literature

Test Function Prior Info Hyp. (Asymp.) Null
Dist.

Anscombe’s (1961) Test anscombe None No Gaussian
Ramsey’s (1969) BAMSET
Test

bamset Deflator Yes Chi-Squared

Bickel’s (1978) Test bickel None Yes Gaussian
Breusch and Pagan’s (1979)
Test

breusch_pagan Aux. Design No Chi-Squared

Carapeto and Holt’s (2003)
Test

carapeto_holt Deflator Yes
Ratio of Quadratic
Forms (RQF)
(Imhof)

Cook and Weisberg’s (1983)
Test

cook_weisberg Aux. Design,
Het. Model

No Chi-Squared

Diblasi and Bowman’s (1997)
Test

diblasi_bowman None Yes Chi-Squared/
Simulated

Dufour et al.’s (2004) Test dufour_etal Varies Yes Simulated
Evans and King’s (1988) LM
Test

evans_king Deflator No RQF (Imhof)

Evans and King’s (1988) GLS
Test

evans_king Deflator Yes RQF (Imhof)

Glejser’s (1969) Test glejser Aux. Design No Chi-Squared
Godfrey and Orme’s (1999)
Test

godfrey_orme Varies Yes Simulated

Goldfeld and Quandt’s (1965)
F Test

goldfeld_quandt Deflator Yes F

Goldfeld and Quandt’s (1965)
Peaks Test

goldfeld_quandt Deflator No Exact Nonpar.

Harrison and McCabe’s (1979)
Test

harrison_mccabe Deflator Yes RQF (Imhof)

Harvey’s (1976) Test harvey Aux. Design No Chi-Squared
Honda’s (1989) Test honda Deflator No RQF (Imhof)
Horn’s (1981) Test horn Deflator No Exact Nonpar./

Gaussian
Li and Yao’s (2019) ALR Test li_yao None No Gaussian
Li and Yao’s (2019) CV Test li_yao None No Gaussian

Račkauskas and Zuokas’s
(2007) Test

rackauskas_zuokas None Yes Simulated

Simonoff and Tsai’s (1994)
MPLR Test

simonoff_tsai Aux. Design Yes Chi-Squared

Simonoff and Tsai’s (1994)
Score Test

simonoff_tsai Aux. Design,
Het. Model

No Chi-Squared

Szroeter’s (1978) Test szroeter Deflator Yes RQF (Imhof)
Verbyla’s (1993) Test verbyla Aux. Design No Chi-Squared

White’s (1980) Test white None No Chi-Squared
Wilcox and Keselman’s (2006)
Test

wilcox_keselman None Yes Gaussian

Yüce’s (2008) Test yuce None No Chi-Squared/t
Zhou et al.’s (2015) Test zhou_etal Aux. Design Yes Simulated
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‘off-the-shelf’ quality, and this may cause practitioners to avoid it in favour of less complicated methods.15

Finally, the last column of Table 2.1 reflects how tests can be grouped by the null distribution of the test
statistic (whether exact or asymptotic). The most common distribution used in heteroskedasticity tests is the
chi-square distribution (Glejser 1969, Ramsey 1969, Harvey 1976, Breusch and Pagan 1979, White 1980, Cook
and Weisberg 1983, Verbyla 1993, Simonoff and Tsai 1994, Diblasi and Bowman 1997, Yüce 2008), which is
asymptotically valid in every case. Likewise, those tests that use a Gaussian null distribution are asymptotically
valid (Anscombe 1961, Bickel 1978, Horn 1981, Wilcox and Keselman 2006, Li and Yao 2019). Several tests
involve a Ratio of Quadratic Forms (RQF) in the random errors, and exact p-values can be computed using the
Imhof algorithm (Imhof 1961)—provided that the normality assumption A5 holds (Szroeter 1978, Harrison and
McCabe 1979, Evans and King 1988, Honda 1989, Carapeto and Holt 2003).16 Exact distributions are available
for the nonparametric tests of Goldfeld and Quandt (1965) and Horn (1981).17 Goldfeld and Quandt’s (1965)
parametric test is an exact F test, provided that A5 holds. Finally, several tests rely on empirical distributions
obtained through simulation (Godfrey and Orme 1999, Dufour et al. 2004, Račkauskas and Zuokas 2007, Zhou
et al. 2015).18

The various heteroskedasticity tests will now be described individually in more detail. Every test statistic
will be denoted generically by T for simplicity.

2.1.1 Anscombe’s Test

Anscombe (1961) suggests an ad hoc method for testing for heteroskedasticity; the test is more compactly
described by Bickel (1978, pp. 267-68). The test statistic is

T = ω̃−1/2
n∑

i=1

e2
i (ŷi − t̄), (2.1)

where t̄ = (n− p)−1∑n

i=1 miiŷi and ω̃ = 2(n− p)
n− p+ 2 ω̂

2
ub
∑n

i=1

∑n

j=1 m
2
ij(ŷi − t̄)(ŷj − t̄), mij are elements of

the annihilator matrix M , and ω̂2
ub is the square of the unbiased estimator (1.5) of the homoskedastic error

variance.
The statistic T is posited to have an asymptotic null distribution that is standard normal. The test is

two-tailed. Bickel (1978) proposed a studentising modification of the test statistic as follows,

T ′ = ω̃
−1/2
B

n∑
i=1

e2
i (ŷi − t̄),, (2.2)

where ω̃B = (n− p)−1∑n

i=1(ŷi − t̄)2(e2
i − ω̄)2 and ω̄ = n−1∑n

i=1 e
2
i (as defined previously in (1.4)). T ′ is

likewise compared to a standard normal distribution.
15A summary of hyperparameters needed for various tests is as follows. Bartlett’s M Specification Error Test

(BAMSET) (Ramsey 1969) requires the user to partition the data into k subsets on which a Bartlett-style test for
equality of variances is then conducted (Bartlett 1937). Harrison and McCabe’s (1979) test similarly requires the user
to specify an index m based on where change points in the error variance are likely to occur. Bickel’s (1978) test is
a robust method and requires the user to specify two functions a(·) and b(·), with b(·) corresponding to the derivative
function of the M -estimator, ψ(·). Carapeto and Holt’s (2003) test and Goldfeld and Quandt’s (1965) F test both
require the user to specify a proportion c of central observations to remove (after ordering observations by the deflator).
Diblasi and Bowman’s (1997) test requires a bandwith parameter (either a scalar h, a vector h, or a matrix H) used
in nonparametric regression estimation. Several tests necessarily or optionally involve simulation (bootstrap, MC, or
perturbation sampling) thus requiring the user to specify the number of replications and possibly a seed for the pseu-
dorandom number generator (Diblasi and Bowman 1997, Dufour et al. 2004, Godfrey and Orme 1999, Račkauskas and
Zuokas 2007, Wilcox and Keselman 2006, Zhou et al. 2015). Evans and King’s (1988) Generalised Least Squares (GLS)
test requires a parameter λ⋆ representing the degree of severity of heteroskedasticity suspected under the alternative
hypothesis. Račkauskas and Zuokas’s (2007) test requires a hyperparameter α known as the Hölder exponent. Simonoff
and Tsai’s (1994) Modified Profile Likelihood Ratio (MPLR) test requires the user to specify initial parameter values for
the likelihood maximisation algorithm. Szroeter’s (1978) test requires that a nondecreasing function of the indices, h(i),
be specified that determines which squared OLS residuals are compared in the RQF. Wilcox and Keselman’s (2006) test
requires a quantile γ to use in quantile regression estimation.

16The authors of most of these tests did not originally suggest the Imhof algorithm as the means of computing exact
p-values, probably due to computational limitations at the time of publication.

17In the latter case, computation time for exact p-values is prohibitive for n > 11.
18Note that the tests of Godfrey and Orme (1999) and Dufour et al. (2004) are not separate heteroskedasticity tests,

but rather computational methods for obtaining estimated p-values from other heteroskedasticity tests.
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2.1.2 Goldfeld-Quandt Tests

Goldfeld and Quandt (1965) propose two heteroskedasticity tests, one parametric and the other nonparametric.
As with several other heteroskedasticity tests, the premise of these two tests is that, under the alternative
hypothesis, the error variance is monotonically related to some deflator variable.

Having put the observations in increasing order of the deflator, the parametric test procedure proceeds as
follows:

1. Remove some proportion c of central observations (chosen such that nc is an integer).
2. Separate OLS regressions are fitted to the first n(1 − c)/2 observations and to the last n(1 − c)/2

observations, resulting in residual vectors efirst and elast respectively.
3. The following variance ratio statistic is computed:

T = e′
lastelast

e′
firstefirst

. (2.3)

4. T is compared with its null distribution, which is an F distribution with n(1−c)/2−p degrees of freedom
in the numerator and denominator. For the right-tailed test that is implemented by default, the null
hypothesis of homoskedasticity is rejected for large values of T .

To implement the nonparametric test the observations are likewise put in increasing order of the deflator
variable. The test statistic T ′ is then the number of ‘peaks’ in the series of absolute residuals {|e1|, |e2|, . . . , |en|},
where |ej | is defined as a ‘peak,’ for j = 2, 3, . . . , n, if |ej | ≥ |ei| for all i < j. (For a graphical representation
of peaks in a series, see Figure 4.1). Thus,

T ′ =
n∑

j=2

1|ej |≥max{|e1|,|e2|,...,|ej−1|}, (2.4)

where 1• is the indicator function. The test is designed as a right-tailed test, the null hypothesis of
homoskedasticity being rejected for large values of T ′. The statistic is compared to the distribution of the
number of peaks in a series of independent and identically distributed continuous random variables (which is
distribution-free).

2.1.3 Glejser’s Test

Glejser (1969) had the idea of examining the absolute OLS residuals to detect heteroskedasticity. Their
article did not formalise the construction of a hypothesis test, and so different versions of ‘Glejser’s Test’
can be found in the literature. The underlying idea is to fit an auxiliary regression model with response
vector [|e1|, |e2|, . . . , |en|]′ and n× p′ nonstochastic design matrix Z. The test described here follows the
implementation procedure described in Mittelhammer et al. (2000, p. 541). The test statistic is

T =
∑n

i=1 e
2
i − n−1 (∑n

i=1 |ei|
)2 −

∑n

i=1 û
2
i

(1− 2π−1)ω̄ , (2.5)

where ûi is the ith OLS residual from the auxiliary linear regression model. Mittelhammer et al. (2000, p.
537) recommend replacing ω̄ in (2.5) with an estimator computed from the auxiliary model, i.e. n−1∑n

i=1 û
2
i .

The numerator of T can be recognised as the regression sum of squares from the auxiliary model. The
asymptotic null distribution of T is χ2(p′ − 1). The test is right-tailed.

2.1.4 Bartlett’s M Specification Error Test

Ramsey (1969) developed a test of heteroskedasticity that he called Bartlett’s M Specification Error Test
(BAMSET). The test entails partitioning the model residuals into k ≥ 2 subsets and conducting Bartlett’s M
Test for heterogeneity of variances (Bartlett 1937) using these subsets as its samples. Prior to partitioning,
the observations are ordered according to a deflator variable (discussed previously).

Bartlett’s M Test requires an assumption of between-sample independence (in this case, between the k
subsets of OLS residuals e). This assumption does not apply in BAMSET, because under homoskedasticity
(when Σ = ωIn), the variance-covariance matrix of e is not diagonal; rather, Cov(e) = ωM . Hence, in order
to satisfy the independence assumption, BAMSET uses the BLUS residuals (Theil 1965, 1968). Computing
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the BLUS residuals yields only n− p observations rather than n, and so in implementing BAMSET one must
specify how to decide which p observations should be omitted. A strategy for deciding this is discussed later
in §4.1.2.

Let the BLUS residuals be ẽi, i = 1, 2, . . . , n, but with ẽi undefined for the omitted indices. Further, define
ℓj to be the set of (non-omitted) indices within the jth subset, j = 1, 2, . . . , k, and let νj be the number of
observations in the jth subset, from which it follows that

∑k

j=1 νj = n − p := ν. The BAMSET statistic is
written as

T = ν log s2 −
k∑

j=1

νj log s2
j , (2.6)

where s2 = ν−1
n−p∑
i=1

ẽ2
i and s2

j = ν−1
j

∑
i∈ℓj

ẽ2
i . The asymptotic null distribution of T is χ2(k − 1) and the

test is upper-tailed. The fit to the null distribution can be improved by dividing T by a scaling constant; the
statistic then becomes

T ′ = T

1 + [3(k − 1)]−1
(∑k

j=1 ν
−1
j − ν−1

) . (2.7)

Note that Ramsey (1969, p. 368) erroneously includes ν−1 within the sum in the formula for the scaling
constant.

2.1.5 Harvey’s Test

Harvey (1976) constructed a heteroskedasticity test based on an auxiliary regression of the logarithm of the
squared OLS residuals on some nonstochastic n× p′ design matrix Z. The test statistic, as formally stated in
Mittelhammer et al. (2000, p. 540), is

T =
∑n

i=1 e
2
i − n−1 (∑n

i=1 |ei|
)2 −

∑n

i=1 u
2
i

ψ(1)
(

1
2

) , (2.8)

where ui is the ith OLS residual from the auxiliary linear regression model, and ψ(k)(·) is the polygamma
function of order k. The numerator of T can be recognised as the regression sum of squares from the auxiliary
model, while the denominator is approximately 4.9348. The asymptotic null distribution of T is χ2(p′ − 1)
(noting that Z must contain an intercept). The test is right-tailed.

2.1.6 Bickel’s Test

Bickel (1978) proposes a robust test of heteroskedasticity that extends the method of Anscombe (1961), replac-
ing the OLS residuals and estimated standard error with robust M -estimators. The first step in implementing
the test is to obtain model residuals. These can be obtained via OLS or via robust regression using an M -
estimator (to further enhance the robustness of the method). The residuals are denoted as ei in either case
below.

The user must specify a function a(·) to apply to the fitted values and a function b(·) to apply to the
residuals to obtain a statistic based on an M estimator. Bickel (1978) suggests a(τ) = τ . The b(·) function
corresponds to the ψ(·) derivative function used to construct M -estimators and must be even, bounded, and
twice-differentiable.19 Two options discussed by Carroll and Ruppert (1981) are Huber’s function squared and
b(τ) = tanh2(τ). Huber’s function squared is,

b(τ) =

{
τ2 if |τ | ≤ k
k2 if |τ | > k

, (2.9)

where k is a tuning parameter that defaults to 1.345, as is conventional. The test statistic is then

19This function ψ(·) is not to be confused with the polygamma function ψ(k)(·) function in (2.8).
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T = ω
−1/2
b

n∑
i=1

(a(ŷi)− ā) b(ei), (2.10)

where ωb = (n− p)−1∑n

i=1 (a(ŷi)− ā)2∑n

i=1

(
b(ei)− b̄

)2, ā = n−1∑n

i=1 a(ŷi), and b̄ = n−1∑n

i=1 b(ei).
Carroll and Ruppert (1981) note that this test statistic is not scale-invariant, and that this can be rectified by
replacing b(ei) in the above expression with b

(
ei/ω̃

1/2), where ω̃ is an estimator of ω.
The asymptotic null distribution of T is standard normal and thus the two-sided p-value for the test is

computed from the standard normal distribution.

2.1.7 Szroeter’s Test

Szroeter (1978) proposes a class of tests for which the test statistic is a RQF in normal random vectors. A
prerequisite of the test is that the observations are ordered by a deflator variable. The user must further specify
a nondecreasing function h(i) of the indices i = 1, 2, . . . , n. Szroeter (1978) suggests using

h(i) = 2
[
1− cos

(
πi

n+ 1

)]
, i = 1, 2, . . . , n. (2.11)

The test statistic is

T = e′∆e

e′e
, (2.12)

where ∆ = diag {h(1), h(2), . . . , h(n)}. Certain specifications of h(·) cause the test statistic to reduce to
that of another test. For example, if h(i) = −1 for the first n(1− c)/2 observations, h(i) = 0 for the middle
nc observations, and h(i) = 1 for the last n(1− c)/2 observations, then the test statistic is identical to that of
the parametric test of Goldfeld and Quandt (1965) (discussed in §2.1.2).

2.1.8 Breusch-Pagan Test and White’s Test

One of the better-known heteroskedasticity tests was proposed by Breusch and Pagan (1979). The test is derived
using Lagrange multipliers. It requires specification of an n× p′ auxiliary design matrix Z as introduced in
§1.1.4. Breusch and Pagan’s (1979) procedure is as follows:

1. Compute ω̄ = n−1∑n

i=1 e
2
i and ŵ, an n-vector whose ith element is ŵi = e2

i − ω̄.
2. Fit an auxiliary regression model (using OLS) with response vector ŵ and design matrix Z (which must

include an intercept column), and obtain the model’s fitted values w̃i, i = 1, 2, . . . , n.
3. Compute the test statistic,

T = (2ω̄)−1
n∑

i=1

w̃2
i . (2.13)

Koenker (1981) suggested a studentising modification of the statistic that is much more widely used in
practice due to its better properties. This statistic is

T ′ =
n
∑n

i=1 w̃
2
i∑n

i=1 ŵ
2
i

. (2.14)

T ′ can otherwise be expressed as nr2
aux, where r2

aux is the multiple coefficient of determination of the
auxiliary regression. In either case, the asymptotic null distribution of the statistic is χ2(p′ − 1). The test is
right-tailed.

White (1980) proposed a test that is a special case of Breusch and Pagan’s (1979) test (with the mod-
ification of Koenker (1981)), but has surpassed it in popularity to become arguably the best-known test of
heteroskedasticity among practitioners.

The test entails setting the auxiliary design matrix Z to [X (X ◦X)−1], the horizontal concatenation of
X with an elementwise-squared version of itself. Note, however, that if X contains a column of ones, this
column is not included in X ◦X; hence the −1 subscript. One can optionally augment the auxiliary matrix by
including all pairwise interaction terms. That is, if Xij is the ith observation on the jth explanatory variable,
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i = 1, 2, . . . , n, j = 1, 2, . . . , p (or j = 2, 3, . . . , p if an intercept is present), then including the interaction terms

entails that the scalar form of the auxiliary regression equation will include terms
n∑

j=1

n∑
k=1

j<k

XijXik.

2.1.9 Harrison-McCabe Test

The next test reviewed, like several others discussed in this review, requires the practitioner to specify a
‘deflator’ variable. This is Harrison and McCabe’s (1979) test. The observations are placed in increasing order
of the deflator, and a statistic is then constructed that is an RQF in the error vector:

T = e′Ae

e′e
= ϵ′MAMϵ

ϵ′Mϵ
, (2.15)

where A is an n× n selector matrix in which the first m diagonal elements are ones and all other elements
are zeroes. The index m is determined based on the point at which a breakpoint in the error variance is
suspected to occur; in the absence of information about this it would be set as close to n/2 as possible. Under
the null hypothesis, T will be close to m/n. Under the alternative, if the deflator is positively associated with
the error variance, T will be small. Thus, the test as designed is left-tailed.

2.1.10 Horn’s Test

A new nonparametric test of heteroskedasticity—in addition to that of Goldfeld and Quandt (1965)—was
developed by Horn (1981). This test employs the nonparametric trend statistic D defined by Lehmann (1975,
pp. 290-97). It requires specification of a deflator variable believed to be monotonically related to the error
variance. The observations are placed in increasing order of the deflator, and the statistic is then

D =
m∑

i=1

(Ri − i)2, (2.16)

where

m =
{
n if OLS residuals are used
n− p if BLUS residuals are used

,

and Ri is the rank of the ith absolute OLS residual, |ei|.20 Horn (1981) suggested that the BLUS residuals
(Theil 1965, 1968) could be used instead of the OLS residuals to minimise the risk of a spurious trend under
the null hypothesis. The test, as designed, is two-tailed.

The p-values for Horn’s test can be computed from the exact distribution of D for small m, but this
becomes computationally infeasible for m > 10; in this case a normal approximation based on the Central
Limit Theorem can be used.

2.1.11 Cook-Weisberg Test

Cook and Weisberg (1983) propose a score test similar in character to Breusch and Pagan’s (1979) test. They
assume that the errors ϵ follow a multivariate normal distribution with mean vector 0 and diagonal variance-
covariance matrix Ω = ωS, with S having ith diagonal element si = g(Z′

i·, ζ), for some function g(·) : Rp′
→ R.

(Thus, in terms of the notation used elsewhere, ωi = ωsi). Here, Z′
i· is the ith row of a n× p′ auxiliary design

matrix Z as defined in §1.1.4, and ζ is a p′ − 1-vector of unknown parameters. g(·) is a twice-differentiable,
positive real-valued function applied elementwise to Z′

i·. It is assumed that there is some vector ζ0 for which
si = 1, i = 1, 2, . . . , n, and thus the null hypothesis of homoskedasticity is equivalent to ζ = ζ0. The choice of
g(·) depends on the form of the error variance under the alternative hypothesis. Note that g(·) differs from the
heteroskedastic function g(·) used elsewhere only by a scaling factor: g(Z′

i·, ζ) = ωg(Z′
i·, ζ). Three well-known

choices of heteroskedastic model (Cook and Weisberg 1983, Griffiths and Surekha 1986) are

20The practice of referring to test statistics as T is altered here due to the convention of using D to denote Lehmann’s
(1975) nonparametric trend statistic.
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g(Z′
i·, ζ) =

(
1 +

p′−1∑
j=1

ζjZi,j+1

)2

(additive model), (2.17)

g(Z′
i·, ζ) = exp

{
p′−1∑
j=1

ζjZi,j+1

}
=

p′−1∏
j=1

exp {ζjZi,j+1} (multiplicative model), (2.18)

and

g(Z′
i·, ζ) = exp

{
p′−1∑
j=1

ζj logZi,j+1

}
=

p′−1∏
j=1

Z
ζj

i,j+1 (log-multiplicative model). (2.19)

In the log-multiplicative model it is required that Zi,j+1 > 0 for all i = 1, 2, . . . , n, j = 1, . . . , p′ − 1. In all
three models, ζ = 0 implies g(Z′

i·, ζ) = 1. Therefore, ζ0 = 0: a heteroskedasticity test is equivalent to a test
of the null hypothesis ζ = 0.

Cook and Weisberg’s (1983) test entails fitting an auxiliary regression model in which the response vector
is the n-vector d whose ith element is di = ω̄−1e2

i , where ω̄ = n−1e′e (as defined previously), and the design
matrix is an n× p′ matrix consisting of a column of ones concatenated with J , an n× (p′ − 1) Jacobian matrix

whose (i, j)th element is ∂g(Z′
i·, ζ)

∂ζj
, evaluated at ζ = ζ0, for i = 1, 2, . . . , n and j = 1, 2, . . . , p′ − 1. It is easily

shown that this derivative term reduces to 2Zi,j+1 in the additive model, to Zi,j+1 in the multiplicative model,
and to logZi,j+1 in the log-multiplicative model. The test statistic is then

T = 2−1 (d′d− u′u− n
)

, (2.20)
where u is the vector of OLS residuals from the auxiliary regression. T can be interpreted as half the regression
sum of squares from the aforementioned auxiliary regression. Under the null hypothesis of homoskedasticity,
T has an asymptotic χ2(p′ − 1) distribution, and the null hypothesis is rejected for large T .

2.1.12 Evans-King Tests

Two new heteroskedasticity tests are described Evans and King (1988), one of which had been less formally
suggested in Evans and King (1985). One can be referred to as their GLS test and the other as their Lagrange
Multiplier (LM) test.

The test statistic for the GLS method is

T = u′Σ(λ⋆)−1u

e′e
, (2.21)

where Σ(λ⋆) = diag {(1 + λ⋆τ1), . . . , (1 + λ⋆τn)}, τi = i− 1
n− 1 , i = 1, 2, . . . , n, and u is the residual vector

from a GLS regression of y on X with covariance matrix Σ(λ⋆). As is evident from the expression for Σ(λ⋆),
the parameter λ⋆ controls the degree of severity of heteroskedasticity. Evans and King (1988) find, based on
an empirical study, that λ⋆ = 5 results in the highest power. Evans and King (1985) had earlier observed that
(2.21) can be rewritten as a RQF in the error vector ϵ, specifically as

T = ϵ′MRM⋆RMϵ

ϵ′Mϵ
,

where

R = diag
{

(1 + λ⋆τ1)−1/2, (1 + λ⋆τ2)−1/2, . . . , (1 + λ⋆τn)−1/2} ,

M⋆ = In −X⋆
(
X⋆′X⋆

)−1
X⋆′,

and X⋆ is the matrix formed by dividing the ith row of X by wi = (1 + λ⋆τi)1/2.
The LM method, which is a limiting case of the GLS method, also results in a test statistic that can be

expressed as a RQF in the random error vector:
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T ′ =
ϵ′M diag

{
n− 1
n− 1 ,

n− 2
n− 1 , . . . ,

n− n
n− 1

}
Mϵ

ϵ′Mϵ
. (2.22)

Evans and King (1985, 1988) do not discuss in detail how to compute critical values or p-values for these
tests. This gap is addressed in the current author’s software implementation of the methods as discussed in
Chapter 4.

2.1.13 Honda’s Test

Another deflator-type heteroskedasticity test is that of Honda (1989). The observations are placed in increasing
order of the deflator. The test statistic is a RQF in the error vector:

T = e′ diag {Z·j} e

e′e
= ϵ′M diag {Z·j}Mϵ

ϵ′Mϵ
, (2.23)

where Z·j is the deflator variable. If Z·j is positively associated with the error variance, T will tend to be
large. Honda (1989) describes the method as a two-tailed test, corresponding to a situation where the direction
of the monotonic relationship between the deflator and the error variance (under the alternative hypothesis)
is not known. Of course, it can easily be modified into a one-tailed test.

2.1.14 Verbyla’s Test

Verbyla (1993) proposes a test that uses the notion of Residual Maximum Likelihood (ReML) and is designed
particularly to detect a log-linear dependence of the error variances on some specified predictor variables. The
test statistic is a generalisation of that of Breusch and Pagan (1979) and Cook and Weisberg (1983), and like
those previous tests it requires an auxiliary design matrix Z to be specified. The statistic’s form is

T = 1
2v′Z

[
Z′(M ◦M)Z

]−1
Z′v, (2.24)

where v = d− diag(M), d is the n-vector with ith element ω̂−1
ub e

2
i , and Z is an n× p′ auxiliary design

matrix, as defined in §1.1.4.
T can be interpreted as half the regression sum of squares for a GLS regression of (M ◦M)−1 d/ω̂ub on

Z, with covariance matrix M ◦M . The asymptotic null distribution of T is χ2(p′ − 1).

2.1.15 Simonoff-Tsai Tests

Two more tests—a likelihood ratio (LR) test using a modified profile likelihood and a score test—are introduced
in Simonoff and Tsai (1994). Both tests assume a heteroskedastic model like those described under the Cook-
Weisberg test (§2.1.11). The random error vector ϵ is assumed to be multivariate normal with mean vector
0 and diagonal variance-covariance matrix Ω = ωS, with S having ith diagonal element si = g(Z′

i·, ζ), as
described in §2.1.11. g(·) is again assumed to be a real-valued, twice-differentiable function, and Z is again an
n× p′ auxiliary design matrix. It is further assumed that there exists some vector ζ0 such that g(Z′

i·, ζ0) = 1
for i = 1, 2, . . . , n (thus, ζ = ζ0 corresponds to homoskedasticity). The log-likelihood function for this model
can be written as

l(y; ζ, ω,β) = −n2 logω − 1
2

n∑
i=1

log g(Z′
i·, ζ)− (2ω)−1 (y −Xβ)′ S−1 (y −Xβ) .

As noted by Simonoff and Tsai (1994), the ML estimate of ζ can be obtained by maximising the profile
log-likelihood,

lp(y; ζ) = l(y; ζ, ω̂ζ , β̂ζ),
where

β̂ζ = (X ′S−1X)−1X ′S−1y,
and

ω̂ζ = n−1(y −Xβ̂ζ)′S−1(y −Xβ̂ζ).
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Simonoff and Tsai (1994) note that inference based on this profile likelihood can be problematic due to the
lack of orthogonality between the parameters of interest, ζ, and the nuisance parameters, (ω,β). Following
on earlier theoretical work, they propose a modification of the profile likelihood to achieve such orthogonality.
They derive the modified profile likelihood ratio statistic,

T = n− p− 2
n

L+ log
{

det(X ′X)
det(X̂ ′

mX̂m)

}
, (2.25)

where L = −2
{
lp(y; ζ0)− lp(y; ζ̂)

}
, and X̂m = Ĝ−1/2X, where Ĝ is the diagonal n× n matrix with ith

diagonal entry g(Z′
i·, ζ̂){

n∏
j=1

g(Z′
j·, ζ̂)

}1/n
. The asymptotic null distribution of the statistic is χ2(p′ − 1) and the test

is right-tailed.
Ferrari et al. (2004) derive a Bartlett correction for Simonoff and Tsai’s (1994) modified profile likelihood

ratio test, generalising an earlier proposal (Ferrari and Cribari-Neto 2002). The Bartlett correction improves
the fit of the test statistic to the asymptotic null distribution, particularly for small sample sizes. The Bartlett-
corrected test statistic is

T ′ = T

1 + cm/(p′ − 1) ,

where cm is a correction factor. The notation in the expression for the correction factor is cumbersome; the
reader is referred to Equation (7) in Ferrari et al. (2004, p. 430). The authors derive an explicit expression for
cm only for the multiplicative heteroskedastic model.

Simonoff and Tsai’s (1994) score test is designed to be a robust extension either of Cook and Weisberg’s
(1983) score test or of Koenker’s (1981) modification of Breusch and Pagan’s (1979) test. The test requires an
auxiliary design matrix Z. The test statistic of the base test is first computed (call it S) and the test statistic
is then computed as

T = S +
p′∑

j=1

(
n∑

i=1

hiitij

)
τj , (2.26)

where tij is the (i, j)th element of the Jacobian matrix J (as defined in §2.1.11), and τj is the jth element
of the (p′ − 1)-vector

(
J̄ ′J̄

)−1
J̄ ′d. Here, exactly as in the formulation of Cook and Weisberg’s (1983) test,

d is the n-vector having ith element ω̄−1e2
i , where ω̄ = n−1e′e, and J̄ =

(
In − n−11n×n

)
J . The asymptotic

null distribution of the score test statistic (2.26) is also χ2(p′ − 1) and the test is likewise right-tailed.

2.1.16 Diblasi-Bowman Test

A test developed by Diblasi and Bowman (1997) involves the use of the kernel method of nonparametric
regression to model the relationship between a transformation of the OLS residuals and the explanatory
variables. First, define

si =
√
|ei| − E0(

√
|ei|), i = 1, 2, . . . , n,

where E0 denotes expectation under the null hypothesis of homoskedasticity. The relationship between the si

and the corresponding observations of the explanatory variable(s) is modelled using the Nadaraya-Watson ker-
nel estimation method of nonparametric regression. Recall the notation x = [x1, x2, . . . , xn]′ for the predictor
variable in simple linear regression. In this case, using the normal kernel function,

K(x) = (2π)−1/2 exp
{
−1

2x
2
}

,

it follows that

s̃(xi) =
n∑

j=1

wj(xi)sj , (2.27)
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where

wj(xi) =
K
(
xi − xj

h

)
n∑

k=1

K
(
xi − xk

h

) =
exp
{
−1

2

(
xi − xj

h

)2
}

n∑
k=1

exp
{
−1

2

(
xi − xk

h

)2
} , (2.28)

and h is a hyperparameter known as the bandwidth.21 Diblasi and Bowman (1997) do not discuss the extension
of their test to the multiple linear regression model, but this is straightforward.22

The multivariate normal kernel function is then given by,

K(x) = (2π)−p/2 exp
{
−1

2x′x
}

.

If Xi· denotes the ith row of X (excluding the intercept column if present), then the kernel weights are now
written as

wj(Xi·) = K(H−1(Xi· −Xj·))
n∑

k=1

K(H−1(Xi· −Xk·))

=
exp
{
−1

2
[
(Xi· −Xj·)′H−1H−1(Xi· −Xj·)

]}
n∑

k=1

exp
{
−1

2
[
(xi − xk)′H−1H−1(Xi· −Xk·)

]} .

Letting s̃i = s̃(xi) (or s̃i = s̃(Xi·), in the multiple linear regression case), the Diblasi-Bowman test statistic
is,

T =
∑n

i=1(si − s̄)2 −
∑n

i=1(si − s̃i)2∑n

i=1(si − s̃i)2 , (2.29)

where s̄ = n−1∑n

i=1 si. Diblasi and Bowman (1997) observe that the statistic is analogous to the ‘lack-of-
fit’ statistic in parametric regression. Under the null hypothesis, the terms in the numerator will have little
difference, but under heteroskedasticity the first term will dominate the second. Thus, the test is right-tailed.

Suppose that the n× n matrix whose i, jth element is wj(xi) is denoted by W , s̃ = W s,
with s = [s1, s2, . . . , sn]′, and the quadratic form

∑n

i=1(si − s̃i)2 can be expressed as s′Bs, where
B = (In −W )′(In −W ). Then, the test statistic can be rewritten as,

T = s′As− s′Bs

s′Bs
= s′Cs

s′Bs
, (2.30)

where A = In − n−11n, C = A−B, and 1n is an n× n matrix of ones. Diblasi and Bowman (1997)
propose to compute an approximate p-value for the test by matching cumulants with those of a shifted χ2

distribution. They first observe that the p-value of the test can be written as follows:

Pr (T > t0|H0 true) = Pr
(

s′Cs

s′Bs
> t0

∣∣∣∣H0 true
)

= Pr
(
s′(C − t0B)s > 0

∣∣H0 true
)

.

Specifically, the authors propose to match the first three cumulants of the quadratic form s′ (C − t0B) s with
those of a random variable U of the form a+ bV (where V ∼ χ2(c)). For full details of this method, which is
quite involved, the reader is referred to their article.

Diblasi and Bowman (1997) also offer a parametric bootstrap procedure for estimating p-values of the test
as follows:

21Diblasi and Bowman (1997, p. 97) appear to err by omitting the − 1
2 factor in the numerator and denominator of

(2.28).
22The bandwidth scalar h is replaced with a p′ × p′ symmetric bandwidth matrix H (where p′ is the number of

explanatory variables excluding an intercept if present)
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1. Note the observed value of the test statistic, t0.
2. Simulate y(b)

i , i = 1, 2, . . . , n, from a normal distribution with mean ŷi and variance ω̂ub (defined in
(1.5)), for b = 1.

3. Refit the model using OLS and obtain bootstrap residuals e(b)
1 , e

(b)
2 , . . . , e

(b)
n .

4. Calculate the observed value t(b) of the test statistic T .
5. Repeat steps 2 to 4 for b = 2, 3, . . . , B and calculate the p-value estimate from the empirical distribution

of T :

p⋆ = B−1(#t(b) ≥ t0).

2.1.17 Carapeto-Holt Test

Carapeto and Holt (2003) propose a test that is similar in its logic to Goldfeld and Quandt’s (1965) test (see
§2.1.2). Both tests entail partitioning the data into three subgroups, one of which is ignored while the other
two are compared. The major difference between the two methods is that, in the Goldfeld-Quandt test, the
two subgroups being compared are fitted to separate regressions, yielding mutually independent sets of OLS
residuals. By contrast, the Carapeto-Holt test works with subsets of the OLS residuals from the model fit to
the full data set.23

The Carapeto-Holt test requires a deflator, and, as the authors constructed the test, the observations are
assumed to be in decreasing order of error variance (thus it is a left-tailed test by design).

The test proceeds by first removing some proportion c = (n− 2s)/n of central observations, leaving two
subsets consisting of the first s and last s observations, respectively. The sums of squared residuals of these
two subsets are then compared using the following statistic:

T = e′I⋆e

e′I⋆e
= ϵ′M ′I⋆Mϵ

ϵ′M ′I⋆Mϵ
, (2.31)

where I⋆ is an n× n diagonal matrix whose first s diagonal elements are ones and other diagonal elements
are zeroes, and I⋆ is an n× n diagonal matrix whose last s diagonal elements are ones and other diagonal
elements are zeroes. M is the usual annihilator matrix. Under the null hypothesis (together with the assump-
tions of normality and no autocorrelation), T is a RQF in a normal random vector having mean vector 0 and
covariance matrix ωIn. The ω cancel in the ratio, so that T is scale-invariant.

2.1.18 Wilcox-Keselman Test

Wilcox and Keselman (2006) propose a test that makes use of quantile regression. Consider first a simple linear
regression with response variable y and explanatory variable X. It is assumed that the γ quantile of Y , given
X, is given by,

yγ = αγ + βγX.

Homoskedasticity of y implies that βγ = β1−γ for any 0 < γ <
1
2 . Thus, a quantile regression model can be

fitted to test the null hypothesis βγ = β1−γ for some 0 < γ < 1
2 and thereby indirectly test for heteroskedasticity.

The test statistic takes the form
T = ∆

ŜE(∆)
, (2.32)

where ∆ = β̂γ − β̂1−γ .
The standard error of ∆ under the null hypothesis is intractable, and thus Wilcox and Keselman (2006)

propose to use nonparametric bootstrap sampling to estimate it. Thus,

ŜE(∆) =

√√√√(B − 1)−1
B∑

b=1

(∆(b) − ∆̄)2,

where ∆(b) is the difference between the quantile regression estimates of βγ and β1−γ based on the bth bootstrap
sample, b = 1, 2, . . . , B, and ∆̄ = B−1∑B

b=1 ∆(b). Applying the Central Limit Theorem, T is compared to the
standard normal distribution in what is a two-tailed test.

23This distinction in subsetting of residuals anticipates two possible ways of obtaining a test set of residuals in K-fold
cross-validation, to be discussed later and diagrammatically represented in Figure 3.6.
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2.1.19 Račkauskas-Zuokas Test

Račkauskas and Zuokas (2007) propose a class of tests based on the limit behaviour of the polygonal process
constructed from squared residuals. The test is especially designed to detect a ‘changed-segment’ type of
heteroskedasticity where the error variance shifts at one or more specific locations in the data. They propose
the statistic

Tn,α = max
1≤ℓ<n

(ℓ/n)−α max
0≤k≤n−ℓ

∣∣∣∣∣
k+ℓ∑

j=k+1

[
e2

j − n−1
n∑

i=1

e2
i

]∣∣∣∣∣ , (2.33)

where 0 ≤ α < 1
2 is a hyperparameter known as the Hölder exponent. The authors note that ‘the question of

choosing parameter α remains open,’ but suspect that the power of the test for detecting a changed-segment
of a particular length varies with α.

The authors show that under certain conditions, T D−→ Tα, where

T = n−1/2δ̂−1
n Tn,α,

δ̂2
n = n−1

n∑
j=1

[
e2

j − n−1
n∑

i=1

e2
i

]2

,

Tα = sup
0<h<1

h−α sup
0≤t<1−h

|Bt+h −Bt| ,

and Bt is a Brownian bridge on t ∈ [0, 1]. The test is right-tailed: large values of T provide evidence of
heteroskedasticity. However, Račkauskas and Zuokas (2007) do not provide an exact or asymptotic null dis-
tribution for Tα but instead resort to a MC simulation scheme to approximate critical values. For the selected
Hölder exponent values α = j/32, j = 0, 1, . . . , 15, they propose to generate R = 214 replications of approxi-
mations for Tα. In each replication, the Brownian bridge is approximated by the partial sum process

ξm(0) = 0,

ξm(t) =
[mt]∑
j=1

Zj + (mt− [mt])Z[mt]+1 − t
m∑

j=1

Zj , t ∈ (0, 1],

where Zj , j = 1, 2, . . . ,m are generated independent standard normal random variates and m = 217. Empirical
quantiles can then be used to compute the critical value for a given significance level.

2.1.20 Yüce’s Test

Yüce (2008) proposes two simple tests for heteroskedasticity in which the test statistic is a function of the
OLS residuals. As with the tests of Li and Yao (2019), there is no deflator variable or auxiliary design
matrix involved. The test is intended as an omnibus test that can detect various kinds of heteroskedasticity,
monotonic and nonmonotonic. The two test statistics are denoted TA and TB respectively. The asymptotic
null distribution of TA is χ2(n− p), while the asymptotic null distribution of TB is t(n− p). The test statistics
are calculated as follows:

TA =
∑n

i=1 e
2
i

Θ , (2.34)

and

TB = ω̂ub −Θ√
2(n− p)−1Θ2

, (2.35)

where Θ = (π − 2 + 2n(n− p))−1 π
(∑n

i=1 |ei|
)2.
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2.1.21 Zhou, Song, and Thompson’s Test

Zhou et al. (2015) propose an information ratio (IR) approach to heteroskedasticity testing based on com-
parisons between sandwich and model-based estimators for the variances of individual regression coefficient
estimators. Their test includes a ‘covariate-specific’ method, a ‘pooled’ method, and a ‘hybrid’ method. It
allows for a two-step procedure in which the first step is an overall test of heteroskedasticity and the second
step—a post hoc analysis undertaken only when the first null hypothesis is rejected—facilitates identification
of the design or auxiliary design variable(s) associated with the error variance.

The ‘covariate-specific’ method may be described as follows. Let ω̄ = n−1∑n

i=1 e
2
i and let Z be an n× p′

auxiliary design matrix. Then, let HZ = Z (Z′Z)−1
Z′ be the hat matrix of the auxiliary design and, for

j = 1, 2, . . . , p′, let

H
(−j)
Z = Z(−j)

(
Z′

(−j)Z(−j)
)−1

Z′
(−j),

where Z(−j) is the auxiliary design matrix with the jth column omitted and H
(−j)
Z is its hat matrix. Now,

define the jth IR statistic as

IRj = ω̄−1
n∑

i=1

w
(j)
i e2

i ,

where
w

(j)
i = hii − h

(−j)
ii ,

and hii and h
(−j)
ii are, respectively, the diagonal elements of HZ and H

(−j)
Z . The test statistic pertaining to

the jth auxiliary design variable is then,
Tj =

√
n (IRj − 1) . (2.36)

Zhou et al. (2015) show that the null distribution of Tj is asymptotically normal with 0 mean. However,
the variance of this asymptotic null distribution is intractable. They thus propose a perturbation sampling
scheme to compute estimated p-values. A perturbed version of Tj may be defined as,

T ⋆
j =
√
n

n∑
i=1

{(
w

(j)
i − n−1IRj

)(
ω̄−1e2

i − 1
)
− n−1 (IRj − 1)

}
ξi, (2.37)

where ξi, i = 1, 2, . . . , n, are independent and identically distributed (iid) random variables having zero
mean and unit variance (e.g., standard normal). Zhou et al. (2015) show that the variance of T ⋆

j , conditioning
on the observed data, converges in probability to the variance of the asymptotic null distribution of Tj . Hence,
the following procedure applies:

1. Generate B independent values T ⋆(b)
j , b = 1, 2, . . . , B.

2. Compute the empirical p-value for Tj , as Pj = B−1∑B

b=1 1
T

⋆(b)
j

≥Tj
, where 1• is the indicator function.

3. Perform a Bonferroni correction; thus, the reported p-values are {p′Pj}, j = 1, 2, . . . , p′.
To reject an overall null hypothesis of homoskedasticity one should compare Pcs = min {p′P1, p

′P2, . . . , p
′Pq}

with the significance level.
The ‘pooled’ method proceeds in a similar fashion except that there is one overall statistic and p-value that

pools the comparisons across all auxiliary covariates. The IR statistic in this case is

IRpool = ω̄−1
n∑

i=1

wpool
i e2

i ,

where wpool
i = hii/p

′. The test statistic is then,

Tpool =
√
n (IRpool − 1) . (2.38)

The perturbation sampling scheme proceeds exactly analogous to that of the covariate-specific method,
yielding T ⋆(b)

pool , b = 1, 2, . . . , B, and p-value Ppool = B−1∑B

b=1 1
T

⋆(b)
pool ≥Tpool

.
Finally, the ‘hybrid’ method proceeds by computing Phybrid = 2 min {Pcs, Ppool} (the 2 being a further

Bonferroni correction).
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2.1.22 Li-Yao Tests

Li and Yao (2019) propose two tests that are distinctive in that no prior information is required about the
form of the heteroskedasticity under the alternative hypothesis. The tests are intended to have high power
especially in high-dimensional regressions (i.e., when p is large) but also adequate power in low-dimensional
regressions. Both tests are upper-tailed, despite having Gaussian asymptotic null distributions.

The first test is called the Approximate Likelihood Ratio Test (ALRT). Its test statistic is,

T1 = log

n−1
n∑

i=1

e2
i

(
n∏

i=1

e2
i

)−1/n
 . (2.39)

Li and Yao (2019) show that the asymptotic null distribution of T1 is normal with a mean of log 2− ψ(0)(1)
and a variance of n−1(2−1π2 − 2), where −ψ(0)(1) ≈ 0.5772 is the polygamma function of order 0 evaluated at
1, also known as the Euler constant.

The second test is called the Coefficient of Variation Test (CVT). Its test statistic is

T2 =
n−1∑n

i=1(e2
i − ω̄)2

ω̄2 , (2.40)

where ω̄ = n−1∑n

i=1 e
2
i , as defined previously. Li and Yao (2019) show that the asymptotic null distribution

of T2 is normal with mean 2 and variance 24n−1.
A possible limitation of both tests is that they rest on the assumption that the design matrix X is stochastic

and that the design variables are normally distributed. However, the authors adduce empirical evidence that
the tests still perform well in terms of size and power when the design variables are generated from other
distributions, or when they are held fixed. In the case of the CVT method, Bai et al. (2016) derive the
asymptotic null distribution under the more conventional assumption that the design matrix is nonstochastic.
Retaining the normality assumption on the errors, T2 is shown to converge in distribution to a normal null
distribution with mean a and variance b, where

a = 3n tr(M ◦M)
(n− p)2 + 2(n− p) − 1,

and
b = ∆′Θ∆,

where

∆′ =
[

n

(n− p)2 + 2(n− p) ,
3n2 tr(M ◦M)

((n− p)2 + 2(n− p))2

]
,

Θ =
(

Θ11 Θ12
Θ21 Θ22

)
,

Θ11 = 72 diag(M)′M ◦M diag(M) + 24 tr(M ◦M)2,
Θ12 = Θ21 = 24(n− p)n−1 tr(M ◦M),

and
Θ22 = 8n−2(n− p)3.

2.1.23 Computational Extensions of Other Tests

2.1.23.1 Dufour, Khalaf, Bernard, and Genest’s MC Method
Dufour et al. (2004) propose a MC procedure for estimating p-values from the exact null distribution of the test
statistic of a specified heteroskedasticity test. Not all tests are suitable, because the procedure requires that
the test statistic be continuous (which rules out Goldfeld and Quandt’s (1965) nonparametric peaks test and
the exact version of Horn’s (1981) nonparametric test). It further requires that the test statistic is invariant
with respect to the nuisance parameters β and ω, and that the test statistic can be computed from the OLS
residuals e, the design matrix X, and any other nonstochastic auxiliary variables. This rules out Anscombe’s
(1961) test and Bickel’s (1978) test.

The MC procedure is straightforward and can be described as follows.
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1. Compute the value of the test statistic, t0, from the observed data.
2. Generate MC random error vectors ϵ(r), r = 1, 2, . . . , R, from a specified continuous distribution with

mean 0 and scalar covariance matrix (the scale does not matter, due to the requirement that the test be
invariant with respect to ω).24

3. Compute R OLS residual vectors e(r) = Mϵ(r), r = 1, 2, . . . , R, where M is the annihilator matrix
defined in §1.1.2.

4. Using e(r) and nonstochastic variables, hyperparameters, etc., compute R MC test statistic values t(r),
r = 1, 2, . . . , R.

5. Compute the p-value estimate as,

(R+ 1)−1
R∑

r=1

1t(r)≥t0
+ 1,

where 1• is the indicator function.25

2.1.23.2 The Godfrey-Orme Method
In Godfrey and Orme (1999), a nonparametric bootstrap algorithm is offered for estimating p-values from the
null distribution of the test statistic of other heteroskedasticity tests. The method is more thoroughly explained
in Godfrey et al. (2006). The procedure is straightforward and can be described as follows:

1. Compute the test statistic value t0 from the observed data.
2. Estimate the unknown CDF F of the random errors with the empirical CDF F̂n of the OLS residuals,

and generate a random sample from F̂n, e(b) =
[
e

(b)
1 , e

(b)
2 , . . . , e

(b)
n

]′
, for b = 1 (which is equivalent to

drawing a sample of size n from e with replacement).
3. Compute new response values y(b) = Xβ̂OLS + e(b), where X is the original design matrix and β̂OLS the

original OLS estimator of β.
4. Fit an OLS regression of y(b) on X and thus compute a bootstrapped test statistic t(b).
5. Repeat steps 2-4 for b = 2, 3, . . . , B, thus obtaining t(1), t(2), . . . , t(B).
6. Compute the p-value of the bootstrap heteroskedasticity test as

B−1
B∑

b=1

1t(b)≥t0
,

where 1• is the indicator function.26

24The error distribution need not be normal; the authors work with t-distributed errors in their simulations, for
instance.

25This formula is for a right-tailed test. For a left-tailed test, the indicator is instead 1t(r)≤t0
. For a two-tailed test,

the one-sided p-value is doubled, due to the distribution being an empirical one; thus it is computed as

2 (R+ 1)−1

[
min

{
R∑

r=1

1t(r)≥t0
,

R∑
r=1

1t(r)≤t0

}
+ 1

]
.

26The above formula is for a right-tailed test. For a left-tailed test, the indicator is 1t(b)≤t0
. For a two-tailed test,

the one-sided p-value is doubled (due to the distribution being an empirical one); thus it is computed as,

2B−1 min

{
B∑

b=1

1t(b)≥t0
,

B∑
b=1

1t(b)≤t0

}
.
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2.1.24 Some Tests of Questionable Value

Before moving on, it is necessary to mention a few tests that have been noticed in the literature but are
not discussed in detail here, due to shortcomings that seriously limit their practical value (Kalirajan 1989,
Luger 2010, Murteira et al. 2013, Çelik 2017). The test of Kalirajan (1989), extended by Kalirajan and
Jayasuriya (1991), requires respecifying the linear model to include two error terms, one symmetric and one
asymmetric. This seems too heavy a price to pay for ostensibly improved model diagnostics. Luger (2010)
proposes a simulation-based test that employs a range statistic. The test requires the user to fully specify the
distribution of the random errors ϵ, which is a very burdensome requirement. Murteira et al. (2013) propose
a heteroskedasticity test based on the difference between robust and nonrobust forms of Wald statistics. The
user must specify a vector function of auxiliary restrictions and the authors provide no guidance on the choice
of this function, which severely limits the test’s practical value. Çelik (2017) proposes a Regression on Centered
External Variable (RCEV) test, extended by Çelik (2018), designed to detect either monotonic or nonmonotonic
heteroskedasticity. The test seems theoretically flawed, relying on an auxiliary regression in which both the
response and explanatory variables are functions of the OLS residuals. As a result, the test statistic’s putative
null distribution seems invalid; a cursory simulation found that the test could achieve an empirical size close
to 1 when the nominal size was 0.05.

2.1.25 A Summary of Heteroskedasticity Tests

It is not difficult to see why Breusch and Pagan’s (1979) and White’s (1980) tests have become and remained
among the most popular heteroskedasticity tests for practitioners. They do not require strong assumptions
regarding either the error distribution or the form of heteroskedasticity under the alternative hypothesis. Their
test statistics are also easy to compute and use, without any hyperparameters to consider. By contrast, tests
such as Diblasi and Bowman’s (1997) and Račkauskas and Zuokas’s (2007) are complicated, computationally
expensive, and involve nontrivial hyperparameters. Yet there are other tests among those discussed in this
chapter that have some of the good properties of the Breusch-Pagan and White tests and yet remain largely
unknown and unused. In §5.1, the empirical performance of some of these tests will be evaluated using a
limited simulation experiment.

More fundamental than the question of which heteroskedasticity test to use is the question of whether
heteroskedasticity tests ought to be used at all. As will be discussed in §2.4.3, several empirical studies have
argued that a two-stage, adaptive approach to inference on linear model parameters β (as described in Figure
2.1) is unwarranted. These authors have argued that it is better simply to use heteroskedasticity-robust
inference methods unconditionally. If so, the utility of heteroskedasticity tests is seriously compromised. Of
course, it may be of some academic interest to perform heteroskedasticity diagnostics, but in the absence of an
adaptive approach to inference, heteroskedasticity testing is hardly an indispensable tool in the linear regression
practitioner’s toolbox. Despite this, new heteroskedasticity testing methods have continued to proliferate in
the literature. The question arises, what other meaningful applications might heteroskedasticity tests have?

2.2 Feasible Parameter Estimation under Heteroskedasticity
2.2.1 Feasible Weighted Least Squares

As noted previously in §1.1.6.2, under heteroskedasticity, the BLUE of β, β̂WLS, is usually infeasible due to
the weights Ω−1 being usually unknown. Effective estimation of Ω, however, could provide reasonable weights
that result in a WLS estimator of β that is more efficient than the OLS estimator.

Feasible Weighted Least Squares (FWLS) refers to an estimation procedure in a heteroskedastic linear
regression model whereby the optimal but unknown weight matrix Ω−1 in the WLS estimator (1.7) is replaced
with an estimator Ω̂−1, thereby making WLS feasible (Davidson and MacKinnon 2004, p. 264). This section
discusses approaches to FWLS for purposes of estimating β. However, this discussion is also relevant to
inference, because the need to estimate Ω also arises in inference on β under heteroskedasticity. This is true
regardless of whether an OLS or a WLS estimator is used, because the conditional covariance matrices of both
estimators under heteroskedasticity ((1.6) and (1.8)) are functions of Ω.

2.2.1.1 Two-Step Feasible Weighted Least Squares
Fuller and Rao (1978) study the problem of estimation in a linear model in which the design values are divided
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into subgroups, with the error variance being constant within each subgroup (e.g., replications in a designed
experiment). They propose a two-step procedure as follows.

1. Estimate Ω with some estimator Ω̂.27

2. Estimate β with β̂FWLS =
(
X ′Ω̂−1X

)−1
X ′Ω̂−1y.

For the first step, Fuller and Rao (1978) suggest estimating Ω with a diagonal matrix with ith diagonal
element

ω̂i =
(
yi −X ′

i·β̂OLS
)2 = e2

i .

2.2.1.2 Iterative Feasible Weighted Least Squares
Hooper (1993), also in the context of a replication model, discusses an iterative procedure as follows.

1. Obtain an initial estimate of Ω.
2. Estimate β with β̂FWLS =

(
X ′Ω̂−1X

)−1
X ′Ω̂−1y, where Ω̂ is the most updated estimate of Ω.

3. Update the estimate of Ω using the most updated estimate of β.
4. Repeat steps 2 and 3 until some convergence criterion is met.

A simplistic approach to the iterative procedure, discussed by Hooper (1993)—again, in the context of a
replication model—entails using the squared OLS residuals as the diagonal elements of the initial covariance
estimator, and in step 3, using the squared residuals computed from the β̂ estimate obtained in step 2. However,
Hooper (1993, p. 179) observes that in practice, this iterative procedure is more efficient than the two-step
procedure only in cases of extreme heteroskedasticity. He explains as follows:

‘The poor performance of the ML estimator [obtained by iteration] seems to be the result of a
feedback effect caused by small changes in the [ω̂i] near 0. Variances for some groups [more gen-
erally, observations] are underestimated, and these groups [observations] are given greater weight
in the subsequent estimate of β, tending to produce even smaller variance estimates in the next
step.’

One could seek to prevent this feedback loop by including a Winsorisation substep within step 3:

3′. Estimate the ith diagonal element of Ω with

ω̂i =


c1 if e2

i < c1

ω̂i if c1 ≤ e2
i ≤ c2

c2 if e2
i > c2

,

where e2
i is the ith squared residual computed using the β̂ estimate obtained in step 2, and 0 < c1 < c2

are fences determined using some outlier detection method.28

One may consider setting c2 =∞, since the main concern is to bound ωi below (thus bound the weights
above) and thus prevent a few observations from dominating the WLS estimator of β due to extremely large
weights.

Such ‘noninformative’ two-step and iterative procedures may be the best option when no other means is
available for estimating Ω. However, in practice it may be reasonable to assume that the conditional variances
ωi = Var(ϵi) depend on an auxiliary design matrix Z (which, in the simplest case, could be identical to X
or consist of some subset of the columns of X). Thus, step 1 of the two-step procedure, or step 3 of the
iterative procedure, need not consist merely of estimating the ωi with squared model residuals based on the
best available estimate of β, but could include a substep in which the ωi are estimated by modelling the
relationship between these squared model residuals and the design variables. Such approaches are discussed
next.

27An intuitive option would be to estimate the error variance of each subgroup with some function of the squared
OLS residuals of that subgroup.

28Possible methods of computing the fences include Tukey’s rule (Tukey 1977), where c1 = Q1 − 1.5(Q3 −Q1)
and c2 = Q3 + 1.5(Q3 −Q1) (Q1 and Q3 being the first and third quartiles of the ω̂i), and the Hampel filter
(Hampel 1974), where c1 = Q2 − 3MAD, c2 = Q2 + 3MAD (Q2 being the second quartile or median of the ω̂i and
MAD = median(|ω̂i −Q2|) being their median absolute deviation (MAD)).
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2.2.1.3 Modelling Approaches to Error Variance Estimation for FWLS
An early such modelling approach is that of Robinson (1987), who proposes to estimate the ωi in the two-step
procedure described in §2.2.1.1 using a k-nearest-neighbours approach. Specifically, the estimator of ωi is
a linear combination of OLS residuals for the ith observation’s k nearest neighbours in the covariate space.
Regression modelling approaches were also developed, and are summarised by Davidson and MacKinnon (2004)
as follows. Assume that the error variances are defined by,

ωi = exp
{

Z′
i·ζ
}

, i = 1, 2, . . . , n, (2.41)

where ζ is a p′-vector of parameters and Z′
i· is a p′-vector of nonstochastic, observed variables.29 The

exponential function in (2.41) ensures that the ωi are positive. The advantage of the assumption (2.41) is
that one needs to estimate only p′ parameters (the elements of ζ) to estimate Ω, whereas the noninformative
methods entail estimating n parameters (the individual ωi).

In the two-step procedure described in §2.2.1.1, step 1 would now consist of the following substeps:

1a. Obtain the OLS residuals e.
1b. Obtain parameter estimates ζ̂ by fitting the regression (2.42) using OLS

log e2
i = Z′

i·ζ + ui, i = 1, 2, . . . , n. (2.42)

Here, ui is a random error whose distribution may or may not be specified, but which is assumed to have
zero mean.

1c. Estimate the ith diagonal element of Ω with ω̂i = exp
{

Z′
i·ζ̂
}

.

Alternatively, this approach could be applied within the iterative procedure, with step 3 (as previously
described in §2.2.1.2) replaced by steps 3a-3c:

3a. Obtain residuals e using the most recent estimate of β.
3b. Obtain estimates ζ̂ by fitting the regression (2.42) using OLS (with the e2

i obtained in the previous
substep as the responses).

3c. Estimate the ith diagonal element of Ω with ω̂i = exp
{

Z′
i·ζ̂
}

.

A more recent approach is that of Miller and Startz (2019), who generalise the conventional approach
described in Davidson and MacKinnon (2004) by assuming that the ωi are related to the observed design
variables by some function g(·) (not necessarily linear in the parameters):30

ωi = exp
{
g(X ′

i·)
}

, i = 1, 2, . . . , n. (2.43)

The function g(·) is then estimated using some regression approach; Miller and Startz (2019) suggest
Support Vector Regression (SVR) as the most promising option. Thus, steps 3b-3c in the method of Davidson
and MacKinnon (2004) become:31

3b′. Estimate g(X ′
i·) by ĝ(X ′

i·) using SVR (or another regression method).32

3c′. Estimate the ith diagonal element of Ω with ω̂i = exp {ĝ(X ′
i·)}.

29Again, a common special case would be where Z′
i· = X′

i·, or Z is some subset of the columns of X (or perhaps also
including functions of the columns of X).

30Miller and Startz (2019) assume the special case where Z = X, but their approach easily generalises to any choice
of auxiliary design matrix Z.

31A similar modification of steps 1b-1c would take place if the two-step procedure is being used. Although Miller and
Startz (2019) do not discuss the choice of a two-step vs. an iterative procedure, it is clear from the functions in their
supplementary R code that their procedure is iterative.

32R functions provided by Miller and Startz (2019) allow the user to choose between OLS, WLS, regression trees,
random forest regression, k-nearest-neighbours, kernel regression (nonparametric regression), or SVR as the method for
estimating g(·).
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2.2.2 Adaptive Least Squares

Romano and Wolf (2017) propose an estimation procedure that they call Adaptive Least Squares (ALS). This
is a two-stage procedure in which the first stage is a test for heteroskedasticity. If the null hypothesis of
homoskedasticity is retained, β is estimated using OLS. If, however, the null hypothesis of homoskedasticity
is rejected, β is estimated using FWLS. The authors state that the benefit of ALS is that it ‘sacrifices some
efficiency gains of WLS under conditional heteroskedasticity in favor of being closer to the performance of OLS
under conditional homoskedasticity’ (Romano and Wolf 2017, p. 3).

The efficiency of ALS is obviously dependent on the size and power of the heteroskedasticity test used
in the first stage. Romano and Wolf (2017) recommend that the heteroskedasticity test used should be built
around the same parametric model that would then be used to estimate Ω for FWLS if heteroskedasticity is
detected.

2.3 Heteroskedasticity-Consistent Covariance Matrix Estimators
Estimation of the random errors’ variance-covariance matrix, Ω, was discussed in §2.2.1 as a means to obtain
appropriate weights for FWLS estimation of β. Another benefit of obtaining a good estimate of Ω concerns
inference on the partial slope coefficients βj . Observe from (1.6) that Cov(β̂OLS) depends on Ω under het-
eroskedasticity and from (1.8) that Cov(β̂WLS) does as well. This suggests that feasible and scale-invariant test
statistics for inference on β—regardless of whether they are built around β̂OLS or β̂FWLS—require estimation of
Ω. Hence, estimation of Ω facilitates inferences on β under heteroskedasticity (see §2.4 below). Undoubtedly,
estimation of Ω is very important in a heteroskedastic linear model, albeit usually as a means to an end rather
than an end in itself (since practitioners are typically more interested in the conditional mean of y than in its
covariance structure).

Interestingly, although the problem of estimation of β and the problem of inference on β under heteroskedas-
ticity are closely related and both require estimation of Ω, approaches to estimating Ω in the literature for
purposes of estimation of β differ markedly from approaches to estimating Ω for purposes of inference on
β. In this section Heteroskedasticity-Consistent Covariance Matrix Estimators (HCCMEs) are introduced, of
which many have been proposed in the literature. These are usually expressed as estimators of Cov(β̂OLS)
rather than of Ω (since they are purposed mainly to the end of computing a standard error estimate for a test
statistic for inference on β), but since Ω is the only unobserved parameter in (1.6), they in fact differ only in
the method of estimating Ω. Because these estimators are developed for models in which A3 is retained, they
are all diagonal n× n matrices.

The nomenclature that has developed for the various particular HCCMEs is to denote them by HC#?,
where # is an integer (currently between 0 and 7) and ? is an optional letter m, used to denote a minor
modification of another HCCME. Here, this nomenclature for denoting the estimators symbolically will also
be used; thus Ω̂0, Ω̂1, etc.

2.3.1 HC0

The original HCCME, denoted HC0, was proposed by White (1980), who also coined the term HCCME in a
seminal paper that also proposed the well-known and eponymous heteroskedasticity test. The estimator entails
estimating Ω with

Ω̂0 = diag {e ◦ e}. (2.44)

2.3.2 HC1 and HC2

MacKinnon and White (1985) proposed three alternatives, HC1, HC2, and HC3 (the latter to be discussed in
§2.3.3), designed to improve on the finite-sample properties of HC0, which are poor. HC1 had actually been
suggested already by Hinkley (1977). It entails a degrees-of-freedom multiplicative adjustment of Ω̂0, the same
multiplicative factor n/(n− p) that transforms ω̄ to ω̂ub:33

Ω̂1 = n

n− p Ω̂0. (2.45)

33See (1.4) and (1.5) in §1.1.5.3 for derivation of ω̄ and definition of ω̂ub and see §3.1.1 for discussion of the unbiasedness
of ω̂ub.
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MacKinnon and White (1985) propose HC2 based on the earlier work of Horn et al. (1975). The latter au-
thors work with the WLS residuals, and thus with a generalisation of H for WLS (HW = X(X ′W X)−1X ′W ).
Obtaining an expression for E(e2

WLS,i) equivalent to (1.20) (but with the elements of H replaced with those of
HW ), they show that, if the weights are ‘correct’, i.e., W = Ω−1, then E(e2

WLS,i) = (1− hW,ii)ωi. This leads
them to propose an ‘almost unbiased estimator,’ ω̂AUE,i = (1− hW,ii)−1e2

WLS,i. It is almost unbiased in the
sense that, in practice, W ̸= Ω−1, since Ω is usually unknown. MacKinnon and White (1985) retroject this
‘almost unbiased estimator’ into the OLS case by replacing the hW,ii with hii and e2

WLS,i with e2
i . They thus

arrive at the HC2 estimator, in which

Ω̂2 = diag
{

(1− h11)−1e2
1, (1− h22)−1e2

2, . . . , (1− hnn)−1e2
n

}
. (2.46)

Surprisingly, when stating that HC2 is founded on the estimation approach of Horn et al. (1975), MacK-
innon and White (1985) do not distinguish between hW,ii and hii or between e2

WLS,i and e2
i .34 This is not

inconsequential because, while Ω̂2 (OLS version) is an unbiased estimator of Ω under homoskedasticity, the
‘almost unbiased’ property seems not to apply under heteroskedasticity (see (1.20), where the ci term does not
simplify to hiiωi except under homoskedasticity).35

2.3.3 HC3

MacKinnon and White (1985) derive HC3 by a very different method from HC2, beginning from a jackknife
estimator of Cov(β̂), but in the end it is similar in form:

Ω̂3 = diag
{

(1− h11)−2e2
1, (1− h22)−2e2

2, . . . , (1− hnn)−2e2
n

}
. (2.47)

The idea of a jackknife estimator is to recompute the model estimates n times, each time leaving out one
observation, then using the variability between the leave-one-out estimates to estimate the variability of the
original estimator. Hence, HC3 is related to β̂(−i) introduced previously in the context of externally studentised
residuals (§1.1.10.2). Specifically, since β̂(−i) can be written as β̂ − 1

1− hii
(X ′X)−1Xi·ei, i = 1, 2, . . . , n, it

follows that ŷi,(−i) = X ′
i·β̂(−i) can be written as

ŷi,(−i) = X ′
i·β̂(−i) = X ′

i·β̂ −
hii

1− hii
ei

= ŷi −
hii

1− hii
ei,

from which it follows that ei,(−i) = yi − ŷi,(−i) can be written as

ei,(−i) = ei −
hii

1− hii
ei

= ei

1− hii
. (2.48)

Though MacKinnon and White (1985) do not note this, there may be a stronger case for considering the
elements of Ω̂3 to be ‘almost unbiased’ than the elements of Ω̂2. As was pointed out in noted 13, in the absence
of extremely high-leverage observations, E(e2

i ) is dominated by the term (1− hii)2ωi in (1.18), in which case
E
[
(1− hii)−2e2

i

]
≈ ωi.

MacKinnon and White (1985) conclude from a simulation experiment that HC3 outperforms HC1 and
HC2, which in turn outperform HC0. Further empirical corroboration of the good finite-sample properties of
HC3 was provided by Long and Ervin (2000). Without any other notable HCCME proposals appearing for
nearly two decades, HC3 became established in practice. It remains the default HCCME in the sandwich R
package (Zeileis 2006).

34(MacKinnon and White 1985, pp. 307-308) state that Horn et al. (1975) ‘suggest using’ the estimator with hii and
e2

i , whereas Horn et al. (1975) refer only to the WLS version throughout.
35Li et al. (2017) incorrectly state that Cribari-Neto and Zarkos (1999) show that the HC2 estimator is ‘almost

unbiased.’
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2.3.4 HC4

A new HCCME, dubbed HC4, is designed by Cribari-Neto (2004) specifically to adjust for the effect of high-
leverage design points on quasi-t tests for significance of βj parameters. The pattern in HC2 and HC3 was to
adjust for the biasing effect of influential design points on the e2

i by dividing by some power of 1− hii; call it
δi. HC3 thus ‘discounts’ the effect of the hii more than HC2 (δi = 2 with HC3 whereas δi = 1 with HC2). This
notion of discounting is repeated in a more nuanced way in HC4, since the power of 1− hii now varies with i:
δi = min

{
hii

h̄
, 4
}

, where h̄ = p/n is the mean of the hii. Thus the level of discounting is proportional to the
leverage score, but truncated at a maximum of 4. A possible criticism of this approach is that the choice of 4
as the truncation point seems somewhat arbitrary.

Most of the HCCMEs can be expressed in the form,

Ω̂# = diag
{

(1− h11)−δ1e2
1, (1− h22)−δ2e2

2, . . . , (1− hnn)−δne2
n

}
. (2.49)

This allows one to distinguish between HCCMEs by describing only the power δi, i = 1, 2, . . . , n. This
notation will be used to describe the remaining HCCMEs, with the exception of HC6, which does not have the
form of (2.49).

2.3.5 HC5

HC5, introduced in Cribari-Neto et al. (2007), fine-tunes the truncation point of linear discounting that had
been used in HC4. Instead of δi = min

{
hii

h̄
, 4
}

, this estimator uses δi = min
{
hii

h̄
,max

{
4, khmax

h̄

}}
, where

0 ≤ k ≤ 1 is a tuning parameter and hmax = maxi {hii}. Thus, the truncation point is the larger of 4 and
some fraction of the ratio of largest leverage score to mean leverage score. This procedure therefore allows for
heavier discounting than HC4 in cases of extremely high leverage. Cribari-Neto et al. (2007) note that if k = 0,
or if khmax/h̄ ≤ 4, HC5 reduces to HC4. Based on empirical analysis, the authors suggest using k = 0.7.

2.3.6 HC4m

A modified version of HC4, called HC4m, is suggested in Cribari-Neto and da Silva (2011). In terms of (2.49),
the exponent is δi = min

{
γ1,

hii

h̄

}
+ min

{
γ2,

hii

h̄

}
, where γ1, γ2 > 0. These tuning parameters establish a

minimal, rather than maximal, discounting level. The idea is to make discounting heavier than that of HC4
for low-leverage observations. The authors propose to set γ1 = 1 and, using empirical analysis, arrive at 1.5 as
the best choice of γ2. HC4m thus in a sense entails the heaviest discounting of all, since all δi ≥ 2.5.

2.3.7 HC5m

Li et al. (2017) argue that HC4 is a good estimator, but that HC5 improves on it when the data are strongly
leveraged, while HC4m is preferable in the absence of high-leverage points. This, they argue, implies a weakness
in the generality of HC4m and HC5: each one will perform relatively poorly under certain design conditions.
They therefore propose the estimator HC5m, which combines HC4m and HC5. The discounting parameter
is δi = k1 min

{
γ1,

hii

h̄

}
+ k2 min

{
γ2,

hii

h̄

}
+ k3 min

{
hii

h̄
,max

{
4, khmax

h̄

}}
. They suggest using the same

values of k, γ1, and γ2 as proposed for HC5 and HC4m, and for the new tuning parameters, they suggest
k1 = k3 = 1 and k2 = 0 (thus the second term falls away). Effectively, the discounting factor δi is being
Winsorised both below (at 1, for this choice of parameters) and above (at the larger of 4 and 0.7hmax

h̄
, for this

choice of parameters). It is claimed that this estimator gives the best of both worlds, performing well both in
the presence and absence of high-leverage points. An estimator with no less than six tuning parameters seems
overcomplicated, however.

2.3.8 HC6

Aftab and Chand (2016) develop an HCCME, HC6, that differs from HC2-HC5(m) in that the ith diagonal
element of Ω̂6 cannot be written in the form (2.49), and more specifically, in that the e2

i are adjusted by a
stochastic, rather than deterministic (or conditioned-on) factor:
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Ω̂6 = diag
{√

D1e
2
1,
√
D2e

2
2, . . . ,

√
Dne

2
n

}
, (2.50)

where Di is the Cook’s Distance for observation i (see (1.50), (1.51), and (1.52)), i = 1, 2, . . . , n. The logic
of HC6 is that the squared OLS residual is adjusted by a factor “that reflects how well the model is fitted to
the ith observation yi and a component that measures the distance of the ith observation from the rest of the
data.” A questionable feature of this estimator is that it is effectively built around |e3

i | rather than e2
i , and

Aftab and Chand (2016) do not show that the estimator is consistent. Moreover, Cook’s Distance is a metric
designed for the homoskedastic scenario (hence the ω̂ub factor in the denominator), and may therefore not be
an effective influence metric under heteroskedasticity. Another observation is that, if the HCCME is to be used
for a hypothesis test of an individual element βj , HC6 should arguably use Di(βj) (see (1.53)) rather than Di.

