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Abstract

Automatic Real-Time Facial Expression Recognition for Signed Language kanslation

|acob Richard Whitehill
M.Sc. thesis, Department of Computer Science, University of the Westem Cape

We investigated two computer vision techniques designed to increase both the recognition accuracy

and computational efficiency of automatic facial expression recognition. In particular, we comPared a local

segmentition of the face around the mouth, eyes, and brows to a global segmentation of the whole face. Our
reJults indicated that, surprisingly, ctassifying features from the whole face yields Ereater accuracy despite
the additional noise that the global data may contain. We attribute this in part to correlation effects within
the Cohn-Kanade database. We also developed a system for detecting FACS action units based on Haar

features and the Adaboost boosting algorithm. This method achieves equally high recognition accuracy for
certain AUs but operates two orders of magnitude more quickly than the Gabor+SVM approach. Finally,

we developed a software prototype of a real-time, automatic signed language recognition system using
FACS as an intermediary framework.
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Chapter L

Introduction

In human-to-human dialogue, the articulation and perception of facial expressions form a communication

channel that is supplementary to voice and that carries crucial information about the mental, emotional,

and even physical states of the conversation partners. In their simplest form, facial expressions can indicate

whether a person is happy or angry. More subtly, expressions can provide either conscious or subconscious

feedback from listener to speaker to indicate understanding of, empathy for, or even skepticism toward

what the speaker is saying. Recent research has shown that certain facial expressions may also reveal

whether an interrogated subject is attempting to deceive her interviewer [Ekm01].

One of the lesser known uses of facial expression in human interaction is signed communication, i.e',

"sign language." In signed languages, facial expressions are used to denote the basic emotions such as

"huppy" and "sad". Even more importantly, however, they also provide lexical, adverbial, and syntactic

information. [n some instances, a signer may use a facial expression to strengthen or emphasize an adverb

which is also gestured through the hands. In others, the facial expression may serve to differentiate two

nouns from each other. Any computer system designed to recognize a signed language must thus be able

to recognize the facial expressions both accurately and efficiently.

Throughout the world, but especially in developing counkies such as South Africa, deaf people face

severely limited educational and occupational opportunities relative to a hearing Person. The existence of

a computer system that could automatically translate from a signed language to a spoken language and

vice-versa would be of great benefit to the deaf community and could help to alleviate this inequality. ln

the South African Sign Language Project at the University at the Westem Cape, of which this research is a

part, we envision the development of a small, unobtrusive, hand-held computing device that will facilitate

the translation between signed and spoken languages. This computer system will need to recognize both

hand gestures and facial expressions simultaneously; it must then analyze these two channels linguistically

to determine the intended meaning; and it will need to output the same content in the target language'

2
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All three stages must operate in real-time. In this thesis are interested in the facial expression recognition

aspects of this translation device. We believe that the Facial Action Coding System (FACS, by Ekman and

Friesen[EF78]), a well-known framework which objectively describes human facial expressions in terms of

facial "action units", will serve as a useful intermediary representation for SASL expression recognition. In

the section below, we describe our particular thesis goals.

L.L Thesis Obiectives

The goals of this thesis are two-fold:

o First, we wish to construct an automatic FACS action unit recognition system that supports the au-

tomated recognition and translation of South African Sign Language (SASL). Automatic FACS action

unit recognition is useful in its own right and has numerous applications in psychological research

and human-computer interaction.

o Second, using the action unit recognition system that we build, we will construct a software prototyPe

for the recognition of facial expressions that occur frequently in SASL and evaluate this prototype on

real SASL video.

Automatic facial expression recognition (FER) takes place during three phases: (1) image preprocessing,

face localization and segmentation; (2) feature extraction; and (3) expression classification. This thesis

investigates techniques across all three stages with the goal of increasing both accuracy and speed. In our

first main experiment, we investigate the effect of local segmentation around facial features (e.g., mouth,

eyes, and brows) on recognition accuracy. In our second experiment, we assess the suitability of using Haar

features combined with the Adaboost boosting algorithm for FACS action unit recognition. We conduct

both experiments using the Cohn-Kanade database [KCITO0] as our dataset, and using the area under the

Receiver Operator Characteristics (ROC) curve, also know as the .4' statistic, as the metric of accuracy. For

statistical significance, we use matched-pairs, two-tailed t-tests across ten cross-validation folds.

1,.2 Outline

The rest of this thesis is constructed as follows: in Chapter 2 we describe the Facial Action Coding System

and motivate our decision to use this framework. tn Chapter 3 we conduct a wide-ranging survey of

historical and contemporary FER systems in order to discover which techniques and algorithms already

exist. We place particular emphasis on the feature types that each surveyed FER system uses. Chapter 4

provides a derivation of the support vector machine (SVM) due to its importance in the FER literature. ln

Chapter 5 we assess whether local analysis of the face around particular features such as the mouth and

a
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eyes can improve recognition accuracy as well as increase run-time performance. We use support vector

machines and Gabor features for this study. The results of this experiment underline the importance of

establishing a large, publicly available facial expression database in which individual facial actions occur

independently of others. Later in Chapter 5 we depart from the Gabor+SVM approach in order to test a new

method of detecting FACS AUs: Haar waveletlike features classified by an Adaboost strong classifier. Our

results show that this new technique achieves the same recognition accuracy for certain AUs but operates

two orders of magnitude more quickly than the Gabor+SVM method.

In Chapter 6 we use FACS as an intermediary expression coding framework and apply the FER system

developed in Chapter 5 to our target application domain of SASL recognition. While the actual recognition

results of this pilot study are unsatisfactory, we believe that the system architecture as well as the particular

problems we encountered will be useful when designing future such systems. Finally, Chapter 7 suggests

directions for future research.

With regards to the pilot project on signed language recognition we make one disclaimer: This thesis

does not constitute linguistic research on South African Sign Language or signed communication in general.

The purpose of this pilot application is to assess whether a simple object recognition architecture can sup-

port viable automatic signed language recognition, and to discover the most pressing problems that need to

be solved in support of this goal. By implementing a software prototyPe of a SASL expression recognizer,

we also provide future researchers of the South African Sign Language Project a firm starting point from

which to conduct further research.

4
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Chapter 2

Facial Action Coding System

In this thesis we use the Facial Action Coding System (FACS) [EF78] as an intermediary framework for

recognizing the facial expressions of South African Sign Language (SASL). Two other research groups also

use a FACS-based approach for their signed language recognition systems: the group of Professors Ronnie

Wilbur and Aleix Martinez at Purdue University [Wil], and Ulrich Canzler [Can02] at the RWTH-Aachen.

In order to motivate our own decision to use FACS, we must first describe the purpose and design of FACS

and compare it to other representations that describe human facial expression. Later in this chapter we

discuss the advantages and disadvantages of using FACS for our end-goal of automated SASL recognition.

2.1 Purpose of FACS

The primary goal of FACS was "to develop a comprehensive system which could distinguish all possible

visually distinguishable facial movements" ([EFHO2|,p.2).In contrast to other systems for facial expression

coding, the development of FACS was governed by "the need to separate inference from description." In

other words, the investigation of which emotion caused a particular facial expression should be determined

independently from the description of the facial expression itself.

FACS is based on an eight-year, highly-detailed anatomical study of the muscles which control the face.

It was designed to measure every aisible movement of the face due to the contraction of facial muscles.

In contrast to certain intrusive methods such as electromyography, in which wires must be connected to

subjects' faces, FACS was designed for use on humans who are perhaps unaware of the fact they are being

studied; coding of facial expression is therefore performed using only visual measurements. For this rea-

son, FACS is not intended to measure muscle movements which result in no appearance change or whose

effect on the face is too subtle for reliable human perception. FACS also does not register changes in facial

appearance due to factors unrelated to muscles, e.g., blushing or sweating [EFH02].

5
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2.2 The Design of FACS

FACS' approach is to specify the minimal units of facial behavior. These units are known as action units

(AUs). Some AUs have a one-to-one correspondence with a particular facial muscle. AU 13, for example,

corresponds solely to lhe caninus muscle. Other AUs may be generated by any one of a set of face muscles

whose effects on the face are indistinguishable from each other. ln yet other cases, multiple AUs may be

linked to the same muscle if different parts of that muscle can be activated independently. Both AUs 7 and

8, for example, pertain to orbicularis orrs [EFH02].

Each AU is assigned a number to facilitate coding of faces. In the original FACS definition lr:.1978 [EF78],

there were 44 AUs whose numbers ranged from 1 through 45 (numbers 3 and 40 are not used). The updated

2002 edition [EFH02], which incorporated movements of the eyeball and head, contains an additional 12

AUs numbered 51 and higher. ln both editions, AUs 1 through 7 pertain to the upper-face actions whereas

AUs numbered 8 through 46 relate to the lower face.

For each AU in FACS, the EACS Manual [EFH02] provides the following information:

o The muscular basis for the AU, both in words and in illustrations.

o A detailed description of facial appearance changes supplemented by photographs and film exam-

ples.

o Instructions on how to perform the AU on one's own face.

o Criteria to assess the intensity of the AU.

2.2.1 AU Combinations

As AUs represent the "atoms" of facial expressions, multiple AUs often occur simultaneously. Over 7000

such combinations have been observed [Ekm82]. Most such combinations ate additiae, meaning that the

appearance of each AU in the combination is identical to its appearance when it occurs alone. Some combi-

nations, howevet are distinctioe (sometimes also called non-additiae) - in such cases, some evidence of each

AU is present, but new appearance changes due to the joint presence of the AUs arise as well. In the EACS

Manual,the distinctive AUs are described in the same detail as the individual AUs.

Further relationships among multiple AUs exist as well. For instance, in certain AU combinations,

the dominnnt AU may completely mask the presence of another, subordinate action unit. For certain such

combinations, special rules have been added to FACS so that the subordinate AU is not scored at all.1

Another relationship among AUs is that of substitutiae combinations. In these cases, one particular AU

I Most such rules were removed in 1992 after it had been determined that they they were mostly confusing.

6
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combination cannot be distinguished from another, and it is up to the FACS coder to decide which is more

appropriate.

2.2.2 AU Intensity

In addition to determining which AUs are contained within the face, the intensity of each AU present must

also be ascertained. Intensity is rated on a scale from A (least intense) through E (most intense). Criteria for

each intensity level are given in the FACS Manual for each AU.

2.3 Suitability of FACS for Sign Language Recognition

In this project we chose FACS as our intermediary framework for facial expression recognition because of

the level of detail it provides in describing expressions; because of its ability to code expression intensity;

and because FACS is a standard in the psychology community. As we will describe in Chapter 6, we

conducted a preliminary FACS analysis of 22 facial expressions that occur within SASL and determined

that no pair of facial expressions contained exactly the same set of AUs. Although this study will have to

be extended over more subjects and more expressions, it does support our belief that FACS is sufficiently

detailed to enable sign language recognition.

2.4 Alternative Systems for Facial Expression Description

We are aware of only a few other systems designed to describe facial expressions in detail. One such system

is the Maximally Discriminatiae Facial Mooement Coding System (MAX), which was developed by C.E. Izard

in 7979 [Iza79] and later updated in 1995. MAX was developed for psychological research on infants and

small children, though with modification it can also be applied to persons of other age groups. Face anal-

ysis under MAX is performed using slow-motion video and proceeds in two stages. In the first stage, the

face is divided into three regions: (1) the brows, forehead, and nasal root; (2) the eyes, nose, and cheeks; and

(3) the lips and mouth. Each region is then analyzed independently for the occurrence of facial movements

known as appearance changes (ACs). In the second stage, the ACs in each face region are classified either as

one of eight distinct emotional states (interest, joy, surprise, sadness, anger, disgust, contempt, and fear),

or as a complex expression comprising multiple simultaneous affects [za79l- Like FACS AUs, the MAX

ACs are rooted anatomically in the muscles of the face. Unlike AUs, however, the set of ACs is not compre-

hensive of the full range of visually distinct human facial movement, nor does it distinguish among certain

anatomically distinct movements (e.g., irurer- and outer-brow movement) [OHN92]. MAX is therefore less

appealing for signed language translation than FACS.

7
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Another approach is the Moving Pictures Expert Group Synthetic/Natural Hybrid Coding (MPEG-4

SNHC) [Mov] standard. MPEG4 SNHC uses 68 facial animation parameters (FAPs) to describe movements

of the face. The purpose of MPEG-4 SNHC, however, is to animate computer-generated graphics, not to

recognize the expression on an actual human's face. Correspondingly, the set of FAPs is not comprehensive

of all visible human face movement, nor do the individual FAPs correspond to the actual muscle groups of

the human face. As with MAX, it is unlikely to be of use in sign language recognition.

2.5 Why Use FACS for SASL?

In this thesis we endeavor to build an automated system for the recognition of SASL facial expressions by

first determining the set of AUs present in a particular face image, and then mapping these AUs to a par-

ticular SASL expression. While we have already explained the advantages of FACS over other expression

recognition frameworks, we have not yet motivated why we need an intermediary framework at all.

Using an intermediary expression description framework does add an additional layer of complexity to

a translation system that recognizes SASL expressions directly from the input images. However, the advan-

tage of using a framework for expression description such as FACS is that linguistic research on SASL and

machine leaming research on expression recognition can be de-coupled. For example, if a new expression

is discovered in SASL, it can be accommodated simply by adding an additional AU-to-expression mapping

to the translation system. The AU recognition code, on the other hand, remains completely unchanged.

In systems that are trained on individual SASL expression directly, on the other hand, a whole new set of

training examples containing this newly-found expression must be collected, and a new classifier must be

trained - this requires significant time and effort. We thus believe that the use of an intermediary frame-

work, especially FACS, is a worthwhile component of our system design.

2.6 Summary

We have described the purpose and basic architecture of FACS, including its set of action units and intensity

ratings. We have explained some of the advantages of FACS over other expression coding systems for the

task of signed language translation. Finally, we justified our use of an intermediary framework such as

FACS in our SASL expression recognition system.

8
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Chapter 3

Literature Review

Automatic facial expression recognition (FER) is a sub-area of face analysis research that is based heavily on

methods of computer vision, machine learning, and image processing. Many efforts either to create novel

or to improve existing FER systems are thus inspired by advances in these related fields.

Before describing our own contributions to the field of automatic FER, we first review the existing lit-

erature on this subject. This survey includes the major algorithms that have significantly impacted the

development of FER systems. We also describe more obscure algorithms of FER both for the sake of com-

prehensiveness, and to highlight the subtle benefits achieved by these techniques that may not be offered

by more mainstream methods. In accordance with the experiments we perform in Chapter 5, we place

particular emphasis in our survey on the role of feature type, and on the effect of local versus global face

segmentation on classification performance.

3.1 Comparing the Accuracy of FER Systems

Objectively comparing the recognition accuracy of one FER system to another is problematic. Some systems

recognize prototypical expressions, whereas others output sets of FACS AUs. The databases on which FER

systems are tested vary widely in number of images; image quality and resolution; lighting conditions; and

in ethnicity, age, and gender of subjects. Most databases include subjects directly facing the camera under

artificial laboratory conditions; a few (e.g., [KQP03]) represent more natural data sets in which head Posture

can vary freely. Given such vastly different test datasets used in the literature, only very crude comparisons

in accuracy between different FER systems are possible. However, for the sake of completeness, we do

quote the reported accuracy of the systems we reviewed.

The most corunon metric of recognition accuracy used in the literature is the percentage of images

classified correctly. An accuracy of 85% would thus mean that, in 85 out of 100 images (on average), the

9
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expression was predicted correctly, and in 15 images it was not. This metric is natural for characteriztng a

face as belonging to one of a fixed set of k emotions. For FACS AU recognition, however, this metric can

be highly misleading: some expressions occur so rarely in certain datasets that a classifier could trivially

always ouput 0 ("absent") for the expression and still score high accuracy. In such a system, even though

the hit rate (/" of positively labelled images classified correctly) would be low (0%), the percentage of

images correctly classifier would still be high. A more sophisticated measure of recognition accuracy is the

area under the ROC curve, also called the A/ statistic, which takes into account both the true positive and

false positive rates of a classifier. We use the A/ metric in our own experimental work in Chapter 5. Most

previous literature on FER presents results only as percent-correct, however, and in this literafure review

we are thus constrained to do the same.

3.2 Local versus Global Segmentation

The first issue we investigate, both in this survey and in Chapter 5, is whether analyzing a local subregion of

the face around particular facial muscles can yield a higher recognition accuracy of certain FACS AUs than

analyzing the face as a whole. Little research has been conducted on this issue for prototypical expressions,

and no study, to our knowledge, has assessed the comparative performance for FACS AUs. Results for

prototypical expressions are mixed:

Lisetti and Rumelhart developed neural networks to classify faces as either smiling or neutral [LR98].

