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Preamble

Measurements of nuclear reaction rates are important to understand the nucleosynthesis of elements in

stars. However, direct measurements of such reaction rates are difficult because of low cross sections at

stellar temperatures.

This thesis focuses on the 20Ne(p, γ)21Na bottleneck reaction that is part of the neon-sodium (NeNa) cycle

and plays a critical role in the creation of Ne, Na and Mg isotopes [1]. The 20Ne(p, γ) reaction is important

in the hydrogen-burning shells of red giants, cores of massive stars, Asymptotic Giant Branch (AGB) stars

and cataclysmic variables called nova explosions [2, 3]. For determining the reaction rate, one requires

an accurate knowledge of both non-resonant and resonant contributions. In the latter category, a critical

resonance produces the Jπ = 5/2+, Ex = 3544.3 keV state in 21Na [1]. As the dominant decay mode of this

level is via a γ-ray transition to the 3/2+ ground state in 21Na, measuring the E2/M1 (electric quadrupole to

magnetic dipole) mixing ratio of this transition forms an important aspect of the reaction rate measurement.

This thesis describes a measurement of this mixing ratio, whose value was last published nearly six decades

ago [4].

The thesis is made up of five chapters:

• The first chapter briefly describes stellar evolution and nucleosynthesis. Following this, the neon-sodium

cycle and the importance of the 20Ne(p, γ)21Na reaction is motivated so that it lays the foundation for

the following chapters.

• In the second chapter I provide a theoretical background on both the nuclear and astrophysics aspects

of this study. Technical aspects of nuclear reactions and the essential measurements pertinent to this

work are discussed.

• The third chapter briefly provides experimental details of the mixing ratio measurement for the

3544.3 keV → ground state (G.S.) transition in 21Na.

• The fourth chapter presents the data analysis and results.

• The last chapter provides brief concluding remarks.

1
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Chapter 1

Introduction

1.1 The nuclear physics of stars

The cycle of a star begins when large molecular gas clouds collapse due to their gravitational energy being

greater than the thermal energy of the molecules in the cloud. In such a scenario,

GM2

R
≥ 3

2
kT

M

m
. (1.1)

This condition of instability is called the Jeans criterion. Equation 1.1 is rewritten as [5]

M ≥ 3.7

(
kT

Gm

)3/2

ρ−1/2. (1.2)

In the above, M is the total mass of the molecular cloud, R is its radius, k is Boltzmann’s constant, G is

the gravitational constant, T is the cloud temperature, m is the mean molecular weight, and ρ is the cloud

molecular density. Interstellar clouds typically have densities of about 100 atoms cm−3 and T ' 100 K. The

Jeans criterion is only met when the mass of the cloud is greater than 2 × 104 M� [5] (where M� denotes

one solar mass).

The genesis of stars is initiated through such condensation of gas clouds in interstellar space. The gravita-

tional collapse to a high central density results in the formation of a protostar. The internal heat that is

generated is radiated away from the center, which is relatively hotter than the surface. The protostar’s core

is prevented from further collapse due to hydrostatic equilibrium, whereby the internal pressure from the

2
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core counterbalances gravitational contraction. The internal outward pressure is due to the thermal energy

of the gas within the star and due to the outward flow of radiation. The latter is significant in massive stars.

The temperature of a star determines the type of electromagnetic radiation that it gives out. For example in

the case of protostars, the emission of infrared radiation has been observed [6]. When these photons interact

with any opaque material they exert a radiation pressure

p =
4σ

3c
T 4, (1.3)

where σ is the Stefan-Boltzmann constant and c is the speed of light. In the absence of radiation pressure, such

as in the case of white dwarfs with masses< 1.44M� (the Chandrasekhar limit), electron degeneracy pressure

aids in preventing gravitational collapse. This is because Pauli’s exclusion principle prevents electrons with

the same quantum numbers from occupying the same energy state within a stellar plasma. For a star in

hydrostatic equilibrium, the pressure gradient is

dP (r)

dr
=
−GM(r)ρ(r)

r2
, (1.4)

where P (r) and ρ(r) are the total gas pressure and the density at a radial distance r, respectively. Here,

M(r) is the mass of gas inside a stellar sphere of radius r, so that

M(r) =

∫ r

0

4πr2ρ(r)dr. (1.5)

If one assumes that M(r) = M
2 at r = R

2 , where M and R are the mass and radius of the star, then it is

easy to show that the density at the midway point is [5]

ρ 'M/R3. (1.6)

If the pressure on the surface at r = R is such that P (R) → 0, then the central pressure P (0) can be

estimated to be [5]

P (0) ' 8ρsGM

R
, (1.7)

where ρs is the mean density of the star.

The equation of state relates the pressure, temperature and density of matter in a stellar interior. Using the

ideal gas equation it is easy to show that

3
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P (r) =
kρ(r)T (r)

m
, (1.8)

where k is the Boltzmann’s constant and m denotes the mean molecular weight of the gas particles, m '

1/2mH . Using the above equation, and further assuming that the central density ρ(0) = 2ρ, the central

temperature of the star is approximated to be

T (0) ' mGM

kR
. (1.9)

Once a protostar is stabilized by hydrostatic equilibrium, it reaches the main-sequence stage [7] in the

Hertzsprung-Russell (HR) diagram shown in Fig. 1.1. As energy is radiated away, the star begins to shrink

due to gravitational compression. This compression increases the heat within the interior of the star. When

the temperature of the core reaches approximately 107 K, the thermonuclear fusion of hydrogen nuclei is ini-

tiated [5]. During the course of hydrogen burning, gravitational contraction is halted and the star maintains

a nearly constant size, temperature and luminosity. The rate at which hydrogen is converted into helium

mainly depends on the mass of the star. Large-mass stars are known to burn hydrogen much faster compared

to low-mass stars.

Main sequence stars, shown in the HR diagram (Fig. 1.1), predominantly have hydrogen available for fuel

and energy is generated within their cores via the proton-proton (pp) chain reaction, which is shown in

Fig. 1.2.

In the first step of the pp chain, two protons fuse to form a deuteron via the weak interaction process

p+ p→ 2
1D + e+ + νe. (1.10)

The Q value of this reaction is Q = 1.442 MeV, which is released and shared among the reaction products [10].

The deuteron produced in this first step fuses with another proton producing 3He through the process

2
1D + p→ 3

2He + γ. (1.11)

4
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Figure 1.1: The Hertzsprung-Russell (HR) diagram classifies stars. The left y-axis shows the luminosity

relative to the sun, whereas the right y-axis displays the absolute magnitude in comparison with the sun.

The upper x-axis shows the temperature and spectral type, while the color index is shown on the lower

x-axis. This figure is taken from Ref. [8].

Following this, a series of reactions leads to the formation of heavier elements. As shown in Fig 1.2, two

3He nuclei fuse to yield α particles through the 3He(3He, 2p)α reaction. This is followed by reactions such

as 3He(α, γ)7Be, 7Be(p, γ)8B, 8B β+ decay, 7Be β− decay, 7Li(p, α)α, etc. [5,10]. Clearly, the pp reaction is

the most fundamental for energy generation in stars. This reaction is extremely slow as it is mediated by

the weak interaction. Without this reaction none of the heavier elements would form.

A star will continue to be in the main-sequence region until the hydrogen fuel in its core is exhausted. Then

gravitational contraction will take over again, causing the star to compress further. The core at this stage

5
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Figure 1.2: The proton-proton chain. Figure taken from Ref. [9].

mainly consists of helium whereas the shell surrounding the helium core is hydrogen. Energy generated

within the core due to this compression is usually more than can be radiated away at the surface. Therefore

the outer layers of the core expand and cool. At this stage the star becomes brighter and appears to be

redder, forming a red giant, which is located along the line of giants in the HR diagram in Fig. 1.1. At this

point the central temperature of the star is high enough to ignite helium burning. Stars similar to our sun

will burn helium as soon the hydrogen fuel is consumed [5,10–12]. A critical reaction here is the triple-alpha

process, 3α→ 12C, due to a resonance (the Hoyle state) at 7.65 MeV in 12C.

An important group of stars in the HR diagram lies towards the left of the red giants, called asymptotic

giant branch (AGB) stars [10]. In massive stars with M ≥ 8M� the ashes of one set of nuclear reactions

become fuel for the next set. The helium burning produces elements such as carbon and oxygen, with a

small amount of neon. At even higher temperatures carbon and oxygen undergo reactions via the CNO

cycle, which will be described below. This cycle initiates a series of nucleosynthesis processes that lead to

the creation of heavier elements. At higher temperatures, elements up to Fe are produced. This is shown

schematically in Fig. 1.3, as a typical onion shell structure of a star.

The CNO cycle also plays a major role in the energy production in the stars. It has two sub-parts to it,

as shown in Fig. 1.4. Depending on a star’s interior, at low temperatures (T ∼ 20 MK) the CN cycle is

6
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Figure 1.3: The layered onion ring structure of a supergiant star.

dominant, whereas the NO cycle proceeds at much higher temperatures (T & 30 MK) [13].

As shown in Figs. 1.4 and 1.5, the CN cycle proceeds via

12C(p, γ)13N(β+ν)13C(p, γ)14N(p, γ)15O(β+ν)15N(p, α)12C,

whereas the second part, the NO cycle goes as

16O(p, γ)17F(β+, ν)17O(p, α)14N(p, γ)15O(β+, ν)15N(p, γ)16O.

The CNO cycle is catalytic, as it reuses carbon, nitrogen and oxygen both as starting and end products. It

also produces helium through (p, α) reactions. The reactions for proton capture and β decay compete with

each other. At higher temperatures proton captures dominate β decays, therefore the cycle is referred to as

the hot CNO cycle. At lower temperatures the time scales for energy production are dominated by the β

decay half lives. This is referred to the cold CNO cycle.

