
Genome-wide identiJication and

comprehensive analysis of
trons criptionsl desert regions

UIf Schaefer

Thesis presented in fulfilment of the requirements for the Degree

of Doctor Philosophiae at the South African National

Bioinformatics Institute, University of the Western Cape

April2009

Advisor: Prof. Vladimir Bajic

http://etd.uwc.ac.za/ 



Abstract

The initiation of transcription in mammalian genomes predominatly occurs

at 5' promoter regions, however increasingly initiation events have been

observed within introns, coding exons and 3' UTRs. Nevertheless there are

large segments of mammalian genomes that are not prone to transcription

initiation. These locations can be understood to be 'transcription initiation

deserts'. It is challenging and useful to demarcate these segments or

locations of the genome. The availability of a huge number of transcript data

has provided an opportunity to develop a methodology to predict and

annotate these genomic segments.

A comprehensive collection of data for Homo sapiens ard Mus musculus,

consisting of CAGE tags and other evidence for the existence of

ffanscription was used to develop a methodology that allows the annotation

of locations of mammalian genomes as those that are highly likely to initiate

tanscription and those that are unlikely to harbour transcription start sites

(TSSs). The algorithm allows the recognition of TSSs with 100%

sensitivity, which makes it the superior choice over other existing

algorithms for promoter prediction for the task of annotating TSS deserts.

98,680 and 113,814 transcription start sites were accurately determined for

Mus musculus and Homo sapiens respectively. The properties of the regions

immediately surrounding these TSS locations were used to determine

features that distinguish genomic franscription initiation segnents from

those that are not likely to initiate transcription. The algorithm utilises

various constraining properties of features identified in the upstream and

downstream regions around the TSSs, as well as statistical analyses of these

regions. The methodology thus developed was applied in order to analyse

the genomes of Mus musculus and Homo sapiens for areas unlikely to

initiate transcription. The analysis suggests that on average more than 40o%

of the human and mouse genome can be regarded as'transcription initiation

desert' and thus as highly unlikely to initiate transcription.
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The 'transcription initiation desert' regions that were determined with this

methodology were subsequently combined with other available evidence for

the existence of transcription to produce 'transcriptional deserts'.

'Transcriptional deserts' are set apart from'transcription initiation deserts'

in so far as the latter comprise regions of mammalian genomes that do not

initiate transcription while the former consist of regions that are neither

themselves transcribed nor are they likely to initiate transcription.

'Transcriptional deserts' were examined for their compositional properties,

repeat content, occrurences of single nucleotide polymorphisms (SNPs),

evolutionary conservation and the presence or absence of binding sites for

transcription factors. The results of these analyses suggest that while these

regions are not transcriptionally active, they cannot be regarded as devoid of

function. The data shows that they have distinct characteristics, harbour a

high concentration of remote regulatory elements and are of importance to

understanding gene function.

The method introduced in this work represents the first one capable of

identiffing large parts of mammalian genomes as'transcription initiation

deserts'. This methodology can significantly localise the search for TSS

locations and thus contribute to promoter and gene finding, to more

successful experimental designs, as well as to gene annotation. It can also

help in the assessment of 5' completeness of expressed sequences. The areas

identified in this work as 'transcriptional deserts' do play an important role

when investigating gene function.
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Preface

The research presented in this dissertation deals with three separable yet

connected issues. These three issues are dealt with in the tlree main

chapters of this dissertation and from them the overall stnrcture of this piece

of work is derived. Chapter one deals with the initiation of fanscription. It

establishes a reference dataset of transcription start sites and introduces a

methodology that allows the demarcation of locations in mammalian

genomes that are unlikely to initiate tanscription. The research presented in

chapter one is currently being prepared for submission for publication in

Bioinformatics.

The subject of chapter two is the analysis of transcriptionally inactive

regions in the genome of mammals. The methodology that was introduced

in chapter one was combined with other existing data to locate regions in the

genome that are devoid of any transcripts. These regions are subsequently

examined under various aspects like sequence composition and the

occurrence of mutations. This analysis gives indications of their genetic

function and their role in molecular cell mechanisms. The research

presented in chapter two is currently being prepared for submission for

publication n BMC Genomics.

Chapter three explains the design and implementation of PROMEX, a tool

for promoter extraction that was utilised for data procurement in chapter one

and has contributed to several other projects that were conducted during my

years of doctoral studies. Each chapter is presented as an independent,

conclusive and self-suffrcient piece of research. The dependencies and

interrelations of the chapters are briefly discussed in the final 'Summary'

section at the end of this document.

