DEVELOPMENT AND IMPLEMENTATION OF

ONTOLOGY-BASED SYSTEMS FOR

MAMMALIAN GENE EXPRESSION

PROFILING

August 2009

Advisor: Prof. Winston Hide

UNIVERSITY of the WESTERN CAPE

Keywords

ontology
expression vocabulary
gene expression
cross-species
comparison
human development
mouse development
cancer/testis
$\begin{array}{ll} & \text { UNIVERSITY of the } \\ \text { transcription factor } & \text { WESTERN CAPE }\end{array}$
gene regulation

Abstract

The use of ontologies in the mapping of gene expression events provides an effective and comparable method to determine the expression profile of an entire genome across a large collection of experiments derived from different expression sources. In this dissertation I describe the development of the developmental human and mouse eVOC ontologies and demonstrate the ontologies by identifying genes showing a bias for developmental brain expression in human and mouse, identifying transcription factor complexes, and exploring the mouse orthologs of human cancer/testis genes.

Model organisms represent an impertant reseurce for understanding the fundamental aspects of mammalian biology. Mapping of biological phenomena between model organisms is complex and if it is to be meaningful, a simplified representation can be a powerfut means for comparison.

\section*{WESTERN CAPE}

The implementation of the ontologies has been illustrated here in two ways. Firstly, the ontologies have been used to illustrate methods to determine clusters of genes showing tissue-restricted expression in humans. The identification of tissue-restricted genes within an organism serves as an indication of the finetuning in the regulation of gene expression in a given tissue. Secondly, due to the differences in human and mouse gene expression on a temporal and spatial level, the ontologies were used to identify mouse orthologs of human cancer/testis genes showing cancer/testis characteristics. With the use of model systems such as mouse in the development of gene-targeted drugs in the treatment of disease, it is

important to establish that the expression characteristics and profiles of a drug target in the model system is representative of the characteristics of the target in the system for which it is intended.

UNIVERSITY of the WESTERN CAPE

Declaration

I declare that "Development and implementation of ontology-based systems for mammalian gene expression profiling" is my own work, that it has not been submitted for degree or examination at any other university, and that all the resources I have used or quoted, and all work which was the result of joint effort, have been indicated and acknowledged by complete references.

Adéle Kruger

UNIVERSITY of the WESTERN CAPE

Acknowledgements

I would like to thank my supervisor and mentor, Professor Winston Hide, for his guidance and support throughout this epic journey. His encouragement and work ethic has provided me with the opportunity to attend and present at international conferences, allowing me to establish collaborations with world-renowned scientists in the field. It has been a pleasure and a privilege to work with someone who is so invested in the success of his students.

I would also like to thank Oliver Hofmann for his endless patience and support in the research we have conducted together. His insight and advice has played a key role in the completion of this thesis.

To Christopher Maher for his contributions to the cancer/testis research and support in understanding Perl, thank you. Many thanks to my friends and colleagues at SANBI especially Feriak Mullins, Maryam Salie, Judith Jansen, Patricia Josias and Dale Gibbs, who have provided administrative, technical and moral support. Also, a special 'thank you' to Betty Cheng and Russ Altman for their guidance and advice with respect to making a career out of bioinformatics.

In bioinformatics, collaborators play a pivotal role in all research endeavors. I would like to express my gratitude to all those who have contributed to the success of the research presented here. I would especially like to thank Yoshihide Hayashizaki, Piero Carninci and Harukazu Suzuki for their mammoth efforts in the establishment and success of the FANTOM consortium, without which this research would not have been possible. I would also like to extend gratitude and
thanks to all the members of the FANTOM consortium and the RIKEN institute in Japan for their involvement in the provision and analysis of data used in producing this thesis. I thank Duncan Davidson for his feedback during the initial phase of ontology development, Lloyd Old and Andrew Simpson from the Ludwig Institute for Cancer Research (LICR), as well as the members of the Melanoma Research Alliance (MRA) for their contributions to the cancer/testis research.

Without funding we would not be able to conduct exciting and cutting-edge research. I would therefore like to take this opportunity to acknowledge the funding agencies and projects that contributed to my research and bioinformatics education. I am especially grateful to the Stanford-South Africa Biomedical Informatics (SSABMI) program funded by the Fogarty International Center (Grant TW-03-008) for funding not only my research but also a research visit to Stanford - an invaluable experience that contributed greatly to my education. The National Bioinformatics Network (NBN) of South Africa and Alternate Transcript Diversity group EU FP programme also funded this research directly. The Medical Research Council (MRC) of South Africa, World Health Organisation (WHO), Oppenheimer Trust and Atlantic Philanthropies funded the projects represented in this thesis and provided financial support for travel. I would also like to acknowledge the funding agencies of our collaborators, RIKEN, FANTOM, LICR and MRA, because without them we would not have any research collaborators or data with which to conduct science.

On a personal note, I would like to thank my family and friends. Special thanks go to my cousins Johan and Margaret, as well as my aunts Doreen and Mariette for their moral and financial support. I would also like to thank my sister, Marlise, and her husband, Louis-Jacques, for their continuous support. To my best friend, Anrinette, thank you for always believing in me, even when at times I did not. Also, I will be eternally grateful to my mom for understanding the importance of an education and making the sacrifices she did in order for me to be where I am today.

Lastly, I would like to thank my Heavenly Father for providing me with the strength and inspiration necessary to complete such a journey as this.

UNIVERSITY of the WESTERN CAPE

Publications arising from this thesis

Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa ${ }^{\text {S }}$, Nợri_F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y. The
transcriptional landscape of the mammalian genome. Science. 2005. 309(5740):1559-1563.

Bajic VB, Tan SL, Christoffels A, Schonbach C, Lipovich L, Yang L, Hofmann O, Kruger A, Hide W, Kai C, Kawai J, Hume DA, Carninci P, Hayashizaki Y. Mice and men: their promoter properties. PLoS Genet. 2006. 2(4):e54.

Kruger A, Hofmann O, Carninci P, Hayashizaki Y, Hide W. Simplified ontologies allowing comparison of developmental mammalian gene expression. Genome Biol. 2007. 8(10):R229.

Hofmann O, Caballero OL, Stevenson BJ, Chen YT, Cohen T, Chua R, Maher CA, Panji S, Schaefer U, Kruger A, Lehvaslaiho M, Carninci P, Hayashizaki Y, Jongeneel CV, Simpson AJ, Old LJ, Hide W. Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci US A. 2008. 105(51):2042220427.

Suzuki H, Forrest AR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM, Lassmann T, Ravasi T, Hasegawa Y, de Hoon MJ, Katayama S, Schroder K, Carninci P, Tomaru Y, Kanamori-Katayama M, Kubosaki A, Akalin A, Ando Y, Arner E, Asada M, AsaharalH, Bailey T, Bajic VB, Bauer D, Beckhouse AG, Bertin N, Bjorkegren J, Brombacher F, Bulger E, Chalk AM, Chiba J, Cloonan N, Dawe A, Dostie J, Engstrom PG, Essack M, Faulkner GJ, Fink JL, Fredman D, Fujimori K, Furuno M, Gojobori T, Gough J, Grimmond SM, Gustafsson M, Hashimoto M, Hashimoto T, Hatakeyama M, Heinzel S, Hide W, Hofmann O, Hornquist M, Huminiecki L, Ikeo K, Imamoto N, Inoue S, Inoue Y, Ishihara R, Iwayanagi T, Jacobsen A, Kaur M, Kawaji H, Kerr MC, Kimura R, Kimura S, Kimura Y, Kitano H, Koga H, Kojima T, Kondo S, Konno T, Krogh A, Kruger A, Kumar A, Lenhard B, Lennartsson A, Lindow M, Lizio M, Macpherson C, Maeda N, Maher CA, Maqungo M, Mar J, Matigian NA, Matsuda H, Mattick JS, Meier S, Miyamoto S, Miyamoto-Sato E, Nakabayashi K, Nakachi Y, Nakano M, Nygaard S, Okayama T, Okazaki Y, Okuda-Yabukami H, Orlando V, Otomo J, Pachkov M, Petrovsky N, Plessy C, Quackenbush J, Radovanovic A, Rehli M, Saito R, Sandelin A, Schmeier S, Schonbach C, Schwartz AS, Semple CA, Sera

M, Severin J, Shirahige K, Simons C, St Laurent G, Suzuki M, Suzuki T, Sweet MJ, Taft RJ, Takeda S, Takenaka Y, Tan K, Taylor MS, Teasdale RD, Tegner J, Teichmann S, Valen E, Wahlestedt C, Waki K, Waterhouse A, Wells CA, Winther O, Wu L, Yamaguchi K, Yanagawa H, Yasuda J, Zavolan M, Hume DA, Arakawa T, Fukuda S, Imamura K, Kai C, Kaiho A, Kawashima T, Kawazu C, Kitazume Y, Kojima M, Miura H, Murakami K, Murata M, Ninomiya N, Nishiyori H, Noma S, Ogawa C, Sano T, Simon C, Tagami M, Takahashi Y, Kawai J, Hayashizaki Y. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet. 2009. 41(5):553-562.

UNIVERSITY of the WESTERN CAPE

Table of Contents

Keywords ii
Abstract iii
Declaration v
Acknowledgements vi
Publications arising from this thesis ix
Table of Contents xii
List of FiguresList of TablesList of Appendices
xiii
xiii
xivxvi
AbbreviationsUNIVERSITY of thexviii
WESTERN CAPE Prefacexx
Chapter 1: Simplified ontologies allowing comparison of developmental mammalian gene expression 1
Chapter 2: Expression profiling reveals tissue-restricted transcription factor complexes 32
Chapter 3: Mouse gene expression analysis of cancer/testis orthologs restricts candidates for cancer therapy 55
Conclusions 70
Afterword 75
References 79

List of Figures

Chapter 1

Figure 1: Venn diagram illustrating the integration of mouse and human ontologies represented by the eVOC system.

Figure 2: Screenshot of the Mouse Development ontology, visualized in COBrA.

Figure 3: Screenshot of the individual Theiler Stage 13 ontology, visualized in COBrA .

Figure 4: Diagram illustrating the sets of genes analyzed for developmental brain expression bias.

Chapter 2

UNIVERSITY of the

Figure 1a: Illustration of genes clustering together based on correlated co-expression.

Figure 1b: Illustration of genes clustering together based on correlated co-expression.

Chapter 3

Figure 1: Flow-diagram representing the categorisation of mouse genes into cancer/testis categories.

Figure 2: Visualisation of the gene expression profile of 63 mouse orthologs.

List of Tables

Preface

Table 1: A list of ontologies available from the Open Biomedical Ontologies (OBO) Foundry. xxii

Chapter 1

Table 1: Statistics of the individual developmental eVOC ontologies, representing the alignment between human and mouse stages.19

Table 2: Genes showing developmental expression bias in human and mouse brain.

Chapter 2

UNIVERSITY of the
WESTERN CAPE
Table 1: A list of the 145 genes expressed in less than 25% of all tissues.

Table 2a: The top five physiological system development and functions over-represented by genes showing restricted expression.49

Table 2 b : The top five diseases and disorders associated with the genes showing restricted expression in less than 25% of all tissues.51

Table 3: A list of canonical pathways over-represented by genes showing restricted expression in less than 25% of all tissues.

Chapter 3

Table 1: Classification of categories for cancer/testis genes.

Table 2: Gene identifiers and symbols of mouse genes showing testisrestricted, testis/brain-restricted or testis-selective expression, along with their human orthologs.

UNIVERSITY of the
WESTERN CAPE

List of Appendices

Chapter 1

Appendix I: Transcriptional landscape of the mammalian genome, Science. 2005. 309(5740):1559-1563. 84
Appendix II: Mice and men: their promoter properties. PLoS Genet. 2006. 2(4):e54. 89
Appendix III: Correlation coefficients of genes showing biased expression for the developmental brain in human and mouse 102
Appendix IV: Expression profile of genes showing biased expression for the developmental brain in human and mouse 106HEIIE II
Appendix V: The individual mouse developmental ontologies 114
Appendix VI: The merged mouse developmental ontologies 154
UNIVERSITY of the
WESTERN CAPE
Chapter 2
Appendix VIIa: The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet. 2009. 41(5):553-562. 161
Appendix VIIb: Clusters of genes from Illumina microarray expression experiment with early, mid and late response characteristics 171
Appendix VIII: Expression profile of transcription factors showing tissue restriction 176

Chapter 3

Appendix IX: Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci U S A. 2008. 105(51):20422-20427.183
Appendix X: Manual curation steps applied in filtering the expression
array generated for the investigation of 63 potential mouse
cancer/testis genes 189

Appendix XI: Expression profile of mouse orthologs of human cancer/testis genes

UNIVERSITY of the
WESTERN CAPE

```
                    Abbreviations
CAGE - Cap Analysis of Gene Expression
CGAP - Cancer Genome Anatomy Project
CT - cancer/testis
DAG - Directed Acyclic Graph
EMAP - Edinburgh Mouse Atlas Project
EST - Expressed Sequence Tag
FMA - Foundational Model of Anatomy
```



```
GO - Gene Ontology
```



```
GOI-list - Genes Of Interest list
HUMAT - Edinburgh Human Developmental Anatomy
LPS - lipopolysaccharide
MA - Adult Mouse Anatomy
MGED - Microarray Gene Expression Data Society
MGI - Mouse Genome Informatics
MPSS - Massively Parallel Signature Sequencing
NCBI - National Center for Biotechnology Information
OBO - Open Biomedical Ontologies
```

OMIM - Online Mendelian Inheritance in Man

PMA - Phorbol Myristate Acetate

SAEL - SOFG Anatomy Entry List

SAGE - Serial Analysis of Gene Expression

TSS - Transcription Start Site

UNIVERSITY of the
WESTERN CAPE

Preface

In the post-genomic era, much of the focus of research has shifted from identifying each gene in the human genome, to creating a catalogue of genes listing their corresponding function, regulatory potential, expression profile and disease involvement.

Each cell in an organism contains a complete copy of its genome, thereby providing the expression potential of the organism. Since cells do not simultaneously express all genes in the genome, it is important to determine the location and timing of each gene expression event. This expression profiling can lead to the identification of genes biased in their expression for the developmental program or diseases such as cancer. The identification of genes whose expression is biased for tumorigenic tissues provides the context for the development of drugs or vaccines in the treatment of cancer. The significance of this knowledge is also evident when comparing two species whose genomes show considerable overlap. For example, an orthologous gene may be expressed in both human and mouse but will not necessarily share the same expression profile in both species. Therefore, knowing when and where a gene is expressed is of great importance in drug discovery for disease treatment and understanding the relationship between human genes and their counterparts in the model organisms.

A popular technique used to determine the expression status of a cell is to create a cDNA library from which expressed sequence tags are derived. An expressed sequence tag (EST) is a 200-800 nucleotide sequence from a cDNA clone. An

EST is generated randomly and represents a segment of an mRNA molecule (Adams et al., 1991; Nagaraj et al., 2007). The source of ESTs, namely mRNA, enables these tags to provide a view of the expression state of a cell by identifying the mRNA being expressed in a particular cell at any given time.

Although ESTs provide insights into many biological phenomena such as gene discovery, alternative transcript identification and genome annotation (Nagaraj et al., 2007), the EST transcripts are generated by single-pass sequencing and are therefore very susceptible to errors. The advantage of using ESTs in exploring cellular gene expression lies in their low complexity and cost-effectiveness. Since the use of any technology is dietated by its financial impact, ESTs will continue to be a popular low-cost method among researchers as the current, high-impact sequencing methods become more established.

With the continuous generation of genome-scale data, it is imperative that the biological data be annotated in such a way that it is possible to adequately share and compare data from different biological sources, experiments or laboratories. Since 2000 (Stevens et al., 2000), ontologies have become an accepted method in bioinformatics with which to describe experimental tissue sources and gene expression data. Table 1 lists the 26 anatomical ontologies available from the Open Biomedical Ontology (OBO) Foundry (Smith et al., 2007) as of August 2009. The OBO Foundry provides a library of reference ontologies for the biomedical domain. Strict requirements need to be met for an ontology to be endorsed by the OBO Foundry such as providing a definition for every term within the ontology. Since the implementation of the OBO requirements, the

Table 1

A list of ontologies available from the Open Biomedical Ontologies (OBO) Foundry. The eVOC ontology is not officially distributed via the OBO foundry, but is included here to give context.

Ontology	Namespace
Common Anatomy Reference Ontology	CARO
Subcellular anatomy ontology	SAO
Teleost anatomy and development	TAO
C. elegans gross anatomy	WBbt
Spider Ontology	SPD
Mouse adult gross anatomy	MA
Mouse gross anatomy and development	EMAP
Amphibian gross anatomy	AAO
Drosophila gross anatomy	FBbt
Fungal gross anatomy	FAO
Cellular component	GO
Xenopus anatomy and development	XAO
Plant growth and developmental stage	PO
Plant structure	PIVERSITY of
Spatial Ontology	BSPO
C. elegans development	WBls
Mosquito gross anatomy	TGMA
Drosophila development	FBdv
Human developmental anatomy, timed version	EHDA
Dictyostelium discoideum anatomy	DDANAT
Zebrafish anatomy and development	ZFA
Tick gross anatomy	TADS
Foundational Model of Anatomy (subset)	FMA
Medaka fish anatomy and development	MFO
Cell type	CL
Human developmental anatomy, abstract version	EHDAA
eVOC Expression vocabulary	

eVOC ontology is no longer part of the OBO distribution as it does not provide definitions for all its terms. It is an important aim of the project to be included in the OBO distribution and further curation of the ontologies will ensure this.

An ontology is a hierarchical vocabulary used to describe a particular domain, and consists of parent and child terms defined by relationships between them. The most well-known ontology is the Gene Ontology (Ashburner et al., 2000) which describes three domains: the cellular component, molecular function and biological process of an organism. Ontologies are used by most database systems where a user is able to select a search term from a drop-down menu to select, for example the FANTOM3 CAGE Basic Viewer where the user selects the tissue for which expression information is required (http://fantom3.gsc.riken.jp/).

The problem with ontologies is the inability to adequately compare human and mouse gene expression events computationally through ontologies due to their individual structures and inherent complexities. An effective tool to enable the ontological comparison between human and mouse will enable the direct interspecies comparison of gene expression events, providing insight into the differences and similarities between the species - an integral aspect of model organism biology.

Model organisms are an important part of biological research because they allow researchers to perform experiments that would be either unethical or fatal if performed on humans. For example, it is considered unethical to genetically modify a human embryo by creating a knock-out of a particular gene purely to determine a possible function for that gene. Model organisms therefore allow us
to study genes in vivo, they allow us to test experimental drugs for efficacy and lethality, and they enable us to explore gene expression events throughout the lifespan of the organism since its gestation and developmental periods are typically on a scale of days and weeks rather than months and years. The laboratory mouse is a particularly good model for studying cancer because mice have a high tumour incidence, are cheap and easy to handle, can be inbred to eliminate genetic variation effects, and many may be treated at a time to provide replicate data. However, in order for model organism experiments to be informative, it is imperative that we know and understand the similarities and differences between the models and humans. A robust system for comparing human and mouse biology and expression data is therefore critical.

This dissertation describes the development and implementation of an ontologybased system as a consistent approach to gene discovery. The processes required to successfully develop and apply a set of ontologies are to:

1) develop a set of ontologies;
2) map data to the ontologies by using them to annotate expression data; and
3) query the system to answer specific questions regarding the data.

Chapter 1 describes the development of a mouse ontology that conforms to the structure of an established human ontology to provide a tool to compare biological aspects of the two species. Both the mouse and human ontologies are also further developed to include the ontological representation of the developing mouse and human, enabling the alignment of mouse and human anatomical
structures for the annotation of expression events. In addition to developing the ontologies, this chapter also describes using the ontologies to annotate 8852 human and 1210 mouse cDNA libraries obtained from the Cancer Genome Anatomy Project (CGAP) as an initial dataset with which to illustrate the use of the ontologies.

The remaining two chapters describe how the ontologies developed in Chapter 1 are used in two major collaborations. Both chapters describe two aspects of each collaboration, namely a publication resulting from the collaborative efforts of all the members of the collaboration and an independent study I performed within each collaboration that is unpublished. therefore, for each chapter, briefly describe my role in the collaboration and the work I performed that resulted in the publications, and thereafter describe in detail the unpublished analyses.

Chapter 2 describes how the ontologies Ideveloped in Chapter 1 are used to determine the expression profile of human transcription factors. The investigation of the expression profile enables the identification of transcription factor complexes that show tissue-restricted expression patterns.

The analysis presented as Chapter 3 uses the ontologies described in Chapter 1 to explore the expression profile of the mouse orthologs of human cancer/testis genes with the aim of comparing the human and mouse expression profiles of these genes.

Chapter 1

Simplified ontologies allowing comparison of

developmental mammalian gene expression

1.1 Summary

The concept of creating a developmental mouse ontology that is structured in the same way as the existing human eVOC ontologies was suggested as a viable approach while establishing a collaboration as part of the FANTOM consortium a collaborative effort by many international laboratories with the aim to map out the transcriptional landscape of mouse and human. I was responsible for developing and applying the method of ontology generation for both the mouse and human developmental ontologies. I was also responsible for collecting and UNIVERSITY of the annotating the mouse and human $\mathrm{CGAP}_{\mathrm{CDNA}} \mathrm{cDN}$ libraries that have been mapped to the ontologies, as well as the data provided by the FANTOM3 project. The ontologies that I developed, along with the FANTOM data that I mapped to it, were incorporated into the FANTOM CAGE databases (CAGE Basic Viewer and CAGE Analysis Viewer) available online (http://fantom3.gsc.riken.jp/).

The FANTOM3 project culminated in a main publication in Science (of which I was co-author (Carninci et al., 2005)) as well as many satellite papers in PLoS Genetics - including a paper which I co-authored (Bajic et al., 2006). For 'The transcriptional landscape of the mammalian genome' published in Science (Appendix I), I was responsible for the development of the ontologies which were
used to annotate the expression data used in the paper. In the PLoS Genetics paper, 'Mice and men: their promoter properties' (Appendix II), the aim was to classify transcription start sites (TSS) based on the GC content of the 5 ' upstream region of each gene. I used the ontology system described in this chapter to provide the expression information for the dataset used in the paper, which shows enrichment of certain tissue categories in each of the four TSS categories identified (Table 6 of Appendix II). The methods and results for both analyses are described in detail in the publications appended.

In addition to developing the ontologies, I was responsible for preparing the manuscript describing the development and application of these ontologies, which is presented here as Chapter 1. My responsibilities included the development of the manuscript concept, all data generation and analysis, as well as the preparation and submission of the manuscript.

UNIVERSITY of the
Dr Yoshihide Hayashizaki and Dr Piero Carninci provided the request of the developmental ontologies as well as access to the FANTOM3 data. Dr Oliver Hofmann and Dr Winston Hide provided guidance regarding ontology development and application, and oversaw the production of the manuscript.

1.2 Aim

The aim of the work presented in this chapter is to develop an ontology system that enables the comparison of human and mouse anatomy throughout development. The use of the ontologies in the annotation of human and mouse
gene expression data provides a means to accurately compare gene expression between human and mouse, thereby identifying similar and unique gene expression patterns between the two species.

1.3 Background

1.3.1 Ontologies and gene expression

Biological investigation into mammalian biology employs standardized methods of data annotation by consortia such as MGED (Microarray Gene Expression Data Society) and CGAP (Cancer Genome Anatomy Project) or collaborative groups such as the Genome Network Project group at the Genome Sciences Centre at RIKEN, Japan (http://gsc.riken.go.jp/indexE.html). Data generated by these consortia include microarray, CAGE.(CapIAnalysis of Gene Expression), SAGE (Serial Analysis of Gene Expression) and MPSS (Massively Parallel Signature Sequencing) as well as cDNA and EST (Expressed Sequence Tags) libraries. The diversity of data types offers the opportunity to capture several views on concurrent biological events, but without standardization between these platforms and data types information is lost, reducing the value of comparison between systems. The terminology used to describe data provides a means for the integration of different data types such as EST or CAGE.

An ontology is a commonly used method of standardization in biology. It is often defined as a formal description of entities and the relationships between them, providing a standard vocabulary for the description and representation of terms in
a particular domain (Bard and Winter, 2001; Gkoutos et al., 2005). Given a need and obvious value in comparison of gene expression between species, anatomical systems and developmental states, we have set out to discover the potential and applicability of such an approach to compare mouse and human systems.

Many anatomical and developmental ontologies have been created, each focusing on their intended organisms. As many as 62 ontologies describing biological and medical aspects of a range of organisms can be obtained from the Open Biomedical Ontologies (OBO) website (http://www.obofoundry.org/), a system set up to provide well-structured controlled vocabularies of different domains in a single website. The Edinburgh Mouse Atlas Project (EMAP) (Baldock et al., 2003) and Adult Mouse Anatomy (MA) (Hayamizu et al., 2005) ontologies are the most commonly used ontologies to describe mouse gene expression, representing mouse development and adult mouse with 13730 (October, 2005) and 7702 (October, 2004) terms respectively. Mouse Genome Informatics (MGI), the most comprehensive mouse resource available, uses both ontologies. Human gene expression however, can be represented as developmental and adult ontologies by the Edinburgh Human Developmental Anatomy (HUMAT) ontology (Hunter et al., 2003) consisting of 8316 terms (October, 2005) and the mammalian Foundational Model of Anatomy (FMA) (Rosse and Mejino, 2003) consisting of more than 110000 terms (January, 2002). Selected terms from the above ontologies have been used to create a cross-species list of terms known as the SOFG Anatomy Entry List (SAEL) (Parkinson et al., 2004). Although these ontologies more than adequately describe the anatomical structures of the developing organism, with the exception of SAEL, they are structured as Directed

Acyclic Graphs (DAG), defined as a hierarchy where each term may have more than one parent term (Hayamizu et al., 2005). The DAG structure adds to the inherent complexity of the ontologies, hampering efforts to align them between two species, making the process of a comparative study of gene expression events a challenge.

Efforts are being implemented in order to simplify ontologies for gene expression annotation. The Gene Ontology (GO) Consortium's GO slim (Martin et al., 2004) contains less than 1% of terms in the GO ontologies. GO slim is intended to provide a broad categorization of cDNA libraries or microarray data when the fine-grained resolution of the originat GO ontologies are not required. Another set of simplified ontologies are those from eVOC (Kelso et al., 2003). The core eVOC ontologies consist of four orthogonal ontologies with a strict hierarchical structure to describe human anatomy, histology, development and pathology, currently consisting of 512, 180, 156 and 191 terms respectively (August, 2006). The aim of the eVOC project is to provide a standardized, simplified representation of gene expression, unifying different types of gene expression data and increasing the power of gene expression queries. The simplified representation achieved by the eVOC ontologies is due to the implementation of multiple orthogonal ontologies with a lower level of granularity than it's counterparts.

1.3.2 Mammalian development

The laboratory mouse is being used as a model organism to study the biology of mammals (Marra et al., 1999). The expectation is that these studies will provide insight into the developmental and disease biology of humans, coloured by the finding that 99% of the $25000-30000$ mouse genes may have a human ortholog (only 1% of mouse genes do not have a human ortholog) and at least 80% of mouse genes are $1: 1$ orthologs where the mouse sequence is the best match to the human sequence and vice versa (Waterston et al., 2002). Given the similarity between the two species, it is possible to perform functional experiments on mouse and transfer any knowledge obtained to enhance our understanding of human biology. In addition, cDNA libraries can be prepared from very early mouse developmental stages for gene expression analysis.

The study of developmental biology incorporates the identification of both the temporal and spatial expression patterns of genes expressed in the embryo and fetus (Magdaleno et al., 2006). It is important to understand developmental gene expression because many genetic disorders originate during this period (Lindsay and Copp, 2005). Similarities in behavior and expression profiles between cancer cells and embryonic stem cells (Kho et al., 2004) also fuel the need to investigate developmental biology.

Using mice as model organisms in research requires the need for comparison of resulting data and provides a means to compare mouse data to humans (Lindsay and Copp, 2005). The cross-species comparison of human and mouse gene expression data can highlight fundamental differences between the two species
such as greater olfactory and immune capabilities, impacting on areas as diverse as the effectiveness of therapeutic strategies in the treatment of cystic fibrosis or Alzheimer's to the elucidation of the components such as tail, fur and whiskers that determine species. Using ontology-annotated gene expression events to compare across species provides a structured and accurate means of identifying identical gene expression context between the species, particularly if the annotation of each species differs in granularity.

1.3.3 Cross-species gene expression comparison

Function of most human genes has been inferred from model organism studies, based on the transitive assumption that genes sharing sequence similarity also share function when conserved acress species (Zhou and Gibson, 2004). The same principle can be applied to gene regulation. The first step is to find not only the orthologs, but the commonly expressed orthologs. We predict that although two genes are orthologous between human and mouse, their expression patterns differ on the temporal and spatial level, indicating that their regulation may differ between the two species.

The terminology currently used to annotate human and mouse gene expression can be ambiguous (Eilbeck et al., 2005) among species since one term may be used to describe many different structures or one structure may be defined by more than one term, which is a result of different ontologies being used to annotate different species. The way in which we circumvented this issue is to
effectively map the ontology terms across species by using the same terminology for each species. This adaptation allows the integration of human and mouse ontologies as well as the comparison of the data it is used to annotate - a feature not possible with current ontologies. Although the EMAP, MA, HUMAT and FMA ontologies describe the anatomical structures throughout the development of the mouse and human, their complexities complicate the alignment of the anatomy between the two species. With the alignment of terms between a mouse and human ontology, the data mapped to each term becomes comparable, allowing efficient and accurate comparison of mammalian gene expression. A SAEL-related project, XSPAN (Dennis et al., 2003), is aimed at providing a web tool to enable users to find equivalent terms between ontologies of different species. Although useful, the ontologies used describe only spatial anatomy and are not temporal.

We have attempted to address the issue by developing simplified ontologies that allow the comparison of gene expression between human and mouse on a temporal and spatial level. The distribution of human and mouse anatomy terms across development match the structure of the human adult ontologies that form the core of the eVOC system.

Due to the ambiguous annotation of current gene expression data between human and mouse, and the lack of data mappings accompanying the available ontologies, the ontologies presented here have been developed in concert with semi-automatic mapping and curation of 8852 human and 1210 mouse cDNA libraries. We have therefore created a resource of simplified, standardized gene expression enabling
cross-species comparison of gene expression between mammalian species that is publicly available.

1.4 Materials and methods

1.4.1 Ontology development

The ontologies were constructed using the COBrA (Aitken et al., 2005) and DAG-edit (http://www.geneontology.org/GO.tools.shtml\#dagedit) ontology editors. Each term has a unique accession identifier with 'EVM' as the namespace for mouse and 'EV' for human, followed by seven numbers. This is consistent with the rules defined by the GO consortium (Ashburner et al., 2000).

Using the human adult eVOC anatomical system ontology as a template, terms from the Theiler stage 26 (mouse developmental stage immediately prior to birth) section of the EMAP ontology were inserted to create the Theiler stage 26 developmental eVOC mouse ontology. Proceeding from Theiler stage 26 to Theiler stage 1, each stage was used as a template for the next stage and any term not occurring at that specific stage, using EMAP as reference, was removed. Similarly, if a term occurred in EMAP that was not present in the previous stage, it was added to the ontology. The result is a set of 26 ontologies, one for each Theiler stage of mouse development, with many terms appearing and disappearing throughout the ontologies according to changes of anatomy during mouse development.

The Theiler stage 28 (adult mouse) ontology was constructed in the same way as the developmental ontologies, using the MA ontology as a reference. A previously not available Theiler stage 27 ontology was developed by comparing Theiler stage 26 and Theiler stage 28. Any terms that differed between the two stages were manually curated and included or removed in Theiler stage 27 as needed. The Theiler stage 27 ontology therefore represents all immature, postnatal anatomical structures. Theiler stage 28 ontology terms have been mapped to the adult human eVOC terms by using the human eVOC accession identifiers as database cross-references in the mouse ontology. Similarly, the EMAP accession number for each term was mapped to the developmental mouse ontologies. The result is a set of 28 ontologies that are an untangled form of the EMAP and MA ontologies, with mappings between them.

A set of human developmental ontologies were created by using the same method as was used for mouse. The reference ontologies for human development were the HUMAT ontologies, which describes the first 23 Carnegie stages of development, classified according to morphological characteristics.

The 28 mouse and 23 human ontologies were merged into two ontologies - one for mouse and one for human. Each merged ontology (named Mouse Development and Human Development) contains all terms present in the individual ontologies. A Theiler Stage ontology was created for mouse, which contains all 28 Theiler stages categorized into embryo, fetus or adult. The existing eVOC Development Stage ontology serves as the human equivalent of the mouse Theiler Stage ontology. The Mouse Development, Human

Development, Theiler Stage and the existing Development Stage ontologies form the core of the Developmental eVOC ontologies.

1.4.2 Data mapping

Mouse and human cDNA libraries were obtained from the publicly available CGAP resource (January, 2006) and mapped (semi-automated) to the entire set of eVOC ontologies. The eVOC ontologies consist of Anatomical System, Cell Type, Developmental Stage, Pathology, Associated With, Treatment, Tissue Preparation, Experimental Technique, Pooling and Microarray Platform. The 'age' annotation of the mouse CGAP libraries were manually checked against the Gene Expression Database (version 3.41; December, 2005) (Hill et al., 2004) to determine the Theiler stage of each library. Due to the lack of a resource providing the Carnegie stage annotation for cDNA libraries, the human cDNA libraries were annotated according to the age annotation originally provided by CGAP. Genes associated with each mouse and human cDNA library were obtained from NCBI's UniGene (March, 2006) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene). A list of humanmouse orthologs were obtained from HomoloGene (build 53) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene).

1.4.3 Data mining

The genes were filtered according to the presence or absence of expression evidence and homology. A gene passed the selection criteria if it has an ortholog and if both genes in the ortholog pair have eVOC-annotated expression. According to eVOC annotation, genes were categorized into those that showed expression in normal adult brain and those expressed in normal developmental brain, many genes appearing in more than one category. Genes expressed in normal adult brain were subtracted from those with expression in normal developmental brain to establish genes whose expression in the brain occurs only during development. The expression profites of the developmentally-biased genes annotated to female reproductive system, heart, kidney, liver, lung, male reproductive system and stem cell for post-natal and developmental expression were determined according to the eVOC annotation of the cDNA libraries, and the correlation coefficient of the ortholog-pairs were calculated.

1.5 Results and discussion

1.5.1 Ontology development

The ontologies were originally created to accommodate requests by the FANTOM3 consortium (Carninci et al., 2005) for a simple mouse ontology that could be used in alignment to the human eVOC ontologies. The FANTOM3 project was a collaborative effort by many international laboratories to analyze the mouse and human transcriptome. The aim was to generate a transcriptional
in the developmental eVOC ontologies to ensure interoperability between external ontologies and eVOC. Terms from the mouse have also been mapped to those from human to enable cross-species comparison of the data mapped.

The integration of the ontologies is described in Figure 1, where 'Mouse eVOC' refers to the individual mouse ontologies and 'Human eVOC' refers to the individual human ontologies (including the adult human ontology). The EMAP and MA ontologies represent mouse pre- and post-natal developmental anatomical structures, respectively, and therefore exhibit no commonality. The mouse developmental eVOC ontologies integrate the two ontologies by containing terms from, and mappings to, both the EMAP and MA ontologies. Of the 2840 terms in the individual mouse ontologies, 1893 and 237 map to EMAP and MA. The human developmental eVOC ontology is an untangled version of the HUMAT ontology and has one-to-ene mappings to the mouse developmental ontology, providing a link between the terms and data mappings between the mouse and human ontologies.

The presence of species-specific anatomical structures posed a challenge when aligning the mouse and human terms. An obvious example is the presence of a tail in mouse but not in human. We decided that there would simply be no mapping between the two terms. Further challenges involved structures such as paw and hand. The two terms cannot be made identical because it is incorrect to refer to the anterior appendage of a mouse as a hand. However, due to the fact that the mouse paw and human hand share functional similarities, the two terms are not identical, but are mapped to each other based on functional equivalence.

335

Figure 1
Venn diagram illustrating the integration of mouse and human ontologies represented by the eVOC system. The total number of terms in each ontology is in parentheses. The numbers in each set are the number of terms in the intersection represented by that set. 'Mouse eVOC' represents the 28 individual mouse ontologies and 'Human eVOC' represents the 23 individual human and adult ontologies; therefore, the numbers in parentheses refer to the total number of terms in all the eVOC ontologies for each species. The intersection of the Mouse eVOC with the EMAP and MA ontologies represents the number of terms in Mouse eVOC that have database crossreferences to EMAP and MA. Similarly, the intersection of the Human eVOC and HUMAT sets represents the number of Human eVOC terms that map to HUMAT terms. The number within the arrows represents the number of mapped human and mouse eVOC terms.

In order to provide simplified ontologies, the 28 mouse and 23 human ontologies were merged to create two ontologies - one for each species. In addition, a Theiler Stage ontology was created that represents the Theiler stages of mouse development. The human stage ontology is represented by the current eVOC Development Stage. A cross-product of two terms (one from the merged and one from the stage ontology) for a species can therefore represent any anatomical structure at any stage of development.

The relationship between the Developmental Mouse and individual ontologies is illustrated in Figure 2, where the term 'brain' is mapped to 12 terms in the individual ontologies and therefore occurs in 12 of the 28 Theiler stages. All terms in the individual ontologies that are derived from EMAP or MA for mouse, and HUMAT for human are mapped to the corresponding term by adding the term's accession from the external ontology as a database cross-reference in the eVOC ontologies. Figure 3 shows that the database cross-reference is the accession of the EMAP term, indicating that 'intestine' of the 'Theiler stage 13' ontology is equivalent to the term represented by 'EMAP:600'. This feature allows cross-communication, and thereby integration, of the EMAP, MA, HUMAT and eVOC ontologies.

The ontologies presented here are simplified versions of existing human and mouse developmental and adult ontologies, containing 1670 and 2840 terms respectively. Table 1 shows the number of terms and database cross-references for the individual mouse and human ontologies. The Theiler Stage 4 ontology contains 12 terms and has 9 mappings to the EMAP ontology. The mouse and

Figure 2
Screenshot of the Mouse Development ontology, visualised in COBrA. The left panel shows the hierarchy of the ontology, with 'brain' as the highlighted term. The right panel lists the $\mathbf{1 2}$ database cross-references mapped to 'brain', representing the accession of 'brain' in each of the $\mathbf{1 2}$ individual ontologies.

thti*: Read TS13.goff
Figure 3
Screenshot of the individual Theiler Stage 13 ontology, visualised in COBrA. The left panel displays the ontology with terms of anatomical structures occurring only in Theiler stage 13 of mouse development. The right panel lists the accession of the equivalent term in the external ontology as a database cross-reference.

Table 1

Statistics of the individual developmental eVOC ontologies, representing the alignment between human and mouse stages. The first three columns display the individual mouse ontologies, the number of terms in each ontology, and the number of external references of each. The last three columns display the individual human ontologies, the number of terms, and the number of external references of each. The external references refer to the EMAP and MA ontologies for mouse, and to HUMAT for human. The alignment of the rows between the mouse and human ontologies represents the alignment of the Theiler and Carnegie stages of development based on morphological similarities. For example, the Theiler Stage 4 ontology contains 12 terms and has 9 mappings to the EMAP ontology. Mouse Theiler Stage 4 is equivalent to human Carnegie Stage 3. The Carnegie Stage 3 ontology contains 13 terms and has 11 mappings to terms from the HUMAT ontology.

Theiler Stage	Mouse Terms	Reference	Carnegie Stage	Human Terms	External Reference
16	93	128	13	103	131
17	103	137	14	122	149
18	116	155	15	131	165
19	134	173	16	155	178
20	157	171	17	170	184
21	193	239	18	188	223
			19	199	237
22	209	299	20	200	237
23	216	303			
24	226	316			
25	234	339			
26	238	348 - 11	-11		
27	266	0			
28	266	246	adult	512	
TOTAL	2840	3288	TOTAL	2049	1951

WESTERN CAPE
human stages have been aligned in the table and therefore shows that mouse Theiler Stage 4 is equivalent to human Carnegie Stage 3, based on morphological similarities during development (http://www.ana.ed.ac.uk/anatomy/database/ humat/MouseComp.html). The Carnegie Stage 3 ontology contains 13 terms and has 11 mappings to the HUMAT ontology. The difference in the number of ontology terms and external references is attributed to the addition of terms to maintain the standard structure of the eVOC system. In this example, the term 'germ layers' is in the eVOC ontologies, but not in the EMAP or HUMAT ontologies. Many eVOC terms are mapped to more than one term in the external referencing ontology as an artifact of the simplification of the ontologies, resulting in a one-to-many relationship between eVOC and it's reference ontology. For example, 'myocardium'|at Theiler Stage 12 in the eVOC ontologies is mapped to five EMAP identifiers. Each EMAP identifier references a cardiac muscle, but at a different location. eVOC does not distinguish between cardiac muscle of the common atrial chamber (EMAP:337) and cardiac muscle of the rostral half of the bulbus cordis (EMAP:330). Compared to their counterparts, the Developmental eVOC ontologies represent 22% of both the human HUMAT and mouse EMAP ontologies, with the only relationship between the terms being 'IS_A'. Note that relationships within the eVOC ontologies only indicate an association between parent and child term and do not systematically distinguish between is_a or part_of relationships. As eVOC moves to adopt relationship types from the OBO Relation Ontology (Smith et al., 2005) relations will be reviewed and curated. Using a principle of data-driven development, eVOC terms are
added at an annotator's request, resulting in a dynamic vocabulary describing gene expression.

1.5.2 Data mapping

The resources providing ontologies to annotate gene expression do not always provide the data itself. In order to obtain mouse and human data, one would have to search separate databases for each species. An example of this would be searching MGI for mouse gene expression data, and ArrayExpress for human. Apart form having to access different databases to obtain data, the terminology used to describe the data is ambiguous and differs in the level of granularity, impacting on the accuracy of inter-species data comparison. The ontology terms have therefore been used to annotate 8852 human and 1210 mouse cDNA libraries from the Cancer Genome Anatomy Project (CGAP) (January, 2006) (http://cgap.nci.nih.gov/).

