THE DETERMINATION OF DIFFRACTED WAVE
FIELDS BY AN ANNULUS ACCORDING TO

BRAUNBEK'S METHOD

by
P W J van Staden

Promoter: Professor N M du Plessis

This thesis was submitted to the Department of Applied
Mathematics in fulfilment of the requirements for the
Degree of Master of Science at the University of the
Western Cape.

December 1981

http://etd.uwc.ac.za/



CONTENTS

CHAPTER 1 : INTRODUCTION

(1.1) Rigorous diffraction theory : a summary

(1.2) The determination of diffracted waves by surface
field approximations

(1.3) Braunbek's method for the diffraction of plane
waves by an annular aperture

CHAPTER 2 : INTEGRAL SOLUTIONS OF THE HELMHOLTZ
EQUATION IN HALF-SPACE

(2.1) The scalar Helmholtz equation

(2.2) Uniqueness and existence of solutions of the
scalar Helmholtz equation ‘

(2.3)- Total reflection of scalar plane waves by an
infinite plane screen

(2.4) Babinet's theorem for scalar plane waves

(2.5) Electromagnetic waves and the vector Helmholtz
equation

(2.6) Babinet's theorem for electromagnetic plane
waves '

CHAPTER 3 : SOMMERFELD'S SOLUTION FOR THE DIFFRACTION
OF PLANE WAVES BY A HALF-PLANE

(3.1) The scalar case

(3.2) The scalar solution in terms of Fresnel
integrals

(3.3) Electromagnetic waves

CHAPTER 4 : BRAUNBEK'S METHOD FOR THE. DIFFRACTION OF
PLANE WAVES BY AN ANNULUS

(4.1) The far field: scalar case
(4.2) The far field: electromagnetic case
(4.3) The field on the Z-axis: scalar case

APPENDIX

http://etd.uwc.ac.za/

12
14

18

21

25
25

28
33

37

37
45
51

55



BIBLIOGRAPHY

ABSTRACT

ACKNOWLEDGMENTS

http://etd.uwc.ac.za/

59

62

63



CHAPTER 1

INTRODUCTION

(1.1) Rigorous diffraction theory : a summary

The behaviour of monochromatic scalar waves, harmonic
in time, is governed by the Helmholtz equation (2.1.1).

In chapter 2 the existence of a unique solution (2.2.3a)
for the Dirichlet problem (2.2.1a), is proved for the
case where U 1is continuous inside and vanishes outside
a finite portion of the X-Y-plane and satisfies the
Sommerfeld radiation conditions (2.1.10) and (2.1.11)

at infinity. An analogous proof that the solution
(2.2.3b) satisfies the requirements of the Neumann
problem (2.2.1b) is readily obtained. Luneburg (1944)
gave an existence proof for the Dirichlet problem under

more general conditions, but it contains errors and

and requires elucidation (see Appendix).

The diffracted wave of a finite aperture in an infinite
screen is related to the scattered wave of a finite
screen congruent to the aperture by Babinet's theorem.
The term "theorem'" is used in preference to "principle",
as this statement can be formulated and proved in the
framework of boundary value problems. The mathematical

formulation of Babinet's theorem is proved in paragraph
(2.4).

The half-plane diffraction formulae derived in chapter 3

and summarized in table 3.2 , were obtained from

Sommerfeld (1954). When applied to electromagnetic waves,
these formulae lead to table 3.3, essentially the same as

the table derived by Frahn (1959). A uniqueness theorem
applicable to Sommerfeld's solution is given by Jones (1953).
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(1.2) The determination of diffracted waves by surface

field approximations

According to H6nl, Maue and Westpfahl (1961) there are
three approaches to boundary value problems of scattering
and diffraction. One of these entails obtaining the field,
by means of an integral representation, in terms of the
value of the field and/or its normal derivative on the
scatterer. These values are the solutions of integral
equations on the surface of the scatterer. Various
approximations of the surface field and its normal
derivative form the basis of an important group of methods
used to determine scattered and diffracted wave fields.

Suppose a scalar harmonic wave uoe_i‘“t is incident on an
infinite screen S with a finite aperture A. The field be-
hind the screen is given by (2.2.3a), (2.2.3b) or a combi-
nation of these two equations:

oo

W(R) = -3ff[U(E,n)23 + U, (£,1)6] dedn . - (1.2.1)
According to physical optics the field behind the screen

is found by replacing the surface field and its normal
derivative in the above mentioned three equations by their
geometrical optics values. This means that U and U, are
respectively replaced by u, and 3u,/3n on 4 and by zero on
S. The approximation thus obtained from (1.2.1) forms the
basis of Kirchhoff diffraction theory, while the
approximations obtained from (2.2.3a) and (2.2.3b) are
sometimes refered to as the Rayleigh-Sommerfeld diffraction
formulae (see Goodman (1968)). Braunbek (1950) refers to .
the latter formulae as the weaker and better Kirchhoff
approximations respectively. |

Equation (1.2.1) with Kirchhoff boundary values has been
proved to be a rigorous solution of a so-called saltus
(Sprungwert) problem (see H8nl, Maue and Westpfahl (1961)).
Kirchhoff's theory has also been shown by Wolf and Marchand

(1966) to provide an exact solution of a boundary value
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problem somewhat different from the above. Gomez-Reino
Carnota and Vences Benito (1977) proved a uniqueness
theorem for the solution of this problem. Kirchhoff's
theory makes no distinction between sound soft (U=20)
and sound hard (U,=0) screens.

Braunbek (1950) advanced a method in which U and U, are
replaced by their values obtained from Sommerfeld's exact
theory of the half-plane, as if the screen had a locally
straight edge. This is a reasonable assumption if the wave
length is small in comparison with the dimensions of the
aperture (see Bouwkamp (1954)). Braunbek applied this
method to the scattering of a plane wave by a disc. He
compared these results with the numerical values of the
exact solution as calculated by Meixner and Fritze (1949),
illustrating the superiority of his method over that of
Kirchhoff's.

In an asymptotic method developed by Westpfahl and Witte
(1967), the diffracted field of a plane wave by a circular
aperture is given in the far region by a series of
descending powers in ka, a being the radius of the circle.
For small angles of diffraction the solutions of Kirchhoff
and Braunbek are identical to the first term in this series.
The solutions of Kirchhoff and Braunbek differ for wide
angles of diffraction, the latter still constituting the
first term in the above series.

According to Jones (1964), the originator of Braunbek's
method for the electromagnetic case was Macdonald (1913),
who approximated the surface current on a convex body by
the current the external field would induce on an
infinite plane occupying the position of a tangent plane.
Du Plessis (1976) improved this method by using the
current that would be induced on a so-called ''represent-
ative" sphere rather than a tangent plane.

Frahn (1959) applied Braunbek's method to the problem
of electromagnetic scattering from a perfectly conducting

circular disc. He compared the numerical values predicted
http://etd.uwc.ac.za/



(1.3)

by this procedure in the far and near regions with those
obtained from the rigorous solution by Andrejewski (1953).

Westpfahl and Witte (1971) extended their method to the
diffraction of an electromagnetic plane wave by a
circular aperture. Again the main term of the asymptotic
series solution was found to be identical to the solution
obtained by Frahn (1959). Another asymptotic procedure
yielding Braunbek's solution as a first approximation

was advanced by Saltykov (1973).

Braunbek's method for the diffraction of plane waves by an

annular aperture

Braunbek (1950) applied his method to the scattering of a
scalar plane wave by a sound hard circular disc. By virtue
of Babinet's theorem this problem is equivalent to the dif-
fraction by an infinite sound soft screen with a circular
aperture. In paragraph (4.1) the diffracted far fields of
both sound soft and sound hard screens with annular aper-
tures are derived using the same asymptotic approximations
as Braunbek.

In paragraph (4.2) the application by Frahn (1959) of Braun-
bek's method to the case of vector diffraction by a circular
aperture, is generalized to include the case of vector dif-

fraction by an annular aperture. However, in this thesis the
near field and transmission coefficient of the annular aper-
ture are not derived.

The procedure followed in paragraph (4.3) to derive the dif-
fracted scalar field on the Z-axis is similar to that of
Bouwkamp (1954) who reported on Braunbek's method as applied
to scattering by a disc. The results obtained are slightly
more accurate than those of Braunbek. See (4.3.8) in this
connection.

http://etd.uwc.ac.za/



CHAPTER 2

INTEGRAL SOLUTIONS OF THE HELMHOLTZ EQUATION IN HALF-SPACE

(2.1)

The scalar Helmholtz equation

We wish to find solutions of the scalar Helmholtz equation

v2u + k2u = 0 —— (2.1.1)

ras

in the region G for which either u or its normal derivative
du/dn assumes a prescribed value on an infinite plane sur-
face, the X-Y-plane in fig.2.1.1. An integral solution is
obtained by applying Green's second identity to G-g, where
% is the region interior to the hemisphere in fig.2.1.1 and
g is the region interior to the sphere centred at the point

P with coordinates (x,y,z). Let Q be the point (£,n,z) in-
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terior to or on the surface of G-g, then according to
Green's second identity

[ff luv?v - vv?uldr = - & [udv/3n - vau/onldf.
G"g FUFQUf

——— (2.1.2)

The unit normal vector n on the surfaces F,F, and f in
fig.2.1.1 is directed towards the interior of G-g. The
variables of integration are (&,n,Zz).

If v is any function that satisfies the Helmholtz equation
in the region G-g, the left hand side of equation (2.1.2)
vanishes and one may write

$ludv/dn - vou/onldf =-( [f+ff )[udv/an - vdu/anldf.
i o—

—-- (2.1.3)

Two solutions of u(R) are obtained by a method basically
the same as that of Luneburg (1944). Let

vV=20G+G, ——- (2.1.8)

where G’ satisfies the Helmholtz equation inside G. On
applying Green's second identity to g with the functions
u and G', we find that

$ludG/sn - G'3u/dnldf
f

0, and hence (2.1.3) becomes

$udG/dn - Gdu/onldf = -( [f+ff ){udv/dn - vdu/dnldf.
f F Fy

i}

—-- (2.1.5)

Let G= eikWZni' where r=PQ. The function G clearly satis-
fies (2.1.1) in any region excluding P. On f 3u/3dn = 3u/dr
and the left hand side (2.1.5) can be written in the form
f%eikezfjﬁ[(-1/e +ik)u - 9u/dr] sinydyds,

00
where ¢ is the radius of g and Yy and ¢ are spherical polar
coordinates.
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We now assume that u is of the class C, in G, hence u is
bounded and if we take the limit as e+0 in the expression
above, it reduces to -2u(R). Now (2.1.5) becomes

2Zu(R) = (Jf+ff)[udv/dn - vau/dnldf,
F Fy

--= (2.1.6)
where R OP.