They compared two networks: one which was trained and tested on the whole face, and one which was

applied only to the lower half of the face (containing the mouth). For their application, local analysis of the

lower face-half outperformed the global, whole-face analysis.

Padgett and Cottrell compared global to local face analysis for the recognition of six prototypical emo-

tions. In particular, they compared principle component analysis (PCA) on the whole face (eigenfaces) to

PCA on localized windows around the eyes and mouth (eigenfeatures). The projections onto the eigenvec-

tors from each analysis were submitted to neural networks for expression classification. As in Lisetti and

Rumelhart's study, the localized recognition clearly outperformed global recognition. Padgett and Cottrell

attribute these results both to an increased signal-to-noise ratio and to quicker network generalization due

to fewer input parameters [PC97].

However, Littlewort, et al [LFBMO2] compared whole-face, upper-half, and lower-half face segmen-

tations for the recognition of prototypical facial expressions. They classified Gabor responses (described

later in this chapter) using support vector machines. In contrast to the other literature on this subject, their

whole-face segmentation clearly outperformed the other two segmentation strategies by several percentage

points [LFBMO2].

10
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From the literature, there seems to be no definite answer as to which segmentation - local or global -

yields higher accuracy. As we shall show in Chapter 5, the issue depends on the particular facial expression

database on which the system is tested. It may also depend on the pafticular feature type that is used. In the

rest of this chapter, we describe the many kinds of features that have been deployed for FER as well as the

systems that deploy them.

3.3 Feature Extraction for FER: The Two Approaches

Research on automatic FER can largely be divided into two categories: appearance-based and geometry-based

methods. The former uses color information about the image pixels of the face to infer the facial expression,

whereas the latter analyzes the geometric relationship between certain key points (fiducial points) on the

face when making its decision. We describe geometry-based methods in Section 3.4 and appearance-based

methods in Section 3.5.

3.4 Geometry-based Features

Many modern FER systems use the geometric positions of certain key facial points as well as these points'

relative positions to each other as the input feature vector. We refer to such FER systems as geometry-

based systems. The key facial points whose positions are localized are known as Jiducial points of the face.

Typically, these face locations are located along the eyes, eyebrows, and mouth; however, some FER systems

use dozens of fiducial points distributed over the entire face.

The motivation for employing a geomeky-based method is that facial expressions affect the relative

position and size of various facial features, and that, by measuring the movement of certain facial points,

the underlying facial expression can be determined. In order for geometric methods to be effective, the

locations of these fiducial points must be determined precisely; in real-time systems, they must also be

found quickly. Various methods exist which can locate the face and its parts, including optic flow, elastic

graph matching, and Active Appearance Models ([CET98]). Some FER systems (e.g., [TKC01]) require

manual localization of the facial features for the first frame in a video sequence; thereafter, these points can

be tracked automatically. Other approaches to fiducial point location do not actually track the points at all,

but instead re-locate them in each frame of the video sequence.

The exact type of feature vector that is extracted in a geometry-based FER systems depends on: (1)

which points on the face are tracked; (2) whether 2-D or 3-D locations are used; and (3) the method of

converting a set of feature positions into the final feature vector. The first question (1) has no definitive

best answeq, but it is influenced by several factors, including (a) how precisely each chosen fiducial point

can be tracked; and (b) how sensitive is the position of a particular fiducial point to the activation of the
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classified facial expression. The advantage of 3-D fiducial point tracking is that the resulting FER systems

are arguably more robust to out-of-plane head rotation than are 2-D systems. The disadvantage is that these

3-D locations must usually be re-constructed from 2-dimensional camera data; the algorithms used to track

fiducial points are thus more complex and slower. Only a few FER systems (e.g., [GTGBO2] and [EP97]) use

3-D coordinates.

In terms of feature extractiory the most distinguishing factor in the design of geometry-based FER sys-

tem is how the set of facial location vectors is converted into features. The simplest kind of feature vector in

such systems contains either the relative positions of different facial landmarks (e.g., distance between left

and right eyes) or the (r, y) displacements of the same feature points between frames in a video sequence.

In the former case, relative positions are often normalized by the face size to improve generalization per-

formance across different human subjects. In the following subsections we review geometry-based FER

systems based on their method of converting raw position vectors into features.

3.4."1, Locations and Relative Distances

The simplest type of geometry-based feature vector is constructed from the locations and relative distances

between feature points. One such system using this approach was developed by Sako and Smith [5596]. It

used color histograms to track the head and mouth, and template matching to track the eyes and brows.

Their system computes the width and height of the mouth and face as well as the distance between the eyes

and eyebrows as a feature vector. Using the nearest neighbor classifier, their FER system classifies the face

as one of five prototypical facial expressions. It operates in real time and achieves 77"/" accuracy [SS95l on

a test set containing only one test subject.

Wang, Iwai, and Yachida [WTY98] use labeled graph matching to track the positions of 12 fiducial points.

The (z,y) displacements of the points between adjacent video frames are collected into a feature vector.

Each of the three classified prototypical expressions is modeled as a collection of L2 B-spline curves (one

for each fiducial point) describing the movements of the fiducial points through time. By tracking the

(r, g) displacement of all fiducial points of the test subject in each video frame, the facial expression can

be classified by selecting the collection of B-spline whose combined Euclidean distance from the test data

is minimized. Their system also estimates the degree of facial expression. On a test database of 29'rmage

sequences recorded from four test subjects, their system achieves 700%,100%, ard 83.7"h accuracy, resPec-

tively, on the prototypical expressions happiness, sulprise, and anger [WIY98].

Lien, et al [LKCL98] employ optical flow to track 3 fiducial points each around the Ieft and right eye-

brows. The r and gr displacements of these six points are computed relative to the neutral video frame to

form the feature vector. HMMs are then used to classify one of three possible AU-based expressions of the

eyebrows. On a test database of 260 image sequences from 50 subjects, their system achieved 857o accuracy
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lLKCLe8l.

Cohn, et allCZLKggluse optical flow to track 37 fiducial points in the upper and lower face, and then

apply discriminate function analyzes to classify the r and g displacement of each fiducial point into FACS

AUs. Their system achieves 9L"/",88/r, and 81% accuracy on the brow, eye, and mouth AUs, respectively

lczLKeel.

Finalty, the FER system of Bourel, et al [BCL02] measures the distances between facial landmarks for

its feature extraction and compares them to the corresponding values in previous frames. Their approach

transforms the distances into one of three possible states: Increasing, Decreasing, or Stationary. Using the k-

nearest neighbors algorithm for expression classification, they show that their state-based approach is more

robust to noisy data and partial occlusion of the face than non-discretized approaches. Overall accuracy is

around 90/" for 6 prototypical emotions [BCL02].1

3.4.2 ParameterEstimation

In several geometry-based FER systems, fiducial point locations and distances do not constitute the features

directly, but rather are used first to estimate the parameters of some model. These parameters are then fed

to a classifier for expression prediction. One such FER system was developed by Black and Yacoob [BY95]:

their approach uses a perspective projection model to convert the Iocation vectors of facial Iandmarks into

model parameters of image motion. These lowlevel model parameters are then further transformed into

mid-level "predicates" which describe the movement of facial muscles in such terms as "mouth rightward".

Finally, these predicates are classified as a facial expression using a manually created rule-set. The onset of

an "arrger" expression, for example, is defined as a simultaneous "inward lowering of brows and mouth

contraction." On a database of 70 image sequences from 40 subjects, their system achieves an average of

92% recognition accuracy on 7 prototypical expressions [BY95].

Tian, Kanade, and Cohn [TKC01] use multi-state models of the head and face (one state for each head

pose) as well as optical flow to track the locations of the eyes, brows, and cheeks. These location vectors

are converted into sets of 15 upper-face and 9 lower-face parameters based on the relative distance between

certain points. For instance, one such parameter describes the height of the eye and combines distance

information from three fiducial points on the face from both the current and the initial video frames. Using

a neural network, their system classifies 7 upper-face AUs and 11 lower-face AUs with 95% and 96.7%

accuracy/ respectively [TKC0U.

In Cohen, et al [CSC+03], fiducial pohts all over the face are tracked using template matching. The

locations of these points are fit onto a 3-D mesh model and then transformed into a set of Bezier-volume

control parameters. These parameters represent the magnitudes of pre-defined facial motions. The Bezier

lNo numerical results were given in the paper; we estimated 90% based on their graph.
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parameters are then discretized into bins before being classified as a prototypical expression. Best results

in this FER system are achieved using the Tree-Augmented Naive (TAN) Bayes classifier with an average

recognition rate of 65.1% [CSC+03].

3.4.3 Models of Face Musculature

One particular form of geometric model with a clear biological justification is to use fiducial point move-

ment to estimate activation of the underlying face muscles. Mase was, to our knowledge, the first researcher

to propose such a scheme for FER ([Mas91]), but according to his paper he did not actually implement this

strategy. Essa and Pentland [EP94 did implement a complete FER system using this approach. They use

optical flow analysis to track the eyes, nose, and lips. Based on the coordinates of these landmarks, a 3-D

mesh model of the face is fit to every video frame. The mesh consists of many adjacent triangular shell

elements, which are parametrized by mass, stiffness, and damping matrices in order to model the material

properties of human skin. On top of this skin model, an anatomically-based dynamic model of muscle

movement is applied using an estimation and control framework. Expressions are predicted using tem-

plate matching in two different ways: by classifying the predicted underlying facial muscle movements,

and by classifying the optic flow vectors of each grid point directly. Both method achieve 987o accuracy on

prototypical expressions over a database of 52 video sequences.

3.4.4 Dimensionality Reduction

The last kind of geometric feature vectors that we consider are those formed by applying a dimensionality

reduction to the original fiducial point location vectors. Dimensionality reduction methods such as PCA

are very corunon in machine leaming applicatiors. They are most useful when the dimension of the input

vectors is very high, such as with appearance-based FER systems (described later in this chapter). However,

these methods also find use in geometry-based approaches to FE& we describe some systerns that use

dimensionality reduction below.

One straightfornrard but useful modification to geometry-based feature extraction algorithms is to apply

principle component analysis (PCA) prior to classiJication. PCA is a method of transforming the input

vector so that most of the variance of the original data is captured in the dimension-reduced outPut vector.

A derivation of PCA is given in Section A.3.

Two of the purely geometric-based FER systems in our survey use this approach. Kimura and Yachida

lKYg7l use a "potential net" model to track 899 (29x37) locations on the face. These points do not corre-

spond directly to facial landmarks but instead are distributed in a grid pattem centered at the nose. The

potential net models the deformation of the face as a set of forces applied to springs. Each grid point is

connected to its four closest grid neighbors. By requiring that the total force within the potential net sum to

74

http://etd.uwc.ac.za/



zero, the motion of each fiducial point can be calculated. Kimura and Yachida's system uses a Karhunen-

Lodve expansion (a generalization of PCA) to reduce the dimersionality of the final feature vector. One

model vector for each of 3 prototypical emotions is estimated in the low-dimensional space. For classifi-

catiory the input vector of grid point motions is projected onto the axes that were computed from the K-L

expansion. The distances of this projection from each of the expression models and from the origin are used

to estimate the type and degree of expression, respectively. No numeric results were listed in the papel, but

test results when classifying expression of novel human subjects were described as "unsatisfactory" in the

paper [KY97].

Gokturk, Bouguet, Tomasi, and Girod [GTGB02] track 14 fiducial points on the face in three dimensions

using a cost minimization-based monocular tracking system. Given the initial position vectors of the fidu-

cial points for each subject, their system can subtract away the rigid motion of the head to compute the

deformation of the face due solely to facial expression. Their system then applies PCA to the non-rigid

face motion vectors to compute facial motion along the principle movement axes. The final feature vector

includes not only the principle components themselves, but also their first temporal derivative. Support

vector machines are then used to classify 5 prototypical expressions. Accuracy results of a database of 235

frames from two subjects were reporte d as 97"/" over the 5 expressions [GTGBO2].

3.5 Appearance-basedFeafures

The second main approach to automatic FER is the appearance-based approach. As stated earlier, these are

methods that classify facial expressions based on the color of the face pixels. Appearance-based algorithms

are wide-ranging and include optic flow, dimensionality reduction techniques such as PCA and ICA, and

image filters. We describe each type of method and the associated FER systems below.

3.5.1 Optical Flow

One of the earliest developed appearance-based methods of FER was op tic flow analysls. Optic flow analysis

endeavors to track object movement within an image by analyzing the change in pixel intersity of each

image location (o, g) over multiple frames in a time-ordered sequence. The output of an optic flow com-

putation for a particular image is a vector (u.,uu) for each pixel in the input image; u, and ?.,s rePresent

the magnitudes of the image velocities in the x arrd y directions, respectively. The v : (u,,uu) vectors

over multiple pixel locations can be combined into feature vectors and then classified as a particular facial

expression. Feature vectors based on optic flow can consist of the image velocities of certain fiducial points

or of flow fields computed over entire image patches. We give a short derivation of optic flow analysis in

Section A.4.
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One of the first FER systems to employ optic flow was developed by Mase [Mas91]. Mase proposed

two altemative approaches: top-down and bottom-up. The top-down method attempts to recognize facial

expressions by first using optic flow to recognize the individual muscle activations which formed the ex-

pression. In the bottom-up approach, the facial expression is recognized directly from the optic flow fields

over a grid of M x N small image rectangles. Mase's system implements the bottom-up method and calcu-

lates the mean and variance of the optic flow within each rectangle along both the horizontal and vertical

directions. The feature vector is computed by selecting the c features which maximize the ratio of between-

class to within-class distance in the training set. This vector is then processed by a ,k nearest neighbors

classifier. For prototypical expressions, Mase's system achieves recognition rates of approximately 80%

[Mas91].

Later research in FER using optic flow was conducted by Yacoob and Davis in [YD96]. Their approach

resembles Mase's proposed top-down model in that it attempts to determine the underlying muscle move-

ments of the face in order to determine the expression. Given rectangular windows surrounding the mouth

and eyebrows of each face image, optic flow fields are calculated along eight principle directions. Each

window is then partitioned using free-sliding dividers, and the optic flow along each principle direction is

calculated within each window partition. The dividers are adjusted so that the strength of the flow fields as

well as the fields' homogeneity within each window region are jointly maximized. Final feature vectors are

calculated as the optic flow projections at the optimal divider settings, and these vectors are then processed

by rule-based classifiers for expression classification, similar to [8Y95]. Their system achieves a recognition

accuracy of86"/o.2

3.5.2 Pixel Intensity Values

Whereas optical flow was perhaps the fust appearance-based technique applied to FE& the simplest type

of feafure in appearance-based FER systems is the color of an individual pixel. Most FER systems process

gray-scale images, and thus the pixel color can be renamed pixel intensity. A set of pixel values extracted

at certain key points or over a whole can region can then be fed to a classifier to determine the facial

expression.

Very few FER systems classify raw pixel intensity values directly without at least employing some form

of feature selection. Those systems that do use simple pixel values as feature type have exhibited Iow recog-

nition accuracies compared to other systems. Littlewort, et al [LFBMO2], in a comparative study of different

FER techniques, classified six prototypical facial expressions using pixel intensity values and SVMs. Their

system achieves only around 73h accuracy when pixels are extracted from the whole face. Despite the

low accuracy that has been reported, pixel intensity features do offer one important benefit - they can be

2Accuracy was reported as a conftrsion matrix; we computed the percent corrcct ourselves.
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extracted simply and quickly.

3.5.3 DimensionalityReduction inAppearance-BasedSystems

In appearance-based facial expression recognition systems, the fundamental unit of in-formation is the pixel

value, and features may be extracted from a pixel set by means of cropping, scaling, and filtering. Even at

low resolution, the number of pixels in a face image is on the order of hundreds. Moreoveq, many of the

pixels in this vector may contain little inJormation that is useful for classification. It is possible, for example,

that pixels located in certain regions of the face may not change from one facial expression to another, thus

rendering useless the corresponding coordinate of the feature vector. Another possibility is that one pixel

value in the feature vector might be completely dependent on other (perhaps neighboring) pixels. In both

cases, the feature vector contains redundant information, and classification performance might improve by

removing the superfluous components. Standard techniques such as PCA and ICA are often applied for

this task; we describe the associated appearance-based FER systems below.

Principle Component Analysis

One popular method of reducing the dimension of feature vectors is principle component analysis (PCA).

When PCA is applied to a dataset of dimension n, each vector in that dataset is projected onto p << n

principle componmts. Because of the way the components were calculated, the resultant set of projections

still retain most of 7's original variance, but the dimension of the resulting dataset is much smaller. We

give a derivation of PCA in Section A.3.