The mapping process revealed inconsistencies in the annotation of the human and mouse CGAP cDNA libraries, requiring manual intervention and emphasizing the need for a standardized annotation. All genes associated with the libraries have been extracted by association through UniGene (March, 2006). A gene was considered to be associated with a cDNA library if at least one EST was evident for the gene in a particular library. The result is a set of 21152 human and 24047 mouse genes from UniGene that are represented by CGAP cDNA libraries and annotated with eVOC terms, and represent the set of human and mouse genes for
which there is expression evidence. CGAP represents an ascertainment bias where there is a strong over-representation for cancer genes, and therefore future efforts for this research will include obtaining a well-represented, evenly distributed dataset of human and mouse gene expression. The list of human and mouse orthologs were extracted from HomoloGene to represent the 16324 human-mouse orthologs. Two genes were considered to be orthologs if they shared the same HomoloGene group identifier (March, 2006).

1.5.3 Data mining

Genes may be categorized according to their eVOC annotation on a spatial or temporal level, or a combination of both. An example of this would be genes expressed in the heart at Theiter Stage 26 for mouse. For the purposes of this study, we searched for human-mouse orthologs that are expressed in the normal postnatal and developmental brain of both species, where a gene is classified as normal if it's originating library was annotated as 'normal'. Research involving gene expression of the brain aims at identifying causes of psychological and neurological diseases, many of these diseases originating during development. With the use of mice as model organisms in this kind of research, it is important to identify genes which are co-expressed in human and mouse on the temporal and spatial level. The results of our analysis show that of the available 16324 human-mouse orthologs, 14434 can be found in CGAP libraries for both human and mouse. When looking at brain gene expression, we could segregate genes according to their spatial and temporal expression patterns. We found that of all
the orthologs expressed in the brain, 10980 genes were expressed in the postnatal brain of both species whereas 1692 genes were expressed in the developing brain of both species. Of these two sets of genes, 90 genes were found to have biased expression for developmental brain (Table 2) where developmentally biased genes are those that are expressed during development and not the postnatal organism in either human, mouse or both species (see Figure 4 for illustration). It is important to note that only genes whose orthologs also have expression evidence were considered for analysis. This small number of genes found to be biased for expression during brain development in both species may be a result of data-bias due to the difficulty involved in accessing developmental libraries. Our future efforts will include expanding the data platforms to provide data that is representative of the biology. This analysis does however demonstrate the usefulness of the ontologies in performing cross-species gene expression analyses.

UNIVERSITY of the
WESTERN CAPE
The Gene Ontology (GO) categories that are highly associated with the 90 genes biased for developmental brain expression were extracted with the use of the DAVID bioinformatics resource (Dennis et al., 2003). The human representatives of the human-mouse orthologs cluster with GO terms such as 'nervous system development' and 'cell differentiation', suggesting a shared role for development of the mammalian brain, and therefore may be potential targets for the analysis in neurological diseases. Given the existence of ascertainment bias on these kinds of data, it was still surprising to see how many genes passed the stringent selection criteria. Searching the Online Mendelian Inheritance of Man (OMIM) database

Figure 4
Diagram illustrating the sets of genes analysed for developmental brain expression bias. Genes for human and mouse grouped together if they are expressed in post-natal or developmental brain, respectively. The intersection between the human and mouse developmental brain genes represent those genes showing common expression in the two species. Subtracting genes commonly expressed in human and mouse post-natal brain determines those genes that show developmental restriction in either human, mouse or both species.

Table 2

Genes showing developmental expression bias in human and mouse brain. The table lists the HomoloGene group identifier, Entrez Gene identifier and gene symbol of the 90 human-mouse orthologs found to have an expression bias towards the embryonic and fetal stages of brain development, without expression during postnatal development. Genes were only considered for analysis if they have an ortholog, and if the ortholog also has expression evidence based on eVOC annotation.

HomoloGene group identifier	Human Entrez Gene ID	Human Entrez Gene Symbol	Mouse Entrez Gene ID	Mouse Entrez Gene Symbol
32	435	ASL	109900	Asl
268	5805	PTS	19286	Pts
413	353	APRT	11821	Aprt
1028	1606	DGKA	13139	Dgka
1290	9275	BCL7B	12054	Bcl7b
1330	857	CAV1	12389	Cav1
1368	1054	CEBPG	12611	Cebpg
1871	4760	NEUROD1	18012	Neurodl
1933	5050	PAFAHIB3	18476	Pafahlb3
2212	6182	MRPL12	56282	Mrpl12
2593	7913	DEK	110052	Dek
2880	8835	SOCS2	216233	Socs2
3476	9197	SLC33A1	11416	Slc33al
4397	8971	H1FXERSITY	243529	H1fx
4983	10991	SLC38A3	76257	Slc38a3
6535	11062	DUS4LETVIV	71916	Dus41
7199	11054	OGFR	72075	Ogfr
7291	10683	DLL3	13389	Dll3
7500	5806	PTX3	19288	Ptx3
7516	389075	RESP18	19711	Resp18
7667	1154	CISH	12700	Cish
7717	24147	FJX1	14221	Fjx1
7922	6150	MRPL23	19935	Mrpl23
9120	25851	DKFZP434B0335	70381	2210010N04Rik
9355	51637	C14orf166	68045	2700060E02Rik
9813	55627	FLJ20297	77626	4122402O22Rik
10026	55172	C14orf104	109065	1110034A24Rik
10494	58516	FAM60A	56306	Tera
10518	84273	C4orf14	56412	2610024G14Rik
10663	57171	DOLPP1	57170	Dolpp1
10695	57120	GOPC	94221	Gope
10774	57045	TWSG1	65960	Twsg 1
11653	79730	FLJ14001	70918	4921525L17Rik
11920	84303	CHCHD6	66098	Chchd6

HomoloGene group identifier	Human Entrez Gene ID	Human Entrez Gene Symbol	Mouse Entrez Gene ID	Mouse Entrez Gene Symbol
11980	84262	MGC10911	66506	1810042K04Rik
12021	84557	MAP1LC3A	66734	Map1lc3a
12418	124056	NOXO1	71893	Noxol
12444	84902	FLJ14640	72140	2610507L03Rik
12993	84217	ZMYND12	332934	Zmynd12
14128	91107	TRIM47	217333	Trim47
14157	90416	CCDC32	269336	Ccdc32
14180	115294	PCMTD1	319263	Pcmtd 1
14667	113510	HEL308	191578	Hel308
15843	79591	C10orf76	71617	9130011E15Rik
16890	399664	RKHD1	237400	Rkhdı
17078	387914	TMEM46	219134	Tmem46
17523	115290	FBXO17	50760	Fbxol7
18123	140730	RIMS4	241770	Rims4
18833	143678	LOC143678	75641	1700029I15Rik
18903	440193	KIAA1509	68339	0610010D24Rik
19028	146167	LOC146167	234788	Gm587
20549	4324	MMP15 \quad	17388	Mmp15
21334	10912	GADD45G	23882	Gadd45g
22818	29850	TRPM5	56843	Trpm5
24848	266629	SEC14L3	380683	RP23-81P12.8
26702	93109	TMEM44	224090	Tmem44
27813	84865	FLJ14397	243510	A230058J24Rik
31656	27000	ZRF1ERSTTY	022791	Dnajc2
32293	51018	CGI-115 P C	67223	2810430M08Rik
32331	51776	ZAK	65964	B230120H23Rik
32546	64410	KLHL25	207952	Klh125
32633	136647	C7orf11	66308	2810021B07Rik
35002	93082	LINCR	214854	Lincr
37917	1293	COL6A3	12835	Col6a3
40668	9646	SH2BP1	22083	Sh2bp1
40859	27166	PX19	66494	2610524G07Rik
41703	118881	COMTD1	69156	Comtd 1
45198	65117	FLJ11021	208606	1500011J06Rik
45867	139189	DGKK	331374	Dgkk
46116	401399	LOC401399	101359	D330027H18Rik
49899	143282	C10orf13	72514	2610306H15Rik
49970	83879	CDCA7	66953	Cdca7
55434	1289	COL5A1	12831	Col5al
55599	669	BPGM	12183	Bpgm
55918	6882	TAF11	68776	Taf11
56005	6328	SCN3A	20269	Scn3a
56571	26503	SLC17A5	235504	Slc17a5
56774	54751	FBLIM1	74202	Fblim1

HomoloGene group identifier	Human Entrez Gene ID	Human Entrez Gene Symbol	Mouse Entrez Gene ID	Mouse Entrez Gene Symbol
64353	126374	WTIP	101543	Wtip
65280	286128	ZFP41	22701	Zfp41
65318	23361	ZNF629	320683	Zfp629
65328	7559	ZNF12	231866	Zfp12
68420	9559	VPS26A	30930	Vps26
68934	57016	AKR1B10	14187	Akrlb8
68973	1663	DDX11	320209	Ddx11
68998	170302	ARX	11878	Arx
78698	387876	LOC387876	380653	Gm872
81871	56751	BARHL1	54422	Barh11
82250	150678	MYEOV2	66915	Myeov2
84799	22835	ZFP30	22693	Zfp30

UNIVERSITY of the
WESTERN CAPE
implicated some of the 90 genes, such as GOPC, $A R X$ and $D E K$, in diseases such as astrocytoma, lissencephaly and leukemia.

To assess the similarity in expression across major human and mouse tissues other than brain, the expression profiles of the 90 genes with bias for developmental expression were determined for developmental and adult expression in the following tissues: female reproductive system, heart, kidney, liver, lung, male reproductive system and stem cell. These tissues were chosen based on the availability of data for each tissue in the developmental and adult categories. For each ortholog-pair, we determined the correlation between their expression profiles (see Appendix III). We found that, according to the cDNA libraries, one mouse gene was found to be expressed in all the tissues in both post-natal and development (Twsg1), and three mouse genes were expressed only in the mouse brain (Resp18, Gm872, Barht1) as opposed to all other tissues (see Appendix IV for expression profile). The highest correlation score between an ortholog-pair is 0.646 (HomoloGene identifier: 27813) having identical expression profiles during development (expressed in liver and stem cell), but differing during post-natal expression (expression in mouse heart, kidney and stem cell but not in their human counterparts). The correlations observed suggest that the expression profiles of orthologs across these major tissues are only partially conserved between human and mouse. This finding strengthens our understanding of orthologous gene expression in that although two genes are orthologs, they do not share temporal and spatial expression patterns and therefore probably do not share a majority of their regulatory modules (Odom et al., 2007).

Developmental gene expression may be subdivided into embryonic and fetal expression which in turn may be categorized further according to the Theiler and Carnegie stages for mouse and human, allowing a high-resolution investigation of gene expression profiles between the two species. This stage by-stage expression profile for human and mouse will allow investigation into common regulatory elements of co-developmentally expressed genes and give new insight into the characterization of the normal mammalian developmental program.

1.6 Conclusions

The developmental mouse ontologies were developed in collaboration with the FANTOM3 consortium to have the same structure and format as the existing human eVOC ontologies to enable the comparison of developmental expression data between human and mouse. The developmental ontologies have been constructed by integrating the Edinburgh Mouse Atlas Project, Mouse Anatomy, the developmental Human Anatomy and the human adult eVOC ontologies. The re-organization of existing ontological systems under a uniform format allows the consistent integration and querying of expression data from both human and mouse databases, creating a cross-species query platform with one-to-one mappings between terms within the human and mouse ontologies.

The ontologies have been used to map human and mouse gene expression events, and can be used to identify differential gene expression profiles between the two species. In future, the ontologies presented here will be used to investigate the
transcriptional regulation of genes according to their characteristics based on developmental stage, tissue and pathological expression profiles, providing insight into the mechanisms involved in the differential regulation of genes across mammalian development.

1.7 Availability

The mouse eVOC ontologies, their mappings and the datasets referred to in this manuscript are available under a FreeBSD-style license at the eVOC website (http://www.evocontology.org) and are appended here as Appendix V and VI.

UNIVERSITY of the
WESTERN CAPE

Chapter 2

Expression profiling reveals tissue-restricted

transcription factor complexes

2.1 Summary

The study presented in this chapter formed part of a major effort by the Genome Network Project (GNP) aimed at understanding the transcriptional networks involved in the growth arrest and differentiation in mammalian cells, using THP-1 cells (Human acute monocytic leukemia cell line) as a model system. My involvement in the project was two-fold:

1. Assist in analysing the response of 1805 transcription factors from THP-1-derived macrophage cells to EPS stimulation over a range of timepoints; and
2. Investigate the tissue expression profiles of 1805 transcription factors under investigation.

In (1) above, THP-1 cells were induced to differentiate into macrophages by adding phorbol myristate acetate (PMA). After 96 hours, an immune response was induced by adding lipopolysaccharide (LPS) and the effect on transcription was monitored over a time-series of $0.5 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}, 3 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}, 10 \mathrm{~h}, 12 \mathrm{~h}, 18 \mathrm{~h}$ and 24h. For each time-point, expression data was generated on three platforms: Illumina microarray, CAGE tags (cap analysis of gene expression) and qRT-PCR. I was part of the group that used the expression data from the Illumina platform to
determine which genes were up- and down-regulated during the early $(0.5 \mathrm{~h}, \mathrm{lh}$, $2 \mathrm{~h}, 3 \mathrm{~h}$), middle ($4 \mathrm{~h}, 8 \mathrm{~h}, 10 \mathrm{~h}$) and late ($12 \mathrm{~h}, 18 \mathrm{~h}, 24 \mathrm{~h}$) response to LPS stimulation. The results of this analysis formed the basis of the paper 'The transcriptional network that controls growth and differentiation in a human myeloid leukemia cell line' published in Nature Genetics by the GNP (Suzuki et al., 2009), wherein I am listed as co-author due to my involvement in the analysis. The publication is appended as Appendix VIIa. My analysis method and interpretation that contributed to the publication is appended as Appendix VIIb. The analysis yielded the categorisation of 193 genes into 10 categories according to their level of expression across ten time-points. The categorisation of these genes contributed to the identification of the regulatory motifs whose activity is significantly altered during PMA-induced differentiation. In addition, the data and computational tools developed by the consortium members have been collated into an online database that allaws users to give a gene as input and is provided with it's expression on the three expression platforms across the timeseries (http://fantom.gsc.riken.jp/4/).

In (2) above, I used the ontologies and mappings described in Chapter 1 to determine the tissue expression profiles of the list of transcription factors under investigation by the GNP (1 805 genes). The list of genes for which an expression profile was required was provided to me by the GNP. I was responsible for the development, implementation and interpretation of the analysis, which is presented here as Chapter 2. The results of this analysis were provided to the GNP to assist in the interpretation and discussion of the results presented in the publication.

2.2 Aim

The aim of this chapter is to use the Developmental eVOC system to illustrate the identification of tissue-restricted, co-expressing transcription factors. The identification of co-expressing genes gives insight into the regulation of genes specific to a particular cell type or disease.

2.3 Background

Each gene in a cell has a spatial and temporal fate whereby it is only expressed in certain tissues at defined times throughout the life span of the organism. The exact timing of gene expression is a tightly controlled process (Dynlacht, 1997) and a slight deviation in this process causes aberrant gene expression that could lead to disease or a cell following an inappropriate developmental path. The origin of many diseases such as cancer (Liao et al., 2009), Alzheimer's (de la Monte et al., 1995) and multiple sclerosis (Satoh et al., 2007) can be attributed to aberrant gene expression, making this process a topic of much investigation. In order to understand how the uncontrolled regulation of gene expression causes disease, it is important to understand how normal gene expression events are regulated within the cell.

Transcription factors are sequence-specific DNA-binding proteins forming the regulatory machinery responsible for the differential gene expression,
development and regulation of cellular processes in an organism. Transcription factors function by binding to a promoter sequence in the upstream, untranslated region of a gene, allowing RNA polymerase II to bind and initiate transcription (Nikolov and Burley, 1997).

It is widely accepted that transcription factors function in complexes (Sandelin et al., 2007) rather than individually. The activation of transcription is greatly influenced by the composition of these transcription factor complexes where the presence or absence of even one transcription factor can alter the ability of the complex to activate transcription (Reid et al., 2009). This sensitive transcriptional switch therefore affects the regulation of gene expression on a spatial and temporal level (Lee and Young, 2000). In addition to one gene being controlled by many different combinations of transcription factors, it is also known that any given combination of transcription factors are able to activate more than one gene, providing a means to control the co-regulation of genes (Reid et al., 2009).

The efficiency of transcription factors are also variable, with some having a high DNA-binding affinity and others having low affinity, creating a mechanism whereby the cell can control the number of mRNA molecules transcribed from a gene. In addition, it is suggested that ubiquitously expressed transcription factors control a broad set of genes that are then fine-tuned by tissue-specific transcription factors (Vaquerizas et al., 2009). Regulation of gene expression by transcription factors is therefore greatly influenced by their tissue expression profiles as well as their involvement in transcription factor complexes.

Conventional expression profiling experiments focus on a few individual genes of interest. With the discovery of high-throughput technologies, it has become increasingly apparent that genes should be analysed within their genomic context. Since transcription factors function as groups or complexes, it is necessary that our investigations of gene expression events reflect this. The aim of this study is to identify tissue-restricted transcription factor complexes based on the coexpression of 1805 transcription factors. The rationale behind this is that the identification of transcription factors responsible for tissue-specific expression of a particular gene may be investigated across different pathological states, thereby giving insight into the genes responsible for the disease in question.

2.4 Materials and methods

UNIVERSITY of the

2.4.1 Data generation WESTERN CAPE

The members of the Genome Network Project (GNP), for which this study was conducted, compiled a list of human transcription factors for analysis, hereafter referred to as the Genes Of Interest list (GOI-list) (March, 2007). The genes in this list originally contained all 2353 known human transcription factors based on qRT-PCR experiments. Manual curation of the GOI-list resulted in 1805 transcription factors that conform to the following criteria:
a) has a DNA-binding domain;
b) shows evidence of nuclear localization according to LOCATE (Sprenger et al., 2008); and
c) is annotated as a transcriptional regulator according to the Gene Ontology database (Ashburner et al., 2000).

A transcription factor was excluded from the GOI-list if there was strong evidence supporting localisation outside of the nucleus.

To generate expression profiles for each of the genes in the GOI-list, their Entrez Gene identifiers were obtained from the National Center for Biotechnology Information (NCBI) UniGene database (March, 2009) (http://www.ncbi.nlm.nih.gov/entrez/query.fegi? $\mathrm{db}=$ =unigene). The Entrez Gene identifiers were used to query a database of 8852 human cDNA libraries in the eVOC ontology system (Kruger et al., 2007). Only terms from the Anatomical System, Cell Type, Developmental Stage and Pathology ontologies were used to annotate the genes. The resulting expression profile lists the annotations of all the cDNA libraries in which each gene is expressed.

2.4.2 Pseudoarray generation and expression filtering

The gene expression profiles were converted into a binary pseudoarray by listing the genes in the first column and all annotations in the first row of a table. If a gene is annotated with a term, the value in the array corresponding with that gene and term is ' 1 '. Similarly, if a gene is not annotated with a term, the value in the
array is ' 0 ', creating a binary code for presence (' 1 ') and absence (' 0 ') of expression of a gene across a list of tissues represented by ontology terms.

The pseudoarray was filtered for annotations resulting from cDNA libraries derived from normal tissues. A library is considered to be from normal tissue only if the annotation explicitly states 'normal'. Annotations were discarded where the originating tissue samples were pooled or if the Anatomical System term was 'unclassifiable', indicating the sample was from an unknown tissue type. In addition, the developmental stage information was removed and identical terms from different stages were merged. Terms were collated if they were located on the same branch of a hierarchy, eg. ovary and uterus were collated and renamed 'female reproductive system'.

To avoid redundant annotation, terms from the Cell Type and Anatomical System ontologies referring to the same tissue were merged. The terms 'macrophage', 'lymphocyte' and 'bone marrow' were merged with 'blood', 'lymph' and 'bone', respectively. Due to ubiquitous expression, all terms relating to 'brain' were removed, and the following terms were collated as 'other': adipose tissue, auditory apparatus, bladder, cartilage, gall bladder, gastrointestinal tract, larynx, muscle, omentum, oral cavity, pharynx, skeletal muscle, skin, spinal cord, synovium, tonsil, umbilical cord and visual apparatus. In order to explore tissuerestricted expression, genes were further filtered based on the number of terms to which they are annotated. Only genes expressed in less than 25% of tissues were used for further analysis.

2.4.3 Expression clustering

To determine genes exhibiting similar expression patterns, the correlation coefficient of each gene pair was calculated. A correlation coefficient describes the strength of a linear relationship between two variables and has a value between ' -1 ' (negatively correlated) and ' 1 ' (positively correlated). The correlation coefficients were calculated computationally by means of the numpy module of the Python scripting language. Genes showing no correlation in their expression have a correlation coefficient ' 0 ' and genes whose expression are perfectly correlated have a correlation coefficient ' 1 '. Since the aim of the study was to find co-expressing transeription factors, negatively correlated genes were not included in the analysis. The correlation results were filtered for gene pairs showing at least 75% correlation (coeff $=0.75$) in their expression. For example, if a gene pair $(\mathrm{A}$ and B$)$ has a 0.80 correlation coefficient, it indicates that gene A is expressed in the same tissue as gene B for 80% of the time, indicating a high degree of co-expression.

Genes were defined as clustering together in a network if a node (gene) is connected to another node (corresponding gene pair) by an edge (correlation coefficient ≥ 0.75). The nodes and edges resulting from the expression correlation calculations were visualised using the Cytoscape network and visualisation tool (Shannon et al., 2003).

2.4.4 Functional analysis

The list of tissue-restricted genes was analysed through the use of Ingenuity Pathway Analysis (IPA) version 7.5 (http://www.ingenuity.com). The set of genes was uploaded into the application as a list of Entrez Gene identifiers. Each gene identifier was mapped to its corresponding gene object in the Ingenuity Pathways Knowledge Base. The Functional Analysis component of the application identified the biological functions and diseases that were most significant to the data set. A Fischer's exact test was used to calculate a p-value determining the probability that each biological function and disease assigned to that data set is random.

The Canonical Pathways analysis identified the pathways from the Ingenuity Pathways Analysis library of canonical pathways that were most significant to the data set (as at August 2009). The association of a canonical pathway and the data set was measured by performing a Fischer's exact test, calculating a p-value to illustrate the probability that the association between the pathway and genes in the data set is due to chance.

2.5 Results and discussion

2.5.1 Data generation and expression profiling

Of the 1805 genes in the TF-list, 60 genes were not represented by the cDNA libraries in the eVOC ontology system. The remaining 1745 genes were represented by 239 unique annotation tuples, where a tuple is a list of four terms (one from each ontology) representing a cDNA library. For example, the tuple representing a cDNA library obtained from the epithelial cells of a normal fetal kidney is 'kidney|epithelial cell|fetus|normal'. Due to the hierarchical nature of an ontology, libraries are often annotated with differing granularity. For example, one technician may annotate a cDNA library derived from hippocampus as 'hippocampus', whereas another technician would annotate the same cDNA library as 'brain'. To compensate for this annotation inconsistency, terms were merged to reflect the least granular term. SITY of the

WESTERN CAPE

The merging and removal of terms resulted in 1734 genes represented by 21 ontology terms. To determine which genes showed tissue-restricted expression, the genes were further filtered based on the number of tissues in which they are expressed. Table 1 lists the 145 genes that are expressed in less than 25% of the tissues represented by the 21 ontology terms. It should be noted that, as with most analyses, the results obtained here might be subjected to a data bias. Since only one expression source (namely ESTs) is used, it is possible that the expression of certain genes were not captured. Although the focus of this study is the development of a method to determine tissue-restricted expression factors, the

Table 1

A list of the $\mathbf{1 4 5}$ genes expressed in less than $\mathbf{2 5 \%}$ of all tissues. The table consists of two panels, each listing the Entrez gene identifier and gene symbol for the human transcription factors showing tissue-restricted expression.

GeneID	GeneSymbol	GeneID	GeneSymbol
326	AIRE	8345	HIST1H2BH
430	ASCL2	8820	HESX1
579	BAPX1	8970	HIST1H2BJ
668	FOXL2	9970	NR1I3
1032	CDKN2D	10215	OLIG2
1053	CEBPE	10655	DMRT2
1745	DLX1	10794	ZNF272
1746	DLX2	11077	HSF2BP
1748	DLX4	11281	POU6F2
1761	DMRT1	25806	VAX2
1961	EGR4	26038	CHD5
1993	ELAVL2	26108	PYGO1
2016	EMX1	26468	LHX6
2020	EN2	27023 IIT	FOXB1
2103	ESRRB	27164	SALL3
2118	ETV4	27288	HNRNPG-T
2294	FOXF1	27439	CECR6
2295	FOXF2	30009	TBX21
2297	FOXD1	30012	TLX3
2302	FOXJ1	508053111	IRX4
2304	FOXE1	51022 N	GLRX2
2306	FOXD2	51402	LW-1
2623	GATA1	51450	PRRX2
2672	GFII	54626	HES2
3007	HIST1H1D	55552	HSZFP36
3008	HIST1H1E	55659	ZNF416
3009	HIST1H1B	56938	ARNTL2
3110	HLXB9	56978	PRDM8
3198	HOXA1	57116	ZNF695
3205	HOXA9	57332	CBX8
3207	HOXA11	57343	ZNF304
3209	HOXAI3	57801	HES4
3231	HOXD1	58495	OVOL2
3234	HOXD8	60529	ALX4
3642	INSM1	63978	PRDM14
3975	LHX1	79192	IRXI
4210	MEFV	79722	FLJ11795
4656	MYOG	79816	TLE6
4796	NFKBIL2	79862	ZNF669
4821	NKX2-2	80032	ZNF556

GeneID	GeneSymbol	GeneID	GeneSymbol
4861	NPAS1	84127	RUNDC2A
4901	NRL	84911	ZNF382
5013	OTX1	85409	NKD2
5076	PAX2	85446	ZFHX2
5077	PAX3	89870	TRIM15
5079	PAX5	90649	ZNF486
5081	PAX7	94039	ZNF101
5453	POU3F1	94234	FOXQ1
5454	POU3F2	116448	OLIG1
5455	POU3F3	126295	LOC126295
5462	POU5F1P1	129025	SUHW1
5992	RFX4	136051	DKFZp7621137
6474	SHOX2	138474	TAF1L
6493	SIM2	140883	SUHW2
6496	SIX3	142689	ASB12
6664	SOX11	146434	ZNF597
6689	SPIB	148268	ZNF570
6877	TAF5	148979	GLIS1
6899	TBX1	161253	FLJ38964
6913	TBX15	162979 ma	ZNF342
7023	TFAP4	163059	ZNF433
7161	TP73	163071	ZNF114
7291	TWIST1	170302	ARX
7310	U2AF1L1	171392	ZNF675
7546	ZIC2	221527	ZBTB12
7621	ZNF70	24580611	VGLL2
7673	ZNF222	253738 N	EBF3
7675	ZNF 121	283078	MKX
7710	ZNF154	285676	ZNF454
7768	ZNF225	339416	ANKRD45
8092	CART1	339488	TFAP2E
8193	DPFI	341405	ANKRD33
8320	EOMES		

addition of data sources such as CAGE, MPSS and SAGE will dramatically increase the quality of the results.

Not surprisingly, more than 80% of the restricted genes are regulators of gene expression according to their Gene Ontology annotations. In addition, a small percentage of the restricted genes are involved in immune system development (BAPX1, TBX21 and SPIB), embryonic development (EOMES, OTX1, BAPX1, FOXE1, HOXD8, SIM2, FOXF1, LHX1, VAX2, FOXF2, TRIM15, GFI1, ASCL2, FOXL2, TBX1 and ZIC2) and cell fate specification (NKX2-2, TLX3 and GFII). The pseudoarray illustrating the expression profiles of these genes is represented by Appendix VIII. It is interesting to note that these genes showing tissuerestricted expression are biased for expression pertaining to developmental processes - probably the most tightly regulated processes in an organism. This observation strengthens the hypothesis that ubiquitously expressed transcription factors regulate a broad set of genes whereas tissue-restricted transcription factors are responsible for the fine-tuned regulation within a cell.

2.5.2 Expression clustering

The current knowledge of transcription factor function suggests that they function as protein complexes, indicating that the functional and expression profiling of a single transcription factor is unuseful. In order to determine how transcription factors regulate gene expression, it is important to determine which transcription factors function together. The correlations of gene expression profiles were
determined in order to assess which genes co-express across a range of tissues. The co-expression of transcription factors implicates their involvement in the coregulation of their target genes, providing the basis for further functional studies.

A moderate correlation cutoff of 75% resulted in 112 genes represented by 8 gene clusters. Genes clustered together if there was at least one edge (correlation coefficient ≥ 0.75) between two genes. Not surprisingly, the results show one large gene cluster (Figure 1a) with a few smaller clusters (Figure 1b). Investigations of the annotations of the genes in Figure lb reveal a few clusters (3, 4 and 5) that exhibit tissue-restricted expression for female reproductive system, male reproductive system and stem cell, respectively. In addition, clusters 6, 7 and 8 show tissue-biased expression. These results indicate that the genes in each cluster are co-expressed in certain tissues and therefore possibly function as a unit to activate the transcription of a gene (or sets of genes) responsible for the tissuespecific characteristics of the tissue in which they are expressed. For example, it is feasible that because the genes in cluster 5 ($D L X 2, B A P X 1$ and $Z B T B 12$) coexpress only in the stem cell population that these transcription factors may be responsible for regulating the genes that define stemness (self-renewal, chemoresistance, pluripotency). Since we see transcription factors biased for expression in tissues that have developmental functions (female reproductive system, male reproductive system and stem cell), we can intuitively predict that the corresponding transcription factors play a role in the regulation of the development of the cell. It is even possible, given the tissues in which these genes are restricted, that they regulate the stem cell state of a cell since the male and female reproductive system has stem cell-containing tissues. The tissues

Figure 1a
Illustration of genes clustering together based on correlated co-expression. All gene clusters represent the sets of genes that cluster together based on a correlation coefficient larger than 0.75 .
(b) 2-Other

3 - Female
reproductive system

5 - Stem cell

6 - Female reproductive system, kidney, lymph, stem cell, other

8 - Lung, bone, male reproductive system, blood
7 - Blood, lymph, spleen, heart, vessel, stem cell other

Figure 1b
Illustration of genes clustering together based on correlated co-expression. All gene clusters represent the sets of genes that cluster together based on a correlation coefficient larger than 0.75 . Clusters $2-8$ represents genes and tissues for which there is biased expression.
represented by the tissue-biased clusters (lung, bone, kidney, heart, lymph and blood) also have a stem cell niche with cells progressing through a defined cell lineage.

Although the above statements require experimental validation, what we see here is the identification of several complexes of transcription factors that show an expression bias towards certain tissues and therefore possibly interact with each other to combinatorially regulate a defined set of target genes. It is possible that the addition or omission of even one transcription factor in a complex may alter the regulation of a gene not only quantitatively, but also on a temporal and spatial level. It is for this reason that it is important for researchers to determine the composition of transcription factor complexes in, order to understand the regulation of any gene of interest. This method of using ontologies to determine tissue-restricted transcription factor complexes can therefore be used to computationally predict transcription factors that co-regulate a set of genes.

2.5.3 Functional analysis

A functional analysis of a list of genes reveals processes with which the genes are associated, thereby giving insight into the processes governing a particular cell type or state. The functional analysis of the 145 transcription factors that exhibit a restricted expression profile suggests a functional bias towards developmental processes. Table 2a lists the top five physiological functions associated with the restricted gene set, showing a significant enrichment for the development of

Table 2a

The top five physiological system development and functions overrepresented by genes showing restricted expression.

Physiological System Development and Function	P-value
Organ development	$4.73 \mathrm{E}-15-1.57 \mathrm{E}-02$
Nervous System Development and Function	$1.33 \mathrm{E}-10-2.34 \mathrm{E}-02$
Lymphoid Tissue Structure and Development	$3.60 \mathrm{E}-07-2.12 \mathrm{E}-02$
Digestive System Development and Function	$1.83 \mathrm{E}-04-1.83 \mathrm{E}-04$
Organismal Development	$2.92 \mathrm{E}-04-2.92 \mathrm{E}-04$

UNIVERSITY of the
WESTERN CAPE
organs and the organism as a whole. Investigation into the top five diseases associated with the data set shows that cancer is significantly over-represented (Table 2b). In addition, analysis of the canonical pathways suggests the Sonic Hedgehog Signaling pathway as the most significantly over-represented pathway by the data set (Table 3) with a p -value of 1.99×10^{-01}. Although the p -value presented here does not fall below the accepted 0.005 , it does support the findings presented in 2.5.2. The p-value obtained from enrichment analyses is influenced by the size of the gene list being investigated, where a larger gene list will have a higher statistical power resulting in more significant p-values. Even so, the order of enriched terms will remain fairly stable regardless of the size of the gene list, provided the lists of different sizes are being sampled from the same data set (Huang da et al., 2009). We can therefore argue that the Hedgehog pathway is significantly over-represented even though a high p-value is obtained, since it is most likely a result of having a small gene list. The Hedgehog pathway is a key regulator of embryonic development and is highly conserved from insects to mammals. Altered Hedgehog pathway activity can lead to certain cancers such as basal cell carcinoma. There is also increasing evidence that this pathway is involved in regulating adult stem cells (Bhardwaj et al., 2001) and overrepresentation of this pathway is associated with proliferation and development (Kenney et al., 2003).

The over-representation of developmental functions, diseases and canonical pathways in the data set is strong evidence that the transcription factors showing a tissue-restricted expression bias are those factors that are responsible for the finetuning of the regulation of developmental gene expression. These tissue-restricted

Table 2b

The top five diseases and disorders associated with the genes showing restricted expression in less than $\mathbf{2 5 \%}$ of all tissues.

Diseases and Disorders	P-value
Developmental Disorder	$2.99 \mathrm{E}-03-3.88 \mathrm{E}-02$
Antimicrobial Response	$7.87 \mathrm{E}-03-7.87 \mathrm{E}-03$
Cancer	$7.87 \mathrm{E}-03-3.88 \mathrm{E}-02$
Dermatological Diseases and Conditions	$7.87 \mathrm{E}-03-3.88 \mathrm{E}-02$
Endocrine System Disorders	$7.87 \mathrm{E}-03-7.87 \mathrm{E}-03$

UNIVERSITY of the
WESTERN CAPE

Table 3

A list of canonical pathways over-represented by genes showing restricted expression in less than $\mathbf{2 5 \%}$ of all tissues.

Ingenuity Canonical Pathways	-Log(P-value)
Sonic Hedgehog Signaling	7.02E-01
Estrogen Receptor Signaling	$6.92 \mathrm{E}-01$
Allograft Rejection Signaling	$6.16 \mathrm{E}-01$
T Helper Cell Differentiation	$5.95 \mathrm{E}-01$
Autoimmune Thyroid Disease Signaling	$5.95 \mathrm{E}-01$
Graft-versus-Host Disease Signaling	$5.76 \mathrm{E}-01$
Dendritic Cell Maturation	$5.07 \mathrm{E}-01$
ATM Signaling	$4.79 \mathrm{E}-01$
TREM1 Signaling	$4.58 \mathrm{E}-01$
Basal Cell Carcinoma Signaling	$4.11 \mathrm{E}-01$
PXR/RXR Activation	$4.06 \mathrm{E}-01$
Caveolar-mediated Endocytosis	$3.71 \mathrm{E}-01$
CTLA4 Signaling in Cytotoxic T Lymphocytes	$3.24 \mathrm{E}-01$
Melanocyte Development and Pigmentation Signaling	$3.13 \mathrm{E}-01$
Virus Entry via Endocytic Pathways	$3.10 \mathrm{E}-01$
p53 Signaling	3.02E-01
	2.76E-01
Type I Diabetes Mellitus Signaling	$2.56 \mathrm{E}-01$
14-3-3-mediated Signaling	$2.48 \mathrm{E}-01$
Glucocorticoid Receptor Signaling	$2.42 \mathrm{E}-01$
CD28 Signaling in T Helper Cells	$2.40 \mathrm{E}-01$

transcription factors may therefore also be implicated in the development of cancers and developmental disorders originating from a dysregulation of genes in a cell.

2.6 Conclusions

This study explored the expression profiles of a list of transcription factors known to localise in the nucleus. The aim of the study was to determine which transcription factors show tissue-restricted expression. The use of an ontologybased system enabled the identification of 145 transcription factors whose expression was limited to less than 25% of the 21 tissues represented by the dataset. Investigation of the results revealed that the tissue-restricted transcription factors are involved in developmental processes such as immune system development, embryonic development and cell fate specification. The Sonic Hedgehog Signaling pathway was the most significantly over-represented pathway in the data set, providing further evidence of a significant role of these genes in the development of an organism. In addition, the tissues in which the transcription factors showed biased expression are those tissues in which cells are continuously re-generating, indicating that these transcription factors may play a crucial role in the regulation of the progression of a cell down a defined cell lineage.

It is becoming increasingly apparent that transcription factors do not function individually, but rather as complexes. The identification of co-expressing
transcription factors will therefore be able to make an initial identification of transcription factor complexes. Clustering tissue-restricted genes based on a 75% correlation of their expression enabled the identification of 3 transcription factor complexes showing tissue-restricted (expressed in one tissue only) expression and 3 complexes showing tissue-biased (expressed in a limited number of tissues) expression patterns. The three clusters showing tissue-restricted expression represent the male and female reproductive systems as well as stem cells. We have therefore potentially identified transcription factor complexes that are involved in the regulation of the development of the cell and further investigation of the transcription factors represented by these clusters may contribute to the understanding of the regulation of normal stem cells.

The addition of expression sources to supplement the dataset used here will add quality to the results, however the method applied will not be affected. We have therefore described a robust method that applies an ontology-based system to enable the identification of transcription factor complexes that may be used to identify transcription factor complexes that function in specific tissues thereby enhancing the understanding of the regulatory potential of genes of interest.

Chapter 3

Mouse gene expression analysis of cancer/testis orthologs restricts candidates for cancer therapy.

3.1 Summary

The work presented in this chapter was conducted as part of a project aimed at characterising cancer/testis genes in human and mouse. The overall objectives of the project are fourfold:

1. Characterise, and possibly re-classify, all known human cancer/testis genes;
2. Identify novel human cancer/testis genes by means of expression profiling; UNIVERSITY of the
3. Identify which cancer/testis genes are most suited for developing cancer drugs or vaccines; and
4. Identify mouse cancer/testis genes to use as a model system for cancer drug and vaccine development.

Objectives (1) and (2) resulted in a publication (Hofmann et al., 2008), wherein my contribution was to:
a) use the ontologies presented in Chapter 1 to annotate a list of human cancer/testis genes and their mouse orthologs; and
b) maintain and implement the data-generation pipeline developed by Dr Christopher Maher and Dr Oliver Hofmann.

The mouse expression information in (a) was not used in the publication due to the observation that the expression profiles of the orthologs did not conform to expected cancer/testis criteria and further investigation was required (subsequently resulting in this chapter). The human expression information was merged with expression data derived from MPSS, qRT-PCR and CAGE expression data in order to perform a multi-platform expression analysis in the attempt to re-classify human cancer/testis genes. The pipeline in (b) is a sequence of computer scripts coded in Perl, which requires raw CAGE sequence information (Kodzius et al., 2006) as input. CAGE tags are short 10-12bp fragments derived from the 5^{\prime} coding region of an mRNA and, when mapped to the genome, accurately identifies the point of transcription initiation (transcription start site - TSS). The pipeline orders the CAGE tags according to chromosome and strand, and subsequently clusters the tags to provide quantitative evidence for transcription initiation. When annotated according to the ontology-based system described in Chapter 1, this information provides tissue-based transcription initiation events. When combined with the cDNA library information from the eVOC system as well as qRT-PCR and MPSS data, a genome-wide analysis identified genes whose expression profile classifies them as cancer/testis genes, thereby identifying novel CT genes in human. This work is discussed in detail in 'Genome-wide analysis of cancer/testis gene expression' published in PNAS (Hofmann et al., 2008), which is appended as Appendix IX.

This chapter describes objective (4), where my role was to develop, implement and interpret the analysis. The results of this study will be used to make informed decisions regarding the use of mouse as model system for investigation of
cancer/testis genes, and to further understand the relationship between human and mouse cancer/testis orthologs.

3.2 Aim

The aim of the analysis presented here is to determine whether the mouse orthologs of the human cancer/testis (CT) gene set exhibits CT characteristics. Since CT genes are a target for gene-based cancer drug therapy, and the development of these drugs includes efficacy and toxicity trials in mouse, it is important to identify human target genes whose mouse counterpart show the same tissue-restricted expression. UNIVERSITY of the

3.3 Introduction
 WESTERN CAPE

Cancer is a disease characterised by the uncontrolled growth of cells in any of a variety of tissues such as breast, prostate, lung, liver and pancreas (Jemal et al., 2008). Cancer is an invasive disease and can migrate to different parts of the body. Although there are hundreds of cancer types, they typically fall into one of five categories (leukemia, sarcoma, carcinoma, lymphoma/myeloma, and central nervous system cancers), depending on their tissue of origin. Leukemia is cancer that originates in the bone marrow where blood is formed, resulting in the production of a large number of abnormal blood cells. The sarcoma cancers develop in the connective and supportive tissues such as bone, muscle or fat.

Carcinoma is referred to cancer originating in the skin or in the tissue lining the internal organs. The lymphoma and myeloma cancers originate in the immune system, whereas the central nervous system cancers develop in the brain and spinal cord (http://www.cancer.gov/cancertopics/what-is-cancer). In addition, cancers may be classified as either benign (non-metastasizing, non-invasive, nonaggressive) or malignant (metastasizing, invasive, aggressive) tumors, the latter being the most cause of concern.

In 2004, cancer was responsible for the deaths of 7.4 million people worldwide and it is estimated that this figure will rise to 12 million in the year 2030 (http://www.who.int/en/). The exact origin of cancer is the topic of much research, however the consensus is that tumorigenic cells have altered genomes compared to normal cells, resulting in aberrant gene expression, function and cellular growth (Bos, 1989). The two main theories for the origin of cancer are the clonal evolution model and the cancer stem cell theory (Gil et al., 2008). The clonal evolution model suggests that a cell acquires a series of mutations during the process of cell division. The cancer stem cell model states that only stem cells proliferate enough times to accumulate cancer-causing mutations and that it is these cells that gives rise to tumors. The cancer stem cell population is a subset of the tumor that possesses the self-renewal and multipotent qualities of normal stem cells.