Two solutions are obtained from (2.1.6) by applying the
method of images. This method consists of alternatively
setting

6" = -eiKTy onp —-= (2.1.7a)

!

and G = iKY - (2.1.7Db)

in (2.1.6). In (2.1.7a) and (2.1.7b) 1 = OP', P' being
the mirror image of P in the X-Y-plane. On the plane
r =1 and g = 0 and therefore

dv/on = B(eikr/ZHr + eikr72nr')/ag
= [-z2/t ¥ z/v)(-1/r2 + ik/1)ei¥T/2qp
= -2 3G/%z or O.

’

For the cases (2.1.7a) and (2.1.7b) therefore the equations

v =0
dv/9n = -2 3G/oz } ---(2.1.8a)
and

vt ---(2.1.8b)
av/on = 0

respectively hold on the X-Y-plane. Substitution of (2.1.8a)
and (2.1.8b) into (2.1.6) gives

u(R) = -ffud®as + 1 ff [uav/an - vou/anlds
d B ---(2.1.9a)
u(R) = '%%%Gdf * 3 ff [udv/3n - vau/anldf

By

- aw - 2. .
http://etd.uwc.ac.za/ (2.1.9b)



From (2.1.9a) and (2.1.9b) it is clear that a knowledge of
u and 3u/d9n on F is not sufficient to find the value of
u(R) in the region z>0, but that the behaviour of u and
du/3n must also be known on an arbitrary hemisphere. Suffi-
cient for the vanishing of the integrals over a hemisphere
F, of infinite radius are the so-called radiation conditions
of Sommerfeld .

lup| < C --- (2.1.10)
p|du/dp - iku| -+ 0 --- (2.1.11)
uniformly with respect to direction as p+0. (For the proof
see Luneburg (1944).) These conditions give expression to
the physical requirement that there cannot be any contribu-
tion to the field from infinity.

The derivation of (2.1.9a) and (2.1.9b) is based on the as-
sumption that the divergence theorem may be applied to the
vector fields uVv and vVu. According to Kellogg (1929) the
continuity of uVv and vVu and their partial derivatives and
the existence of the volume integrals of dZv(uVv) and dzv(vVu)
in the closed regoin G-g are sufficient to guarantee the va-
lidity of this theorem. If u is of class C, in the region

z>0, these conditions are met.

(2.2) Uniqueness and existence of solutions of the scalar

Helmholtz equation

We now give a rigorous formulation of the two boundary
value problems to be considered.

(a) The Dirichlet Problem (First Boundary Problem):
Find a u(R) which in the region z>0 is of class
C, and satisfies (V?+k?)u = 0. On the X-Y-plane
it is required that
u(x,y,0) = U(x,y), --- (2.2.1a)
where U is continuous.

http://etd.uwc.ac.za/



(b) The Neumann Problem (Second Boundary Problem):
Find a u(R) which in the region z>0 is of class
C2 and satisfies (V2+k2)u=0. On the X-Y-plane
it is required that
du(x,y,0)/3z = Up(x,y), --- (2.2.1b)
where Up is continuous.

From paragraph 2.1 it is clear that if these problems have
solutions satisfying the conditions

lim ff [udG/3n - Gdu/onldf = 0

T Ry —-- (2.2.2)
lim ff [udG'/dn - G'd3u/onl)df= 0 ,

P+ F

they will be unique and respectively given by

u(R) = -ff U(E,n)gg dg dn ~-- (2.2.3a)
and ‘:
u(R) = —_ff U,(&,n)G dE dn. ~-- (2.2.3b)

Note that in (2.1.9a) and (2.1.9b) the integrals over the
hemisphere vanish due to (2.2.2) as v = G + G

Solutions of the Dirichlet and Néumann problems in the region
2<0 are respectively obtained by substituting 3G/3|z| for
3G/3z in (2.2.3a) and defining U, = - 3u(&,n,0)/3z in (2.2.3b).

The question now arises as to which conditions the prescribed
values U and U, should respectively satisfy for the functions
defined by (2.2.33) and (2.2.3b) to be the solutions of the
Dirichlet and Neumann problems satisfying the additional equa-
tions (2.2.2). For the Dirichlet problem a sufficient condition
is given by

Theorem 2.2

If U(x,y) = 0 for x2+ y? > D2 --- (2.2.4)

and continuous for x2+ y? ¢ D2,

the function u(R) defined by (2.2.3a) will be a solution of

the Dirichlet problem subject to the conditions (2.2.2).
http://etd.uwc.ac.za/ ‘
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Proof:

The function U(R) defined by (2.2.3a) will be of class C, in
the region z>0. This is a consequence of the continuity of
U(x,y) and the fact 3G(r)/9z is of class C, if z>0.

On substituting u in (2.1.1) according to (2.2.3a) and inter-
changing the operations of differentiation and integration, it
follows directly that the Helmholtz equation is satisfied.

To prove that the assumed boundary values are attained, we
write (2.2.3a) in the form

P . .y1 dG
u(x,y,z) = -z f] U(pcos¢,psing): g7 pdods,
00

--- (2.2.5)
where 71%= (x-pcost)?+ (y-psing)?+ z?2.
In (2.2.5) integration with respect to p is terminated at p = D
owing to (2.2.4).

It is easy to show that r? > (/x2+y? - p)2 + z2 which is
positive if x%+ y?> D2 For these values of x and y equation
(2.2.4) and therefore (2.2.1a) follow by setting z=0 in (2.2.5).

If x%*+ y?<D? we may assume without loss of generality that

X =y = 0. In this case r?2=p2+22 and (2.2.5) can be written
in the form

o1 /d2+2z2 2y /D242

u(0,0,2) = -z(ff + ff ) U(/r7-2%cos6,/T7-2%sind) Sodr 44,
0z ovVd%+z? .

where d is an arbitrary number between 0 and D. Seeing that

r>0 in the second integral, one may set z=0 and so obtain

omJd% 422
1im u(0,0,2) lim -z U(Vrz-zzcos¢,/rz—zzsin¢)%gdrd¢

-0 -0 oz

/d2+22
= lim -z | @(/rz-zz)%%dr,

Z—0 Z

27
where 0(p) = [ U(pcosd,psing) d¢ .

°  http://etd.uwc.ac.za/
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Because of the continuity of U(x,y) the function @(/?7:27)
in the above mentioned integral can be approximated to an
arbitrary degree of accuracy by 0(0) = 2nU(0,0) by taking
d sufficiently small. Let

lo(/r?-22) - 2nU(0,0)| < €(d), then

V/dZ+z2 Jd?+22
|  o(/r%- ) dr - an u(o, O)E—drl < €(d) |G(Vd?+22)-G(z) |

JaZ+z? k/d®+z* ikz;) £
|-z! O(vr?-z )a—-dr + U(0, 0)[/““:Zi - e .l 2m /ET:E_ +11

Equation (2.2.1a) follows by letting z tend to zero, bearing
in mind that 4 is arbitrary.

To prove that equation (2.2.2) is satisfied, we write
(2.2.3a) in the form

2 9G(s)
u(g,n,z) = -ff U(ocose,osine)—gz— odode, where
00

$ = p -0 as in fig.2.1.1. For (&,n,z) on F,

ZTTD
du/dn = -3u/dp = [[ U(ccosH, os'me)3 BCOdOde

o0
The integrand in the first eq.u.tion (2.2.2) can therefore
be written in the form

2m D

3G(S) 3G( ) 32G(s
@1 Lo o) 538 j0dsa8 or
2nD
JJ U(o)F(s,p,r,)0dodd where
(e X o]

- &dG(s) dG(r) 3s dr dG(s)9*s _ d®G(s)(0s
F(s,p,r) p[ I ks " G(r) % s - W( )5)2

Now L)~ (ix - 1/e)6(e)
i%%lﬂ: (-k2 -2ik/t + 2/t?)G(t)
3T = 5 (p-R). (p-R) I/ 90
3p
= {(p-R).(p-R)}" 2 (p-R) . "3p

T.
F%ttp://etd.uwc.ac.za/



(2.3)

12

Furthermore
35 2 5 12/
3 - ° (o-p).(0-p) 3p
- _S-P
sp ’
2 3
g—piz =S Q(S‘fp%%)/szp2 (§-§%+o g-s—-)/Sp

SE(s,p,1)= (/) G(s) G(r)I(ik-1/s)(ik=-1/r){~(s.p)(T.pVsTP?}
-(ik-1/s)1/s - (s.p)¥s’p?} = (-k* - 2ik/s +2/s?)(s.p)¥s%p%].

As p-w, T>p, s-»-p and

02E(s,p,r) » (2/p) (X XPran?) [(ik-1/p)% + (K2+2ik/p-2/p?)]
- 0,

Similarly
p?F(s,p,r")~» 0.

Equations (2.2.2) can now be written in the form

2m 4w 2w D
lim ff [ ffU(c)F(s,p,r)odods]l p®sinydydp = 0
p= o0 00

with r replaced by r' in the second equation. From the above
it is evident that these equations are true.

Total reflection of scalar plane waves by an infinite plane screen

Suppose a monochromatic plane wave uo(z)e—imt is incident
on an infinite screen in the X-Y-plane. This normally inci-
dent field causes an excitation on the screen which is the
source of a secondary field, the so-called reflected field.
We assume that this field has the same time dependence as
the incident field and is, in view of symmetry, independent

of x and y.

The total field (incident plus reflected field) U satisfies
the wave equation

http://etd.uwc.ac.za/
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2y _ 1 32U _ o
vy - 1, 30 - 0. (2.3.1)
The total field has a time dependence ¢" 19t .nd hence u,

the time-independent.part of U, satisfies the Helmholtz eq-
uation (2.1.1) where k = w/c.

In view of the independence of u on x and y the Helmholtz
equation reduces to

2
8 = -kl ——-(2.3.2)

Two cases will be treated, namely sound soft and sound hard
screens on which the equations

u =0 --=-(2.3.3s)
and

ou _ -_—

T 0 (2.3.3h)

respectively hold.

The most general solution of (2.3.2) is given by

u = Aelkz | Be—lkZ,

where A and B are complex constants.

The term Aeikz represents the incident wave and hence
Aetk? - u, for the region z 0. The boundary conditions
(2.3.3s) and (2.3.3h) require that B=-A and B=A respec-
tively on the left hand side of the screen.

The term Be—lkZ represents the a disturbance propagated
in the direction of the negative z-axis. The same energy
is associated with this reflected field as with the in-
cident field. Consequently no field is transmitted across

the screen.