Once the core reaches the pure iron stage, further nucleosynthesis ceases. This is because (as shown in

Fig. 1.6) Fe has a large binding energy per nucleon. This prevents further nuclear reactions and energy

production to counterbalance gravitational collapse. Therefore the core will continue to shrink and this

causes the star to become unstable. In many cases, for masses ≥ 8M� [5], stars shed their mass via a violent

explosion known as a Type 2 supernova. The remnant of a Type 2 supernova is a highly dense core, which

7
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Figure 1.4: The CNO cycle.

Figure 1.5: The CNO, NeNa and MgAl Cycles.

may take the form of a neutron star or a black hole.

Stars with masses M ≤ 8M� result in the formation of a planetary nebula, leaving behind a white dwarf.

Other stars in binary systems (shown in Fig. 1.7) tend to shed their mass via the nova phenomenon or as

Type 1 supernovae. These are similar short-lived cataclysmic phenomena.

In binary systems comprising white dwarfs, as the normal star has exhausted its hydrogen fuel within the

core, the shell (consisting of mostly hydrogen) expands outwards and cools, becoming a red giant. During

this expansion matter crosses over the Roche surface, as shown in Fig. 1.7. The expelled material that is

swept in to the vicinity of the accretion disk spirals into the white dwarf at extreme velocities. This leads

to a thermonuclear runaway, resulting in the occurrence of a series of nuclear reactions. Since reactions

involving hydrogen occur more easily, cycles such as the CNO (and NeNa and MgAl cycles described below)

are possible [16–20]. A Type 1 supernova can also occur in such binary systems. This is much more violent

8
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Figure 1.6: Binding energy per nucleon as a function of the mass number A. Taken from Ref. [14].

Figure 1.7: Schematic representation of a binary stellar system. Figure taken from Ref. [15].

and results in the destruction of the whole star instead of just its hydrogen envelope.

As shown in Fig. 1.5, the CNO cycle results in the formation of 18O, which leads to 15N via the 18O(p, α)

reaction. Break out from the CNO cycle to the NeNa cycle occurs via the 15N(α, γ), 18O(p, γ) and 19F(p, γ)

reactions. The 23Na(p, γ) reaction is an important reaction, linking the NeNa and the MgAl cycles.

The pp chain and the CNO cycle contribute mostly to the energy production in stars, whereas the NeNa

and MgAl cycles are vital for the production of new elements between 20Ne and 27Al.

At the extreme temperatures that occur in environments such as classic novae, the breakout reactions men-

tioned above become important. We focus next on the NeNa cycle, which is important in the context of this

project.

9
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1.2 The Neon-Sodium Cycle

The nucleosynthesis of Ne, Na and Mg isotopes is largely influenced by the important 20Ne(p, γ)21Na reaction.

As Fig. 1.5 shows, these isotopes are produced through a series of proton captures and β decays that begin

with 20Ne. The 20Ne(p, γ)21Na reaction is important in stellar environments where temperatures are greater

than 0.05 GK, such as in the hydrogen-burning shells of red giants, cores of massive stars, AGB stars and

novae [2,3]. It also results in the production of 22Na, an important isotope for observational astronomy [3,21].

Furthermore, the 20Ne(p, γ)21Na reaction rate is one of the slowest, which makes it an important regulatory

point in the cycle [21].

Although there are several 20Ne(p, γ)21Na resonances that contribute to the stellar reaction rate (see Fig 1.8),

a few important points are worth considering. The reaction Q value is 2431.6 keV. It is known from previous

work [22] that at low temperatures the reaction rate proceeds mainly via non-resonant capture and the tail

of the sub-threshold resonance at 2424.9 keV. At higher temperatures (T ≈ 1 GK) the main contribution

to the reaction rate is from the resonant capture on the 3544.3 keV state, whose spin-parity is Jπ = 5
2

+

(this state is highlighted in Fig 1.8). Aspects concerning this resonance state are discussed further in the

following chapters.

Figure 1.8: Energy level diagram for 21Na, taken from Ref. [1].

10
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Chapter 2

The 20Ne(p, γ)21Na reaction: Nuclear

physics background

2.1 Concepts

Here I first introduce some background concepts, before discussing both general and special aspects of the

20Ne(p, γ) resonance reaction.

2.1.1 Cross section

The concept of a cross section is related to the probability that a nuclear reaction will occur. Classically,

each nucleus has a geometrical area associated with it, that is proportional to the probability of interaction

with target nuclei [10]. In this case, the cross section σ is obtained simply as

σ = π(Rp +Rt)
2, (2.1)

where Rp and Rt are the radii of the projectile and target nuclei respectively. Each radius can be estimated

from

R = R0A
1/3, (2.2)

where R0 = 1.2 fm and A is the mass number. In actuality, since atomic nuclei are governed by the laws of

quantum mechanics, the cross section depends on energy rather than a geometrical area. Therefore,
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σ = πň2, (2.3)

where ň is the reduced de Broglie wavelength,

ň =
mp +mt

mt

h̄

(2mpEt)1/2
. (2.4)

Here Et is the laboratory energy of the incident projectile with mass mp and the mass of the target nucleus

is mt.

2.1.2 Lorentzian widths of nuclear levels

The transition rate from an excited nuclear level is given by

λ =
1

τ
, (2.5)

where τ is the lifetime of the state. This can be expressed using Fermi’s golden rule [23]

1

τ
=

2π

h̄
|Vfi|2ρ(E), (2.6)

which can be arrived at by perturbation theory. Here Vfi is the matrix element for the transition, such

that Vfi = 〈f|Hint|i〉, where Hint is the perturbing Hamiltonian and ρ(E) is the density of available final

states.

For the transitions to occur, it is essential to add an exponential decay term to the stationary state solution

for the wave function of a given level. This is expressed as [24]

ψ(t) = ψ(0) exp

(
− iE0t

h̄

)
exp

(
−Γt

2h̄

)
. (2.7)

Such a solution results in the familiar exponential decay after a time t

|ψ(t)|2= |ψ(0)|2exp

(
−Γt

h̄

)
, (2.8)

and is attained by the addition of an imaginary attenuation factor to the energy [24]
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E = E0 −
iΓ

2
. (2.9)

The above also shows that Γ = λh̄ or Γτ = h̄. Here, Γ is the width of the state and τ is its lifetime. This

equation shows that a finite width is essential for a transition to occur. In the limit τ →∞ (stable states),

Γ→ 0.

The shape of the state in the energy domain can be obtained from a Fourier transform to the time-dependent

wave function in Eq. 2.7. Its normalized form results in a Breit-Wigner distribution

P (E) =
Γ

2π

1

(E − E0)
2

+
(

Γ
2

)2 , (2.10)

also shown in Fig. 2.1, with central value Ea and width Γa. In general, a level has a total width Γ, that can

be expressed as a sum of partial widths.

Γ = Γa + Γb + Γc..., (2.11)

where a, b, c refer to different decay modes to various final states.

Figure 2.1: A Breit-Wigner distribution with width Γa.

2.2 Stellar reaction rates

As mentioned previously, nuclear cross sections are mainly energy dependent. Therefore, σ implicitly becomes

a function of the relative velocity, v, between projectile and target nuclei. In a stellar environment, the

velocities of particles are not monoenergetic. Instead the particles follow a velocity distribution φ(v). Thus,

φ(v)dv is the probability that the relative velocity between interacting particles lies in the range v and

13
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v + dv. Since the total number of reactions depends on the flux of the projectile nuclei, the number density

of the target nuclei and the reaction cross section σ(v), the reaction rate is proportional to vσ(v) [5]. For a

normalized probability density function φ(v), one can then define an averaged value 1

〈σv〉 =

∫ ∞
0

φ(v)σ(v)vdv. (2.12)

This is the average reaction rate per particle pair in a stellar environment. Further assuming that the stellar

gas is in thermodynamic equilibrium, the nuclear velocities are assumed to follow a Maxwell-Boltzmann

distribution. For interacting nuclei A and B, this is expressed as

φ(vA) = 4πv2
A

( mA

2πkT

)3/2

exp

(
−mAv

2
A

2kT

)
(2.13)

and

φ(vB) = 4πv2
B

( mB

2πkT

)3/2

exp

(
−mBv

2
B

2kT

)
. (2.14)

Consequently, the average reaction rate per particle pair, 〈σv〉 is simply [5]

〈σv〉 =

∫ ∞
0

∫ ∞
0

φ(vA)φ(vB)σ(v)vdvAdvB , (2.15)

where v is the relative velocity between A and B.

The above is usually expressed in terms of the relative velocity v, the center of mass velocity Vcm, the reduced

mass µ = mAmB
mA+mB

and the total mass M = mA +mB , so that [5]

〈σv〉 =

(
8

πµ

)1/2(
1

kT

)3/2 ∫ ∞
0

σ(E)E exp

(
− E

kT

)
dE. (2.16)

The reaction rate in Eq. 2.16 is clearly dependent on the stellar temperature T . It is also evident from this

equation that one needs to know the energy dependent cross section σ(E) to evaluate a nuclear reaction rate.

Below I will describe two types of reactions considered important to evaluate nuclear reaction rates in stars.

Since this thesis pertains to a (p, γ) reaction rate, I shall only focus on charged-particle-induced reactions.