2.3.9 HC7

Yet another HCCME, called HC7 here,36 is developed by Aftab and Chand (2018). They critique HC4 for
poor asymptotic behaviour and HC4m and HC5 for requiring the user to specify appropriate values of tuning

parameters. They thus propose a new discounting parameter, δi = min
{
hii

h̄
,
(
hmax

2h̄

)1/2
}

, that aims to

achieve the leverage-oriented refinements of HC4m and HC5 without requiring user inputs.

2.3.10 A Wild Bootstrap Heteroskedasticity-Consistent Covariance Matrix Estimator

Cribari-Neto and Zarkos (1999) propose an HCCME that makes use of the ‘wild bootstrap.’37 The wild
bootstrap circumvents a problem with using the basic nonparametric bootstrap in linear regression with het-
eroskedasticity of unknown form, namely that the heteroskedasticity cannot be mimicked in the bootstrap
distribution (Davidson and Flachaire 2008, p. 163).

The procedure may be described as follows:
1. Independently draw values r(b)

i , i = 1, 2, . . . , n, from a distribution with zero mean and unit variance, for
b = 1.

2. Compute bootstrap responses y(b)
i = X ′

i·β̂OLS + fi(ei)r(b)
i , i = 1, 2, . . . , n, where fi(·) is some transfor-

mation of the ith OLS residual.
3. Fit the bootstrap responses to the original design matrix using OLS to obtain β̂(b) = (X ′X)−1X ′y(b).
4. Repeat steps 1-3 for b = 2, 3, . . . , B, thereby obtaining B bootstrap regression models.
5. Compute the sample standard deviations of the B bootstrap estimates of βj for any j ∈ {1, 2, . . . , p} on

which inference is to be performed:

SE(β̂) =

[
(B − 1)−1

B∑
b=1

(
β̂

(b)
j − ¯̂

βj

)2
]1/2

,

where ¯̂
βj = B−1

B∑
b=1

β̂
(b)
j .

Davidson and Flachaire (2008) note that a nonparametric version of this bootstrap procedure is obtained if
the r(b)

i are resampled values from the finite population a1, a2, . . . , an, where ai is as defined in (2.51) (noting
that ē = 0 if the model has an intercept):

ai = ei − ē√√√√n−1
n∑

j=1

(ej − ē)2

, i = 1, 2, . . . , n. (2.51)

36Aftab and Chand (2016) and Aftab and Chand (2018) propose two different HCCMEs but name both of them
HC6! In referencing their work, Salem et al. (2019) denote the HCCME from Aftab and Chand (2016) HC7 and the
HCCME from Aftab and Chand (2018) HC6. Without seeking to add to the confusion, this work orders the HCCMEs
chronologically by publication date, and so denotes the proposal of Aftab and Chand (2016) HC6 and that of Aftab and
Chand (2018) HC7.

37A similar proposal is made subsequently, and apparently independently, by Zimmermann et al. (2017).
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Davidson and Flachaire (2008) recommend drawing the r⋆
i from the lattice distribution, i.e.,

r
(b)
i =

{
−1 with probability 1/2
1 with probability 1/2

. (2.52)

Concerning the choice of the transformation function fi(·), Davidson and Flachaire (2008) aver that the
best options are either the identity transformation fi(ei) = ei or one of the HCCME transformations, i.e.
fi(ei) = ei(1− hii)−δi/2. Cribari-Neto and Zarkos (1999) focus specifically on the HC2 case (see Table 2.2).
Davidson and Flachaire (2008) mention that another ‘variant’ of the wild bootstrap is obtained by using fi(|ei|)
rather than fi(ei). However, if the r(b)

i are generated from the lattice distribution in (2.52), this is no variant
at all, because the original sign of ei will still either be retained or changed with probability 1/2.

The wild bootstrap will be revisited in §3.4.1, as one of two bootstrap methods that may be used to
construct approximate confidence intervals for error variances ωi.

2.3.11 Summary of Heteroskedasticity-Consistent Covariance Matrix Estimators

Table 2.2 summarises how most of the existing HCCMEs can have the diagonal elements of their estimator of
Ω written in the form e2

i ci, where ci = (1− hii)−δi .

Table 2.2: Heteroskedasticity-Consistent Covariance Matrix Estimator Powers δi

HCCME δi, i = 1, 2, . . . , n

HC0 0
HC1 N/A (see (2.45))
HC2 1
HC3 2

HC4 min
{

hii

h̄
, 4
}

(where h̄ = n−1∑n
i=1 hii = pn−1)

HC5 1
2

min
{

hii

h̄
, max {4, khmax}

}
(where k = 0.7 and hmax =

max {h11, h22, . . . , hnn})

HC4m min
{

γ1, hii

h̄

}
+min

{
γ2, hii

h̄

}
(where γ1 = 1.0, γ2 = 1.5 are tuning

constants)
HC5m k1 min

{
γ1,

hii
h̄

}
+k2 min

{
γ2,

hii
h̄

}
+k3 min

{
hii

h̄
, max

{
4, khmax

h̄

}}
(where k1,

k2, k3 are tuning constants)
HC6 N/A (see (2.50))

HC7 min
{

hii

h̄
,

(
hmax

2h̄

)1/2
}

Wild Bootstrap HCCME N/A (see §2.3.10)

A number of means of robustifying HCCMEs are also proposed in the literature. A review of such methods
can be found in Salem et al. (2019). These methods typically entail using a trimmed or weighted set of residuals
rather than the OLS residuals. This places them outside the scope of the current study, which builds methods
based on the statistical properties of the OLS residuals and their squares.

2.4 Inference on Model Parameters under Heteroskedasticity
2.4.1 Test Statistics Based on Ordinary Least Squares Estimators

Because the covariance of β̂OLS changes under heteroskedasticity, the estimator ω̂ub defined in (1.5) no longer
applies (there is no longer just a single ω parameter to estimate). Therefore, the denominator of (1.33) is no
longer the standard error of β̂j , and the standard errors of the interval estimator (1.34) are likewise no longer
valid. Thus, a test of parameter significance using (1.33) will no longer hold its nominal size, and an interval
estimator using (1.34) will no longer achieve the nominal coverage probability.
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In terms of distributional results, under heteroskedasticity, ϵ ∼ N(0,Ω) and y ∼ N(Xβ,Ω). Using the
MGF argument as in §1.1.8, My(t) = exp {β′X ′t + t′Ωt}. Accordingly,

Mβ̂OLS
(t) = exp

{
β′t + 1

2 t′(X ′X)−1X ′ΩX(X ′X)−1t
}
. (2.53)

Thus, under A1 and A3-A5, β̂OLS ∼ N(β, (X ′X)−1X ′ΩX(X ′X)−1). Next,

Mŷ(t) = exp
{

β′X ′H ′t + 1
2 t′HΩH ′t

}
= exp

{
(Xβ)′t + 1

2 t′HΩHt
}

(since HX = X). (2.54)

Thus, under A1 and A3-A5, ŷ ∼ N(Xβ,HΩH). Finally,

Me(t) = exp
{

β′X ′M ′t + 1
2 t′MΩM ′t

}
= exp

{
(0′t + 1

2 t′MΩMt
}
. (2.55)

Thus, under A1 and A3-A5, e ∼ N(0,MΩM). This is the covariance matrix derived directly earlier
(without requiring A5) in (1.14).

Despite these distributional results, under heteroskedasticity (A1 and A3-A5 without A2) an exact t-
statistic analogous to (1.33) cannot be constructed by updating the standard error formula in the denominator
based on (1.6) and then replacing Ω with an estimator. The reason is that under the square root there is no
longer a chi-square-distributed random variable divided by its degrees of freedom; no analogue of (B.3) is now
available.

In what follows, approaches to inference on the linear regression partial slope coefficient parameter βj

under heteroskedasticity are discussed that are built on the OLS estimator. These results could be extended
to the problem of inference on the significance of the whole regression (analogues to the F test), where the
null hypothesis to be tested is β2 = β3 = · · · = βp = 0. Attention herein will be confined to the problem of
inference on an individual coefficient βj , j ∈ {1, 2, . . . , p}.

2.4.1.1 Quasi-t-Tests for Inference on Individual Parameters
MacKinnon and White (1985) discuss the use of a quasi-t-test to test hypotheses about the values of individual
elements of β. The test statistic is as defined in (2.56), with the standard error estimate constructed by
replacing Ω in (1.6) with an HCCME, Ω̂#:

Tq = β̂j√(
(X ′X)−1X ′Ω̂#X(X ′X)−1

)
jj

. (2.56)

According to MacKinnon and White (1985), this statistic has an asymptotic standard normal distribution
(presumably by the Central Limit Theorem), while acknowledging that exact finite-sample results are difficult
to obtain analytically. Subsequent studies of inference based on HCCMEs have similarly relied on simulation
experiments more than analytical results (Long and Ervin 2000, Ng and Wilcox 2011). Apparently on ad hoc
grounds, Ng and Wilcox (2011) propose that the statistic Tq should be compared to the t(n− p) distribution
rather than to the standard normal. Davidson and Flachaire (2008) state, however, that the HCCME-based
quasi-t-statistics are asymptotically pivotal under the null hypothesis (βj = 0) provided that the error variances
ωi are all positive and finite.

2.4.1.2 Wild Bootstrap Test for Significance of a Single Parameter
Cribari-Neto (2004) and Davidson and Flachaire (2008) propose to estimate p-values for the quasi-t-statistic
using the wild bootstrap procedure. The test procedure consists of steps 1-4 of the wild bootstrap HCCME
procedure described in §2.3.10, except that in the second step, the parameter estimates are computed from a
restricted model in which βj = 0 (thus X·j is omitted in the fit). The restricted design matrix can be denoted
by X·(−j); the parameter estimates and residuals from this restricted model can be denoted by β̂(−j) and e(−j),
respectively. The final step is then modified as follows.
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5′. Compute the empirical p-value p⋆ =
1 + #

{
|T (b)

q | ≥ |Tq|
}

B + 1 , where T (b)
q is the bth bootstrap value of the

quasi-t-statistic Tq from (2.56).38

Cribari-Neto (2004) propose a double bootstrap test to achieve greater precision. This entails performing a
second level of bootstrap nested within each original bootstrap replication. The inner procedure is as follows,
where C is the number of replications in the inner bootstrap and b is the index of the outer bootstrap.

(i) Independently draw values r(b,c)
i , i = 1, 2, . . . , n, from a distribution with zero mean and unit variance.

(ii) Compute the bootstrap response y(b,c)
i = X ′

i·β̂
(b)
(−j) + fi(e(b)

(−j),i
)r(b,c)

i for i = 1, 2, . . . , n, where β̂
(b)
(−j) and

e
(b)
(−j) are the parameter estimates and associated residuals from a restricted regression of y(b) on X·(−j).

(iii) Fit the bootstrap responses y(b,c) to the original design matrix using OLS to obtain
β̂(b,c) = (X ′X)−1X ′y(b,c), and associated quasi-t-statistic T (b,c)

q (which has the form of (2.56)).
(iv) For each c, c ∈ {1, 2, . . . , C}, compute the bootstrap p-value,

p(b) = (C + 1)−1 [1 + #
{
|T (b,c)

q ≥ T (b)
q

}]
.

(v) Hence, compute the overall bootstrap p-value
1 + #

{
p(b) ≥ p⋆

}
B + 1 , where p⋆ is the p-value of the ‘single

bootstrap’ test described above.

Godfrey et al. (2006) find empirical evidence that this double-bootstrap procedure is the best option
for inference under heteroskedasticity for very small sample sizes. A systematic review of methods for
heteroskedasticity-robust inference in linear regression is given by MacKinnon (2013), who also discusses boot-
strap methods for interval estimation under heteroskedasticity.

2.4.2 Test Statistics Based on Feasible Weighted Least Squares Estimators

The foregoing shows that, for several decades, much of the emphasis in scholarship on inference in het-
eroskedastic linear regression has focused on developing tests based on the OLS parameter estimates. Ro-
mano and Wolf (2017), however, propose to ‘resurrect WLS,’ that is, to construct tests that combine FWLS
with HCCMEs. They assume that there exists some nonstochastic ‘skedastic function’ g : Rp → R such that
E(ϵ2

i ) = g(X ′
i·). This implies that diag(Ω) = [g(X ′

1·), g(X ′
2·), . . . , g(X ′

n·)]′ and consequently that Ω is esti-
mated by diag(Ω̂) = [ĝ(X ′

1·, ĝ(X ′
2·), . . . , ĝ(X ′

n·)]′, where ĝ(·) is an estimator of g(·). These authors argue that
even if ĝ(·) is an inconsistent estimator of g(·), ‘WLS can result in large efficiency gains over OLS in the
presence of noticeable conditional heteroskedasticity’ (Romano and Wolf 2017, p. 3). The authors recommend
estimating g(·) using an auxiliary regression approach analogous to, but not identical to, (2.41), namely,39

gγ(Xi·) = exp {γ0 + γ1 log |Xi1|+ · · ·+ γp−1 log |Xi,p−1|} , i = 1, 2, . . . , n. (2.57)
The actual auxiliary regression proposed by Romano and Wolf (2017) is (2.58), which utilises a Winsorisa-

tion approach that is necessary for their asymptotic results:

log
[
max(δ2, e2

i )
]

= γ0 + γ1 log |Xi1|+ · · ·+ γp−1 log |Xi,p−1|, i = 1, 2, . . . , n, (2.58)
where δ > 0 is some small constant.
Their approach to inference is simply to apply the transformation,

ỹi = yi√
ω̂i(Xi·)

and X̃ij = Xij√
ω̂i(Xi·)

, i = 1, 2, . . . , n; j = 1, 2, . . . , n, (2.59)

to fit OLS to these transformed data, where ω̂i(Xi·) is an estimate of the ith observation’s error variance,
assumed to be a function of the ith design point, Xi·. The quasi-t-statistic (2.56) is then compared to a t(n−p)
distribution to arrive at an inference.40

38For an alternative way of constructing the p-value, see MacKinnon (2013).
39Romano and Wolf (2017) argue that (2.57) is a more intuitive formulation than (2.41).
40The transformation (2.59) is equivalent to FWLS, since it entails weighting the individual observations.
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The standard errors of the test statistic are in fact based on the asymptotic covariance matrix,

Ĉov(β̂FWLS) = (X ′Ω̂−1X)−1X ′Σ̂X(X ′Ω̂−1X)−1, (2.60)

where Σ̂ is a diagonal matrix with ith diagonal element
[
fi(eFWLS,i)
ω̂(Xi·)2

]2

, and fi(·) is a transformation along

the lines of the HCCMEs.41

Miller and Startz (2019) propose a modification of the standard error of the FWLS test statistic to better
account for the variability of the ω̂(·) estimator, which in their case uses the SVR approach described in
§2.2.1.3.

2.4.3 Adaptive vs. Robust Inference on Parameters

White (1980) proposed both a new test for heteroskedasticity (described in §2.1.8) and the first HCCME, HC0
(described in §2.3.1). This study takes it for granted that these two tools ought to be used together in a
two-stage approach to arrive at inferences on parameters of the linear regression model. Suppose one wishes
to conduct a test of the null hypothesis βj = 0 for some element of β. In the first stage, one conducts a test of
heteroskedasticity. As illustrated in Figure 2.1, if no heteroskedasticity is detected, a t-test is then conducted
using the homoskedastic standard error estimate based on (1.3). If heteroskedasticity is detected, however,
then a quasi-t-test is conducted using a heteroskedasticity-robust standard error estimate based on (1.6) (with
Ω replaced by an HCCME).

Conduct heteroskedasticity test

Fail to reject null hypoth-
esis of homoskedasticity

Reject null hypothe-
sis of homoskedasticity

Use t-test with homoskedastic
standard error estimate

Use quasi-t-test with
heteroskedasticity-robust
standard error estimate

Figure 2.1: Adaptive OLS-Based Procedure for Inference on Parameter βj

White (1980) was an extraordinarily influential study, garnering over 32 000 citations by the time of
writing (5 November 2022), according to Google Scholar. The same author suggested just five years later,
when proposing new HCCMEs, that ‘it may be wise to use HC3 in preference to the usual OLS covariance
estimator, even when there is little evidence of heteroskedasticity’ (MacKinnon and White 1985, p. 12). This
was due to a finding that the OLS covariance estimator ‘can be very seriously misleading in the presence of
heteroskedasticity,’ whereas HC3 ‘does not seem to be much less reliable’ than OLS under homoskedasticity
(MacKinnon and White 1985, p. 8). However, the ship may have already sailed from a practitioner’s point
of view. MacKinnon and White (1985) has under 1800 citations on Google Scholar (as of 5 November 2022).
Fifteen years later, Long and Ervin (2000) pointed out that HC0 was the most used HCCME in statistical
software, more so than HC3 which had improved upon it from White’s point of view. Meanwhile, they found

41This is based on Romano and Wolf’s (2017) result (3.14). The implications for the test statistic standard errors are
not clearly stated by Romano and Wolf (2017) but are mentioned in Miller and Startz (2019).
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that the two-stage procedure represented in Figure 2.1 was frequently used in applied research. However, they
conducted simulation studies that led them to conclude that,

a test for heteroscedasticity should not be used to determine whether HCCM-based tests should be
used. Far better results are obtained by using HC3 all of the time (Long and Ervin 2000, p. 223)
(emphasis original).

They found in their simulations that if a quasi-t-test were conducted immediately (without the screening
heteroskedasticity test), estimating Ω in (1.6) using HC3, the test was only mildly over-sized regardless of
sample size. If a screening heteroskedasticity test were introduced, the lower power of such tests when sample
size is small resulted in the standard t-test being used too often, which further inflated the size. As the sample
size grew large, the size of the test under the two-stage approach converged to that of the immediate quasi-t-test
approach. There was thus nothing to be gained by conducting the heteroskedasticity test.

Another empirical study a decade later reached a similar conclusion: ‘performing a test of heteroscedasticity
prior to applying a heteroscedastic robust test can lead to poor control over Type I errors’ (Ng and Wilcox
2011, p. 244). Again, the main source of the problem was found to be ‘the lack of power of the various tests
of heteroscedasticity’ (Ng and Wilcox 2011, p. 256). Like Long and Ervin (2000), these authors recommended
using HCCME-based methods unconditionally, as they ‘offer reasonable control over Type I errors under both
homoscedasticity and heteroscedasticity’ (Ng and Wilcox 2011, p. 256). Another empirical study by Rosopa
et al. (2018) provides further corroboration of these earlier findings. Both Ng and Wilcox (2011) and Rosopa
et al. (2018) preferred HC4 as the HCCME to use unconditionally, in contrast to Long and Ervin (2000), who
advocated for HC3 but whose study was published before HC4 appeared.

Romano and Wolf (2017) object to the two-stage, adaptive OLS-based approach to inference illustrated
in Figure 2.1 for the same reasons argued by Long and Ervin (2000) and Ng and Wilcox (2011). However,
they advocate a different adaptive approach analogous to their ALS approach to estimation. First, conduct
a heteroskedasticity test. Then, use a heteroskedasticity-consistent test statistic either based on OLS (if
heteroskedasticity is not detected) or based on FWLS (if heteroskedasticity is detected). They point out that
under this approach, ‘the pretest...decides between two inference methods that are both valid under conditional
heteroskedasticity’ (Romano and Wolf 2017, p. 8).

2.5 Implementation of Existing Methods in Statistical Software
2.5.1 Heteroskedasticity Tests

Of the many heteroskedasticity tests published in the past six decades, relatively few have been implemented
in standard statistical software (see Table 2.3).42

Table 2.3: Implementation of Heteroskedasticity Tests in Statistical Software

Software Heteroskedasticity Test
Goldfeld

and
Quandt

Glejser Harvey
Harrison

and
McCabe

Breusch
and

Pagan
White

Cook
and

Weisberg
SAS ✓ ✓

R ✓ ✓ ✓ ✓
SPSS ✓ ✓
Stata ✓ ✓ ✓ ✓ ✓

StatPlus ✓ ✓ ✓ ✓
EViews ✓ ✓ ✓ ✓

SHAZAM ✓ ✓ ✓ ✓ ✓

The inaccessibility of more recent heteroskedasticity diagnostic methods may explain why practitioners
continue to prefer older methods. For example, if one considers Google Scholar citation counts since 2000 of

42Note: SAS features White’s (1980) Test in PROC REG and both Breusch and Pagan’s (1979) Test and White’s (1980)
Test in PROC MODEL. R features Goldfeld and Quandt’s (1965) Test, Harrison and McCabe’s (1979) Test and Breusch and
Pagan’s (1979) Test in lmtest (Zeileis and Hothorn 2002) and Cook and Weisberg’s (1983) Test in car (Fox and Weisberg
2019). A table similar to Table 2.3 appears in Uyanto (2019, p. 2).

41



http://etd.uwc.ac.za/

publications proposing heteroskedasticity tests, White (1980) has been cited about 29200 times, Breusch and
Pagan (1979) about 5640 times, and Goldfeld and Quandt (1965) 613 times. By contrast, searches of Google
Scholar identified no such publication published after 1983 that has been cited even 200 times since 2000.43

2.5.2 Feasible Weighted Least Squares

FWLS is easily implemented in most statistical software. In R, for example, the lm function in the basic stats
package allows the user to fit FWLS by specifying the weights using the weights argument. A leaner, faster
FWLS fit can be obtained using the lm.wfit function, where weights are specified using the w argument.

2.5.3 Heteroskedasticity-Consistent Covariance Matrix Estimators

In R software, the sandwich package (Zeileis 2004, Zeileis et al. 2020) can be used to implement HCCMEs.
Specifically, the vcovHC function can be used to compute an HCCME for a given linear model. The user can
specify the HCCME type according to the HC# notation using the type argument. HC3 is the default; other
options are the homoskedastic estimator, HC0, HC1, HC2, HC4, HC4m, and HC5. Notably, HC5m, HC6, HC7,
and the wild bootstrap HCCME (as described in §2.3) are not included as options in this function, though one
can use the omega argument to specify a customised function for computing the covariance matrix estimator.
The name sandwich comes from the notion of Cov(β̂OLS) as a sandwich estimator due to Ω̂ being ‘sandwiched’
by X(X ′X)−1 and its transpose (see (1.6)). Following on this metaphor, the estimation of Ω in sandwich is
actually done by a function called meatHC. The sandwich argument in vcovHC (which defaults to TRUE) controls
whether the entire sandwich estimate is returned or just the ‘meat,’ Ω̂.

2.5.4 Inference on Parameters

The sandwich package can be used in conjunction with the lmtest package (Zeileis and Hothorn 2002) to perform
heteroskedasticity-robust inference on linear regression coefficients in R. Specifically, the coeftest function in
lmtest performs quasi-t tests for significance of coefficients of a linear model object, using an HCCME specific
by the vcov argument. vcov could either be a matrix estimate of (1.6) or a function (such as vcovHC from
sandwich) that can compute such a matrix estimate.

2.6 Chapter Summary
This chapter offered a review of existing methods of dealing with heteroskedasticity in linear regression. First,
hypothesis testing methods for detecting heteroskedasticity were reviewed. It is safe to say that this is the most
thorough literature review of heteroskedasticity tests that has been produced to date. Methods of feasible pa-
rameter estimation under heteroskedasticity, Heteroskedasticity-Consistent Covariance Matrix Estimators, and
approaches to inference on linear regression parameters under heteroskedasticity were also reviewed. Finally,
implementations of all of these existing methods in statistical software were catalogued.

A couple of noteworthy findings from the literature review should be highlighted here. Heteroskedasticity
testing methods abound in the literature, and continue to proliferate more than 50 years after they first began
to appear. However, a body of literature has arisen alongside these methods that argues that they ought not
to be used as part of a procedure for making inferences on the linear regression coefficients βj . What essential
purpose, then, if any, do heteroskedasticity tests play in handling heteroskedasticity in linear regression?

A second finding is that heteroskedasticity-robust methods of estimation and of inference in linear regression
both involve estimation of the variance-covariance matrix of the errors, Ω. Despite this, there is a divergence
in methods of estimating Ω when the end goal is to estimate β as opposed to when the end goal is to make
inferences on β. In the former case, iterative and modelling approaches are popular. In the latter case,
HCCMEs are preferred. This raises the question of whether handling of heteroskedasticity in linear regression
can be simplified by developing a unified approach to estimation of Ω that is appropriate both for the end
goal of estimation and for the end goal of inference. Indeed, such a unified approach ought also to be useful if
estimating the variances of the responses yi is an end goal in itself.

43These Google Scholar searches were conducted on 5 November 2022.
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3 Methodology
In the first chapter, the linear regression model and its classical assumptions were introduced, and the problems
of estimation and inference on the coefficient vector β were introduced, including how they are affected by
violation of the homoskedastic assumption, A2. Quantities useful for characterising heteroskedasticity, such as
the leverage scores hii and the OLS residuals ei, were also introduced and their properties discussed at some
length.

In the second chapter, existing approaches and methods for detecting and correcting for heteroskedasticity
in the linear regression model were reviewed, and certain problems and gaps were highlighted (see §2.6).

The introduction and literature review have set the stage for the development of new methods for estimating
the error variances ωi and thus enabling effective estimation of and inferences on β under heteroskedasticity.
Such methods are developed in this chapter. However, before proposing them, some additional theoretical
groundwork is needed, focusing mainly on the OLS residuals and especially their squares, e2

i . This theory is
foundational to the new methods because the squared OLS residual vector e ◦ e will be the response variable
in the new models to be proposed. It is included here, rather than in Chapter 1, because it does not involve
merely the restatement of well-known results, but ventures into lesser-known or even uncharted theoretical
territory.44 This new theory is the subject of §3.1.

The main methodological contribution of this study is found in §3.2, which proposes two new classes of
auxiliary regression models that can be used to estimate the error variances ω in a linear regression model.

Section 3.3 delves into the finer details of applying the new models, proposing methods for estimating the
models’ parameters, tuning their hyperparameters (where applicable), and selecting features to include in the
models. This subsection also offers a brief discussion of the statistical properties of the new estimators. It
closes by explaining how the variance estimates obtained from the new models can be used as part of a FWLS
routine for estimating β or as part of a heteroskedasticity-robust quasi-t-test for significance of elements of β.

Section 3.4 tackles the problem of obtaining interval estimates for the error variances ωi. Given the in-
tractability of analytical distributional results, bootstrap methods offer the simplest solution. A discussion of
how to bootstrap a heteroskedastic linear regression model in a way that leaves intact the heteroskedastic vari-
ance structure is thus provided before delving into how to construct confidence intervals from the bootstrapped
regressions.

Finally, §3.5 briefly proposes a new heteroskedasticity test based on the auxiliary variance models introduced
earlier in the chapter.

3.1 Further Statistical Results on Residuals
3.1.1 Squared Ordinary Least Squares Residuals under Homoskedasticity

It was noted above in (1.11) that, under A1-A4, Var(ei) = E(e2
i ) = ωmii. Thus, even under homoskedasticity,

the individual squared OLS residuals are biased estimators of ω. As for the sum of squared residuals e′e

(already encountered in the ML estimator of ω, (1.4)), E(e′e) =
n∑

i=1

E(e2
i ) = ω tr(M). As noted earlier in

§1.1.2, by the commutative property of the trace operator, tr(H) = p. Thus, tr(M) = tr(In −H) = n− p,
resulting in

E(e′e) =
n∑

i=1

ωmii = (n− p)ω. (3.1)

(3.1) implies that E(ω̄) = n− p
n

ω, and that ω̂ub = (n− p)−1e′e is an unbiased estimator of ω under ho-
moskedasticity (which was already implied by (1.32) under the stronger assumption of normality).

The marginal distribution of the squared OLS residuals e2
i , conditioning on X, can also be given under

A1-A5. Now, (1.31) entails that in scalar form, ei ∼ N(0, ωmii). This implies, using two elementary statistical

44The author would be surprised if any of the theoretical results described in §3.1.1 and §3.1.2 are derived here for
the first time, though they are certainly not found in standard graduate-level texts on linear regression and were not,
in fact, found in their entirety in any literature consulted by the author. The distributional results on squared OLS
residuals in §3.1.3 and the treatment of bias in §3.1.4 may have a stronger claim to being original.
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results (Miller and Miller 2019), that ei√
ωmii

∼ N(0, 1) and that e2
i

ωmii
∼ χ2(1). Expressed differently (since

the chi-square distribution is a special case of the Gamma distribution), e2
i

ωmii
∼ Gamma

(
α = 1

2 , β = 1
2

)
, where

α is the shape parameter and β the rate parameter.45 It follows by the scalability property of the Gamma
distribution that,

e2
i ∼ Gamma

(
α = 1

2 , β = 1
2ωmii

)
. (3.2)

Since a Gamma(α, β)-distributed random variable has expectation αβ−1 and variance αβ−2, (3.2) aligns
with the more general result established previously in (1.11) (without the normality assumption) that
E(e2

i ) = ωmii and also implies that Var(e2
i ) = 2ω2m2

ii, which is proven (with the normality assumption) below
in (C.1).

The variances and covariances of the squared OLS residuals can be derived under A1-A5 directly, without
recourse to their marginal or joint distributions. The covariance of any two squared OLS residuals e2

i , e
2
j , i ̸= j,

is given by,

Cov(e2
i , e

2
j ) = 2ω2m2

ij . (3.3)

A proof of (3.3) is given in Appendix C.1.1. This result leads directly to an expression for the variance-
covariance matrix of e ◦ e:

Cov(e ◦ e) = 2ω2(M ◦M). (3.4)
From (3.3) it is evident that any two squared residuals have a positive relationship. Indeed, the correlation

between any two squared OLS residuals e2
i , e

2
j is,

Corr(e2
i , e

2
j ) =

m2
ij

miimjj
= ρ2

ij (where ρij is as in (1.13)). (3.5)

It turns out that if the normality assumption A5 is relaxed but A1-A4 are retained and A6′ introduced, most
of the simplifications in the variance-covariance derivation in Appendix C.1.1 still hold. Unfortunately, 3ω2 can
no longer be substituted for E(ϵ4

k). However, if the excess kurtosis of the errors is written as ϕk = ω−2 E
(
ϵ4

k

)
− 3

and Φ = diag {ϕ1, ϕ2, . . . , ϕn}, the variances and covariances can be expressed in scalar notation as follows:

Var(e2
i ) = 2ω2m2

ii + ω2
n∑

k=1

ϕkm
4
ik (3.6)

and

Cov(e2
i , e

2
j ) = 2ω2m2

ij + ω2
n∑

k=1

ϕkm
2
ikm

2
jk. (3.7)

In matrix notation, the variance-covariance matrix can be written,

Cov(e ◦ e) = 2ω2M ◦M + ω2 (M ◦M) Φ (M ◦M) . (3.8)
Significantly, the variances and covariances of the squared OLS residuals are unaffected by skewness in the

error distribution. If assumption A5′ is also made, the ϕk can be replaced with common excess kurtosis ϕ in
equations (3.6) and (3.7), and the second term in (3.8) can be rewritten as ϕω2 (M ◦M) (M ◦M). In this
case, Cov(e ◦ e) is a function of only two unknown scalar parameters, ω and ϕ.

45This should not be confused with the alternate parametrisation of the Gamma distribution where the second
parameter is a scale parameter, the reciprocal of the rate parameter given here.
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3.1.2 Squared Ordinary Least Squares Residuals under Heteroskedasticity

The marginal distribution of e2
i can be derived under A1 and A3-A5 using the same method used un-

der A1-A5 in §3.1.1. First, (1.37) entails that, in scalar form, ei ∼ N(0,
n∑

k=1

ωkm
2
ik). This implies that[

n∑
k=1

ωkm
2
ik

]−1

e2
i ∼ Gamma(α = 1/2, β = 1/2). Therefore,

e2
i ∼ Gamma

(
1
2 ,

1
2

[
n∑

k=1

ωkm
2
ik

]−1)
. (3.9)

Thus, under A1 and A3-A5, the marginal distribution of the OLS squared residuals given X is a Gamma
distribution. Result (3.9) aligns with the previous result (1.15), established without the normality assumption,

that E(e2
i ) =

n∑
k=1

ωkm
2
ik. Result (3.9) also implies that Var(e2

i ) is as given in (3.12) (this also follows from

(3.11), discussed below).
It follows immediately from (1.14) that

E(e ◦ e) = diag(MΩM) = (M ◦M) ω. (3.10)
Moreover, using the same method as in the derivation of (3.4) (see Appendix C.1.1), it can be shown

that—under A1 and A3-A5—the conditional variance-covariance matrix of the squared OLS residuals is given
by (3.11):

Cov(e ◦ e) = 2 (MΩM) ◦ (MΩM) . (3.11)
In scalar form, the variances, covariances, and correlations of the squared residuals can be expressed as in

(3.12), (3.13), and (3.14):

Var(e2
i ) = 2

(
n∑

k=1

ωkm
2
ik

)2

, i ∈ {1, 2, . . . , n} , (3.12)

Cov(e2
i , e

2
j ) = 2

(
n∑

k=1

mikmjkωk

)2

, i ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . , n} , i ̸= j, (3.13)

and

Corr(e2
i , e

2
j ) =

(
n∑

k=1

ωkmikmjk

)2

n∑
k=1

ωkm
2
ik

n∑
ℓ=1

ωℓm
2
jℓ

= ρ2
ij , (3.14)

that is, the square of ρij , the correlation between ei and ej given in (1.17). Notice that, as in the ho-
moskedastic case, the covariances between squared OLS residuals are strictly positive.

Again, if A5 is relaxed but A6′ introduced, it is necessary to introduce the excess kurtosis, now
ϕk = ω−2

k E
(
ϵ4

k

)
− 3. The conditional variances and covariances of the squared OLS residuals still simplify

considerably—notably, they do not depend on the third moment (‘skewness’)—and can be expressed in scalar
form as

Var(e2
i ) = 2

(
n∑

k=1

ωkm
2
ik

)2

+
n∑

k=1

ω2
kϕkm

4
ik, i ∈ {1, 2, . . . , n} , (3.15)

and

Cov(e2
i , e

2
j ) = 2

(
n∑

k=1

mikmjkωk

)2

+
n∑

k=1

ω2
kϕkm

2
ikm

2
jk, i ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . , n} , i ̸= j, (3.16)
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and, in matrix form, as

Cov(e ◦ e) = 2 (MΩM) ◦ (MΩM) + (M ◦M) ΩΦΩ (M ◦M) . (3.17)
If assumption A5′ is also introduced, it implies that ϕk = ϕ, k = 1, 2, . . . , n. Thus, ϕk can be replaced with

ϕ in equations (3.15) and (3.16), and (3.17) becomes

Cov(e ◦ e) = 2 (MΩM) ◦ (MΩM) + ϕ (M ◦M) ΩΩ (M ◦M)
= 2 (MΩM) ◦ (MΩM) + ϕ (M ◦M) diag {ω ◦ ω} (M ◦M) . (3.18)

The simplification of ΩΩ to diag {ω ◦ ω} is a consequence of Ω being diagonal (due to A3). Equation
(3.18) implies that, under A1, A3-A4, and A5′-A6′, Cov(e ◦ e) is a function of n+ 1 unknown parameters: the
n-vector ω and the scalar ϕ.

3.1.3 Joint Distribution of Squared Ordinary Least Squares Residuals

It has been shown in §3.1.1 that, under A1-A5, the squared OLS residuals e2
i have marginal Gamma distri-

butions. It has likewise been shown in §3.1.2 that, under A1 and A3-A5, the squared OLS residuals e2
i have

marginal Gamma distributions (albeit with different rate parameters than under homoskedasticity).
If the joint distribution of the squared OLS residuals were known under these two cases, this could pave

the way for the development of likelihood-based methods constructed on the likelihood function of the squared
OLS residuals, taken as a function of the common error variance ω (under homoskedasticity) or of the error
variance vector ω (under heteroskedasticity). This is the motivation behind the distributional results presented
in this section.

Let (U1, V1), . . . , (Um, Vm) be an independent random sample of size m from a bivariate normal distribu-

tion with mean 0 and covariance matrix Σ =
[

σ2
1 ρ0σ1σ2

ρ0σ1σ2 σ2
2

]
. Thus, Var(Ui) = σ2

1 and Var(Vi) = σ2
2 for

i = 1, 2, . . . ,m and Corr(Ui, Vj) = ρ0, i ̸= j. Define U = 1
2σ2

1

m∑
i=1

U2
i and V = 1

2σ2
2

m∑
i=1

V 2
i . It can easily be

shown, using the relationship between the zero-mean normal distribution and Gamma distribution and the
scalability property of the Gamma distribution,46 that U, V ∼ Gamma

(
α = m

2 , β = 1
)

.
Then, the joint PDF of U and V is given by

p(u, v;α, ρ) = ρ−(α−1)/2

Γ(α)(1− ρ) exp
{
−u+ v

1− ρ

}
(uv)(α−1)/2 Iα−1

(
2√ρuv
1− ρ

)
, u, v,≥ 0, (3.19)

where α = m/2, ρ = ρ2
0, and Iν(·) is the modified Bessel function of the first kind and order ν (Kibble 1941,

Balakrishnan and Lai 2009).47 The MGF of U, V is given by

M(s, t) = [(1− s)(1− t)− ρst]−α , 0 < ρ < 1. (3.20)
This is known as the Kibble Bivariate Gamma Distribution, or sometimes as the Kibble-Wicksell Bivariate

Gamma Distribution.
Now, using the foregoing results in §1.1.8, §1.1.9, §3.1.1, and §3.1.2, and taking m = 1 above, it follows

immediately that, under A1-A5, for any two squared OLS residuals e2
i , e

2
j , i, j ∈ {1, 2, . . . , n} , i ̸= j, U = e2

i

2σ2
i

and V =
e2

j

2σ2
j

have the Kibble Bivariate Gamma Distribution with α = 1/2 and where σ2
i = Var(ei) = ωmii

and where ρ0 = Corr(ei, ej) = mij√
miimjj

. The same result holds if A2 is relaxed, but now with σ2
i =

n∑
k=1

ωkm
2
ik

and ρ0 as given in (1.17).
46The scalability is that if X ∼ Gamma (α, β) then X/β ∼ Gamma (α, 1). This property is easily demonstrated using

the MGF.
47Note that the expression (3.19) in (Balakrishnan and Lai 2009, p. 304) is missing a negative sign in the exponent

of (uv).
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Moreover, the joint PDF of e2
i , e

2
j can be derived from (3.19) using the transformation technique:

q(e2
i , e

2
j ) = p

(
e2

i

2σ2
i

,
e2

j

2σ2
j

)∣∣∣∣∣∣∣
∂u

∂e2
i

∂u

∂e2
j

∂v

∂e2
i

∂v

∂e2
j

∣∣∣∣∣∣∣ =
(
4σ2

i σ
2
j

)−1
p

(
e2

i

2σ2
j

,
e2

j

2σ2
j

)
. (3.21)

Figure 3.1 shows an example of the joint PDF (3.21) for two squared OLS residuals from a linear regression
model with strong multiplicative heteroskedasticity. The error variance for one observation is more than three
times as large as for the other, and this, combined with the hat matrix structure, results in a strong positive
correlation of 0.73.

Figure 3.1: Joint PDF of Two Squared OLS Residuals from a Heteroskedastic DGP with ρ0 = 0.73

Krishnamoorthy and Parthasarathy (1951) extend the Kibble distribution to the d-variate case. They
give an expression for the MGF but not the joint PDF. Expressions in matrix notation for the MGF and
characteristic function are found in Royen (2007) and Kotz et al. (2000).

Let {U1, . . . ,Uk} be a random sample of size k from a d-variate N(0,Σ) distribution, where Σ is nonsin-
gular, and define the correlation matrix as R =

√
diag(Σ)−1Σ

√
diag(Σ)−1, where the square root is applied

elementwise. Then, U =

(
1

2σ2
1

k∑
i=1

U2
1i, . . . ,

1
2σ2

d

k∑
i=1

U2
di

)′

, where Var(Uji) = σ2
j , has the d-variate Kibble

Gamma distribution with parameters α = k/2 and R. The MGF and characteristic function of U are given,
respectively, by

MU (t) = E
[
et′U

]
= |Id −RT |−α (3.22)

and
ϕU (t) = E

[
eit′U

]
= |Id − iRT |−α , (3.23)

where Id is the d× d identity matrix and T = diag {t1, t2, . . . , td}.
Royen (2007) notes that the PDF of the d-variate Kibble distribution is difficult to compute for d ≥ 4.

He proposes integral representations for the PDF. These integrals are
(
m+ 1

2

)
-dimensional, where m is the

rank of B in a decomposition R−1 = D −BB′ with a diagonal d× d matrix D (which may be real-valued or
complex).48 The expression for the PDF of U is

48For further details of this decomposition, see section 3 of Royen (2007).
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p(u1, u2, . . . , ud;α,R) = |R|−α

d∏
j=1

(
exp {−Djuj}uα−1

j

Γ(α)

)
× E

[
d∏

j=1

0F1

(
α; 1

2ujBjSB′
j

)]
, (3.24)

where Bj are the rows of B, the expectation refers to a Wm(2α, Im)-Wishart matrix S, 0F1(·) is the
generalised hypergeometric function, and R is the correlation matrix defined above. Royen (2007) offers
various techniques for obtaining numerical approximations for (3.24), but it remains that the computational
cost increases rapidly with m.

The n-variate Kibble distribution is, in principle, the distribution of the squared OLS residuals under A1-A5
(or even under A1 and A3-A5, i.e., heteroskedasticity), at least up to a scale factor (which could be addressed
by multiplying by a Jacobian determinant depending only on parameters, as in (3.21)).49 However, aside
from the difficulties with evaluating (3.24) (especially for large n), the singularity of Σ = Cov(e) in this case
(and therefore of R = Corr(e)) implies that the distribution is, like that of e, degenerate.50 The degeneracy
problem can be circumvented by sacrificing p observations and beginning from an n− p-vector of residuals,
the covariance matrix of which is nonsingular. This would, in principle, allow ML methods to be used on an
auxiliary model with only n− p observations. However, the loss of p observations, coupled with the difficulty of
computing (3.24) (never mind maximising the associated likelihood function) combine to make this approach
to variance estimation undesirable. A distribution-based approach to modelling the error variances is thus not
pursued further in this study.

Appendix C.2 offers some approximate statistical results on the moments of the logarithms of the squared
OLS residuals, both under homoskedasticity and under heteroskedasticity, based on Taylor expansions. These
results have been relegated to an appendix because they ultimately played no role in the new variance estimation
methods proposed herein.

3.1.4 Squared Ordinary Least Squares Residuals as Estimators of the Error Variance(s)

In practice, the OLS residuals ei are often thought of as predictions of, or even as proxies for, the unobserved
errors ϵi. As a result, the squared OLS residuals e2

i are often taken as estimators of the common error
variance ω (under homoskedasticity) or of the individual error variances ωi (under heteroskedasticity). Indeed,
this approach provides the rationale for the original HCCME, HC0, of which most subsequent HCCMEs are
transformations (see §2.3). In this subsection, it will be shown that treating the e2

i as estimators of the
corresponding ωi under heteroskedasticity is problematic from a bias standpoint. This will motivate a new
approach to error variance estimation to be introduced in §3.2.

Consider the properties of the e2
i as estimators. Under homoskedasticity, it is clear from (1.11) that the e2

i

are biased estimators of ω, and that the bias is given by,

Bias(e2
i ) = ω(1− hii)− ω = −hiiω. (3.25)

Thus, under homoskedasticity the squared residuals have strictly negative biases; that is, they tend to
underestimate ω. Provided that A1-A5 hold, the variance of the estimator is 2ω2m2

ii (see (C.1)). From this, it
follows that the mean squared error of the estimator is as follows:

MSE(e2
i ) = Var(e2

i ) +
[
Bias(e2

i )
]2

= 2ω2(1− hii)2 + (−hiiω)2

= ω2 (2− 4hii + 3h2
ii

)
(3.26)

= ω2 (3m2
ii − 2mii + 1

)
. (3.27)

The derivative of the Mean Squared Error (MSE) with respect to hii is given by,

49More specifically, the scale factor would be det(J) = tr(J) = 2−n

n∏
i=1

[Var(ei)]−1, since the transformation

(e2
1, e

2
2, . . . , e

2
n) = (2 Var(e1)u1, 2 Var(e2)u2, . . . , 2 Var(en)un), where Ui ∼ Gamma(α = 1/2, β = 1), has a diagonal

Jacobian.
50The same problem occurs under both homoskedasticity and heteroskedasticity, since the covariance matrices (1.10)

and (1.14) are both singular.
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∂

∂hii
MSE(e2

i ) = ω2 (−4 + 6hii) . (3.28)

It is evident that the MSE of the estimator is minimised when hii = 2
3 . Since 0 ≤ hii ≤ 1, it also follows

from evaluating (3.26) at 0 and 1 that the MSE is maximised when hii = 0. Since the derivative is negative for
all 0 ≤ hii <

2
3 , the performance of a particular e2

i as an estimator of the homoskedastic variance ω improves
as the leverage of the ith design point increases, up to the value 2/3 (which is an extremely large leverage value
that will seldom be achieved by any observation in practice). This is illustrated in Figure 3.2.

Figure 3.2: MSE(e2
i ) under homoskedasticity plotted as a function of hii for ω = 1

Under heteroskedasticity, it follows from (1.15) that the bias of the variance estimator e2
i is given by,

Bias(e2
i ) =

n∑
k=1

ωkm
2
ik − ωi

= ωi(1− hii)2 +
∑
k ̸=i

ωkh
2
ik − ωi (3.29)

= −ωihii(2− hii) +
∑
k ̸=i

ωkh
2
ik

= −2hiiωi +
n∑

k=1

ωkh
2
ik. (3.30)

Unlike under homoskedasticity, the direction of the bias is ambiguous and depends on the relative magni-
tudes of the error variances and leverage scores. The partial derivatives of (3.30) with respect to ωi and hii

are given by

∂

∂ωi
Bias(e2

i ) = −hii(2− hii) (3.31)

and
∂

∂hii
Bias(e2

i ) = −2ωi(1− hii). (3.32)
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Equations (3.31) and (3.32) are both strictly negative; thus the bias strictly decreases with ωi when
hii is held constant, and with hii when ωi is held constant. Using the quadratic formula to find roots of
(3.29) with respect to hii, it is also evident that the bias is negative for any observation(s) with leverage
hii > 1−

√
1−

∑
k ̸=i

ωk

ωi
h2

ik. Positive biases tend to occur for observations that have very small error vari-
ances (relative to those of other observations), especially if they also have very small leverage scores.51

It was previously observed in (1.41) that the leverage hii increases with the squared standardised (Maha-
lanobis) distance of the ith design point from the centre of the design points. If the error variances ωi are
related to the design points X ′

i· by a function that—like the Mahalanobis distance—takes on small values for
‘central’ design points and large values for ‘outlying’ design points, then the hii and ωi will have a strong pos-
itive correlation, with the result that the bias is positive for ‘central’ design points and negative for ‘outlying’
design points.

Figure 3.3 illustrates the relationship between leverage hii, error variance ωi, and bias, in four different
scenarios involving linear regression with a single covariate x. ωi = g(xi) here represents the heteroskedastic
function. The upper left frame (a) shows that, with mild heteroskedasticity (as with homoskedasticity), all
squared residuals are negatively biased. The upper right frame (b) shows that, with uniformly distributed
data52 and more severe heteroskedasticity, some squared residuals can have a slightly positive bias. The
bottom left frame (c) shows that, if there is one outlier having a very large error variance, the corresponding
squared residual is negatively biased but all others have a slight positive bias. The bottom right frame (d)
shows that, if there is one outlier having a very small error variance (relative to other error variances), the
corresponding squared residual may have a moderate positive bias while all others are negatively biased.

(a) g(x) = 1 + x/3, x ∼ U(0, 3) (b) g(x) = x2, x ∼ U(0, 3)

51Bear in mind that, in models with an intercept, all hii ≥ 1
n

.
52To be more precise, the uniformly distributed data in frames (a) and (b) of Figure 3.3 was a discrete sequence of

equally spaced values on the interval [0, 3].
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(c) g(x) = ex, x ∼ N(0, 1) with outlier xi = 5 (d) g(x) = x2, x ∼ U(−5,−3) ∪U(3, 5) with outlier
xi = 10−3

Figure 3.3: Bias(e2
i ) under Four Scenarios

A brief further discussion of the properties of the MSE of the squared OLS residuals, taken as estimators
of the error variances ωi, is provided in Appendix C.1.2.

All of the HCCMEs discussed in §2.3 entail estimating each error variance ωi by multiplying the cor-
responding OLS squared residual e2

i by some constant factor ci;53 in most cases this factor is of the form
ci = (1− hii)−δi , where δi ≥ 1.54 Thus, most of the HCCMEs have the effect of inflating the e2

i by multiplying
them by factors larger than 1. Consequently, the biases of negatively biased squared residuals may shrink
toward 0, but the biases of positively biased squared residuals strictly increase.

Figure 3.4 shows the effect on squared residual biases of six HCCMEs for each of the examples illustrated
in Figure 3.3.55 It is evident that none of the HCCMEs are really successful in eliminating the bias across
different leverage (or error variance) values over all of these scenarios.

53The factor is stochastic in the case of HC6, but this HCCME can be disregarded due to its poor properties, still to
be discussed.

54Only in HC5 and HC7 can δi in principle take on values less than 1.
55HC4m and HC5m are not shown due to being identical to HC2 in all four cases. HC6 is not shown because the

magnitude of its bias is enormous relative to the other HCCMEs. HC7 is not shown due to being identical to HC4 in all
four cases.
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(a) g(x) = 1 + x/3, x ∼ U(0, 3) (b) g(x) = x2, x ∼ U(0, 3)

(c) g(x) = ex, x ∼ N(0, 1) with outlier
xi = 5

(d) g(x) = x2, x ∼ U(−5,−3) ∪U(3, 5) with outlier
xi = 10−3

Figure 3.4: Bias of HCCMEs under Four Scenarios

3.2 New Auxiliary Regression Models for Estimating Error Variances in
Heteroskedastic Linear Regression Models

3.2.1 Model Motivation and Description

In §2.3, various HCCMEs were introduced, most of them constructed by multiplying the squared OLS residuals
e2

i by some bias correction factor ci. In §2.2.1, several FWLS techniques were introduced that use the squared
OLS residual vector e ◦ e as the response in an auxiliary regression model (Davidson and MacKinnon 2004,
Miller and Startz 2019, e.g.,). Both of these broad approaches to handling heteroskedasticity in linear regression
rest on a common premise: that the squared OLS residuals e ◦ e can be used as proxies for the unknown error
variances ω. However, this premise is intrinscally problematic. In fact, there are two problems with it. One is
that e2

i is a biased estimator of ωi. Indeed, as has just been highlighted in §3.1.4, the bias correction factors
used in the HCCMEs may in fact worsen the bias in certain instances. A second problem is that the expectation
of e2

i depends not only on ωi but on all the other ωj , j = 1, 2, . . . , n, j ̸= i (see (1.15)).
The theoretical results on e ◦ e given in §3.1.1 suggest an alternative approach: an auxiliary regression

model that makes use of the true relationship between the moments of e ◦ e and ω, as given in (3.10) and
(3.11), under assumptions A1 and A3-A5. Such an auxiliary regression model, unlike those in §2.2.1, has
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its conditional mean function correctly specified, by definition. It is a regression model with an n-vector of
observed responses e ◦ e, an n× n design matrix M ◦M , and an n-vector of unknown parameters, ω. (The
obvious problem that the number of parameters equals the number of observations will be attended to shortly).

Consider, therefore, the following auxiliary regression model:

e2
i =

n∑
k=1

ωkm
2
ik + ui, i = 1, 2, . . . , n, (3.33)

or, equivalently,
e ◦ e = (M ◦M) ω + u,ω ≻ 0, (3.34)

where u is a random error satisfying E(u) = 0 and Cov(u) as given in (3.11),56 and where ≻ in the
restriction on ω denotes > applied elementwise. This restriction is necessary because ω is a vector of vari-
ance parameters. It must also be assumed that the distribution of u is such that each element of the event
u ≺ −(M ◦M)ω has zero probability, since the response vector e ◦ e is elementwise nonnegative.57

It may be asked whether the right side of (3.34) qualifies as linear in the parameters, given that u depends
on ω through the restriction u ⪰ −(M ◦M)ω. To say that f(ω) = (M ◦M)ω + u is linear in the parameters
is equivalent, in algebraic terms, to saying that it is an affine function, i.e.,

f (cω1 + (1− c)ω2) = cf(ω1) + (1− c)f(ω2) for all ω1,ω2 ∈ Rn and all c ∈ R.
Now, it is easy to show that f(ω) = (M ◦M)ω + u is an affine function. Moreover, since the restriction

on u can be written as f(ω) ⪰ 0, it is clear that the restriction is also affine since both sides of the inequality
are affine functions with respect to ω. The same is true of both sides of the inequality ω ≻ 0. Consequently,
the restrictions on the model in (3.34) are linearity-respecting.

Observe that in this model the conditional mean (M ◦M)ω is correctly specified (see (3.10)), while the
response variables e2

i and explanatory variables m2
ik can be computed from the observed data (y and X). By

fitting the model one obtains an estimate of ω or, equivalently, of Ω.
It is important to note that, because tr(M) = n− p, the matrix M ◦M becomes less important as the

sample size n increases relative to p and in the absence of high-leverage points. For n≫ p, M ◦M resembles
the identity matrix. For instance, in a simulated example with n = 104 where X consists of a column of ones
and three columns of independent U(0, 1) random variables, the diagonal elements of M ◦M all ranged betwen
0.998 and 0.9998, while the off-diagonal elements ranged between 0 and 10−6. In this kind of scenario, the
model equation reduces to e ◦ e ≈ ω + u, and using e ◦ e as a proxy for ω—as the FWLS methods described
in §2.2.1 do—is quite reasonable. Hence, the degree of improvement of the new modelling approach over other
FWLS methods is posited to be meaningful only if there are high-leverage points and/or n is not too large
relative to p.

An alternative way of specifying the auxiliary regression model is to take a log transform of the response e2
i

in (3.34). In this case, the conditional mean and covariance in the model are no longer known exactly in terms
of Ω, but can be expressed in terms of Ω up to a second-order Taylor series approximation. This method is
discussed further in Appendix C.2, but is not pursued further in the body of this thesis.

Fitting of the regression model (3.34) leads immediately to estimates of the error variances ω. The model
is estimated by solving

arg min
ω

||e ◦ e− (M ◦M) ω||22 ,

subject to ω ⪰ 0. (3.35)

In practice, the right side of the constraint ω ⪰ 0 is set to a vector consisting of a very small positive real
number, which can be denoted 0+. The reason for this is computational: if any ω̂i is numerically too close
to zero, the weights in the FWLS estimator will not be computationally finite and the estimator then cannot

56If the normality assumption A5 is replaced with the weaker assumptions A5′ and A6′, the model remains the same
except that Cov(u) is now given by (3.18) and is thus dependent on one additional scalar kurtosis parameter.

57Under A1, A3-A5, u would have a multivariate Gamma distribution location-shifted by (M ◦M)ω (see §3.1.3),
and would thus satisfy this assumption by definition, due to the support of each variable being limited to the positive
domain.
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be computed. Empirical work suggests that 0+ = 10−10 works well in practice, being large enough to avoid
singularities in FWLS computation but small enough not to meaningfully alter the estimates of elements of ω
that lie off the constraint boundary.

An appropriate name for the model in (3.34) is Auxiliary Linear Variance Model (ALVM): ‘auxil-
iary,’ because it supplements the original linear regression model (1.1); ‘linear,’ because it is linear in
its parameters, ω; ‘variance,’ because the purpose of fitting the model is to estimate the error variances,
Var(ϵi) = ωi, i = 1, 2, . . . , n.

The ALVM in (3.34) can indeed be fitted (see §3.3.1 for details). An obvious difficulty, however, is that
the dimensionality of the parameter vector (n) equals the number of observations. It can hardly be expected
that such a model will yield precise variance estimates. Therefore, for the model in (3.34) to be practicable,
the parameter dimensionality must be reduced. The ALVM fitted exactly as in (3.34), without parameter
reduction, can be referred to as the ‘basic’ or ‘näıve’ ALVM.

A natural way of reducing the parameter dimensionality of the auxiliary regression model is by assum-
ing that, just as E(y) is a function of the covariate matrix X in the original linear regression model, so
Var(yi) = Var(ϵi) = ωi is a function of some covariate vector Zi·.

Specifically, assume that,

ωi = g(Zi·; γ), i = 1, 2, . . . , n,
where Zi· is the ith row of an n× p′ predictor matrix Z, γ is a q-vector of unknown parameters (q < n),

and g : R→ R+ is a continuous, differentiable function. In the absence of prior information on the covariates
to include in Z, one could either set Z = X or use some feature selection routine to select a subset of columns
of X to include in Z.

How should the heteroskedastic function g(·) be chosen? Three approaches will be explored herein. The
first is simply to specify the form of g(·) explicitly by assumption. The second is to estimate the form of g(·)
within certain boundaries—that is, making a weaker assumption about its form. The third is to use a clustering
procedure that obviates specification or estimation of g(·). This approach requires the weakest assumptions
and is nonparametric in the sense that a parametric form of g(·) need not be specified.

3.2.2 Explicit Specification of the Heteroskedastic Function

Let g(Zk·; γ) be some known function (continuous, differentiable, and positive real-valued, as indicated above).
Then, the auxiliary regression model (3.34) can be rewritten as,

e2
i =

n∑
k=1

g(Zk·; γ)m2
ik + ui, i = 1, 2, . . . , n,

or, equivalently,
e ◦ e = (M ◦M) g(Z; γ) + u = f(Ξ; γ) + u, (3.36)

where g(Z; γ) = [g(Z1; γ), g(Z2; γ), . . . , g(Zn; γ)], and Ξ is the union of columns of X and Z (since any
columns of X not in Z will still influence the model through M). By replacing the n-vector of parameters ω
with the q-vector of parameters γ, the dimensionality of the parameter space has been reduced from n to q.

Natural choices of g(·) might include the following:

g(Zk·; γ) = Z′
k·γ, (3.37)

g(Zk·; γ) =
(
Z′

k·γ
)2
, (3.38)

or
g(Zk·; γ) = exp

{
Z′

k·γ
}
. (3.39)

In the case (3.37), the auxiliary regression model equation can be written as,

e ◦ e = (M ◦M)Zγ + u. (3.40)
The model (3.40) is still linear in its parameters, γ (a q = p′-vector). It is, therefore, still an ALVM. It

will be termed the linear ALVM, with the prefixed ‘linear’ referring not to its linearity in the parameters γ
(since all ALVMs are linear in this sense) but to its linearity in the auxiliary covariate matrix Z.
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The estimation problem, for the linear ALVM, becomes

arg min
γ

||e ◦ e− (M ◦M) Zγ||22 ,

subject to Zγ ⪰ 0+. (3.41)

Specifying (3.38) or (3.39) as the heteroskedastic function results in a model that is not linear in its
parameter vector, γ. Therefore, in these cases the model is not an ALVM but an Auxiliary Nonlinear Variance
Model (ANLVM), and will require a different estimation method, as discussed in §3.3.1.

3.2.3 Estimating the Heteroskedastic Function

A second approach to the problem of choosing the heteroskedastic function g(·) is to estimate it. This still
requires some assumptions about the form of g(·), but the assumptions are weaker than under the previous
approach described in §3.2.2. This reduces the risk of poor model performance resulting from misspecification
of g(·).

Two broad approaches to estimating g(·) are discussed here. The first is to use a polynomial function that
is penalised in a way analogous to Least Absolute Shrinkage and Selection Operator (LASSO) regression or
Ridge Regression (RR). The second is to use a spline function. Both approaches result in a model that is
linear in its parameters; that is, an ALVM. Thus, a general form of the ALVM—applicable to the linear ALVM
discussed previously, the penalised polynomial and spline ALVMs discussed in this section, and the clustering
ALVM discussed below in §3.2.4—is as follows:

e ◦ e = (M ◦M)Lγ + u = Dγ + u, (3.42)
where L is a known n× q linear predictor matrix that maps the parameters γ onto ω, and D = (M ◦M)L

is an n× q auxiliary design matrix that maps the parameters γ onto the mean response E(e ◦ e).

3.2.3.1 Penalised Polynomial ALVMs
It was assumed previously that g(Zk·; γ) is continuous and differentiable. If this assumption is strengthened to
assert that g(Zk·; γ) is d-times differentiable at the point z = a, then it follows from the Taylor series expansion
about Zk· = a that, in the neighbourhood of point a,

g(Zk·; γ) ≈ P (d)(Zk·; γ) =
∑

|α|≤d

DαP (a)
α! (Zk· − a)α , (3.43)

where

α! = α1!α2! · · ·αp′ !,
(Zk· − a)α = (Zk1· − a1)α1 (Zk2· − a2)α2 · · · (Zks· − ap′ )αp′ ,

DαP (a) = ∂|α|P (a)
∂Zα1

k1·∂Z
α2
k2· · · · ∂Z

αp′

kp′·

,

and
|α| ≤ d denotes {(α1, α2, . . . , αp′ ) : α1 + α2 + · · ·+ αp′ ≤ d}.

Observe—setting a = 0 makes it easier to see—that P (d)(Zk·) is a (p′ − 1)-variate polynomial function of
degree d (p′-variate if Z1 is not a vector of ones). One can therefore reparametrise P (d)(·) as follows:

P (d)(Zk·; γ) =
d∑

j2=0

d−j1∑
j3=0

· · ·
d−j1−j2−···−jp′−1∑

jp′ =0

γj1,j2,...,jp′Z
j2
k2·Z

j3
k3· · · ·Z

jp′

kp′·, (3.44)

or, alternatively,
P (d)(Zk·; γ) = Z(d)γ, (3.45)
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where Z(d) is the n× q matrix whose elements in the kth row are all terms in the expansion (3.44) and, in

this instance, q =
(
p′ − 1 + d

d

)
.58

An advantage of approximating g(·) with P (d)(Zk·; γ) is that it is linear in the parameters. However, one
disadvantage is that Taylor series theory only guarantees the approximation in the neighbourhood of point
a, so (3.44) entails the risky further assumption that the polynomial coefficients are fixed for different values
of a. A second disadvantage is that q, the dimensionality of γ, increases rapidly with d (which must also be
specified).

This second disadvantage can be mitigated by including a penalty term in the model. This penalty term
would penalise against terms of excessive degree but also against overspecification of covariates in Z. Consider
first an L2-norm penalty, as used in RR. The linear predictor matrix (per (3.42)) is L = Z(d) and the estimation
problem (3.35) becomes

arg min
γ

∣∣∣∣e ◦ e− (M ◦M) Z(d)γ
∣∣∣∣2

2
+ λγ′P γ,

subject to Z(d)γ ⪰ 0+, (3.46)

where λ ≥ 0 is a penalty parameter and P is a penalty matrix; in this case P is a q × q identity matrix
modified so that P11 = 0 if the model includes an intercept (so that the intercept is not penalised). The
minimisation problem (3.46) is an instance of Inequality-Constrained Ridge Regression (ICRR) (Toker et al.
2013). This model will be referred to as the L2-norm penalised polynomial ALVM, or the polynomial RR
ALVM.

Alternatively, an L1-norm penalty can be used, as in LASSO regression. The sparsity properties of the
LASSO model tend to result in some coefficients being shrunk to 0, making it useful for feature selection
(Tibshirani 1996). In this case, the penalty term in (3.46) changes so that the problem becomes,

arg min
γ

∣∣∣∣e ◦ e− (M ◦M) Z(d)γ
∣∣∣∣2

2
+ λp ||γ||1 ,

subject to Z(d)γ ⪰ 0+. (3.47)

Here, p is a q-vector of ones, with the first element p1 = 0 if the model includes an intercept (again, to
avoid penalising the intercept). This model will be referred to as the L1-norm penalised polynomial ALVM,
or the polynomial LASSO ALVM.

3.2.3.2 Regression Spline ALVMs
Another approach to estimating g(·) is to use regression splines, which are piecewise functions typically stitched
together at particular knots with a certain degree of smoothness. For simplicity, consider first the case where
Z = [1n z], the n-vector z being a single covariate. Let

g(z; γ) =
q∑

ℓ=1

bℓ(z)γℓ, (3.48)

where bℓ(z), ℓ = 1, 2, . . . , q, are basis functions for g(z). (3.36) now becomes

e ◦ e = (M ◦M) Bγ + u, (3.49)
where γ is a q-vector of unknown parameters, and B(= L) is an n× q basis matrix with k, ℓth element

bℓ(zk). Perperoglou et al. (2019) gives the recursive formulas used to calculate the basis functions.
Model (3.49) may be termed the B-spline ALVM. Its estimation problem is

arg min
λ

||e ◦ e− (M ◦M) Bγ||22 ,

subject to Bγ ⪰ 0+. (3.50)

58Observe that P (d)(Zk·; γ) is equivalent to (3.38) if d = 2, although parametrised differently.
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Wood (2017) notes that cubic splines are most commonly used in practice, i.e. where each piece of the
spline is a degree 3 polynomial. The critical settings for a B-spline are the number and locations of the knots.
In a cubic spline with intercept, the degrees of freedom q is equal to k + 3 + 1, where k is the number of knots.
B-spline fitting procedures, such as the bs function in the R package splines (R Core Team 2022), will by
default set the knot locations at suitable quantiles of the predictor variable.

A second univariate regression spline technique is the smoothing spline (Wood 2017, Perperoglou et al.
2019). In this model, the knot locations are the n ordered observations of z; this includes two boundary knots
and so the parameter dimensionality is n+ 2 for a cubic smoothing spline. An ordinary cubic spline with
the observations as knots would completely interpolate the data and be grossly overfitted. With a smoothing
spline, however, the objective function includes a smoothness penalty imposed on the squared second derivative
of the spline. This is captured in a q × q symmetric penalty matrix P and the estimation problem becomes

arg min
λ

||e ◦ e− (M ◦M) Bγ||22 + λγ′P γ,

subject to Bγ ⪰ 0+, (3.51)

where λ ≥ 0 is a hyperparameter controlling the intensity of the smoothness penalty. The basis matrix B
is again the linear predictor matrix L, with reference to (3.42). Smoothing splines can be fit in R using the
smooth.spline function of the stats package (R Core Team 2022).

The B-spline and smoothing spline ALVMs described above can only be used with a single covariate z.
There are other spline methods, however, such as thin-plate splines and tensor product smooths, that can be
used in a multi-dimensional setting (Wood 2017). Only the thin-plate spline is considered in this research
project. In general, a thin-plate spline seeks to estimate g from n observations (yk,Xk·), k = 1, 2, . . . , n, by
finding

arg min
g

||y − g||22 + λJm,p′ (g), (3.52)

where g = [g(X1·), g(X2·), . . . , g(Xn·)]′ and Jm,p′ (g) is a ‘wiggliness’ penalty defined as

Jmd =
∫
Rp′

∑
ν1+ν2+···+νp′ =m

m!
ν1!ν2! · · · νp′ !

(
∂mg

∂xν1
1 ∂xν2

2 · · · ∂x
νp′

p′

)2

dx1dx2 · · · dxp′ . (3.53)

Here, p′ is the number of covariates and m is the order of derivatives in the penalty, which would be 2 in
the default case of a cubic spline.

The computational cost of solving (3.52) increases rapidly with p′, so Wood (2003) proposes a dimension-
reduction approach leading to an approximate solution. The reduced problem can still be expressed in the
usual linear form,

arg min
γ

||e ◦ e− (M ◦M)Lγ||22 + λγ′P γ,

subject to Lγ ⪰ 0+. (3.54)

However, the procedure for computing L and P for the thin-plate spline ALVM is highly technical. The
theory is summarised in Appendix C.3. In practice, these matrices can be computed with the help of the
functions in the R package mgcv (Wood 2003).

3.2.4 A Nonparametric Approach to the Heteroskedastic Function Using Clustering

Another approach is possible that is nonparametric in the sense that it does not require either specification or
estimation of the functional form of g(·). If two points Zj· and Zk· are near to each other in Rp′ (that is, the
distance from Zj· to Zk· is small, in terms of some distance metric), it follows from the differentiability of g(·)
that the values of g(Zj·) and g(Zk·) are also similar:

Zj· ≈ Zk· =⇒ g(Zj·; γ) ≈ g(Zk·; γ)⇔ ωj ≈ ωk. (3.55)
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Hence, the dimensionality of (3.34) can be reduced by making the simplifying—and intuitively appeal-
ing—assumption that ωj = ωk for observations sufficiently close to each other in Rp′ . To determine which
observations are ‘sufficiently close’ in an empirical setting, a clustering algorithm can be used, with observa-
tions assigned to the same cluster assumed to have equal error variances.

Specifically, assume that the n rows of Z—which is assumed to be standardised and not to include a
column of ones—can be assigned to nc groups (nc < n). The group assignments are made in such a way that
ωk = γC(k), k = 1, 2, . . . , n, where C(k) ∈ {1, 2, . . . , nc} denotes the group number to which the kth observation
(or variance) belongs, k = 1, 2, . . . , n. γ is an nc-vector of unknown parameters (hence q = nc in this case).

In practice, agglomerative hierarchical clustering can be used to assign the Zk· observations to groups
(clusters) that are sufficiently compact to make the assumption of within-group homoskedasticity plausible.
An agglomerative hierarchical clustering procedure runs as follows (Liu 2016):

1. Start with n clusters, each containing a single observation, and therefore an n× n symmetric matrix of
distances;

2. Search the distance matrix for the nearest pair of clusters. Let this distance between the ‘most similar’
clusters U and V be denoted by dUV ;

3. Merge clusters U and V , forming a new cluster, labelled UV . Update the distance matrix, deleting
distances involving U and V and including distances involving UV ;

4. Repeat steps 2 and 3 a total of n− 1 times. This will result in all variables being in a single cluster at
the end of the algorithm.

In steps 2 and 3, a distance function is required to evaluate between-cluster distances. The distance
function is chosen according to the desired ‘linkage rule.’ Common choices include the average linkage rule,
single linkage rule (a.k.a. ‘nearest neighbour’), and complete linkage rule (a.k.a. ‘furthest neighbour’). A
fourth option is to use Ward, Jr.’s (1963) method, which at each step combines the two clusters such that the
resulting increase in the overall within-cluster sum of squared distances is minimised. Liu (2016) asserts that
the average linkage and Ward rules perform best empirically, while James et al. (2013) express a preference
for either complete or average linkage. The complete linkage rule is attractive in the present context, because
the maximum distance between two would-be merged clusters represents the least plausible instance of the
equality-of-variance assumption, per (3.55). Hence, the complete linkage rule is the default option considered
here.59

Define s(j) as the index set of observations belonging to the jth cluster, j = 1, 2, . . . , nc. Hence, for example,
if C(1) = C(4) = C(11) = 2 and C(k) ̸= 2 for all other k ∈ {1, 2, . . . , n}, then s(2) = {1, 4, 11}. The distance
between the kth and ℓth clusters, using the complete linkage rule, can be written as,

Dkℓ = max
i∈s(k),j∈s(ℓ)

d(Zi·,Zj·), (3.56)

where d(Zi·,Zj·) denotes the Euclidean distance between points Zi· and Zj·.60

In practice, of course, the agglomerative hierarchical clustering procedure is normally stopped (‘cut’) at
some point so that the final number of clusters is not 1 but some integer nc ∈ {1, 2, . . . , n}. The problem of
selecting nc is addressed in §3.3.2.2. In principle, however, there is a trade-off in that a smaller nc means fewer
parameters to be estimated whereas a larger nc means observations within a cluster are closer together (and
thus equality-of-variance assumptions are more reasonable).

Figure 3.5 shows an animation of the agglomerative hierarchical clustering algorithm on a two-dimensional
data set with n = 20 observations and nc = 8 clusters. Click the icon beneath the plot to play the animation.
(Note that the animation should work in Adobe Acrobat but may not work in all PDF readers).

59Preliminary simulations suggested that the choice between average, complete, or Ward linkage does not drastically
affect the results.