The value of A may be taken as 1 without the loss of gene-
rality. Under these conditions the solutions of the Helm-
holtz equation are respectively given by

ikz ik|z|
- e

u = e ---(2.3.4s)
and .
u = elkz - T%ielkIZL ---(2.3.4h)

http://etd.uwc.ac.za/
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(2.4) Babinet's theorem for scalar plane waves

This theorem expresses the relationship between solutions of
the Helmholtz equation with boundary values given on two in-
finitely thin complementary screens in a plane. Two screens
are complementary if ene is sound soft and the other is sound
hard, and when put together, they cover an infinite plane
completely without any overlap.

Suppose the plane wave of paragraph (2.3) is incident on an
infinite screen in the X-Y-plane from which a finite part
has been removed. The total field u is now regarded as the
sum of the incident field U the reflected field u, and a
diffracted field u;-

U= up *u o+ oug, --=(2.4.1)

ikz

where u, = ¢ and u, —elklzl

z ik]|z]
—_ &

or -
1z

depending

on whether ..e screen is sound soft or sound hard.

Consider next a finite screen complementary to the above
screen. The total field u will in this case be regarded as
the sum of the incident field u, and a scattered field u,
arising from the excitation of the finite screen.

u=u, +u ---(2.4.2)

Babinet's theorem asserts that

Z

us = ‘-l'z—l-ud “"(2.4.3)

for complementary screens.

We shall prove Babinet's theorem for an infinite sound soft
screen S with finite aperture A and its complementary sound
hard screen 4 with infinite aperture S. The procedure for an
infinite sound hard screen and it's finite sound soft comple-
ment is analogous.

http://etd.uwc.ac.za/



15

An integral representation is obtained for u, by assuming
that the total field and hence the diffracted field is con-
tinuous in the closed plane region 4, and that Uy satisfies
the radiation conditions (2.2.2). Since uy vanishes on S due
to equations (2.3.3s) and (2.4.1), the conditions of theorem

2.2 are met and u, is given by (2.2.3a). In the region z#0
therefore

ug (R) = =fJ uy(£,n,0) 0 dgdn. ---(2.4.4)
d o d 3z

An integral representation for u, is obtained by applying
Green's second identity to the region G-g-g in fig.2.4.1

and following the procedure used in deriving (2.1.6). By
choosing v = G = eik94nr and assuming thatlg satisfies
the radiation conditions (2.2.2), where F, is now a complete
sphere, it follows that

http://etd.uwc.ac.za/
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u_(R) = ifflu_3G/3n - G3u_/3nldf ---(2.4.5)

8 "— f 8 S

As in the case of equations (2.1.9a) and (2.1.9b) the
derivation of (2.4.5) is based on the assumption that u,

is of class C, in the closed region G-g-g.

From it's definition in paragraph (2.1) it follows that on
the parts of f perpendicular to the Z-axis 3/on = = 3/3zg,
depending on whether ¢ % 0. Therefore 3G/an = #3G/3y = ¥3G/9z.
Because of the symmetry of G(&,n,z) and 3G(&,n,z)/9z with
respect to ¢, (2.4.5) can be written in the form

Uy (R) =3+ )10 ufe,n,0)- uE,n,-8)122(£,n,8)

+{%£"S(E,n’6) -'g—lés(gan,—ﬁ)} G(E,n,ﬁ)]didn + €,
---(2.4.6)

where 4 and 4' together constitute the part of the X-Y-plane
inside g and € is an integral which vanishes as 6-0.

From (2.4.6) it is clear that non-trivial solutions of u,
exist only if u, and/or it's normal derivative is discon-
tinuous. The nature of the discontinuity will determine
whether one or more solutions are possible. We define u, and
Bus/an on the right and left hand sides of 4 by
us(x,y,tO) = lim lklx,y,tﬁ)

§-»0
and a similar equation for aus/an. From (2.3.3h) and (2.4.2)
it follows that

Bub(x,y,tO)/az = -ik on 4. ---(2.4.7)

It will now be assumed that u, and aus/mx behave in such a
way that the integral over A4’ in (2.4.6) vanishes as 6-0.
This analytical requirement, known as an edge condition, en-
sures the uniqueness of the field and expresses the fact
that the edge cannot be a source of energy. In this regard
see Jones (1964).

By letting -0, it follows from (2.4.6), (2.4.7) and the
edge condition that
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ugR) = -1 [f [ufe,n,+0) - u (£,1,-0)1 22 (£,n,0)dgdn .

Clearly u, is anti-syﬁmetric with respect to the X-Y-plane.

uR) = ~ff ufe,n,+0)57 dedn == (2.4.8)

From the above it is clear that if a solution of the Diri-
chlet problem exists in the region 2z>0 satisfying the con-
ditions of theorem 2.2 as well as the edge condition, then
it will be given by (2.4.8). To prove that u, as defined by
(2.4.8) is indeed a solution of the problem above, it must
now be shown to satisfy the conditions of theorem 2.2 as
well as the edge condition.

From (2.4.8) it follows that u, is anti-symmetric in z and
continuous everywhere except on A. Hence

u, =0  on s, ---(2.4.9)

fulfilling one of the conditions of theorem 2.2.
Differentiation of (2.4.8) shows that aus/az is symmetric
with respect to z. Using these results it is easily veri-
fied that u, satisfies the edge condition.

Equation (2.4.8) also defines the unique solution of the
Dirichlet problem in the region z <0 which satisfies the ra-

diation and edge conditions and is continuous on the left
hand side of 4.

Assuming that 3u/3z is continuous across the aperture, it
follows from (2.4.1) that

ud(x,y,+0)/az = ud(x,y,-O)/Bz + 2ik  on 4.

From (2.4.4) it follows that aud/az is anti-symmetric,

o aud(x,y,tO)/az = xik on 4. ---(2.4.10)

The proof of Babinet's theorem now depends on the validity
of the following assumption:
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There exists a unique function u(x,y,z) of class C, satis-
fying the Helmholtz equation and radiation conditions in
the region z <0, such that u is continuous on 4, u=0 on S
and du/dz=-ik on 4.~

This assumtion is a corollary of the theorem that the inte-
gral equation

2 .
.[f U(E,T\) g'z—g(g,n,(),x,}’,()) dgdn = -2mik '--(2°4°11)
A

has a unique solution for U(x,y), (x,y) on 4. Equation (2.4.11)
was obtained from (2.4.4) by differentiation. In their proof

of Babinet's principle in two dimensions Baker and Copson (1950)
take the validity of a similar theorem for granted.

(2.5) Electromagnetic waves and the vector Helmholtz equation

Suppose a monochromatic linearly polarized electromagnetic
field, harmonic in time, is perpendicularly incident on an
infinite screen § with finite aperture 4 in a homogeneous
isotropic medium. We assume that the total field will have
the same time dependence. The zth component of electric and
magnetic field strengths can therefore be written in the

form
_ h ~iwt
Eg = Ez e
---(2.5.1)
_ h -int
Hl = Hz e

14

where the 1-, 2- and 3-components are respectively along
the X-, Y- and Z-axes.

Let the incident electric field strength be given by Iielkzagz

where the Z-axis is perpendicular to the screen, Som is the
Kronecker delta, k =w/c and c = /eu. The incident magnetic

field vector can be obtained from Maxwell's equations for
harmonic waves:

h h
€ 9_E° = iwuH
tmn " mn 2 —==(2.5.2)
h _ _s h
€ymnomily = lwuH, .
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In (2.5.2) (81,82,83) = (9/3x, 8/9y, 3/9z) and € gmn is the
permutation tensor. For the incident wave the magnetic field
strength is therefore given by -%gelkz6£1=-w€/uEelkzéxp

For an arbitrary field. let

E, = Ee
. . ---(2.5.3)
HQ = »’€7uEh2 ;

where e, and h2 are dimensionless quantities. Then the in-
cident fields are given by
o (1) - pikz

8
22
) - ---(2.5.4)
) __ ikz
h =-g 621
and Maxwell's equations become
€ 9_e = ikh
Lmn"m " n L --=(2.5.5)
elmnamhn =-1ke2.

By eliminating h2 and e, alternatively from (2.5.5) the
vector Helmholtz equations

V2e2 + kzel = 0

. ) ---(2.5.6)
v hz + k h2 =0

are obtained.

In order to obtain unique solutions for (2.5.6) in the half-
space z>0, more knowledge about the nature of the electro-
magnetic field is required on the boundaries. By assuming

that the screen is infinitely thin and perfectly conducting
we have

e_l = ez = 0 on S. "'(2-5-7)

Assuming that the field behind the screen complies with the
radiation condition (2.2.2), it follows from theorem 2.2

that this field has 1- and 2-components given by

eg(B)=-£Ie2(£,n,0)%-d£dn (2=1,2). ---(2.5.8)
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A representation for € is obtained by observing that the
equation

dg€y = 0 ---(2.5.9)

is a consequence of Maxwell's equations (2.5.5) wherever e, is
of class C,. Bearing in mind that the normal derivative in

(2.2.3b) is actually the limit of 3u(g¢,n,z)/9z as 1z -0, the
function u may be regarded to be of class C, on the plane z =0.
From (2.5.7) and (2.5.9) therefore

dez _ 9deq €y _ : .
523 3 * 0 on S. (2.5.10)

Application of (2.2.3b) yields for 2>0

ez(R) = 'If—g—z3(€,n,+0)G dgdn --=(2.5.11)
A
H[aeua,n,+0)+ £2(g,n,+0)16 dgdn
- II[e1 Eh ezgg] dEdn + 1, ——=(2.5.12)
where
I = [ b (646) + g7 (e,0)] dedn. --=(2.5.13)

Differentiation (2.5.12) yields

oI _ 2de 326G
LT T H(1823x * & azgy) & dn
9
= —3—53 axffe1 d&dn Hez d&dn
= 0’

where (2.5.8) and (2.5.9) were used.
From (2.5.13) and 3I/%z=0 it follows that

9
{1“3—5(31(31.) +%(e2Gr)] ddn = 0, where G_ = 36
But from (2.5.13)

3T _ X fcd 9
= "’?-giag(eIGr) + an(eZGr)] dg dn,

hence 3I/3x = 0 and similarly 3I/3y = 0.
From (2.5.12) it follows that I must satisfy the Helmholtz
equation, hence I = 0.

http://etd.uwc.ac.za/



21

The electric field in the region z>0 can now be written the
form
32(5) = 'IIGQIGS dg dn (2=1,2)
4 —==(2.5.14)
es(R) = IAI(e1G1 +e,G,) dEdn,

where G2 = BG/ax2 = —BG/BEQ. ---(2.5.15)
By applying Maxwell's equations (2.5.5) to (2.5.14) an inte-
gral representation of the magnetic field is obtained which
is valid in the region z>0:

h,(R) = 'JEIAJ[ 1612 * €3(Gy2*033) 1dedn

h,(R) = ;%{{ e1(Gy1+Gy5) +€,6,,1dEdn > ---(2.5.16)
hy(R) = f%{{[e1623 - €,6y31dedn,

where G, = §§f§; . i —ee(2.5.17)

(2.6) Babinet's theorem for electromagnetic plane waves

Suppose the incident wave of paragraph (2.5) impinges on a

perfectly conducting screen, situated on the X-Y-plane. As-
suming that the total field is independent of x and y, the

electric field will be given by

e, = Ajer*? Ble'ikz‘ —e(2.6.1)

The boundary condition (2.5.7) demands that A.1 =-B1 and A2==-B .