Several appearance-based FER systems use PCA prior to expression classification. Both Donato, et al

[DBH+99] and Bartlett, et al [BDM+00] classify 6 upper- and 6 lower- face AUs using PCA and the nearest

neighbor algorithm. The first 30 principle components of the difference images of the relevant half-face

(upper or lower) are extracted and classified for AU content. The systems achieve 79.3"/o average accuracy

on L2 AUs. Fasel and Liittin [FL00] performed a similar experiment to classify 9 individual AUs and 16

AU combinations, but on a different test database. As in [DBH+99], their system achieves 79"/o accuracy on

single AUs, and it deliversT4"/" accuracy when tested on both single AUs and combinations [FL00l.

Finally, Bartlett, et al [BHES99] classify 6 upper- and 5 lower-face AUs by extracting the first 50 principle

components of difference images. Using a two-layer neural network their system achieves recognition rates

of 88.6%.

Independent Component Analysis

In PCA, the projections of T along the principle components are uncorrelated, but they are not necessarily

statistically independent. Hence, certain higher-order image dependencies such as facial lines may remain
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across the data dimensions even after PCA is performed [DBH+99]. lndepandent component analysis (ICA) is

a technique for removing such dependencies from the input data set. Under ICA, the set of generated basis

vectors €1, . . . , e, are called independent components, and the projection of ? onto each ei is statistically

independent of all the other projections. A derivation of ICA is available from Hyvarinen and Oja [HE00].

In contrast to PCA, the independent components of ICA are ir*Ierently unordered. Thus, when using

ICA for dimension reduction of a feature set, a metric of ordering must be defined extemally and then

applied to the set of components. One possible metric is the class discriminability, defined as the ratio of

the between-class to within-class variance of an independent component when applied to the training set.

This approach has been used by [DBH+99].

For FER, ICA has proven to be highly effective, yielding recognition rates as high as with Gabor filters

(see Section 3.5.4). In terms of execution time, ICA can outperform Gabor-based feature extraction by an

order of magnitude [BDM+00]. In the literature, ICA has yet only been deployed in a few FER systems. In

Bartlett, et al [BDM+00] and Donato, et al [DBH+99], an ICA representation achieves 96% accuracy when

classifying 5 upper- and 6lower-face AUs, thus tying for ftust place with Gabor filters among the techniques

that were investigated. Fasel and Ltittin [FL00] used ICA and the nearest neighbor algorithm to classify 9

individual AUs and 16 AU combinations. Their system achieves 83% accuracy on single AUs and 74%

accuracy when tested on both single AUs and their combinations.

3.5.4 Gabor Filters

Although ICA does deliver high recognition accuracy, it also suffers from the drawback of a long training

time for the calculation of the independent components [Lit]. In general, dimensionality reduction tech-

niques have given way to image filtuing techniques in the FER literature. Filters are a means of enhancing

the facial lines, skin bulges, and other appearance changes that facial expressions can induce.

One of the mostly commonly deployed and successful appearance-based methods for facial expression

recognition is the Gabor decomposition. The Gabor decomposition of. an image is computed by filtering

the input image with a Gabor filter, which can be tuned to a particular frequency l.o : (u,'u) where k :

llksll is the scalar frequenry and 9 : arctan(fi) is the orientation. Gabor filters accentuate the frequency

components of the input image which lie close to ,k and p in spatial frequency and orientation, respectively.

A Gabor filter can be represented in the space domain using complex exponential notation as:

Fr,(x) : 5 *o (-#)(e*p(a<o x) - exp (-+))

where x = (r,A) is the image location and ke is the peak response frequency [LVB+93]. An example of

a Gabor filter is given in Figure 3.1, which shows the absolute value (left), real component (middle), and
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Figure 3.1: The left, middle, and right graphics above show the absolute value, and the real and imaginary
components of a sample Gabor filter.

imaginary component (right) of the filter in the space domain. Notice how the filter is spatially local in all

three cases. The real and imaginary components accentuate respectively the symmetric and asymmetric

responses of the image to the filter's characteristic frequency and orientation. The filter can then be applied

to an input image I e IR2 using two-dimensional convolution. More commonly, however, the Gabor filter

is computed in the frequency domain as:

Gpo(k) : sxp - "", (--lbll 
-'))o'(k - Lo)'

2ko

where k : (u,u) represents the horizontal and vertical spatial frequenry components of the input image

(equation from [LVB+93]). The Fourier-transformed image is multiplied by G and the result is then inverse-

transformed back into the space domain.

For FER, often a filtu bank of multiple Gabor filters tuned to different characteristic frequencies and

orientations is used for feature extraction. The combined response is called a jet. Filter banks typically

span at least 5 different orientations and have frequencies spaced at half-octaves. Prior to classification, the

extracted feabures are usually converted into real numbers by calculating the magnitude of the complex

filter response.

Gabor filters can be used for feature extraction in two main ways: by extracting the Gabor responses at

fiducial points on the face, or by extracting them over entire image regions. In the former case, the Gabor

responses are best computed directly in the space domain by convolving each filter at the desired image

locations. In the latter, it is usually faster to use the Fast Fourier Transform (FFT).

Some of the most successful appearance-based FER systems to-date employ Gabor filters for feature

extraction. We discuss such systems below.

Gabor Responses at Fiducial Points

The first software systems to deploy the Gabor decomposition for FER calculated the Gabor responses only

at specific locations on the face. Zhang, et al [ZLSA98f , Zhang lZl:ra98l, and Lyons and Akamatsu [LA98]
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were among the first to use such an approach. In their systems, a Gabor filter bank consisting of 3 spatial

frequencies and 5 orientations is convolved with the input image at selected facial points derived from a

facial mesh model. In [ZLSA98] and [Zra98], a multiJayer perceptron is trained to recognize prototypical

expressions with accuracy n ear 9Oh. In tLA98l, each face is allowed to express not just a single prototypical

emotion, but instead multiple emotions at different intensities. Using the cosine similarity measure, Gabor

responses are used to predict the intensity of each expression category. The intensities were correlated

with those coded by human subjects, but no percent-correct statistics were rePorted. [n later work [LPA00],

Lyons, et al developed a FER system by classifying the Gabor responses along facial mesh points using

linear discriminant analysis and the nearest neighbor classifier. The system achieved over9lh accuracy for

prototypical expressions.

Point-sampled Gabor features have also been used to recognize FACS AUs. In Than, et al [ITKC0O], for

example, a Gabor bank comprising 6 frequencies and 3 orientations is applied to the inner comer, outer

comer, and middle of each eye. By processing the Gabor responses using a 3-layer neural network, their

system achieves cliassification rates of 93% for AU 41,70% for AU 42, and 8t"/" for AU 43 [ITKC00]. In later

work [TKC02),Tiat, et al created a similar system that samples the Gabor resPonses of 20 facial points of

the eye, eyebrows, and forehead. They tested their method on a dataset in which subjects spanned a wider

range of ethnicities and which contained more head movement than most other FER databases. Under

these more drallenging conditions, the Gabor-based system achieved an overall AU recognition rate on 8

AUs of only 32"h [TKC02].

Gabor Responses over Image Regions

The altemative to applying Gabor filters at specific points is to apply them instead to the whole face' Some

of the highest recognition accuracies in the FER literature have been achieved using the Gabor decomposi-

tion over entire image regions for feature extraction. Bartlett, Donato, et al [DBH+99], [BDM+00] developed

a recognition system using Gabor filters and the nearest neighbor classifier. Both implementations employ

a filter bank of 5 frequencies and 8 spatial orientations. In order to reduce the dimensionality of the Gabor

jets, the filtered images are sub-sampled by a factor of 15 prior to classification. This system achieves an

overall classification rate of 95"/o on 6 upper- and 6lower-face AUs [DBH+99].

In subsequent work, Bartlett, et al [MGB+03] developed a Gabor-based AU recognition system that is

robust to natural, out-of-plane movements of the head. It employs both support vector machines and hid-

den Markov models for classification. When classifying the AU combination 1+2, it scores 90.5"/" accwacy,

and on AU 4 it achieves 75.O/o accuracy. Littlewort-Ford, et al [LFBMOI] used Gabor filters on difference

images of the face and support vector machines to classify AUs 5 and 12 in order to distinguish natural

smiles from posed, "social" smiles. Using a linear SVM kemel to classify the Gabor-filtered images,75% of

20

http://etd.uwc.ac.za/



smiles were classified correctly. Non-expert human subjects, on the other hand, achieved only 60% accuracy

when scoring the same dataset [LFBM0l].

Gabor Responses at Leamed Locations

The final Gabor-based method of feature extraction that we consider combines the advantages of both of the

previous approaches: a sparse set of Gabor responses from learned locations, frequencies, and orientations

are selected from the whole face image, and the resultant feature vector is then classified. This strategy

has been employed in two FER systems: Littlewort, et al [LBF+04] compare two methods of selected Ga-

bor filter classification: in one, they classify Gabor responses selected by Adaboost [FS99] using support

vector machines (AdaSVMs), and in the other, they classify the selected Gabor responses directly using

Adaboost. Recognition rates when detecting 7 prototypical emotions were highest with AdaSVMs, uP to

93.3% accuracy.

Finally, Bartlett, et al [BLF+06] use a sirnilar method as in [LBF+M] for the classffication of 20 AUs: they

use Adaboost to classify Gabor responses extracted from automatically detected faces at 8 orientations and

9 frequencies. Percent-correct accuracy on a combined dataset from both the Cohn-Kanade and Ekman-

Hager databases was 90.9%.

Configuring the Filter Bank

One consideration when using Gabor filter ban-ks is the selection of peak frequencies and orientations of

the individual filters. While most FER systems employ 8 spatial orientations sPaced n/8 radians apart,

there is no standard set of peak frequency values that has proven to be optimal. Little published research

has explicitly investigated the ideal filter bank for face analysis. Fasel and Bartlett [FB02] investigated the

optimum filter bank for the purpose of locating fiducial points of the face, and their results indicate that

only one, very low-frequency value (4 iris widths per cycle) may be needed for optimal accuracy. However,

Donato, et al [DBH+99] investigated the same question of optimum frequency values for the task of FER.

Their results indicate that the higher freqtencies were more important for classification. Optimum selection

of frequencies thus likely depends on the specific application, and there is yet no consensus on the best

choice of filter bank.

3.5.5 Haar Wavelets

Although Gabor feature-based systems have produced some of the highest recognition accuracies in FER,

they also suffer from two drawbacks: the large size of the image representation, and the high comPuta-

tional expense involved in computing it. For a bank of 40 Gabor filters, for example, the combined Gabor

responses over all image pixels corlsrune 40 times as much memory as the single input image. In order
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Figure 3.2: Examples of Haar wavelets in a true Haar decomposition superimposed onto a face image,
Width, height, and (2, g) positions of all wavelets are aligned at powers of 2.

to apply a Gabor filter bank to an image, the input image must first be transformed into the frequency

domain using an FFT. Then, for each filter G in the bank, the transformed image must be multiplied by G

and then inverse-transformed back into the space domain. The total computational expense of the single

Fourier transform and all the inverse transforms is substantial. Even when only selected Gabor responses

are classified, the convolutions in the space domain incur some cost.

An alternative to Gabor filters which has already proven both effective and efficient in face analysis is

the Haar filter, based approximately on the Haar wavelet decomposition. The two-dimensional Haar de-

composition of a square image with n2 pixels consists of n2 wavelet coefficients, each of which corresponds

to a distinct Haar wavelet. The first such wavelet is the mean pixel intensify value of the whole image;

the rest of the wavelets are computed as the difference in mean intensity values of horizontally, vertically,

or diagonally adjacent squares. Figure 3.2 shows three example Haar wavelets superimposed onto a face

image. The Haar coefficient of a particular Haar wavelet is computed as the difference in average pixel

value between the image pixels in the black and white regions. The two-dirnensional Haar decomposition

is exactly complete, i.e., the Haar decomposition of an image with n2 pixels contains exactly n2 coefficients.

Each wavelet is constrained both in its (2, g) location and its width and height to be aligned on a Power

of 2. For object recognition systems, however, these constraints are sometimes relaxed in order to improve

classifi cation results.

ln contrast to Gabor filters, Haar filters require no FFT for their extraction, and with the "integral image"

technique demonstrated by Viola and Jones in their landmark face detection paper [VJ04], Haar features

can be computed in only a few CPU instructions. In this thesis, we implement such a Haar feature-based

system and evaluate its performance in Chapter 5. Section A.5 describes the Haar decomposition in greater

detail. Here, we provide a brief review of object detection systems that deploy Haar wavelets for feature

extraction.

Applications to Obiect Detection

One of the earliest applications of the Haar wavelet to object recognition was develoPed by |acobs, et al

UFS95] for querying an image database. Theirs is the only object recognition system known to us that uses

true Haar wavelets in the strict mathematical sense for feafure extraction. tn their application, the user
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recognition. We present our own study of this approach in Chapter 5 of this thesis.

3.6 Comparing the TWo Approaches

Geometry- and appearance-based FER systems contrast starkly and are complementary. Geometry-based

methods completely disregard all color inJormation (except possibly to track the feature points). Their

performance in classifying facial expressions depends on the particular set of facial points that the sys-

tem designer chooses to track. Appearance-based methods, on the other hand, disregard the geometric

relationships between different points on the face except to the extent that these relationships can be cap-

tured by frequency-tuned image filters. Given that these two paradigms of expression recognition differ

so greatly, and given that both kinds of FER systems have achieved recognition accuracies above 90"h, lt

is important to determine under which conditions each method delivers higher accuracy. Evaluating the

comparative performance of these two approaches is difficult because different FER systems are tested on

different datasets. A few research studies do exist, however, which compare the two strategies with respect

to classifi cation accuracy.

Zl:iar:6[Zta98l andZrang, et al [ZLSA98] compare Gabor-based and geometry-based FER methods for

prototypical expressions on an image database containing frontal faces. In their experiment, the Gabor de-

compositions are computed at 3 spatial frequencies and 6 orientations at 34 landmark points distributed

over the face. In the geometry-based method, the feature vector consists of the positions of the same 34

fiducial points. For both approaches, a two-layer neural network is used as the classifier. Empirical re-

sults show that the appearance-based method delivers substantially higher recognition accuracy - typically

aronnd 20"/" - regardless of the number of hidden units [ZLSA98l,lZha98l.

Tian, Kanade, and Cohn UTKC02], however, dispute the higher recognition accuracy of the Gabor

method claimed by Zhmg. On an ethnically more heterogeneous database containing more head move-

ment, they perform a similar experiment as Zhang, et al, except that AUs, not prototypical expressions,

are classffied. Their results show that, when classifying expressions with complex AU combinations, AU

recognition accuracy fell dramatically to 32% with the Gabor method, whereas the geometry-based ap-

proach retained 87.6"/" accuracy. However, the comparison in [TKC02] did not test the appearance-based

approach with Gabor responses measured over the entire face - a method which has proven highly effective

IDBH+eel.

From the limited evidence available, it is difficult to predict which approach will ultimately prove su-

perior. Cohn, et al [CKM+01] report that the face analysis group of CMU/Pittsburgh, which has used a

geometry-based approach, and the group at UCSD, which uses only appearance-based features, are com-

peting for higher recognition performance on the same real-world FACS AU recognition task. This study
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will hopefully help to differentiate the two approaches more clearly.

3.7 Combining Geometric and Appearance-based Features

As an altemative to choosing either appearance-based features or geometry-based features, FER systems can

also be built that exploit both. Several systems already exist which take this approach: The system of Zhang,

et al [Zha98],lZISA98l, for example, uses a 3-layer neural nefwork to classify a combined set of Gabor

responses and raw facial point locations. The Gabor responses are sampled only at particular locations

in the image. On an expression database containing approximately equal numbers of the 7 prototypical

emotions lZha9l), their system achieves around 65% recognition accuracy. When classifying only Gabor

features, their system achieves a much higher 90/o accuracy. Surprisingly, the combined system - Gabor

responses plus fiducial point locations - does no better than Gabor features alone (90%). This shows that

combined-feature systems must be engineered carefully in order to reap the benefit of both feature types.

Tian, et al UTMI,[TKC02] developed a similar system using a neural network to classify both Gabor and

geometric features. In contrast to Zhang, etallZhagSl,[ZLSA98], however, their system converts the fiducial

point locations into a set of 15 parameters describing the state (e.g., open/closed) of the lips, nasolabial

furrows, and eyes. Moreover, the Gabor responses are calculated over the entire face, not just at particular

points. The output of their classifier is a set of FACS action units. On their dataset, the combined approach

(92.7% accuracy) demonstrates a clear advantage over either appearance-based (32%) or geometry-based

features (87.6%\ alone [TKC02].

