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Chapter 1 

THE CONJUGACY CLASSES OF 

GROUP EXTENSIONS 

In this chapter some basic theory on group extensions is first given in section 1.1 and then a method 

for finding the conjugacy classes of group extensions is described in section 1.2. In section 1.3 we look 

at an example due to Whitley[l9 ] to illustrate how the theory developed in section 1.2 is used to 

calculate the conjugacy classes of the group 23 : GL3 (2). For section 1.1 , the books by Rotman[l i] 

and Gorenstein[8] were used as references while for section 1.2 we used the works of Whitley[l9], 

Moori[l5], Moori and Mpono[l6] and Salleh['l8]. 

1.1 Definitions and Basic Results 

Definition 1.1.1 If N and G are groups, an extension of N by G is a group G that satisfies the 

following properties 

1. N <1 G 
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2. G/N~G. 

We say that G is a split extension of N by G if G contains subgroups N and G1 with 

G1 ~ G such that 

l.N<1G 

In this case G is also called a semi-direct product of N by G, and we identify G1 with G. 

Note 1 If G is a semi-direct product of N by G, then every g E G can be uniquely expressed in 

the form g = ng, where n E N and g E G. Multiplication in G satisfies (n 1g1 )(n2g2 ) = n 1n~ 1g1g2 , 

where n9 denotes gng- 1
• 

Definition 1.1.2 The automorphism group of a group G, denoted by Aut(G), is the set of all auto­

morphisms of G under the binary operation of composition. 

If G is a split extension of N by G , then there is a homomorphism 0 : G ➔ Aut(N) given by 

09 (n) = gng- 1 = n9 (n E N,g E G), where we denote 0(g) by 09 • Thus G acts on N, and we say that 

the extension G realizes 0. 

Conversely, given any groups N and G, and 0 : G ➔ Aut(N), we can define a semi-direct product 

of N by G that realizes 0 as follows. Let G be the set of ordered pairs (n,g)(n E N,g E G) with 
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multiplication (n 1 ,g1 )(n2 ,g2 ) = (n 109 ,(n2 ),g1g2 ). Then G is a semi-direct product of N by G. 

Hence a split extension of N by G is completely described by the map 0 : G -+ Aut( N), that is, it 

is described by the way G acts on N. 

We use the ATLAS [3] notation and let N.G denote an arbitrary extension of N by G. A split 

extension is denoted by N : G or N : 0 G, where 0 : G ➔ Aut( N) determines the extension. A 

non-split extension is denoted by N · G. 

If G is a split extension of N by G, then G = NG = LJ
9
ea Ng, so G may be regarded as a right 

transversal for N in G (that is, a complete set of right coset representatives of N in G). Now sup­

pose G is any extension of N by G, not necessarily split. Since G / N ~ G, there is an epimorphism 

A : G ➔ G with kernel N. For g E G, define a lifting of g to be an element g E G such that A(g) = g. 

Then choosing a lifting of each element of G, we get the set {g: g E G} which is a transversal for N 

in G. 

vVe now show that even for a non,-split extension G of N by G, where N is abelian, G acts on N. 

This result can be obtained from Rotman[l 7]. 

Lemma 1.1.3 Let G be an extension of an abelian group N by G , then there is a homomorphism 

0: G ➔ Aut(N) such that 09 (n) = gng- 1 (n E N), and 0 is independent of the choice of liftings 

{g: g E G}. 

Proof: For a E G, denote conjugation by a by ,a• Since N is normal in G, ,a IN is an automorphism 

of N and the functionµ: G-+ Aut(N) defined by µ(a)= 1alN is a homomorphism. 

If a E N, then µ(a) = lN, since N is abelian. Therefore there is a homomorphism µ* : G / N ➔ 

Aut(N) defined by µ*(Na)= µ(a). 
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Now G ~ G/N and for any lifting {g: g E G} , the map¢: G-+ G/N defined by </>(g) = Ng is 

an isomorphism. If {h: h E G} is another choice of liftings , then gh-
1 

E N so that Ng = Nh. 

Therefore the isomorphism</> is independent of the choice of liftings. Now let 0 : G -+ Aut(N) be 

the compositeµ* o </>. If g E G and g is a lifting, then 0(g) = µ*(</>(g)) =µ*(Ng)= µ(g) E Aut(N), 

so for n EN, 0g(n) = µ(g)(n) = gng- 1 = n9 , as required. D 

Note 2 Let G be an extension of an abelian group N by G. For each g E G we choose a lifting 

g E G, and for convenience we take I= 1. We identify G with G / N under the isomorphism g-+ Ng. 

Now {g: g E G} is a right transversal for N in G, so every element h E G has a unique expression 

of the form h = ng ( n E N, g E G), and we have the following relations. 

l. gn = n9g, where n E N and g E G. 

2. gh = f(g.h)gh for some f(g,h) EN, where g,h E G. 

1.2 The Conjugacy Classes of Group Extensions 

Let G = N.G, where N is abelian. Then for each conjugacy class [g] in G with representative g E G, 

we analyse the coset Ng, where g is a lifting of g in G and G = LJgeG Ng. To each class representative 

g E G with lifting g E G, we define 

Cg= { x E G: x(Ng) = (Ng)x }. 

Then Cg being the set stabilizer of Ng in G under the action by conjugation of G on Ng, is a sub­

group of G. The following lemmas and their proofs due to Whitley[19] and Moori and Mpono[16] 

will be required in the next section . 

Lemma 1.2.1 N <l Cg. 

Proof: For any n E N 
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the last step following from the fact that ( n- 1 )9 E N since N <l G. 

Hence N s;;; Cg. From N :::; Cg :::; G and N <l G , we obtain N <l Cg. □ 

Lemma 1.2.2 Cg/N = Ca;N(Ng). 

Proof: Consider Nk E G/N. Then 

Nk E Ca;N(Ng) ~ 

~ 

~ 

~ 

~ 

~ 

~ 

Thus we obtain that Cg/N = Ca;N(Ng). □ 

Nk(Ng)(Nk)- 1 = Ng 

NkNgNk- 1 = Ng 

NkNgk- 1 = Ng 

NkNngk- 1 = Ng VnEN 

Nkngk- 1 = Ng VnEN 

kngk- 1 E Ng VnEN 

k E Cg. 

From the two preceding lemmas, we have that Cg = N.C0 /N(Ng). For a lifting g E G of g E G, we 

can identify Ca;N(Ng) with Ca(g) and write Cg = N.Ca(g) in general. If G = N : G then we can 

identify Cg with Cg = { x E G : x( Ng) = (Ng )x} and in this case we obtain the following corollary. 

Corollary 1.2.3 Let G = N: G. Then Cg= N: Ca(g). 

Proof: We have already shown in the Lemma 1.2.1 that N <l Cg. Now we show that Ca(g) ~ Cg 

and that N n Ca(g) = {la}. Let x E Ca(g). Then we obtain (Ng)x = x(Ng)x- 1 = xNgx- 1 = 
Nxgx- 1 = Ng. Thus x E Cg and hence Ca(g) ~ Cg. Since N n Ca(g) ~ N n G = {la}, then 
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we have that N n C0 (g) ={1 0 }. This completes the proof. D 

The conjugacy classes of G will be determined by the action by conjugation of Cg, for each conjugacy 

class [g]a of G, on the elements of Ng or in the case of a split extension on the elements of Ng. Since 

Cg = N : C0 (g), we act first N and then act {h: h E C0 (g)} on the elements of Ng. The outline of 

this action is given in two steps by Moori and Mpono [16,page 5] as follows: 

STEP 1: The action of N on Ng: 

Let CN(g) be the stabilizer of gin N. Then for any n E N we have 

x E CN(ng) {::> x(ng)x- 1 = ng 

{::> -1 - -1 -xnx xgx = ng 

{::> n(xgx-1
) = ng, since N is abelian 

{::> xgx- 1 = g 

{::> X E CN(g). 

Thus CN(g) fixes every element of Ng. Now let ICN(g)I = k. Then under the action of N, Ng splits 

into k orbits Q1 , Q2, ... , Qk, where 

= k ' 
for i E {l, ... ,k}. 

STEP 2: The action of {h: h E Ca(g)} on Ng 
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Since the elements of Ng are now in the orbits Q1 , ... , Qk from step 1 above, we need only to act 

{h: h E Cc(g)} on the k orbits. Suppose that under this action !; of the orbits Q 1 , ... , Qk fuse 

together to form one orbit 61, then the J;s obtained this way must satisfy 

Lj ]j = k 

and we have 

I 6il = fJ x l~I 

Thus for x = dig E 61, we obtain that 

l[xla I 

and thus we obtain that 

IL.ii x l[g]cl 
INI !GI 

Ji x T x ICc(g)I 

. IGI 
]j x klCc(g)I 

IGI 
l[x]cl 

= IGI x klCc(g)I 
filGI 

klCc(g)I 
fj 

Thus to calculate the conjugacy classes of G = N.G, we need to find the values of k and the J-;s for 

each class representative g E G. We note that the values of k can be determined from the action of 

G on N(given in lemma 1.1.3). If G = N: G (a split extension) however, we analyse the coset Ng 

instead of N(g) since in the split case G :s; G. Under the action of Non Ng, we always assume that 

g E Q1• Since Cc(g) fixes g, Q1 does not fuse with any other Qi. Hence we will always have that 

/1 = 1. Hence 
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J 

m 

where the sum is taken over all m such that g ¢:. Qm, 

We now apply the method described in the Step 1 and Step 2 in the next section. 

1.3 The Conjugacy Classes of a Group of the Form 

23 : G L3(2) 

In this section we give the conjugacy classes of the group G = N : G where N is an elementary 

abelian group of order 8 and G ~ G £3 (2), as calculated by Whitley(19], where G acts naturally on 

N. 

We regard N as the vector space ½(2) of dimension three over a field of two elements. Let N be 

generated by { e1 , e2 , e3 } with e7 = 1 for 1 :S i :S 3, so 

To determine the conjugacy classes of G we analyse the cosets Ng where g is a representative of a 

class of G. (Note that the extension is split, so G = UgeG Ng). Now 

ICa(x)I = k.jcf~(g)I, 

where Ji of the k blocks of the coset Ng have fused to give a class of G containing x.We need the 

conjugacy classes of G, so we exhibit it here ( obtained from ATLAS (3]). 
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class (lA) (2A) (3A) (4A) (7 A) (7B) 

centralizer 168 8 3 4 7 7 

Table 1.3.l: The conjugacy table of G £3 (2). 

The representatives thus must come from the classes mentioned in the table above: 

• g =le: 

For g the identity of G, g fixes all elements of N, so k = 8. Since G is transitive on N - {1} 

under the action of Ca(g) = G , we have two orbits with J1 = 1 and J2 = 7, so this coset gives 

two classes of G: 

x = l, class(l), IC0 (x)I = 8 x 168 = 1344 

x = e1, class(2i), IC0 (x)I = sxi 68 = 192 

• g E (2A) : 

We take 
1 0 0 

g = 0 0 l 

0 1 0 

with ICc(g)I = 8. The action of g on N is represented by the cycle structure 
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Now we act 

1 1 1 1 1 1 

Ca(g) = \ 0 1 0 1 1 0 ) 
0 0 1 1 0 1 

on these orbits. 

For eg E Ng, h E Ca(g), ( eg)h = ehgh = ehg so we obtain the following orbits: 

{g, e2e3g} CG(g) = {g, e2e3g}, { e1g, e1 e2e3g f G(g) = { e1g, e1 e2e3g}, { e2g, e3g} CG(g) 

Therefore we get three classes of G: 

ft= 1, x = g, class(22), ICa(x)I = 4 x 8 = 32; 

.fo = 2, x = e2g, class( 4i), ICa(x )I = 4
;

8 = 16. 

• g E (3A) : 

We take 

0 1 0 

g = 0 0 1 

1 0 0 
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with ICa(g)I = 3. The action of g on N is represented by (l)(e1e2e3)(e1 e2 e3)(e1e2 e1e3 e2e3), 

so k = 2 which means we must have two blocks. These cannot fuse together under Ca(g), since 

gCa(9) = {g }. Therefore we have two classes of G, with fi = 1 and f2 = l: 

x = g, class(3i), IC0 (x)I = 2 x 3 = 6; 

x = e1g, class(6i), IC0 (x)I = 6. 

•gE(4A): 

vVe get two classes of G once more: 

• g E (7 A) : 

For the class (7 A), we have k = 1, so each coset has just one class in G. We thus get the class 

(71 ) of G, with centralizer of order 7. 

• g E (7 B) : 

This case works the same as for the previous class and we obtain class (7 2 ) of G, with centralizer 

of order 7. 
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class of G ( lA) (2A) (3A) (4A) (7 A) (7B) 

class of G (l) (2i) (22) (23) ( 4i) (31) (6i) (42) (43) (7i) ( 7 2) 

centralizer 1344 192 32 32 16 6 6 8 8 7 7 

Table 1.3.2: The conjugacy table of 23 : G £3(2). 
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Chapter 2 

REPRESENTATIONS AND 

CHARACTERS 

Two ways of approaching representation and character theory are through the use of modules on the 

one hand ( for instance, the approach used by James and Liebeck [10] ), and through the classical 

approach used by Feit[5] for example, on the other hand. Our discussion is along the classical ap­

proach and for this purpose we follow the class notes of Moori[15]. 

We give some basic results on the representations and characters of finite groups in this chapter 

as well as some examples of how these results are used to determine the character tables of some 

finite groups. In the first section, theorems and lemmas will almost always be stated without proofs. 

Section 2.2 deals with the relationship between characters of groups and the characters of their 

subgroups, while in section 2.3 we shall look at the role of normal subgroups in the calculatio11 of 

characters of a group. In the last two sections mentioned, only the proofs of the main results ( that 

is those results dealing more directly with the techniques of finding the characters of a group) are 

given. These proofs are mainly taken from Moori's notes [15]. In the last three sections we calculate 

the character tables of three group extensions, which are all split extensions. 
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2 .1 Basic Concepts 

Definition 2.1.1 Let G be a group. Let f: G ➔ GLn(F) be a homomorphism. Then we say that f 

is a matrix representation of G of degree n ( or dimension n), over the field F. 

If [{ er(!) = {la}, then we say that f is a faithful representation of G. In this situation G ~ 

Image(!), so that G is isomorphic to a subgroup of G Ln( F). 

Definition 2.1.2 Let f : G ➔ GLn(F) be a representation of G over the field F. The function 

x: G ➔ F defined by x(g) = trace(f(g)) is called the character off. 

Definition 2.1.3 If cf> : G ➔ F is a function from a group G to a field F which is constant on 

conjugacy classes of G, that is c/>(g) = </>(xgx- 1 ), Vx E G, then 4> is a class function. 

Lemma 2.1.4 A character is a class function. 

Proof: See [15, Lemma i.4] 

Definition 2.1.5 Two representations p, cf> : G ➔ G Ln ( F) are said to be equivalent if there exists 

an n x n matrix P over F such that 

p- 1p(g)P = c/>(g), 'rig E G. 

Theorem 2.1.6 Equivalent representations have the same character. 
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Proof: See [15,Theorem i.5] 

Before defining the concepts of reducibility and irreducibility of representations and characters, we 

need to say what is meant by a reducible and an irreducible set of matrices. If 5 is a set of matrices, 

then 5 is reducible if :l m, k E N, and :l PE GLn(F) such that VA E 5 we have 

p-
1
AP ~ u ; ) 

where B is an m x m matrix, D is a k x k matrix, C is a k x m matrix and O is the zero matrix. If 

no such P exists, we say that 5 is irreducible. Furthermore if C = 0 VA E 5, we say that 5 is fully 

reducible and if :l P E G Ln ( F) such that 

0 

0 

0 

where each Bi is irreducible, we say 5 is completely reducible. 

VA E 5, 

Definition 2.1.7 Let f: G ➔ GLn(F) be a representation of Gover F and let 5 = {f(g): g E G}. 