60Euclidean distance is appropriate if Z has been standardised. Otherwise, Mahalanobis distance may be preferable.
If there are categorical predictors in the data, a hybrid distance metric such as Gower distance (Bruce and Bruce 2017)
may be used.
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Figure 3.5: Animation of Agglomerative Hierarchical Clustering with Complete Linkage

By substituting ωk = γC(k) into (3.33), the auxiliary model equation becomes,

e2
i =

n∑
k=1

γC(k)m
2
ik + ui. (3.57)

This can be referred to as the clustering ALVM. By introducing further notation, however, the model
equation can be written in the form of (3.42). Define I as the n× nc matrix with (i, j)th element

Iij =
{

1 if i ∈ s(j)
0 otherwise

. (3.58)

(3.57) can then be rewritten as

e2
i =

nc∑
j=1

γj

∑
k∈s(j)

m2
ik + ui, i = 1, 2, . . . , n,

or, in matrix form,
e ◦ e = (M ◦M) Iγ + u. (3.59)

In terms of (3.42), the linear predictor matrix is L = I. The estimation problem can be stated as

arg min
γ

||e ◦ e− (M ◦M) Iγ||22 ,

subject to Inc γ ⪰ 0+, (3.60)

where Inc is the nc × nc identity matrix.61

The clustering approach to dimensionality reduction can alternatively be used to construct a nonlinear
model (ANLVM). Replace γ in (3.59) with γ ◦ γ. The kth error variance ωk is thus modelled as γ2

C(k), and
no inequality constraint is required. The price of eliminating the constraint, however, is nonlinearity in the

61If I were used instead of Inc in the constraint, the same constraint would be repeated for every row corresponding
to a given cluster.
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parameters. The model therefore becomes an ANLVM; indeed, it can be written in the form of (3.36), with
g(Zk·; γ) = (Z′

k·γ)2 and Z = I. Thus, the model equation is,

e2
i =

nc∑
j=1

γ2
j

∑
k∈s(j)

m2
ik + ui =

n∑
k=1

(
I ′

kγ
)2
m2

ik + ui. (3.61)

3.3 Applying the Auxiliary Variance Models: Fitting, Tuning, and Feature
Selection

3.3.1 Fitting the Auxiliary Variance Models

The method used to fit the variance model will depend on whether or not the dimension-reduced model is
linear in the parameters (an ALVM) or nonlinear (an ANLVM). In the case of an ALVM, the method further
depends on whether or not the model includes a penalty term, and if so, what form that penalty takes.

3.3.1.1 Inequality-Constrained Least Squares
The estimation problem (3.35) for the basic or näıve ALVM in (3.34) is a least squares problem with a linear
inequality constraint; that is, an Inequality-Constrained Least Squares (ICLS) problem.

An ICLS problem is of the form

arg min
b

||y −Xb||22 ,

subject to Ab ⪰ c, (3.62)

where b is a q-vector, y is an n-vector, and c is an m-vector.62 Note that nonnegative least squares (NNLS)
is a special case of ICLS where A = Iq and c = 0. NNLS is not applicable to any of the ALVMs herein due
to A (apart from the clustering model) not being the identity matrix and due to c being 0+ rather than 0 (as
discussed in connection with (3.35)).

For the basic ALVM, if the ICLS estimator does not touch the boundary of the constraint—in other words,
if the OLS estimator of ω from the model (3.34) has all positive elements—and there are no high-leverage
points with hii ≥ 1/2 (which usually holds),63 then the ALVM is trivial in the sense that its predicted response
vector ê ◦ e is exactly its response vector e ◦ e. To see this, observe that the model’s projection matrix—the
matrix H that satisfies ê ◦ e = H(e ◦ e)—is (M ◦M) [(M ◦M)′(M ◦M)]−1 (M ◦M)′. But any positive
definite symmetric matrix A has the property that A(A′A)−1A′ = I.64

It remains only to determine under what conditions M ◦M is positive definite. A matrix is said to be
diagonally dominant if the absolute value of each diagonal element is strictly greater than the sum of the
absolute values of the off-diagonal elements in its row. A diagonally dominant matrix with positive diagonal
entries is positive definite (Greenbaum 1997).65

Now, all elements of M ◦M are nonnegative by definition, so it is not necessary to work with absolute
values. Moreover, the diagonal elements m2

ii = (1− hii)2 are strictly positive apart from a rare trivial case

discussed in §1.1.10.1. Moreover, the identity mii =
n∑

j=1

m2
ij implies that the sum of off-diagonal elements in

the ith row of M ◦M is mii −m2
ii. Thus, M ◦M is diagonally dominant if m2

ii > mii −m2
ii, which simplifies

62The use of X and y here are per convention and are not intended to refer to X and y in the classical linear regression
model.

63Since tr(H) = p, the hii values average to p/n, and thus a value greater than 1/2 would be extreme if n≫ p.
64Proof:

A(A′A)−1A′ = A(AA)−1A

= AA−1A−1A

= I,

provided that A−1 exists, which it does if A is positive definite.
65Note that this is a sufficient but not a necessary condition for positive definiteness; thus M ◦M may be positive

definite even if it is not diagonally dominant.
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to the condition that mii > 1/2, or equivalently, hii < 1/2, for i = 1, 2, . . . , n. Thus, in the absence of any
observations for which hii ≥ 1/2, M ◦M is positive definite, and the OLS estimator of (3.34) is trivial in the
aforementioned sense.

Empirical results suggest that the ICLS estimator (3.35) very often lies on the constraint boundary, in
which case the estimator is nontrivial. The estimation problems (3.41) (for the linear ALVM model) and (3.60)
(for the clustering ALVM) are also ICLS problems.

The lsqlincon function in the R package pracma (Borchers 2022) is one example of an ICLS solver in R.
Since ICLS can be expressed as a Quadratic Programming (QP) problem, QP solvers such as those mentioned in
§3.3.1.3 can also be used. Closed-form expressions for the ICLS estimator are given in Paula (1999) and Toker
et al. (2013), but these do not allow circumvention of an algorithmic solver, since the closed form expressions
require knowledge either of the Lagrangian vector (itself the solution to the dual problem, a QP problem) or
at least knowledge of which constraints are satisfied at the boundary.

3.3.1.2 Inequality-Constrained Ridge Regression (ICRR)
An Inequality-Constrained Ridge Regression (ICRR) problem is of the form

arg min
b

||y −Xb||22 + λb′P b,

subject to Ab ⪰ c, (3.63)

where b is a q-vector, P is a q × q penalty matrix, y is an n-vector, and c is an m-vector. The estimation
problem (3.46) for the L2-norm penalised polynomial ALVM is of the form (3.63), as are the estimation
problems (3.51) and (3.54), for the smoothing spline and thin-plate spline ALVMs, respectively.

In the usual definition of Ridge Regression such as that found in Hastie et al. (2009), P is an identity
matrix. However, P is not the identity matrix in the polynomial RR ALVM as parametrised here (since the
upper left element is P11 = 0, due to the non-penalised intercept being the first element of γ), and is also not
an identity matrix in the smoothing spline ALVM or the thin-plate spline ALVM.

Toker et al. (2013) give a closed-form expression for the ICRR estimator. However, as with the ICLS
estimator, computing the expression depends on knowledge of which constraints (if any) are satisfied at the
boundary, and thus an algorithmic solver is still required. There does not seem to be an R function specifically
tailored to solving (3.63), but since it is a special case of a QP problem, any of the quadratic programming
solvers mentioned below in §3.3.1.3 can be used.

3.3.1.3 Quadratic Programming (QP)
Quadratic Programming (QP) problems are a well-studied class of optimisation problem (Boyd and Vanden-
berghe 2004, Best 2017). A QP problem can be written as

arg min
b

1
2b′Qb− d′b,

subject to Ab ⪰ c, (3.64)

where Q is a real-valued q × q symmetric positive definite or semi-definite matrix, d is a real-valued q-vector,
and the parameter vector b, constraint matrix A and constraint vector c are as defined previously.

It will be shown that all of the ALVMs discussed in §3.2.1, §3.2.2, and §3.2.3 (basic, linear, L2- and L1-norm
penalised polynomials, B-spline, smoothing spline, thin-plate spline, clustering model) can be written as QP
problems. First, it was noted already that, for all of these models, the model equation can be written in the
form of (3.42),

e ◦ e = Dγ + u,

where L is an n× q ‘linear predictor matrix’ that projects the parameter γ onto the error variances ω, and
D = (M ◦M)L. The estimation problem for all of these models, with the exception of the polynomial model
with L1-norm penalty, can be written as
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arg min
γ

||e ◦ e−Dγ||22 + λγ′P γ,

subject to Aγ ⪰ 0+, (3.65)

where, for models without a penalty term, P is a zero matrix. Note that, for all ALVMs except the
clustering ALVM, A = L, the linear predictor matrix. For the clustering ALVM, as noted earlier, A = Iq.66

The objective function can be expanded and simplified as follows:

(e ◦ e−Dγ)′ (e ◦ e−Dγ) + λγ′P γ = (e ◦ e)′(e ◦ e)− 2(e ◦ e)′Dγ + γ′(D′D + λP )γ.

Dropping the (e ◦ e)′(e ◦ e) term and dividing the expression by 2 (neither of which affect minimisation
with respect to γ), the problem becomes

arg min
γ

1
2γ′(D′D + λP )γ − (e ◦ e)′Dγ,

subject to Aγ ⪰ 0+, (3.66)

which can be recognised as a QP problem with b = γ, Q = D′D + λP , d = D′(e ◦ e), A = A, and c = 0+.
The L1-norm penalised polynomial or LASSO ALVM does not follow the form in (3.65). This too can

be expressed as a QP problem, but it requires a reparametrisation to accommodate the absolute value form,
discussed in Gaines et al. (2018). Let γ = γ+ − γ−, where γ+ and γ− are, respectively, the positive and
negative parts of γ.67 It follows that the L1 norm of γ is ||γ||1 = γ+ + γ−. The objective function in (3.46)

(but with L1 norm penalty) is then modified as follows and written in terms of the 2q-vector γ+− =
[

γ+

γ−

]
:

||e ◦ e−Dγ||22 + λp ||γ||1
=
∣∣∣∣e ◦ e−D

(
γ+ − γ−)∣∣∣∣2

2
+ λp

(
γ+ + γ−)

=
∣∣∣∣∣∣∣∣e ◦ e− [D −D]

[
γ+

γ−

]∣∣∣∣∣∣∣∣2
2

+ λ
[
p′,p′] [γ+

γ−

]
=
(
e ◦ e− [D −D] γ+−)′ (

e ◦ e− [D −D] γ+−)+ λ
[
p′,p′]γ+−

= (e ◦ e)′ (e ◦ e)−
(
2 (e ◦ e)′ [D −D] + λ

[
p′,p′])γ+− + γ+−′

[
D′

−D′

]
[D −D] γ+−.

Dropping the first term and dividing by 2 yields,

−
(

(e ◦ e)′ [D −D] + λ

2
[
p′,p′])γ+− + 1

2γ+−′
[

D′D −D′D
−D′D D′D

]
γ+−.

Minimising this objective function with respect to γ+− is thus a QP problem with

Q =
[

D′D −D′D
−D′D D′D

]
,

d =
[

D′

−D′

]
(e ◦ e) + λ

2

[
p
p

]
,

and inequality constraint [
A −A

I2q

]
≻
[

0+
n

02q.

]
. (3.67)

66One could use the linear predictor matrix L = I as the constraint matrix A in the clustering ALVM as well, but
this would result in some of the scalar inequalities being repeated.

67Thus, for example, if γ = [2, 0,−3]′, then γ+ = [2, 0, 0]′ and γ− = [0, 0, 3]′.
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The upper n rows of the (n+ 2q)× 2q constraint matrix are derived through the reparametrisation as
follows:

Aγ = A
(
γ+ − γ−) = [A −A] γ+−.

The upper n elements of the constraint vector c are 0+
n , representing the requirement that the variance esti-

mates ω̂ be positive. The last 2q rows of the constraint, I2q ≻ 02q, reflect that the elements of γ+− =
[
γ+′,γ−′]′

are by definition nonnegative.
As was noted previously, there is an absence of solvers specifically for ICRR in R software; thus, for the

models that include L2-norm penalties the best option is to use quadratic programming solvers. These are
numerous in R software. There is the solve.QP function of the quadprog package (Turlach et al. 2019), the
QP.solve function of the quadprogpp package (Noorian 2015), the qpOASES plugin (Schwendinger 2020) for
the ROI package (Theußl et al. 2020), and the solve_osqp function of the osqp package (Stellato et al. 2021),
which is an R implementation of the Operator Splitting Quadratic Program solver (Stellato et al. 2020).

As for the L1-norm-penalised polynomial model, the buildQP function in the R package quadprogXT
(Harlow 2020) automates the reparametrisation process to convert the estimation problem into a QP problem.
The lasso.ineq function in the R package PACLasso (Paulson 2019) solves Inequality-Constrained LASSO
(ICLASSO) regression problems directly, without requiring reparametrisation into a quadratic programming
problem, using a method described in James et al. (2020).

3.3.1.4 Maximum Quasi-Likelihood Estimation
As stated above, (3.36) would be nonlinear in γ—thus a ANLVM, not an ALVM—if g(·) is assumed to take a
form like (3.38) or (3.39). The cluster model (3.59) is also an ANLVM if γ is replaced with γ ◦ γ as expressed
in (3.61).

One method of fitting such ANLVMs is Maximum Quasi-Likelihood (MQL) estimation, as discussed in §2.3
of Seber and Wild (2003), following McCullagh (1983). The quasi-likelihood estimator has properties akin to
those of a ML estimator but is based on less stringent conditions. MQL estimation makes no distributional
assumptions but requires both the conditional mean vector and the conditional variance-covariance matrix of
the response to be known in terms of the parameters to be estimated. This makes it particularly suitable for
estimating an ANLVM, because the conditional mean vector and variance-covariance matrix of e ◦ e are known
in terms of ω under assumptions A1 and A3-A5 (see (3.34) and (3.11)),68 and thus also in terms of γ after
reparametrisation in terms of the heteroskedastic function g(·).

For simplicity, write f(γ) for the conditional mean function f(Ξ; γ) in (3.36). Further, write V (γ) for the
conditional covariance function in (3.11), Cov(u) = Cov(e ◦ e). This variance-covariance matrix is a function
of γ in this case since Ω = diag {ω} and ω = g(Z; γ).

The log-quasi-likelihood function of γ, ℓ(γ), is defined by the system of partial differential equations,

∂ℓ(γ)
∂γ

= V −1(γ) (e ◦ e− f(γ)) . (3.68)

The MQL estimator γ̂MQL is obtained by setting (3.68) equal to 0 and solving for γ, which is equivalent
to solving the system,

F ′
•(γ)V −1(γ) [e ◦ e− f(γ)] = 0, (3.69)

where F•(γ) = ∂f(γ)
∂γ′ .69

This is also equivalent to minimising the weighted sum of squares
S(γ,V (γ)) = [e ◦ e− f(γ)]′ V −1(γ) [e ◦ e− f(γ)]. An approximate solution to (3.69) can be obtained
using a Gauss-Newton method based on the linear Taylor expansion

f(γ̂MQL) ≈ f(γ(a)) + F•(γ(a))
(
γ̂MQL − γ(a)) , (3.70)

68Even if A5 is relaxed to A5′, the covariance matrix is known in terms of ω and one additional scalar parameter ϕ;
see §3.1.2.

69The prime in F ′
•(γ) denotes matrix transpose, not a derivative.
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for γ̂MQL about an approximation γ(a). By substituting (3.70) into (3.69), and approximating F•(γ) and
V (γ) by, respectively, F•(γ(a)) and V (γ(a)), one arrives at an updating equation:

γ(a+1) − γ(a) ≈
(
F•(γ(a))′V (γ(a))−1F•(γ(a))

)−1
F•(γ(a))′V (γ(a))−1 [e ◦ e− f

(
γ(a))] . (3.71)

Seber and Wild (2003, §2.8.8) alternatively suggest a ‘nested’ updating procedure:

γ(a,b+1) − γ(a,b) =
(
F•(γ(a,b))′V (γ(a))−1F•(γ(a,b))

)−1
F•(γ(a,b))′V (γ(a))−1 [e ◦ e− f

(
γ(a,b))] . (3.72)

This scheme entails using γ(a,1) = γ(a) and iterating (3.72) until convergence. One then iterates (3.71),
but with γ(a) replaced with lim

b→∞
γ(a,b).

For a model with an assumed form of g(·) such as (3.38) or (3.39), f(γ) is an n-vector with

ith element fi(γ) =
n∑

k=1

g(Z′
kγ)m2

ik. It follows that F•(γ) is an n × q matrix with (i, j)th element

∂fi(γ)
∂γj

=
n∑

k=1

∂g(Z′
kγ)

∂γj
m2

ik.

For the cluster model (3.59), f(γ) is an n-vector with ith element fi(γ) =
r∑

j=1

γ2
j

∑
k∈s(j)

m2
ik. It follows that

F•(ξ) is an n× r matrix with (i, j)th element ∂fi(γ)
∂γj

= 2γj

∑
k∈s(j)

m2
ik.

In practice, γ is estimated by iterating (3.71) until some convergence criterion is reached. In some instances,
the algorithm may not converge, or may not converge to the global minimum of S(γ,V (γ)). Seber and Wild
(2003, §15.2.1) note that, for classical Gauss-Newton methods, a good initial value is crucial to achieving
convergence (and, one might add, a global optimum). Accordingly, it is suggested here to implement the
estimation procedure over a grid of initial parameter vectors or a set of initial parameter vectors generated
randomly from the uniform distribution.

3.3.1.5 Generalised Estimation Procedures
The MQL estimation procedure for ANLVMs made use of the fact that Cov(u) is known in terms of γ. However,
the methods used to fit ALVMs (ICLS, ICRR, and QP) do not make use of any information about Cov(u).
Knowledge of the form of Cov(u) is thus wasted in the QP estimation method for ALVMs outlined in §3.3.1.3.

Recall from §1.1.6.2 that the WLS estimator is the BLUE of β under heteroskedasticity. The same argument
implies that the Generalised Least Squares (GLS) estimator is the BLUE of β under heteroskedasticity and
autocorrelation (the only difference between WLS and GLS being that, in the latter case, W = Ω−1 is not
diagonal).

Why is this relevant here? It follows from (3.11) that Cov(u) (also denoted by V (γ)) is non-diagonal: the
ALVM errors u are both heteroskedastic and autocorrelated. Although the inequality constraint complicates
derivation of the BLUE of γ in an ALVM, the argument of §1.1.6.2 at least implies that a GLS approach to
fitting an ALVM—which exploits the known form of Cov(u), as the MQL procedure does—might improve the
precision of estimation of γ.

This motivates the use of Inequality-Constrained Generalised Least Squares (ICGLS). Since V (γ) is known
only in terms of unknown parameters γ, ICGLS is infeasible, just like WLS in a heteroskedastic linear regression
model. What is really needed is Feasible Inequality-Constrained Generalised Least Squares (FICGLS), where
V (γ) is replaced with an estimator, V̂ (γ). If a penalty term is present, the model should be estimated by
FICGRR (feasible inequality-constrained generalised ridge regression).

A natural choice for an estimator of V (γ) is the plug-in estimator,

V̂ (γ) = V (γ̂). (3.73)
Methods for ICGLS estimation are discussed in Werner (1990). The squared-error loss function in this

instance changes from ||e ◦ e−Dγ||22 to
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(e ◦ e−Dγ)′ V −1(γ) (e ◦ e−Dγ) . (3.74)
For the ALVMs that have been introduced (other than the L1-norm penalty polynomial model), replacing

V −1(γ) in the loss function with an estimator ̂V −1(γ) results in a QP problem in γ. The problem is like (3.66)
but with Q = D′ ̂V −1(γ)D + λP and d = D′ ̂V −1(γ)(e ◦ e).

If the plug-in estimator (3.73) is to be used, a multi-step procedure is required to estimate γ, along the
lines of the FWLS procedures for estimating β discussed in §2.2.1. A two-step FICGLS procedure would be:

1. Obtain a preliminary estimate of γ, γ̂(0), using ICLS, ICRR, or QP as appropriate.

2. Compute the covariance matrix estimate V̂ (γ)
(1)

= V (γ̂(0)).
3. Obtain an updated parameter estimate γ̂(1) by solving the QP (3.66) as modified above.

An iterative version of the procedure would entail repeatedly updating the covariance matrix estimate and
re-estimating γ until some convergence criterion is reached (or the maximum allowable number of iterations is
exhausted):

1. Obtain a preliminary estimate of γ, γ̂(0), using ICLS, ICRR, or QP as appropriate.

2. Compute the covariance matrix estimate V̂ (γ)
(j)

= V (γ̂(j−1)), for j = 1.
3. Obtain an updated estimate γ̂(j), for j = 1, by solving the QP (3.66) as modified above.
4. Repeat steps (2) and (3), for j = 2, 3, . . . , updating the parameter estimate and covariance matrix esti-

mate in turn until some convergence criterion is satisfied.

The function orgls in the R package goric (Gerhard and Kuiper 2021) fits ICGLS models directly.
Other generalisation approaches could incorporate a weight matrix in the first estimation step. For example,

(3.4) implies that, under A1-A4 (homoskedasticity), Cov(e ◦ e) ∝M ◦M . Thus, in the absence of information
regarding the presence or degree of heteroskedasticity, one could use (M ◦M)−1 as a weight matrix in the loss
function (3.74) in place of V (γ)−1 already in the first estimation step. Since D = (M ◦M)L, in this case the
matrix and vector of the quadratic programming problem simplify to Q = L′(M ◦M)L and d = L′(e ◦ e).
Notice that the diagonal elements of M ◦M are (1− hii)2, i = 1, 2, . . . , n. Thus, disregarding the effect of the
off-diagonal elements (most of which will usually be close to 0), this generalisation approach is equivalent to
weighted least squares with weights (1− hii)−2—the adjustment factor used in the HC3 HCCME.

Yet another weighting approach can be proposed for the case where the purpose of estimating ω is specifi-
cally to perform inference on one element of β, say βj , j ∈ {1, 2, . . . , p}. Consider the deviation of a sandwich
estimator (based on an HCCME) from (1.6),

Ĉov(β̂)− Cov(β̂) =
(
X ′X

)−1
X ′∆Ω̂X

(
X ′X

)−1
, (3.75)

where ∆Ω̂ = Ω̂−Ω. The matrix X (X ′X)−1 is sometimes referred to as the ‘bread’ of the sandwich
estimator. If the bread matrix is denoted B, with (i, j)th element bij , then the jth diagonal element of the

deviation matrix (3.75) is given by
n∑

i=1

b2
ijδi, where δ is the diagonal of ∆Ω̂. Thus, the extent to which the

sandwich estimator based on Ω̂ deviates from the true Var(β̂j)—the square root of which is the standard error
used in a quasi-t-test statistic for inference on βj—depends not only on the δi but also on the squares of the
jth column of the bread matrix B. This implies that, to achieve precise inference on βj , it is more important to
accurately estimate the error variances for observations with large b2

ij . To prioritise these observations in the
estimation procedure, the auxiliary model can be fitted using inequality-constrained weighted least squares,
with weight matrix W = diag

{
b2

1j , b
2
2j , . . . , b

2
nj

}
.

Evaluation of the performance of these weighted estimation procedures is left for further research.

3.3.2 Tuning of Hyperparameters in an Auxiliary Linear Variance Model

3.3.2.1 The Penalty or Wiggliness Parameter λ

The penalised polynomial ALVM (3.46) (either with L2-norm penalty or L1-norm penalty) has a hyperparam-
eter λ ≥ 0 that governs the degree of shrinkage, that is, the degree of penalty imposed on the magnitude of γ
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(excluding the first element, i.e., the intercept). The univariate smoothing spline (3.51) and the multivariate
thin-plate spline (3.54) likewise have a hyperparameter λ ≥ 0 that imposes a penalty on the ‘smoothness’ or
‘wiggliness’ of the spline, as measured by the magnitude of second and/or higher-order derivatives.

An appropriate choice of λ is critical to the performance of these models. An excessively small penalty
results in overfitting, whereas an excessively large penalty results in underfitting.

Two methods that are widely used to tune such continuous penalty parameters—both shrinkage penal-
ties in regression models and smoothness penalties in spline models—are K-fold Cross-Validation (CV) and
Generalised Cross-Validation (GCV) (Hastie et al. 2009, Wood 2017). The former authors remark that the
shrinkage penalty parameter in RR ‘should be adaptively chosen to minimise an estimate of expected prediction
error’ (Hastie et al. 2009, p. 69)

K-Fold Cross-Validation
K-fold CV entails randomly partitioning the data into K subsets of roughly equal size. For each k = 1, 2, . . . ,K,
the model is trained on the kth training fold, consisting of all observations not in the kth subset. A performance
metric (usually the squared-error loss) is computed using this model but using responses obtained from the
kth subset (called the kth test fold). The performance metric is then averaged across all K folds. In this way,
the model is being evaluated only on its predictive performance on out-of-sample data, without needing to
set aside any portion of the data as ‘test data.’ It is generally considered best to use K = 5 or K = 10 folds
(Hastie et al. 2009) to achieve a balanced bias/variance trade-off, although the special case of ‘leave-one-out’
CV (K = n) does have some useful applications.

Cross-Validation Modelling Procedure
How to compute the observed and predicted test response values for the ALVMs is nontrivial and requires
some discussion. First, some new notation is needed. Let ytrain and Xtrain be subsets of y and X, respectively,
corresponding to the observations in some arbitrary training fold. Similarly, let ytest and Xtest be subsets of y
and X, respectively, corresponding to the observations in the test fold that is the counterpart of the training
fold just mentioned. Let etrain and etest be subsets of e analogous to ytrain and ytest. Define Ztrain and Ztest in a
similar manner, and let Mtrain = I −Xtrain(X ′

trainXtrain)−1X ′
train and Mtest = I −Xtest(X ′

testXtest)−1X ′
test.

Further, let β̆train = (X ′
trainXtrain)−1X ′

trainytrain and β̆test = (X ′
testXtest)−1X ′

testytest be estimates of β
computed from applying OLS to only the training data and only the test data, respectively. Similarly, let
ĕtrain = ytrain −Xtrainβ̆train and ĕtest = ytest −Xtestβ̆test be the OLS residuals computed from the models
fitted to the training data and test data, respectively.

In terms of the above notation, the procedure for fitting an ALVM to a training fold is straightforward.

1. Form the predictor matrix Ztrain by partitioning Z or, in the case that Z was formed by applying a
feature selection procedure to X, by applying this feature selection procedure to Xtrain.70

2. Fit the ALVM,
ĕtrain ◦ ĕtrain = (Mtrain ◦Mtrain) Ltrainγ + ŭtrain, (3.76)

where Ltrain is a linear predictor matrix and ŭtrain is a random error vector. Ltrain would be computed
from the training set of auxiliary covariates, Ztrain, using one of the methods discussed in §3.2.2-§3.2.4.

Fitting the ALVM (3.76) yields γ̆train, an estimate of γ, which is then used to predict the ALVM response
vector for the test fold.

Obtaining predicted responses from the test fold is less straightforward than it first appears, however. A
crucial principle in K-fold CV emphasised by Hastie et al. (2009) is that the training of the model must not
be influenced in any way by the observations in the test fold. Consequently, the entire modelling procedure,
including pre-processing or feature selection steps, must be performed on each training fold as part of the CV
algorithm.

Two distinct procedures suggest themselves for computing the value of a loss function using the test fold.
The first method may be termed the ‘partitioning of residuals’ technique and uses etest ◦ etest, a subset of the
squared residuals obtained from the OLS fit on the full data set of n observations. In this instance the steps
to compute the loss function are as follows:

70The feature selection procedure may entail fitting of ALVMs for best subset selection, in which case this step is
contained within the next step.
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1. Use the training estimate of γ, γ̆train, to predict the ALVM responses for the full data set of n observa-
tions, ê ◦ e = (M ◦M) Lγ̆train.

2. Take a subset of ê ◦ e,
(
ê ◦ e

)
test

, using the indices of the test fold.

3. Compute the total squared-error loss for this test fold,
[
etest ◦ etest −

(
ê ◦ e

)
test

]′ [
etest ◦ etest −

(
ê ◦ e

)
test

]
.

4. Aggregate the result of the previous step across all K test folds and average across the n observations,
obtaining

LossCV(λ) = n−1
n∑

i=1

(
e2

i − ê2
i

)2
, (3.77)

where ê2
i is the predicted value of the ith squared residual extracted from

(
ê ◦ e

)
test

for the test fold
containing the ith observation.

The main advantage of the partitioning of residuals technique is that it is simple to implement and allows
the test folds to be arbitrarily small; even leave-one-out CV is possible. Its main shortcoming is that, because
the squared OLS residuals are autocorrelated under both homoskedasticity and heteroskedasticity (see (3.5)
and (3.14)), and because the training observations ytrain and Xtrain are used both in the training model (to
obtain ĕtrain ◦ ĕtrain) and in the full model (of which etest ◦ etest are a subset of the squared residuals), the
training and test responses are not mutually independent. Indeed, the etest ◦ etest are functions of both the
ytrain and Xtrain observations. Yet, importantly, Hastie et al.’s (2009) cardinal rule has not been violated: the
test responses have, in a sense, ‘seen’ the training data, but the training responses have not in any sense ‘seen’
the test data.

The second method of obtaining predicted ALVM responses for the test fold may be called the ‘test fold
OLS’ technique. It entails the following steps:

1. Apply OLS to the test fold only, thus obtaining the squared OLS residuals ĕtest ◦ ĕtest.
2. Obtain predictions of ĕtest ◦ ĕtest by computing ̂ĕtest ◦ ĕtest = (Mtest ◦Mtest) Ltestγ̆train, where Ltest is

a linear predictor matrix computed from Ztest.71

3. Compute the total squared-error loss for this test fold,
(

ĕtest ◦ ĕtest − ̂ĕtest ◦ ĕtest

)′ (
ĕtest ◦ ĕtest − ̂ĕtest ◦ ĕtest

)
.

4. Aggregate the result of the previous step across all K test folds and average across the n observations,
obtaining

LossCV(λ) = n−1
n∑

i=1

(
ĕ2

i − ˆ̆e2
i

)2
, (3.78)

where ĕ2
i is the residual for the ith observation computed from the OLS fitted to its test fold, and ˆ̆e2

i is
the predicted value thereof.

The main advantage of the test fold OLS technique is that there is complete mutual independence between
the trained model and the test fold responses. Unlike the residual partitioning technique, the ĕ2

i have not in
any sense ‘seen’ the training data.

A shortcoming with the test fold OLS technique is that the number of observations used to fit each test
fold OLS may be small. This will result in high variances of the OLS parameter estimators, and is one reason
why K = 5 folds may be preferable to K = 10. Indeed, if n is not very large relative to p, the number of
observations in some test folds may be ≤ p, in which case OLS cannot be fit.

Under either of the two techniques, the tuned value of λ is,

λtuned = arg min
λ

LossCV(λ). (3.79)

The two techniques for computing the CV loss function are summarised diagrammatically in Figure 3.6.
a⇝ b denotes that b is calculated from (is a function of) a. Steps highlighted in green are identical in both
techniques, while steps highlighted in yellow differ.

71Ltest is straightforward in the case of the polynomial model. With spline models, its computation is more compli-
cated, since splines do not handle interpolation predictions and extrapolation predictions in the same way. The predict
methods in the relevant R packages can handle construction of L, however. If CV is being used to tune nc in the
clustering model, computation of L is also complicated, because a clustering procedure cannot be conducted separately
on the test set. Rather, the Zi· observations in the test set must be assigned to the nc existing clusters created from
the training set in such a way as to optimise the linkage criterion being used.
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The results in Chapter 5 all use the test fold OLS technique for CV, which was deemed to be the more
conceptually sound of the two methods. Further research may be used to compare the two methods in terms
of bias/variance trade-off.

Partitioning
of Residuals

technique

Test Fold
OLS technique

Fit Original Linear Model
y, X ⇝ β̂ ⇝ e

Fit Original Linear Model
y, X ⇝ β̂ ⇝ e

Partition Data
y, X, e ⇝

ytrain, Xtrain,—
ytest, Xtest, etest

Partition Data
y, X ⇝

ytrain, Xtrain

ytest, Xtest

Fit Training Linear Model
ytrain, Xtrain ⇝ β̆train, Mtrain ⇝ ĕtrain

Fit Training Linear Model
ytrain, Xtrain ⇝ β̆train, Mtrain ⇝ ĕtrain

Fit Test Linear Model
—

Fit Test Linear Model
ytest, Xtest ⇝ β̂test, Mtest ⇝ ĕtest

Select Xtrain ⇝ Ztrain
or partition Z ⇝ Ztrain

Select Xtrain ⇝ Ztrain
or partition Z ⇝ Ztrain

Fit Training ALVM
ĕtrain, Mtrain, Ltrain ⇝ γ̆train

Fit Training ALVM
ĕtrain, Mtrain, Ltrain ⇝ γ̆train

Predict All Responses
M , L, γ̆train ⇝ ê ◦ e

Predict Test Responses
Mtest, Ltest, γ̆train ⇝ ̂ĕtest ◦ ĕtest

Partition Predicted Responses
ê ◦ e ⇝

(
ê ◦ e

)
test

Partition Predicted Responses
—

Compute loss function

n−1
n∑

i=1

(
e2

i − ê2
i

)2

Compute loss function

n−1
n∑

i=1

(
ĕ2

i − ˆ̆e2
i

)2

Figure 3.6: Illustration of Cross-Validation Modelling Procedures

Minimising the Cross-Validated Squared-Error Loss Function
Minimising LossCV(λ) with respect to λ is not a trivial optimisation problem, as the function may have
multiple local minima. Wu and Lange (2008) recommend the use of a grid search combined with algorithmic
search methods. A grid search entails evaluating LossCV(λ) at a variety of different λ chosen randomly or
systematically to cover a desired range of magnitudes. It may be desirable to search across several orders of
magnitude (e.g., powers of 10), incrementing logarithmically rather than by equal steps.

In terms of algorithmic searches, since a closed form expression for LossCV(λ) is not available, a method
is needed that does not require computation of the function’s derivative. Wu and Lange (2008) recommend
combining bracketing and Golden Section Search (GSS). The bracketing method proceeds as follows. Begin
with a large value λ0 for which all or nearly all of the γ elements have been shrunk to 0 (in the polynomial
model) or all second-order derivatives have been shrunk to 0 (in the spline model). Then:
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1. Calculate λj+1 = rλj , where r ∈ (0, 1) (thus reducing λ by a fixed proportion), beginning with j = 0.
2. Compare LossCV(λj+1) with LossCV(λj). If LossCV(λj+1) ≤ LossCV(λj), increment j and repeat from

previous step. If LossCV(λj+1) > LossCV(λj), perform a GSS to minimise LossCV(λ) on the interval
[λj+1, λj−1].

An instance of the bracketing procedure is illustrated in Figure 3.7. In this instance, the func-
tion is evaluated at λ0, then λ1 = 0.5λ0, and then λ2 = 0.52λ0. Since LossCV(λ1) < LossCV(λ0) and
LossCV(λ1) < LossCV(λ2), a local minimum is bracketed by the interval [λ2, λ0] and a GSS would therefore be
conducted in that interval.

Figure 3.7: Bracketing Procedure for Identifying Golden Section Search Interval

Golden Section Search (GSS) (Lange 2010, Fox 2021) is a simple algorithm for minimising a univariate
function f(x) within a specified interval [a, b]. The method assumes that there is one local minimum in this
interval. The solution produced is also an interval, the width of which can be made arbitrarily small by setting
a tolerance value. Since the desired solution is a single point,

arg min
a<x<b

f(x),

the midpoint of the final interval can be taken as the best approximation to the solution.
The premise of the method is to shorten the interval [a, b] by comparing the values of the function at two

test points, x1 < x2, where,

x1 = a+ r(b− a) (3.80)
x2 = b− r(b− a), (3.81)

and 1/2 < r < 1. The algorithm works by comparing f(x1) to f(x2) and updating the search interval
accordingly, as follows:

• If f(x1) < f(x2), the solution cannot lie in [x2, b]; thus, update the search interval to [anew, bnew] = [a, x2].
• If f(x1) > f(x2), the solution cannot lie in [a, x1]; thus, update the search interval to [anew, bnew] = [x1, b].

One then chooses two new test points by replacing a and b with anew and bnew in (3.80) and (3.81), and
iterating until b− a < τ , where τ is the desired tolerance.

The name ‘golden section search’ comes from the optimal choice of r in (3.80) and (3.81). The boundary
values r = 1/2 and r = 1 represent the cases where x1 = x2 and x1 = a, x2 = b, respectively, at which the

algorithm breaks down. It can be shown that the optimal choice of r is
√

5− 1
2 ≈ 0.618, which is the reciprocal

of the golden ratio.
The combined bracketing-and-golden-section-search method is highly effective if the function has only one

local minimum. If there are multiple local minima, however, then since bracketing moves from right to left,
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the algorithm is biased toward arriving at the largest one (in terms of λ value, not necessarily function value).
To increase the chances of finding the global minimum, therefore, this method is combined with a grid search
as follows:

1. Evaluate LossCV(λ) at values λ ∈
{

10m, 10m+1, . . . , 10M
}

, where m is a small integer (e.g., -3) and M is
an integer large enough that λ = 10M results in all coefficients (for polynomial model) or second-order
derivatives being penalised to 0.

2. If ℓ is the exponent of 10 that minimises LossCV(λ) among the values in the sequence, apply the bracketing
procedure with λ0 = 10ℓ+1.

3. Apply the GSS algorithm on the interval identified by the bracketing procedure. If the bracketing
procedure failed, apply the GSS algorithm on the interval

[
0, 10ℓ+1].

Quasi-Generalised Cross-Validation
Hastie et al. (2009) define a linear fitting method as a method for which one can write ŷ = Sy, where y is the
vector of responses, ŷ is the vector of fitted values, and S is an n× n matrix depending on the covariate matrix
but not on the response vector.72 For any linear fitting method, GCV provides a computationally efficient
approximation to the cross-validated squared-error loss function under leave-one-out CV. The formula, adapted
to the variance models and the λ hyperparameter under consideration here, is

GCVICRR(λ) = n−1
n∑

i=1

[
e2

i − ê2
i

1− tr(S)/n

]2

, (3.82)

where ê2
i is the predicted response from the ALVM, and tr(S) is a measure of effective number of parameters

or degrees of freedom. Now, (3.77) has a higher variance under leave-one-out CV than under five- or ten-fold
CV, due to the similarity of the n training sets (Hastie et al. 2009). Thus, obtaining an approximation to
(3.77) under leave-one-out CV involves moving to a less-than-optimal point along the bias-variance trade-off
spectrum in exchange for greatly reduced computation time.

Escobar and Skarpness (1984) derive a closed-form expression for the ICLS estimator, while Paula (1993)
write it in a more convenient form, which Toker et al. (2013) extend to the ICRR case. With notation adapted
to the present situation, write

γ̃ICRR = γ̂RR +
(
D′D + λP

)−1
A′

Rη̂R, (3.83)

where γ̂RR = (D′D + λP )−1D′(e ◦ e) is the unconstrained RR estimator of γ, D, A, and P are as specified
in (3.65), η̂ is the Lagrangian vector (of length m), R is the set of cardinality s containing indices of nonzero
elements of η̂ (corresponding to constraints satisfied at equality), AR is the s× q sub-matrix of A consisting
only of rows {i : i ∈ R}, and η̂R is the sub-vector of η̂ consisting only of elements {i : i ∈ R}. The ICLS
estimator, γ̃ICLS, can be obtained from (3.83) by setting P to a zero matrix (or fixing λ at 0), and replacing
γ̂RR with γ̂OLS = (D′D)−1D′(e ◦ e).

A closed-form expression for η̂R is given by

η̂R = −
(
AR(D′D + λP )−1A′

R
)−1

ARγ̂RR. (3.84)
Notice that the ICRR problem cannot be solved by evaluating (3.83), because one cannot evaluate (3.83)

or (3.84) without first knowing R, which cannot be known prior to solving the ICRR problem.
Extending the argument of Paula (1993) and Paula (1999) from the ICLS case to ICRR case, it can be

shown that, if bR = 0 (where bR is a subvector of the right side of the inequality constraint),73 the ICRR fitted
values ẽ ◦ eICRR = Dγ̂ICRR can be written as

ẽ ◦ eICRR = (HD,λ −Gλ) (e ◦ e), (3.85)

where HD,λ = D (D′D + λP )−1
D′ and Gλ = U

(
AR(D′D + λP )−1A′

R
)−1

U ′,
U = D (D′D + λP )−1

A′
R. Again, these expressions can be reduced to the ICLS case by fixing λ = 0

72For instance, S = H in the case of linear regression (see §1.1.2).
73This ‘nearly’ holds in the auxiliary variance models discussed herein, per the notation 0+ introduced in connection

with (3.35).

70



http://etd.uwc.ac.za/

or P to a zero matrix. Notice further that Gλ falls away if no constraints are met at the boundary, since U is
in that case an n× 0 matrix.

From (3.85) it follows that SICRR = HD,λ −Gλ is the projection matrix of the ICRR model. Importantly,
however, because the set R depends on the response e ◦ e, ICLS and ICRR are not linear fitting methods
as defined by Hastie et al. (2009), which introduces potentially significant bias into the use of (3.82) as an
approximation for the leave-one-out cross-validated loss function.

One possible way around this is to perform GCV on the unconstrained versions of the models—which do
qualify as linear fitting methods—and extrapolate the optimal tuning parameter to the constrained situation.
The GCV loss function (in the RR case) is then

GCVRR(λ) = n−1
n∑

i=1

[
e2

i − ê2
i

1− tr(HD,λ)/n

]2

, (3.86)

where ê2
i is the predicted value of the ith squared OLS residual based on γ̂OLS or γ̂RR, and

HD = D(D′D)−1D′. However, this involves exchanging one form of bias for another, since the GCV function
based on the unconstrained model could behave quite differently than that based on the constrained model,
leading to an unsuitable choice of λ. Thus, minimising either (3.82) (with projection matrix SICRR) or (3.86)
with respect to λ is not a true GCV method. This approach will therefore be referred to as Quasi-Generalised
Cross-Validation (QGCV).

The QGCV approaches to tuning λ described above are applicable to the L2-norm penalised polynomial
model and the smoothing spline and thin-plate spline models, but not to the L1-norm (LASSO-type) penalised
polynomial model. The unconstrained LASSO estimator does not have a closed form expression. However, by
introducing an additional layer of approximation, a QGCV approach for this model is also possible.

As Tibshirani (1996) explains, an approximate closed form of the (unconstrained) LASSO estimator can
be expressed (using the notation of the auxiliary variance model) as

γ̂lasso =
(
D′D + λW−)−1

D′(e ◦ e), (3.87)

where W− is the generalised inverse of W = diag {0, |γ̂2| , . . . , |γ̂q|},74 γ̂j being the jth element of the
unconstrained OLS estimator of γ. Hence, a QGCV procedure for the LASSO model can be outlined as
follows:

(i) Compute the unconstrained LASSO estimator γ̂lasso using QP and so determine W−.
(ii) Compute the Inequality-Constrained LASSO (ICLASSO) estimator γ̃lasso using QP and so determine

the predicted squared residual values.
(iii) Evaluate the GCV loss function (3.82), using the projection matrix HD,λ −Gλ but with P replaced by

W−.

This QGCV procedure requires two QP problems to be solved for each GCV loss function evaluation,
compared with five QP problems (with fewer observations in each) for five-fold CV. Thus, the savings in
computation time may not justify the multiple layers of approximation that have been introduced.

A simpler and faster approach is to follow the observation of Efron et al. (2004) that, in the LASSO
(as parametrised here), tr(S) ≈ # (j ∈ {2, 3, . . . , q} : γ̂j ̸= 0). This approximation should hold true in the
ICLASSO as well, and obviates step (i) in the procedure above; thus only one QP problem needs to be solved
to evaluate the QGCV loss.

A final note about the QGCV approach concerns the issue that, technically, if a feature selection method
is applied as a pre-processing step in the model, e.g., using a heteroskedasticity test (as discussed below in
§3.3.3), this pre-processing step needs to be performed separately on each training fold. This pre-processing
is not taken into account in the QGCV approximation. However, because GCV approximates leave-one-out
CV, each training set contains n− 1 observations, and it is therefore reasonable to assume that the features
that would have been selected for each training set are identical to those that are selected for the full set of n
observations.

74The 0 is due to the first element of γ not being penalised in the LASSO model as parametrised herein.
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3.3.2.2 Number of Clusters nc

There are a large number of metrics attested in the literature for identifying the relevant number of clusters in
a data set (Charrad et al. 2014). One of the simpler methods involves identifying the elbow point (sometimes
called knee point) of a curve measuring some important criterion. Here, two such criteria are considered
that measure the compactness of the clusters, which is important given the assumption that all observations
in the same cluster are close enough to each other to have the same error variance. These are the Sum of
Within-Cluster Distances (SWD) and Maximum Within-Cluster Distance (MWD) criteria:

SWD(nc) =
nc∑

k=1

∑∑
i,j∈s(k)

i<j

d(Zi·,−1,Zj·,−1) (3.88)

and
MWD(nc) = max

k∈{1,2,...,nc}
max

i,j∈s(k)
i<j

d(Zi·,−1,Zj·,−1), (3.89)

where Zi·,−1 is the ith row of Z−1, which is Z with a column of ones removed if present.
The elbow points of these two functions of nc are determined numerically using the Unit Invariant Knee

(UIK) technique implemented in the uik function of the R package inflection (Christopoulos 2019). Both
SWD(nc) and MWD(nc) decrease with nc, and in both cases a smaller value is desirable. However, the elbow
point allows one to find a point that trades off optimally, in some sense, between a smaller value of the criterion
and a smaller dimensionality of the parameter γ.

How far apart two points must be before the equal variance assumption becomes problematic depends, of
course, on the function g(·), and particularly on the magnitude of its first derivative function, |g′(·)|. In a
neighbourhood where this is large, observations that are quite close together in the Z−1 space may nonetheless
have highly unequal error variances. Conversely, in a neighbourhood where |g′(·)| is very small (g(·) is very
flat), observations that are quite far apart may nonetheless have nearly equal error variances. Thus, the elbow
methods have a shortcoming in that they are informed only by the distribution of the Zi·,−1 covariate points
and not by any information about |g′(·)|.

CV is an alternative approach to choosing nc that attends more directly to its impact on the performance
of the auxiliary regression model. Here, the aim is to minimise the same loss function as in (3.78) (or (3.77),
depending on the CV technique used), now taken as a function of nc rather than of λ.

Since nc is an integer, the search for the optimal value is much simpler; an exhaustive search of all
t ∈ {1, 2, . . . , n} can be carried out. Since computation time for fitting the model increases with nc, an early stop

rule can be applied, as follows: if t ≥ 3 and LossCV(t) > LossCV(t− 1) and
[

LossCV(t)− LossCV(nc,opt)
LossCV(nc,opt)

]
> 1,

where nc,opt = arg mins∈{1,2,...,t} {LossCV(s)}, stop the search and set nc = nc,opt. That is, the search will
continue up to at least t = 3. Thereafter, if the cross-validated loss function at nc = t is greater than at
nc = t− 1, and if the current value of the loss function is more than 100% greater than the minimum value
seen so far, the search is stopped.

The implementation of the clustering routine in conjunction with CV requires some comment. The ob-
servations in the kth training fold, k = 1, 2, . . . ,K, are assigned to nc = t clusters as explained previously
and the ALVM is fitted. A completely separate clustering routine cannot be used with the kth test fold,
because it would then not be obvious how to map the coefficient estimates from the training fold’s clusters
onto the test fold’s clusters. Instead, each observation in the kth test fold is assigned to the nearest cluster of
the corresponding training fold, with point-to-cluster distance computed using the applicable linkage rule, as
discussed in §3.2.4. This allows computation of a matrix Ltest = Itest after the manner of (3.58); predicted
test responses (squared residuals) can then be computed under the test fold OLS technique (Figure 3.6) using

̂ĕtest ◦ ĕtest = (Mtest ◦Mtest) Ltestγ̆train. The process of assigning test fold observations to training fold clus-
ters is illustrated in Figure 3.8. The circular points represent 40 training observations, which were assigned
to six clusters. The triangular points represent 10 test observations, each of which has been assigned to the
nearest cluster using the complete linkage rule.

72



http://etd.uwc.ac.za/

Figure 3.8: Allocation of Test Fold Observations to Nearest Training Fold Cluster

B-Spline Number of Interior Knots
If the univariate B-spline ALVM (3.49) is used, the number of interior knots in the spline is an important
hyperparameter. This, too, is a nonnegative integer. The CV procedure just described for tuning nc in the
cluster model can also be applied here, as can the QGCV loss function.

3.3.3 Feature Selection in Auxiliary Variance Models

In principle, the error variances—that is, the response variances—might depend on different variables than
the mean response. The Z matrix could include covariates that are not part of X, but may not include all
covariates that that are part of X. In the absence of any prior knowledge of additional variables that are
not part of X that might influence the error variances, however, the covariates in X effectively become the
candidates for the covariates in Z. It is, however, not safe to assume that all columns of X belong in Z and set
Z = X. Overspecification of Z could negatively affect the performance of the variance model. This motivates
the use of variable selection techniques to choose which columns of X to include in Z.

Three feature selection methods are discussed in this section: a shrinkage penalty, heteroskedasticity testing,
and best subset selection. The shrinkage penalty is proposed due to its being already built into some of the
ALVMs. The heteroskedasticity testing approach is proposed due to its simplicity and computational efficiency.
The best subset selection approach is proposed due to its meticulousness.

3.3.3.1 Feature Selection by a Shrinkage Penalty
L2-norm and L1-norm penalties on the parameters have already been considered as part of the polynomial
ALVM (see (3.46)). While the motivation for the penalty was partly to shrink unnecessary higher-degree terms
or cross-terms, it could also shrink all terms associated with a particular covariate that does not in fact influence
the error variances ω. Hence, if one sets Z = X and uses a penalised polynomial model, variable selection will
arguably take care of itself. Indeed, the acronym LASSO coined by Tibshirani (1996) for L1-norm-penalised
regression stands for Least Absolute Shrinkage and Selection Operator, and was designed in part as a tool for
feature selection.

An advantage of the shrinkage approach to feature selection is that, being built into the fitting of the
ALVM, it does not require an additional model-building step. This is particularly significant given that, as was
highlighted in §3.3.2, the fitting of training models in K-fold CV for tuning of hyperparameters must include all
modelling steps. Thus, a pre-processing feature selection step in the polynomial and thin-plate spline methods
would be computationally expensive, because it would have to be implemented separately on each of the K
training folds.

The sparseness properties of the LASSO make it ideal for feature selection, since LASSO tends to shrink
unimportant coefficients to zero. By contrast, RR tends only to shrink them towards zero, and thus does not
truly ‘deselect’ unimportant features.
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The penalty used in the thin-plate spline ALVM also offers some support for feature selection. In this case,
it is not the parameter magnitudes that are penalised but the magnitude of second-order derivatives of the
spline, the ‘wiggliness.’ In principle, if a particular covariate in Z does not contribute to the error variance,
the magnitude of the spline’s second derivative in that direction should be shrunk to 0, resulting in a straight
line that could have an estimated gradient of 0.

The linear ALVM fitted by solving (3.41) does not have a penalty term. However, if it is desired to use an
L2- or L1-norm shrinkage penalty on a linear ALVM, the penalised polynomial model can be used with degree
d = 1.

Therefore, of the ALVMs proposed herein that are conducive to use in multiple linear regression, it is only
the clustering ALVM for which a shrinkage approach to feature selection is infeasible.

If shrinkage is used for feature selection, the hyperparameter λ must still be tuned, using one of the methods
discussed in §3.3.2.1.

3.3.3.2 Feature Selection by Heteroskedasticity Testing
This feature selection technique is a pre-processing step performed before fitting the variance model. The idea
is to use a hypothesis test for heteroskedasticity to identify covariates in X that are, at some significance level
α, implicated in heteroskedasticity. Particularly appropriate are the ‘deflator’-type tests discussed in §2.1 (see
especially Table 2.3), where the alternative hypothesis posits heteroskedasticity linked to a particular predictor
variable. ‘Auxiliary design’ tests such as Breusch and Pagan’s (1979) could also be used, provided that the
auxiliary design matrix contains only one predictor variable. Previous empirical investigations of the power of
different heteroskedasticity tests (e.g., Griffiths and Surekha 1986, Evans 1992, Lyon and Tsai 1996, Godfrey
and Orme 1999, Adamec 2017, Uyanto 2019), as well as that undertaken in this study (see §5.1.1) may inform
the choice of testing method.

The procedure runs like this:
1. Perform a heteroskedasticity test at significance level α with X·2 as the ‘deflator’ variable.75 If the null

hypothesis of homoskedasticity is rejected, include X·2 in Z; otherwise, exclude it.
2. Repeat step (1) for X·3,X·4, . . . ,X·p.
Even if a powerful heteroskedasticity test is used, there remains a trade-off between the risks of Type I

and Type II errors. In this case, a Type I error results in overspecification (inclusion of a feature that is not
related to the error variance(s)) while a Type II error results in underspecification (exclusion of a feature that is
related to the error variance(s)). The choice of significance level α is thus another important consideration with
this feature selection technique; in effect, α is a hyperparameter. Intuitively, the cost to variance estimation of
underspecification seems higher than that of overspecification. Thus, a significance level higher than the typical
0.05 used in inference is suggested, such as 0.1, especially when n is small and power is consequently low. It
should also be borne in mind that the family-wise Type I error rate increases with p, which may motivate a
Bonferroni correction.

This feature selection technique can be used with any of the ALVMs introduced earlier. However, it may
be computationally intensive to use with a penalised polynomial or thin-plate spline model where λ is being
tuned using CV. The aforementioned requirement to conduct feature selection on each training fold would not
only increase computation time; the power of the heteroskedasticity test will be lower with the training folds
than on the full data set, due to their smaller number of observations. Thus, if the same significance level is
used throughout, one can expect under-specification to occur more frequently in the CV procedure than on
the full data set.76 To avoid these complications, it seems best to rely on the shrinkage approach for models
requiring hyperparameter tuning using CV.

3.3.3.3 Feature Selection Using Best Subset Selection
Best Subset Selection (BSS) is a classical feature selection method in statistics (Hastie et al. 2020). It entails
finding the subset of candidate features that minimises some loss function.

Several metrics were considered to use for BSS for feature selection in the ALVMs, including Mallows’
Cp (discussed in Hastie et al. 2009) and the .632 estimator (Efron and Tibshirani 1993) and its improved

75This assumes that X·1 is a column of ones; otherwise one would start with X·1.
76One could perhaps adjust the significance level upward to compensate for this; but it is unclear by how much to

adjust it, and this technically violates the principle that pre-processing steps done when training the main model must
be performed identically when training the model on each CV fold.
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.632+ version (Efron and Tibshirani 1997). However, the loss functions already introduced for hyperparameter
tuning purposes—namely, the CV error metric (3.77) and the QGCV error metric (3.86)—proved in preliminary
simulations to work just as well, and (particularly QGCV) faster to compute. Note that BSS using K-fold CV
with a model that already uses CV for hyperparameter tuning (such as the penalised polynomial ALVMs or
thin-plate spline ALVM) would be complicated, as a nested CV step would need to be performed to choose λ
for each feature subset. Thus, to conserve on computation time, BSS is only considered in conjunction with
the linear or clustering ALVM, and in the latter case only when the number of clusters nc is chosen using an
elbow method.

Another issue with BSS is that, if there are p− 1 candidate features (p being the number of columns in
X, including the intercept), there are 2p−1 candidate subsets to consider (assuming that an intercept will be
included unconditionally; otherwise 2p). An exhaustive search of these subsets quickly becomes computationally
prohibitive as p increases. Thus a greedy algorithm, akin to forward selection, may be used if p is too large to
run all subsets. Such an algorithm can be outlined as follows:

1. Fit the null model (with only an intercept) and evaluate the loss function.
2. Fit all models consisting of one feature and an intercept, and identify the model (and associated feature

subset) that minimises the loss function.
3. If the minimal loss function value is less than that of the null model, select this feature. Otherwise,

adopt the null model and break out of the procedure.
4. Repeat steps (2) and (3), but each time comparing all models with k + 1 features to the best k-feature

model, until the best k + 1-feature model does not improve on the best k-feature model.

3.3.4 Statistical Results on the Variance Estimator

Liew (1976) derives the variance-covariance matrix of the ICLS estimator, conditional on knowing which
inequality constraints are met at the boundary and which are not. Toker et al. (2013) extend this result to
ICRR. However, as Geweke (1986) and Knottnerus (2016) point out, one generally does not know ahead
of time which constraints will be met at the boundary, rendering this variance-covariance matrix approach
potentially seriously misleading in practice. Geweke (1986) proposes a Bayesian approach to exact inference
on inequality-constrained linear models, and Knottnerus (2016) proposes an approximation for the variance-
covariance matrix of the ICLS estimator based on censored and truncated normal distributions. Unfortunately,
both of their methods are valid only under the assumption of normality on the constrained linear model, which
is not a reasonable assumption for the ALVM errors. It has been shown in §3.1.1, for instance, that under A1-A5
the marginal distributions of the squared OLS residuals e2

i , conditioning on X, are Gamma distributions.
Knottnerus (2016) shows that the ICLS estimator is biased (regardless of distributional assumptions) but

that the variance of the ICLS estimator is less than or equal to that of the OLS estimator. Thus, in terms of
mean squared error there is a bias-variance trade-off between the two estimators. Even if the trade-off favours
the OLS estimator, however, this would still be a price worth paying to avoid negative variance estimates that
cannot be used for HCCME or FWLS purposes.

Since no analytical results are possible for the standard errors or distribution of the ICLS or ICRR es-
timators, bootstrap methods are the most promising approach to obtaining interval estimates for the error
variances based on ALVMs. Such bootstrap methods will be discussed further in §3.4.

Seber and Wild (2003), following McCullagh (1983), discuss statistical properties of quasi-likelihood es-
timators, including a central limit theorem that allows for asymptotic inference on, or approximate interval
estimation of, the parameters γ. Specifically,

√
n (γ̂ − γ) D−→ N

(
0,
[
n−1I(γ)

]−1
)
, (3.90)

where I(γ) = F ′
•(γ)V −1(γ)F•(γ), and the latter notation is as introduced previously in §3.3.1.4. Of course,

I(γ) would in practice need to be replaced with an estimator, effectively ‘studentising’ the approximation.
These statistical results will play no further role in this thesis, but could be a starting point for further
research.
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3.3.5 Use of an Auxiliary Variance Model for Feasible Weighted Least Squares and
Standard Error Estimation

An immediate consequence of fitting any of the ALVMs or ANLVMs discussed in this section is that one is
able to obtain point estimates ω̂ of the error variances ω, either by ω̂ = Lγ̂ (for an ALVM) or by ω̂ = g(Z; γ̂)
(for an ANLVM).

An estimate of ω immediately leads to an estimate of Ω = diag {ω}, which can be used to compute a FWLS
estimate of β (as discussed in §2.2.1), with weights W = Ω̂−1. The effectiveness of such a FWLS estimator
can be measured using a MSE metric, as discussed below in §5.2.2.3.

Equally, an estimate of Ω can be plugged into (1.6) in the manner of an HCCME (as discussed in §2.3) and
thus used to compute a quasi-t statistic for inference on individual linear model parameters βj , j = 1, 2, . . . , p.
The performance of such a quasi-t-test depends on how close the resulting standard error estimate in the
denominator is to the true standard error of β̂j . This motivates another MSE metric, as discussed below in
§5.2.2.4.

3.4 Constructing Bootstrap Confidence Intervals for the Error Variances
Practitioners using the ALVMs and ANLVMs may wish to have Confidence Interval (CI) estimates of the
individual error variances ωi, i = 1, 2, . . . , n. Because of the multivariate nature of the estimation problem, it
is not advisable to obtain CIs for the elements of γ and then map the vector of lower limits and upper limits
respectively onto ω using the relation ω = Lγ. Instead, interval estimates will be obtained for the individual
error variances ωi directly.

Bootstrap methods are an ingenious technique for obtaining approximate CIs with good properties without
requiring analytical results on the distribution of the estimator or obtaining additional data.

3.4.1 Nonparametric Bootstrap Resampling Methods Suitable for Heteroskedastic Lin-
ear Regression Models

In the context of heteroskedastic linear regression, parametric bootstrap methods are not appropriate if the
true form of the heteroskedastic function g(·) is unknown. Efron and Tibshirani (1993) and Chernick (2008)
discuss two nonparametric bootstrap methods for linear regression models that they call bootstrapping residuals
and bootstrapping pairs.

Both methods entail drawing a random sample of size n with replacement and with uniform probability
from {1, 2, . . . , n}, B times. Let {b} denote the bth set of sampled indices, b = 1, 2, . . . , B, and let y{b}, X{b},
and e{b} denote the resampled response vector, design matrix, and OLS residual vector corresponding to the
observations with indices {b}.

Bootstrapping residuals proceeds by computing bootstrap responses y(b) from the original design matrix
X, the original OLS parameter estimate β̂, and the resampled residual vector e{b}, as per (3.91):

y(b) = Xβ̂ + e{b}, b = 1, 2, . . . , B. (3.91)
The bootstrap OLS parameter estimator, fitted values vector and residual vector are then

β̂(b) = (X ′X)−1X ′y(b), (3.92)

ŷ(b) = Xβ̂(b), (3.93)
and

e(b) = y(b) − ŷ(b). (3.94)

Chernick (2008, p. 79) states that ‘Bootstrapping the residuals requires that the residuals be independent
and identically distributed (or at least exchangeable).’ Technically, the OLS residuals are never independent
and identically distributed, even under A1-A5 (see §1.1.7.2). More to the point, when heteroskedasticity is
present and is related to at least one of the covariates in X, the residuals are not exchangeable; each residual
ei must remain associated with the corresponding covariate observation Xi·. Thus, bootstrapping residuals
can be ruled out for purposes of estimating standard errors of heteroskedastic variance estimators.

76



http://etd.uwc.ac.za/

Bootstrapping pairs simply entails resampling the response-covariate pairs so that the bootstrap responses
are y(b) = y{b} and the bootstrap design matrix is X(b) = X{b}. The bootstrap OLS parameter estimator,
fitted values, and residuals are then computed as

β̂(b) = (X(b)′X(b))−1X(b)′y(b), (3.95)

ŷ(b) = X(b)β̂(b), (3.96)
and

e(b) = y(b) − ŷ(b). (3.97)

The bootstrap annihilator matrix can also be computed as M (b) = In −X(b)(X(b)′X(b))X(b)′.
Chernick (2008) notes that some statisticians consider bootstrapping pairs to be philosophically inappro-

priate in that the predictor observations are being treated as fixed and yet are being resampled. However,
from a practical point of view, bootstrapping pairs is less sensitive to model assumptions and leads to standard
error estimates with good properties (Efron and Tibshirani 1993). This method preserves the link between
the error variances (captured in the observed response) and the predictor variables, if present, and is therefore
appropriate under heteroskedasticity.

The bootstrap ALVM becomes

e(b) ◦ e(b) =
(
M (b) ◦M (b))L(b)γ + u(b), (3.98)

where L(b) is a linear predictor matrix generated from Z(b) (which may be formed from a subset of X(b)

or resampled from Z). In the nonlinear case the model would be constructed analogously.
By fitting the bootstrap auxiliary variance models one obtains parameter estimates γ̂(b), b = 1, 2, . . . , B.
An alternative to bootstrapping pairs is to use the wild bootstrap technique that was introduced in §2.3.10.

For example, define r(b), b = 1, 2, . . . , B, to be a random vector drawn independently from a distribution with
zero mean and unit variance. Then compute bootstrap responses,

y(b) = Xβ̂ + [F (e)] r(b), (3.99)
where F (e) is a diagonal matrix with diagonal [f1(e1), f2(e2), . . . , fn(en)]′ and fi(ei) is some function of

the ith OLS residual depending on no other stochastic variables. The OLS parameter estimator β̂(b), fitted
values ŷ(b), and residuals e(b) can then be computed using (3.92)-(3.94).

Cribari-Neto and Zarkos (1999) use fi(ei) = ei(1− hii)−1/2, but it is proposed here to simply use the
identity transformation fi(ei) = ei due to the straightforward expression for E

(
e(b) ◦ e(b)) that results, namely

E
(
e(b) ◦ e(b)) = (M ◦M) (M ◦M) ω, (3.100)

which enables construction of the ALVM

e(b) ◦ e(b) = (M ◦M) (M ◦M) Lγ + u(b). (3.101)

This takes the same form as the original model equation (3.34) but with an extra matrix factor of (M ◦M)
on the conditional mean term. A derivation of (3.100) is given in Appendix C.4.

A practical question that must be answered is whether it is necessary to run feature selection and retune the
hyperparameter λ (where applicable) as part of the ALVM fitting procedure with each bootstrapped regression
model. Retuning λ is very computationally expensive, so it would be much faster to use the λ value tuned
on the full sample for every bootstrap ALVM. But is this approach reasonable? Wang and Wahba (1994)
describe a bootstrap procedure for smoothing spline models that does entail re-tuning λ for each bootstrap
sample, and this is also recommended by Kauermann et al. (2009). On the other hand, Sartori (2010) and
Laurin et al. (2016) describe bootstrap procedures for penalised models where the parameter value optimised
from the full sample is reused in all the bootstrap samples. Clearly, the optimal settings for the full data are
not necessarily going to be optimal for each bootstrap sample, so some additional variation is introduced by
the second approach. It comes down to a trade-off between computational cost and precision.
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3.4.2 Computation of Bootstrap Confidence Intervals

3.4.2.1 Näıve Normal Interval
A simple, näıve way of obtaining a bootstrap confidence interval for ωi, i = 1, 2, . . . , n, is the normal interval,

ω̂i ± zα/2ŜEboot(ω̂i), (3.102)

where ŜEboot(ω̂i) is the empirical standard deviation of the bootstrap ALVM estimates ω̂(b)
i , b = 1, 2, . . . , B.

While simple to compute, this interval will not perform well in cases where the distribution of ω̂i is strongly
skewed, platykurtic, or leptokurtic. Moreover, one should actually ‘correct’ the lower limit of the interval
defined in (3.102) by taking max

{
0, ω̂i − zα/2ŜEboot(ω̂i)

}
, since 0 forms a lower bound for the error variances.

3.4.2.2 Percentile Interval
Another way of obtaining an approximate (1−α)100% confidence interval for ωi, i = 1, 2, . . . , n, is the percentile
interval method. If Ĝi is the empirical CDF of ω̂i, then the (1− α)100% percentile interval for ωi is defined as

[ω̂i,lo, ω̂i,up] =
[
Ĝ−1

i (α/2), Ĝ−1
i (1− α/2)

]
. (3.103)

The bootstrap approximation of the percentile interval is

[ω̂i,lo, ω̂i,up] ≈
[
ω̂

{B}
i,(α/2), ω̂

{B}
i,(1−α/2)

]
, (3.104)

where ω̂B
i,(p) is the lower p-quantile of the bootstrap estimates

{
ω̂

(b)
i

}
, b = 1, 2, . . . , B.

The percentile interval method is first-order correct, whereas modifications can be made to the quantile
probabilities to arrive at a second-order correct method (Hesterberg 2011).

3.4.2.3 Modifications to the Percentile Interval
Two such modification techniques are the Bias-Corrected and accelerated (BCa) technique (Efron and Tibshi-
rani 1993) and the expansion technique (Hesterberg 1999). These techniques are not mutually exclusive; it is
possible to use them separately or together.

The BCa method modifies the quantile probabilities in (3.104) as follows, for i = 1, 2, . . . , n:

[ω̂i,lo, ω̂i,up] ≈
[
ω̂

{B}
i,(α1,i), ω̂

{B}
i,(α2,i)

]
, (3.105)

where

α1,i = Φ
(
ẑ0,i +

ẑ0,i + z(α/2)

1− âi(ẑ0,i + z(α/2))

)
and

α2,i = Φ
(
ẑ0,i +

ẑ0,i + z(1−α/2)

1− âi(ẑ0,i + z(1−α/2))

)
. (3.106)

Here, Φ(·) is the CDF of the standard normal distribution, z(p) is the lower p-quantile of the standard
normal distribution, ẑ0,i is the bias-correction, and â is the acceleration statistic. If â and ẑ0,i are 0, then
(3.105) reduces to (3.104).

The bias-correction ẑ0,i is computed by comparing the bootstrap estimates of ωi to the full-sample estimate,
using

ẑ0,i = Φ−1

#
{
ω̂

(b)
i < ω̂i

}
B

 . (3.107)

The acceleration statistic â estimates the rate of change of SE(ω̂i) with respect to the true parameter ωi.
Efron and Tibshirani (1993) suggest using the formula
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âi =

n∑
j=1

(
ω̂i,(·) − ω̂i,(j)

)3

6

[
n∑

j=1

(
ω̂i,(·) − ω̂i,(j)

)2

]3/2 , (3.108)

where ω̂i,(j) is the leave-one-out (jackknife) estimate of ωi based on the original sample with the jth

observation omitted, and ω̂i,(·) = n−1
n∑

j=1

ω̂i,(j). Like the percentile interval, the BCa interval is transformation-

respecting for monotonic transformations (Efron and Tibshirani 1993).
Efron and Tibshirani (1993) note that at least B = 1000 replications are required to sufficiently reduce the

MC sampling error in the BCa interval estimates. Efron and Tibshirani (1993) propose another improvement
on the percentile interval called the Approximate Bootstrap Confidence (ABC) method that is computationally
less expensive than the BCa method. It approximates the bootstrap random sampling results by Taylor series
expansions. However, this method requires that the statistical estimator be a smooth function of the data,
which is not the case here due to the inequality constraints on ω.

The expansion technique (Hesterberg 1999, 2015) is a simple coverage-level adjustment that can be applied
to a percentile interval or a BCa interval. Suppose—leaving aside bootstrap notation for the moment—that one
wanted to obtain a (1− α)100% CI for the mean µ of a normal population with unknown variance σ2. Let x̄ be

the mean of a random sample of size n and let σ̂2 = n−1
n∑

i=1

(xi − x̄)2 and s2 = (n− 1)−1
n∑

i=1

(xi − x̄)2 be the

ML estimator of σ2 and the sample variance, respectively. A plausible approximate CI for µ would be x̄± zα/2σ̂,
but replacing zα/2 with tα/2,n−1 and σ̂ with s would give an exact CI. The first interval can be transformed

into the second by multiplying its margin of error (half-width) by aα/2,n =
tα/2,n−1

zα/2

s

σ̂
=
tα/2,n−1

zα/2

√
n

n− 1 .

The logic of the expansion technique is that, if the bootstrap statistics are approximately normally dis-
tributed, a similar improvement can be achieved by applying such an adjustment to the percentile (or BCa)
interval. Since, however, it would not be transformation-invariant to multiply the limits of the percentile

interval by aα/2,n, a modified probability α′ can be found such that zα′/2 = tα/2,n−1

√
n

n− 1 , namely,

α′/2 = Φ
(
tα/2,n−1

√
n

n− 1

)
. (3.109)

Hence, the expansion technique applied to the percentile interval involves replacing the probability α/2 in
(3.104) with α′/2 from (3.109). The expansion technique applied to the BCa interval involves changing the
probabilities α1,i and α2,i to α′

1,i and α′
2,i, respectively, by replacing α/2 in (3.106) with α′/2 from (3.109).

Of course, the premise that the bootstrap statistics are approximately normally distributed may not hold,
but Hesterberg (2015) points out that even for heavy-tailed distributions, the expansionary adjustment is still
in the right direction.

3.4.3 Dependent vs. Independent Interval Estimates

If the percentile interval (3.104) or BCa interval (3.105) is computed elementwise for ωi, i = 1, 2, . . . , n, the
impression may be given that there is approximate (1− α)100% confidence that all of the ωi fall within their
respective intervals. This is not the case, however, because the point estimates ω̂i, ω̂j and bootstrap estimates
ω̂

(b)
i , ω̂

(b)
j (for any i ̸= j) are obviously correlated, since they are computed from a single parameter estimate

γ̂ (or γ̂(b)) calculated from the same data set. Due to these dependencies, the CIs are only valid elementwise
(approximately).

One means of obtaining CIs (whether percentile or BCa) that are (approximately) familywise-valid is
to independently draw n separate sets of B bootstrap samples (whether using the pairs or wild bootstrap
technique). The individual bootstrap variance estimates ω̂(b)

i (and the ẑ0,i, in the case of BCa) will thus be
computed from an independently drawn bootstrap data set for each i = 1, 2, . . . , n—albeit drawn from the same
original data set (which mimics the ‘population’). This method of achieving approximately familywise-valid

79



http://etd.uwc.ac.za/

CIs comes at a formidable computational cost, as it entails fitting nB bootstrap linear regressions and then
fitting nB ALVMs, as opposed to just B. This will only be feasible if n and B are relatively small, unless a
faster ALVM such as the linear or clustering model is used.