Cohn, et al [CKM+01] use manually constructed models to classify expressions of the eyes and brows. [n

particular, "brow-up","brow-down", and "non-brow motion" are classified using both appearance-based

features quantifying the amount of edges detected in the forehead (for wrinkle detection) and geometry-

based features measuring displacement of fiducial points along the eyebrows. Accuracy is reported as 57"h

across the three classified actions [CKM+01].

Datcu and Rothkrantz's system [DR04] classifies both prototypical expressions and AUs using a Bayesian

belief network and a combined set of three feature types: (1) relative positions of fiducial points; (2) dis-

placements of individual fiducial points through time; and (3) PCA projection coefficients of chin, forehead,

and cheek regions. UnJorhrnately, although the system is described as "very promising", no accuracy statis-

tics are reported in their paper.

Finally, Lanitis, et al [LTC95] use discriminate ftrnction analyzes to classify three types of features: (1)

a geometric representation modeling the shape and pose of the face (Active Shape Models); (2) shape-

invariant pixel intensity values computed by warping the face onto a standard model; and (3) pixel intensity

values along specific lines normal to the edge of the face. All features are pre-processed using PCA prior to
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classification. The system achieves 74"/" accuracy whcn classifying prototypical expressions [LIC95]

3.8 Conclusions

In the preceding sections we have described nurnerous systems for automatic FER that utilize a diverse

range of feature types, both appearance-based and geometry-based. One of the fundamental issues that

concerns us is which of these two approaches is superior. Unfortunately, no study to date has conclusively

answered this question, though the pending results of the study mentioned h [CKM+01] will be useful.

Another important issue is how the strengths of both methods can effectively be combined in order to

create a classifier superior to either individual method. Systems that combine the two approaches do exist

(see Section 3.7),but they are not based on the most promising methods from each of the appearance- and

geometry-based feafure categories. One interesting study would be to create a combined feature vector of

fiducial point locations as well as Adaboost-selected Gabor responses using support vector machines as the

classifier. Given the high performance on FER tasks achieved by these machine learning tools individually,

it would be instructive to investigate whether they could yield even higher performance in cooperation.

3.9 Summary

We have surveyed a broad-range of systems for automatic FER. In our survey we focused on two issues:

whether local segmentations yield superior accuracy to global segmentations, and which category of feature

vector - appearance-based or geometry-based - leads to higher accuracy. Finally, we compared the two

approaches and suggested a possible choice of combining the strengths of both.
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Chapter 4

Sopport Vector Machines

The development of the support vector machine (SVM) and kemel methods have gamered considerable

attention in the machine leaming literature in recent years. The basic principle of the SVM is simple: max-

imize the distance in the input space between the two classes of data points one wishes to classify. SVMs

offer several advantages over other classifiers: For one, training time of the classifier does not suffer from

a high dimensional feature vector. Given the high dimensionality of such feature tyPes as the Gabor de-

composition of an entire face, this advantage is significant. For another, the SVM offers both power and

flexibility through use of the "kemel trick" - the default linear kemel can be replaced with a RBF, polyno-

mial, sigmoidal, and many other kemels which may separate the data points more cleanly for the given

problem domain. Because of these advantages, and because of the many successful deployments of the

SVM in machine leaming problems, both in FER and elsewhere, we provide a mathematical derivation

of the support vector machine in the following sections. The interested reader may also wish to consult

[Bur98]and [SS98].

4.1 Premise

Suppose?:{(xr,9r),...,(*r,gr)}isasetofltrainingdata,whereeachxiisadatapointinlRdandeach

yi e {_1,1} is the corresponding classification label. Suppose also that the sets ?+ : {xi | 9r : 1} from

T- : {xi I Ut : -Ll are linearly separable in IRd so that a hyperplane can be formed between them.

For any such separating hyperplane If, consider the subset of T+ oI points that lie closest to 11. These

points lie in a hyperplane If+ which is parallel to I/; denote the distance between fI+ and f/ as d+. Sim-

ilarly, the subset of ?- of points closest to 11 lie in a hyperplane f1-, which is parallel and distance d- to

11. The sum of d+ and d- equals the distance from ff + to II- and is known as rhe margin of I/. Denote this

margin as d.
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Figure 4.1: A hypothetical training set in IR2 in which the solid points have positive label and the hollow
points have negative label. Notice that, although the hyperplane 11 in each figure separates the two classes,
only the hypelplane in (b) maximizes the margin d.

A support aector machine (SVM) is created by finding the unique separating hyperplane which maximizes

the margin between ?+ and T-. This optimal hyperplane lies halfway between 11+ and 11- so that the

distance from any point in all of ? to I1 is likewise maximized. Figure 4.1 illustrates a hypothetical data

set and two separating hyperplanes; only the decision boundary in Figure a.1@) is optimal. The training

points which lie on I1+ or Il- are called the support vectors of 7.

4.2 Training Phase

In order to compute II, we must first describe it formally. The general equation for a hyperplane is w.x+b :

0, where w is the normal vector and b/llwll is the perpendicular signed distance to the origin. The same

plane can be described by an infinite number of equations by scaling w and b. For our purposes, we select a

particular scale such that the equations for H- , H, airrd H+ are as follows (recall that, since all tfuee planes

are parallel, their normal vectors can be scaled to be equal):

H_

H

If - and If+ contain the negatively and positively labeled data points closest to If, respectively. Since all

data points not in ff+ or I{- must lie even farther from I{, we require that:

g+

w.x*b:-L

w.x * b:0

w.x+b:*1

(4.1)

(4.2)

(4.3)

w.xi*b>+1

w'x;*b<-l
Vxi e 7+

Vxi €T-
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These two conditions can be unified by introducing the classification label grl:

gi(w'x6+b)>1 Vxr€? (4.6)

We must identify the hypelplane 11 with maximum margin. The margin d of H equals the distance

between 1/+ and fI-. The distance from ff+ to the origin ir ffi, and the distance fuom H- to the origin is

ffi. Theretore, the margin d equals:

ll*ll ll*ll ll*ll
(4.7)

(4.8)
ll*ll

The margin can thus be maximized by minimizing ll*ll, or, equivalently, by minimizing i ll*ll' The values

forwandbmustsimultaneouslyfulfilltheconditionsg,(w.x;+b) ) lforeveryxi e T.Thisisaconstrained

optimization problem, and we will use the Lagrangian method to solve it.

4.2.L The Lagrangian Method and the Wolfe Dual Form

The Lagrangian method for solving constrained optimization problems includes three components: (1)

the objective function /(x) to be minimized (or -.f if / is to be maximized); (2) the constraint functions

cr(x),. ..,cn(x); and (3) the vector a of n Lagrange multipliers (one for each constraint function). The

Lagrangian firnction is then assembled as:

1-b -r-b 1-b+1+b

2

n

.L(x,o) :/(*)-!o(x) (4.e)

i:7

The solutions to certain types of constrained optimization problems can be found by solving the Wolfe dual

problem: instead of minimizing / subject to the constraints c1 (x) , . . . , cn(x), one instead maximizes the La-

grangian subject to the constraint that tr is minimized with respect to x. Both the primal and dual problems

find their solutions at the same point along the Lagrangi€ul curve, namely the saddle point.

The Wolfe dual method is valid under the following conditions: (a) the optimization problem is a convex

programming problem; (b) both the objective ftrnction and the constraint functions are differentiable; and

(c) the constraints are linearl. Solutions to the Wolfe dual problem are then guaranteed to occur at global

minima due to the convexity of / [Fle80].

Before applying Wolfe's dual to our problem, we first verify that it fulfills the stated assumptions. First,

a conoex programming problem consists of a convex objective function to be minimized over a convex set.

lln fact, the WoUe dual also applies to convex programming problems with certain non-linear constraints, provided that these

constraints meet a regul.aity assut tption (see [Fle80]).
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In our problem, the objective ftrnction i" *ll*ll'; since its second derivative is positive everywhere, it is

a convex function. To verify that the feasible set of points satisfying the constraints is a convex set, we

must first note that any single linear constraint defines a convex set. Since the intersection of multiple

convex sets is likewise convex, and since multiple simultaneous linear constraints represent exactly such

an intersection, our feasible set is convex. Finally, the conditions that all functions are differentiable, and

that the constraints are linear, are clearly true. We may thus proceed.

The Lagrangian function of our optimization problem equals:

(4.10)

where o is the vector of the I Lagrange multipliers. Since the constraints we are dealing with are inequality

constraints, each component of o must be non-negative at the solution. As stated above, we must minimize

tr with respect to w and b. This requires that the derivatives ;|Z and fft equal zero. The first such

differentiation yields:

.l
L(w,b,") : ;ll*ll' - I "' [y' (* .xi + b) - 1]

i=7

^L
!r(*,b,a) :q7 - f o,g,*, : g
o\\t r:-L

l1l

Do.o, - ;L a;aililixi'xi
i:t i,i=t

(4.11)

- w: Donro*, (4.72)
i--7

This equation reveals two facts about w: First, since the (xi, 91) pairs are known, one need compute only

the o1 to determine w. Second, only those xi for which ai ) 0 affect the determination of the hyperplane'

These data points lie on If+ (or I1-) and are called the support oectors of the training set. AII data which are

not support vectors could, hypothetically, be removed from T without affecting the placement ol H.

We can substitute Dlo:ror.ar*u for w into the original Lagrangian to yietd a simplified function I4':

w(b,a):; (: o,oo*,)' _*",{,,[(i",,,-,) -,.,] -,] (413)

W(b,a): (4.74)i
,

ItL
oiaililixi xj - t aiajaiajxi *, - I a,arb*T at

i,j--r i=7 i:7

I

\-L
N,i:L

I

W(b,a) :\ar - b (4.15)

i:r

We will use the second required differentiation (with respect to b) to simplify W further.

^tOr
^I(w,b,o) :) aiti:0
dh
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Substituting 0 for !l-, o.iAi from Equation 4.16 we arrive at:

liL

W(b,a): D", - ;Dra;aililixi'xi 
(4.r7)

The simplified function W' represents the Lagrangian minimized with resPect to w and b. It must still

be maximized with respect to the remaining variables, i.e., the Lagrange multipliers a. This rePresents

a quadratic programming problem and can be computed efficiently using comPuter software' Once the

values of o have been determined, we can then calculate w according to Equation 4.12.

4.2.2 Determining b

We must still determine b. To do so, recall that we first minimized ,L with respect to w and b. At such local

minima, the Kuhn-Tucker necessary conditions for a local minimizer apply [Fle80]. These include, among

others, lhe complanentarity condition:

ai(Ai(w.x,+b)-1):O (4.18)

which means that either the constraint gi (w . xr + b) - 1 must equal exactly 0 (Nr actioe constraint), or the

associated o; Elust equal zero. The points for which at * O are, in fact, the support vectors. Once a and w

have been calculated, they can be substituted into Eq. 4.18. By substituting any particular data point x.;, the

value of b can be retrieved. Usually, however, to enhance numerical stability in floating point computation,

the average b over all i is used [Bur98].

The SVM has now been trained.

4.3 Test Phase

Once the separating hyperplane has been identified, it can be used to classify a new data point x with an

unknown classification label. Determining the associated g value requires merely testing on which side of

I/ the point lies; this is evaluated:

g:sign(w'x+b) (4.te)

The support vector machine is now a classifier.

31

http://etd.uwc.ac.za/



4.4 Linear Inseparability

For some training sets, it may be impossible to find a linear hyperplane which separates the points in ?+

from those in 
"-. 

ln such cases, there is always at least one data vector x; for which Eq. 4.5 does not hold.

The standard approach to handling this inseparability is the soft-margin generalization of the supPort vector

machine. This approach introduces slackoariables (i which specify the amount by which Eq. 4.6 is violated.

The new constraint functions then become:

ar(w'xr+b) >1-€, (4.20)

for (; > 0. The objective function is also augmented with an additional term (a function of (i) to penalize

errors:

Itt*tt'* t (-\ Ie,
k

(4.21)

(4.23)

(4.24)

(4.25)

i=7

Here, parameter C controls the amount by which errors are penalized (higher C results in larger penalty).

For exponent k : 1or k:2,lhe optimization problemremains quadratic; k is usuallyset to l forpattem

recognition problems.

The Lagrangian function of this new constrained optimization problem becomes:

(4.22)

where the new vector of lagrange multipliers p was introduced to ensure non-negativity of each (i. Since

each (, > 0 is an inequality constraint, we require that p; > 0.

The solution is found analogously to the linearly separable case - by minimizing with respect to the pri-

mal variables (including the new variables (1) and maximizing with respect to the dual variables (including

each pi). Minimization yields the following equations:

L(w,b,€,a,tr): Ilt*tt' *CD,(o -I ailai(w.x.i.*b)- 1-(rl - f,roe,
i:1

at
*z(*, b.€,o.t):* - toilixl : Q
olrr

* w: Do,ro*,

*rr*, b, €, a, t r) :f orro : o

*,rr*,b,€,a, t) 
:c - ar - [rr: o
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Equations 4.24and4.25 are the same as for the separable case. The last equation C - ar - p; combined with

the constraints di ) O and p,i > 0 yields the additional constraint that oi < C. All three inequalities must

hold true at the solution. \{ith the exception of the additional constraints a; ( C and p.i } 0, the solution

to the optimization problem proceeds exactly as for the seParable case.

Eq.4.24is substituted into Eq. 4.22,to arrive at the function I4l:

(4.27)

(4.28)

(4.2e)

I o,oiynsi*r 'xj _Do,ana *D"o *Louto -D t'otu
i, j:t i:t i:7 i--l i:7

We further substitute the expressiore Dj:, aiAt : O and C - di - lti: 0 to yield:

ll 1ll
W(b,{,a,p) : t d, +LQ - ai - pi)€i - iD "o"ro,aixr.xi -bDooon

i.:t i:7 - i,j:t i=7

W(b,{,a,1t): jr, -iD,
i:7 - i,j:l

I_
W(b,a) : Lo, - ; L a;oililixt' xi

i=l i,i:t

aldililixi'xi (4.30)

Eq. a.30 is a quadratic programming problem, and its solution can be computed efficiently as such.

4.5 Non-linear Decision Surfaces

Some data sets, while linearly inseparable in their natural feature space (we assumed B.d), become sep-

arable after they are transformed into a space of higher dimension. The data in Figure 4.2, for example,

are linearly inseparable in IRl. When they are transformed into IR2 under the map iD(r) : (x,rz),how-

ever, they become linearly separable; the corresponding optimal hyperplane is shown. This new-found

separability in higher-dimensional (or even infinite-dimensional) spaces can be exploited due to particular

properties of the SVM derivation. First, notice that the data points occur only in the form of inner products

in the training phase:
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Figure 4.2: A hypothetical training set in IR1 which is linearly inseparable (left). After it is mapped under
iD : (r, 12) onto IR2, however, the data is separable (right) with optimal hyperplane II.

ln the test phase, a similar substitution for xi and xi can be made. First, howevet we must substitute Eq,

4.72for w (note that we have added the two subscripts j for uniformity of notation):

sign(w .xj + b) (4.32)

,'* ((I",r,*,)*, *o) (433)

,ts. ft aiuixr.xr + b) e34)
\r:r /

Now, since data only appear as inner products, we can replace all occurrences of the data vectors with a

kunel function K(*, y). 1( fust transforms each input vector under the map iD : IRd - If and then retums

the inner product in II. After substituting K for x .y, Equations 4.31 and 4.34 become:

L1l

W(b,a): 
I", -;EraiaiyrliK(xi,xi) (4'3s)

and

(4.36)

(4.37)

(4.38)

(4.3e)

(4.40)

respectively.

ln the example illustrated in Figure 4.2,the kemel function K equals:

K(*,y) : o(x) 'o(y)

: (x,12).(a,ar)

:xa*fa2
: x.y + (*.y)'

o a
H
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which describes a parabolic decision surface. Many kemel functions are possible - as long as K comPutes

the irurer product of x; and x3 within some ilrrner product space, it is irrelevant to the SVM derivation

wlich particular space this is. Similarly, the transformation function Q need not be known at all - only its

existence need be certain. Usually, one starts by creating a kemel -I( as opposed to deciding on a particular

transformation @ [Bur98].