From (2.5.9) and (2.6.1) it follows that A3==B3==0. Hence

e. = A1(eikz _ e-ikz)
e, = Az(elkz _ e-lkZ)

= 0.

The terms involving the factors elkz and e_lkz respectively

denote disturbances travelling in the positive and negative
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Z-direction. In the region z<0, the terms involving eikz

must be equal to the incident wave. It follows that A.1 =0
and A2= 1 in this region. Energy considerations as in pa-
ragraph 2.3 lead to the conclusion that the field vanishes

behind the screen. For every value of z one may therefore
write

e, = ef¥+ e, -——-(2.6.2)
where

ik
e o ikl g ~==(2.6.3)

The magnetic field is obtained by applying Maxwell's equa-
tions (2.5.5) to (2.6.2). Thus

()
h, = h{*+ hé”), —-=(2.6.4)
where
(v) _ z__ik|z|
h = —ETe 611. ---(2.6.5)

If the screen is now perforated as in paragraph 2.5, the
total electric field can be written in tue form

_ () (r) (d)
g T €y teylte, ---(2.6.6)

(d)
L

(5]

where e satisfies the radiation conditions (2.2.2) on both

sides of the screen. As e, and egik+e£r)satisfy the boundary
conditions (2.5.7), it follows from (2.6.6) that (2.5.7) ap-
plies to egﬂ. Integral expressions for egd)and egﬂ in the re-
gion z#0 can therefore be obtained from (2.5.8) by substitu-
ting |z| for z. An expression for egﬂ is found by observing
that (2.5.11) was obtained from (2.2.3b) by putting U, (&,n)

= aes(g,n,+0)/3c. In (2.5.11) appropriate changes in sign
have to be made if it is to apply to the region z<0. Hence
for z#0,

(d)

eyt = # ffefg,n, 4008 e (2=1,2)
A
e
ez (x,y,#lz]) = # ff523 (g,n,+0)G dedn .
A

—-=(2.6.7)
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For the complementary problem where 4 is the screen and S the

infinite aperture, the field 6(3)15 defined by

- (7 (s)
o T % T &y, ---(2.6.8)
where egs)satisfies (2.2.2). Bearing in mind that
ep = 8g,%e¥ =0, (2=1,2) on 4 ——-(2.6.9)
and .

(s) (s) (s)
dez™" _ _ e | 3ep7 ——
3c3 = 351 an 0 on 4 (2.6.10)

we obtain the following representation of e£3)from (2.4.6)

after replacing ug by eaﬁ
(s) fe)
e (R) = -H % (£,n,+0)G dgdn (2=1,2)

e{¥m) Ue(S)(S,n,+0) S dgan

-==(2.6.11)

Babinet's theorem for electromagnetic waves states that

o(8) _ (d)

2
= 12|
2

=3

---(2.6.12)

(d)

h(3) - e

|Z]
These two equations are of course not independent of one an-

other. Any one can be obtained from the other by utilizing
Maxwell's equations (2.5.5).

The first equation of (2.6.12) is now proved by assuming that
there exists a unique source free vector field u satisfying
the Helmholtz equation in the region z>0 as well as the radia-
tion and edge conditions and, in addition, having the proper-
ties:

uy = 0 h
u, = -1 > on 4 --=(2.6.13)
au3/az =0
and z
;
8u1/32 =
Buz/az = > on § ---(2.6.14)
uz = 0. J  http://etd.uwc.ac.za/
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For the electric field gKS)the equations (2.6.13) follow from

(2.6.9) and (2.6.10). Equations (2.6.14) can be derived from
the anti-symmetry and continuity properties of the quantities
involved.

By assuming that h1 and h2 are continuous across the aperture

A and keeping in mind that hfﬂ and hgﬂ are anti-symmetric, it

it follows that hfﬂ = 0 and hgd%x,y,tO) =31 on A. The third
equation of (2.6.14) is satisfied by hgﬂ, because alhi = 0.
According to Maxwell's equations (2.5.5)

(d) (d)
(@ 2o aef@ )

3 ox ay
(d) (d)
on{? _ @ @)
E] = B—X—S lkez =0 > on S.

() (@)
Shp™ %,]l + ikel® =0

-

(&)and b{d)satisfy the same boundary conditions and by

the uniqueness assumption the first equation of (2.6.12) follows.

Hence ¢
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CHAPTER 3

SOMMERFELD'S SOLUTION FOR THE DIFFRACTION OF PLANE WAVES BY A HALF-PLANE

(3.1) The scalar case

We now consider the same problem as in paragraph (2.2), ex-
cept that the part of the screen for which x<0, is removed.
The resultant stationary field is independent of y (see fig.
3.1.1) and therefore satisfies

82' 32
=2 * 37 * Ku = 0. ---(3.1.1)

In addition to this equation the boundary conditions (2.3.3s)
or (2.3.3h) hold on the screen.

X
VS
I screen I
T
incident field 9
______________ | ) Z
|
|
111 l v
|
|
fig.3.1.1

Sommerfeld (1896) solved this problem by modifying the method
of images. this entails writing the solution in the forms

u(r,8) = v(r,0) - v(r,6+mw) ---(3.1.2s)
and
u(r,8) = v(r,6) + v(r,0+m) ---(3.1.2h)

in the sound soft and sound hard cases respectively. The va-
riables r and 6 are defined by

z Trcos®t

X = rsing,
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where the domain of 6 is still to be determined. Due to
(2.3.3s) and (2.3.3h) the function v(r,8) must of course
respectively satisfy

v(r,8,) = V(r,60+n) --=-(3.1.3s)
and
ov(r,0,)/30 = -3v(r,6,+m)/3 , ---(3.1.3h)

where 6 is the value of 6 on the screen. Equation (3.1.3h)
was obtained from (3.1.2h), the equation

3/92 = cos6 3/3r - 1 ‘sind 3/936

and the boundary condition Bu(r,e)/azle=e = 0.
0

By separéting the variables in (3.1.1), the solution

i(k1x+k32) -

u-==Ae is found, where k; and k; are real and k% +I =K%

This can also be written in the form

ikrcos(6-a)

u=Ae , which defines the incident wave when A=1and a=0.

The function
u = [ A(a,8) e 1KTCO80y, —-=(3.1.4)

K
is a general solution from which particular solutions can be
found by a suitable choice of A(a,8) and X. For example if
A(a,6) is a complex function of o possesing a first order
pole with residue T%T at o=6 and X a closed path in the com-
plex a-plane enclosing no singularities except for the above
mentioned pole, the integral (3.1.4) reduces to the incident
wave.,

The function A(a,8) and the curve XK can now be chosen in such
a way that the integral (3.1.4) satisfies the conditions
(3.1.3s) and (3.1.3h). This is accomplished by defining

d(3a) ---(3.1.5)

T T

310 -316
e -

K e

where X is the path indicated in fig.3.1.2, -2nm<6<2m and 0%0.
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v

-3; "~ 3m

fig.3.1.2

First of all it must be proved that the infinite integral
(3.1.5) exists. The shadowed regions in fig.3.1.2 are those
where the real part of ikrcosa is negative. When the ima-
ginary part of o tends to plus or minus infinity in these

areas, the integral can be approximated to an arbitrary de-
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gree of accuracy by a constant times e ® where s is the
variable of integration. In the case r =0 the convergence

of the integral (3.1.5) is not so obvious. On putting

e%ia =z, (3.1.5) can be written in the form
. 1 aein 2 dz
v(0,8) = ;irr; m(af + a_lfeiﬂ) Z-5b
im -1
) ;in; '2_11—{( Zog%—_—% * tog a'lelﬂl-)b)
i.e.
v(0,06) = 3. ---(3.1.6)

Secondly the function v(r,6) posesses the property

v(r,8) + v(r,6-2m) = gikrcos® cee(3.1.7)

which is proved by showing that v(r,8) + v(r,6-27) is iden-
tical to the right hand side of (3.1.5) with X replaced by
the closed path L in fig.3.1.2. This identity can be proved

by noting that

v(r,6-2m)

l

1
2m

®
[ ST

e%ia eikrcosa 1
J Ta__-1i(e-zm) 90i%)
K

31la ikrcosa
-4 ] e ¢ d(ta).

- -~
lia -11
e? - e ? 6

(See fig.3.1.2 where XK and X' are defined.)

Therefore

lia eikrcosa
13 T3
lia -1
2 _eze

v(r,8) + v(r,0-2m) = ;%(£+J)

e
[ d(3o)
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The path in the above integral may be extended to include CD
and FA in fig.3.1.2 because of the periodicity of 4m of the
integrand and the fact that AF can be brought into coincidence
with CD by a translation of 4m along the real axis. The closed
path thus completed may now be deformed into L without the in-
tegral chénging it's value. The integrand has only one singu-
larity in the region -2m<a<2m, namely a first order pole
_eikrcose at a=-0. The equation (3.1.7) is ob-

tained by applying Cauchy's integral formula.

with residue

Thirdly the proof of the properties (3.1.3s) and (3.1.3h) fol-
lows from the representation of v(r,6) by a Fresnel integral.

The scalar solution in tems of Fresnel integrals

The path X in the definition of v(r,6) may be deformed into
two paths BHJC and DJHE in fig.3.1.2. The parts of these in-
tegrals along the real axis are equal, but of opposite sign

if 6>0. In this case

1€
1 22 10
vir.8) = ?ﬁ%%*-gé)e%ia - e_%ie

eikrcosa

dlo) . ---(3.2.1)

£ ikrecos®

must be added to the above expression. Another method of
finding the

8 <3, the pole on the real axis is circled once and e

value of v(r,6) when 6<0, is obtained by wri-

ting
1 e%ia ikrecoso
- = — 1
v(r,6-2m) 2ﬂ€£%+ gg)e%ia e—lie d(a)
- p2io glkreosa
= 3 + - -
1T(BIE DIC) elzlu e—%le dza)

and applying (3.1.7).