2.2.1 Non-resonant reactions

In nuclear reactions such as 20Ne(p, γ), where the projectile is a charged particle, the reaction is inhibited

by the Coulomb barrier

1A relative velocity v between two particles is the same as one particle being at rest and the other moving with velocity v.
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VC =
Z1Z2e

2

r
, (2.17)

where Z1e and Z2e are the charges of the interacting nuclei and r is the separation distance between them.

Together with the centrifugal (angular momentum) barrier, which goes as `(`+1)
r2 , the Coulomb barrier

prevents rapid nuclear reactions in stars.

Despite the presence of such a barrier that prevents nuclear reactions at low energies, reactions still occur

due to the phenomenon of quantum mechanical tunneling [25–27]. For example, for s-wave particles (with

` = 0), with mass m, the transmission coefficient through the barrier at low energies is approximately

T ≈ exp

(
−2π

h̄

√
m

2E
Z1Z2e

2

)
≡ exp (−2πη) , (2.18)

where η is the Sommerfeld parameter

η =
Z1Z2e

2

h̄v
. (2.19)

This quantum tunneling probability T is also referred to as the Gamow factor [28,29]. It is directly propor-

tional to the cross section for charged-particle-induced nuclear reactions, so that

σ(E) ∝ exp(−2πη). (2.20)

Furthermore, it has been already mentioned that

σ(E) ∝ πň2 ∝ 1/E. (2.21)

Together, Eq. 2.20 and Eq. 2.21 can be expressed in a combined form as

σ(E) =
1

E
exp(−2πη)S(E), (2.22)

where S(E) is the astrophysical S-factor. This S-factor contains the nuclear physics information not included

in Eqs. 2.20 and 2.21. The S-factor for non-resonant reactions varies smoothly with energy, making it a

useful tool in extrapolating the measured cross sections to astrophysical energies, from laboratory based

experiments.
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Substituting Eq. 2.22 into Eq. 2.16, one can arrive at [5]

〈σν〉 =

(
8

πµ

)1/2(
1

kT

)3/2 ∫ ∞
0

S(E) exp

[
− E

kT
− b

E1/2

]
dE, (2.23)

where

b =
(2µ)1/2πe2Z1Z2

h̄
. (2.24)

Figure 2.2: The Gamow peak, obtained from a convolution of the Maxwell-Boltzmann distribution and the

penetrability factor of the Coulomb barrier. Figure taken from [30]

The convolution of the two terms in the integrand of Eq. 2.23 defines the Gamow window (in energy) where

stellar nuclear reactions take place. This is shown in Fig. 2.2.

Figure 2.3 shows a non-resonant, direct capture reaction, expressed as A(X, γ)B. The projectile X is a plane

wave of type ei
~k.~r, which forms a standing wave with orbital angular momentum quantum number ` in a

compound nucleus B. This process results in the emission of photons with energy

Eγ = E +Q− Ei, (2.25)

where Ei represents the energy eigenvalue of the level populated in B through the reaction. Since this is a

single-step process, the cross section for this reaction is determined from the absolute squared value of the

its matrix element,

σ(E) ∝ |〈B|Hγ |A+X〉 |2. (2.26)

16



http://etd.uwc.ac.za/

Figure 2.3: A direct (non-resonant) capture reaction of type A(X, γ)B.

2.2.2 Resonance reactions

Another class of reactions are resonance reactions, which occur when the kinetic energy of the projectile (in

the center of mass frame) is such that the total energy in the incoming channel matches the energy of an

excited nuclear state. Here [5]

ER = Ei −Q, (2.27)

where ER is energy of the projectile X in the center of mass frame. This is shown pictorially as A(X, γ)B

in Fig. 2.4. This reaction only occurs at fixed energies when the above resonance condition is satisfied. The

cross section of the reaction is significantly large at particular resonance values and is given by [10]
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σ(E) ∝ |〈Ef |Hγ |Ei〉 |2|〈Ei|Hf |A+X〉 |2, (2.28)

as a two-step process. In the above, the first matrix element corresponds to a γ-ray transition from Ei → Ef ,

while the second corresponds to the production of a compound nuclear state with energy Ei, through the

A+ x→ B resonance.

Figure 2.4: Pictorial description of a resonant capture reaction A(X, γ)B.

A derivation of the cross section for such resonance reactions can be obtained through an in-depth analysis

of the scattering process. This is described below.

A general elastic scattering process can be schematically described as illustrated in Fig. 2.5. It consists of a

plane wave incoming beam, scattering on a potential and outgoing as a spherical wave. At large distances

(as r →∞) the total wave function is [10]

ψout = N

[
e(i~k·~r) + f(θ, φ)

eikr

r

]
(2.29)
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Figure 2.5: A typical scattering process on a potential, represented by a target.

In the above f(θ, φ) is the scattering amplitude and contains the physics information relevant for the study.

It is related to the differential scattering cross section, such that for a spherically symmetric potential (with

no φ dependence)

(
dσ

dΩ

)
= |f(θ)|2. (2.30)

It is often convenient to choose the quantization axis z along the direction of ~k, so that

r cos θ = z, (2.31)

which implies that

ei
~k.~r = eikz. (2.32)

Then the incoming plane waves with momentum h̄k can be expanded as [10]

eikz =

∞∑
`=0

(2`+ 1)i`j`(kr)P`(cos θ), (2.33)

after separating the angular and radial parts of the wave function. Here j`(kr) are the spherical Bessel

functions and P`(cos θ) are the Legendre polynomials.

At large values of r, a similar separation of variables and an expansion into the orthornormal eigenfunctions

results in the right hand side of the below equation. The scattered wave function is affected by a phase shift

δ`, on account of the potential at small r. Therefore, one obtains [31],

∞∑
`=0

(2`+ 1)i`j`(kr)P`(cos θ) + f(θ)
eikr

r
=
∞∑
`=0

b`R`(kr)P`(cos θ), (2.34)
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where

j`(kr) =
sin (kr − `π/2)

kr
(2.35)

and

R`(kr) =
sin (kr − `π/2 + δ`)

kr
. (2.36)

It is easy to show [31] that

b` = (2`+ 1)i`eiδ` , (2.37)

and

f(θ) =
1

k

∞∑
`=0

(2`+ 1)eiδ` sin(δ`)P`(cos θ). (2.38)

One can then use orthonormality of the Legendre polynomials, together with Eq. 2.30 and the fact that

σ =

∫ (
dσ

dΩ

)
dΩ, (2.39)

to obtain the final expression for the elastic scattering cross section

σe` =
4π

k2
(2`+ 1) sin2 δ`. (2.40)

For a nuclear reaction, the scattering cross section can be obtained along the similar lines. Here the incoming

particle number is not conserved as some of them react with the target nuclei. The incoming beam can be

described by the current density

jin =
h̄

2mi
(ψ∗in∇ψin −∇ψ∗inψin) . (2.41)

Therefore, for a plane wave of type eikz

jin =
h̄k

m
. (2.42)
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Since at r →∞, the total scattered wave function is

ψscat =
∞∑
`=0

(2`+ 1) i`eiδ`
sin (kr − `π/2 + δ`)

kr
P`(cos θ), (2.43)

its associated current density can be written as

jscat =
h̄

4mkr2

∣∣∣∣∣
∞∑
`=0

(2`+ 1)i`+1ei`π/2P`(cos θ)

∣∣∣∣∣
2

−

∣∣∣∣∣
∞∑
`=0

(2`+ 1)i`+1e2iδ`e−i`π/2P`(cos θ)

∣∣∣∣∣
2
 . (2.44)

This results in a cross section [10]

σr,` =
π

k2
(2`+ 1)

(
1− |e2iδ` |2

)
, (2.45)

again making use of the orthonormality of Legendre polynomials.

In the vicinity of a resonance one can simplify the formalism assuming:

• The existence of a nearly spherical nuclear surface at r = R, the nuclear radius.

• The projectile and the target do not interact at r > R.

One can then match the wave function and its derivative at this boundary [10], so that

uin
` (R) = uout

` (R), (2.46)

(
duin

` (r)

dr

)
r=R

=

(
duout

` (r)

dr

)
r=R

. (2.47)

It is convenient at this point to introduce a dimensionless quantity called the logarithmic derivative

f` ≡ R
(

1

u`(r)

du`(r)

dr

)
r=R

= R

(
d lnu`(r)

dr

)
r=R

(2.48)

The above aids in rewriting Eqs. 2.46 and 2.47 as

f`(u
in
` ) = f`(u

out
` ). (2.49)
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For simplicity, lets consider a s-wave resonance (` = 0). In the region r > R the scattered wave function can

be assumed to be

ψscat = Aeikr +Be−ikr

=
1

kr
eiδ0 sin (kr + δ0).

(2.50)

For ` = 0 this is the same as the radial wave function

ψscat =
uout(r)

r
. (2.51)

From Eqs. 2.51 and 2.48 it can be shown that

e2iδ0 =

(
f0 + ikR

f0 − ikR

)
e−2ikR. (2.52)

Since f0 is a complex quantity in general, it can be written as

f0 = g + ih. (2.53)

Using Eqs. 2.45 and 2.52 the reaction cross section can now be rewritten as

σr,0 =
π

k2

(
1−

∣∣∣∣f0 + iRk

f0 − iRk
e−2ikR

∣∣∣∣)2

=
π

k2

−4kRh

g2 + (h− kR)2
.

(2.54)

For r ≤ R, the general solution of the wave function is of the type

uin = AeiKr +Be−iKr. (2.55)

Since the incoming particle is absorbed into the nuclear interior due to the formation of the compound

nucleus, the amplitude of the outgoing spherical wave will be much smaller than that of the incoming wave.