The cancer stem cell theory suggests that if the cancer stem cell population is not removed from the tumor, the patient will experience a tumor relapse. Conventional cancer therapy includes surgery to excise the tumor followed by
chemo- or radiation-therapy to kill all replicating cells. Since cancer stem cells exhibit intolerance to chemotherapy (Gil et al., 2008) these conventional therapies are not only invasive but potentially ineffective as well. Current research focusing on cancer therapy is therefore aimed at identifying genes expressed specifically in tumors and not in normal tissues, enabling the production of drugs or vaccines to target cells that have become tumorigenic.

Cancer/testis (CT) genes are a group of genes whose expression has been observed in a variety of different tumors (Chitale et al., 2005). However, when observed in normal tissues, the expression of CT genes is limited to the immunoprivileged tissues of testis, ovary-and/or placenta (Cho et al., 2006). In addition, many CT genes exhibit immunogenic properties, enabling them to elicit cellular and humoral immune responses in cancer patients (Atanackovic et al., 2006). The immunogenicity of CT genes coupled with their expression in immunoprivileged sites and in a wide range of tumors, allows these genes to be considered as drug target candidates for the immunotherapeutic treatment of cancer.

As with many pharmaceutical products, the process of creating drug targets requires the use of model systems in which to test drugs before being declared fit for clinical trials. Although the mouse is a common model system for studying biological reactions to chemical additives, it is not guaranteed that the human response will be identical. Orthologous genes may be expressed in both human and mouse, but due to different regulators their expression does not necessarily occur on the same temporal and spatial level (discussed in Chapter 1), affecting
their eventual function. For this reason it is important to identify mouse CT genes and to understand their relationship to human orthologs for the development of drug targets for cancer therapy.

3.4 Materials and methods

3.4.1 Data selection and generation

A list of 181 human cancer/testis (CT) genes was obtained from the CT Antigen Database (April, 2009) (http://www.cta.lncc.br). The mouse orthologs of the human CT genes were obtained by matching HomoloGene identifiers (as presented in Chapter 1) resulting in only 70 mouse genes. Information for the generation of gene expression profiles of the mouse orthologs was extracted from 1210 cDNA libraries in the eVOClsystem (Chapter/1). A gene was annotated with the anatomical, cellular, developmental and pathological terms associated with a library if the gene was found to be expressed in that particular library. In the cases where anatomical terms were not available, terms relating to cell type were used.

Only libraries that were annotated as having normal pathology were categorised as 'normal', whereas all other libraries not explicitly annotated as such were categorised as 'unclassifiable' in terms of pathology. Libraries comprising of more that one sample were excluded from the analysis unless all the samples were obtained from the same anatomical structure under identical pathological conditions.

3.4.2 Expression profiling

The expression information generated in 3.3.1 was organised in the form of an array. An expression array consists of a list of genes in the first column of a table, with the first row consisting of all possible annotations from the expression sources. The annotations are a combination of developmental stage, pathology and anatomical structure (or cell type) for each library used. For example, an annotation for a cDNA library obtained from the normal heart of an adult mouse would be 'adult|normal|heart'. The values for the array were based on the number of cDNA libraries from the eVOC system in which a gene was expressed, summing libraries if the annotations were identical. For example, if a gene was expressed in three different libraries all derived from a normal heart of an adult mouse, the expression value for that particular gene with 'adult|normal|heart' annotation would be 3. WESTERN CAPE

The expression array was subsequently filtered to disregard developmental stage information, remove annotations where the pathology was neither cancer nor normal, and merge terms related in terms of hierarchical structure. Appendix X lists the manual filtering steps performed on the data. A total of 7 genes were not represented by the data and were subsequently removed from the analysis.

Based on the expression profiles derived, genes were classified into three categories: (i) testis-restricted; (ii) testis/brain-restricted; (iii) testis-selective (see

Table 1 for classification and Figure 1 for a flow-diagram describing the categorisation process).

3.5 Results and discussion

Of the 181 human CT genes, only 70 have mouse orthologs according to the HomoloGene database (April, 2009) (http://www.ncbi.nlm.nih.gov/entrez/ query.fcgi? $\mathrm{db}=$ =homologene). Although $80-99 \%$ of mouse genes have human orthologs (discussed in Chapter 1), these percentages still represent between 300 6000 of the estimated 30000 genes in the mouse genome (NCBI m37, Apr 2007) (http://www.ensembl.org/Mus_musculus/Info/Statsfable), thereby easily accounting for the differences in the number of human and mouse CT genes. In addition, many of the human CT genes are primate-specific.

UNIVERSITY of the
The data filtering process involvedremoving annotations where the pathology is unclassifiable as well as disregarding developmental stage information. The filtering process is important as it discards genes whose origin is unknown and their expression can therefore not be specifically designated as 'normal' or 'cancer'. The developmental stage information is discarded because there is simply not enough data for each developmental stage to be a category on its own. Terms such as cerebellum and brain that are related in the eVOC hierarchy were merged to reflect the least granular term, resulting in 63 genes represented by 76 unique annotations consisting of 58 normal- and 18 cancer-related annotations. Unfortunately, the filtering of data resulted in 4 genes being excluded from the

Figure 1
Flow-diagram representing the categorisation of mouse genes into cancer/testis categories.

Is gene only expressed in testis or brain, but not normal or cancer?

Table 1

Classification categories for cancer/testis genes. Testis- and testis/brainrestricted genes are those biased for expression in immunoprivileged tissues.

Category	Classification
Testis-restricted	expression in cancer and testis only
Testis/brain- restricted	expression in cancer, testis, placenta, ovary and brain-regions only
Testis-selective	expression in cancer, testis and two other tissues

UNIVERSITY of the
WESTERN CAPE
analysis since they did not have any expression evidence in the remaining cDNA libraries. Although this process results in a loss of data, it increases the confidence of the remaining genes in that they have definite expression in 'normal' and 'cancer' tissues.

The resulting expression profile showed that 4 of the 70 genes were not found to be expressed in a testis library at all (ll13ra2, Ccdc36, Otoa and Magea8). There were 0 genes categorised as testis-restricted, 2 classified as testis/brain-restricted (Sycel and Tssk0) and 7 classified as testis-selective (Morc1, Spa17, Dkkl1, Plac1, Piwil2, Ly6k and Ssxb2). In addition, there were 17 genes expressed in testis, brain, ovary or placenta but not in normat or cancer tissues. Because these genes are not expressed in cancer, they are not classified as cancer/testis genes.

Figure 2 illustrates the mouse expression profile as well as the resulting categorisation of each gene. (see Appendix XI for complete expression profile). The first panel of Figure 2 (CategoryNo.) represents the CT category each gene was categorised as. The second panel represents normal testis, brain, ovary and placenta expression. The third and fourth panels represent normal and cancer expression, respectively. The fifth panel represents expression derived from normal tissues relating to the reproductive system (eg. oocyte and spermatocyte) and stem cells, and were not included in the CT categorisation process. Table 2 provides the testis-restricted, testis/brain-restricted and testis-selective genes along with their human orthologs.

The results are inevitably subject to data bias since the data set is derived from one data type from a single origin and it is therefore possible that some genes are

Figure 2
Visualisation of the gene expression profile of 63 mouse orthologs. The coloured blocks within the array refer to the number of cDNA libraries a gene is expressed in ($0=$ black; $5=$ red). Genes are ordered from top to bottom according to their CT classification (testis/brain-restricted = red; no testis expression = black).

Table 2

Gene identifiers and symbols of mouse genes showing testis-restricted, testis/brain-restricted or testis-selective expression, along with their human orthologs.

Mouse			Human	
GenelD	GeneSymbol	MouseCTcategory	GeneID	GeneSymbol
74075	Syce1	testis/brain	93426	SYCE1
83984	Tssk6	testis/brain	83983	TSSK6
17450	Morc1	testis-selective	27136	MORC1
20686	Spa17	testis-selective	53340	SPA17
50722	Dkk11	testis-selective	27120	DKKL1
56096	Plac1	testis-selective	10761	PLAC1
57746	Piwil2	testis-selective	55124	PIWIL2
76486	Ly6k	testis-selective	54742	LY6K
387132	Ssxb2	testis-selective	6756	SSX1

more likely to be included in the data set than others. The way in which to minimise the effects of data bias would be to include more data types from different sources. Although it is not presented here, the addition of data sources to the ontology system is strongly suggested. We can therefore not definitively conclude that the genes listed above are never expressed in testis or cancer and testis only. We can, however, illustrate that (a) there is evidence that these genes may not be expressed in testis and therefore possibly not classify as CT genes, and (b) genes that are considered testis-restricted in humans are showing a lessrestrictive expression profile when expressed in mouse, which was the purpose of this study. We have therefore assessed the expression profiles of mouse genes whose orthologs, when expressed in humans, show a testis-restricted or testisbiased expression. Because model systems are used to determine the safety and efficacy of a trial drug, it is important that the reaction exhibited by the mouse closely reflects the reaction that a human would exhibit to the same drug. Genetargeted drug therapy therefore requires that any drug developed to target a human gene should, when tested in a mouse, exhibit the same required response. When an ortholog does not show the same expression pattern in both human and mouse, there is a high probability that the gene performs a different function in each species. It is for this reason that we have set out to determine the expression profile of the mouse orthologs of the human CT genes and we have identified only 7 mouse genes whose expression profile characterises them as potential CT genes and therefore potential candidates for the development of gene-targeted drug therapies in mouse for eventual application in humans. In order for this work to make the transition from hypothetical to actual drug therapy, drugs may
be developed to specifically target the genes highlighted in this study. The ability for a drug to identify, target and destroy a cell expressing a gene characteristic of cancer and no other normal tissue will result in a non-invasive and highly effective means of treating and eradicating cancer.

3.6 Conclusions

The answer to effective cancer therapy lies in the ability to distinguish cancer from normal cells. The cancer/testis genes have proven to be promising candidates for drug targeted therapy due to their immunoprivileged properties. Despite the obvious importance of the cancer/testis genes in cancer therapy, these genes are not well characterised and therefore poorly understood. The use of a model system such as mouse provides an effective way to advance our knowledge UNIVERSITY of the
of the cancer/testis genes. The problem however, is that it has been shown that the temporal and spatial gene expression of human and mouse orthologs differs greatly, emphasising the need to identify mouse CT gene orthologs. The analysis presented here highlights that the mouse orthologs of human CT genes are not necessarily CT genes themselves, and identifies only 7 mouse genes showing CT gene characteristics and have human CT counterparts. These findings provide realistic targets for drug-targeted cancer therapy and deeper characterization because they have, as a result of expression profiling, been identified as genes that potentially perform the same function due to identical expression and will therefore exhibit the same responses to chemical stimuli.

Conclusions

I have demonstrated the need for an effective way to annotate expression sources such as cDNA libraries in order to allow the universal and computational comparison of the annotated data. The need for the comparison of data is not only limited to data derived from different laboratories, but also data derived from different species. I have addressed the issue of data comparison by developing a set of ontologies that describe human and mouse development. The ontologies are aligned not only between the two species, but also to other available ontologies, allowing the use of computational methods to compare human and mouse gene expression data across a range of sources. In addition, I have used the ontologies to annotate a set of 8852 human and 1210 mouse cDNA libraries as an initial dataset to showcase the ontologies.

The use of the ontologies has been demonstrated in several ways. Firstly, the ontologies have been used to compare the expression of human and mouse genes in the developing brain. It was found that of the 16324 possible human-mouse orthologs, only 90 genes were expressed in the developing brain of both human and mouse. This finding highlights the differences in the temporal and spatial expression patterns of orthologous genes between the two species. I emphasise here that when using model organisms to study the behaviour of genes with the intention of inferring structural and functional information, it is important to establish that the genes of interest have similar spatial and temporal expression profiles in both species under investigation.

Secondly, the ontologies have been used to determine clusters of tissue-restricted transcription factors. A single gene may be expressed as several different transcripts in different tissues or under different conditions depending on the transcription factors binding to the promoter region of that gene. In addition, it has been found that transcription factors function in complexes and the composition of the transcription factor complexes differ between tissues as well as disease states. The identification of tissue-restricted transcription factors may therefore provide insight into the tissue- or disease-specific regulation of genes. The results from this analysis identified 145 human transcription factors showing a tissue-restricted expression pattern. Investigation into known functions of these genes revealed enrichment for developmental processes such as immune system development, embryonic development and cell fate specification. Clustering of these genes based on correlation of their expression profiles revealed tissuerestricted and tissue-biased transcription factor complexes that are potentially responsible for the regulation of the stem cell state or lineage differentiation of cells.

Lastly, the ontologies have been used to compare the expression profiles of a set of human cancer/testis genes in mouse. Of the 181 known human cancer/testis genes, only 70 have a mouse ortholog according to the HomoloGene database. Of these 70 mouse orthologs, only 63 have expression evidence in the system used. The human cancer/testis genes have been selected based on their biased expression for either testis and cancer, or testis, brain and cancer. The investigation of the 63 mouse orthologs show that 4 genes are not expressed in the testis at all and only 2 and 7 genes showed testis/brain-restricted and testis-
selective expression, respectively. Since the cancer/testis genes are considered extremely good candidates for the development of cancer drugs and vaccines, these findings emphasise the need to consider spatial and temporal differences in gene expression between human and model organisms when using the model organism to investigate the reaction of a set of genes to a drug or vaccine. This analysis also emphasises that mouse genes whose human orthologs are cancer/testis genes, are not necessarily cancer/testis genes themselves.

Each of the studies presented here have provided evidence that many human and mouse orthologs differ in their spatial as well as temporal expression. This would lead one to question whether the genes are truly orthologs even though their sequences have a high degree of similarity. While it is true that two orthologs once performed the same function, their expression clearly has different consequences when it is not occurring on the same temporal and spatial level in both species. Since we know regulation of expression determines the timing of gene expression, it is obvious that the differences between human and mouse is not limited to those genes without any counterparts in the opposite species, but also include those orthologs whose transcriptional regulators differ between the two species. As discussed previously, transcription factors function in complexes and omission or substitution of even one transcription factor in a complex can change the timing of expression of a single gene. It is this quality of transcriptional regulation that allows even a 1% difference in genetic composition to determine the difference between the mouse and human phenotype.

Our need to find cures for life-threatening diseases such as cancer is a major driving force behind biological research and with the advances of modern medicine we are in a position to develop non-invasive gene-targeted drug therapy. Due to the advantages of using mouse as a model system, the development of most drugs inevitably involves injecting a mouse with a drug to test its efficacy and toxicity. Since gene-targeted drugs aim to identify a specific gene in humans, one would expect the drug to target the same gene in the mouse in which the drug is being tested. It is therefore important to determine if the gene in question is indeed expressed in the mouse in identical tissues and developmental stages as its human counterpart.

Given the importance of the regulation of gene expression timing and the comparison thereof between human and mouse, it is therefore imperative to accurately document a gene's expression profile based on tissue, disease and developmental stage and the work presented here provides a method to address this. It is noted that the analyses presented here used a single source of expression, namely cDNA libraries. While the addition of other expression sources such as microarray, SAGE and CAGE experiments may alter the findings, the methods still apply. I have therefore developed a robust method with which to investigate aspects of mammalian gene expression, which is illustrated here in several ways.

Bioinformatics is, without a doubt, a collaborative science where your data resources are dependent on publically available data as well as that of your collaborators. It is therefore inevitable that your data will be slightly biased in
many ways, which is why it is important to keep in consideration two aspects of this field. Firstly, the integrity of your analysis and subsequent results are directly correlated with the quality, quantity and granularity of your input data. Secondly, any computational expression results or predictions need to be experimentally confirmed in a laboratory.

UNIVERSITY of the WESTERN CAPE

Afterword

Examination questions and answers

1. In the first sentence of the preface you bring up the term "post-genomic". Would you not like to argue that we are not in the post-genomic era, but rather right in the smack middle of the genomic era? Is it not premature to speak of the "post-genome"?

- In this context, the term 'post-genomic' refers to the fact that we have passed the point where we have decoded the genome. Whole genomes are being sequenced on a daily basis in laboratories around the world and it is no longer the major bottleneck in genomics. Our challenge now is to interpret the genome by determining the function as well as regulation of all genes and the networks they are involved in. CAPE

2. What effect do you think "next-generation" technology will have on gene expression analysis and annotation in general?

- The 'next-generation' technologies enable the sequencing of genes on a much larger scale and at a faster rate than before. While this provides more data for gene expression analysis at higher accuracy, it requires effective data management strategies. Unfortunately, the annotation is not a tightly controlled aspect of data generation and it is my opinion that with the increase in the speed at which data can be generated that this process will be neglected. In order
for us to exploit data to its full potential it should be a requirement that all data submitted to public venues be annotated according to a strict set of rules involving the use of ontologies.

3. What are annotations?

- An annotation is a 'label' associated with a particular object with the purpose of describing that object. Data annotations are therefore a set of words used by the researcher generating the data to describe it. A gene will, for example, be annotated according to the tissue from which it was sequenced, such as 'lung' or 'liver'. The more annotations associated with the gene, the more descriptive it becomes (such as annotating the gene according to the developmental stage or pathological state of the originating tissue). Because annotations are assigned by different individuals who would not necessarily annotate at tissue with the same level of WESTERN CAPE
detail, all annotations are effectively open to interpretation and prone to errors.

4. What is the difference between orthologs and paralogs?

- Orthologs are genes in different species whose sequences diverged during speciation. Paralogs are genes that originated in the same species as a duplication event and the sequences of the two genes subsequently diverged. Orthologs are therefore genes separated by speciation whereas paralogs are genes separated by a duplication event.

5. What is wrong with this statement: "These two genes are 90% homologous"?

- Homology refers to two sequences having common ancestry and cannot be quantified. When comparing the composition of two sequences, a percentage is a degree of their SIMILARITY.

6. How has Open Access affected your field of research? (has it?). What should the community do differently to make this kind of data more useful? Are there some requirements on data annotation that would make this more useful? If you could change one thing that was done in the past that would have made your work more useful, what would it be?

- I have used Open Access data in my research and it has enabled me to place my work into context with respect to what other UNIVERSITY of the researchers are doing. Although most data is freely-available it is not easily understandable - almost as if it is just dumped into a database because it is a requirement for publication. Adequate descriptions of Open Access data would therefore make it more valuable. One of the stumbling-blocks of my research was the lack of accurate annotation of the data that is provided in public databases, which forced me to discard most of the data anyway (for example cDNA libraries annotated as 'unclassifiable' on the anatomical, developmental and pathological level are useless). In hindsight, making an effort to resolve annotations such as 'unclassifiable' would have increased the size and value of the data
set used in all my analyses. This would have required contacting the researcher producing each cDNA library and would be extremely time-consuming. In terms of publications, I was limited to the subscriptions of my host institution and Open Access journals. I found that much of the literature required in my research was not freely-available and therefore inaccessible to me.

UNIVERSITY of the WESTERN CAPE

References

Adams MD, Kelley JM, Gocayne JD, et al. (1991). Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 252(5013):1651-1656.

Aitken S, Korf R, Webber B, Bard J. (2005). COBrA: a bio-ontology editor. Bioinformatics. 21(6):825-826.

Ashburner M, Ball CA, Blake JA, et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 25(1):2529.

Atanackovic D, Blum I, Cao Y, et al. (2006). Expression of cancer-testis antigens as possible targets for antigen-specific immunotherapy in head and neck squamous cell carcinoma. Cancer Biol Ther. 5(9):1218-1225.

Bajic VB, Tan SL, Christoffels A, et al. (2006). Mice and men: their promoter properties. PLoS Genet. 2(4):e54.

Baldock RA, Bard JB, Burger A, et al. (2003). EMAP and EMAGE: a framework for understanding spatially organized data. Neuroinformatics. 1(4):309-325.

Bard J, Winter R. (2001). Ontologies of developmental anatomy: their current and future roles. Brief Bioinform. 2(3):289-299.

Bhardwaj G, Murdoch B, Wu D, et at. (2001). Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol. 2(2):172-180.

Bos JL. (1989). ras oncogenes in human cancer: a review. Cancer Res. 49(17):4682-4689.

Carninci P, Kasukawa T, Katayama S, et al. (2005). The transcriptional landscape of the mammalian genome. Science. 309(5740):1559-1563.

Chitale DA, Jungbluth AA, Marshall DS, et al. (2005). Expression of cancertestis antigens in endometrial carcinomas using a tissue microarray. Mod Pathol. 18(1):119-126.

Cho HJ, Caballero OL, Gnjatic S, et al. (2006). Physical interaction of two cancer-testis antigens, MAGE-C1 (CT7) and NY-ESO-1 (CT6). Cancer Immun. 6(12.
de la Monte SM, Ng SC, Hsu DW. (1995). Aberrant GAP-43 gene expression in Alzheimer's disease. Am J Pathol. 147(4):934-946.

Dennis GJ, Sherman BT, Hosack DA, et al. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4(5):P3.

Dynlacht BD. (1997). Regulation of transcription by proteins that control the cell cycle. Nature. 389(6647):149-152.

Eilbeck K, Lewis SE, Mungall CJ, et al. (2005). The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol. 6(5):R44.

Gil J, Stembalska A, Pesz KA, Sasiadek MM. (2008). Cancer stem cells: the theory and perspectives in cancer therapy. J Appl Genet. 49(2):193-199.

Gkoutos GV, Green EC, Mallon AM, Hancock JM, Davidson D. (2005). Using ontologies to describe mouse phenotypes. Genome Biol. 6(1):R8.

Hayamizu TF, Mangan M, Corradi JP, Kadin JA, Ringwald M. (2005). The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data. Genome Biol. 6(3):R29.

Hill DP, Begley DA, Finger JH, et al. (2004). The mouse Gene Expression Database (GXD): updates and enhancements. Nucleic Acids Res. 32(Database issue):D568-71.

Hofmann O, Caballero OL, Stevenson BJ, et al. (2008). Genome-wide analysis of cancer/testis gene expression. Proc Natt Acad Sci U S A. 105(51):2042220427.

The Cancer Genome Anatomy Project. http://cgap.nci.nih.gov/
FANTOM 4. http://fantom.gsc.riken.jp/4/
FANTOM3::Databases. http:// fantom3.gsc.riken.jp/
RIKEN Genomic Sciences Centre.http://gsc.riken.go.jp/indexE.html
EHDA: Human versus mouse development stage comparison.
http://www.ana.ed.ac.uk/anatomy/database/humat/MouseComp.html
National Cancer Institute. http://www.cancer.gov/cancertopics/what-is-cancer
Cancer Testis Antigen Database. http://www.cta.Incc.br
Ensembl. http://www.ensembl.org/Mus_musculus/Info/StatsTable
eVOC ontology. http://www.evocontology.org
DAG-edit. http://www.geneontology.org/GO.tools.shtml\#dagedit
Ingenuity (R) Systems. http://www.ingenuity.com
NCBI HomoloGene.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene
NCBI UniGene. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene
The Open Biomedical Ontologies. http://www.obofoundry.org/

World Health Organization. http://www.who.int/en/
Huang da W, Sherman BT, Lempicki RA. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4(1):44-57.

Hunter A, Kaufman MH, McKay A, et al. (2003). An ontology of human developmental anatomy. J Anat. 203(4):347-355

Jemal A, Siegel R, Ward E, et al. (2008). Cancer statistics, 2008. CA Cancer J Clin. 58(2):71-96.

Kelso J, Visagie J, Theiler G, et al. (2003). eVOC: a controlled vocabulary for unifying gene expression data. Genome Res. 13(6A):1222-1230.

Kenney AM, Cole MD, Rowitch DH. (2003). Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development. 130(1):15-28.

Kho AT, Zhao Q, Cai Z, et al. (2004). Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. Genes Dev. 18(6):629-640.

Kodzius R, Kojima M, Nishiyori H, et al. (2006). CAGE: cap analysis of gene expression. Nat Methods. 3(3):211-222.

Kruger A, Hofmann O, Carninci P, Hayashizaki Y, Hide W. (2007). Simplified ontologies allowing comparison of developmental mammalian gene expression. Genome Biol. 8(10):R229.RS ITY of the

Lee TI, Young RA. (2000).Transcription of eukaryotic protein-coding genes. Annu Rev Genet. 34(77-137.

Liao X, Siu MK, Au CW, et al. (2009). Aberrant activation of hedgehog signaling pathway contributes to endometrial carcinogenesis through betacatenin. Mod Pathol.

Lindsay S, Copp AJ. (2005). MRC-Wellcome Trust Human Developmental Biology Resource: enabling studies of human developmental gene expression. Trends Genet. 21(11):586-590.

Magdaleno S, Jensen P, Brumwell CL, et al. (2006). BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol. 4(4):e86.

Marra M, Hillier L, Kucaba T, et al. (1999). An encyclopedia of mouse genes. Nat Genet. 21(2):191-194.

Martin D, Brun C, Remy E, et al. (2004). GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol. 5(12):R101.

Nagaraj SH, Gasser RB, Ranganathan S. (2007). A hitchhiker's guide to expressed sequence tag (EST) analysis. Brief Bioinform. 8(1):6-21.

Nikolov DB, Burley SK. (1997). RNA polymerase II transcription initiation: a structural view. Proc Natl Acad Sci U S A. 94(1):15-22.

Odom DT, Dowell RD, Jacobsen ES, et al. (2007). Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet. 39(6):730-732.

Parkinson H, Aitken S, Baldock RA, et al. (2004). The SOFG anatomy entry list (SAEL): an annotation tool for functional genomics data. Comparative and Functional Genomics. 5(6-7):521-527.

Reid JE, Ott S, Wernisch L. (2009). Transcriptional programs: Modelling higher order structure in transcriptional control. BMC Bioinformatics. 10(1):218.

Rosse C, Mejino JLJ. (2003). A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J Biomed Inform. 36(6):478-500.

Sandelin A, Carninci P, Lenhard B, et al. (2007). Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet. 8(6):424-436.

Satoh J, Illes Z, Peterfalvi A, et al. (2007). Aberrant transcriptional regulatory network in \mathbf{T} cells of multiple sclerosis. Neurosci Lett. 422(1):30-33.

Shannon P, Markiel A, Ozier O, et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11):2498-2504.

Smith B, Ceusters W, Klagges B, et al. (2005). Relations in biomedical ontologies. Genome Biol. 6(5):R46.

Smith B, Ashburner M, Rosse C, et al. (2007). The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 25(11):1251-1255.

Sprenger J, Lynn Fink J, Karunaratne S, et al. (2008). LOCATE: a mammalian protein subcellular localization database. Nucleic Acids Res. 36(Database issue):D230-3.

Stevens R, Goble CA, Bechhofer S. (2000). Ontology-based knowledge representation for bioinformatics. Brief Bioinform. 1(4):398-414.

Suzuki H, Forrest AR, van Nimwegen E, et al. (2009). The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet. 41(5):553-562.

Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. (2009). A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 10(4):252-263.

Waterston RH, Lindblad-Toh K, Birney E, et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature. 420(6915):520-562.

Zhou XJ, Gibson G. (2004). Cross-species comparison of genome-wide expression patterns. Genome Biol. 5(7):232.

UNIVERSITY of the
WESTERN CAPE

Appendix I Transcriptional landscape of the mammalian genome, Science.

		REPORTS
only LKS stations in NH), are fully consistent with this assumption, particularly for the tropical stations. In the extratropics there are only four daytime-only stations so the MSU test is less meaningfut, but the two independent estimates do agree within $0.03^{\circ} \mathrm{C}$ per decade. To illustrate the importance of the heating bias, we have computed its impact $\delta_{\text {sol }}$ on the trends at LKS stations. The LKS f factors, unhomogenized trends, and trends adjusted only for solar heating are given for the middle troposphere and lower stratosphere in Table 2. In the stratosphere, our $\delta_{s o p}$ is similar to the total adjustments by LKS and others, with trends moving closer to those from MSU (/3). At the tropical tropopasse (of relevance to stratospheric water vapor), $\delta_{\text {sol }}$ is somewhat smaller than LKS's. In the troposphere, however, $\delta_{\text {sol }}$ is much larger than previous adjustments. Indeed, the tropical trend with this adjustment $\left(0.14^{\circ} \mathrm{C}\right.$ per decade over 1979 to 1997) would be consistent with model simulations driven by observed surface warming, which was not true previously (1). One independent indication that the solar-adjusted trends should be more accurate is their con-	References and Notes 1. B. D. Senter et al.. Science 309. 1557 (2005): published ontine 11 August 2005 ($10.1126 /$ science. 1114867). 2. f. K. Angell. f. Clim. 16, 2288 (2003). 3.]. R. Lanzante, S. A. Klein, D. J. Seidel, J. Clim. 16, 241 (2003) 4. D. E. Parker et al., Geophys. Res. Lett. 24, 1499 (1997) 5. P. W. Thome et al., J. Geophys. Res., in press. 6. D. H. Douglass, B. D. Pearson, S. F. Singer, P. C. Knappenberger, P. I. Michaets, Geophys. Res, Lett. 31. 113207 (2004). 7. D. J. Gaffen et al. Science 287, 1242 (2000). 8. D. E. Parker, D. I. Cox, int. J. Climator. 15, 473 (1995). 9. M. Free, D. J. Seidel, J. Geophys. Res. 110, D07101 (2005). 10. J. K. Luers, R. E. Eskridge, / Appt. Meteorol. 34, 1241 (1995). 11. . Durre, t. C. Peterson, R. S. Vose, J. Clim. 15, 1335 (2002). 12. L. Haimberger, "Homogenization of radiosonde termperature time series using ERA-40 malysis feedback information," Tech. Rep. European Center for Medium Range Weather Forecasting (2005), ERA-40 Project Report Series 23. 13. D. J. Seidel et al., J. Clim. 17, 2225 (2004). 14. P. R. Krishnaiah, B. Q. Miao, Handbook of Statistics. P. R. Krishnaiah, C. R. Rao, Eds. (Elsevier, New York. 1988). vol 7. 15. M. Free et al., Bull. Am. Meteorol. Soc. 83, 891 (2002). 16. W. J. Randel, F. Wu, in preparation. 17. D. J. Seidel, M. Free. J. Wang. J. Geophys Res 110. D09102 (2005). 18. A. Dai, K. E. Trenberth, I. R. Kati, J. Clim. 12, 2451 (1999)	19. S. Chapman, R. S. Lindzen, Atmospheric Tides (D. Reidel, Norwelt MA. 1970). 20. D. R. Easterling et al., Science 277, 364 (1997). 21. D. J Gaffen, R. \& Ross, J. Clim. 12, 811 (1999). 22. W. J. Randet et al. Science 285, 1689 (1999). 23. K. N. Liou, T. Sasamori, f. Atmos. Sci. 32, 2166 (1975) 24. R E. Eskridge et al., Bell. Am. Meteorol. Soc. 76, 1759 (1995). 25. H. Rieht Tropical Meteorology (McGraw Hill, New York, 1954). 26. S. C. Sherwood, Geophys. Res. Lett. 27, 3525 (2000). 27. J. R. Christy, R. W. Spencer, W. B. Norris, W. D. Braswell, D. E. Parker, J. Atmos. Oceanic Technol. 20. 613 (2003). 28. T. Sasamori, J. London, J. Atmos. Sci. 23, 543 (1966). 29. Data files and further information on methods, uncertainty, and interpretation of our results are available as supporting material on Science Ordine. 30. S.CS. thanks \& Risbey and K. Braganza for usefad discussions. This work was supported by the National Ocearic and Atmospheric Administration Climate and Clabal Change Program award NA03OAR4310153, and by N5F ATM-0134893. Supporting Onlime Material www.sciencemag.org/cg/content/full/ 1115640/DC1 Methods SOM Text Data files References and Notes 2 fune 2005; accepted 27 July 2005 Published ondine 11 August 2005; 10.1126/science. 1115640 indude this information when citing this paper.

The Transcriptional Landscape of

Though this is encouraging, our confidenc in these nighttime trends is still limited given that other radiosonde errors have not been addressed. SH trends from 1958 to 1997 seem unrealistically high in the troposphere, especiaily with the $\delta_{\text {mid }}$ adjustment, although this belt has by far the worst sampling. Previous homogenization efforts typically produced small changes to mean tropospheric trends, which could mean that other error trend cancel out $\delta_{\text {sod }}$ in the troposphere. In our judgment, however, such fortuitous cancellation of independent errors is unlikely compared to the possibility that most solar antifacts were pre viously cither missed or their removal negred by other inaccume adjustments. To be de by aded easily a shif must be large ond be de tected easily, a shift must be large and abrupt but $\delta_{\text {sol }}$ was spread out over so many stations
(79% of stations during 1979 to 1997 and (79% of stations during 1979 to 1997 and
90% during 1959 to 1997 experienced ΔT trends significant at 95% level), at such modest levels, and of sufficient frequency at many stations that many may have been undetectable. Most important, jumps in the difference beiween daytime and nighttime monthly means would be detectable at only a few tropical stations because most lack sufficient nighttime data. In any case, we conclude that carefully extracted diumal temperature variations can be a valuable troubleshooting diagnostic for climate records, and that the uncertainty in late-201h century radiosonde trends is large enough to accommodate the reported surface warming.

References and Notes

.). K. Angell, f. Clim. 16, 2288 (2003)
(2003).
D. . Warke et a... Geophys Res Lett. 24, 1499 (1997) G. H. Douglass, B. D. Pearson S. F Sings. Michaets, Geophys. Res. Lett. 31
D. J. Gaffen et al, Science 287, 1242 (2000)
1995). Climator. 15.
M. Free, D. J. Seidel, J. Geophys. Res. 110, D0710
K. Luers, R. E. Eskridge, I. Appl. Meteorol. 34, 124
(1995).
(2002).
L. Haimberger. "Homogenization of radiosonde ternper
ature tume series using ERA-40 analysis feectad information," Tecth. Rep. Eurppean Center for Medium Range Weather forecasting (2005), ERA-40 Project . D. J. Seidel et al., J. Clim. 17, 2225 (2004).
14. P. R Krishmaiah, B. Q. Miao, Handbook of Statistics. 1988). vol 7.

1. W. A Aen., Bul Am. Meteorol. Soc. 83, 891 (2002). 17. D. J. Seidel, M. Free. J. Wang. J. Ceophys Res. 110. 18. A Diji, K. E. Trenberth, I. R. Kmit J. Clim. 12. 2451 (1999)

Norwelt MA. 1970).
2. D. R. Easterling et al., Science 277,364 (1997)
21. D. . Gaffen, R.) Ross. J. Clim. 12, 811 (1999)
23. K. N. Liou, T. Sasamori, J. Atmos. Sci, 32, 2166 (1975)
4. RE. Eskidge et al., Bull. Am. Meteorod. Soc. 76, 1759 (1995).
H. Rieht Tro
25. York, 1954).
F. S. C. Sherwood. Geophys. Res. Lett. 27, 3525 (2000). Braswell, D.E. Parker, / A Atmos. Occeanic Technol. 20 613 (2003).
28. T. Sasamori, J. London, J. Atmos. Sci. 23,543 (1966). dainy, and mierpretation of ous results are avalible as SCS thants I Ristey sud K Orine
aussions. This wat was suppoted by the Netal disceeanc and Atmospheric Administration Climate and Chal hange frogram owad NA030AR4310153, and
upporting Online Material
mw.sciencemag.org/cgi/content/full/ $1115640 / \mathrm{DC}$
SOM Text
References and Notes
June 2005; accepted 27 July 2005
10.1126/science. 11115640
indude this information when citing this paper
the Mammalian Genome

The production of RNA from genomic DNA is directed by sequences that determine the start and end of transcripts and splicing into mature RNAs. We refer to the pattern of transcription control signals, and the transcripts they generate, as the transcriptional landscape. To describe the transcriptional landscape of the mammalian genome, we combined fulllength cDNA isolation (1) and 5^{\prime} - and 3^{\prime}-end sequencing of cloned cDNAs, with new capanalysis gene expression (CAGE) and gene identification signature (GIS) and gene signature cloning (GSC) ditag technologies for the identification of RNA and mRNA sequences corresponding to transcription initi-
ation and termination sites (2,3). A detailed description of the data sets gemerated, mapping strategies, and depth of coverage of the mouse transcriptome is provided in supporting online materal (SOM) text 1 (Tables 1 and 2). We have identified paired initiation and termination sites, the boundaries of independent ranscripts, for 181,047 independent transcripts in the transcriptome (Table 3). In otal, we found 1.325^{\prime} start sites for each 3^{\prime} and and 1833^{\prime} ends for each 5^{\prime} end (table 1) Based on these data the number of ranscripts is at least one order of magnitude larger than the estimated 22,000 "genes" in the mouse genome (4) (SOM text 1), and the
large majority of transcriptional units have alternative promoters and polyadenylation sites. The use of genome tiling arrays (5-7) in humans has also implied that the number of transcripts encoded by the genome is at least 10 times as great as the number of "genes." To extend the mouse data, two HepG2 CAGE libraries, one constructed with random primers and the other with oligo-dT primers, were combined to produce $1,000,000$ CAGE tags Mapping of these tags to the human genome identified the likely promoters and transcriptional starting site (TSS) of many of the gene models identified by tiling array, also called transfrags (5), and clearly medicates that the same level of transcriptional diversity occurs in humans as in mice (table S2).

The FANTOM Consortimm:

P. Carninci, \uparrow T. Kasukawa, S. Katayama, J. Cough, \dagger
M. C. Frith, + N. Maeda, R. Oyama, T. Ravasi, + B. Lenhard, t C. Wells, + R. Kodzius, K. Shimokawa, V. B. Bajic,, S. E. Brenner, S Batalov, A R R formes, M. Zavolan, M.J. Davis, LG. Wilming V. Adidinis, J. E. Aler, A. Ambesi-Impiombato, R Apweier, R.N. Aturaliya, T. L.
Bailey, M. Bansal, 1 Baxter, K W. Beisel T. Bersano, H. Bono, A. M. Chalk K. P. Chiu, V. Choudhary, A. Bono A A. M. Chalk K. P. Chit, V. Choudhary, A.
Christoffes, D. R Clutterbuck, M. L. Crowe, E. Dalla, B. P. Dalrymple, B. de Bono, G Detla Gatta, D. di Bemardo. T. Down, P. Engstrom, M. Fagidini, C. Faulkner, C. F. Fletcher, T. Fukushima, M. Furuno, S. Futaki, M. Gariboldi, P Georgii-Hemming T. R. Cingeras, T. Gojobori, R. E. Green, S. Gustincich, M. Harbers, Y. Hayashi, I. Hensch. N. Hirokawa, D. Hill, L.
Huminiecki, M. lacono, K. Ikeo, A Iwama, T. Ishikawa, M. Jakt, A. Kanapin. M. Katoh, Y. Kawasawa. J. Kelso, H. Kitamura, H. Kitano. C. Kollias, S. P. T. Krishnan, A. Kruger, S. K. Kummerfeld, I. V. Kurochkin, L. E. Lareau, D. Lazarevic, L. Lipowich, J. Lius, S. Liuni, S. McWilliam, M. Madan Babu, M. Madera, L. Marchionnt,
H. Matsuda, S. Matsuzawa, H. Miki, F. Mignone s. H. Matsuda, S. Matsuzawa, H. Mikd, F. Mignone, S.
Miyake, K. Morris, S. Mottagui-Tabar, N. Mulder N Miryake, K. Morris, S. Mottaggui- Tabar, N. Mulder, N.
Nakano, H. Nakauch, P. Ng R. Nitson, S. Nishiguch, S. Nishikawa, F. Nori, O. Ohara, Y. Okazaki, V. Orlando, K. C. Pang, W. J. Pavan, C. Pavesi, C. Pesole, N. Petrovsky, S. Piarza, J. Reed, J. F. Reid, B. Z. Ring, M. Ringwald, B. Rost, Y. Ruan, S. L. Salzberg, A. Sandelin, C. Sctmeider, C. Schönbach, K Seleigucti, C. A.M. Semple, S Seno, L Sessa, Y. Sheng, Y. Shibata, H. Shimada, K Suglura, R Sultana Y. Takenaka K. Taki, K. Tarmoja, S. L. Tan, S. Tang M. S. Taylor, , . Tegreer, S. A. Teichmann, H. R. Ueda, E. van Numwegen, R. Vefardo, C. L Weil, K Yagi. H. Yamanisht E Zabaronsky. S. Zhu. A Zimmer, W. Hide, C. Bultt + S. M. Crimmond, R. D. Teasdale, E. T. Liut +V. Brusic, ,. Quackenbush, + C. Wahlerted, \dagger I, S. Mattick +
D. Aumet RIKEN CETOT RMEN Genvorne Exploration Research Group and Ce-
nome Solence Croup (Genome Network Prolect Core) Croup):
C. Kal, D. Sasaki, Y. Tomaru, S. Fukuda, M. KanamoriKatayama, M. Suzuki, \dagger J. Aoki, T. Arakawa, J. lida, K, T. Kawashima, M. Kojima, S. Kondo, H. Konno, K. Nakano, N. Ninomiya, T. Nishio, M. Okada C. Plessy, K. Shibata, T. Shiraki, S. Suzuki, M. Tagami, K. Waki, A. Watahiki, Y. Okamura-Oho, H. Suzuki, J. Kawai. General Organizer:
*Affiliations can be found on Science Online (available at www.sciencemag org/cgi/content/ful/ $309 / 5740 /$ at www.scie
\ddagger These authors are core authorship members. \ddagger To whom correspondence should be addressed. E-mail: yosihide甲gceriken.jp

The mapping of ends of transcripts can be used to identify the genomic span of the primary transcript. Figure 1A shows length disributions of the predicted genomic regions panned by mouse cDNAs showing a bi modal distribution and compares them with one peak for unspliced and another for
spliced RNAs. At the upper end of the disspliced RNAs. At the upper end of the dis-
tribution are candidate mega transcripts (trantribution are candidate mega transcripts (tran-
scripts originating from genomic regions in the order of millions of base pairs). For example, we located six pairs of genome signature cloning (GSC) ditags to RIKEN clone ID 9330159 J 16 and corresponding RIKEN expressed sequence tags (ESTs). This clone encodes for a previously unidentified large
transcript that is similar to a protein tyrosine phosphatase, receptor type D (accession no. BC086654), the genomic structure of which has not been previously reported (8). The predicted mRNA is 2475 base pairs in length but spans a genomic region of 2.2 megabases (Mb).