4.5j1, Kernel Functions and Mercer's Condition

The issue still remains of which kemel functions actually correspond to the inner product of two trans-

formed input vectors. This question is answered by Mercer's theorem, which states that a function K(*, y)

represents the inner product two vectors x and y in a Hilbert space if and only if the following condition

holds true for any function g:

I g(x)2dx isfinite ==+ I((x, y)9(x)e(y)dxdy > 0 (4.4t)

Note that this theorem helps to determine neither the transformation Q nor the space II to which iD maps its

input. This theorem canbe used, however, to prove the admissibility of certain kemels. The most colrunon

kemels in practice are:

o The Gaussian radial basis function (RBF) kemel: l((*, y) : exp(- llx - vll2 lQ"2)).

r The polynomial kemel: K(*, y) : (x .y * 1)e for positive integers p.

o The sigmoid (hyperbolic tangent): K(*, y) : tanh(nx.y-d). Note that this last kemel fulfills Mercer's

condition only for certain values of rc and 5 [Bur98].

Alternatively, one can verify that a kemel K is admissible for SVM classification by showing that it is a

dot-product kemel, or the kemel of a reproducing kemel Hilbert space. A particular class of kemel function

that guarantees it is admissible for SVMs is conditionally positioe definife ftrnctions, described in [SSM98].

Finally, it is important to note that the kemel trick does not render the soft-margin SVM generalization

redundant - even when using a non-linear decision boundary, the data set will often be inseparable.

4.6 Polychotomous Classification

The SVM classifier introduced thus far can handle only 2-class (dichotomous) problems. A variety of tech-

niques does exist, however, with with SVMs can be applied to multi-class problems. Although we make

no attempt to survey all of them, we do describe two of the most corunon - the one-oersus-rest (7-v-r) arrd

one-oersus-one (1-v-1) methods. In the following discussion we assrune n classes.
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In l-v-r, n classifiers are trained in total. Each SVM i separates points of class i from points of all other

classes. When evaluati.g * unlabeled datum, the class i of the SVM with the highest outPut value (prior

to calling the signum function) is taken as the point's class.

In 1-v-1, 4f! classifiers are trained - one for each distinct pair (i, i) where i I i. During the test phase,

a voting mechanism is used in which the unlabeled datum is assigned the class with the highest number of

votes.

4.7 Summary

We have given a derivation for the support vector machine for both the linearly separable and the non-

linearly separable, "soft-margin" case. We also described how the standard inner-product ftrnction can be

replaced with a more powerful "kemel" functiory provided that the kemel is Mercel admissible. Finally, we

suggested how SVMs, which are inherently a binary classffier, can be used for polychotomous classffication

problems.
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Chapter 5

Experimental Results

This chapter presents our original research contributions to the field of automated FACS AU detection.

We investigate two issues: the effect of a local versus global segmentation on recognition accurary, and

the suitability of Haar features combined with the Adaboost boosting algorithm [FS99] for facial expression

recognition. Before proceeding to describe the individual experiments, we fust describe certain preliminary

parameters and techniques that are corunon to all the experiments we conduct.

5.L Preliminary Parameters and Techniques

5.1.L Facial Expression Database

For our experiments we use the Cohn-Kanade AU-Coded Facial Expression Database [KCITOO]. This

database contains images of individual human subjects performing a variety of facial expressions. In the

public version of this database, 97 drtferenthuman subjects, ranging from ages to 18 to 30, performed six

prototypical expressions: anger, disgust, fear,joy, sadness, and surprise. For each subject and expression,

the database contains a sequence of face images beginning with the "neutral" expression (containing no

AUs) and ending with the target expression. Certified FACS coders mapped each image sequence in the

database to the set of AUs that were exhibited in that sequence. tn all the experiments in this chapter, we

trained and tested all classifiers on this data subset.

Our experiments required the positions of the eyes and mouth in each image. We used a subset of the

Cohn-Kanade Database containing 580 images fromTShuman subjects and located the eyes and mouth of

each image manually. These locations were used to crop local windows around the eye, brow, and mouth

regions.

From each image sequence of each subject, we used the first two images, which contained the "neutral"

expressiory and the last two images, in which the target expression was most pronounced. For each AU
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Figure 5.1.: Classified AUs and Prevalence in Dataset

that we wished to classify, we randomly retrieved from the master database at least 40 images from image

sequences containing that AU. Example images for each AU, along with the number of images in our

dataset containing that AU, are shown in Figure 5.1.

5.1.2 ImageNonnalization

Prior to feature extraction and expression classification, each face (original size approximately 200-300 pix-

ets wide) was rotated and scaled (using bilinear interpolation) such that the coordinates of the eyes and

mouth were constant over all images. The face width was set to 64 pixels; the inter-ocular distance was set

to 24 pixels; and the g-distance between the eyes and mouth was 25 pixels.

5.L.3 AUClassification

Each trained classifier detected the presence or absence of one AU, regardless of whether it occurred in

combination. We did not attempt to account for non-additive AU combinations.

5.L.4 Metric of Accuracy

As we discussed in Chapter 3, the percent-correct statistic, despite its prevalence in the literature, is fun-

damentally flawed. For all our experiments we instead measured accuracy as the area under the Receiver

Operator Characteristics (ROC) curve.
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5.1.5 Cross Validation

Ten-fold cross-validation was employed to test the generalization performance of each classifier. None of

the validation folds contained the same human subject. We calculated mean accuracies (area under the ROC

curve) over the ten test folds. When comparing recognition accuracy between two facial segmentations,

we performed matched-pairs f-tests over all the folds in order to assess the statistical significance of any

difference in mean performance.

5.2 Local versus Global Face Segmentation

The first issue we investigate in this chapter is the effect on AU recognition accuracy of a local versus a

global segmentation. Local segmentation of facial images prior to expression classification can significantly

reduce the computational cost of both the feature extraction and classification phases. Whether local face

analysis improves classification accuracy is an open question: On the one hand, segmenting the image

locally reduces the dimensionatity of the feature vectors. This may help the classifiers to generalize better

during the training phase given the relatively small training sets available for certain AUs. On the other

hand, AUs can sometimes affect facial regions outside of their muscle origin. For example, AU 6 (cheek

raise), though triggered by a muscle circling the eye, can also accentuate the nasolabial furrow around the

mouth [EF78]. Local face analysis might suffer in this case due to the loss of relevant, global appearance

in-formation.

In this section we assess the relative performance of the local and global segmentation strategies in terms

of AU recognition accuracy. We classify AUs using Gabor filters and linear SVMs - a prominent approach

in the FER literature. The experimental setup is described below.

5.2.L Feature Extraction

Gabor features be extracted from each image. Gabor filters were extracted in the following manner: Each

segmented image was converted into a Gabor representation using a bank of 40 Gabor filters' Five spatial

frequencies (spaced in half-octaves) and eight orientatioru (spaced at r l8) were used. Feature vectors were

calculated as the complex magnitude of the Gabor jets, and vectors were then sub-sampled by a factor of

16 and normalized to unit length as in [DBH+99].

5.2.2 Segmentations

For the local expression analysis, images were segmented by cropping square regions around the center of

the eyes, brows, and mouth. The center of the brows was estimated by shifting the center of the eyes up by

one-fourth the inter-eye width. [n all cases, the width of each square was24 pixels.
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Figure 5.2: The global segmentation (left-most); and the local segmentations of the mouth, eye, and brow
regions, respectively (right 3 images).

For global analysis, the face square region was cropped at a width of 64 pixels arotrnd (x",A.), where r"

is the r-coordinate of the midpoint between the eyes, Md A" is the gr-coordinate of the midpoint between

the eyes and mouth. See Figure 5.2 for an illustration of image segmentation.

5.2.3 Results

Recognition accuracies for both classifiers are displayed in Table 5.1. Actual ROC curves for these classifiers

are shown in Appendix B. The performance for each AU is reported for both the local and global segmen-

tations; the particular local segmentation depended on the region in which the AU is centered. Whenever

a statistically significant difference was identified (for 95% confidence, the p value of the t-test must be less

than 0.05), the superior segmentation is listed. When no statistically significant di-fference was Present, an =

sign is listed. Lr some cases (e.g., AU 1), the mean accuracies between segmentations may differ by several

percentage points and yet not be statistically significant.

To summarize the results, the local segmentation failed to achieve any consistent and statistically sigrif-

icant advantage over the global segmentation in terms of recognition accuracy. More sulprising is that the

global segmentation outperformed the local segmentation both for AU 5 in particular and on average.

5.2.4 Discussion

We view two factors as possibly responsible for the statistically indistinguishable, and sometimes even

significantly superior performance of the global segmentation relative to the local strategy. The first is

that certain AUs may affect regions of the face outside of the AUs' muscular origin (see Section 5.2), and

therefore the global segmentation may profit from this non-local apPearance information. The second is

that, due to the high degree of AU correlation in the Cohn-Kanade database, one AU in one face region

may be predictive of another AU elsewhere in the face.

Inter-AU Correlation

Some AUs are easier to detect than others, both by humans and, as witnessed by the results of Table 5'1,

by computerized classification. Suppose now that AU i were more difficult to classify than AU j: lf. it
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Segmentation
AU# Local Global Best

Brow AUs
1

2
4

89.97
94.58
93.20

96.43
95.77
97.04

Eae AUs

Global
5
6
7

98.48
89.7r
98.53

95.47
96.12
98.64

MouthAUs
15

77
20

25

27

97.95
93.29
97.29
98.92
99.54

97.56
95.90
96.49
98.52
99.83

Avg 95.59 97.07

Thble 5.1: Cross-validation recognition accuracies (area under the ROC curve) for all AUs using support
vector machines and Gabor features.

Local to Global

were known that AU i were perfectly correlated with another AU j (pii : 1), then a classifier for AU i

could attempt to classify instead AU j, and then output the same result for AU i. Note that the global

segmentation could benefit from this correlation even if AUs i and j occur in different parts of the face.

A local segmentation strategy, on the other hand, would be unable to observe AU j's aPPear,u'rce changes

on the face (since they would lie outside AU i's local segmentation) and thus would not profit from this

correlation.

This hypothesis is supported by the matrix of inter-AU correlations over our data subset given in Table

5.2. Correlation coefficients over the entire Cohn-Kanade database are similar. We considered the correla-

tion between AUs i and j to be high if lp"il > 0.60; the corresponding enkies are shown in bold. Notice

how AUs in one region of the face may be highly correlated with AUs in a different region. In particular,

AU 1 is highly correlated with AU 25, and AU 2 is highly correlated with both AU 25 and AU 27.

In order to test the effect of inter-AU correlation on recognition performance, we performed the fol-

lowing experiment: To every feature vector of both the global and local segmentations, we appended the

classification label aui € {0, 1} of every AIJ except the one to be classified. For instance, for a classifier for

AU 1, we augmented the standard Gabor feature vector 7, of each classified image n to be:

T'" : ?" . (au2, au4, au5 , dU6, €1U7, €IUg , auro, . . .)

where the dot . represents vector concatenation, and aui is the actual classification label for AU i in image

n.. Each feature vector was thus given perfect knowledge of the presence or absence of eoery other AU (not
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Table 5.2: Inter-AU correlation matrix. Entries pti where lpii | > O.OO (other than self-correlation) are marked

inbold.

Brow AUs Eye AUs MouthAUs
AU# 1 2 4 5 6 7 15 L7 20 25 27

1 r.00 0.59 0.25 0.59 -0.08 -0.07 0.39 0.15 0.38 0.59 0.58

2 0.59 1.00 -0.18 0.76 -0.13 -0.23 0.02 -0.08 0.01 0.65 0.83

4 0.26 -0.18 1.00 -0.13 0.46 0.73 0.26 0.61 0.45 0.L7 -0.23

5 0.59 0.76 -0.13 1.00 -0.08 -0.15 -0.09 -0.15 0.05 0.55 0.76

6 -0.08 -0.13 0.46 -0.08 1.00 0.53 -0.09 0.26 0.18 0.11 -0.13

7 -0.07 -0.23 0.73 -0.15 0.53 1.00 -0.08 0.43 0.31 0.14 -0.2L

15 0.39 0.02 0.26 -0.09 -0.09 -0.08 1.00 0.54 -0.10 -0.15 -0.08

L7 0.15 -0.08 0.61 -0.15 0.26 0.43 0.54 1.00 -0.L2 -0.26 -0.2L

20 0.38 0.01 0.45 0.05 0.18 0.31 -0.10 -0.t2 1.00 0.54 -0.12

25 0.69 0.55 0.77 0.55 0.11 0.74 -0.15 -0.26 0.54 1.00 0.55

27 0.58 0.83 -0.23 0.76 -0.13 -0.27 -0.08 -0.21 -0.12 0.55 1.00

Table 5.3: Recognition accuracies (area under the ROC curve) with SVMs and Gabor features for the local

and global segrientations, using both the standard and augmented feature vectors (with inter-AU correla-

tion information).

Feature Vector
AU# Standard

Local
Augmented

Local
Standard

GIobal
Augmented

Global

1

2
4

89.97
94.58
93.20

95.13
97.40
95.09

96.43
95.17
97.04

96.82
95.51
97.47

6
7

89.7t
98.53

90.73
98.86

96.12
98.64

96.09
98.83

17
27

93.29
99.54

97.56
98.59

95.90
99.83

96.24
99.83

just the 11 AUs we classified). If the correlation effect was truly responsible for the global segmentation

strategy's superior classification performance, then there should be no statistically significant difference in

recognition accuracies of the local and global strategies when using the modified feature vectors.

We modified the feature vectors for AUs 7,2, 4, 6, 17, and 27 - all the AUs for which the global seg-

mentation had shown superior performance when SVMs were used. Classification results are displayed in

Table 5.3.

ThelocalsegmentationsforAUs L,2,4,6,andlTallbenefitedbyatleastlToaccuracyfromtheappended

correlation information. The corresponding global segmentations, on the other hand, did not improve

substantially despite the added correlation data. These results suSSest that the correlation information

was already present in the global segmentation but not in the local segmentation. It also shows how the

performance of an AU classifier can be "improved" by supplying inJormation about othet related AUs.

The problem with this "improvement" is that, if the same classifier is applied to a different database with
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Figure 5.3: Examples of Haar features (selected by Adaboost for AU 1) used for AU classification in our
system.

different AU correlations, the accuracy may fall drastically.

Given the strong correlations within the Cohn-Kanade dataset, a conclusive answer to our original ques-

tion - whether a local segmentation yields higher accuracy - may not yet be attainable. To investigate this

issue effectively, one first needs a larger expression database in which AUs occur singly, or at least in which

the correlations between them are weaker.

5.3 Haar Features and Adaboost for AU Recognition

The second significant research contribution of this thesis to the FER literature is a study of the effective-

ness of using Haar features and Adaboost for FACS AU recognition. Recent computer vision research has

demonstrated that the Haar wavelet is a powerful irnage feature for object recognition. In this sfudy we use

the same kinds of Haar-like features deployed in the Viola-Jones face detector [VI04]. Examples of these

features are shown in Figure 5.3.

Because the number of such features in a face image is large, we use Adaboost both to select a subset

of these features and to perform the actual classification. We compare this Haar+Adaboost approach to

the popular Gabor+SVM method. Part of our source code for this experiment was based on the code of

[WRM04]. The next sections describe this comparative experiment in greater detail.

5.3.1 FeatureSelection

The set of Haar features used by Viola and |ones is many times over-complete. \A/hile this allows very

fine-grained inspection of an image, it also increases the training time and can reduce generalization per-

formance. For these reasons, the Viola-]ones approach uses the Adaboost boosting algorithm as a means

of feature selection by constructing a weak classifier out of each Haar feature. Specifically, a threshold-

based binary classifier is created from each Haar feature so that the weighted training error is minimized.

During each round of boosting, the single best weak classifier for that round is chosen (corresponding to

a particular Haar feature). The final result of boosting is a strong classifier whose output is computed as a
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Figure 5.4: The local face regions of the mouth (left), eye (middle), and brow (right) regions from which
feafures were selected for each AU classifier.

thresholded linear combination of the weak classifiers. The Viola-]ones face detector has demonstrated that

this classification method is both fast and effective for object recognition.

5.3.2 Face Region Segmentation

In order to reduce the length of time necessary for the lengthy Adaboost-based feature selection process, we

designed our system to recognize AUs from local subregions of the face instead of the whole face window.

Performing this segmentation greatly reduces the size of the set of all possible features from which a few

can be selected. Local subregions were set to squares of width 24 pixels around the mouth, each eye, and

each brow Figure 5.4 shows the face regions that were cropped from each image.

5.3.3 Feature Extraction

The Viola-Jones "integral image" method (see [V]041 for details) was used to extract features from images.

For each AU, we used Adaboost to select 500 Haar features for classification. Features for classifying mouth

AUs were selected only from the corresponding mouth region. Features for the eye AUs were extracted both

from the Ieft and the right eye regions; a similar approach was taken for the brow AU classifiers' Figlre 5.3

shows examples of Haar features that were actually chosen for AU recognition during the feature selection

Process.

