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Abstract

The Cosmological Principle forms part of one of the most fundamental hypotheses

of modern Cosmology. So it is very important to assess whether it holds true using

observational data, or whether it consists of a mathematical simplification. We probe

the statistical isotropy of the Universe using the existing radio continuum data, by

means of a local variance estimator. In order to investigate this, we analyse the num-

ber count variance of the radio catalog by looking at patches of approximately 10◦,

15◦, 20◦ & 25◦ in radii, and thus comparing it to mock catalogs which reproduce the

matter density power spectrum, as well as the same sky coverage of the real data.

We establish criteria for accepting patches that have more than 90%, 70% & 50% of

their pixels not masked. We make use of the NRAO VLA Sky Survey (NVSS), whose

operational frequency is 1.4 GHz. We perform statistical tests for detecting possible

departures from statistical isotropy using galaxy number counts with flux limits of

20 < SNVSS < 1000 mJy. We also compare the real data to the mock catalogs of the

radio data in order to assess the statistical significance of our results. We use the

local variance estimator for testing the statistical isotropy of our data sample. We

find that the statistical properties of our sample are in reasonable agreement with

the standard cosmological model. The mean of the distribution for the data falls

well within the 95% confidence interval of the average of the simulated mocks. For

all the radii and acceptance criteria for the patches, we found no significant devi-

ations beyond those allowed by the standard model. As expected there were no

large discrepancies between our mocks and the data. The results are consistent with

statistical isotropy.
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Chapter 1

Introduction

Cosmology deals with the study of the physical Universe on very large scales. As a

science, it explores theoretical and observational properties of the Universe at very

large scales, way beyond the scale of the Milky Way and the local group. Discoveries

of galaxies beyond the Milky Way were only made during the late 1920s. Observa-

tions of galaxies, large-scale structures and gravitational lensing of the observable

Universe all suggest that most of the observable Universe consists of dark matter

with the majority of the Universe’s energy in the form of dark energy.

The assumption that the Universe is nearly the same everywhere in all directions, at

sufficiently large scales, is one that is widely accepted in modern Cosmology (Clark-

son, 2012). Due to the advancement of technology and quality of astronomical ob-

servations, we are able to have a clearer picture of the Universe on cosmological

scales. The Cosmological Principle (CP) states that on large-scales, the distribution

of matter in the Universe is homogeneous and isotropic (Dodelson, 2003). This im-

plies that the statistical properties in the Universe must be the same in all directions

on the sky (isotropy) and from all positions in the Universe (homogeneity).

For a long time, this has been a necessity for simplification of otherwise complex

equations. It is unfortunately difficult to verify the validity of the Cosmological

Principle. The high degree of isotropy of the Cosmic Microwave Background (CMB)

clearly supports this assumption during the early Universe and for most of the Uni-

verse’s history (Akrami et al., 2018). Like the thermal radiation of the Cosmic Mi-

crowave Background at a temperature of ∼ 3 K. Some deviations from this isotropy

http://etd.uwc.ac.za/



2 Chapter 1. Introduction

in the form of a temperature dipole were depicted at ∼ 3 mK. The dipole is inter-

preted with respect to the Cosmic Microwave Background (CMB) rest frame. This

includes the motion of our solar system and even the motion due to our galaxy.

Some unexpected features of the Cosmic Microwave Background temperature fluc-

tuations have been observed by several space missions like the Wilkinson Microwave

Anisotropy Probe (WMAP), Planck and the Cosmic Background Explorer (COBE).

These anomalies include the shortage of large angle correlation, some hemispherical

symmetry and alignment of low multipole moments. These signals require inves-

tigation when better data from galaxy surveys become available. The upcoming

Square Kilometer Array (SKA) will be able to map neutral hydrogen out to a few

redshifts. This will allow us to investigate the cosmological dipole and also be able

to test the proper motion hypothesis and if possible, also identify a structure dipole

(Schwarz et al., 2016). To our current knowledge, these features seem to be real, but

the low statistical significance is likely due to statistical selection biases.

The Cosmological Principle has been a simplifying assumption before it was justi-

fied, both theoretically or with observations. It is also a natural prediction of inflation

models. Observations show that the Cosmological Principle is quite a reasonable ap-

proximation. However, it still exists as a sort of assumption (Gibelyou and Huterer,

2012). Few thorough observational tests have been applied to test homogeneity and

isotropy. We will attempt to contribute to this. We will present some work on statisti-

cal isotropy tests of the Universe using radio data with the goal of bringing statistical

isotropy from the assumption domain into the observational domain.

Other observational projects have made more detailed observations by mapping out

the structure of the Universe at its largest scales during the early times, which is

roughly 380,000 years after the Big Bang (Deruelle and Uzan, 2018). These results

help scientists to further improve the constraints on cosmological parameters. It

was at this time when the first hydrogen atoms formed setting photons in motion

to travel through the Universe. These photons are today detected as the Cosmic Mi-

crowave Background (CMB). The Cosmic Microwave Background provides strong

evidence of the Big Bang origin of our Universe.

http://etd.uwc.ac.za/



Chapter 1. Introduction 3

Analysis of the data from observations of large-scale structures and the microwave

background radiation help justify the notion of homogeneity and isotropy of the

Universe and they help us constrain the Lambda-CDM parameters better (see figure

2.1). The fluctuations are consistent on angular scales that are larger than the cosmo-

logical horizon at recombination. This leads to either of the two, (i) the consistency

is causally fine-tuned or (ii) cosmic inflation did happen (Dodelson, 2003).

The aim of this thesis is to test the statistical isotropy of the Universe using radio

data, more specifically the NRAO VLA Sky Survey (NVSS) catalog. We test this

isotropy by comparing the data to mock realisations of what an isotropic Universe

would look like. We use statistical estimators to test the isotropy on different scales.

Furthermore, we also test the statistical significance of our results by using our es-

timators on simulated radio data. Then we conclude on the isotropy of our data

sample and the significance of the results we obtain, also how the test could be im-

proved.

Thesis outline

Chapter 1 gives an introduction to the topic, gives a bit of some background to the

subject. In Chapter 2, we start off with an overview of cosmology in which we dis-

cuss the standard model of cosmology, the parameters associated with the standard

model and discuss the expansion of the Universe. We discuss the Cosmological

Principle in detail focusing on statistical isotropy. Chapter 3 outlines the radio in-

strument that was used to collect the data, a discussion on radio continuum data,

the preparation of our data set, the statistical estimators used in this work and the

analysis to be carried out in testing statistical isotropy. This is followed by Chapter

4 where we present the results, discussion and also comment on how they can be

improved. Finally, in Chapter 5 we conclude on our findings and give suggestions

on possible future work.

http://etd.uwc.ac.za/
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Chapter 2

Cosmology Overview

2.1 Standard Model of Cosmology

The standard model of Cosmology is also known as Lambda-CDM which is short for

Lambda-Cold Dark Matter. This is a way of expressing the Big Bang model in which

the Universe contains a cosmological constant called lambda, which is associated

with dark energy. The Lambda-CDM model accounts for most of the observational

properties of the Universe, e.g. the late-time accelerated phase of the Universe pre-

ceded by a matter-dominated era.

All these properties allow us to explain the large-scale distribution of cosmic ob-

jects, the Cosmic Microwave Background, and the distance to standard candles and

rulers. Due to this, Lambda-CDM is hereafter referred to as the standard model of

Cosmology. It can also be referred to as the concordance model.