We say that f is reducible, fully reducible, or completely reducible if 5 is reducible, fully redur:ible, 

or completely reducible, respectively. 

Definition 2.1.8 If XP is a character afforded by a representation p of G, then we say that XP is an 

irreducible character of G if p is an irreducible representation. 
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Definition 2.1.9 Let p: G ➔ GLn(F) and cp: G ➔ GLm(F) be two representations of G over F. 

Define p + <P: G ➔ GLn+m(F) by 

(p + c/J)(g) = ( p(g)nxn 

Omxn 

Onxm ) = p(g) ffi c/J(g), 
c/J(g)mxm 

Vg E G. 

Then p + c/J is a representation of G over F, of degree n + m. 

If X1 and X2 are the characters of p and ¢ respectively and x is the character of p + ¢, then for all 

g E G we have x(g) = X1(g) + X2(g). 

Theorem 2.1.10 (Maschke 's theorem} Let G be a finite group. Let f be a representation of G over 

a field F whose characteristic is either equal to zero or is a prime that does not divide IGI. If f is 

reducible, then f is fully reducible. 

Proof: See [15,Theorem i.6] 

Theorem 2.1.11 ( The general form of Maschke's theorem) 

Let G be a finite group and F be a field whose characteristic is either equal to zero or is a prime that 

does not divide IGI. Then every representation of G over F is completely reducible. 

Proof: See [5,(1.1)] 

Theorem 2.1.12 (Schur's lemma) Let p: G ➔ GLn(F) and cjJ: G ➔ GLm(F) be two representa­

tions of a group G over a field F. Assume there exists an m x n matrix P such that Pp(g) = c/J(g)P 

for all g E G. Then either P = Omxn or P is non-singular so that p(g) = p-1cp(g)P (that is, p and 

cjJ are equivalent representations). 
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Proof: See [5,(1.2)] 

Definition 2. 1. 13 Let G be a finite group and assume that the characteristic of tht· field F does 

not divide IGI. If p and ef> are two functions from G into F, we define an innerproduct (,) by the 

following rule: 

where 
1
b

1 
stands for IGl-1 in F. 

Theorem 2.1.14 The innerproduct (,) is bilinear: 

(i) (p1 + P2, ef>) = (p1, ¢) + (p2, ef>) 

(ii) (p,d>1 + ¢2) = (p,¢1) + (p,¢2) 

(iii) ( ap, ef> ) = a(p, ef>) = (p, aef>), Va E F 

and symmetric: 

(p, ef>) = (ef>, p) 

18 

http://uwc.etd.ac.za



Proof: 

(i) 

(ii) Similar to (i). 

(iii) 

and 

- -
1 L (P1 + P2) (g )<i>(g-l) 

IGI gEG 

- l~I L (P1(g) + P2(g))<i>(g-
1
) 

gEG 

- l~I L (P1(g)q,(g- 1) +p1(g)<f>(g-1)),F being an additive abelian group 
gEG 

1 ""' 1 - WI L-Pl (g)<f>(g-1) + WI L P2(g)<i>(g-1 ), 
gEG gEG 

= (p1,<i>)+(p2,<i>) 

(ap,q,) = l~I L (ap)(g)</>(g-1) 
gEG 

= l~I I:a(p(g))<t>(g-1) 
gEG 

1 ""' ( -1 - aWI L-p(g)<t> g ) 
gEG 

= a(p, <i>) 

(ap, <i>) - l~I L (ap) (g)<f>(g-1) 
gEG 

1 ""' -1 - Tcf L- ap(g )<f>(g ) 
gEG 
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1 ~ -1 - JGf L p(g)a</J(g ), F 
gEG 

being a multiplicative abelian group 

l~I LP(g)(a</J)(g-1) 
gEG 

(p, acp) 

To complete the proof, see [15,Theorem i.11]. □ 

Note 1 If p: G-+ GLn(C) is a representation of a group G, then we denote the (i,j) entry of p(g) 

by Pij (g). Hence Pij (g) is a map from G into C. 

For the rest of this chapter we shall mean finite groups when mentioning groups, unless explicit 

exceptions are made and all representations will be over the field C of complex numbers. 

Theorem 2.1.15 Let G be a finite group and let p and cp be two irreducible representations of G. 

(i) If p and cp are inequivalent, then 

(
") ( ,I. ) s ... s]r 
iz Prs,'-Pij = deg(p)' 

Proof: See [15, Theorem ii.l ] 

Theorem 2.1.16 Let G be a finite group and let p and cp be two irreducible representations of G, 

with characters XP and X<I>· 
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(i) ff p and </> are equivalent, then 

(ii) ff p and </> are not equivalent, then 

Proof: See [15,Theorem ii.2] 

Theorem 2.1.17 Two representations of a group G are equivalent if and only if they have the same 

characters. 

Proof: See [15,Corollary ii.4] 

Lemma 2.1.18 (i) ff 

k 

x= L AiXi 
i = 1 

where Xi are distinct irreducible characters of a group G and Ai are nonnegative integers, then 

k 

(x,x) = I:.\;. 
i = 1 

(ii) ff X is a character of G, then x is irreducible if and only if (x, x) = 1. 
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Proof: 

(i) 

k k 

(x,x) ( I: ,\xi, I: >. i Xi ) 
i = 1 i = 1 

k k 

I:>-i I: >.i(Xi , Xi ) 
i = 1 j = 1 

k 

L >.7 (Xi , Xi ) 

(ii)By theorem 2.1.7, we have that if x is irreducible, then (x, x) = 1. 

For the converse, assume that (x , x ) = 1. Let 

k 

X = L A;Xi 
i = 1 

where Xi are distinct irreducible characters of G and >.; are nonnegative integers, then by (i ), we have 

k 

L >.; = (x , x ) = 1 
i = 1 

⇒ >.; = 1, for some j = 1,2, ... ,k 

and >.; =0 Vi=Jj. 

Hence Aj = 1. Thus x = Xj is irreducible. □ 

Note 2 If C; is a conjugacy class of G, then 
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is also a conjugacy class of G and Ci = Ci, if and only if g ~ g- 1 for all g E Ci. 

Theorem 2.1.19 Let Irr(G) = {x1,X2, ···,Xk}- Then 

Proof: See [15, Theorem ii.17] 

Theorem 2.1.20 The number of irreducible characters of a group G equals the number of conjugacy 

classes of G. 

Proof: See [15, Theorem ii.18] 

Proposition 2.1.21 Let G = ( x ) be a cyclic group of order n. Let 

unity in <C, k = 0, l, 2, ... , n - l. Define Pk : G-+ <C* by 

( m) [ 2
k"·i ]m Pk X = e n • 

2k-rri 
e n be the n-th roots of 

Fork= 0, 1, 2, ... , n - 1, Pk defines then distinct irreducible representations of G. 

Proof: We first show that Pk is well defined: 
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Let xm = xm', where m = sn + t, m' = s'n + t', s, s' E Zand t, t' = 0, 1, 2, ... , n - 1. 

From which we get xt = xt' =} t = t'. 

• • 2k,r · 2k,r · 1 

If for contrad1ct1on, [e-;;- ' lm =/- [e-;;- ' r , then we have 

[ e 2~,,. i ]m-m' =I- 1 =} [e 2~,,. i l(s-s')n + (t-t') 

=} [e 2~,,. i ](s-s')n =I- 1 

=} Pk(X(s-s')n) =/- 1 

=} Pk( x
0

) =/- 1 

=} [e2~,,. i ]o =I-

giving us the contradiction. Hence Pk is well defined. 

Next we show that Pk is a homomorphism: 

= Pk(xt+t') 

= Pk(xt.xt') 

= Pk(xm.xm') 

So Pk is a homomorphism and hence a representation. 

Pk 1s umque: 
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Let Pk = Pk' with k, k' :S: n. Now 'rig E (x), g = xr where r = 0, 1, 2, ... , n - l. So we have 

( 
2k1r.1· · 2k 11r.,· ·) 

⇒ e -n-, - -n-, = 1 

::} e 2:,r (k-k')i = 1 

=> P(k-k')(xr) = 1, V r = 0, 1, 2, ... , n - 1. 

⇒ k - k' = 0, so that k = k'. 

Lastly we must show that Pk is irreducible: 

We use lemma 2.1.2. 

(pk, Pk) 
1 L Pk(g)pk(9- 1

) 
l(x)I 

gE(x) 

1 
I: Pk(gg-l) = n 
gE(x) 

1 I: Pk(l(x)) 
n 

gE(x) 

1 I: lie• 
n 

gE(x) 

1 
-n 
n 

1. 

Hence Pk is irreducible. 

This completes the proof of the proposition. D 

Definition 2.1.22 Let P = (Pi1)mxm and Q = (%)nxn be two matrices. Then the mn x mn matrix 

P ® Q is defined by 
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P11Q P12Q 

P21 Q P22Q 

From this definition, we can show that 

(P ® Q)(P'@ Q') =(PP')® (QQ') (*): 

m 

( p ® Q ) ( P' ® Q' ) ( L PilQP;;Q' )mn X mn 

k = 1 
m 

( L PilP;iQQ' )mn X mn 

k = 1 

(PP') ® (QQ'). 

Definition 2.1.23 Let T and U be representations of a group G, then the tensor product T@U 

is defined by: 

(T ® U)(g) : T(g) ® U(g) 

Theorem 2.1.24 Let T and U be representations of a group G, then 

(i) T ® U is a representation of G. 

(ii) if X(T 0 U) is the character afforded by T Q9 U then 

X(T 0 U) = XTXU 
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Proof: See [15,Theorem iii.I] 

Definition 2.1.25 Let G = H x [{ be the direct product of two groups H and [{ and let T: H--+ 

GLm(C) and U: K--+ GLn(C) be representations of Hand [{ respectively. Since for every element 

g in G, g = hk uniquely, for some h E H and some k E [{, the direct product 

T x U can be defined by 

(T x U)(g) : = T(h) ® U(k) 

From the uniqueness of g = hk and because of the property of representations T and U of being 

well defined, it can be shown that T x U is well defined. Also for g = hk and g' = h'k' with 

h, h' E H and k, k' E K, we have 

(T X U)(g)(T X U)(g') (T(h) 0 U(k))(T(h') 0 U(k')) 

T(h)T(h') 0 U(k)U(k'), by (*) 

T(hh') ® U(kk') 

- (T X U)(gg'), 

which means T x U is a homomorphism and therefore a representation. 

From definition 2.1.22, we can deduce that for two matrices P and Q, that 

Trace(P 0 Q) = Trace(P).Trace(Q). 

So we show the following 
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X( T X u )(g) Trace( ( T x U )(g) ) 

Trace( T(h) @ U(k)) 

Trace(T(h) ).Trace( U(k)) 

and the next theorem tells us that all the characters of a direct product are constructed in this way. 

Theorem 2.1.26 Let G = H x /\. be the direct product of two groups H and K. Then tht diru:t 

product of any irreducible character of H and any irreducible character of K is an irreduciblt char­

acter of G. Moreover, every irreducible character of G can be constructed 

in this way. 

Proof: See (15,Theorem iii.2] 

Definition 2.1.27 Let x be a character of a group G. For n E (NU {O} ), we de.fine Xn by 

If G is a group and H is a subgroup of G, then we can use the irreducible characters of G to find 

at least some of the characters of H and vice versa. We deal with the methods of doing this in the 

following section and use the notes of Moori(15] again. 

2.2 Restriction and Induction of Characters 

Definition 2.2.1 Let G be a group and H be a subgroup of G. If p: G--+ GLn(C) is a represen­

tation of G, then (p-!. H) : H --+ G Ln(C) given by 
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p(h), VhEH, 

is a representation of H. We say that p-!- H is the restriction of p to H. If XP is the character of p, 

then XP -!- H is the character of p -!- H. We refer to XP -!- H as the restriction of XP to H. 

Theorem 2.2.2 Let G be a group and H :S: G. If ip is a character of H, then there is 

an irreducible character X of G such 

Proof: See [15,Theorem iv.1.1 ]. 

Theorem 2.2.3 Let G be a group and H :S: G. If 

x E Irr( G) and Irr( H) = { 7Pt, 1P2, ... , 7Pr}, 

then 

r 

x-!-H L OilPi, where Oi E (NU {O}) and 
i=l 

r 

L of < [ a : HJ ( * *) 
i=l 

Moreover, we have equality in(**) if and only if x(g) = 0, Vg E (G \ H). 

Proof: Since x-!- H is a character of H, :loi E (NU {O}) such that 

x-!-H 
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Now 

and 

Hence we get 

From 

we obtain that 

r r 

(x-!- H, X-!- H)H = ( L Oi'Wi, L Oi1Pi) . . H 
i=l i=l 

r 

= I:o; (7Pi,7Pi)H 
i=l 

r 

= I:o; 
i=l 

(X-!- H, X-!- H)H = l L -THI x(h).x(h). 
hEH 

1""'"" --

1 

I L x(h).x(h) so that 
i=l 

r 

H hEH 

IHILo; - I:x(h).x(h) (***) 
i=l hEH 

1 - (x, x)a 

1 ""'"" -- IGI L x(g).x(g) 
gEG 

1 ""'"" - 1 ~ -- IGI L x(g).x(g) + IGI L x(g).x(g) 
gEH gE(G\H) 

IHI ~ 2 1 ""'"" -- !GIL o; + IGI L x(g).x(g) by(***) 
i=l gE(G\H) 

I HI ~ 2 1 ""'"" 12 - !GIL 0; + IGI L lx(g) 
i=l gE(G\H) 

11~11 to; = 1 - l~I L lx(g)l2 :::; i 
•=l gE(G\H) 
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and therefore 

r IGI THI= [G: H] 

Also 

1 
IGI L lx(g)l2 

gE(G\H) 

0 if and only if 

lx(g)l2 0 VgE(G\H). 

Hence 

1 
IGI L lx(g)l2 

gE(G\H) 

0 if and only if 

x(g) 0 V g E (G \ H) 

and we have the equality in ( ** ). D 

We have seen how the irreducible characters G can be used to find characters of a subgroup H and 

can now look at a technique of finding the characters of G from the irreducible characters of any 

subgroup. We start with the following definition. 

Definition 2.2.4 Let H be a subgroup of G. The right transversal of H in G is a set of representa­

tives for the right cosets of H in G. 

The following theorem tells us how a representation of H can be extended to a representation of G. 

Theorem 2.2.5 Let H be a subgroup of G and T be a representation of H of degree n. 

Extend T to Q by T 0 (g) = T(g) if g E H and T 0 (g) = Onxn if g ~ H . Let { X1, X2, ... , Xr} 

be a right transversal of H in G. Define T t G by 
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(T t G)(g) 

T 0 (x1gx1 1) T0 (x19X2 1) 

T 0(x2gx 1
1) T 0(x2gx21) 

Then T t G is a representation of G of degree nr. 

Proof: See [15, theorem iv.2.1]. 

T 0(x1gx; 1) 

T 0(x2gx; 1) 

Definition 2.2.6 The representation T t G defined in the previous theorem said to be induced from 

the representation T of H. Let¢, be the character afforded by T. Then the character afforded by T t G 

is called the induced character from ¢, and is denoted by ¢,G. If we extend ¢, to G by ¢,0 (g) = ¢,(g) if 

g E H and ¢,0 (g) = 0 if g rt H, then 

r 

L Trace ((T0
( xigx-;1)) 

i=l 
r 

L ¢,o(xigx-;t) 
i=l 
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In order to construct a formula to find the induced character, the next two propositions are needed. 

Proposition 2.2. 7 If H ~ G and ¢> is a character of H, then ¢0 is independent of the choice of 

transversal. 

Proof: See [15, Proposition iv. 2.2 ]. 

Proposition 2.2.8 The values of the induced character are given by 

1 ~ 0 -1 IHI~¢ (xgx ), 
xEG 

g E G 

Proof: See [15, Proposition iv.2.3 ]. 