5.3.4 Classification

Each feature in the set of 500 Haar feafures for each AU was fed to the corresponding weak classifier, which

outputs a label in { - 1, 1}. The Adaboost-based strong classifier then outputs the final classification label for

that AU based on whether the weighted sum of the weak classifiers' outputs exceeds the strong classifier's

threshold. See Freund and Schapire [FS99] for details.
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Thble 5.4: Recognition accuracy (area under the ROC curve) for the Gabor+SVM method and the

Haar+Adaboost method. The Haar+Adaboost approach performed well for the eye and brow AUs but
poorly for the mouth AUs.

Haar+Adaboost (H+A) versus Gabor+SVMs (G+S)

Method
AU# Gabor+SVM Haar+Adaboost Best

Brow AUs
1

2

4

89.97
94.58
93.20

89.72
97.67
90.34

H+A
G+S

Eye AUs
5
6
7

98.48
89.7L
98.53

98.10
92.91.

96.77 G+S

Mouth AUs
15
17
20
25

27

97.95
93.29
97.29
98.92
99.54

53.62
60.51
81.04
56.53

82.81

G+S
G+S
G+S
G+S
G+S

5.3.5 Results

Accuracy statistics measured as area under the ROC curve are given in Table 5.4. Actual ROC curves

are presented in Appendix B. As shown in the table, the Haar+Adaboost method achieved comparable

accuracy to the Gabor+SVM method for AUs of the eye and brow regions. Interestingly, it performed very

poorly for AUs of the mouth. We view two factors are possibly responsible for this performance difference:

First, it is possible that the Haar+Adaboost combination is only effective when many training examPles are

available. For example, onJy 44training examples were available for AU 15, which is the AU on which the

Haar+Adaboost method performed the worst (53.62%). The small number of training samples would not,

however, explain why the classifier AU tT,with only 68 examples, performed relatively well. The second

possible explanation for the poor performance on the mouth region is that mouth AUs exhibit greater

variability in the location of skin bulges and wrinkles than do the upper-face AUs [Bar]. It is possible that

the Gabor filters, since their Gaussian component implicitly performs smoothing, are less sensitive to this

variation.

5.3.5 Theoretical Performance Analysis

Besides comparing the Gabor+SVM and Haar+Adaboost methods in terms of accuracy, we also comPare

them in terms of speed. We perform a theoretical analysis of run-time performance in this section and an

empirical one in the next. We consider both feature extraction and classification.
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Feature Extraction

The main advantage of Haar+Adaboost over Gabor+SVMs is speed. The steps involved in extracting Gabor

features from a face image are shown below. Algorithmic complexity is measured as a function of the

number of image pixels (N). Note that FFT stands for Fast Fourier Transform.

1. Transform the image using the FFT: O(N log N)

2. For each filter

(a) Multiply the transformed image by the pre-computed filter: O(N)

(b) tnverse-transform the result using the Inverse FFT: O(N log N)

The number of filters P (in our system, 40) is a constant that does not depend on N. Thus, the computational

complexity of this algorithm is O(N log N).

The extraction of Haar features, on the other, is far less expensive. The necessary stePs are as follows:

1. Calculate the integral image: O(N)

2. For each of M features

(a) Extract each feature from the integral image: O(1)

The number of extracted features M (in our system, 500) is a constant that does not depend on N. Hence,

the total time complexity for Haar feature extraction is O(N), which is considerably less than O(N log N).

An additional performance advantage offered by the Haar method is that adding an additional feature

to the extracted set increases the running time only by a constant number of CPU instructions. Adding

another filter to a filter bank, on the other hand, requires an additional O(N log N) machine instructions.

Classification

We compare the algorithmic complexity of classification in terms of the number of extracted features M.

Classification with the Haar+Adaboost method consists of the following algorithm:

1.. Set 7 to 0

2. For each i of M fieatares

(a) Determine if feature i exceeds threshold z

(b) If yes, then add ai to T.

3. Retum 1 if ? is at least LDro, (the total threshold); retum 0 otherwise.
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For M features, the algorithm is thus O(M).

Classification with a linear SVM is similar in algorithmic complexity to Adaboost. For a linear SVM,

the separating hyperplane can be calculated offline based on the support vectors and the corresPonding

Lagrange multipliers; classification then requires only one inner product of the test point with the hyper-

plane. For M features (and thus M vector components), classification requires O(M) operations, which is

equivalent to the Adaboost method. It should be noted, however, that the popular libsvm library [CL01],

which we used in this thesis, implements linear kemels n o(Q 
" 
M) time, where Q is the number of support

vectors. 1 Thus, in our software implementation, the Haar+Adaboost method performs much more quickly

than even the linear SVM.

Classification with a non-linear kemel SVM is generally slower. For higher-dimensional kemels, a test

point must be multiplied with each of Q support vectors, resulting in Q inner products and thus O(Q * M)

operations. The cost of computing each inner product is also higher because of the kernel function itself,

which may be computationally expensive. Certain methods such as [DeC02] do exist, however, which may

serve to partially reduce the computational cost of SVM classification.

5.3.7 Empirical Perfonnance Analysis

Feature Extraction

In addition to the theoretical analysis of the two feature types, we also performed an empirical study by

extracting features from sample input images. For the FFT implementation we used the popular library

FFTW (the Fastest Fourier Transform in the West) [F]051. For basic image manipulation, we employed the

simple and efficient TiP library (Tools for Image Processing) tCcll.

We performed experiments for two different image sizes: 24v24 arrd 64x64. The smaller window size is

suitable for classifying facial expression from individual local regions of the face (e.g., mouth); the larger

window size is appropriate when analyzing the face as a whole. For Haar feature extraction, 500 selected

features were computed. For Gabor features, we applied a standard filter bank of 5 frequencies and 8

orientations and extracted Gabor responses at all points in each filtered image. The execution times were

measured on a Pentium 4l.SGHzmachine and averaged over 1000 rounds of extraction; results are shown

in Table 5.5. The results show that, lor 24x24 images, Haar feature extraction is approximately 80 times

faster than Gabor feature extraction. For 64x64images, the Haar features can be extracted nearly 160 times

more quickly.

l The software implementation is simplet if all kemels - including the linear kemel - are implemented as the sum of Q inner
products.

47

http://etd.uwc.ac.za/



Full Gabor versus Selected Haar Exttaction Times
Feature Type Resolution Extraction Time

Haar 24x24
64x64

0.l.Lmsec
0.31msec

Gabor 24x24
64x64

8.8msec
49.3msec

Table 5.5: Execution times of feature extraction for Gabor features versus selected Haar features.

Adaboost versus SVM Classification Times
Classifier Classification Time

Adaboost
SVM (Linear)
svM (RBF)

0.O2msec
27.77msec
93.97msec

Thble 5.6: Execution times of classification for an Adaboost strong classifier versus a linear SVM.

Classification

Using the same parameters as in Section 5.3.7,we compared empirically the running times of the boosted

classifier of the Haar+Adaboost method with the SVM of the Gabor+SVM method. We used the libsvm

library tCLO1l for the SVM implementation. Execution times are shown in Table 5.6. As illustrated by the

running times, the Adaboost strong classifier is 3 orders of magnitude faster than the SVM.

5.4 Summary

This chapter has investigated two important issues in the field of automatic FER: First, we comPared local

to global segmentation of facial images in terms of accuracy when recognizing FACS AUs. As a follow-

up, we also studied the effect of inter-AU correlation within facial images on the recognition accuracies of

various AUs. Our results show that this correlation effect can impact recognition rates significantly. Such

correlation effects may be of little consequence when recognizing prototypical expressions, in which high

AU correlation is natural. They are of considerable importance, however, when analyzing single AUs,

as recognition rates will appear misteadingly high. We would thus like to underline the importance of

establishhg a large, publicly available AU database with singly-occurring AUs to facilitate future research.

Second, we compared the popular Gabor+SVM method of AU recognition to the previously untested

Haar+Adaboost approach. Accuracy with the Haar+Adaboost apProach was high for the eye and brow

AUs, but low for the mouth AUs. We discussed probable causes for these findings. Finally, we performed a

performance comparison of these two methods. Experimental results show that Haar+Adaboost oPerates

several orders of magnitude more quickly.

48

http://etd.uwc.ac.za/



Chapter 6

Real-Time SASL Video Analysis

In this section we appty the AU recognition system we developed in Chapter 5 to the real-world problem

of recognizing from video some of the expressions that occur in South African Sign Language. This task is

extremely challenging for contemporary FER systems because of the significant out-of-plane rotation that

occurs in natural human conversation. The fact that most publicly available AU training data are taken

from posed prototypical human expressions in strictly controlled laboratory environments instead of from

natural human behavior makes the challenge even more difficult. Nevertheless, we hope that, by analyzing

the performance of our system on this task, we may gain insight into how FER systems can be improved to

facilitate automated signed language recognition.

In any effort to design an automated system designed to recognize the facial expressions of a signed lan-

guage, it is important to understand how these expressions are used linguistically. Facial expressions, along

with movements of the head and upper torso, constitute the set of non-manual communication channels in-

volved h signed languages. In the following subsections we discuss the roles that non-manual actions of

signed languages can play and show example expressions from our target language: South African Sign

Language (SASL). Because linguistic research on SASL is so limited, however, we will illustrate certain

Iinguistic concepts conunon to signed languages with examples from American Sign Language (ASL).

6.1. Uses of Facial Expressions in Signed Languages

Just as in spoken languages, facial expressions canbe used in signed languages to convey the affective state

of the speaker. ln ASL, for example, the emotional states "sad", and "smile" are signified by producing

the corresponding prototypical expression in the face (p.371, [RMB90]). Unlike in spoken languages, facial

expressions in signed languages also provide cmcial lexical, adverbial, and slmtactic functionality that

extends farbeyond the affective expressions mentioned above. We elaborate on and discuss the importance
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of each category of facial expression usage in the sections below.

6.1,1 Lexical Functionality

Some signs are either obligatorily or optionally accompanied by non-manual actions. In contrast to the non-

manual actions with a s).ntactic function, lexical non-manual actions are articulated only for the duration

of the accompanying manual gesture - they do not extend over neighboring parts of the sentence. The

ASL sign for "$ve in" , for example, is accompanied in the face by dropping the jaw for the duration of

the hand gesture (p. 16, [Lid80]). Another example in ASL is the sign for "not yet," which requires that

the tongue protrude slightly. Without the accompanying facial action, the sign would instead mean "late"

(p.40, [NKM+ee]).

6.7.2 Adverbial Functionality

Non-manual actions can also serve an adverbial role in signed languages. Such actions are not required for

the articulation of a particular sign, but they may modify the intended meaning. In ASL, for example, the

sentence "the boy is writing a letter" can be changed to "the boy is writing a letter carelessly" by thrusting

the tongue during the manual sign for "write" (p.377, [RMB90]). As with lexical facial expressions, adver-

bial expressions are executed only for the duration of the single sign that it modifies (p. a3, [NKM+99]).

6.L.3 Syntactic Functionality

In addition to their role in articulating single signs and adverbs, non-manual components of signed lan-

guage also provide crucial symtactic functionality. Several categories of such syntactic use of facial exPres-

sions exist, including topics, relatioe clauses, conditionals, negations, and questions. We briefly describe each

category below.

Negations

One simple but important syntactic service that facial expressions provide is the negation of clauses. In

ASL, for example, although a manual gesture for "not" also exists, the non-manual action - consisting of

furrowed eyebrows and a shaking head - is obligatory (p. 45, [NKM+99]).

Conditionals

A conditional is anif -then skucture describing one state or event that is conditional on another. An example

of a conditional is, "If you irsult George, then Jane will be angry." In ASL, conditionals are signified by

obligatory non-manual feafures including facial expression, eye movement, and head orientation. Without
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these accompanying non-manuals, the example sentence above would reduce to two simple propositions:

"You insulted George, and Jane got angry" (p. 372, [RMB90]).

Relative Clauses

A relative clause is a "dependent clause introduced by a relative pronoun" [Her00]. For instance, in the

sentence, "the person who bought the mop is frugal", the relative clause "who bought the mop" serves to

specify which person is frugal. In ASL, a relative clause is signified by raising the eyebrows, tilting the head

backward, and raising the upper Iip during the manual articulation of the clause (p. 22, [Lid80]).

Questions

In ASL, non-manual signs are used both for yes-no and zuft-questions. As expected, yes-no questions are

those which ask the listener for "yes" or "^o" response. In ASL, yes-no questions require that the eyebrows

be raised and that both the head and body be projected forward (p. 168, [LidS0]). Wh-questions correspond

to interrogatory pronouns such as "who" and "whal", i.e., questions whose English countelparts begin

with the letters "wh". Vry'h-questions must be accompanied by "furrowed brows, squinted eyes, and a slight

side-to-side head shake" (p. 111, [NKM+99]). These facial expressions are used for the same purpose in

SASL.

Topics

A topic is an element of "old information about which some corunent will be made" (p. 22, [Lid80]), and

they are used extensively in signed languages. An example of a topicalized sentence translated from ASL

into English is: "Chris - Jessie likes him." In this sentence, "Chris" is the topic; the fact that Jessie likes

him is the appended comment. In English, the sentence would have to read "As for Chris, fessie likes

him- in order to preserve grammaticality. In ASL, however, this introduction is implicit. ASL utilizes both

"moved" and the more complex "base-generated" topics. Each type of topic is denoted by its own set of

eye, eyebrow, and head movements (p. 50, [NKM+99]).

6.2 Expressionlntensity

So far in our discussion of the linguistic use of facial expressions in signed languages we have not men-

tioned expressionintensity. The intensity carries important inJormation that may benefit automatic tinguis-

tic analysis. Whereas the non-manual components ol lexical and adoerbial signs may aPPear with uniform

intensity and for short duratiory syntactic lacial expressions typically reach an apex intensity and then grad-

ually diminish. The point of highest intensity corresponds to the "node of origin" (p. 45, [NKM+99]) with
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which the non-manual is associated. In ASL, for example, a sentence is negated both by using a hand

gesture and by simultaneously articulating a negative facial expression. The node of origin in this case

is the negative hand gesture, and the corresponding facial expression reaches its apex at that same mo-

ment (p. 45, [NKM+99]). While the pilot project of this chapter attempts only to recognize expressions as

present/absent, future systems will need to estimate the expression intensity as well.

6.3 Implications for Automatic Translation

Based on the usage of facial expressions in signed languages as described above, we can highlight two main

results that may inJluence the design of a signed language recognition system:

o Facial expressions that perform a lexical or adverbial function take place over a short duration. It is

thus conceivable that recognizing only the apex of expression intensity would be sufficient to enable

effective linguistic analysis.

o Syrtactic facial expressions are articulated over a longer time span. Some method of smoothing of the

predicted expression intensity may thus be appropriate in order to estimate accurately the onset and

offset of syntactic facial expressions.

5.4 Recognizing Facial Expressions of SASL

For the pilot study of SASL recognition in this thesis, we employed the assistance of SASL speaker David

Petro from the Cape Town Bastion Center for the Deaf. Petro is deaf and, though knowledgeable in English,

communicates primarily in SASL. He is also a SASL instructor at the Bastion Center and thus knowledge-

able in SASL grammar and usage.

Together with Mr. Petro, we identified 18 nouns, adjectives, adverbs, and phrases from SASL which

occur corrunonly in conversation and which require facial expressions for their articulation. Three of these

SASL expres sions - fast , far, artd what kind - contain two parts (a) and (b) which must be performed by the

speaker in succession. We asked Mr. Petro to perform each of these 18 expressions in front of a digital

carnera; the photographs are displayed in the table below. In the sections thereafter, we describe our FACS-

based approach to recognizing these SASL expressions automatically.
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A lot A.g.y Becomes smaller

Brag Can you (a) Can you (b)

Close together

t1
a,'

;'a

Dangerous

I

i.
i

Desire

DiJficult Far (a) Far O)
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Jt;:.rt;: .