We previously coined the term transcriptional units (TUs), which groups mRNAs that share at least one nucleotide and have the same genomic location and orientation (9). However, TU fusions can join unrelated and differently annotated transcripts (SOM text 2). Therefore, we define a transcriptional framework (TK) as grouping transcripts that share common expressed regions as wel

A

B

Fig. 1. Genome-transcriptome relation. (A) Genome span covered by full-length CDNA and CIS/CSC ditags shows similar distribution with two main peaks. Ditags mapping follows the same distribution profile at various mapping thresholds, with a minimum around 2 to 2.5 Mb . Mapping events above this unit collapse. Due to extensive overlap of the genome, transcripts overlap to the extent that they collapse to a few GFs. Simulating addition of ditags shows the collapsing rate of the known annotate genes into 9976 elements only. Primary transcripts only. GFs identified by GSC ditags only; Ensemb only. GFs produced by the 3332 Ensemb-only annotated transcripts; total, the total number of GFs.
as splicing events, TSS, or termination events (SOM text 1)

TKs can be clustered together into transcript forests (TFs), genomic regions that are transcribed on either strand withou gaps. TFs encompass 62.5% of the genome (table S1) and are separated by regions
devord of transcription, or transcription deserts. With the inclusion of GSC tags in addition to full-length cDNA and paired EST sequences, the estimated total number of transcript forests is 18,461 which will col lapse further with increasing depth of coverage (Fig. 1B).

The approach used to isolate full-length DNAs, basod on library subtraction and previously unidentified $5 / 3$ end selection before full-insert sequencing was weighted toward identification of representative transcripts. Nevelos 78.393 differmit spicing vian evertheloss. 78,33 difern spicing variants TUs contain multiple splice variants (Table 2), an increasc from our previous estimate (41%) (9). This is still expected to be an underestimate, and new approaches will be necessary for a full evaluation of exon diversity (10).

Transcript diversity also arises through aternative termination. Little is known about sequence motifs that control alternative polyadenylation. We identified 27 motif families with six or more nucleotides that were statistically overrepresented within 120 base pairs of the polyadenylation site of individual transcripls in our data sel. These motifs represent candidate modulators of polyadenylation site for eight unconventional altemative polyadenylation signals (1) (table S3). In addition, we found a widespread motif family with sequence TTGTTT, which was associated with both the canonical (AAUAAA and AUUAAA) and unconventiontal signals ($/, / /$).

Gene names of 56,722 transcripts that were protein coding were assigned according to annotation rules $(9,12$). Their encoded protein sequences were combined with the pubficly available proteins supported by cDNA sequences (8). This generated a nonredundant set of 51,135 protins with experimental evidence [isoform protein set (IPS)], 36,166 of which are complete (complete IPS). By comparison, the mammalian gene collection (http:// mge.nci.nih.gov) has cloned, as of July 2005, only $\sim 16,700$) transcripts (11,514 nonredundant). In the FANTOM3 data set, 16,274 protein sequences are newly described. Their 13,313 TKs. For 9002 of these, a previously known sequence maps 10 the same TK (locus) known sequence maps to the same TK (locus) but 431 clusters (5154 different proteins) map
to new TKs (SOM text 3). to new TKs (SOM text 3)
There are a total of 32.129 protein-coding TKs on the genome, of which 19.197 have only a single protein splice form, although 2525 of those do have an alternative noncoding splice variant. The SUPERFAMILY anatysis of structural classification of protein database (SCOP) domain architectures (13) was carried out for each sequence. Of the 12,932 TKs that show variation in splicing. 8365 showed variation in SCOP domain prediction. Of the 12.932 variable TKs, 2392 produce proteins with different observed contents of InterPro wih entries. More than wo almatives were observed in 439 of 2392 InterPro-variable TKs. Thus, in the majority of variable loci, splicing controls some aspect of donain content or organization. To seek evidence for such an impact in specific sets of regulatory proteins, we compared a representative protein set

REPORTS

Fig. 3. Noncodin RNA promoters are highly conserved. (A) Human-mouse conservation of coding and noncoding RNAs compared with randorm geand C) Promoters con and C) Promoters conservation of noncoding
and coding mRNA and coding mRNA tity and (C) by alignment (D) Overlap of promoters of ncRNAs. (E and f) Promoters of coding mRNAs contain a larger fraction of low complexity and repeats than noncoding promoters. LINE long elements LTR, long terelements LTR, long terminal repeats: SNES, dear elements

A
Conservation of mouse RNAS vs. human

D
Sequence conservation of mouse promoters ws. thicken

2682 non-protein-coaing promoters

C Sequence conservation of mouse promoters vs human

F :
E

B
Sequence conservation of mouse promoters vs, human

$\stackrel{\text { \% }}{\stackrel{3}{*}}$

(RPS) and a variant protein set (VPS) of phosphatases and kinases that have been comprehensively annotated (14) by looking comprehensively annotated (14) by looking These phosphoregulators could be functionally modulated through alteration in their intracellular location. Among the 21 receptor tyrosine phosphatase loci, we identified 23 variant transcripts from 14 loci with predicted changes to the subcellular localization and function of the encoded peptides. Of these. we identified two noncatalytic classes: secreted (10) and tethered (3). Furthermore, we identified two catalytic classes that lack the extracellular domains: catalytic only (5) and tethered catalytic (5). Similarly, among the 77 receptor kinase loci, we identified 41 variant transcripts from 33 loci which encode secreted (16), tethered (10), catalytic only (7), or other tethered catalytic (8) peptides. We then analyzed the membrane organization splicing
variants class within the full set of TUs (table S5), which revealed 1287 TUs that exhibit alternative initiation, splicing, and termination, likely to yicld variant isoforms of mem-
brane proteins that differ in their cellular location.
Of the 102,281 FANTOM3 cDNAs, 34,030 lack any protein-coding sequence (CDS) and are annotated as non-protein coding RNA (ncRNA) (6,15) (table S1). Many putative ncRNAs were singletons in the full-length cDNA set. Among the FANTOM3 cDNA set there was additional support from ESTs, CAGE tags, or other cDNA clones overlapping both the starting and termination sites for 41.025 CDNAs of which only 3652 fere 41,025 cDNAs, of which only 3652 were ncRNAs. This supported ncRNA set includes many known ncRNAs (SOM text 4), and many are dynamically expressed (SOM text 5). Following these same criteria, 3012 from 8961 cDNAs previously annotated as truncated

CDS were supported as genuine transcripts and are believed to be ncRNA variants of protcincoding cDNAs.
Many neRNAs appear to start from initia tion sites in 3^{\prime} untranslated regions ($\mathbf{3}^{\prime}$ UTRs of protein-coding loci (16). The normalized distribution of CAGE tags along annotated exons of known transcripts with more than 300 mapped tags each is shown in Fig. 2A. As expected, the highest tag density on average occurs at the 5 end, but there is also a substantial increase of tags in the last one-fifth of the 3'UTR. Strong evidence of 3^{\prime} end initiation was cortelated with a short inter menic wance when in tail to shil orienter with a neighboring gene (Fig. 2B), suggesting a possible role in an intergenic regulatory interaction.
The function of ncRNAs is a matter of de bate (I7). Some neRNAs are highly conserved even in distant species: 1117 out of 2886

Table 2. Transcript grouping and classification. The extent of splice variation was calculated by exduding T -cell receptor and immunoglobulin genes from the transcripts. The ramaining 144,351 transcripts were grouped in 43,539 TUs, of which $18,627(42.8 \%)$ consist of single-exon transcripts, 8110 (18.6\%) contain a single multiexon transcript, and the remaining 16,802 TUs (38.6%) contain at least two spliced ranscripts. Among these TUs, $5862(34.9 \%$) show no evidence of splice variation, whereas 10,940 (65.1\%) contain multiple splice forms.

	Total	Average per TU cluster	Average per TK cluster
Total number of transcripts	158,807	7.59	7.30
RIKEN full-length	102,801		
Public (non-RIKEN) mRNAs	56,006		
GFs	25,027	1.20	1.15
Framework clusters	31,992	1.53	1.47
Tus	44,147	2.11	2.03
With proteins	20,929	1.00	0.96
Without proteins	23,218	1.11	1.07
TK	45,142	2.16	2.07
With proteins	21,757	1.04	1.00
Without proteins	23,385	1.12	1.07
Splicing patterns	78,393	3.75	3.60

Table 3. Determination of transcripts start/end accuracy. Two pieces of evidence (CDNA tags ditags, EST, and 5-3 EST pairs) are required when one piece of evidence is required when they exten or identify new transcripts. Reliable indicates that both ends are associated with reliable tag clusters.

	Total	Reliable
Total 5'/3'-end pair sequence $5^{\prime} / 3^{\prime}$-end pair cluster	$\mathbf{1 , 5 0 7 , 1 2 2}$	$1,336,397$

overlap chicken sequences, of which 780 do not overlap known CDS and 438 do not over lap known mRNAs on ether strand, whereas 68 out of 2886 have BLAST-like alignment tool (BLAT) alignments to the Fugu genome, of which 40 do not overiap known CDS on either strand. These neRNAs are at east as conserved as a reference set of known ncRNAs (Fig. 3A), contrary to a previous study (17) However ncRNAs are lightly less conserved on average han 5° 3^{\prime} 'UTRs. In contrast, the promoter regions of ncRNAs are generally more conserved than the promoters of the protein-coding mRNA not only between human and mouse but also down in the evolutionary scale to chicken Fig. 3, B to F), and they contain binding sites for known transenption factors (/8). We conclude that the large majonty of ncRNA that we analyzed display positional conservation across species. In considering func tion, one might conclude that the act of transcription from the particular location is cither important or a consequence of genomic structure or sequence (for example, enhancers such as that of the globin locus can act as promoters), the transcript may function through some kind of sequence specific interaction with the DNA sequence from which it is derived, or many noncoding

RNAs have other targets but are evolvin rapidly (19.20).

New databases have been created for cDNA annotation. expression, and promoter analy sis (http://fantom3.gsc.riken.jp/db/ and SOM texi 6). The databases integrate common gene and tissuc ontologies like eVOC mouse developmental ontologics (21), cross mapped to Edinburgh Mouse Atlas Project (EMAP) ontology terms (22). These eVOC terms al ontow gnalysis (22) low analysis standa and both mouse and human and were included into the DNA Database of Japan (DDBJ data submission (23).
Analysis of the ouppt of FANTOM2 sug gested that there were many more tran-
scripts still to be discovered (24). Here, we have confirmed that the majority of the mammalian genome is transeribed, commonly from both strands. Such transcriptional complexity implies caveats in interpretation complexity implies caveats in interpretation manipulation in mice because these will manipulation in mice, because these wil one TK. Although the current overview gives us an indication of the complexity of the mammalian transcriptional landscape and a new set of tools to begin to understand transcriptional control (for example a ver large set of promoters that can be ascribed to distinct classes) (16), we also gain insight into the scale of the task that remains. The ditag data indicate the existence of very long transcripts whose isolation and sequencing will require new cloning and sequencing will sequang stateg. Alough we have is lated the FANTOM3 collection only contains 40% of those already known. Finally, the focus has been on polyadenylated mRNAs that are processed and exported to the cytoplasm Recently, Gingcras and colleagues (5) have
hown that the set of nonpolyadenylated nuclear RNAs may be very large, and that many such transcripts arise from so-called intergenic regions (7). The future can only reveal additional complexity in the mammalian transcriptome

References and Notes

1. P. Caminci et al., Cenome Res. 13, 1273 (2003).
2. T. Shiraki et at. Proc. Natt Acad. Sci. U.S.A.
15776 (2003).
3. P. Ng et al., Nat. Methoots 2, 105 (2005).
C. R. H. Waterston et at. Nature 420, 520 (2002).
D. Kampa et al., Genome Res. 14, 331 (2004).
4. J. Cherg et al., Science 308, 1149 (2005).
 99,16899 (2002).
5. Y. Okazaki et at. Nature 420, 563 (2002)
. A. Watahiki et al., Nat. Methods 1. 233 (2004)
6. N. Mazeda, R. Oyama, in
7. J. Cough, in preparation preparation.
8. A. R. Forrest et at. Genome Res. 13. 1443 (2003)
9. Materiads and methods are available as supporting
material on Science Online.
10. P. Carminci et al., in preparation.
11. I Wang et at., Nature 43 , 1 p following 757:
disoussion following 757 (2004)

Siscussion following 757 (2004).
18. S. Casley et al. Cell 116.499 (2004).
19. T. Ravasi, D. A. Hure, in Encyclopedia of Genetics,

Geromics, Proteomic, and Eioinformatios. L. B. Jorde, Witey \& Sons, Chichester. UK, in press), part 2.3.
20. J. 5. Mattick, 1. V. Makunin, Hewn. Mod. Genet, in
22. R A Baddock et al. Neuroinformatic 1,309 (2003).
2. All sequences (CACE, and cDNA) are availib)
through DDB) to other public databases. The CDNA through DDBJ to other public databases. The CDNA
dones ze zailabte. dones are availabte.
24. Y. Okazaki, D. A. Hume, Genome Res. 13, 1267 (2003)
25. E. Marstall. Science 306,630 (2004)

RIKEN Genome Exploration Research Group and
Genome Soince Group (Genome Network Project Conome Sonce Group (Genome Network Project
Cow land the FANTOM Consortium Science 309, 1564 (2005).
27. We thank H. Atsui, A Hasegawa, Y. Hasegawa, K. C. Kawazu. M. Aoli, K. Murakemi. M. Murata H Nisthida, M. Nistikawa K. Nornura, M. Omo. Y. Onodera, N. Sakazume, M. Sato, Y. Shigemoto, N. Suruki, Y. Takeda, Y. Tsuijmura, K Yoshida for discussion, ercourdgament, and tectrical assistance. We thank A of RIIEN Yokohama Research Promotion Oivision for support and encouragement We also thank the Laboratory of Genome Exploration Research Group for secretarial and tectmical assistance, Yokohama City
University for providing human samples, and computational resources of the RIKEN Super Combined Custer (RSCC). This work was mainly supported by Research Grant for the Genorme Network Project from MEXX, the RKEN Cenome Exploration Research Project from
MEXT (Y.H.). Advanced and Innowational Research 1 Program in Life Science (Y...). National Project on Protem Structural and Functional Analysis from MEXI (Y.H).) Presidential Research Grant for intersystem from the Six Framework Progam from the European Commission (P.C.).

```
Supporting Ondine Material
```

mww sciencemag.org/cgi/content/fuli/309/5740/1559/
${ }_{\text {OCl }}$
${ }^{\text {Som Text }}$
Sigs. 57 to 54
Tables 51 to $\$ 10$
Tables 51 to S
References
References
DDBI Acces
9 March 2005; accepted 4 August 2005
10.1126/science. 1112014

Mice and Men: Their Promoter Properties

Vladimir B. Bajic ${ }^{1,2^{*}}$, Sin Lam Tan ${ }^{1,2}$, Alan Christoffels ${ }^{3,4}$, Christian Schönbach ${ }^{5}$, Leonard Lipovich ${ }^{6}$, Liang Yang ${ }^{7}$, Oliver Hofmann ${ }^{2}$, Adele Kruger ${ }^{2}$, Winston Hide ${ }^{2}$, Chikatoshi Kai ${ }^{8}$, Jun Kawai ${ }^{8,9}$, David A. Hume ${ }^{10}$, Piero Carninci ${ }^{8,9}$, Yoshihide Hayashizaki ${ }^{\text {8,9 }}$

1 Knowledge Discovery Laboratory, institute for infocomm Research, Singapore, $\mathbf{2}$ South African National Bioinformatics Institute, University of the Western Cape, Beilivile, South Africa, 3 Temasek Life Sciences Laboratory. National University of Singapore, Singapore, 4 School of Biological Sciences, Nanyang rechnotogical University, Singapore. 5 immunoiniormatics Research Team, Advanced Genome information Technology Research Group. RIKEN Genomic Sciences Center, RiKEN Yokohama Institure, Yokohama, Japan, 6 Genome institure of Singapore. Singapore, 7 Department of Obstetrics and Gynecology, National University Hospital, National University of Singapore, Singapore, 8 Genome Exploration Research Group (Genome Network Project Core Groupl, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama, Japan, 9 Genome Science Laboratory, Discovery Research Institute, RIKEN Wako Institute, Wako. Japan, 10 Australian Research Council Special Research Centre for Functional and Applied Genomics, Instirute for Molecular Bioscience, University of Oueensland, Brisbane, Oueensland, Australia

Using the two largest collections of Mus musculus and Homo sapiens transcription start sites (TSSs) determined based on CAGE tags, ditags, full-length cDNAs, and other transcript data, we describe the compositional landscape surrounding TSSs with the aim of gaining better insight into the properties of mammalian promoters. We classified TSSs into four types based on compositional properties of regions immediately surrounding them. These properties highlighted distinctive features in the extended core promoters that helped us delineate boundaries of the transcription initiation domain space for both species. The TSS types were analyzed for associations with initiating dinucleotides, CpG islands, TATA boxes, and an extensive collection of statistically significant cis-elements in mouse and human. We found that different TSS types show preferences for different sets of initiating dinucleotides and ciselements. Through Gene Ontology and eVOC categories and tissue expression libraries we linked TSS characteristics to expression. Moreover, we show a link of TSS characteristics to very specific genomic organization in an example of immune-response-related genes ($\mathbf{G 0 : 0 0 0 6 9 5 5}$). Our results shed light on the global properties of the two transcriptomes not revealed before and therefore provide the framework for better understanding of the transcriptional mechanisms in the two species, as well as a framework for development of new and more efficient promoter- and gene-finding tools.
Citation: Bajic VB, Tan SL, Christoffets A, Schonbach C. Lipovich L. et al. (2006) Mice and men. Their promoter properties. PLoS Genet 2(4): e54. DOI: 10.i371/journal.pgen.
0020054

The Genome Network Project - FANTOM3

Introduction

The computational identitication and functional amalvais of mammalian promoters bas. fo date. been comstained bit the relatively vmall datacts of experimentally confirmed tratimoption stan site flSts). For example. promumers whan dhtSS wele recenty tuplated with the mapping of las, the
 Refseq mouse genes |l.2]. Functional analyes of these mammalan promoters base been rextricted whated satmserpaion factor binding stes (TFBSs, between haman and monse datasets fef. taing the same collection of promoters
 baticon of proneters by extending theil study lo brosephith melanugeter and Fugu mbipes |3|. Furthe chatacherization of mammalian promoters is dependent on be avalability of experimentally veritied fsss that would complement and extend existing dataces represcuted by the FANTOM colterions. ditsts. He H-Ibvitational database |f|. amd

 (hamath). Bathed on boese data we provide a comptehenoise compatatise athalssis of mouse and humam promoters that results in a mmber of new insights that heJp te to better underathd the transeriptionat seenarion in these wos species.
 promoter hagackerivios and gence expression $13,1 i-91$. In
 properties suth as the "beodolitity" and comature of the WNA helix and consequenty intlene the interplay of DNA and thematin. which impacts tatmstiption. We se out to

Editors: Judith Biake (Ihe Jackson Latoratory, US), John Hancock (MRC-Harweli. UK). Bill Pavan (NHGRI NIH, USI, and Lisa Stubbs (Lawrence Livermore National Laboratory. US).
taboratory. US)

Received Augusi 15. 2005; Accepted February 27, 2006, Published April 28, 2006 Dot: 10.137//journal.pgen. 0020054
Copyright: 2006 Bajic et al. This is an open-access article distributed under the terms of the Creative Commons Aftribution License. which permits unrestricted une. distribe are credited. and source are credited.
Abbreviations: CGI, CPG island; GO, Gere Ontology; Inr, initiator; ORI, over representation index; PE, promoter element: TF, transcription factor; TFBS, ranscription factor binding site: TSS, transcription start site

- To whom correspondence should be addressed. E-mail: vadàsanbiac.za

Synopsis

Tens of thousands of mammalian genes are expressed in various cells at different times, controlied mainly at the promoter level through the interaction of transcription factors with cis-elements The authors analyzed properties of a large collection of experimental mouse (Mus musculus) and human (Homo sapiens) tran scription start sites (TSSS). They defined four types of TSSs based on the compositional properties of surrounding regions and showed that (a) the regions surrounding TSSs are much richer in properties than previously thought, (b) the four T5Ss types are associated with distinct groups of cis-elements and initiating dinucleotides, (c) the regions upstream of TSSs are distinctly different from the down stream ones in terms of the associated cis-elements, and (d) mouse and human TSS properties relative to CPG islands (CGIs) and TATA ox human is propert species specific islaptation the TATA ox elements suggest species-specific adaptation. The authors inked TSS characteristics to gene expression through categories defined by the Gene Ontology and eVOC classifications and tissue expression libraries. They provided examples of the preference of immune response genes for TSS types and specific genomic organization. Their results shed light on the fine compositional properties of TSSs in mammals and could lead to better design of promoter- and gene-finding tools, better annotation of promoters by cis-elements, and better regulatory network reconstructions. These areas represent some of the focal topics of bioinformatics and genomics research that are of interest to a wide range of life scientists.

Thatarteriec the regions immediately surmonding ISS based all whe comewitional propertics Out determinution at wenative TSS locatoms has been based on the use of CACF tags |l0 and ditags $|11|$ entiched with additional independ ant pieces of evidence of transoript existence inchating 5
 filly squenced a Dis fiom full-length libnatios. ——
In this studs. we repert several distinctive fratures in the extended core prometers that helped wis delimeate the boundarion of the transcription initiation domain space for both motuse and haman, as well as detimeate so Gamacteriatios withan that space. We desitribe the association of ISS types with the mitating dimucteride (A) IA IA bexes. and an extensive collection of watistionty significant

Table 1. Four TSS Types Defined Based on the GC Content Upstream and Downstream of the TSS

TSS Type	Upstream GC Content	Downstream GC Content
A	GC-rich	GC-rich
B	GCrich	AI-rich
C	AT.rich	GC-rich
D	AT.rich	AT-rikh

$G C$-rich means $G \cdot G \cdot 50 \%$ in the considered region AT-rich (i.e., GC-poary means $G \cdot C$ $G C$-rich means $G \cdot G \cdot 50 \%$ in the considered region AT-rich (i.e., $G C$ ppoor) means $6 . C$
500 in the considered region. In our case, the upstream region is 1100 . It and the

DCN $101371 /$ /iournal pgen Momon54 tim1
in-dememes in monse and homans and cortate ISS proper (ics with exprosion data throuth comparieon with Gene
 expersion libarics and epecific genome organization.

Results/Discussion

GC Content and TSS Types
Se considered iss projerime based on the Ge chatacter stics of the segments immediately upst seam and dewnerrean of experine ontaly entimated ISSs. We oplis TSS into four distinct dinses based on bee de comemt upstrean and downstram of the Ths as shown in Cable I see Materials und Methods). These fom tentative ISS repe baw been used is a tool to investigate disterem pmomoter leatures in mone and haman. Two TSS spor do not differ in (ac: richnes octween the upstram and downatram regions. They are Ge:
 tpetream and downsicam. The oher wo ate dic-rid upatranm and il-wh downstram (GC.-VT, ype B) and
 G(, wpe (\%. The divelations of TSS pexitions in the ase of Bonace and haman are depocted in Figure 1 , I strong polarivation of the TSS clistribution exiss, with TSS inpes
 in cadh of the ISS sypes rematios athost mathanged if the length of the upstem and downatran regions thange length of the apstreath an

Figure 1. Transcription mititation Domains for Mouse and Human
Distribution of mouse (red) TSSs overlapped by human (blue) TS5s based on (A) C.G content, (B) A. G content, and (C) T, G content. Nucleotide Distribution of mouse (red) TSSs overlapped by human (blue) TSS5 based on (A) C G content, (B) A. G cistribution of TSS iocations is more or less random when viewed in terms of $A+G$ content (B) or $T+G$ content (C). Strong polarization of distributions is evident only in the $G . C$ case (A). DO1: 10.1371/journal.pgen.0020054.g001

Figure 2. Distribution of Mononucleotides in Mouse Promcters in the Region Surrounding the TSS
The nucleotides adenine, cytosine, guanine, and thymine are represented by blue, green, red, and light blue, respectively. The TSS types that are GC poor upstream (C and D) show very characteristic enrichment in adenine and thymine nucleotides around [-35, 20], suggesting a potential dominan influence of TATA box and similar AT-rich elements in transcription initiation in these types. In type B and A TSSs, this influence does not seem to be dominant, but the presence of such elements is suggested by a significant reduction of the GC content in the [35, 20] region. In principle, one could attempt to link the types of AT -rich upst
DO:: $10.1371 /$ iournal.pgen. $0020054 . g 002$

 certan fumctomat rather that compositional paper Consider?

 downoteam chatacteristis retative to the iss |:3). In wor thdy we worned that mans of the TSS that ate not evidenty (iC-rich dbols upetrean athe downeteam of the ISs) have changing ficcontent whon ging from upveream to lownatam regions (Figure 2) the ispers at pathems wete

 Hand it wawnable an asoign the ESS with a change at (
 clases became the represent about get of all min- Ge-cic:

 andion of promoter groups |lf.lij. Thms. considering cpanaty she (C - rich (Al-rich) upatream and downoteam

 transoription intiation serenarios
An asembial wppon fan the biokgioal revance of our morduced iss chasiticatom welle on the tacs thas wome oukarwotif genomes have dominamt TSS characterint ic of th thases we detined. For example, based on the woth of dentse

A

Figure 3. Distribution of Densities of Selected PEs in Promoters of the Four TSS Types in Mouse
The density of PEs is calculated from the region covering ($-100,100$) relative to the TSS. Density is determined for bins of length 50 bp and shifted by 10 bp . In total, there are 17 bins. The vertical axis shows the percentage of TSSs of the considered type that contain the PE (A) Distribution of selected PEs that prefer GC-rich (ieft) and AT-rich (right) domains in type \mathbf{B} (above) and type C (below) TSS groups. Bin number 9 is centered around the TSS. It can be seen that groups of PES change significantly in their concentrations in transition from upstream to downstream regions and characterize two distinct ISS types (B and C).
(B) Distribution of selected PEs across all four TSS types. Blue, green, red, and light blue correspond to distributions characterized by type A, B, C, and D TSSs. The first five PEs are those that prefer GC-rich regions, and the last seven PEs prefer AT-rich regions (the plus or minus sign in front of the TFBS DOI: 10.1371 /journal.pgen. 0020054.9003
wherving global ISS properties. Heve we denone a PE as a TFBS and the srand whese it in fotund Mams P's have
 For example, the well-known IXTX box clement, being IIbith. will be fomal mome trequently in AT-rich regions. white the Spl-hinding sites. being (;--rich. will be fonal mome
 We consider could be correlated in a global mannes with dee jotemial PEs that may contol the respective peome Suport for the inthence of potential iPs on specific Ths ixpes is whtaned from the divaibutions of PE densitios :Figate 3). Densits distributiom of sele ted PFs that prefer (ac-rich ofTrich) domains in type B and tepe (: Гsss are depicterl in Figure 3t. We chacre that Pe groups thange their contoretations significants in tamsition from upsteam to downatcam regians. Mateoser. in Figure 3 B we presemt

 and PCF 2 L ase thone that preter (iC-rich regions the phas and mimos signs in front of the TFBS symbels denotes the trabd where the THBS in (ound). It is interentimy (ar obserte

 different groups of PEs.

Upstream and Downstream Regions Are Different: Enrichment by Specific PEs

Wr analyed the preterense of nystream ind downotream
 lass :h-fold, PFs in onc region as ojpposed a the wher region.
 foumd that for all ISs wpen the mamber of envelaed Pes in the "postam eegion is moth bigher than ins the downtrean region. In three wpes (A. (. and D) the number of fers in the downsteam region is mititatal compatied to the uporatan region. The onf exception in ispe B. We which there are a nignificant mumber of enriched PEs in the downetream region. The datio sugges for tope A TSiss a high intherece of

 lacated upsidam of the ISS bat prefer AI-rich domains. Conloary to the oc paterns promobers with mpe B ISSo seem In wilize a mix of hoth (;C-rich-preferming and AT-richpefering PEs. A concluacon canest le made for Tepe I) ISS beranse of the serv stall number of highly curiched clements oweatl Morcover, appling the Chi-splate teat for the cguality of distribuisons in the upsoream and downsteam regions we gat $p=1.34 \times 10^{17}$. Which strongly rejects the null
the diftereat promoter segments in mone in the fous TSS
hepothesis that these distribmions ate the stme All these linding suggest that upicam and downotean regions thould be comsidered reparateds bav we do). The recobts emphavize entichment of different PE grompa asoce iated with upalican abd downstean regions in the phomoters of the forat liss ixpes

Four TSS Types Associate with Different Sets of PEs

Difteront compenitional properies of abe form ISt mpe, bugest that the ISS, may lie comerolled by spectalized coslections of trancription factors (TFs). Thus, we atempterl Io tind the pereotial TFs that cond play dominant wote in

 Materiats and Methedst in different TSS ryper, (b) unique and common motis in the (ad-rich AT -rich upstram/downsteam regioms for different TSS wpes, and (c) the moss
 B. C. and I).

To catry one the anduse we initially compared the neckence of predicted IDNA-binding sitc. of known IF, in
 presem in at lan lofy of the prometers in the tanget group Find that hey have an ORI value now leos thati I.S. In there compariones we found that the corrected f-valae was below the threshotet of 0.0.5 loe the great majobity of cases. These compariests indicate that mom of the thatife for the considered ISS type are bighly sperific elative to random DN: (Iably Si) $\mathrm{Ne} / 2$
Xext we amed to ne if promoter segments with the same GC richmes hatre the same ote of lis. We compared the upximam regions of groupe A vernas B and (: vernas D). and the downstrean region of groups A vane C and groups B
 regions of epe A atul 13 TSSs do shate as expected a subed of predicted motits, but cath tree is thataterized abo by at specialized collecton of patatise binding sites that de mot appear in the top 150 ranked sites of the wher wpe dor
 prometers of epe A Tsss (Fable S2).

Fien those TFs that ate found to be common in the
 signiticanth different proportions of promoters of these
 appats in NT-rich downatam regmems ayper B ad I). Howerer in tupe B TSiss it appeas in 17.08's of promences.

Thit ably on the misus stand. whife in sype D it appats in B. AK': of promoters. but only ons the phes strand

Soreoner, if we consider migat motifs that appeat it difterent gromp. the ate commonly prenont in latge proportions of promotem of thonc target growss. For example, in trancripth initated trom lype I) ThSs. we find

 the Gerbe fanily. which appears in 26.75 'f of promotem with tepe if ISss and only an the minus stand. The wher clement. Nox. is cheric mearon homeotos and acts as an atchator [190 that is required tor proper positional specifi-

 promoter wily lype is ISso and omly on the plus samed.

Situce any two of the lows ISS typescould differ in their ed content in the upsecam. dewnoweam. or both regions, and comegrenty hateor difterent ses of significant motis, we constude that, ewerall. ISS iypes contain sots of significamt signature motifs denoted by a plus sign next to the ORI value in Table st and a plas sign in Table sog that potentially mas contibute to oriontation. amd are likely to inseract with dinting oet of IF, Thin concous with the results of the preceding two subsctions and suggests owerall diftesent trancriptional programs present in the gatsotipes of these ISS typer Lints of the mov significam PE, that appeat in the TSS groupe are proxided in Tatbe So

The Initiating Dinucleotide and Its Environment

We amaked in mouse and haman dataset, the intiation dinuderetide. Hatt is. the ome that acopies persitions $1-1$ - - 1| elatise to the liss. We found that a mamber of ditiereth

Figure 4. Distribution of Selected Groups of PEs That Are Highly Enriched (at Least 3-Fold) Upstream or Downstream of the TSS
The upstream region considered covers $[-100,-1]$, while the downstream region covers $[+1,+100]$ relative to the TSS. In all TSS types, the upstream region contains significantly more enriched PEs than the DOWnstream region
DOI; 10.1371/journal.pgen.0020054.g004
regions varsounding the TSS. Table 2 how for mouse and human data all statistically signiticant cases based on the p alue obtained bo the right-siderl fishers exact best and comected tor multiplicis testing by the Bonterrani methest. The association ot inisiating dibubleotide woss properties vers sperific. It is interesting to mote that the intiating limeleotide $\mathrm{A} A$ is significanty embed in TSS wper that atre AT-riah upsacam, downatacam. of both (B. (a and D), while dinuchotides that start with granime (G) of (i) are vignificanly entiched in TSS eper that are 10 -rieh perit ically downstrann (B and D). Type A TSSs ate significantly

 appears statistat ally signitic ant only for TSS typer that change
 LG and TG dimudeotides at a satioticath significan level while these do mot appear stgationat in any atrer ISS type
This sompositonal properts of the initiating dinnoteonde
 propectios of the upstam and dowostram regioms wobld
 see that these properties chataterize vignifitant numbers of

 B, (: and 1), repectivedy and then the do not appar whe artitacts of the proponed ISS clavification that we have intonduced. The conclavion is that the initiating dimuderrides shens specific praferences at statioticatly signiticam leweds a) differem TSS emvombens and that agnitiont portion ISSo in ous datesets ate chatateried by thene initiating dimudentides. Morcever, almost all of them ate differen Honit the camonial a dinucteotide.

This last obsemation kads as to bsporhesize that difterem ISS whe man he combralled by different intiator (Int
 the regions immediately surmending tentate TSSs. The lat clemonts-if they apear biolegically relewan for theos grompe-somid owertap ISS: and may be qualitatively ditferent for diflerent TSS mpers. Ditferent initiating dimo Aconide of highly statisically significant conichatent apport serb it bepethesis. and at the bate time. the variability of the absersed initiatimg dimuclootides could explain the non-

 Tisse are abmathe same in mouse and human. Ifowever. fie ISS types B. C, and I), there is evident diflerence in these distributions it the region surmanding the Tss. which does hoot contadiet one hypothesis of potentally difterent lm clemens for different liss inpes. Figure ab shows leges of regions 1 : 35 . +20 for the four liss wpes in mouse and human. Again, we observe signiticabr similaviay between the spection in the compenition of the region for expe A ISts. while the other TSS eper show ofgnificanty note satiabilits. This may sugges speciew-sectic organization of the core promotero for these minotity ISS type dB. (, and D)

Relation of TSS Types to TATA Box Elements and CpG Islands

We analyed the Gour TSS uper in monse and in haman (Tables 3 and 1 for the prewence of TATA bos elememe and

Table 2. Starting Dinucleotide [1, 1] for Various TSS Types in Mouse and Human Datasets

Organism	Starting Dinucleotide	$\begin{aligned} & \text { Tss } \\ & \text { Type } \end{aligned}$	Number of Cases	Number of TSSs with Starting Dinucleotide	Total Number of TSSs in the Same TSS Group	total Number of TSSs	Multiplicity Correction Factor	p-Value	Bonferroni Corrected p-Value
Mouse	AG	c	172	1,943	2.524	39.156	16	$1.41 \cdot 10{ }^{5}$	2.25 : $10{ }^{\text {² }}$
	CA	B	458	1,440	10,000	39.156	16	3.25×10^{8}	$5.20 \times 10^{\prime}$
	CA	c	558	1,943	10,000	39,156	16	$6.09 \cdot 10{ }^{4}$	9.75 - 10 3
	CC	A	1,299	34.245	1,410	39.156	16	$7.17 \times 10^{\prime \prime}$	$1.15 \times 10^{\prime}$
	CG	A	8.669	34.245	9,076	39.156	16	$1.06 \cdot 10^{\text {s }}$	169×10^{14}
	CT	A	579	34,245	635	39,156	16	1.80×10^{3}	$2.88 \cdot 10^{2}$
	GA	B	16	1.440	171	39.156	16	$6.09 \therefore 10^{3}$	$9.75 \cdot 10^{3}$
	GA	D	15	1.528	171	39,156	16	2.99×10^{3}	4.79 < 10 \%
	GG	B	264	1,440	2.952	39.156	16	$1.32 \cdot 10^{4}$	$2.12 \cdot 10^{41}$
	GG	D	350	1.528	2,952	39,156	16	$8.28 \cdot 10^{8,}$	$1.33 \cdot 10^{8}$
	ta	B	151	1.440	2.703	39.156	16	1.86-10 \%	2.97 : 10 *
	ta	c	187	1,943	2.703	39,156	16	$2.30 \times 10^{\circ}$	3.68×10^{3}
	TA	D	169	1.528	2.703	39.156	16	$782 \cdot 10^{\circ \prime}$	$1.25 \cdot 10^{\circ}$
	TG	c	455	1.943	7,381	39.156	16	1.55×10^{7}	2.48 : 10^{6}
Human	AA	D	12	385	88	10.255	16	$1.03 \cdot 10^{1}$	1.65 - 10 :
	CG	A	2.777	9.269	2,878	10.255	16	$2.37 * 10^{46}$	3.79×10^{45}
	GG	D	85	385	578	10.255	16	$4.28: 10^{2 / 4}$	$6.85 \cdot 10^{26}$
	ta	8	25	24.	575	10.255	16	2.55 - 10^{3}	4.07 : 10^{3}
	ta	c	35	357	575	10.255	16	8.68 - 10^{\prime}	$1.39 \cdot 10^{2}$

We show only statisicaly significant cases
DO: 10.1371 /ournat pgen 0020054 tio02
aswatian with Cols Globally, there are smataries in these
 are alse significan differences. This mouse-human compar-

and the humatn wet is probably lew comprehensix: for some. Linking TSS Properties and Gene Expression
it the two speries. However, since we eonsideted a statisti-

 between the wo speries feasible.

 signitionals emphed in (a) the mumber of promoters mor

 monber of promoters that have $1.1 / \mathrm{A}$ bexem but ate not
 prometers nol asocciated with (Gin in lss groups A mod B, and owall. Combersely, homan proneters are significantly entished in (a) the number of promoters ansociated with cois in ISS wes A and B, and owerall: (b) the number of latid. box-contaning poneoter in ISS (ype A: (o) the manter of
 type. A. B, and C. and conerall: and (d) the number of TATA-
 and ovetall. These data usgest that the ate pereco-specific
 for the amalyed ISS type

There are a number of core Prs other than TATA boxes and Ine elcments, such as the downstran promater cloment (DPE) $\{2: 3-26 \mid$, the TFIB response clement (BRF) [27 , the

 their presence around mammatian TSSs. I nfontonatels, such arilable: correblion with broad expession eategorica. We ased
 and tratneripe datat we were able to tind a mumber of clases that anociate with pecitio TSS Mpen in a watiotically

 whowe promoter prewe entichment in verific ISt topen in bobll spetion (lable St). Linder che conditionn of one study

 mens: this is true for 6f; of (;) categoties asondited with
 type E TSSs. These ments suggest that between mano and human the ESs dhatere within the (o) ateqgotios is tangels conserved. Divtibution of all mone TSS atoos the four
 are provided in Table So.

 framework table Jo For example, the immene teyontace

c. C ch c.9ct

-

Figure 5. Sequence Logos
(A) Sequence logos for inr in human (left) and mouse (right) obtained using [5,5$]$ segments relative to tSS locations. There is an evident bias in the nucleotide composition surrounding the TSS that effectively determines different Inr elements.
(B) Sequence logos for segments ($35,-20$] relative to TSS locations. Strong similarity exists between human (left) and mouse (right) in TSS type A, whide that similarity is considerably reduced for the other TSS types
DOI: 10.1371/journal.pgen.0020054.g005

Table 3. Basic Statistics on Relation of TATA Box Motifs, CGIs, and Four TSS Types for MM5 Transcripts

Category	TSS Type				
	Type A	Type 8	Type C	Type D	Overall
Number of promoters	34,245	1,440	1.943	1.528	39,156
CGI	27.026 (78.92) [1]	253 (17.57) [1]	363 (18.68) [1]	9 (0.59) [1]	27.651 (70.62) !11
No CGI	7.219 (21.08) [2.74 : $\left.10^{41}\right]$	1, 187 (82.43) \|4.87 $\sim 10{ }^{\text {a }}$	1.580 (81.32) [9.58 - $10^{2} 1$		$11.505(29.38) 16.26 \cdot 10$
tata	2,539 (7.41) [1]	188 (13.06) [1]	567 (29.18) [1]	434 (28.40) [1]	3,728 (9.52) (1)
tatasess	31.706 (92.59) 11.63 : 10^{3}	1.252 t86.941 [1.43 > $10^{3} 1$	1.376 (70.82) [1]	1,094 (71.60) [1]	35.428 (90.48) [2.02 - $10{ }^{\prime}$!
cGl tata	1,613 (4.71) [1]	33 (2.291 [1]	$58(2.99)$ [1]	1 (007) 0	1.705 (4.35) \{1]
cGi tata less	25,413 (74.21) [1]	220 (15.28) [1]	305 (15.70) (1]	8 (0.52) ${ }^{11}$	25.946 (66.26) [1]
no cgl tata	926 (2.70) [2.19 $\times 10^{\prime} 1$	155 (10.76) [1]	509 (26.20] [1]	433 (28.34) 111	2.023 (5.17) $12.09 \times 10{ }^{4}$
No CGI tataless	6.293 [18.38) [3.72 : $10^{\prime \prime}$]	$1.032\left(71.67\right.$ (11.12 , $10^{\prime} 1$	1.071 (55.12) (1)	1.086 171.07) [1]	9.482 [24.221 [2.11 - $10{ }^{\prime}$

We present for each category (CGI, no (GG, etc) the number of cases for each TSS type, the percent (in parentheses) of the total population in that ISS type, and the fonferioni corrected Pvalue tin brackets) calculated from a right sided Fisher's exact test based on the hypergeometic distribution.
DO: 10.1371 ;ournat pgen.0020054, 1003
 respectisely, than one wotd expect basel on the propertion of transcripts in the e grotes in our velerence monse data. The coridhment in wpe (and I) TSSs iv vatistically signifuant (Bonferoniocomeded bighasided Fishets exat
 on this, we cond lucle that the tranectipe gronp (iontemens is chatacterized by increased participation of tataveriphs from TSS mper that are AT-mish upstream on downetrans. We ataked in mote detail the genomic organization of lowi

 to 3fi nomedundan genes, of which wo ate in biditctional promber, (2/36), which ne:ons these ate matemepresented

 UNIVERSITY of the
Table 4. Basic Statistics on Relation of TATA Box Motifs, CGIs, and Four TSS Types for HS17 Transcripts

Category	TSS Type				
	Type A	Type 8	Type C	Type D	Overall
Number of promoters	0,269	244	357	385	10.255
CGI	7,887 (85.09] [2.74 $\left.\times 10^{11}\right]$	74 (30.33)[4.87 - $\left.10{ }^{5}\right]$	86 (24.09) $\left\{9.58 \times 10^{4}\right\}$	8 (2.08$)\left[8.82 \times 10^{1}\right]$	8.055 (78.55) [6.26 $\times 10^{\circ} 1$
No CGI	1,382 114,91) [1]	170 (69.67) [1]	271 (75.91) [1]	377 (97.92) 111	2.200 (21.45) (1]
tata	$791(8.53)\left(1.63 \times 10{ }^{3}\right.$	$45(18.44)\left[1.43 \times 10^{\prime}\right]$	106 (29.69) [1]	101 (26.23) [1]	1,043 (10.17) [2.02 * $10{ }^{1}$)
tata-less	8.478 (91.47) 11	$199(81.56)$ [1]	251 (70.31) [1]	284 (73.77) 11:	9.212 (89.83) [1]
cGi TATA	$574(6.19)\left[700 \times 10^{4}\right]$	16 (6.56) [7.01-10	$22(6.16)\left[2.99: 10{ }^{2}\right]$	0 (0.00) [1]	$612(5.97)\left[1.05 \cdot 10{ }^{19} 1\right.$
cgi taja less		$58(23.77)\left[7.80 \cdot 10{ }^{3}\right.$	64 (17.93) [1]	8 (2.08$) 15.64 \cdot 10\}$	7.443 (72.58) (4.31 - 10^{34}
No CGI TATA	217 (2.34) (1)	29 (11.89) (1)	84 (23.53) [1]	101 (26.23) (1)	431 (4.20) [1]
No CGI tata-less	1,165 (12.57) 11	141 (57.79) (1)	187 (52.38) [1]	276 (71.69) [1]	1.769 (17.25) (1)

[^0]DOI: 10 1371/gournal.pgen. 0020054 t 1004

Table 5. Enrichment of TSS Types in Selected GO Categories in Mouse

Go Category	GO id	Term	Bonferroni Corrected p-Values for the TSS Types			
			A	B	C	D
Cellular component	60.0005833	Hemoglobin complex	1	1.74:10"	1	1
	60:0005579	Membrane attack complex	1	1	1	$1.24 \cdot 10^{\text {a }}$
	60.0005576	Extracellular region	1	1	4.79 - 10 *	2.09 - 10 "
	60:0005794	Golgi apparatus	2.84×10^{17}	1	1	1
	600005634	Nucleus	$6.15 \cdot 10^{\prime \prime}$	1	1	1
	60,0005737	Cytoplasm	3.25×10^{4}	1	1	1
	60,0005739	Mitochondrion	1.23 - 10 \%	1	1	1
	G0,0005829	Cytosol	$2.28 \cdot 10 \%$	1	1	
Motecular function	G00001524	Globin	1	$1.74 \cdot 10^{\prime \prime}$	1	1
	600005125	Cytokine activity	1	1	1.98-10	,
	60,0003677	DNA binding	163 - 10 \%	1	1	1
	60.0003723	RNA binding	$3.38 \cdot 10$ \%	1	1	1
	600003925	Small monomeric GTPase activity	1.39 - 10 +	1	1	1
	60.0005524	ATP binding	4.48 : $10{ }^{7}$	1	1	1
	600005525	GTP binding	1.62 - 10 :	1	1	1
	G0.0008565	Protein transporter activity	$2.11 \times 10^{\prime}$	1	1	1
	60.0016301	Kinase activity	$6.82 \cdot 10$:	1	1	1
	60.0016740	Transferase activity	3.19×10^{4}	1	1	1
Biological process	600006935	Chemotaxis	1	,	132 - 10 "	1.36-10
	60,0006952	Defense response	1	1	$3.12 \times 10^{\prime \prime}$	5.11×10^{2}
	60.0006955	Immune response	1	1	$1.33 \cdot 10^{1 / 4}$	$2.60 \cdot 10^{\text {a }}$
	G00006886	Intracellular protein transpon	1.77×10^{12}	1	1	1
	60.0007049	Cell cycle	3.66 - 10	1	1	1
	600007264	Small GTPase-mediated signal transduction	2.76-10 ${ }^{\text {a }}$!	1	1
	G0.0015031	Protein transport	3.36 - 10 *	1	1	1

The wable shows some staststically significant examples of biased distribution of transcripis from different GO categories in spectic TSS groups from all mouse data
DOI: 10.1371/journal.pgen.0020054.1005
 (table 6). iniliation tetive domains in the two speries Lowking

 immediately upstram and downstrath regions. This implic- defocel Al-wh mgom

Table 6. Enrichment of TSS Types in Selected eVOC Categories and Tissue Libraries in Mouse

[^1](i). PLoS Genetics | www.plosgenetics.org

0010

Figure 6. Distribution of TSSs for Transcripts Related to Immune Response through 60:0006955
There are $1.58-, 4.85$-. and 3.35 -fold more transcripts having 755 types 8 C, and D than one would expect based on the proportion of transcripts in these groups in our reference mouse data. Enrichment is statistically
significant for types C and D based on Bonferroni corrected p-values significant for types C and D based on Bonferroni corrected p-values DOI: 10.1371/journal.pgen.0020054,g006
 prexem in statistialty significant propurtions of tre Ths it our datavets. and are almon all differem from the eomenows dinucleotide. Vers specific acto of intiating dinuclentides ate asonciated with difterent TSS tyen, and attrontiong fe: conteng is well correbated with the Iypes of these dinuctedtides. Diss suggest the penemial prevence of diffegent lay and anoctited with difterem muckenide charateristies of the surmonoding domain
We have shown that ditferent iss wpes itsonk iate whith
 differen ISS wpes are chatacterized by ditherent collections of PFs, and that the potative le conten (for the lop lore of PFot of the TSS sumouncling generall difters fors the ISS wope Alf these findings sugges likelv control of the rebpertive tamsoripts be difterent collections of signiticant PEs residing upstream or downotram of the ISS. Our results on ISS properties retative to Cols, TATA boxes. and lm clements in monse and homban sugges speriev-specific adaptation. Finally, we have shown a mumber of examples of transoripe groupe oblaned on the basis of different omestogis on tissue libration that have statistically signiticant coridment in at least ane of the TSS inpes. Thin han provided a link between TSS chatacterintics and expression data.