The Λ is a free parameter in Einstein’s fundamental equation of general relativity.

The conservation of energy-momentum is contained in the equation Tαβ
;β = 0, the

Tαβ term is the stress-energy tensor. This term together with the Einstein tensor also

obeys the same equation Gαβ
;β = 0. This leads to a relation between gravitational

acceleration and the curvature of space-time. This is a set of equations that describe

the gravitational field in terms of curved space-time,

Rαβ −
1
2

gαβR + Λgαβ = 8πGTαβ (2.1)

http://etd.uwc.ac.za/



2.1. Standard Model of Cosmology 5

where Gαβ = Rαβ − 1
2 Rgαβ. On the right hand side, G is the gravitational constant

and Tαβ can be expressed as

Tαβ = (ρ + p)uαuβ − pgαβ (2.2)

The ρ term is the mass-energy density, p is the hydrostatic pressure, uα is the fluid’s

four-velocity, and gαβ is the metric tensor’s reciprocal. This equation suggests that a

non zero Λ term accounts for the energy of a vacuum in order to have an isotropic

and homogeneous Universe. It assumes general relativity to be the correct theory for

describing gravity on cosmological scales. The Lambda is associated with dark en-

ergy, it drives the accelerating expansion of the Universe and has a negative pressure

associated with it. i.e p = −ρc2.

One of the Friedmann equations, which is derived using Einstein’s equations is

given by

H2 =
8πG

3
ρ− K

a2 +
Λ
3

(2.3)

where the last term contains the cosmological constant Λ, ρ is the total energy den-

sity and K is the curvature coefficient which is zero in a flat Universe, negative in an

open Universe and positive in a closed Universe. We consider a flat Universe with

K = 0. The total energy density is

ρ = ρm + ρr + ρΛ (2.4)

for the matter, radiation and dark energy densities. Then equation 2.3 reduces to

H2 =
8πG

3
ρ +

Λ
3

(2.5)

The Hubble constant for today is defined as H0, dividing equation 2.5 by the Hubble

constant for today, we get
H2

H2
0
=

8πG
3H2

0
ρ +

Λ
3H2

0
(2.6)

We can define dimensionless density parameters for matter and dark energy as

Ωm =
8πG
3H2

0
ρ0, ΩΛ =

Λ
3H2

0
(2.7)

http://etd.uwc.ac.za/



6 Chapter 2. Cosmology Overview

then from equation 2.6 we get

1 = Ωm + ΩΛ (2.8)

FIGURE 2.1: Evidence for dark energy from SN-only constraints.
Here we show confidence contours at 68 % and 95 % for the Ωm
and ΩΛ cosmological parameters for the Riess et al. (1998) discov-
ery sample and the Pantheon sample. The Pantheon constraints with
systematic uncertainties are shown in red, and those with only statis-

tical uncertainties are shown in gray (line) (Scolnic et al., 2018).

The Lambda-CDM model has six base parameters. The Planck 2015 analysis showed

excellent consistency between the temperature power spectrum and the Lambda-

CDM which is specified by six base parameters. Table 2.1 shows the best constraints

of the six base parameters from the 2018 Planck collaboration cosmological param-

eters with 68 % confidence limits for the standard Lambda-CDM model (Aghanim

et al., 2018).

The six base parameters for the Lambda-CDM model are, the physical baryon den-

sity parameter, a physical dark matter density parameter, the age of the Universe,

scalar spectral index, curvature fluctuation amplitude and the re-ionization optical

depth.

A complete list of assumptions underlying the Lambda-CDM model are discussed

thoroughly by (Akrami et al., 2018), so we will not discuss them here. The reader

may look at the paper for some further reading on these assumptions and in-depth

http://etd.uwc.ac.za/



2.2. The Expanding Universe 7

Parameter Planck Planck + BAO

Ωbh2 0.02237 ± 0.00015 0.02242 ± 0.00014
Ωch2 0.1200 ± 0.0012 0.11933 ± 0.00091

100θMC 1.04092 ± 0.00031 1.04101 ± 0.00029
τ 0.0544 ± 0.0073 0.0561 ± 0.0071

ln(1010 As 3.044 ± 0.014 3.047 ± 0.014
ns 0.9649 ± 0.0042 0.9665 ± 0.0038

TABLE 2.1: The 6-parameter Lambda-CDM model that best fits the
combination of data from Planck CMB temperature and polariza-
tion power spectra (including lensing reconstruction), with and with-
out Baryon Acoustic Oscillations (BAO) data, for more details see

(Aghanim et al., 2018)

information. More cosmological parameters can be derived from those in table 2.1,

like t0, ΩΛ.

Although the Lambda-CDM model is widely accepted, there are alternative models

that have been proposed like dynamical dark energy, quintessence, f(R), in-homogeneous

models like Lemaitre-Tolman-Bondi models and back reaction (Clifton et al., 2012).

However, looking for such alternatives will not be pursued in this thesis. Early

criticism on the dark matter model consists of the Modified Newtonian Dynamics

(MOND) (Milgrom, 1983), but not much compelling evidence has been found thus

far.

The standard model implies that most of the matter in our Universe is dark matter

with most of the energy in the form of dark energy. This is shown in figure 2.2, which

is a graphical representation of the standard model of cosmology.

2.2 The Expanding Universe

To better understand how the Universe evolves, we need an expression for the scale

factor. We also have to know the curvature of the Universe. Inserting the Friedmann

Robertson Walker (FRW) metric into Einstein’s field equations they reduce to what

is known as the Friedmann equations.

http://etd.uwc.ac.za/



8 Chapter 2. Cosmology Overview

FIGURE 2.2: A pie chart depicting the standard model of cosmology
(Credits:ESA and the Planck Collaboration team)

The Robertson Walker (RW) metric is given by

ds2
RW = c2dt2 − a2(t)γijdxidxj (2.9)

The γij term is the three dimensional spatial metric of constant curvature. We con-

sider the simplest form for a flat Universe with zero curvature. Then the RW metric

becomes

ds2
RW = c2dt2 − a2(t)(dx2 + dy2 + dz2) (2.10)

In spherical coordinates x = r cos ϕ sin θ, y = r sin ϕ sin θ and z = r cos θ. The RW

metric then becomes

ds2
RW = c2dt2 − a2(t)(dr2 + r2dΩ2), (2.11)

the solid angle dΩ = dθ2 + sin2 θdϕ2. For a generalized case with nonzero spatial

curvature, the RW metric becomes

ds2
RW = c2dt2 − a2(t)(dr2 + S2

K(r)dΩ2) (2.12)
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2.2. The Expanding Universe 9

The three cases for the curvature K, are depicted below. From now on we assume a

flat Universe, i.e K = 0

SK(r) =


r : K = 0

sin r : K = 1

sinh r : K = −1



Observations support the idea that the Universe is expanding. Hubble found the

relation between the recession velocity and the redshift of galaxies. Assuming that

H0R ≈ cz, the distances to these galaxies can be estimated. This led to the formu-

lation of Hubble’s Law v = H0R. The v is the recession velocity, H0 is the Hubble’s

constant and R = a(t)r is the distance to the galaxies. If we consider low redshift,

then we have

v =
dR
dt

=
d(a(t)r)

dt
= rȧ = H0R,

where r is the comoving distance of the receding galaxy and R = ar is the physical

distance.