Equation (3.2.1) which holds for 6>0
writing the integral along DC as an integral along EB in which

can be simplified by

a is replaced by o+2n. One may therefore write
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ico
1

v(r,0) = 1} [f(a,6)e1krc0sada

-lm

i

j%.[[f(a,e) + £(-q,0)] elkTC0SO g4

where
f(a,0)

iia 1 1
( 116 Iia,-110)

It
Q

Now 1=

-31i6 3ia, -ia_ -1i6 -lio, ia_ _-i6
£(a,0) + £(-a,0) = 2£ [e?” (e ) (el1®-,719y;

e

+ e

14 14 13 13 13
= - "y _1 _-1
zezle[e 210, 210 2la, =2 a)]

16 ia
e ~e -

e-le(e
-1a_+e-16

e

. 1s _hl! s
eile(ezla+e 21d)£1_e lel
cosh - cosa

_ -4icosjo sin}a
coso - cosb
Therefore

oo -
ikreosa 1
e cos

v(r,8) = -%sin%ﬁj o da ---(3.2.2)
0

The integral (3.2.2) is readily evaluated by firstly differ-

entiating with respect to r; then integrating with respect

to o and finally integrating with respect to r. From (3.2.2)
)

alv(r,6)e TKTe088) /5y %sin%ejelkr(cosa‘cose)

cosia do
o)
oo

k . 2ikrsin?16[ -2ikrsin?la
= ?s¢n%ee 8 2Vle *Ycosia da

(o]

o

2ik . , Zikrsinzéejeiﬂrz

= ———sinzbe dt

0
---(3.2.3)

where 1 = —i(Zkr/ﬂ)%sin%a.
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© - 2
The integral IelﬂT drt
0

P =<

can be evaluated by Z-plane

considering the rela-

R
2
ted :'Lntegratlcje'1TZ dz < —» X

=
=

where ¢ is the closed
contour in fig.3.2.1.

The integral vanishes

because the inte nd
mteera £ig.3.2.1

is analytic.
0 R ) 0 )
- 2 -1 - - - . . .
Ie L> PN 41“Je1ﬂr dr-fiRIe mR* (cos26+is1n20) 164, _ .

R 0 =im

---(3.2.4)
The absolute value of the last term is smaller than or equal to
0 im
RIQ-NR%osZGde _ Rjewﬂﬁsin¢d¢
=im 0
m
s%RJe_2R2¢d¢,
0

where Jordan's inequality 2w < msing (see Copson (1970))
was used. Hence the last term -0 as R-w, Also

o«

a2 T _ 2,2 1
Ie X ax = [I Ie (X +y )dxdy];
(0] o0

i

- 2 1
e " rededr]?

(e}

1}
L amn |
\—58
O t———

1
2.

Hence from (3.2.4) we get

.. X .,
e—ilnjelﬂr dr = 1. ---(3.2.5)
o

From (3.2.3) and (3.2.5) it follows that
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-1 1 13 s ©.21
3(v(r,0)e 1kr0036]/3r - i(zir)zsin%6e41“621kr6£n 6

Integrate with respect to r:

- 1 _1; _1
v(r,8)e ikrcos6 _ ( )zsinzee 41ﬂjr i, 2ikrsin® dr,
or L T
v(r,8) = e‘ﬁl“elkrcosejelﬂT dt, ---(3.2.6)
-00

s 2
where IelnT dt is an integral of the Fresnel type and
= V2krmsin;6. --=(3.2.7)

The arbitrary function of 6 arising from the integration was
chosen to be zero because for 1r =0 the above expression yields
v(0,8) = 3 which is in accordance with equation (3.1.6).

(This can be verified by setting r=0 and 6 =7 in (3.2.2).)

The equation (3.2.6) has been derived from (3.2.1) which holds
for 0 <6< 27. When -2mn <68 <0, the constant 1 has to be
added to the expression obtained above for v(r,8)e-ikrcost,
This implies a new choice for the arbitrary function of 6. In
order to yield v(0,6) =3 as (3.1.6) requires, the function
referred to has to be chosen equal to -1. (This can be verified
by adding elkrcos® o the expression obtained for v(r,8)

in (3.2.2) and then setting r=0, 6=-7.)

Although v was left undefined at the singularities (6 = t2nmw;
n=1,2,3...) of the integrand in (3.1.5), the derived represen-
tation (3.2.6), obtained by deforming the path of integration,
is meaniningful at these points. We therefore take (3.2.6) to
be the definition of v(r,8) for all values of r and g.

To ensure that u(r,6) as defined by (3.1.2s) and (3.1.2h)
exhibits the correct asymtotic behaviour, namely that it tends
to zero in region I, ¢1KTC080® 5 -ikreosd® ;. Leoi0n 11 and
elkreost ;i regions III and IV, the domain of 6 must be res-

tricted to the interval [-3w,im].
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The properties (3.1.3s) and (3.1.3h) follow readily from the
definition (3.2.6) and the expression for the derivative

-T
- - » 2 1 - 2
av(r,8)/36 = -e—ﬁlﬂelkrcose[eINT (%%)2003%6-+ikrsin6!elﬂT dr].

---(3.2.8)

Clearly, by taking 6, =im, it follows from (3.2.6) and (3.2.8)

th\at ® _Fr/rr 2
-13 3
v(r,in) = v(r,in) = e 41“[ et dr ---(3.2.9s)
and
KTk 2
=13 . .
v(r,in)/36 = -3v(r,3n)/30 = -e 31“[5/??7Ee1kr-+ikrj e 4.
-0
---(3.2.9h)

The conditions (3.1.3s) and (3.1.3h) are also satisfied if

6, is taken to be -iu:

: VETAI 5
~13 3
v(r,-3m) = v(r,-ir) = e 41"[ e dr ---(3.2.10s)
and
VR \
-13 3 3

av(r,-3m)/36 = -dv(r,-1m)/90 = e 3 " [1/kr/meiXT- ier e dr.

---(3.2.10h)
Using the definitions

1j&rk_ \
¢ (kr) = 2e'51"J e’ g ---(3.2.11)
and
AT

‘i’(kr) - /‘T?K?e ’ “'(3.2.12)
equations (3.2.9s) and (3.2.9h) become
v(r,im) = v(r,3m) = lo(kr) ---(3.2.13)
and
ov(r,zm)/38 = -ov(r,3n)/36 = Jikr[V¥(kr) - &(kr)]

---(3.2.14)

respectively. http://etd.uwc.ac.za/
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From (3.2.5) and the fact that e'"'

it follows that

-T T )
-1 :
R 41N(J +I)elﬂT dt
-0 =00

= 1.
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is an even function,

---(3.2.15)

Equations (3.2.10s) and 3.2.10h) together with (3.2.11),

(3.2.12) and (3.2.1

v(ir,-im) = 1-1&(kr
and

av(r,-3in)/36 = ikr[1 - jo(kr) + i¥(kr)].

5) yield
)

—-=(3.2.16)

—--(3.2.17)

By making use of the definitions (3.1.2s) and (3.1.2h), the
, (3.2.16) and (3.2.17) and kee-

equations (3.2.13),
ping in mind that

(3.2.14)

3/9z =~-r! sin6 3/ 90

holds where cos6 =0,

the following table can now be drawn up for the values of u
and 3u/9z in the X-Z-plane:

sound soft screen

sound hard screen

u

auI/Bz

u

IT

BuII/az

screen (6=}m)

ik(¢ - v)

%

0

aperture (6=-1m)

ik

1

ik(1 -0 +VY)

Electromagnetic waves

Suppose the incident
wave of paragraph 2.5
impinges on a thin,
perfectly conducting
semi-infinite plane
of which the edge in-

table 3.2

cludes an angle ¥ with

the 2-axis as in fig.

3.3.1.

et ]

fig.3.3.1

v
—

On introducing a new system of axes with the 2-axis along the

edge, the incident electric and magnetic fields are respective-

ly given by

http://etd.uwc.ac.za/
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) _ _ikz

i

---(3.3.1)

=t

(7
2
(z) _ 1ikz
2 = (

As the choice of origin along the edge is arbitrary, the fields
are independent of iz so that Maxwell's equations (2.5.5) as-
sume the form

o= = A
1ke1 = 33h2
ike, = -3.h
S 1 > ~==(3.3.2)
1kh1 = -83e2
thz = 83e1 - 31e3
ikh, = 3.,8&,.
3 172 )

From (3.3.2) it is obvious that the total field can he deduced
from a knowledge of éz and ﬁz. These two fields may be regarded
as scalars, respectively satisfying the boundary conditions

e, = 0 ' ---(3.3.3s)
aﬁz/an = 0 ---(3.3.3h"

on the screen. Note that the boundary condition (3.3.3s) does

not apply to 61 at the edge, because 61 is not tangential to
the edge.

By reason of symmetry and the arbitrariness ot the position of
the origin on the edge, the T-components of the incident fields
do not contribute to éz and 52. Making use of table 3.2, it fol-
lows that these fields are given by

€, = u; cosy

h2 = Uy siny.

From Maxwell's equations (3.3.2) it follows that
é1 = auII/Bz siny

h] = -BuI/Bz cosy.

By transforming to the original coordinates, the following table
is obtained:
http://etd.uwc.ac.za/
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1 2 1 2
screen 0 0 -0+1¥(1+cos2y)| iY¥Ysin2y
aperture 1¥stn2y [1-0+1¥(1-cos2y) -1 0

table 3.3

http://etd.uwc.ac.za/
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CHAPTER 4

BRAUNBEK'S METHOD FOR THE DIFFRACTION OF PLANE WAVES BY AN ANNULUS

(4.1) The far field: scalar case

According to Braunbek's method (see introducfion) the field
u in the region z>0 in fig.4.1.1 is obtained from (2.2.3a)
or (2.2.3b) by assigning approximate values to u(x,y,+0) or
3u(x,y,+0)/az.

In the case of an annular aperture there is the added compli-
cation of two diffracting edges. An acceptable procedure which
assigns unique boundary values to the field at Q(x,y,+0) by
Braunbek's method, is to take the parameter r in ¢(kr) and
¥(kr) of table 3.2 equal to s, the shortest distance from Q

to the nearest edge of the screen. In this way the plane of
the screen is divided into two regions , viz. 4,U5, for which
p< i(a+b) and 4,U8, for which p> j(a+b). The relationship be-
tween p and s is given in the table below.