The following proposition provides us with a formula to calculate the induced character and the 

proof is provided by Moori [15, Proposition iv.2.4 ]. 

Proposition 2.2.9 Let H :::; G, ¢> be a character of H and g E G. Let [g] denote the conyugacy 

class containing g. 

(i) If H n [g] = 0, then ¢0 (g) O, 

(ii) If H n [g] -:/= 0, then 

where x1 , x 2 , ..• , Xm are representatives of classes of H that fuse to [g]. (That is H n [g] breaks 

up into m conjugacy classes of H with representations x1 , x 2 , ••. , Xm.) 
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Proof: By Proposition 2.2.8, we have 

G 1 ~ o -1 cp (g) THI~ cp (xgx ). 
xEG 

If H n [g] 0, then xgx- 1 rt H for all x E G, so cp0(xgx- 1 ) 0. 

If H n [g] =f 0, then as x runs over G, xgx- 1 covers [g] exactly ICa(g)I times, so 

1 
IHI x ICa(g)I L <Po(y) 

yE(g] 

1 
IHI x ICa(g)I L </>(y) 

yE((g]nH) 

ICa(g)I ~ IHI x 2i[H: CH(xi)].cp(xi) 

~ </>(xi) 
ICa(g)l 2 ICH(xi)I □ 

The restriction and induction of characters are related and can be expressed by means of a matrix 

which we call the Frobenius Reciprocity table. To obtain this relationship, we shall take the route 

through class functions. We shall use the proof given by Maori [15] for the main result( the Frobenius 

Reciprocity theorem ) in establishing the relationship. 

Definition 2.2.10 Let H be a subgroup of G and <p be a class function on H then the induced class 

function <PG on G is defined by 

G( ) 1 ~ o( -1) cp g = THI ~ cp xgx , 
xEG 

g E G 
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where 4>0 coincides with </> on H and is zero otherwise. Notice that 

Thus </>G is also a class function on G. 

Note 3 If H ~ G and</> is a class function on G, then</> t His a class function on H. 

Theorem 2.2.11 {Frobenius Reciprocity) 

Let H :S G, </> be a class function on H and 1/J a class fuction on G. Then 

Proof: 

= 

l"'G -TaT ~ <P (g).1/J(g) 
gEG 

l~I L ( l~I L <Po(xgx-1)) .1/J(g) 
gEG xEG 

IGl~IHI L L<f>o(xgx-1).1/J(g) (* * **) 
gEG xEG 
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Let y = xgx-1. Then as g runs over G, xgx-1 runs through G. Also since 1/) is a class function on 

G, 1/J(y) = 1/J(xgx-1) = 1/)(g). Thus by(****) we have 

( <JP, 1/J)c 1c/1HI L L <Po(y).1/J(y) 
yEG xEG 

IGl~IHI L ( L <Po(y).1/J(y)) 
xEG yEG 

= 1c/1HI IGI L <Po(y).1/i(y) 
yEG 

= 1""' -THI Lt <t>( y) .1/J ( y) 
yEH 

( </> , 1P-!, H)H □ 

Corollary 2.2.12 Let H ::;; G. Assume that Irr( G) 

Suppose that 

{x1, X2, ... , Xr} and Irr( H) 

Proof: See [15,Corollary iv.3.2 ]. 

s 

Xj -!- H = L bij1Pi and 
i=l 

r 

.1.,G ""' th ip Lt aiiXi, en 
j=l 

aij bii, Vi,j. 

Remark 1 (Frobenius Reciprocity table) 

Let H::;; G. Assume that lrr(G) = {x 1,x2 , ..• ,xr}and lrr(H) 
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previous corollary we have 

s 

Xi+ H LaijlPi and 
i=l 

r 

ljJf - L ai1X1, then 
j=l 

the matrix A (aij)sr is called the Frobenius Reciprocity table for G and H. 

2.3 Normal Subgroups 

In this section we shall look mainly at how the irreducible characters of a quotient group of a group 

G can be used to find some of the characters of G itself . 

In order to justify a definition for the concept ker(x) , where xis a character of G , we state lemma 

2.3.1 and lemma 2.3.2 and prove the lemma 2.3.2 using the thesis of Whitley [19]. 

Lemma 2.3.1 Let x be a character of a group G afforded by the representation T. Then for g E G, 

T(g) is similar to a diagonal matrix diag(e 1, e2 , ••• , en) where each ei is a complex root of unity. Then 

x(g) = e1 + e2 + ... + en and x(g- 1
) = x(g), where x denotes the complex conjugate of x. 

Proof: See [19,Lemma 2.2.l]. 

Lemma 2.3.2 Let x be a character of a group G afforded by the representation T. Then g E ker(T) 

if and only if x(g) = x(l). 
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Proof: 

Let n = x(l), so n is the degree of T. If g E ker(T) then T(g) = In = T(l), where In is the 

n x n identity matrix, so x(g) = n = x(l). Conversely, assume x(g) = x(l) = n. By lemma 2.3.1, 

x(g) = e1 + ez + ... +en , where each ei is a complex root of unity. Therefore, e1 + e2 + ... +en= n. 

But led = 1 for all i, so we must have ei = 1 'i/i. Hence T(g) is similar to diag( e1, e2 , ... , en) = In, 

so g E ker(T). □ 

Definition 2.3.3 Let x be a character of a group G. We define 

ker(x) = {g E G: x(g) = x(l)}. 

We note from lemma 2.3.2 ker(x) is a normal subgroup of G. The next two theorems taken from 

the Moori-notes(l5, pages 78 and 79] will tell us how the normal subgroups of G can be determined 

from its character table and how we can tell whether G is simple or not. 

Theorem 2.3.4 Let N be a normal subgroup ofG. Then there exists irreducible characters Xt, Xz, ... , Xs 

of G such that 

s 

N n ker(xi)-
i=t 

Proof: See (15, Theorem v.3]. 

Theorem 2.3.5 A group G is simple if and only if x(g) -/= x(l) for all nontrivial 

irreducible characters of G and for all non-identity elements g of G. 
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Proof: See [15, Theorem v.4]. 

The following results form the basis for another tool in finding the characters of a group. 

Theorem 2.3.6 Let N be a normal subgroup of G. 

( a} Let X be a character of G / N and x : G --+ <C be defined by 

x(g) x(9N) for 9 E G, 

Then X is a character of G and x has the same degree as x. 

(b) Let X be a character of G, N ::; ker(x) and x : G / N --+ <C be defined by 

x(9N) x(9) for 9 E G, 

Then x is a character of G / N. 

( c} In both of the statements above, x is an irreducible character of G / N if and only if X is an 

irreducible character of G. 

Proof: 

(a) Let f' be the representation of degree n that affords x and define T G --+ G Ln ( <C) by 

T(9) = T(9N). Then for 91,92 E G, 

91 = 92 :::::::} 91N = 92N 

:::::::} 'I'(91 N) = T(92N) 

===} T (91) = T (92). 

39 

http://uwc.etd.ac.za



So T is well-defined. Also 

T(g1g2) - T(g1g2N) 

= T(g1Ng2N) 

- T(g1N)T(92N) 

= T(9i)T(92) 

Hence T is a homomorphism and therefore a representation. 

Now Trace(T(9)) - Trace(T(9N)) = x(9N) = x(9) for all 9 E G, so T affords X· Moreover 

Im = T(l) = T(N) = fn 

and so the degree of x is the same as that of x. 

(b) Let T be the representation that affords x and define T: G/N-+ GLn(C) by T(9N) = T(9). 

Then for 91, 92 E G, 

thus T is well-defined and 

==} T(g~ 192) = /,the 

==} T(911 )T(92) = I 

==} T(91) = T(92) 

==} 1'(91 N) = 1'(92 N) 

T(91N 92N) - T(9192N) 

- T(9192) 

identity matrix 

= T(91)T(92) 

= T(g1N)T(92N) 
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Hence T a representation. 

Trace(T(gN)) = Trace(T(g)) = x(g) = x(gN) for all g E G, so T affords X· 

(c) For this part, we use the proof by Whitley [19]: 

(x, x)a = 1a1-1 L lx(g)l 2 

gEG 

gEG 

gNEG/N 

1a;N1-1 L lx(gN)l 2 

gNEG/N 

(X, X)a/N· 

By lemma 2.1.2, 

xElrr(G) (x,x)a = 1 

~ (X, X)a/N = 1 

~ x E lrr(G/N) □ 

We end this section with a definition from James and Liebeck [10, Definition 17.2]. 

Definition 2.3. 7 Let N be a normal subgroup of G and let X be a character of G / N, then the char­

acter x which is given by 

x(g) = x(gN) for g E G 

is called the lift of x to G. The process of obtaining characters of a group from the characters of any 

of its quotient groups using theorem 2.3.5 is called the lifting process. 
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In each of the remaining sections we shall try to illustrate in a group extension how some of the 

concepts discussed in this chapter are used to calculate the character table of the specific group in 

discussion. 

2.4 The Character Table of a Group of the form 23 : 7 

Let G be a split extension of N, an elementary abelian two-group of order 8, by G, a cyclic subgroup 

of G L( 3, 2) of order 7. As with the example in chapter 1 ( section 1.3), we use the method described 

in section 1.2 of chapter 1 to calculate the conjugacy classes of G. 

G can be generated by the following element of order 7 in G £3 (2) 

x= 

1 1 0 

1 0 1 

1 1 1 

and N ~ ½(2), the vector space of dimension three over a field of two elements. G, being cyclic, 

has 7 conjugacy classes of which each class consists of a power of x. In this example, we thus work 

with seven cosets, namely N x1 where j = 0, 1, 2, ... , 6. For each j we must consider the action of 

Action of N and Ca(la) on Nla: 

la fixes all elements N so that CN(la) = N. Thus k = 8. That is we have eight orbits, Qs with 

s = 1,2, ... ,8,eachconsistingofoneelement. NowCa(la) = G soweonlyneedtolookattheaction 

x on N. This action is represented by the cycle structure ( e1 e1e2e3 e3 e2e3 e1e2 e2 e1e3 ). 

So 

{l} - Qi and l:::.2 
s=2 
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Hence J = 1 and f = 7. We obtain the following: 

Action of N and Ca(x) on Nx: 

8 X 7 Ji =56; 

8 X 7 = 8; 
Ji 

CN(x) = {la}. Sok= 1 and therefore J = 1. Also Ca(x) = G so we have ICa(x)I = 7. In fact 

!Ca(xj)I = 7 for all j = 1, 2, ... , 6 because the action of xj is represented by a 7 - cycle and hence 

xj (j =f. 0) fixes only lN. We thus have CN(xi) = {1}, j =f. 0 and so k = 1 and again f = 1 . With 

Ca(xi) = G, j =f. 0 we have ICa(x)I = 7, Vi= 1,2, ... ,6. vVith that, the conjugacy table of G 

is completed: 

class (1) (et) (x) (x2) (x3) ( x4) ( x5) (x6) 

no. of elements 1 7 8 8 8 8 8 8 

order 1 2 7 7 7 7 7 7 

centralizer 56 8 7 7 7 7 7 7 

Table 2.4.l: The conjugacy table of 23 
: 7. 

To calculate the character table of G we use the method of inducing characters of subgroups of G 

( discussed in section 2.2). In this case we shall use the irreducible characters of N and G. 

The character table of N is easily calculated from the character table of Z 2 = (a : a2 = 1) by 

using the product of these characters (theorem 2.1.13). We give the character tables of Z 2 and N. 

class (1) (a) 

centralizer 2 2 

1P1 1 1 

1P2 1 -1 

Table 2.4.2: The character table of Z 2. 

43 

http://uwc.etd.ac.za



class (1) (et) (e2) (e3) (e1e2) (e1e3) (e2e3) (e1e2e3) 

order 1 2 2 2 2 2 2 2 

centralizer 8 8 8 8 8 8 8 8 

Tt 1 1 1 1 1 1 1 1 

T2 1 1 -1 1 -1 1 -1 -1 

T3 1 -1 1 1 -1 -1 1 -1 

T4 1 -1 -1 1 1 -1 -1 1 

T5 1 1 1 -1 1 -1 -1 -1 

TB 1 1 -1 -1 -1 -1 1 1 

T7 1 -1 1 -1 -1 1 -1 1 

TB 1 -1 -1 -1 1 1 1 -1 

Table 2.4.3: The character table of the group 23
. 

'vVe have seen in proposition 2.1.11 that if H = (x : xn = 1), then Pk : H ---+ C* defined by 

( m) [ 2k"']m Pk X = e n 

defines n irreducible representations of H. So the character table of G = (x : x7 = 1) is completely 

determined by its representatives of this type. The character table of G is as follows: 
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and we obtain the following characters of G : 

class (1) (er) (x) (x2) 

no. of elements 1 7 8 8 

order 1 2 7 7 

centralizer 56 8 7 7 

,a 
1 7 7 0 0 

,a 2 7 -1 0 0 

Table 2.4.5 

If p E lrr(G), then 

0 

7(p(xi)) = p(xi), 
7 

The characters of G induced from G are : 

46 

( x3) (x4) ( x5) (x6) 

8 8 8 8 

7 7 7 7 

7 7 7 7 

0 0 0 0 

0 0 0 0 

for each i = 1, 2, ... , 6. 
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class (1) 

no. of elements 1 

order 1 

centralizer 56 

pf 8 

pf 8 

pf 8 

p"f 8 

pf 8 

pf 8 

pf 8 

where for each k 1,2, ... ,6, bk 

(ei) (x) (x2) 

7 8 8 

2 7 7 

8 7 7 

0 1 1 

0 b1 b2 

0 b2 b4 

0 b3 b6 

0 b4 b1 

0 b5 b3 

0 b6 b5 

Table 2.4.6. 

2k1ri e-1-. 

( x3) ( x4) ( x5) (x6) 

8 8 8 8 

7 7 7 7 

7 7 7 7 

1 1 1 1 

b3 b4 b5 b6 

b6 b1 b3 b5 

b2 b5 b1 b4 

b5 b2 b6 b3 

b1 b6 b4 b2 

b4 b3 b2 b1 

Besides the trivial character Xo, we have another irreducible character of G in rf, because 

For each i 1, 2, ... , 6, 

= 2. 

Hence none of these characters are irreducible, but for each i, 

1. 

This means that for each i 1, 2, ... , 6, /! is the sum of two irreducible characters of G of 

which one is rf. Hence for each i, py - rf is an irreducible character of G. With this, we now 

have all the irreducible characters of G. 

47 

http://uwc.etd.ac.za



class (1) ( et) (x) ( x2) (x3) (x4) (x5) (x6) 

no. of elements 1 7 8 8 8 8 8 8 

order 1 2 7 7 7 7 7 7 

centralizer 56 8 7 7 7 7 7 7 

Xt 1 1 1 1 1 1 1 1 

X2 - /5-TG 1 1 b1 b2 b3 b4 b5 b6 - 1 2 

X3 - pc-re 1 1 b2 b4 b6 b1 b3 b5 - 2 2 

X4 - pc-re 1 1 b3 b6 b2 b5 b1 b4 - 3 2 

X5 - Pc -re 1 1 b4 b1 b5 b2 b6 b3 - 4 2 

X6 - pG-TG 1 1 b5 b3 b1 b6 b4 b2 - 5 2 

X1 - pc-re 1 1 b6 b5 b4 b3 b2 b1 - 6 2 

Xs - re 7 -1 0 0 0 0 0 0 - 2 

Table2.4.7: The character table of 23 
: 7. 

where for each k b 
2k,,., 

1,2, ... ,6, k = e , . 
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2.5 The Character Table of a Group of the form 23 : G L3(2) 

Once we knew what the irreducible characters of N and Gin the example in section 2.4 was, we solely 

applied the method of induction to calculate the character table of G. To calculate the character 

table of G = 23 : G £3 (2) where G £3(2) acts naturally on 23, we shall in addition to the method of 

induction, also use the methods of restriction ( discussed in section 2.2) and of lifting of characters 

(discussed in section 2.3). The character table of this group has also been calculated by Whitley [19] 

but through the use of Fisher matrices. 