-1-
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Chapter 1 - The identification of transcription
initiation desert regions

INTRODUCTION

Although the full sequence of the human genome as well as other

mammalian genomes has now been available for several years, the

annotation of these genomes is far from being complete. Especially the

variability of the ffanscriptome and the existence of numerous sometimes

hugely different transcripts for a single gene have posed great challenges to

the scientific community in deciphering the exact function of all parts of

mammalian genomes. A substantial portion of these difficulties arise from

the fact that a large number of genes possess many possible transcription

start sites. These can be located far upstream or downstream from the 5' end

ofthe gene body.

The sequencing of full-length cDNA libraries, the generation of millions of

ESTs, and later tag approaches (CAGE, GIS, etc) [7-11] have provided the

scientific commrrnity with information on transcripts and the location of

their transcription start sites. This data illusfrates that franscription in

mammalian genomes can initiate at various and unusual positions (e.g.

coding exons, 3'UTR) U2,13) and thus contribute to the complexity of

mammalian transcriptomes. However, mammalian transcription does not

initiate randomly. It is observed that large segments of the genome are not

prone to the initiation of transcription. All collections of transcriptional data

show that transcription initiation activity in mammalian genomes is

concentrated in specific regions. At the same time, the data allows us to

conclude that there are vast stretches of DNA where transcription initiation

is not observed to occur. A detailed analysis of the TSS neighbourhood [4]
shows that there are a lot of regularities in the regions immediately

surrounding the TSSs, making these regions more suitable environments for

transcription initiation events. The same behaviour can also be observed in

the prevalence of genes and their locations on the mammalian genome. It is

2
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known that many regions in these genomes are considered to be gene

deserts [5,16]. They constitute regions that contain very few genes. At the

same time, many other segments of the mammalian genome are rich with

genes, such as human chromosome 22 ll7,l8]. Traditionally these gene

dense and gene desert regions have been interpreted in the convenient terms

of GC-ricbness of isochores on ft1e pammolian genomes [19].

Sometimes hanscriptional activity in the form of CAGE tags and/or

transfrags [20] is observed within the genomic desert regions. In order to

experimentally confirm the existence of such novel and unexpected

tanscripts, RACE [21] is the method of choice. If it is possible to obtain a

full length franscript from the observed tag, the existence of a transcript at

this location can be regarded as confirmed. However, the RACE primer

design is very difficult if no inforrnation on the transcribed regions is

available. On the other hand, if a TSS location is known and well-supported

by the existence of several CAGE tags or a combination of CAGE tag(s)

and other expressed sequences, then by designing primers close to this

known TSS, more than half of novel putative ESTs can be experimentally

confrrned through RACE. This brings into consideration the preparation of

experimental designs for confirming putative transcripts. It would be of

great value to computationally filter candidate transcripts before performing

RACE, to avoid wasted experiments.

Another issue is that it is difficult to ascertain that ESTs are 5' complete.

This problem is one of the buming issues in determining the accurate TSS

locations, which impacts follow-up studies on tanscriptional regulation. It

is thus of practical importance to be able to determine, computationally and

in advance, which regions in genomic DNA are likely to be good

environments for transcription initiation and which ones are not. The

availability of such knowledge would lead to more precise experimental

designs and to the elimination of a vast number of false positive

fanscription candidates. For example, if the 5'end of transcript falls into a

3
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region not likely to initiate transcription, this would signal its potential 5'

incompleteness.

The efforts of the scientific community have provided a vast amount of

transcript data that has allowed the very precise determination of a large

number of TSSs in mouse and human genomes 110,11,22,23]. Based on the

analysis of the properties of the upstream and downsteam regions

irnmediately surrounding the TSS [4], it was observed that TSS locations

in both mouse and human follow certain rules that confine these TSSs to

particular genomic regions. This idea was utilised and extended with the

aim to develop the Dragon TSS Desert Masker (DDM). This tool can

demarcate in a shand specific manner, locations in mammalian (mouse and

human) genomes that are highly unlikely to contain sites of transcription

initiation. The collection of all these locations is referred to as transcription

initiation desert or TID. The Dragon TSS Desert Masker (DDM) is a tool

that is capable of annotating a significant portion of the TID. The non-

annotated part is likely to contain the vast majority of transcription initiation

sites. This non-annnotated part is being referred to as transcription initiation

active region or TIAR. DDM is able to perforrn the distinction between TID

and TIAR with high accuracy.