It is assumed that [10]

A = Be2iξe−2q. (2.56)
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Then one obtains

uin = 2B cos (Kr + ξ + iq)eiξ−q. (2.57)

This results in

f0 = −RK tan (KR+ ξ + iq). (2.58)

Since reaction cross sections are enhanced at resonance energies, the wave functions’ amplitudes within r ≤ R

have to be maximal. This implies that the slope of the radial wave function has to be zero at r = R. Thus,

one can define a set of resonance energies Eλ using the condition

f0(Eλ, q) = −KR tan (KR+ ξ + iq) = 0. (2.59)

Expanding f0(E, q) about Eλ = 0 and q = 0 yields

f0 ≈ f0(Eλ, q) + (E − Eλ)

(
∂f0

∂E

)
Eλ,q=0

+ q

(
∂f0

∂q

)
Eλ,q=0

, (2.60)

which is easily simplified to

f0 = (E − Eλ)

(
∂f0

∂E

)
Eλ,q=0

− iqKR. (2.61)

Substituting the above into Eq. 2.54, the cross section reduces to

σr,0 =
π

k2

(2kR)(qKR)

(∂f0/∂E)2Eλ,q=0

(E − Eλ)2 − (qKR+kR)2

(∂f0/∂E)2Eλ,q=0

. (2.62)

One can then make use of the following definitions [10]

Γλe ≡
−2kR

(∂f0/∂E)Eλ,q=0

, (2.63)

and

Γλr ≡
−2qKR

(∂f0/∂E)Eλ,q=0

, (2.64)

where Γλ (the total width) is the sum of the particle width Γλe and the reaction width Γλr, so that

23



http://etd.uwc.ac.za/

Γλ = Γλe + Γλr. (2.65)

The above formalism can be extended to charged particles for different values of `

σr,`(E) = (2`+ 1)
π

k2

ΓλeΓλr
(E − Eλ)2 + Γ2

λ/4
. (2.66)

It may be noted that the right hand side of the above equation has the familiar form of a Breit Wigner (Lorentzian)

function, defined previously in Eq. 2.10.

A generalized formula of the Breit Weigner cross section σBW , involving charged or neutral particles with

spins is then

σBW (E) =
π

k2
ω

ΓλeΓλr
(E − Eλ)2 + Γ2

λ/4
, (2.67)

where ω is the statistical factor (2J+1)
(2Sp+1)(2St+1) , and Sp, St are the spins of the projectile and the target

nuclei. The resonance strength for the reaction is defined as [5]

ωγ = ω
ΓλeΓλr

Γλ
. (2.68)

Substituting Eq. 2.67 into Eq. 2.16 one obtains reaction rate over the resonance energy Eλ

〈σv〉 =

(
8

πµ

)1/2(
1

kT

)3/2 ∫ ∞
0

σBW (E)E exp

(
− E

kT

)
dE. (2.69)

Integrating the Breit Wigner cross section over Eλ, the reaction rate takes its final form

〈σv〉 =

(
2π

µ

)3/2(
1

kT

)3/2

h̄2ωγ exp

(
−Eλ
kT

)
. (2.70)

Eq 2.70 makes it is evident that the reaction rate is proportional to the resonance strength, ωγ.
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2.3 Electromagnetic transitions between nuclear levels

Excited states that are produced by resonance reactions such as A(X, γ)B can decay by particle and γ

radiation. The latter is usually produced via cascading (or direct) transitions to the ground state of the

nucleus B. The individual γ-rays have certain multipolarity, described below.

To better understand electromagnetic (EM) transitions in nuclei, it is important to consider that the charge

distributions generate EM fields and currents. The many-body nuclear system ends up interacting with the

fields.

Starting with the wave equation for a vector potential [32]

∇2 ~A− 1

c2
∂2 ~A

∂t2
= 0, (2.71)

it is well known that this partial differential equation has plane wave solutions of the type

~A(~r, t) = ~A0e
i(~k.~r−ωt). (2.72)

Assuming periodic boundary conditions in a cavity of volume L3, with ~k taking discrete values, the most

general solution to the wave equation is [33]

A(~r, t) =
1

L3/2

∑
~k,λ

[
C~k,λε̂(

~k, λ)ei(
~k.~r−ωt) + C∗~k,λε̂(

~k, λ)e−i(
~k.~r−ωt)

]
, (2.73)

where the vectors ε̂ (~k, λ) indicate the polarization of ~A for each ~k. In order to quantize the radiation field,

the above solution is replaced by the operator

~A =
1

L3/2

∑
~k,λ

c

√
h̄

2ω

[
a~k,λε̂(

~k, λ)ei(
~k.~r−ωt) + a†~k,λ

∗ε̂(~k, λ)e−i(
~k.~r−ωt)

]
, (2.74)

where a†~k,λ
and a~k,λ are the usual creation and annihilation operators and the EM Hamiltonian is

ĤEM =
∑
~k,λ

h̄ω

(
a†~k,λ

a~k,λ +
1

2

)
. (2.75)

The above prescription takes into account both absorption as well as emission of photons.
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On the other hand, the interaction Hamiltonian for a spin-1
2 particle with mass m and charge q in an EM

field is given by [24]

Hint =
1

2m

(
~p− q ~A

c

)2

+ qφ− qh̄

2m
~σ. ~B , (2.76)

where the magnetic moment is defined as

~µ =
qh̄

2m
~σ. (2.77)

Therefore, EM transition rates in nuclei can be obtained from Fermi’s golden rule (with a similar Hint for

a system of nucleons) and the operator expansion in Eq. 2.74 for the vector potential ~A that involves the

creation operator a†~k,λ
.

The EM radiation emitted from excited state in nuclei are classified by multipole orders L, depending on the

angular momentum taken away by the photons. When the charge distribution within a nucleus couples with

the ~E field, it induces an electric transition. On the other hand, the orbital motion of the protons lead to

magnetic transitions. The selection rules of electric and magnetic transitions of multipole order L are such

that, for a transition between an initial state with spin-parity Jπi

i and a final state with spin-parity Jπf

f , the

multipolarity of the radiation is in the range

|Jf − Ji|≤ L ≤ Jf + Ji.

The parity selection rule is as follows

πiπf = (−1)L for E(L) transitions (2.78)

and

πiπf = (−1)L+1 for M(L) transitions. (2.79)

In general, the lowest multipolarity dominates and magnetic transitions are weaker than the electric ones.

In some transitions involving E(L + 1) and M(L) matrix elements, their strengths can be comparable. In

such cases it is customary to define a mixing ratio from the ratio of measured transition rates

δ2 =
W (E(L+ 1))

W (M(L))
. (2.80)
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This mixing ratio δ relates E2 and M1 matrix elements. In general, a transition probability for a multipole

L is given by [34]

W (L, Ji → Jf) =
8π (L+ 1) k2L+1

L [(2L+ 1)! ! ]
2
h̄
B (L, Ji → Jf) , (2.81)

where the transition strength is

B (L, Ji → Jf) =
1

2Ji + 1
|〈Jf ||OL||Ji〉|2, (2.82)

with |〈Jf ||OL||Ji〉| being the reduced matrix element for the transition and ÔL being the transition operator.

2.4 The angular distribution of γ-rays following resonant capture

Consider an initial resonant state represented by |J1M1〉 that de-excites to a final state |J2M2〉 via the

emission of a γ-ray. The transition probability for a photon with wave number ~k and polarisation ~ε is given

by Fermi’s golden rule [35]

1

τ
=

1

2πh̄

∣∣∣〈J1M1|H(~k,~ε)|J2M2〉
∣∣∣2 . (2.83)

The interaction Hamiltonian H(~k,~ε), that causes this transition is of the form given by Eq. 2.76, where ~A

satisfies the vector wave equation (Eq. 2.71). The solutions to this equation are the sets of vector fields

~∇φLM , ~LφLM and ~∇× ~LφLM usually expressed in their normalized forms [36,37]

~ALM = (ik)−1~∇φLM ,

~AeLM = {k[L(L+ 1)]1/2}−1~∇× ~LφLM ,

~AmLM = {[L(L+ 1)]1/2}−1~LφLM .

(2.84)

In the above, the φLM include both the radial and angular solutions and the superscripts ‘e’ and ‘m’ label

the electric and magnetic multipole components of the transverse field. The first solution is the longitudinal

solution and not required to be expanded into plane EM waves.

A given circularly polarized transverse plane wave, with polarization vectors ê+1 and ê−1 for left and right

circular polarizations, can be expressed as a plane wave expansion

27



http://etd.uwc.ac.za/

êq exp (ikz) = − 1√
2

∑
L

(
q ~AmLq + ~AeLq

)
, (2.85)

whose most general form is

êq exp (i~k.~r) = − 1√
2

∑
LM

(
q ~AmLM + ~AeLM

)
DL
Mq

(R), (2.86)

where DL
Mq

(R) is a rotation matrix [32] that generates a rotation R in the direction of the wave vector ~k.

In a more compact notation [36], this is written as

êq exp (i~k.~r) = − 1√
2

∑
LMπ

qπ ~AπLMDL
Mq

(R) (2.87)

where ‘π’ labels the electric (π = 0) or magnetic (π = 1) nature of the fields.

The radial and angular solutions of the wave equation (Eq. 2.71) are of the form jL(kr) (spherical Bessel

functions) and YML (θ, φ) (spherical harmonics). In the long-wavelength approximation (kr � 1), the above

plane-wave expansion results in a more simplified version of the EM Hamiltonian [36,37]

Hint(~k,~εq) = −
∑
LMπ

qπTπLMDL
Mq

(R), (2.88)

which results in the matrix element

−
∑
LMπ

qπDL
Mq

(R)〈J2M2|TπLM |J1M1〉

for an EM transition.