The conjugacy classes of G has been discussed in chapter 1 (section 1.3), so we start immediately 

with the business of finding the irreducible characters of G. As in section 1.3 we let N be the group 

23 and G be the group GL3(2). Now G ~ G/N, which implies that some of the irreducible 

characters of G can be found by lifting the irreducible characters of G to G. The character table of G 

is obtained from ATLAS[3], so our first six irreducible characters of Gare the lifts Xi, i = 1, 2, ... , 6 

of Xi E Irr( G): 

class (lA) (2A) (3A) (4A) (7 A) (7 B) 

centralizer 168 8 3 4 7 7 

XI 1 1 1 1 1 1 

X2 3 -1 0 1 a a 

X3 3 -1 0 1 a a 

X4 6 2 0 0 -1 -1 

X5 7 -1 1 -1 0 0 
A 

8 0 -1 0 1 1 X6 

Table 2.5.1:The character table of G = G £3(2) 

where a - ½(-1 + v'7i) 
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class (1) (2i) (22) (23) ( 41) (31) (6i) (42) (43) (7i) (72) 

no. of elements 1 7 42 42 84 224 224 168 168 192 192 

centralizer 1344 192 32 32 16 6 6 8 8 7 7 

X1 1 1 1 1 1 1 1 1 1 1 1 

X2 3 3 -1 -1 -1 0 0 1 1 a a 

X3 3 3 -1 -1 -1 0 0 1 1 a a 

X4 6 6 2 2 2 0 0 0 0 -1 -1 

xs 7 7 -1 -1 -1 1 1 -1 -1 0 0 

XB 8 8 0 0 0 -1 -1 0 0 1 1 

Table 2.5.2. 

where a = ½(-1 + y'7i). 

The induction of the characters of G to G will put us in a position to find more irreducible characters 

of G: 

If \ E Irr( G), then by using the formula for induced characters, we find that 

(x)°(l) = 8,x(l) 

(x)°(g) - 4x(g) for g E (22); 

(xf(g) = 2x(g) for g E (31) u (42); 

(x)°(g) = x(g) for g E (7 i) u (22); 

and (x)°(g) = 0 for g ~ G. 
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class (1) (21) (22) (23) ( 41) (31) (6i) (42) ( 43) (7 i) (72) 

no. of elements 1 7 42 42 84 224 224 168 168 192 192 

centralizer 1344 192 32 32 16 6 6 8 8 7 7 

(x1l1 8 0 4 0 0 2 0 2 0 1 1 

(x2f 24 0 -4 0 0 0 0 2 0 a a 

(x4f 48 0 8 0 0 0 0 0 0 -1 -1 

(x5f 56 0 -4 0 0 2 0 -2 0 0 0 

Table 2.5.3. 

Now 

( (x1f, (x1f) 2 and 

( ;\1 , (xi)G) 1 ' so that 

X7 ( (xi)G - X1) E lrr(G) 

Similarly, 

( (x2f, (x2f) = 2 and 

( X2 , (x2)°) = 1 ' so that 

Xs ( (x2)° - X2 ) E lrr(G) 

G is a maximal subgroup of the group As. Thus by restricting the characters of As to G we may find 

more irreducible characters of G. We shall use the following character, say T of As obtained from its 

character table ( in ATLAS, page [22] ): 
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class lA 2A 2B 3A 3B 4A 4B 5A 6A 6B 7A 7B 15A 15B 

centralizer 20160 192 96 180 18 16 8 15 12 6 7 7 15 15 

T 21 -3 1 6 0 1 -1 1 -2 0 0 0 1 1 

Table 2.5.4. 

Using the fusion map of G into As and restricting T to G, we obtain T -!- G : 

G As 

(1) (lA) 

(2i) (2A) 

(22) (2B) 

(23) (2A) 

( 41) (4A) 

(3i) (3B) 

(61) (6B) 

(42) (4B) 

(43) (4A) 

(71) (7 A) 

(7 2) (7 B) 

Table 2.5.5. 

class (1) (2i) (22) (23) ( 4i) (31) (61) (42) (43) (7i) (72) 

no. of elements 1 7 42 42 84 224 224 168 168 192 192 

centralizer 1344 192 32 32 16 6 6 8 8 7 7 

T-!,G 21 -3 1 -3 1 0 0 -1 1 0 0 

Table 2.5.6. 
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Because 

= 1 we have 

= T + G E Irr( G) 

Furthermore 

( (x4f, (;y4)°) - 4· , 

( (;y4)°, X4 ) = 1 . , 

( Ct4)°, X7 ) = 1 and 

( (x4)°, X9 ) = 1 so that 

X10 ( (x4)° - (X4 + X7 + Xg)) E frr(G) 

and also 

( (xs)°, (xs)° ) = 4· , 

( (xs)c, Xs ) - 1 . , 

( (xs)°, XB ) = 1 and 

( (xs)°, X9 ) = 1. Thus 

Xu = ( (x4f - (X4 + X7 + Xg) ) E frr(G). 

And so the character table of G is completed. 
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class (1) (2i) (22) (23) ( 4i) (31) ( 61) (42) (43) (7i) ( 7 2) 

no. of elements 1 7 42 42 84 224 224 168 168 192 192 

centralizer 1344 192 32 32 16 6 6 8 8 7 7 

X1 1 1 1 1 1 1 1 1 1 1 1 

X2 3 3 -1 -1 -1 0 0 1 1 a a 

X3 3 3 -1 -1 -1 0 0 1 1 a a 

X4 6 6 2 2 2 0 0 0 0 -1 -1 

X5 7 7 -1 -1 -1 1 1 -1 -1 0 0 

XB 8 8 0 0 0 -1 -1 0 0 1 1 

X7 7 -1 3 -1 -1 1 -1 1 -1 0 0 

Xs 21 -3 -3 1 1 0 0 1 -1 0 0 

X9 21 -3 1 -3 1 0 0 -1 1 0 0 

X10 14 -2 2 2 -2 -1 1 0 0 0 0 

X11 7 -1 -1 3 -1 1 -1 -1 1 0 0 

Table 2.5. 7: The character table of 23 : G £3(2). 
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2.6 The Character Table of a Group of the form (A5 x 3) : 2 

Let N be the direct product of the groups A5 and the cyclic group Z 3 and let G be a cyclic group of 

order two. For the calculation of the character table of G = N : G, a maximal subgroup of A8 , we 

shall use the methods of restriction and induction of characters. For this purpose we shall make use 

of the character tables of the groups H = S5 x 53 and N. 

Since N is non-abelian we cannot use the method discussed in section 1.2 of chapter 1 to calculate 

the conjugacy table of G. By regarding A5 as the alternating on the set {1, 2, 3, 4, 5}, Z 3 as ((6 7 8)) 

and Gas the group ((1 2)(6 7)), we can determine the conjugacy classes of G by acting (1 2)(6 7) 

on N. We first show the conjugacy classes of N: 

class (1) (3A) (3B) (3C) (3D) (3E) 

class representative 1 (6 7 8) (6 8 7) (1 2 3) (1 2 3) (6 7 8) (123)(687) 

no. of elements 1 1 1 20 20 20 

Table 2.6.1 : The conjugacy table of A5 x 3. 

class (2A) (6A) (6B) 

class representative (1 2)(3 4) (1 2)(3 4) (6 7 8) (1 2)(3 4)(6 8 7) 

no. of elements 15 15 15 

Table 2.6.1 : The conjugacy table of A5 x 3(continued). 

class (5A) (15A) (15B) 

class representative (1234 5) (1234 5)(6 7 8) ( 12345 )( 687) 

no. of elements 12 12 12 

Table 2.6.1 : The conjugacy table of A5 x 3(continued). 

class (5B) (15C) (15D) 

class representative (134 5 2) (134 5 2)(6 7 8) (134 5 2 )(6 8 7) 

no. of elements 12 12 12 
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Table 2.6.1 : The conjugacy table of A5 x 3(continued). 

By the action of (1 2)(6 7) on N we obtain the following fusion table 

N (A5 X 3) : 2 

(1) (1) 

(3A) (31) 

(3B) (3i) 

(3C) (32) 

(3D) (33) 

(3E) (33) 

(2A) (2i) 

(6A) (61) 

(6B) (61) 

(5A) (5i) 

(15A) ( 151) 

(15B) (152) 

(5B) (5i) 

(15C) (152) 

(15D) ( 151) 

Table 2.6.2. 

and hence complete the conjugacy table of G. 

class (1) (31) (32) (33) (21) 

class representative 1 (6 7 8) (1 2 3) (1 2 3)(6 7 8) (1 2)(3 4) 

no. of elements 1 2 20 40 15 

centralizer 360 180 18 9 24 
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Table 2.6.3 : The conjugacy table of (A 5 x 3)) : 2. 

class (61) ( 51) (151) 

class representative (1 2)(3 4)(6 7 8) (1234 5) (1234 5) (6 7 8) 

no. of elements 30 24 24 

centralizer 12 15 15 

Table 2.6.3: The conjugacy table of (A 5 x 3)): 2 (continued). 

class ( 152) (22) (62) ( 41) 

class representative (12345)(6 8 7) (12)(67) (1 2) (3 4 5) (6 7) (1 2 3 4)(6 7) 

no. of elements 24 30 60 90 

centralizer 15 12 6 4 

Table 2.6.3 : The conjugacy table of (A5 x 3) : 2 ( continued). 

We start the calculation of the character table of G by restricting the characters of H to G. We show 

the character table of H on the next two pages. 
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class lA 2A 3A 2B 2C 6A 3B 6B 3C 4A 4B 

no. of elements 1 3 2 10 30 20 20 60 40 30 90 

centralizer 720 240 360 72 24 36 36 12 18 24 8 

</>1 1 1 1 1 1 1 1 1 1 1 1 

</>2 2 0 -1 2 0 -1 2 0 -1 2 0 

cp3 1 -1 1 ·1 -1 1 1 -1 1 1 -1 

cp4 1 1 1 -1 -1 -1 1 1 1 -1 -1 

cp5 2 0 -1 -2 0 1 2 0 -1 -2 0 

<p5 1 -1 1 -1 1 -1 1 -1 1 -1 1 

<p7 5 5 5 1 1 1 -1 -1 -1 -1 -1 

<pg 10 0 -5 2 0 -1 -2 0 1 -2 0 

cpg 5 -5 5 1 -1 1 -1 1 -1 -1 1 

c/>10 6 6 6 0 0 0 0 0 0 0 0 

c/>11 12 0 -6 0 0 0 0 0 0 0 0 

</>12 6 -6 6 0 0 0 0 0 0 0 0 

cf>13 5 5 5 -1 -1 -1 -1 -1 -1 1 1 

cf>14 10 0 -5 -2 0 1 -2 0 1 2 0 

</>15 5 -5 5 -1 1 -1 -1 1 -1 1 -1 

<P16 4 4 4 2 2 2 1 1 1 0 0 

</>17 8 0 -4 4 0 -2 2 0 -1 0 0 

</>1s 4 -4 4 -2 -2 -2 1 1 1 0 0 

c/>19 4 4 4 -2 -2 -2 1 1 1 0 0 

c/>20 8 0 -4 -4 0 2 2 0 -1 0 0 

</>21 4 -4 4 -2 2 -2 1 -1 1 0 0 

Table 2.6.4 : The character table of S5 x S3. 
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class 12A 2D 2E 6C 6D 6E 6F 5A lOA 15A 

no. of elements 60 15 45 30 20 60 40 24 72 48 

centralizer 12 48 16 24 36 12 18 30 10 15 

c/>1 1 1 1 1 1 1 1 1 1 1 

c/>2 -1 2 0 -1 2 0 -1 2 0 -1 

cp3 1 1 -1 1 1 -1 1 1 -1 1 

cp4 -1 1 1 1 -1 -1 -1 1 1 1 

cp5 -1 2 0 -1 -2 0 1 2 0 -1 

<P6 -1 1 -1 1 -1 1 -1 1 -1 1 

cp7 -1 1 1 1 1 1 1 0 0 0 

<P8 1 2 0 -1 2 0 -1 0 0 0 

cp9 0 -2 -2 -2 0 0 0 1 1 1 

c/>10 0 -2 -2 -2 0 0 0 1 1 1 

c/>11 0 -4 0 2 0 0 0 2 0 -1 

c/>12 0 -2 2 -2 0 0 0 1 -1 1 

c/>13 1 1 1 1 -1 -1 -1 0 0 0 

<Pt4 -1 2 0 -1 -2 0 1 0 0 0 

<Pt5 1 1 -1 1 -1 1 -1 0 0 0 

<P16 0 0 0 0 -1 -1 -1 -1 -1 -1 

c/>17 0 0 0 0 -2 0 -1 -2 0 1 

<Pt8 0 0 0 0 -1 1 -1 -1 1 -1 

<Pt9 0 0 0 0 1 1 1 -1 -1 -1 

c/>20 0 0 0 0 2 0 -1 2 0 -1 

c/>21 0 0 0 0 1 -1 1 -1 1 -1 

Table 2.6.4 : The character table of S5 x S3 ( continued). 

In the process of restricting the characters of H to G we first have to see how the conjugacy classes 

of G fuse to the classes of H: 
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G H 

(1) lA 

(31) 3A 

(32) 3B 

(33) 3C 

(2i) 2D 

(61) 6C 

(5t) 5A 

( 151) 15A 

(152) 15A 

(22) 2C 

(62) 6E 

( 41) 4B 

Table 2.6.5. 

By restricting </J1, </J2, <p3, 4>1, rp8, rp9 , rp10 , rp16 , rp17 and rp18 of lrr(H), we obtain ten irreducible 

characters of G. 