The expansion of the Universe mainly involves two aspects: the energy density of

the Universe and the Hubble rate. The latter describes the speeds at which galaxies

are moving away from us. This expansion rate is given by

H =
ȧ(t)
a(t)

, (2.13)

where a(t) is the scale factor and ȧ(t) is the time derivative of the scale factor with re-

spect to proper time. Physical separations between two points (galaxies) all expand

with the same scale factor a(t). Consider two galaxies that are separated by a dis-

tance χ today. If their motion is only due to the Hubble rate, then at a different time

t1, the separation between them was a(t1)χ. The scale factor today is a0 = a(t0) = 1.

http://etd.uwc.ac.za/



10 Chapter 2. Cosmology Overview

We can relate the scale factor to the redshift. The comoving wavelength is given by

λemi = a(t)λobs . This is the wavelength emitted at time t. Redshift is defined as

z =
λ− λobs

λobs
(2.14)

This equation then implies that

1 + z =
λobs

λemi
, (2.15)

by substituting λemi, we get the following relation between scale factor and redshift

1 + z =
1

a(t)
(2.16)

The Friedmann equation 2.3 gives the expansion rate in terms of both the matter,

radiation and dark energy.

H2 = (
ȧ
a
)2 =

8πG
3

ρ +
Λ
3

, (2.17)

We define the present day density parameters in equation 2.7 where we only con-

sider a late time flat Universe and neglect the radiation contribution (Ωr = 0). The

density scale as a−3 for matter, the Friedman equation becomes

H(a) ≡ ȧ
a
= H0

√
Ωra−4 + Ωma−3 + ΩΛ, (2.18)

which simplifies to

H(z) = H0

√
Ωm(1 + z)3 + ΩΛ (2.19)

in terms of redshift for the late Universe. Now we relate the comoving distace Dc(z)

to the redshift z. Comoving distance in terms of redshift is given as

Dc(z) = c
∫ z

0

dz
H(z)

(2.20)

The luminosity distance is given by

DL(z) = (1 + z)DM(z) (2.21)
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2.2. The Expanding Universe 11

But we know that DM(z) = Dc(z) for zero curvature Ωk = 0, so equation 2.20 can

be written as

DM(z) = Dc(z) = c
∫ z

0

dz
H(z)

. (2.22)

Now the luminosity distance becomes

DL(z) = (1 + z)× c
∫ z

0

dz
H0

√
Ωm(1 + z)3 + ΩΛ

(2.23)

Finally, the luminosity-redshift relation for a matter dominated Universe is given by

µ(z) = 5 log DL(z) + 25 (2.24)

The µ is defined as the distance modulus, this is a measure of the distance to an

object given by the difference in apparent magnitude and absolute magnitude of the

object, µ = m−M.

FIGURE 2.3: The luminosity-redshift relation for the late Universe.

The red and green curves in figure 2.3 both have the same parameters with (Ωm =

0.3, ΩΛ = 0.7) the only difference is H0. The curve with a higher value of H0 (red

curve) is below the curve with a lower value of H0 (green curve). The blue curve

represents a flat Universe with no Dark Energy, we can see that it is below the other
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12 Chapter 2. Cosmology Overview

two curves, irrespective of having a value of H0 = 80 km/s/Mpc. Also, note that

at higher redshifts the three curves deviate from one another as compared to lower

redshift (0 < z < 0.2). The plots in figure 2.3 show the relationship between the

luminosity distance and redshift and also how the Hubble parameter affects the lu-

minosity and redshift.

Hubble’s constant is the expansion rate of the Universe, that is the rate at which the

scale factor changes with time. Recent advancements in technology and high preci-

sion experiments have given better constraints on the value of H0, see figure 2.4 for

the different values of H0. The results are a major advance on that of Edwin Hub-

ble’s measurement of approximately 500 km/s/Mpc (Dodelson, 2003).

FIGURE 2.4: Estimated values of the Hubble constant H0, from
2001–2018. Circles represent calibrated distance ladder measure-
ments, squares represent early Universe CMB/BAO measurements
with ΛCDM parameters while triangles are independent measure-

ments.(Credit:aasnova.org)

This notion of an expanding Universe gave birth to the theory of the Big Bang. If

space is expanding, we can infer that in the past the Universe must have been hotter

than it is presently. The temperature tends to infinity in a finite time in the past,

this is a phenomenon known as the Big Bang singularity. This was a singularity of

infinite density. The Big Bang effectively happened everywhere simultaneously so

there should still be traces of it left in the Universe as some background radiation,

http://etd.uwc.ac.za/



2.2. The Expanding Universe 13

now known as the Cosmic Microwave Background radiation (CMB) (Ryden, 2016)

(see figure 2.5).

The temperature of the CMB as a function of redshift is given by

T(z) = T0(1 + z). (2.25)

This equation shows that the Universe cools as it expands. During the expansion of

the early Universe, matter decoupled from radiation at a temperature of 3000 K. The

radiation has been Doppler shifted to approximately 2.7 K today. The measurements

today show a nearly isotropic radiation background of 2.7 K. It has a spectrum simi-

lar to that of a black body. The CMB spectral radiance dEν/dν peaks at a frequency of

160 GHz in the microwave range of the electromagnetic spectrum (Dodelson, 2003).

FIGURE 2.5: The Planck CMB sky as shown by the 2018, SMICA tem-
perature map. The CMB map has been masked and is painted in re-
gions where residuals from foreground emission are expected to be
substantial. This mask, mostly around the Galactic plane, is shown
by a grey line in the full resolution temperature map, the unmasked

area covers 80.7 % of the sky (Akrami et al., 2018)

http://etd.uwc.ac.za/



14 Chapter 2. Cosmology Overview

2.3 Cosmological Principle

The Copernican Principle states that we do not occupy a special place in the Uni-

verse (Ellis, 2006). It was one of the building blocks for the Cosmological Principle.

If our local Universe is isotropic to us as the observer, then the Copernican Principle

requires that other observers in the Universe also see isotropy, otherwise we would

have a special place in the Universe. A Universe that is isotropic everywhere must

also be homogeneous, thus the Cosmological Principle is a conclusion from using

isotropy and the Copernican Principle.

It says for an observer on any galaxy at rest relative to the CMB, the Universe on

average looks statistically similar in all directions. The term observer means any ob-

server in any part of the Universe. So regardless of wherever one is, the Universe

looks nearly the same. This requires the geometry of the Universe to be a simpli-

fied one. The three possible geometries of space have been discussed in section 2.1,

they are the open, closed and flat geometry. The simplest space-time metric for a flat

isotropic and homogeneous Universe is shown by equation 2.10. It shows that the

scale factor a(t) describes the evolution of the Universe with time.

Although it has formed the basis of modern cosmology, the Cosmological Principle

still needs to be justified with observational data. Obviously, there are noticeable

inhomogeneities on the scales of our solar system or galaxy. The assumption of

isotropy can be directly tested from observations, but on the other hand, homogene-

ity cannot be directly tested from observations since we cannot observe within the

past light cone (Clarkson and Maartens, 2010). This phenomena is illustrated in fig-

ure 2.6 below.

Astronomical data has grown massively, now the Cosmological Principle can be dis-

cussed using detailed observations. Galaxy surveys like the Sloan Digital Sky Sur-

vey (SDSS) have been used to show that the Universe at very large scales is consistent

with isotropy and homogeneity, see Gonçalves et al., 2018 and references therein.