Fast (a) Fast (b) Fat

Often My name is What is your name

What kind (a) What kind (b)

dd
6r,$

Really

Relieved

6.4.L Test Case: A Simple Story

Given this set of facial expressions, we composed a simple story which two deaf SASL signers from the

Bastion Center, David Petro and Carmen Fredericks, then narrated in front of a video camera. The story

was written not to achieve literary greatness, but rather to elicit most of the SASL expressions that were

photographed and analyzed of David Petro. The signers were requested to keep their faces in clear and

unobstructed view of the camera whenever possible, and to sign the facial expressions clearly and deliber-

ately. However, each participant exercised some freedom in narrating the text; hence, not all expressions in

our story were actually signed, nor do the expressions appear in exactly the same order as in the English

54

'' -:. I. riii."!!
ra .. : -:*:;4
, ,l&1-

t:!t::

.t':

!11i:1

li'j l

":

http://etd.uwc.ac.za/



Table 6.1: Full AU decomposition for SASL expressions. Each number rePresents an AU; each letter follow-
ing the AU number speciiies the intensity (A through E); and an L or R preceding the AU number specifies

an asymmetric action on the left or right side of the face, respectively.
SASL
a

AU
LE2EL4A5E 18D
1A2A23C 25838A 52854p'
782AL4B 18C 558
18 L2C R2A 4,{ 7B2OD 25A 538 58D
7D2D 4C5C25825F,55C
TD2D 4D 58 34D 55D
LB2B4D24D38A 55C 57B

7D 2D 48 5C 7 A I6C 22F, 25D 55C
1C 4C L6A L6B25C 53C 55C
4D L6B 7D 2OD 58C
4DL6B 108 258 32C 38B 53D 558
1A 4C 258 26D 53D 55B
7C2C4A5A 23838B 558
IC2CL4B 5A 188 258268 55C 578
7C2C 48 5A 34D 39B 55C
IC2B 4B5C7A52B 538 55C
LA4D7D24CS26A55D
1,C2C 48 5A 10B t7B25B 32B 55C
25A 53B 55C
4D7E,55D57C
4B7C10B 25A 53C 55D
48258 26C 53E 55D

an8ry
becomes smaller
brag
can you (a)
can you (b)
close together
dangerous
desire
difficult
far (a)
far (b)
fast (a)
fast (b)
fat
my name is
often
really
relieved
what is your rurme
what kind (a)
what kind O)

text. The story text appears below, with the key SASL expressions in italics:

Hello, my name is ------. I want to tell you a story about my day. This moming I woke up late.

I was scared that my boss would be angry if I came late to work. My house isfar from my office,

so I had to drive fast to save time. I often drive fast to work, but today itwas ilanguous because

the roads were wet.
I stopped at a traffic light. Beside me was avery fat womiul whom I had long desired. Our

cars weie clos e together, and I shouted toher, "what is your name?" She said, "Priscilla'" She then
started to brag about how/asf her car was. I asked her, "what kind of car is it?" She said it was a

Porsche.
We decided to race to the next traffic light. I drove as fast as I could, but the rain made it

dfficult to see. Her car was faster, and she won the race. I felt very embarrassed. But at least I
was not late to work - I arrived two minutes early. I was very relieued-

5.5 Approach

Il1 this thesis, we endeavor to recognize the SASL expressions in the narrative above using FACS as an

intermediary framework. As the fust step towards this goal, the photographs of Petro were FACS-coded

by expert FACS consultant Dr. Erika Rosenberg for both the presence and degree of the exhibited AUs. The

fuIl AU decomposition of each expression, inctuding intensity values, is listed in Table 5.1. Each AU which

appeared asymmetrically in only the Ieft or right haU of the face is preceded with "L" or "R", respectively.
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FACS Action Units
SASL Expression 1 2 4 5 6 7 10 15 t6 77 20 23 24 25 26 27 38 39

a Iot
angry
becomes smaller
brag
can you (a)

can you (b)

close together
dangerous
desire
difficult
far (a)

f* (b)

fast (a)

fast (b)

fat
my ruune ls
often
really
relieved
what is your narne
what kind (a)

what kind (b)

Table 6.2: AU mappings for each of the sample SASL expressions. Note that the expressions may also
contain other AUs not shown in this table - we list only those AUs for which we trained a classifier.

Table 5.2 contains similar information for each expression. In contrast to Table 6.1, however, this table

decomposes the expressions only in terms of the 18 AUs for which sufficient training examPles existed in

our AU training set. This table confirms that our set of AU classifiers is rich enough to differentiate each

of the selected facial expressions of SASL even when expression intensity is not considered. In both the

approaches to recognizing SASL expressions that we describe below, we represent each SASL exPression

as a vector

1: (aU1,aU2,dU4,dU5,OU6,dU7,dU16,flUlE,ElUt6rdU17,dU26,4U2grdlJ24rd1.Jl25rOLl26,?U27,dllsa,auas)

whereeachaui € {0, 1}. Thus,eachSASLexpressionvectorx € {0, l}lsstoresthesetof AUsitcom-

prises, as described in Table 6.2. The SASL expression for "Iat", for example, is represented by xi"1 :

(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). Given the expression vector x for each SASL expression, and given

the AU detection vector v containing the AUs present in a particular input image, we attemPted to recog-

nize SASL expressions from the frames in a video sequence.

Recognizing each SASL expression can thus be decomposed into first detecting AUs, and then mapping

the exhibited AUs to the SASL expression that triggered them. In the sections below, we describe two

implementations of this technique: one in which the set of AUs must match the SASL exPression exactly

(Exact Matching), and one in which the best-possible match (assessed using Cosine Similarity) is used for
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SASL expression prediction.

5.5.L Method 1: Exact Matching

In our first approach to SASL expression recognitiory we consider an expression to be present if and only if

the vector v of AUs present in the input image exactly matches the expression vector xi for SASL expression

i. This is a very strict matching condition, and it means that an expression consisting of AUs {1,2,4,24,38}

("close together") will not be recognized if the face image contains only AUs {2,4,24,38}, nor wiII it be

recognized if the image contains {1,2,4,5,24,38} (AU 5 is superfluous).

6.5.2 Method 2: Cosine Similarity

ln our second approach to FACS-based SASL expression recognitiory we considered a SASL expression x;

to be present rt cos(l (*,, r)) : dffi ) rt, where v is the vector of AUs detected in the input image

and ri is the expression-specific recognition tfueshold (determined empirically). This approach allows an

expression to be recognized even if, say, one or two AUs of a particular SASL expression are absent from the

face, or if a few extra AUs not in xi are contained in the face image. Since cos (l (xi,v)) : 1 <+ xi : v,

the Exact Matching method of the previous subsection emerges as a special case of the Cosine Similarity

method.

The threshold ri would need to be determined based on a training set of SASL video data. Since our

training data were so limited, however, we employed a modified version of this algorittm in which each

video frame was mapped to the SASL expression xi for which the cosine similarity metric was highest. This

me€rns that one SASL expression will be detected for every frame in the video sequence - a situation that

is admittedly improbable - but it also increases the chance that our expression recognizer will output the

correct expression for the frames that do contain a SASL expression.

6.6 System Design

Given the two methods of SASL expression mapping of the previous section, we now describe our SASL

recognition pipeline from start to finish. We used two altemative methods from the previous chapter for AU

recognition: Gabor+SVMs and Haar+Adaboost. The former has the advantage of higher overall accuracy

over all AUs, whereas the latter is advantageous in its speed. Note that, on our computer system, only the

Haar+Adaboost method was sufficiently fast to enable real-time performance.

o Input: Video frame containing face.

o Desired output: Predicted SASL expression.
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A
Table 6.3:

Frames of Petro's SASL

o Procedure:

7. Face iletection; To determine the location of the face within the input image, we used the Ma-

chine Perception Toolbox Mprsearch program [FDH+]. This program oPerates at frame rate and

outputs the coordinates of the found face box.

2. Face normalization: Given the location and size of the face (if found), the face is normalized to a

standard size.

3. Al) recognition: lJsing either the Gabor+SVM or Haar+Adaboost method, estimate the AUs con-

tained within the input face.

4. SASL Expression mapping: Using either the Exact Matching or Cosine Similarity method, predict

the SASL expression of the current frame.

Using the Haar+Adaboost procedure, this pipeline is fully automatic and operates in real time.

6,7 Experiment

Given the two video narratives (by both Petro and Fredericks) of the SASL story listed previously, we mea-

sured the accuracy of the SASL expression recognition system described in the previous section. Together

with David Petro, we marked the video frames containing the apex of each SASL expression in both videos.

The expressions and the times when they occurred are listed in Thbles 6.3 and 6.4. Note that, although each

SASL narrator was presented exactly with the story we listed above, they exercised some freedom in telling

iU hence, not all expressions occurred in the same order for both signers, and some exPressions were not

In-plane
Rotation Rotation

Expression Time (s)

name rs 0.2
78.7
22.0Fast (a)

Fast
,b

22.7

30.4
Fat 34.8
Desire 40.4

What is your name 44.L

What kind (a) 54.t
54.4What kind @)

Far 69.3

Far (b) 69.5

75.7
Relieved 87.1
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OcclusionOut-of-plane
Rotation

Expression Time (s) In-plane
Rotation

name rs 2.4

t7.0Angry
Far 2t.4

21.9
26.2Often

What is your n lme 37.8
42.7

42.8What kind (b)

to see 51.8Difficult
Fast 53.7

54.2
62.4Relieved

Thble 6.4:
Frames of Fredericks' SASL

articulated at all.

Given each apex expression, occurring at some time t, we fed each video frame that occurred within the

time window lt - O.2s,t + 0.2s] to our SASL expression recognizer. Given that the frame rate was 25 fps

(every 0.Ol s), this amounts to 9 frames Per aPex.

5.8 Results

The predicted SASL expressions for each signer (Petro and Fredericks) and for each of the Gabor+SVM and

Haar+Adaboost methods are displayed in Tables 6.5,6.6,5.7,arrd 6.8 along with the exact cosine similarity

values. The predicted expressions using the Cosine Similarity method can be read directly from the table;

expressioru were recognized with the Exact Matching method only when the cosine similarity value was

1.00, which occurred rarely. Note that, in some video frames, no face was detected at all, and hence that

video frame does not appear in the table. Frames whose cosine sirnilarity value was 0.00 contained no

AUs, and for these frames the associated SASL expression was chosen arbitrarily. Unfortunately, both

the Gabor+SVM and Haar+Adaboost methods, combined either with Cosine Similarify or Exact Matching,

demonstrated only very modest results: only the "relieved" expression could be recognized from the video

input.

6.9 Discussion

Given the small size of our SASL video test set, it is difficult to draw statistically significant conclusions.

It does appeat howevet that the Gabor+SVM method performed slightly better than the Haar+Adaboost

approach: for both the Petro and Fredericks videos, the former AU recognition approach recognized the

A
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Thble 6.5: Recognition Using Gabor+SVM and Cosine Similarity Matching: Petro Video

Time Expression Cos Time Expression Cos Time Expression Cos

0.00
0.04
0.08

0.t2
0.16
0.20
0.24

0.28
0.32
0.36

18.52
18.56
18.60
78.64
18.68
18.72

78.76
18.80
18.84
18.88
18.92

2t.80
27.U
21.88
2r.96
22.00
22.08

22.r2
22.L6
22.20
22.24
22.28
30.20

1.000
r.000
r.000
0.000
1.000

0.707
0.707
1.000

0.707
0.577
0.577
0.577
0.707
0.577
0.5n
0.577
0.577
0.707
1,000
0.577
0.47
0.354
0.707
0.354
0.M7
0.577
0.378
0.M7
0.000
0.500
0.577
0.707
0.577

30.28
30.32
30.3,6

30.40
30.M
30.48
30.52

30.55
30.50
40.20
40.24
40.28

40.32

40.'%
40.44

40.M
40.48
40.52
40.56
40.60
43.92

44.00
M,M
M.08
4.12
M.t6
M.20
M.24
M.28
54.20
54.24

relieved
relieved
a lot
relieved
relieved
relieved
relieved
relieved
relieved
becomes smaller
becomes smaller
relieved
relieved
relieved
relieved
relieved
relieved
relieved
relieved
a lot
a lot
relieved
a lot
what is your narne
becomes smaller
a lot
what is your name
a lot
what is your name
what is your narne
what is your n.une
relieved

0.447
0.500
0.447
0sn
0.500
0.500
0.500
0.500

0.500
0.500
0.707

0.707
0.707
0.47
0.408
0.500
0.M7
0.M7
0.M7
05n
0.500
0.000
0.577
0.500
0.408
0.408
0.M7
0.500
0.500
0.500
0.707
o.707

54.32
54.36
54.40
54.M
54.48
54.52
54.55
54.60

69.08
69.15

69.24
69.28
69.60
75.48

75.72
75.80
75.U
75.88
80.08
80.24
80.M
86.88
86.92
86.96
87.00
87.08
87.r2
87.t6
87.20
87.24
87.28

far b
far b
relieved
far b
far b
far b
far b
far b
farb
relieved
relieved
relieved
far b
what is your name
becomes smaller
becomes smaller
what is your name
what is your ruune
far b
far b
a lot
relieved
relieved
becomes smaller
larb
far b
far b
far b
relieved
what is your name
what is your name

what is your name
relieved
becomes smaller
relieved
far b
a lot
a lot
a Iot
becomes smaller
a lot
a lot
a lot
relieved
a lot
what is your narne
a lot
what is your narne
what is your na.me
becomes smaller
becomes smaller
a lot
a Iot
relieved
relieved
relieved
relieved
relieved
relieved
relieved
relieved
relieved
relieved

0.707
0.577
0.47'r
0.500
0.47
0.000
0.000

0.000
0.5n
0.433
0.433
0.433
0.M7
0.500
0.M7
0.408
0.707
0.577
0.408
0.408
0.000
0.378
0.707
0.577
0.577
0.500
0.577

0.707
0.707
0.577
0.577
0.707
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Time Expression Cos Time Expression Cos Time Cos

0.00
0.04

0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36

18.52
18.56
18.60
78.64
18.58

L8.72
78.76
18.80
18.84
18.88

18.92
21.80
2r.u
21.88
27.96
22.00
22.08
22.72
22.16

22.20
22.24
22.28

30.20

really
relieved
what is your narne
relieved
relieved
relieved
relieved
relieved
really
difficult
far (b)

far (b)

fa, (b)
far (b)
relieved
far (b)
relieved
what is your narne
what is your name
becomes smaller
a lot
my name is
my name is
my name is
what is your n.une
what is your narne
a lot
often
my name is
fat
becomes smaller
what is your narne
what is your n rme

0.267
0.577

0.408
0.577
0.707
0.500
0.408
0.577
0.267
0.408
0.500
0.577
0.577
0.500
0.707
0.577

0.577
0.408

0.408
0.378
0.408
0.315
0.346
0.365
0.353
0.408
0.000
0.315
o.387
0.316
0.333
0.500
0.500

30.24
30.28

30.32
30.3,6

30.40
30.4
30.,t8
30.52
30.56
30.60
40.20

40.24
40.28
40.32

40.%
40.40

40.M
40.48
40.52

40.56
40.50
43.92

M.00
M.M
M.08
M.72
4.76
44.20
M.24
M.28
54.20
54.24

0.707
0.M7
0.387
0.354
0.378
0.M7
0.500
0.408
0.408
0.500
0.500
0.354
0.M7
0.M7
0.408
0.447
0,500

0.408
0.378
0.408
0.365
0.408
0.M7
0.408
0.408
0.577
0.5n
0.408

0.500
0.577
0.000
0.333

your name
relieved
a lot
a lot
really
a lot
what is your narne
becomes smaller
a lot
what is your narne
relieved
difficult
far (b)
becomes srnaller
becomes smaller
relieved
relieved
becomes smaller
far O)
difficult
becomes smaller
relieved
far (b)
relieved
relieved
becomes smaller
becomes smaller
becomes smaller
difficult
becomes smaller
a lot
becomes smaller

54.28
54.32
54.36
54.40
54.M
54.48
54.52
54.56
54.60
69.08
69.76
69.24
69.28
69.60
75.48
75.72
75.80

75.84
75.88

80.08
80.24
80.44
85.88
86.92
86.96
87.00
87.08
87.r2
87.16
87.20
87.24
87.28

relieved
relieved
really
difficult
becomes smaller
often
what is your narne
anSry
becomes smaller
relieved
relieved
fat
relieved
a lot
what is your narne
relieved
a lot
what is your name
a lot
a lot
a lot
far (b)
relieved
relieved
relieved
becomes smaller
relieved
relieved
relieved
a Iot
really
becomes smaller

0.500
0.500

0.378
0.500
0.289
0.354
0.354
0.316
0.365
0.5n
0.47
0.315
0.500
0.000
0.500
0.577
0.408

0.M7
0.000
0.354

0.000
0.378
0.577
0.707
0.500
0.577
0.M7
1.000
0.707
0.500
0.378
0.577

Table 6.5: Recognition Using Haar+Adaboost and Cosine Similarity Matching: Petro Video

Table 6.7: Recognition Using Gabor+SVM and Cosine Similarity Matching: Fredericks Video

fime Expression Cos Time Expression Cos Cos

2.28
2.36
2.40
2.44
2.52
2.56
2.60

16.80

27.48
21.76
51.60
51.64
51.58
5L.72
5t.76
51.88

0.000
0.47t
0.5n
0.577

0.707
0.000
0.000

0.707
0.500
0.500
0.000
0.707
0.500
0.577
0.M7
0.5n

51.92
53.52
53.60
53.&
53.68
53.72
53.80
53.84
53.88
53.92
54.04
54.08
54.r2
il.16
54.20
54.24

a lot
becomes smaller
becomes smaller
becomes smaller
what is your narne
a lot
a Iot
what is your n une
difficult
dfficult
a lot
what is your narne
far b
far b
becomes smaller
becomes smaller

becomes smaller
becomes smaller
becomes smaller
becomes smaller
becomes smaller
angry
an8ry
a lot
relieved
becomes smaller
becomes smaller
anSry
becomes smaller
becomes smaller
relieved

0.577
0.500
0.408
0.M7
0.447
0.408
0.365
0.365
0.000
0.47
0.408
0.408
0.365
0.5n
0.5n
0.707

54.28
54.32
54.36
54.40
52.20

62.24
62.28
62.32
52.36
62.40

62.M
62.48
62.52
52.56
62.60

becomes smaller
becomes smaller
becomes smaller
becomes smaller
a lot
a lot
relieved
a lot
a lot
relieved
becomes smaller
a lot
a lot
larb
relieved

0.477
0.577
o.477
0.47 |
0.000
0.000
1.000
0.000
0.000
0.707
0.5n
0.000
0.000
05n
0.707

5t
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Thble 5.8: Recognition Using Haar+Adaboost and Cosine Similarity Matching: Fredericks Video

fime Expression Cos Time Expression Cos Time Expression Cos

2.28
2.36
2.40
2.M
2.52
2.56
2.60

16.80
27.48

21..75

51.50
5t.64
51.58
57.72

51,.76

51.88

a lot
my name is
really
a lot
becomes smaller
really
what is your name
relieved
a lot
a lot
a lot
what is your narne
becomes smaller
a lot
relieved
becomes smaller

0.000
0.v6
0.309
0.408
0.408
0.267
0.500
0.577
0.000
0.000
0.289
0.M7
0.408
0.315
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0.000
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"relieved" expression more consistently over the corresponding time window. This is consistent with our

findings in Chapter 5.