Position of Q 4, 4, S, S,

p = b + s a - s b - s a + s

table 4.1

o

v
»

o Hgepylethuwc ac.zal
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Utilizing table 3.2 and assuming that each of the representa-
tions (2.2.3a) and (2.2.3b) are valid for both sound soft and
sound hard screens (Their validity has only been proved for

the case where the integration is taken over a finite region.),
Braunbek's method yields the following values for u in the re-

gion z>0:
2T a
u(R) = -z” [1-¢(ks)]%%§_—;pdpd¢ ---(4.1.1sa)
ob
m a
u(R) = -ikj J[1-<I>(ks)+‘1’(ks)] Godo do ——=(4.1.1hb)
ob
2m b e 21 a
u(R) = -ikJ ( J' + J Y[ &(ks) - ¥ (ks)] Gpdpdo - ikJ J Gpdp d¢
o 0O a ob
---(4.1.1sb)
2t b o 2T a
u(R) = -zJ (j+J) @(ks)%—g—gp dadHs 4 ZJJ—:;%%Q dodo .
o O a ob
---(4.1.1ha)
Let
2m
Jqu) = F(p) ---(4.1.2)
S |
and
2m
[$F@ - P, - (4.1.3)
(0]
then it follows from-table 4.1 that
a 3(a-b)
WR) = -2[ F'(p)pdo + 28 (ks L (b¥s)F!(b+s) + (a-5)F'(a-5)] ds
° ---(4.1.4s52a)
a i(a-b)
u(R) = -ikJF(p)pdp +ik|[®(ks)-¥(ks)] [(b+s)F(b+s) + (a-s)F(a-s)lds
b o —--(4.1.4hb)

http://etd.uwc.ac.za/
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a b

u(R) = -ikJF(p)pdp - ikJ[@(ks)-W(ks)](b-s)F(b—s)ds

b o)

-ik[[@(ks)—wks)] (a+s)F(a+s)ds =---(4.1.4sb)

o}

a b o«
u(R) = -ZJI”(p)pdp - ZJ ®(ks) (b-s)FTb-s)ds'-z[¢(ks}(a+s)FTa+s)ds.

b o) c

—e= (4, 4ha)

Approximéte values of these integrals can be ubtained by mak-
‘ng a few assumptions in connection with the dimensions of a
and b; the position of the pcint P and the behuviour of the
functions ¢ and VY.

In the first place Braunbek's method 1s a shovt wav: approv:-

mation, hence

ka > kb > 1 w47 5,
and
k(a-b) > 1. ] T

Secondly the position of the point P will be res*r.icted to a
region far from the z-axis and including an anzle well in ex-
cess of arcsin(1/kb) with the z-zxis, her. -

Reiny > a = (4.1.7)
and
kbsiny > 1. --=-(4,1.8)

This means that P is far removed from the shaded region in
fig.4.1.2.

e —_—— e e g —

e

| e Ereein (/i)
Zla T e s 7

fig.4.1.2
http://etd.uwc.ac.za/



40

Thirdly ¢(ks) and ¥(ks) differ significantly from zero for
small values of s only, say for ks<1. For these values of s
it follows from (4.1.5) and (4.1.6) that

s << b < a --=-(4.1.9)
and
s << a-b --=-(4.1.10)

Consequently the upper limits of the integrals in equations
(4.1.4) may be extended to infinity without significantly al-
tering the values of the integrals. Furthermore, the parame-
ters axs and bis may respectively be taken equal to a and b
where convenient. Equations (4.1.4) thus become

u@®) = -z [K(F\a,b) - L(2,F\b,a)] —e=(4.1.11s2)
u(R) = -ik[K(F,a,b) - L(®,F,b,a) + L(¥,E,b,a)] ---(4.1.11hb)
u(R) = -ik[K(F,a,b) + L(®,F,a,b) - L(¥,F,a,b)] --=(4.1.11sb)
u(R) = -z [K(F\a,b) + L(¢,Fa,b)] , ---(4.1.11ha)
where
a
K(F,a,b) = jF(p)pdp ce(4.1.12)
and b I
L(¢,E,a,b) = J(b(ks)[aF(a+s) + bE(b-5)lds . ---(4.1.13)
(o]

Without loss of generality the field point P may be assumed
to have coordinates (Rsiny,0,Rcosy). From fig.4.1.1 it fol-
lows that the coordinates of the integration point Q are
(pcosd,psing,0). Therefore

r?2=R%? + p2 - 2Rp siny cosé. ---(4.1.14)

From (4.1.7) it follows that if p is of the same order of mag-
nitude as a or smaller, the ineqality

p?2 << pRsiny << R? ---(4.1.15)
holds. Expanding (4.1.14) binomially yields
r ~ R - psinycoso. -~=-(4.1.16)

http://etd.uwc.ac.za/
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The integral (4.1.13) is evaluated by using (4.1.19) and the
following approximation of (4.1.24):

cos{k(ats)siny- ﬂ}
(ink®*R*sin? Y)Z

Jo{k(azs) siny} ~

---(4.1.27)

Hence we have

ikR (°
. a .
L(¢,F,a,b) = <= | (ks) g cos(kssiny+A-im)ds
o}
ikR ¢ b
+ R ) @(RS) /g—,ﬁ'B— COS(kSS?:n'Y'B"'J‘;TT)dS.
0

---(4.1.28)

The integrals in (4.1.28) are obtainable in terms of
E(2,k,2,0) = J@(ks) T —em(4.1.29)
o)

Replacing ¢ by ¥ and using (3.2.12), equation (4.1.29) becomes

[e ]

1(0‘*4“)J i (k+2)s g
o

il
E(Y,k,2,a) = s VE

2o (0tAm) 7 4
= _/k—(—f*-—?rj e dr .
(o]

From (3.2.5) therefore
ia

E(Y¥,k,2,0) = _1%/—(e_k+?ﬁ . ——=(4.1.30)

In order to find an expression for E(%,k,%2,a) it is useful to
observe from (3.2.11) and (3.2.12) that

aégks) = is¥(ks). ---(4.1.31)
Hence from (4.1.29), (4;1.30) and (4.1.31) we have

OE(9,k,2,0) _ PE(¥,k,2,0)
ok 9L

.4 10 -3
=-ike” " (k+2) 2
http://etd.uwc.ac.za/
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The approximation (4.1.16) may be used in the evaluation of
the integrals (4.1.12) and (4.1.13), because where p is much
larger than a, the functions &(ks) and Y¥(ks) approximate zero.
From the definition of G and (4.1.16) it follows that

ikr eikr e-ikpsinyoos¢

G = S ™ I — —-=(4.1.17)
and

1 dG ... 1kR =-ikp siny cos¢

2 e~ 1k;2 e — : —--(4.1.18)

Equations (4.1.2) and (4.1.3) may therefore be approximated by

ikR
F(p) = e}{ J, (kpsiny) == (4.1.19)
and
F'(p) = £EF(0), -=-(4.1.20)
where 2

1 -iz cos¢
J, (z) = TFIQ dé ---(4.1.21)

(o]

is the Bessel function of order zero.
z
%J;Jo(c)d; between the

0
Bessel functions, it follows from (4.1.19) that (4.1.12) can

be written in the form

Because of the relationship J, (z) =

ikR
K(F,a,b) -= peeslad; (A) - bJy (B)], == (4.1.22)
where A = kasiny and B = kbsiny. ---(4.1.23)

In the region where (4.1.8) holds the Bessel functions can
be expanded asymptotically:

J,(2) »~ (im2) cos(z-3m) —--(4.1.24)

3, (2) ~ (3mz) Zsin(z-}m). ---(4.1.25)

From (4.1.22) and (4.1.25),

eikR[/asin(A—}w)-/Bsin(B—bﬂ]_
hitex kiR adm i) 2a/

K(F,a,b) = --(4.1.26)
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. 1la
. k k-1 ;/k
.o E(@,k,ﬂ.,d) = -%—I{'{(1 +z)3} 2 d(z) -""(4.1-32)
The integral (4.1.32) is found by the substitution
tan® = vYk/2 if 2>0 and by cosh9 = V-k/% if 2<0.
In both cases the result is 2vk/(k+%) + C. The inte-

gration constant C is determined by using the fact that

according to (3.2.11) and (4.1.29), E(®,#,2,0) = 0.

i io
SOE(9,k,R,q) = L€

- K )
[} Yk(k+2)’*
From (4.1.30) therefore

2 E(,k,2,0) = ie'® - k E(¥,k,2,0). ---(4.1.33)

From (4.1.28) and (4.1.29) it follows that
1eikR
L(¢,F,a,b) = 2 —[Va E(®,k,ksiny,A-}m) + Va E(¢,k,~ksiny,-A+}m)
(31wkR% giny) 2

+vb E(9,k,ksiny,-B+in) +vb E(®,k,-ksiny,B-im)].

---(4.1.34)

On using (4.1.33) and (4.1.26) in (4.1.34) we find:
1eikR
L(¢,F,a,b) = - K(F,a,b) - 2 - X
~ (1mkR®sZindy)2

[Va E(¥,k,ksiny,A-1n) - Ya E(¥,k,-k siny,-A+}m)
+v/b E(Y,k,k sinvy,-B+im) -vb E(¥,k,-k sZny,B-3m) 1.
--=-(4.1.35)

From (4.1.30) and the identities

Y1+siny £ /T-giny = ¥2(1tcosy) » --=(4.1.36)

it follows that (4.1.35) can be written in the form

. ikR
K(F,a,b) + L(¢,F,a,b) = —~2¢2 ¢ _[C(a,b)/T=cosy - iS(a,b)/T+cosy 1,
(rk®R%2sindy)2

--=(4.1.37)

where http://etd.uwc.ac.za/
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C(a,b) = Vacos(A-1inm) + Vb eos(B-3im)
--=(4.1.38)
S(a,b) = vasin(A-3in) - Vbsin(B-1im).

Replacing ¢ by ¥ in (1.4.34) and applying (4.1.30) and the
identities (4.1.36) we find that L(¥,F,a,b) can also be ex-
pressed in terms of ((a,b) and S(a,b):
. ikR
L(¥,F,a,b) = =22°Y. 2 [((a,b) /T¥cosy - iS(a,b) /T-cosy .
(rk®R2siny)2

---(4.1.39)

In the expressions (4.1.11) for the field the values of
K(F,a,b) , L(%,F,a,b) and L(¥,F,a,b) are given by (4.1.26),
(4.1.37) and (4.1.39). From (4.1.12), (4.1.13) and (4.1.20)
we have that

z K(Fla,b) = zK(iTkF,a,b) ikeosy K(F,a,b)

z L(¢,FLa,b) =z L(¢,ERI§F,a,b)

ikecosy L(®,F,a,b)
2 L(¥,FYa,b) = zL(¥,3XF,a,b) = ikcosy L(¥,F,a,b).

Substituting these values into (4.1.11) and utilizing (4.1.37),
(4.1.39) and the identities

V1tcosy - siny Ylscosy = £ cosy Y1tcosy ,

it is found that (4.1.11sa) and (4.1.11sb) yield identical
results, as do (4.1.11ha) and (4.1.11hb):

_ **R1c(a,b)/T=50e7 + i5(a,b)/TFc00y ]

u(R) = -
(mkR%2sindy):2
---(4.1.40s)
u(R) = eikR[C(a,b)V1-cosY - iS(a,b)VT1+cosy ].