These maps of galaxies are also important for the standard model of cosmology.
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2.4. Large Scale Structure 15

FIGURE 2.6: The Copernican Principle is hard to test because we are
fixed to one event in space-time. We make observations on our past

null cone which slices through spatial surfaces (Clarkson, 2012)

Detailed studies from Planck showed the isotropy of the Universe by showing how

isotropic the cosmic microwave background is, see figure 2.5. Some studies are still

trying to find the CMB dipole signal in source number counts across the entire sky,

but with very limited precision at the moment. Their results give a dipole ampli-

tude that is larger than the amplitude seen in the CMB, even though the direction is

consistent, see Bengaly, Maartens, and Santos, 2018. The dipole is shown in figure

2.7.

The CMB dipole has an amplitude of ∼ 10−3. We can interpret it to be due to our

relative motion so that we get a degree of isotropy to be as high as ∼ 10−5 after re-

moving both the dipole and monopole (Kogut et al., 1993).

2.4 Large Scale Structure

The Universe is full of matter. But how is all of this matter distributed? Is it all ar-

ranged together, like when freezing people gather around a campfire? Or sprinkled

evenly, like raisins in a cake? As it turns out, galaxies seem to huddle together in
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16 Chapter 2. Cosmology Overview

FIGURE 2.7: Dipole amplitude histogram for the NRAO VLA Sky
Survey. The vertical line represents the value of the dipole obtained

from real data (Bengaly, Maartens, and Santos, 2018).

larger groups called galaxy groups and clusters. Many of which contain a mass of

about 1014 solar masses and are up to several million light-years across.

After decoupling, the baryonic matter was able to collapse under gravity. This led to

the formation of the first stars, then galaxies and then ultimately clusters of galaxies.

As more matter fell in due to gravity, the over dense regions became more and more

over dense. The over-densities grew big enough for stars to form. In the standard

Lambda-CDM model, quantum fluctuations provide the inhomogeneities needed

for structure formation.

In figure 2.8 one can see that galaxies and galaxy clusters are also not evenly dis-

tributed. Rather, they are arranged in galaxy clusters and super clusters, which are

a result of many galaxy clusters clumped together. The super clusters can contain

thousands of galaxies, and extend over millions of light years. Super clusters are

connected by thin, fibre-like structures known as filaments. There are also large

empty regions called voids, which can also be millions of light years across, and
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2.4. Large Scale Structure 17

FIGURE 2.8: Distribution of 2MRS catalog galaxies in Galactic coordi-
nates. (Murph, 2011)

contain none, or at least almost no galaxies.

Large-scale structures are a result of small over-densities which start to grow in a

matter dominated era due to gravitational instabilities. For galaxies to grow fast

enough, we need a mysterious component in the Universe such as the non-baryonic

cold dark matter, otherwise, we can’t explain the observations. That is the main

reason why it is part of the standard model of Cosmology. Vacuum fluctuations of

the inflation field provide the seeds for these small over-densities. No evidence has

been found yet against the Gaussian spectrum assumption for the primordial den-

sity perturbations (Ade et al., 2016). Future galaxy surveys will be able to put better

constraints similar to that of Planck’s and thus establish if this assumption is really

valid. Refer to chapter 4 of Ballardini et al., 2016 to read up on some of the future

galaxy surveys.

Observations of the CMB at decoupling (z ≈ 1100) have been critical to measure

the basic properties of the standard model of the Universe. This standard model of
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18 Chapter 2. Cosmology Overview

cosmology is a flat FRW model with dark energy modelled by Λ, cold dark matter

dominating over baryonic matter, and initial conditions for structure formation gen-

erated by a simple inflation model. Galaxy surveys at low redshift provide a crucial

complement to the information from the CMB. In particular, galaxy surveys provide

the best constraints on dark energy because dark energy only starts to dominate at

z < 1.

The best current constraints on Lambda-CDM come from the Planck survey and the

Sloan Digital Sky Survey (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS),

together with smaller data sets such as those measuring the properties of supernovae

of type Ia. The various constraints have been combined in the 2018 data released by

the Planck collaboration (Aghanim et al., 2018). The basic parameters of the Lambda-

CDM model have the following values:

Best− f it parameters =


H0 = 67.66± 0.42

Ωcdm0 = 0.3111± 0.0056

Ωb0h2 = 0.02242± 0.00014

ΩΛ0 = 0.6889± 0.0056



These constraints rely heavily on the measurement of the power spectrum of CMB

temperature anisotropies. The angular power spectrum measures amplitude as a

function of wavelength. The power spectrum helps characterize the size of the fluc-

tuations as a function of the angular scales and of the correlation function of galaxies.

(see figure 2.9). The two point correlation function gives us the probability of find-

ing a galaxy within a given distance from another galaxy. The two point correlation

function is widely used to measure the large scale structure in a galaxy, it measures

the amplitude of clustering versus the scale (see figure 2.10).
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FIGURE 2.9: Planck 2018 temperature power spectrum, with fore-
ground and other nuisance parameters fixed to a best fit assuming

the base-ΛCDM cosmology. Taken from Aghanim et al., 2018
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FIGURE 2.10: Measurement of the correlation functions ξn and ξL us-
ing the CMASS-DR12. Taken from Soumagnac et al., 2018
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Chapter 3

Radio Surveys, Statistical Tests and

Analysis

Introduction

In this chapter, we give an overview of the radio instrument that was used to obtain

the data, the data sample and all the methods, including the software we use in cal-

culating galaxy number counts in order to test our hypothesis. We discuss also the

limitations associated with each approach.

3.1 HEALPix Software

The Hierarchical Equal Area isoLatitude Pixelization (HEALPix) discretizes the ce-

lestial sphere into pixels that covers the same area given different resolutions and

allows us to perform analysis on data projected on the celestial sphere. It provides

a good scheme for distributing points as uniformly as possible over the surface of a

unit sphere (Gorski et al., 2005).

Properties

One of the most important features of the HEALPix projections is that they are equi-

areal with squared boundaries and straight parallels. The centres define locations
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22 Chapter 3. Radio Surveys, Statistical Tests and Analysis

on the sphere, where θ ∈ [0, π] is the colatitude in radians measured from the North

Pole and φ ∈ [0, 2π] is the longitude in radians measured Eastward. The centres are

within smaller equal-sized diamonds that are identified as pixels. The area of each

pixel is defined as

Ωpix =
π

3Nside
2 (3.1)

as shown by Gorski et al., 2005, with Nside being there resolution of the map.

k Nside = 2k Npix = 12Nside
2 θpix = Ωpix

1/2

0 1 12 58.6◦

1 2 48 29.3◦

2 4 192 14.7◦

3 8 768 7.33◦

4 16 3072 3.66◦

5 32 12288 1.83◦

6 64 49152 55.0’
...

...
...

...
29 229 3.46 x 1018 3.93 x 10−4”

TABLE 3.1: Table of Nside, the associated number of pixels and the cor-
responding pixel area for HEALPix (Gorski et al., 2005). The values

in bold are for this work.