In the above, the electric and magnetic operators TπLM represent the interaction multipole operators [36]

and are expressed by combinations of the radial and angular solutions of the wave equation. In the long-

wavelength limit, the radial part reduces to a simple rL dependence [36].

Next, defining w(M1) to be the population parameters that represent the relative population of the substates

labeled by M1, the transition probability for a cylindrically symmetric case is

P q(~k) =
∑
M1

w(M1)
∑ k

2πh̄
qπqπ

′
DL′∗
M ′
q′

(R)DL
Mq

(R) × 〈J2M2|TπLM |J1M1〉〈J2M2|Tπ
′

LM |J1M1〉∗. (2.89)
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Further using the Wigner-Eckart theorem [36], the symmetry of the D matrices, and the fact that Dk
00 =

PK(cos θ), the transition probability reduces to

P q(k) =

(
k

2πh̄

) ∑
KLL′ππ′

BK(J1)RqK(LL
′
J1J2)PK(cos θ)qπ+π

′ 〈J1||T 〈π〉LM ||J2〉
(2L+ 1)

1/2

〈J1||T 〈π
′
〉

LM ||J2〉∗

(2L′ + 1)
1/2

. (2.90)

Here the RqK(LL
′
J1J2) coefficients are [36]

RqK(LL
′
J1J2) = (−)q+J1−J2+L′−L−K(2J1 + 1)1/2(2L+ 1)1/2(2L′ + 1)1/2〈LL′q − q|K0〉W (J1J1LL

′;KJ2),

(2.91)

and W (J1J1LL
′;KJ2) is the Racah W-coefficient

W (J1J1LL
′;KJ2) = (−)L+L′+2J1

L J1 J2

J1 L′ K

 . (2.92)

The Bk(J1) terms are the statistical tensors

Bk(J1) =
∑
M1

w(M1)(−)J1−M1(2J1 + 1)1/2〈J1J1M1 −M1|K0〉. (2.93)

If the circular polarization is not observed, and the initial state is aligned such that

w(−M1) = w(M1), (2.94)

one can revert back to the definition of a mixing ratio for the two lowest multipolarities of the transition

δ =
〈J1||T 〈π〉L′ ||J2〉/(2L′ + 1)

1/2

〈J1||T 〈π〉L ||J2〉/(2L+ 1)
1/2

, (2.95)

to express the transition probability in a more simple form

P q(k) =

(
k

2πh̄

) ∑
KLL′ππ′

BK(J1)RqK(LL
′
J1J2)PK(cos θ)qπ+π

′ 〈J1||T 〈π〉LM ||J2〉
(2L+ 1)

1/2

〈J1||T 〈π
′
〉

LM ||J2〉∗

(2L′ + 1)
1/2

. (2.96)

The alignment condition in Eq. 2.94 assures that only K = even contribute, since Bk(J1) = 0, when K takes

odd values.
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This formalism shows that one can obtain a mixing ratio δ from a measured angular distribution about the

symmetry axis

W (θ) =
∑

K=even

BK(J1)RK(LL
′
J1J2)δπLδ

π′

L′PK(cos θ)∑
L|δπL|2

. (2.97)

If only the two lowest multipoles L and L′ contribute, then the angular distribution is simply

W (θ) =
∑

K=even

BK(J1)PK(cos θ)

[
RK(LLJ1J2) + 2δRK(LL′J1J2) + δ2RK(L′L′J1J2)

(1 + δ2)

]
. (2.98)

Resonant capture results in an excited compound nuclear state with definite angular momentum and parity.

In the case of a (p, γ) reaction, the proton can carry different values of orbital angular momentum `. Together

with the spins of the target and the projectile, the ` value of the incoming proton contributes to the formation

of the final state of the excited nucleus. If one takes the axis of symmetry to be about the beam axis, the

channel spin s couples with ` (with m` = 0) to form the state labeled by |J1M1〉.

In such a situation, the population parameters are simiply [36]

w(M1) = 〈sJ1M1 −M1|`0〉2. (2.99)

If more than one channel spin contribute, then the contributions add incoherently, with each contribution

T (s), so that

w(M1) =
∑
s

〈sJ1M1 −M1|`0〉2T (s), (2.100)

with
∑
s T (s) = 1. Under such circumstances, the Bk(J1) alignment coefficients are

Bk(J1) =
∑
s

(−)s−J1 [((2L+ 1)1/2)]2(2J1 + 1)1/2〈ll00|K0〉W (J1J1ll;Ks)T (s). (2.101)

2.5 The case of 20Ne(p, γ)

Figure 2.6 shows the astrophysically important resonance related to this work. As mentioned in Section 1.1,

the 3544.3 keV resonance at Ec.m.
p = 1113 keV is the dominant contribution to the 20Ne(p, γ) reaction rate

at high temperatures. In addition, the non-resonant (direct capture) to the 2424 and 332 keV states also

significantly contribute to the total reaction rate. These aspects were comprehensively studied earlier, by
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Figure 2.6: The 20Ne(p, γ)21Na resonance and the transition of interest from the 3544.3 keV to the ground

state in 21Na.

Rolfs et al. [22] and Lyons et al. [1]. Reference [22] studied the resonance contributions over the proton

energy range 0.4 ≤ Ep ≤ 2.1 MeV, while the latter obtained excitation function data over a proton energy

range of 0.5 ≤ Ep ≤ 2.0 MeV. In both cases, cross sections were measured using extended gas targets. Due to

the non-localized nature of the source of the γ-rays in both experiments, the cross sections were determined

relative to the narrow 5/2+ resonance state at 3544.3 keV, which has a total width of Γ = 15.5(14) eV [38]

and a measured resonance strength, ωγ=0.94(4) eV [1].

Since the 3544.3 keV state in 21Na decays to the ground state for the majority of the time (with 92% absolute

branch), the 3544.3 keV γ-ray was used to measure the resonance strength using the relation

ωγ =
2

λ2
R

1

n

1

BηW(θ)

∫
N(E0)

Nbeam
dE0, (2.102)
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where λ2
R is the de Broglie wavelength at the resonance energy, n is the number of target nuclei, B is the

branching ratio of the transition observed, η is the detector efficiency and W (θ) is the angular distribution

for the 3544.3 keV γ-rays. The integral was performed over the width of the resonance. Because of the

diffuse nature of the gas targets, the authors of both Refs. [1,22] independently used implanted 20Ne target

to measure the resonance strength for this particular state in the above manner.

Once the ωγ for the 3544.3 keV resonance was measured, in the direct capture and the resonant contributions

to the reaction rate were determined in both experiments using [1]

σR/DC =
λ2
R

2

m+M

m

ωγ

∆E

YR/DC

Y1113
, (2.103)

where

YR/DC

Y1113
=
NR/DC

N1113

ε1113

εR/DC

Ω1113

ΩR/DC

W (θ)1113

W (θ)R/DC
. (2.104)

Here m and M are the projectile and target masses and ∆E is the target thickness. The subscript “1113”

represents the 1113 keV resonance, while “R/DC” includes the resonant and direct capture components.

The yield ratio in Eq 2.104, includes ratios of counts (NR/DC/N1113/), stopping powers (ε1113/εR/DC), solid

angles (Ω1113/ΩR/DC) and angular distributions (W (θ)1113/W (θ)R/DC).

It is important to note at this point that both of these (independent) experiments relied on a previously

measured angular distribution for the 3544.3 → 0 keV transition (see Fig. 9 in Ref. [1]). The E2/M1 mixing

ratio for this transition δ = 0.07(2), was measured nearly 60 years ago using NaI scintillator detectors [4].

This value was implicit in the analysis of Refs. [1, 22] to determine the 20Ne(p, γ) reaction rate. In light

of the above, this project aimed to remeasure the mixing ratio for this transition, using higher resolution

High-Purity Germanium (HPGe) detectors.
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Chapter 3

Experimental details

3.1 Facility

The experiment was performed in the summer of 2019 at the Center for Experimental Nuclear Physics and

Astrophysics (CENPA) at the University of Washington in Seattle, USA. The facility houses a High Voltage

Engineering FN tandem Van de Graaff accelerator, which is shown in Fig. 3.1.

Usual tandem operation requires a negatively charged low-energy beam of ions accelerated towards a posi-

tively charged terminal at several million volts. Following this first stage of acceleration, the ions are stripped

of their electrons using either a carbon foil or a gas stripper. A second stage of acceleration is imposed on

account of these positive ions being repelled from the positive terminal voltage. However, for this particular

experiment, this standard approach of the tandem operation was not used and certain modifications were

made. The device was reconfigured as a single-ended machine, with a Radio Frequency (RF) positive ion-

source located at the terminal. The high energy FN beam tube was replaced by a modified KN-type beam

tube, which allowed a different field gradient for a higher intensity beam. The terminal ion source (TIS) had

a pressurized H2 gas bottle, together with an einzel lens, magnetic steerers and a small permanent dipole

bending magnet [40].

To obtain a high intensity proton beam, hydrogen gas was bled slowly into the source cavity that was

surrounded by RF coils. The oscillatory RF field caused the electrons to move in a spiral motion, thereby

ionizing the gas within the volume. A voltage of about 10 kV was used to extract the H+ ions from the

source, with the aid of the electromagnetic steering and focusing units mentioned above. The TIS enabled

a high-intensity (∼ 50 µA) and low-energy proton beam to produce the 20Ne(p, γ) resonance of interest. It
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Figure 3.1: Tandem accelerator facility at CENPA. Picture taken from Ref [39].

also allowed for a simultaneous preparation of other implanted neon targets during the same beam time.