We now look at the character table of N for the induction of some of its irreducible characters to G. 
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class (1) (3A) (3B) (3C) (3D) (3E) (2A) (6A) 

no. of elements 1 1 1 20 20 20 15 15 

centralizer 180 180 180 9 9 9 12 12 

1!'1 1 1 1 1 1 1 1 1 

1!'2 1 C c 1 C c 1 C 

7P3 1 c C 1 c C 1 c 

1!'4 3 3 3 0 0 0 -1 -1 

ij,,5 3 3c 3c 0 0 0 -1 -c 

1!'6 3 3c 3c 0 0 0 -1 -c 

7P7 3 3 3 0 0 0 -1 -1 

1!'8 3 3c 3c 0 0 0 -1 -c 

7Pg 3 3c 3c 0 0 0 -1 -c 

1!'10 4 4 4 1 1 1 0 0 

1!'11 4 4c 4c 1 C c 0 0 

1!'12 4 4c 4c 1 c C -1 -c 

1!'13 5 5 5 -1 -1 -1 1 1 

1!'14 5 5c 5c -1 -c -c 1 C 

1!'15 5 5c 5c -1 -c -c 1 c 

Table 2.6.6 : The character table of A5 x 3. 
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class (6B) (5A) (15A) (15B) (5B) (15C) (15D) 

no. of elements 15 12 12 12 12 12 12 

centralizer 12 15 15 15 15 15 15 

'!P1 1 1 1 1 1 1 1 

1/)2 e 1 e e 1 e e 

1/)3 e 1 e C 1 e e 

1/)4 -1 a a a b b b 

i/J5 -e a ae ae b be be 

1/)6 -e a ae ae b be be 

'!Pi -1 b b b a a a 

1/)8 -e b be be a ae ae 

V'g -e b be be a ae ae 

1/)10 0 -1 -1 -1 -1 -1 -1 

1/)11 0 -1 -e -e -1 -e -e 

V'12 0 -1 -e -e -1 -e -e 

1/)13 1 0 0 0 0 0 0 

1/)14 e 0 0 0 0 0 0 

'!Pl 5 e 0 0 0 0 0 0 

Table 2.6.6 : The character table of A5 x 3 ( continued). 

where 

1 + J5 
a 

2 

b 
1 - J5 and - 2 

1 v'3 . 
e -- + -i 2 2 

If 1/J E Irr( N), then by using the formula for induced characters, we have 
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rpc(lc;) - 2.VJ(lN) 

7J,,c(g) - ip(zi) + VJ(z2); g E (31); Z1 E (3A) and Z2 E (3B) 

VJG(g) - 2.VJ(z3) 
' 

g E (32) and Z3 E (3C) 

VJG(g) = VJ( Z4) + VJ(z5); g E (33); Z4 E (3D) and Z5 E (3£) 

7J,,c(g) = 2.VJ(zB) 
' 

g E (2i) and z6 E (2A) 

~P(g) - ip( Zi) + VJ(zs); g E (6i); Zi E (6A) and Zs E (6B) 

~,c(g) = 7J,,(zg) + ip(z10); g E (5i); Zg E (5A) and Z10 E (5B) 

VJc(g) - VJ(z11) + 7j,,(z12); g E (15i); Z11 E (15A)and Z12 E (15D) 

VJG(g) = VJ(Z13) + VJ(Z14); g E ( 152); Z13 E (15B) and Z12 E (15C) 

7J,,c(g) = o. if g E (22) U (62) U (41) 

From the character table of N we induce the characters VJ5 and VJ6 to G to obtain the irreducible 

characters x11 and x12 of G and so complete the character table of G: 
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class 1 (31) (32) (33) (2i) (6i) (5i) 

no. of elements 1 2 20 40 15 30 24 

centralizer 360 180 18 9 24 12 15 

X1 1 1 1 1 1 1 1 

X2 2 -1 2 -1 2 -1 2 

X3 1 1 1 1 1 1 1 

X4 5 5 -1 -1 1 1 0 

Xs 10 -5 -2 1 2 -1 0 

XB 5 5 -1 -1 1 1 0 

X1 6 6 0 0 -2 -2 1 

Xs 4 4 1 1 0 0 -1 

X9 8 -4 2 -1 0 0 -2 

X10 4 4 1 1 0 0 -1 

X11 6 -3 0 0 -2 1 1 

X12 6 -3 0 0 -2 1 1 

Table 2.6. 7 : The character table of As x 3 : 2. 
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class (15i) (152) (22) (62) ( 41) 

no. of elements 24 24 30 60 90 

centralizer 15 15 12 6 4 

X1 1 1 1 1 1 

X2 -1 -1 0 0 0 

X3 1 1 -1 -1 -1 

X4 0 0 1 1 -1 

X5 0 0 0 0 0 

XB 0 0 -1 -1 1 

X1 1 1 0 0 0 

Xs -1 -1 2 -1 0 

X9 1 1 0 0 0 

X10 -1 -1 -2 1 0 

Xu ae + b.c a.c + be 0 0 0 

X12 a.c + be ae + b.c 0 0 0 

Table 2.6.7: The character table of A5 x 3: 2(continued). 

where 

1 + J5 
a 

2 

b 
1 - J5 

and 
2 

1 y'3 . 
e -- + -i 2 2 

To conclude this chapter we give as examples for our discussion on how the methods of restriction 

and induction of characters are related (section 2.3) , the following two Frobenius reciprocity tables: 
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N\G -!.- Xt X2 X3 X4 X5 X6 X, XB X9 X10 X11 X12 

'I/J1 t 0 1 0 0 0 0 0 0 0 0 0 0 

'I/J2 0 1 0 0 0 0 0 0 0 0 0 0 

-ij,,3 0 1 0 0 0 0 0 0 0 0 0 0 

1/J 4 0 0 0 0 0 0 1 0 0 0 0 0 

-ij,,5 0 0 0 0 0 0 0 0 0 0 1 0 

-ij,,6 0 0 0 0 0 0 0 0 0 0 1 0 

1/J, 0 0 0 0 0 0 1 0 0 0 0 0 

'I/Jg 0 0 0 0 0 0 0 0 0 0 0 1 

if,,g 0 0 0 0 0 0 0 0 0 0 0 1 

'I/J10 0 0 0 0 0 0 0 1 0 1 0 0 

'I/J11 0 0 0 0 0 0 0 0 1 0 0 0 

i/,,12 0 0 0 0 0 0 0 0 1 0 0 0 

'I/J13 0 0 0 1 0 1 0 0 0 0 0 0 

'I/J14 0 0 0 0 1 0 0 0 0 0 0 0 

'I/J15 0 0 0 0 1 0 0 0 0 0 0 0 

Table 2.6.8. 

From the table above we can easily express -ij,,0 as a sum of irreducible characters Xi of G for every 

-ij,, E N and likewise express x-!.- N as a sum of irreducible characters l/;1 of N for every X E G. 
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X1 t 1 0 0 0 0 1 0 0 0 0 0 

X2 0 1 0 0 1 0 0 0 0 0 0 

X3 0 0 1 1 0 0 0 0 0 0 0 

X4 0 0 0 0 0 0 1 0 0 0 0 

Xs 0 0 0 0 0 0 0 1 0 0 0 

XB 0 0 0 0 0 0 0 0 1 0 0 

X1 0 0 0 0 0 0 0 0 0 1 0 

xs 0 0 0 0 0 0 0 0 0 0 0 

X9 0 0 0 0 0 0 0 0 0 0 0 

X10 0 0 0 0 0 0 0 0 0 0 0 

X11 0 0 0 0 0 0 0 0 0 0 1 

X12 0 0 0 0 0 0 0 0 0 0 1 

Table 2.6.9. 

67 

http://uwc.etd.ac.za



G\H + c/>12 c/>13 c/>14 c/>15 c/>16 c/>17 c/>1s cp19 c/>20 c/>21 

Xt t 0 0 0 0 0 1 0 0 0 0 

X2 0 0 0 0 0 0 0 0 0 0 

X3 0 0 0 0 0 0 0 0 0 0 

X4 0 0 0 1 0 0 0 0 0 0 

X5 0 0 1 0 0 0 0 0 0 0 

X6 0 1 0 0 0 0 0 0 0 0 

X1 1 0 0 0 0 0 0 0 0 0 

Xs 0 0 0 0 1 0 0 0 0 1 

X9 0 0 0 0 0 1 0 0 1 0 

Xto 0 0 0 0 0 0 1 1 0 0 

Xu 0 0 0 0 0 0 0 0 0 0 

X12 0 0 0 0 0 0 0 0 0 0 

Table 2.6.9( continued) 

The Frobenius table (above) in this case tells us how to express XH as a sum of irreducible characters 

c/>i of H for every x E G and how to express cp + G as a sum of irreducible characters Xi of G for 

every cp E H. 
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Chapter 3 

FISCHER MATRICES 

In this chapter we discuss the theory of Fischer matrices and show how it is applied in finding the 

irreducible characters of three finite groups which are all split extensions. We shall first look at 

results which are necessary for our discussion of Fischer matrices. This theory, called Clifford theory, 

is discussed in section 3.1. Section 3.2 deals with the properties of Fischer matrices and in the rest 

of the chapter we calculate the character tables of the three groups as mentioned. For the first two 

sections we make use of the thesis of Whitley [19]. 

3 .1 Clifford Theory 

We consider the characters of G, an extension of N by G, with N not necessarily abelian. 

Let 0 E frr(N), where N <l G and for g E G, n E N we let 09 be defined by 

09 (n) = 0(gng- 1 
). Then 09 is a character of N and is said to be conjugate to 0 in G. G per­

mutes Irr( N) by g : 0 -+ 09 • Since N acts trivially on Irr( N), Irr( N) is permuted by G / N, by 

gN: 0 -+ 09 . 

The next result, due to Clifford [2], is fundamental to the work that follows in this and the next 
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section. The proof is from lsaacs[9]. 

Theorem 3.1.1 (Clifford's theorem} Let N <l G and x E lrr(G). Let 0 be an irreducible constituent 

of XIN and suppose that 0 = 01 , 02, ... , 0t are the distinct conjugates of 0 in G. 

Then XIN = eI::!=1 0i where e = (XIN,0). 

Proof: We compute 0°1N. Define 0° on G by 

{ 

0(x) if x E N 
0o(x) = 0 ' 

' X ~ N 

For n E N, we have 

0c(n) INl-1 L 0o(xnx-1 ). 

xEG 

Since xnx- 1 E NV x E G we have 

xEG 

and if¢ E Irr(N) and¢~ {0i: 1 :Si :St} then 

0 (Lox,¢) , so (0°1N, ¢) 0. 
xEG 
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Since x is an irreducible constituent of ae by Frobenius reciprocity, it follows that 

(XIN, 4>) = 0. Thus all the irreducible constituents of xlN are among the Bi, so 

xlN = I)xlN, 0i)0i. 
i=l 

But (XIN,0i) = (XIN,0) since Bi and 0 are conjugate and so the proof is complete. D 

Definition 3.1.2 Let N <l G and 0 E lrr(N). Then le(0) = {g E G: 09 = 0} is the inertia group 

of0inG. 

Since le( 0) is the stabilizer of 0 in the action of G on Irr( N), we have that le( 0) is a subgroup 

of G and N ~ le(0). Also [G : le(0)] is the size of the orbit containing 0, so in the formula 

XIN = e I::=1 0i, we have t = [G: le(0)]. 

As a consequence of Clifford's theorem, we have the following theorem. 

Theorem 3.1.3 Let N <l G, 0 E lrr(N) and H = le(0). Then induction to G maps 

the irreducible characters of H that contain 0 in their restriction to N faithfully 

onto the irreducible characters of G which contains 0 in their restiction to N. 

Proof: See [19,Theorem 3.3.2] 

Theorem 3.1.3 shows that to find the irreducible characters of G that contain 0 in their restriction 

to N, it suffices to find the irreducible characters H = le( 0) that contain 0 in their restriction. If 0 

can be extended to an irreducible character 1/; of H ( that is 1/; E Irr( H) with 1/; IN = 0), then the 

relevant characters of H can be obtained by using the following theorem. 

Theorem 3.1.4 (Gallaghar {6}} With N, G, 0 and H as above, if 0 extends to a character 

1/; E Irr( H) then as (3 ranges over all irreducible characters of H that contain N in their kernel, 
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/3'l/J ranges over all irreducible characters of H that contain 0 in their restriction. 

Proof: By definition of H, 0 is the only H-conjugate of 0, so by Clifford's theorem 0HIN = f0 for 

some integer f. Comparing degrees, 0H IN = [H : N]0, so 

(0H, 0H) - (0, 0HIN) 

[H:N]. 

Now we claim that 0H = ~,0 /3(1)/3'l/J, where /3 runs over all irreducible characters of H that contain 

N in their kernel, or, equivalently, over all irreducible characters of H / N. Both OH and ~,6 /3( 1)/J'l/J 

are zero off N because for g (/: N, 0H (g) = 0 since xgx- 1 (/: NV x E G, and by the column orthogo­

nality for the character table of H / N since g does not belong to N, we have 

L /3(1)(/J'l/J)(g) = L(f3(1)/3(g))'l/J(g) = o. 
,6 ,6 

Also 

[H: N]0 

because for g E N, 

I: /3( i )/J(g )'l/J(g) I:(/3(1))2.'l/J(g) 
{3 {3 

[H: N]'l/J(g) 

[H: N]0(g). 
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Therefore eH I:13 /3(1)/3'1/,• as claimed. Now 

[H:N] (0H' 0H) 

(I: /3(1)/31/;, I: ,(1),1/;) 
/3 'Y 

I: /3(1),(1)(/31/;, ,1/J). 
/3 ,'Y 

The diagonal terms contribute at least I:/3(1) 2 = [H: NJ so the /31/J are irreducible and distinct. 

These /31/J are all the irreducible constituents of 0H, so are all the irreducible characters of H that 

contain 0 in their restriction, since for cf> E lrr(H), (cf>IN, 0) = (</>, 4>H). 0 

Note 1 Now suppose G is an extension of N by G. If every irreducible character of N can be 

extended to its inertia group in G, then by application of theorems 3.1.3 and 3.1.4 the characters of 

G can be obtained as follows: 

Let 01,02 , .. ,,0t be representatives of the orbits of G on lrr(N). For each i, let Hi = fc5(0i) and let 

1/;; E lrr(H;) with 1/J;IN = 0;. Now each irreducible character of G contains some 0i in its restriction 

N by Clifford's theorem, so by theorems 3.1.3 and 3.1.4 we have 

t 

lrr(G) U { (/31/J; )° : /3 E Irr( Hi), N C ker(/3)} 
i=l 

Hence the characters of G fall into blocks, with each block corresponding to an inertia group. 

We now quote some results which give sufficient conditions for the irreducible characters of N to be 

extendible to their respective inertia groups, so that the above method can be used to calculate the 

characters of G. 

The following result and proof was obtained from Curtis and Reiner ([4, page 353]). 
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Theorem 3.1.5 (Mackey's theorem) Suppose that N is a normal subgroup of H such 

that N is abelian and H is a semi-direct product of N and H for some H :S H. If 

0 E Irr( N) is invariant in H ( that is, 0h = 0, V h E H ) then 0 can be extended to 

a linear character of H. 

Proof: Since His a semi-direct product, any h E H can be written uniquely ash= nk, n E N, k E H. 

Define X on H by x( nk) = 0( n). Since N is abelian, 0 has degree 1, hence is linear, and the fact that 

0=0hforallhEHimpliesthat0(n)=0(hnh-1)forallhEH. Thenifh1 = n 1k1 , h2 = n 2k2 , 

we have 

x(n1k1n2k2) 

x(n1n;1 k1k2) 

0(n1n;1
) 

0( n 1 )0( n;1
) 

0(ni)0(nz) 

0(n1n2) = x(hi)x(hz). 

Therefore x is a linear character of H, and XIN = 0. □ 

Since in all our examples that we will consider, N is abelian and the extension is split, Mackey's 

theorem will apply. Mackey's theorem is a corollary of a more general result by Karpilovsky [11] 

which we state without proof. 

Theorem 3.1.6 Let the group H contain a subgroup H of order n such that H =NH for N normal 

in H and let x E lrr(N) be invariant in H. Then x extends to an irreducible character 

of H if the following conditions hold: 
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1. (m,n) = 1 where m = x(l), 

2. N n H '.S N' where N' is the derived subgroup of N. 

Another extension theorem which can be found in [7] is the following: 

Theorem 3.1. 7 If N is a normal subgroup of H and 0 is an irreducible character of N that is 

invariant in H, then 0 is extendable to an irreducible character of H if 

3.2 Properties of Fischer Matrices 

In this section we give some properties of the Fischer matrices which will enable us to compute the 

character tables of three finite group extensions in the last three sections. 'vVe however need to look 

at some background material first. 

Let G be an extension of N by G, with the property that every irreducible character of N can be 

extended to its inertia group. With the notation of the previous chapter we have that 

[ Irr( G) = u:=1 { (/3v,d'; : p E Irr( Hi) with N C ker(,6)}] Now we show how the character table 

G can be constructed using this result. We construct a matrix for each conjugacy class of G ( the 

Fischer mat ices). Then the character table of G can be constructed using these matrices and the 

character tables of factor groups of the inertia groups. These constructions of Fischer matrices have 

been discussed by Salleh [18], List [13] and List and Mahmoud [14]. 

As previously, let 01, ... , 0t be representatives of the orbits of G on Irr(N), and let Hi= h1(0i) and 

Hi= Hi/N. Let v,; be an extension of 0i to Hi. We take 01 = lN, so H1 = G and H1 = G. We 

consider a conjugacy class [g] of G with representative g. Let X(g) = { x1, ... Xc(g)} be representatives 

of G-conjugacy classes of elements of the coset Ng. Take x1 = g. Let R(g) be a set of pairs (i,y) 
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where i E {1, ... , t} such that Hi contains an element of [g], and y ranges over representatives of the 

conjugacy classes of Hi that fuse to [g]. Corresponding to this y E Hi, let {yzk} be representatives of 

conjugacy classes of Hi that contain liftings of y. 