3.2 Radio Continuum

Radio continuum surveys scan the sky in radio frequencies in order to study the

distribution and the intensity of radio sources in the sky. The fine details are deter-

mined by the amount of resolution of the radio telescope. The angular resolution of

a telescope can be approximated by

R =
λ

D
(3.2)

with λ being the wavelength of radiation and D is the diameter of the telescope

(Serway and Jewett, 2018). Continuum surveys have the primary objective of un-

derstanding the formation of galaxies over cosmic time, large-scale structures and

better constraints on cosmological parameters.

http://etd.uwc.ac.za/
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They provide an alternative view to that of optical instruments. They are able to

detect hydrogen gas and also reveal some areas of the sky that might be blocked by

interstellar dust. Figure 3.1 shows the 21 cm line map of the entire sky taken with a

radio telescope. The long wavelength of radio waves enables them to be detectable

even in cloudy conditions. For better resolution, the telescope must have a big di-

ameter. This is why the radio dishes have to be very large. However, the bigger size

introduces some limitations, for example, the physical size of the telescope, move-

ment of the dish and the ability to point the telescope in certain directions. Moreover,

the cost of building radio telescopes that have very big dishes is very high.

FIGURE 3.1: The sky seen at a radio frequency of neutral hydrogen
emission (21cm). (haslam1982)

A solution to some of these limitations is the application of a technique known as

interferometry. This involves linking more than one radio telescope to create an in-

terferometric array, see figure 3.2. The resolution of the array depends on the maxi-

mum separation between the individual dishes. Increasing the distance between the

dishes increases the angular resolution of the array. The signal from the individual

dishes is brought together and processed by a correlator, combining the signals to

simulate a signal from a larger single telescope.
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FIGURE 3.2: The South African MeerKAT radio telescope
(www.ska.ac.za)

3.2.1 21cm emission

The proton and electron in the hydrogen atom have the spin property. The spin can

either be aligned or anti-aligned. The atom will emit radio energy at a wavelength

of 21 cm if there is a transition from the aligned to the anti-aligned energy state.

Conversely, for the atom to make a transition from the anti-aligned to the aligned

state, the atom has to absorb energy from the 21 cm wavelength. Figure 3.3, explains

this entire process.
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FIGURE 3.3: The basic principle of radio emission [credits SKA Orga-
nization]

3.2.2 Synchrotron radiation

Synchrotron radiation is a form of electromagnetic emission. It is emitted by elec-

trons that are spiralling along, and therefore being constantly accelerated at speeds

close to the speed of light in a magnetic field. Refer to figure 3.4 for a visual repre-

sentation of the process. The emitted radio signature reveals the strength of the mag-

netic field. This form of radiation is continuous and highly polarized. The strength

of the magnetic field together with the energy of the charged particles is directly

related to the intensity and frequency of the radiation. Strong magnetic fields and

high particle energies will produce a higher emitted intensity and frequency of ra-

diation. Synchrotron radiation does not depend on the temperature of the source,

even objects that are cool can emit synchrotron radiation. This is why it is sometimes

referred to as non-thermal radiation.
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FIGURE 3.4: Synchrotron emission as a result of electrons spiralling
around magnetic field lines. [Source:www.daviddarling.info]

Astronomical sources that emit synchrotron radiation include, acceleration of elec-

trons in stellar systems, supernova remnants, cosmic ray electrons in magnetic fields

of normal galaxies, radio jets, and pulsars just to mention a few. In order to get an

emission spectrum from any of these sources, the emission spectra of individual

electrons must be summed up. An electron moving in a magnetic field emits many

frequencies that all have a peak value of ν0, known as the critical frequency. The

electron will lose more energy if it travels for a longer period in the magnetic field.

This will result in a longer wavelength corresponding to the critical frequency.

Synchrotron emission can be described by a characteristic spectrum, where we can

relate the flux and frequency using a power law:

S ∝ να, (3.3)

α is the spectral index. Figure 3.5 shows the Crab Nebula which is a supernova

remnant. The blue glow at the centre of the Crab Nebula is believed to be due to

synchrotron emission.
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FIGURE 3.5: The Crab Nebula (Source:www.spacetelescope.org)

For radio sources to emit synchrotron radiation, electrons must be spiralling at rela-

tivistic motions. The relativistic motion causes an opening angle that is related to the

Lorentz factor. The Lorentz factor boosts the emission frequency into a range that

can be observed with radio instruments. The maximum frequency can be measured

as

νmax = νeγ
2, (3.4)

where the Lorentz factor γ = 1√
1+ v2

c2

= 1√
1−β2

(Forshaw and Smith, 2009).

For compact sources at a lower frequency, the power law spectrum becomes very

steep. These sources are generally optically thick. The source becomes opaque as

the electron temperature equals the brightness temperature. Then a phenomenon

known as synchrotron self-absorption occurs.
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3.2.3 Radio flux

To describe the strength of the radiation and how it changes with distance between

the source and the observer, we visit the concept of flux density. The specific inten-

sity of a source can be defined by

Iν =
1

cos θdδdν

dP
dΩ

, (3.5)

over a surface with infinitesimal area dδ, solid angle dΩ and the angle between the

radiation ray and the normal to the surface, θ. The power radiated by a photon over

the solid angle denoted by dP
dΩ . Over all frequencies, the intensity is

I =
∫ ∞

0
Iνdν. (3.6)

For a source that subtends a well defined solid angle, the spectral power received by

a detector is the flux density, Sν.

Integrating equation 3.5 over the solid angle gives

Sν =
∫

source
Iν(θ, φ) cos θdΩ, (3.7)

for small angular sizes, cos θ ≈ 1, thus the density is given by

Sν ≈
∫

source
Iν(θ, φ)dΩ (3.8)

measured in units of Jansky, where

1Jansky = 1Jy ≡ 10−26Wm−2Hz−1 ≡ 10−23ergs−1cm−2Hz−1

(Burke and Graham-Smith, 2009).

Some of the radio telescopes from around the world are the following APERTIF,

ASKAP,eMERLIN, VLA,e-EVN, LOFAR, MeerKAT, MWA just to name a few. Once

fully operational, the next generation telescope SKA will be the most powerful, sen-

sitive and largest radio telescope.
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3.3 Observational data

The Very Large Array

The Very Large Array (VLA) consists of 27 radio dishes which are 25 meters in diam-

eter, mounted on rails. They are not all arranged in one line, see figure 3.6. The VLA

is re-configurable and uses four principal array configurations A to D, depending

on how far the individual dishes are moved apart. The A-configuration provides

the longest baselines and thus the highest angular resolution for a given frequency,

but yields very limited sensitivity to surface brightness. The D-configuration pro-

vides the shortest baselines, translating to a high surface brightness sensitivity at the

cost of angular resolution. The VLA is located in a desert in New Mexico, USA.

FIGURE 3.6: The Very Large Array in New Mexico
(Source:www.images.nrao.edu).

The NRAO VLA Sky Survey

The VLA was used to create the NRAO VLA Sky Survey (NVSS) (Condon et al.,

1998) This is a catalog of radio sources with declination values above −40◦. This

survey was observed at a frequency of 1.4 GHz and contains almost two million

sources down to a flux of 2.5 mJy. It is assumed that this survey is complete for

all sources above 15 mJy (Condon et al., 1998). Due to limitations, some additional
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identification problems arise near the galactic plane as well as near very strong radio

sources. For declinations below −10◦ and above 80◦ the DnC configuration of the

array was used, while between those declinations the array was in the D configu-

ration. This is because it is harder to observe radio sources near the horizon of the

telescope. In order to compensate for this problem to some extent, the DnC configu-

ration was used for most of the North and South areas.