The target implantation was performed downstream of the low-energy injector deck to the tandem, which

was available because of the TIS mode of operation. This was important for replacing targets during the

course of the experiment, as the high intensity beam degraded the implanted targets rather quickly.

3.2 Target preparation

The 20Ne targets were prepared by implanting a 90 keV 20Ne2+ beam onto 1-mm-thick 99.98 % pure tantalum

foils. The ion source used to produce the 20Ne2+ beams was a simple Direct Extraction Ion Source (DEIS).

A neon gas bottle placed at the source was used to produce the ion beam. The DEIS worked on the simple

operating principle of an arc-discharge between a hot cathode filament and the anode terminal of the source,

that forms a plasma within the confined region of the anode. Generally an applied potential difference of
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around of 100 V is enough to extract an ion-beam. For this experiment a positive ion-beam was produced

from the core of positive ions within the plasma. The beam was extracted and guided using several steering

and focusing elements. An implantation region, separated from the rest of the ion-optics by a liquid N2 cold

trap was located near the low-energy end of the accelerator. This implantation chamber was used to make

several 20Ne targets during the course of the experiment. The targets were observed to saturate at areal

densities of around 20 µg/cm2.

3.3 Experimental procedure

The implanted target was placed in a water-cooled target chamber. A schematic of this chamber is shown

in Fig. 3.2, along with a photograph shown in Fig. 3.3. A description of the target chamber can be found in

Ref. [41]. Five HPGe detectors were used for the angular distribution measurement. These included two two-

fold segmented Eurisys Mesures clover detectors, two Canberra detectors with 100% relative efficiency and an

ORTEC detector with 80% relative efficiency. Figures 3.4 and 3.5 show photographs of the actual detector

set up. Table 3.1 lists the positions of the detectors with respect to the beam direction and the target. To

prevent coincidence summing of cascading γ rays, 1 cm thick Pb shields were placed in front of each detector.

Beam events were scaled using a Brookhaven Instruments Corporation (BIC) current integrator that was

coupled to a LeCroy 2551 Scaler. Standard NIM and CAMAC electronics were used for the data acquisition.

The energy and timing signals from the HPGe detectors were obtained from ORTEC 572 amplifiers and 474

Timing Filter Amplifiers (TFAs). The signals were digitized using ORTEC 413A analog-to-digital converter

(ADCs) and a Fast Encording and Readout ADC (FERA) and saved event-by-event in full list mode for

future analysis.

The detectors were calibrated using 56Co and 60Co γ-ray sources placed at the central location of the target

foil. The activities of these sources were around 3.7 kBq and 8 kBq respectively. The calibration data were

acquired both before and after the 20Ne(p, γ) runs. For the 20Ne(p, γ) data, the energy of the resonance was

determined by scanning the proton beam over an energy range 1164 keV ≤ Ep ≤ 1182 keV. Registered γ-ray

information was used to plot a γ-ray excitation function for the 3.5 MeV γ-ray, over the proton’s energy

range. A sample yield curve from one detector is shown in the Fig. 3.6.
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Figure 3.2: Target holder arrangement

Figure 3.3: Target holder with the implanted target.

36



http://etd.uwc.ac.za/

Figure 3.4: Photograph of the detector array, shown relative to the target position.

Figure 3.5: Picture of the detector array taken from another angle.
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Figure 3.6: γ-ray yield curve as a function of the proton beam energy for 100% Canberra 2.

Detector

Detector angle

with respect to the

beam axis

Detector distance

from

target (cm)

80% ORTEC 0o 20

100% Canberra 1 -55o 21

100% Canberra 2 31.5o 21

Clover 1 62.5o 23

Clover 2 90o 23

Table 3.1: Detector geometry used for this experiment.
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Chapter 4

Data Analysis and results

4.1 Gain drift corrections

Although the electronic modules for data acquisition were placed in a temperature controlled rack, amplifier

gain variations needed to be taken into account prior to data analysis. Since the data were acquired event-by-

event, the gain drift for each amplifier and ADC combination was monitored by dividing each experimental

run into smaller subsets and registering the centroids for a few high statistics γ-ray peaks for each detector

crystal over time. Each subsequent ‘sub-run’ was then gain-matched to the first ‘sub-run’ using a linear

regression routine

x′i = ai + bixi, (4.1)

where the x′i label the peak centroids of the first subset of the data and ai, bi are the gain correction

coefficients for each ‘sub-run’. We next implemented these parameters into the sorting code to perform

gain-shift corrections using the formula

Ch′i = ai + bi[Chi + (R− 0.5)], (4.2)

where Chi is an integer number that represents an ADC event associated with γ-ray energy, R is a uniformly

distributed random number between 0 and 1 and Ch′i is the gain-drift corrected value, rounded off to the

nearest integer.

A sample gain-corrected 56Co γ-ray peak is shown in Fig. 4.1. All peaks in our data were fitted using a

lineshape function that is the convolution of a Gaussian with a low-energy exponential tail [42], together
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Figure 4.1: Sample fit to a 1238 keV γ-ray calibration peak from 56Co.

with a smoothed step function that takes into consideration multiple Compton scattering. The fit function

also incorporated a background component that could either be flat, linear or quadratic in nature. The

example in Fig. 4.1 uses a linear background.

4.2 Energy calibration

The 56Co source was made on-site via the 56Fe(p, n) reaction and used to calibrate the HPGe detectors. The

source emits well-characterized γ rays in the range of 846 keV ≤ Eγ ≤ 3451 keV. A calibrated 56Co γ-ray

spectrum from one of the 100%-efficient Canberra detectors is shown in Fig 4.2. A 60Co source was also

used for calibration purposes and to perform important cross checks. As described below, the 60Co source

was not necessary for the final measurement of the mixing ratio. The energy calibration of each detector

was performed using a linear regression

Eγ(i) = a+ bµ(i), (4.3)

where the µ(i) are peak centroids obtained from fits such as the one shown in Fig. 4.1. The offset and

gain coefficients a and b were then used to identify relevant peaks in the 20Ne(p, γ) spectra. For the clover

detectors, we sorted the data to obtain spectra from individual crystals, as well as in add-back mode,

which involved adding the energies deposited in all four crystals of each clover. The add-back mode had
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higher efficiency than the one obtained from adding individual crystals because of the counts recovered from

Compton scattered events. The add-back energy calibration was such that

Eaddγ (i) =
4∑
j=4

{[Ch′i(j)]aj + bj}, (4.4)

where Ch′i(j) is the gain-drift-corrected energy ADC value for that particular clover detector. The energy

calibration coefficients for each detector crystal are listed in Table 4.1
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Figure 4.2: Energy calibrated 56Co γ-ray spectrum from one of the 100%-efficient Canberra detectors. The

most prominent peaks are labeled.

41



http://etd.uwc.ac.za/

1500 2000 2500 3000 3500

E
γ

(keV)

1×10
2

1×10
3

1×10
4

C
o
u
n
ts

3544.3 keV

3212.1 keV

1828.1 keV

1
3
8
3
.6

 k
e
V

Figure 4.3: Calibrated 20Ne(p, γ) spectrum obtained with a 100%-efficient Canberra detector. Some impor-

tant γ-ray peaks from transitions within 21Na are labeled.

Detectors a b

100% Canberra1 -65.97 0.88638

80% ORTEC 1 3.6 0.88719

100% Canberra 2 3.3 0.87728

C1E1 2.6 0.88964

C1E2 2.1 0.88756

C1E3 -1.1 0.89291

C1E4 -0.27 0.89083

C2E1 -1.5 0.89835

C2E2 -0.36 0.8910

C2E3 0.88 0.89679

C2E4 -1.5 0.89763

Table 4.1: Energy calibration coefficients for the HPGe detectors. Here the CiEj label the clover crystals.
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4.3 Relative efficiency calibration

Since the 56Co source emits γ rays with well known intensities, it was used to determine the relative efficiency

curve for each detector. This efficiency calibration was used to determine the unknown relative efficiency of

the 3544 keV γ ray of interest. The relative efficiency for each 56Co γ ray was determined using the simple

formula

εrel
γ (i) =

Nγ(i)

Iγ(i)
, (4.5)

where Nγ(i) is the area under a given peak and Iγ(i) is its intensity, obtained from the National Nuclear

Data Center (NNDC) database [39]. The 56Co γ rays used for the efficiency calibration as well as their

associated intensities are listed in Table. 4.2. Since the efficiency of γ-ray detection is energy-dependent and

drops at both low and high energies, the relative efficiency curve was obtained from a polynomial fit to the

56Co data, described by

ln εfit
γ (i) =

3∑
k=0

ak [lnEγ(i)]
k
. (4.6)

This polynomial fit incorporated a χ2-minimization procedure (with respect to each coefficient ak), where

χ2 =

N∑
i=1

1

σ2
i

[
ln εrel

γ (i)− ln εfit
γ (i)

]2
, (4.7)

with N being the number of data points and σi being the uncertainty in each εrel
γ (i).