We believe that the primary difficulty for our system in recognizing the expressions was the variability

in head pose in the video. The signers were requested to look directly into the camera and to keep the

face clear as much as possible. Nonetheless, the video frames contain considerable in-plane and out-of-

plane head rotation as well as partial occlusion of the face by the hands, which makes both face detection

and facial expression analysis more difficult. Tables 6.3 and 6.4 show the presence or absence of rotation

and occlusion of the face (as assessed by a human coder) for each frame. Notice how most of the frames

contained out-of-plane rotation of the face.

Another possible explanation for the low accuracy of our system is variability in the AU decomposition

of the SASL expressions. If SASL expressions vary significantly in the AUs they comprise, either across

different signers or across different occurrences for the same signer, then a simple AU-to-SASL mapping

may not be possible, and natural language processing may be necessary in order to recognize a Particular

expression confidently. Only further research into SASL facial expressions can answer this question.

5.L0 Summary and Conclusions

We have constructed an automatic, real-time SASL expression recognition system that uses FACS as an

intermediary representation. We presented two approaches to mapping AUs to SASL expressions: an Exact

Matching method, and a Cosine Similarity method. We tested both approaches, using the Haar+Adaboost

and Gabor+SVM AU classifiers from the previous chaptet on two videos containing a SASL narrative'

Only one SASL expression ("relieved") was recognized correctly from the video. We attribute these results
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to significant in-plane rotatiory out-of-plane rotation, and occlusion of the face.

As demonstrated in Tables 6.4 and 6.3, natural signed communication is replete with 2-D and 3-D ro-

tation of the head and partial occlusion of the face. FER systems for real-world applications must thus be

robust to these conditions in order to be useful. In support of this goal, a publicly accessible facial expres-

sion database containing a variety of head poses would be extremely useful. As pointed out in Chapter

5, these databases should ideally contain singly-occurring AUs so that correlation effects do not adversely

affect the training of the classifier.
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Chapter 7

Conclusions and Directions for Further

Research

This thesis has made several important contributions to the field of automatic facial expression recognition'

First, we examined the issue of whether local face segmentation yields higher AU recognition accuracy

than whole-face analysis. We found that globat analysis yields superior recognition rates on our dataset

and showed that this phenomenon is at least partially due to the strong correlation between AUs in the

Cohn-Kanade database. This result underlines the importance of establishing a publicly available dataset

in which AUs either occur individually or with low correlation.

Second, we have developed a new approach to FACS AU recognition based on Haar features and the

Adaboost classification method. Our system achieves equally high recognition accuracy as the Gabor+SVM

approach but operates two orders of magnifude more quickly.

Finally, we have proposed a plausible architecture for using FACS as an intermediary framework for

recognizing the facial expressions of SASL. While our system is not yet mature for effective SASL recogni-

tiory conducting this pilot study has proven that SASL expression recognition using FACS is fundamentally

possible. It also underlines the fact that considerable in-plane, out-of-plane, and occlusion of the face oc-

curs even in a laboratory environment, and that AU classifiers for real-world applications must be robust

to handling these conditions.

Conducting this research has revealed a number of new research questions, both on facial expression

recognition itself and on using FER systems to recognize signed languages. We discuss open questions in

both fields separately.
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7.0.1 Facial Expression Recognition

One of the most fundamental issues in automatic FER is the best type of feature to use for classification.

Many types of features exist, and some of these - e.g., Gabor, Haar, pixel intensities, geometric relation-

ships between fiducial points, etc. - have been applied to automatic expression recognition. Many more

exist, however, and have not yet been evaluated for expression analysis. kr particular, edge orientation

histograms have been shown to outperform Viola-Jones Haar features (Levi and Weiss [LW04]) when the

training set is small. Scale-invariant'SIF[- features (developed by David Lowe [Low04]), which are re-

portedly invariant to changes in scale, translatiory and rotation, may also be useful in the domain of FER.

As illustrated by our pilot study of SASL recognition, real-world exPressions occur with considerable

3-D rotation and occlusion of the faces. One important open issue is whether the expressions within these

faces should best be recognized using pose-specific expression detectors, or instead by a single detector

that is robust to strong changes in pose. As one particular implementation of the latter strategy, 3-D face

tracking could be employed to rotate the detected face back to a canonical, frontal view, and expression

recognition could proceed from there [Mar].

Finally, regardless of which kinds of image features are used, an important question is the kind of classi-

fier used for expression recognition. Support vector machines have demonstrated good performance over

all the AUs we tested, as has Adaboost for particular AUs. Other boosting techniques, such as Logitboost

and Gentle Adaboost [FHT98], also exist, however, and may also prove effective for expression recognition.

7.0.2 Automatic Signed Language Recognition

From the limited data we collected, we consider it likely that the FACS framework is sufficiently discrimi-

native to enable SASL expressions to be distinguished and recognized by the AU sets that they comprise.

However, it remains to be investigated whether SASL signs are consistent in their AU decomposition across

different signers, and whether they are even consistent across different instances from the same Person'

Despite the difficulties we encountered in our pilot study of SASL recognition, we hope that our soft-

ware prototype will provide a firm ground from which progeny of our project can progress. Researching

and writing this thesis has been enormously educational for this researcher; we hope that future members

of the SASL Project at the University of the Westem Cape are equally rewarded.
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Appendix A

Mathematical Fundamentals and

Computer Vision Algorithms

A.L Distance between a hyperplane I/ and the origin

Let If be described as w .x * c: O, where w is normal to 11, and c is the bias. The shortest vector x* from

the origin to 11 must be normal to f/ and thus parallel to w. Since x. lies in If, it must satisfy

w'x*+c:0 (A.1)

(A.2)

(A.3)

Since w and x* are parallel, their inner-product equals ll*llll*- ll, and thus

ll*llll*.ll*c:0
It*.ll:ffi

A.2 Time Complexity of 2-D FFT

It is generally known that the time complexify of a 1-D Fast Fourier Transform (FFT) is O(N log N), where

N is the number of discrete points to be transformed. A 2-D Fourier transform can be computed by first

transforming each column of the image, and then transforming each row of the result.

Suppose that a square image contains M rows and M columns for a total of M2 : N pixels. Then the

number of CPU instructions required to transform all the columns is O(M 'r MlogM). The rows of the

resulting image must then also be transformed, which requires O(M ,, M log M) more operations. ln total,
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the FFT of the 2-D image requires:

O(M*MlogM+M'*MlogM)

operations. We thus conclude that, for a square image with N pixels, the 2-D FFT takes O(N log N) oPera-

tions.

A.3 Principle Component Analysis

LetT: {*r,...,x-}beasetof trainingdatasuchthateachx € IR". Themean prof Tisassumedtobe

zero; if p I 0, then each x e ? is fust reduced by p. Principle component analysis of ? consists of finding a

new sequence of n basis vectors €r, . . . , e,, called the principle componmts; Each principle comPonent ej is

calculated to give the jth largest variance when the vectors in 7 are projected onto it. Since ? was assumed

to have zero mean, the variance resulting from each basis vector is determined by:

O(2',M*MlogM)

o(MzlogM2)

(A.4)

(A.5)

vdrj

:=+ varj efZe,

"= 
inl(x1 - p)l[efl(x n - tilr
i--7

t= I'r(*' - i')(*' - tiret

"t ("=i,*,-p)(xi - ti')"i

(A.6)

(A.7)

(A.8)

(A.e)

where ! is the covariance matrix of ?. When computing the first principle comPonent e1, the variance

should be maximized. Maximizing varT is equivalent to maxirnizing the inner product of efl and (Ie1),

which is greatest when efl is parallel to the eigenvector of I with the largest associated eigenvalue )1.

Computing e2 is then achieved by choosing ei to be parallel to the eigenvector with second-greatest asso-

ciated eigenvalue )2, and so on.

After determining the principle components, PCA can then be used for dimensionality reduction by

projecting each x € ? onto the first p << n principle components, resulting in a smaller p-dimensional

feafure vector. Because of the way the components were calculated, the resultant set of projections still

retain most of 7's original variance.
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A.4 Optic Flow Analysis

In order to compute optic flow, image intensity is modeled as a ftrnction of not only r and g, but also of

time t. Suppose that a pixel moves from location (r,g) attime, to location (r -l La,y + Ag) at time t * At.

Then the intensity values at these two locations and times will be equal, i.e.:

I (x,g,t) : I(r + A.a,y * A'g,t + Lt) (A.10)

The right-hand-side of Equation A.10 can be approximated to first order by means of a Taylor series:

(A.11)

where the ellipsis stands for small higher-order terms which are assumed to be small enough to ignore.

Combining Equations A.10 and A.11 we arrive at:

I(x + Ax,y -t A,s,t+ Ar) : I(r,y,t) + ffn* * HO, 
+ ffnt +

I(r,y,t) * ffo* *
AIAgr* -AlOT

AI Lr au + ffat

AI
Aa

AI
Aa

I (x,g,t)

0

(A.12)

(A.13)

(A.14)

(A.15)

(A.15)

+
0x

Irr order to convert from displacunent of pixel location (r, g) into oelocity, we divide both sides of the last

equationby At:

0I L.t 0I Aa 0I Lt
0r Lt 0u Lt 0t At

ililaI
- ar'"+ *au+ *

0

0

where,r,,: ff *d uu: *.
The partial derivatives of I with respect lo x, A, and t represent the spatial and temporal image gradi-

ents; they can be computed using derivative filters over the image sequence. After computing these values,

there still remain two unknowns for only one equation, and thus the system is under-determined. In order

to solve for r.r, and ur, additional constraints must be provided. Commonly used algorithms for provid-

ing such constraints and for completing the optic flow calculation are the Lucas-Kanade method, which

assumes that flow is constant within small local windows about each pixel, and the iterative Horn-Schunck

approach, in which "smoothness" of an energy function is enforced.

68

http://etd.uwc.ac.za/



A.5 Haar Wavelets

A.5.1 One-dimensionalHaarWaveletDecomposition

The one-dimensional Haar wavelet decomposition of an n-element input array is computed recursively

using a two-step process of averaging and differencing. Ir. order to emphasize the main concepts of the

algorithm, we ignore the normalization constants that must be considered in the actual transform.

ln the aauaging stage, the input array is reduced in length by half by averaging the value of every

pairof neighboringvalues. Forinstance,theinputarray[3, 1,4,6,9,3] isconvertedto[2,5,6]. Clearly,

information has been lost by this averaging step. In order to recover the lost information, I detail coefficiutts

are appended to the output array during the diffuencing stage. Each detail coefficient d is the amount by

which the first element in the averaged pair exceeds that pair's average. For example, for the first pair

(3, 1), whose average is 2, the first element 3 exceeds the average by 1; hence, the detail coefficient for the

first pair of numbers is 1. For the second pair (4,6), the average is 5. Since the first number 4 exceeds 5 by

-L (because 4 - (-1) : 5), the detail coefficient is -1.

After appending the f detail coefficients to the array of averaged pairs, the array once again has length

n. The two stages of averaging and differencing are then repeated on the first haU of the array. At the next

level of recursion, the first quarter of the array will be averaged, and so on. The recursion is complete after

log, n, Ievels when only one pair of numbers is averaged.

We illustrate the entire transform on a generic array of length 4, whose elements are [41 , a2,a3,a4). The

transform proceeds as follows (each line represents one averaging and differencing step):

la1, a2, a3, a4f

lar+az azlaa
l--"'----;-'ar

at * atl
,az - ----;- 

|
L)

ar+a2
2

a1*a2 a3la4

(A.17)

(A.18)

(A.1e)

(A.20)

at+ a2+ o3 + a4 ar +a2 a| * a2* as* aa
,ar - --n-, oa3

4
,2 4

Combining fractions and factoring out the denominator, we can simplify the final array:

a1 *o,2+ a3+a4 a7+a2-('
4

as+a4) at-a2 a3-a4
4 '2t2

The first element of the output array equals the overall average of the input array. More important for

purposes of image classification, however, are the detail coefficients: The detail coefficients express the

difference between neighboring array values, or between sums of neighboring sets of array values. For

instance, the second element of the output array equals the difference in value between the first and second

pairs of array values. The last two elements of the output array equal the difference between the first
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and second, and third and fourth input array elements, respectively. In the realms of object recognition

and detection, when the two-dimensional Haar decomposition is applied to the input image, this property

becomes extremely useful in its effectiveness for detecting edges and other differences in pixel intensity.

In practice, the magnitudes of many of the detail coefficients are typically very small, and they can

be ignored with little reconstruction error [SDS94]. In this sense, the Haar decomposition naturally lends

itself to feature selection because some of the wavelet coefficients have a greater impact on the image's

appearzrnce than others.

A.5.2 Two-dimensional Haar Wavelet Decomposition

There are two methods of generalizing the one-dimensional Haar decomposition to the two dimensional

case. In the standard decomposition, the transform is first applied to each row of the input matrix. After

transforming all rows, the transform is then applied to each column.

ln the non-standard decomposition, the transform is altemately applied to rows and columns at each re-

cursive level of the transform. More precisely, one averaging and one differencing stage is first applied to

each row of the input matrix. Then, one averaging and one differencing stage is applied to each column of

the matrix. The transform then proceeds again on the rows at the next recursive level.
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Appendix B

Representative ROC Cunres

In this appendix we show a representative set of of 33 Receiver Operator Characteristics (ROC) curves from

the experiments we performed in Chapter 5. For each of the 11 AUs that we classified, and for each of the 3

AU recognition algorithms we studied - local Gabor+SVM, global Gabor+SVM, and local Haar+Adaboost

- we present the ROC curve and the Area Under the Curve (AUC) of one validation fold (Fold #1).

In some of the curves displayed below, the classifier was able to separate the positive and negative data

points completely, with no errors. In such cases, the Area under the Curve is 100%, and no "curve" aPPears

inside the graph window at all - only a set of dots corresponding to different classifier threshold values

appears on the r and y axes.

Note that the AUC values reported in Chapter 5 were averaged over all 10 cross-validation folds, and

that the AUC values listed for the individual ROC curves in this appendix can stray from this average

considerably. We thus strongly advise against comparing classifiers based on their performance of only a

single cross-validation fold.

8.L Local Gabor+SVM

ROC curves and Area under the Curve values for the local Gabor+SVM classifier. Curves are shown for

Validation Fold #1 only.
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