FIGURE 3.7: The NVSS catalog of radio sources in galactic coordi-
nates, generated using HEALPix with Nside = 16 resolution.

3.3.1 Sample Selection

In order to perform a robust test of isotropy of the radio count angular distribution,

one has to do a careful cleaning and selection of the data. We choose the following

flux limits for our data,

20 mJy < SNVSS < 1000 mJy

in order to avoid systematics below and above these values, also to be conservative.

In order to purify the NVSS catalog, we adopt a masking procedure similar to the one

from Bengaly, Maartens, and Santos, 2018, to deal with well-known contamination.

This involves the elimination of pixels in the following regions:

• Close to the galactic plane, i.e., | b |≤ 10◦.
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• Within 1◦ of the local radio sources given in (Van Velzen et al., 2012).

• Galactic foreground emission above T = 50 K according to the 408 MHz con-

tinuum map in (Haslam et al., 1982).

Nside No. of patches Patch radii fsky NTotal

(Cetred at each of the 3072 HEALPix pixels)

16 3072 10◦, 15◦, 20◦, & 25◦ ∼ 0.657 268 345

TABLE 3.2: Summary of the sample selection parameters used in this
work. Column 1 lists the resolution used for our maps, column 2 lists
the total number of patches that were selected for the analysis, the
corresponding patch radius is depicted in column 3. Column 4 lists
the total fraction of the sky, and in the last column we list the total

number of sources in our sample.

To get rid of bad pixels referred to above, we use the mask shown in figure 3.8.

FIGURE 3.8: The mask used to eliminate bad pixels.

The final NVSS map is shown in figure 3.9 for 20 < SNVSS < 1000 mJy, at a resolution

of Nside = 16, obtained by applying the mask in figure 3.8 to the NVSS catalog map

in figure 3.7.

3.3.2 Patches

In order to test the isotropy of our data sample, we propose the following approach.

We test the isotropy by analyzing the number counts in each of the pixels contained
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FIGURE 3.9: The pixelized number count map of NVSS radio sources
in the flux ranges 20 < S < 1000 mJy.

in a patch on the sky, with a radius of 10◦. We repeat the procedure for three other

radii, which are 15◦, 20◦ & 25◦. Since we will apply a mask to bad pixels, we define

criteria for accepting patches that we are going to perform our tests on as follows.

For each patch of a given radius, we shall consider three cases. For each of the three

cases, we perform the test, obtain the results, then do some analysis before moving

on to the next radius. We only accept patches that

i. have at least 90 % of the pixels unmasked.

ii. have at least 70 % of pixels unmasked.

iii. have at least 50 % of pixels unmasked.

For each radius, we compare the galaxy number counts for 3072 patches on the sky,

with the above acceptance criteria. Only pixels whose centre falls within the patch

and are unmasked are accepted. Those whose centre falls outside of the radius are

not considered.
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FIGURE 3.10: The maps above show four patches of different radii,
the black curve denotes the boundary of the patch and the red cross

is its center.

3.3.3 Mock data generation

We shall also run our local variance estimator in equation 3.12, through 1 000 mock

realizations of galaxy number counts which are produced using the FLASK code

(Xavier, Abdalla, and Joachimi, 2016). Camb sources provide the assumed angu-

lar power spectrum (Challinor and Lewis, 2011). For detailed method on how to

generate the mock realizations together with the FLASK calibration corrections, see

Bengaly, Maartens, and Santos, 2018.

The simulated mocks carry all the information we know about Cosmology, for in-

stance, the number of sources per redshift bin n(z), as well as the clustering bias b(z).

The n(z) and b(z) quantities will not be discussed here, the reader is encouraged to

read Bengaly, Maartens, and Santos, 2018 for a thorough explanation on them.
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3.4 Tests for Statistical Isotropy

We use several test statistics to give us a measure of the differences in galaxy number

counts for patches on the sky. Then we compare the obtained galaxy number counts

variance. Our testing procedure is as follows:

1. Make 3072 patches of a given radius r, see figure 3.10 for an idea of the sizes

of the patches, centred on the pixels of a HEALPix Nside = 16 grid.

2. For each patch and sky map, we compute the galaxy number count variance

σ2 =
∑(x− µpix)

2

N
(3.9)

with number counts in a pixel x, mean number count in the pixel µpix and the

mean number count per patch n̄, which is summed up over all pixels in a patch

n̄ =
∑ µpix

Npix
. (3.10)

Patches for which less than 90% of the pixels don’t have a mask are ignored

completely. Similarly, for the other two cases, i.e less than 70% and 50% of the

area unmasked.

3. Compute the coefficient of variation, which is a statistical measure of the dis-

persion of data around the mean, calculated from the mean and standard de-

viation in galaxy number counts as follows

CV =

√
σ2

n̄
(3.11)

The coefficient of variation is useful for comparing the degree of variation from

one data series to another, in our case from one patch to the next. This particu-

lar statistic is a widely used standardized measure for the spread of measure-

ments for a sample, it allows direct comparisons of variations in samples with

different means (Marwick and Krishnamoorthy, 2018).
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4. For each patch, we compare the coefficient of variation by performing the test

statistics in the following section.

5. To establish the expected mean and variance of each patch, we compute the

same galaxy number count variance and mean from 1 000 simulated mock

data, which have the same assumptions as those on Cosmology and the obser-

vational data.

3.4.1 Local Variance Estimator

For this particular statistic, we compute the coefficient of variation in each patch for

the real data (NVSS), then compute the coefficient of variation for the equivalent

patches in 1 000 simulated mock maps so that we obtain the coefficient of variation

for 1 000 simulated mock maps. This is the expected value for the coefficient of vari-

ation in galaxy number counts. We take an average of the 1 000 maps because there

are some variations in the mocks as well. This average coefficient of variation is then

compared to the coefficient of variation of the observed data. We take the difference

in galaxy number count between the data sample and the simulated mock data.

We use this Local Variance Estimator (LV) to test the statistical isotropy of the sky

distribution of radio sources. For similar methods, see (Akrami et al., 2014). The

local variance statistic is defined as

ξ =
(σp/n̄p)data − (σ̄p/n̄p)mock

(σ̄p/n̄p)mock
(3.12)

The ξ is computed from all the pixels, falling inside a circular patch with mean num-

ber count n̄p. The term (σp/n̄p)data is the number count coefficient of variation for a

patch from the data and (σ̄p/n̄p)mock is the average number count coefficient of vari-

ation for the 1 000 simulated mock maps for a patch, and n̄p, i is the mean number

counts in a pixel, for a patch p from the data with number of pixels per patch Npix;

n̄p =
1

Npix

Npix

∑
i=1

np,i (3.13)
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3.4.2 Two Sample test

This is a statistical test applied to sets of data to evaluate how likely it is that any

observed difference between the sets arose by chance. In our case, the coefficient of

variation in galaxy number count between two patches is compared. We used 3072

patches. The χ is defined as

χ =
(σp/n̄p)data − (σp+1/n̄p+1)data

(σp/n̄p)data + (σp+1/n̄p+1)data
(3.14)

The test is performed on pairs of patches, p represent first patch then p+1 will rep-

resent the adjacent patch. A perfect uniform distribution corresponds to χ = 0, thus,

the smaller the value of χ, the more uniform the distribution is, this is according to

Menezes, Pigozzo, and Carneiro, 2017. The same procedure will also be applied to

the simulated mocks.