3.4.4 Constructing a Bootstrap Confidence Region for the Error Variance Vector

Although perhaps of less value to the applied practitioner, it may be of interest to obtain an approximate
(1− α)100% n-dimensional confidence region for ω. Olive (2018) proposes a multivariate extension of the
bootstrap percentile interval to compute an approximate hyperellipsoidal confidence region using the Maha-
lanobis distance metric MH2(Xi·; X̄ ,S) (Mahalanobis 1936), which was introduced previously in §1.1.10.1 (in
a different context, and with slightly different notation).

Olive’s (2018) bootstrap confidence region, applied to the present problem, is a set of points w satisfying,

{
w : MH2 (w; ω̂,S⋆

ω̂) ≤ D2
(UB)

}
, (3.110)

where ω̂ is the full-sample ALVM estimate of ω, S⋆
ω̂ is the n× n empirical covariance matrix of the bootstrap

estimates ω̂(1), ω̂(2), . . . , ω̂(B), and D2
(UB) is a Mahalanobis distance empirical quantile computed as follows.

Set

qB =
{

min (1− α+ 0.05, 1− α+ n/B) α > 0.1
min (1− α/2, 1− α+ 10αn/B) α ≤ 0.1

. (3.111)

If 1− α < 0.999 and qB < 1− α+ 0.001, Olive (2018) proposes changing qB to 1− α. Then, D2
(UB) is the

UB = ⌈BqB⌉th order statistic of the squared Mahalanobis distances of the bootstrap variance vector estimates,
MH2 (ω̂(1); ω̂,S⋆

ω̂

)
,MH2 (ω̂(2); ω̂,S⋆

ω̂

)
, . . . ,MH2 (ω̂(B); ω̂,S⋆

ω̂

)
.

Once computed, the confidence region is defined by its hyperellipsoidal centroid, ω̂, by the scalar D2
(UB),

representing the squared Mahalanobis distance from the hyperellipsoidal centroid to the boundary, and by
the covariance matrix estimate computed from the bootstrap data, S⋆

ω̂. The squared Mahalanobis distance
MH2 (w; ω̂,S⋆

ω̂) of any point w can then be computed and compared to D2
(UB) to determine whether it falls

within the approximate (1− α)100% confidence region. One of the drawbacks of this confidence region method
is that it is n-dimensional and the ‘curse of dimensionality’ will loom large unless n is small.

3.5 A New Heteroskedasticity Test
A test of the null hypothesis of homoskedasticity (A2) can be constructed based on a fitted ALVM (or ANLVM)
as follows. Recall that, under A2, the expectation of the ith squared OLS residual is given by (1.11). Under
heteroskedasticity, the expectation of the ith squared OLS residual is given by (1.15). Consider the quotient
Q given in (3.112):

Q =

n∑
i=1

(
e2

i − ωmii

)2

n∑
i=1

(
e2

i −
n∑

k=1

ωim
2
ik

)2 . (3.112)

Under A2, where ωi = ω, i = 1, 2, . . . , n, the denominator simplifies to the numerator and Q = 1. The
strategy of the heteroskedasticity test entails replacing ω in the numerator of (3.112) with its unbiased (under
A2) estimate, ω̂ub, from (1.5), and the ωi in the denominator of (3.112) with the estimates ω̂i from an ALVM
or ANLVM:

Q̂ =

n∑
i=1

(
e2

i − ω̂ubmii

)2

n∑
i=1

(
e2

i −
n∑

k=1

ω̂im
2
ik

)2 . (3.113)
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Under homoskedasticity, ω̂ub will tend to be a better estimator of ω than the ALVM/ANLVM estimators ω̂i

are. Thus, the numerator of (3.113) will tend to be smaller than the denominator, and Q̂ will tend to take on
values less than 1. Under heteroskedasticity, ω̂ubmii will be a less effective estimator of E(e2

i ), and—provided
that the ωi are estimated better by the ALVM or ANLVM than by the homoskedastic estimator—Q̂ will tend
to take on values larger than 1. Admittedly, the test statistic is constructed on ad hoc intuition rather than
any firm theoretical grounds. Moreover, the power of the test will depend on how well the ωi are modelled by
the particular choice of auxiliary variance model.

The test is easily adapted to be either of the ‘deflator’ type (as that term was used in §2.1), by fitting the
ALVM/ANLVM using only one covariate, or of the omnibus variety, by fitting the auxiliary variance model
using all available information. Feature selection could be incorporated into the fitting of the variance model,
but it would be circular logic to use heteroskedasticity testing as the feature selection method (as discussed
in §3.3.3) if the purpose of fitting the auxiliary variance model is to use the resulting variance estimates in a
heteroskedasticity test. Rather, the covariates included in the ALVM should be chosen based on assumptions
about the kind of heteroskedasticity posited under the alternative hypothesis.

What of the null distribution of Q̂? (3.113) has certain resemblances to a ratio of two variances, and at
first glance, one thinks of dividing the numerator and denominator by appropriate degrees of freedom (perhaps
n− p and q, respectively) and comparing Q̂ to F distribution quantiles. However, (3.113) is plainly not F -
distributed, even approximately, because of the obvious dependency between the numerator and denominator.
Moreover, any attempt to arrive at analytical results is complicated by the difficulty of obtaining analytical
results on the ALVM or ANLVM variance estimators (see §3.3.4).

Hence, the problem of deriving an exact or asymptotic null distribution of (3.113) seems intractable.
Fortunately, the bootstrap method of Godfrey and Orme (1999) (§2.1.23.2) and the MC method of Dufour
et al. (2004) (§2.1.23.1) allow one to obtain approximate p-values from any heteroskedasticity test. Hence, a
right-tailed test using the statistic Q̂ can be performed in practice by computing p-values from one of these
two computational methods.

The power of this new heteroskedasticity test will be investigated empirically in §5.1.1.

3.6 Chapter Summary
This chapter opened with some derivations of theoretical results on the squared OLS residuals under ho-
moskedasticity (A1-A4) and under heteroskedasticity (A1, A3-A4). The expectation and variance-covariance
matrix of e ◦ e were given for both cases (with and without the normality assumption A5), along with the
marginal distributions of the e2

i under A5, which were shown to be Gamma distributions under both ho-
moskedasticity and heteroskedasticity. The joint distribution of any pair of squared residuals e2

i , e
2
j under A5

was also derived, being an instance of Kibble’s (1941) bivariate Gamma distribution. It was posited that
the joint distribution of all n squared residuals under A5 is a multivariate Kibble Gamma distribution. This
result could in principle be used to develop likelihood-based estimation and inference methods for the error
variances. However, not only is the joint PDF difficult to compute but it is in fact degenerate. These com-
plications motivated methods that make use of the moments of the squared OLS residuals but not their joint
distribution.

A discussion of the bias of the e2
i as estimators of the ωi followed. It was shown that the e2

i have a
strictly negative bias when treated as estimators of the homoskedastic error variance ω. However, under
heteroskedasticity the e2

i can be either negatively or positively biased, depending on the relative magnitudes
of the ωi as well as the leverage structure of the design matrix. That e2

i is a biased estimator of ωi means that
it may be problematic to use e2

i as a proxy for ωi in a modelling approach to FWLS, such as those discussed
in §2.2.1. Moreover, the fact that some e2

i may be positively biased suggests an inherent problem with most
existing HCCMEs, which entail multiplying the e2

i by some factor that is strictly greater than 1, which would
increase a positive bias. This motivated a new approach to modelling of heteroskedastic error variances based
on the true expectation of the e2

i .
The first model introduced is called an Auxiliary Linear Variance Model (ALVM), with the general model

equation

e2
i =

n∑
k=1

ωkm
2
ik + ui, i = 1, 2, . . . , n,
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or, equivalently,
e ◦ e = (M ◦M) ω + u.

This model is linear in the parameter ω, but entails estimating an n-vector of parameters from only n
observations. It was thus proposed to reparametrise the model by assuming that the error variances ωi are
related to some covariates Zi· by a continuous, differentiable, positive real-valued function g(Zi·; γ), where γ
is a q-vector of parameters. Various strategies for choosing this unknown heteroskedastic function g(·) were
proposed, including specifying its form explicitly by assumption, estimating it using a penalised polynomial or
spline function, or a nonparametric approach involving agglomerative hierarchical clustering. In some cases,
the reparametrised model is linear in γ, and thus still an ALVM. In other cases, it is nonlinear in γ, and thus
an Auxiliary Nonlinear Variance Model (ANLVM).

Strategies for fitting the ALVMs and ANLVMs were proposed. In the former case, these involved Inequality-
Constrained Least Squares (ICLS), Inequality-Constrained Ridge Regression (ICRR), or more generally,
Quadratic Programming (QP). In the latter case, Maximum Quasi-Likelihood (MQL) estimation was the
method of choice. The problems of tuning of hyperparameters (for models involving hyperparameters), and
feature selection (to arrive at an appropriate specification of Z) were also addressed in detail.

A brief discussion of the possibility of deriving statistical properties of the ALVM and ANLVM error
variance estimators ω̂ ensued, but was not very fruitful. As a result, the best option for producing interval
estimates of the error variances ωi based on an ALVM or ANLVM seems to be bootstrap methods. Therefore,
two methods for nonparametric bootstrapping of heteroskedastic linear regression models—bootstrapping pairs
and the wild bootstrap—were discussed, along with suitable methods for arriving at a bootstrap confidence
interval for the ωi or even a bootstrap confidence region for ω.

Finally, a new test of heteroskedasticity was proposed that makes use of the variance estimates from an
ALVM or ANLVM as compared to the homoskedastic error variance estimator ω̂ub.

A logical question arising at this point in the research is, ‘do these new methods work?’ A substantial
set of Monte Carlo (MC) simulations will be used to answer this question empirically. However, before the
methods can be evaluated empirically, they must be programmed. Therefore, the Results and Discussion
chapter will be preceded by a chapter looking at an R package that has been created specially for this research
study. The package includes functions that implement existing methods (especially heteroskedasticity tests
and HCCMEs), but also—and more importantly, for this study—functions that implement the new models
and methods introduced in this chapter.
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4 Software Implementation: The skedastic R Package
Statistical methods are of limited practical value if they are inaccessible to practitioners. R (R Core Team
2022), an open-source language and environment for statistical software, provides statisticians with a means to
deploy statistical methods to potential users thereof. It was noted in §2.5.1 that relatively few heteroskedasticity
tests from the literature have been deployed in standard statistical software, including R.

To address this gap in making existing methods accessible to practitioners, and to make the new methods
developed in §3 accessible to practitioners, a new R package has been developed as an integral part of this
research project. The package is named skedastic. What follows is a description of the package’s functionality.
A link to the Comprehensive R Archive Network (CRAN) page for the package, from which the package
documentation can be accessed and the package downloaded, can be found in Appendix D.

Section 4.1 describes 25 different functions, each of which implements a particular heteroskedasticity test
from the literature. Functions that were written to support the implementation of some of the heteroskedasticity
tests described in Chapter 2, but which are exported with the skedastic package due to potentially being useful
in other applications, are described in §4.2. These functions represent a research contribution in their own right.
Section 4.3 describes a single function, hccme, that implements the various HCCMEs described in §2.3. The
three most important functions in the skedastic package, in terms of methodological novelty and contribution.
These are alvm.fit, which implements an ALVM, anlvm.fit, which implements an ANLVM, and avm.ci,
which computes bootstrap CIs for the error variances based on either of these auxiliary variance models, are
explained in §4.4.

4.1 Functions That Implement Heteroskedasticity Tests
The skedastic package features 25 distinct functions that implement heteroskedasticity tests from the litera-
ture.77 The naming convention used for these functions is based on the surname(s) of the author(s) of the
publication where the test was first proposed. If the publication had one author, the function name is the
author’s surname in lowercase. If the publication had two authors, the function name is both their surnames
separated by an underscore. For three or more authors, it is the first author’s surname followed by _etal.78

This section focuses on the software implementation of the various heteroskedasticity tests in the skedastic
package that was developed as one of the contributions of this research project. For a description of the
statistical methods themselves, refer to §2.1. All of the functions that implement heteroskedasticity tests have
two arguments in common. The first argument, mainlm, is a linear model object as generated by the lm function
in the stats package. Alternatively, mainlm can be a list object containing two or three named objects: a
response vector y, a design matrix X, and an OLS residual vector e. The rationale for allowing the user to
specify mainlm as a list is that the model could then have been fitted using the faster lm.fit function rather
than lm, thus reducing computation time.

The second argument that is common to all the heteroskedasticity testing functions is statonly. This is
a logical argument that defaults to FALSE, but if true, causes the function to return only the value of the test
statistic, and not (for example) to compute a p-value as well. This saves on computation time in instances
where a p-value is not required (for example, when passing the test statistic value to Godfrey and Orme’s (1999)
method or Dufour et al.’s (2004) method). If statonly is FALSE, the value returned by the function is a list
object of class "htest". This is a class of lists widely used in hypothesis testing functions in R, and includes
elements such as statistic (the value of the test statistic), p.value (the p-value), parameter (a relevant
parameter, if applicable), null.value (the value of the parameter under the null hypothesis, if applicable),
and alternative, a character (either "greater", "less", or "two.sided") denoting the tailed-ness of the test.

Other arguments that are common to several (but not all) of the heteroskedasticity testing functions
include deflator, auxdesign, and restype. In the case of the deflator-type heteroskedasticity tests (Goldfeld
and Quandt (1965), Ramsey’s (1969) BAMSET, etc.), the deflator argument specifies which column of the
design matrix is the deflator, the covariate believed to be related to the error variances ωi under the alternative
hypothesis. In the case of the omnibus-type heteroskedasticity tests that use an auxiliary design matrix, denoted
Z in §2.1 (Harvey (1976), Breusch and Pagan (1979), etc.), the auxdesign argument specifies the auxiliary

77Some functions implement more than one kind of test depending on the arguments. For instance, goldfeld quandt
runs either a parametric F test or a nonparametric peaks test, evans king runs either a LM test or a GLS test, li yao
runs either an ALRT or a CVT, and simonoff tsai runs either a MPLR test or a score test.

78An exception is bamset, the function that implements BAMSET (Ramsey 1969). Ramsey proposed a number of
different tests in this article and gave the name BAMSET to his heteroskedasticity test, which has stuck.
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design matrix. If the argument is set to NA (the default), the original design matrix X serves as the auxiliary
design matrix.

In certain tests such as Goldfeld and Quandt (1965) and Horn (1981), the restype argument is used to
control which residuals (OLS or BLUS) are used for the test. The remainder of this section provides details of
the implementation of the functions in skedastic that implement these various existing heteroskedasticity tests.

4.1.1 Anscombe’s Test (anscombe)

Anscombe’s (1961) test has been described in §2.1.1 and is implemented by the function anscombe. The only
special argument of this function is studentise, a logical variable that controls whether or not to apply Bickel’s
studentising modification. It defaults to TRUE.

4.1.2 BAMSET (bamset)

Ramsey’s (1969) BAMSET, a Bartlett-type test of homogeneity of variances across k subsets (Bartlett 1937),
has been described in §2.1.4 and is implemented by the function bamset. When calling bamset, one must specify
the number of subsets k to be compared (using the argument k, which defaults to 3), and a logical correct
argument determining whether a scaling correction should be made to improve the fit to the chi-squared
distribution.

The function orders the observations by the deflator variable (specified by the deflator argument as dis-
cussed above), and then partitions them into k subsets that are as near as possible to equal in size. Since
BAMSET uses BLUS residuals, computation of which yields only n− p residuals from an original set of n obser-
vations, one must specify which p observations should ‘sacrifice’ their residuals. By setting the omitatmargins
argument to TRUE when calling bamset (which is the default), one indicates that the p omitted observations
are those nearest to the breaks between subsets (after the observations have been ordered by the deflator).
The advantage of omitting at the margins between subsets is that, under the alternative hypothesis, this could
accentuate the heterogeneity in variances between groups, and therefore increase the power of the test. If
omitatmargins is set to FALSE, the function passes the omit argument to blus to determine which observa-
tions to sacrifice (see §4.2.1).

4.1.3 Bickel’s Test (bickel)

Bickel’s (1978) test has been described in §2.1.6 and is implemented by the bickel function. The model
residuals used for Bickel’s test can either be OLS residuals or residuals obtained from a robust regression using
an M estimator (to further enhance the robustness of the method). The choice of model residuals is controlled
by the fitmethod argument, which can be set to "lm" (the default) to use OLS residuals, or to "rlm". In
the latter case, the model is fitted using robust regression by calling the rlm function of MASS (Venables and
Ripley 2002).

The user must specify a function a(·) to apply to the fitted values (using argument a) and a function b(·)
to apply to the residuals (using argument b) to obtain a statistic based on an M estimator. The argument
a can be any function that takes one argument and returns a numeric value of length 1. Alternatively, the
argument a can be a numeric value of length 1, in which case the function is taken to be a(τ) = τ q, where
q is the value passed for argument a. The default a(·) function is a(τ) = τ , as suggested by Bickel (1978, p.
274), represented in R by identity. The b(·) function corresponds to the ψ(·) function used to construct M
estimators and must be even, bounded, and twice-differentiable. The bickel function currently supports only
two choices of b(·): Huber’s function squared (as defined in (2.9)) and b(τ) = tanh(τ)2. These are called by
passing either of the characters "hubersq" or "tanhsq", respectively, for the b argument. Huber’s function
squared is the default, as suggested by Carroll and Ruppert (1981).

The scale_invariant argument controls whether to use the modified form of the test statistic proposed by
Carroll and Ruppert (1981) to make Bickel’s test statistic scale-invariant. If scale_invariant is set to TRUE
(the default), the estimator used in bickel is ω̃1/2 = median{|e1|, |e2|, . . . , |en|}/Φ−1(0.75) (where Φ(·) is the
standard normal CDF).

4.1.4 Breusch-Pagan Test (breusch pagan)

Breusch and Pagan’s (1979) test has been described in §2.1.8 and is implemented by the breusch_pagan
function. The only special argument for this function is koenker, a logical variable that controls whether to
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apply Koenker’s (1981) studentising modification. It defaults to TRUE.

4.1.5 Carapeto-Holt Test (carapeto holt)

Carapeto and Holt’s (2003) test has been described in §2.1.17 and is implemented by the function
carapeto_holt. By default, this test assumes that the deflator variable is negatively associated with the
error variance, and is right-tailed. If, as is more common with the deflator-type heteroskedasticity tests, the
deflator is assumed to be positively associated with error variance, the alternative argument should be set
to "less", making the test left-tailed.

The proportion c of observations to remove (i.e., those with ‘central’ values of the deflator) is specified
using the argument prop_central, with default value 1

3 (rounded, if necessary, to ensure that s is an integer).
The group1prop argument allows the user to specify the proportion of remaining observations allocated to the
first subset, in case it is desired to use subsets of unequal size.

The carapeto_holt function computes p-values on the RQF-type test statistic using the pRQF function, dis-
cussed in §4.2.5. If the two-sided version of the test is used, p-values are then adjusted using the twosidedpval
function, discussed in §4.2.2.

4.1.6 Cook-Weisberg Test (cook weisberg)

Cook and Weisberg’s (1983) test has been described in §2.1.11 and is implemented by the cook_weisberg func-
tion. The form of the heteroskedastic function w(·) assumed under the alternative hypothesis is specified using
the hetfun argument. It can take one of three character values, "add", "mult", or "logmult", corresponding
to the three heteroskedastic models described in §2.1.11.79

4.1.7 Diblasi-Bowman Test (diblasi bowman)

Diblasi and Bowman’s (1997) test, implemented by the diblasi_bowman function, is one of the more com-
plicated heteroskedasticity testing methods in the literature (see description in §2.1.16). The bandwidth
parameter of the kernel function is specified using the H argument. This can be a scalar numeric value, in
which case the bandwidth matrix is this scalar multiplied by the identity matrix. Alternatively, H can be a
vector—in which case it is taken as the diagonal of a diagonal matrix—or as a matrix. It is intended that a
future version of the package will incorporate automated tuning of the bandwidth (using CV, for instance).

The diblasi_bowman function calls the adaptIntegrate function from cubature (Narasimhan et al. 2020)
to evaluate the required double integrals. The ignorecov argument is a logical which, if TRUE, leads the
variance-covariance matrix of the transformed residual vector s to be treated as diagonal. This hugely reduces
computation time and is the default setting.

The method used to compute the p-value is controlled using the distmethod argument, which can be set to
"moment.match" (the default) or "bootstrap", corresponding to the moment matching and bootstrap methods
discussed in §2.1.16. If the bootstrap method is used, the B argument represents the number of bootstrap
replications.

4.1.8 Dufour, Khalaf, Bernard, and Genest’s Monte Carlo Test (dufour etal)

Dufour et al.’s (2004) method has been described in §2.1.23.1 and is implemented by the dufour_etal function.
The function takes as one of its arguments hettest, a character corresponding to the name of the function that
implements one of the other heteroskedasticity tests implemented in the skedastic package (excluding Godfrey
and Orme’s (1999)). The function will call that auxiliary heteroskedasticity test function with the statonly
argument set to TRUE in order to compute the value of its test statistic for each MC replication.

The number of MC replications R is specified using the R argument. This defaults to 1000, although Dufour
et al. (2004) report that power improvements are not noticeable beyond R = 99 MC replications.

By default, each replication of the random error vector, ϵ(j), used in simulating the null distribution, is
generated from N(0, In). The distribution can, however, be changed using the errorgen argument. The
errorparam argument can be used to pass distributional parameters to errorgen to ensure that the error
distribution has zero mean.

79Note that this test produces identical results for the additive and multiplicative models.
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The user must always specify the tailed-ness of the auxiliary heteroskedasticity test using the alternative
argument (which defaults to "greater"), even if the auxiliary test function does not have an alternative
argument.

4.1.9 Evans-King Tests (evans king)

Evans and King’s (1988) two heteroskedasticity tests have been described in §2.1.12 and are both implemented
by the evans_king function. The test to apply is controlled using the method character argument: "GLS" for
the GLS test or "LM" for the LM test. The hyperparameter λ⋆, controlling the degree of heteroskedasticity
under the alternative hypothesis, is set using the lambda_star argument. It defaults to 5, since, according to
the simulations conducted by Evans and King (1988), this results in the highest power.

Evans and King (1985, 1988) do not discuss in detail how to compute critical values or p-values for their
test statistics. Thus, the evans_king function does more than merely implement their existing theory. It offers
a significant new contribution, by using the pRQF function (described in §4.2.5) to compute p-values, since the
test statistics are ratios of quadratic forms. Both tests are implemented in evans_king as left-tailed tests (as
originally designed).

4.1.10 Glejser’s Test (glejser)

The test implemented in glejser follows the procedure previously described in §2.1.3.
Mittelhammer et al. (2000, p. 537) recommend using a ω estimator from the auxiliary model, i.e. ω̂a =

n−1∑n

i=1 u
2
i . A more conventional approach would be to use ω̄ = n−1∑n

i=1 e
2
i (as, for instance, is done in

SHAZAM software). The sigmaest argument allows the user to implement either of these two approaches: if it
is set to "main" (the default), the OLS residuals from the main model are used, while if it is set to "auxiliary",
the OLS residuals from the auxiliary model are used.

4.1.11 Godfrey-Orme Test (godfrey orme)

Godfrey and Orme’s (1999) nonparametric bootstrap method for estimating p-values for a heteroskedasticity
test was discussed in §2.1.23.2. The godfrey_orme function implements this method as though a separate
heteroskedasticity test, but the function takes as one of its arguments hettest, which is the name of one of
the other heteroskedasticity test functions in the package.

godfrey_orme passes TRUE for the statonly argument when calling function hettest, so that hettest only
computes the test statistic value. The number of bootstrap samples B is specified using the B argument and
defaults to 1000.80

The user must specify the tailed-ness of the test using the alternative argument (which defaults to
"greater"), even if the corresponding test function passed as hettest does not require this as an argument.

4.1.12 Goldfeld-Quandt Tests (goldfeld quandt)

Goldfeld and Quandt’s (1965) parametric F test and nonparametric ‘peaks’ test, discussed previously in §2.1.2,
are both implemented by calling the same function, goldfeld_quandt. The method is specified by setting the
method argument to "parametric" and "nonparametric", respectively.

By default, it is assumed that the error variance is positively related to the deflator variable. However,
this can be reversed by setting the alternative argument to "less" rather than "greater". Otherwise, if no
prior information is available on the suspected direction of monotonic dependency, alternative can be set to
"two.sided" for a two-tailed test.

The proportion c of observations to remove (i.e., those with ‘central’ values of the deflator) is specified
using the argument prop_central, with default value 1

3 (rounded, if necessary, to ensure that nc is an integer).
The group1prop argument allows the user to specify the proportion of remaining observations allocated to the
first subset, in case it is desired to use subsets of unequal size. By default, the two subsets each contain an
equal number of observations, n(1− c)/2.81

80This is slightly more conservative than the 400 suggested in Godfrey et al. (2006).
81Changing this proportion alters the form of the F statistic as the degrees of freedom in the numerator and the

denominator no longer cancel.
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If the nonparametric ‘peaks’ test method is used, p-values are computed from the exact CDF of the
number of peaks in an iid sequence of continuous random variables by calling ppeak, which in turn calls dpeak
to compute probability mass values.82 More details on ppeak and dpeak are given below in §4.2.4. Because
dpeak is computationally slow for large n, the probability masses of this distribution for n = 1, 2, . . . , 1000
are stored in a dataset called dpeakdat that is exported with skedastic.83 The restype character argument
controls which residuals are used in the nonparametric test: "ols"—for OLS residuals—or "blus"—for BLUS
residuals (Theil 1965, 1968).84 If alternative is set to "two.sided", the argument twosidedmethod allows
the user to specify the method by which a two-sided p-value should be computed in twosidedpval. For more
details on the supporting dpeak, ppeak, and twosidedpval functions, see §4.2.2 and §4.2.4.

4.1.13 Harrison-McCabe Test (harrison mccabe)

Users can call harrison_mccabe to apply Harrison and McCabe’s (1979) test, which was introduced in §2.1.9
The user specifies the ‘breakpoint index’ m for the test using the m argument, which can either be an integer
representing index m or a double representing m

n
. m defaults to 0.5. The harrison_mccabe function by default

conducts a left-tailed test, but this can be changed using the alternative argument. The test’s p-values are
obtained from the CDF of a RQF in a normal random vector using the pRQF function (see §4.2.5).

4.1.14 Harvey’s Test (harvey)

The harvey function implements Harvey’s (1976) heteroskedasticity test, as discussed in §2.1.5. This function
has no special arguments.

4.1.15 Honda’s Test (honda)

Honda’s (1989) test, which was described in §2.1.13, can be applied by calling the honda function. The test
is two-tailed by default, but this can be adjusted to a left-tailed or right-tailed test using the alternative
argument. p-values are computed from the CDF of a RQF in a normal random vector using the pRQF function
(see §4.2.5); the two-sided p-value is computed using the twosidedpval function (see §4.2.2).

4.1.16 Horn’s Test (horn)

The horn function implements Horn’s (1981) nonparametric heteroskedasticity test, as described in §2.1.10.
The restype argument controls which type of residuals to use ("ols" for OLS or "blus" for BLUS). The test
is by default two-tailed, but this can be adjusted using the alternative argument. p-values are computed
from the distribution of Lehmann’s (1975) nonparametric trend statistic. The exact logical argument controls
whether the exact distribution is used or a normal approximation. By default, exact is TRUE if the length
of the residual vector is ≤ 10, and FALSE otherwise. Computation time increases rapidly with the number
of residuals. The exact probability mass function (PMF) and CDF of the nonparametric trend statistic are
computed by the dDtrend and pDtrend functions, respectively, which are discussed in §4.2.6.

4.1.17 Li-Yao Tests (li yao)

The li_yao function implements the two tests of Li and Yao (2019) as described in §2.1.22, namely the ALRT
and the CVT. Which test to apply is controlled by setting the method argument to "cvt" or to "alrt". The
baipanyin logical argument, which defaults to TRUE, controls whether or not to apply the distribution derived
by Bai et al. (2016) to compute the p-value of the CVT; this argument is ignored for the ALRT.

82Passing the vector of probabilities for the required n to goldfeld_quandt as the prob argument enables the non-
parametric test to be implemented much more rapidly. Otherwise, if prob is set to NA (the default), the probabilities are
computed.

83The implication is that the nonparametric test is extremely slow for n > 1000.
84"ols" is the default only because they are used by Goldfeld and Quandt (1965), who were probably not yet aware

of Theil’s procedure. However, "blus" may be preferable, because, while p residuals are lost in the process of computing
the BLUS residuals, the BLUS residuals under homoskedasticity do constitute an iid sequence of random variables, which
the OLS residuals do not.
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4.1.18 Račkauskas-Zuokas Test (rackauskas zuokas)

Račkauskas and Zuokas’s (2007) test, which has been described in §2.1.19, can be conducted by calling the
rackauskas_zuokas function. The alpha argument specifies the hyperparameter α ∈ [0, 1/2) (not to be con-
fused with the significance level). The pvalmethod argument controls how to compute the p-value. If set to
"data", the p-value is computed from 214 pre-generated MC replicates from the asymptotic null distribution
of the test statistic. These replicates are stored in the T_alpha data object in skedastic, and cover the α values
i/32, i = 0, 1, . . . , 15, with m = 217. Alternatively, the user can set the pvalmethod argument to "sim" to run
one’s own MC simulation. One would then specify the number of replications R (R), the sample size m (m) to
use when generating the Brownian Bridge for each replicate, and the pseudorandom number generating seed
value seed (for reproducibility).

4.1.19 Simonoff-Tsai Tests (simonoff tsai)

The MPLR and score tests of Simonoff and Tsai (1994), reviewed in §2.1.15, can be implemented using the
simonoff_tsai function. The choice of test is controlled by setting the method argument to "mlr" or "score".

The three forms of w(·) implemented in simonoff_tsai are the additive, multiplicative, and log-
multiplicative and these are specified using the hetfun argument just as with cook_weisberg ("mult" is
the default). In all three cases, λ0 is the zero vector, and so the null hypothesis of homoskedasticity can be
expressed as λ = 0.

The ML estimate of λ is computed using the optim function of stats. The optimisation algorithm can be
specified using the optmethod argument, which corresponds to the method argument of optim and defaults to
"Nelder-Mead".85 By default, the initial values of λ are the q-vector

[
10−3, 10−3, . . . , 10−3].86 The MPLR

test is computationally slow due to the need to maximise the modified profile likelihood function numerically.
The Bartlett correction is activated in simonoff_tsai by default, but can be suppressed by setting bartlett

to FALSE.87

For the score test, the ‘base test’ to use is specified in simonoff_tsai by the basetest argument, which
can be set to "koenker" (the default) or "cook_weisberg". The form of the function g(Z′

i·, ζ) (used in the
computation of the Jacobian matrix) is specified using the argument hetfun exactly as for the MPLR test.

4.1.20 Szroeter’s Test (szroeter)

One may call the function szroeter to implement Szroeter’s (1978) heteroskedasticity test. The user must
specify a nondecreasing function h(i) of the indices i = 1, 2, . . . , n, as discussed in §2.1.7. This is done using
the argument h. The default in szroeter is h = SKH, corresponding to

h(i) = 2
[
1− cos

(
πi

n+ 1

)]
, i = 1, 2, . . . , n.

The p-values in szroeter are computed using the pRQF function (see §4.2.5).

4.1.21 Verbyla’s Test (verbyla)

The verbyla function implements Verbyla’s (1993) heteroskedasticity test, as reviewed in §2.1.14. The function
has no special arguments and is thus straightforward to use.

4.1.22 White’s Test (white)

The white function implements the famous heteroskedasticity test of White (1980), which was discussed in
§2.1.8 as an extension of Breusch and Pagan’s (1979) test. The interactions argument controls whether

85The ... argument allows the user to pass other arguments to optim, such as par (the initial values of λ), maxit
(the maximum number of iterations to use in the optimisation procedure), trace (which can be used to display detailed
output from the optimisation procedure), etc.

86Particularly where hetfun is "mult" (the multiplicative model), the user should ensure that the initial parameter val-
ues are sufficiently small that the initial function evaluation of lp in the optimisation algorithm returns a computationally
finite value.

87Note that the Bartlett correction is not currently implemented for the additive heteroskedastic model, due to the
extremely complicated expression for cm that results in this case.
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interaction terms are included in the auxiliary design; if FALSE (the default), only the covariates and their
squares are included.

4.1.23 Wilcox-Keselman Test (wilcox keselman)

One can implement the heteroskedasticity test of Wilcox and Keselman (2006) by calling the wilcox_keselman
function, described in §2.1.18. This test requires computation of quantile regression estimates, which is done
using the Barrodale-Roberts method in the rq.fit function of quantreg (Koenker 2020).

Wilcox and Keselman (2006, p. 707) note that the test does not hold its size well for non-normal er-
ror distributions and thus propose an ad hoc size correction method. This method, which they call N2, is
not implemented in wilcox_keselman as it does not enable computation of a p-value. Rather, the function
implements the method that they call N1.

Wilcox and Keselman (2006) do not propose a generalisation of the test to multiple linear regression.
However, Wilcox (2020) has written an R package WRS featuring a function qhomtv2 that implements the test
using a simple quantile regression model with each explanatory variable. The qhomtv2 function thus generates
p − 1 p-values, where p − 1 is the number of explanatory variables (excluding intercept) in the model.88 The
values of the test statistic and corresponding adjusted p-values are displayed in the order of the explanatory
variables in the design matrix.

The user must decide on the quantile γ to use; this is passed using the argument gammapar, which defaults
to 0.2 as recommended in Wilcox and Keselman (2006).89 The user also specifies the number of bootstrap
samples B (using B, which defaults to 500). For reproducibility of results, the user may pass an argument
seed to be used in set.seed to set the pseudorandom number generator seed. Finally, the logical argument
matchWRS allows the bootstrap sampling algorithm and seed to be aligned exactly to those of Wilcox’s (2020)
function qhomtv2.90

4.1.24 Yüce’s Test (yuce)

The yuce function implements either of the two heteroskedasticity tests proposed in Yüce (2008), and described
above in §2.1.20. The only special argument that the user must specify is method, which is set to "A" for the
chi-squared test or "B" for the t-test.

4.1.25 Zhou, Song, and Thompson’s Test (zhou etal)

zhou_etal is a function that implements the heteroskedasticity test method of Zhou et al. (2015), reviewed in
§2.1.21. The B perturbation samples are generated from the normal distribution, with B specified using the
Bperturbed argument. Using the method argument, the user can implement either an omnibus or ‘pooled’ test
("pooled"), a covariate-specific deflator-type test ("covariate-specific"), or the hybrid approach ("hybrid")
as described in §2.1.21.

If the covariate-specific method is used, it is applied to each covariate separately, and the function’s output
is a tibble object containing the test statistic and corresponding p-value for each deflator. The seed argument
can be used to set the pseudorandom number generator seed for reproducibility of the perturbation sampling.

The test statistic returned by zhou_etal in the hybrid case is either Tpool (if Ppool < Pcs) or Tr (if
Pcs < Ppool), where r is the index such that Pr = min {P1, P2, . . . , Pq}.

4.2 Supporting Functions for Heteroskedasticity Testing
Each of the functions discussed in §4.1 implements one or more heteroskedasticity testing methods. Many of
these functions need to perform complicated computations to calculate the test statistic and its p-value. In
keeping with the principles of functional programming, separate functions were created for these supporting
computations. Some of these functions are exported with the skedastic package, because they are deemed to

88qhomtv2 performs no adjustment to control the familywise error rate; however, wilcox_keselman allows the user to
pass an argument p.adjust.method which will be passed to p.adjust (in stats) as its method argument, thus adjusting
the p-values. By default, no adjustment is made, in order to align with Wilcox and Keselman’s (2006) method.

89This quantile parameter is denoted γ following the notation of Wilcox and Keselman (2006) and should not be
confused with the parameter γ used in the ALVMs and ANLVMs in this study.

90Note that the default number of bootstrap samples in qhomtv2 is 100.
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have value and applicability beyond their use in applying certain heteroskedasticity tests. These functions
therefore also constitute an original research contribution in their own right, and for that reason are described
in this section.

The hetplot function is not related to any particular heteroskedasticity test but produces diagnostic plots
for detecting heteroskedasticity. The blus function computes BLUS residuals. Several functions described
in this section assist with computation of p-values, either by computing probabilities from a certain distribu-
tion (dpeak, ppeak, dDtrend, pDtrend, pRQF), or by computing two-sided p-values from a given asymmetric
distribution (twosidedpval).

4.2.1 Computation of Best Linear Unbiased Scalar-Covariance-Matrix Residuals (blus)

Theil’s (1965) BLUS residuals were introduced in §1.1.7.5, and can be (or are, by default) used instead of OLS
residuals in some heteroskedasticity tests, such as Goldfeld and Quandt’s (1965), Ramsey’s (1969) BAMSET,
and Horn’s (1981).

Theil’s (1968) algorithm for computing the BLUS residuals, which is implemented by the blus function in
the skedastic R package, can be outlined as follows.

1. Choose which p observations will be ‘lost’ when computing the BLUS residuals and reorder the obser-
vations so that these p observations are first.

2. Partition the model as follows:[
y0
y1

]
=
[

X0
X1

]
β +

[
ϵ0
ϵ1

]
,

where
y0 consists of the first p observations,
y1 consists of the last n− p observations,

and similarly for X and ϵ. It is assumed that X0 is nonsingular. e is partitioned into
[

e0
e1

]
in the same

manner.
3. Compute the BLUS residuals as,

eBLUS = e1 −X1X−1
0

[
p∑

j=1

λj

1 + λj
qjq′

j

]
e0, (4.1)

where λ2
j , j = 1, 2, . . . , p are the eigenvalues of X0(X ′X)−1X ′

0 and qj are the corresponding eigenvectors.
This is, as far as the author knows, the first implementation of BLUS residuals in an R package available on

CRAN, although an R procedure for computing BLUS residuals was described previously in Vinod (2014). The
omit argument of blus controls which p observations are not represented in the BLUS residual vector. This
argument can be a numeric vector of length p specifying the indices to omit. Alternatively, it can be a character
value, either "first" (indicating that the first p observations should be omitted), "last" (indicating that the
last p observations should be omitted), or "random" (indicating that p randomly chosen observations should
be omitted). Sometimes the algorithm fails due to X0 or X ′X being numerically singular. If such singularity
occurs for the chosen subset of indices to omit, blus instead chooses a random subset of observations to omit.
If this also results in a singular X0, another random subset is attempted, and so on until a subset is found
for which the BLUS residuals can be computed.91 The seed argument can be used to set the seed of the
pseudorandom number generator to make the randomisation of omitted indices reproducible.

The keepNA logical argument controls the structure of the BLUS residual vector eBLUS returned by blus.
If TRUE (the default), an n-vector is returned, with NA_real_ as the value for the p indices that were omitted.
If FALSE, an (n− p)-vector is returned with no NA values.

91The user can specify how many random subsets to attempt using the exhaust argument. The default value, NA,
results in all

(n
p

)
possible subsets being attempted, if necessary, provided that

(n
p

)
≤ 104. Otherwise, up to 104 different

random subsets are attempted. If exhaust is set to an integer value, the maximum number of subsets attempted will be
the smaller of exhaust and

(n
p

)
.
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4.2.2 Computing Two-Sided p-Values from Asymmetric Distributions (twosidedpval)

There is no generally accepted method of obtaining a two-sided p-value from an asymmetric null distribution in
statistical inference. Some of the tests implemented in skedastic have such null distributions, either continuous
(Carapeto and Holt 2003, Honda 1989) or discrete (Goldfeld and Quandt’s (1965) nonparametric test). A
common way of obtaining a two-sided p-value from an asymmetric null distribution is to simply double the
one-sided p-value. One of the weaknesses of this approach is that it can result in a p-value greater than 1.
Another method sometimes used is to compute the probability over all values (from both tails) with probability
mass or density less than or equal to that of the observed value. A weakness of this approach is that, particularly
with multimodal distributions, there may be values between the null value and the observed value that are less
likely than the observed value.

Kulinskaya (2008) proposes a new method of defining two-sided p-values that she refers to as ‘conditional
two-sided p-values’ and denoted by PC . The conditional two-sided p-value is intuitively similar to the doubled
p-value, but the p-values on each of the two tails are weighted inversely according to the probability of falling
on that tail. The result is that p-values are ‘inflated’ on the thinner tail and ‘deflated’ on the thicker tail
(relative to the doubled p-value).

Computation of PC , both in the continuous and discrete cases, requires one to specify a generic location
parameter A used to separate the two tails of the null distribution, of which particular examples include the
mean, mode, and median.92 It is required that 0 < F (A) < 1, where F is the cumulative distribution function
of the null distribution.

Let T be a test statistic with observed value q and null distribution F . For the continuous case, Kulinskaya
(2008, p. 5) defines the weighted two-sided p-value centred at A as follows:93

PA
w (q) = min

{
1, F (q)

wL
1q≤A + 1− F (q)

wR
1q>A

}
, (4.2)

where 1• is the indicator function and wL and wR are positive weights satisfying wL + wR = 1. If
wL = wR = 1

2 , then PA
w (q) is a version of the doubled one-sided p-value that will never exceed 1. The condi-

tional two-sided p-value centered at A is obtained by setting wL = F (A) and wR = 1− F (A); thus

PA
C (q) = F (q)

F (A)1q≤A + 1− F (q)
1− F (A)1q>A. (4.3)

This is a smooth function of q (except at A), with a maximum of 1 at q = A.94 The function strictly
increases for x < A and strictly decreases for x > A.

For the discrete case, the definition of the conditional two-sided p-value centred at A, as per Kulinskaya
(2008, p. 11), depends on whether A is attainable, i.e. belongs to the support of T :

PA
C (q) =



Pr(T ≤ q)
Pr(T < A)1q<A + Pr(T ≥ q)

Pr(T > A)1q>A if A is not attainable

Pr(T ≤ q)
Pr(T ≤ A)/ (1 + Pr(T = A))1q<A

+ 1q=A + Pr(T ≥ q)
Pr(T ≥ A)/ (1 + Pr(T = A))1q>A if A is attainable

. (4.4)

The A parameter is specified in twosidedpval using the Aloc argument. Two plausible choices are the null
value of the parameter being tested and the null distribution mean. If Aloc is not specified, twosidedpval

92If the median is selected for A, PC is identical to the doubled one-sided p-value.
93The notation here has been slightly altered from that used by Kulinskaya (2008). Moreover, her notation had a

< A indicator and a > A indicator, with neither term including the value of A; the result is that the weighted two-sided
p-value would take on a value of 0 at A. This is untidy, even if the probability of a continuous random variable equalling
a particular value is vanishing.

94The definition of PA
C given in Kulinskaya (2008, p. 6) is confusing and technically incorrect. It expresses PA

w
with weights wL = F (A) and wR = 1− F (A) as a sum of conditional probabilities involving the test statistic and an
independent random variable (call it T ′) having the same distribution. This is invalid because if T and T ′ are independent,
the conditional distribution of T |T ′ is simply the marginal distribution of T . In fact, the two-sided p-value proposed by
Kulinskaya (2008) does not technically involve a conditional probability and thus might be better named ‘tail-weighted
two-sided p-value’.

91



http://etd.uwc.ac.za/

attempts to compute the distribution mean from CDF (the user-specified cumulative distribution function)
and sets Aloc to this value.95 If CDF corresponds to the cumulative distribution function F (·) and the null
distribution is continuous, the distribution mean is computed by evaluating the following integral using quadinf
in pracma (Borchers 2022):

E0(T ) =
∫ ∞

0
(1− F (t))dt−

∫ 0

−∞
F (t)dt.

If the null distribution is discrete, its distribution mean is computed by evaluating the following expression:96

E0(T ) =
∞∑

t=0

(1− F (t))−
−1∑

t=−∞

F (t).

Distribution parameters for CDF may be specified using the ..., the ellipsis argument in R. Optionally, the user
may specify the minimum and maximum values in the support of a discrete distribution using the supportlim
argument; this will improve computational efficiency if the "minlikelihood" method is used or if the function
must compute the distribution mean to use as the Aloc value. The user specifies whether the null distribution is
continuous or discrete using the logical argument continuous. Finally, the method argument is used to specify
which of three methods should be used to compute the two-sided p-value. The value "doubled" corresponds
to the doubled one-sided p-value, "kulinskaya" to the conditional two-sided p-value (Kulinskaya 2008), and
"minlikelihood" corresponds to the sum of probabilities of all values with probability less than or equal to
that of the observed value.

4.2.3 Scatter Plots for Heteroskedasticity Diagnostics (hetplot)

Graphical methods, and in particular residual plots, provide a useful diagnostic and visualisation tool for
heteroskedasticity in linear regression models. Most practitioners are familiar with the use of scatter plots for
heteroskedasticity diagnostics, such as a plot of the OLS residuals ei vs. the OLS fitted values ŷi or one of the
explanatory variables. Cook and Weisberg (1983) suggest several ways to improve on this basic plot. First, they
suggest that the squared residuals e2

i are a better choice for the variable plotted on the vertical axis, because
this doubles the sample size in a visual sense. Moreover, they point out that even under homoskedasticity, the
variances of the OLS residuals is not constant but equals σ2mii. Thus, to reduce the risk of a spurious pattern
appearing, it would be better to consider ei/

√
mii, an observable variable that does have constant variance

under homoskedasticity.
The hetplot function incorporates these and other possibilities to offer a customisable heteroskedasticity

plotting tool built around the basic scatter plot functionality of the plot function in base R. The three key
arguments that define the plot(s) are horzvar, vertvar, and vertfun. horzvar is a character argument
specifying the variable(s) to plot on the horizontal axis. Possible values and the variables they represent are
displayed in Table 4.1.

If one wants to plot only one explanatory variable, one can pass the names element of the data.frame
corresponding to that variable; by concatenating "log" with the names element, one can plot the natural

Table 4.1: Possible Values for horzvar

horzvar Value Variable Plotted
"index" i

"fitted.values" ŷi
"fitted.values2" miiŷi

"explanatory" Xij for all j
"log_explanatory" log Xij for all j

95This has been tested for the cumulative distribution functions of well-known distributions included in stats (e.g.,
pchisq, pbinom), but may fail or yield unexpected results for other choices of CDF, especially user-defined functions.

96Since sum cannot take a vector of infinite length, the function truncates the vector at 1e6 rather than Inf, even if
the support continues to infinity.
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Table 4.2: Possible Values for vertvar

vertvar Value Variable Plotted
"res" ei

"res_blus" ẽi (BLUS residuals)
"res_stand" ei

s , s2 = n−1∑n
i=1 e2

i

"res_constvar" ei√
mii

"res_stud" ei

σ̂
√
mii

, σ̂2 = (n − p)−1∑n
i=1 e2

i

logarithm of the specified explanatory variable. If the argument corresponds to more than one variable to plot
on the horizontal axis (e.g. "explanatory" in a model with multiple explanatory variables), multiple plots will
be produced.

vertvar is a character argument specifying the residual variable(s) to plot on the vertical axis. Possible
values and the variables they represent are displayed in Table 4.2.

The user may specify a character vector of length > 1 with multiple values, in which case multiple plots
are produced.

vertfun is a character argument specifying the name(s) of one or more functions to apply to the residual
variable indicated by vertvar. A number passed as a character, such as "2", is interpreted as a power to
be applied to the vertical axis variable. Other functions to consider include "identity" (to plot the vertvar
variable as is) and "abs" (for the absolute value function).

Since one can pass more than one value for both the vertvar and vertfun arguments, and since some
of the horzvar arguments entail multiple horizontal variable arguments (e.g. "explanatory", representing all
explanatory variables), the total number of plots to be produced by one call of hetplot may be large. Accord-
ingly, there are two ways to output the plot(s), which are specified using the filetype character argument. If
filetype is set to NA (the default), all required plots are passed to a single device where they are displayed in
a matrix structure using the mfrow graphical parameter.97 Alternatively, the filetype argument can be one
of "png", "bmp", "jpeg", or "tiff", which results in each individual plot being written to an image file of that
type. In order to comply with CRAN’s Repository Policy, these image files are written to a subfolder called
hetplot within the R session’s temporary directory. The path of the temporary directory can be obtained
within the session using tempdir(). The filename of each image file names the horizontal and vertical variable
for that plot and also includes a timestamp. If the image files are needed after the R session is ended, the user
should copy them to a permanent directory. Besides these arguments, the user may pass other arguments such
as graphical parameters to use in plotting. Examples of plots generated using hetplot can be found in §5.6.

4.2.4 Computing Probabilities of Number of Peaks in an iid Random Sequence (dpeak,
ppeak)

Let {Q1, Q2, . . . , Qn} be a sequence of independent and identically distributed continuous random variables.
A random variable in the sequence is a ‘peak’ if its value exceeds the values of all previous random variables
in the series. Q1 is not considered a peak. Thus, the number of peaks P in the sequence is defined as follows:

P =
n∑

i=2

1Qi≥max{Q1,Q2,Qi−1}, (4.5)

where 1• is the indicator function. The support for the number of peaks consists of the integers {0, 1, . . . , n− 1}.

97The function will attempt to find an attractive dimensionality for the required number of plots; thus for instance if
the number of plots required is 6, they will be displayed in a 2 × 3 structure. If the number of rows or columns in the
plotting structure exceeds 4, a warning is produced.
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Figure 4.1: Illustration of Peaks in a Sequence

skedastic exports three functions relating to the variable P . countpeaks simply returns the observed number
of peaks in a double vector passed as its only argument, x.98 Figure 4.1 illustrates a sequence of twelve values
containing four peaks.

dpeak and ppeak compute the PMF and CDF, respectively, of P . Since ppeak merely computes cumulative
sums of probabilities computed in dpeak, this discussion focuses on dpeak. Following the notation used by
Goldfeld and Quandt (1965), define N(n, k) as the number of permutations of a sequence of n values containing
k peaks. Defining for convenience N(1, 0) = 1, the authors make use of recursive relations to derive a general
expression for the probability P (n, k) that a sequence of n iid continuous random variables has exactly k peaks,
namely,

P (n, k) = 1
n!N(n, k). (4.6)

dpeak takes arguments k, representing k, an integer denoting the number of peaks of which the probability
should be computed,99 n, representing n, an integer denoting the length of the series,100 and usedata, a logical
indicating whether the probability should be taken from the dpeakdat dataset rather than computed within
the function. The factorial function in base R can only compute n! for n ≤ 170; for n > 170 it returns Inf.
Accordingly, where n > 170, dpeak makes use of the factorialZ function from the gmp package (Lucas et al.
2020) to calculate n!, and, for similar reasons, uses the function mpfrArray from the Rmpfr package (Maechler
2020) to calculate N(n, k). However, computation time is an issue for large n, and for this reason skedastic
includes the dpeakdat dataset containing pre-calculated ‘peaks’ probability distributions for n up to 1000.

The function value is a double vector of the same length as k representing the probabilities, with the values
of k stored in a names attribute. Figure 4.2 shows the expected number of peaks E(P ) as a function of the
sequence length n.

98Note that any NA values in x are ignored.
99dpeak is vectorised with respect to k; setting k = 0:(n - 1) corresponds to computing probabilities over the full

support from 0 to n− 1. Note that computation time for k = 100 and k = 0:100 will be similar, since the procedure is
recursive.

100dpeak is not vectorised with respect to n.
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Figure 4.2: Expectation of Number of Peaks in a Sequence of n iid Random Variables

ppeak has the same arguments as dpeak with the same meaning, as well as a logical argument lower.tail
indicating whether the lower-tailed cumulative probability should be computed. Figure 4.3 shows the PMF
and CDF of the number of peaks P for an iid sequence of n = 10 continuous random variables.
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Figure 4.3: PMF and CDF of a Sequence of n = 10 iid Continuous Random Variables
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4.2.5 Computing p-Values for a Ratio of Quadratic Forms in a Normal Random Vector
(pRQF)

The test statistic for a number of the tests implemented in skedastic (Szroeter 1978, Harrison and McCabe
1979, Evans and King 1988, Honda 1989, Carapeto and Holt 2003) is, under A2 (the null hypothesis of
homoskedasticity), together with A3 and A5, a Ratio of Quadratic Forms (RQF) in a normally distributed
random vector with a scalar covariance matrix, namely the error vector ϵ. The R package CompQuadForm
(Duchesne and de Micheaux 2010) contains functions that compute cumulative probabilities for a quadratic
form in normally distributed random variables. The pRQF function computes cumulative probabilities on a
Ratio of Quadratic Forms in a normal random vector. To do so, it makes use of the fact that a probability
expression in a RQF can be rewritten as a probability expression in a quadratic form. Let the ratio statistic
be written as

T = ϵ′Aϵ

ϵ′Bϵ
, (4.7)

where A and B are nonstochastic, symmetric matrices, and ϵ ∼ N(0, ωIn). If the observed value of the
test statistic is denoted t0, then the p-value, in the case of an upper-tailed test, can be written as

Pr (T > t0) = Pr
(

ϵ′Aϵ

ϵ′Bϵ
> t0

)
= Pr

(
ϵ′Aϵ > t0ϵ′Bϵ

)
= Pr

(
ϵ′(A− t0B)ϵ > 0

)
. (4.8)

In light of (4.8), the functions of CompQuadForm can be used to compute cumulative probabilities on a
RQF in normal random variables. CompQuadForm implements four methods for calculating probabilities in
quadratic forms, of which two can be called from pRQF. These are the Imhof algorithm (Imhof 1961) and the
Davies algorithm (Davies 1980), implemented in imhof and davies, respectively.101

The arguments to be passed to pRQF are r, corresponding to t0 (the observed value of the ratio statistic),
A (corresponding to matrix A), B (corresponding to matrix B), lower.tail (a logical indicating whether a
lower-tailed probability is required), and algorithm (a character specifying the method to use). The three
possible values for algorithm are "imhof" (the default), "davies", and "integrate". The first two correspond
to calls of the eponymous functions in CompQuadForm. To make the function less dependent on this package,
"integrate" results in the Imhof algorithm integral being evaluated using the integrate function in the stats
package.102

101The other two functions in CompQuadForm, farebrother and liu, are not supported in pRQF. The first requires that
the matrix in the quadratic form be positive semi-definite (which A− t0B in general is not), and the second method is
shown in Duchesne and de Micheaux (2010) to be inaccurate.

102This is computationally slower than "imhof", since the CompQuadForm functions use compiled code.
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Figure 4.4: CDF of an Instance of Harrison and McCabe’s (1979) Test Statistic under
Homoskedasticity

Figure 4.4 shows the CDF of Harrison and McCabe’s (1979) test statistic T , which is a RQF, for values of
the ratio between 0 and 2, for a particular DGP with n = 20, p = 3, the two covariates generated independently
from U(0, 1), and m = 0.5 (see §2.1.9 for details of the test). Note that this is a left-tailed test.

The ability of skedastic to compute exact p-values for this statistic (subject to the accuracy of the Imhof
algorithm’s numerical approximation) contrasts with that of the hmctest function of the lmtest R package
(Zeileis and Hothorn 2002). The latter gives the user the option of estimating p-values using a simulation,103

or otherwise returning NA as the p-value.

4.2.6 Computing Probabilities for Lehmann’s Nonparametric Trend Statistic (dDtrend,
pDtrend)

Let Ri, i = 1, 2, . . . , n, be the ranks of n independent and identically distributed random variables. Lehmann
(1975) proposed the following statistic D as a nonparametric measure of trend in such a scenario:

D =
n∑

i=1

(Ri − i)2. (4.9)

This statistic is applied to the absolute residuals in Horn’s (1981) test for heteroskedasticity. Accordingly,
skedastic contains functions to calculate probabilities, either exact or approximate, on D under the null hy-
pothesis. dDtrend computes the exact distribution of D for a sample of size n (passed as n) in the event that
there are no ties in the sample. The support S of D in this case is as follows:

S =



{0} , n = 1
{0, 2} , n = 2
{0, 2, 6, 8} , n = 3{

0, 2, . . . , n(n− 1)(n+ 1)
3

}
, n ≥ 4

.

103The lmtest documentation does not explain what kind of simulation is used, but presumably it is a MC simulation.
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Moreover, the distribution of D is symmetric about 1
6(n3 − n). The exact distribution is computed by counting

and tabulating permutations exhaustively. The algorithm is prohibitively slow for n > 11. Thus, passing an n
value greater than 11 results in an error unless the override logical argument is set to TRUE (in which case the
function attempts to make the computation). The value(s) of D for which the probability should be computed
is passed to dDtrend using the argument k. This argument can either be an integer vector or a character "all"
(the default), in which case probabilities are computed for the entire support of D for the given n. dDtrend
returns a double vector of probabilities with the corresponding values of D stored in a names attribute.

The exact probability distribution of D for n = 9 is displayed graphically in Figure 4.5. The support in
this case consists of even integers between 0 and 240.
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Figure 4.5: PMF of Lehmann’s (1975) D Statistic for n = 9

pDtrend computes cumulative probabilities on the nonparametric statistic D, either from the exact distribu-
tion of D, via dDtrend (only feasible for n ≤ 10, and where there are no ties) or using a normal approximation.
The value of D for which the cumulative distribution function should be computed is passed using the argument
k, just as in dDtrend. If there are no ties,104 the expectation and variance of D are, respectively,

E(D) = 1
6(n3 − n),

and
Var(D) = 1

36n
2(n+ 1)2(n− 1).

Lehmann (1975) provides a proof of the asymptotic normality of D; the rough bell shape of the exact distri-
bution is apparent already for n = 9 in Figure 4.5. The normal approximation for the lower-tailed probability
is

Pr (D ≤ k) ≈ Φ

(
k − E(D)− 1√

Var(D)

)
,

where Φ(·) is the standard normal cumulative distribution function.105

104pDtrend does implement a normal approximation for the case where ties are present, following the approach of
Lehmann (1975, pp. 293-94).

105The −1 in the numerator is a continuity correction (−1 rather than −0.5 because the support of D consists of even
numbers incrementing by 2).
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4.3 A Function That Computes Heteroskedasticity-Consistent Covariance
Matrix Estimators

The hccme function in skedastic is similar in purpose to the vcovHC function in the sandwich package discussed
previously in §2.5.3. However, whereas vcovHC implements only HC0-HC5 and HC4m (whilst also allowing
the user to pass a customised HCCME function via the omega argument), the new hccme function directly
implements HC0-HC7, HC4m, and HC5m.106

The first argument of hccme, object, can either be an object of class "lm" (a linear model object) or a list
containing named objects X (design matrix X) and e or esq (OLS residual or squared residual vector). The
hcnum argument controls which HCCME to compute (of those discussed in §2.3). Like the type argument of
vcovHC, it defaults to HC3 due to the popularity of this HCCME. There are two logical arguments, sandwich
and as_matrix. The first, like the sandwich argument of vcovHC, controls whether to compute the sandwich
estimator of the form (1.6) (TRUE) or just the error covariance matrix Ω̂ without the ‘bread’. Unlike in vcovHC,
sandwich defaults to FALSE in hccme. The as_matrix argument controls whether or not to return a matrix
as the result. If FALSE (the default), the function returns a vector representing the diagonal of the estimated
matrix.

4.4 Functions for Estimating Error Variances
4.4.1 Fitting an Auxiliary Linear Variance Model (alvm.fit)

The alvm.fit function in skedastic fits an ALVM to a linear regression model, applying all of the estimation,
tuning, and feature selection methods described in §3.3. This function is fairly complicated, but since ALVMs
are the main methodological contribution of this research, a detailed explanation is necessary. Yet, for sake of
conciseness, not every argument and feature of the function will be described, but only the essential points.

Firstly, the mainlm argument contains the information from the underlying linear regression model. It can
either be an object of class "lm" or a list containing named objects y (response vector y), X (design matrix X),
and e (OLS residual vector e).

The model argument controls which particular ALVM to fit. Possible options are "cluster" (for the clus-
tering ALVM discussed in §3.2.4), "spline" (for the thin-plate spline ALVM discussed in §3.2.3.2), "linear"
(for the linear ALVM described in (3.40)), "polynomial" (for the penalised polynomial ALVM discussed in
§3.2.3.1), "basic" (for the basic ALVM described in (3.34)), and "homoskedastic" (to estimate all error
variances using ω̂i = ω̂ub, i = 1, 2, . . . , n).

The varselect argument controls the method to be used for feature selection within the ALVM. Pos-
sible values are "none" (for no feature selection, meaning that all explanatory variables in X are used in
the ALVM), "hettest" (feature selection by heteroskedasticity testing, as discussed in §3.3.3.2), "cv.linear"
or "cv.cluster" (best subset selection by K-fold CV applied to either the linear or clustering ALVM), or
"qgcv.linear" or "qgcv.cluster" (best subset selection by QGCV applied to either the linear or cluster-
ing ALVM). For details on these best subset selection methods, see §3.3.3.3. Note that, in the case of
the penalised polynomial and thin-plate spline models, the penalty indirectly performs feature selection (see
§3.3.3.1). Therefore, varselect would normally be set to "none" when using one of these models. There are
supporting functions for carrying out each of the above feature selection methods: hetvarsel for feature se-
lection by heteroskedasticity testing, and varsel.cv.linear, varsel.cv.cluster, varsel.qgcv.linear, and
varsel.qgcv.cluster for the other four techniques. For details on these functions, see §4.4.4.

The lambda argument controls the setting of the hyperparameter λ used in the penalised polynomial
ALVMs and the thin-plate spline ALVM. The default value, "foldcv", results in λ being chosen by K-fold
CV. "qgcv" results in λ being chosen by QGCV. Alternatively, the user can pass lambda as a double of length
1, representing the value of λ.

The nclust argument controls the setting of the hyperparameter nc in the clustering ALVM, denoting the
number of clusters. The default value, "elbow.swd", results in nc being chosen by the elbow method using the
SWD criterion (see §3.3.2.2). The next two values correspond to the elbow method with other criteria (MWD
and the average of the elbow method results using SWD and MWD). "foldcv" corresponds to selecting nc

by K-fold CV (also discussed in §3.3.2.2). Alternatively, nclust can be passed as an integer of length 1,
representing the value of nc.

106Both functions also allow computation of the homoskedastic estimator of Ω, namely ω̂ubIn, by setting the relevant
argument to "const".
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The clustering argument allows the user to pass a clustering object generated by doclust (see §4.4.4),
thus circumventing the need to perform clustering from within the alvm.fit routine. clustering defaults to
NULL; if it is not NULL, the clustering object will already have a fixed nc value assigned to it, and the nclust
argument is therefore ignored. Both nclust and clustering are ignored if model is other than "cluster".

The polypen argument specifies the type of penalty to be used in the penalised polynomial ALVM. "L2",
the default, corresponds to the L2-norm penalty (like RR), while "L1" corresponds to the L1-norm penalty
(like LASSO regression).

The solver argument controls which QP solver to use to estimate the ALVM parameters. The default value
is "auto", which causes the solver to be selected automatically, as experience has shown that some solvers work
better than others for a particular model.107 The rest of the allowed values of solver correspond to different
QP solvers available within R packages; these have all been mentioned previously in §3.3.1.3.

The constol argument sets the value of 0+, the positive boundary of the inequality constraint that ensures
no variance estimates are numerically zero. The default value is 10−10, which is large enough not to result
in infinite or NaN weights if the estimated covariance matrix Ω̂ is inverted and used with lm or lm.wfit to
compute FWLS estimates of β (as discussed in §2.5.2).

The cvoption controls how K-fold CV is performed, if necessary. The two possible values are "testsetols"
and "partitionres", corresponding to the two CV techniques depicted in Figure 3.6. "testsetols" is the
default value, and due to its superior theoretical grounding (as discussed in §3.3.2.1), it is the only CV technique
that has been thoroughly tested and used in §5.

nfolds denotes the number of folds K to use for CV, and defaults to 5. d denotes the degree d of the
polynomial, if the penalised polynomial ALVM is used. reduce2homosked is a logical that defaults to TRUE. If
TRUE, then if the feature selection procedure selects none of the features in X, the homoskedastic estimator
ω̂ub will be used instead of fitting a ‘null’ ALVM (e.g., a clustering ALVM with only one cluster, or a linear
ALVM with only an intercept).

The value returned by alvm.fit is a list object of class "alvm.fit" containing several other objects.
coef.est contains the estimate γ̂ of the ALVM parameter vector γ. var.est contains the estimate ω̂ of
the error variance vector ω. Other arguments, such as method, fitinfo, hyperpar, and selectinfo, contain
information on the ALVM used, relevant matrices such as M ◦M and L, hyperparameter values such as λ
and nc, and feature selection results. Other relevant information such as the lm object for the original linear
model, the constol value, and the QP solver used, is also returned.

4.4.2 Fitting an Auxiliary Nonlinear Variance Model (anlvm.fit)

The anlvm.fit function in skedastic fits an ANLVM using the MQL estimation method described in §3.3.1.4.
Some arguments (mainlm, M, varselect, nclust, clustering, and reduce2homosked) have the same meaning as
in alvm.fit.108 The g argument is a function of one variable specifying the form of g(·), or a character naming
such a function. This would normally be either function(x) x ˆ 2 or function(x) exp(x) (the character
"exp" would be treated the same as the latter). cluster is a logical argument that defaults to FALSE; if true,
the clustering ANLVM is used. Experience suggests that it is best to set g to function(x) x ˆ 2 with the
clustering ANLVM.

The rest of the arguments pertain to the Gauss-Newton numerical scheme for solving the system (3.69).
maxgridrows specifies the maximum number of initial values γ(0) of the parameter vector to try, and de-
faults to 20. param.init specifies the initial value(s) of the parameter vector, γ(0). This defaults to a
function that will generate the elements of γ(0) independently from a U(−5, 5) distribution, maxgridrows
times. Alternatively, param.init can be a numerical vector of length q, in which case this is the only
initial value γ(0) that is attempted (regardless of maxgridrows). Or, param.init can be a list containing
the named objects from, to, and either by or length.out, specifying arguments to pass to seq to cre-
ate a sequence. This sequence is then passed to expand.grid to generate a search grid. For instance, if
param.init = list("from" = 1, "to" = 3, "by" = 1), the grid will contain 3q different initial values γ(0),
namely every possible q-vector consisting of some permutation of ones, twos and threes. However, only a
random sample of maxgridrows of these 3q initial values will actually be attempted, unless 3q is less than

107Specifically, "auto" results in the quadprogpp solver being used for the clustering, linear, and basic ALVMs, the
osqp solver being used for the L2-norm penalised polynomial and thin-plate spline ALVMs, and the roi solver being
used for the L1-norm penalised polynomial ALVM. The roi solver has a stronger tendency to shrink coefficients to zero
for the L1-norm penalised polynomial ALVM, thus better exploiting its sparsity properties.

108Note however that anlvm.fit does not support the CV technique for choosing nc in the clustering ANLVM. Only
elbow methods can be used.
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maxgridrows. nconvstop specifies a stopping rule: once the Gauss-Newton routine has achieved convergence
for nconvstop different initial initial values γ(0), the search stops and the converged solution that optimises the
objective function is returned. maxitql specifies the maximum number of iterations to use in the Gauss-Newton
routine, and defaults to 100. tolql specifies the tolerance to use as a convergence criterion, and defaults to
10−8. nestedql is a logical specifying whether to use the nested updating procedure in (3.72). It defaults to
FALSE due to the computational cost of the nested procedure.

anlvm.fit returns a list object of class "anlvm.fit" containing objects such as, inter alia, coef.est (a
numeric vector with the γ̂ coefficient estimate), var.est (a numeric vector with the ω̂ variance estimate), and
qlinfo, a list containing information on the Gauss-Newton routine, such as the number of iterations used,
whether convergence was achieved, and the optimal value of the objective function.

4.4.3 Obtaining Bootstrap Confidence Intervals for Error Variances from an Auxiliary
Linear Variance Model (avm.ci)

skedastic contains a function called avm.ci that computes bootstrap CIs for the individual error variances ωi,
i = 1, 2, . . . , n, using the methods described in §3.4. avm.ci takes as its object argument either an object of
class "alvm.fit" of the kind produced by alvm.fit, the function discussed above in §4.4.1, or an object of
class "anlvm.fit" of the kind produced by anlvm.fit, the function discussed above in §4.4.2.

Three optional arguments—set to NULL by default—are bootobject, bootavmobject, and jackobject.
bootobject is an object of class "bootlm" generated by the bootlm function, representing a sample of B
bootstrapped regression models. bootavmobject is an object of class "bootavm" generated by the bootavm
function, representing a set of B ALVMs or ANLVMs fitted to each of B bootstrapped regression models
("bootlm" class objects). jackobject is an object generated by the jackavm function, representing a set
of n jackknife (leave-one-out) ALVMs or ANLVMs, or at least the coefficients thereof. If any of bootobject,
bootavmobject, or jackobject is NULL, it is computed from within avm.ci, but passing these objects to avm.ci
can save on computation time where CIs are being computed repeatedly from the same model (e.g., several
different bootstrap CI methods are being used).

The bootCImethod argument is a character that indicates the method to use for calculating the bootstrap
CI. It takes on one of four values: "pct" for a percentile interval (the default), "bca" for a BCa interval, or
"stdnorm" for a näıve standard normal bootstrap interval (all three of which are described in §3.4.2).

The bootsampmethod is a character that indicates the nonparametric bootstrap method to be used to
generate bootstrap replications of the underlying linear regression model. It can take on two values, either
"pairs" (the default) for the pairs bootstrap, or "wild" for the wild bootstrap. Both have been described
in §3.4.1. This argument will be ignored if a set of bootstrap linear regression models are passed via the
bootobject argument. If the wild bootstrap is used, the resfunc argument sets the transformation fi(·) to
be applied to each OLS residual in the bootstrap DGP. The argument is a character denoting the name of a
function, and defaults to "identity", for fi(ei) = ei.

The Brequired and Bextra arguments both refer to the number of bootstrap regression models, B.
Brequired refers to the desired number of bootstrap models, whereas Bextra allows a larger number of boot-
strap models to be generated. The reason is this: experience has shown that where some of the ALVMs fitted
to bootstrap samples fall on the QP constraint boundary, the coverage probability of the resulting CI suffers.
Consequently, by setting Bextra to a value larger than 0, the total number of bootstrap models generated will
be Brequired+Bextra, and the first Brequired bootstrap ALVMs where the QP solution does not fall on the
constraint boundary are retained. (Thus, the nonparametric bootstrap resampling procedure is modified to
include a rejection sampling component). If the number of such ALVMs is less than Brequired, the set of
Brequired ALVMs will include some models with QP solutions on the constraint boundary.

conf.level is a double representing the desired confidence level, 1− α, for the interval. It defaults to 0.95.
expand is a logical, defaulting to TRUE, controlling whether to apply Hesterberg’s (1999) expansion technique
to the quantiles. retune is a logical controlling whether to retune hyperparameters (e.g., λ or nc) and select
features anew when fitting the ALVM to each bootstrap linear regression. If FALSE, the hyperparameter value
and selected features from the original ALVM are reused in each bootstrap ALVM. This is the default, due to
the high computation time required to retune hyperparameters and perform feature selection many times.

avm.ci returns a list object of class "avm.ci", of which the most important element is climits, a two-
column numeric matrix containing the lower and upper confidence limits, respectively, for the ωi.
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4.4.4 Supporting Functions for Auxiliary Variance Model Implementation

To describe in detail every function that was written for skedastic in support of ALVM and ANLVM implemen-
tation would require a lot of space and would make for very dull reading. In any case, most of these functions
are not exported with the package, meaning that they are not included in the package documentation and are
not intended to be called directly by users of the package.109 However, to give the reader a sense of the amount
of programming required to implement the ALVMs, ANLVMs, and associated bootstrap CIs, a summary of
these supporting functions is given in Table 4.3.