We believe that the results of this atadsun will belp in beter understanding the general tanscription regulation pooperties of manmalian promoters and prose unctul for farther dovelopmem and cohancement of prometer and gene preclicison tomb.

Materials and Methods

 combition dist wat told. we whoted isss bamed of the fothoning

 tss The ISs is consedend whe bemern pisinion 1 and +1 , Whe
 Fon spes of ISS, wete defined haned on the did richow in the

 TF binding sites in promoters. We wed all wailable matris models

 mins M protite - Ior the thestuld ot the mataix menteh sime thowe

 ing whith a particulat l'e was tomat was the sathe as that in the

 tabualie wepors.

Most significan PEs. Fing cach of the ISS wise in mance. "c

 assumat in the I \% W. If region.
eVOC, GO, and tissue expression libraries. In onder to .mow the

 Wiginal datinet.

 hopontiosio ban the propertiom of thst of a speritic spe in the

Supporting Information

Dataset SI. Supplementar Nompmomer bat.

Figure \$1. Nomber of Isse of the Fond I ypers in Human and Mousc

 Cangorice
 sequences. Ranking is based on (ORI value The higher boe ORI. the

 (given ar ane predic tion per mak lentide. prob) abilin of linding the PF in the backgromad we (given as one prodiction pey methotidet, and Bodiancer that

Reference

 115:

Table S2. Canmen and Sperific IFBS in the Fone Iss life

 minus indicat whethe the Pre wa found to be signithanty chiched

 clewirn dram domains in ISS क्लuiticmul ced :

 another TSS tepe with the sant (if: rid hoter

 Tipe becwern Human and Nowe
 Whe vame homolegg grope an defined on the NeBI Web, ste eft:Mip.

 thss atow the font ISS Tipe in Mosise

Acknowledgments

Author Contributions. VBB. Jh. PC, and IH comberiwd and

 Whe paper:

 Filucatione Culture. Spors. Science and Techoshog of fapan to YHL a grant of the demome Setworh Propect fome the Ministr al
 Competing interests. Hhe duthon han declared that no comperiny

 bin:
b. B

 1: $212-2,24$

 a

*

 NTiteske!

 3-4.

 os loani-16it

 NA Cule in ©

UNIVERSITY of the
WESTERN CAPE

Appendix III Correlation coefficients of genes showing biased expression for the developmental brain in human and mouse

The correlation coefficients of the 90 genes showing bias for developmental expression in the human and mouse brain. The table lists the HomoloGene group identifier, Human Entrez Gene identifier, Human Entrez gene symbol, Mouse Entrez Gene identifier, Mouse Entrez gene symbol and the correlation coefficient between the expression profiles of the genes in each species.

Homolo- Gene ID	Human Gene	Human Symbol	Mouse Gene	Mouse Symbol	Correlation coefficient
7516	389075	RESP18	19711	Resp18	in mouse, only expressed in brain
78698	387876	LOC387876	380653	Gm872	in mouse, only expressed in brain
81871	56751	BARHL1	54422	Barhl1	in mouse, only expressed in brain
10774	57045	TWSG1	65960	Twsg1	in mouse, expressed in all tissues
27813	84865	FLJ14397	243510	A230058J24 Rik	0.646
16890	399664	RKHD1		237400	Rkhd1

HomoloGene ID	Human Gene	Human Symbol	Mouse Gene	Mouse Symbol	Correlation coefficient
37917	1293	COL6A3	12835	Col6a3	0.408
55918	6882	TAF11	68776	Taf11	0.378
10695	57120	GOPC	94221	Gope	0.316
14128	91107	TRIM47	217333	Trim47	0.300
68998	170302	ARX	11878	Arx	0.300
12418	124056	NOXO1	71893	Noxol	0.289
55599	669	BPGM	12183	Bpgm	0.284
45198	65117	FLJ11021	208606	1500011J06 Rik	0.284
18123	140730	RIMS4	241770	Rims4	0.277
65328	7559	ZNF12	231866	Zfp12	0.273
68934	57016	AKR1B10	14187	Akrlb8	0.258
65280	286128	ZFP41	22701	$\mathrm{Zfp} 41$	0.258
22818	29850	TRPM5	56843	Trpm5	0.258
10663	57171	DOLPP1	57170	Dolpp1	0.251
45867	139189	DGKK	331374	Dgkk	0.240
17523	115290	FBXO17 VE	507601 Y	Fbxol7	0.207
4397	8971	H1FXES	243529 CA	H1fx	0.207
2212	6182	MRPL12	56282	Mrpl12	0.194
11980	84262	MGC10911	66506	$\begin{aligned} & \text { 1810042K04 } \\ & \text { Rik } \end{aligned}$	0.167
26702	93109	TMEM44	224090	Tmem44	0.149
56571	26503	SLC17A5	235504	Stc17a5	0.141
7717	24147	FJX1	14221	Fjx 1	0.122
18903	440193	KIAA1509	68339	$\begin{aligned} & \text { 0610010D24 } \\ & \text { Rik } \end{aligned}$	0.101
1028	1606	DGKA	13139	Dgka	0.101
4983	10991	SLC38A3	76257	Slc38a3	0.055
9813	55627	FLJ20297	77626	$\begin{aligned} & 4122402 \mathrm{O} 22 \\ & \text { Rik } \end{aligned}$	0.055
1368	1054	CEBPG	12611	Cebpg	0.055

Homolo- Gene ID	Human Gene	Human Symbol	Mouse Gene	Mouse Symbol	Correlation coefficient
64353	126374	WTIP	101543	Wtip	0.026
12993	84217	ZMYND12	332934	Zmynd12	0.000
7199	11054	OGFR	72075	Ogfr	0.000
46116	401399	LOC401399	101359	D330027H18 Rik	0.000
7500	5806	PTX3	19288	Ptx3	CR

HomoloGene ID	Human Gene	Human Symbol	Mouse Gene	Mouse Symbol	Correlation coefficient
56005	6328	SCN3A	20269	Scn3a	-0.240
10026	55172	C14orf104	109065	$\begin{aligned} & \text { 1110034A24 } \\ & \text { Rik } \end{aligned}$	-0.273
31656	27000	ZRF1	22791	Dnajc2	-0.273
41703	118881	COMTD1	69156	Comtd 1	-0.289
14667	113510	HEL308	191578	Hel308	-0.300
268	5805	PTS	19286	Pts	-0.330
2593	7913	DEK	110052	Dek	-0.330
20549	4324	MMP15	17388	Mmp15	-0.354
18833	143678	LOC143678	75641	1700029115 Rik	-0.354
9120	25851	$\begin{aligned} & \text { DKFZP434B0 } \\ & 335 \end{aligned}$	70381	$\begin{aligned} & \hline \text { 2210010N04 } \\ & \text { Rik } \end{aligned}$	-0.372
15843	79591	C100rf76	71617	$9130011 \mathrm{E} 15 \text { Rik }$	-0.372
3476	9197	SLC33A1	11416	Slc33al	-0.389
21334	10912	GADD45G	23882	Gadd45g	-0.389
19028	146167	LOC146167	234788	Gm587	-0.408
10518	84273	C4orf14 WEST1	56412	$\begin{aligned} & 2610024 \mathrm{G} 14 \\ & \mathrm{Rik}_{\mathrm{E}} \end{aligned}$	-0.411
35002	93082	LINCR	214854	Lincr	-0.411
12444	84902	FLJ14640	72140	2610507L03 Rik	-0.452
82250	150678	MYEOV2	66915	Myeov2	-0.646
24848	266629	SEC14L3	380683	RP23-81P12.8	-0.646

Appendix IV and mouse

The expression profiles of the $\mathbf{9 0}$ genes showing bias for developmental expression across major human and mouse tissues in the form of a binary pseudoarray．The tissues represented are female reproductive system，heart，kidney，liver，lung，male reproductive system and stem cell for both post－natal and developmental expression．The table lists the HomoloGene group identifier，Entrez Gene identifier and Entrez gene symbol for human and mouse，as well as the species each row represents．Values in the table are 1 if the genes（in rows）are expressed in the given tissues（in columns）and 0 if the genes are not found to be expressed in the tissues（PN－post－natal；D－development；FRS－female reproductive system；MRS－male reproductive system）．

HomoloGene ID			$\begin{aligned} & \frac{0}{e} \\ & \stackrel{0}{0} \\ & \stackrel{2}{n} \end{aligned}$			\square			E \ddot{Z} \ddot{Z}		a 吕 $\ddot{\theta}$		$\begin{aligned} & \text { 突 } \\ & \text { 党 } \\ & \ddot{\theta} \end{aligned}$	㐫	最 E $\ddot{\theta}$		$\begin{gathered} \underline{\bar{U}} \\ \text { B } \\ \underline{y} \\ \ddot{\Delta} \\ \ddot{\theta} \end{gathered}$
413	353	APRT	Human	${ }^{1}$	0	10	0 TIT	1	1	1	1	1	0	1	1	1	1
32	435	ASL	Human	1	1	$1 \times$	1	$1]$	1	0	1	1	0	1	1	0	1
55599	669	BPGM	Human	1 －	0	1 n	1	$1 . \mathrm{n}$	1	0	1	1	1	1	1	1	1
1330	857	CAV1	Human	1	1	1	0	1	1	0	1	1	0	1	1	1	1
1368	1054	CEBPG	Human	1	0	0	1	1	1	0	1	1	0	1	1	1	1
7667	1154	CISH	Human	1	0	1	0	1	1	0	0	0	0	1	1	0	0
55434	1289	COL5A1	Human	1	0	1	0	1	1	0	1	1	0	1	1	1	1
37917	1293	COL6A3	Human	1	0	1	1	1	1	0	1	1	1	1	1	1	1
1028	1606	DGKA	Human	1	0	0	1	1	1	0	0	1	0	1	1	0	1
68973	1663	DDX11	Human	1	0	1	1	1	1	0	1	1	1	1	1	1	1
20549	4324	MMP15	Human	1	1	0	0	0	1	0	1	1	0	0	1	1	1
1871	4760	NEUROD1	Human	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1933	5050	PAFAH1B3	Human	1	0	0	1	1	1	0	1	1	1	1	1	1	1

	$\begin{aligned} & \text { e } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \text { E } \\ & \text { 会 } \\ & 0 \\ & 0 \end{aligned}$		Z 关 \ddot{Z} \ddot{Z}		$\begin{aligned} & \text { 突 } \\ & \text { 产 } \\ & \ddot{\mathrm{Z}} \end{aligned}$	$\begin{aligned} & \ddot{y} \\ & \ddot{Z} \\ & \ddot{Z} \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \text { 皆 } \\ & \ddot{\underline{Z}} \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{y}{y} \\ & \ddot{Z} \end{aligned}$		た 合 $\ddot{\theta}$	$\begin{aligned} & \stackrel{\rightharpoonup}{w} \\ & \stackrel{\rightharpoonup}{e n} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 弟 } \\ & \text { 苞 } \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \stackrel{2}{\partial} \\ & \stackrel{\rightharpoonup}{\overrightarrow{3}} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 关 } \\ & \ddot{Z} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \underset{N}{\tilde{n}} \\ & \underset{\ddot{\theta}}{2} \end{aligned}$	$\begin{aligned} & \bar{U} \\ & \text { E } \\ & \text { E } \\ & \ddot{4} \\ & \ddot{\theta} \end{aligned}$
268	5805	PTS	Human	1	0	0	1	1	1	0	1	1	0	1	1	1	1
7500	5806	PTX3	Human	1	1	0	0	1	1	0	1	1	0	0	0	0	1
7922	6150	MRPL23	Human	1	0	0	1	1	1	0	1	1	0	1	1	1	1
2212	6182	MRPL12	Human	1	0	0	1	1	1	0	1	1	0	1	1	1	1
56005	6328	SCN3A	Human	0	0	1	0	0	1	0	0	0	0	1	1	1	1
55918	6882	TAF11	Human	11.	0	1	0	1	1	0	0	1	0	1	1	1	1
65328	7559	ZNF12	Human	$1-$	0	0	1	1	1	0	1	1	1	1	1	1	1
2593	7913	DEK	Human	1	1	0	1	1	1	0	1	1	1	0	1	1	1
2880	8835	SOCS2	Human	1	0	1	1	1	1	0	1	1	0	1	1	1	1
4397	8971	H1FX	Human	1	0	0	0	1	1	0	1	1	0	1	1	1	1
3476	9197	SLC33A1	Human	1	0	0	1	1	1	0	1	1	1	1	1	1	1
1290	9275	BCL7B	Human	1	0	1	1	1	1	0	0	1	0	1	1	1	1
68420	9559	VPS26A	Human	1］N	0 V	12 S	$1 T$	$10 f$	11.	0	1	1	1	1	1	1	1
40668	9646	SH2BP1	Human	1	1	0	1	1	1	0	0	1	1	1	1	1	1
7291	10683	DLL3	Human	1 VE	0 T	0 R	0	0 P	1	0	1	1	0	0	0	1	1
21334	10912	GADD45G	Human	1	0	0	1	1	1	0	1	1	0	0	1	1	1
4983	10991	SLC38A3	Human	1	0	0	1	0	0	0	0	0	0	1	1	0	0
7199	11054	OGFR	Human	1	0	0	1	1	1	0	0	0	0	0	1	1	1
6535	11062	DUS4L	Human	1	0	0	1	1	1	0	1	1	0	1	1	0	1
84799	22835	ZFP30	Human	1	0	0	0	1	1	0	1	1	1	1	1	1	1
65318	23361	ZNF629	Human	1	0	0	0	1	1	0	1	0	0	1	1	1	1
7717	24147	FJX1	Human	0	0	0	0	1	1	0	0	0	0	1	1	0	1
9120	25851	DKFZP434B0335	Human	1	0	0	0	1	1	0	0	0	0	0	0	1	1
56571	26503	SLC17A5	Human	1	0	0	1	1	1	0	1	1	0	1	1	1	1
31656	27000	ZRF1	Human	1	0	1	1	1	1	0	1	1	0	1	1	1	1

HomoloGene ID			$\begin{aligned} & \stackrel{6}{e} \\ & \stackrel{0}{0} \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & \frac{\underset{1}{x}}{\underline{x}} \\ & \ddot{z} \end{aligned}$		$\begin{aligned} & \dot{\#} \\ & \frac{\ddot{y y}}{\vec{y}} \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \ddot{d} \\ & \underset{\sim}{z} \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \text { ED } \\ & \stackrel{E}{E} \\ & \ddot{Z} \end{aligned}$		$\begin{aligned} & \text { 흘 } \\ & \text { ㅌ } \\ & \text { 右 } \\ & \ddot{z} \\ & \ddot{B} \end{aligned}$	$\begin{aligned} & \underset{\underline{a}}{\underline{a}} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 느む } \\ & \text { } \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 总 } \\ & \text { 豆 } \\ & \ddot{\theta} \\ & \ddot{\theta} \end{aligned}$	它	$\begin{aligned} & \text { 昂 } \\ & \ddot{E} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \stackrel{y}{\otimes} \\ & \ddot{\Delta} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \overline{\ddot{U}} \\ & \text { E } \\ & \text { E } \\ & \ddot{\theta} \\ & \ddot{\theta} \end{aligned}$
40859	27166	PX19	Human	1	0	1	1	1	1	0	1	1	1	1	1	1	1
22818	29850	TRPM5	Human	0	0	0	0	0	0	0	1	1	1	1	1	1	0
32293	51018	CGI－115	Human	1	0	0	1	1	0	0	1	1	1	1	1	1	1
9355	51637	C14orf166	Human	1	1	1	1	1	1	0	1	1	1	1	1	1	1
32331	51776	ZAK	Human	1	1	1	1	$\underline{1}$	1	0	1	1	1	1	1	1	1
56774	54751	FBLIM1	Human	11	11	11	0	1	1	0	1	1	1	1	1	1	1
10026	55172	C14orf104	Human	1	0	1	1	1	1	0	1	1	0	1	1	1	1
9813	55627	FLJ20297	Human	1	0	1	0	1	1	0	1	1	1	1	1	1	1
81871	56751	BARHL1	Human	0	0	0	0	0	0	0	1	1	1	1	1	1	0
68934	57016	AKR1B10	Human	1	0	1	1	1	1	0	1	1	1	1	1	1	1
10774	57045	TWSG1	Human	1	0	0	0	1	1	0	1	1	0	1	1	1	1
10695	57120	GOPC	Human	1	0	1	0	1	1	0	1	1	0	1	1	1	1
10663	57171	DOLPP1	Human	11 n	0 V	0	0 T	$710 f$	0	0	1	1	0	1	1	1	1
10494	58516	FAM60A	Human	1	0	1	1	1	1	0	1	1	1	1	1	1	1
32546	64410	KLHL25	Human	1 H	0 T	0 R	0	0 P	1	0	1	1	0	0	1	1	1
45198	65117	FLJ11021	Human	1	0	1	1	1	1	0	1	1	0	1	1	1	1
15843	79591	C100rf76	Human	1	1	1	1	1	1	0	1	1	1	1	1	1	1
11653	79730	FLJ14001	Human	1	0	1	0	0	1	0	1	1	1	1	1	1	1
49970	83879	CDCA7	Human	1	0	0	0	1	1	0	1	1	0	1	1	1	1
12993	84217	ZMYND12	Human	0	0	0	0	0	1	0	1	1	1	1	1	1	0
11980	84262	MGC10911	Human	1	0	0	0	1	1	0	1	0	0	1	1	1	1
10518	84273	C4orf14	Human	1	0	0	1	0	1	0	1	1	1	1	1	1	1
11920	84303	CHCHD6	Human	1	0	1	0	1	1	0	1	1	0	1	1	1	1
12021	84557	MAP1LC3A	Human	1	0	1	0	1	1	0	1	1	0	0	1	0	1
27813	84865	FLJ14397	Human	1	0	0	1	0	1	0	0	0	0	1	0	0	1

				$\begin{aligned} & \frac{n}{x} \\ & \ddot{z} \\ & \ddot{z} \end{aligned}$			$\begin{aligned} & \stackrel{y}{\ddot{j}} \\ & \ddot{Z} \\ & \ddot{Z} \end{aligned}$	$\frac{\text { 易 }}{\underline{E}} \underset{\underline{Z}}{\ddot{Z}}$	$\begin{aligned} & \underset{\sim}{\tilde{z}} \\ & \ddot{Z} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 要 } \\ & \text { 岂 } \\ & \stackrel{U}{2} \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \mathscr{y} \\ & \text { 吴 } \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 鴊 } \\ & \text { d } \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 㝘 } \\ & \text { 苛 } \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \stackrel{2}{D} \\ & : \vec{D} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \underline{\ddot{\theta}} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{N}{\infty} \\ & \ddot{\theta} \end{aligned}$	
12444	84902	FLJ14640	Human	1	0	1	0	1	1	0	1	1	1	1	1	1	1
14157	90416	CCDC32	Human	1	0	1	1	1	1	0	1	1	0	1	1	1	1
14128	91107	TRIM47	Human	1	0	1	1	1	1	0	1	1	0	1	1	1	0
35002	93082	LINCR	Human	0	0	0	0	1	1	0	1	1	1	1	1	1	0
26702	93109	TMEM44	Human	1	0	0	0	1	1	0	1	1	0	1	1	1	1
14667	113510	HEL308	Human	1 II	0	0	0	11	1	0	1	1	1	1	1	1	1
17523	115290	FBXO17	Human	1	0	1	1	0	1	0	0	1	0	1	1	1	1
14180	115294	PCMTD1	Human	1	0	1	1	1	1	0	1	1	0	1	1	1	1
41703	118881	COMTD1	Human	1	0	0	0	1	1	1	0	0	0	0	1	1	0
12418	124056	NOXO1	Human	1	0	0	0	0	1	0	1	1	0	0	1	1	1
64353	126374	WTIP	Human	1	0	0	1	1	1	0	1	1	1	1	1	1	1
32633	136647	C7orf11	Human	1	0	0	1	1	1	0	1	1	0	1	1	1	1
45867	139189	DGKK	Human	1 N	0	0	0 T	0	0	0	1	1	1	1	1	1	1
18123	140730	RIMS4	Human	1^{14}	0	0	0	1	1	0	0	1	0	0	1	1	1
49899	143282	C10orf13	Human	01 L	0 T	0 L	0	0 p	1	0	1	1	0	1	0	0	1
18833	143678	LOC143678	Human	0	0	0	0	0	0	0	I	1	1	1	1	1	0
19028	146167	LOC146167	Human	0	0	0	0	0	1	0	1	1	1	1	1	1	0
82250	150678	MYEOV2	Human	1	0	0	0	1	1	0	1	0	0	1	1	1	1
68998	170302	ARX	Human	1	0	0	0	1	1	0	1	0	0	0	0	0	0
24848	266629	SEC14L3	Human	0	0	0	0	0	0	0	1	1	1	1	1	1	0
65280	286128	ZFP41	Human	1	0	1	0	1	1	0	0	0	0	0	0	0	1
78698	387876	LOC387876	Human	0	0	0	0	0	0	0	1	1	1	1	1	1	0
17078	387914	TMEM46	Human	0	0	0	1	1	0	0	1	1	1	1	1	1	1
7516	389075	RESP18	Human	0	0	0	0	0	0	0	1	1	1	1	1	1	0
16890	399664	RKHD1	Human	1	0	0	0	1	1	0	1	1	1	1	1	1	1

	$\begin{aligned} & \text { ei } \\ & \text { d } \\ & 0 \end{aligned}$	Gene Symbol		$\begin{aligned} & \frac{y}{2} \\ & \ddot{Z} \\ & \ddot{Z} \end{aligned}$	蔦 总 \ddot{Z} \ddot{Z}	$\begin{aligned} & \text { 离 } \\ & \text { 豆 } \\ & \ddot{y} \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \vdots \\ & \dot{y} \\ & \ddot{z} \\ & \ddot{Z} \end{aligned}$	易 \ddot{B} \ddot{z}	$\frac{\underset{\sim}{E}}{\stackrel{y}{z}}$	$\begin{aligned} & \overline{\ddot{B}} \\ & \text { E } \\ & \ddot{\ddot{y}} \\ & \ddot{Z} \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \frac{a}{a} \\ & \underline{I} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { © } \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 㝕 } \\ & \text { 흘 } \\ & \ddot{\theta} \\ & \ddot{0} \end{aligned}$	㐫	里	$\begin{aligned} & \dot{a} \\ & \dot{\sum} \\ & \ddot{\alpha} \end{aligned}$	$\begin{aligned} & \text { ㄹ̈ㄹ } \\ & \text { E } \\ & \stackrel{U}{6} \\ & \ddot{\theta} \end{aligned}$
46116	401399	LOC401399	Human	0	0	0	0	0	0	0	1	1	1	1	1	1	1
18903	440193	KIAA1509	Human	1	0	1	0	1	1	0	1	1	1	1	1	1	1
3476	11416	Slc33a1	Mouse	1	1	1	1	1	1	1	0	0	0	0	0	1	1
413	11821	Aprt	Mouse	1	0	1	1	1	1	0	0	1	1	1	0	0	1
68998	11878	Arx	Mouse	0	0	0	0	0	1	0	1	1	0	0	0	1	0
1290	12054	Bcl7b	Mouse	11.	11	1	1	1	1	0	1	1	1	1	0	0	0
55599	12183	Bpgm	Mouse	1	1	1	1	1	1	0	1	1	1	1	0	1	0
1330	12389	Cavl	Mouse	1	1	1	1	1	1	1	1	1	1	1	1	0	0
1368	12611	Cebpg	Mouse	1	1	1	1	1	1	0	0	1	1	1	0	1	1
7667	12700	Cish	Mouse	1	1	1	1	1	1	0	0	1	0	1	0	0	0
55434	12831	Col5a1	Mouse	1	1	1	0	1	1	0	0	1	0	1	0	1	1
37917	12835	Col6a3	Mouse	1	0	1	0	0	1	0	1	1	0	1	0	1	0
1028	13139	Dgka	Mouse	1	0 V	0	0 T	0 f	10	1	0	0	0	0	0	0	0
7291	13389	D113	Mouse	0	0	0	0	0	1	0	0	0	0	0	0	0	1
68934	14187	Akr1b8	Mouse	0 H	0 T	0 R	1	1 P	1	0	0	0	0	0	0	1	0
7717	14221	Fjx 1	Mouse	1	0	0	0	1	0	0	0	0	0	0	0	0	0
20549	17388	Mmp15	Mouse	1	1	1	1	1	1	1	1	1	1	1	1	0	0
1871	18012	Neurodl	Mouse	0	1	1	1	0	1	0	0	0	0	0	0	0	0
1933	18476	Pafah1b3	Mouse	1	1	1	1	1	1	0	1	1	1	1	1	1	1
268	19286	Pts	Mouse	1	1	1	1	0	1	1	1	1	1	1	0	0	1
7500	19288	Ptx 3	Mouse	0	1	0	0	0	0	0	0	1	0	1	0	1	0
7516	19711	Resp18	Mouse	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7922	19935	Mrpl23	Mouse	1	1	1	1	1	1	0	0	0	1	1	1	0	1
56005	20269	Scn3a	Mouse	0	0	0	0	1	0	0	0	0	0	0	0	0	0
40668	22083	Sh2bp1	Mouse	1	1	1	1	0	1	1	0	0	0	0	0	1	1

HomoloGene ID			$\begin{aligned} & \mathscr{U} \\ & \stackrel{0}{0} \\ & \dot{0} \\ & \underset{n}{2} \end{aligned}$	$\begin{aligned} & \underset{y}{a} \\ & \underline{I} \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \underline{L} \\ & \text { Un } \\ & \text { H } \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \text { 突 } \\ & \text { 咅 } \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \dot{d} \\ & \ddot{Z} \\ & \ddot{Z} \\ & \ddot{Z} \end{aligned}$	블 E \ddot{Z} \ddot{Z}	$\frac{\underset{\alpha}{n}}{\underset{Z}{Z}}$		$\begin{aligned} & \stackrel{Q}{E} \\ & \ddot{\theta} \\ & \ddot{\theta} \end{aligned}$		$\begin{aligned} & \text { 总 } \\ & \text { B } \\ & \ddot{y y} \\ & \ddot{\theta} \end{aligned}$		易	$\begin{aligned} & \mathscr{Q} \\ & \underset{\Delta}{\Delta} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \bar{\Xi} \\ & \underline{U} \\ & \underline{U} \\ & \ddot{E} \\ & \ddot{\theta} \end{aligned}$
84799	22693	Zfp30	Mouse	0	0	0	0	0	0	0	1	1	1	1	1	0	0
65280	22701	Zfp41	Mouse	0	0	1	0	0	1	0	0	0	1	1	0	1	1
31656	22791	Dnajc2	Mouse	1	1	1	1	0	1	1	1	1	1	1	0	0	1
21334	23882	Gadd45g	Mouse	1	1	1	0	0	0	1	1	1	1	1	1	1	1
68420	30930	Vps26	Mouse	1	1	1	1	1	1	1	1	1	1	1	1	0	0
17523	50760	Fbxol7	Mouse	0	0	1	0	0	0	0	0	0	0	0	0	0	0
81871	54422	Barhl1	Mouse	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2212	56282	Mrpl12	Mouse	1	1	1	1	1	1	0	1	1	1	1	0	1	1
10494	56306	Tera	Mouse	1	1	1	1	1	1	1	1	1	1	0	1	1	1
10518	56412	2610024G14Rik	Mouse	0	1	1	1	0	1	1	0	0	0	0	0	1	0
22818	56843	Trpm5	Mouse	0	0	0	0	1	1	0	0	0	0	1	1	1	0
10663	57170	Dolppl	Mouse	1	1	1	0	1	1	1	0	1	0	1	1	1	1
10774	65960	Twsg1	Mouse	1］	7V	12	$1 T$	1 n	W10	1	1	1	1	1	1	1	1
32331	65964	B230120H23Rik	Mouse	1	1	1	0	1	1	1	1	0	0	1	0	1	1
11920	66098	Chchd6	Mouse	1 TH	$4 T$	1 R	1	1 P	I	1	0	1	0	1	0	0	1
32633	66308	2810021B07Rik	Mouse	1	1	1	1	0	1	1	1	0	0	1	0	1	1
40859	66494	2610524G07Rik	Mouse	1	1	1	1	1	1	1	1	1	1	1	0	1	1
11980	66506	1810042K04Rik	Mouse	1	0	1	1	0	1	0	0	0	0	1	0	0	1
12021	66734	Mapllc3a	Mouse	1	1	1	1	0	1	1	0	1	0	0	0	1	1
82250	66915	Myeov2	Mouse	1	1	1	1	0	1	1	0	1	1	0	0	0	1
49970	66953	Cdca 7	Mouse	1	1	1	1	0	1	1	1	1	1	1	1	1	1
32293	67223	2810430M08Rik	Mouse	1	0	0	0	1	1	1	1	1	1	1	1	1	1
9355	68045	2700060 E 02 Rik	Mouse	1	1	1	1	1	1	1	1	1	0	1	1	1	1
18903	68339	0610010D24Rik	Mouse	1	0	1	0	0	1	1	0	1	0	1	0	0	0
55918	68776	Tafl1	Mouse	1	1	1	1	1	1	0	0	1	0	0	0	1	1

HomoloGene ID	$\begin{aligned} & \text { e } \\ & \text { نٍ } \end{aligned}$			$\begin{aligned} & \underset{y}{y} \\ & \ddot{y} \\ & \ddot{Z} \end{aligned}$		PN: kidney	$$	暑 关 关	$\stackrel{\mathscr{Q}}{\underset{\sim}{\alpha}}$		免 吕 $\ddot{\theta}$		$\begin{aligned} & \text { 总 } \\ & \text { 号 } \\ & \ddot{\theta} \\ & \ddot{\theta} \end{aligned}$	㐫	易	$\begin{aligned} & \frac{\underset{y}{\mid c}}{\Sigma} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { U } \\ & \text { E } \\ & \ddot{U} \\ & \ddot{\theta} \end{aligned}$
41703	69156	Comtd 1	Mouse	1	1	1	1	0	1	0	0	0	0	1	0	0	1
9120	70381	2210010N04Rik	Mouse	1	1	1	1	1	1	1	1	1	1	1	1	0	1
11653	70918	4921525L17Rik	Mouse	0	0	0	0	0	1	1	0	0	0	0	0	0	0
15843	71617	9130011E15Rik	Mouse	1	1	1	0	0	0	1	0	0	0	0	0	0	1
12418	71893	Noxol	Mouse	1	0	1	1	0	1	0	1	0	0	1	1	1	0
6535	71916	Dus41	Mouse	0	0	0	0	0	0	1	0	0	0	0	0	0	1
7199	72075	Ogfr	Mouse	1	1	1	1	0	1	0	0	1	1	1	0	1	1
12444	72140	2610507L03Rik	Mouse	0	1	1	1	0	1	1	1	0	0	0	0	1	1
49899	72514	2610306H15Rik	Mouse	1	0	0	0	0	0	0	0	1	0	0	0	1	0
56774	74202	Fblim1	Mouse	1	1	1	1	1	1	0	1	1	1	1	1	0	1
18833	75641	1700029I15Rik	Mouse	0	0	0	1	0	1	0	0	0	0	0	0	0	0
4983	76257	Slc38a3	Mouse	0	0	1	1	0	0	1	0	0	0	0	0	0	0
9813	77626	4122402O22Rik	Mouse	1	0	0	11	0	1	1	1	1	1	0	1	1	1
10695	94221	Gopc	Mouse	1	0	0	0	0	1	1	1	1	0	0	0	1	1
46116	101359	D330027H18Rik	Mouse	1	0 T	02	0 C	0 P	0	0	0	1	0	0	0	0	0
64353	101543	Wtip	Mouse	1	1	0	0	1	0	0	0	1	0	0	1	0	0
10026	109065	1110034A24Rik	Mouse	0	1	1	1	0	1	1	1	1	1	1	0	1	1
32	109900	Asl	Mouse	1	1	1	1	1	1	1	1	1	1	1	0	1	1
2593	110052	Dek	Mouse	1	1	1	1	0	1	1	0	1	1	1	0	0	1
14667	191578	Hel308	Mouse	0	0	1	0	0	0	1	0	0	0	1	1	0	0
32546	207952	Klhl25	Mouse	1	0	1	0	0	1	1	1	1	1	0	1	0	1
45198	208606	1500011J06Rik	Mouse	1	0	1	1	1	1	1	1	1	1	1	0	1	1
35002	214854	Lincr	Mouse	1	0	1	0	1	0	1	0	0	0	0	0	0	0
2880	216233	Socs2	Mouse	1	1	1	1	1	1	0	1	1	1	1	1	1	1
14128	217333	Trim47	Mouse	1	1	1	1	1	1	1	0	1	0	1	0	1	0

Appendix V The individual mouse developmental ontologies

TS01

first polar body
one-cell stage
second polar body
unclassifiable
zona pellucida
TS02
second polar body
two-cell stage
unclassifiable
zona pellucida

TS03

4-8 cell stage
compacted morula
second polar body
unclassifiable
zona pellucida
TS04
blastocoelic cavity
embryo

compacted morula
inner cell mass
germ layers
trophectoderm
mural trophectoderm
polar trophectoderm
second polar body
unclassifiable
zona pellucida
WESTERN CAPE
TS05
blastocoelic cavity
embryo
inner cell mass
germ layers
trophectoderm
mural trophectoderm
polar trophectoderm
unclassifiable

TS06
blastocoelic cavity
embryo
epiblast
germ layers
primitive endoderm
trophectoderm
mural trophectoderm
polar trophectoderm
unclassifiable
embryo
epiblast
germ layers
endoderm trophectoderm mural trophectoderm polar trophectoderm ectoplacental cone
unclassifiable
yolk sac cavity
TS08

TS09
embryo
epiblast
germ layers
ectoderm
endoderm
trophectoderm
mural trophectoderm polar trophectoderm ectoplacental cone
unclassifiable
yolk sac cavity
embryo
germ layers
ectoderm endoderm mesoderm trophectoderm

mural trophectoderm
polar trophectodermRS ITY of the
ectoplacental cone
primitive streak CAPE
proamniotic cavity
unclassifiable
yolk sac cavity
TS10
allantois
embryo
germ layers ectoderm endoderm mesoderm trophectoderm mural trophectoderm polar trophectoderm
ectoplacental cone
primitive streak
unclassifiable
yolk sac
allantois
amnion
anatomical site

```
hematological system
    blood island
nervous system
        central nervous system {CNS}
            floor plate
            future brain
                                    future midbrain
                                    future prosencephalon
                                    future rhombencephalon
            future spinal cord
                neural tube
            neural crest
            notochord
        peripheral nervous system {PNS}
            auditory apparatus {ear}
                                    internal ear
            visual apparatus {eye}
primitive streak
unclassifiable
yolk sac
```