3.5 Analysis

For this section we discuss the analysis of the estimators in section 3.4, also discuss

how they show consistency with statistical isotropy for the data. From the method

described above, we have estimated the local variance for 3072 patches. Figure

3.11 shows the number of accepted patches corresponding to all the radii for our

case. The positions of the patches were chosen using the HEALPix software with

Nside = 16, in order to cover the entire sphere with as many patches as possible.

For every patch, we consider only those pixels whose centres fall within the patch

radius. We establish criteria for accepting the patch, by this criteria, we accept all the

patches where more than 90%, 70% and 50% of the area remains after applying the

mask to the patch in question. Figure 3.11 shows the remaining patches which were

used in our work.
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FIGURE 3.11: The total number of discs that were accepted for all 4
radii in this work, using the criteria explained above.
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Chapter 4

Results and Discussion

In this chapter we show the results that we obtained from the two estimators de-

scribed in chapter 3, with results from both our estimators as describe in section 3.4.

We also discuss possible reasons for the results and also ways in which they can be

improved.

4.1 Local Variance Estimator results

We use equation 3.12 to calculate the local variance values for 3072 pixels, using our

rejection criteria to avoid the masked area so that we are left with the number of

patches shown in figure 3.11.

The maps in figure 4.1 corresponds to the local variance estimator results for dif-

ferent patch sizes, and by carefully comparing them tells us as to how statistically

isotropic our data is. From figure 4.1 the maps become smooth as you move from

left to right, that is as the rejection criteria become less rigorous. As the number

of patches increases the maps become more uniform. There are also less rejected

patches when the rejection criteria are less strict (i.e 50 %).

As an equation, 3.12 shows the difference for the coefficient of variation between

the data and mocks. The maps show that ∆ξ decreases from left to right, which is

defined as

∆ξ = ξmax − ξmin (4.1)
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FIGURE 4.1: The local variance maps for the NVSS data with Nside = 16 HEALPix grid. The rows represent
the patch radii, from top 10◦ (first row), 15◦ (second row), 20◦ (third row) & 25◦ (forth row). We make a
comparison of the three criteria in which to accept the patch, 90 % (left), 70 % (middle) & 50 % (right) of

the disc unmasked. All rejected pixels are masked.

The equation measures the spread in the variance of galaxy number counts for the

local variance estimator, this will give us an idea of how well our mean is represen-

tative of the data. We expect the value of ∆ξ to decrease as we increase the radii and

relax the rejection. This is because a small spread in the data indicates that there are

small differences between the individual number count variances in each patch.

This implies that the data and the simulations are becoming statistically similar as

we become less rigorous in our rejection. This is due to the decrease in the spread

of the data, however, for the 25 ◦ case, we have the opposite. This may be due to
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PatchRadius(Degrees) Criteria of 90% Criteria of 70% Criteria of 50%

10 1.6 1.2 1.0
15 0.88 0.71 0.61
20 0.88 0.62 0.49
25 0.50 1.64 1.20

TABLE 4.1: Table showing the spread values for the number count
variance for the local variance maps in figure 4.1. It shows the value

of ∆ξ for the 4 radii and rejection criteria respectively.

some error in our calculation or coding for producing the maps. Now if we focus

on the size of the patch radius, the smallest patch radius corresponds to the largest

value of ∆ξ (except for the two cases), the associated maps, figure 4.1 top row vary

more than the rest of the other maps. Thus the patches with a radius of 10◦ are less

statistically similar to the other patches. The second row from top represents patches

with a radius of 15◦, these maps are more uniform than the 10◦ maps, they differ less

as compared to the smaller radius discs.

From top to bottom we notice also a decrease in the number of accepted patches,

so as the patch radii become bigger, more patches are rejected as compared to the

previous radius. This is also evident on figure 3.11. Secondly, as the radii increase,

the maps become more uniform with the maps corresponding to 25◦ discs being the

most uniform of the three radii.

Figure 4.2 shows the local variance estimator results for one mock realization, with

the same selected pixel centres as in figure 4.1. We perform this test to check the

performance of our estimator. The local variance maps become uniform as the radii

of the patch increases. Similar to the local variance results in figure 4.1. Also, notice

that ∆ξ becomes small as the rejection becomes less rigorous.

These local variance maps in figure 4.2 show that our estimator is performing well.

We might just need to consider more simulated maps to compare with our data.

Considering only one realization might not be getting all the information from the

maps.

We can conclude that there are smaller local variance fluctuations across the sky as
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FIGURE 4.2: The local variance maps for one simulated mock realization map with Nside = 16 HEALPix
grid. The rows represent the patch radii, from top 10◦ (first row), 15◦ (second row), 20◦ (third row) & 25◦

(forth row). We make a comparison of the three criteria in which to accept the patch, 90 % (left), 70 %
(middle) & 50 % (right) of the patch unmasked. All rejected pixels are masked.

we become less rigorous in our rejection, and also as the patch radii increases. The

less rigorous the rejection, the more statistically isotropic the data becomes. Increas-

ing the radii means that more pixels are analyzed, this could also introduce more

deviations as the masked area also increases.
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4.2 Two sample test results

The statistic for the two sample test is done to compare the number count variance

of the data with the expected number count variance from the simulated mocks.

This is done by comparing patch by patch for the data independently then also in-

dependently for the mocks. Then at the end, we can compare variations from all

the patches for the data to the averaged variance from 1 000 simulated mocks. If

two patches are statistically similar, their χ value will be close to zero. For two per-

fectly uniform patches χ = 0. We compare the patches in pairs, from patch 1, ... ,3072.

Since we only compare the patches with each other, we also have to run our estima-

tor on the simulated data. Then we will compare the patches from the data to those

from the simulated mock maps. To get the average histogram for the mocks, we

take an average of the galaxy number counts in each patch for the 1 000 maps, then

average that to get only one map with 3072 averaged patches. Then compare those

averaged patches against each other to quantify their similarity and differences.

FIGURE 4.3: Two sample test result for r = 10◦ and at least 90 % of each
pixel unmasked, for the NVSS data and the two sample chi-squared
average of 1 000 simulated mock maps. The solid blue line represents
the mean of the data, the dashed lines represent the 95 % confidence

interval for the mocks.
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The histogram in figure 4.3 shows both the data and the mocks having a long tail,

however, the mocks show a higher frequency around the expected value of χ ≈ 0.

This is just a representation of one radius and one criterion, the most rigorous rejec-

tion criterion with the smallest radius. We also perform the test on all the four radii

and the three criteria similar to the one we did for the local variance maps. Also,

we show the 95 % confidence interval for the mocks to see if the mean of the data

will fall within this confidence interval. Then we can say with confidence if the data

agrees well with the simulated mocks.

FIGURE 4.4: Two sample test result for r = 25◦ and at least 50 % of
each pixel unmasked. For the NVSS data and the average of 1 000
simulated mock maps. The solid blue line represents the mean of the
data, the dashed lines represent the 95 % confidence interval for the

mocks.

Now we plot our less strict criteria with the largest radius,i.e Fig. 4.4 so we can

compare with the most strict and smallest radius plot in figure 4.3. Notice that the

histogram for the data has a shorter tail now. The frequency has increased towards

the expected χ value. The mean for the data is still within the 95 % confidence in-

terval of the mocks. The data is more statistically isotropic in this plot as compared

to the earlier plot in figure 4.3. The average mocks still have a long tail, with a high

frequency close to the expected χ value.
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FIGURE 4.5: The two sample test results for the NVSS data (blue) versus one simulated mock realization
(orange). The rows represent the patch radii, from top 10◦ (first row), 15◦ (second row), 20◦ (third row) &
25◦ (forth row). We make a comparison of the three criteria in which to accept the patch, 90 % (left), 70
% (middle) & 50 % (right) of the patch unmasked. Also plotted with the 95 % confidence interval for the

mock, and the mean of the data.