Table 4.3: Supporting Functions Created for Implementation of ALVMs, ANLVMs, and Bootstrap
CIs in skedastic

Function Name What Function Does
add2clust Adds new observations to existing clusters (necessary for computing

Ltest during cross-validation of a clustering ALVM)
bootavm Fits an ALVM or ANLVM to each of B bootstrapped linear models

generated by bootlm
bootlm Generates B bootstrap replications of a linear regression model

using a nonparametric method suitable for heteroskedastic linear
models (bootstrapping pairs or wild bootstrap)

bracket Applies a bracketing method to narrow down the search interval for
optimising a continuous function

CVObjFun.lambda Computes a value of the CV loss for a penalised polynomial or
spline ALVM, as a function of λ

CVObjFun.nclust Computes a value of the CV loss function for a clustering ALVM, as
a function of nc

doclust Performs agglomerative hierarchical clustering on a data matrix,
cutting at a number of clusters nc chosen by a specified method

GSS Implements the GSS algorithm to minimise a continuous univariate
function

hetvarsel Applies a deflator-based heteroskedasticity test to each covariate of
a linear regression model (useful for feature selection in an ALVM or
ANLVM)

jackavm Obtains jackknife estimates of error variances based on an ALVM or
ANLVM (useful for BCa modification of percentile bootstrap
interval)

makepolydesign Extends a design matrix X to include all main and cross terms of a
polynomial up to a specified degree

MWDelbow Finds the elbow point on the MWD curve using the Unit Invariant
Knee (UIK) technique in order to tune nc for a clustering ALVM

qpest Applies a QP solver to solve the QP necessary to fit an ALVM
quasiopt Implements the Gauss-Newton algorithm necessary to fit an

ANLVM by MQL estimation
SWDelbow Finds the elbow point on the SWD curve using the UIK technique

in order to tune nc for a clustering ALVM
testcalc Computes the necessary matrices and vectors to prepare for fitting

an ALVM to K training folds

109Note, however, that while functions exported with an R package can be called using the :: syntax (i.e.,
packagename::functionname), non-exported functions defined within the source code of an R package can also be called
by users using the ::: syntax.
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Table 4.3: Supporting Functions Created for Implementation of ALVMs, ANLVMs, and Bootstrap
CIs in skedastic (continued)

Function Name What Function Does
traincalc Computes the necessary matrices and vectors to prepare for

predicting ALVM responses in K test folds
tune.lambda.cv Tunes the λ hyperparameter for a penalised polynomial or spline

ALVM using K-fold CV
tune.lambda.qgcv Tunes the λ hyperparameter for a penalised polynomial or spline

ALVM using QGCV
tune.nclust Tunes the nc hyperparameter for a clustering ALVM using K-fold

CV
varsel.cv.linear Performs feature selection for an ALVM by applying best subset

selection to a linear ALVM using K-fold CV loss
varsel.cv.cluster Performs feature selection for an ALVM by applying best subset

selection to a clustering ALVM using K-fold CV loss
varsel.qgcv.linear Performs feature selection for an ALVM by applying best subset

selection to a linear ALVM using QGCV loss
varsel.qgcv.cluster Performs feature selection for an ALVM by applying best subset

selection to a clustering ALVM using QGCV loss

4.5 Chapter Summary
This chapter provided an overview of the functions written in the R package skedastic, which was created
specifically for this research, to make the existing and new methods discussed in earlier chapters accessible to
practitioners.

The first category of functions in skedastic is the set of functions that implement heteroskedasticity tests.
Twenty-five functions that implement existing heteroskedasticity tests from the literature were described. Ef-
fective implementation of these tests required programming of a number of supporting functions that are also
exported with the skedastic package since they may have other applications. These include a function blus for
computing BLUS residuals, a function twosidedpval for computing two-sided p-values from asymmetric dis-
tributions, a function hetplot for producing heteroskedasticity diagnostic plots, functions countpeaks, dpeak,
and ppeak, for computing the number of peaks in an iid random sequence and probabilities thereof, a function
pRQF for computing the CDF of a RQF in normal random vectors, and functions dDtrend and pDtrend for
computing the PMF and CDF, respectively, of Lehmann’s (1975) nonparametric trend statistic.

Another important function in skedastic is hccme, which computes an HCCME for a linear regression model
based on any of the methods discussed in §2.3.

The functions most central to the objectives of this research project are those that produce point estimates of
error variances by implementing ALVMs (alvm.fit) and ANLVMs (anlvm.fit) and the function that computes
bootstrap confidence intervals for error variances in conjunction with an ALVM or ANLVM (avm.ci). There
are, naturally, various supporting functions that had to be created to implement ALVMs and ANLVMs and
compute bootstrap CIs based on them. These include functions pertaining to tuning of hyperparameters
(including implementation of CV and QGCV routines), functions pertaining to feature selection, functions
pertaining to clustering and elbow methods, and functions pertaining to bootstrapping of linear regression
models and auxiliary variance models.

Now that the methods developed for this research and the R package developed to implement them have
been discussed, the stage is set for the Results and Discussion chapter, where the methods in the Methodology
chapter are applied in Monte Carlo simulations to evaluate their performance empirically.
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5 Results and Discussion
In this chapter, results are reported and discussed for a variety of Monte Carlo simulations conducted to
empirically evaluate the performance of methods discussed in the previous chapters. An overview of the
chapter is as follows. In §5.1, the performance of some of the heteroskedasticity tests discussed in Chapter 2
and the new heteroskedasticity test introduced in §3.5 is evaluated empirically using a metric called Average
Excess Power over Size (AEPS).

In §5.2, the design of the main MC experiment—looking at the performance of the ALVMs—is described.
A number of metrics that are used to measure model performance are also introduced; in particular, four
Mean Squared Error metrics. Methods for estimating the standard errors of MC estimates of metrics are also
described in this subsection.

Section 5.3 presents the results of the main MC simulation evaluating the performance of the newly de-
veloped ALVMs and ANLVMs. The results presented are for simulations with n = 100 observations, with
all covariates generated independently from uniform distributions, and with the number of covariates p− 1
varied between 1, 2, 8, and 16. To keep the volume of tables of results manageable, results under some other
simulation settings (e.g., smaller and larger sample sizes; correlated covariates; non-normal errors; etc.) have
been relegated to Appendix E.

The results from several supplementary MC simulations, designed to check the performance of other aspects
of the ALVMs are reported in §5.4. These aspects are, specifically, the effectiveness of certain feature selection
techniques proposed in §3.3.3 and the stability of the ALVMs when the design matrix X is allowed to vary.

Section 5.5 presents results on a MC simulation looking at coverage probabilities of the bootstrap methods
described in §3.4 for obtaining approximate CIs for the error variances.

Finally, §5.6 explores the application of ALVMs to three real data sets, for illustrative purposes.
It should to be noted here that the simulation results presented in this chapter for ANLVMs are far less

extensive than those for ALVM. There are two reasons for this. One is that the ANLVMs (apart from the
clustering ANLVM) require stronger assumptions than the ALVMs, as one must specify the heteroskedastic
function g(·). Preliminary simulations show that the performance of the ANLVMs can suffer massively when
the form of g(·) is mis-specified, and given that the heteroskedastic function would seldom be known in practice,
this is a significant limitation. The second reason is that the ANLVMs are slower to fit than the ALVMs, due
to the need to run the Gauss-Newton algorithm for MQL estimation over a grid of initial parameter values to
increase the chances of convergence.

5.1 Comparing the Performance of Heteroskedasticity Tests
A significant number of simulation studies have been published over the years on the relative performance
of different heteroskedasticity tests in terms of size, power, and robustness (e.g., Griffiths and Surekha 1986,
Evans 1992, Lyon and Tsai 1996, Godfrey and Orme 1999, Adamec 2017, Uyanto 2019). Dufour et al. (2004)
provide a systematic review of empirical studies up to that time.

Table 5.1 summarises the design of some of the past MC simulation experiments studying heteroskedas-
ticity. The ‘additive,’ ‘multiplicative,’ and ‘log-multiplicative’ heteroskedastic functions are as indicated in
(2.17), (2.18), and (2.19). The sinusoidal heteroskedastic function used by Li and Yao (2019) is of the form
g(Z; γ) =

(
1 + γ′ [sin (10Xi1) , sin (10Xi2) , . . . , sin (10Xip)]′

)2. Unlike the three other heteroskedastic func-
tions, this one is nonmonotonic in the covariates.

For all studies that mentioned the point, the design matrix was held fixed across MC replications, with the
exception of Li and Yao (2019), whose heteroskedasticity test is derived on the basis of a random, multivariate
normally distributed design matrix. The number of replications used in the MC simulation experiments in
these studies varied from 1000 to 20000.

5.1.1 A New Monte Carlo Simulation of Heteroskedasticity Test Performance

A shortcoming of all of the past MC simulation experiments described in Table 5.1 concerns the performance
metric used to evaluate the heteroskedasticity tests. These studies considered empirical power (the proportion
of replications under a heteroskedastic DGP for which the null hypothesis was rejected) and, in some cases,
empirical size (the proportion of replications under a homoskedastic DGP for which the null hypothesis was
rejected), both at one particular nominal size level. This is problematic for two reasons. Firstly, evidence that
a test achieves higher power than another test at a particular nominal size level is not necessarily evidence
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Table 5.1: Settings of Past Monte Carlo Simulation Experiments on Heteroskedasticity in Linear
Regression

Study n p Het. Function(s) Design Dist. Other
Griffiths and
Surekha
(1986)

20; 50 2 additive;
log-multiplicative

uniform;
lognormal

Evans (1992) 24; 64 3 additive
uniform;
lognormal;
normal

Non-normal error
distributions used
(t; lognormal;
chi-square;
uniform)

Lyon and
Tsai (1996)

20; 30;
50; 100 2 multiplicative

uniform;
contaminated
uniform; normal

Non-normal error
distributions used
(t; contaminated
normal)

Godfrey and
Orme (1999) 40; 80 4

additive;
multiplicative;
exponential

uniform;
lognormal

autocorrelated
design points used;
Non-normal error
distributions used
(t; lognormal;
chi-square; mixture
normal)

Dufour et al.
(2004) 50; 100 6 additive; grouped uniform

considered one vs.
all covariates
involved in
heteroskedasticity

Adamec
(2017)

10; 30;
50; 70 2 additive uniform

Li and Yao
(2019)

100;
500;
1000

p/n =
0.05;
0.1; 0.3;
0.5; 0.7;
0.9

additive;
multiplicative;
sinusoidal

normal

design matrix
varied in each MC
replication;
considered 1 and
0.1p as number of
covariates involved
in
heteroskedasticity

Uyanto
(2019)

10; 30;
60; 90;
120;
150

2 various (mostly
monotonic) normal

that the same holds true at other nominal size levels. (For an illustration of this, see Figure 1 in Lloyd
(2005)). Secondly, suppose Test A achieves higher power than Test B at a given nominal size level but Test A
is empirically oversized while Test B adheres to the nominal size well. The results are then ambiguous: it is
impossible to say whether the superior power of A is outweighed by its inferior fidelity to nominal size.

Lloyd (2005) proposes an Average Excess Power over Size (AEPS) metric that addresses both of these
problems. This author defines, for a continuous test statistic T , a survivor function G(t) = Pr(T ≥ t). The
critical value for the test is defined as c⋆ = inf {t : G(t) ≤ α⋆}, where α⋆ is the significance level. Denote the
true null distribution of T by G0(t) and, for a given alternative hypothesis, the true alternative distribution
of T by G1(t). A Receiver Operating Characteristic (ROC) curve is a plot of the size α = G0(c⋆) (horizontal
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axis) against the power 1− β = G1(c⋆) (vertical axis) for different values of c⋆ (or, equivalently, nominal size
α⋆). Specifically, c⋆ is allowed to vary from a value sufficiently large so that both α = 0 and 1− β = 0 (a
certain Type II error) to a value sufficiently small so that α = 1 and 1− β = 1 (a certain Type I error). Thus,
the points (0, 0) and (1, 1) always fall on the ROC curve. It is customary also to draw a 45 degree line on
the plot connecting these two points, as this represents a completely non-informative test statistic for which
G0(c⋆) = G1(c⋆) (the distribution of T is the same under both hypotheses). The extent to which the curve rises
above this line and approaches the upper left corner of the plot is thus a graphical representation of the test’s
performance over different nominal sizes. For a simple example of an ROC curve, see Figure 5.1, which shows
the performance of a one-sample t-test for a particular effect size with sample size n = 10 vs. n = 20. The
n = 20 curve is closer to the top left and is everywhere above the n = 10 curve and therefore dominates it.

Figure 5.1: Example of a Receiver Operating Characteristic Curve for a One-Sample t-Test

Lloyd (2005) shows that the ROC curve function can be written explicitly as

R(a) = G1
{
G−1

0 (a)
}
. (5.1)

He further observes that a generalised metric for the performance of a hypothesis test is obtained by
computing the average height W (l, u) of R(a) over an interval of relevant sizes [l, u] and then subtracting the
average size over this interval, (l + u)/2. The resulting quantity is the AEPS,

Q(l, u) = W (l, u)− (l + u)/2. (5.2)
A sensible choice of [l, u] might be [0.01, 0.1], since practitioners are seldom interested in sizes outside this

interval.
The advantages of Lloyd’s (2005) metric are twofold. First, the metric is averaged over a range of relative

sizes rather than being valid for only one arbitrarily chosen size value. Second, and more importantly, the
metric takes into account both size performance and power performance simultaneously, in contrast to many
power simulation studies (such as those cited in §5.1) that compare several hypothesis testing methods in terms
of power even though not all are equally capable of meeting the nominal size.

Lloyd (2005) proposes a simple way to estimate (5.1), and thus (5.2), using a MC simulation. First, one
generates values of the test statistic T under both the null and alternative hypotheses; call these t0 and t1,
respectively. One then estimates W (l, u) using a transformation of the Mann-Whitney test statistic (Mann
and Whitney 1947), which is typically used for a well-known nonparametric two-sample test of location. The
first ‘sample’ consists of t

(l,u)
0 , the subset of t0 that falls between its l and u empirical quantiles. The second

‘sample’ is the full vector t1 of values generated under the alternative hypothesis. Subtracting the average size
(l + u)/2 yields the AEPS estimate,
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Q̂(l, u) = (n1n2)−1 (R1 − n2(n2 + 1)/2)− (l + u)/2, (5.3)

where R1 denotes the sum of the ranks of t1 computed from the combined sample, and n1 and n2 are
the length of t

(l,u)
0 and t, respectively.110 This approach assumes there are no ties among the t

(l,u)
0 and t1

values. Since 0 ≤ R1 − n2(n2 + 1)/2 ≤ n1n2, the factor (n1n2)−1 transforms the Mann-Whitney statistic onto
the interval [0, 1].

Lloyd (2005) notes that in practice one would often wish to compare two methods (say, A and B) and would
thus need to estimate the standard error of the difference between the two AEPS estimates, Q̂A(l, u)− Q̂B(l, u).
Since Q̂A(l, u) and Q̂B(l, u) will generally be dependent, he suggests using nonparametric bootstrap for this
purpose. However, an alternative approach, as will be discussed below in §5.2.3, is simply to compute Q̂A(l, u)
and Q̂B(l, u) from two separate, independently generated sets of MC replications.

5.1.1.1 Empirical Performance of Deflator-Based Tests
Two MC simulations of heteroskedasticity test performance are undertaken herein. The first focuses on those
tests that rely on prior knowledge of a putative ‘deflator’. These tests are those of Goldfeld and Quandt (1965)
(both the parametric F test and the nonparametric peaks test), Ramsey (1969), Szroeter (1978), Breusch and
Pagan (1979),111 Harrison and McCabe (1979), Horn (1981), Evans and King (1988) (both the LM test and
the GLS test), Honda (1989), and Carapeto and Holt (2003), as well as the new ALVM-based test introduced
in §3.5, both using the clustering model with nc = 2, and using the linear model.

The simulation used a Data Generating Process (DGP) with two covariates, both generated independently
from U(0, 5). Sample size was varied from n = 20 to n = 100 in increments of 10. Errors were generated inde-
pendently from N(0, 1) for the null case and from N(0, ωi) with ωi = g(x2i) = (1 + x2i/2)2 for the alternative
case. Importantly, all of the deflator-based tests were implemented with the correct choice of the deflator
and the direction of its relationship to the error variances. The test statistic for each test was computed for
R = 104 MC replications under both the null and alternative cases, and the Mann-Whitney statistic was then
computed and used to estimate the AEPS, Q̂(0.01, 0.1). Note that, since (l + u)/2 = 0.055 in this case, the
possible range of Q̂(0.01, 0.1) is the interval [−0.055, 0.945].

Standard errors for each AEPS metric were computed using B = 500 bootstrap samples. The bootstrap-
estimated Standard Errors (SEs) are not all reported, but ranged between approximately 2× 10−4 and
1× 10−2, with a median of 6.7× 10−3. The AEPS estimates can be regarded as accurate to within roughly
one percentage point.

110Thus n2 is the number of MC replications, and n1 is approximately (u− l)/n2.
111Breusch and Pagan (1979) is technically not a deflator-based test, but due to its popularity a deflator version is

included whereby the auxiliary design matrix consists of an intercept and two covariates, the deflator and its square.
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Figure 5.2: Monte Carlo Estimates of Average Excess Power over Size for Deflator-Based
Heteroskedasticity Tests

Empirical AEPS estimates are shown, in Figure 5.2, for the 13 different tests. It is evident that the GLS test
of Evans and King (1988) performs best, especially when 30 ≤ n ≤ 60. A host of other contenders appear to
be second-best with little difference between them, including Evans and King’s (1988) LM test, Honda’s (1989)
test, Carapeto and Holt’s (2003) test, and Szroeter’s (1978) test. Goldfeld and Quandt’s (1965) parametric F
test performs poorly at n = 20 but joins the leaders for larger sample sizes. Harrison and McCabe’s (1979) and
Horn’s (1981) tests and the ALVM-based test (linear version) show mediocre performance, while the lower-
performing tests in this simulation include Ramsey’s (1969) BAMSET test, Breusch and Pagan’s (1979) test
(deflator version), the polynomial and clustering versions of the ALVM-based test, and Goldfeld and Quandt’s
(1965) nonparametric peaks test.

The clustering version of the ALVM-based test, using only nc = 2 clusters, is not as well-designed as some
of the other methods to capture a smooth, monotonic heteroskedastic function of one of the covariates. It may
perform better at detecting nonmonotonic heteroskedasticity, or as an omnibus test in higher dimensions.

5.1.1.2 Empirical Performance of Omnibus Tests
A similar simulation, with the same DGP, was used to estimate the AEPS of omnibus heteroskedasticity
tests, namely, those that seek to make a general judgment about the presence or absence of heteroskedasticity,
without positing an association between the error variances and a particular covariate. (Some of these tests
make use of an auxiliary design matrix and thus do posit an association between the error variances and at
least one of the covariates).
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Figure 5.3: Monte Carlo Estimates of Average Excess Power over Size for Omnibus
Heteroskedasticity Tests

In Figure 5.3, the top tier of tests include Verbyla’s (1993) test, Glejser’s (1969) test, and Cook and
Weisberg’s (1983) test. The ALVM-based tests are in the next tier, along with Breusch and Pagan’s (1979)
test and Simonoff and Tsai’s (1994) score test. Notably, the clustering version of the ALVM-based test has the
best AEPS among all tests when n = 20. Among the mediocre performers are White’s (1980) test, Harvey’s
(1976) test, Anscombe’s (1961) test, and the polynomial version of the ALVM-based test.112 The weaker
performing tests are Yüce’s (2008) test, Zhou et al.’s (2015) test, and both tests of Li and Yao’s (2019). In
fairness to the latter, Li and Yao (2019) designed their test to specialise in high-dimensional regressions, so it
is not surprising that it performs relatively poorly in the p = 3 case. Bootstrap estimates of standard errors of
the AEPS estimates were of a similar magnitude to those of the deflator-based tests.

It is interesting to observe that the top-performing deflator-based and omnibus tests for heteroskedasticity,
according to this admittedly limited experiment, are not among the most popular or widely cited tests. Indeed,
to this author’s knowledge, the tests of Evans and King (1988) and Verbyla (1993) were not available in any
statistical software until the author deployed them in the skedastic R package.

5.2 Design of Monte Carlo Experiments for Evaluating the Performance
of the Auxiliary Variance Models

This subsection describes the design of a Monte Carlo (MC) simulation experiment that has been undertaken
to investigate the performance of the ALVMs and ANLVMs as estimators of error variances under different
circumstances, in comparison to existing methods. Specifically, the methods to which comparisons are made
are the classical methods of estimation and inference under assumptions A1-A5, the HCCMEs discussed in §2.3,
and Miller and Startz’s (2019) SVR auxiliary modelling procedure (discussed in §2.2.1.3). All of the ALVMs
and ANLVMs introduced in §3.2.2-§3.2.4 are used in the simulations except for the B-spline and smoothing
spline ALVMs. These are omitted because they are only applicable in the univariate case, and because the
thin-plate spline is equivalent to the smoothing spline in the univariate case.

Unless otherwise indicated, the penalty parameter λ for the penalised polynomial ALVMs was tuned using
five-fold CV, while the number of clusters nc for the clustering ALVM and the clustering ANLVM was tuned
using the elbow method with the SWD criterion. Feature selection was performed on the linear and clustering

112For this simulation, the QGCV method was used rather than K-fold CV to choose the penalty hyperparameter λ.
This was to save computation time, although it is known that the CV approach works better. Thus, higher AEPS may
be achieved by the polynomial ALVM if CV were used instead of QGCV.
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ALVMs, and on all of the ANLVMs, using best subset selection in terms of QGCV loss computed on the linear
ALVM.

The number of MC replications used for each factor combination in this experiment was R = 104, unless
otherwise indicated. Within each factor combination, the design matrix X was held fixed across all MC
replications. This is in line with the statement in §1.1.3 that all statistical results in this study are conditioned
on X. However, the further simulations discussed in §5.4.2 serve as a robustness check to ensure that the the
models’ performance is not too sensitive to the particular form of X.

5.2.1 Experimental Factors

The factors of interest and associated factor levels are summarised in Table 5.2.

Table 5.2: Factors and Factor Levels Used in Monte Carlo Experiment

Factor Factor Levels
Sample Size n 20; 100; 1000
Number of Design Variables p − 1 1; 2; 8; 16
Design Distribution Independent Uniform; Correlated

Normal
Heteroskedastic Function Constant (homoskedastic);

Additive (quadratic, as in (2.17));
Multiplicative (exponential, as in
(2.18))

Number of Design Variables
Involved in Heteroskedasticity

1; (p − 1)/2

Error Distribution Normal; Laplace; Uniform

The experimental design is not even close to full factorial. Some factor combinations do not apply (e.g.,
‘number of design variables involved’ does not apply under homoskedasticity). Moreover, implementing too
many factor combinations would not only require a massive amount of computation time, but would lead to
too many results. The factor combinations that were used are summarised in Table 5.3, which also indicates
whether a particular factor combination was used for both ALVMs and ANLVMs or for ALVMs only.
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Table 5.3: Factor Combinations Used in the Monte Carlo Simulation Experiment

Factor Combination Location of
Results

Run for
ALVMs

Run for
ANLVMs

n = 20, p − 1 = 1 Covariate Appendix
E.1

Yes Yes

n = 100, p − 1 = 1 Covariate §5.3.1 Yes Yes
n = 1000, p − 1 = 1 Covariate Appendix

E.2
Yes Yes

(R = 103)
n = 100, p − 1 = 1 Covariate, Nonmonotonic
Heteroskedasticity

Appendix
E.3

Yes Yes

n = 100, p − 1 = 1 Covariate, Non-Normal
Errors

Appendix
E.4

Yes Yes

n = 100, p − 1 = 2 Independent Covariates §5.3.2 Yes Yes
n = 100, p − 1 = 2 Correlated Covariates Appendix

E.5
Yes No

n = 100, p − 1 = 8 Independent Covariates §5.3.3 Yes Yes
n = 100, p − 1 = 8 Correlated Covariates Appendix

E.6
Yes No

n = 100, p − 1 = 16 Independent Covariates §5.3.4 Yes No

The error distribution was always normal, with the exception of the simple linear regression simulation
based on Laplace and uniform errors discussed in §5.3.1.7, with results tables in Appendix E.4. The three
heteroskedastic functions mentioned in Table 5.2 were all considered in every case; a nonmonotonic (sinusoidal)
heteroskedastic function was used in one simple linear regression simulation (see §5.3.1.6 and Appendix E.3).
The two levels for number of design variables involved in heteroskedasticity were used in all cases where the
number of predictors exceeded two.

5.2.2 Performance Metrics

The metrics used to evaluate the performance of the heteroskedastic variance estimators are as follows.
Throughout this subsection, R denotes the number of MC replications used in the experiment.

5.2.2.1 Unstandardised Mean Squared Error for Individual Variance Estimates

If ω̂(r)
i is an estimate of the ith error variance ωi from the rth MC replication, the unstandardised empirical

MSE for an individual variance estimate is computed as,113

MSEust(ω̂i) = 1
R

R∑
r=1

(
ω̂

(r)
i − ωi

)2
, i = 1, 2, . . . , n. (5.4)

By taking the mean of (5.4) across all n observations, one obtains an overall (unstandardised) MSE metric:

MSEust(ω̂) = 1
n

n∑
i=1

MSEust(ω̂i). (5.5)

It is also necessary to define the mean MSE estimate for a particular replication, which will be used in
computing a standard error estimate for (5.5):

113Note that (5.4) represents a MC estimate of the true unknown MSE. For notational convenience nôis displayed.
The same goes for the rest of the metrics in this section.
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MSEust(ω̂)(r) = 1
n

n∑
i=1

(
ω̂

(r)
i − ωi

)2
. (5.6)

(5.4) can also be decomposed into squared bias and variance components, where the bias and variance are
given by

Biasust(ω̂i) = ¯̂ωi − ωi (5.7)
and

Varust(ω̂i) = 1
R− 1

R∑
r=1

(
ω̂

(r)
i − ¯̂ωi

)2
, (5.8)

where ¯̂ωi = 1
R

R∑
r=1

ω̂
(r)
i . Averaged-out versions of the bias and variance analogous to (5.5), i.e., Biasust(ω̂)

and Varust(ω̂), can also be computed.

5.2.2.2 Standardised Mean Squared Error for Individual Variance Estimates
Standardised versions of the above metrics are obtained by considering ω̂i/ωi and comparing it to ωi/ωi = 1, so
that each error variance carries equal weight toward the metric, regardless of its magnitude. The standardised
MSE is thus

MSEst(ω̂i) = 1
R

R∑
r=1

(
ω̂

(r)
i

ωi
− 1
)2

= 1
ω2

i

MSEust, i = 1, 2, . . . , n. (5.9)

(5.9) can likewise be decomposed into squared bias and variance components, where the bias and variance
are given by

Biasst(ω̂i) =
¯̂ωi

ωi
− 1 = 1

ωi
Biasust(ω̂i), and (5.10)

Varst(ω̂i) = 1
R− 1

R∑
r=1

(
ω̂

(r)
i

ωi
−

¯̂ωi

ωi

)2

= 1
ω2

i

Varust(ω̂i). (5.11)

One can again take the mean of (5.9) across all n observations to obtain an overall standardised MSE
metric, MSEst(ω̂):

MSEst(ω̂) = 1
n

n∑
i=1

MSEst(ω̂i). (5.12)

As before, one can likewise compute Biasst(ω̂) and Varst(ω̂), by averaging (5.10) and (5.11), respectively,
across all n observations.

The standardised versions of these metrics are superfluous in the homoskedastic case, since they only differ
by a constant scaling factor from the unstandardised versions. In other cases, results on unstandardised and
standardised versions of the metrics will be reported separately.

5.2.2.3 Mean Squared Error Metric for FWLS Estimation of β

Let β̂
(r)
FWLS = (X ′ [Ω̂(r)]−1

X)−1X ′ [Ω̂(r)]−1
y(r) be a feasible weighted least squares estimator of β based

on the error variance estimate vector ω̂(r) from the rth MC replication (where Ω̂(r) = diag
{

ω̂(r)}). Then, a
performance metric for this FWLS estimate is,

MSE(β̂FWLS) = 1
R

R∑
r=1

1
p

∣∣∣∣∣∣β̂(r)
FWLS − β

∣∣∣∣∣∣2
2
. (5.13)
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5.2.2.4 Mean Squared Error Metric for HCCME Estimation of SE(β̂j)
The size performance of a quasi-t-test of hypothesis on an element of β (e.g., H0 : βj = 0) depends on obtaining
a good estimate of SE(β̂j) =

√
Var(β̂j), a diagonal element of (1.6), by replacing Ω in (1.6) with a suitable

estimator Ω̂. A suitable metric for evaluating performance in this case is

MSE(ŜE(β̂)) = 1
R

R∑
r=1

1
p

∣∣∣∣∣∣ŜE(β̂)(r) − SE(β̂)
∣∣∣∣∣∣2

2
, (5.14)

where SE(β̂) =
√

diag ((X ′X)−1X ′ΩX(X ′X)−1) and ŜE(β̂)(r) =
√

diag
(
(X ′X)−1X ′Ω̂(r)X(X ′X)−1

)
,

the square root being applied elementwise.
It was previously discussed in connection with (3.75) that accurate estimation of this standard error is

not just about accurate estimation of the elements of ω ‘on average’; it is about accurate estimation of those
elements that figure most prominently in the sandwich estimator.

5.2.3 Estimating Standard Errors of Monte Carlo Estimates

To reiterate, R = 104 MC replications were generated for each factor combination in this experiment, with one
exception. In order to assess statistical significance of differences between MC mean estimates of quantities
of interest such as those described above, standard error estimates are needed—not only of the MC mean
estimates but also of the differences between them. Some discussion follows of the method used to compute
these standard error estimates.

Let θ̂(r)
1 and θ̂(r)

2 be two estimators of some unknown quantity θ based on R randomly generated data sets

indexed by r, and suppose that Var(θ̂(r)
1 ) = σ2

1 and Var(θ̂(r)
2 ) = σ2

2 . Let ¯̂
θ1 = R−1

R∑
r=1

θ̂
(r)
1 , the MC mean, be

an estimate of E
(
θ̂1
)

and define ¯̂
θ2 analogously.

Using basic properties of the variance operator under independence, it follows that Var(¯̂
θ1) = σ2

1/R and
Var(¯̂

θ2) = σ2
2/R. A MC estimate of SE(¯̂

θ1) is given by

ŜE
( ¯̂
θ1

)
=
[
σ̂2

1
R

]1/2

=

[
1

R(R− 1)

R∑
r=1

(
θ̂

(r)
1 − ¯̂

θ1

)2
]1/2

, (5.15)

and similarly for SE(¯̂
θ2). However, if the goal is to demonstrate a statistically significant difference between

E
(
θ̂1
)

and E
(
θ̂2
)
, that is, that E

(
θ̂1 − θ̂2

)
̸= 0, the real quantity of interest is SE(¯̂

θ1 − ¯̂
θ2). Here arises the

issue of whether or not θ̂(r)
1 and θ̂

(r)
2 are independent. One can ensure independence simply by computing

the two estimates from separate and independently drawn data sets for each r = 1, 2, . . . , R.114 In this case,

Var
( ¯̂
θ1 − ¯̂

θ2

)
= σ2

1 + σ2
2

R
, and a MC estimate of SE(¯̂

θ1 − ¯̂
θ2) is given by

ŜE
( ¯̂
θ1 − ¯̂

θ2

)
=
[
σ̂2

1 + σ̂2
2

R

]1/2

=
[(

ŜE
( ¯̂
θ1

))2
+
(

ŜE
( ¯̂
θ2

))2
]1/2

=

[
1

R(R− 1)

R∑
r=1

{(
θ̂

(r)
1 − ¯̂

θ1

)2
+
(
θ̂

(r)
2 − ¯̂

θ2

)2
}]1/2

. (5.16)

If, on the other hand, θ̂
(r)
1 and θ̂

(r)
2 are computed using the same random data set, they cannot

be treated as independent. In this case, Var
( ¯̂
θ1 − ¯̂

θ2

)
= σ2

1 + σ2
2

R
− 2 Cov

( ¯̂
θ1,

¯̂
θ2

)
. Now, making use

of basic properties of the covariance of linear combinations of random variables, it can be shown that

114In the application at hand, this means drawing the random errors ϵ independently for each MC replication. The
design matrix X remains fixed across all replications and estimation methods.
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Cov(¯̂
θ1,

¯̂
θ2) = R−2

R∑
r=1

R∑
s=1

Cov(θ̂(r)
1 , θ̂

(s)
2 ). However, by the mutual independence of the MC replications,

Cov(θ̂(r)
1 , θ̂

(s)
2 ) = 0 for r ̸= s. Thus,

Cov(¯̂
θ1,

¯̂
θ2) = 1

R2

R∑
r=1

Cov(θ̂(r)
1 , θ̂

(r)
2 )

= 1
R

Cov(θ̂(r)
1 , θ̂

(r)
2 ). (5.17)

A MC estimate of (5.17) is obtained by substituting the empirical MC covariance estimate:

Ĉov(θ̂(r)
1 , θ̂

(r)
2 ) = (R− 1)−1

R∑
r=1

(
θ̂

(r)
1 − ¯̂

θ1

)(
θ̂

(r)
2 − ¯̂

θ2

)
.

It follows that, where θ̂(r)
1 and θ̂

(r)
2 are both computed from the same random sample,

ŜE
( ¯̂
θ1 − ¯̂

θ2

)
=

[
1

R(R− 1)

R∑
r=1

{(
θ̂

(r)
1 − ¯̂

θ1

)2
+
(
θ̂

(r)
2 − ¯̂

θ2

)2
− 2
(
θ̂

(r)
1 − ¯̂

θ1

)(
θ̂

(r)
2 − ¯̂

θ2

)}]1/2

=

[
1

R(R− 1)

R∑
r=1

{(
(θ̂(r)

1 − ¯̂
θ1)− (θ̂(r)

2 − ¯̂
θ2)
)2
}]1/2

. (5.18)

Since two similar estimation methods are likely to be positively correlated, it is likely that for the present
purposes, use of (5.18) (with multiple estimators computed from the same random sample in each MC replica-
tion) will result in smaller standard errors than (5.16) (with each estimator computed from a separately drawn
random sample in each MC replication).

On the other hand, an advantage of (5.16) is that it can be easily computed after the fact from stored
results of (5.15), using the relation,

SE
( ¯̂
θ1 − ¯̂

θ2

)
=
[

SE
( ¯̂
θ1

)2
+ SE

( ¯̂
θ2

)2
]1/2

, (5.19)

which does not hold for (5.18). The approach used to assess whether a particular method has a performance
metric that is better (smaller) than all others by a statistically significant margin is then as follows (assuming
that c different methods are being compared):

1. Compute ¯̂
θj , j = 1, 2, . . . , c, and the corresponding standard error estimates and set k = arg minj

¯̂
θj .

2. Compute Zj =
¯̂
θk − ¯̂

θj

SE
( ¯̂
θk − ¯̂

θj

) , j = 1, 2, . . . , c, j ̸= k, where the standard error is computed from (5.19).

3. Compare each Zj to z1−α′ , the upper α′ = α/(c− 1) standard normal quantile, where α is the maximum
permissible family-wise Type I error probability and c− 1 is the number of comparisons being made.115

(This is a one-tailed test with Bonferroni correction).

α = 0.05 will be used throughout the results unless otherwise stated.

115If all c methods were to be compared pairwise, the number of pairwise comparisons would be
(c

2
)

. However, in this
case the question of interest is whether one particular method’s metric—the one with the best (lowest) point estimate—is
significantly lower than the other c− 1 methods’ metrics.
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5.2.4 Relative Performance Metrics

It will prove useful, in subsequent results, to report the MC mean estimates of the performance metrics in
relative rather than absolute terms. In terms of notation introduced in §5.2.3, if ¯̂

θj , j = 1, 2, . . . , c, are the MC
mean estimates of a particular metric for c different methods, the relative MC mean estimate is,

¯̂
θrel

j =
¯̂
θj

min
{ ¯̂
θ1,

¯̂
θ2, . . . ,

¯̂
θc

} . (5.20)

It is clear from (5.20) that the best-performing method will have a ¯̂
θrel

j value of 1, while all other methods will
yield values greater than 1. This allows quick identification of the best-performing method and the magnitude
by which other methods underperform relative to this one.

5.2.5 Format of Results Tables and Graphs

For the simple linear regression case (p = 2, i.e., an intercept and one predictor), results on the MSEust(ω̂)
metric (5.5) and the MSEst(ω̂) metric (5.12) are presented in graphical form. Each of these metrics, along
with their squared bias and variance components, are plotted against the predictor variable xi for all three
error variance settings (homoskedasticity; additive and multiplicative heteroskedasticity). These visualisations
help to illustrate how the models’ performance varies with xi, and thus also with the magnitude of the error
variance.

These MSE plots are not used for factor combinations with multiple predictors (p > 2). This is mainly for
reasons of conciseness, but also because the relationship between performance metric and predictor will not
appear as clearly (in two dimensions, at least) when there are multiple predictors.

The most important results, for both simple and multiple linear regression settings, are displayed in tabular
form. For each simulation setting reported on in §5.3 and in Appendix E, four tables appear, each containing
results in terms of one of the four main metrics of interest: MSEust(ω̂) (Equation 5.5), MSEst(ω̂) (Equation
5.12), MSE(β̂FWLS) (Equation 5.13), and MSE(ŜE(β̂)) (Equation 5.14).

The rows of these tables correspond to the different methods: selected HCCMEs, selected ALVMs, and
Miller and Startz’s (2019) SVR model. The only HCCMEs reported on in these tables are HC3, HC4, and
HC6. This is for conciseness, because the results tended to be similar across most HCCMEs (HC6 being
the exception), while HC3 and HC4 are probably the most widely used HCCMEs. The ALVMs used in the
simulations normally included the basic ALVM (3.34), the linear ALVM (3.40), the clustering ALVM (3.59),
the L2-norm and L1-norm penalised polynomial ALVMs (3.45) and (3.67), and the thin-plate spline ALVM
(C.19). In some instances, particularly in higher dimensions, the L1-norm (LASSO) penalised polynomial
ALVM and the thin-plate spline ALVM were omitted due to their high computation time.

The columns of these results tables correspond to different DGPs—different heteroskedastic functions, for
the most part. The column headers indicate the type of heteroskedasticity (e.g., homoskedastic, additive
heteroskedasticity, multiplicative heteroskedasticity) as well as the predictors that are related to the error
variances through the heteroskedastic function. The latter are indicated using set notation, withH denoting the
indices of predictors involved in heteroskedasticity. H = ∅ thus represents homoskedasticity, while H = {2, 3}
would indicate that two predictors, with indices 2 and 3, are involved in heteroskedasticity. In keeping with
the notation used throughout this document, the index 1 corresponds to the first column of X, a column of
ones, and not a predictor; hence it does not appear in the H sets in the results tables.

Each cell in the results tables contains two values. The upper value in the cell is the relative MC mean
estimate of the metric of interest, as per (5.20). Beneath this, in brackets, is the estimated standard error of
the absolute MC mean estimate, as per (5.15), expressed in scientific notation.

The cells are also colour-coded for ease of interpretation. The cell for the best-performing method in each
column (DGP)—thus having a relative MC mean estimate of 1—has a green background. Cells for methods
that are not inferior to the best-performing method by a statistically significant margin at (family-wise) level
α = 0.05, as explained in §5.2.3, have yellow backgrounds. Cells for methods that are inferior to the best-
performing method by a statistically significant margin have white backgrounds.

The ANLVM results on the four above-mentioned metrics are presented in separate tables from the ALVM
results. One reason for this is that, since ANLVMs (other than the clustering ANLVM) entail an assumed
specification of the heteroskedastic function g(·), it is not ‘fair’ to compare the ANLVM results to those of
ALVMs in cases where an ANLVM is based on the exact heteroskedastic functional form of the DGP. The
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tables of ANLVM results are also structured differently, since the small number of models makes it possible
to include all four metrics in one table. The rows of these tables are organised firstly by metric, and nested
within each metric, by ANLVM. The columns again represent the heteroskedastic functions of the respective
DGPs, with H representing the indices of predictors related to the error variances.

The relative metrics in the ANLVM results tables are computed relative to the lowest metric among the
ALVMs used under the same DGPs. Thus, the relative metric for an ANLVM could be less than 1, which
would indicate that the this ANLVM outperforms the best-performing ALVM for this experimental setting (in
which case the cell is highlighted in green). Statistical significance is also assessed relative to the metric of the
best-performing ALVM for purposes of yellow colour-coding.

Table 5.4: Illustration of Table Format for Displaying ALVM Results for Metric 1

Model DGP 1 DGP 2

Model 1 1
(3.21× 10−3)

1.17
(1.98× 10−4)

Model 2 1.28
(2.89× 10−3)

2.19
(5.58× 10−4)

Model 3 1.02
(3.07× 10−3)

1
(4.46× 10−4)

Examples of the two types of results tables described above are given in Tables 5.4 and 5.5. Table 5.4
shows results for three models (e.g., HCCMEs and/or ALVMs) for two experimental settings (DGPs) in terms
of an arbitrary performance metric called Metric 1. The top value in each cell is the MC mean estimate of the
metric relative to the best-performing metric (see (5.20)). Thus, the smallest value in each column is always a
1; the cell containing this value is highlighted in green. Cells whose metric value is not greater than (inferior
to) that of the best model by a statistically significant margin are highlighted in yellow, while other cells are
white. The estimated MC standard error of the absolute metric estimate is displayed in brackets below the
corresponding relative MC mean estimate. In the case of DGP 1, Model 1 performs best (hence green), but
Model 3 is not inferior by a statistically significant margin (hence yellow). In the case of DGP 2, Model 3
performs best (hence green) and is better than Model 1 and Model 2 by a statistically significant margin (hence
they are both white).

Table 5.5: Illustration of Table Format for Displaying ANLVM Results for Metrics 1 and 2

Metric ANLVM DGP 1 DGP 2

ANLVM 1 1.42
(1.47× 10−4)

1.18
(6.14× 10−4)

Metric 1 ANLVM 2 1.01
(6.70× 10−4)

0.939
(4.65× 10−4)

ANLVM 1 1.36
(3.59× 10−4)

1.29
(8.59× 10−4)

Metric 2 ANLVM 2 1.07
(7.34× 10−4)

0.965
(3.14× 10−4)

Table 5.5 shows the results for two ANLVMs under the same DGPs shown in Table 5.4, in terms of two
metrics, Metric 1 and Metric 2. Importantly, the relative metric values and background colours in Table 5.5
are not computed relative to these ANLVMs only, but relative to the models in Table 5.4 (for Metric 1) and to
another set of results (not shown) for Metric 2. The relative metric values in the DGP 1 column of Table 5.5
are all greater than 1; the absence of any green cell indicates that none of the ANLVMs outperforms all of the
other ANLVMs and the models shown in the DGP 1 column of Table 5.4. However, the yellow cell for ANLVM
2 in terms of Metric 1 indicates that this model is not inferior to that of Model 1 in Table 5.4 by a statistically
significant margin (in terms of Metric 1, under DGP 1). Of the relative metric values in the DGP 2 column of
Table 5.5, two are less than 1, and thus highlighted in green. This indicates that ANLVM 2 performs better
than ANLVM 1 and Models 1-3 of Table 5.4 in terms of both Metric 1 and Metric 2 under DGP 2.

Again, the reason for having a self-contained comparison of ALVMs in one table, and adding a second table
with ANLVM results that are compared to the first table, is that it is not ‘fair’ in some sense to declare an
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ANLVM the best-performing model under a particular DGP if this ANLVM used information not available to
the ALVMs, namely the correct specification of the heteroskedastic function g(·).

5.3 Results of Auxiliary Variance Model Performance Simulations
5.3.1 Linear Regression with One Covariate

Here, a detailed set of results is given for a simulation where the DGP is a simple linear regression model (p = 2;
an intercept is included in all models). The predictor x was drawn from a U(0, 3) distribution with n = 100
observations. In each MC replication, the random error vector ϵ was drawn independently from a N(0,Ω)
distribution, where Ω = diag {ω}. The responses were then generated as y = [1 x] β + ϵ, where β = [1, 1]′.116

For each replication, an OLS fit was computed and β̂OLS and e were obtained.
In the homoskedastic case, the error variance was ωi = ω = 1 for all i ∈ {1, 2, . . . , n}. In the additive case,

the heteroskedastic function was ωi = g(xi) = (1 + xi)2, while in the multiplicative case, the heteroskedastic
function was ωi = g(xi) = exp {xi}.

Figures 5.4 to 5.8 show the MC estimates of the two MSE metrics for estimating individual error vari-
ances, MSEust(ω̂i) (Equation 5.4) and MSEst(ω̂i) (Equation 5.9), along with their squared-bias and variance
components, as functions of the single explanatory variable xi. This allows visualisation of how the model
performance varies according to the magnitude of the explanatory variable—and thus the magnitude of the
error variance, in the heteroskedastic DGPs. Each set of plots are split into two columns. Results for the
HCCMEs and the basic ALVM appear in the left plot, while results for the other ALVMs and the Miller-Startz
SVR model appear in the right plot. The reason for this split is that the first set of methods tends to have much
poorer results than the second set according to these metrics; so much so that it is not visually appropriate to
display all the results on the same plot.

The methods shown in the plots are denoted in the legends as follows. The homoskedastic estimator
(denoted homo. on the plots) is ω̂i = ω̂ub for all i = 1, 2, . . . , n. The HCCMEs from §2.3 are denoted using
the HC# nomenclature introduced there. miller in the plot legends denotes the auxiliary SVR modelling
method of Miller and Startz (2019). Coming to the ALVMs, basic denotes the ‘basic’ or ‘näıve’ ALVM
(3.34). In the panels on the right of the figures, cluster-qgcv.linear denotes the clustering ALVM (3.59)
with number of clusters chosen using the elbow method with the SWD criterion (3.88), and feature selection
performed by applying the QGCV metric to the linear model.117 linear-qgcv.linear denotes the linear
ALVM (3.40), again with QGCV applied to the linear model for variable selection. poly-L2-foldCV denotes
the RR (L2-norm-penalised) polynomial ALVM estimated by (3.46) while poly-L1-foldCV denotes the LASSO
(L1-norm-penalised) polynomial ALVM described in (3.67), with the hyperparameter λ tuned using five-fold
CV in both cases. spline-foldCV denotes the thin-plate spline ALVM estimated by (C.19), likewise with five-
fold CV used to tune λ. The SVR hyperparameters for Miller and Startz’s (2019) model were tuned exactly
according to their own R code.

A set of three plots is given for each of the three DGP scenarios (homoskedasticity; additive heteroskedastic-
ity; multiplicative heteroskedasticity). Following the plots, Tables 5.6 to 5.9 summarise the results of this part
of the simulation in terms of the four main metrics of interest. This system of four tables is used throughout
the ALVM performance results across different factor combinations. Each table covers all of the ‘skedasticities’
(DGPs) in separate columns.

5.3.1.1 Homoskedastic Case
Figure 5.4 shows the MC MSE, squared bias, and variance of the individual ω̂i estimators for the homoskedastic
DGP (in which the unstandardised and standardised metrics are identical).118

116The magnitudes of the elements of β have no bearing on the performance of the auxiliary variance models.
117Feature selection in the one-covariate model entails that, if the single feature is not selected, the homoskedastic

variance estimator ω̂ub is used.
118The horizontal scale of the left and right panels differs due to the greater space required for the legend in the right

panel.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Unstandardised MSE, Squared Bias, and Variance Metrics of HCCMEs (a, c, e) and
ALVMs (b, d, f) for Homoskedastic Simple Linear Regression Model
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By paying attention to the scale of the vertical axis in Figure 5.4, one observes by comparing panels (a)
and (b) that the homoskedastic estimator has the lowest MSE, as expected. Moreover, the ALVMs in panel (b)
all outperform the HCCMEs in panel (a) in terms of MSE. Within the HCCMEs, HC6 has a lower MSE than
the rest, which have little difference between them. Among the variance models, the Miller-Startz SVR model
has a higher MSE than the ALVMs. The thin-plate spline ALVM also performs relatively poorly, especially
close to the boundary knots. The linear, polynomial, and clustering ALVMs are all close competitors.

From panels (c) and (d), it is apparent that all of the methods have negligible squared bias with the
exceptions of HC6 in panel (c), and the Miller-Startz SVR model and (to a lesser extent) the thin-plate spline
ALVM in panel (d). From panels (e) and (f), it is apparent that the homoskedastic estimator has the lowest
variance. Miller-Startz SVR comes next, followed by the various ALVMs and HC6. The rest of the HCCMEs
have much higher variances.

5.3.1.2 Additive Heteroskedasticity Case
The unstandardised MSE, squared bias, and variance metrics for the DGP with additive heteroskedasticity
(g(xi) = (1 + xi)2) are shown in Figure 5.5, with standardised versions in Figure 5.6.

(a) (b)

(c) (d)
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(e) (f)

Figure 5.5: Unstandardised MSE, Squared Bias, and Variance Metrics of HCCMEs (a, c, e) and
ALVMs (b, d, f) for Simple Linear Regression Model with Additive Heteroskedasticity

Panels (a) and (b) of Figure 5.5 show that the unstandardised MSE of all HCCMEs and variance models
increases with xi. This is unsurprising given that g(xi) increases with xi quadratically in the DGP. The MSE of
the homoskedastic estimator does not strictly increase with xi. As in the homoskedastic case, HC6 has a lower
MSE than the other HCCMEs, while Miller-Startz SVR has a higher MSE than the ALVMs. The MSE curve
of the clustering ALVM appears discontinuous, which makes sense because of the discrete ‘jumps’ in estimated
variance that occur according to which cluster a particular interval of xi values is assigned to. All of the ALVMs
perform better than the HCCMEs, with the linear and polynomial models performing best. Interestingly, the
homoskedastic estimator has a lower MSE than the HCCMEs (but not lower than the ALVMs), except for
small values of xi.

The bias-variance trade-off story in the lower two pairs of panels is broadly similar to that in Figure 5.4,
except that now the homoskedastic estimator has substantial bias.

(a) (b)
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(c) (d)

(e) (f)

Figure 5.6: Standardised MSE, Squared Bias, and Variance Metrics of HCCMEs (a, c, e) and ALVMs
(b, d, f) for Simple Linear Regression Model with Additive Heteroskedasticity

Looking at the standardised versions of the metrics in Figure 5.6, a broadly similar picture emerges, except
that the performance of the homoskedastic estimator is reversed: in standardised terms, it performs very poorly
for small xi but better than any other method for large xi.

5.3.1.3 Multiplicative Heteroskedasticity Case
The unstandardised MSE, squared bias, and variance metrics for the DGP with multiplicative heteroskedas-
ticity (g(xi) = exi ) are shown in Figure 5.7, with standardised versions in Figure 5.8.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Unstandardised MSE, Squared Bias, and Variance Metrics of HCCMEs (a, c, e) and
ALVMs (b, d, f) for Simple Linear Regression Model with Multiplicative Heteroskedasticity
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Standardised MSE, Squared Bias, and Variance Metrics of HCCMEs (a, c, e) and ALVMs
(b, d, f) for Simple Linear Regression Model with Multiplicative Heteroskedasticity
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The relative performances of the different models under the multiplicative heteroskedasticity DGP, as
displayed in Figures 5.7 and 5.8, are very similar to those under the additive heteroskedasticity DGP from
Figures 5.5 and 5.6.

5.3.1.4 Results on Relative Performance Metrics with Statistical Significance Compar-
isons

Tables 5.6-5.9 show results on the four key performance metrics discussed in §5.2.2 across all three error variance
settings (homoskedasticity; additive heteroskedasticity; multiplicative heteroskedasticity). In each of these four
tables, the homoskedastic case is shown in the first column followed by the case of additive heteroskedasticity,
ωi = (1 + xi)2 and the case of multiplicative heteroskedasticity, ωi = exi . MC mean estimates are presented
in relative terms, as explained in §5.2.4, so that a value of 1 indicates the best-performing model (highlighted
in green). As explained in §5.2.5, if the model’s performance does not differ from the best-performing model
by a statistically significant margin (at 5% significance level, with Bonferroni correction), it is highlighted in
yellow. MC standard error estimates of the absolute metric values appear in brackets beneath the corresponding
relative metric values. The metrics are averaged across all n observations, and thus do not convey information
about how performance varies by observation, as do the graphical results in Figures 5.4 to 5.8.

Table 5.6: (Relative) Unstandardised MSE-of-Variances Estimate (with Estimated Standard Error)
for One-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

HC3 102
(8.06× 10−3)

38.5
(7.89× 10−1)

23.2
(9.58× 10−1)

HC4 96.1
(7.27× 10−3)

35.6
(7.03× 10−1)

21.2
(8.71× 10−1)

HC6 40.8
(6.30× 10−4)

16.1
(1.93× 10−1)

10.1
(2.89× 10−1)

Homoskedastic 1
(2.99× 10−4)

6.1
(1.90× 10−2)

5.07
(1.98× 10−2)

Basic ALVM 101
(7.80× 10−3)

38
(7.40× 10−1)

23
(9.45× 10−1)

Clustering ALVM 2.01
(6.43× 10−4)

2.07
(7.28× 10−2)

1.49
(8.28× 10−2)

Linear ALVM 1.56
(4.52× 10−4)

1
(4.25× 10−2)

1.35
(4.59× 10−2)

L2-Norm Pen. Poly. ALVM 1.8
(4.52× 10−4)

1.29
(5.27× 10−2)

1.03
(7.38× 10−2)

L1-Norm Pen. Poly. ALVM 2.37
(5.24× 10−4)

1.31
(5.99× 10−2)

1
(7.72× 10−2)

Thin-Plate spline ALVM 4.07
(7.29× 10−4)

1.96
(7.17× 10−2)

1.28
(7.95× 10−2)

Miller-Startz SVR 18.8
(9.41× 10−4)

7.89
(7.95× 10−2)

4.98
(9.39× 10−2)
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Table 5.7: (Relative) Standardised MSE-of-Variances Estimate (with Estimated Standard Error) for
One-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

HC3 102
(8.06× 10−3)

23.4
(8.07× 10−3)

14.4
(8.07× 10−3)

HC4 96.1
(7.27× 10−3)

21.9
(7.40× 10−3)

13.5
(7.52× 10−3)

HC6 40.8
(6.30× 10−4)

9.49
(9.60× 10−4)

5.9
(1.02× 10−3)

Homoskedastic 1
(2.99× 10−4)

32.2
(1.30× 10−2)

26.7
(1.96× 10−2)

Basic ALVM 101
(7.80× 10−3)

23.3
(7.88× 10−3)

14.2
(7.82× 10−3)

Clustering ALVM 2.01
(6.43× 10−4)

1.56
(1.00× 10−3)

1
(9.82× 10−4)

Linear ALVM 1.56
(4.52× 10−4)

1
(9.92× 10−4)

1.79
(2.46× 10−3)

L2-Norm Pen. Poly. ALVM 1.8
(4.52× 10−4)

2.32
(2.59× 10−3)

1.31
(2.54× 10−3)

L1-Norm Pen. Poly. ALVM 2.37
(5.24× 10−4)

1.7
(1.71× 10−3)

1.24
(2.38× 10−3)

Thin-Plate spline ALVM 4.07
(7.29× 10−4)

1.82
(1.78× 10−3)

1.73
(2.13× 10−3)

Miller-Startz SVR 18.8
(9.41× 10−4)

4.3
(9.21× 10−4)

2.64
(9.28× 10−4)

Table 5.8 (Relative) MSE of FWLS Estimate of β (with Estimated Standard Error) for One-
Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

OLS 1.01
(3.29× 10−4)

1.48
(1.54× 10−3)

1.69
(1.58× 10−3)

HC3 1.01
(3.22× 10−4)

1.47
(1.51× 10−3)

1.67
(1.53× 10−3)

HC4 1
(3.20× 10−4)

1.49
(1.53× 10−3)

1.66
(1.52× 10−3)

HC6 1.06
(3.51× 10−4)

1.48
(1.54× 10−3)

1.68
(1.55× 10−3)

Homoskedastic 1.01
(3.29× 10−4)

1.48
(1.54× 10−3)

1.69
(1.58× 10−3)

Basic ALVM 1.2
(1.83× 10−3)

1.59
(1.67× 10−3)

1.81
(1.69× 10−3)

Clustering ALVM 1.04
(3.28× 10−4)

1
(9.92× 10−4)

1
(8.73× 10−4)

Linear ALVM 1.04
(3.36× 10−4)

5.98
(9.02× 10−3)

9.94
(1.02× 10−2)

L2-Norm Pen. Poly. ALVM 1.03
(3.38× 10−4)

2.02
(5.45× 10−3)

72.7
(3.03× 100)

L1-Norm Pen. Poly. ALVM 1.01
(3.29× 10−4)

2.55
(7.72× 10−3)

156
(4.17× 100)

Thin-Plate spline ALVM 1.16
(6.18× 10−4)

3900
(4.49× 101)

12900
(6.55× 101)

Miller-Startz SVR 1.05
(3.43× 10−4)

1.04
(1.05× 10−3)

1.01
(9.06× 10−4)
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Table 5.9: (Relative) MSE of Standard Errors of β̂OLS (with Estimated Standard Error) for One-
Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

HC3 2.07
(3.45× 10−6)

1.69
(2.41× 10−5)

1.27
(2.91× 10−5)

HC4 1.91
(3.07× 10−6)

1.56
(2.08× 10−5)

1.23
(2.61× 10−5)

HC6 67.8
(1.54× 10−5)

35.2
(1.04× 10−4)

19.7
(1.15× 10−4)

Homoskedastic 1
(1.76× 10−6)

8.95
(4.74× 10−5)

5.75
(4.05× 10−5)

Basic ALVM 2.01
(3.18× 10−6)

1.6
(2.11× 10−5)

1.26
(2.70× 10−5)

Clustering ALVM 1.31
(2.42× 10−6)

1.37
(1.79× 10−5)

1.05
(2.12× 10−5)

Linear ALVM 1.24
(2.18× 10−6)

1
(1.28× 10−5)

1.13
(1.96× 10−5)

L2-Norm Pen. Poly. ALVM 1.36
(2.40× 10−6)

1.52
(1.71× 10−5)

1
(2.12× 10−5)

L1-Norm Pen. Poly. ALVM 1.62
(2.85× 10−6)

1.41
(1.74× 10−5)

1.04
(2.28× 10−5)

Thin-Plate spline ALVM 2.4
(3.84× 10−6)

2.09
(2.59× 10−5)

2.17
(3.63× 10−5)

Miller-Startz SVR 28.7
(1.47× 10−5)

19.2
(7.49× 10−5)

13.3
(8.41× 10−5)

Discussion of Tables 5.6-5.9
From Table 5.6, it is evident that the homoskedastic variance estimator significantly outperforms all others
under homoskedasticity. Its unstandardised MSE estimate is almost 100 times smaller than those of some of
the HCCMEs. Notably, however, the unstandardised MSEs of the linear ALVM and polynomial ALVM (with
L2-norm penalty) are less than double that of the homoskedastic estimator. Under additive (quadratic) het-
eroskedasticity, the linear ALVM is significantly better than all others in terms of unstandardised MSE. Under
multiplicative (exponential) heteroskedasticity, the polynomial ALVM with L1-norm penalty is significantly
better than all others except the same model with L2-norm penalty.

Table 5.7 tells a similar tale. The homoskedastic estimator is significantly better than all others in terms
of standardised MSE under homoskedasticity, while the linear ALVM is better than all competitors under an
additive heteroskedastic DGP. A difference between the unstandardised and standardised MSE metrics appears
under the multiplicative heteroskedastic DGP. Here, the clustering ALVM performs significantly better than
all other methods in terms of standardised MSE, whereas the polynomial models had been the winners in
terms of unstandardised MSE.

Turning attention to Table 5.8, under homoskedasticity there is very little separation between the different
variance estimation methods in terms of MSE for estimating β using FWLS. The HCCMEs and ALVMs all
produce similar results to each other and, notably, to OLS. Under the two heteroskedastic DGPs, the clustering
ALVM yields the best results, but not by a statistically significant margin over the Miller-Startz SVR method
or (in the multiplicative heteroskedasticity case) the polynomial ALVMs. The performance of the polynomial
and spline models, and to a lesser extent the linear model, is rather unstable by this metric, especially under
multiplicative heteroskedasticity.119

Finally, Table 5.9 shows results on the MSE metric for estimation of the standard errors of the elements
of β̂OLS. Here, the homoskedastic estimator produces significantly better results than other methods under
the homoskedastic DGP. The linear ALVM is the clear winner under additive (quadratic) heteroskedasticity,

119Note that the two polynomial models’ results are highlighted in yellow in the last column only because their MC
standard errors are too large to allow for a statistically significant comparison with the cluster model.
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and the clustering ALVM has the best result under multiplicative (exponential) heteroskedasticity, but is not
significantly better than the linear or polynomial ALVMs.

Results for the metrics in Tables 5.6 to 5.9 for simulations with the same specifications except for different
sample sizes can can be found in Appendix E.1 (n = 20) and Appendix E.2 (n = 1000). Only R = 103 MC
replications were used with the n = 1000 simulation due to the large computation time required.

In the n = 20 case (Tables E.1-E.4), the main difference in terms of MSEust(ω̂) is that the linear ALVM,
and not the penalised polynomial ALVMs, performs best under multiplicative heteroskedasticity. In terms of
MSEst(ω̂), the Miller-Startz SVR model is the clear winner under both DGPs, in contrast to the n = 100 case
where the clustering and linear ALVMs, respectively, performed best. The good small-sample performance
of the Miller-Startz model under heteroskedasticity carries over into the MSE(β̂FWLS) metric, where also the
homoskedastic estimator is more distinctly better than other methods under homoskedasticity than in the
n = 100 case. The linear ALVM is the clear winner in terms of the MSE(SE(β̂)) metric in the n = 20 case for
both heteroskedastic DGPs, whereas in the n = 100 case, the L2-norm penalised polynomial ALVM won under
multiplicative heteroskedasticity.

Comparing the large-sample n = 1000 case (Tables E.6-E.9) to the n = 100 case, the main difference in
terms of MSEust(ω̂) is that the clustering ALVM, and not the penalised polynomial ALVMs, performs best
under multiplicative heteroskedasticity. In terms of MSEst(ω̂), the clustering ALVM is the clear winner under
both DGPs, in contrast to the n = 100 case where the linear ALVMs performed best under multiplicative
heteroskedasticity. The good large-sample performance of the clustering ALVM under heteroskedasticity carries
over into the MSE(β̂FWLS) metric, it is the clear winner under both DGPs. This was also the case with n = 100,
but not by a statistically significant margin. The clustering and basic ALVMs are neck-and-neck with HC3
and HC4 in terms of the MSE(SE(β̂)) metric in the n = 1000 case for both heteroskedastic DGPs. The other
ALVMs perform poorly here.

5.3.1.5 ANLVM Results for this Simulation Configuration
Table 5.10 reports performance metrics for three ANLVMs for the same simulation reported on in Tables
5.6-5.9. ‘Quadratic’ refers to the ANLVM with quadratic heteroskedastic function g(Zk·; γ) = (Z′

k·γ)2 (3.38).
‘Exponential’ refers to the ANLVM with exponential heteroskedastic function g(Zk·; γ) = exp {Z′

k·γ} (3.39).
‘Clustering’ refers to the clustering ANLVM described in (3.61). In all ANLVM simulations reported on in the
thesis, feature selection was performed by best subset selection using QGCV loss in the linear ALVM. MC
means and standard error estimates for the metrics are computed only across replications where the Gauss-
Newton algorithm used for MQL estimation achieved convergence. For convergence rates for all ANLVM
simulations, see Table 5.31.
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Table 5.10: Relative Performance Metrics (with Estimated Standard Errors) for ANLVMs Fit to
One-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Metric ANLVM H = ∅ H = {2} H = {2}

Quadratic 1.58
(4.57× 10−4)

0.771
(3.76× 10−2)

0.798
(3.82× 10−2)

Exponential 1.63
(4.71× 10−4)

1.94
(1.06× 10−1)

0.706
(6.80× 10−2)

MSEust(ω̂)
Clustering 1.98

(6.36× 10−4)
2.09

(7.10× 10−2)
1.47

(7.64× 10−2)

Quadratic 1.58
(4.57× 10−4)

0.491
(6.43× 10−4)

0.451
(1.11× 10−3)

Exponential 1.63
(4.71× 10−4)

0.855
(7.40× 10−4)

0.291
(4.67× 10−4)

MSEstd(ω̂)
Clustering 1.98

(6.36× 10−4)
1.59

(1.02× 10−3)
0.991

(9.26× 10−4)

Quadratic 1.04
(3.39× 10−4)

0.951
(9.43× 10−4)

0.966
(8.40× 10−4)

Exponential 1.02
(3.28× 10−4)

0.945
(9.30× 10−4)

0.971
(8.55× 10−4)

MSE(β̂FWLS)
Clustering 1.02

(3.27× 10−4)
1

(9.88× 10−4)
1

(8.60× 10−4)

Quadratic 1.27
(2.27× 10−6)

0.808
(1.05× 10−5)

0.976
(1.72× 10−5)

Exponential 1.3
(2.37× 10−6)

1.73
(2.50× 10−5)

0.748
(1.63× 10−5)

MSE(SE(β̂))
Clustering 1.28

(2.35× 10−6)
1.4

(1.82× 10−5)
1.05

(2.03× 10−5)

As was explained in §5.2.5, the relative metric values in Table 5.10 are relative to the best-performing
ALVM in Tables 5.6-5.9 (depending on metric). A cell in Table 5.10 is highlighted in green only if the metric
for that ANLVM is lower than those of all other ANLVMs and ALVMs, in which case the relative metric value
is less than 1. Hence, it is possible that for some settings and metrics, there is no green cell; this is the case for
all metrics estimated under homoskedasticity in Table 5.10. A yellow cell in an ANLVM results table indicates
that this ANLVM is inferior to the best model (whether an ALVM or an ANLVM), but not by a statistically
significant margin.

From Table 5.10, it is evident that under additive (quadratic) heteroskedasticity, the quadratic ANLVM
outperforms all competitors, including all of the ALVMs, in all four metrics. Of course, in this instance it has
the advantage of having exactly specified the true heteroskedastic function g(·). Similarly, under multiplicative
(exponential) heteroskedasticity, the exponential ANLVM outperforms all competitors, including all of the
ALVMs, in three out of four metrics. The quadratic ANLVM actually performs slightly better than the
exponential ANLVM in terms of MSE(β̂FWLS) under the multiplicative (exponential) DGP, and vice versa.
The performance of the clustering ANLVM is satisfactory across the board, and very similar to that of the
clustering ALVM.

Table E.5 displays results for an ANLVM situation run on the same DGPs but with n = 20. Although
the exponential ANLVM is still the best-performing model in terms of MSE(β̂FWLS) under both additive
and multiplicative heteroskedasticity, it is clear that the ANLVMs’ performance has suffered more due to
the reduction in sample size than that of the ALVMs. The Gauss-Newton algorithm’s convergence rates also
declined under the smaller sample size; the lowest rate was 80%, for the clustering ANLVM under multiplicative
heteroskedasticity.

Table E.10 displays results for a large-sample ANLVM simulation (n = 1000). Here, the quadratic ANLVM
is the best-performing model under the additive heteroskedastic DGP for all metrics except for MSE(β̂FWLS),
and similarly the exponential ANLVM is the best-performing model under the multiplicative heteroskedastic
DGP for all metrics except for MSE(β̂FWLS). Meanwhile, the clustering ANLVM is the best-performing
model under both heteroskedastic DGPs in terms of MSE(β̂FWLS). The convergence rate was also 100% for
the ANLVMs throughout this simulation. Unfortunately, due to high computation time, only R = 102 MC
replications could be run, and the resulting high MC standard errors mean that the ANLVMs are not always
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better than other methods by a statistically significant margin. Nonetheless, Table E.10 provides evidence that
the ANLVMs are a very attractive option when the sample size is large.

5.3.1.6 Simulation on a Nonmonotonic Heteroskedasticity Case
As a robustness check, only for the one-covariate regression with n = 100, a simulation was conducted under
a nonmonotonic heteroskedastic DGP—specifically, the heteroskedastic function is g(x) =

[
sin2

(2πx
3

)]
+ 1

5
(see Figure E.1). Graphical and tabular results are displayed in Appendix E.3. Two clustering ALVMs were
used in this simulation, with the number of clusters being nc = 5 (chosen by the elbow method with SWD
criterion) and nc = 8, respectively. It was suspected that a larger number of clusters might be more effective
in this case, due to the magnitude of rate of change in the heteroskedastic function. Two clustering ANLVMs
were also fit, again with nc = 5 and nc = 8. An ANLVM was also fitted with g(x) correctly specified; this is
called sinsq in Table E.12.

Panels (a) and (b) of Figure E.2 show that the highest unstandardised MSEs are achieved at the maxima
of the heteroskedastic function, whereas Panels (a) and (b) of Figure E.3 show that the highest standardised
MSEs are achieved at the minima of the heteroskedastic function. From the first two columns of Table E.11, it
is evident that the thin-plane spline ALVM achieves the lowest average unstandardised and standardised MSE
for estimating the ωi. However, this does not translate into optimal FWLS estimation of β or estimation of
SE(β̂), as the Miller-Startz SVR model and the homoskedastic estimator perform better in terms of these two
metrics, respectively.

From Table E.12, it appears that the ANLVMs have not been particularly successful in modelling the
sinusoidal heteroskedastic function. Even the correctly specified ‘squared sinusoidal’ ANLVM in the last row
is inferior to the thin-plate spline ALVM, in terms of the first two metrics. This method does perform best in
case of the fourth metric, however, while the clustering ANLVM—like the clustering ALVM—performs fairly
well in terms of FWLS estimation of β, especially when nc = 8.

5.3.1.7 Simulation under Non-Normal Errors
As a further robustness check, only for the one-covariate regression with n = 100, a performance evaluation of
the ALVMs and ANLVMs was conducted under two DGPs with non-normal errors. These are, specifically, a
Laplace or double exponential distribution (which is leptokurtic) and a uniform distribution (which is platykur-
tic). In both instances, the distributions were parametrised so that the errors have zero mean and variance
ωi. In the Laplace case, by generating ϵi ∼ Laplace(0,

√
ωi/2) (where the two parameters of the Laplace dis-

tribution are a location parameter and scale parameter, respectively). In the uniform case, this was achieved
by generating ϵi ∼ U(−

√
3ωi,
√

3ωi). Thus, the respective marginal PDFs of the errors are,

fϵi (x) = (2ωi)−1/2 exp
{
− (ωi/2)−1/2 |x|

}
for −∞ < x <∞ (Laplace case), and (5.21)

fϵi (x) =
[
2(3ω)1/2]−1 for −(3ωi)1/2 ≤ x ≤ (3ωi)1/2 (Uniform case). (5.22)

Performance results for the ALVMs, using the usual four metrics, are shown in Tables E.13-E.16. The
results are generally similar to those obtained under normal errors. The thin-plate spline ALVM fares better
under Laplace-distributed errors than under normal errors in terms of MSEust(ω̂) and MSEst(ω̂), but for the
most part, the models that performed best under normal errors also perform best under non-normal errors.

Performance results for the ANLVMs are shown in Table E.17. Again, the results are broadly similar to
those under normal errors. The quadratic ANLVM performs very well under additive heteroskedasticity, and
the exponential ANLVM performs very well under multiplicative heteroskedasticity. One notable change is
that, for both additive and multiplicative heteroskedasticity, when the errors were generated from a Laplace
distribution, the clustering ANLVM performed best in terms of the MSE(β̂FWLS) metric, which is not the case
under normal or uniform errors.

It appears that the performance of the ALVMs and ANLVMs are not seriously affected under the kinds
of deviation from normality considered here. This is unsurprising in the case of ALVMs, which do not make
use of the normality assumption A5. The ANLVMs are, in theory, more prone to being affected by non-
normality, because they make use of the variance-covariance matrix (3.11) (see V (γ) in §3.3.1.4), whereas
under non-normality the true variance-covariance matrix of the squared OLS residuals is given by (3.17).
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5.3.2 Linear Regression with Two Covariates

Tables 5.11-5.14 show results on the same four performance metrics considered previously, for a simulation
with two covariates generated independently from U(0, 3).

The homoskedastic case is shown in the first column followed by two cases of quadratic heteroskedasticity,
ωi = (1 + xi2)2 and ωi = (1 + xi2 + xi3)2, followed by two cases of exponential heteroskedasticity, ωi = exi2

and ωi = exi2+xi3 .
Again, the penalty parameter λ was tuned using five-fold CV for the L2-norm penalised polynomial ALVM

and the thin-plate spline ALVM, while the elbow method with SWD criterion was used to choose the number
of clusters nc for the clustering ALVM. Feature selection for the linear and clustering ALVMs was performed
using best subset selection on the linear model by QGCV loss. The LASSO penalised polynomial ALVM was
not included in any of the multiple linear regression simulations due to its high computation time.