(nkR? sindy) 2
---(4.1.40h)

Both (4.1.40s) and (4.1.40h) yield for the square of the
magnitude of the field:

http://etd.uwc.ac.za/
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lu(R)|? = all-cosysin(2kasiny)] + b[1- cosy sin(2kbsiny)l
- Tk R sindy

+ 2/ab [sin{k(a+b)siny}l - cosy cos{k(a-b)siny}l
Tk R*sinldy
———(4.1.41)

The result (4.1.41) reduces to equation II(13) of Braunbek

(1950) if b=0, i.e. if the annulus becomes a circle.

Substituting (4.1.26) into (4.1.11hb) or (4.1.11sb) and ignoring
the terms containing L, the better Kirchhoff approximation (see
introduction) is obtained:

u(R) = lkR[‘/-s'm (A-3m) - /Fs'm(B-a'n)]

(1rk3R%ein® y)z

—--(4.1.42)

Multiplying (4.1.42) by cosy produces the weaker Kirchhoff
solution. This is evident from equations (4.1.11) and the rela-
tionship between F and F'. Note that the solutions of Kirchhoff
and Braunbek are the same for small values of y.

The far field: electromagnetic case

With P and Q respectively the points

R = (xl) = (Rsinycos®,Rsinysind,Rcosb)

and

p = (&) = (pcosd,psing,0)

in fig.4.1.1, the derivatives (2.5.15) and (2.5.17) of G are

given by ‘
_14dG -
Gy = Tar (xy, £ .
1dG 1464
GSLm= 2(5;3 - —fdr)(x 52)(xm-€m) trar Ot

In the far field region as depicted in fig.4.1.2 the derivatives
of G are approximated, utilizing (4.1.17) and (4.1.18), as
follows:

http://etd.uwc.ac.za/
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(GZ) = 1kG (siny cos®, siny sinb,co086) ---(4.2.1)

[G,,1 = -k%G[sin?ycos?e sin’ysinbcos®  simycosycosh
sin’ysinb cosd sin®ysin?6 sinycosysind
sinycosycosh sinycosysin® cos?y

S (4.2.2)

Applying the approximations (4.2.1) to the solutions (2.5.14)
we obtain:

e, = -ikcosyj]e1Gd£dn
A

e, = -ikeosy[fe,G d&dn ---(4.2.3)
A

ey = -tany (cosé e+ 8inb ez).

If one assumes that the operations carried out to obtain
(2.5.14) remain valid when integration takes place over the

complete X-Y-plane, the magnetic field can be obtained by
the same procedure:

hy = -ikcosyffh1G dgdn

=
]

» = -ikeosy[[h,G dEdn ---(4.2.4)

=
n

3 -tany (cosb h1+ sinb hz)

By applying Maxwell's equations (2.5.5) we now obtain hl and
ey respectively frqm (4.2.3)and (4.2.4) in terms of the values
of ez_and hz on the plane z=0., In the differentiation the
approximations (4.2.2) apply. We find:

h1 = —tanysinysine(cosee]+ sinb e,) - cbsyez

h

2 cosy €4+ tanysinycose(cosee1+ sineez)

h

3 siny(-sind et cosh ez)
—--(40205)
and

http://etd.uwc.ac.za/
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e, = cosysinysinb (cosb h1+ stnb hZ) + cosy h2
e, = —cosyh1 - taaninycose(coseh1+ sinehz)
ez = siny(sinelH -coséhz).

---(4.2.6)
In (4.2.5) e, and e, are given by (4.2.3) and in (4.2.6) h1 and
h2 are given by (4.2.4).

Maxwell's equations, applied to (4.2.5) and (4.2.6), yield the
original results (4.2.3) and (4.2.4) respectively. Equations
(4.2.5) and (4.2.6) are not independent either; the first two
equations of (4.2.6) are obtainable from the corresponding eq-
uations in (4.2.5) by solving for €4 and e,.

Comparing figures 3.3.1 and 4.1.1 we see that y=¢ for p> j(a+b)
and Y = ¢+m for p< j(a+b). In table 3.3 the angle 2y may there-
fore be equated to 2¢. The first two equations of (4.2.3) and
(4.2.4) can now respectively be written in the form:

2m a
e1(B) = -ikecosy 1¥(ks) sin2¢ Gpdpdo
ob
em a
e,(R) = -ikcosy [1- &(ks) + 1¥(ks) (1-cos2¢)]Gpdpdo
ob
---(4.2.7)
and
2n b o
h1(5) = —ikcosy[ (I*{J Y[ -¥(ks) + (¥(ks)(1+cos2¢)]1Gpdpdd
o o a
2T a
+ikcosY[ j Gpdpdd
ob
2n b o
hZ(B) = -ikcosyj (J +J.) 1v(ks) sin2¢ Gpdpde ,
o o a

---(4.2.8)

http://etd.uwc.ac.za/
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e1(5) = -likcosy L(?,Fs,b,a)
ez(B_) = -ikcosy[K(F,a,b)-L(@,F,b,a)+§L(‘P,F,b,a)-%L(‘l’,Fc,b,a)]
h1(B_) = ikeosy[K(F,a,b)+L(<I>,F,a,b)-%L(‘i’,F,a,b)-%L(‘P,Fc,a,b)]

h,(R) = -likeosy L(¥,F,,a,b).

cee(4.2.12)

In the electromagnetic case the approximation (4.1.17) must be
replaced by

eikR e-ikpsinycos(¢-6)
G~ R 5 . ---(4.2.13)

From (4.1.2) and (4.2.13) it follows that (4.1.19), derived for
the scalar case, remains valid:

eikR
F(p) = - Jo (kpszny). ---(4.2.14)

From (4.2.9), (4.2.13) and the properties of Bessel functions,
it follows that

ikR
Fg(p) = =5 sin28 J» (kpsiny)
---(4.2.15)
eikR
E (p) = - g ¢0826 Jz (kpsiny) ,
where .
8in2® Jp(z) = - é% 8in2¢ e~12 cos(¢-e)d¢
and °c ---(4.2.16)
20 |
cos26J2(z) =~ é% 0082¢e-12008(¢-6)d¢.
o)

By applying the asymptotic expansion J,(z) ~ -J,(z) and the
result (4.2.14), equations (4.2.15) become

E_(p)

sin20 F(p) ” 2 1)

Fc(p) cos2® F(p) .

http://etd.uwc.ac.za/



49

To evaluate the above integrals (4.1.2) is used as well as the
following related functions:

2m

J Gsin2¢ do = Fs(p)

0

2 ---(4.2.9)
I(3c032¢d¢ = Fc(p).

0

With the aid of table 4.1 equations (4.2.7) and (4.2.8) can
respectively be written in the form:

i(a-b)
e1(5) = -%ikcosy[ W(ks)[(b+s)Fs(b+s) + (a-s)Fs(a-s)]ds
o
a 2(a-b)
ez(g) = -ikcosy[ F(p)pdp + ikcosyf ¢(ks) [ (b+s)F(b+s) +(a-s)F(a-s)lds
b (o}
3(a-b
—%ikcosy] ¥ (ks)I(b+s){F(b+s) - ﬁ#b+sﬂ + (a-s){F(a-s) - RJa-sﬁ]ds
)
---(4.2.10)
and b =
h1(g) = ikcosY[J ¢ (ks)(b-s)F(b-s)ds + J ¢ (ks) (ats)F(a+s)ds]
) o)
b
-%ikcosyJ W(ks)(b-s){F(b-s)-+Fc(b-s)}ds
' 0
o a
-%ikcosyj ¥(ks) (a+s)F(a+s) +Fc(a+s)} ds + ichSYJ F(p) dp
o b
b A ©
hz(B) = —ikcosy[J W(ks)(b-s)fg(b—s)ds + J W(ks)(a+s)Fs(a+s)ds].
0 o
-~-(4.2.11)

As in the scalar case, the expressions (4.2.10) and (4.2.11)

are approximated by extending certain limits of integration to
infinity and respectively replacing ats and bzs by a and b where
convenient. In terms of the definitions (4.1.12) and (4.1.13)

therefore:
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Substitution of (4.2.17) into (4.1.13) yields

L(@,Fs,a,b) = gtnl6 L(9,F,a,b)
---(4.2.18)

L(@,Fc,a,b) = cos20 L(9,F,a,b).

Substituting (4.2.18) into (4.2.12) and utilizing the third
‘equations of (4.2.3) and (4.2.4) leads to expressions for
e, and h2 which can be written in the following form:

e1(5) = -ikcosy sinbcosb L(Y,F,b,a)

62(5) = ikecosy[K(F,b,a) +L(¢,F,b,a) - stn®0L(¥,F,b,a)]
eS(B) = -iksiny sin6 [K(F,b,a) + L(%,F,b,a) - L(¥,F,b,a)]
h (R) = ikcosy[K(F,a,b) + L(®,F,a,b) - cos?®6L(¥,F,a,b)]
hZ(B) = -ikcosy sinbcosé L(¥,F,a,b)

hS(B) = -iksiny cos6 [K(F,a,b) + L(®,F,a,b) - L(¥,F,a,b)].

—==(4.2.19)

Hence if (4.1.37), (4.1.38) and (4.1.39) are used in (4.2.19)
it follows that:

e (R) = sinf cosh eikR[C(a,b)V1+cosy + iS(a,b)vYT-cosy]
R 1
(mkR? siny) 2

e, (R) = eikRC(a,b)(sinysinze V1+cosy - V/T1-cosy )
2= ‘(“kstinay)%
ikR. . . 2
+€ iS(a,b) (siny sin®6 yY1-cosy - V1+cosy)
1
(nkR%2gindy)?2
e.(R) = _sin elkR[C(a,b)/l—cosy - iS(a,b)y1+cosy )
IR

(TkR2siny) 2
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h, (R) = eikRC(a,b)(siny'cosze Y1+cosy - V/1-cosy)
T
" (mkR2%ein’y)?

_eikRiS(a,b)(éiny cos?0 VT-cosy - V1+cosy )
T
(rkR%sin’y)?
h,(R) = sind cosd ¢ **C(a,b)/T¥505y - iS(a,b)/T-0sY]

- 1
(mkR%siny)?

h,(R) = _COSeeikR[C(a,b)Vl—cosY + iS(a,b)VT+cosy]

3 —_— .

(nkstiny)%
---(4.2.20)

Note that if equations (4.2.20) are substituted into (4.2.5)
and (4.2.6), the result is again (4.2.20). The assumption made
in the derivation of (4.2.4) therefore appears to be reasonable.

After some manipulation it follows from (4.2.20) that the mag-

nitudes of e and h are identical to that of the scalar field
given by (4.1.41).