Figure 4.5 makes a comparison between the data and one mock realization. We

check how the variance in the data between the patches compares with the variance

between the patches in one of the mock realizations. The agreement between sim-

ulated mocks and data gets better as we become less strict with the rejection, this

could be due to the fact that we are analyzing more patches compared to the other

two cases (90%, 70%). Also as the radius of the patch increase, there is a higher fre-

quency of values around χ = 0. Analyzing bigger patches results in more statistically

isotropic results.
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The results in figure 4.5 is only a comparison between the data and one mock real-

ization. It is not enough for us to conclude whether the data is statistically isotropic

or not. We now have to compare the data with an average of 1 000 simulated mock

maps, only then we can conclude if the data is statistically isotropic or not.

FIGURE 4.6: The two sample test results for the NVSS data (blue) and the average of 1000 simulated
mock (orange). The solid blue line represents the mean of the data, the dashed lines represent the 95 %
confidence interval for the mocks. The rows represent the patch radii, from top 10◦ (first row), 15◦ (second
row), 20◦ (third row) & 25◦ (forth row). We make a comparison of the three criteria in which to accept the

patch, 90 % (left), 70 % (middle) & 50 % (right) of the disc unmasked.

The simulated mocks are generated using the Lambda-CDM model as the fiducial

power spectrum, with the same sky coverage as the data. Thus, if the distribution
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between the data and simulated mocks are similar, we can infer statistical isotropy

for the data. Figure 4.6 shows the comparison between data and mocks for a radius

of 10◦ the data is more spread out than the mocks, this may have been due to few

patches accepted because of the radius size. The test doesn’t perform well with 10◦

patches, however, the mean for the data is within the 95 % confidence interval of the

averaged mocks.

The spread of the data decreases as the patch radii increases. That is, as the number

of patches accepted decreases. Increasing the patch radius means that the patch will

cover a larger fraction of the sky. We expect the χ statistic to perform better as the

radii increases since we’re analyzing larger fractions of the sky. For all our cases the

mean of the data falls well within the 95 % confidence interval of the mocks. The

histograms are symmetric for the data.
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Chapter 5

Conclusion

We started with the Cosmological Principle, which assumes that the Universe is

isotropic and homogeneous. We test this assumption on galaxy number counts

across the sky to verify if our data is statistically isotropic. The analysis is done by

performing two test statistics, the local variance estimator and two-sample test. For

both these tests, we compare the galaxy number count variance for different patches

on the sky. We perform them on different radii, to check if our tests are biased to-

wards a certain radii size. We also establish criteria for accepting the patches on the

sky, this is done to check if the tests are sensitive to the number of patches we accept

or not.

To test the statistical significance of the results, we compare the results obtained from

the data with those that are obtained from simulated mocks. We generate a total of

1 000 mocks for the same sky coverage as the data, using the fiducial Lambda-CDM

power spectrum. These mocks are expected to be statistically isotropic, thus a good

way to compare with our data to detect any departures from statistical isotropy. The

simulated mocks have some fluctuations in number counts so we take an average

number count variance of 1 000 mocks to compare it with the data.

We start with the local variance estimator ξ. For this particular test, we compute the

number count variance in each patch for the data, then compare it with the expected

number count variance from the 1 000 mocks. With the expectation that for our data

to be statistically isotropic, we should have uniform local variance maps.
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Figure 4.1 show the local variance maps that were obtained from using equation

3.12. For the patch size of 10◦, the local variance maps have a smaller spread as you

move from the more strict criteria for accepting patches (90% unmasked pixels in

the patch) to the less strict criteria (50% unmasked pixels in the patch), this can be

seen in table 4.1 with an exception for the last row. This means that for this particu-

lar radius, the maps become more uniform as our estimator becomes less strict with

rejecting patches. For this case, we can say that the less strict criteria is the one that

produces statistically isotropic maps.

This feature is also noticeable in the other radii as well. The local variance maps

become statistically isotropic as the rejection criteria changes (as we accept more

patches). This leads us to conclude that, based on the local variance maps in figure

4.1. The data is statistically isotropic when we accept many patches that are larger

in the sky.

Next, we use the two sample test. This test statistic helps us compare the individual

patches. We use it to compare the number count variance between patches for the

data. Then we use it to also compare the average number count variance for the

mocks. Both the test for the data and the mocks are done independently of each

other. For statistically isotropic patches we expect to get a χ value that is as close as

possible to zero. Thus, a uniform distribution around zero would imply statistical

isotropy between the patches.

Figure 4.3 shows a comparison between the data and the average mocks for one case

of r = 10◦ and 90 % of the pixels unmasked. This plot shows a large spread for the

data compared to the mocks. The mean of the data is well within the 95 % confi-

dence interval of the mocks. So we can say that there is some agreement between

the data and the mocks. Comparing the plot to figure 4.4, we notice that in figure

4.4 the spread of the data is less. The histogram is more symmetric and the mean

of the data is within the 95 % confidence interval of the mocks. The data is more

statistically isotropic in figure 4.4, which corresponds to a large radius and less strict

acceptance of patches.
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Comparing only two cases might not be enough, so in figure 4.5 we do a compar-

ison between the data and only one mock realization. The plot shows symmetric

histograms with an equal spread. The data and this particular mock are in good

agreement, with better performance noticeable for larger radii.

We perform a full comparison between data and the average of 1 000 simulated

mocks, see figure 4.6. We notice the histograms are not as symmetric as in figure 4.5,

however, there is still a reasonable agreement between the mocks and the data. The

mean is well within the 95 % confidence interval for all radii. The histograms are

also less spread for larger patches.

We can conclude that from the results we have obtained from our two estimators, the

test statics perform better as the radii become larger. Thus the data becomes statisti-

cally isotropic for larger radii and when we do the analysis over a larger sample of

patches. We do not notice any huge discrepancies between the data and the mocks.

We did not find evidence supporting larger than expected radio count anisotropy at

angular scales smaller than the dipole. As the dipole is higher than expected, but

at smaller scales, it weakens its statistical significance. This result indicates that the

large dipole may happen due to uncleaned systematics affecting large angles, rather

than a true cosmological signal. We can conclude that the statistical properties of

our sample are in reasonable agreement with the standard cosmological model.

More tests still need to be done for us to conclusively measure the violations of sta-

tistical isotropy. Other radio continuum data sets like the TIFR GMRT Sky Survey

(TGSS) conducted by Giant Metrewave Radio Telescope (GMRT) at a low frequency

of 150 MHz should also be used to test statistical isotropy (Bengaly, Maartens, and

Santos, 2018). Also, with observations from surveys like Evolutionary Map of the

Universe (EMU) on the Australian Square Kilometre Array Pathfinder (ASKAP)

(Johnston et al., 2007). We can further test statistical isotropy as well as homogene-

ity with much better precision. The upcoming Square Kilometer Array (SKA) survey

will also be able to test statistical isotropy with better precision (. Bengaly et al., 2018).
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