If /3 E lrr(Hi) with NC ker(/3), then /3 has been lifted from some~ E lrr(Hi), with ~(y) = /3(y1J 
for any lifting Ylk of y. For convenience we write /J(y) for ~(y). 

Now, using the formula for induced characters given in Proposition 2.2.9., we have 

By I:/ we mean that we sum over those k for which Ylk is conjugate to Xj in G. Now we define the 

Fischer matrix M(g) = (a(i,y)) with columns indexed by X(g) and rows indexed by R(g) by 

Then 

(7./Ji/J)°(xj) = L a(i,y)/J(y). 
y:(i,y)ER(g) 

The rows of M(g) can be divided into blocks, each block corresponding to an inertia group. Denote 

the submatrix corresponding to Hi by Mi(g), and let C;(g) be the fragment of the character table of 

Hi consisting of the columns corresponding to classes that fuse to [g]. Then, by the above relation , 

the characters of G at the classes represented by X(g) obtained from inducing characters of Hi are 

given by the matrix product Ci(g).Mi(g). 

We now state a result of Brauer and prove a lemma which will be needed later. 
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Lemma 3.2.1 (Brauer} Let A be a group of automorphisms of a group K Then A also acts on 

Irr( K) and the number of orbits of A on Irr([() is the same as that on the conjugacy classes of K 

Proof: See (8, 4.5.2] 

Lemma 3.2.2 Let A be a group of automorphisms of a group [( , so A acts on Irr(K) and on the 

conjugacy classes of I( with the same number of orbits on each by the previous lemma. Suppose we 

have the following matrix describing these actions: 

1 1 1 1 

St at 1 at2 atj att 

where aij = l for j = 1, ... t, lj 's are lengths of orbits A on the conjugacy classes of K, 

Si 's are lengths of orbits A on Irr( K), 

aij is the sum of Si irreducible characters of [( on the element Xj, where Xj be an element of the orbit 

of length lj. 

Then the following relation holds for i, i' E {1, ... t}: 

t 

Laijai1jlj = 1Klsic5ii' 
j=I 

Proof: Let Si denote the sum of Si irreducible characters of K, so si(xi) = aii· Then 
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But by orthogonality of irreducible characters, < Si, si, >= Oii'Si, so 

t 

L l1aijai'j = IKlsiOii'· □ 
j=l 

Now let M(g) = (a(i,y)) be the Fischer matrix for G = N.G at g E G. We present M(g) with 

corresponding "weights" for columns and rows as follows: 

ICH2(Y)I 

ICH2(Y')I 

1 

al 
(2,y) 

1 
a(2,y') 

al (i,y) 

1 

a2 
(2,y) 

2 
a(2,y') 

a2 
(i,y) 

a2 
(t,y) 

1 

The matriK M (g) is divided into blocks ( separated by horizontal lines), each corresponding to an 

inertia group. Note that a{l,g) = 1 for all j E {1, ... , c(g)}. Fischer has shown that M(g) is square 

and nonsingular(see[l4]). In the following propositions and note we give further properties of Fischer 

matrices. 
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Proposition 3.2.3 ( column orthogonality) 

L ICH;(Y)la(i,y)a(;,y) = bjj'ICa(xj)I 
(i,y)ER(g) 

Proof:The partial character table of G at classes x 1, ... , Xc(g) is 

where Ci(g), M;(g) are as defined earlier in this section. 

By column orthogonality of the character table of G, we have 

ICc(xj)lc5jj, = t L ( L a{i,y)/3;(y))( L a(;,y')/3;(y')) 
i=l {3;Elrr(H;) y:(i,y)ER(g) y':(i,y')ER(g) 

t L (I:a{i,y)a{;,Yi/3;(y)/3;(y) + LLa{i,y)a{;,y,i/3;(y)/3;(y')) 
i=l {3;Elrr(H,) Y Y y'#-y 

- t (La{i,y)a(;,y) L /3;(y)/3;(y) + LLa{i,y)a(;,y') L /3;(y)/3;(y')) 
i=l y {3;Elrr(H;) y y'#y {3;Elrr(H;) 

- t (I:a(i,y)a(;,y)ICH;(Y)I + a) 
i=l y 

L a{i,y)a(;,y)ICH;(Y)I. □ 
(i,y)ER(g) 

Proposition 3.2.4 (List {13}) At the identity of G, the matrix M(l) is the matrix with rows equal 

to orbit sums of the action of G on lrr(N) with duplicate columns discarded. 
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For this matrix we have a(i,I) = [G: H;], and an orthogonality relation for rows: 

t 

L a(i,I)a{i,,I)ICa(xi)l- 1 = o.;;,ICH;(l)l- 1 = 0;;1 IH;l-1 

j=l 

where we sum over representatives of conjugacy classes of H; that fuse to [xi] in G. Therefore a(i,I) = 
'ljJy(x1). By theorem 3.1.3 'ljJy is an irreducible character of G, and < 1PYIN, 0; >=< WdN, 0; >= l. 

Therefore, by Clifford's Theorem (Theorem 3.1.1), 'ljJflN = I::
0 

Xa, where we sum over all Xa E 

lrr(N) in the orbit containing 0;. Now x1 EN, and a(i,I) = Z::
0 

x0 (x1). The orthogonality relation 

follows by Lemma 3.2.2. □ 

Note 1 If N is an elementary abelian group (which is the case for our calculations), then List[13] 

has also shown the following for l\ll(g), where g #- 1: 

If G is a split extension of N by G, then l\ll(g) is the matrix of orbit sums of Cg (as defined in section 

1.2) acting on the rows of the character table for a certain factor group of N with duplicate columns 

discarded. 

If the extension is not split, M(g) is the matrix of orbit sums of Cg acting on the rows of the character 

table with duplicate columns discarded and with each row multiplied by a p - th root of unity where 

INI = pn for some n. It may be that the root of unity for each row is 1. 

For these matrices (N elementary abelian, any extension) a 1(;,y) = !Ca(g)j and we have an orthogo-
• JCH,(Y)J' 

nality relation for rows (as a consequence of Lemma 3.2.2.): 

c(g) 

L mja(i,y)a(i',y') = O(i,y)(i',y')ICa(g)IICH;(Y)l-
1
INI = o(i,y)(i',y')a(i,y)INI 

j=I 
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where mj = [Cg : Cc;(xj)]. 

(In the notation of section 1.2, mj is the length of the orbit 6.1 of Cg, so mj = 11;11) 

The relations given in the above propositions and note will be used later in our calculations of Fischer 

matrices, so for convenience we list them in a theorem. 

Theorem 3.2.5 For a Ascher matrix M(g) = (a{i,y)) of G = N.G we have the following relations. 

1. a(l,g) = 1 for all j E {1, ... , c(g)}. 

2. L ICHi(Y)la{i,y)a(;,y) = c5jj 1 ICa(xj)I. 
(i,y)ER(g) 

3 I'f N . [ t b /' th l ICG(g)j d . is e emen ary a e ian, en a(i,y) = ICH; (Y)I' an 

c(g) 

4. L mja{i,y)a(i',y') = c5(i,y)(i',y')a(i,y)INI. 
j=l 
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3.3 The Character Table of a Group of the form 24 : S3 x S3 

Let G = N : G where N is an elementary abelian 2-group of order 16 and G = S3 x S3. We start 

with the conjugacy classes of G and use the facts that S3 ~ G £2 (2) and that N is isomorphic to 

¼(2), the vector space of dimension four over a field of two elements. Now 

so we consider the following 4 x 4 matrices over G F(2): 

1 0 0 0 

0 1 0 0 
la ( (1),(1)) 

0 0 1 0 

0 0 0 1 

0 1 0 0 

1 0 0 0 
X1 = ((12),(1)) = 

0 0 1 0 

0 0 0 1 

0 1 0 0 

1 1 0 0 
Y1 ( (1 2 3), (1) ) -

0 0 1 0 

0 0 0 1 

1 0 0 0 

0 1 0 0 
X2 ((1),(12)) 

0 0 0 1 

0 0 1 0 
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0 1 0 0 

1 0 0 0 
X3 - ( (12),(12)) -

0 0 0 1 

0 0 1 0 

0 1 0 0 

1 1 0 0 
Wt = ( (1 2 3), (1 2) ) -

0 0 0 1 

0 0 1 0 

1 0 0 0 

0 1 0 0 
Y2 - ( (1),(123)) -

0 0 0 1 

0 0 1 1 

0 1 0 0 

1 0 0 0 
W2 - ( (1 2), (1 2 3) ) -

0 0 0 1 

0 0 1 1 

0 1 0 0 

1 1 0 0 
Y3 = ( (1 2 3), (1 2 3) ) = 

0 0 0 1 

0 0 1 1 

We let G =< x1, Y1, x2, Y2 >. Then {la,x 1,x2,x3,y1,y2,y3,w1,w2} is a complete set of the class 

representatives for G. N is generated by {e1, e2, e3, e4} i.e. 

N = ( (1 0 0 0), (0 1 0 0), (0 0 1 0), (0 0 0 1) ) 
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Let G act naturally on N. Using the method discussed in chapter 1, section 1.2, we act N and Cc(g) 

on the cosets Ng where g E {lc,x1,x2,x3,y1,y2,Y3,w1,w2}. 

• g =le: 

If g is the identity of G, then g fixes all elements of N, so k 

Cc(lc) = G these orbits are fused as follows: 

6.1 = 1 G = 1 ==} f1 = 1, 

6.2 ={ei}
0

={e1, e2,e1e2} ==} f2=3, 

6.3={e3}
0

={e3, e4,e3e4} ==} h=3and 

6.4 = {e1, e3}c = N \ (6.1 U 6.2 U 6.3) ==} f4 = 9, 

so this coset gives four classes of G: 

IC0 (l)I = 16 x 36 = 576 

IC0 (ei)I = 16 x 36 

IC0 (e3)I = 16 x 36 

• g = X1 : 

3 - 192 

3 192 

x1 fixes the elements of ( e3, e4, e1 e2 ) so k = 8. The orbits are 

16. Under the action of 

Qi= {x1, e1e2xi}, Q2 = {e1x1, e2xi}, Q3 = {e3x1, e1e2e3x1}, Q4 = {e4X1, e1e2e4xi}, 

Q5 = {e1e3x1, e2e3xi}, Q6 = {e1e4x1, e2e4xi}, Q1 = {e3e4x1, e1e2e3e4xi}, 
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Under the action of Ca(xi) = (xi, x2, Y2), Qi = ~i and Q2 = ~ 2 are fixed while 

Q3 U Q4 U Q1 becomes ~3 and Q5 U Q6 U Qs becomes ~ 4 and we obtain fi = 1, ./2 = 1, h = 3 

and f 4 = 3, so this coset gives us four classes of G: 

ICa(xi)I = 8 x 12 = 96 

ICa(eixi)I = 8 x 12 - 96 

ICa(e3xi)I = 8 x 12 3 = 32 

ICa(eie3xi)I = 8 x 12 + 3 = 32 

• 9 = Yi : 

CN(Y1) = ( e3, e4 ), so k = 4. Under the action of Ca(yt) = (Yi, x2, Y2) three of the orbits 

are fused into one and we obtain f 1 = 1, and fi = 3, so this coset gives us two more classes of G: 

ICa(Yt)I = 4 x 18 = 72 

ICa(e3y1)l = 4 x 18 + 3 = 24 

Here we have CN(x2) = ( e1, e2, e3e4 ), so k = 8. Under the action of Ca(x2) = (xi,x2,Y1) 

we obtain fi = 1, Ji = 3 h = l and f 4 = 3, so we obtain four more classes of G: 

ICa(eix2)I = 8 x 12 

ICa(e3x2)I = 8 x 12 

3 = 32 

96 
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3 = 32 

• 9 = Y2: 

CN(9) = ( e1, e2 ), so k = 4. Under the action of Ca(g) 

fi = 3 and we obtain another two classes of G: 

ICa(Y2)I = 4 x 18 = 72 

IC0(e1Y2)I = 4 x 18 7 3 = 24 

• 9 = X3: 

(Y1, x2, X1) we obtain J1 = 1 and 

Here we have CN(9) = ( e1e2, e3e4 ), hence k = 4. Under the action of Ca(g) = (x1, x2,) 

we obtain J1 = 1, Ji = l h = l and f 4 = 1 and so there are four more classes of G: 

IC0(x3)I = 4 x 4 - 16 

I Ca( e1x3)I = 16 

IC0( e3x3)I = 16 

IC0(e1e3x3)I = 16 

• 9 = Y3: 

We have CN(9) = {lN }, therefore k = l, hence J1 = l. We thus gained one class: 

ICa(Y3)I = ICa(y3)I = 9 

• 9 = W1 : 

CN(9) = ( e3e4 ), so k = 2. Under the action of Ca(g) 

Ji = l. We have obtained another two classes of G: 
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IC0 (wi)I = 2 x 6 = 12 

IC0 (e3wi)I = 2 x 6 = 12 

CN(g) = ( e1e3) and so k = 2. Under the action of Ca(g) 

h = l and so obtain the last two classes of G: 

IC0 (wi)I = 2 x 6 = 12 

IC0 (e3w1)I =2 x 6 = 12 

The conjugacy classes of G are given below and hi denotes the number of elements in a conjugacy 

class. 

class 1 e1 e3 e1e3 X1 E1X1 E3X1 e1e3x1 YI e3y1 X2 E1X2 E3X2 

h 
' 

1 3 3 9 6 6 18 18 8 24 6 18 6 

C0 (x) 576 192 192 64 96 96 32 32 72 24 96 32 96 

Table 3.3.1 : The conjugacy table of 24 
: S3 x S3 • 

class e1e3x2 Y2 E1Y2 X3 E1X3 e3X3 e1e3x3 Y3 W1 E3W1 W2 e1W2 

h· 
' 

18 8 24 36 36 36 36 64 48 48 48 48 

C0 (x) 32 72 24 16 16 16 16 9 12 12 12 12 

Table 3.3.1 : The conjugacy table of 24 
: S3 x S3 ( continued). 

We proceed to calculate the Fischer matrices. From the action of G on lrr(N) we obtain the same 

number of orbits as when G acts on N. From each of the four orbits, we determine the inertia groups 

Hi where i = 1, 2, 3, 4. Then we let Hi = Hi/ N and we obtain the following inertia factors 
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The character tables of these inertia factors are: 

class 1 X1 X2 X3 YI Y2 Y3 W1 W2 

hi 1 3 3 9 2 2 4 6 6 

Ca(x) 36 12 12 4 18 18 9 6 6 

1P1 1 1 1 1 1 1 1 1 1 

1P2 2 2 0 0 2 -1 -1 0 -1 

'lp3 1 1 -1 -1 1 1 1 -1 1 

'lp4 2 0 2 0 -1 2 -1 0 -1 

'lp5 4 0 0 0 -2 -2 1 0 0 

1P6 2 0 -2 0 -1 2 -1 1 0 

1P1 1 -1 1 -1 1 1 1 1 -1 

'!pg 2 -2 0 0 2 -1 -1 0 1 

'!pg 1 -1 -1 1 1 1 1 -1 -1 

Table 3.3.2 : The character table of H1 = S3 x S3. 

class 1 X1 X2 X3 Y2 W2 

hi 1 1 3 3 2 2 

Ca(x) 12 12 4 4 6 6 

</>1 1 1 1 1 1 1 

</>2 2 2 0 0 -1 -1 

<p3 1 1 -1 -1 1 1 

<p4 1 -1 1 -1 1 -1 

<p5 2 -2 0 0 -1 1 

</>6 1 -1 -1 1 1 -1 

Table 3.3.3 : The character table of H2 • 
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class 1 X1 X2 X3 Y1 W1 

h· i 1 3 1 3 2 2 

C0 (x) 12 4 12 4 6 6 

T1 1 1 1 1 1 1 

T2 2 0 2 0 -1 -1 

T3 1 -1 1 -1 1 1 

T4 1 1 -1 -1 1 -1 

T5 2 0 -2 J) -1 1 

T6 1 -1 -1 1 1 -1 

Table 3.3.4 : The character table of H3 . 

class 1 X1 X2 X3 

h; 1 1 1 1 

C0 (x) 4 4 4 4 

<I> 1 1 1 1 1 

4>3 1 1 -1 -1 

<I> 4 1 -1 1 -1 

<1>6 1 -1 -1 1 

Table 3.3.5 : The character table of H4 • 

and their fusion maps into G are: 
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H2 G 

1 1 

Xt Xt 

X2 X2 

X3 X3 

Y2 Y2 

W2 W2 

Table 3.3.6. 