(4.3) The field on the Z-axis: scalar case

If the point P in fig.4.1.1 is on the Z-axis, integration with
respect to ¢ in equations (4.1.1) reduces to multiplication by
2m. Integration by parts of terms containing ¢(ks) and use of
(3.2.5) and (3.2.11) cause the first terms of (4.1.1lsa) and

(4.1.1hb) and the last terms of (4.1.1sb) and (4.1.1ha) to
cancel, hence:

a
u(0,0,z) = -anj 39%%31(;dp —--(4.3.1sa)
b
a
u(0,0,2) = -JIBQgﬁs) + iko¥(ks)y ikrgp  _-_(4.3.1nb)
b w
u(0,0,z) = @(kb)eikz+ (J*_I)[3®§gs) . ikpf}ks)]eikrdp
0 a

---(4.3.1sb)
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b e
u(0,0,2) = o(kb)elk? 4 Z“Z(J'*J 3¢(ks)(3d
o a

---(4.3.1ha)

Transformation of the variable of integration to s according
to table 4.1 and bearing in mind that 3¢(ks)/ds = ik¥(ks),
gives:

2(a-b ik/(b+s)?+22 _ik/(a-s)%+2%
u(0,0,2) = —iszW(ks)[ ¢ ¢ 1ds
: 5 /(b+s)2+z2 V(a-s)2+2?2
---(4.3.2sa)
Ha-b) N —
u(0,0,2) = -ikJW(ks)[ 1+ —D*s g dk/(bes)iez®
] /(b+s)?+z2?
(a-b) | _
+ik[ Y(ks)[ 1 - —2=85 . ik/(a-s)%+2% 4
4 V(a-s)%+22
—-=(4.3.2hb)
b
u(0,0,2) = o(kb)eikKz. ikJW(ks)[ 1o —b=s g ik/(b-s)*+z?y
+ Y(b-s)2+z?
) 3 ikv/(a+s)2+z2
sik| v(ks)[1 + —21S ik ds
J V(a+s)2+z?2
---(4.3.2sb)
(0,0,2) = 8(kb)eik? Jb o) e
u(0,0,z) = ¢ - ikz| ¥ (ks ]
( e' i i) ( SOETT

o ik/(a+s)2+z?
+1kzj?(ks) T ds.

0

---(4.3.2ha)

The field at the origin can be obtained directly from equations
(4.1.1sa) and (4.1.1ha) by application of theorem 2.2. The same
results follow by setting z=0 either in (4.3.1sa) and (4.3.1lha)
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or in (4.3.2sa) and (4.3.2ha). To find the field at the origin
by means of (4.3.2hb) or (4.3.2sb) the variable of integration
is transformed to t=/2ks/v . On using (3.2.5), (3.2.11) and
(3.2.12) it follows that:

u(0) = 0 —--(4.3.35a)
u(0) = vZeMPr1 - e{k(a-b)}] ~--(4.3.3hb)
u(0) = o(kb) - vZelk? —--(4.3.3sb)
u(0) = ¢(kb). —--(4.3.3ha)

Where comparison is possible by setting b=0, these results are
in agreement with those of Bouwkamp (1954). However, for obvious
reasons, the field at the centre of a circular aperture cannot
be obtained from (4.3.3sa). It can be found by setting b=0 in
(4.1.1sa) and applying theorem 2.2.

The main contribution to the integrals in equations (4.3.3)
come from the neighbourhood of s=0. For small values of s we
have:

N

R2=32+22
a

]
o
M

+

N
)

2
Rb

_ > ---(4.3.4)
sina

It
[+
~
~

sinf =

|
- o
~
=

then

azs

& Sino

V(ats)?+z?

: ---(4.3.5)
eik/(ats)2+zz ~ o1ikRa iks sina
All the integrals in equations (4.3.3) are thus reduced to

linear combinations of the following integrals:
d

I(ta,d) = IW(ks) gtlks sina 4o —-—(4.3.6)
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Using (3.2.5), (3.2.11) and (3.2.12) we find that

130 vkd(1tsZina)/m
2¢* jmr?
e dr

I(za,d) _
kvVltszna 5

_if1- @{kd(lisina)}].
kvIzsina

---(4.3.7)

Substituting (4.3.4) into equations (4.3.2) and using (4.3.7)
yields:

u(0,0,z) = e ¥R/ T57B 11 - o{lk(a-b) (1+sinB)}]
-eikRa¢1+szna [1 - o{lk(a-b)(1-sZna)l}]
---(4.3.8sa)
u(0,0,2) = e KR ToTB 11 = o{1k(a-b) (1+sinB)}]
—etKRa At 11 - e{ik(a-b) (1-8n8) }]
———(4.3.8hb)
u(0,0,2) = o(kb)e X* + KR THE 11 - o{kb(1-84n8)}]
—eikRa¢1+sina
---(4.3.8sb)
u(0,0,z) = <I>(kb)eikz + eika/1+sinB [1 - ¢#{kb(1-8ZnB)}]

- ikRa/l—sina.
---(4.3.8ha)

Note that equations (4.3.3) can be obtained from equations
(4.3.8) by setting z=0.

Equation II (6) of Braunbek (1950) follows from (4.3.8sb)
by setting b=0 or from (4.3.8sa) by setting b=0 and ¢(}ka) =~ 0.

Kirchhoff's approximations are produced by ignoring ¢ and V¥
in equations (4.1.1) and integrating. The weaker and better
Kirchhoff solutions respectively follow from (4.1.1sa) and
(4.1.1sb) or (4.1.1ha) and (4.1.1hb):
eika _ eikRa

u(0,0,z) = ---(4.3.9a)

ikRp, ikR,

cosfB e - cosa e
http://etd.uwc.ac.za/
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APPENDIX

According to Luneburg (1944) the
2.2 may be weakened to read:

U(x,y) is sectionally continuous
circle with centre at the origin

55

condition (2.2.4) in theorem

in the X-Y-plane. Outside a

U(x,y) is continuous and has

continuous derivatives such that

|lU(x,y)]| < ZB -
X +y
laUa(Xx,X)l < B --=(1)
x2+y2
Iau(x,Y)l B
oxX - T ry?

His proof of the theorem is now reproduced, but in the notation
used in paragraph (2.2) of this thesis.

Let the polar coordinates (t,y) be defined by

r = (tcosy,tsiny,-z). ---(2)
Then (2.2.3a) can be written in the form:
_ A . 1dG
u(x,y,z) = -z [J U(x+tcosp,y+tsiny) & gt dtdy.
oo = (3)
Defining
2T
0(x,y,t) = [ U(x+tcosy,y+tsiny) dy , - (4)
o .
it follows that
eT = dg
u(x,y,z) = 'Z(I + I) O(x’y’/rz-zz) a'x—‘dr' ---(5)
z zT
On using the inequalities
Bl
IG(X,Y)t)I < f '-'(6)
and
dG dr 1+kD
Trael < gprg for 720, (7)
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the absolute value of the second integral in (5) is found to
be smaller than

mB" t2) dt = —b , ---(8
5 R )

where B'and B" are constants independent of z and T. From (5)
and (8) one may therefore conclude that

1kzs "
lu(x,y,z) + I 0 (x,y,2/57-1)2=(5-—) ds | < 7;——]3_——1-
---(9)
By letting z~+0, it follows that
N 1 Bu'
|l.1 (X’Y:O) + (T'I)U(XSY)l 5 ’ '--(10)
T -1

where u*(x,y,0) = lim u(x,y,z).
Z>0

Seeing that (10) holds for any value of T, we have that
lim u(x,y,z) = U(x,y) ,

Z->0
which completes the first part of the proof. In order to

complete his proof Luneburg had to show that u as defined by
(2.2.3a) also satisfies the radiation conditions, in this
thesis formulated by (2.2.2). As regards this part of the
proof he says:
"It remains to be shown that u also satisfies the conditions
(45.14) and (45.141). If the function f(x,y) is zero outside
a certain finite domain these conditions follow directly from
the fact that the kernel
K = - x2_2 leikr)
2TT O °T

satisfies these conditions. For functions f(x,y) which satisfy
only the conditions (45.13) one has to proceed in a manner
similar to the above by considering first a finite domain of
integration and then estimating the rest."

[In the above (45.14) and (45.141) are the radiation conditions,
equations (45.13) are the equations (1) and f(x,y) = U(X,y). ]
This merely outlines a procedure by means of which the proof
may conceivably be concluded.
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The above proof is not rigorous, because B" is not independent
of z and T. From (7) it follows that (8) only holds for zT > D.
Letting z-0 in (9) is therefore not permissible. In addition

the inequality (6) does not hold for all values of t. From (1)
we have:

B

|U(x+tcosy,y+tsiny) | <
’ /§2+y2+t2+2t(xcos¢+y§inw)

: ---(11)
The number inside the square root is larger than or equal to

x2+yz+t2-Zt/kzcos2w+yzsin2w+2xycoswsinw

= xZry?et?-2t /Xy (xoiny-ycosy) ?

> (t-R)?, ---(12)
where R? = x?+y?, --=(13)

By restricting the point (t,y) to the region outside the annu-
lus R-§ s t g R+§, the variable t will satisfy the inequality
R-t-8>0 or t-R-8>0. Therefore

(R-t)(R-8) >t or (t-R)(R+8) > &t. In both cases

St
|t - R| >R-s5 " ““(14)

The inequality (6) follows from (4), (11), (12) and (14).

Luneburg's proof can be made rigorous as follows:

From (5) we can deduce the inequality

lu(x,y,z) - U(x,y)]| < IZF:O(x,y,er-zz)-a—drl
D

+|U(x,y)-+zj 0(x,y,/r?-z ) dr|

---(15)

By choosing D=6 ~-R, the first term on the right hand side of
(15) will be smaller than or equal to
R+§

IzI 0(x,y,v/r?-z ) drl + |zI O(x,y,/r ) drl

zC(1+kD R+§ B"
<——Q—T—12“D logGglg) + 7= - ~--(16)
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The inequalities (7) and (8) as well as the fact that © is
sectionally continuous and therefore smaller than a constant
C, have been used in the last step. The value of D was set
equal to zT and consequently the expression (16) can be made
arbitrarily small by choosing z small enough.

The second term on the right hand side of (15) has already
been shown in paragraph (2.2) to vanish as 2-0.
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ABSTRACT

In this thesis a short wave approximation, the method of
W Braunbek, is used to determine the diffracted fields
(acoustic and electromagnetic) of plane harmonic waves by

an annular aperture.

Integral representations of the rigorous diffracted field
in terms of the surface field and its normal derivative
are derived. Babinet's theorem is proved for acoustic as
well as electromagnetic plane harmonic incident waves. A
derivation of Sommerfeld's solution for the diffraction

of plane harmonic waves by a hélf-plane is included.
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