Table 5.11 (Relative) Unstandardised MSE-of-Variances Estimate (with Estimated Standard Error)
for Two-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3} H = {2} H = {2, 3}

HC3 107
(8.19× 10−3)

36.9
(7.68× 10−1)

23.2
(4.77× 100)

16.8
(9.37× 10−1)

9.79
(8.91× 101)

HC4 96.2
(7.13× 10−3)

33.2
(6.74× 10−1)

20.3
(3.93× 100)

15
(8.09× 10−1)

8.63
(7.71× 101)

HC6 41.8
(5.58× 10−4)

14.9
(1.39× 10−1)

9.13
(8.06× 10−1)

7.02
(2.26× 10−1)

4.72
(5.16× 101)

Homoskedastic 1
(2.88× 10−4)

5.81
(1.94× 10−2)

2.89
(1.20× 10−1)

3.69
(2.05× 10−2)

3.01
(1.34× 100)

Basic ALVM 106
(7.96× 10−3)

37.4
(7.97× 10−1)

23
(4.69× 100)

16.8
(9.61× 10−1)

9.95
(9.10× 101)

Clustering ALVM 3.14
(8.86× 10−4)

2.17
(7.71× 10−2)

2.16
(5.57× 10−1)

1.13
(8.15× 10−2)

1.46
(7.76× 100)

Linear ALVM 2.2
(5.65× 10−4)

1
(4.20× 10−2)

1
(3.16× 10−1)

1.01
(5.10× 10−2)

1.73
(3.82× 100)

L2-Norm Pen. Poly. ALVM 2.58
(6.74× 10−4)

1.73
(6.19× 10−2)

1.04
(3.68× 10−1)

1
(8.55× 10−2)

1
(7.16× 100)

Thin-Plate spline ALVM 5.59
(8.85× 10−4)

2.06
(9.73× 10−2)

1.29
(5.64× 10−1)

1.24
(1.20× 10−1)

1.3
(2.09× 101)

Miller-Startz SVR 19.6
(9.15× 10−4)

7.86
(7.63× 10−2)

4.72
(4.41× 10−1)

3.86
(8.70× 10−2)

2.53
(6.17× 100)
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Table 5.12: (Relative) Standardised MSE-of-Variances Estimate (with Estimated Standard Error)
for Two-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3} H = {2} H = {2, 3}

HC3 107
(8.19× 10−3)

19
(8.47× 10−3)

11.9
(8.85× 10−3)

14
(8.58× 10−3)

6.32
(1.49× 10−2)

HC4 96.2
(7.13× 10−3)

17.1
(7.47× 10−3)

10.6
(7.44× 10−3)

12.7
(7.63× 10−3)

5.66
(1.39× 10−2)

HC6 41.8
(5.58× 10−4)

7.37
(7.40× 10−4)

4.54
(7.56× 10−4)

5.45
(8.59× 10−4)

2.08
(1.07× 10−3)

Homoskedastic 1
(2.88× 10−4)

25.4
(1.31× 10−2)

20.6
(1.53× 10−2)

24.7
(1.98× 10−2)

109
(2.39× 10−1)

Basic ALVM 106
(7.96× 10−3)

19.1
(8.54× 10−3)

11.8
(8.60× 10−3)

13.8
(8.26× 10−3)

5.96
(1.29× 10−2)

Clustering ALVM 3.14
(8.86× 10−4)

1.43
(1.38× 10−3)

2.34
(4.30× 10−3)

1
(1.09× 10−3)

2.7
(1.33× 10−2)

Linear ALVM 2.2
(5.65× 10−4)

1
(1.42× 10−3)

1.44
(3.63× 10−3)

1.78
(2.67× 10−3)

11.8
(4.36× 10−2)

L2-Norm Pen. Poly. ALVM 2.58
(6.74× 10−4)

3.29
(3.82× 10−3)

3.08
(6.93× 10−3)

2.21
(4.45× 10−3)

26.9
(3.34× 10−1)

Thin-Plate spline ALVM 5.59
(8.85× 10−4)

1.86
(1.68× 10−3)

1
(1.66× 10−3)

2.07
(2.62× 10−3)

3.44
(3.91× 10−2)

Miller-Startz SVR 19.6
(9.15× 10−4)

3.43
(8.74× 10−4)

2.13
(8.63× 10−4)

2.49
(8.90× 10−4)

1
(1.95× 10−3)

Table 5.13 (Relative) MSE of FWLS Estimate of β (with Estimated Standard Error) for Two-
Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3} H = {2} H = {2, 3}

OLS 1.01
(4.01× 10−4)

1.52
(2.01× 10−3)

1.59
(5.04× 10−3)

1.76
(1.86× 10−3)

3.43
(1.48× 10−2)

HC3 1.04
(4.03× 10−4)

1.52
(2.05× 10−3)

1.57
(4.86× 10−3)

1.76
(1.90× 10−3)

3.16
(1.36× 10−2)

HC4 1.04
(4.08× 10−4)

1.53
(2.02× 10−3)

1.56
(4.88× 10−3)

1.74
(1.85× 10−3)

3.14
(1.37× 10−2)

HC6 1.04
(4.10× 10−4)

1.59
(2.09× 10−3)

1.59
(4.93× 10−3)

1.8
(1.87× 10−3)

3.41
(1.49× 10−2)

Homoskedastic 1.01
(4.01× 10−4)

1.52
(2.01× 10−3)

1.59
(5.04× 10−3)

1.76
(1.86× 10−3)

3.43
(1.48× 10−2)

Basic ALVM 1.08
(4.17× 10−4)

1.62
(2.12× 10−3)

1.63
(5.11× 10−3)

1.9
(2.01× 10−3)

3.08
(1.41× 10−2)

Clustering ALVM 1
(3.86× 10−4)

1
(1.29× 10−3)

1.03
(3.35× 10−3)

1
(1.03× 10−3)

1.41
(1.21× 10−2)

Linear ALVM 1.01
(4.15× 10−4)

5.65
(2.10× 10−2)

3.08
(1.90× 10−2)

10.1
(1.94× 10−2)

5.33
(7.78× 10−2)

L2-Norm Pen. Poly. ALVM 1.12
(6.84× 10−4)

10.3
(2.64× 10−1)

6.24
(6.08× 10−1)

8390
(4.59× 102)

12300
(9.03× 102)

Thin-Plate spline ALVM 2.59
(1.65× 10−2)

190
(2.00× 100)

36.9
(1.41× 100)

254
(1.69× 100)

314
(1.24× 101)

Miller-Startz SVR 1.05
(4.08× 10−4)

1.07
(1.40× 10−3)

1
(3.01× 10−3)

1.1
(1.14× 10−3)

1
(4.70× 10−3)
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Table 5.14: (Relative) MSE of Standard Errors of β̂OLS (with Estimated Standard Error) for Two-
Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3} H = {2} H = {2, 3}

HC3 2.66
(5.56× 10−6)

1.71
(3.46× 10−5)

1.91
(9.65× 10−5)

1.65
(4.00× 10−5)

1.94
(7.03× 10−4)

HC4 2.41
(4.61× 10−6)

1.59
(2.90× 10−5)

1.73
(7.54× 10−5)

1.52
(3.32× 10−5)

1.79
(5.84× 10−4)

HC6 71.2
(2.15× 10−5)

37.2
(1.37× 10−4)

39.2
(3.66× 10−4)

27.2
(1.49× 10−4)

12.3
(1.49× 10−3)

Homoskedastic 1
(2.18× 10−6)

2.88
(3.92× 10−5)

4.44
(1.21× 10−4)

2.75
(3.81× 10−5)

1.19
(2.43× 10−4)

Basic ALVM 2.52
(5.01× 10−6)

1.66
(3.15× 10−5)

1.81
(8.49× 10−5)

1.62
(3.76× 10−5)

1.92
(6.76× 10−4)

Clustering ALVM 1.34
(2.99× 10−6)

1
(1.97× 10−5)

1.29
(5.66× 10−5)

1
(2.30× 10−5)

1.18
(3.08× 10−4)

Linear ALVM 1.3
(2.83× 10−6)

1
(2.09× 10−5)

1
(4.91× 10−5)

1.35
(2.88× 10−5)

1
(2.87× 10−4)

L2-Norm Pen. Poly. ALVM 1.38
(3.15× 10−6)

1.14
(2.22× 10−5)

1.32
(6.03× 10−5)

1.07
(2.99× 10−5)

1.67
(6.09× 10−4)

Thin-Plate spline ALVM 2.83
(5.42× 10−6)

1.86
(3.22× 10−5)

1.79
(7.34× 10−5)

1.82
(3.71× 10−5)

2.17
(5.84× 10−4)

Miller-Startz SVR 29.3
(1.80× 10−5)

18.5
(1.04× 10−4)

18.7
(2.42× 10−4)

15.9
(1.06× 10−4)

11.4
(1.03× 10−3)

Discussion of Tables 5.11-5.14
It is evident from Table 5.11 that the homoskedastic estimator performs best in terms of unstandardised MSE
in the homoskedastic case, while the linear ALVM and L2-penalised polynomial ALVM perform best in the
additive heteroskedasticity cases and multiplicative heteroskedasticity cases, respectively. The results are more
varied for standardised MSE (Table 5.12): the homoskedastic estimator is still the best under homoskedas-
ticity, but the linear, spline, and clustering ALVMs and the Miller-Startz model each perform best in one
heteroskedastic case.

From Table 5.13, one observes that OLS, all of the HCCMEs, the clustering and linear ALVM perform best
under homoskedasticity. The clustering ALVM also performs best under two of the heteroskedastic scenarios
(where the error variance is a function of one covariate), while the Miller-Startz model performs best under the
other two scenarios (the error variance is a function of both covariates). The spline and polynomial models show
some instability here, with erratic performance and very high standard errors, especially under multiplicative
heteroskedasticity. Looking at MSE for estimating the SE(β̂j), j = 1, 2, . . . , p (Table 5.14), the homoskedastic
estimator is again the best under homoskedasticity, while the linear and clustering ALVMs perform best under
the heteroskedastic DGPs.

Appendix E.5 provides results for a simulation like the one discussed in this section but with two covariates

generated from a bivariate normal distribution with mean vector [3, 3] and covariance matrix
[

1 0.5
0.5 1

]
(thus

correlation coefficient ρ = 0.5). The purpose of this simulation case is to monitor the performance of the
methods under multicollinearity, an issue which occurs commonly in practice with multiple linear regression
models.

Comparing Tables E.18-E.21 with Tables 5.11-5.14, the following characteristics of performance between the
DGP with two independent uniform covariates and with two correlated normal covariates emerge. There are no
substantial differences in MSEust(ω̂) between the two cases. In terms of MSEst(ω̂), the only difference emerges
in the last heteroskedasticity setting, multiplicative with H = {2, 3}. Whereas the HC6 HCCME performed
best under an independent uniform design, Miller-Startz SVR performs best under a correlated normal design.
There is also a change in performance in terms of MSE(β̂FWLS). Under the independent uniform DGP, the
clustering ALVM and Miller-Startz SVR alternated as the best-performing methods with heteroskedasticity.
Under the correlated normal DGP, Miller-Startz SVR is superior in three out of four heteroskedastic scenarios,
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and the linear ALVM in the fourth instance. The performance of the linear ALVM also improves under the
correlated normal design in terms of the MSE(SE(β̂)) metric. It is the best-performing method in three
out of four heteroskedastic scenarios; interestingly, the homoskedastic estimator performs best in the fourth
heteroskedastic case (multiplicative heteroskedasticity with H = {2, 3}).

5.3.2.1 ANLVM Results for this Simulation Configuration
Table 5.15 reports performance metrics for three ANLVMs for the same simulation reported on in Tables
5.11-5.14.

Table 5.15: Relative Performance Metrics (with Estimated Standard Errors) for ANLVMs Fitted to
Two-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Metric ANLVM H = ∅ H = {2} H = {2, 3} H = {2} H = {2, 3}

Quadratic 2.22
(5.67× 10−4)

0.765
(3.96× 10−2)

0.922
(4.87× 10−1)

0.587
(4.06× 10−2)

1.22
(8.28× 100)

Exponential 2.22
(5.81× 10−4)

1.88
(1.00× 10−1)

1.5
(5.92× 10−1)

0.559
(7.13× 10−2)

0.719
(8.82× 100)

MSEust(ω̂)
Clustering 3.26

(9.29× 10−4)
2.16

(7.64× 10−2)
2.13

(5.47× 10−1)
1.12

(9.16× 10−2)
1.47

(8.62× 100)

Quadratic 2.22
(5.67× 10−4)

0.451
(7.38× 10−4)

1.34
(1.32× 10−2)

0.46
(1.21× 10−3)

8.83
(5.36× 10−1)

Exponential 2.22
(5.81× 10−4)

0.745
(9.02× 10−4)

1.48
(3.94× 10−3)

0.307
(5.99× 10−4)

1.14
(1.16× 10−2)

MSEstd(ω̂)
Clustering 3.26

(9.29× 10−4)
1.41

(1.36× 10−3)
2.34

(4.21× 10−3)
0.989

(1.10× 10−3)
2.84

(1.54× 10−2)

Quadratic 1.01
(4.01× 10−4)

0.935
(2.01× 10−3)

0.931
(5.04× 10−3)

0.968
(1.86× 10−3)

1.5
(1.48× 10−2)

Exponential 1.02
(4.03× 10−4)

0.955
(2.05× 10−3)

0.923
(4.86× 10−3)

0.957
(1.90× 10−3)

0.748
(1.36× 10−2)

MSE(β̂FWLS)
Clustering 1.01

(4.08× 10−4)
0.976

(2.02× 10−3)
1.03

(4.88× 10−3)
1.02

(1.85× 10−3)
0.958

(1.37× 10−2)

Quadratic 1.3
(5.56× 10−6)

0.769
(3.46× 10−5)

0.883
(9.65× 10−5)

0.886
(4.00× 10−5)

1.85
(7.03× 10−4)

Exponential 1.3
(4.61× 10−6)

1.18
(2.90× 10−5)

1.55
(7.54× 10−5)

0.829
(3.32× 10−5)

0.952
(5.84× 10−4)

MSE(SE(β̂))
Clustering 1.4

(2.15× 10−5)
1.02

(1.37× 10−4)
1.26

(3.66× 10−4)
0.977

(1.49× 10−4)
1.22

(1.49× 10−3)

From Table 5.15, it is evident that under additive (quadratic) heteroskedasticity linked to one covariate,
the quadratic ANLVM outperforms all competitors, including all of the ALVMs, in all four metrics. Under
additive heteroskedasticity linked to both covariates, the quadratic ANLVM outperforms all competitors in
terms of two metrics (MSEust(ω̂) and MSE(SE(β̂))).

Under multiplicative (exponential) heteroskedasticity linked to one covariate, the exponential ANLVM
outperforms all competitors, including all of the ANLVMs, in all four metrics. Under multiplicative het-
eroskedasticity linked to both covariates, the exponential ANLVM outperforms all competitors in terms of
three metrics, the exception being MSEst(ω̂). The exponential ANLVM also achieves the best result under the
DGP with additive heteroskedasticity linked to two covariates.

The performance of the clustering ANLVM is satisfactory across the board, and similar to that of the
clustering ALVM, but actually markedly better in certain instances, such as the MSE(β̂FWLS) metric under
multiplicative heteroskedasticity linked to two covariates, where the clustering ALVM has a relative MC mean
value of 1.41 and the clustering ANLVM relative MC mean value is 0.958.

5.3.3 Linear Regression with Eight Covariates

Tables 5.16-5.19 show results for a simulation with eight covariates generated independently from U(0, 3).
The homoskedastic case is shown in the first column followed by two cases of quadratic heteroskedasticity,
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ωi = (1 + xi2)2 and ωi = (1 + xi2 + xi3 + xi4 + xi5)2, followed by two cases of exponential heteroskedasticity,
ωi = exi2 and ωi = exi2+xi3+xi4+xi5 .

The models run are the same as those in §5.3.2 except that the thin-plate spline model has now been
omitted for reasons of computation time.

Table 5.16: (Relative) Unstandardised MSE-of-Variances Estimate (with Estimated Standard Error)
for Eight-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3, 4, 5} H = {2} H = {2, 3, 4, 5}

HC3 115
(9.72× 10−3)

25.6
(8.48× 10−1)

14
(3.64× 101)

15.7
(1.00× 100)

2.86
(2.92× 105)

HC4 84.1
(6.64× 10−3)

18.8
(5.90× 10−1)

9.9
(2.25× 101)

11.5
(6.96× 10−1)

1.88
(1.33× 105)

HC6 39.2
(4.84× 10−4)

9.13
(8.43× 10−2)

4.8
(2.96× 100)

5.78
(1.32× 10−1)

1.55
(1.78× 105)

Homoskedastic 1
(3.04× 10−4)

3.67
(2.07× 10−2)

1
(9.68× 10−1)

3.19
(2.14× 10−2)

1.13
(2.79× 103)

Basic ALVM 113
(9.25× 10−3)

25.6
(8.55× 10−1)

13.6
(3.38× 101)

15.4
(1.01× 100)

2.92
(2.74× 105)

Clustering ALVM 9.19
(1.70× 10−3)

2.57
(1.34× 10−1)

1.91
(6.12× 100)

1.57
(1.45× 10−1)

1.13
(1.69× 104)

Linear ALVM 5.79
(9.71× 10−4)

1
(5.38× 10−2)

1.05
(2.59× 100)

1
(5.62× 10−2)

1
(7.10× 103)

L2-Norm Pen. Poly. ALVM 24.2
(5.18× 10−3)

6.62
(3.26× 10−1)

3.44
(1.50× 101)

4.35
(3.72× 10−1)

1.27
(1.02× 105)

Miller-Startz SVR 23
(9.13× 10−4)

5.84
(6.67× 10−2)

2.91
(2.76× 100)

4.02
(6.99× 10−2)

1.03
(8.14× 103)

Table 5.17: (Relative) Standardised MSE-of-Variances Estimate (with Estimated Standard Error)
for Eight-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3, 4, 5} H = {2} H = {2, 3, 4, 5}

HC3 115
(9.72× 10−3)

8.34
(1.19× 10−2)

5.64
(1.08× 10−2)

8.5
(1.25× 10−2)

61.7
(1.50× 100)

HC4 84.1
(6.64× 10−3)

6.02
(8.14× 10−3)

4.06
(7.26× 10−3)

6.15
(8.69× 10−3)

42.8
(1.14× 100)

HC6 39.2
(4.84× 10−4)

2.48
(5.54× 10−4)

1.8
(5.66× 10−4)

2.45
(6.32× 10−4)

1
(1.13× 10−2)

Homoskedastic 1
(3.04× 10−4)

8.7
(1.35× 10−2)

2.79
(5.36× 10−3)

11.3
(2.02× 10−2)

1010
(8.62× 100)

Basic ALVM 113
(9.25× 10−3)

7.94
(1.11× 10−2)

5.47
(1.03× 10−2)

7.96
(1.12× 10−2)

26.7
(8.29× 10−1)

Clustering ALVM 9.19
(1.70× 10−3)

1.15
(4.49× 10−3)

1.69
(5.13× 10−3)

1
(4.23× 10−3)

101
(2.25× 100)

Linear ALVM 5.79
(9.71× 10−4)

1
(3.99× 10−3)

1.13
(4.01× 10−3)

1.32
(4.75× 10−3)

180
(3.43× 100)

L2-Norm Pen. Poly. ALVM 24.2
(5.18× 10−3)

6.18
(2.11× 10−2)

2.72
(1.24× 10−2)

8.59
(3.46× 10−2)

6430
(1.74× 102)

Miller-Startz SVR 23
(9.13× 10−4)

1.29
(1.03× 10−3)

1
(9.91× 10−4)

1.23
(1.05× 10−3)

5.28
(1.66× 10−1)
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Table 5.18 (Relative) MSE of FWLS Estimate of β (with Estimated Standard Error) for Eight-
Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3, 4, 5} H = {2} H = {2, 3, 4, 5}

OLS 1
(6.72× 10−4)

1.21
(4.03× 10−3)

1.03
(2.87× 10−2)

1.41
(3.47× 10−3)

2.7
(7.47× 10−1)

HC3 1.07
(7.27× 10−4)

1.21
(3.97× 10−3)

1.07
(3.07× 10−2)

1.4
(3.41× 10−3)

2.24
(6.34× 10−1)

HC4 1.04
(7.16× 10−4)

1.2
(4.06× 10−3)

1.07
(3.05× 10−2)

1.4
(3.37× 10−3)

2.33
(6.43× 10−1)

HC6 1.08
(7.17× 10−4)

1.25
(4.21× 10−3)

1.12
(3.16× 10−2)

1.46
(3.58× 10−3)

2.51
(6.94× 10−1)

Homoskedastic 1
(6.72× 10−4)

1.21
(4.03× 10−3)

1.03
(2.87× 10−2)

1.41
(3.47× 10−3)

2.7
(7.47× 10−1)

Basic ALVM 1.2
(8.29× 10−4)

1.32
(4.44× 10−3)

1.2
(3.42× 10−2)

1.58
(3.97× 10−3)

2.07
(6.03× 10−1)

Clustering ALVM 1.14
(7.90× 10−4)

1.08
(4.33× 10−2)

1.26
(2.12× 10−1)

1
(4.43× 10−3)

2.39
(5.29× 100)

Linear ALVM 1.29
(9.99× 10−4)

1.28
(5.11× 10−3)

1.52
(5.35× 10−2)

1.5
(5.73× 10−3)

1.85
(7.08× 10−1)

L2-Norm Pen. Poly. ALVM 1240
(4.98× 101)

76
(9.31× 100)

89
(1.07× 102)

470
(7.09× 101)

5.65
(3.88× 101)

Miller-Startz SVR 1.04
(6.91× 10−4)

1
(3.36× 10−3)

1
(2.89× 10−2)

1.04
(2.62× 10−3)

1
(2.96× 10−1)

Table 5.19: (Relative) MSE of Standard Errors of β̂OLS (with Estimated Standard Error) for Eight-
Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3, 4, 5} H = {2} H = {2, 3, 4, 5}

HC3 3.47
(1.51× 10−5)

2.63
(1.14× 10−4)

2.31
(7.71× 10−4)

2.46
(1.05× 10−4)

2.51
(8.64× 10−2)

HC4 2.73
(9.86× 10−6)

2.05
(7.09× 10−5)

1.74
(4.70× 10−4)

1.95
(6.90× 10−5)

2.07
(4.91× 10−2)

HC6 71
(3.97× 10−5)

42.8
(2.74× 10−4)

43
(1.97× 10−3)

36.4
(2.63× 10−4)

10.7
(9.76× 10−2)

Homoskedastic 1
(4.29× 10−6)

1.31
(5.15× 10−5)

1.13
(3.43× 10−4)

1.66
(6.18× 10−5)

1
(2.38× 10−2)

Basic ALVM 2.9
(1.17× 10−5)

2.26
(8.73× 10−5)

1.9
(5.79× 10−4)

2.19
(8.72× 10−5)

2.52
(7.61× 10−2)

Clustering ALVM 1.23
(5.11× 10−6)

1
(3.96× 10−5)

1
(3.09× 10−4)

1
(4.00× 10−5)

1.27
(2.19× 10−2)

Linear ALVM 1.17
(4.99× 10−6)

1.28
(5.71× 10−5)

1.02
(3.28× 10−4)

1.9
(8.25× 10−5)

1.14
(3.09× 10−2)

L2-Norm Pen. Poly. ALVM 2.14
(1.39× 10−5)

2.13
(1.18× 10−4)

1.75
(8.30× 10−4)

2.62
(1.43× 10−4)

3.8
(1.47× 10−1)

Miller-Startz SVR 28.5
(3.46× 10−5)

20.8
(2.16× 10−4)

18
(1.53× 10−3)

19.4
(2.01× 10−4)

10.5
(5.75× 10−2)

Discussion of Tables 5.16-5.19
In terms of unstandardised MSE for estimating ω, the homoskedastic estimator performs best in the ho-
moskedastic DGP but also, surprisingly, in the additive heteroskedastic DGP where the error variance was a
quadratic function of four covariates (third column of Table 5.16). In the other three heteroskedastic DGPs,
the linear ALVM performed best by this metric.
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The results were more varied in terms of the standardised MSE for estimating ω (Table 5.17). The
homoskedastic estimator performed best under homoskedasticity, while the linear ALVM, clustering ALVM,
Miller-Startz SVR model, and HC6 HCCME each performed best in one of the heteroskedastic DGPs.

Considering the MSE of the FWLS estimator (Table 5.18), the homoskedastic approach was best under ho-
moskedasticity (although not statistically significantly better than some of the HCCMEs or Miller-Startz SVR
model). The Miller-Startz SVR model performed best in three of the four heteroskedastic scenarios, though
only by a statistically significant margin in one of these. In the other heteroskedastic DGP—multiplicative
heteroskedasticity involving only one covariate—the clustering ALVM performed best, but not by a significant
margin over Miller-Startz SVR.

Finally, referring to Table 5.19, in terms of the MSE of standard error estimates of β̂OLS, the homoskedastic
estimator performed best in the homoskedastic DGP and one heteroskedastic DGP, while the clustering ALVM
performed best in three heteroskedastic DGPs—in one case, virtually neck-and-neck with the linear ALVM.

As with the two-covariate case, an eight-covariate simulation was conducted with correlated normal covari-
ates. These covariates were generated from a multivariate normal distribution with a mean vector of 3s and
covariance matrix

Σ =



1 0.5 0.5 0.5 −0.5 −0.5 −0.5 −0.5
0.5 1 0.5 0.5 −0.5 −0.5 −0.5 −0.5
0.5 0.5 1 0.5 −0.5 −0.5 −0.5 −0.5
0.5 0.5 0.5 1 −0.5 −0.5 −0.5 −0.5
−0.5 −0.5 −0.5 −0.5 1 0.5 0.5 0.5
−0.5 −0.5 −0.5 −0.5 0.5 1 0.5 0.5
−0.5 −0.5 −0.5 −0.5 0.5 0.5 1 0.5
−0.5 −0.5 −0.5 −0.5 0.5 0.5 0.5 1


.

Thus, the first four covariates are all positively correlated with one another, the last four covariates are
all positively correlated with one another, and the first four covariates are all negatively correlated with the
last four, with all correlation coefficients having a magnitude of 0.5. The purpose of this simulation case is
to monitor the performance of the methods under higher-dimensional multicollinearity, an issue which occurs
commonly in practice with multiple linear regression models.

Tables E.22-E.25 in §E.6 show results for this eight-covariate simulation with multicollinearity. Comparing
these results with those in Tables 5.16-5.19, the following similarities and differences are observed. In Table
5.16, the lowest unstandardised MSE for the variance estimates was achieved by the homoskedastic estimator
in the first and third DGPs and by the linear ALVM in the other three DGPs. In Table E.22, the ‘winner’ was
the same in the first, second, and fourth DGPs. However, in the third DGP, the linear ALVM was now better
than the homoskedastic DGP, while in the fifth DGP, the Miller-Startz SVR model performed best.

In Table 5.17, the lowest standardised MSE for the variance estimates was obtained by a different method
for each DGP: going from left to right, the ‘winners’ were the homoskedastic estimator, the linear ALVM, the
Miller-Startz SVR model, the clustering ALVM, and the HC6 HCCME. In Table E.23, it is apparent that
the ‘winners’ in the multicollinear simulation were nearly the same; the only change is that the linear ALVM
performs best in the third DGP, rather than the clustering ALVM.

In Table 5.18, the lowest MSE for FWLS estimation of β was achieved by the homoskedastic estimator
(OLS) for the first (homoskedastic) DGP, and by the Miller-Startz SVR model for the other four DGPs with
the exception of the fourth, for which the clustering ALVM was superior, albeit not by a statistically significant
margin. In Table E.24, the results were similar except that in the fourth DGP, the Miller-Startz SVR model
now outperformed the clustering ALVM (by a statistically significant margin).

In Table 5.19, the lowest MSE for estimating SE(β̂OLS) was achieved by the homoskedastic estimator in
the first and fifth DGPs and by the clustering ALVM in the other three DGPs. However, Table E.25 shows
that in the multicollinear simulation, the homoskedastic estimator produces the lowest MSE for estimating
SE(β̂OLS) in all five DGPs.

To summarise, the performance of the ALVMs seems to have deteriorated slightly in the presence of
multicollinearity in the eight-covariate linear regression model, relative to the homoskedastic estimator and the
Miller-Startz SVR model. This is particularly true for the fourth metric, MSE of SE(β̂OLS), relative to the
homoskedastic estimator. However, by this metric the ALVMs are still outperforming the Miller-Startz SVR
model by a wide margin under multicollinearity.
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5.3.3.1 ANLVM Results for this Simulation Configuration
Table 5.20 reports performance metrics for three ANLVMs for the same simulation reported on in Tables
5.16-5.19.

Table 5.20: Relative Performance Metrics (with Estimated Standard Errors) for ANLVMs Fitted to
Eight-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Metric ANLVM H = ∅ H = {2} H = {2, 3, 4, 5} H = {2} H = {2, 3, 4, 5}

Quadratic 8.99
(7.69× 10−3)

1.08
(1.53× 10−1)

1.54
(1.72× 101)

0.741
(1.38× 10−1)

0.954
(1.11× 104)

Exponential 6.44
(1.31× 10−3)

1.82
(1.50× 10−1)

1.5
(7.23× 100)

0.828
(2.13× 10−1)

1.08
(1.56× 105)

MSEust(ω̂)
Clustering 9.48

(1.83× 10−3)
2.57

(1.33× 10−1)
1.9

(6.09× 100)
1.55

(1.46× 10−1)
1.08

(1.28× 104)

Quadratic 8.99
(7.69× 10−3)

0.639
(1.59× 10−2)

1.51
(2.83× 10−2)

0.848
(5.67× 10−2)

227
(1.64× 101)

Exponential 6.44
(1.31× 10−3)

0.498
(2.05× 10−3)

1.11
(3.94× 10−3)

0.299
(1.53× 10−3)

45
(1.57× 100)

MSEstd(ω̂)
Clustering 9.48

(1.83× 10−3)
1.16

(4.82× 10−3)
1.68

(4.95× 10−3)
0.983

(4.36× 10−3)
85.1

(1.91× 100)

Quadratic 1.13
(6.72× 10−4)

0.854
(4.03× 10−3)

1.07
(2.87× 10−2)

0.949
(3.47× 10−3)

1.84
(7.47× 10−1)

Exponential 1.08
(7.27× 10−4)

0.776
(3.97× 10−3)

1.01
(3.07× 10−2)

0.787
(3.41× 10−3)

0.959
(6.34× 10−1)

MSE(β̂FWLS)
Clustering 1.12

(7.16× 10−4)
0.878

(4.06× 10−3)
1.1

(3.05× 10−2)
0.885

(3.37× 10−3)
1.22

(6.43× 10−1)

Quadratic 1.58
(1.51× 10−5)

0.992
(1.14× 10−4)

1.2
(7.71× 10−4)

0.968
(1.05× 10−4)

1.37
(8.64× 10−2)

Exponential 1.2
(9.86× 10−6)

0.94
(7.09× 10−5)

0.96
(4.70× 10−4)

0.896
(6.90× 10−5)

1.44
(4.91× 10−2)

MSE(SE(β̂))
Clustering 1.27

(3.97× 10−5)
1.01

(2.74× 10−4)
0.998

(1.97× 10−3)
0.984

(2.63× 10−4)
1.62

(9.76× 10−2)

From Table 5.20, it is evident that the exponential ANLVM is more successful than the other two under most
DGPs in this eight-covariate simulation. Under additive (quadratic) heteroskedasticity linked to one covariate,
the exponential ANLVM, surprisingly, is the winner over the quadratic ANLVM and all other models in terms
of three out of four metrics. It is also superior to the quadratic ANLVM under additive heteroskedasticity
linked to four covariates. The exponential ANLVM keeps up its good performance under the multiplicative
heteroskedastic DGPs, except that in terms of MSEust(ω̂), the quadratic ALVM actually performs better
in both DGPs (heteroskedasticity linked to one covariate and linked to four covariates). As in the lower-
dimensional simulations, the clustering ANLVM yields results comparable to those of the clustering ALVM,
but better in certain respects.

5.3.4 Linear Regression with Sixteen Covariates

Tables 5.21-5.24 show results for a simulation with sixteen covariates generated independently from U(0, 3).
In each instance, the MC mean estimate of the metric is shown first with the estimated standard error be-
neath it in brackets. The homoskedastic case is shown in the first column followed by two cases of quadratic
heteroskedasticity, ωi = (1 + xi2)2 and ωi = (1 + xi2 + · · ·+ xi9)2, followed by two cases of exponential het-
eroskedasticity, ωi = exi2 and ωi = exi2+···+xi9 . The metrics used and the format of the results are the same
as for the lower-dimensional simulations. The models run are the same as in the eight-covariate simulations,
except that the L2-norm penalised polynomial has now also been omitted due to high computation time.
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Table 5.21: (Relative) Unstandardised MSE-of-Variances Estimate (with Estimated Standard Error)
for Sixteen-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, . . . , 9} H = {2} H = {2, . . . , 9}

HC3 125
(1.22× 10−2)

20.1
(1.15× 100)

21.8
(4.75× 102)

17.1
(1.36× 100)

2.26
(9.14× 10+12)

HC4 70.1
(6.29× 10−3)

11.2
(5.81× 10−1)

12.2
(2.41× 102)

9.42
(6.31× 10−1)

1.23
(4.23× 10+12)

HC6 35
(4.73× 10−4)

6.02
(6.68× 10−2)

6.3
(2.41× 101)

5.26
(9.90× 10−2)

1.09
(3.17× 10+12)

Homoskedastic 1
(3.57× 10−4)

2.14
(2.57× 10−2)

1
(1.21× 101)

2.59
(2.65× 10−2)

1.06
(8.83× 10+10)

Basic ALVM 117
(1.12× 10−2)

19.2
(1.12× 100)

20.8
(4.51× 102)

16.5
(1.25× 100)

1.81
(8.37× 10+12)

Clustering ALVM 15
(2.44× 10−3)

2.62
(2.14× 10−1)

3.28
(9.38× 101)

2.12
(2.23× 10−1)

1.05
(2.97× 10+11)

Linear ALVM 8.97
(1.22× 10−3)

1
(8.44× 10−2)

1.93
(3.85× 101)

1
(7.59× 10−2)

1.04
(1.30× 10+11)

Miller-Startz SVR 21.8
(7.47× 10−4)

4.23
(6.38× 10−2)

4.12
(2.61× 101)

3.97
(7.03× 10−2)

1
(1.46× 10+11)

Table 5.22: (Relative) Standardised MSE-of-Variances Estimate (with Estimated Standard Error)
for Sixteen-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, . . . , 9} H = {2} H = {2, . . . , 9}

HC3 125
(1.22× 10−2)

8.31
(1.92× 10−2)

11.8
(1.37× 10−2)

9.61
(2.26× 10−2)

162
(4.82× 103)

HC4 70.1
(6.29× 10−3)

4.58
(1.01× 10−2)

6.55
(7.02× 10−3)

5.16
(1.14× 10−2)

71.9
(1.92× 103)

HC6 35
(4.73× 10−4)

1.71
(5.06× 10−4)

3.08
(4.48× 10−4)

1.75
(5.93× 10−4)

1
(4.41× 101)

Homoskedastic 1
(3.57× 10−4)

5.56
(1.26× 10−2)

1
(1.45× 10−3)

8.72
(2.05× 10−2)

671
(1.07× 104)

Basic ALVM 117
(1.12× 10−2)

7.19
(1.65× 10−2)

11
(1.27× 10−2)

8.09
(1.88× 10−2)

78.3
(1.83× 103)

Clustering ALVM 15
(2.44× 10−3)

1.58
(9.03× 10−3)

2.29
(4.02× 10−3)

1.46
(9.25× 10−3)

931
(6.05× 104)

Linear ALVM 8.97
(1.22× 10−3)

1.35
(6.80× 10−3)

1.57
(2.45× 10−3)

1.64
(8.04× 10−3)

427
(1.27× 104)

Miller-Startz SVR 21.8
(7.47× 10−4)

1
(9.89× 10−4)

1.87
(8.16× 10−4)

1
(1.09× 10−3)

10.8
(2.99× 102)
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Table 5.23: (Relative) MSE of FWLS Estimate of β (with Estimated Standard Error) for Sixteen-
Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, . . . , 9} H = {2} H = {2, . . . , 9}

OLS 1
(4.89× 10−4)

1.13
(3.74× 10−3)

1
(9.04× 10−2)

1.41
(3.61× 10−3)

3.2
(4.79× 103)

HC3 1.07
(4.96× 10−4)

1.17
(3.84× 10−3)

1.04
(9.29× 10−2)

1.39
(3.64× 10−3)

1.72
(2.52× 103)

HC4 1.11
(5.26× 10−4)

1.14
(3.82× 10−3)

1.04
(9.20× 10−2)

1.4
(3.70× 10−3)

1.72
(2.60× 103)

HC6 1.15
(5.61× 10−4)

1.23
(4.13× 10−3)

1.07
(9.79× 10−2)

1.5
(3.94× 10−3)

2.26
(3.38× 103)

Homoskedastic 1
(4.89× 10−4)

1.13
(3.74× 10−3)

1
(9.04× 10−2)

1.41
(3.61× 10−3)

3.2
(4.79× 103)

Basic ALVM 1.33
(7.13× 10−4)

1.33
(4.45× 10−3)

1.22
(1.10× 10−1)

1.56
(4.13× 10−3)

2.1
(3.31× 103)

Clustering ALVM 1.22
(6.20× 10−4)

1.14
(1.19× 10−2)

1.15
(1.05× 10−1)

1.49
(4.58× 10−2)

2.69
(2.48× 104)

Linear ALVM 1.37
(6.83× 10−4)

1
(3.52× 10−3)

1.28
(1.18× 10−1)

1
(2.64× 10−3)

1.91
(3.75× 103)

Miller-Startz SVR 1.08
(5.14× 10−4)

1.03
(3.49× 10−3)

1.02
(9.28× 10−2)

1.21
(3.15× 10−3)

1
(1.85× 103)

Table 5.24: (Relative) MSE of Standard Errors of β̂OLS (with Estimated Standard Error) for
Sixteen-Covariate Linear Regression Model

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, . . . , 9} H = {2} H = {2, . . . , 9}

HC3 4.85
(1.86× 10−5)

3.73
(1.88× 10−4)

4.64
(3.89× 10−3)

3.29
(2.05× 10−4)

1.13
(9.06× 102)

HC4 2.8
(8.53× 10−6)

2.45
(8.96× 10−5)

2.88
(1.85× 10−3)

2.24
(1.02× 10−4)

1
(5.75× 102)

HC6 65.5
(3.09× 10−5)

40.5
(3.07× 10−4)

55.7
(6.87× 10−3)

31.4
(3.17× 10−4)

1.85
(7.55× 102)

Homoskedastic 1
(4.09× 10−6)

1
(4.43× 10−5)

1
(8.05× 10−4)

1
(5.05× 10−5)

1.85
(4.74× 102)

Basic ALVM 3.2
(1.22× 10−5)

2.83
(1.32× 10−4)

3.38
(2.72× 10−3)

2.6
(1.47× 10−4)

3.29
(6.67× 102)

Clustering ALVM 1.3
(4.79× 10−6)

1.11
(5.13× 10−5)

1.28
(9.79× 10−4)

1.03
(5.67× 10−5)

1.84
(4.56× 102)

Linear ALVM 1.15
(4.52× 10−6)

1.07
(5.35× 10−5)

1.16
(8.99× 10−4)

1.03
(6.04× 10−5)

1.65
(4.52× 102)

Miller-Startz SVR 28.7
(2.92× 10−5)

22.5
(2.56× 10−4)

26.6
(5.45× 10−3)

19.4
(2.61× 10−4)

3.97
(5.08× 102)

Discussion of Tables 5.21-5.24
Referring to Table 5.21, it is evident that in terms of unstandardised MSE for estimating the error variances ω,
the homoskedastic estimator performs best in the homoskedastic DGP but also in one additive heteroskedastic-
ity case. The linear ALVM performs best in both the additive and multiplicative heteroskedastic DGPs where
only one covariate was involved in heteroskedasticity, while in the other multiplicative heteroskedasticity case,
the Miller-Startz SVR model prevails.120

120The standard errors are enormous in this case due to the huge magnitude of the error variances, which have been
computed by an exponential function with the exponent being the sum of eight U(0, 3) random variables.
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According to Table 5.22, the ALVMs are not at their best in terms of standardised MSE for estimating
the error variances ω in this high-dimensional setting. The homoskedastic estimator again performs best
in the homoskedastic DGP and one additive heteroskedastic DGP. Miller-Startz SVR performs best in both
heteroskedastic DGPs where only one covariate was implicated in heteroskedasticity. In the other multiplicative
heteroskedastic DGP, the HCCME HC6 performs best.

Turning to Table 5.23, the homoskedastic estimator (equivalently, OLS) results in the best MSE of the
FWLS estimator in the homoskedastic DGP and one additive heteroskedastic DGP case (though not by a
statistically significant margin, in the latter). The linear ALVM performs best in both heteroskedastic DGPs
where only one covariate is involved in heteroskedasticity; again not by a statistically significant margin.
Miller-Startz SVR is the clear winner in the other multiplicative heteroskedastic DGP case.

Finally, Table 5.24 shows that the homoskedastic estimator performs best in four out of five cases in MSE
of SE(β̂OLS), although the linear and clustering ALVMs are close behind. In the last case (multiplicative
heteroskedasticity with eight covariates involved), the HCCMEs tend to outperform the modelling approaches.

No parallel simulation with correlated normal covariates was conducted in the sixteen-covariate case.

5.4 Simulation Results on Other Aspects of Auxiliary Variance Models
5.4.1 Feature Selection Performance

A limited experiment was performed to specifically explore the performance of the feature selection techniques
discussed in §3.3.3. The settings of the experiment are summarised in Table 5.25. In each setting, both
covariates were generated independently from U(0, 3) with n = 100.

The additive heteroskedastic function used was

g(X ′
i·) =


(

1 +
∑
j∈H

Xij

)2

if H ̸= ∅

1 if H = ∅

, (5.23)

where H is the set of columns of X involved in heteroskedasticity (see second column of Table 5.25), and
X·1 is a column of ones. The multiplicative heteroskedastic function used was

g(X ′
i·) =

exp

{∑
j∈H

Xij

}
if H ̸= ∅

1 if H = ∅

. (5.24)

Table 5.25: Settings for Feature Selection Experiment

No. of Covariates p − 1 H Het. Function
2 ∅ -
2 {2} Additive
2 {2, 3} Additive
2 ∅ -
2 {2} Multiplicative
2 {2, 3} Multiplicative

The additive heteroskedasticity configuration was repeated with a smaller sample size of n = 20 to investi-
gate the small-sample performance of the feature selection techniques. R = 104 MC replications were generated
for each configuration. Thus each MC proportion estimate (the proportion of times that a particular set of

variables was selected) π̂ in Table 5.27 has MC standard error
√
π(1− π)

R
, which for R = 104 is maximised

when π = 0.5 at a value of 0.005.
The feature selection methods used were as follows. Heteroskedasticity testing selection methods (§3.3.3.2)

were used with both Breusch and Pagan’s (1979) test and Evans and King’s (1988) GLS test. In each instance,
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two different significance levels were tried (α = 0.05; 0.1). Best subset selection methods (§3.3.3.3) were used
with both the QGCV criterion (3.86) and five-fold CV (3.77). In each best subset selection case, the linear
ALVM was used as well as the clustering ALVM with nc determined by the elbow method with SWD criterion.
The shrinkage method (which forms part of the LASSO ALVM fitting mechanism) was not included in this
simulation due to the high computation time required.

In Tables 5.26, 5.27, and 5.28 below, the columns highlighted in green are those corresponding to the
correct choice of features for each DGP. Except for the last two columns, the number shown is the proportion
of replications for which a particular feature selection choice was made, within that DGP. The second-to-last
column, labelled ‘Accuracy’, indicates the proportion of times that the exactly correct feature selection choice
was made, across all three DGPs. The last column, labelled ‘SD’, indicates the standard deviation of the
proportion of correct feature selection choices (green columns) across all three DGPs. A good feature selection
method should have a high accuracy but also a low standard deviation, indicating that its performance is
consistent across different DGPs.

Table 5.26: Feature Selection Relative Frequencies for Two-Covariate Model with Additive Het-
eroskedasticity, n = 100

DGP H = ∅ DGP H = {2} DGP H = {2, 3} Overall Metrics
Method ∅ {2} {3} {2, 3} ∅ {2} {3} {2, 3} ∅ {2} {3} {2, 3} Accuracy SD
QGCV (linear) 0.699 0.139 0.137 0.025 0.001 0.908 0.000 0.091 0.008 0.148 0.093 0.750 0.804 0.096
QGCV (clustering) 0.824 0.077 0.068 0.032 0.029 0.758 0.004 0.209 0.188 0.284 0.181 0.346 0.668 0.217
CV (linear) 0.605 0.174 0.170 0.051 0.011 0.737 0.002 0.250 0.039 0.149 0.103 0.709 0.693 0.060
CV (cluster) 0.728 0.103 0.103 0.066 0.119 0.638 0.018 0.225 0.258 0.247 0.192 0.302 0.554 0.183
B-P Test (α = 0.05) 0.906 0.046 0.046 0.001 0.016 0.958 0.000 0.025 0.166 0.314 0.224 0.295 0.772 0.319
B-P Test (α = 0.1) 0.812 0.091 0.086 0.010 0.004 0.933 0.000 0.063 0.071 0.255 0.184 0.490 0.783 0.202
E-K Test (α = 0.05) 0.900 0.049 0.048 0.002 0.000 0.903 0.000 0.097 0.014 0.123 0.093 0.769 0.875 0.071
E-K Test (α = 0.1) 0.807 0.089 0.094 0.011 0.000 0.840 0.000 0.160 0.004 0.070 0.062 0.864 0.846 0.030

Table 5.26 shows the proportion of replications where each variable selection outcome was achieved for each
DGP setting of H, in the first experiment with additive heteroskedasticity. In terms of overall accuracy, the
Evans-King heteroskedasticity testing method with α = 0.05 performs best, with an accuracy of over 87%, and
a relatively low standard deviation of 0.071. The same method with significance level α = 0.1 has almost as
good accuracy and a much smaller standard deviation. The third-best combination of accuracy and standard
deviation belongs to the QGCV method using the linear ALVM. The techniques based on the clustering
ALVM and the Breusch-Pagan heteroskedasticity test both showed poor performance under the DGP where
both covariates were involved in heteroskedasticity.

Table 5.27: Feature Selection Relative Frequencies for Two-Covariate Model with Multiplicative Het-
eroskedasticity

DGP H = ∅ DGP H = {2} DGP H = {2, 3} Overall Metrics
Method ∅ {2} {3} {2, 3} ∅ {2} {3} {2, 3} ∅ {2} {3} {2, 3} Accuracy SD
QGCV (linear) 0.709 0.137 0.130 0.024 0.000 0.961 0.000 0.039 0.000 0.044 0.077 0.879 0.878 0.119
QGCV (clustering) 0.818 0.065 0.078 0.038 0.019 0.725 0.002 0.254 0.022 0.065 0.110 0.803 0.800 0.054
CV (linear) 0.604 0.172 0.171 0.052 0.004 0.780 0.001 0.215 0.007 0.076 0.075 0.842 0.745 0.101
CV (cluster) 0.744 0.090 0.101 0.065 0.080 0.666 0.011 0.243 0.068 0.172 0.225 0.535 0.658 0.089
B-P Test (α = 0.05) 0.909 0.042 0.046 0.002 0.003 0.969 0.000 0.028 0.008 0.052 0.085 0.856 0.928 0.057
B-P Test (α = 0.1) 0.812 0.086 0.092 0.009 0.000 0.932 0.000 0.067 0.001 0.016 0.030 0.952 0.910 0.066
E-K Test (α = 0.05) 0.903 0.047 0.046 0.004 0.000 0.886 0.000 0.114 0.000 0.000 0.000 0.999 0.910 0.063
E-K Test (α = 0.1) 0.810 0.086 0.091 0.013 0.000 0.824 0.000 0.176 0.000 0.000 0.000 1.000 0.854 0.098

Table 5.27 shows the feature selection performance for the second experiment, with multiplicative het-
eroskedasticity. It is evident that the Breusch-Pagan heteroskedasticity testing approach performs best in
terms of accuracy (and very well in terms of standard deviation), followed by the Evans-King heteroskedastic-
ity testing approach. The QGCV approach based on the linear model is also highly competitive (despite slightly
inferior performance in the homoskedastic DGP). The QGCV best subset selection approaches outperform the
CV best subset selection approaches and are also much faster. It is surprising that QGCV outperforms five-fold
CV, but this may be because QGCV approximates leave-one-out CV, and the lower bias of leave-one-out CV
(despite higher variance) may be favourable in this instance.
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Table 5.28: Feature Selection Relative Frequencies for Two-Covariate Model with Additive Het-
eroskedasticity, n = 20

DGP H = ∅ DGP H = {2} DGP H = {2, 3} Overall Metrics
Method ∅ {2} {3} {2, 3} ∅ {2} {3} {2, 3} ∅ {2} {3} {2, 3} Accuracy SD
QGCV (linear) 0.645 0.151 0.181 0.023 0.343 0.505 0.119 0.032 0.203 0.085 0.662 0.050 0.461 0.294
QGCV (clustering) 0.662 0.117 0.129 0.092 0.566 0.268 0.100 0.067 0.380 0.054 0.354 0.213 0.350 0.230
CV (linear) 0.424 0.228 0.222 0.126 0.363 0.309 0.183 0.145 0.315 0.172 0.335 0.179 0.308 0.109
CV (cluster) 0.400 0.210 0.214 0.176 0.347 0.286 0.174 0.193 0.293 0.176 0.285 0.246 0.296 0.078
B-P Test (α = 0.05) 0.924 0.038 0.038 0.000 0.884 0.100 0.015 0.000 0.735 0.015 0.250 0.000 0.319 0.416
B-P Test (α = 0.1) 0.821 0.087 0.086 0.005 0.711 0.237 0.044 0.008 0.528 0.040 0.418 0.013 0.371 0.344
E-K Test (α = 0.05) 0.905 0.047 0.044 0.004 0.423 0.521 0.017 0.039 0.297 0.019 0.636 0.049 0.541 0.335
E-K Test (α = 0.1) 0.811 0.089 0.088 0.012 0.255 0.641 0.016 0.087 0.180 0.020 0.700 0.101 0.588 0.267

Table 5.28 shows the results for a third experiment with additive heteroskedasticity but with a small sample
size of n = 20. Since the heteroskedasticty testing feature selection technique is contingent on power, which
increases with sample size, it is not surprising that these methods are less effective than in the n = 100 case.
The heteroskedasticity testing approach based on Evans and King’s (1988) test is still the best overall in terms
of accuracy. The heteroskedasticity testing approach based on Breusch and Pagan’s (1979) test has almost no
power to detect heteroskedasticity, especially in the H = {2, 3} case. The increased sampling error from the
smaller sample size has also affected the performance of the QGCV and CV best subset selection techniques,
though not to the same degree. The QGCV best subset method based on the linear ALVM remains competitive
in terms of accuracy, but the five-fold CV best subset methods have the lowest standard deviations.

Table 5.29: Feature Selection Metrics for Four-Covariate Model with Additive Heteroskedasticity,
n = 50

Method Sensitivity Specificity Accuracy SD
QGCV (linear) 0.482 0.858 0.252 0.243
QGCV (clustering) 0.487 0.665 0.126 0.093
CV (linear) 0.452 0.681 0.111 0.070
CV (cluster) 0.504 0.579 0.090 0.030
B-P Test (α = 0.05) 0.192 0.959 0.176 0.261
B-P Test (α = 0.1) 0.307 0.915 0.203 0.249
E-K Test (α = 0.05) 0.470 0.930 0.327 0.300
E-K Test (α = 0.1) 0.594 0.873 0.342 0.236

Table 5.29 shows results for a higher-dimensional simulation with (p− 1 = 4) features, based on R = 103

MC replications, with n = 50. In this case, there were 16 DGPs corresponding to the presence and absence of
each feature in the quadratic heteroskedastic function. Instead of showing the relative frequencies for all the
DGPs, two new metrics are shown. These are the feature selection ‘sensitivity’ (proportion of replications where
a feature that was involved in heteroskedasticity was selected) and the feature selection ‘specificity’ (proportion
of replications where a feature that was not involved in heteroskedasticity was not selected). These metrics
are averaged across all features. The accuracy refers to the proportion of replications where the set of features
selected was exactly that of the DGP. By sensitivity, specificity, and accuracy, the heteroskedasticity testing
approach using Evans and King’s (1988) GLS test performs the best. A test size of 0.1 seems to work slightly
better than a test size of 0.05, as the gain in sensitivity more than compensates for the loss in specificity. The
QGCV best subset method based on the linear ALVM is also competitive in terms of sensitivity and specificity.
The heteroskedasticity testing method based on Breusch and Pagan’s (1979) test have excellent specificity but
low sensitivity.

Collectively, it appears that the heteroskedasticity testing approach based on Evans and King’s (1988)
GLS test performs best. However, one should bear in mind that the performance of a heteroskedasticity test
may be sensitive to the type of heteroskedasticity.121 Also, the feature selection simulations reported on here
were run only after running the time-consuming ALVM performance simulations reported in §5.3. For these
two reasons, the QGCV procedure was used predominantly as the feature selection method in the ALVM and
ANLVM performance simulations discussed in §5.3.

121See the performance of Evans and King’s (1988) test in the illustration in §5.6.3.
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5.4.2 Stability of Auxiliary Linear Variance Models across Different Design Matrices

It was assumed from the outset of this research in §1.1.3 that the design matrix X is either nonstochastic or
that otherwise all statistical results are conditional on X. However, the question arises whether, in case of
stochastic X, the unconditional statistical results are stable with respect to different designs X drawn from
a single distribution with CDF denoted FX . This section explores this question through a limited empirical
simulation.

Let X be a predictor matrix drawn from FX . Let the vector of error variances associated with predic-
tor matrix X be ω(X) = [ω1(X ′

1·), ω2(X ′
2·), . . . , ωn(X ′

n·)]′ = [g(X ′
1·), g(X ′

2·), . . . , g(X ′
n·)], with heteroskedastic

function g as introduced in §1.1.4 and Z = X for simplicity.
If ω̂(X) is an estimator of ω(X), an unconditional, unstandardised MSE for an element of this estimator,

ω̂i(X),122 can be written as

E
[
(ω̂i(·)− ωi(·))2] = EX

{
Eϵ|X

[(
ω̂i(X)− ωi(X ′

i·)
)2
]}

. (5.25)

Note that a standardised version of this expectation, and all quantities introduced below based on it, is

obtained by replacing (ω̂i(X)− ωi(X ′
i·))

2 in (5.25) by
(
ω̂i(X)
ωi(X ′

i·)
− 1
)2

. The standardised quantities weigh

every observation as being of equal importance, regardless of the magnitude of its error variance ωi(X ′
i·). The

notation MSE in the rest of this section may refer either to MSEust or to MSEstd.
Now, since expectation has been taken over X, the whole expression is a function of functions ω̂i(·) and

ωi(·). Moreover, if the rows of X are independent then this expectation is the same for all i ∈ {1, 2, . . . , n},
making the i subscripts on the left side of (5.25) essentially arbitrary.123 Consequently, there is nothing to be
gained by focusing on a particular index i across different designs X as in (5.25). It is more appropriate to
focus on (5.26), which aggregates across all observations:

E

[
1
n

n∑
i=1

(ω̂i(·)− ωi(·))2

]
= E

[ 1
n

(ω̂(·)− ω(·))′ (ω̂(·)− ω(·))
]

= EX

{
Eϵ|X

[ 1
n

(ω̂(X)− ω(X))′ (ω̂(X)− ω(X))
]}

= EX

{
Eϵ|X [MSE(ω̂(X); ω(X))]

}
. (5.26)

If R1 MC replications of ϵ, and therefore of y and e, are generated, leading to variance estimates
ω(X)(r), r = 1, 2, . . . , R1, then a MC estimator of Eϵ|X [MSE(ω̂(X); ω(X))] is given by

M̂SE (ω̂(X); ω(X)) = 1
R1

R1∑
r=1

1
n

(
ω̂(X)(r) − ω(X)

)′ (
ω̂(X)(r) − ω(X)

)
= 1
R1

R1∑
r=1

MSE(ω̂(X)(r); ω(X)). (5.27)

Let
{

X(j)} , j = 1, 2, . . . , R2, be a random sample of predictor matrices drawn from FX . Then, a MC
estimator of (5.26) is given by

122This is made a function of X, not only of X′
i·, because the estimators being considered here depend on all rows of

X through the annihilator matrix M = In −X(X′X)−1X′.
123This claim can be argued in more detail as follows. Let X(1) be a random n× p matrix drawn from FX whose

rows are n mutually independent random p-vectors X
(1)′
1· ,X

(1)′
2· , . . . ,X

(1)′
n· . These n random vectors can be thought of

as random draws from a p-variate probability distribution. Now, let X(2) be another random n× p matrix drawn from
FX , independently of X(1), whose rows consist of n mutually independent random p-vectors X

(2)′
1· ,X

(2)′
2· , . . . ,X

(2)′
n· .

It follows that X
(1)′
1· ,X

(1)′
2· , . . . ,X

(1)′
n· ,X

(2)′
1· ,X

(2)′
2· , . . . ,X

(2)′
n· are all independent and identically distributed random p-

vectors. Consequently, the index i on X
(1)′
i· has no bearing on its distribution, and X

(1)′
i· and X

(2)′
i· are no more related

than X
(1)′
i· and X

(2)′
j· , i ̸= j.
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M̂SE (ω̂(·); ω(·), FX) = 1
R2

R2∑
j=1

M̂SE
(
ω̂(X(j)); ω(X(j))

)
. (5.28)

Also of interest is the variability of the conditional MSE with respect to the covariate matrix X. Consider

VarX

{
Eϵ|X [MSE(ω̂(X); ω(X))]

}
= EX

{(
Eϵ|X [MSE(ω̂(X); ω(X))]− EX

{
Eϵ|X [MSE(ω̂(X); ω(X))]

})2
}
. (5.29)

A MC estimator of the square root of (5.29), the ‘between-designs’ standard error of the MSE estimate, is
given by √√√√ 1

R2 − 1

R2∑
j=1

(
M̂SE(ω̂(X(j)); ω(X(j)))− M̂SE(ω̂(·),ω(·);FX)

)2
. (5.30)

If (5.30) is small, this implies that (5.28) is stable relative to the choice of predictor matrix X from FX .
Of course, this raises the question of how small is ‘small’. An alternative approach is to use an ANOVA sum-
of-squares decomposition approach. The total sum of squared errors between the individual MSE estimates
M̂SE(ω̂(X(j))(r); ω(X(j))), from the rth replication and the jth design, and the overall estimator of (5.26),
M̂SE(ω̂(·); ω(·), FX), is

R2∑
j=1

R1∑
r=1

[
M̂SE(ω̂(X(j))(r); ω(X(j)))− M̂SE(ω̂(·); ω(·), FX)

]2

= R1

R2∑
j=1

[
M̂SE(ω̂(X(j)); ω(X(j)))− M̂SE(ω̂(·); ω(·), FX)

]2

+
R2∑
j=1

R1∑
r=1

[
M̂SE(ω̂(X(j))(r); ω(X(j)))− M̂SE(ω̂(X(j)); ω(X(j)))

]2
. (5.31)

The first term on the right side of (5.31) represents the ‘between-designs’ sum of squares, while the second
term represents the ‘within-designs’ sum of squares. Dividing the ‘between-designs’ sum of squares by the total
sum of squares, one obtains a kind of ‘coefficient of determination’ statistic:

R1

R2∑
j=1

[
M̂SE(ω̂(X(j)); ω(X(j)))− M̂SE(ω̂(·); ω(·), FX)

]2

R2∑
j=1

R1∑
r=1

[
M̂SE(ω̂(X(j))(r); ω(X(j)))− M̂SE(ω̂(·); ω(·), FX)

]2
. (5.32)

Clearly, the ‘coefficient of determination’ quantity in (5.32) falls within the interval [0, 1]. If it is close to 0,
this suggests that variation in the design matrices is a negligible source of variation in MSE estimates relative
to the variation attributable to the randomness of ϵ.

To evaluate the stability of the ALVMs with respect to randomness in the design matrix, a MC simulation
was designed as follows. R2 = 20 different design matrices were generated, with n = 100 and p = 3. Both the
multiplicative heteroskedastic function (5.24) and the additive heteroskedastic function (5.23) were used, each
with DGPsH = {2} andH = {2, 3}, using the notation introduced in §5.4.1. The fifth DGP was homoskedastic
(H = ∅). Under each design scenario, R1 = 500 MC replications of the errors ϵ were generated, and six
auxiliary variance models were fit: the homoskedastic model (ω̂ub = (n− p)−1e′e), and the ‘basic’, cluster,
linear, penalised polynomial (with L2 norm penalty), and thin-plate spline ALVMs.124 The errors ϵ were
generated separately for each model within each MC replication to ensure independence of the model results.

124The penalised polynomial model with L1 norm was omitted from this simulation due to its computational expense.
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For the cluster and linear models, variable selection was performed using the QGCV-linear technique; variable
selection in the polynomial and thin-plate models was left to the shrinkage penalty.

Table 5.30 shows the coefficient of determination metric (5.32), based on both the unstandardised and
standardised MSEs, for all six models and all five DGPs in the simulation. The figures in this table are
rounded to four significant digits.

Table 5.30: Coefficient of Determination Metrics (5.32) for Two-Covariate Model

Homoskedasticity Multiplicative Heteroskedasticity Additive Heteroskedasticity
Metric
Type

Model DGP H = ∅ DGP H = {2} DGP H = {2, 3} DGP H = {2} DGP H = {2, 3}

Homoskedastic 0.001140 0.753800 0.955100 0.4498000 0.326400
Basic ALVM 0.001668 0.035280 0.031310 0.0386800 0.023290
Clustering ALVM 0.003249 0.018240 0.085400 0.0206500 0.016340
Linear ALVM 0.002682 0.029440 0.576700 0.0032570 0.012810
L2-Norm Pen. Poly. ALVM 0.001804 0.005962 0.048860 0.0060300 0.004604

Uns.

Thin-Plate Spline ALVM 0.002770 0.003761 0.007064 0.0069650 0.006061
Homoskedastic 0.001140 0.104000 0.238700 0.1294000 0.369400
Basic ALVM 0.001668 0.001873 0.009770 0.0009995 0.001250
Clustering ALVM 0.003249 0.005099 0.075580 0.0039560 0.033110
Linear ALVM 0.002682 0.019820 0.097260 0.0060520 0.017080
L2-Norm Pen. Poly. ALVM 0.001804 0.004279 0.034680 0.0101900 0.014880

Std.

Thin-Plate Spline ALVM 0.002770 0.008971 0.015890 0.0059570 0.008320

It is apparent that in the homoskedastic DGP, the amount of variation in the MC MSEs that is explained
by the variation in design matrices is negligible. The same is true for most of the heteroskedastic DGPs for the
ALVMs, though not for the homoskedastic estimator.125 The only ALVM where the coefficient of determination
metric is large enough to be of concern is the linear ALVM under multiplicative heteroskedasticity linked to
both covariates (H = {2, 3}). Here, more than half (57.7%) of the variation in MC MSEs is due to variation
in the design matrix. This suggests that the performance of the linear ALVM may be sensitive to the specific
form of the design matrix X if there is heteroskedasticity of extreme magnitude. The other ALVMs, however,
seem to be stable with respect to the form of the design matrix X, even in the presence of fairly extreme
heteroskedasticity. Admittedly, this has only been shown empirically in a narrow set of circumstances.

5.4.3 Convergence Rates of Gauss-Newton Algorithm for Fitting Auxiliary Nonlinear
Variance Models

Table 5.31 indicates the convergence rates for the Gauss-Newton algorithm used to numerically solve (3.69) for
MQL estimation of the ANLVM parameters in the simulations reported on in §5.3.1.5, §5.3.2.1, and §5.3.3.1.
The feature selection procedure entailed using the homoskedastic variance estimator ω̂ub in cases where no
features were selected for inclusion in the auxiliary design matrix Z. Consequently, no MQL estimation was
required in such cases, so the convergence rates are computed only over those replications where the Gauss-
Newton algorithm was actually run. Naturally, MQL estimation was required in relatively few replications
under the homoskedastic DGP.

The settings used for the Gauss-Newton algorithm, per the arguments of the anlvm.fit function in the
skedastic package (discussed in §4.4.2), entailed up to 20 initial values of the parameter vector γ and a max-
imum of 100 iterations of the updating equation. The nested updating equation (3.72) was not used due
to computation time, but may have resulted in higher convergence rates and/or more accurate or precise
parameter estimation.

‘Multiple Covariates’ in Table 5.31 refers to a DGP with heteroskedasticity where the error variances
are related to multiple covariates. This corresponds to H = {2, 3} in the case of p− 1 = 2 covariates and
H = {2, 3, 4, 5} in the case of p− 1 = 8 covariates. It is not applicable in the case of one covariate.

125The high values of the coefficient of determination metric (5.32) for the homoskedastic estimator under heteroskedas-
ticity are surprising, since the error variances ω = 1 are independent of the design matrix in this case. However, the
estimators are still affected by changes in M (a function of X), while the variation explained by changes in ϵ tends to
be miniscule when ϵ is iid across replications.
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The convergence rates are very high—above 96%—under all DGPs except for multiplicative heteroskedas-
ticity linked to multiple covariates. In this scenario, the convergence rates are still above 98% for the exponen-
tial ANLVM (presumably because the heteroskedastic function is correctly specified) but much lower for the
quadratic and clustering ANLVMs.

Table 5.31: Convergence Rates of Gauss-Newton Algorithm for Fitting ANLVMs

Homosked. Additive Het. Multiplicative Het.
No. of Covariates

(p− 1)
ANLVM H = ∅ H = {2} Multiple

Covariates
H = {2} Multiple

Covariates
Quadratic 1.000 1.000 0.999

Exponential 0.998 0.991 0.9951
Clustering 1.000 1.000 1.000
Quadratic 0.997 0.998 0.966 0.995 0.465

Exponential 0.996 0.991 0.996 0.995 0.9992
Clustering 1.000 0.999 0.988 0.999 0.846
Quadratic 0.991 0.988 0.973 0.984 0.757

Exponential 0.994 0.989 0.991 0.992 0.9818
Clustering 0.990 0.984 0.979 0.983 0.259

If the practitioner experiences nonconvergence of the ANLVM with a particular application of linear re-
gression, it is suggested that the ceiling be raised on the number of iterations allowed, and/or that a broader
grid of initial parameter values be searched. Nonconvergence may also provide a hint that the heteroskedastic
function g(·) has been misspecified.

5.5 Coverage Probabilities of Confidence Intervals
A MC simulation experiment was conducted to obtain empirical estimates of the coverage probabilities of the
bootstrap confidence interval estimates discussed in §3.4. The experimental factors considered are as outlined
in Table 5.32.

Table 5.32: Settings for Monte Carlo Simulation Experiment to Evaluate Coverage Probabilities of
Bootstrap CIs

Factor Levels
Sample Size n 20
ALVM Method Clustering; Polynomial with L2-Norm Penalty

Bootstrap Resampling Method Pairs; Wild (fi(ei) = ei/(1 − hii)1/2)
Interval Method Percentile; BCa; Normal

Expansion Adjustment No; Yes

In every case, the number of MC replications was R = 103, while the number of bootstrap samples drawn
was B = 103. The DGP had only one covariate, which was generated from U(0, 3), while errors were generated
independently from a normal distribution with zero mean and variance ωi = (1 + xi)2 (additive heteroskedas-
ticity). Nominal confidence level was 0.95 in every instance.

Since preliminary simulations found that the independent intervals approach discussed in §3.4.3 yielded
negligible improvements in coverage probability despite heavy computational cost, this approach was not in-
cluded in the main experiment. Moreover, while ideally hyperparameters such as λ (in the penalised polynomial
and thin-plate spline ALVMs) should be re-tuned when the model is fitted to each bootstrap regression, this
would be computationally very expensive. Thus, the hyperparameter values selected from the full data set are
also used with every bootstrap sample. The same is true of feature selection results.

The averaged-out coverage probability estimate is,

π̂cover = 1
nR

n∑
i=1

R∑
r=1

I
(
ω̂

(r)
i,lo ≤ ωi ≤ ω̂(r)

i,up

)
, (5.33)
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where ω̂(r)
i,lo and ω̂(r)

i,up are the lower and upper bootstrap confidence limits for the rth Monte Carlo replication.
Table 5.33 shows coverage probabilities for three types of bootstrap confidence intervals computed from the

clustering ALVM for a DGP with a sample size of n = 20, p = 2, and additive (quadratic) heteroskedasticity.

Table 5.33: Estimated Averaged-Out Coverage Probabilities of Bootstrap Confidence Intervals for
ωi, Clustering ALVM

Bootstrap Interval Type Expanded π̂cover SE(π̂cover)
Percentile No 0.927 0.00400
Percentile Yes 0.941 0.00366
BCa No 0.804 0.00529
BCa Yes 0.844 0.00489
Normal No 0.917 0.00428

Pairs

Normal Yes 0.932 0.00404
Percentile No 0.550 0.00743
Percentile Yes 0.588 0.00747
BCa No 0.474 0.00746
BCa Yes 0.498 0.00748
Normal No 0.483 0.00708

Wild-HC2

Normal Yes 0.524 0.00711

While the pairs bootstrap coverage probabilities are reasonably good, the wild bootstrap with coverage
probabilities are so low as to make the intervals useless. This is surprising, since the same DGP was used to
compare the pairs bootstrap and the wild bootstrap for the HCCME described in §2.3.10. Both bootstrap
methods performed well, and about equally so, for estimating the standard errors of the elements of β̂ (results
not shown).

Table 5.34 and Table 5.35 show the coverage probabilities for the same intervals computed from the same
DGP, but with the linear and polynomial (L2-norm) ALVMs, respectively. The results of the clustering and
linear ALVMs are similar, while coverage probabilities are poorer for the polynomial ALVM.

Table 5.34: Estimated Averaged-Out Coverage Probabilities of Bootstrap Confidence Intervals for
ωi, Linear ALVM

Bootstrap Interval Type Expanded π̂cover SE(π̂cover)
Percentile No 0.851 0.00533
Percentile Yes 0.876 0.00498
BCa No 0.824 0.00505
BCa Yes 0.855 0.00456
Normal No 0.900 0.00542

Pairs

Normal Yes 0.911 0.00509
Percentile No 0.528 0.01020
Percentile Yes 0.566 0.01010
BCa No 0.492 0.00925
BCa Yes 0.525 0.00940
Normal No 0.502 0.01010

Wild-HC2

Normal Yes 0.540 0.01020
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Table 5.35: Estimated Averaged-Out Coverage Probabilities of Bootstrap Confidence Intervals for
ωi, Polynomial (L2) ALVM

Bootstrap Interval Type Expanded π̂cover SE(π̂cover)
Percentile No 0.754 0.00664
Percentile Yes 0.790 0.00630
BCa No 0.738 0.00698
BCa Yes 0.765 0.00680
Normal No 0.810 0.00722

Pairs

Normal Yes 0.834 0.00665
Percentile No 0.387 0.00919
Percentile Yes 0.418 0.00933
BCa No 0.389 0.00897
BCa Yes 0.412 0.00902
Normal No 0.359 0.00865

Wild-HC2

Normal Yes 0.391 0.00881

Surprisingly, the näıve normal interval outperforms the percentile and BCa intervals in terms of average
coverage probability for both the linear and polynomial models.

Figure 5.9 shows how the MC estimate of bootstrap coverage probability relates to error variance magnitude
ωi for the different bootstrap CI methods, using the same DGP and clustering ALVM used to generate Table
5.33.

Figure 5.9: Estimated Bootstrap Confidence Interval Coverage Probability vs. Error Variance

It is evident that coverage probability tends to decline with error variance, and is therefore above the
nominal confidence level for relatively small ωi and falls far below the nominal confidence level for the largest
ωi. The BCa intervals tend to be consistently below the nominal level, and do not seem to be successful in
improving on the coverage probability of the percentile intervals, as they are designed to do. Indeed, the BCa
intervals’ coverage probabilities are worse than those of the näıve normal bootstrap intervals. The expansion
technique does, however, appear to be successful in improving coverage probabilities for all three interval
methods.

Future research could exploit the apparent relationship between variance magnitude and CI coverage prob-
ability by making adjustments to the confidence limits based on the relative magnitudes of the point estimates.
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5.6 Illustrations Using Real-World Data Sets
5.6.1 Fuel Economy of Cars

The mtcars data set in the R datasets package was extracted from the 1974 Motor Trend magazine, and
contains observations on fuel consumption (measured in miles per US gallon) and ten predictors. There are 32
observations. Consider a linear regression model fitted to this data using OLS with fuel consumption as the
response and weight (in thousands of pounds) and quarter-mile time (measured in seconds) as predictors. The
coefficients table is shown in Table 5.36.