Using DDM, it is possible to mask a part of TID regions in mammalian

DNA. The non-masked regions indicate TIAR that is likely to harbour the

vast majority of genuine TSSs. The TIAR might possibly support a more

precise RACE primer design and can help in estimation of completeness of

the 5'-ends of ESTs. Consequently, they can help in annotation of promoter

regions in mammalian genomes and moreover, such information can

complement promoter and gene finding and help focus on those regions that

are of particular interest.

4
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RESULTS

TID is defined as the set of all strand-specific genomic locations that are

highly unlikely to initiate transcription. The remaining locations are called

TIAR and contain the vast majority of genuine TSSs as well as a remaining

portion of locations unable to initiate transcription that were not possible to

localise using the current TSS prediction algorithm introduced here.

Currently and unfortunately, it is impossible to determine whether the

majority of all genuine TSSs for any marnmalian genome are known.

Therefore, as regrettable as it might be, only estimates of TID can be made.

This is because of the aforementioned non-detenninability of whether or not

all genuine TSS locations are known for any mamm2li61 genome. For the

sake of simplicity these estimates of TID are referred to as TID in the

further text. A number of key promoter features were detennined. These

allow the separation of mammalian genomic sequences into active (TIAR)

and desert (TID) domains relative to transcription initiation. Due to the fact

that TID is only estimated, based on a computational algorithm that is not

perfect, TIAR are considered to be a set of genomic locations that contain

the vast majority of the known TSS locations, while TID are those genomic

locations that contain only a minimal fraction of known TSSs or contain no

TSSs at all. Thus the density of known TSS locations in TIAR is expected to

be considerably higher than in TID. In order to be able to make the

distinction between TID and TIAR regions, one needs to be in possession of

a tool that is able to distinguish between genomic positions that are likely to

initiate transcription and those that are unlikely, in such a way that no or

only very few false-negative statements about TSS locations are made. This

is equivalent to a TSS recognition system that operates at or very near 100%

sensitivity. Subject to the condition that the TSS set has sufficient coverage,

at this level of sensitivity it can be expected that the areas labelled as

unlikely to initiate transcription are indeed aLnost completely devoid of

TSSs, because all or nearly all non-TSS statements made by the predictor

will be true. In this context, TID are understood to be those locations that

-5-
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were determined to contain no, or almost no, known TSSs. On the contrary,

TIAR is composed of those locations that contain all, or almost all, known

TSSs, but it also contains all false positive TSS predictions. It is for this

reason that it is not claimed that all locations within TIAR are potential

TSSs.

Algorithm

The efforts of the Fantom3 consortium [12] constitute one for the most

comprehensive collections of transcription data available. Based on

Fantom3 CAGE data and at least one other piece of evidence for the

existence of a transcript, two highly accurate sets of TSS locations were

compiled. The exact methodology that was employed for the compilation of

these data sets is described below in the 'Methods' section of this chapter.

For each true TSS location, chromosome, stand and genomic position are

recorded. The TSS data set for Mus musculus consists of 98,682 accurately

determined TSSs, while the TSS data set for Homo sapiens contains

113,814 accurately determined tanscription start sites. These data sets are

used as reference sets of positive samples for genuine true TSSs.

Using these mouse and human TSS data sets, the compositional properties

of single-stranded DNA segments covering [-100, +100] nt regions relative

to the TSS were analysed. Based on these properties, a system that utilises a

variety of different frltering methods in order to filter out those DNA

segments that are unlikely to represent genuine TSS positions was designed.

When presented with a previously unseen DNA segment, the system is able

to accurately determine whether this segment is likely to harbour a genuine

true TSS position. Each filtering method employed in the algorithm filters

out different fractions of the data by concentating on different

characteristics of the compositional properties of the DNA segments

provided. These frltering methods were combined in a multi-staged daisy-

5
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chain algorithm that consists of four different classification phases. The

exact method of operation for the complete algorithm is described below in

the 'Methods' section of this chapter. On overview of the layout of the

algorithm is given in Figure l.