H3 G 

1 1 

Xt Xt 

X2 X2 

X3 X3 

Yt Yt 

Wt Wt 

Table 3.3. 7. 

H4 G 

1 1 

Xt Xt 

X2 X2 

X3 X3 

Table 3.3.8. 

To calculate the Fischer matrices we use the relations of Theorem 3.2.5. For every g in Ng, we 

have the Fischer matrix M(g). For each matrix M(g), we index the columns by the orders of the 

centralizers of the class representatives of G which comes from Ng and the rows by the orders of the 
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centralizers of the class representatives of the inertia factors which fuse to [g] in G. Corresponding 

to le, we let 

576 192 192 64 

36 a1 a2 a3 a4 

12 b1 b2 b3 b4 
M(lc) = 

12 C1 C2 C3 C4 

4 d1 d2 d3 d4 

because we obtained four orbits from the action of G on Nl and so we have a 4 x4 matrix. Now by 

relation 3.2.5 (1), ai = 1 for each i = 1, 2, 3, 4 and by relation 3.2.5 (3) we have b1 = 3; c, = 3; d1 = 9. 

By column orthoganality given by relation 3.2.5 (2), we have for example 

36 + 12lb212 + 12lc212 + 4ld21 2 

36 + 12.3.b2 + 12.3.c2 + 4.9d2 

Manipulating these equations we obtain the matrix: 

576 192 

36 1 1 

M(lc) = 
12 3 -1 

12 3 3 

4 9 -3 

91 

192 

1 

3 

-1 

-3 

192; 

O; 

O· 
' 

192; and so on. 

64 

1 

-1 

-1 
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Similarly, we determine the other Fischer matrices. They appear below. 

• g = X1 : 

• g = YI : 

96 96 32 96 

12 1 1 1 1 

M(xi) = 
12 1 -1 -1 1 

4 3 3 -1 -1 

4 3 -3 1 -1 

72 24 

M(yi) = 18 ( 1 1 ) 
6 3 -1 

96 32 96 32 

12 1 1 1 1 

4 3 -1 3 -1 
M(x2) = 

12 1 1 -1 -1 

4 3 -1 -3 1 
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• 9 = Y2: 

• 9 = Y3: 

72 24 

M(y2 ) = 18 ( 1 1 ) 
6 3 -1 

16 16 16 16 

4 1 1 1 1 

4 1 1 -1 -1 
Nl(x 3 ) = 

4 1 -1 1 -1 

4 1 -1 -1 1 

9 

93 

http://uwc.etd.ac.za



• g =Wt: 

12 12 

M(wi) = 6 ( 1 1 ) 
6 1 -1 

12 12 

We are now ready to determine the character table G. There are four inertia factors, so the characters 

of G fall into four blocks. The characters are calculated from the Fischer matrices and the character 

tables of the inertia factors. This is achieved by multiplying rows of the matrix M(g) with sections 

of the character tables of the inertia factors fusing to [g]. 

For g = la we have 

1 1 1 1 

3 -1 3 -1 
M(l) = 

3 3 -1 -1 

9 -3 -3 1 

By multiplying each row of M( 1) by the columns in the character tables of the inertia factors which 

correspond with the classes fusing to 10 respectively, we obtain the values of the characters of G on 
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the G-classes with representatives 1, e1 , e3 and e1e3 : 

1 1 1 1 1 

2 2 2 2 2 

1 1 1 1 1 

2 2 2 2 2 

4 ( 1 1 1 1) = 4 4 4 4 

2 2 2 2 2 

1 1 1 1 1 

2 2 2 2 2 

1 1 1 1 1 

1 3 -1 3 -1 

2 6 -2 6 -2 

1 
( 3 -1) = 

3 -1 3 -1 
-1 3 

1 3 -1 3 -1 

2 6 -2 6 -2 

1 3 -1 3 -1 

1 3 3 -1 -1 

2 6 6 -2 -2 

1 
( 3 -1) = 

3 3 -1 -1 
3 -1 

1 3 3 -1 -1 

2 6 6 -2 -2 

1 3 3 -1 -1 
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1 

1 

1 

1 

( 9 -3 -3 1 ) = 

9 -3 -3 1 

9 -3 -3 1 

9 -3 -3 1 

9 -3 -3 1 

We determine the values the characters of G corresponding to the class of G with representative x 1 

in a similar fashion: 

1 1 1 1 1 

2 2 2 2 2 

1 1 1 1 1 

0 0 0 0 0 

0 ( 1 1 1 1) = 0 0 0 0 

0 0 0 0 0 

-1 -1 -1 -1 -1 

-2 -2 -2 -2 -2 

-1 -1 -1 -1 -1 

1 1 -1 -1 1 

2 2 -2 -2 2 

1 
( 1 1) = 

1 -1 -1 1 
-1 -1 

-1 -1 1 1 -1 

-2 -2 2 2 -2 

-1 -1 1 1 -1 
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1 

0 

-1 

1 

0 

-1 

1 

1 

-1 

-1 

( 3 3 -1 1 ) = 

( 3 -3 1 -1 ) = 

3 3 -1 -1 

0 0 0 0 

-3 -3 1 1 

3 3 -1 -1 

0 0 0 0 

-3 -3 1 1 

3 -3 1 -1 

3 -3 1 -1 

-3 3 -1 1 

-3 3 -1 1 

With this we now also know the values of the characters of G on the G-classes with representatives 

x 1, e 1x1, e3X1 and e 1e3X1. 

Continuing this process with the other classes of G, we complete the character table of G. 
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class 1 eI e3 eie3 XI eIXI e3XI eI e3XI YI e3yI X2 eIX2 e3X2 eI e3X2 

hi 1 3 3 9 6 6 18 18 8 24 6 18 6 18 

C0 (x) 576 192 192 64 96 96 32 32 72 24 96 32 96 32 

XI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

X2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 

X3 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 

X4 2 2 2 2 0 0 0 0 -1 -1 2 2 2 2 

X5 4 4 4 4 0 0 0 0 -2 -2 0 0 0 0 

X6 2 2 2 2 0 0 0 0 -1 -1 -2 -2 -2 - 2 

X1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 

XB 2 2 2 2 -2 -2 -2 -2 2 2 0 0 0 0 

X9 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 

XIO 3 -1 3 -1 1 -1 -1 1 0 0 3 -1 3 1 

X11 6 -2 6 -2 2 -2 -2 2 0 0 0 0 0 0 

XI2 3 -1 3 -1 1 -1 -1 1 0 0 -3 1 -3 -1 

XI3 3 -1 3 -1 -1 1 1 -1 0 0 3 -1 3 1 

XI4 6 -2 6 -2 -2 2 2 -2 0 0 0 0 0 0 

XI5 3 -1 3 -1 -1 1 1 -1 0 0 -3 1 -3 -1 

XI6 3 3 -1 -1 3 3 -1 -1 3 -1 1 1 -1 -1 

XI7 6 6 -2 -2 0 0 0 0 -3 1 2 2 -2 -2 

XI8 3 3 -1 -1 -3 -3 1 1 3 -1 1 1 -1 -1 

XI9 3 3 -1 -1 3 3 -1 -1 3 -1 -1 -1 1 1 

X20 6 6 -2 -2 0 0 0 0 -3 1 -2 -2 2 2 

X2I 3 3 -1 -1 -3 -3 1 1 3 -1 -1 -1 1 1 

X22 9 -3 -3 1 3 -3 1 -1 0 0 3 -1 -3 1 

X23 9 -3 -3 1 3 -3 1 -1 0 0 -3 1 3 -1 

X24 9 -3 -3 1 -3 3 -1 1 0 0 3 -1 -3 1 

X25 9 -3 -3 1 -3 3 -1 1 0 0 -3 1 3 -1 
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Table 3.3.9 : The character table of 24 
: S3 x S3 • 
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class Y2 e1Y2 X3 e1X3 e3X3 e 1e3X3 Y3 W1 e3W1 W2 e1W2 

h; 8 24 36 36 36 36 64 48 48 48 48 

Ca(x) 72 24 16 16 16 16 9 12 12 12 12 

Xi 1 1 1 1 1 1 1 1 1 1 1 

X2 -1 -1 0 0 0 0 -1 0 0 -1 -1 

X3 1 1 -1 -1 -1 -1 1 -1 -1 1 1 

X4 2 2 0 0 0 0 -1 -1 -1 0 0 

X5 -2 -2 0 0 0 0 -1 0 0 0 0 

XB 2 2 0 0 0 0 -1 1 1 0 0 

X1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 

Xs -1 -1 0 0 0 0 -1 0 0 1 1 

X9 1 1 1 1 1 1 1 -1 -1 -1 -1 

X10 3 -1 1 1 -1 -1 0 0 0 1 -1 

X11 -3 1 0 0 0 0 0 0 0 -1 1 

Xi2 3 -1 -1 -1 1 1 0 0 0 1 -1 

Xi3 3 -1 -1 -1 1 1 0 0 0 -1 1 

Xi4 -3 1 0 0 0 0 0 0 0 1 -1 

Xi5 3 -1 1 1 -1 -1 0 0 0 -1 1 

Xi6 0 0 1 -1 1 -1 0 1 -1 0 0 

Xi1 0 0 0 0 0 0 0 -1 1 0 0 

Xis 0 0 -1 1 -1 1 0 1 -1 0 0 

Xi9 0 0 -1 1 -1 1 0 -1 1 0 0 

X20 0 0 0 0 0 0 0 1 -1 0 0 

X2i 0 0 1 -1 1 -1 0 -1 1 0 0 

X22 0 0 1 -1 -1 1 0 0 0 0 0 

X23 0 0 -1 1 1 -1 0 0 0 0 0 

X24 0 0 -1 1 1 -1 0 0 0 0 0 

X25 0 0 1 -1 -1 1 0 0 0 0 0 . 
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Table 3.3.9 : The Character Table of 24 
: S3 x S3 ( continued). 
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3.4 The character table of a Group of the form 24 : S4 

Again we let G = N : G where N is an elementary abelian 2-group of order 16 and G = S4 . The 

symmetric group S4 is generated by (1 2) and (l 2 3 4). By identifying (1 2) and (1 2 3 4) with 

0 1 0 0 0 1 0 0 

1 0 0 0 0 0 1 0 
91 and 92 -

0 0 1 0 0 0 0 1 

0 0 0 1 1 0 0 0 

respectively, we can regard S4 as the subgroup (91, 92) of GL4(2) ~ S6. Then we act the group 

(91, 92) naturally on ¼(2) ~ N. 

To determine the conjugacy classes of G we need the conjugacy table of S4 for the cosets of G / N 

and for this purpose, we use the character table of G = S4 • We may again use the method discussed 

in chapter 1, section 1.2. We act N and C0 (9) on the cosets N 9 as follows: 

• 9 = 1: 

The identity of G fixes all elements of N, so k = 16. Under the action of Cc(lc) = G on Nl, 

we obtain 

and so the following classes of G from the coset N: 

IC0 (l)I = 16 x 24 = 384 

IC0 (ei)I = 16 x 24 + 4 = 96 

IC0(e1e2)I = 16 x 24 + 6 = 64 

IC0(e1e2e3)I = 16 x 24 + 4 = 96 

IC0(e1e2e3e4)1 = 16 x 24 = 384 
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• g E (2A) : 

g -

0 1 0 0 

1 0 0 0 

0 0 1 0 

0 0 0 1 

With the action of g on N we get k = 8 and the action of Ca(xi) gives us 

f1 = 1, fi = 1, h = 2, J~ = 1 f5 = 1 and J;, = 2 

Also ICa(g)I = 4 and we obtain 

ICa(g)I = 32 

ICa(e1g)I = 32 

ICa(e3g)I = 16 

ICa(e1e3g)I = 16 

I Ca( e3e4g)I = 32 

ICa(e1e3e4g)I = 32 

• g E (3A) : 

g 

0 1 0 0 

0 0 1 0 

1 0 0 0 

0 0 0 1 

This case gives us k = 4 and Ji = 1, for each i = 1, 2, 3, 4. ICa(g)J = 3 and we obtain 
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ICc(g)I = 12 

ICa(e1g)I = 12 

ICc(e4g)I = 12 

I Cc( e1 e4g) I = 12 

• g E (2B) : 

0 1 0 0 

1 0 0 0 
g = 

0 0 0 1 

0 0 1 0 

We have k = 4 and 

!1 = 1, Ji = 2, and h = l 

ICa(g)I = 8 and we obtain 

ICc(g)I = 32 

ICa(e1g)I = 16 

ICa(e1e3g)I = 32 

• g E ( 4A) : 

0 1 0 0 

0 0 1 0 
g = 

0 0 0 1 

1 0 0 0 

This case gives us k = 2 and Ji= 1, for each i = 1, 2. We have ICa(g)I = 4 and so we obtain 
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ICa(g)I = 8 

ICa(e1g)I = 8 

which gives us the conjugacy table of G. 

class 1 (2i) (22) 

no. of elements 1 4 6 

centralizer 384 96 64 

(23) (24) (25) (26) (27) 

4 1 12 12 24 

96 384 32 32 16 

Table 3.4.1 : The conjugacy table of 24 : S4 . 

class (31) (32) (33) (34) (211) (212) (213) 

no. of elements 32 32 32 32 12 24 12 

centralizer 12 12 12 12 32 16 32 

(2s) 

12 

32 

( 4i) 

48 

8 

Table 3.4.2 : The conjugacy table of 24 : S4( continued). 

(2g) (210) 

12 24 

32 16 

(42) 

48 

8 

We can now calculate the Fischer matrices. From the action of G on Irr( N) we obtain five orbits. 

From each of these orbits, we determine the inertia groups H; where i = 1, 2, 3, 4, 5. Then we obtain 

the following inertia factors 

S3 and H4 = ((12), (34)). 

The character tables of these inertia factors are: 
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class 1 (2A) (3A) (2B) (4A) 

no. of elements 1 6 3 3 6 

centralizer 24 4 3 8 4 

1/J1 1 1 1 1 1 

1/J2 1 -1 1 1 -1 

1/)3 2 0 -1 2 0 

1/)4 3 1 0 -1 -1 

1/)5 3 -1 0 -1 1 

Table 3.4.3 : The character table of H 1 . 

class 1 (2A) (3A) 

no. of elements 1 3 2 

centralizer 6 2 3 

</>1 1 1 1 

c/>2 1 -1 1 

¢3 2 0 -1 

Table 3.4.4 : The character table of H2 

class 1 (2A) (2B) (2C) 

no. of elements 1 1 1 1 

centralizer 4 4 4 4 

<I> 1 1 1 1 1 

<I>2 1 1 -1 -1 

<l>3 1 -1 1 -1 

<I> 4 1 -1 -1 1 

Table 3.4.5 : The character table of H4 • 

and their fusion maps into G are: 
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S3 G 

1 1 

2A 2A 

3A 3A 

Table 3.4.6. 