Table 5.36: Coefficients Table for Linear Model Fitted to mtcars Data

Estimate β̂j ŜE(β̂j) t Statistic Significance p-Value
(Intercept) 19.7500 5.252 3.760 0.000765
qsec 0.9292 0.265 3.506 0.001500
wt -5.0480 0.484 -10.430 0.000000

A plot of the squared OLS residuals against each of the covariates (generated using the hetplot function
from skedastic, discussed in §4.2.3) is shown in Figure 5.10. From the left panel, it appears that there may be
heteroskedasticity linked to the qsec variable, since the e2

i are much more spread out for cars with a quarter-
mile time of around 20 seconds than for those with lower quarter-mile times. Possibly, the error variance
increases with qsec. In the right panel, if the point at upper right were ignored, it would appear as though
the spread in the e2

i decreases with car weight. However, the point at upper right contradicts this pattern, and
could suggest a quadratic relationship between wt and error variance, or may just be an outlier. With such a
small sample size, there is a high risk of ‘detecting’ spurious patterns from a graph.
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Figure 5.10: Heteroskedasticity Plots for the wt and qsec Variables in the mtcars Linear Model

For interest’s sake, one can conduct heteroskedasticity tests on the model. Firstly, consider the three
omnibus tests with the best AEPS for n ≈ 30, according to Figure 5.3. The p-values for these three tests
are shown in Table 5.37, and they unanimously find an absence of evidence for heteroskedasticity at the 5%
significance level.

Table 5.37: Omnibus Heteroskedasticity Tests Run on mtcars Linear Model

Heteroskedasticity Test p-Value
Glejser (1969) 0.126
Cook and Weisberg (1983) 0.209
Verbyla (1993) 0.164
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Secondly, consider the deflator-based tests with the best AEPS for n ≈ 30, according to Figure 5.2. The
p-values for these four tests are shown in Table 5.38, when using both car weight and quarter-mile time as
the deflator. Here, none of the tests detect heteroskedasticity linked to car weight at a 5% significance level,
but two of the four detect heteroskedasticity linked to quarter-mile time. A two-tailed test has been used in
the tests of Honda (1989) and Carapeto and Holt (2003) (which allow for this),126 with two-sided p-values
computed using the method of Kulinskaya (2008) (see §4.2.2). This partly explains why these two tests yielded
higher p-values with qsec as the deflator.
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126If one adopted a directional alternative solely on the basis of the apparent pattern in Figure 5.10, and not on any
a priori theoretical grounds, this would increase the power but also the size of the test.
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Table 5.38: Deflator-Based Heteroskedasticity Tests Run on mtcars Linear Model

Heteroskedasticity Test p-Value (qsec) p-Value (wt)
Evans and King’s (1988) GLS test 0.00967 0.686
Honda (1989) 0.05380 0.838
Szroeter (1978) 0.02340 0.774
Carapeto and Holt (2003) 0.18500 0.631

With some evidence in hand that there is heteroskedasticity in the model, an ALVM can be fitted. Feature
selection was performed using QGCV on the linear ALVM, CV on the linear ALVM, and heteroskedasticity
testing using Evans and King’s (1988) GLS test. In each case, the qsec variable was selected for inclusion in
the ALVM while the wt variable was not.

For the clustering ALVM, the number of clusters nc was chosen using five-fold CV and using the elbow
method with SWD criterion; both methods arrived at nc = 6. The L2-norm penalised polynomial ALVM did
not shrink any of the degree-two polynomial coefficients to zero, whereas the L1-norm penalised polynomial
ALVM shrank all of the degree-two polynomial coefficients to zero except for the intercept and the linear qsec
term. The variance estimates ω̂i are plotted against the corresponding quarter-mile times in Figure 5.11. With
the exception of the homoskedastic case, all of the models reflect an increasing trend of the error variances
with qsec.
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Figure 5.11: Variance Estimates for mtcars Linear Model vs. qsec Values

The variance estimates can be used to compute FWLS estimates of β and perform quasi-t-tests of signifi-
cance for the elements of β. The results are shown in Table 5.39. The changes in the coefficient estimates are
noteworthy. All of the ALVM-based FWLS estimates of the intercept decreased compared to the OLS estimate.
All of the ALVM-based FWLS estimates of the qsec partial slope coefficient increased in magnitude relative
to the OLS estimate. As for inferences on the coefficients, the decisions about significance of the coefficients
do not change, but the fact that the quasi-t-test significance p-value for the qsec coefficient has more than
doubled in some models relative to the classical t-test p-values (Table 5.36) illustrates that the robust approach
can make a difference.

Table 5.39: FWLS Coefficient Estimates (Quasi-t-Test Significance p-Values) for mtcars Linear
Model by ALVM

β̂1 (Intercept) β̂2 (qsec) β̂3 (wt)
Homoskedastic 19.7 (7.65 × 10−4) 0.929 (1.50 × 10−3) -5.05 (2.52 × 10−11)
Clustering 17.3 (2.85 × 10−4) 1.1 (1.12 × 10−3) -5.23 (4.89 × 10−11)
Linear 10.8 (1.05 × 10−3) 1.35 (3.31 × 10−3) -4.57 (3.03 × 10−11)
L2-Norm Pen. Poly 13.7 (1.22 × 10−3) 1.24 (3.00 × 10−3) -5.02 (3.64 × 10−9)
L1-Norm Pen. Poly 12.7 (1.26 × 10−3) 1.27 (4.03 × 10−3) -4.75 (2.01 × 10−11)
Thin-Plate Spline 10.9 (2.65 × 10−4) 1.33 (1.02 × 10−3) -4.55 (3.11 × 10−13)

5.6.2 Per Capita Expenditure on Public Schools

The sandwich package in R (Zeileis and Hothorn 2002, Zeileis 2004) contains a data set called PublicSchools
that is also discussed as an example of heteroskedasticity in the package vignette. This data set is taken from
United States Department of Commerce (1979) and is also discussed in Greene (2012) and in Cribari-Neto
(2004). The data contains n = 50 observations of two variables, namely the per capita income in each US
state (in 1978 US dollars) and the per capita expenditure on education, in US dollars. Following Zeileis and
Hothorn (2002), the income variable is transformed into units of 10 000s of 1978 US dollars. A scatter plot
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of expenditure vs. income is shown in Figure 5.12. The outlying point at upper right represents the state of
Alaska.
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Figure 5.12: Scatter Plot of Per Capita Education Expenditure vs. Per Capita Income in US States,
1978

Table 5.40 gives the coefficients table for the linear regression model fitted to the Public Schools dataset.

Table 5.40: Coefficients Table for Linear Model Fitted to PublicSchools Data

Estimate β̂j ŜE(β̂j) t Statistic Significance p-Value
(Intercept) 832.9 327.3 2.545 0.014280
Income -1834.0 829.0 -2.213 0.031820
Income.Sq 1587.0 519.1 3.057 0.003677

A plot of the squared OLS residuals against the covariate (generated using the hetplot function from
skedastic, discussed in §4.2.3) is shown in Figure 5.13. The plot does not provide compelling evidence for
heteroskedasticity linked to income, as there are some large e2

i at various income levels.
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Figure 5.13: Heteroskedasticity Plot for the Income Variable in the PublicSchools Linear Model

For interest’s sake, one can conduct heteroskedasticity tests on the model. As there is only one covariate
in this case, there is no need to distinguish between omnibus and deflator tests. Table 5.41 shows results from
a few heteroskedasticity tests. With the exception of Carapeto and Holt’s (2003) test, all the tests agree at
the 5% significance level that there is heteroskedasticity linked to income.
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Table 5.41: Heteroskedasticity Tests Run on PublicSchools Linear Model

Heteroskedasticity Test p-Value
Glejser (1969) 2.54 × 10−3

Cook and Weisberg (1983) 7.86 × 10−5

Verbyla (1993) 2.88 × 10−10

Evans and King’s (1988) GLS test 2.24 × 10−2

Honda (1989) 8.40 × 10−4

Szroeter (1978) 1.83 × 10−2

Carapeto and Holt (2003) 4.45 × 10−1

With some evidence in hand that there is heteroskedasticity in the model, an ALVM can now be fitted. For
the clustering ALVM, the number of clusters nc was chosen to be nc = 5 using the elbow method with SWD
criterion. The L2-norm penalised polynomial ALVM shrank the β̂j coefficient estimates of both the linear and
quadratic terms close to zero (0.130 and 0.232, respectively). The L1-norm penalised polynomial ALVM did
not experience much shrinkage and had far larger coefficients for these two terms (−2.92× 105 and 2.07× 105,
respectively). The variance estimates ω̂i are plotted against the corresponding income values in Figure 5.14.
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Figure 5.14: Variance Estimates for PublicSchools Linear Model vs. Income Values

With the exception of the homoskedastic case and the L2-norm penalised polynomial (which is nearly
homoskedastic), all of the model fits reflect a general increasing trend of the error variances with income. The
dotted lines represent 95% confidence limits for the ωi, computed using the näıve standard normal bootstrap
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method. Due to the small sample size of n = 50, the confidence bands are fairly wide.127

The variance estimates were used to compute FWLS estimates of β and perform quasi-t-tests of significance
for the elements of β. The results are shown in Table 5.42. The L2-norm penalised polynomial results are
nearly identical to the homoskedastic results, due to the aforementioned shrinkage of coefficients. The spline
ALVM fit had many variance estimates on the constraint boundary 0+ = 10−10; the resulting massive weights
meant that the WLS routine returned an NA value for the coefficient estimate of the income squared term.
Besides these two anomalies, the other three ALVMs (clustering, linear, and L1-norm penalised polynomial)
agree with the homoskedastic model in the signs of the coefficient estimates, while the magnitudes have changed
to varying degrees.

Table 5.42: FWLS Coefficient Estimates (Quasi-t-Test Significance p-Values) for PublicSchools
Linear Model by ALVM

β̂1 (Intercept) β̂2 (Income) β̂3 (Income Squared)
Homoskedastic 833 (1.43 × 10−2) -1830 (3.18 × 10−2) 1590 (3.68 × 10−3)
Clustering 374 (2.69 × 10−1) -602 (3.69 × 10−1) 775 (2.48 × 10−1)
Linear 1100 (2.30 × 10−1) -2580 (3.22 × 10−1) 2100 (1.97 × 10−1)
L2-Norm Pen. Poly. 833 (1.97 × 10−2) -1830 (4.12 × 10−2) 1590 (5.64 × 10−3)
L1-Norm Pen. Poly. 897 (2.14 × 10−1) -1990 (3.07 × 10−1) 1680 (1.85 × 10−1)
Thin-Plate Spline 7.78 (1.09 × 10−1) 449 (1.88 × 10−1) NA (8.92 × 10−2)

Looking at the quasi-t-test significance p-values, an interesting phenomenon is observed: whereas all three
βj are statistically significant at the 5% level according to the classical t-test, the heteroskedasticity-robust
quasi-t-tests—with the exception of the L2-norm penalised polynomial, as already discussed—all agree that
none of the three coefficients are statistically significant at the 5% level. In this respect, the quasi-t-tests
agree with the finding of Zeileis and Hothorn (2002), who ran quasi-t-tests on this model after using the HC4
HCCME to estimate the error variances, and likewise found that the classical t-test had spuriously found
the model coefficients to be significant. Zeileis and Hothorn (2002) argued that this was due to the classical
homoskedastic t-test placing too much weight on the outlying Alaska observation, which arguably has a large
error variance: its leverage score hii is 0.65, whereas all other observations but one have a leverage score less
than 0.1.

If the PublicSchools OLS model is fitted with only the linear income term and the quadratic term is
dropped, the coefficient of the linear term is highly significant when tested either using the classical t-test or
using a quasi-t-test based on an HCCME- or ALVM-based standard error estimate. This demonstrates that
using an ALVM has enabled the practitioner to avoid including a probably spurious quadratic term in the
linear regression model.

5.6.3 Boston House Values

The Boston housing data set (Harrison and Rubinfeld 1978) contains data on 506 census tracts in Boston,
USA from the 1970 census. It is available in R in the BostonHousing2 object in the mlbench package (Leisch
and Dimitriadou 2010). The 14 variables of interest are shown in Table 5.43. cmedv is the response variable
and the other 13 variables are features (12 numerical features and one categorical feature). This data set
has been repeatedly used as an empirical example in statistical methodological work, including concerning
heteroskedasticity (Gilley and Pace 1996, Radchenko and James 2011, Cho and Fryzlewicz 2012, Cheng 2012,
Simlai 2014, Miller and Startz 2019, e.g.,); indeed, it has been called a ‘popular proving ground for machine
learning’ (Chen 2021, p. 2).

127Confidence limits for the spline model are not shown, as R would repeatedly freeze when running the spline ALVM
on the bootstrap linear models.
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Table 5.43: Description of Variables in Boston Housing Data Set

Variable Name Variable Description
cmedv corrected median value of owner-occupied homes in USD 1000s
crim per capita crime rate by town
zn proportion of residential land zoned for lots over 25 000 sq feet
indus proportion of non-retail business acres per town
chas Charles River (=1 if tract bounds river; 0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centres
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10 000
ptratio pupil-teacher ratio by town
b 1000(B − 0.63)2 where B is the proportion of black residents per town
lstat percentage of lower status of the population

Results of a linear regression model fitted to the data by OLS are shown in Table 5.44. The classical t-tests
find eleven of the thirteen predictors to be statistically significant at 5% level; the exceptions are indus and
age.

Table 5.44: Coefficients Table for Linear Model Fitted to BostonHousing2 Data

Estimate β̂j ŜE(β̂j) t Statistic Significance p-Value
(Intercept) 3.64 × 101 5.058000 7.19100 2.40 × 10−12

crim −1.06 × 10−1 0.032570 -3.26100 1.19 × 10−3

zn 4.77 × 10−2 0.013600 3.50800 4.93 × 10−4

indus 2.32 × 10−2 0.060940 0.38150 7.03 × 10−1

chas1 2.69 × 100 0.853900 3.15200 1.72 × 10−3

nox −1.77 × 101 3.785000 -4.68700 3.59 × 10−6

rm 3.79 × 100 0.414200 9.14900 1.52 × 10−18

age 5.75 × 10−4 0.013090 0.04392 9.65 × 10−1

dis −1.5 × 100 0.197700 -7.59800 1.53 × 10−13

rad 3.04 × 10−1 0.065750 4.62000 4.91 × 10−6

tax −1.27 × 10−2 0.003727 -3.40900 7.06 × 10−4

ptratio −9.24 × 10−1 0.129700 -7.12600 3.70 × 10−12

b 9.23 × 10−3 0.002662 3.46700 5.73 × 10−4

lstat −5.31 × 10−1 0.050260 -10.56000 1.26 × 10−23

A heteroskedasticity plot generated using hetplot (see §4.2.3) can be seen in Figure 5.15, which plots the
squared BLUS residuals (denoted on the plot by ẽ2

i ) against two of the covariates, rm and lstat. The reason for
considering BLUS residuals rather than OLS residuals is that the BLUS residuals are mutually independent
under Assumptions A1-A5, unlike the OLS residuals (see §1.1.7.5). Figure 5.15 suggests a nonmonotonic,
U-shaped relationship between the lstat variable and the error variance.
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Figure 5.15: Plot of Squared BLUS Residuals vs. rm and lstat Explanatory Variables, Boston
Housing Data

To perform heteroskedasticity diagnostics, some omnibus tests are first attempted. As Table 5.45 shows,
the evidence for heteroskedasticity is overwhelming.
## Error in white lm(bostonlm): could not find function "white lm"
## Error in signif(x, sigdig): non-numeric argument to mathematical function

Table 5.45: Omnibus Heteroskedasticity Tests Run on BostonHousing2 Linear Model

Heteroskedasticity Test p-Value
Glejser (1969) 2.54 × 10−3

Cook and Weisberg (1983) 7.86 × 10−5

Verbyla (1993) 2.88 × 10−10

Evans and King’s (1988) GLS test 2.24 × 10−2

Honda (1989) 8.40 × 10−4

Szroeter (1978) 1.83 × 10−2

Carapeto and Holt (2003) 4.45 × 10−1

Deflator-based heteroskedasticity tests are next undertaken with each predictor considered in turn as the
deflator, with the exception of the categorical chas1 variable.128 A Bonferroni correction results in a significance
level of 0.05/12 being used. In addition to four heteroskedasticity tests from the literature (Goldfeld and Quandt
1965, Szroeter 1978, Evans and King 1988, Honda 1989), the ALVM-based test described in §3.5 is shown,
based on the L2-norm penalised polynomial model (to detect nonmonotonic heteroskedasticity such as that
seen in Figure 5.15); in this case, the p-values were computed using the method of Godfrey and Orme (1999),
described in §2.1.23.2. Results are shown in Table 5.46. At the 0.004167 significance level, the four tests do
not unanimously agree on a finding of heteroskedasticity for most of the covariates; this is only the case for
rad, nox, age, and tax. This inconsistency is probably due in large part to the tests’ varying abilities to detect
different heteroskedastic patterns (including nonmonotonic).

128A BAMSET test was run with the two values of chas1 being the subsets. No heteroskedasticity linked to this
variable was detected, with a p-value of 1.
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Table 5.46: Deflator-Based Heteroskedasticity Tests Run on BostonHousing2 Linear Model

p-Values
Deflator Goldfeld and

Quandt (1965)
Szroeter (1978) Evans and King’s

(1988) GLS
Honda (1989) ALVM Test

crim 5.06 × 10−14 2.35 × 10−13 4.07 × 10−11 1.43 × 10−3 2.60 × 10−3

zn 4.04 × 10−2 6.52 × 10−1 8.93 × 10−4 0 7.56 × 10−2

indus 9.51 × 10−5 9.65 × 10−4 2.66 × 10−4 2.42 × 10−14 1.34 × 10−2

nox 4.44 × 10−16 4.42 × 10−10 1.23 × 10−11 7.77 × 10−8 2.00 × 10−4

rm 3.98 × 10−1 6.54 × 10−2 6.31 × 10−1 1.13 × 10−1 0
age 0 3.78 × 10−12 2.28 × 10−13 4.33 × 10−13 0
dis 2.24 × 10−20 1.00 × 100 1.00 × 100 0 0
rad 7.99 × 10−15 2.39 × 10−10 1.29 × 10−10 2.10 × 10−13 0
tax 7.60 × 10−11 6.39 × 10−8 7.05 × 10−8 0 0
ptratio 4.44 × 10−1 3.33 × 10−1 2.13 × 10−2 1.04 × 10−5 2.30 × 10−1

b 1.78 × 10−11 1.00 × 100 9.97 × 10−1 5.41 × 10−1 9.34 × 10−2

lstat 1.53 × 10−8 1.00 × 100 1.00 × 100 1.56 × 10−2 0

Six ALVMs were fitted to the model: homoskedastic, clustering (once with nc chosen by the elbow method
with SWD criterion and once with nc chosen by five-fold CV), linear, and penalised polynomial (with L2- and
L1-norm penalties). No spline ALVM was fitted due to the high dimensionality. For the clustering and linear
ALVMs, feature selection was conducted using the Honda (1989) test at 5% significance level. This feature
selection procedure resulted in eight of the twelve numerical variables being selected: crim, zn, indus, nox,
age, dis, rad, tax, ptratio, and lstat. When nc for the clustering ALVM was chosen by the elbow method,
it was set to 18; when chosen by five-fold CV, it was only 2.
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Figure 5.16: Variance Estimates for BostonHousing2 Linear Model, Ordered by Squared OLS
Residuals

In Figure 5.16, the variance estimates ω̂i under each ALVM are shown as points. In this case, the points
have been ordered horizontally, not by any deflator, but in increasing order of the ω̂i from the clustering
ALVM with number of clusters nc chosen by the elbow method with SWD criterion. It is evident that the
variance estimates from all the models (except, of course, for the homoskedastic case) are positively correlated
with those of the clustering ALVM. It is just that the rate of increase varies; it tends to be highest with the
polynomial models.

165



http://etd.uwc.ac.za/

Table 5.47: FWLS Coefficient Estimates (Quasi-t-Test Significance p-Values) for BostonHousing2
Linear Model by ALVM

Homoskedastic Clustering
(SWD)

Clustering
(CV)

Linear L2-Norm
Pen. Poly

L1-Norm
Pen. Poly

(Intercept) 36.4
(3.66× 10−4)

14.5
(6.72× 10−4)

36.2
(3.57× 10−4)

10.1
(5.69× 10−4)

56.4
(3.65× 10−3)

34.7
(4.28× 10−3)

crim -0.106
(1.72× 10−2)

-0.116
(1.33× 10−2)

-0.105
(2.28× 10−2)

-0.12
(2.24× 10−2)

-0.108
(1.66× 10−2)

-0.118
(1.92× 10−2)

zn 0.0477
(1.27× 10−2)

0.036
(6.08× 10−3)

0.0476
(1.23× 10−2)

0.0374
(6.14× 10−3)

0.0666
(1.39× 10−2)

0.0846
(1.54× 10−2)

indus 0.0233
(7.16× 10−1)

-0.0074
(6.57× 10−1)

0.0243
(7.14× 10−1)

-0.067
(6.94× 10−1)

-0.0201
(7.03× 10−1)

0.0844
(7.04× 10−1)

chas1 2.69
(1.98× 10−2)

1.96
(2.33× 10−2)

2.69
(1.92× 10−2)

2.08
(2.53× 10−2)

-2.12
(9.33× 10−2)

0.18
(9.53× 10−2)

nox -17.7
(3.37× 10−3)

-10.1
(3.47× 10−3)

-17.7
(3.26× 10−3)

-2.18
(3.72× 10−3)

-21.7
(8.05× 10−3)

-13.6
(8.13× 10−3)

rm 3.79
(9.59× 10−5)

5.58
(2.72× 10−4)

3.8
(9.32× 10−5)

5.34
(2.10× 10−4)

0.781
(3.15× 10−3)

2.63
(4.06× 10−3)

age 0.000575
(9.66× 10−1)

-0.0283
(9.68× 10−1)

0.000586
(9.66× 10−1)

-0.0575
(9.64× 10−1)

-0.0496
(9.75× 10−1)

-0.0401
(9.75× 10−1)

dis -1.5
(2.71× 10−4)

-1.11
(1.47× 10−4)

-1.5
(2.61× 10−4)

-1.12
(1.61× 10−4)

-1.79
(4.52× 10−4)

-1.45
(5.53× 10−4)

rad 0.304
(3.62× 10−3)

0.226
(1.65× 10−3)

0.303
(3.55× 10−3)

0.187
(2.47× 10−3)

0.294
(4.31× 10−3)

0.221
(4.18× 10−3)

tax -0.0127
(1.43× 10−2)

-0.0106
(2.28× 10−3)

-0.0127
(1.39× 10−2)

-0.009
(6.41× 10−3)

-0.0144
(6.92× 10−3)

-0.0125
(5.69× 10−3)

ptratio -0.924
(3.84× 10−4)

-0.725
(2.21× 10−4)

-0.922
(3.70× 10−4)

-0.466
(2.23× 10−4)

-0.692
(4.70× 10−4)

-0.586
(5.22× 10−4)

b 0.00923
(1.34× 10−2)

0.00981
(3.02× 10−2)

0.00938
(1.35× 10−2)

0.01
(3.40× 10−2)

0.00469
(3.27× 10−2)

0.00509
(3.01× 10−2)

lstat -0.531
(4.25× 10−5)

-0.289
(1.40× 10−4)

-0.533
(4.21× 10−5)

-0.33
(8.71× 10−5)

-0.273
(1.94× 10−3)

-0.31
(2.13× 10−3)

Table 5.47 shows p-values for quasi-t significance tests on each coefficient in the Boston housing model,
based on the various ALVMs. At 5% significance level, the only change in decision in comparison to Table 5.44
is that the categorical predictor chas1 (proximity to Charles River) is no longer significant, according to the
two polynomial models. Interestingly, this agrees with the finding of Cheng (2012), who likewise found in his
robust significance tests that this coefficient is not significant. Cheng (2012) also found that the the crim, zn,
rad, and ptratio coefficients were not significant. However, his method involved adjusting for both outliers
and heteroskedasticity, and not only for heteroskedasticity as with the ALVMs.

5.7 Chapter Summary
The results presented in this chapter have served as a fairly thorough, albeit not exhaustive, investigation
into the empirical performance of the methods developed in Chapter 3 in comparison to existing methods in
the literature that had been reviewed in Chapter 2. This empirical work was made possible by the functions
programmed for the skedastic R package as described in Chapter 4.

In §5.1, a simulation study of the performance of heteroskedasticity tests was undertaken using an AEPS
metric not used in any previous simulation study of this kind. The simulation included several existing
heteroskedasticity tests that have generally not been included in past simulation studies of heteroskedasticity
testing (due in part to computational challenges that have now been overcome through functions such as pRQF
in the skedastic package, as discussed in §4.2.5). It also included the new heteroskedasticity test proposed in
§3.5.

The new ALVM-based heteroskedasticity test did not out-compete existing heteroskedasticity testing meth-
ods. However, some novel results did emerge from this simulation, in that little-known methods such as Evans
and King’s (1988) GLS test and Verbyla’s (1993) test were found to outperform more famous methods such as
Goldfeld and Quandt’s (1965) test, Breusch and Pagan’s (1979) test, and White’s (1980) test.
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Section 5.2 described the design of the most important MC simulation experiment, which had the purpose
of evaluating the performance of the new auxiliary variance models introduced in §3.2. The experimental
factors and factor combinations to be used were outlined, along with the metrics to be used for evaluating
the performance of the models. These are summarised again in Table 5.48. The first two metrics address the
variance estimation problem directly, while the last two metrics focus on the ends for which heteroskedastic
error variance estimation is usually sought in practice: estimation of β and inference on elements of β.

Techniques for estimating the standard errors of MC estimates were discussed next, and lastly, a scheme
was introduced for reporting the metrics in relative terms to facilitate comparison across numerous different
models.

Table 5.48: Summary of Four Key Metrics for Heteroskedastic Variance Estimation Performance

Metric Description Equation Where
Defined

MSEust(ω̂) Unstandardised MSE for Estimating
Individual Error Variances

(5.5)

MSEst(ω̂) Standardised MSE for Estimating Individual
Error Variances

(5.12)

MSE(β̂FWLS) MSE for Estimating β Using FWLS (5.13)
MSE(SE(β̂) MSE for Estimating Standard Errors of OLS

Estimator for Purposes of Inference on βj

(5.14)

Section 5.3 contains the ‘meat’ of this chapter: the empirical results of the MC simulation to evaluate the
performance of the auxiliary variance models. For the simulations involving linear regression models with only
one explanatory variable, results were presented in graphical form (with the metrics MSEust(ω̂) and MSEst(ω̂)
also decomposed into squared bias and variance components). For all four settings of number of covariates
(one, two, eight, and sixteen), results on the four key performance metrics summarised in Table 5.48 were
displayed in tabular form with discussion following. Additional sets of results were relegated to Appendix E.

These simulations have provided empirical evidence that the ALVMs are competitive according to several
different metrics relative to existing methods, and outperform existing methods under certain conditions.
Comparing the ALVMs themselves, there is no clear overall winner. Each has a niche in terms of circumstances
where it appears to perform well. The linear and clustering ALVMs seem to perform well in wider circumstances
than the penalised polynomial and thin-plate spline ALVMs, which makes them attractive given their simplicity
and low computation time. There is evidence that the clustering ALVM can be particularly effective for large
data sets.

The ANLVMs that require specification of the form of the heteroskedastic function g(·) are more effective
than any ALVM when g(·) is correctly specified. This approach can be recommended when the form of
heteroskedastic function is known. The clustering ANLVM showed a similar level of performance to the ALVM
in most cases but had markedly better metrics in certain instances.

§5.4 looks at several other aspects of the performance of the auxiliary variance models, namely:
• whether the feature selection techniques proposed in §3.3.3 are effective;
• whether the performance of ALVMs is stable across different randomly generated design matrices X;

and
• whether the optimisation routine used to fit ANLVMs achieves satisfactory convergence rates.
The methods were generally found to be satisfactory in all respects.
In §5.5, an investigation was conducted into the empirical coverage probabilities achieved by the bootstrap

methods discussed in §3.4 for obtaining approximate (1− α)100% confidence intervals for error variances ωi.
The percentile interval and näıve standard normal interval were found to achieve reasonably good coverage in
the linear and clustering ALVMs. The BCa modification to the percentile interval was found not to improve
coverage but actually to detract from it. Another surprising result was that good coverage was achieved only
by using the ‘bootstrapping pairs’ method for bootstrapping a heteroskedastic linear regression model. The
vaunted ‘wild bootstrap’ method yielded abysmal coverage probabilities for reasons that are unclear.

Finally, for illustration purposes, ALVMs were applied to three real data sets. These were a small data set
(n = 32) on the fuel economy of cars involving two covariates, another small data set (n = 50) on expenditure
on public schools involving one covariate with a possible quadratic relationship to the response, and a larger
data set (n = 506) on house values in Boston, USA with fourteen explanatory variables.
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6 Conclusion

6.1 Summary of Research and Contributions
6.1.1 Introduction

Chapter 1 sets the stage for the study by introducing the linear regression model and its classical assumptions,
together with important notation, terminology, and statistical results. Of particular interest, in this research,
is the homoskedasticity assumption A2 and its violation, heteroskedasticity. Statistical theory covered in
Chapter 1 included estimation of and inference on the gradient parameters β under both homoskedasticity and
heteroskedasticity, statistical properties of the OLS residuals, other important kinds of model residuals, and
a discussion of leverage and influence in the linear model. While most of the theory covered in this chapter
is long-established and well-known, it still represents a contribution inasmuch as standard treatments of the
linear regression model and its assumptions seldom offer the level of detail provided here, particularly on the
statistical properties of the OLS residuals under heteroskedasticity.

6.1.2 Literature Review

Next, in Chapter 2, a review of literature was provided concerning handling of heteroskedasticity in the linear
regression model. Specifically, existing methods of heteroskedasticity testing, Feasible Weighted Least Squares,
Heteroskedasticity-Consistent Covariance Matrix Estimators, and heteroskedasticity-robust inference on model
coefficients β were described and discussed, along with implementation of these methods in statistical software,
especially R. This chapter is, as far as the author is aware, the most thorough review of heteroskedasticity
testing methods and HCCMEs published to date. The literature review highlighted an interesting paradox. On
the one hand, the stock of heteroskedasticity testing as an important tool for the linear regression practitioner
has declined over the past two decades, due to several studies that advised against its use in an adaptive
approach to inference. On the other hand, new heteroskedasticity testing methods have continued to appear
in the literature, and ‘classical’ methods like Breusch and Pagan’s (1979) test and White’s (1980) test continue
to rack up citations.

6.1.3 Methodology

Chapter 3 begins with a theoretical treatment on the statistical properties of the squared OLS residuals. Some
of the results presented had not been found by the author in any previous literature. Rigorous treatments of the
linear regression model typically offer statistical results on the OLS residuals, but not their squares, despite the
particular importance of the latter for detecting and modelling heteroskedasticity. The statistical results derived
for the squared OLS residuals include expressions for their variances and covariances (both in scalar and in
matrix form, and both under homoskedasticity and under heteroskedasticity) and their marginal distributions
and pairwise (bivariate) joint distributions—again, both under homoskedasticity and under heteroskedasticity.
A strategy is also suggested for approximately computing the PDF of the joint distribution of all n squared
OLS residuals, which however turns out to be degenerate. Thus, while these statistical results may represent
a new contribution, they do not at the moment provide for new estimation or inferential methods, such as ML
estimators or LR tests. The expectation and variance-covariance matrix of the squared WLS residuals under
heteroskedasticity were also shown to have a form analogous to those of the squared OLS residuals, but in
terms of MΩ rather than M .

§3.1.4 highlighted a shortcoming of the existing HCCMEs and modelling-based FWLS methods described
in §2: they take the squared OLS residuals e2

i as proxies for the corresponding unknown error variances ωi,
when in fact the former are biased estimators of the latter. What is more, the bias correction factors ci used
in the various HCCMEs may, for certain observations in certain instances, ‘correct’ in the wrong direction and
thus increase this bias. Awareness of this shortcoming was the motivating point of departure for the most
significant methodological contribution of this research project: the auxiliary variance models introduced in
§3.2.

The new model with general model equation (3.34), unlike all previous auxiliary regression models proposed
for estimation of heteroskedastic error variances, is correctly specified in terms of its mean function. A further
advantage is that the variance-covariance matrix of this model’s errors is known in terms of the parameter vector
ω that occurs in the mean function. An obvious shortcoming of the model, as specified initially in (3.34), is that
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there are n parameters to be estimated from n observations. However, in §3.2.2-3.2.4, several strategies were
proposed for reducing the number of parameters to be estimated. All of these rested on the assumption that the
error variance parameters ωi are in fact related to some design variables Z′

i· through a continuous, differentiable
function g(·). The form of g(·) could be specified by assumption (as in the linear ALVM and the quadratic and
exponential ANLVMs) or estimated within certain restrictions (as in the penalised polynomial ALVMs and
regression spline ALVMs). Alternatively, an agglomerative hierarchical clustering algorithm could be used to
group points that are proximal in the covariate space, on the premise that proximity implies (approximately)
equal variances, by the differentiability of g(·). This leads to the clustering ALVM (and ANLVM).

Section 3.3.1 discussed methods for fitting the ALVMs and ANLVMs that had been proposed. Fitting the
ALVMs that do not have penalty terms (basic, linear, and clustering ALVMs) entails solving an Inequality-
Constrained Least Squares problem. When there is a square penalty matrix with the same dimensions as the
parameter vector γ (q × q), as in the L2-norm penalised polynomial and thin-plate spline ALVMs, the fitting
problem is an Inequality-Constrained Ridge Regression problem. Both an ICLS problem and ICRR problem
are special cases of a Quadratic Programming problem, and the estimation problem for the L1-norm penalised
polynomial ALVM can also be expressed as a QP problem. Thus, QP is a unifying approach to fitting all of
the ALVMs proposed herein.

In the case of ANLVMs, MQL estimation, as described in §3.3.1.4, can be used to fit the model. A strength
of this approach is that it takes into account the known form of the model errors’ variance-covariance matrix; a
weakness is that convergence of the associated Gauss-Newton optimisation algorithms is not guaranteed, and
the solution may be sensitive to initial values. Use of a grid of initial values can mitigate these issues.

Section 3.3.1.5 discussed how the known form of the ALVM errors’ variance-covariance matrix could po-
tentially be used to improve model estimation by using the initial ICLS or ICRR estimates in a generalised
(specifically, FICGLS) two-step or iterative procedure. However, results reported in Chapter 5 are based only
on a single QP step and not on generalised procedures.

Some of the ALVMs involve hyperparameters. Of particular importance are the λ penalty intensity param-
eter in the penalised polynomial and smoothing and thin-plate spline ALVMs, and the nc parameter (number
of clusters) in the clustering ALVM. §3.3.2 discusses strategies for tuning these hyperparameters, using K-fold
cross-validation, quasi-generalised cross-validation, and (in the case of nc) an elbow method based on a crite-
rion such as SWD. Applying K-fold CV to an ALVM is non-trivial. Two techniques are proposed for doing
so, called the test set OLS technique and the partitioning of residuals technique. The former is theoretically
more sound and was therefore used for the simulations reported in Chapter 5.

All of the ALVMs rely on correct specification of the matrix Z of features that are related through a
function g(·) to the linear regression model error variances. In the absence of extraneous information, it might
be reasonable to assume that these predictors are a subset of those in the feature matrix X from the original
linear model. Even then, the question remains, which subset? To this end, §3.3.3 discusses several feature
selection techniques that can be used to attempt to answer this question. One technique is the shrinkage penalty
that is built into the penalised polynomial ALVM. Particularly with the L1-norm penalty (the LASSO-type
ALVM), the sparsity properties tend to result in coefficients of unimportant features being shrunk to zero,
which is tantamount to non-selection of those features. A second feature selection technique entails conducting
a deflator-based heteroskedasticity test with each feature in turn serving as the deflator. The effectiveness of
this technique depends, of course, on the power and size of the test. The significance level therefore becomes
like an additional hyperparameter of the model, with a lower significance level representing a more conservative
approach to feature selection. A third feature selection technique is BSS, using either an exhaustive search or
a greedy search, with K-fold CV or QGCV used to compute the loss function.

Some statistical results on the variance estimators were discussed briefly in §3.3.4. In the case of the
ALVMs, the gist of the discussion was that obtaining analytical results on the variance estimators seems
intractable based on existing theory on statistical properties of ICLS and ICRR estimators. Thus bootstrap
methods seemed to be the best way forward for obtaining interval estimates.

Several nonparametric bootstrap methods for obtaining confidence intervals for individual error variances
ωi were proposed in §3.4. Firstly, two methods of nonparametric bootstrap resampling of heteroskedastic linear
regression models were discussed, namely bootstrapping pairs and the wild bootstrap. After the ALVM has
been fitted to the bootstrapped regression models, how should one compute the confidence intervals? Three
methods were discussed: a näıve normal interval, the percentile interval, and the BCa interval. A multivariate
extension of the percentile interval by Olive (2018) was also discussed, which could be used if one is interested
in a confidence region for ω.

Rounding off the methodology chapter was a proposed new heteroskedasticity test based on an ALVM
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(§3.5). The test statistic was constructed as a ratio of two sums of squares in the squared OLS residuals. In the
numerator, the e2

i are compared with their expectations under homoskedasticity, but with the common variance
ω replaced by an unbiased estimator. In the denominator, the e2

i are compared with their expectations under
heteroskedasticity, but with the error variances ωi replaced by their ALVM estimators. No exact or asymptotic
null distribution for the test statistic was offered; p-values can however be computed using simulation-based
methods such as those of Godfrey and Orme (1999) or Dufour et al. (2004), which had been described in
the literature review. There would be some redundancy in using an ALVM to test for heteroskedasticity if a
heteroskedasticity test were used for feature selection within the ALVM fitting procedure.

The new methods proposed in this chapter, of which the ALVMs are the most important, represent a new
approach to modelling and handling heteroskedasticity in the linear regression model. Their main theoretical
justification is that the mean function of the auxiliary regression is correctly specified. That the variance-
covariance matrix of the auxiliary regression model is of known form (in terms of the same parameters γ that
appear in its mean function) is also advantageous.

6.1.4 Software Implementation

In Chapter 4, a new R package called skedastic, developed specifically for this research, was described in detail.
The package’s functionality includes implementation of many of the methods discussed in Chapter 2 (such
as heteroskedasticity tests and HCCMEs), as well as implementation of the most important new methods
proposed in Chapter 3: the ALVMs and bootstrap confidence intervals based on them. Many of the existing
methods programmed in skedastic had not previously been made available in statistical software, to the author’s
knowledge. Various supporting functions were also described, some of them (such as pRQF and twosidedpval)
providing value to statistics practitioners well beyond the confines of the problem of heteroskedasticity in linear
regression. This package therefore represents a significant contribution in its own right.

6.1.5 Results

Since the Methodology chapter was not able to offer much else in the way of rigorous statistical proofs of the
validity or optimality of the proposed new models and methods, empirical evidence of their effectiveness is
required. Chapter 5 sought to address this need, primarily by means of MC simulations run in R software.

In §5.1, Lloyd’s (2005) AEPS metric was used to compare the performance of numerous existing het-
eroskedasticity tests, along with the new ALVM-based tests that had been proposed in §3.5. These simulation
experiments made an original contribution in that the heteroskedasticity testing methods found to be most
effective—at least under these experimental conditions—were not the most popular tests (such as Breusch and
Pagan’s (1979) and White’s (1980)). Instead, lesser-known methods such as Evans and King’s (1988) and Ver-
byla’s (1993)—which have usually not even been considered in previous MC power studies of heteroskedasticity
tests—proved to be most effective. The newly developed ALVM-based tests performed reasonably well, albeit
not as well as some other methods.

Section 5.2 described the design of the main MC experiment, the purpose of which was to evaluate the
performance of the new ALVMs as tools for estimation and inference in the linear regression model, relative to
other existing methods (particularly, HCCMEs and Miller and Startz’s (2019) SVR model). Four performance
metrics were defined. The first two looked at the models’ MSE for estimating the error variances ωi as an end
in itself; one was unstandardised relative to the different magnitudes of the ωi and the other was standardised.
Two other metrics were introduced on the grounds that the error variances are usually not of primary interest
to the linear regression practitioner, but are useful for enabling robust estimation of and inference on the
coefficient vector β. Accordingly, the third metric looked at the models’ MSE for estimating β using FWLS
with the weights being the reciprocals of the ALVM error variance estimates, ω̂−1

i . The fourth metric looked
at the models’ MSE for estimating SE(β̂OLS) (elementwise), since these standard errors form the denominator
of the quasi-t test statistic used in robust significance tests on the coefficients βj .

The results of these simulations, run with four different dimensionalities (one covariate; two covariates;
eight covariates; sixteen covariates) were reported and discussed in §5.3. In the one-covariate (simple linear
regression) case, simulation results were shown in graphical form and the MSEs metrics were also broken down
into squared bias and variance components. With all four simulations, the results for each of the four metrics
were also reported in tabular form. The tables expressed the estimated MSEs in relative terms, with the lowest
estimated MSEs reported as 1 (highlighted in green) and the others as multiples thereof. Yellow colour was used
to highlight MSE estimates that were not inferior to the best one by a statistically significant margin. Overall,
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the results of these simulations were a mixed bag. The new ALVMs did not always outperform the existing
methods, but they did outperform them in some circumstances for some metrics. Thus, these simulations
provide evidence that the new ALVMs are viable and competitive statistical methods that should be given
serious consideration by practitioners of linear regression.

A limited extension of the simulation to other factor combinations was also made. In the simple linear
regression case, sample sizes of n = 20 and n = 1000 were used in addition to the default n = 100. Moreover,
for simple linear regression with n = 100, a nonmonotonic (sinusoidal) heteroskedastic DGP was used, and
in another instance, non-normal errors (specifically, Laplace- and uniform-distributed) were used. In the two-
covariate and eight-covariate cases, a setting involving multicollinearity among the predictors was tried. Results
tables for these extensions of the experiment are all found in Appendix E, but they are discussed in §5.3.

Results on ANLVMs were also reported under some of the experimental conditions. The quadratic and
exponential ANLVMs were found to perform very well—better than any other method—when their specification
of the heteroskedastic function g(·) was correct. The performance of the clustering ANLVM was comparable
to that of the clustering ALVM and, in some instances, better.

§5.4 supplemented these model performance simulations by looking in more detail at the performance of
certain aspects of the ALVMs. §5.4.1 looked at the effectiveness of the different feature selection techniques used
in conjunction with ALVMs (as discussed in §3.3.3). Conducting an Evans-King GLS test of heteroskedasticity
(with each covariate in turn serving as the deflator) was found to be the most successful feature selection
method overall, although best subset selection using QGCV based on the linear ALVM was also competitive.

Section 5.4.2 looked at the stability of the ALVM estimates relative to the form of the design matrix X.
Here, the ALVMs were found for the most part to produce stable results across different randomly generated
design matrices. The caveat is that the linear ALVM estimates can be highly sensitive to the form of X when
there is extreme heteroskedasticity linked to the covariates.

Convergence rates for the Gauss-Newton optimisation routine used to implement MQL estimation for fitting
of the ANLVMs were also reported, in §5.4.3, and were found to be very high except under multiplicative
heteroskedasticity linked to multiple covariates (which would be heteroskedasticity of an extreme magnitude).

Section 5.5 reported on MC simulations conducted to evaluate the coverage probabilities of approximate CIs
for the ωi based on the bootstrap techniques described in §3.4. One important finding from these simulations
was that the intervals based on the pairs bootstrap were far superior to those based on the wild bootstrap.
Indeed, the coverage probabilities for the intervals based on the wild bootstrap were so low as to render these
intervals meaningless. Moreover, the percentile interval and näıve normal interval performed reasonably well
in terms of coverage, but the BCa interval—ostensibly an improvement on the percentile interval—failed to
improve the coverage probabilities in this instance.

Finally, §5.6 illustrated the application of ALVMs to three real-world data sets: the ‘mtcars’ fuel economy
data set, a per capita expenditure on public schools data set, and the well-known Boston house values data
set.

6.2 Achievement of Research Objectives
The first research objective was to review and catalogue the many existing heteroskedasticity testing methods
in the literature. This was achieved, as evidenced in §2.1. The second research objective was to program these
heteroskedasticity testing methods and make them accessible to practitioners via a package in R statistical
software. This has been achieved by the skedastic R package developed for this research, as has been discussed
in §4.1. The third research objective was to evaluate the role (if any) of heteroskedasticity tests in handling
the problem of heteroskedasticity in the linear model. The literature review found (§2.4.3) that an adaptive
approach to inference in linear regression has largely been discredited, which seemed to have curtailed the
relevance of heteroskedasticity testing. However, this study has identified a new role for heteroskedasticity
testing, namely as a feature selection technique within the auxiliary variance models developed herein.

The fourth objective was to develop a new method of handling heteroskedasticity in the linear model
by direct estimation of the error variances using a suitable auxiliary model. This objective was achieved by
the development of the ALVM and the related ANLVM, with its several forms, in the Methodology chapter.
This development consisted not only of specifying the model but of providing viable methods of reducing the
number of parameters to be estimated, of fitting the model, and of tuning the model’s hyperparameters (where
applicable).

The fifth objective was to show empirically, using MC simulations, that the new methods (ALVMs and
ANLVMs) perform well relative to existing methods in terms of meaningful performance metrics. This objective
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was achieved by the simulations described and reported on in the Chapter 5, particularly in §5.2 and §5.3.
The sixth objective was to show empirically, using MC simulations, that the new methods are robust in certain
respects. This objective was achieved by showing that the ALVMs are reasonably stable across different design
matrices (§5.4.2) and still perform reasonably well in the presence of multicollinearity (Appendix E).129

The seventh and final objective was to make the new method(s) accessible to practitioners via a package
in R statistical software. This too has been achieved via the skedastic R package, as described in detail in
Chapter 4 (particularly §4.4).

The research objectives have thus all been achieved, and in doing so a viable solution has been produced
to the research problem, inasmuch as the new auxiliary variance models offer a unified approach to handling
heteroskedasticity in the linear regression model, one that is accessible to practitioners via a package in R
software.

6.3 Possible Directions for Future Research
This study has opened up a number of possible avenues for further research. A few of these will be briefly
outlined here.

6.3.1 Maximum Likelihood Methods Based on Multivariate Gamma Distribution

It was discussed in §3.1.3 that the joint distribution of the squared OLS residuals, both under homoskedasticity
and under heteroskedasticity, is a multivariate Gamma distribution and, more specifically, a generalisation of
the bivariate Gamma distribution due to Kibble (1941). This multivariate Gamma distribution is problematic
as a tool for distribution-based methods for handling heteroskedasticity such as ML estimation of error vari-
ances or LR tests for heteroskedasticity. It is problematic not only because (3.24) is difficult to compute, but
also because the joint distribution is in this instance degenerate (having a singular variance-covariance ma-
trix). Further research undertaken to overcome these difficulties—through numerical methods and dimension
reduction, for instance—may facilitate the development of new ML estimation techniques and/or LR tests.

6.3.2 Other Ways of Specifying an Auxiliary Nonlinear Variance Model

The Methodology chapter of this study introduced ANLVMs, based on a parametric specification of ω in (3.34)
that related ω to the auxiliary covariate matrix Z in terms of a nonlinear function of parameters γ. Another
nonlinear form of the auxiliary regression model could be arrived at by using the logarithm of the squared OLS
residuals as the response, as discussed in Appendix C.2. This type of ANLVM merits further exploration.

Still another specification of an ANLVM can be constructed from the results given previously in §1.1.7.4.
It can be shown using the same steps used in Appendix C.1.1 to derive the results in §3.1.2 that the following
results hold (under A1, A3-A5) concerning the squared WLS residuals eWLS ◦ eWLS:

E(eWLS ◦ eWLS) = diag(MΩΩMΩ) = (MΩ ◦MΩ) ω (6.1)
and

Cov(eWLS ◦ eWLS) = 2 (MΩΩMΩ) ◦ (MΩΩMΩ) . (6.2)

Equations (6.1) and (6.2) can be recognised as having the same form as (3.10) and (3.11), but with M
replaced with MΩ. Thus, an auxiliary regression model can be constructed with the same form as (3.34), but
with e ◦ e replaced by eWLS ◦ eWLS and M ◦M replaced by MΩ ◦MΩ. This model is nonlinear in ω, since
MΩ depends on ω. Thus, it is not possible to develop an ALVM based on the squared WLS residuals, but
an ANLVM could be developed. The caveat, of course, is that it is not possible to compute the eWLS without
knowing Ω−1, and thus using this model would require a preliminary estimate of ω—perhaps obtained from
an ALVM based on the OLS squared residuals. It is certainly worth exploring a generalisation of the auxiliary
variance models proposed in this study (which were built around the squared OLS residuals) to the WLS case,
or rather the FWLS case, using the multi-step FICGLS fitting procedure outlined in §3.3.1.5.

129These robustness checks have not been performed on the ANLVMs as yet.
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6.3.3 Further Exploration of Generalised and Weight-Based Estimation of Auxiliary
Linear Variance Models

In §3.3.1.5, GLS-based estimation procedures for the ALVMs were discussed on the grounds that the variance-
covariance matrix of the ALVM errors u is known in terms of ω (see (3.3) and (3.8) for these results under
homoskedasticity and heteroskedasticity, respectively). It was believed that this known form of the variance-
covariance matrix would result in multi-step FICGLS producing more accurate estimates than a single-step
ICLS procedure that does not take into account the covariance structure of the errors. However, preliminary
simulations found that performing the additional steps for FICGLS, as described in §3.3.1.5, made virtually
no difference in the error variance estimates ω̂i or to the performance of the ALVMs, and therefore for reasons
of computational cost generalised estimation procedures were not used in the main simulations in the Results
and Discussion chapter.

Nevertheless, there seems to be great potential in using FICGLS rather than ICLS to fit the ALVMs, and
further research may be able to identify the reasons why the generalised estimation procedures outlined in
§3.3.1.5 did not yield significant improvements, and rectify this.

Two weighting procedures were also proposed in §3.3.1.5 to potentially improve on the estimation of the
ALVMs in specific circumstances. It remains to explore the effectiveness of these weighting methods.

6.3.4 Improvement of Hyperparameter Tuning Using Cross-Validation

Two techniques for predicting ALVM responses for purposes of K-fold CV were discussed in §3.3.2.1, but only
one technique—the test fold OLS technique—was used to generate results. Further research can be conducted
into the relative performance of these two techniques in terms of bias vs. variance.

6.3.5 Improvement of Bootstrap Confidence Intervals for Error Variances

It was noted in §5.5 that, surprisingly, the wild bootstrap technique resulted in very poor coverage probabilities
in confidence intervals constructed for individual error variances ωi based on ALVMs. It is not clear why the
wild bootstrap should have been so far inferior to the pairs bootstrap in this respect, since the wild bootstrap
is a well-established method for bootstrapping of heteroskedastic linear regression models. Indeed, as a check,
the same DGPs used to estimate the CI coverage probabilities were also used to estimate the SEs of β̂OLS
(as in the wild bootstrap HCCME discussed in §2.3.10). The wild bootstrap and pairs bootstrap performed
about equally well in estimating these SEs, so it remains a mystery why the wild bootstrap is so ineffective for
ALVM-based interval estimation of the error variances ωi. Further research may solve this mystery and result
in effective bootstrap CI methods for the error variances based on the wild bootstrap.

Equally surprising was that the BCa method, which is designed to improve on coverage probability relative
to the bootstrap percentile interval, actually took the coverage probabilities further away from the nominal
95%. Further research could be used to identify the reasons for this and lead to improved interval estimation
of error variances using bootstrap methods built on ALVMs.

6.3.6 Extension of Empirical Work to Larger Data Sets

The largest sample size (n = 1000) and the largest design dimensionality (p = 17) considered in the simulations
reported in Chapter 5 are still small in comparison to the sizes of data sets often being analysed today.
Computing resources were a constraint on the present study, but it would certainly be worthwhile to explore
the empirical performance of the ALVMs and ANLVMs in connection with linear regression models fitted to
much larger data sets.

With this outline of possible future research avenues in hand, it may be appropriate to close with a famous
aphorism from Winston Churchill: ‘Now this is not the end. It is not even the beginning of the end. But it is,
perhaps, the end of the beginning’ (Churchill 1943, p. 266).
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Appendices
A Proofs of Some Elementary Statistical Results on the Linear Regression

Model
A.1 Derivation of the Ordinary Least Squares Estimator

Let β̂ be a candidate estimator of β. The objective function to be minimised is the sum of squared residuals.

SSresidual(β) = (y −Xβ̂)′(y −Xβ̂)
= (y′ − β̂′X ′)(y −Xβ̂)
= y′y − β̂′X ′y − y′Xβ̂ + β̂′X ′Xβ̂

= y′y − 2β̂′X ′y + β̂′X ′Xβ̂ (since y′Xβ̂ =
(
β̂′X ′y

)′ is a scalar)
∂

∂β̂
SSresidual = −2X ′y + 2X ′Xβ̂ = 0

X ′Xβ̂ = X ′y

β̂ = (X ′X)−1X ′y (note: X ′X is invertible by A4).

Note that ∂2

∂β̂2
SSresidual = 2X ′X is positive definite,130 so by the second derivative test, the above critical

point is a minimum.

A.2 A Proof of the Gauss-Markov Theorem

The Gauss-Markov Theorem states that, under assumptions A1-A4, β̂OLS is the Best Linear Unbiased Esti-
mator (BLUE) of β. This can be proven as follows. Let β̂ = Ay be a linear unbiased estimator of β, where A
depends only on X. The conditional expectation of the estimator can be expressed as follows:

E
(
β̂
)

= A E(y)
= AXβ (by A1).

Thus, it follows from the unbiasedness of β̂ that AX = Ip (which, notably, is satisfied when
A = (X ′X)−1X ′). Now, by A1 and A2, the conditional covariance matrix of the estimator is

Cov(β̂) = AωIpA′ − ββ′ = ωAA′ − ββ′.
Cov(β̂) can be written as c(A)− ββ′, where c(A) = ωAA′. Since ββ′ is constant (not depending on

X), what one seeks to minimise are the diagonal elements of c(A). Suppose, without loss of generality, that
A = (X ′X)−1X ′ + B, where B is some real-valued matrix of the same dimensions as A. The unbiasedness
condition then implies that BX = 0, and one can proceed as follows:

c(A) ∝
(
(X ′X)−1X ′ + B

) (
(X ′X)−1X ′ + B

)′

=
(
(X ′X)−1X ′ + B

) (
B′ + X(X ′X)−1) (since X ′X is symmetric and thus also (X ′X)−1)

= (X ′X)−1X ′X(X ′X)−1 + (X ′X)−1X ′B′ + BX(X ′X)−1 + BB′

= (X ′X)−1 +
(
BX(X ′X)−1)′ + BX(X ′X)−1 + BB′

= (X ′X)−1 + 0′
p×p + 0p×p + BB′ (by unbiasedness).

130This is true because X has full column rank, which means that u := Xv ̸= 0 for any nonzero vector v. Therefore,

v′X′Xv = u′u =
n∑

i=1

u2
i > 0.
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The diagonal elements of BB′ are nonnegative since they are all sums of squared elements of B. Thus,
the smallest possible diagonal values of Cov(β̂) occur when B = 0p×n, which implies that A = (X ′X)−1X ′,
i.e., that β̂ = β̂OLS. The theorem is therefore proven.131

A.3 Maximum Likelihood Estimator of Linear Regression Parameters under Classical
Model Assumptions

Under A1-A5 the likelihood function for the parameter vector θ0 = [β′, ω]′ can be derived from the Gaussian
PDF as

L0(θ0) = (2π)−n/2(ω)−n/2 exp
{
− 1

2ω (y −Xβ)′(y −Xβ)
}
. (A.1)

Note the following matrix derivative identity (Petersen and Pedersen 2012, p. 11):

∂

∂x

[
(Bx + b)′C(Bx + b)

]
= B′(C + C′)(Bx + b). (A.2)

From (A.2), it follows that

∂

∂β

[
(y −Xβ)′(y −Xβ)

]
= −X ′(In + In)(y −Xβ) = −2X ′(y −Xβ).

Taking ℓ0 = logL0, differentiating with respect to the parameters, and setting the derivatives equal to zero,
one can derive the Maximum Likelihood (ML) estimator of θ0 as follows:

ℓ0(θ0) = −n2 log(2π)− n

2 log(ω)− 1
2ω (y −Xβ)′(y −Xβ)

∂ℓ0

∂ω
= − n

2ω + 1
2ω2 (y −Xβ)′(y −Xβ) = 0

n

2ω = 1
2ω2 (y −Xβ)′(y −Xβ)

ω = 1
n

(y −Xβ)′(y −Xβ)

∂ℓ0

∂β
= − 1

2ω
(
−2X ′(y −Xβ)

)
= 0p×1

X ′y −X ′Xβ = 0p×1

β =
(
X ′X

)−1
X ′y.

Thus, the ML estimators of θ0 are

θ̂0,MLE =
[

β̂MLE
ω̄

]
=

[
(X ′X)−1

X ′y
1
n

(y −Xβ̂)′(y −Xβ̂)

]
=

[
(X ′X)−1

X ′y
1
n

e′e

]
,

where e are the OLS residuals.

B A Proof of a Generalisation of the Gauss-Markov Theorem

This theorem asserts that, under assumptions A1 and A3-A4, the weighted least squares estimator β̂WLS is the
Best Linear Unbiased Estimator (BLUE) of β. First, let β̂ = Ay be a linear unbiased estimator of β, where A
depends only on X. As before, the unbiasedness property implies that AX = Ip (observe that this is satisfied
when A = (X ′W X)−1

X ′W ). The conditional covariance matrix of the estimator in this case is

Cov(β̂) = AΩA′ − ββ′.

131This proof is sketched in Heij et al. (2004, p. 127), for instance. For a slightly different proof, see Rencher and
Schaalje (2008, p. 147).
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One can write Cov(β̂) as c(A)− ββ′, where c(A) = AΩA′. The BLUE of β results from the
choice of A that minimises the diagonal elements of c(A). Suppose, without loss of generality, that
A = (X ′Ω−1X)−1X ′Ω−1 + B. The unbiasedness condition implies that BX = 0. One can then proceed
as follows:

c(A) = AΩA′ =
[(

X ′Ω−1B
)−1

X ′Ω−1 + B
]

Ω
[(

X ′Ω−1B
)−1

X ′Ω−1 + B
]′

=
[(

X ′Ω−1B
)−1

X ′Ω−1 + B
]

Ω
[
Ω−1X

(
X ′Ω−1B

)−1 + B′
]

=
(
X ′Ω−1X

)−1
X ′Ω−1ΩΩ−1X

(
X ′Ω−1X

)−1 + BΩB′ + cross-terms︸ ︷︷ ︸
=0 since BX=0

=
(
X ′Ω−1X

)−1 + BΩB′.

The ith diagonal element of BΩB′ is
n∑

j=1

b2
ijωj ≥ 0; thus c(A) is minimised when B = 0. The theorem is

therefore proven.

B.1 Maximum Likelihood Estimation of Linear Regression Parameters under Het-
eroskedasticity

The likelihood function for the parameter vector θ1 = [β′,ω′]′ is given by (B.1).

L1(θ1) = (2π)−n/2 det (Ω)−1/2 exp
{
−1

2(y −Xβ)′Ω−1(y −Xβ)
}

= (2π)−n/2

(
n∏

i=1

ωi

)−1/2

exp
{
−1

2(y −Xβ)′Ω−1(y −Xβ)
}
. (B.1)

Applying (A.2),

∂

∂β

[
(y −Xβ)′Ω−1(y −Xβ)

]
= −X ′(Ω−1 + Ω−1)(y −Xβ) = −2X ′Ω−1(y −Xβ).

Another useful matrix identity (Petersen and Pedersen 2012, p. 9) is,

∂A−1

∂x
= −A−1 ∂A

∂x
A−1. (B.2)

From (B.2), it follows that
∂Ω−1

∂ωi
= −Ω−1 ∂Ω

∂ωi
Ω−1.

This will be an n×n matrix with −ω−2
i as its ith diagonal element and all other elements zero. Thus, take

ℓ1(θ1) = logL1(θ1) and differentiate with respect to the parameters as follows.

ℓ1(θ1) = −n2 log(2π)− 1
2

n∑
i=1

logωi −
1
2(y −Xβ)′Ω−1(y −Xβ)

∂ℓ1

∂ωi
= − 1

2ωi
+ 1

2(y −Xβ)′Ω−1 ∂Ω
∂ωi

Ω−1(y −Xβ) = 0

1
2ωi

= (yi −X ′
i·β)2

2ω2
i

ωi = (yi −X ′
i·β)2

∂ℓ1

∂β
= −1

2
[
−2X ′Ω−1(y −Xβ)

]
= 0p×1

X ′Ω−1y = X ′Ω−1Xβ

β =
(
X ′Ω−1X

)−1
X ′Ω−1y.

This leads directly to (1.9).
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B.2 Proof that the Ordinary Least Squares Residual Vector is a Best Linear Unbiased
Predictor of the Random Error Vector

Here is given a proof that the OLS residual vector e is the Best Linear Unbiased Predictor (BLUP) of the random
error vector ϵ.132 Let ϵ̂ = Ay be an unbiased linear predictor of ϵ, where A is an n× n matrix that depends
only on X.133 Since it follows from A1 that E(y) = Xβ, the unbiasedness property of ϵ̂ (E(ϵ̂) = E(ϵ) = 0)
implies that AX = 0. This, in turn, implies that ϵ̂ = Aϵ. Hence,

Cov(ϵ̂) = E(Aϵϵ′A′) = ωAA′.

Suppose, without loss of generality, that A = M + B. Then, since AX = 0 (by unbiasedness) and MX = 0
(from the definition of M), it follows that BX = 0 as well. Furthermore, this implies that,

BM = B(In −X(X ′X)−1X ′) = B,

and similarly that MB′ = B′. Now, the BLUP of ϵ will be that vector ϵ̂ with associated matrix A that
minimises the mean squared prediction error E [(ϵ̂− ϵ)′(ϵ̂− ϵ)]. But,

E
[
(ϵ̂− ϵ)′(ϵ̂− ϵ)

]
= E

[
ϵ̂′ϵ̂− ϵ′ϵ̂− ϵ̂′ϵ + ϵ′ϵ

]
= E

[
ϵ′A′Aϵ− 2ϵ′Aϵ + ϵ′ϵ

]
= ω

[
tr(A′A)− 2 tr(A) + n

]
(since E(ϵ) = 0).

Thus, the optimal choice of A will be that matrix that minimises tr(A′A)− 2 tr(A). Now, substituting
A = M + B and using the properties of the trace operator (see Petersen and Pedersen 2012, p. 6),

tr
[
(M + B)′(M + B)

]
− 2 tr(M + B)

= tr
[
B′M + MB + M + B′B

]
− 2 tr(M + B) (by symmetry and idempotence of M)

= tr(B′M) + tr(MB) + tr(M) + tr(B′B)− 2 tr(M)− 2 tr(B)
= tr(MB′) + tr(BM)− 2 tr(B)− tr(M) + tr(B′B)
= tr(B′) + tr(B)− 2 tr(B)− tr(M) + tr(B′B)

= − tr(M) +
n∑

i=1

b2
ii,

where bii is the ith diagonal element of B, i = 1, 2, . . . , n. Since
n∑

i=1

b2
ii ≥ 0, it follows that the mean

squared error is minimised when B = 0n×n, i.e. when A = M .134 Thus, ϵ̂ = My = e is the BLUP of ϵ.

B.3 Derivation of the Distributions of Certain Random Vectors pertaining to the Linear
Regression Model under Classical Assumptions

Mβ̂OLS
(t) = My(X(X ′X)−1t)

= exp
{

β′X ′X(X ′X)−1t + ω

2 (X(X ′X)−1t)′X(X ′X)−1t
}

= exp
{

β′t + ω

2 t′(X ′X)−1X ′X(X ′X)−1t
}

= exp
{

β′t + 1
2 t′ω(X ′X)−1t

}
,

132For an alternative proof, using Lagrange multipliers, see (Theil 1965, p. 1069).
133Following Henderson (1975), a statistical prediction ϵ̂ of the random variable ϵ is said to be unbiased if E(ϵ̂) = E(ϵ).
134Since tr(M) = n− p (see §3.1.1), the mean squared prediction error of the OLS residuals is in fact ωp. (Theil 1965,

p. 1069) notes that, since E(ϵ′ϵ) = nω, by dividing the mean squared prediction error by this mean squared model error,
one obtains the ‘average inaccuracy’ of the predictions to be p/n.
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from which it follows that, under A1-A5,

β̂ ∼ N(β, ω(X ′X)−1).

Similarly, recalling (as stated in 1.1) that ŷ = Hy,

Mŷ(t) = My(H ′t)

= exp
{

β′X ′H ′t + ω

2 (H ′t)′(H ′t)
}

= exp
{

β′X ′X(X ′X)−1X ′t + ω

2 t′X(X ′X)−1X ′X(X ′X)−1X ′t
}

= exp
{

(Xβ)′t + 1
2 t′ωHt

}
,

from which it follows that
ŷ ∼ N(Xβ, ωH).

Finally, recalling that e = Mϵ,

Me(t) = Mϵ(Mt) (since M is symmetric)

= exp
{

0′M ′t + ω

2 (M ′t)′(M ′t)
}

= exp
{

0′t + ω

2 t′M ′Mt
}

= exp
{

0′t + 1
2 t′ωMt

}
(using the symmetry and idempotence properties of M),

from which it follows that
e ∼ N(0, ωM).

B.4 Proofs of Two Results Necessary for Construction of Exact t-Tests for Inference on
Linear Regression Parameters under the Classical Assumptions

It is first proven that, under A1-A5, ω−1e′e ∼ χ2(n− p). This result is an instance of the following result
(B.3) with u = ω−1/2ϵ, A = M , and r = n− p. For any n-vector u of iid standard normal random variables
and any symmetric, idempotent n× n matrix A with r = rank(A) = tr(A),135 it follows that

u′Au ∼ χ2(r). (B.3)
A proof of (B.3) is sketched as follows (see Heij et al. 2004). An idempotent n × n matrix of rank r has

r unit eigenvalues and n − r zero eigenvalues. By symmetry and idempotence of A, it has singular value
decomposition V DV ′, where the columns of V are the eigenvectors of A and D is a diagonal matrix with the
eigenvalues of A on its diagonal. Let V1 be V with the n− r columns corresponding to zero eigenvalues of A
removed, and D1 be the r× r identity matrix formed by removing the rows and columns with zero eigenvalues
on the diagonal. V1 is then an n × r matrix with orthonormal columns. Since the deleted portions of V
and D contribute nothing to A, it follows that one can write A = V1D1V ′

1 = V1V ′
1 . It can be shown (e.g.,

using MGFs as in (1.28)) that V ′
1 u ∼ N(0,V ′

1 V1), but since V1 has orthonormal columns, V ′
1 V1 = In. Thus,

u′Au = u′V1V ′
1 u = (V ′

1 u)′(V ′
1 u) is the sum of squares of r independent standard normal random variables,

and thus has a chi-square distribution with r degrees of freedom.
The independence of β̂ and e follows from the property that Cov(β̂, e) = 0, together with the property

that normally distributed random vectors are independent if and only if they are uncorrelated. The covariance
of β̂ and e can be derived as follows.

135Idempotent matrices have the property that their rank equals their trace (Petersen and Pedersen 2012).
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Cov(β̂, e) = E
[
(β̂ − E(β̂))(e− E(e))′]

= E
[
(β̂ − β)e′] = E

[(
(X ′X)−1X ′ϵ

)
(Mϵ)′]

= E
[
(X ′X)−1X ′ϵϵ′(In −X(X ′X)−1X ′)

]
= (X ′X)−1X ′ E(ϵϵ′)− (X ′X)−1X ′ E(ϵϵ′)X(X ′X)−1X ′

= ω(X ′X)−1X ′ − ω(X ′X)−1X ′ = 0 (by A1-A4).

B.5 Derivation of the Distributions of Certain Random Vectors pertaining to the Linear
Regression Model under Heteroskedasticity

Mβ̂OLS
(t) = My(X(X ′X)−1t)

= exp
{

β′X ′X(X ′X)−1t + 1
2
(
X(X ′X)−1t

)′ ΩX(X ′X)−1t
}

= exp
{

β′t + 1
2 t′(X ′X)−1X ′ΩX(X ′X)−1t

}
,

which implies that

β̂OLS ∼ N(β, (X ′X)−1X ′ΩX(X ′X)−1).
This result aligns with those stated in §1.1.6.1. Then,

Mŷ(t) = My(Ht)

= exp
{

β′X ′X(X ′X)−1X ′t + 1
2(Ht)′ΩHt

}
= exp

{
β′X ′t + 1

2 t′HΩHt
}
,

implying that

ŷ ∼ N(Xβ,HΩH).
Furthermore,

Me(t) = Mϵ(Mt)

= exp
{

0′Mt + 1
2(Mt)′ΩMt

}
= exp

{
0′t + 1

2 t′MΩMt
}
,

implying that

e ∼ N(0,MΩM).
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C Some Theoretical Results pertaining to the Methodology Chapter
C.1 Further Theoretical Results on Squared Ordinary Least Squares Residuals

C.1.1 Derivation of Covariances of Squared Ordinary Least Squares Residuals
The following is a derivation of the variance-covariance matrix of the squared OLS residuals under assumptions
A1-A5 as given in (3.3). The derivation under heteroskedasticity (where A2 is relaxed) is not shown but follows
the same steps. Working from the definition of a variance-covariance matrix,

Cov(e ◦ e) = E
[
(e ◦ e− ω diag(M)) (e ◦ e− ω diag(M))′]

= E
[
(e ◦ e)(e ◦ e)′]− ω2 diag(M)(diag(M))′.

Now, the (i, j)th element of the n × n matrix ω2 diag(M)(diag(M))′ is ω2miimjj (consequently
the ith diagonal element is ω2m2

ii). It remains to find the elements of E [(e ◦ e)(e ◦ e)′]. Now,
e ◦ e = diag(ee′) = diag(Mϵϵ′M), and therefore it is necessary to find E [diag(Mϵϵ′M) diag(Mϵϵ′M)′]. The
diagonal and off-diagonal elements of this matrix and their expectations are considered separately.

First, the ith diagonal element of diag(Mϵϵ′M) diag(Mϵϵ′M)′ is given by,

(∑
k

m2
ikϵ

2
k + 2

∑∑
k<ℓ

mikmiℓϵkϵℓ

)2

=
∑

k

m2
ikϵ

2
k

∑
ℓ

m2
iℓϵ

2
ℓ︸ ︷︷ ︸

Term 1

+ 4

(∑
k

m2
ikϵ

2
k

)(∑∑
p<q

mipmiqϵpϵq

)
︸ ︷︷ ︸

Term 2

+ 4
∑∑

k<ℓ

mikmiℓϵkϵℓ

∑∑
p<q

mipmiqϵpϵq︸ ︷︷ ︸
Term 3

.

Taking expectation, observe that under A1-A5, E(ϵi) = E(ϵ3
i ) = 0, E(ϵ2

i ) = ω, and E(ϵ4
i ) = 3ω2. Moreover,

by A3, any product moment E(ϵr
i ϵ

s
j) will be 0 if at least one of r or s is odd, for r, s ∈ {1, 2, 3, 4}. From this,

it follows that Term 2 above has conditional expectation 0.
The expectation of Term 1 is

E

[∑
k

m2
ikϵ

2
k

∑
ℓ

m2
iℓϵ

2
ℓ

]
=
∑

k

m4
ik E(ϵ4

k) + 2
∑∑

k<ℓ

m2
ikm

2
iℓ E(ϵ2

kϵ
2
ℓ )︸ ︷︷ ︸

=E(ϵ2
k

) E(ϵ2
ℓ

) by independence

= 3ω2
∑

k

m4
ik + 2ω2

∑∑
k<ℓ

m2
ikm

2
iℓ.

The expectation of Term 3 is

E

[
4
∑∑

k<ℓ

mikmiℓϵkϵℓ

∑∑
p<q

mipmiqϵpϵq

]
= 4

∑∑
k<ℓ

m2
ikm

2
iℓ E(ϵ2

k) E(ϵ2
ℓ ) + cross-terms with conditional expectation 0

= 4ω2
∑∑

k<ℓ

m2
ikm

2
iℓ.
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Combining the above with earlier observations, the ith diagonal element of Cov(e ◦ e) is

3ω2
∑

k

m4
ik + 6ω2

∑∑
k<ℓ

m2
ikm

2
iℓ − ω2m2

ii

= 3ω2

(∑
k

m4
ik + 2

∑∑
k<ℓ

m2
ikm

2
iℓ

)
− ω2m2

ii.