The χ2-minimization was performed by solving the resulting linear equations using the Gauss-Jordan elimi-

nation method [43]. The relative efficiency curves for each detector are shown in Figs 4.4. These efficiency

curves were extrapolated to determine the efficiency of each detector at around 3544 keV. Since each detec-

tor would observe a Doppler-shifted energy for this γ-ray, it was important to cross-check the effects of the

extrapolation in the efficiency curves. The Doppler-shifted γ-ray energy for each detector is

E′γ = Eγ

(
1 +

υ

c
cos θγ

)
. (4.8)

This can be determined from the
(
υ
c

)
for the recoiling compound 21Na nucleus, which is ≈ 2 × 10−3. For

completeness the Doppler-shifted energies are listed in Table 4.3. The extrapolated relative efficiencies at
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Energy

(keV)

Intensity

(%)

1037.843(4) 14.05(4)

1771.357(4) 15.41(6)

2015.215(5) 3.016(12)

2034.791(5) 7.77(3)

2598.5(4) 16.97(4)

3202.029(8) 3.209(12)

3253.503(4) 7.923(21)

3273.079(4) 1.8759(2)

3451.232(4) 0.949(5)

Table 4.2: 56Co γ rays used for the efficiency calibration. The energy and intensity values are from Ref. [39].

these energies are represented by squared-shaped points as shown in Fig. 4.4. The maximum shift, which

was expected for the θγ = 0◦ detector, was found to be ≈ 8.5 keV.

44



http://etd.uwc.ac.za/

1000 1500 2000 2500 3000 3500

E
γ

(keV)

700

800

900

1000

1100
ε

re
l (

ar
b
. 
u
n
it

s)
p-value = 0.16
56

Co γ rays

θ
γ
= −55

ο

Canberra 1

1000 1500 2000 2500 3000 3500

E
γ

(keV)

900

1200

ε
re

l (
ar

b
. 
u
n
it

s)

p-value = 0.12
56

Co γ rays

θ
γ
= 31.5

ο

Canberra 2

1000 1500 2000 2500 3000 3500

E
γ

(keV)

400

800

ε
re

l (
ar

b
. 
u
n
it

s)

p-value = 0.68
56

Co γ rays

θ
γ
= 62.5

ο

Clover 1 separate crystals

1000 1500 2000 2500 3000 3500

E
γ

(keV)

600

900

1200

ε
re

l (
ar

b
. 
u
n
it

s)

p-value = 0.31
56

Co γ rays

θ
γ
= 62.5

ο

Clover 1 addback

1000 1500 2000 2500 3000 3500 4000

E
γ

(keV)

600

900

ε
re

l (
ar

b
. 
u
n
it

s)

p-value = 0.42
56

Co γ rays

θ
γ
= 90

ο

Clover 2 separate crystals

1000 1500 2000 2500 3000 3500 4000

E
γ

(keV)

600

900

1200

1500

ε
re

l (
ar

b
. 

u
n

it
s)

p-value = 0.11
56

Co γ rays

θ
γ
= 90

ο

Clover 2 addback

Figure 4.4: Continued
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Figure 4.4: Polynomial fits to experimental relative efficiencies for each detector.

Detector θγ E′γ E′γ − Eγ
(deg) (keV) (keV)

ORTEC 0 3552.8 8.5

Canberra 1 -55 3549.2 4.9

Canberra 2 31.5 3551.5 7.2

Clover 1 62.5 3548.2 3.9

Clover 2 90 3544.3 0.0

Table 4.3: Doppler-shifted energy for the 3544.3 keV γ ray in each detector.

4.3.1 PENELOPE Monte Carlo simulations.

It may be noted that the 3544 keV γ ray is around 93 keV higher than the highest energy calibration γ-ray

peak from 56Co (this is the 3451 keV peak, which had sufficient statistics). This extrapolation increases

to beyond 100 keV for the 0◦ detector that observes maximal Doppler shift. Keeping this in mind, we

performed Monte Carlo simulations to estimate each detector’s efficiency and to have a better understanding

of associated systematic effects. The simulations were performed using the Penetration and ENErgy LOss of

positrons and Electrons (PENELOPE) radiation transport code [44]. The experimental set up constructed

within the PENELOPE package is shown in Fig. 4.5.

The first set of simulations were used to estimate the relative efficiencies of each γ ray in Table. 4.2, as-

suming an isotropic distribution of photons. The random directions for the photons were determined in the

simulations from the probability of emission within a unit sphere, described by

p(θ, φ)dθdφ =
1

4π
sin θdθdφ =

[
sin θ

2
dθ

] [
1

2π
dφ

]
. (4.9)
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Figure 4.5: A schematic display of the target-detector setup used for the Monte Carlo simulations. As

mentioned previously, the Pb shielding is present to minimize the effects of γ-ray summing.

In the above, θ and φ are independent random variables with probability density functions (PDFs)

pθ =
sin θ

2
and pφ =

1

2π
. (4.10)

The transformation method [45] was used to generate a set of random numbers that follow these PDFs. This

is obtained from the corresponding cumulative distribution functions (CDFs)

Cθ =

∫ θ

0

sin θ′

2
dθ′ and Cφ =

∫ φ

0

1

2π
dφ′, (4.11)

where C =
∫ b
a
p(x)dx within [a, b]. The above easily simplify to

Cθ =
1− cos θ

2
and Cφ =

φ

2π
. (4.12)

Since the range of the CDF is [0, 1], these can be generated using uniformly distributed random numbers

between 0 and 1. In such a scenario, isotropic showers of photons are produced using the random polar

variables,

θ = arccos(1− 2U) and φ = 2πV, (4.13)
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Figure 4.6: Coordinate system used for the simulations. Here θ and φ are the polar and azimuthal angles of

the unit vector d̂. The direction of the beam and the quantization axis is defined by ẑ.

where U and V are uniform random deviates in the range [0, 1] [46]. The coordinate system used for the

simulations is shown in Fig. 4.6.

This method of generating an isotropic distribution was implemented within PENELOPE and the absolute

γ detection efficiency for each detector was determined using 5× 106 photons emitted at each γ-ray energy

in Table. 4.2. The simulated efficiencies were then overlaid and normalized to experimentally determined

values. Figure 4.7 shows one such comparison for the 0◦ detector, which required maximal shifting for the

extrapolation to 3544 keV. While the simulation results yield higher efficiencies at lower energies (which is

not unexpected considering additional low-energy absorptions not included in the simulations), the overall

agreement between the two data sets is reasonable. The extrapolated efficiency at 3544 keV also shows

excellent agreement with the simulated value. This conveys that the extrapolations are not far off the true

value.

4.4 Determination of γ-ray yields and mixing ratio

The relative 3544 keV γ-ray yield for each detector was determined from its peak area and the extrapolated

relative efficiency using the expression

Yield =
Area (3544 keV)

εrel
γ (3544 keV)

. (4.14)
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Figure 4.7: Sample plot of experimental and simulated efficiencies for the ORTEC detector.

The fits to the 3544 keV peak for each detector and the measured yields are plotted in Figs. 4.4 and 4.9. The

measured yields in Fig. 4.9 were next fit with a polynomial function that describes the angular distribution

W (θ) = a0 + a2P2(cos θ) + a4P4(cos θ), (4.15)

where θ is the polar angle in Fig. 4.6. As previously explained with Eq. 2.98 in Chapter 2, the E2/M1 mixing

ratio δ is embedded in the above experimental ak coefficients. However, to determine the mixing ratio one

needs to take into account the finite solid angle subtended by the detectors. Additionally, the alignment

coefficients for the initial state that emits the γ ray also need to be known. Under normal circumstances,

when identical coaxial detectors are used to take measurements at different angles, the angular distribution

is expressed as

W (θ) =
∑

K=even

QKAKPK(cos θ), (4.16)

where QK are attenuation coefficients described by [35]
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Figure 4.8: Fits to the 3544 keV γ-ray peak in the 20Na(p, γ) spectrum for each detector.

QK =

∫ βmax

0
PK (cosβ) η(β,E) sinβdβ∫ βmax

0
η(β,E) sinβdβ

. (4.17)

In the above, β is the angle between the location where the γ ray strikes a detector and the detector’s

symmetry axis, and η(β,E) represents the photo-peak efficiency of a γ ray with energy E. The theoretical
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AK coefficients for a J1 → J2 transition are

AK =
1

1 + δ2

[
fK(LLJ1J2) + 2δfK(LL′J1J2) + δ2fK(L′L′J1J2)

]
, (4.18)

where fK(LL′J1J2) = BK(J1)RK(LL′J1J2). The BK (alignment) and RK (angular momentum) coefficients

have been already defined in Chapter 2.
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Figure 4.9: Measured yields for the 3544 keV γ-ray. The data obtained from a separate crystal analysis of

the clovers are represented by x. These are overlaid with the yields obtained from the add-back spectra for

comparison.

4.4.1 Simulations to correct for the finite solid angle effect

The form of Eq. 4.17 is not applicable here as the detectors used for this experiment were not identical.

Therefore a Monte Carlo approach had to be used to determine the solid-angle correction coefficients QK .

The Monte Carlo prescription was to use known values of Ainp
2 and Ainp

4 to generate anisotropically 3544 keV

γ-ray photons, assuming the experimental geometry in Fig. 4.5. The assumed anisotropic angular distribution
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Detector Y (i)

ORTEC 73.9(26)

Canberra 1 115.3(36)

Canberra 2 87.5(23)

Clover 1 121.0(43)

Clover 2 120.6(43)

Table 4.4: Yield for each detector at Doppler-shifted energies.

in the simulations was of the form

f(θ) = 1 +Ainp
2 P2(cos θ) +Ainp

4 P4(cos θ). (4.19)

Then the QK values could be determined from the simulated yields, given the angular distribution in Eq. 4.19,

using the ratio

QK =
Aobs
K

Ainp
K

. (4.20)

For this part the angular distribution was generated within PENELOPE using Von Neumann’s rejection-

acceptance method. This method requires the generation of two uniform random variables v and x0, under

the conditions that

• if v ≤ f(x0), then the points are accepted

• if v > f(x0), then both v and x0 are rejected and a new pair of random numbers is generated.