H4 G 

1 1 

2A 2A 

2B 2A 

2C 2B 

Table 3.4. 7 

Next we use the relations of Theorem 3.2.5. again to calculate the Fischer matrices which are: 

• g =la: 

24 

6 

M(l) = 4 

6 

24 

384 96 64 96 384 

1 1 1 1 1 

4 2 0 -2 -4 

6 0 -2 0 6 

4 -2 0 2 -4 

1 -1 1 -1 1 
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• g E (2A) : 

32 32 16 32 32 16 

4 1 1 1 1 1 1 

2 2 -2 0 2 -2 0 

2 2 -2 0 -2 2 0 
M(g) = 

4 1 1 -1 1 1 -1 

4 1 1 -1 -1 -1 1 

4 1 1 1 -1 -1 -1 

• g E (3A) : 

12 12 12 12 

3 1 1 1 1 

3 1 1 -1 -1 
M(g) = 

3 1 -1 1 -1 

3 1 -1 -1 1 

• gE(4A): 

32 16 32 

8 1 1 1 

M(g) = 4 2 0 -2 

8 1 -1 1 
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• g E (2B) : 

8 8 

M(g) = 4 ( 1 1 ) 
4 1 -1 

We can now determine the character table G. As with the example in section 3.3, we just need 

to multiply the rows of the matrix M(g) with sections of the character tables of the inertia factors 

corresponding to g. 

There are five inertia factors, so the characters of G fall into five blocks. 

The character table of G is as follows: 
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class 1 (21) (22) (23) (24) (25) (26) (21) (2s) (2g) (210) 

no. of elements 1 4 6 4 1 12 12 24 12 12 24 

centralizer 384 96 64 96 384 32 32 16 32 32 16 

X1 1 1 1 1 1 1 1 1 1 1 1 

X2 1 1 1 1 1 -1 -1 -1 -1 -1 -1 

X3 2 2 2 2 2 0 0 0 0 0 0 

X4 3 3 3 3 3 1 1 1 1 1 1 

X5 3 3 3 3 3 1 1 1 1 1 1 

X6 4 2 0 -2 -4 2 -2 0 2 -2 0 

X1 4 2 0 -2 -4 -2 2 0 -2 2 0 

Xs 8 4 0 -4 -8 0 0 0 0 0 0 

X9 6 0 -2 0 6 2 2 -2 0 0 0 

X10 6 0 -2 0 6 0 0 0 2 2 -2 

Xu 6 0 -2 0 6 0 0 0 -2 -2 2 

X12 6 0 -2 0 6 -2 -2 2 0 0 0 

Xl3 4 -2 0 2 -4 2 -2 0 -2 2 0 

X14 4 -2 0 2 -4 -2 2 0 2 -2 0 

X15 8 -4 0 4 -8 0 0 0 0 0 0 

Xl6 1 -1 1 -1 1 1 1 1 -1 -1 -1 

X11 1 -1 1 -1 1 -1 -1 -1 1 1 1 

Xis 2 -2 2 -2 2 0 0 0 0 0 0 

XI9 3 -3 3 -3 3 1 1 1 -1 -1 -1 
I 

I X20 3 -3 3 -3 3 -1 -1 -1 1 1 1 

Table 3.4.8 : The character table of 24 
: S4 • 
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class (3i) (32) (33) (34) (211) (212) (213) (41) (42) 

no. of elements 32 32 32 32 12 24 12 48 48 

centralizer 12 12 12 12 32 16 32 8 8 

X1 1 1 1 1 1 1 1 1 1 

X2 1 1 1 1 1 1 1 -1 -1 

X3 -1 -1 -1 -1 -2 -2 -2 0 0 

X4 0 0 0 0 -1 -1 -1 -1 -1 

X5 0 0 0 0 -1 -1 -1 l 1 

X6 1 1 -1 -1 0 0 0 0 0 

X7 1 1 -1 -1 0 0 0 0 0 

Xs -1 -1 1 1 0 0 0 0 0 

X9 0 0 0 0 2 0 -2 0 0 

X10 0 0 0 0 -2 0 2 0 0 

X11 0 0 0 0 -2 0 2 0 0 

X12 0 0 0 0 2 0 -2 0 0 

Xt3 1 -1 1 -1 0 0 0 0 0 

Xt4 1 -1 1 -1 0 0 0 0 0 

Xt5 -1 1 -1 1 0 0 0 0 0 

Xt6 1 -1 -1 1 1 -1 1 1 -1 

Xt7 1 -1 -1 1 1 -1 1 -1 1 

Xts -1 1 1 -1 -2 2 -2 0 0 

Xt9 0 0 0 0 -1 1 -1 -1 1 

X20 0 0 0 0 -1 1 -1 1 -1 

Table 3.4.8 : The character table of 24 : S4 ( continued). 
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3.5 The Character Table of a Group the form 24 : S3 x S3 

Let G = N : G where N is as defined in the previous two examples and G = 53 x 53 . The action 

of G on N, given by CA YLEY [1], is different from the action in section 3.3, so G is a different 

extension of N by G. 

We start to determine the conjugacy classes of G by giving the character table of 53 x 53 again. 

class IA 2A 2B 2C 3A 3B 3C 6A 6B 

no. of elements 1 3 3 9 2 2 4 6 6 

centralizer 36 12 12 4 18 18 9 6 6 

1P1 1 1 1 1 1 1 1 1 1 

1P2 2 2 0 0 2 -1 -1 0 -1 

7P3 1 1 -1 -1 1 1 1 -1 1 

7P4 2 0 2 0 -1 2 -1 0 -1 

7P5 4 0 0 0 -2 -2 -1 0 0 

7P6 2 0 -2 0 -1 2 -1 1 0 

7P7 1 -1 1 -1 1 1 1 1 -1 

7P8 2 -2 0 0 2 -1 -1 0 1 

lpg 1 -1 -1 1 1 1 1 -1 -1 

Table 3.5.1 : The character table of 53 x 53. 

Using the same method as that in the previous sections we determine the the conjugacy classes of G 

by acting N and Cc(g) on the cosets Ng as follows: 

• g =le: 

All elements of N = { (0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 1, 0), (1, 0, 0, 1 ), (0, 1, 1, 0), 

(0, 1, 0, 1), (0, 0, 1, 0), (1, 1, 1, 0), (1, 0, 0, 0), (1, 0, 1, 1), (0, 0, 0, 1), (1, 1, 0, 0), 

(0, 1, 1, 1), (1, 1, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0) }, are fixed, so k = 16. Under the action of Cc(lc) = 
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G on Nla, we obtain the following blocks: 

{(0, 0, 0, 0)}, 

{(l, 1, 1, 1), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 0), (1, 1, 1, 0), 

(1, 0, 0, 0), (1, 0, 1, 1), }, 

{ (0, 0, 0, 1), (1, 1, 0, 0), (0, 1, 1, 1), (1, 1, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0)}. So we have 

!1 = 1, h = 9, and h = 6 

and so the following classes of G from the coset N: 

IC0 (l)I = 16 x 36 = 576 

I C0 ( ( 1, 1, 1, 1) ) I = 16 x 36 + 9 = 64 

IC0 ( (0,o,o, 1) )I= 16 x 36 + 6 = 96 

• g E (2A) : 

g = 

1 0 0 0 

1 1 0 0 

0 0 1 0 

0 0 1 1 

With the action of g on N we get the orbits 

{ (0, 0, 0, 0), (1, 0, 1, 0), (0, 0, 1, 0), (1, 0, 0, 0) } 

{ (0, 1, 0, 1), (1, 1, 1, 1), (1, 1, 0, 1), (0, 1, 1, 1) } 

{ (0,0,l,l),(1,0,0,1),(1,0,1,1),(0,0,0,1)} 

{ (1, 1, 0, 0), (0, 1, 1, 0), (0, 1, 0, 0), (1, 1, 1, 0) } 

so that k = 4 

and the by the action of Ca(g) 

{ (0, 0, 0, 0), (1, 0, 1, 0), (0, 0, 1, 0), (1, 0, 0, 0) } is fixed while the other orbits are fused into one, 

giving us J1 = 1, and J2 = 3. Also ICa(g)I = 12 and we obtain 
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IC0 (g)I = 48 

IC0 ( (1, 1, 1, 1) g)I = 16 

• g E (2B) : 

g = 

1 0 1 0 

1 1 0 1 

0 0 1 0 

0 0 1 1 

This case gives us k = 4, Ji = 1 and / 2 = 3. ICa(g)I = 12 and we obtain 

IC0 (g)I = 48 

IC0 ( (1, 1, 1, 1) g)I = 16 

• g E (2C) : 

g = 

0 1 0 1 

0 1 0 0 

1 0 1 1 

1 1 0 0 

We have k = 4, Ji = 1, Ji= 1, and h = 2. ICa(g)I = 4 and we obtain 

ICa(g)I = 16 

IC0 ( (1, 1, 1, l)g )I= 16 

ICO( (1, o, 1, O)g )I = 8 

• g E (3A) : 

g = 

1 1 1 0 

0 0 1 1 

1 0 1 1 

1 1 0 0 
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We have k = l, and / 1 = 1. ICc(g)I = 18 and we obtain IC0 (g)I = 18 

• g E (3B) : 

g = 

1 0 1 0 

0 1 1 1 

1 0 0 0 

1 1 0 0 

We have k = 1, and f1 = 1. ICc(g)I = 18 and we obtain IC0 (g)I = 18 

• g E (3C) : 

g -

0 1 0 1 

0 1 0 0 

1 1 1 0 

1 1 0 1 

We have k = 4, J1 = 1, and J2 = 3. ICc(g)I = 9 and we obtain 

ICa(g)I = 36 

ICa( (1, 1, 1, l)g )I= 12 

• g E (6A) : 

1 0 1 0 

1 1 0 1 
g = 

1 0 0 0 

0 1 0 0 

We have k = l, and fi = 1. ICc(g)I = 6 and we obtain IC0 (g)I = 6 
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• g E (6B) : 

g 

1 0 1 0 

1 1 0 1 

1 0 0 0 

0 1 0 0 

We have k = 1, and !1 = 1. ICa(g)I = 6 and we obtain IC0 (g)I = 6 

We have completed the conjugacy table of G. We show it below. 

class 1 (2i) (22) (23) (24) (25) (26) 

Ca(x) 576 64 96 48 16 48 16 

(21) (2s) 

16 16 

Table 3.5.2 : The conjugacy table of 24 : S3 x S3 . 

class (3i) (32) (33) (34) (6i) (62) 

C0 (x) 18 18 36 12 6 6 

(2g) 

8 

Table 3.5.2 : The conjugacy table of 24 : S3 x S3( continued). 

From the action of G on Irr( N) we obtain three orbits. From each of these orbits, we determine the 

inertia groups Hi where i = 1, 2, 3, 4, 5 and hence the following inertia factors 

H1 - G, H2 a non-cyclic subgroup of G of order four which is generated by 

1 0 0 1 

0 1 0 0 

0 1 1 0 

0 0 0 1 

and 
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and H3 a non-abelian subgroup of G of order six which is generated by 

1 1 1 1 1 0 0 1 

0 0 1 1 0 1 0 0 
and 

0 1 1 0 0 1 1 0 

0 0 0 1 0 0 0 1 

The character tables of these inertia factors are that of G and: 

class 1 (2A) (3A) (2B) 

no. of elements 1 1 1 1 

centralizer 4 4 4 4 

'1/)1 1 1 1 1 

'1/)2 1 -1 1 -1 

'1/)3 1 1 -1 -1 

'1/)4 1 -1 -1 1 

Table 3.5.3 : The character table of H2 . 

class 1 (2A) (3A) 

no. of elements 1 3 2 

centralizer 6 2 3 

</>1 1 1 1 

</>2 1 -1 1 

<p3 2 0 -1 

Table 3.5.4 : The character table of H3 . 

and their fusion maps into G are: 
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H3 G 

1 1 

2A 2C 

3A 3C 

Table 3.5.5 

H2 G 

1 1 

2A 2C 

2B 2B 

2C 2A 

Table 3.5.6. 

vVe use the relations of Theorem 3.2.5. to calculate the Fischer matrices which are: 

• g =la: 

From the equations 

576 64 96 

36 

M(l) = 4 

6 

1 

9 

6 

36 + 4ial 2 + 6lcl 2 

36 + 36a + 36c 
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we obtain a 1 and c 

we get b -3 and c 

-2. Then from 

36 + 4b- 12d 

36 + 36b + 36d 

2. 

0 

O; 

and 

By using the appropriate relations, the other Fischer matrices are determined: 

• g E (2A) : 

48 16 

• g E (2B) : 

48 16 
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• 9 E (2C) : 

• g E (3A) : 

• 9 E (3B) : 

• 9 E (2C): 

16 16 

4 1 1 

M(g) = 4 1 1 

2 2 -2 

18 

M(g) = 18 ( 1 ) 

18 

fv[ (g) = 18 ( 1 ) 

M(g) = 9 
3 
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• g E (6A) : 

6 

M(g) = 6 ( 1 ) 

• g E (6B) : 

6 

M(g) = 6 ( 1 ) 

To determine the character table of G, we just need to multiply the rows of the matrix ivl(g) with 

sections of the character tables of the inertia factors corresponding to g. The characters of G fall 

into three blocks and are shown in the following table. 
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class 1 (2i) (22) (23) (24) (25) (26) (21) (2s) (2g) 

C0 (x) 576 64 96 48 16 48 16 16 16 8 

Xt 1 1 1 1 1 1 1 1 1 1 

X2 1 1 1 1 1 -1 -1 -1 -1 -1 

X3 1 1 1 -1 -1 -1 -1 1 1 1 

X4 1 1 1 -1 -1 1 1 -1 -1 -1 

X5 2 2 2 2 2 0 0 0 0 0 

XB 2 2 2 0 0 2 2 0 0 0 

X1 2 2 2 0 0 -2 -2 0 0 0 

Xs 2 2 2 -2 -2 0 0 0 0 0 

X9 4 4 4 0 0 0 0 0 0 0 

Xto 9 1 -3 3 -1 3 -1 1 1 -1 

X11 9 1 -3 -3 1 3 -1 -1 -1 1 

X12 9 1 -3 3 -1 -3 1 -1 -1 1 

Xt3 9 1 -3 -3 1 -3 1 1 1 -1 

Xt4 6 -2 2 0 0 0 0 2 -2 0 

Xt5 6 -2 2 0 0 0 0 -2 2 0 

Xt6 12 -4 4 0 0 0 0 0 0 0 

Table 3.5. 7 : The character table of 24 
: 53 x 53 . 
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class (31) (32) (33) (34) (6i) (62) 

C0 (x) 18 18 36 12 6 6 

X1 1 1 1 1 1 1 

X2 1 1 1 1 1 -1 

X3 1 1 1 1 -1 -1 

X4 1 1 1 1 -1 1 

X5 2 -1 -1 -1 -1 0 

X6 -1 2 -1 -1 0 -1 

X1 -1 2 -1 -1 0 1 

Xs 2 -1 -1 -1 1 0 

X9 -2 -2 1 1 0 0 

X10 0 0 0 0 0 0 

X11 0 0 0 0 0 0 

X12 0 0 0 0 0 0 

XI3 0 0 0 0 0 0 

XI4 0 0 3 -1 0 0 

X15 0 0 3 -1 0 0 

X16 0 0 -3 1 0 0 

Table 3.5.7: The character table of 24
: S3 x S3 (continued). 

For the completion of the character table of G most of the calculations were done by CAYLEY[l]. 
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Summary 

The work done in this mini thesis deals mainly with different methods of calculating character tables 

of split extensions of finite groups. Three of the six character tables that are calculated are done 

with the use of Fischer matrices. In this work the method of Fischer is applied on groups of the 

form N.G where N is an elementary abelian group. In fact, only one of the six groups of which the 

character tables are calculated, is not of this form and so Fischer matrices could easily have been 

used to calculate five of the character tables. The aim of the work done here however is to exhibit a 

variety of methods to calculate the character tables of split extensions. 

In Chapter one a review of basic definitions and results on group extensions and a description of a 

method for finding the conjugacy tables of group extensions is given. An example on the application 

of this method is also given. Chapter two deals with basic concepts and results on representa- tion 

and character theory as well as the application of some of these results in calculating the character 

tables of some group extensions. In Chapter three we discuss Fischer matrices and how it is used to 

calculate the character tables of group extensions of the form N.G where N is an elementary abelian 

group. 
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