TS13
alimentary system diverticulum intestine \{gut\} mesentery
anatomical site head trunk whole body
branchial arch
cardiovascular system artery
 carotid artery dorsal aorta heart
common atrial chamber
mesocardium myocardium primitive ventricle sinus venosus
vein
endocrine system
thyroid primordium
germ layers
ectoderm
endoderm
mesenchyme
hematological system blood
nervous system central nervous system \{CNS $\}$
floor plate
future brain
future midbrain future prosencephalon future rhombencephalon
future spinal cord
neural tube
neural crest
notochord
peripheral nervous system \{PNS\}
auditory apparatus \{ear\}
internal ear
olfactory apparatus
visual apparatus \{eye\}
primitive streak
unclassifiable
urogenital system
nephric cord
presumptive nephric duct
TS14
alimentary system
diverticulum
intestine $\{$ gut $\}$
mesentery
anatomical site
anterior limb bud
head
tail bud
trunk whole body
branchial arch
cardiovascular system artery
heart

common atrial chamber mesocardium ERSITY of the myocardium primitive ventricle EN CAPE sinus venosus
vein
endocrine system
pituitary gland
thyroid primordium
germ layers ectoderm
endoderm
mesenchyme
hematological system
blood
nervous system
central nervous system \{CNS\}
floor plate
future brain
future forebrain
future diencephalon
future midbrain future rhombencephalon prosencephalon ventricular system
fourth ventricle
third ventricle

```
        future spinal cord
            neural tube
        neural crest
        notochord
    peripheral nervous system {PNS}
        auditory apparatus {ear}
            internal ear
            olfactory apparatus
            visual apparatus {eye}
primitive streak
respiratory system
    nose
unclassifiable
urogenital system
    nephric cord
    nephric duct
    pronephros
```

alimentary system
diverticulum
gall bladder primordium
intestine \{gut\}
mesentery
dorsal meso-oesophagus
oral cavity
pharynx
anatomical site
anterior limb bud
head
posterior limb fidge
tail
trunk
UNIVERSITY of the
whole body
branchial arch
WESTERN CAPE
cardiovascular system
artery
carotid artery
dorsal aorta
heart
atrium
common atrial chamber
mesocardium
myocardium
primitive ventricle
sinus venosus
vein
endocrine system
pituitary gland
thyroid primordium
germ layers
ectoderm
endoderm
mesenchyme
hematological system
blood
musculoskeletal system
pre-cartilage condensation
nervous system
central nervous system \{CNS\}
floor plate
future brain
future forebrain
diencephalon
telencephalon
future midbrain future rhombencephalon ventricular system fourth ventricle third ventricle
future spinal cord neural tube
neural crest
notochord
peripheral nervous system \{PNS\}
auditory apparatus $\{$ ear $\}$
internal ear
otocyst
ganglion
olfactory apparatus visual apparatus \{eye\} intraretinal space
respiratory system
lung
nose
tracheal diverticulum
unclassifiable
urogenital system
mesonephros
nephric cord

nephric duct

TS17
alimentary system
diverticulum
intestine
large intestine
anal region
small intestine
liver and biliary system
cystic duct
gall bladder primordium
hepatic duct
liver
mesentery
oesophagus
oral cavity
pharynx
stomach
anatomical site
anterior limb bud
head
posterior limb bud
tail
trunk

```
    whole body
branchial arch
cardiovascular system
    artery
        carotid artery
        dorsal aorta
    heart
        atrium
            common atrial chamber
            mesocardium
            myocardium
            primitive ventricle
            sinus venosus
            valve
    vein
dermal system
    dermis
    epidermis
endocrine system
    pituitary gland
    thyroid primordium
germ layers
    ectoderm
    endoderm
    mesenchyme
hematological system
    blood
lymphoreticular system
musculoskeletal system
    cartilage condensation
    pre-cartilage condensation
nervous system
    central nervous system {CNS}, SITY of the
        brain
                            Forebrain ERN CAPE
                                    diencephalon
                                    telencephalon
                hindbrain
                    trigeminal V
                        midbrain
                ventricular system
                                    fourth ventricle
                                    lateral ventricle
                                    third ventricle
        floor plate
        future spinal cord
                        neural tube
        notochord
    peripheral nervous system {PNS}
        auditory apparatus {ear}
                                    external ear
                                    internal ear
                                    otocyst
                                    middle ear
                ganglion
                olfactory apparatus
                peripheral nerve
                visual apparatus {eye}
```

```
                                    intraretinal space
                                    optic stalk
respiratory system
    bronchus
    lung
    nose
    trachea
unclassifiable
urogenital system
    reproductive system
        gonadal component
    urinary system
        mesonephros
        nephric cord
        nephric duct
```

 TS18
 alimentary system
 diverticulum
 intestine
 large intestine
 anal region
 small intestine
 duodenum
 liver and biliary system

cystic duct
gall bladder
hepatic duct
liver

mesentery
oesophagus
oral cavity
UNIVERSITY of the
tongue
pancreas primordium TERN CAPE
pharynx
stomach
anatomical site
anterior limb bud
head
posterior limb bud
tail
trunk
whole body
branchial arch
cardiovascular system
artery
carotid artery
dorsal aorta
heart
atrium
common atrial chamber
mesocardium
myocardium
pericardium
primitive ventricle
sinus venosus
valve
vein
dermal system
dermis
epidermis
endocrine system
pituitary gland
thyroid
germ layers
ectoderm
endoderm
mesenchyme
hematological system
blood
lymphoreticular system
musculoskeletal system
cartilage condensation
pre-cartilage condensation
nervous system
central nervous system \{CNS $\}$
brain
forebrain
diencephalon
telencephalon
hindbrain
metencephaton
cerebellum primordium
facial VII
trigeminal V
myelencephalon
midbrain
ventricular system
TNT V fourth ventricle
fourth ventricle
lateral ventricle $)$ the
third ventricle
floor plate ${ }^{\text {S }}$ third ventricle APE
future spinal cord neural tube
notochord
peripheral nervous system $\{$ PNS $\}$
auditory apparatus \{ear\}
external ear internal ear
otocyst middle ear
ganglion
sympathetic ganglion
olfactory apparatus
peripheral nerve
visual apparatus \{eye\}
cornea
lens vesicle optic stalk retina
respiratory system
bronchus
lung
nose
trachea

```
unclassifiable
urogenital system
        reproductive system
        gonad primordium
        urinary system
        mesonephros
        metanephros
        nephric duct
        ureteric bud
alimentary system
        diverticulum
        intestine
            large intestine
                anal pit
            small intestine
                duodenum
        liver and biliary system
            common bile duct
            cystic duct
            gall bladder
            hepatic duct
            liver
    mesentery
    oesophagus
    oral cavity
            mandibular process
                mandible primordium
            maxillary process
                maxilla primordium
            tongue
    pancreas primordium-VERSITY of the
    pharynx
    stomach
                                    WESTERN CAPE
anatomical site
    anterior limb bud
    head
    posterior limb bud
    tail
    trunk
    whole body
branchial arch
cardiovascular system
    artery
            carotid artery
            dorsal aorta
    heart
            atrium
            mesocardium
            myocardium
            pericardium
            sinus venosus
            valve
            ventricle
    vein
        vena cava
                inferior vena cava
```

TS19
dermal system
dermis
epidermis
endocrine system
pituitary gland
thyroid
germ layers
ectoderm
endoderm
mesenchyme
hematological system
blood
lymphoreticular system
musculoskeletal system
cartilage condensation
pre-cartilage condensation
nervous system
central nervous system $\{\mathrm{CNS}\}$
brain
forebrain
diencephalon telencephalon
hindbrain

floor plate
future spinal cord neural tube
notochord
peripheral nervous system \{PNS\}
auditory apparatus \{ear\}
external ear
future tympanum
internal ear
membranous labyrinth saccule utricle
osseous labyrinth
semicircular canal
middle ear
ganglion
sympathetic ganglion
olfactory apparatus
peripheral nerve
visual apparatus \{eye\}
cornea
lens vesicle
optic stalk
retina
respiratory system bronchus
lung
nose trachea
unclassifiable
urogenital system
reproductive system genital tubercle gonad primordium
urinary system mesonephros metanephros nephric duct ureteric bud

```
alimentary system
    diverticulum
    intestine
        large intestine
                anal pit
        small intestine
                duodenum
    liver and biliary system
        common bile duct
        cystic duct
        gall bladder
        hepatic duct
        liver
    mesentery
    oesophagus
        UNIVERSITY of the
    oral cavity
        mandibular process RN CAPE
                mandible primordium
        maxillary process
                maxilla
                premaxilla
            tongue
    pancreas
    pharynx
        nasopharynx
    stomach
anatomical site
    anterior limb
    head
    posterior limb
    tail
    trunk
    whole body
cardiovascular system
    artery
        carotid artery
        dorsal aorta
    heart
        atrium
        mesocardium
```

```
    myocardium
    pericardium
    sinus venosus
        valve
        ventricle
    vein
        vena cava
        inferior vena cava
dermal system
    appendages
        vibrissa
    skin
        dermis
        epidermis
endocrine system
    pituitary gland
    thymus primordium
    thyroid
germ layers
    mesenchyme
hematological system
    blood
lymphoreticular system
musculoskeletal system
    bone
    cartilage
    cartilage condensation
    pre-cartilage condensation
nervous system
    central nervous system {CNS}
        brain
            forebrain
                        diencephalon of the
        WESTERN
                                    thalamus
                            telencephalon
                                    cerebral cortex
                                    corpus striatum
            hindbrain
                medulla oblongata
                                    hypoglossal XIl
                                    vagal X
                        metencephalon
                                    cerebellum primordium
                                    pons
                                    facial VII
                                    trigeminal V
                                    vestibulocochlear VIII
            midbrain
                oculomotor III
            ventricular system
                fourth ventricle
                                lateral ventricle
                                third ventricle
            floor plate
            notochord
            spinal cord
```

peripheral nervous system \{PNS \}
auditory apparatus \{ear\}
external ear
auricle
external acoustic meatus
future tympanum internal ear membranous labyrinth saccule utricle
osseous labyrinth cochlea semicircular canal
middle ear
ganglion
sympathetic ganglion
olfactory apparatus
peripheral nerve
visual apparatus $\{$ eye $\}$
cornea
lens vesicle
optic chiasma
optic stalk
respiratory system bronchus
lung
nose
trachea
unclassifiable
urogenital system

reproductive system
genital tubercle ERSITY of the
gonad
urinary system ESTERN CAPE
mesonephros
metanephros
nephric duct
primitive ureter
alimentary system
intestine
large intestine
anal pit
colorectal
rectum
small intestine duodenum
liver and biliary system
common bile duct
cystic duct
gall bladder
hepatic duct
liver
mesentery
oesophagus
omentum
lesser omentum
oral cavity
jaw
mandible
maxilla
premaxilla
tooth
molar
salivary gland
sublingual gland primordium
submandibular gland primordium
tongue
pancreas
pharynx
nasopharynx
stomach
anatomical site anterior limb head posterior limb tail trunk whole body
cardiovascular system artery
 dorsal aorta
heart
atrium endocardium \{endocardial tissue\} mesocardium myocardium ${ }_{\text {pericardium }}^{\text {m ERSITY of the }}$ valve ventricle ESTERN CAPE
vein
vena cava
inferior vena cava superior vena cava
dermal system
appendages vibrissa
skin dermis epidermis
endocrine system
pituitary gland
thymus primordium
thyroid
germ layers mesenchyme
hematological system blood
lymphoreticular system
musculoskeletal system
bone
cartilage
cartilage condensation

```
    joint
        ligament
    muscle
        skeletal muscle {striated muscle}
    pre-cartilage condensation
    tendon
nervous system
    central nervous system {CNS}
    brain
                forebrain
                    diencephalon
                        epithalamus
                                hypothalamus
                                    thalamus
                                    telencephalon
                                    cerebral cortex
                                    olfactory I
                                    corpus striatum
                                    olfactory lobe
                hindbrain
                    medulla oblongata
                        hypoglossal XII
                        vagal X
            M, metencephalon
                                    facial VII
                                    trigeminal V
                                    vestibulocochlear VIII
            meninges
                                    arachnoid
            UNIV Fpiamater \ % of the
            midbrain
                CS oculomotorHI P E
            ventricular system
                cerebral aqueduct
                fourth ventricle
                lateral ventricle
                third ventricle
    floor plate
    spinal cord
    peripheral nervous system {PNS}
    auditory apparatus {ear}
        auditory ossicle
        external ear
            auricle
            external acoustic meatus
        future tympanum
        internal ear
            membranous labyrinth
                        saccule
                        utricle
                osseous labyrinth
                        cochlea
                        semicircular canal
            middle ear
    ganglion
```

```
    joint
        ligament
    muscle
        skeletal muscle {striated muscle}
    pre-cartilage condensation
    tendon
    nervous system
    central nervous system {CNS}
    brain
                forebrain
                    diencephalon
                                epithalamus
                                hypothalamus
                                thalamus
                            telencephalon
                                caudate nucleus
                                cerebral cortex
                            olfactory I
                                corpus striatum
                                lentiform nucleus
                                olfactory lobe
                hindbrain
                    medulla oblongata
```



```
                vagal X
            HI[.TI metencephalon
            #- cerebellum
                pons
                    abducent VI
                    facial VII
                                    trigeminal V
                                    vestibulocochlear VIII
            U meninges RSITY of the
            WEST arachnoid
                CAPE
                    dura mater CAPE
                    pia mater
            midbrain
                    oculomotor III
                    tegmentum
                    trochlear IV
            ventricular system
                    cerebral aqueduct
                    fourth ventricle
                    lateral ventricle
                    third ventricle
    floor plate
    spinal cord
peripheral nervous system {PNS}
    auditory apparatus {ear}
        auditory ossicle
        external ear
            auricle
                    external acoustic meatus
            future tympanum
            internal ear
                    membranous labyrinth
                saccule
                utricle
```


TS23
alimentary system
intestine
large intestine
anus
colorectal
rectum
small intestine
duodenum
jejunum
liver and biliary system
common bile duct
pineal primordium
pituitary gland
thymus primordium
thyroid
germ layers
mesenchyme
hematological system
blood
lymphoreticular system
lymph sac
spleen primordium
musculoskeletal system
bone
cartilage
cartilage condensation
joint
ligament
muscle
skeletal muscle \{striated muscle\}
pre-cartilage condensation
tendon
nervous system
central nervous system \{CNS \}

hindbrain
medulla oblongata
floor plate hypoglossal XII vagal X
metencephalon cerebellum pons
abducent VI
facial VII
trigeminal V
vestibulocochlear VIII
meninges
arachnoid
dura mater
pia mater
midbrain
oculomotor III
tegmentum trochlear IV
ventricular system cerebral aqueduct

```
                        fourth ventricle
                        lateral ventricle
                                third ventricle
        spinal cord
        peripheral nervous system {PNS}
        auditory apparatus {ear}
            auditory ossicle
            external ear
                        auricle
                            external acoustic meatus
                future tympanum
                internal ear
                    membranous labyrinth
                    saccule
                    utricle
                    osseous labyrinth
                                    cochlea
                                    semicircular canal
                middle ear
            ganglion
                    sympathetic ganglion
        olfactory apparatus
        peripheral nerve
        visual apparatus {eye}
```



```
                                    UNItreous humor ITY of the
                                    Uvitreous humor ITY of the
respiratory system
    bronchus
    diaphragm
    WESTERN CAPE
    larynx
    lung
    nose
    pleura {pleural cavity}
    sinus {hindbrain}
    trachea
unclassifiable
urogenital system
    reproductive system
        female reproductive system
            mammary gland
            Mullerian tubercle
            ovary
                    paramesonephric duct {Mullerian duct}
            genital tubercle
        male reproductive system
            penis
            testis
                primitive seminiferous tubule
            vas deferens
urinary system
    bladder
    metanephros
```


nephron

glomerulus
ureter
urethra

TS24

```
alimentary system
    intestine
        large intestine
            anus
            colorectal
                    colon
                rectum
            small intestine
                    duodenum
                jejunum
    liver and biliary system
        common bile duct
        cystic duct
        gall bladder
        hepatic duct
        liver
    mesentery
    oesophagus
    omentum
```

 oral cavity
 jaw
    ```


```

 lesser omentum
    ```
                            lesser omentum


```

 maxilla maxilla
 WESTh molarN CAPE
    ```
            salivary gland
                parotid gland
                    sublingual gland
                    submandibular gland
            tongue
    pancreas
    pharynx
            nasopharynx
    stomach
anatomical site
    anterior limb
    head
    posterior limb
    tail
    trunk
    whole body
cardiovascular system
    artery
        aorta
        carotid artery
    heart
        atrium
        endocardium \{endocardial tissue\}
```

 mesocardium
 myocardium
 pericardium
 valve
 ventricle
 vein
 vena cava
 inferior vena cava
 superior vena cava
 dermal system
appendages
hair
hair follicle
vibrissa
skin
dermis
epidermis
endocrine system
adrenal gland
adrenal cortex
adrenal medulla
pineal gland
pituitary gland
thymus
thyroid
germ layers
mesenchyme
hematological system
blood
lymphoreticular system
lymph sac
% spleen
bone
cartilage
WESTERN CAPE
cartilage condensation
joint
ligament
muscle
skeletal muscle {striated muscle}
pre-cartilage condensation
tendon
nervous system
central nervous system {CNS}
brain
forebrain
diencephalon
epithalamus
hypothalamus
thalamus
telencephalon
caudate nucleus
cerebral cortex
olfactory I
corpus striatum
lentiform nucleus
olfactory lobe
temporal lobe

```
hindbrain
medulla oblongata
floor plate
hypoglossal XII
vagal X
metencephalon cerebellum pons
abducent VI facial VII trigeminal V vestibulocochlear VIII
meninges
arachnoid
dura mater pia mater
midbrain
oculomotor III
tegmentum
trochlear IV
ventricular system
cerebral aqueduct
fourth ventricle
spinal cord
lateral ventricle
peripheral nervous system \{PNS\}
auditory apparatus \{ear\}
auditory ossicle
external ear
auricle
external acoustic meatus
future tympanum 1 of the
internal ear
ES membranous labyrinth
saccule utricle
osseous labyrinth cochlea semicircular canal
middle ear
ganglion
sympathetic ganglion
olfactory apparatus
peripheral nerve visual apparatus \{eye\}
choroid
cornea
cyelid
lens
optic chiasma
optic stalk
retina
sclera
vitreous humor
respiratory system
bronchus diaphragm
```

 larynx
 lung
 nose
 pleura {pleural cavity}
 sinus {hindbrain,sinus}
 trachea
 unclassifiable
 urogenital system
 reproductive system
 female reproductive system
 mammary gland
 Mullerian tubercle
 ovary
 oviduct
 vagina
 genital tubercle
 male reproductive system
 penis
 glans
 testis
 primitive seminiferous tubule
 vas deferens
 urinary system
 bladder
 metanephros
 nephron 11 [in [im\square[#]
 glomerulus
 ureter
 urethra
 renal convoluted tubule
 alimentary system
 UNIVERSITY of the
 intestine
 large intestine TERN CAPE
 anus
 colorectal
 colon
 rectum
 small intestine
 duodenum
 jejunum
 liver and biliary system
 common bile duct
 cystic duct
 gall bladder
 hepatic duct
 liver
 mesentery
 oesophagus
 omentum
 greater omentum
 lesser omentum
 oral cavity
 jaw
 gum
 mandible
 maxilla
    ```
premaxilla
tooth
molar
salivary gland
parotid gland
sublingual gland
submandibular gland
tongue
pancreas
pharynx
nasopharynx
stomach
anatomical site
anterior limb
head
posterior limb
tail
trunk
whole body
cardiovascular system artery
aorta
heart
carotid artery
atrium endocardium \{endocardial tissue\}
mesocardium
myocardium
pericardium
valve
ventricle
vein
vena cava IVERSITY of the
inferior vena cava superior vena cava CAPE
dermal system
appendages
hair
hair follicle
vibrissa
skin
dermis
epidermis
endocrine system
adrenal gland
adrenal cortex
adrenal medulla
pineal gland
pituitary gland
thymus
thyroid
germ layers
mesenchyme
hematological system blood
lymphoreticular system lymph sac spleen
```

musculoskeletal system
bone
cartilage
cartilage condensation
joint
ligament
muscle
skeletal muscle {striated muscle}
smooth muscle
pre-cartilage condensation
tendon
nervous system
central nervous system {CNS}
brain
forebrain
diencephalon
epithalamus
hypothalamus
thalamus
hippocampus
telencephalon
caudate nucleus
cerebral cortex
olfactory

```

```

 olfactory lobe
 temporal lobe
 hindbrain
 medulla oblongata
 floor plate
 UNIVERSII hypoglossal XII
 WEST metencephalon (Perebellum E
 pons
 abducent VI
 facial VII
 trigeminal V
 vestibulocochlear VIII
 meninges
 arachnoid
 dura mater
 pia mater
 midbrain
 oculomotor III
 tegmentum
 trochlear IV
 ventricular system
 cerebral aqueduct
 fourth ventricle
 lateral ventricle
 third ventricle
 spinal cord
 peripheral nervous system {PNS}
 auditory apparatus {ear}
 auditory ossicle
 external ear
    ```
```

 auricle
 external acoustic meatus
 internal ear
 membranous labyrinth
 saccule
 utricle
 osseous labyrinth
 cochlea
 spiral organ of Corti
 semicircular canal
 middle ear
 tympanum primordium
 ganglion
 spinal ganglion
 sympathetic ganglion
 olfactory apparatus
 peripheral nerve
 visual apparatus {eye}
 choroid
 ciliary body
 cornea
 eyelid
    ```

```

 bronchus
 diaphragm
 larynx
 UNIVERSITY of the
 lung
 alveolusESTERN CAPE
 nose
 pleura {pleural cavity}
 sinus {hindbrain,sinus}
 trachea
 unclassifiable
urogenital system
reproductive system
female reproductive system
mammary gland
Mullerian tubercle
ovary
oviduct
vagina
genital tubercle
male reproductive system
penis
glans
testis
primitive seminiferous tubule
vas deferens
seminal vesicle
urinary system
bladder

```
metanephros
nephron
glomerulus renal convoluted tubule
ureter
urethra
TS27
```

alimentary system
intestine
large intestine
anus
colorectal
cecum
colon
rectum
small intestine
duodenum
ileum
jejunum
liver and biliary system
bile duct
cystic duct
gall bladder
hepatic duct
liver
mesentery
oesophagus
omentum
greater omentum
lesser omentum
oral cavity
jaw UNIVERSITY of the
Wmandible ERN CAPE
maxilla
premaxilla
tooth
molar
salivary gland
parotid gland
sublingual gland
submandibular gland
tongue
pancreas
pharynx
hypopharynx
nasopharynx
oropharynx
stomach
anatomical site
anterior limb
head
posterior limb
tail
trunk
whole body
cardiovascular system

```
```

 artery
 aorta
 carotid artery
 capillary
 heart
 atrium
 cardiac valve
 endocardium
 myocardium
 pericardium
 ventricle
 vein
 vena cava
 inferior vena cava
 superior vena cava
 dermal system
appendages
hair
hair follicle
sebaceous gland
sweat gland
vibrissa
skin
dermis
epidermis
endocrine system
adrenal gland
adrenal cortex
adrenal medulla
parathyroid
pineal gland
pituitary gland UNIVERSITY of the
thyroid
hematological system WESTERN CAPE
blood
bone marrow
lymphoreticular system
lymph node
spleen
tonsil
lingual tonsil
palatine tonsil
musculoskeletal system
bone
cartilage
joint
ligament
synovium
muscle
skeletal muscle {striated muscle}
smooth muscle
tendon
nervous system
central nervous system {CNS}
brain
forebrain
diencephalon

```

sympathetic ganglion
olfactory apparatus
peripheral nerve visual apparatus \{eye\}
choroid
ciliary body
conjunctiva
cornea
eyelid
iris
lacrimal gland
lens
optic chiasma
optic stalk
retina
fovea centralis
macula lutea
sclera
vitreous humor
respiratory system
bronchus
diaphragm
larynx
lung
nose trachea
unclassifiable
urogenital system

reproductive system
female reproductive system Y of the
\(W_{\text {breast }}^{\text {amnion }} \mathrm{ERN}\) CAPE
mammary gland
ovary
oviduct
placenta
uterus
cervix
endometrium
myometrium
vagina
vulva
male reproductive system
epididymis
penis
foreskin
glans
prostate
testis
seminiferous tubule
vas deferens
seminal vesicle
urinary system
bladder
kidney
nephron

> renal corpuscle
> glomerulus
> renal tubule
loop of Henle renal collecting duct renal distal convoluted tubule renal proximal convoluted tubule
ureter
urethra
TS28
alimentary system
intestine
large intestine
anus colorectal
cecum
colon
rectum
small intestine
duodenum
ileum jejunum
liver and biliary system
bile duct cystic duct gall bladder hepatic duct liver
mesentery
oesophagus
omentum
UNIVERSITY of the
greater omentum
lesser omentum ERN CAPE
oral cavity
jaw
gum
mandible
maxilla
premaxilla
tooth
molar
salivary gland
parotid gland
sublingual gland
submandibular gland
tongue
pancreas
pharynx
hypopharynx
nasopharynx
oropharynx
stomach
anatomical site
anterior limb
head
posterior limb
tail
trunk
whole body
cardiovascular system
artery
aorta
carotid artery
capillary
heart
atrium
cardiac valve
endocardium
myocardium
pericardium
ventricle
vein
vena cava
inferior vena cava superior vena cava
dermal system
appendages
hair
hair follicle
sebaceous gland
sweat gland

skin
dermis epidermis
endocrine system
adrenal gland
adrenal cortex adrenal medulla ERITY of the
parathyroid
pineal gland
WESTERN CAPE
pituitary gland
thymus
thyroid
hematological system
blood
bone marrow
lymphoreticular system
lymph node
spleen
tonsil
lingual tonsil
palatine tonsil
musculoskeletal system
bone
cartilage
joint
ligament
synovium
muscle
skeletal muscle \{striated muscle\}
smooth muscle
tendon
nervous system
```

central nervous system {CNS}
brain
forebrain
diencephalon
epithalamus
hypothalamus
thalamus
hippocampus
telencephalon
caudate nucleus
cerebral cortex
olfactory I
corpus striatum
lentiform nucleus
olfactory lobe
temporal lobe
hindbrain
medulla oblongata
hypoglossal XII
olivary nuclei
vagal X
metencephalon
M,

```


``` stibulocochlear VIII
 meninges
 arachnoid
 dura mater
 Umidbrain pia mater TY of the
 oculomotor II
 tegmentum CiAPE
 trochlear IV
 ventricular system
 cerebral aqueduct
 fourth ventricle
 lateral ventricle
 third ventricle
 spinal cord
peripheral nervous system {PNS}
 auditory apparatus {ear}
 auditory ossicle
 auditory tube
 external ear
 auricle
 external acoustic meatus
 internal ear
 membranous labyrinth
 saccule
 utricle
 osseous labyrinth
 cochlea
 spiral organ of Corti
 semicircular canal
 vestibule
```

middle ear
tympanum \{tympanic membrane\}
ganglion
spinal ganglion
sympathetic ganglion
olfactory apparatus
peripheral nerve
visual apparatus \{eye\}
choroid
ciliary body
conjunctiva
cornea
eyelid
iris
lacrimal gland
lens
optic chiasma
optic stalk
retina
fovea centralis
macula lutea
sclera
vitreous humor
respiratory system
bronchus diaphragm
larynx
lung
nose
pleura \{pleural cavity\}
sinus
trachea
unclassifiable
urogenital system
reproductive system
female reproductive system
amnion
breast
mammary gland
ovary
oviduct
placenta
uterus
cervix
endometrium
myometrium
vagina
vulva
male reproductive system
epididymis
penis
foreskin
glans
prostate
testis
seminiferous tubule
vas deferens

## Appendix VI The merged mouse developmental ontologies

[^2]stomach
allantois
anatomical site
anterior limb
anterior limb bud head posterior limb posterior limb bud posterior limb ridge tail tail bud trunk whole body
blastocoelic cavity
branchial arch
cardiovascular system
artery
aorta
carotid artery
dorsal aorta
capillary
heart
atrium
common atrial chamber cardiac valve endocardium mesocardium myocardium pericardium primitive ventric sinus venosus
valve ventricle
vein
vena cava
inferior vena cava
superior vena cava
chorion
dermal system
appendages

## hair

hair follicle
sebaceous gland
sweat gland vibrissa
skin
dermis
epidermis
embryo
compacted morula
epiblast
inner cell mass
endocrine system
adrenal gland
adrenal cortex
adrenal medulla
parathyroid
pineal gland
pineal primordium
pituitary gland
thymus
thymus primordium
thyroid
thyroid primordium
first polar body
germ layers
ectoderm
endoderm
mesenchyme
mesoderm
primitive endoderm
trophectoderm mural trophectoderm polar trophectoderm ectoplacental cone
hematological system
blood
blood island
bone marrow
lymphoreticular system
lymph node
lymph sac
spleen
spleen primordium
tonsil

musculoskeletal system
bone
cartilage
UNIVERSITY of the
cartilage condensation
joint
ligament
synovium
muscle
skeletal muscle
smooth muscle
pre-cartilage condensation
tendon
nervous system
central nervous system
brain
forebrain
corpus striatum lentiform nucleus olfactory lobe

```
 temporal lobe
 hindbrain
 medulla oblongata
 floor plate
 hypoglossal XII
 olivary nuclei
 vagal X
 metencephalon
 cerebellum
 cerebellum primordium
 pons
 abducent VI
 facial VII
 trigeminal V
 vestibulocochlear VIII
 myelencephalon
 meninges
 arachnoid
 dura mater
 pia mater
 midbrain
 oculomotor III
 tegmentum
 trochlear IV
 ventricular system
 cerebral aqueduct
 fourth ventricle
 lateral ventricle
 third ventricle
 future bra
 future forebrain
 future diencephalon
 future midbrain 1 1 of the
 future prosencephalon
 future thombencephaton PE
 prosencephalon
 future spinal cord
 neural tube
 neural crest
 notochord
 spinal cord
peripheral nervous system
 auditory apparatus
 auditory ossicle
 auditory tube
 external ear
 auricle
 external acoustic meatus
 future tympanum
 internal ear
 membranous labyrinth
 saccule
 utricle
 osseous labyrinth
 cochlea
 spiral organ of Corti
 semicircular canal
 vestibule
```

```
 otocyst
 middle ear
 tympanum
 tympanum primordium
 ganglion
 spinal ganglion
 sympathetic ganglion
 olfactory apparatus
 peripheral nerve
 visual apparatus
 choroid
 ciliary body
 conjunctiva
 cornea
 eyelid
 intraretinal space
 iris
 lacrimal gland
 lens
 lens vesicle
 optic chiasma
 optic stalk
 retina
 fovea centralis
```

                    fovea centralis
    ```
```