In the above x0 ∈ [−1, 1] and v ∈ [0, 2], so that Eq. 4.19 is satisfied. Both these random deviates were

generated similarly as in Eq. 4.13. Simulated results for a test case with randomly chosen values for Ainp
2 =

0.224 and Ainp
4 = 0.653 are shown in Fig. 4.10.

Afterwards, we generated 80×106 showers of the 3544 keV γ ray for different values of Ainp
K {0.5, 0.7 and 0.9}.

The number of accepted events was also recorded in our simulations. These showed that approximately 50%

of the initial showers were rejected in the simulations. The observed yield for each detector was determined

by

Yobs =

(
Nd

Na

)
, (4.21)

where Na is the number of counts accepted and Nd is the counts detected.

As an additional test to check the reliability of our simulation framework, we generated an isotropic distri-

bution of 40× 106 3544 keV γ rays, using the transformation method mentioned earlier. Here the absolute
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Figure 4.10: Histrogram of a simulated angular distribution using the rejection-acceptance method, with

Ainp
2 = 0.224 and Ainp

4 = 0.653. The analytical function is overlaid as a solid line for comparison.

efficiency of each detector was obtained from the ratio

εabs =
Nd

Ns
, (4.22)

where Ns is the number of γ rays emitted at the source location isotropically. If the simulation model and

methods used were correct, then the ratio Yobs

εabs
for each data point would agree with the analytical value of

f(θ) at that point. An example result for one such comparison, with Ainp
2 = 0.5 and Ainp

4 = 0.5 is displayed

in Fig. 4.11. This figure shows excellent agreement between Yobs

εabs
and the theoretical distribution f(θ) at

each data point. This alludes that our simulation framework being well founded.

Once the above was confirmed the simulation results were used to determine the QK coefficients. However,

it was important to separate the solid angle contribution from the (energy-dependent) intrinsic detection

efficiency for each detector.

For an isotropic source, the absolute and intrinsic efficiencies are related through

εabs = εint

(
Ω

4π

)
, (4.23)
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Figure 4.11: Simulated ratio of the yields to absolute efficiencies for Ainp
2 = 0.5 and Ainp

4 = 0.5.

where Ω is the solid angle subtended by each detector. For a point source at a distance d from a cylindrical

detector, the solid angle is given by (see Fig. 4.12),

Ω = 2π

(
1− d√

d2 − a2

)
. (4.24)

Here d is the source-to-detector distance, a is the radius of the coaxial HPGe detector and A is the area of

the face of the detector that is visible to the source as shown in Fig. 4.12. For d � a, the solid angle is

estimated to be

Ω ≈ A

d2
. (4.25)

Eq. 4.23 further simplifies to
εabs

εint
≈ a2

4d2
, (4.26)

clearly shows that the solid angle contribution can be determined if both the absolute and intrinsic efficiencies

are known for each detector.

The next step was to obtain the intrinsic efficiency (εint) for each detector. These could be determined

from the simulations by focusing a cone of monoenergetic γ rays at 3544 keV towards the direction of each
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Figure 4.12: Geometric representation of the solid angle (Ω) subtended by a solid object.

detector from the target location (assuming that the clovers can be approximated to be nearly coaxial). The

intrinsic efficiency for each HPGe detector can then be obtained using the ratio

εint =
Nd

Ni
, (4.27)

where Ni is the number of γ rays incident on the detector and Nd is the number detected under the photopeak.

For this part of the analysis 106 γ rays at Eγ = 3544 keV were generated for each detector.

For these simulations, performed for individual detectors located at different angles, the method was first

developed for a cylindrically symmetric detector along the ẑ axis (θγ = 0◦, along beam direction), as shown

in Fig. 4.13.

As shown in Fig. 4.13, the maximum angle subtended by the detector is

θmax = arctan
(a
d

)
. (4.28)

This information was used to generate a cone of photons so that it is always incident on the face of the

detector using the randomization procedure

cos θ = 1− U [1− cos θmax] (4.29)
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Figure 4.13: Construction for the cone distribution, where d is the distance from the source to the detector’s

surface, a is the radius of the germanium crystal and θmax is the maximum angle subtended for a particular

case shown here.

and

φ = 2πV, (4.30)

where U and V are uniform random numbers between [0, 1]. This was repeated for the other detectors using

a rotation, as illustrated in Fig. 4.14. The basis vectors are êy = (1, 0) and êz = (0, 1). Therefore, for an

arbitrary point P (y, z) to be rotated about the x̂-axis by an angle θ,

P* = RP,

where R is the rotation matrix y∗
z∗

 =

 cos θ sin θ

− sin θ cos θ

y
z

 . (4.31)

Once the εint values were obtained for each detector using this procedure, together with εabs, they were used

to verify the solid angle subtended for each detector. A comparison between these results and calculated
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Figure 4.14: Rotation of the z and y axis by angle θ about the x-axis.

values is shown in Table. 4.5. The excellent agreement again verified that the simulations were correct.

Detector a2/4d2 εabs/εint

Canberra 1 0.00767 0.00769

Canberra 2 0.00767 0.00733

ORTEC 1 0.00842 0.00861

Clover1 0.00800 0.00854

Clover 2 0.00800 0.00846

Table 4.5: Simulated solid angle corrections compared with analytical results.

These results were finally used to extract QK values using the simulated yields that were corrected for the

intrinsic efficiency. This is shown in Fig. 4.15, for a test case that used data generated with Ainp
2 = 0.5 and
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the detector’s position.

Ainp
2 =Ainp

4 A′2 A′4 Q2 Q4

0.5 0.457 0.549 0.913 1.097

0.7 0.648 0.698 0.925 0.997

0.9 0.842 0.903 0.936 1.003

Table 4.6: Extracted QK values for given input Ainp
K in the simulations.

Ainp
4 = 0.5. The simulated yields were fitted with a distribution of the form

W (θ) = A0

[
1 +A

′

2P2 (cos θ) +A
′

4P4 (cos θ)
]
, (4.32)

where A
′

K = AK
A0

. The fit results for the AK coefficients were then used to extract the QK values using,

QK =
A′K
Ainp
K

. (4.33)

The weighted mean of the QK values obtained from independent simulations (whose results are plotted in

Fig. 4.16) are listed in Table 4.7.

Once the QK values were determined, the final step of the analysis involved obtaining the mixing ratio, δ.
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0.927 1.021

Table 4.7: Computed values of Q2 and Q4 from PENELOPE simulations.
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Figure 4.16: Deviation of the QK values for various cases of fixed A2 and A4 that consist of the add-back

spectrum of the clovers.

Since the 20Ne target nuclei have spin-parity Jπ = 0+ and the final state in 21Na produced by the 20Ne(p, γ)

resonance has Jπ = 5
2

+
, the orbital angular momentum ` carried by the protons for this particular resonance

is ` = 2. This yields alignment coefficients for the 5
2

+
state to be B2( 5

2 ) = −1.069 and B4( 5
2 ) = 0.9258. The

values of the RK and fK coefficients are shown in Table 4.8.

These values were used to calculate the angular distributions for arbitrary values of the mixing ratio δ,
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K,L,L′ RK(LL′J1J2) fK(LL′J1J2)

2, 1, 1 0.3742 -0.400

2, 1, 2 -0.9487 1.014

2, 2, 2 -0.1909 0.2041

4, 2, 2 0.7054 0.6531

Table 4.8: RK and fK(LL′J1J2) values for the 5
2

+ → 3
2

+
transition from the resonant state at 3544 keV.

incremented by small steps ∆δ. At each point, the χ2 is defined by

χ2 =
N∑
i=1

[
Wc(i)−Wm(i)

σm(i)

]2

, (4.34)

where N is the number of data points, Wc is the calculated yield, Wm is the measured yield and σm(i) is

the uncertainty in the measured yield. Here

Wc(i) = 1 +Q2A2

(
5

2

)
P2(cos θ) +Q4A4

(
5

2

)
P4(cos θ), (4.35)

where the A2( 5
2 ) and A2( 5

2 ) coefficients depends on δ. We varied arctan δ from −π/2 to π/2 in 1000 steps,

with each step size being approximately 0.0032. This assured a range for δ from (−∞,∞). At each point the

χ2 value was recorded and plotted. As Fig. 4.17 shows, the minimum χ2 value obtained using this method

corresponded to δ = 0.02. Its 68% confidence level uncertainty was determined from the range of δ values

for which χ2 = χ2
min + 1. This yielded a final result δ = 0.02(1).
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Figure 4.17: χ2 as a function of arctan(δ) from this measurement.

61



http://etd.uwc.ac.za/

Chapter 5

Conclusions

This work shows that the mixing ratio of the 5/2+
2 → 3/2+

1 , transition in 21Na is more than 3 times smaller

than previously determined. This implies that the transition is dominated by the M1 multipolarity. The

consequence of this result in terms of the astrophysical implications is shown in Fig. 5.1. It compares the

angular distribution based on the present mixing-ratio measurement, to the one assumed by Lyons et al. [1].

As described in Chapter 2, Section 2.5, Lyons et al. conducted measurements of the resonance strength and

the yields of the 1113 keV resonance. The former was taken with a γ-ray detector at 55◦, whereas the yield

measurement was taken at 90◦ to the beam. As can be observed from Fig. 5.1, the difference between the

two distributions is negligible at 55◦. The yield is enhanced at 90◦, but only by around 10%. This would

result in a similar increase in the 20Ne(p, γ)21Na reaction rate extracted by Lyons et al..
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Figure 5.1: Comparison of the W (θ) used by Lyons et al. (Fig. 9, top-panel of Ref. [1]) to determine the

20Ne(p, γ) astrophysical reaction rate and the angular distribution based on the mixing ratio determined

from this work.
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