But
∑

k

m4
ik + 2

∑∑
k<ℓ

m2
ikm

2
iℓ =

(∑
k

m2
ik

)(∑
ℓ

m2
iℓ

)
= m2

ii

∴ 3ω2m2
ii − ω2m2

ii

= 2ω2m2
ii. (C.1)

Now, consider the off-diagonal elements of Cov(e◦e). The (i, j)th element of diag(Mϵϵ′M) diag(Mϵϵ′M)′,
i ̸= j, is given by,

(∑
k

m2
ikϵ

2
k + 2

∑∑
k<ℓ

mikmiℓϵkϵℓ

)(∑
k

m2
jkϵ

2
k + 2

∑∑
k<ℓ

mjkmjℓϵkϵℓ

)

=
∑

k

m2
ikϵ

2
k

∑
ℓ

m2
jℓϵ

2
ℓ︸ ︷︷ ︸

Term 1

+ 2

(∑
k

m2
ikϵ

2
k

)(∑∑
p<q

mipmiqϵpϵq

)
︸ ︷︷ ︸

Term 2A

+ 2

(∑
k

m2
jkϵ

2
k

)(∑∑
p<q

mjpmjqϵpϵq

)
︸ ︷︷ ︸

Term 2B

+ 4

(∑∑
k<ℓ

mikmiℓϵkϵℓ

)(∑∑
p<q

mjpmjqϵpϵq

)
︸ ︷︷ ︸

Term 3

Terms 2A and 2B have expectation 0 since all terms of these expressions contain an odd power of the
disturbance. The expectation of Term 1 is

E

[∑
k

m2
ikϵ

2
k

∑
ℓ

m2
jℓϵ

2
ℓ

]
=
∑

k

m2
ikm

2
jk E(ϵ4

k) + 2
∑∑

k<ℓ

m2
ikm

2
jℓ E(ϵ2

k) E(ϵ2
ℓ )

= 3ω2
∑

k

m2
ikm

2
kj + 2ω2

∑∑
k<ℓ

m2
ikm

2
jℓ.

The expectation of Term 3 is

E

[
4

(∑∑
k<ℓ

mikmiℓϵkϵℓ

)(∑∑
p<q

mjpmjqϵpϵq

)]
= 4

∑∑
k<ℓ

mikmiℓmjkmjℓ E(ϵ2
k) E(ϵ2

ℓ ) + cross-terms with expectation 0

= 4ω2
∑∑

k<ℓ

mikmiℓmjkmjℓ.

Hence, combining these results, the (i, j)th element of Cov(e ◦ e) is

181



http://etd.uwc.ac.za/

3ω2
∑

k

m2
ikm

2
kj + 2ω2

∑∑
k<ℓ

m2
ikm

2
jℓ + 4ω2

∑∑
k<ℓ

mikmiℓmjkmjℓ − ω2miimjj

= ω2

(∑
k

m2
ikm

2
kj + 2

∑∑
k<ℓ

m2
ikm

2
jℓ

)

+ 2ω2

(∑
k

m2
ikm

2
kj + 2

∑∑
k<ℓ

mikmiℓmjkmjℓ

)
− ω2miimjj .

But
∑

k

m2
ikm

2
kj + 2

∑∑
k<ℓ

m2
ikm

2
jℓ =

(∑
k

m2
ik

)(∑
ℓ

m2
jℓ

)
= miimjj , and

∑
k

m2
ikm

2
kj + 2

∑∑
k<ℓ

mikmiℓmjkmjℓ =

(∑
k

mikmkj

)(∑
ℓ

miℓmℓj

)
= m2

ij .

∴ ω2miimjj + 2ω2m2
ij − ω2miimjj = 2ω2m2

ij .

Thus, the covariance of any two squared OLS residuals e2
i , e

2
j can be written as

Cov(e2
i , e

2
j ) = 2ω2m2

ij ,

and (3.3) is proven. This leads directly to an expression for the variance-covariance matrix of the squared
OLS residual vector,

Cov(e ◦ e) = 2ω2(M ◦M).

C.1.2 Some Properties of the Mean Squared Error of the Squared Ordinary Least
Squares Residuals

This is a brief extension of the discussion in §3.1.4 of the bias properties of the OLS residuals, taken as
estimators of the error variances ωi, under heteroskedasticity.

From (3.11), the mean squared error of the e2
i as estimators of the error variances is given by (C.2).

MSE(e2
i ) = Var(e2

i ) +
[
Bias(e2

i )
]2

= 2

[
n∑

k=1

ωkm
2
ik

]2

+

[
n∑

k=1

ωkm
2
ik − ωi

]2

= 3

[
n∑

k=1

ωkm
2
ik

]2

− 2ωi

n∑
k=1

ωkm
2
ik + ω2

i

= 3

[
n∑

k=1

ωi(1− hii)2 +
∑
k ̸=i

ωkh
2
ik

]2

− 2ωi

[
ωi(1− hii)2 +

∑
k ̸=i

ωkh
2
ik

]
+ ω2

i . (C.2)

It is easy to show that

∂

∂hii
MSE(e2

i ) = 4ωi(1− hii)

[
−3
∑
k ̸=i

ωkh
2
ik − ωi

(
3(1− hii)2 − 1

)]
. (C.3)

Since 0 ≤ hii ≤ 1, and since 3(1− hii)2 − 1 > 0 for all hii < 1−
√

3
3 ≈ 0.423, it follows that the MSE

strictly decreases with leverage up to about hii = 0.423. Thereafter, it is theoretically possible that the deriva-
tive could become positive if the (now-positive) −ωi

(
3(1− hii)2 − 1

)
term dominates the −3

∑
k ̸=i

ωkh
2
ik term.
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However, 0.423 is already a very high leverage value, especially if n is large, so it remains true under het-
eroskedasticity that the OLS squared residuals are better estimators of the corresponding error variances for
high-leverage points than for low-leverage points.

C.2 An Auxiliary Nonlinear Variance Model Built on Logarithms of Squared Ordinary
Least Squares Residuals

Taking the logarithm of the response is a widely used technique in regression modelling. In this appendix,
an alternative approach to constructing an ANLVM based on the logarithms of the squared OLS residuals is
presented.

C.2.1 Logarithms of Squared Ordinary Least Squares Residuals under Homoskedasticity

Consider the natural logarithms of the squared OLS residuals, log e2
i , under A1-A5. Deriving exact analytical

results on the moments is very difficult, but by making use of a second-order Taylor expansion about E(e2
i ),

one obtains

E
(
log e2

i

)
≈ log (ωmii)− 1, (C.4)

Var
(
log e2

i

)
≈ 1, and (C.5)

Cov
(
log e2

i , log e2
j

)
≈

2m2
ij

miimjj
− 1 (C.6)

= 2 Corr(e2
i , e

2
j )− 1.

Proof:
Let U and V be random variables with expectations µU and µV , respectively, and let f : R→ R be a twice-
differentiable, real-valued function. First, derive the second-order Taylor series approximation of E [f(U)] about
µU :

E [f(U)] ≈ E
[
f(µU ) + f ′(µU )(U − µU ) + f ′′(µU )

2! (U − µU )2
]

= f(µU ) + f ′(µU ) (E(U)− µU ) + f ′′(µU )
2 Var(U)

= f(µU ) + 1
2f

′′(µU ) Var(U).

Then, since E(U) = µU , substituting U = e2
i and f(U) = logU yields

E
[
log e2

i

]
≈ log

[
E(e2

i )
]
− Var(e2

i )
2 [E(e2

i ]2
.

Now, substituting in the results from (1.11) and (C.1),

E
(
log e2

i

)
≈ log (ωmii)−

2ω2m2
ii

2 (ωmii)2

= log (ωmii)− 1.

Thus, (C.4) is proven.136 Next, derive the second-order Taylor series approximation of E [g(U, V )] about

136A third-order Taylor expansion for E
(

log e2
i

)
can be achieved by adding the term f (3)(µU )

6
E
[
(U − µU )3

]
, which

in this case is 1
3

E
(
e2

i

)−3 E
[(
e2

i − E(e2
i )
)3
]

. Under the assumptions A1-A5, using the fact that a normally distributed

random variable X with mean a and variance b2 has E(X6) = a6 + 15a4b2 + 45a2b4 + 15b6, result (1.31) implies that
this term reduces to 8

3
.
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(µU , µV ), where g(U, V ) = f(U)f(V ). Noting that gU (U, V ) = f ′(U)f(V ) and gV (U, V ) = f(U)f ′(V ), proceed
as follows:

E [g(U, V )] ≈ E
[
f(µU )f(µV ) + (U − µU )f ′(µU )f(µV ) + (V − µV )f(µU )f ′(µV )

+ 1
2
(
(U − µU )2f ′′(µU )f(µV ) + 2(U − µU )(V − µV )f ′(µU )f ′(µV ) + (V − µV )2f(µU )f ′′(µV )

)]
= f(µU )f(µV ) + 1

2f
′′(µU )f(µV ) Var(U) + f ′(µU )f ′(µV ) Cov(U, V ) + 1

2f(µU )f ′′(µV ) Var(V ).

Therefore,

Cov [f(U), f(V )] = E [g(U, V )]− E [f(U)] E [f(V )]

= f(µU )f(µV ) + f ′(µU )f ′(µV ) Cov(U, V ) + 1
2f

′′(µU )f(µV ) Var(U)

+ 1
2f(µU )f ′′(µV ) Var(V )−

[
f(µU ) + 1

2f
′′(µU ) Var(U)

] [
f(µV ) + 1

2f
′′(µV ) Var(V )

]
= f(µU )f(µV ) + f ′(µU )f ′(µV ) Cov(U, V ) + 1

2f
′′(µU )f(µV ) Var(U)

+ 1
2f(µU )f ′′(µV ) Var(V )− f(µU )f(µV )− 1

2f
′′(µU )f(µV ) Var(U)

− 1
2f(µU )f ′′(µV ) Var(V )− 1

4f
′′(µU )f ′′(µV ) Var(U) Var(V )

= f ′(µU )f ′(µV ) Cov(U, V )− 1
4f

′′(µU )f ′′(µV ) Var(U) Var(V ).

Then, substituting for U and f(·) as before, along with V = e2
j , it follows that

Cov
(
log e2

i , log e2
j

)
=

Cov(e2
i , e

2
j )

E(e2
i ) E(e2

j ) −
Var(e2

i ) Var(e2
j )

4 [E(e2
i )]2

[
E(e2

j )
]2 .

Again, substituting the results from (1.11), (C.1), (3.3), and (3.5),

Cov(log e2
i , log e2

j ) ≈
2ω2m2

ij

ωmiiωmjj
−
(
2ω2m2

ii

) (
2ω2m2

jj

)
4 [ωmii]2

[
ωm2

jj

]2

=
2m2

ij

miimjj
− 1

= 2 Corr(e2
i , e

2
j )− 1,

which proves (C.6). Letting j = i in the above expression, it is obvious that the expression reduces to 1,
thus proving (C.5).

In matrix notation, the results (C.4), (C.5), and (C.6) can be expressed thus:

E
(
log e2

i

)
≈ log [ω diag(M)]− 1n, and (C.7)

Cov
(
log e2

i , log e2
j

)
≈ 2M−1

diagM ◦MM−1
diag − 1n×n, (C.8)

where log is applied to a vector elementwise, Mdiag is a diagonal n×n matrix with diag(M) as its diagonal,
1n×n is an n× n unit matrix, and 1n is a unit n-vector.

C.2.2 Logarithms of Squared Ordinary Least Squares Residuals under Heteroskedastic-
ity

Proceeding as in §C.2.1, but under heteroskedasticity, one obtains
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E
(
log e2

i

)
≈ log

{
n∑

k=1

ωkm
2
ik

}
− 1, (C.9)

Var
(
log e2

i

)
≈ 1, and (C.10)

Cov
(
log e2

i , log e2
j

)
≈

2

(
n∑

k=1

ωkmikmjk

)2

n∑
k=1

ωkm
2
ik

n∑
ℓ=1

ωℓm
2
jℓ

− 1 (C.11)

= 2 Corr(e2
i , e

2
j )− 1.

Proof:

Using the Taylor series derivation for E
(
log e2

i

)
from the previous section, and substituting in the results from

(1.15) and (3.12),

E
(
log e2

i

)
≈ log

{
n∑

k=1

ωkm
2
ik

}
−

2

(
n∑

k=1

ωkm
2
ik

)2

2

[
n∑

k=1

ωkm
2
ik

]2

= log

{
n∑

k=1

ωkm
2
ik

}
− 1.

Thus, (C.9) is proven. Next, using the Taylor series derivation for Cov
(
log e2

i , log e2
j

)
from the previous

section, and substituting the results from (1.15), (3.12), (3.13), and (C.10),

Cov(log e2
i , log e2

j ) ≈

2

(
n∑

k=1

ωkmikmjk

)2

n∑
k=1

ωkm
2
ik

n∑
ℓ=1

ωℓm
2
jℓ

−

4

(
n∑

k=1

ωkm
2
ik

)2( n∑
ℓ=1

ωℓm
2
jℓ

)2

4

[
n∑

k=1

ωkm
2
ik

]2 [ n∑
ℓ=1

ωℓm
2
jℓ

]2

=

2

(
n∑

k=1

ωkmikmjk

)2

n∑
k=1

ωkm
2
ik

n∑
ℓ=1

ωℓm
2
jℓ

− 1,

which proves (C.11). Letting j = i in the above expression, it is obvious that the expression reduces to 1,
thus proving (C.10).

In matrix notation, the results (C.9), (C.10), and (C.11) can be expressed thus:

E
(
log e2

i

)
≈ log [diag(MΩM)]− 1n, and (C.12)

Cov
(
log e2

i , log e2
j

)
≈ 2 (MΩM)−1

diag [(MΩM) ◦ (MΩM)] (MΩM)−1
diag − 1n×n, (C.13)

where (MΩM)diag is a diagonal n× n matrix with diag(MΩM) as its diagonal.
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C.2.3 Constructing an Auxiliary Nonlinear Variance Model Based on Taylor Series Ap-
proximations

The approximate expectation and variance-covariance matrix of the logs of the squared OLS residuals—given
in scalar form in (C.9) and (C.11) and in matrix form in (C.12) and (C.13)—suggest the model equation,

log e2
i + 1 = log

{
n∑

k=1

ωkm
2
ik

}
+ vi, i = 1, 2, . . . , n, (C.14)

or, alternatively,
log {e ◦ e}+ 1n = log [diag(MΩM)] + v. (C.15)

Whether the log transformation of the response improves the model will depend on the bias-variance trade-
off. The log transformation introduces bias inasmuch as the conditional mean function is now a second-order
Taylor series approximation about E(e2

i ) rather than exact as in the original model. However, in many cases the
log transformation will reduce the variance of the model errors, as can be seen by comparing (3.12) with (C.10).
A further downside of the log-transformed models is that they are no longer linear in ω. Thus, regardless of
how one might reparametrise ω to reduce the number of parameters to be estimated, the model is an ANLVM
and not an ALVM, an estimation method such as quasi-likelihood must be used. Investigating the viability of
these log-based ANLVMs is an area for further research.

C.3 Further Details on the Thin-Plate Spline Auxiliary Linear Variance Model

Referring to (3.53), provided that the technical restriction 2m > p′ is imposed, it can be shown (Wood 2003)
that the solution to (3.52) has the form

ĝ(X) =
n∑

i=1

δiηmd(| −X ′
i·||) +

M∑
j=1

αjϕj(X), (C.16)

where δ and α are coefficients to be estimated, δ being subject to the linear constraints T ′δ = 0 where

Tij = ϕj(X ′
i·), M =

(
m+ d− 1

d

)
, and

ηmd(r) =


(−1)m+1+d/2

22m−1πd/2(m− 1)!(m− d/2)!r
2m−d log(r), d even

Γ(d/2−m)
22mπd/2(m− 1)!r

2m−d, d odd
. (C.17)

Defining matrix E by Eij = ηm,p′ (||xi − xj ||), the spline estimation problem becomes

arg min
δ,α

||y −Eδ − T α||22 + λδ′Eδ,

subject to T ′δ = 0. (C.18)

Due to the high computational cost of the optimisation problem (C.18), Wood (2003) proposes to use a trun-
cated q-dimensional basis for the δ parameter space, where q > M , constructed through eigen-decomposition
of E. This provides an approximate solution at much-reduced computational cost.

The equality constraint from (C.18) falls away, and the estimation problem becomes

arg min
δ̃,α

∣∣∣∣y −UkDkZkδ̃ − T α
∣∣∣∣2

2
+ λδ̃′Z′

kDkZkδ̃, (C.19)

where Uk is a submatrix of U (whose columns are eigenvectors of E), Dk is a submatrix of D (a diagonal
matrix of eigenvalues of E), and Zk is an orthogonal column basis that maps δ̃ onto δk, a subvector of
δ. Clearly, the thin-plate spline model is linear in the combined parameter vector γ = [δ′,ϕ′]′, which has
dimensionality q. By augmenting these matrices with zeroes, one can obtain the linear predictor matrix L and
the q × q penalty matrix P . Introducing our M ◦M term and linear inequality constraint, the estimation
problem takes the form of (3.54).
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C.4 Derivation of the Expectation of the Squared Wild Bootstrap Residual Vector

Here is given a derivation of the expectation of the squared wild bootstrap residual vector, as stated in (3.100),
under the condition that F (e) = diag {e}.

First,

e(b) = y(b) −Xβ̂(b)

= X
(
β̂ − β̂(b))+ F (e)r(b)

= H
(
y − y(b))+ F (e)r(b)

= H
(
Xβ + ϵ−Xβ̂ − F (e)r(b))+ F (e)r(b)

= Xβ + Hϵ−Xβ̂ + MF (e)r(b)

= X
(
β − (X ′X)−1X ′y

)
+ Hϵ + MF (e)r(b)

= Xβ −H (Xβ + ϵ) + Hϵ + MF (e)r(b)

= MF (e)r(b).

It follows that the expectation of e(b) is given by,

E(e(b)) = E
[
MF (e)r(b)]

= M E
[
F (e)r(b)]

= M E [F (e)] E
[
r(b)]

= 0.

The independence of F (e) and r(b) and the zero expectation of the latter both follow from the definition
of r(b). Now,

Cov(e(b)) = E
[(

MF (e)r(b) − E(MF (e)r(b))
) (

MF (e)r(b) − E(MF (e)r(b))
)′
]

= E
[(

MF (e)r(b)) (MF (e)r(b))′
]

= E
[
MF (e)r(b)r(b)′F (e)M

]
= M E

[
F (e)r(b)r(b)′F (e)

]
M .

The (i, j)th element of F (e)r(b)r(b)′F (e) is eir
(b)
i ejr

(b)
j . If i ̸= j,

E
[
eiejr

(b)
i r

(b)
j

]
= E [eiej ] E(r(b)

i ) E(r(b)
j )

= 0.

The independence of r(b)
i and r

(b)
j from each other and from ei and ej follow from the definition of r(b)

i .
Then, for the diagonal elements,

E
(
fi(ei)2r

(b)2
i

)
= E

(
fi(ei)2)E

(
r

(b)2
i

)
︸ ︷︷ ︸

=1

(by independence).

It follows that, if fi(ei) = ei, E
[
F (e)r(b)r(b)′F (e)

]
is a diagonal matrix with diagonal elements

E(e ◦ e) = (M ◦M)ω (see (3.10)). Thus,

Cov(e(b)) = M diag {(M ◦M)ω}M ,

which has diagonal elements (M ◦M)(M ◦M)ω. But the diagonal elements of Cov(e(b)) are Var(e(b)
i ),

i = 1, 2, . . . , n, which is equivalent to E(e(b)2
i ), since E(e(b)) = 0. Hence, E(e(b) ◦ e(b)) = (M ◦M)(M ◦M)ω.

187



http://etd.uwc.ac.za/

D How to Access and Install the skedastic R Package
The skedastic R package developed for this research project (as discussed in Chapter 4) can
be viewed on CRAN at https://cran.r-project.org/package=skedastic, or alternatively on Github at
https://github.com/tjfarrar/skedastic. The version of the package currently on CRAN (version 2.0.1 at the time
of writing), can be installed from within R software by running the code install.packages("skedastic",
dependencies = TRUE). The development version of the package can be installed from Github by running
the code devtools::install_github("tjfarrar/skedastic") after installing the devtools package (Wickham
et al. 2021).
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E Additional Simulation Results on the Performance of the Auxiliary Vari-
ance Models

E.1 Linear Regression with One Covariate and n = 20 Observations

E.1.1 Auxiliary Linear Variance Model Results
Tables E.1-E.4 show results for a simulation like that discussed in §5.3.1, with one covariate generated from a
U(0, 3) distribution, but with a sample size of only n = 20 rather than n = 100.

Table E.1: (Relative) Unstandardised MSE-of-Variances Estimate (with Estimated Standard Error)
for One-Covariate Linear Regression Model with n = 20

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

HC3 22.9
(2.38× 10−2)

8.02
(1.91× 100)

7.67
(2.14× 100)

HC4 16.1
(1.52× 10−2)

4.21
(6.49× 10−1)

3.45
(5.44× 10−1)

HC6 8.1
(5.44× 10−3)

3.62
(7.98× 10−1)

3.7
(9.35× 10−1)

Homoskedastic 1
(1.86× 10−3)

1.31
(6.16× 10−2)

1.42
(4.42× 10−2)

Basic ALVM 22.1
(2.17× 10−2)

7.16
(1.57× 100)

6.78
(1.62× 100)

Clustering ALVM 2.15
(5.75× 10−3)

2.63
(8.57× 10−1)

2.78
(1.01× 100)

Linear ALVM 1.54
(2.99× 10−3)

1
(1.81× 10−1)

1
(1.67× 10−1)

L2-Norm Pen. Poly. ALVM 1.93
(3.93× 10−3)

1.29
(3.77× 10−1)

1.34
(3.70× 10−1)

L1-Norm Pen. Poly. ALVM 2.55
(4.62× 10−3)

1.58
(5.01× 10−1)

1.56
(4.24× 10−1)

Thin-Plate spline ALVM 4.46
(3.71× 10−3)

1.65
(1.83× 10−1)

1.59
(2.58× 10−1)

Miller-Startz SVR 3.79
(1.85× 10−3)

1.49
(7.72× 10−2)

1.44
(7.25× 10−2)
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Table E.2: (Relative) Standardised MSE-of-Variances Estimate (with Estimated Standard Error) for
One-Covariate Linear Regression Model with n = 20

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

HC3 22.9
(2.38× 10−2)

6.35
(2.45× 10−2)

6.66
(2.57× 10−2)

HC4 16.1
(1.52× 10−2)

4.52
(1.65× 10−2)

4.8
(1.76× 10−2)

HC6 8.1
(5.44× 10−3)

2.27
(5.76× 10−3)

2.33
(6.13× 10−3)

Homoskedastic 1
(1.86× 10−3)

4
(2.27× 10−2)

4.35
(2.62× 10−2)

Basic ALVM 22.1
(2.17× 10−2)

6.04
(2.25× 10−2)

6.31
(2.32× 10−2)

Clustering ALVM 2.15
(5.75× 10−3)

1.55
(8.22× 10−3)

1.44
(8.28× 10−3)

Linear ALVM 1.54
(2.99× 10−3)

1.14
(7.25× 10−3)

1.29
(9.68× 10−3)

L2-Norm Pen. Poly. ALVM 1.93
(3.93× 10−3)

1.51
(9.47× 10−3)

1.49
(9.77× 10−3)

L1-Norm Pen. Poly. ALVM 2.55
(4.62× 10−3)

1.17
(8.40× 10−3)

1.2
(8.99× 10−3)

Thin-Plate spline ALVM 4.46
(3.71× 10−3)

1.46
(3.02× 10−3)

1.58
(3.30× 10−3)

Miller-Startz SVR 3.79
(1.85× 10−3)

1
(1.74× 10−3)

1
(1.74× 10−3)

Table E.3: (Relative) MSE of FWLS Estimate of β (with Estimated Standard Error) for One-
Covariate Linear Regression Model with n = 20

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

OLS 1
(1.43× 10−3)

1.15
(7.87× 10−3)

1.25
(7.51× 10−3)

HC3 1.08
(1.52× 10−3)

1.14
(7.92× 10−3)

1.21
(7.37× 10−3)

HC4 1.1
(1.54× 10−3)

1.14
(7.83× 10−3)

1.24
(7.50× 10−3)

HC6 1.15
(1.62× 10−3)

1.19
(8.02× 10−3)

1.31
(7.88× 10−3)

Homoskedastic 1
(1.43× 10−3)

1.15
(7.87× 10−3)

1.25
(7.51× 10−3)

Basic ALVM 2.74
(5.52× 10−2)

2.1
(1.17× 10−1)

1.98
(6.45× 10−2)

Clustering ALVM 2.48
(1.92× 10−2)

4.42
(1.52× 10−1)

3.28
(8.79× 10−2)

Linear ALVM 1.14
(1.88× 10−3)

1.54
(1.27× 10−2)

1.71
(1.21× 10−2)

L2-Norm Pen. Poly. ALVM 1.29
(5.35× 10−3)

5.82
(1.45× 100)

11.2
(1.15× 100)

L1-Norm Pen. Poly. ALVM 1.56
(2.44× 10−2)

27.2
(5.20× 100)

19.8
(2.03× 100)

Thin-Plate spline ALVM 48.6
(7.13× 10−1)

18.5
(5.29× 10−1)

21.4
(4.56× 10−1)

Miller-Startz SVR 1.07
(1.54× 10−3)

1
(6.74× 10−3)

1
(6.02× 10−3)
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Table E.4: (Relative) MSE of Standard Errors of β̂OLS (with Estimated Standard Error) for One-
Covariate Linear Regression Model with n = 20

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

HC3 2.65
(1.34× 10−4)

2.39
(1.88× 10−3)

2.37
(2.19× 10−3)

HC4 1.83
(6.43× 10−5)

1.61
(7.95× 10−4)

1.58
(8.21× 10−4)

HC6 8.09
(1.31× 10−4)

3.76
(1.18× 10−3)

3.33
(1.30× 10−3)

Homoskedastic 1
(4.38× 10−5)

1.33
(3.16× 10−4)

1.43
(3.50× 10−4)

Basic ALVM 2.29
(9.97× 10−5)

2.04
(1.36× 10−3)

2.11
(1.64× 10−3)

Clustering ALVM 1.36
(6.92× 10−5)

1.79
(1.18× 10−3)

1.81
(1.29× 10−3)

Linear ALVM 1.19
(4.71× 10−5)

1
(4.47× 10−4)

1
(4.83× 10−4)

L2-Norm Pen. Poly. ALVM 1.42
(6.48× 10−5)

1.29
(7.34× 10−4)

1.3
(7.84× 10−4)

L1-Norm Pen. Poly. ALVM 1.72
(7.29× 10−5)

1.45
(9.84× 10−4)

1.4
(9.48× 10−4)

Thin-Plate spline ALVM 6.33
(1.56× 10−4)

3.77
(1.06× 10−3)

3.65
(1.09× 10−3)

Miller-Startz SVR 6.21
(1.24× 10−4)

3.59
(8.38× 10−4)

3.39
(8.60× 10−4)
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E.1.2 Auxiliary Nonlinear Variance Model Results

Table E.5: Relative Performance Metrics (with Estimated Standard Errors) for ANLVMs Fit to
One-Covariate Linear Regression Model with n = 20

Homosked. Add. Het. Mult. Het.
Metric ANLVM H = ∅ H = {2} H = {2}

Quadratic 2.83
(4.36× 10−2)

1.98
(8.66× 10−1)

1.6
(6.45× 10−1)

Exponential 2.2
(1.18× 10−2)

5.47
(3.69× 100)

4.67
(8.73× 100)

MSEust(ω̂)
Clustering 1.93

(1.22× 10−2)
2.16

(6.91× 10−1)
2.05

(5.80× 10−1)

Quadratic 2.83
(4.36× 10−2)

1.5
(1.56× 10−2)

1.42
(1.65× 10−2)

Exponential 2.2
(1.18× 10−2)

1.64
(2.11× 10−2)

1.22
(4.01× 10−2)

MSEstd(ω̂)
Clustering 1.93

(1.22× 10−2)
1.47

(8.02× 10−3)
1.38

(7.80× 10−3)

Quadratic 1.06
(1.43× 10−3)

1.02
(7.87× 10−3)

1.01
(7.51× 10−3)

Exponential 1.08
(1.52× 10−3)

0.97
(7.92× 10−3)

0.926
(7.37× 10−3)

MSE(β̂FWLS)
Clustering 1.04

(1.54× 10−3)
0.988

(7.83× 10−3)
0.985

(7.50× 10−3)

Quadratic 1.56
(1.34× 10−4)

1.52
(1.88× 10−3)

1.31
(2.19× 10−3)

Exponential 1.42
(6.43× 10−5)

2.78
(7.95× 10−4)

2
(8.21× 10−4)

MSE(SE(β̂))
Clustering 1.27

(1.31× 10−4)
1.59

(1.18× 10−3)
1.58

(1.30× 10−3)

E.2 Linear Regression with One Covariate and n = 1000

E.2.1 Auxiliary Linear Variance Model Results
Tables E.6-E.9 show results for a simulation like that discussed in §5.3.1, with one covariate generated from a
U(0, 3) distribution, but with a sample size of n = 1000 rather than n = 100. Due to the increased computation
time required, only R = 103 MC replications were used in this simulation rather than R = 104, and some slower
models (LASSO polynomial ALVM, thin-plate spline ALVM) were not included.
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Table E.6: (Relative) Unstandardised MSE-of-Variances Estimate (with Estimated Standard Error)
for One-Covariate Linear Regression Model with n = 1000

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

HC3 994
(7.76× 10−3)

171
(7.29× 10−1)

60.7
(8.65× 10−1)

HC4 988
(7.64× 10−3)

170
(7.21× 10−1)

59.9
(8.23× 10−1)

HC6 453
(1.09× 10−4)

76.5
(2.30× 10−2)

26.6
(3.20× 10−2)

Homoskedastic 1
(8.71× 10−5)

24
(6.69× 10−3)

11.9
(6.69× 10−3)

Basic ALVM 991
(7.61× 10−3)

171
(7.03× 10−1)

60.1
(8.06× 10−1)

Clustering ALVM 3.09
(3.76× 10−4)

2.48
(3.29× 10−2)

1
(3.86× 10−2)

Linear ALVM 1.54
(1.26× 10−4)

1
(1.25× 10−2)

2.06
(1.22× 10−2)

L2-Norm Pen. Poly. ALVM 188
(9.77× 10−4)

33.5
(9.01× 10−2)

12.2
(9.69× 10−2)

Miller-Startz SVR 187
(1.02× 10−3)

33.7
(8.92× 10−2)

12.2
(1.01× 10−1)

Table E.7: (Relative) Standardised MSE-of-Variances Estimate (with Estimated Standard Error) for
One-Covariate Linear Regression Model with n = 1000

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

HC3 994
(7.76× 10−3)

63
(7.36× 10−3)

62.6
(7.77× 10−3)

HC4 988
(7.64× 10−3)

62.4
(7.39× 10−3)

62.3
(7.71× 10−3)

HC6 453
(1.09× 10−4)

28.9
(1.27× 10−4)

28.9
(1.28× 10−4)

Homoskedastic 1
(8.71× 10−5)

93.9
(1.30× 10−2)

117
(1.79× 10−2)

Basic ALVM 991
(7.61× 10−3)

63
(7.66× 10−3)

62.2
(7.47× 10−3)

Clustering ALVM 3.09
(3.76× 10−4)

1
(3.54× 10−4)

1
(3.30× 10−4)

Linear ALVM 1.54
(1.26× 10−4)

1.52
(3.65× 10−4)

5.79
(1.63× 10−3)

L2-Norm Pen. Poly. ALVM 188
(9.77× 10−4)

12.1
(1.00× 10−3)

12.2
(9.83× 10−4)

Miller-Startz SVR 187
(1.02× 10−3)

12.2
(9.45× 10−4)

12.1
(9.49× 10−4)
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Table E.8: (Relative) MSE of FWLS Estimate of β (with Estimated Standard Error) for One-
Covariate Linear Regression Model with n = 1000

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

OLS 1.09
(1.16× 10−4)

1.49
(4.53× 10−4)

1.75
(4.56× 10−4)

HC3 1.06
(1.14× 10−4)

1.59
(4.72× 10−4)

1.69
(4.58× 10−4)

HC4 1.02
(1.09× 10−4)

1.65
(5.28× 10−4)

1.79
(5.00× 10−4)

HC6 1.09
(1.27× 10−4)

1.47
(5.09× 10−4)

1.75
(4.46× 10−4)

Homoskedastic 1.09
(1.16× 10−4)

1.49
(4.53× 10−4)

1.75
(4.56× 10−4)

Basic ALVM 1.1
(1.24× 10−4)

1.6
(4.89× 10−4)

1.83
(4.93× 10−4)

Clustering ALVM 1
(1.08× 10−4)

1
(3.11× 10−4)

1
(2.61× 10−4)

L2-Norm Pen. Poly. ALVM 1.09
(1.16× 10−4)

1.49
(4.53× 10−4)

1.75
(4.56× 10−4)

Miller-Startz SVR 1.08
(1.18× 10−4)

74.1
(2.88× 10−2)

118
(3.58× 10−2)

Table E.9: (Relative) MSE of Standard Errors of β̂OLS (with Estimated Standard Error) for One-
Covariate Linear Regression Model with n = 1000

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2}

HC3 2.26
(1.32× 10−7)

1.04
(6.12× 10−7)

1.05
(7.21× 10−7)

HC4 2.21
(1.20× 10−7)

1
(5.54× 10−7)

1.05
(7.62× 10−7)

HC6 1140
(1.48× 10−6)

495
(8.77× 10−6)

372
(9.77× 10−6)

Homoskedastic 1
(5.82× 10−8)

80.8
(6.48× 10−6)

62.7
(5.77× 10−6)

Basic ALVM 2.07
(1.26× 10−7)

1.03
(5.78× 10−7)

1
(6.72× 10−7)

Clustering ALVM 1.24
(8.08× 10−8)

1
(5.59× 10−7)

1.05
(7.06× 10−7)

Linear ALVM 1.35
(7.95× 10−8)

1.53
(7.44× 10−7)

2.64
(1.04× 10−6)

L2-Norm Pen. Poly. ALVM 285
(1.77× 10−6)

134
(8.19× 10−6)

110
(8.47× 10−6)

Miller-Startz SVR 283
(1.83× 10−6)

135
(7.96× 10−6)

110
(8.76× 10−6)

E.2.2 Auxiliary Nonlinear Variance Model Results

The ANLVM results in Table E.10 are based on only R = 102 MC replications due to the high computation
time required for MQL estimation with n = 1000 observations.
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Table E.10: Relative Performance Metrics (with Estimated Standard Errors) for ANLVMs Fit to
One-Covariate Linear Regression Model with n = 1000

Homosked. Add. Het. Mult. Het.
Metric ANLVM H = ∅ H = {2} H = {2}

Quadratic 1.59
(4.30× 10−4)

0.332
(3.14× 10−2)

1.14
(7.68× 10−2)

Exponential 1.63
(4.51× 10−4)

2.36
(1.44× 10−1)

0.186
(6.26× 10−2)

MSEust(ω̂)
Clustering 2.9

(9.57× 10−4)
2.35

(1.09× 10−1)
1.07

(1.74× 10−1)

Quadratic 1.59
(4.30× 10−4)

0.129
(3.38× 10−4)

0.927
(6.61× 10−4)

Exponential 1.63
(4.51× 10−4)

0.822
(8.40× 10−4)

0.133
(4.37× 10−4)

MSEstd(ω̂)
Clustering 2.9

(9.57× 10−4)
0.946

(9.69× 10−4)
1.02

(1.10× 10−3)

Quadratic 1.06
(1.16× 10−4)

0.951
(4.53× 10−4)

0.953
(4.56× 10−4)

Exponential 1.01
(1.14× 10−4)

1.09
(4.72× 10−4)

0.851
(4.58× 10−4)

MSE(β̂FWLS)
Clustering 0.926

(1.09× 10−4)
0.803

(5.28× 10−4)
0.829

(5.00× 10−4)

Quadratic 1.28
(1.32× 10−7)

0.621
(6.12× 10−7)

3.3
(7.21× 10−7)

Exponential 1.35
(1.20× 10−7)

3.41
(5.54× 10−7)

0.646
(7.62× 10−7)

MSE(SE(β̂))
Clustering 1.53

(1.48× 10−6)
1.1

(8.77× 10−6)
0.902

(9.77× 10−6)

E.3 Linear Regression with One Covariate and Nonmonotonic Heteroskedasticity

The DGP for this simulation consisted of n = 100 observations of a single design variable generated from
U(0, 3). The heteroskedastic function was g(x) =

[
sin2

(2πx
3

)]
+ 1

5 , which is plotted in Figure E.1.

x

g(x)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure E.1: Graph of g(x) =
[
sin2

(
2πx

3

)]
+ 1

5 for x ∈ [0, 3]
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E.3.1 Auxiliary Linear Variance Model Results

(a) (b)

(c) (d)
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(e) (f)

Figure E.2: Unstandardised MSE, Squared Bias, and Variance Metrics of HCCMEs (a, c, e) and
ALVMs (b, d, f) for Simple Linear Regression Model with Nonmonotonic Heteroskedasticity

(a) (b)
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(c) (d)

(e) (f)

Figure E.3: Standardised MSE, Squared Bias, and Variance Metrics of HCCMEs (a, c, e) and
ALVMs (b, d, f) for Simple Linear Regression Model with Nonmonotonic Heteroskedasticity
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Table E.11: Estimated Metrics (with Estimated SE) for ALVMs Fitted under Nonmonotonic Het-
eroskedasticity

Model MSEust(ω̂) MSEst(ω̂) MSE(β̂FWLS) MSE(SE(β̂))

OLS 1.13
(1.93× 10−4)

HC3 13.6
(5.32× 10−3)

6.62
(8.12× 10−3)

1.14
(1.91× 10−4)

1.43
(2.19× 10−6)

HC4 12.6
(4.75× 10−3)

6.13
(7.41× 10−3)

1.13
(1.95× 10−4)

1.31
(1.92× 10−6)

HC6 5.42
(5.18× 10−4)

2.6
(5.81× 10−4)

1.16
(1.93× 10−4)

44.6
(9.02× 10−6)

Homoskedastic 1.64
(1.53× 10−4)

2.69
(4.27× 10−3)

1.13
(1.93× 10−4)

1
(1.52× 10−6)

Basic ALVM 13.4
(5.19× 10−3)

6.53
(7.91× 10−3)

1.19
(2.00× 10−4)

1.35
(2.01× 10−6)

Clustering ALVM (nc: SWD) 1.7
(7.54× 10−4)

1.45
(3.34× 10−3)

1.01
(1.73× 10−4)

1.24
(1.90× 10−6)

Clustering ALVM (nc = 8) 1.68
(7.38× 10−4)

1.44
(3.29× 10−3)

1.04
(1.79× 10−4)

1.24
(1.90× 10−6)

Linear ALVM 1.68
(1.88× 10−4)

2.77
(4.32× 10−3)

1.15
(1.99× 10−4)

1.22
(1.94× 10−6)

L2-Norm Pen. Poly. ALVM 1.67
(1.84× 10−4)

2.75
(4.35× 10−3)

1.13
(1.91× 10−4)

1.18
(1.82× 10−6)

Thin-Plate spline ALVM 1
(5.39× 10−4)

1
(2.38× 10−3)

2.24
(7.83× 10−3)

1.52
(2.34× 10−6)

Miller-Startz SVR 3.14
(5.55× 10−4)

1.19
(8.62× 10−4)

1
(1.69× 10−4)

20.5
(9.31× 10−6)

E.3.2 Auxiliary Nonlinear Variance Model Results

Table E.12: Estimated Metrics (with Estimated SE) for ANLVMs Fitted under Nonmonotonic Het-
eroskedasticity

ANLVM MSEust(ω̂) MSEst(ω̂) MSE(β̂FWLS) MSE(SE(β̂))

Quadratic 1.73
(8.44× 10−4)

2.84
(1.01× 10−2)

1.17
(2.05× 10−4)

1.52
(4.95× 10−6)

Exponential 1.72
(2.50× 10−4)

2.83
(4.66× 10−3)

1.15
(1.92× 10−4)

1.52
(2.65× 10−6)

Clustering (nc: SWD) 1.71
(4.98× 10−4)

2.24
(4.00× 10−3)

1.12
(1.91× 10−4)

1.4
(2.36× 10−6)

Clustering (nc = 8) 1.72
(7.72× 10−4)

1.47
(3.40× 10−3)

1.05
(1.79× 10−4)

1.29
(2.04× 10−6)

Sq. Sinusoidal 1.45
(6.88× 10−4)

2.59
(7.80× 10−3)

1.06
(1.84× 10−4)

0.903
(1.43× 10−6)

Note: the ‘Sq. Sinusoidal’ ANLVM in the table corresponds to an ANLVM with g(x) =
[
sin2

(2πx
3

)]
+ 1

5
(illustrated in Figure E.1)—the exact heteroskedastic function of the DGP.

199



http://etd.uwc.ac.za/

E.4 Linear Regression with One Covariate and Non-Normal Errors

E.4.1 Auxiliary Linear Variance Model Results

Table E.13: (Relative) Unstandardised MSE-of-Variances Estimate (with Estimated Standard Error)
for One-Covariate Linear Regression Model with Non-Normal Errors

H = ∅ H = {2}
Homoskedastic Additive Het. Mult. Het.

Model Laplace Uniform Laplace Uniform Laplace Uniform

HC3 97.7
(1.49× 10−1)

102
(3.52× 10−3)

40.5
(1.56× 101)

31.4
(3.82× 10−1)

26.3
(1.99× 101)

19.3
(4.07× 10−1)

HC4 85.2
(1.16× 10−1)

95.5
(3.19× 10−3)

33.6
(9.56× 100)

29.2
(3.10× 10−1)

26
(1.39× 101)

17.6
(3.71× 10−1)

HC6 24.6
(4.25× 10−2)

90.6
(5.24× 10−4)

14.5
(7.44× 100)

25.3
(8.29× 10−2)

12.1
(1.12× 101)

14.6
(1.21× 10−1)

Homoskedastic 1
(2.71× 10−3)

1
(3.73× 10−4)

2.79
(1.86× 10−1)

11.2
(2.42× 10−2)

2.69
(2.53× 10−1)

9.65
(2.65× 10−2)

Basic ALVM 92.9
(1.32× 10−1)

101
(3.37× 10−3)

38.1
(1.17× 101)

31.3
(3.46× 10−1)

27.3
(1.99× 101)

19.5
(4.45× 10−1)

Clustering ALVM 1.62
(5.07× 10−3)

2.01
(7.93× 10−4)

2.15
(1.04× 100)

1.92
(7.77× 10−2)

1.59
(1.20× 100)

1.63
(8.98× 10−2)

Linear ALVM 1.39
(3.59× 10−3)

1.64
(5.64× 10−4)

1
(5.19× 10−1)

1
(5.47× 10−2)

1.09
(5.59× 10−1)

2.05
(5.77× 10−2)

L2-Norm Pen. Poly. ALVM 1.65
(4.04× 10−3)

1.84
(6.00× 10−4)

1.15
(4.67× 10−1)

1.19
(7.23× 10−2)

1
(5.77× 10−1)

1.05
(9.40× 10−2)

L1-Norm Pen. Poly. ALVM 2.1
(4.74× 10−3)

2.12
(5.76× 10−4)

1.22
(5.16× 10−1)

1.12
(8.48× 10−2)

1.17
(7.25× 10−1)

1
(9.75× 10−2)

Thin-Plate spline ALVM 3.35
(5.73× 10−3)

4.25
(8.94× 10−4)

1.5
(4.75× 10−1)

1.73
(1.02× 10−1)

1.01
(4.22× 10−1)

1.45
(1.18× 10−1)

Miller-Startz SVR 11.2
(2.62× 10−3)

23.6
(2.57× 10−3)

4.75
(2.32× 10−1)

9.26
(2.27× 10−1)

3.49
(2.71× 10−1)

6.39
(2.60× 10−1)
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Table E.14: (Relative) Standardised MSE-of-Variances Estimate (with Estimated Standard Error)
for One-Covariate Linear Regression Model with Non-Normal Errors

H = ∅ H = {2}
Homoskedastic Additive Het. Mult. Het.

Model Laplace Uniform Laplace Uniform Laplace Uniform

HC3 97.7
(1.49× 10−1)

102
(3.52× 10−3)

19.2
(1.65× 10−1)

15.6
(4.39× 10−3)

15.2
(1.56× 10−1)

11.9
(4.68× 10−3)

HC4 85.2
(1.16× 10−1)

95.5
(3.19× 10−3)

16.5
(1.17× 10−1)

14.7
(3.88× 10−3)

14.5
(1.26× 10−1)

11.1
(4.13× 10−3)

HC6 24.6
(4.25× 10−2)

90.6
(5.24× 10−4)

4.74
(3.62× 10−2)

13.7
(4.64× 10−4)

3.99
(3.79× 10−2)

10.4
(4.73× 10−4)

Homoskedastic 1
(2.71× 10−3)

1
(3.73× 10−4)

11.6
(7.65× 10−2)

47.7
(2.60× 10−2)

13.4
(1.29× 10−1)

49.1
(3.92× 10−2)

Basic ALVM 92.9
(1.32× 10−1)

101
(3.37× 10−3)

18.4
(1.45× 10−1)

15.5
(3.94× 10−3)

15.7
(1.64× 10−1)

11.8
(4.40× 10−3)

Clustering ALVM 1.62
(5.07× 10−3)

2.01
(7.93× 10−4)

1.5
(2.43× 10−2)

1.35
(1.17× 10−3)

1.02
(1.75× 10−2)

1
(1.08× 10−3)

Linear ALVM 1.39
(3.59× 10−3)

1.64
(5.64× 10−4)

1
(2.38× 10−2)

1
(1.09× 10−3)

1.24
(2.30× 10−2)

2.85
(4.07× 10−3)

L2-Norm Pen. Poly. ALVM 1.65
(4.04× 10−3)

1.84
(6.00× 10−4)

1.72
(2.64× 10−2)

1.84
(4.46× 10−3)

1.31
(2.51× 10−2)

1.33
(3.73× 10−3)

L1-Norm Pen. Poly. ALVM 2.1
(4.74× 10−3)

2.12
(5.76× 10−4)

1.02
(1.13× 10−2)

1.71
(3.56× 10−3)

1.02
(1.60× 10−2)

1.39
(3.48× 10−3)

Thin-Plate spline ALVM 3.35
(5.73× 10−3)

4.25
(8.94× 10−4)

1.09
(1.33× 10−2)

1.44
(2.73× 10−3)

1
(8.28× 10−3)

2.27
(4.96× 10−3)

Miller-Startz SVR 11.2
(2.62× 10−3)

23.6
(2.57× 10−3)

2.15
(2.72× 10−3)

3.85
(2.48× 10−3)

1.77
(2.85× 10−3)

2.99
(2.58× 10−3)
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Table E.15 (Relative) MSE of FWLS Estimate of β (with Estimated Standard Error) for One-
Covariate Linear Regression Model with Non-Normal Errors

H = ∅ H = {2}
Homoskedastic Additive Het. Mult. Het.

Model Laplace Uniform Laplace Uniform Laplace Uniform

OLS 1.18
(1.14× 10−3)

1
(9.63× 10−4)

1.47
(4.88× 10−3)

1.4
(4.59× 10−3)

1.91
(5.13× 10−3)

1.56
(4.75× 10−3)

HC3 1.09
(9.56× 10−4)

1.2
(1.17× 10−3)

1.49
(4.76× 10−3)

1.56
(5.36× 10−3)

1.84
(5.06× 10−3)

1.67
(5.10× 10−3)

HC4 1.09
(1.01× 10−3)

1.26
(1.25× 10−3)

1.33
(4.62× 10−3)

1.64
(5.35× 10−3)

1.72
(4.98× 10−3)

1.56
(4.63× 10−3)

HC6 1.17
(9.67× 10−4)

1.12
(1.08× 10−3)

1.57
(5.28× 10−3)

1.54
(4.92× 10−3)

1.78
(4.75× 10−3)

1.6
(4.71× 10−3)

Homoskedastic 1.18
(1.14× 10−3)

1
(9.63× 10−4)

1.47
(4.88× 10−3)

1.4
(4.59× 10−3)

1.91
(5.13× 10−3)

1.56
(4.75× 10−3)

Basic ALVM 1.14
(1.02× 10−3)

10.6
(1.60× 10−1)

1.38
(4.87× 10−3)

1.79
(2.06× 10−2)

1.8
(4.81× 10−3)

1.75
(6.68× 10−3)

Clustering ALVM 1.18
(1.11× 10−3)

1.15
(1.07× 10−3)

1
(3.23× 10−3)

1
(3.16× 10−3)

1
(2.39× 10−3)

1
(2.85× 10−3)

Linear ALVM 1.06
(9.68× 10−4)

1.14
(1.09× 10−3)

6.08
(4.53× 10−2)

7.19
(2.24× 10−2)

9.95
(5.31× 10−2)

11.1
(2.30× 10−2)

L2-Norm Pen. Poly. ALVM 1.31
(2.15× 10−3)

1.06
(9.84× 10−4)

483
(3.79× 101)

1.69
(9.13× 10−3)

1820
(9.77× 101)

1.3
(9.89× 10−3)

L1-Norm Pen. Poly. ALVM 1.45
(2.48× 10−3)

1.18
(1.11× 10−3)

21.1
(8.22× 10−1)

1.73
(9.62× 10−3)

770
(4.26× 101)

1.62
(1.29× 10−2)

Thin-Plate spline ALVM 369
(6.27× 100)

1.08
(1.08× 10−3)

6180
(1.47× 102)

148
(6.22× 100)

13600
(1.90× 102)

8670
(1.49× 102)

Miller-Startz SVR 1.32
(1.21× 10−3)

1.17
(1.08× 10−3)

1.01
(3.41× 10−3)

1.04
(3.55× 10−3)

1.15
(3.00× 10−3)

1.01
(2.93× 10−3)
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Table E.16: (Relative) MSE of Standard Errors of β̂OLS (with Estimated Standard Error) for One-
Covariate Linear Regression Model with Non-Normal Errors

H = ∅ H = {2}
Homoskedastic Additive Het. Mult. Het.

Model Laplace Uniform Laplace Uniform Laplace Uniform

HC3 1.98
(2.99× 10−5)

2.15
(4.55× 10−6)

1.44
(1.94× 10−4)

1.55
(3.24× 10−5)

1.23
(2.58× 10−4)

1.18
(3.56× 10−5)

HC4 1.91
(2.70× 10−5)

1.96
(4.21× 10−6)

1.37
(1.60× 10−4)

1.43
(3.23× 10−5)

1.15
(2.07× 10−4)

1.23
(4.03× 10−5)

HC6 24
(7.98× 10−5)

177
(2.76× 10−5)

12.6
(4.65× 10−4)

80
(1.91× 10−4)

8.18
(4.99× 10−4)

45.6
(2.18× 10−4)

Homoskedastic 1
(1.36× 10−5)

1
(2.27× 10−6)

4.15
(2.82× 10−4)

17
(9.32× 10−5)

3.14
(2.90× 10−4)

11.4
(7.83× 10−5)

Basic ALVM 1.81
(2.36× 10−5)

2.04
(4.52× 10−6)

1.31
(1.55× 10−4)

1.45
(2.83× 10−5)

1.23
(2.10× 10−4)

1.26
(3.98× 10−5)

Clustering ALVM 1.16
(1.81× 10−5)

1.36
(3.28× 10−6)

1.4
(1.85× 10−4)

1.18
(2.57× 10−5)

1.1
(1.84× 10−4)

1
(3.17× 10−5)

Linear ALVM 1.18
(1.56× 10−5)

1.33
(2.99× 10−6)

1
(1.38× 10−4)

1
(1.94× 10−5)

1
(1.41× 10−4)

1.44
(3.87× 10−5)

L2-Norm Pen. Poly. ALVM 1.27
(1.78× 10−5)

1.38
(3.31× 10−6)

1.33
(1.58× 10−4)

1.55
(2.67× 10−5)

1.03
(1.76× 10−4)

1.01
(2.53× 10−5)

L1-Norm Pen. Poly. ALVM 1.43
(1.89× 10−5)

1.44
(3.22× 10−6)

1.11
(1.20× 10−4)

1.56
(2.93× 10−5)

1.07
(1.67× 10−4)

1.13
(3.13× 10−5)

Thin-Plate spline ALVM 2.21
(2.72× 10−5)

2.46
(5.40× 10−6)

1.59
(1.43× 10−4)

2
(4.47× 10−5)

1.59
(1.76× 10−4)

2.98
(7.67× 10−5)

Miller-Startz SVR 21.9
(5.70× 10−5)

31.2
(3.00× 10−5)

13.1
(3.02× 10−4)

20.8
(1.67× 10−4)

10.2
(3.29× 10−4)

16.1
(1.91× 10−4)

203



http://etd.uwc.ac.za/

E.4.2 Auxiliary Nonlinear Variance Model Results

Table E.17: Relative Performance Metrics (with Estimated SE) for ANLVMs Fit to One-Covariate
Linear Regression Model with Non-Normal Errors

H = ∅ H = {2}
Homoskedastic Additive Het. Multiplicative Het.

Metric Model Laplace Uniform Laplace Uniform Laplace Uniform

Quadratic 1.42
(3.86 × 10−3)

1.47
(5.50 × 10−4)

0.995
(7.13 × 10−1)

0.591
(4.15 × 10−2)

0.679
(3.27 × 10−1)

1.2
(7.05 × 10−2)

Exponential 1.47
(4.14 × 10−3)

1.58
(5.89 × 10−4)

1.81
(1.06 × 100)

1.94
(1.24 × 10−1)

0.979
(1.19 × 100)

0.58
(7.44 × 10−2)

MSEust(ω̂)
Clustering 1.83

(5.54 × 10−3)
2.01

(8.13 × 10−4)
2.12

(1.23 × 100)
1.93

(7.80 × 10−2)
1.46

(7.72 × 10−1)
1.67

(8.87 × 10−2)

Quadratic 1.42
(3.86 × 10−3)

1.47
(5.50 × 10−4)

0.884
(2.44 × 10−2)

0.309
(5.55 × 10−4)

0.537
(1.94 × 10−2)

0.539
(6.31 × 10−4)

Exponential 1.47
(4.14 × 10−3)

1.58
(5.89 × 10−4)

0.889
(1.74 × 10−2)

0.743
(8.05 × 10−4)

0.39
(1.22 × 10−2)

0.241
(6.10 × 10−4)

MSEstd(ω̂)
Clustering 1.83

(5.54 × 10−3)
2.01

(8.13 × 10−4)
1.42

(2.07 × 10−2)
1.29

(1.02 × 10−3)
0.925

(1.09 × 10−2)
1.02

(1.01 × 10−3)

Quadratic 1.14
(1.03 × 10−3)

1.06
(1.02 × 10−3)

0.966
(3.17 × 10−3)

0.92
(2.96 × 10−3)

1
(2.55 × 10−3)

1
(2.94 × 10−3)

Exponential 1.24
(1.11 × 10−3)

1.08
(1.07 × 10−3)

1.02
(3.37 × 10−3)

0.917
(3.11 × 10−3)

1.07
(2.63 × 10−3)

0.945
(2.73 × 10−3)

MSE(β̂FWLS)
Clustering 1.18

(1.06 × 10−3)
1.08

(1.05 × 10−3)
0.953

(3.08 × 10−3)
1.01

(3.14 × 10−3)
0.983

(2.43 × 10−3)
1.06

(2.94 × 10−3)

Quadratic 1.2
(1.75 × 10−5)

1.16
(2.67 × 10−6)

0.961
(1.51 × 10−4)

0.65
(1.15 × 10−5)

0.815
(1.22 × 10−4)

1.49
(3.13 × 10−5)

Exponential 1.17
(1.66 × 10−5)

1.24
(2.80 × 10−6)

1.42
(1.98 × 10−4)

1.99
(3.56 × 10−5)

0.85
(1.82 × 10−4)

0.679
(2.12 × 10−5)

MSE(SE(β̂))
Clustering 1.21

(1.79 × 10−5)
1.21

(2.98 × 10−6)
1.35

(1.94 × 10−4)
1.2

(2.42 × 10−5)
1.08

(1.56 × 10−4)
1.03

(3.30 × 10−5)
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E.5 Linear Regression with Two Correlated Normal Covariates

Table E.18: (Relative) Unstandardised MSE-of-Variances Estimate (with Estimated Standard Error)
for Two-Covariate Linear Regression Model with Multicollinearity

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3} H = {2} H = {2, 3}

HC3 106
(8.15× 10−3)

31.5
(3.75× 100)

26.5
(3.32× 101)

9.31
(4.47× 101)

4.83
(2.94× 105)

HC4 95.5
(7.18× 10−3)

27.8
(3.12× 100)

23.5
(2.77× 101)

7.86
(3.47× 101)

4.04
(2.31× 105)

HC6 41.9
(6.36× 10−4)

12.8
(8.16× 10−1)

10.7
(6.07× 100)

4.63
(2.89× 101)

3.36
(2.66× 105)

Homoskedastic 1
(2.90× 10−4)

2.93
(1.03× 10−1)

2.66
(9.84× 10−1)

2.49
(6.75× 10−1)

1.92
(3.22× 103)

Basic ALVM 106
(7.99× 10−3)

31.8
(3.87× 100)

26.6
(3.33× 101)

9.27
(4.32× 101)

4.84
(3.17× 105)

Clustering ALVM 3.92
(1.27× 10−3)

2.88
(6.72× 10−1)

2.88
(5.95× 100)

1.2
(7.20× 100)

1.37
(4.96× 104)

Linear ALVM 2.17
(5.47× 10−4)

1
(2.37× 10−1)

1
(1.69× 100)

1.45
(1.59× 100)

1.54
(7.77× 103)

L2-Norm Pen. Poly. ALVM 2.74
(7.45× 10−4)

1.47
(3.20× 10−1)

1.07
(3.08× 100)

1
(4.55× 100)

1
(1.85× 104)

Thin-Plate spline ALVM 5.46
(9.44× 10−4)

1.86
(5.80× 10−1)

1.5
(4.98× 100)

1.15
(6.05× 100)

1.2
(8.40× 104)

Miller-Startz SVR 19.5
(9.22× 10−4)

6.41
(3.57× 10−1)

5.43
(3.23× 100)

2.34
(3.20× 100)

1.5
(1.37× 104)

Table E.19: (Relative) Standardised MSE-of-Variances Estimate (with Estimated Standard Error)
for Two-Covariate Linear Regression Model with Multicollinearity

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3} H = {2} H = {2, 3}

HC3 106
(8.15× 10−3)

12.9
(8.77× 10−3)

11.4
(8.73× 10−3)

7.26
(1.62× 10−2)

37.4
(1.00× 100)

HC4 95.5
(7.18× 10−3)

11.6
(7.65× 10−3)

10.1
(7.33× 10−3)

6.35
(1.32× 10−2)

29.5
(7.39× 10−1)

HC6 41.9
(6.36× 10−4)

4.98
(8.60× 10−4)

4.38
(8.06× 10−4)

2.4
(1.38× 10−3)

1
(7.74× 10−3)

Homoskedastic 1
(2.90× 10−4)

8.92
(6.13× 10−3)

9.34
(7.46× 10−3)

36.2
(6.57× 10−2)

2190
(1.62× 101)

Basic ALVM 106
(7.99× 10−3)

12.9
(8.72× 10−3)

11.3
(8.44× 10−3)

6.72
(1.33× 10−2)

18.3
(5.74× 10−1)

Clustering ALVM 3.92
(1.27× 10−3)

1.66
(3.02× 10−3)

1.67
(2.27× 10−3)

1
(5.33× 10−3)

15.4
(4.79× 10−1)

Linear ALVM 2.17
(5.47× 10−4)

1
(2.73× 10−3)

1.11
(2.02× 10−3)

5.51
(2.01× 10−2)

299
(2.90× 100)

L2-Norm Pen. Poly. ALVM 2.74
(7.45× 10−4)

2.09
(4.17× 10−3)

1.56
(3.65× 10−3)

14.4
(1.67× 10−1)

2940
(7.19× 101)

Thin-Plate spline ALVM 5.46
(9.44× 10−4)

1.05
(1.74× 10−3)

1
(2.18× 10−3)

4.65
(1.92× 10−2)

1420
(2.16× 101)

Miller-Startz SVR 19.5
(9.22× 10−4)

2.34
(8.81× 10−4)

2.05
(8.93× 10−4)

1.18
(1.77× 10−3)

9.9
(3.98× 10−1)
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Table E.20: (Relative) MSE of FWLS Estimate of β (with Estimated Standard Error) for Two-
Covariate Linear Regression Model with Multicollinearity

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3} H = {2} H = {2, 3}

OLS 1
(5.67× 10−4)

1.25
(7.44× 10−3)

1.33
(2.11× 10−2)

2.38
(1.78× 10−2)

9.6
(9.45× 10−1)

HC3 1.05
(6.08× 10−4)

1.25
(7.58× 10−3)

1.29
(2.04× 10−2)

2.3
(1.73× 10−2)

8.52
(8.76× 10−1)

HC4 1.03
(5.98× 10−4)

1.29
(7.91× 10−3)

1.32
(2.13× 10−2)

2.25
(1.72× 10−2)

8.59
(8.62× 10−1)

HC6 1.06
(6.15× 10−4)

1.29
(7.81× 10−3)

1.34
(2.13× 10−2)

2.37
(1.78× 10−2)

9.54
(9.29× 10−1)

Homoskedastic 1
(5.67× 10−4)

1.25
(7.44× 10−3)

1.33
(2.11× 10−2)

2.38
(1.78× 10−2)

9.6
(9.45× 10−1)

Basic ALVM 1.14
(6.53× 10−4)

1.33
(8.34× 10−3)

1.43
(2.36× 10−2)

2.19
(1.71× 10−2)

6.71
(8.61× 10−1)

Clustering ALVM 1.34
(6.43× 10−3)

3.81
(2.56× 10−1)

2.3
(1.21× 10−1)

8.7
(3.88× 10−1)

6.86
(2.27× 100)

Linear ALVM 1.29
(4.33× 10−3)

1.63
(1.47× 10−2)

2.47
(4.76× 10−2)

1.35
(1.56× 10−2)

1
(1.04× 10−1)

L2-Norm Pen. Poly. ALVM 1.36
(2.09× 10−3)

2.1
(1.48× 10−1)

153
(1.48× 102)

5630
(2.56× 103)

117000
(3.80× 105)

Thin-Plate spline ALVM 5.33
(1.14× 10−1)

11.3
(4.91× 10−1)

9.76
(7.96× 10−1)

60.9
(1.58× 100)

87.5
(1.65× 101)

Miller-Startz SVR 1.11
(6.28× 10−4)

1
(6.04× 10−3)

1
(1.61× 10−2)

1
(7.93× 10−3)

1.17
(1.77× 10−1)

Table E.21: (Relative) MSE of Standard Errors of β̂OLS (with Estimated Standard Error) for Two-
Covariate Linear Regression Model with Multicollinearity

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3} H = {2} H = {2, 3}

HC3 3.35
(1.05× 10−5)

2.31
(1.63× 10−4)

2.31
(4.77× 10−4)

1.64
(7.59× 10−4)

1.81
(8.64× 10−2)

HC4 3.01
(8.67× 10−6)

2.09
(1.27× 10−4)

2.06
(3.64× 10−4)

1.51
(6.02× 10−4)

1.72
(7.23× 10−2)

HC6 67.4
(3.76× 10−5)

37.1
(6.06× 10−4)

38.8
(1.73× 10−3)

10.3
(1.85× 10−3)

5.26
(1.07× 10−1)

Homoskedastic 1
(3.35× 10−6)

3.19
(1.37× 10−4)

4.06
(5.26× 10−4)

1.38
(2.27× 10−4)

1
(2.87× 10−2)

Basic ALVM 3.2
(9.74× 10−6)

2.28
(1.52× 10−4)

2.23
(4.15× 10−4)

1.55
(6.62× 10−4)

1.86
(8.50× 10−2)

Clustering ALVM 1.61
(6.43× 10−6)

1.57
(1.12× 10−4)

1.53
(3.02× 10−4)

1.15
(5.09× 10−4)

1.68
(4.24× 10−2)

Linear ALVM 1.42
(4.64× 10−6)

1
(7.75× 10−5)

1
(2.02× 10−4)

1
(3.35× 10−4)

1.37
(3.54× 10−2)

L2-Norm Pen. Poly. ALVM 1.56
(5.65× 10−6)

1.33
(8.87× 10−5)

1.31
(2.85× 10−4)

1.41
(7.20× 10−4)

1.7
(6.13× 10−2)

Thin-Plate spline ALVM 3.45
(9.61× 10−6)

1.56
(1.10× 10−4)

1.5
(3.14× 10−4)

1.45
(5.35× 10−4)

1.56
(6.22× 10−2)

Miller-Startz SVR 29.3
(2.99× 10−5)

18.6
(4.08× 10−4)

19.1
(1.12× 10−3)

9.37
(1.31× 10−3)

7.49
(9.30× 10−2)
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E.6 Linear Regression with Eight Correlated Normal Covariates

Table E.22: (Relative) Unstandardised MSE-of-Variances Estimate (with Estimated Standard Error)
for Eight-Covariate Linear Regression Model with Multicollinearity

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3, 4, 5} H = {2} H = {2, 3, 4, 5}

HC3 115
(9.75× 10−3)

21.1
(4.50× 100)

18.3
(4.98× 102)

6.65
(7.02× 101)

2.72
(2.24× 10+13)

HC4 81.7
(6.47× 10−3)

15.1
(2.86× 100)

13
(3.26× 102)

4.88
(4.90× 101)

1.88
(1.46× 10+13)

HC6 39.1
(5.46× 10−4)

7.43
(4.28× 10−1)

6.36
(4.05× 101)

2.7
(2.37× 101)

1.35
(9.20× 10+12)

Homoskedastic 1
(3.10× 10−4)

1.7
(1.17× 10−1)

1.35
(1.38× 101)

1.82
(1.07× 100)

1.22
(2.72× 10+11)

Basic ALVM 112
(9.26× 10−3)

20.9
(4.43× 100)

18
(4.84× 102)

6.78
(7.65× 101)

2.59
(2.18× 10+13)

Clustering ALVM 9.53
(2.01× 10−3)

2.49
(9.05× 10−1)

2.43
(1.22× 102)

1.39
(1.66× 101)

1.4
(7.19× 10+12)

Linear ALVM 5.42
(9.38× 10−4)

1
(3.45× 10−1)

1
(3.44× 101)

1
(3.20× 100)

1.12
(6.63× 10+11)

L2-Norm Pen. Poly. ALVM 24.6
(5.75× 10−3)

5.69
(2.12× 100)

4.43
(2.01× 102)

2.26
(2.91× 101)

1.07
(1.06× 10+12)

Miller-Startz SVR 22.4
(1.01× 10−3)

4.48
(3.79× 10−1)

3.72
(4.55× 101)

1.93
(3.25× 100)

1
(8.57× 10+11)

Table E.23: (Relative) Standardised MSE-of-Variances Estimate (with Estimated Standard Error)
for Eight-Covariate Linear Regression Model with Multicollinearity

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3, 4, 5} H = {2} H = {2, 3, 4, 5}

HC3 115
(9.75× 10−3)

11.5
(1.05× 10−2)

8.82
(1.08× 10−2)

7.68
(1.77× 10−2)

209
(2.30× 105)

HC4 81.7
(6.47× 10−3)

8.09
(6.84× 10−3)

6.19
(6.94× 10−3)

5.21
(1.08× 10−2)

122
(1.30× 105)

HC6 39.1
(5.46× 10−4)

3.73
(5.40× 10−4)

2.83
(5.60× 10−4)

1.95
(7.03× 10−4)

1
(1.56× 103)

Homoskedastic 1
(3.10× 10−4)

2.71
(2.93× 10−3)

3.36
(4.29× 10−3)

17.3
(4.30× 10−2)

2620
(1.12× 106)

Basic ALVM 112
(9.26× 10−3)

11.2
(1.02× 10−2)

8.53
(1.01× 10−2)

6.91
(1.55× 10−2)

84.9
(1.28× 105)

Clustering ALVM 9.53
(2.01× 10−3)

1.62
(3.16× 10−3)

1.47
(2.79× 10−3)

1.31
(6.91× 10−3)

46.7
(2.45× 105)

Linear ALVM 5.42
(9.38× 10−4)

1
(2.19× 10−3)

1
(2.19× 10−3)

2.97
(1.29× 10−2)

482
(3.58× 105)

L2-Norm Pen. Poly. ALVM 24.6
(5.75× 10−3)

4.46
(8.86× 10−3)

3.67
(9.70× 10−3)

18.9
(1.69× 10−1)

248
(9.67× 105)

Miller-Startz SVR 22.4
(1.01× 10−3)

2.03
(1.13× 10−3)

1.54
(1.18× 10−3)

1
(1.60× 10−3)

39.2
(4.69× 104)
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Table E.24: (Relative) MSE of FWLS Estimate of β (with Estimated Standard Error) for Eight-
Covariate Linear Regression Model with Multicollinearity

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3, 4, 5} H = {2} H = {2, 3, 4, 5}

OLS 1
(2.36× 10−3)

1.02
(4.00× 10−2)

1.09
(4.61× 10−1)

1.62
(8.72× 10−2)

10
(1.47× 104)

HC3 1.07
(2.58× 10−3)

1.08
(4.35× 10−2)

1.1
(4.58× 10−1)

1.5
(8.17× 10−2)

6.78
(1.00× 104)

HC4 1.04
(2.43× 10−3)

1.09
(4.21× 10−2)

1.09
(4.60× 10−1)

1.49
(8.21× 10−2)

6.88
(1.00× 104)

HC6 1.07
(2.49× 10−3)

1.13
(4.43× 10−2)

1.13
(4.69× 10−1)

1.55
(8.44× 10−2)

8.45
(1.25× 104)

Homoskedastic 1
(2.36× 10−3)

1.02
(4.00× 10−2)

1.09
(4.61× 10−1)

1.62
(8.72× 10−2)

10
(1.47× 104)

Basic ALVM 1.18
(2.74× 10−3)

1.23
(5.07× 10−2)

1.25
(5.12× 10−1)

1.63
(9.06× 10−2)

4.92
(7.83× 103)

Clustering ALVM 1.13
(3.00× 10−3)

1.13
(5.73× 10−2)

1.22
(9.79× 10−1)

1.43
(4.14× 10−1)

2.69
(1.72× 104)

Linear ALVM 1.27
(3.39× 10−3)

1.36
(6.12× 10−2)

1.36
(6.43× 10−1)

1.32
(8.65× 10−2)

2.9
(4.07× 103)

L2-Norm Pen. Poly. ALVM 439
(3.78× 101)

604
(1.37× 103)

85600
(2.71× 106)

705
(2.02× 103)

2.12
(3.42× 103)

Miller-Startz SVR 1.04
(2.45× 10−3)

1
(3.96× 10−2)

1
(4.26× 10−1)

1
(5.48× 10−2)

1
(2.10× 103)

Table E.25: (Relative) MSE of Standard Errors of β̂OLS (with Estimated Standard Error) for Eight-
Covariate Linear Regression Model with Multicollinearity

Homosked. Add. Het. Mult. Het.
Model H = ∅ H = {2} H = {2, 3, 4, 5} H = {2} H = {2, 3, 4, 5}

HC3 3.53
(5.14× 10−5)

3.1
(1.01× 10−3)

3.21
(1.04× 10−2)

2.35
(4.21× 10−3)

1.46
(1.77× 103)

HC4 2.73
(3.23× 10−5)

2.59
(6.69× 10−4)

2.6
(6.85× 10−3)

2.05
(2.67× 10−3)

1.25
(1.16× 103)

HC6 70.7
(1.31× 10−4)

54.1
(2.69× 10−3)

56.8
(2.72× 10−2)

21.4
(8.02× 10−3)

4.11
(1.71× 103)

Homoskedastic 1
(1.34× 10−5)

1
(2.89× 10−4)

1
(3.09× 10−3)

1
(1.14× 10−3)

1
(1.14× 103)

Basic ALVM 2.95
(4.04× 10−5)

2.75
(8.30× 10−4)

2.78
(8.13× 10−3)

2.2
(3.34× 10−3)

1.91
(1.90× 103)

Clustering ALVM 1.16
(1.56× 10−5)

1.25
(3.84× 10−4)

1.23
(3.81× 10−3)

1.47
(2.54× 10−3)

1.68
(2.17× 103)

Linear ALVM 1.07
(1.43× 10−5)

1.14
(3.60× 10−4)

1.26
(3.93× 10−3)

1.41
(2.43× 10−3)

1.82
(2.29× 103)

L2-Norm Pen. Poly. ALVM 2.28
(5.69× 10−5)

2.48
(1.20× 10−3)

2
(9.97× 10−3)

3.24
(7.52× 10−3)

2.78
(3.30× 103)

Miller-Startz SVR 28.9
(1.07× 10−4)

24.7
(1.97× 10−3)

25.7
(2.08× 10−2)

14.5
(4.75× 10−3)

4.74
(1.44× 103)
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