primitive streak
proamniotic cavity
respiratory system
bronchus
diaphragm
larynx
lung
alveolus
nose
pleura
sinus
trachea
tracheal diverticulum
second polar body
two-cell stage
unclassifiable
urogenital system
presumptive nephric duct
pronephros
reproductive system
female reproductive system
amnion
breast
mammary gland
Mullerian tubercle
ovary
oviduct
paramesonephric duct
placenta

```
uterus
cervix
endometrium
myometrium
vagina
vulva
genital tubercle
gonad gonad primordium gonadal component male reproductive system epididymis mesonephric duct penis
foreskin
glans
prostate
testis
primitive seminiferous tubule
seminiferous tubule
vas deferens
seminal vesicle
urinary system

UNTVERST loop of Henle WESTER \({ }^{\text {renal distal convoluted tubule }}\) renal proximal convoluted tubule mesonephros metanephros nephric cord nephric duct primitive ureter ureter ureteric bud urethra
yolk sac
yolk sac cavity
zona pellucida

\section*{Theiler Stage}
adult
Theiler Stage 27 \{TS 27; TS27\}
Theiler Stage 28 \{TS 28; TS28\}
embryo
Theiler Stage 01 \{TS 01; TS01\}
Theiler Stage 02 \{TS 02; TS02\}
Theiler Stage 03 \{TS 03; TS03\}
Theiler Stage 04 \{TS 04; TS04\}
Theiler Stage 05 \{TS 05; TS05\}
Theiler Stage 06 \{TS 06; TS06\}

Theiler Stage 07 \{TS 07; TS07\}
Theiler Stage 08 \{TS 08; TS08\}
Theiler Stage 09 \{TS 09; TS09\}
Theiler Stage 10 \{TS 10; TS 10\(\}\)
Theiler Stage 11 \{TS 11; TS11\}
Theiler Stage 12 \{TS 12; TS12\}
Theiler Stage 13 \{TS 13; TS13\}
Theiler Stage 14 \{TS 14; TS 14\}
Theiler Stage 15 \{TS 15; TS 15 \}
Theiler Stage 16 \{TS 16; TS16\}
Theiler Stage 17 \{TS 17; TS17\}
Theiler Stage 18 \{TS 18; TS18\}
Theiler Stage 19 \{TS 19; TS19\}
Theiler Stage 20 \{TS 20; TS20\}
Theiler Stage 21 \{TS 21; TS21\}
Theiler Stage 22 \{TS 22; TS22\}
fetus
Theiler Stage 23 \{TS 23; TS23\}
Theiler Stage 24 \{TS 24; TS24\}
Theiler Stage 25 \{TS 25; TS25\}
Theiler Stage 26 \{TS 26; TS26\}
Theiler Stage Unclassifiable \{TS UN; TSUN\}

UNIVERSITY of the
WESTERN CAPE

\title{
Appendix VIIa The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet.
}
nature
genetics

\section*{The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line}

The FANTOM Consortium and the Riken Omics Science Center \({ }^{1}\)

\begin{abstract}
Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities regulatory network Our results indicate that cellular states are constrained by complex networks involving both positive and
 negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.

Development, organogenesis and homeostasis in multicellular RESULTS
systems involve the proliferation of precursor cells, followed by Oufline of the analysis strategy
growth arrest and the acquisition of a differentiated cellular In most cell tine models, only a subset of cells undergoes growth arrest phenotype. Upon stimulation with phorbol myristate acetate and differentiation. To maximize the sensitivity in this study, we (PMA), human THP-1 myelomonocytic leukemia cells cease pro- identified a subctone of THP-1 cells in which the large majority of cells liferation, become adherent and differentiate into a mature mono-cyte- and macrophage-like phenotype \({ }^{1,2}\). This study aimed to understand the transcriptional network underlying growth arrest and differentiation in mammalian cells using THP-I cells as a model system.
Most existing methods for regulatory network reconstruction collect genes into coexpressed clusters and associate these clusters with regulatory motifs or pathways (for example, see refs. 3-5). Alternatively, one can model the expression patterns of all genes explicitly in terms of predicted regulatory sites in promoters and the post-translational activities of their cognate transcription factors (TFs) \({ }^{6-8}\). Although this approach is challenging in complex eukaryotic genomes owing to large noncoding regions, ChIP-chip data \({ }^{9}\) indicates that the highest density of regulatory sites is found near transcription start sites (TSSs) and regulatory regions originally thought to be distal may often be alternative promoters \({ }^{10,11}\). Precise identification of TSS locations is thus likely to be a crucial factor for accurate modeling of transcription regulatory dynamics in mammals.
In this study, we extend our previous observations of genome-wide ISS usage by Cap Analysis of Gene Expression (CAGE) \({ }^{12}\) and using deep sequencing to identify promoters active during a time course of differentiation and quantify their expression dynamics. DeepCAGE data are used in combination with cDNA microarrays, other genomescale approaches, novel computational methods and large-scale siRNA validation to provide a comprehensive analysis of growth arrest and differentiation in the THP-1 cell model. became adherent in response to PMA (Supplementary Fig 1 online). Our strategy began with deepCAGE, which identified active TSSs at single-base-pair resolution, and simultaneously measured their timedependent expression (using normalized tag frequency) as cells differentiated in response to PMA. The same RNA was subjected to cDNA microartay analysis on an Illumina platform. The differentiation of the cells was eviden from the large increase in expression of tion of the cells was evident from the large increase in expression of
macrophage-specific genes such as CD14 and CSF1R detected by macrophage-specific genes such as CD14 and CSF1R detected by
both deepCAGE and microarray in all replicates (Supplementary Fig 2 online).
Figure 1 summarizes our Motif Activity Response Analysis (MARA) strategy. Promoters were defined as local clusters of coexpressed TSSs and promoter regions as their immediate flanking sequences (Fig. la,b). To reconstruct transcription regulatory dynamics we refined earlier computational method \(s^{6-8}\) by incorporating comparative genomic information and each TF's positional preferences relative to the TSS in the prediction of regulatory sites. Binding sites for a comprehensive and unbiased collection of mammalian regulatory motifs were predicted in all proximal promoter regions (Fig. Ic) and the observed promoter expression profiles (Fig. 1d) were combined with the predicted site-counts (Fig. 1e) to infer time-dependent activity profiles of regulatory motifs (Fig. 1f). We inferred individual regulatory interactions (edges) between motifs and promoters by comparing the promoter expression and motif activity profiles (Fig. 1g). Rigorous Bayesian probabilistic methods were developed for all steps of the computational analysis. Finally, a core network was
\end{abstract}
\({ }^{1}\) A full list of authors and affiliations is provided at the end of this paper
Received 16 July 2008; accepted 25 March 2009; published online 19 April 2009; doi:10.1038/ng. 375

Figure 1 Motif Activity Response Analysis (MARA). (a) CAGE tags are mapped to the human genome and their expression is normalized; vertical lines represent TSS positions, and their height is proportional to the normalized expression. (b) Mapped tags are clustered into promoters on the basis of their relative expression, and neighboring promoters are joined into promoter regions. (c) A window of - 300 to +100 flanking each promoter region is extracted, site-cunts (e) are used to inter motif antivies (4) the sifalice signiticance of the regulatory edge from motif to promoter is calculated based on
constructed by selecting the motifs that explained the greatest proportion of the expression variance, obtaining all predicted regulatory edges between TFs corresponding to these motifs and selecting those regulatory edges that had independent experimental support. Using this approach, we reconstructed the transcriptional regulatory dynamics associated with cellular differentiation in human THP-1 cells, and validated a subset of predicted regulatory interactions.

DeepCAGE quantification of dynamic TSS usage \(\sqrt{\text { H. }}\) CAGL tags generated from mRNA harvested at each time por mapped to the human genome. Promoters were defined as clusters of
nearby TSSs that showed identical expression profiles (within meanearby TSSs that showed identical expression profiles (within mea-
surement noise) and were substantially expressed in at least one time surement noise) and were substantially expressed in at least one time
point (Fig. la,b). Using these criteria we identified 29,857 promoters expressed in THP-1 cells containing \(\mathbf{3 8 1 , 1 4 5}\) unique TSS positions (which is a subset of the nearly 2 million TSSs detected at least once in THP-1). These promoters were contained within 14,607 promoter regions (separated by at least 400 bp ; Methods and Supplementary Fig. 3 online). The deepCAGE data was validated using genome tilingarray ChIP for markers of active transcription. Of the promoters identified, \(79 \%\) and \(78 \%\) were associated with H3K9Ac and RNA polymerase II, respectively (both markers of active transcription \({ }^{13,14}\)), compared to \(18 \%\) and \(27 \%\) for inactive promoters (Supplementary Note online).

Among the identified promoters \(84 \%(24,984)\) were within \(1 \mathbf{k b}\) of the starts of known transcripts and \(81 \%(24,327)\) could be associated with 9,452 Entrez genes. Approximately half of the remaining promoters were more than 1 kb away from the loci of known genes (supplementary Fig. 4 online). These newly identified promoters are conserved across mammals, suggesting that they are true transcription starts of currently unknown transcripts (Supplementary Fig. 5 online). The association of 24,327 promoters with 9,452 Entrez genes extends previous evidence of alternative promoter usage \({ }^{11}\)-in this case even within a single cell type (Supplementary Table 1 online)-and demonstrates that promoter regions frequently contain multiple promoters with distinguishable expression profiles (Supplementary Table 2 online). In addition, for genes with known multiple promoters deepCAGE frequently identified only one promoter to be active in the THP-1 samples (Supplementary Fig. 6 online). Hence, deepCAGE samples a distinct aspect of transcriptional activity that can and does vary independently of mRNA abundances as measured by hybridization to representative microarray probes.

\section*{Promoter expression}

Using the normalized tags per million (tpm) counts assigned to the promoters, we tested reproducibility among the three biological replicates and compared the outcome to the Illumina array from the same samples (Supplementary Fig. 7 online). DeepCAGE

Figure 2 Statistical significance and consistency across replicates of the inferred motif activity profiles. Each dot corresponds to a motif. The significance of each motif in explaining the observed expression variation is quantified by the \(z\) value of its activity profile (horizontal axis, see Methods). The consistency of the inferred activity profile of each motif is quantified by the fraction of the variance (FOV) in the activity profile across all six replicates (three tiological replicates for both CAGE and Illumina), which
expression measurements were comparatively noisy (Supplementary Fig. 7a). Nevertheless, the median Pearson correlation between the replicate-averaged expression profiles of CAGE and microarray was around 0.72 (Supplementary Fig. 7b), which is comparable to that observed with other deep transcriptome sequencing datasets \({ }^{15}\). As predicted, the correlation is lower for genes with multiple promoter regions (Supplementary Fig. 7b and discussed further in Supplementary Note).

\section*{Comprehensive regulatory site prediction}

Known binding sites from the JASPAR and TRANSFAC databases \({ }^{16,17}\) were used to construct a set of 201 regulatory motifs (position-specific weight matrices, WMs), which represent the DNA binding specificities of 342 human TFs. We predicted transcription factor binding sites (TFBSs) for all motifs within the proximal promoter regions (-300 to +100 bps) of all CAGE-defined promoters. Extending the proximal promoter regions beyond the -300 to +100 window decreased the quality of the fitted model described below (data not shown). In contrast to previous approaches that used simple WM scannino contrast to previous approaches that used simple \(W M\) scanning, we
incorporated information from orthologous sequences in six other mammals and used a Bayesian regulatory-site prediction algorithm that uses explicit models for the evolution of regulatory sites \({ }^{18.19}\) (Fig. 1c and Methods). Notably, different motifs had distinct and highly specific positional preferences with respect to TSS (Supplementary Fig. 8 online), extending a previous genome-scale analysis \({ }^{20}\). Positional preferences were incorporated in the TFBS prediction by assigning each site a probability that it is under selection and correctly positioned. This analysis generated approximately 245,000 predicted TFBSs for the 201 motifs genome-wide. For each promoter-motif combination, the TFBS prediction was summarized by a count \(N_{p m}\). which represents the estimated total number of functional TFBSs for motif \(m\) in promoter \(p\). The TFBS predictions were compared with published high-throughput protein-DNA interaction datasets (ChiPchip) and predicted target genes were significantly (\(P\) values ranged from 0.02 for ETS 1 to \(6.60 \mathrm{E}-263\) for GABPA) enriched among genes for which binding was observed (Supplementary Table 3 online).

Inferring key TFs and their time-dependent activities
The details of our Motif Activity Response Analysis (MARA) are described in Methods. Briefly, for each motif \(m\) and each time point \(t\),
there is an (unknown) motif activity \(A_{m b}\) which represents the timedependent nuclear activity of positive and negative regulatory factors that bind to the sites of the motif (for example, the E2F activity will depend on nuclear E2F1-8, and DP1-2 levels, as well as RB1 phosphorylation status). As in previous work \({ }^{6-8,21}\), motif activities were inferred by assuming that the expression \(e_{p t}\) of promoter \(p\) at time \(t\) is a linear function of the activities \(A_{m t}\) of those motifs that have predicted sites in \(p\). Additionally, the effect of motif \(m\) on the expression of promoter \(p\) is assumed to be proportional to the predicted number of functional sites \(N_{p m}\). Assuming that the deviapredicted number of functional sites \(N_{p m}\). Assuming that the devia-
tions of the predicted expression levels \(e_{p m}^{\text {men }}=\) constant \(+\sum_{m} N_{p m} A_{m}\) tions of the predicted expression levels \(e_{p r}^{\text {thes }}=\) constant \(+\sum_{m} N_{p m} A_{m s}\)
from the observed levels \(e_{p t}\) are Gaussian distributed, and using a Gaussian prior on the activities, we determine fitted activities \(A_{m t}^{*}\) that have maximal posterior probability (Methods).
The inferred motif activities were validated using a number of internal tests. First, our Bayesian procedure quantifies both the significance of each motif in explaining the observed expression variation as well as the reproducibility of its activity across replicates (Fig. 2 and Supplementary Table 4 online). The activity profiles of the top motifs are extremely reproducible across replicates and different measurement technologies (Figs. 2 and 3a and Supplementary Fig. 9 online). It should be stressed that, although motif activities are inferred by fitting the expression profiles of all promoters, the model cannot be expected to predict expression profiles of individual genes from the predicted TFBS in proximal promoters alone. The effects of chromatin structure, distal regulatory sites, nonlinear interactions between regulatory sites, and the contribution of the large numbers of human TFs for which no motif is known, are not considered. Furthermore, especially for genes that are dynamically regulated, mature mRNA abundance can be dynamically regulated independently of transcription initiation and promoter activity through selective mRNA elongation, processing and degradation Our aim is not to predict expression profiles of individual genes but rather to predict the key regulators and their time-dependent activities, which can be inferred from integration of global expression information in a system undergoing dynamic change. We validated the significance of the inferred activity profiles by comparing the fraction of the 'expression signal' (expression variance minus replicate noise) that is explained by the model, compared to randomized versions, and under a tenfold cross-validation test (Supplementary Fig. 10 online). The explained expression signal is highly significant and this significance is maintained under tenfold cross-validation (Methods). In addition, the highly peaked positional profiles of TFBSs (Supplementary Fig. 8) suggest that knowing the exact TSS is important for accurate TFBS prediction. Indeed, the predicted TFBSs from CAGE promoters explain substantially more of the expression signal in microarrays than predicted TFBSs of the associated RefSeq promoters (Supplementary Fig. 10). We observe that the model better predicts the expression profiles of those promoters that are more strongly expressed, more reproducible across replicates and have higher expression variance (Supplementary Fig. 11 online). Similarly, samples at the start and end of the differentiation time course are better predicted than those at intermediate time points (Supplementary Fig. 12 online), possibly because individual cells differentiate at different rates and leave the cell populations less homogeneous at intermediate time points.

Motif activities that were independently inferred from all 11,995 expressed microarray probes were combined with the inferred motif activities from all CAGE and microarray replicates into a final set of time-dependent motif activities (Methods). From these, we selected 30 'core' motifs that contribute most to explaining the expression

\section*{ARTICLES}

Figure 3 inferred time-dependent activities of the key regulatory motifs. (a) The time-dependent activity protile of the E2F1-5 regulatory motif as inferred from CAGE (ieft) and microarray (right) data. The three biological replicates are shown in red. blue and green. (b) The 30 most signiticant motifs with consistent activity profiles across all replicates (CAGE and microarray) were clustered into nine sets of motifs with similar dynamics. Each panel shows the activity of the members of the cluster (colored curves), the names of motifs contributing and the cluster average activity profile (black).
variation (red dots in Fig. 2) and segregated their activity profile using a Bayesian procedure into nine clusters (Fig. 3b and Methods), including three clusters of upregulated motifs, three clusters of downregulated motifs and three clusters containing single motifs with profiles involving different transient dynamics. The genome-wide set of target promoters for each of the motifs was determined as described in Methods. The significance of each regulatory 'edge' from a motif to a putative target promoter (containing a predicted TFBS) was quantified by the \(z\) value of the correlation between the motif's activity profile and the promoter's expression profile (Fig. 1e).
Core transcriptional regulatory network
The final aim in reconstructing transcriptional regulatory networks is to infer not only the key regulators and their target gene sets, but also the way in which the actions of these key regulators are coordinated. For this purpose, we collected all 199 predicted regulatory edges (\(z\) value \(\geq 1.5\)) between the 30 core motifs. Recognizing that the prediction of individual regulatory edges is still prone to error, we constructed a core regulatory network (Fig. 4) of 55 highly trusted edges by filtering the predicted edges according to experimental validation, either within our data or in existing literature (Supplementary Table 5 online). In addition, for each core motif we extracted the set of predicted target genes (\(z\) value \(\geq 1.5\)) and checked for enrichment of gene ontology terms. A selection of significantly enriched terms is shown as oval nodes in Figure 4 (full set of GO enrichments are available as Supplementary Table 6 online).

Whereas our method infers the key regulators ab initio, the majority of factors within this core network are known to be important in the monocyte-macrophage lineage, thereby validating the method. In addition the predicted targets of these motifs
are enriched for biological processes known to be involved in differentiation of the monocytic lineage.

The gene ontology enrichments can broadly be divided into four groups. Downregulated motifs E2F1-5, NFYA,B,C and MYB are associated with cell cyde-related terms, consistent with the growth arrest observed during PMA-induced differentiation and the specific downregulation of numerous genes required for DNA synthesis and cell cycle progression within 24 h of PMA addition. Notably, MYB targets are also enriched specifically for microtubule-cytoskeletorassociated genes. Conversely, targets of upregulated motifs are associated with the terms immune response, cell adhesion, plasma membrane, vacuole and lysosome, all of which are consistent with differentiation into an adherent monocyte-like cell. The targeting of lysosomal genes by cholesterol-regulated SREBFs (sterol regulatory element-binding transcription factors) is of note, as hipid homeostasis is important in the macrophage in atherosclerosis and lysosomal storage diseases \({ }^{22}\). We also saw enrichment of signal transduction genes among targets of the earty induced motifs EGR1-3 and TBP Finally, there is a set of motifs whose targets are enriched in TFs. These motifs correspond to the transiently induced/repressed motifs ATF5_CREB3, FOXO1,3,4 and SRE, and the repressed pair of OCT4 and FOXI1,I2 motifs.

\section*{Validation of edge predictions}

THP-1 cells, even in an 'undifferentiated' state, are clearly a myeloid cell line. In seeking to validate the transcriptional network, we noted that there was a large set of TF genes expressed constitutively in the cells that were rapidly downregulated in response to PMA, of which MYB is an example, and another set that was expressed but further upregulated during differentiation. It is technically difficult to apply siRNA knockdown to genes that are only expressed later in the differentiation. To validate predicted edges empirically, we therefore chose to carry out siRNA knockdowns in undifferentiated THP-1 cells for genes encoding 28 TFs that are expressed in the undifferentiated state and for which we have associated motifs. To assess whether siRNA knockdown canried out in the undifferentiated state is appropriate to address factors that increase expression during the time course, we carried out the technically more difficult experiment of siRNA knockdown combined with PMA treatment for SPII (more commonly known in the literature as PU l). All knockdowns were carried out in biological triplicate and qRT-PCR was used to confirm RNA-level knockdown, which in most cases was greater than \(80 \%\) (Supplementary Table 7 online; in addition, protein-level knockdown was confirmed by protein blot for 14 siRNAs, see Supplementary Fig. 13 online). Changes in gene expression caused by TF knockdown were measured by rllumina microarrays. For each knocked-down TF gene, we obtained the list of predicted regulatory targets for the associated motif and divided the microarray probes into predicted targets and nontargets for a range of \(z\)-value thresholds. Higherconfidence targets in general show greater expression changes upon knockdown (Fig. 5a shows the example TF genes MYB, SNA/3, EGR1 and RUNXI; additional examples are shown in Supplementary Fig. 14 online). For SPII, even in the absence of PMA treatment siRNA knockdown caused significant downregulation of predicted SPII targets, but the effects were much stronger when knockdown was combined with 1 h or 24 h of PMA treatment (Fig. 5b), confirming that PMA causes upregulation of SPII activity. A good correlation between target confidence (2 -value cut-off) and average log expression ratio was observed for the large majority of experiments (Fig. 5c). For an intermediate cut-off of \(z=1.5\) we quantified the difference in log expression ratio of predicted targets and nontargets (Fig. 5d) and

Figure 4 Predicted core regulatory network of the 30 core motifs. An edge \(X \rightarrow Y\) is drawn whenever 30 core motifs. An edge \(X \rightarrow Y\) is drawn whenever with motif \(Y\) has a predicted regulatory edge for motif X (z value \(\geq 1.5\)) and the edge has independent experimental support. The color of each node reflects its cluster membership and the size of the node reflects the significance of the motif. Edges confirmed in the literature, by ChIP or by siRNA are shown in red, blue and green, respectively. In cases where there are multiple lines of support only one evidence type is shown. Supplementary table 5 shows all predicted edges and their experimental support. GO terms significantly enriched among target genes are shown as white nodes with black edges. FOS/JUN (FOS,B,L1_JUNB ,D), CREB (ATF5_CREB3), GABPA (ELK1,4_GABPA,B2).
and IRF1,2 motif activities failed to be induced and the GATA4 and TBX4,5 motif activities failed to be downregulated (Fig. 6c). Notably, knockdown of CEBPG, encoding
found significant changes (\(z\)-value larger than 2) for 23 of 33 cases with SPII knockdown combined with 24 h of PMA treatment and MYB knockdown being the most significant (Supplementary Fig. 15 online shows the entire distribution of log expression ratios of targets and nontargets for eight example TFs). Notably, for the TF genes LMO2, MXII and SPI, the knockdown led to a significant upregulation of their targets, suggesting that the three encoded TFs act primarily as repressors in undifferentiated THP-1 cells (Fig. 5d, also see Supplementary Fig. 14a). Together these results provide compelling experimental validation of our predicted regulatory edges.

\section*{Single TF knockdowns affect multiple motif activities}

Besides validating predicted targets, the siRNA knockdowns can also be used to assess the effects of the knockdown of one TF gene on the motif activities of other TFs. In addition to the 28 TFs perturbed above, we included a further 24 TFs that lacked motifs but were naturally repressed during PMA differentiation, or had been reported have a role in myeloid differentiation or leukemia (Supplementar) Table 8 online).
The motif activity inference method was used to determine the changes in activities of all motifs upon knockdown of each TF gene. To assess the role of each TF in differentiation, we defined the differentiative overlap between a TF gene knockdown and the PMA time course as the fraction of all motifs that significantly changed their activity in the same direction upon TF gene knockdown as in the PMA differentiation (Methods). By far the largest differentiative overlap (\(69 \%\)) was observed for the MYB knockdown, which not only affected MYB motif activity, but also the activity of most motifs in the core network, with the most significant activity changes all in the same direction as in the PMA time course (Fig. 6a). Knockdown of 13 other TF genes generated an overlap greater than the negative control (Supplementary Table 9 online), and Figure 6 shows three further examples (E2F1, HOXA9 and CEBPG).
As for MYB, E2F1 knockdown reproduced some of the downregulation of MYB and E2F activity observed upon PMA stimulation, but it failed to reproduce the upregulation of SREBF1,2, PU.1, NFATCl-3 and FOS,B,L1_JUNB,D activity (Fig. 6b). Similarly, the activity changes that HOXA9 knockdown induced were mostly in the same direction as in the PMA differentiation; however, the SNAII-3
one of the PMA-downregulated factors, for which we do not have a motif, also generated activity changes that significantly overlapped those observed in response to PMA (Fig. 6d). Finally, instead of comparing the motif activity changes that different knockdowns induced, we can also directly compare the expression changes of all genes with the expression changes observed in the PMA time course We found that MYB, HOXA9, CEBPG, GFII, CEBPA, FLII and MLLT knockdowns all generated changes in gene expression that reiterated some of those observed with PMA treatment (Supplementary Table 8). MYB knockdown was exceptional, as it induced 35\% (\(340 / 967\)) and repressed \(19 \%\) (172/916) of the genes upregulated and downregulated with PMA, respectively. In addition the cells became adherent (Supplementary Fig. 16 online) and began to express the monocytic markers CD11B (ITGAM), CD54 (ICAMI), CD14, APOE and CSFIR (Supplementary Fig. 2), three of which we confirmed by flow cytometry (Supplementary Table \(\mathbf{1 0}\) online). This development of adherence could be linked to the GO enrichment for cytoskeletonassociated genes among MYB targets noted above. Given these abservations one might wor observations one might wonder whether MYB is a master regulato down would have reproduced the complete differentiation observed under PMA treatment. Several observations argue strongly against this. First, the gene, sets perturbed by MYB and by the other prodifferentiative TFs overlap only partially (Supplementary Table 11 online). Second, of the six other pro-differentiative TF genes only two (CEBPG and GFII) are affected by MYB knockdown. Both these facts indicate that the other pro-differentiative TF genes are not simply downstream of MYB. Third, MYB downregulation does not occur until after the second hour of the PMA time course (Fig. 3b), which is at odds with the idea of MYB sitting at the top of the regulatory hierarchy. It is also worth noting that 'THP-I cells harbor a leukemogenic fusion \({ }^{23}\) between MLL (mixed-lineage leukemia) and MLLT3 (MLL translocation partner 3) and that the MLLT3 siRNA targets this leukemogenic fusion (note that full-length MLLT3 does not seem to be expressed in THP-1 as there is no CAGE \(5^{\prime}\) signal for this gene). Our data indicate that this fusion interferes with differentiation and that neither PMA treatment nor MYB knockdown affects MLL-MLLT3 levels, suggesting these stimuli can bypass the differentiative block Conversely, MLLT3 knockdown had no effect on MYB levels. These

\section*{ARTICLES}

Figure 5 Validation of predicted target promoter sets using siRNA knockdowns. (a) Difference in the average log expression ratio upon knockdown between predicted target promoters and predicted nontargets (vertical axis) as a function of the z-value cut-off on target prediction (horizontal axis, more stringent cut-offs are on the right) for knockdown of the TF genes MYB (red), SNAI3 (orange), RUNXI (green) and EGR1 (light blue). (b) As in a but now for knockdown of SPI followed by 1 h without treatment (light blue), 24 h without treatment (dark blue), 1 h of PMA treatment (orange) and 24 h of PMA treatment (red). All straight lines are linear regression fits. (c) Pearson correlation coefficients between the average log expression ratio difference of targets and nontargets and the cut-off on target predictions (horizontal axis). Red bars indicate correlation coefficients larger than 0.75 in absolute value; gree bars, absolute values between 0.5 and 0.75 ; and blue bars, less than 0.5 . (d) Significance (z value) of the difference in log expression ratio between predicted targets and nontargets (cut-off \(z=1.5\)) for all 28 TFs associated with a motif, measured as a \(z\) value (number of standard errors). Red bars correspond to significant changes, that is, greater than two standard errors; green bars, changes between 1 and 2 standard errors; and blue bars, changes less than 1 standard error. siRNA knockdowns were carried out in biological triplicate and knockdown was assessed by qRT-PCR (Supplementary Table 7).
results agree with previous RNAi studies that conclude that downregulation of MLL leukemogenic fusion proteins can promote growth arrest but is not required for terminal differentiation \({ }^{24,25}\). Thus, individual TF gene knockdowns affect the activities of multiple motifs and elicit different, but overlapping, subsets of the regulatory changes observed in the PMA time course. Taken together, the data indicate that the independent perturbation of expression of multiple TFs in response to PMA is both necessary and sufficient to initiate partial differentiation.

\section*{Many TFs are involved in the differentiation process}

The network predictions and the siRNA results above suggest that upregulation and downregulation of the activities of multiple cooperating TFs is required for differentiation. Of a curated list \({ }^{26}\) of 1,322 human TFs, 610 were detected by both CAGE and microarray in at least one time point (Supplementary Table 12 online); however only 155 of these are covered by weight matrices, suggesting that other
factors may well be important in these cells. Of the 610 expressed IF 64 were most highly expressed in the undifferentiated and 34 in the differentiated state. In addition, 101 TFs were transiently induced or repressed during differentiation. To elucidate the connection of thes epressed drig d inputs of co-regulated subsets of TFs with the predicted regulatory inputs of the set of all 610 expressed 'TFs.

Whereas no motifs are overrepresented among inputs of statically expressed TFs, inputs of dynamically expressed TFs showed enrichmen for a subset of motifs. TFs downregulated from 0 to 96 h PMA were most enriched for three downregulated motifs of the core network OCT4 (3.4x), GATA4 (\(3.3 \times\)) and NFYA,B,C (\(2.2 \times\)) (Supplementary Table 13a online). Similarly, TFs upregulated from 0 to 96 h were most enriched for core network motifs that increase activity during differentiation: SNAII-3 (4.6x) and TBP (5.2x) (Supplementary Table 13b). Finally, transiently regulated TFs were enriched for the SRF (\(3.5 x\)) and NHLH1,2 (3x) motifs (Supplementary Table 13c)

A.L, A.R.RE, CA.W, C. Kai, C. Kawazu, CO., C.P, C. Simon, C.W, D.A.H E.B., E.M.-S., F.B., G.S.L., H. Koga, H. Miura, H.N., H.O.-Y., H.S., H.Y., I.B., I.C I.K., I.O., I.S.M., J.Y., K.L., K. Imamura, K.M., K.M.1., K.N., K. Schroder, K. Shirahige, L.W., M.A., M.C.K., M.E., M. Hashimoto, M. Hatakeyama, M.J.S., N.N., N.P., R.K., R.DT. SMG. S. S. Takeda, T.A., T. Kawashima, T. Kołima, T. Sano, T: Suzuki, V., Y.A.,
Y. Hasegawa, Y.L., Y. Kitazume, Y.N., Y.O., Y. Takahashi and Y. Tomaru were involved in biological asperts of the project. A.M.C., A.R.R.E, A.S., B.L., C.OD D.F, E.A., E.V.N., G.J.F., H.A., H.S., J.D., J.M., I.Q., J.S.M., K.W., M. Lindow, M.Z., N.C., N.M., O.H., P.J.B., P.C., R.I.T., R.S., S.M.G., S. Kondo, T.L., T.R. and V.O. were involved in the genome-wide and RNA analyses. E.v.N. and P.J.B.
Y. Tomanu and M.K-K. carried out the siRNA analysis. A.R.R.E, C.O.D., D.A.H.,
\[
\begin{aligned}
& \text { E.v.N., H.S., J.K., PC. and Y. Hayashizaki oversaw the project. H.S., A.R.R.F., } \\
& \text { E.v.N., and D.A.H. wrote the manuscript with assistance from T.R, T.L., M.J.., }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Ev.N., and D.A.H. w.ote the manuscript with assistance from T.R, T.L., M.J.S., } \\
& \text { Y. Hasegloder, P.I.C., P.I.B., E.A., N.P., M.R., S.M.G., }
\end{aligned}
\]
C.A.W., J.Q., W.H., A. Kubosaki, Y. Tomaru, V.B.B., M. Suruki and
Y. Hayashizaki.

Pubished online at hitp:/hmw nature.con//inaturegenetics/
Reprints and permissions information is available onitine at hitp://npg.nature.com/

Suchiya, S. et ai. Indiction of maturation in cultured human monocytic leukemia celis
. Abrink, M., Gobl, A.E., Huars, R., Ni sson, K. \& Hellman, L. Human cell lines U-937. macrophage cell lineage. Leukemia 8 . \(1579-1584\) (1994). Beer, MA A
Beef, M.A. \& Tavazoie, S. Predicting gene expression from sequence. Cell 117 ,
185-198 (2004).
4. Ramsey, S.A. et al. Uncovering a macrophage transcriptional program by integrating
evidence fromt motif scanning and expression dynamics. PLos Comput. Biol. 4, el000021 (2008).
5. Segal. E. et a.. Module networks: identifying regulatory madules and their condition
specific regulators from gene expression data. Nat, Genet, 34 , I66-176 (2003).
6. Das. D., Nahle, Z. \& Zharg. M. M. Actaptively inferring human transcriptional subnet

Das. D., Nahle, \& \& Lharg. M. C. Actaptively in
works. Mol. Syst. Biol. 2, 2006.0029 (2006).
Gao, F,. Foast, B.C. \& Bussemaker, H.J. Defining transcriptional networks through
integrative model ing of mRNA expression and transcription factor binding data, BMC integrative model ing of mRNA expression and transcription factor binding data. \(B\)
Bioinformatics 5,31 (2004).
. Nguyen, D.H. \& D'Haeseleer,
9. Bikrney, E. et al. Identification and analysis of tunctional elements in \(1 \%\) of the human
genome by the ENCODE piot project. Nature 447, 799-816 (2007),
10. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science
309, \(1559-1563(2005)\).
11. Carninci, P. ef al. Genome-wide analysis of mammatian promoter architecture and evotution. Nat. Gemet. 38, \(626-635\) (2006).
12. Shiraki, T. et at Cap analysis gene expression tor high-throughput anaysis of
 acetylation islands reveaied by genome wide mapping. Genes Dev 19, 542-552,
(2005) (2005).
4. Sandoval, J. et al. RNAPol-ChIP: a novel application of chromatin immunopprecipitation
 5. Cloonan. N. .e ath. Stem cell-619 (2008).
cing. Nat. Methoss 5, 13-1
6. Vieghe, \(O\). et al. A new generation of SASPAR, the open-access repository for 17. Wingender, E., Dietre, P., Karas, H. \& Knuppel R. TRANSFAC- Da datatasase. 7. Wingender. E., Dietze, P., Karas, H. \& Knuppel, R. TRANSFAC-: a datatases on
transcription factors and their DNA binding sites, Nucleic Acios Res. 24 , 238-241 transchip
(1996).
18. Moses, A.M, Chiang, D.Y, Polard, D.A., tyer, V.N. \& Eisen, M.B. MONKEY: identity ing consenved transcrption-actor binding sites in mutuple aligniments using a binding 19. van Nirmezeen, E . Finding reegulatory elements and
9. van Niirmegen, E . Finding regulatory elements and regulatory motif: a general probabilistic framework. BMC Biountormatics 8 (Suppl. 6), \(\mathrm{S4}\) (2007). Res. 18, 1-12 (2008).
21. Bussemaker, H . J., Foot, B.C. \& Ward, 1.D. Predictive modeling of genome-wide mRN expression: from
\(329-347\) (2007).
22. Schrnitz, G. \& Grand, M. Lipid homeostasis in macrophages-mplications it atherosclerosis. Pev. Physiot. Biochem. Pharmacol. 160. 93-126 (2008)
3. Odero, M. D. Zeleznik Le NJ. Chinwalla, V. \& Rowley, J.D. Cytogenetic and molecula anaiysis of the acute morocytic leukemia cell line THP
tion. Genes Chromosom. Carcer 29, 333-338 (2000).
24. Martino. V. et al. Down regulation of MLLAF9, MLL and MYC expression is not obligatory for monocyte-macrophage maturation in AML-M5 cell lines carying
\(\mathrm{t}(9 ; 11) \mathrm{p} 22 ;\);23). Oncol. Rep. 15, 207-211 (2006).
25. Pession. A. et at. MLL-AF9 oncogene expression affects cell growth but not terminal differentiation and is downregulated during menocyte-macrophage maturation in AML-M5 THP-1 cells. Oncogene 22, 8671-8676 (2003).
26. Roach. J.C. et af. Transcription factor expression in lipopolysaccharide-activate peripherat-blood-derived mononuclear cells. Proc. Natt. Acad. Sci. USA 104, 16245-16250 (2007)
7. Biggs. J.R., Ahn, N.G. \& Kratt, A.S. Activation of the mitogen-activated protein kinase pathway in U937 leukenic cells induces phosphoylation of the
TATA-binding protein. Cell Growth Difter 9, \(657-676\) (1998)
28. lyer, D. et al. Serum response factor MADS box serine-162 phosphorylation switches roliferation and myogenic gene programs. Proc. Natt Acad. Sci. USA 103, Marton \(S\) Dawis.
phosphopylation of the transcription factor ATF-2. FEBS Lett. \(572.177-183\) (2004)
30. Tefio, \(J\). et \(a\). . A direct role for prote in kinase \(C\) and the transcription factor Jun/AP- 1 the regulation of the Alzheimer's beta-amylid precursor protein gene. J. Biol. Cher 269, 21682-21690 1994
1. Kelly, L.M., Engimeier, U., Laton, I., Sieweke, M.H. \& Graf,
morocytic differentiation. EMBO J. \(19,1987-1997\) (2000)

Morocytic diferentation. EMBO J. 19, 198,-1.497 (2000) Egr-1 activates marrophase differentiation in M1 myeloblastic leukemia cells. Blood 92. 1957-1966 (1998).
, 1, F., Faus, C. \& Seraphin, B. The BTC2 patin is a general activato of mRNA deadenylation. EMBD j. 27. 1039-1048 (2008)
4. Blackshear, P.J. Tristetraprolin and other CCCH tandem zinc-finger proteins in the
35. Eareyiation Jo. mRNA turrover. Biochem. Soc. Frans. 30. 945 -952 (2002).
5. Carey, J.O., Poseknany. K.J., deVente. J.E., Petti, G.R. \& Wars, D.K. Phorboil este stimulated phosohoryiation of PU.
Blood 87, \(4316-4324\) (1996).
36. Foster, N., Lea, S.R., Preshaw, P.M. \& Tayior, J.J. Pivotal advance: vacsactive intestina peptide inhibits up-regulation of human monocyte TLR2 and TLP4 by LPS and differentiation of monocytes to macrophages. J. Leutkc. Biot, 81, 893-903 (2007) Xu, X ef at. A compehensive CMP-chip analysis of E2F 1 , E2F4, and E2F6 in norma
and tumor cells reveals interchangeable roles of E2F family menters Genome and tumor cells reveals interchangeable roies of E2F family members. Genome Res
\(17,1550-1561\) (2007). 8. Anfossi, G, Gewirt, A.M. \& Caiabretta, B. An oligomer complementary to c-myb-
encoded mPNA innibits proliferation of human myeloid leukemia cell lines. Proc. Natt. Acad. Sci. USA 86, 3379-3383 (1989).
39. Reddy, M.A et at. Opposing actions of cets.JPU. 1 and c -myt protooncogene products
in regulating the macrophage-specific promoters of the human and mouse in regulating the macrophage-specificic promoters of the human and mouse
colony-stimulating facto-1 receptor (c-ms) genes.. Exp. Med. 180, \(2309-2319\) colony-s
(1994). Feng, R. et at PU I and CIEBPatphatbeta comvert fitroblasts into macrophage-like
celis. Proc. Nati. Acad Sal USA \(105,5057-6062\) (2008) ceils. Proc. Natt. Acad. SCi. USA 105, 6057-6062 (2008).
Carfer, J.H. \& Tourtell lotte, W.G. Early growth response transcriptional regulators are
dispensebie for macrophage differentiation. J. Immunol. 178, 3038-3047 (2007) 2. Chen, \(x\). et al integation of enternal signaling pathwass with the core transcriptional 3. Takahk in embryoric stem cells. Cell 133, \(1106-1117\) (2008).
definest ac et at Induction of pluripotent stem cells from adult human fibroblasts by
defined factors. Cell 131, \(861-872\) (2007).
response tactor is essential for mesoderm formation during mouse embrygeneris.
Cooper, S.J., Trinkiein, N.D., Ngiyen, L. \& Myers, R.M. Serum response factor binding
45. Cooper, S.J., Trinkiein, N.D. Ngiyen, L. \& Myers, R.M. Serum response fac
sites differ in three human cell types. Genome Res. 17. \(136-144\) (2007).
6. Fieige, A. et al. Serum response factor contributes selectively to yrmphocyte develop-
ment. A. Biol. Chem. \(282,24320-24328\) (2007).
required for PI3-kinase-regulated cell proliferation. \(E M B O \int\). \(19,4955-4966(2000)\).
48. Huang, S. \& Ingber D.E. Shape dependent control of cell growth, difterentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp. Cell Res. 261 91-103 (2000).
Kauffman, S. The Origins of Order: Sels-
(Oxtord University Press, New York, 1993)

The full list of authors and affiliaions is as follows:
The FANTOM Consortium:

 Mutsumi Kanamori-Katayama \({ }^{251}\), Atsutaka Kubosaki \({ }^{251}\), Altuna Akalin \({ }^{7}\), Yoshinari Ando \({ }^{2}\), Erik Amer \({ }^{2}\), Maki Asada \({ }^{8}\), Hiroshi Asahara \({ }^{8}\), Timothy Bailey \({ }^{5}\),

Vladimir B Bajic \({ }^{951}\), Denis Bauers, Anthony G Beckhouse \({ }^{3}\), Nicolas Bertin \({ }^{2}\), fohan Björkegren \({ }^{19}\), Frank Brombacher \({ }^{11}\), Erika Bulger \({ }^{2}\), Alistair M Chalk \({ }^{3}\), Ioc Chiba \({ }^{12}\),

 Mariko Hatakeyama \({ }^{20}\), Susanne Heinzel \({ }^{21}\). Winston Hide \({ }^{922,51}\), Oliver Hofmann \({ }^{922}\), Michael Hörnquist \({ }^{9}\), Lukasz Huminiecki \({ }^{23}\), Kazuho Ikeo \({ }^{27}\), Naoko Imamoto \({ }^{24}\), Satoshi Inoue \({ }^{25}\), Yusuke Inoue \({ }^{26}\), Ryoko Ishihara\({ }^{2}\), Takao Iwayanagi \(i^{27}\), Anders Jacobsen \({ }^{28}\), Mandeep Kaur \({ }^{2}\), Hideya Kawaji \({ }^{2}\), Markus C. Kert \({ }^{15}\), Ryuichiro Kimura \({ }^{12}\),
 Ajit Kumar \({ }^{32}\), Boris Lenhard \({ }^{751}\), Andreas Lennartsson \({ }^{2}\), Morten Lindow \({ }^{28}\), Marina Lizio \({ }^{2}\), Cameron MacPherson \({ }^{9}\), Norihiro Macda \({ }^{2}\), Christopher A Maher Monique Maqungo \({ }^{9}\), lessica Mar \({ }^{33}\), Nicholas A Matigian \({ }^{3}\), Hideo Matsuda \({ }^{34}\), John S Mattick \({ }^{13}\), Stuart Meier \({ }^{9}\), Sei Miyamoto \({ }^{17}\), Etsuko Miyamoto-Sato \({ }^{35}\),
 un Otomo \({ }^{38}\), Mikhail Pachkov \({ }^{4}\), Nikolai Petrovsk \(y^{21}\), Charles Plessy \(y^{2}\), John Quackenbush \(h^{33,51}\), Aleksandar Radovanovic \({ }^{9}\), Michael Rehli \({ }^{39}\), Rintaro Saito \({ }^{40}\), Albin Sandelin \({ }^{28}\), Sebastian Schmeier \({ }^{9}\), Christian Schönbach \({ }^{41}\), Ariel S Schwartz \({ }^{6}\), Colin A Semple \({ }^{42}\), Miho Sera \({ }^{17}\), Jessica Severin \({ }^{2}\), Katsuhiko Shurahige \({ }^{43}\), Cas Simons \({ }^{13}\)
 Ole Winther \({ }^{28}\), Linda Wu \({ }^{2}\), Kazumi Yamaguchi', Hiroshi Yanagawa \({ }^{35}\), Jun Yasuda \({ }^{2}\), Mibaela Zavolan \({ }^{4}\) \& David A Hume \({ }^{49,5152}\)
 Hisashi Miura², Kayoko Murakami'2, Mitsuyoshi Murata², Noriko Ninomiy², Hiromi Nishiyorr', Shohei Noma \({ }^{2}\), Chihiso Ogawa \({ }^{2}\), Takuma Sano \({ }^{2}\), Christophe Simon \({ }^{2}\), Michihira Tagami2, Yukari Takahashi' \& Jun Kawai \({ }^{251}\)

\section*{General Organizer:}

Bion , Center, RIKEN Yokohama Institute, Kanagawa, lapan. \({ }^{3}\) The Eskitis Institute for Cell and Molecular Therapies, Griffith University, Australia. biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland. \({ }^{5}\) Institute for Molecular Bioscience, The University of Queensland, Brisbane
 Institute, University of the Western Cape, Belville, South Africa. \({ }^{10}\) Computational Medicine Group, Atherosclerosis Rescarch Unit, Center for Molecular Medicinc Department of Medicine, Karolinska Institutet, Karolinska Universiry Hospital Solna, Stockholm, Sweden. \({ }^{11}\) Institute of Infectious Disease and Molecular Medicine (IIDMM), Wolfon Pavilion Level 2, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa. \({ }^{12}\) Department of Biological Science and Technology, Tokyo University of Sciense, Japan \({ }^{13}\) Australian Research Council (ARC) Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia. \({ }^{4}\) DDepartment of Biochemistry, McGill University, Montreal, Quebec, Canada. \({ }^{5}\) Auscralian Rescarch Council (ARC) Centre of Exccllence in Biomformatics, Institute for Moiccular Bioscience, The University of Queentiand. Q. Dystens, Center for Information Biology and DNA Data Bank of Japan (DDBJ), National lnstitute of Genetics, Shizuoka, Japan. \({ }^{18}\) Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, UK. \({ }^{19}\) Department of Science and Technology, Linkëping University, Nornkëping, Sweden. \({ }^{20}\) Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Kanagawa Japan. \({ }^{2}\) Department of Diabetes and Endarinology, Flinders University and Medical Centre, Bedford Park, Adelaide, Australia. \({ }^{22}\) Department of Biostatistics, Harvard School of Public Health, Boston. Massachusetts, USA \({ }^{23}\) Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden. \({ }^{24}\) Cellular Dynamtics Laboratory, Discovery and Research Institute,
RIKEN Wako Institute, Saitama, Japan. \({ }^{25}\) Graduate School of Mediane and Facoly of Medicine, the University of Tokyon Tokyo Japan. \({ }^{26}\) Department of Biological Chemical Engineering, Gunma, University Faculty of Engineering, Gumma, Iapan. 27 R \(\&\) D Solution Center, Research \& Development Group, Hitachi Ltd., Tokyo, lapan. \({ }^{20}\) The Bioinformatics Centre, Department of Biology and Biotech Research \& Innovation Centre, University of Copenhagen, Copenhagen, Denmark. \({ }^{29}\) Department of Information and Knowledge Engineering, Faculty of Engineering, Totori University, Tontri. Japan \({ }^{3}\) The Systems Biology Institute, Shibuya, Tokyo, Japan. \({ }^{31}\) Department of Human Gene Research, Kazusa DNA Research Institute, Chiba, yapan. \({ }^{3}\) Department of Biochemistry and Molecular Biology, the George Washington University Medical Center, Washington, D.C., USA. \({ }^{33}\) Department of Biostatistics, Harvard School of Public Health, Dana-Farber Cancer Institute, Boston, Massachusets, USA. \({ }^{3}\) Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan. \({ }^{35}\) Department of Biossiences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan. \({ }^{36}\) Division of Functional Genomics and Systems
Medicine, Research Center for Genomic Medicine, Saitama Medial School, Saitama, IUpan. \({ }^{37}\) Dulbecco Telethon Institute, IRCCS Fondazione Santa Lucia at EBRI, Medicine, Research Center for Genomic Medicine, Saitama Medical School, Sailama, Japan. \({ }^{37}\) Dublbecco Telethon Insitute, IRCCS Fondazione Santa Lucia at EBRI, Rome and IGB CNR, Naples, Traty, \({ }^{38}\) Central Research Laboratory, Hitachi Ltd., Tokyo, Japan. \({ }^{39}\) Department of Hematology and Oncology, University of Regensburg,
Hospital, Regensbur, Gcrmany. \({ }^{4}\) Faculty of Environment and 34 Hospital, Regensburg, Gcrmany. \({ }^{46}\) Faculty of Environment and Information Studies, Keio University, Fuisswa, Kanagawa, Japan. \({ }^{4}\) School of Biological Sciense, Divisi

 Bioinformatics Institute, Welkome Trust Genome Campus, Hinxton, Cambridge, UK. \({ }^{\text {W6}}{ }^{\circ}\) Department of Physics, Chemistry and Biofogy, Linkopping University, Linkëping, Sweden. \({ }^{4}\) Structural Studies Division MRC Laloratory of Molecular Biology, Hills Rd., Cambr idge, UKK \({ }^{48}\) Biochemistry/Newroscience, the Scripps Research Institute, Jupiter, Flovida, USA. \({ }^{49}\) The Roslin Insititute and Royal (Dick) Schosl of Veterinary Studies, The University of Edinlurght, Roslin, UK. \({ }^{5}\) OThese authors conrributed equally to this work. \({ }^{51}\) These authors are the core writing group, \({ }^{5}\) These authors are affliated with the FANTOM 4 headquarters. Correspondence should be addressed to D.H. (david.hume@roslin.ed.ac.uk) or Y.H. (yoshide@gsc.riken.ip).

WESTERN CAPE

\section*{Appendix VIIb: Clusters of genes from Illumina microarray expression experiment with early, mid and late response characteristics}

\section*{Data selection}

For each time-point, the Rank Invariant normalization values, as well as the Flag Detection scores for each probe, were extracted from the files supplied by the Consortium. The Flag Detection scores are determined as follows:
- for each probe, the bead standard deviation (defined as the 'average standard deviation associated with bead-to-bead variability for the sample in the group' - Illumina BeadStudio User Guide) was divided by the intensity value to determine the variance of the measurements, yielding the flag detection score
- for flag detection scores equal to 1 , the probe is flagged as 'present' (P)
- for flag detection scores between 0.99 and 1.00 , the probe is flagged as 'marginal' (M)
- for flag detection scores less than 0.99 , the probe is flagged as 'absent' (A)

We excluded from consideration all probes that were flagged as 'absent' at any time-point. This resulted in a total of \(9<187\) probes. The probe identifiers were converted to EntrezGene identifiers. Many of the probe identifiers did not have a corresponding gene identifier and were excluded from further analysis. This filtering step finally yielded 7932 genes associated with the probes.

\section*{Data transformation}

The 7932 genes selected were subjected to the following transformation steps:
- add a value of 50 to all data-points to eliminate negative values
- perform a \(\log 2\) transformation on the dataset
- normalize the data of the 0 hr by making zero mean and standard deviation of 1
- transform all other time point values using the mean and standard deviation determined for 0 hr .
- to determine the change x in the expression over time for each probe relative to the expression level at point 0 hr , subtract the 0 hr value from all the other time-point values for each probe
- to calculate the fold-change in expression for each time-point relative to 0 \(h\), calculate \(2^{\wedge} x\) for each time-point value \(x\).

The result of the data transformation is a fold-change value varying from 0 to infinity. A fold-change value between 0 and 0.5 indicates that the expression of the probe is half or less of what it was originally (at 0 hr), and therefore the respective gene is considered significantly down-regulated. A fold-change value of 2 or more indicates that the expression of the probe is 2 or more fold greater than it was originally (at 0 hr) and we considered it to represent a significant upregulation of the gene.

\section*{Clustering}

\section*{UNIVERSITY of the}

The transformed data was binned into the following categories for clustering:
- Down-regulated: all values in the range \(0<=\mathrm{X}<=0.5\)
- clustering value \(=-1\)
- No regulation: all values in the range \(0.6<\mathrm{X}<2\)
- clustering value \(=0\)
- Up-regulated: all values \(>=2\)
- clustering value \(=+1\)

The tool used to perform clustering was TIGR MultiExperiment Viewer (version 3.1), which is freely available from http://www.tm4.org. For clustering we applied a Hierarchical Clustering algorithm using the Euclidean distance metric and average linkage clustering.

\section*{Selection of clusters}

Of the transformed 7932 genes, 1807 genes were not regulated throughout the time-points, 710 genes were down-regulated at the 24h time-point only, and 5220 genes were up-regulated at the 24 h time-point only. These three clusters of genes were not selected.

The remaining clusters were visually inspected and divided into 10 categories based on their regulation over time as presented in Table 1 (see Figure 2 for graphical representation). In Table 1 we used the following classification of the time intervals in the gene response:
- early regulation refers to the first four time-points \((0.5 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}, 3 \mathrm{~h})\)
- middle regulation refers to the next three time-points (\(4 \mathrm{~h}, 8 \mathrm{~h}, 10 \mathrm{~h}\))
- late regulation refers to the last three time-points (\(12 \mathrm{~h}, 18 \mathrm{~h}, 24 \mathrm{~h}\))

The heat-map of the selected clusters is depicted in Figure 1.

Table 1: Clustering categories for Illumina data based on the time of the response of genes to LPS stimulation.

UNIVERSITY of the
WESTERN CAPE
\begin{tabular}{|l|l|l|l|l|}
\hline & \begin{tabular}{l}
Early \\
Regulation
\end{tabular} & \begin{tabular}{l}
Middle \\
regulation
\end{tabular} & \begin{tabular}{l}
Late \\
regulation
\end{tabular} & GeneCount \\
\hline Category 1 & Up & Up & Up & 4 \\
Category 2 & Up & None & Up & 40 \\
Category 3 & Up & None & Down & 5 \\
Category 4 & None & None & Up & 38 \\
Category 5 & None & Down & Up & 36 \\
Category 6 & None & Down & None & 15 \\
Category 7 & None & Down & Down & 15 \\
Category 8 & Down & None & Up & 31 \\
Category 9 & Down & None & Down & 7 \\
Category 10 & Down & Down & Down & 2 \\
\hline
\end{tabular}

Figure 1
Clustering image from TMeV. Clusters were selected based on the visual inspection of expression profiles. Each cluster was classified into an expression category based on their expression over time.

-1

Figure 2
Average expression profiles for the expression categories. The average expression profile for each category was plotted along the time-points. Values in the graph range from \(\mathbf{- 1}\) (down-regulated) through 0 (no regulation) to 1 (up-regulation).

\section*{Appendix VIII Expression profile of transcription factors showing tissue restriction}

The expression profile of the 145 transcription factors expressed in \(\mathbf{2 5 \%}\) of tissues. (FRS - female reproductive system; MRS male reproductive system).
\begin{tabular}{|c|}
\hline & \(\bar{\theta}\)
0
\(E\)
む
0
0
0
0 & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & D
0
0
0
0
0
0
0 & \[
\begin{aligned}
& \text { OH } \\
& \hline 8
\end{aligned}
\] & \[
\begin{aligned}
& \text { B } \\
& \text { B } \\
& \text { E } \\
& \text { E } \\
& \text { む } \\
& 0
\end{aligned}
\] & & & & & & & & & & pineal gland & pituitary gland & \[
\frac{\stackrel{E}{4}}{\frac{0}{0}}
\] & & & ? & ¢ \\
\hline 326 & AIRE & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 430 & ASCL2 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 579 & BAPX1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 668 & FOXL2 & 0 & 0 & 0 & 0 & 0 & 1 & 11 & \(0 \triangle 1\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1032 & CDKN2D & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 1053 & CEBPE & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 C & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1745 & DLX1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 1746 & DLX2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 1748 & DLX4 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 1761 & DMRT1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1961 & EGR4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1993 & ELAVL2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 2016 & EMX1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2020 & EN2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2103 & ESRRB & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 2118 & ETV4 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& \text { en } \\
& \text { U } \\
& \text { U }
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { O} \\
& \frac{\theta}{\theta}
\end{aligned}
\] & \[
\begin{aligned}
& \text { E } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & Og & \[
\begin{aligned}
& \text { B } \\
& \text { B } \\
& \text { E } \\
& \text { E } \\
& \text { U } \\
& \text { B }
\end{aligned}
\] & \[
\begin{aligned}
& \underset{a}{4} \\
& \frac{1}{6}
\end{aligned}
\] & \[
\begin{aligned}
& E \\
& \stackrel{E}{E} \\
& \text { E }
\end{aligned}
\] & 突 & 夺 & \[
\begin{aligned}
& \text { Q0 } \\
& \text { E }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 皆 } \\
& \frac{E}{E} \\
& \hline
\end{aligned}
\] & \[
\frac{\underset{\Sigma}{\alpha}}{\Sigma}
\] & \[
\begin{aligned}
& \text { 粊 } \\
& \text { E } \\
& \text { B }
\end{aligned}
\] & & & pituitary gland & \[
\frac{\frac{E}{0}}{\frac{\Phi}{e}}
\] & \[
\begin{aligned}
& \overline{\bar{U}} \\
& \text { E } \\
& \text { E } \\
& \text { W }
\end{aligned}
\] & 色 & \[
\begin{aligned}
& \text { 를 } \\
& \\
& \hline \text { 을 }
\end{aligned}
\] & ¢ \\
\hline 4821 & NKX2－2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4861 & NPAS1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 4901 & NRL & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 5013 & OTX1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 5076 & PAX2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 5077 & PAX3 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 5079 & PAX5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 5081 & PAX7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5453 & POU3F1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 5454 & POU3F2 & 0 & 0 & 1 & 0 & 0 & 0 & \(\mathrm{O}_{2}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 5455 & POU3F3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(1 \pm\) & 03 & \(\theta 1\) & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 5462 & POU5F1P1 & 0 & 1 \\
\hline 5992 & RFX4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 － & 0 & 1. & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
\hline 6474 & SHOX2 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 6493 & SIM2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 6496 & SIX3 & 0 & 1 \\
\hline 6664 & SOX11 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 6689 & SPIB & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 6877 & TAF5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 6899 & TBX1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 6913 & TBX15 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 7023 & TFAP4 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
\hline 7161 & TP73 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& \text { O} \\
& \text { OU } \\
& \text { U }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { 들 } \\
& \text { 易 } \\
& \text { 弚 } \\
& \text { 曾 }
\end{aligned}
\] & \[
\begin{aligned}
& \overrightarrow{0} \\
& \frac{0}{0}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 苟 } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 弟 & & \[
\begin{aligned}
& N \\
& \frac{N}{x}
\end{aligned}
\] & & 突至 & ! & & 를 & \[
\frac{N}{\Sigma}
\] & & & & & \[
\begin{aligned}
& \text { ब. } \\
& \text { 弟 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 프 } \\
& \text { E } \\
& \text { EU }
\end{aligned}
\] & \[
\begin{aligned}
& \text { n } \\
& \text { 星 }
\end{aligned}
\] & 믈 & 包 \\
\hline 7291 & TWIST1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 7310 & U2AF1L1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 7546 & ZIC2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 7621 & ZNF70 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7673 & ZNF222 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 7675 & ZNF121 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\hline 7710 & ZNF154 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 7768 & ZNF225 & 0 & 0 & 0 & 0 & 0 & 0 II & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 8092 & CART1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 8193 & DPF1 & 0 & 1 \\
\hline 8320 & EOMES & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \(1 /\) & \(1{ }^{1}\) & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 8345 & HISTIH2BH & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 8820 & HESX1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \(0 \longleftarrow\) & 0 & 0 & 01 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 8970 & HIST1H2BJ & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 9970 & NR1I3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 10215 & OLIG2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 10655 & DMRT2 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 10794 & ZNF272 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 11077 & HSF2BP & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 11281 & POU6F2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
\hline 25806 & VAX2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 26038 & CHD5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 26108 & PYGO1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& \text { O} \\
& \text { O } \\
& \text { H }
\end{aligned}
\] & & & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{0} \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \overline{0} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \#ٍ & & \[
\begin{aligned}
& \tilde{y} \\
& \\
& \hline 10
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{L}{y} \\
& \text { In }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 穿 } \\
& \text { 戒 }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { 苞 } \\
& \text { E }
\end{aligned}
\] & 를 & \[
\frac{2}{2}
\] & \[
\begin{aligned}
& \text { gr } \\
& \text { O} \\
& \text { B }
\end{aligned}
\] & & & pituitary gland & \[
\frac{\text { Ex }}{\frac{2}{2}}
\] & \[
\begin{aligned}
& \text { 르 } \\
& \text { E } \\
& \text { E }
\end{aligned}
\] & & 误 & 产 \\
\hline 26468 & LHX6 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 27023 & FOXB1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\hline 27164 & SALL3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 27288 & HNRNPG－T & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 27439 & CECR6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 30009 & TBX21 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 30012 & TLX3 & 0 & 1 \\
\hline 50805 & IRX4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline 51022 & GLRX2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 51402 & LW－1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 51450 & PRRX2 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 01 & 0 & 1 L & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 54626 & HES2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 55552 & HSZFP36 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 0 E & 0 & 1. & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 55659 & ZNF416 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
\hline 56938 & ARNTL2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 56978 & PRDM8 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 57116 & ZNF695 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 57332 & CBX8 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 57343 & ZNF304 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 57801 & HES4 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 58495 & OVOL2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 60529 & ALX4 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 63978 & PRDM14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& \text { 悉 } \\
&
\end{aligned}
\] & & & \[
\begin{aligned}
& \vec{\partial} \\
& \text { 暑 }
\end{aligned}
\] & & O & & \[
\begin{aligned}
& \text { n } \\
& \frac{N}{x}
\end{aligned}
\] & \[
\begin{aligned}
& E \\
& \underset{y}{E} \\
& \text { N }
\end{aligned}
\] & & \[
\stackrel{y}{\otimes}
\] & \[
\begin{aligned}
& \text { 易 } \\
& \text { 品 }
\end{aligned}
\] & 를 & \[
\sum_{\Sigma}^{\tilde{N}}
\] & & & & & \[
\frac{\text { 卷 }}{\frac{0}{2}}
\] & & 首 & 를 & 㐫 \\
\hline 161253 & FLJ38964 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
\hline 162979 & ZNF342 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 163059 & ZNF433 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 163071 & ZNF114 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 170302 & ARX & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 171392 & ZNF675 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 221527 & ZBTB12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 245806 & VGLL2 & 0 & 0 & 0 & 0 & 0 & 11 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 253738 & EBF3 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 283078 & MKX & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 285676 & ZNF454 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 01 & 0 & \(1{ }^{1}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 339416 & ANKRD45 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 339488 & TFAP2E & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(0 \pm\) & 0 & 0 & 01 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 341405 & ANKRD33 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{Appendix IX Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci USA. \\ Genome-wide analysis of cancer/testis gene expression}

Oliver Hofmanne,b,1, Otavia L. Caballeroc, Brian J. Stevensonde, Yao-Tseng Chen \({ }^{4}\), Tzeela Cohen \({ }^{〔}\), Ramon Chuac, Christopher A. Maherb, Sumir Panjjb, Ulf Schaeferb. Adele Kruger \({ }^{\text {b }}\), Minna Lehvaslaiho \({ }^{\text {b }}\), Piero Carnincig,h, Yoshihide Hayashizakigh, C. Victor Jongeneeld,a, Andrew J. G. Simpsonc, Lloyd J. Old \({ }^{\text {c.1 }}\), and Winston Hide \({ }^{\text {,b }}\)

Department of Biostatistics, Harvard School of Public, Heatth, 655 Huntington Avenue, SPH2, 4th Floor, Boston, MA 02115; bsouth African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellvilie 7535, South Africa; 'Ludwig Institute for Cancer Research, New York 1015
 Oork, NY 1002t; 9 Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center (GSC), RIM NYoko Wako Institute, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan
Contributed by Lloyd J. Old, October 28, 2008 (sent for review sune 6, 2008)

Cancer/Testis (CT) genes, nommally expressed in germ line cells but also activated in a wide range of cancer types, often encode antigens that are immunogenic in cancer patients, and present potential for use as biomarkers and targets for immunotherapy. Using multiple in silico gene expression analysis technologies, including twice the number of expressed sequence tags used in previous studies, we have performed a comprehensive genomevide survey of expression for a set of 153 previously described CT genes in normal and cancer expression libraries. We find that although they are generally highly expressed in testis, these genes exhibit heterogeneous gene expression proffles, allowing their dassification into testis-restricted (39), testis/brain-restricted (14). and a testis-selective (85) group of genes that show additional expression in somatic ussues. The chromosomal distribution of these genes confirmed the previoushy observed dominance of \(X\) hromosome focation, with cr-x genes being significantly more estis-restricted than non-X CT. Applying this core dassification in genome-wide survey we identified \(>30 \mathrm{CT}\) candidate genes; 3 of them, PEPP-2, OTOA, and AKAP4, were confirmed as testisrestricted or testis-selective using RT-PCR, with variable expression frequencies observed in a panel of cancer cell lines. Our classification provides an objective ranking for potential CT genes, which is useful in guiding further identification and characterization of these potentially important diagnostic and therapeutic targets.

\section*{gene index \{ prediction}

Cancer/Testis (C/T) genes are a heterogeneous group that are - normally expressed predominantly in germ cells and in trophoblasts, and yet are aberrantly activated in up to \(40 \%\) of various types of cancer types (1). A subset of the CT genes has been shown to encode antigens that are immunogenic and elicit humoral and cellular immune responses in cancer patients (2). Because of their restricted expression profile in normal tissues and because the testis is an immunoprivileged site, the CT antigens are emerging as strong candidates for therapeutic ancer vaccines, as revealed by early-phase clinical trials (3-10). Biologically, the CT genes provide a model to better understand complex gene regulation and aberrant gene activation during cancer.
Any gene that exhibits an mRNA expression profile restricted o the testis and neoplastic cells can be termed a CT gene. Existing definitions of CT genes vary in the literature, from genes expressed exclusively in adult testis germ cells and malignant tumors \((1,11)\) to dominant testicular expression (12), possible additional presence in placenta and ovary and epigeosic regulation (13) or membership of a gene family and ocalization on the X chromosome (14). Reflecting this lack of localizer CT candidates have appeared in the literature, with available
expression profile information frequently limited to the original defining articles. In some cases, e.g., ACRBP, the original CT-restricted expression in normal tissues could not be confirmed by subsequent experiments (1). Partially due to this lack of a clear and broadly applicable definition, or "type specimen," for a CT gene, it has become increasingly challenging to identify the CT genes that are most suitable for cancer vaccine development. Moreover, this incoherent classification increases the risk of pursuing unsuitable clinical targets. However, with more expression data becoming available, CT gene transcripts of genes originally thought to have the CT expression profile are being detected in additional tissues (1), resulting in the more stringent "testis-restricted" description being altered to one of "testispreference." Based on a compilation from the published literature, the CT database now lists \(>130\) RefSeq nucleotide identifiers as CT genes that belong to 83 gene families (www. cta.lnce.br). An analysis of the human \(X\) chromosome has also suggested that as many as \(10 \%\) of the genes on this chromosome may be CT genes (15). Given this increasing number of CT and CT-like genes, their comprehensive classification based on expression profiles is essential for our understanding of their biological role and regulation of expression.
In an attempt to resolve this and to identify new CT antigens, we have taken an in silico approach to produce a comprehensive survey of CT gene expression profiles by combining expression information from an existing corpus of \(>8,000 \mathrm{cDNA}\) libraries 16) together with the depth and resolution provided by mas(17) cap-analysis of Gequencing (MPSS) expression Iibraries 17), cap-anals (CAGE) Ibrates (18), (RT PCR) on pat 22 normal tissues. As a result we have (RT-PCR a coherent classification of CT genes, and new CT genes have been identified using well-informed, structured prediction and confirmation criteria.

\section*{Results and Disarsion}

CT classification. CT genes were classified into 3 groups, testisrestricted, testis/brain-restricted and testis-selective, based on

Author contributions O.H., OLC. C. C.M., U.S., A.K., A.S.S., L.O., and W.H. designed USearch: O.A., O.L.., T.C., and R.C. performed sewarch: B..S., Y.-.C., I.C., CA.M., S.P.. and B.I.S. anatyzed data; and O.H. wrote the paper
The authors declere no conflikt of interest
Freely available ontine throught the PNAS open access option.
To whom correspondence may be addressed. E-mail: ohofmamehsph.harvard.edu or toldelich org
This artide contains sppporting
02008 by The National Acaderiy of Sciences of the USA

Fig. 1. Merged expression profiles of CT-X (teft array) and non-XCT genes (Right) based on expression data from RT-PCR and CDNA, MPSS and CAGE librasies from tissues sources annotated as normal and "adult" (Lower) or "cancer." Expression in normal testis, placenta, and selected tissues is marked. Color refleck sources (for the no expression of a CI genes in a given anatomical site (blue for low fack lacking RT-PCR data), respectively. The most abundant expression (rea) is seen in testis for most genes, partikularly in the non-X ©T group. Expression values were normalized on a per-gene basis relative to the combined normal testisplacenta expression confidence (Lower) or the source of the highest cancer expression confidence (Upper). The 3 (TT annotation groups (testis-restricted testisforain-restricted and testis-selective) are highlighted. See Indtasmt \(\$ 3\) for the full list of CT classifications.
their expression profiles obtained from a manually curated corpus of cDNA, MPSS, CAGE expression libraries and RT corpus of CDNA, MPSS, CAGE expression libraries and RT-
PCR (see Datasel \& for MPSS and CAGE library annotation PCR (see Datase1 SI for MPSS and CAGE library annotation
and http://evocontology.org for the cDNA annotation). By mergand http://evocontology.org for the cDNA annotation). By merging expression information using different technology platforms we were able to leverage their individual strengths - the breadth of tissue coverage associated with the cDNA/EST expression libraries, the high sensitivity of CAGE/MPSS and the ability to
custom-tailor PCR primers. Of 153 genes, 39 with transcripts present only in adult testis and no other normal adult tissue except for placenta were classified as testis-restricted; 14 CT genes with additional expression in other adult immuno restricted sites (all regions of the brain) were classified as testis/brain-restricted, and 85 genes, designated as testis selective, were ranked by the ratio of testis/placenta expression relative to other expression in normal adult tissues (see Fig. 1 for

Fig. 2. RT-PCR analysis of selected CT genes in the testis-restricted category (MAGEA1, GAGE, SSX2. NY-ESO-1, MAGEC1, and SPANXO. Expression profile are shown for a range of 22 normal tissues (Left) and 31 cancer cell lines (Right).
the expression array, Fig. 2 for the PCR panel of selected testis-restricted CT genes, and 1 ig. SI and Datinet S2 for arrays from individual expression sources).
An uneven chromosomal distribution of the CT genes was observed, with 83 of 153 genes (\(54 \%\)) being on the \(X\) chromosome, and 70 on non-X chromosomes (1 ig. S.). Furthermore, 35 CT-X genes were classified as testis-restricted, whereas only 4 non-X CT genes belong to this group. An additional \(12 \mathrm{CT}-\mathrm{X}\) genes wer found to be testis/brain-restricted, compared with 2 non-X testis, brain-restricted CT genes. CT-X gene family members thus appear to be under more stringent transcriptional restriction in somatic tissues, whereas non-X CT genes are more broadly expressed. This validates the CT gene classification into CT-X and CT non-X groups, with the CT-X group being of particular interest for therapeutic approaches.
Twenty-six CT-X and 59 non-X CT genes belong to the testis-selective category, and 36 of these genes (5 CT-X and 31 non-X CT) had \(>50 \%\) of the expression evidence derived from non-testis or placental libraries, indicating that these might not qualify as CT genes.
Seven CT genes were not identified in any library at all (2 CT-X and 5 non-X CT). An additional 8 CT-X genes (SPANX-N1, PAGE1, CSAG1, SSX5/67/9, and CT45-2) were not present in any testis-annotated library. Of these, SSXS and SSX7 have been shown to be expressed in testis by RT-PCR (19), suggesting a likely discrepancy in mapping short sequence tags to their genomic counterparts, an expected phenomenon for large and highly homologous gene families like SSX. In contrast, the absence of testicular expression of SSX6 and SSX9 was confirmed in that study, indicating that some of the currently recognized CT genes could either be silent or expressed at extremely low levels in testis. The full list with classification and raw expression scores across the merged expression array can be found in Datimed \(\$ 3\)
Associations between different CT gene properties and thei assigned classification were analyzed using the APRIORI algorithm. Besides being more likely testis-restricted, CT-X genes were found to be more often members of multigene families than non-X CTs. In addition, Gene Ontology terms showed CT-X genes to be more often in the "molecular function unknown" and
"biological process unknown" categories, whereas the non-X CTs are associated with known functions such as meiosis, sexual
reproduction, and gametogenesis (see l)atascy \(\$ 4\) for all at tributes and annotations)
While the description of CT-X genes such as NY-ESO-1 (20) SSX2 (21), and MAGE-A1 (22) match our classification-all are in the testis-restricted category--not all CT genes were found to be as testis-restricted as described in the literature. BAGE SPO11, LIPI, LDHC, and BRDT, considered to be testis restricted based on a tissue panel of 13 non-gametogenic normal tissues (1), fall into the testis-selective category in our screen most likely due to a larger amount of expression sources sampled. Despite the broader coverage we could not confirm an expression of MAGE-A1, MAGE-C1, and NY-ESO-1 at low levels in the pancreas reported in the same study. In agreemen with the study in ref. 1 , we found IL13RA1, ACRBP, and SPA17 to be expressed in a wide variety of tissues, falling into the lower end of the testis-selective category.

In the present study, we have ranked the testis-selective genes based upon the ratios of their expression evidence in testis and placenta relative to other somatic tissues, rather than using fixed thresholds and the number of somatic tissues in which a CT candidate is allowed as the distinguishing criteria for CT versus non-CT genes (2). Genes without any somatic expression have unique potential for cancer vaccines and other therapeutic approaches to cancer. From past work involving screening of larger sets of genes (23), a cutoff was introduced that defined CT candidate genes as genes with 2-fold higher expression evidence in testis and placenta relative to all other somatic normal tissues This approach was complementary to our current one and will not require updated threcholds as the number of sampled tissue sources increases.

Intriguingly, a number of CT genes were found to be expressed in no somatic tissues except for brain, suggesting the presence of a distinctive transcriptional control mechanism that functions with tissue specificity in germ cells and in brain. There have been relatively few studies of CT gene expression in different ana relatively few studies of er gene expression in different ana tomical regions of normal brain and similarly not many in brain tumors (24,25), except for NXF2, which was shown to be expressed in normal brain (26). Our in silico study has discovered a broader subset of CT genes with brain expression, among them members of the otherwise fully testis-restricted GAGE and MAGE families, found to be expressed in the hippocampus and cerebral cortex. A previous study has similarly identified a group
of cancer/testis/brain (CTB) antigens (27). However, despite the bioinformatic evidence, we have not been able to confirm the expression of selected CT genes (MAGEA9, MAGEC2, PASD1, and GAGE) in tissue samples from total brain, cerebellum, caudate nucleus, thalamus, frontal cortex, occipital cortex, pons, or amygdala by RT-PCR (data not shown), and whether these genes are expressed in brain remains to be proven.

Distribution of CT Genes in Cancer Tissues. Our ranking by the number of different cancer types and anatomical sites of CT genes expressed in cancer-annotated libraries distinguishes CT"rich" and CT-"poor" tumors based on the in silico analysis obtained from cDNA, CAGE, and MPSS libraries (Fig. 1 and Ditascl \(S .5\). The broadest distribution of CT genes was found in germ cell tumors, melanomas and lung carcinomas, adenocarcinomas and chondrosarcomas. Breadth of cancer expression was uncorrelated with tissue restriction in normal tissues (\(r=\) 0.18 for CT-X genes, \(r=0.02\) for non-X CT genes using Spearman rank correlation); for instance, the fully testisrestricted CT genes, such as MAGEA2/A2B and CTAG2, were found to be present in a variety of different tumor tissues.
Melanoma, non-small-cell lung cancer, hepatocelluar carcinoma and bladder cancer have been identified as high CT gene expressors, with breast and prostate cancer being moderate and eukemia/ymphoma, renal and colon cancer low expressors (1). Our in silico analysis confirms this distinction, in particular for tumor tissues well represented by the available libraries, showing a broad distribution of CT genes expressed in cancers of skin including melanoma (\(43 \%\) of CT genes with cancer expression were found in at least one melanoma library), lung (\(37 \%\)), and iver (\(34 \%\)). Strong presence of CT expression found in the present study but not by previous RT-PCR studies includes tumors from germ cells (\(39 \%\)), stomach (\(28 \%\)), and cartilage (chondrosarcomas, 26\%). One reason for this discrepancy could be the lack of RT-PCR data for certain tumors, e.g., gastric cancer is much rarer than other carcinomas in the Western world, and mesenchymal tumors are also not well represented in many of the RT-PCR studies to date. Our in silico information may thus serve as a guide for future experimental investigations, especially useful for recently described CT genes not yet analyzed in great detail. Discrepancies are also likely to occur due to the potential inclusion of cancer cell line samples in the survey that, unlike normal tissue samples explicitly labeled as normal, are often not diistinguished from primary tumor samples. A third eason for this observed discrepancy could be the bias that resulted from differences in library numbers studied for each tumor type: for instance, ovarian cancer is CT-rich by RT-PCR but not evident from our in silico study, possibly due to the low number of available ovarian cDNA libraries. However, colon cancer, a CT-poor tumor, was correctly shown to have low frequency of CT genes despite the large number of colon libraries in the databases, and this would argue that the difference in library numbers may not have been a significant factor. Last, the in silico finding of high CT expression in germ cell tumor represents a special situation that can be explained by two reasons. One is that a subset of CT genes, particuns in germ cells, CTs, encode proteins with known specific functions in germe and their expression in germ cell tif markers-rather than served expression of lineage-specill similar to the expression of errant gene activation, conceptually similar to the expression of hyroglobulin by thyroid cancer or prostate specific antigen by prostate cancer. The other reason would be that the germ cell umors from which the mRNA expression profiles were derived osticular tissue which provides the source for CT entrapped esticular tissue, which provides the source for CT gene transcripts when the germ cell tumor was actually negative for the CT gene in question.

CT Candidate Prediction. Prediction of CT candidates based on their expression profiles in cDNA, MPSS, and CAGE libraries resulted in 28 genes supported by 2 expression platforms in the testis- or testis/brain-restricted category, including 10 known CT
 additional, less stringent screen for CT-X genes identified 47 genes in the same categories, including 34 known CT genes and 13 novel candidates. After manual curation, the list of novel candidates was extended to include the highest scoring testisselective CT-X candidates, TKTL1 and NXF3, the latter being a known CT gene, a member of the NXF2 CT family (28).
Of 33 novel CT candidate genes, 12 most promising genes were manually selected for experimental validation by RT-PCR based on an evaluation of available gene expression data in human cancer. Of the 5 X - and 7 non-X-chromosomal candidates, 11 transcripts could be amplified, whereas transcripts from VCX2 were not detected in any of the 23 normal tissue RNA samples. were not detected in any of the 23 normal tissue RNA samples.
Three of the amplified gene transcripts exhibited testis-restricted Three of the amplified gene transcripts exhibited testis-restricted
(AKAP4) or testis-selective (PEPP-2, OTOA) expression (data (AKAP4) or testis-selective (PEPP-2, OTOA) expression (data
not shown). RT-PCR products of these genes were also detected not shown). RT-PCR products of these genes wer
in samples from a panel of 30 cancer cell lines.
in samples from a panel of 30 cancer cell lines.
PEPP-2, an X-linked human homeobox ge
PEPP-2, an X-linked human homeobox gene, encodes a transcriptional factor with similar cancer/testis restricted expression patterns in both human and mouse (29); it is also a member of a top 50 list of genes under strong positive selection between human and chimpanzee (30). Otoancorin (OTOA) was reported to be specific to sensory epithelia of the inner ear (31), but has also been associated with ovarian and pancreatic cancer due to its homology with mesothelin, a cancer immunotherapy target (32). AKAP4 (CT-X), identified in the 2-platform screen, exhibits weak expression in different cancer cell lines and encodes a kinase anchor protein (33) involved in the CAMP-regulation of motility (34) and was recently suggested as a CT gene in an independent study (35).
All 3 confirmed genes are candidates for immunotherapy based on their restricted expression, and further investigation of their mRNA and protein expression in various tumors is warranted and ongoing. Given the comprehensive nature of our study and the limited number of confirmed novel CT candidates, it seems that the number of true CT genes matching the criterion of stringent testis-restricted expression profile has reached a plateau.
Although it is clear that the CT designation has been inappropriately given to a large number of genes with wide normal tissue expression, it is less evident how precisely the term CT should be applied. There is no difficulty with CT genes whose expression profile have a classic CT pattem; we estimate \(\approx 39\) genes presently in this category and \(\approx 90 \%\) of them reside on the X chromosome. The challenge for the remaining CT genes, most of which are non-X coded, is that they are expressed in testis and cancer, but are also expressed in a limited number of normal tissues. Should these be designated CT? Perhaps the best solution at this point would be to assemble further information about CI genes and their products, including function, binding partaers, evolutionary selection (36), control of gene expression, identification of expressing normal somatic cells, aberrant nonlineage expression in cancer, and immunogenicity, before establishing a uniform classification of CT genes.

\section*{Methods}

Selection of CT Gomes. A total of 153 CT genes (200 unique Reffeq transcript identifiers) were selected from the CT Antigen DB (http//www.cta.Inc. br) and by manual curation of the literature. Genes were annotated with their most current gene identifiers and merged based on shared National Center for Biotechnology information Refseq nucleotide identifiers (1) ataset 5). Additional gene identifiers were obtained from Refseq release 11 (37), IPI version 3.29 (38); genomic coordinates were taken from the University of California, Santa Cruz Genome Browser hg 18 human genome build (39). Of these 153
genes, 83 that encode 107 Reffeq transcripts were mapped to the \(X\) chromo some (CT-X genes) whereas 70 genes were on autosomes (non- XCT genes) Subceliular localization was based on predictions in the human version of th LOCATE system (40). SEREX information was obtained from the Cancer Im munome Database website (http:/Audwig-sun5. unil
nomeDB). Ambiguities were resolved by manual curation.
somere of Expresalion information. Gene exprestion profiles were determined based on 4 different sources: 99 CAGE libraries from the RIKEN FANTOM3 projec (18), 47 MPSS libraries (17,23,41), a collection of 8401 ©DNA expression libraries from the eVOC system (16) and semiquantitative RT-PCR across 22 normal tissue samples Sounce materiats were annotated with regarcs to the anatomical site and patholo Kal slaus of their sarce issues in cases where the anaiomical source was unclaid table, cen rype inormaion was used. Bone manowhlood tioraties were de nema. and alcombinations with muxosa (coton, stomach) were mergedint "mucosa. "Libraries not explicity annotated as normar were considered as uncaz shed. Libraries from pooled issue sources were ignored, and pooled samples wer (see Clataset \(S 1\) for annotated libraries).

Psemdoarrays. Expression information was organized into "pseudoarrays" based on expression information obtained from CAGE-, MPSS-, and CDNA case of \(h\) el te caner exprenand crged whin. a CT transcript was identified and rows represent individual Refseq uan scripts. Annotation was based on the general library class description (normal, cancer or unclassified) combined with pathological state and anatomical site. To evaluate the relative levels of CT expression we converted expression signats from the 4 sources into "expression evidence": For CAGE- and MPSS based expression data, expression evidence was based on detected tags per million (TPM), with matches <3 TPM (\(\infty 1\) transcript per celi) filtered ou Normalized and subtracted EST libraries prevent quantitaton of expression strength basedon ESF couns, therefore expression evidence is represented by the number of cDNA libraries in which a given transcript was identified RT. PCR results were manually binned into 5 groups of expression, ranging evidence values were normalized on a per thascript basis by setting the highest expression evidence in normal tissues to a value of 1 , reflecting relative changes in expression levels across tissues and pathological states. Pseudoa rays from the 4 expression sources were merged by summing the individua expression eviderce scores for a given transcript from each platform. Expres sion profiles for multiple transcripts associated with the same gene wer merged into a single representation, keeping the highest expression score for
overlapping annotations. In arays where annotation was "merged" into single columns based on their Cass (e.g., all cancer expression intormation), the highest expression score across all annotated libraries was kept for each gene.

Visualization awd Rankiogy, Genes were divided into CT-X and non-X CT panels, then individually ranked by their expression properties in normal tissues and classified into the following 3 categories: () expression in testis and placenta only (testis-restricted); (ii) expression in testis, placenta and brain-regions only within normal tissue specificity as measured by the combined testis and placenta expression evidence divided by all normal expression evidence. All arrays wer visualized using MeV 4.0 (www.tm4. org). TTJTTJRTR
tion were investigated by recording the
1. Scanlon Mul, Simpson AlG, Old \(\cup\) (2004) The
tion, and compson AlG, Old \(\cup\) (2004) The concerfiestis genes: Review, standardiza ntary. Cancer Immun 4: :
gametogenesis and cancer. Nar Rev Cancer 5:615-62.
Marchand M, et al. (1999) Tumper regreessions otree.
 HLA-A
broad integroted antibochy and \(C D 4(+)\) and De ++1 t cell responses in humans. ProC Natl Acad Sci USA 101:10697-10702
. Jager E , et at. (2006) Recombinant vacciniaffowlpox NY-ESO-I vaccines indure bot 5ural and cellular NY-Eso. 1-specifici immure 6at usa 103:14453-14458.
induces integrated antibodyt th 1 responses and CD 8 t cells through cross-priming. Pro Nat' Aced Sci USA 104:8947-8952.
in placenta, brain, testis, and developing ovary; their testisplacenta tissue specificity; their \(X\) v. non- \(X\) chromosomal status; membership in a gen family; subcellular localization; and evolutionary status (36) followed by a analysis with the APRIORI algorithm (42), which identifies association rule matching a predefined threshold of support (\(30 \%\)) and confidence \((\geq 0.8\))
5earch Citerla for CT Candidetes. CT candidates were identified using the same in silico expression sources, but with no fiters for minimum TPM value and satisfying the following criteria: 0) exhibit expression in testis and at least one sociated tissue at 10 TPM (CAGE, MPSS) or presence EST/KDNA library with testis and cancer annotation; fin not be present above those levels in any other tissue except for placenta, ovary, and brain; and uifi) b supported independently by 2 platforms. Identified candidates were ranked of CT \(X\) same approach used to classity known CT genes. To ine wiring suppor from only a single platorm. Candidates were selected for RT-PCR validation by manual curation, removing hypothetical proteins, predicted genes and candidates with multiple publications indicating expression in somatic tissues.

RT-PCR. RNA preparations were purchased from the normal tissue panels of Clontech and Ambion or prepared from cancer cell lines using the RNAeasy kit (Qiagen) and were used to prepare cDNA for RT-PCR.A total of \(1.0 \mu \mathrm{~g}\) of RNA wa RVLe transcribed into CDNA in a total volume of \(20 \mu \mathrm{~L}\) using the Omniscript \(R\) kit (Qiagen) according to the manufacturer's protocol using oilgo(dThe prime (invitrogen). The CONA was dilued 5 times and \(3 \mu\) was used in the PCR wi primers specific to each analyzed gene in a final volume of \(25 \mu\). Primers used for PCR amplification were designed to have an annealing temperature \(60^{\circ} \mathrm{Cusin}\)
 and were chosen to encompass introns between exon sequences to avoid amp fication of gencmi DNA DNase trearent was Usike 10 thesis to a the Nional Center for Riotectologi intormation sequence databses usin DLAST (sizes are provided in Ditest lumpstart PEDTaq Pert
 precycling hold at \(95^{\circ} \mathrm{C}\) for 3 min, followed by 35 specifice cycles of denatur ation at \(95^{\circ} \mathrm{C}\) for 15 seconds, annealing for 30 seconds (10 cycles at \(60^{\circ} \mathrm{C}\), 10 oycles at \(58^{\circ} \mathrm{C}\) and 15 gectes at \(56^{\circ} \mathrm{C}\)) and extension at \(72^{\circ} \mathrm{C}\) for 30 seconds \({ }^{\circ}\). bya inal extension step at \(72^{\circ} \mathrm{C}\) for 7 min . \(\beta\)-acin was amplified a ontrol. PCR products were separated on \(1.5 \%\) agarose gels stained with Chin bromide. नor semiquanutative \(P C R\) analysis, RT-PCA products wer l) based on the intensity of the product on ethidfum bromide-stained gels.
ACKNOWLEDGMENTS. We thank Dmitry Kuznetsov for providing access to the SEREX information on CI genes and Erika fitter (Ludwig Institute for Cance Kerearch, New York Branch at Memorial Sloan-Ketening Carcer Center. New National Bioinformatics Network: National Institutes of Health Stanford-South African Intormatics Training for Global Health Grant TW-03-008; Atlanic Phila thropies; The Oppenheimer Memorial Trust; a Research Grant for the RIKEN Genome Exploration Research Project from the Ministry of Education, Culture Sports, Science and Iechnology of the lapanese Government (to Y. H.); and a Sports, Science and Technology, Japan. This work wast conducted as part of the Hilton-Ludwig Cancer Metastasis Initiative, funded by the Conrad N. Hilton Foundation and the Ludwig Institute for Cancer Research.
7. Uenaka \(A\) et af. (2007) T cell inmmumomonitoring and tumor responses in patien munized with a complex of cholasterotbearing hydrophobized pulluian (thp) and

Odunsi \(k\), et af. (2007) Vaccination with an WY-ESO-1 peptide of HLA class ili specificLien induces integrated mimoral and t cell responses in ovarian conker. Fro Not Aca ci USA 104:12837-12842.
9. Atonackovic D, ef at. (2006) Expression of concer-testis antigens as possibie torgets for antigen-specificic immun
Biot Ther \(5: 1218-1225\).
10. Gnjatic S , et at. (2006) NY-ESO-1: Review of an immunogenic tumor antigen. Act Cancer Res 95:1-30.
11. Scanisan M, et al. (2002) bdentrification of cancerrestic genes by database mining and
12. ZRNA expression analysis. Int \(J\) Cancer \(98: 485-492\).
genes: Identification, expression profile, and putative function. \(J\) Cell Physiol 194:272-288.
13. Costa FF. Btanc KL Brodin B 12007 Consise review: Cancertestis antigens, stem cells,
14. Kadeanc \(M\). Stomp Cells 25:707-711
14. Kasteis M, Erenpreise \(I\) (2005) Cancer/estis antigens and gametogenesis: A review and
15. "Rossin-storming" esesion. Concer Cell int 5.4
15. Ross M45, et

Genome Res 13:1222-1230.
17. Jongernes 13:1222-1230.
signature sequencing (MPSS). Gemorme Res i5:1007-1014.
18. Carninci \(P\), et tt. (2005)
Science \(309.1559-1563\).

Soence \(309.159-1563\).
complete genes. Int \(J\) Cancer 101:148
20. Chen YT, et af. (1997) \(A\) testicular antigen aberranty expressed in human cancess
datected by actorogous antibody scieening. Proc Nati Acad Sci USA 94:1994-1918.
21. Tareci \(O\). ef 4 I. (1996) The SSX-2 gene, which is involved in the \(U(X, 18)\) translocation of shmovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Canser Res 564766-4772.
22. van der Bruggen P, et ef. (1991) A gene encoding an antigen recognized by cytolytic t
ymphoyles on a human melonoma. Science 254:1643-1647.

Sohnain U, et ai. (Coco) Eroc Natt Acad Sci USA 102:7940-7945.
Cancer Res 6:3916-3922
25. Scarceellas \(\mathbf{D L}\) et en-3922.

Scarcella DL et el: (1999) Expression of MAGE and GAGE in high-grade brain turn 4 potemtial target tor specifici inmunother apy and diagnostic marters. Cin Concer Ros

Zhang \(M\), Wang \(Q\). Huang Y ZO0 I Fragile \(x\) mentaliretardation protein FMRP and the NA export factor \(N \times F 2\) associste with and destabilize \(N \times F 1\) mRNA in neuronal cell. Proc Nat' Acad Sci USA 104:10057-10062
27. Scanlen M1, Gurs AO, Jungbluth AA, Old LU, Chen YT (2002) Cancertrestis amigens: An expanding tanily of torgets for cancer inmurnotherapy. Immunol Rev 188:22-32. Loriot A, Boon I, Smat \(C D\) (2003) Five now muman cancergerminine genes identified among 12 genes expressed in spermatogonia. ins J Cancer 105:371-376.
29. Wayne CM, Madean IA, Cormwall G, Wikinson MF (2002) Two nover thuman \(x\)-inked homeobox genes, hPEPP 1 and hPFPPP, selectivaly expressed in the testis. Gere \(301: 1\) 11.
30. Nieben R er al (2005) A ccan for positinely elected genes in the genornes of humars and chimpanzees. plos Biol \(3=170\)
31. Zwsenepoes 1, et al (2002) Otoancoin, an inner asar protein restricted to the interfoce between the apicad surface of sensory epithetia and their overlying zcellular gets, is defective in autosomad recessine deafness DF Na22. Proc Nat Acad SCi USA 99:62406245.
32. Muminova ZE, Strong TV. Show DR (2004) Characterization of human mesothelin transserpts in ovarian and pancreatik cancer. BMC Cancer 4:19.
33. Turneer RM, Johnson \(L \mathbb{R}\), Haig-Ladewig \(L\) Gerron GL, Moss SB (1998) An X-linked gene ancodes a maf human sperm fibrous sherify priot of the precursor in the sperm tain J Biol Chem 273:32135-32141.
34. Michel IKC, Scott ID (2002) AKAP mediated signal transduction. AmnU Rev Pharmoca Toxico/ 42:235-257.
35. Ohirivalnternati M, et of. (2008) AKAP-A- A novel cancer testic entigen for multiple
myeloma. Br / Haematol \(140: 465\)-460
36. Stevenson 8J, ec al. (2007) Rapid evochtion of cancertestis genes on the \(X\) atromosorre.

BMC Genomics 8:129.
Wherier DL et al (2003) Databsse resources of the National Center for Biotectnotog.
ional Protem hidex. An inegred database tor proteomics experiments. Proteonicio \(4: 1985-1988\)
39. Kent WI, et Al (23022) The frumenn genome browser at UCSC. Genome Res \(12: 996\) - 1006 .
40. Fink II, et at. (2006) LOCATE: A mouse protain subceltular localization datobse

Nucleic Acioss Res 34:D2 13-7
41. Grigoriadis A, et at. (2006) Erablishment of the epithelist-specific tamscriptome of normal and malignant human breast cells based on MPSS and array expression dato. Agrawal R, miniel iniski \(T\), swarti A (1993) Mining association rules between sets of items in large databases. Proc ACM-SIGMOD Management Date 22:207-276

\section*{Appendix X: Manual curation steps applied in filtering the expression array generated for the investigation of 63 potential mouse cancer/testis genes}

Remove column if annotation is:
- Unclassifiable pathology
- Pooled from different tissues
- Non-cancer pathology
- Whole body, head, neck, trunk, anatomical site, maxillary process, anterior limb or diaphragm

Remove developmental stage information from annotation

Remove cell type information from annotation unless there is no anatomical system information
- Exception: keep cell type and discard anatomical system for 'fibroblast|synovium'

Remove 'unclassifiable_AS' fromannotation (unclassifiable anatomical system)

Remove column if annotation is now only 'normal'

Merge:
- Carcinoma = adenocarcinoma, teratocarcinoma
- Bone = bone marrow
- Brain \(=\) cerebellum, cerebral cortex, corpus striatum, diencephalon, hippocampus, hypothalamus, lateral ventricle, medulla oblongata, midbrain, olfactory lobe
- Intestine = cecum, colon, small intestine
- Visual apparatus = choroid, retina
- Auditory apparatus = internal ear, spiral organ of Corti
- Blood \(=\) B-lymphocyte, erythroblast
- Lymphoreticular system = lymph node

For all annotations that are identical, merge them into one column and sum the values in each column for every gene.

UNIVERSITY of the WESTERN CAPE

Appendix XI Expression profile of mouse orthologs of human cancer/testis genes

The gene expression profile of 63 mouse orthologs for which expression evidence is available. The red squares within the array indicate a gene is expressed in a particular tissue, whereas black squares indicate there is no evidence of expression in that tissue.```

[^0]: We present tor each category (CGI, no (GI, etc.) the numbes of cases for each ISS type, the percent (in parentheses)
 ρ-walue (in brackets) calcuated from a right.sided fisher's exact test based on the hypergeometric distribution

[^1]: DO1. 10.1371 fournal.pgen 0020054 .

[^2]: Mouse developmental ontology
 4-8 cell stage
 alimentary system
 diverticulum intestine
 large intestine
 anal pit
 anal region
 anus
 colorectal
 cecum colon rectum
 small intestine
 duodenum
 ileum
 jejunum
 liver and biliary system
 bile duct
 common bile duct
 cystic duct
 gall bladder
 gall bladder primordium $11 \square \square \square$
 hepatic duct
 liver
 mesentery
 dorsal meso-oesophagus
 oesophagus
 omentum
 greater omentumERSITY of the
 lesser omentum
 oral cavity WESTERN CAPE
 jaw
 gum
 mandible
 maxilla
 premaxilla
 tooth
 molar
 mandibular process
 mandible primordium
 maxillary process
 maxilla primordium
 salivary gland
 parotid gland
 sublingual gland
 sublingual gland primordium
 submandibular gland
 submandibular gland primordium
 tongue
 pancreas
 pancreas primordium
 pharynx
 hypopharynx
 nasopharynx