Sing[e stre nd D NA sequenae

TSS class iflcation va I ue

Figure 1: Layout of daisy-chain algorithm, performance estimates after each step in
parenthesls

The algorithm analyses nucleotide sequences of length 200 nt. For each

segment of DNA that the algorithm examines, it returns a classification

value. This output classification value reflects the algorithm's prediction of

whether the segment contains a TSS at its centre or not. A threshold is

applied to this value in order to determine whether the examined sequence

contains a TSS or not. The centre (nucleotide at position +l) of the

examined [-100, +100] sequence is masked as a location unlikely to initiate

transcription if the classification value is below this threshold. If the

classification value is above this threshold, then the centre of the examined

sequence is marked as a potential ffanscription start site.

Boundarycondition fihering method [SE: 1009t,5P: 3096]

Positionweight matrrixfiltering nrethod (SE: 1O096, SP: 359{}

Unea r dis cri m ina nt a na fus is filtering met hod [SE: 1tl0%, 5P: 45%]

Support vector ffraehine fiftglirlg method (SE, SF: va riab[e]

-7-
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While this algorithm can be regarded superficially as an ordinary promoter

predictor, one has to keep in mind that the accurate prediction of TSS (while

desirable) is not the intent or purpose of the presented algorithm. DDM is

specifically designed to detect TID, which means that the prediction of

TSSs is only implicitly ttre subject. The DDM algorithm is specifrcally

tuned to operate in such a way that is produces no or very few false-

negatives which is a necessary requirement for producing accurate estimates

of TID. For this reason DDM is not suitable to be used as a tool for the

accurate prediction of TSSs. This point is elucidated further later in the text

when DDM is compared to existing promoter predictors in the context of

predicting TID.

Performance

The algorithm was applied to data sets from Mus musculus and Homo

sapiens. All genuine TSSs from the reference data sets were used as positive

samples. An equal amount of random DNA was extracted from the genome

of the respective species. These random DNA sequences served as negative

samples. The algorithm was applied to all data and the resulting

classification values were collected. After that, a range of threshold values

was applied to the classification values ard sensitivity and specificity values

were determined in order to assess the algorithm's performance. The

perforrnance is reported for two separate cases (see Figure 2). Firstly, a 4-

fold cross-validation, for which a quarter of the sequences was selected

randomly for testing, while three quarters were used for training. The

average sensitivity and specificity values for the four test sets are reported in

Figure 2 as case 'test' for mouse and human sequences. Secondly, the entire

available data sets were used. For this second case no separation between

test and taining sets is undertaken. Sensitivity and specificity is reported for

the entire available data and shown in Figure 2 as case 'training' for mouse

and human sequences. The resulting models of the case 'training' are also

-8-
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used in the algorithm's web implementation which is available at

http ://apps. sanbi.ac.zalDDIW.
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Figure 2: Sensltlvlty vs. speciflcity trade-off curve for human and mouse average O/
pet{ormance, and performance on the whole data sets.

One observes that, with the models 'hat were derived from all available

data, which were also used in the implementation of the web server version

of DDM, at the level when no known TSSs are lost (which represents a

sensitivity of 100% in the system) about 45o/o of the mouse and human

random non-TSS DNA sequences are recognised correctly as those that

should not initiate transcription. The fact that DDM delivers this

performance at 100%o sensitivity is essential to the algorithm's ability to

recognise transcription initiation deserts. This is because the entirety of the

areas that are annotated by the algorithm as not likely to initiate

9
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transcription can only be regarded as TID if the remaining areas contain all

or nearly all genuine transcription start sites. This is only tnre when the

algorithm works at or very close to 100% sensitivity. At lower rates of

sensitivity the areas marked as not qsntaining TSS will still contain a

portion of the true TSS that is too high to denote these areas as transcription

initiation desert regions. As the next section will show, DDM is the only

tool that is specifically designed with the intention of detecting TIDs and

therefore the only tool that can be used for such purpose.

At a lower sensitivity seffing of 99.22% (99.53%), DDM is able to mask a

remarkable portion of 8l.75Yo (78.45%) of the mouse (human) random non-

TSS DNA sequences. DDM sensitivity of 99.22o/o means that the system is

not able to recognise 0.78Yo of the real TSSs from the reference data set.

With a balanced sensitivity/specificity setting DDM was able to retain

95.44% (95.33%) of tnre TSSs while at the same time masking 95.63%

(93.58%) of the mouse (human) sequences as unlikely to initiate

transcription. When 99.16% (98.83%) of the random non-TSS mouse

(human) sequences are masked as unable to initiate transcription, a

significant portion of 84.76%o (80.74%) of the true TSS is recognised as

positions likely to harbour a TSS. The performance of DDM at various

thresholds for human and mouse sequences is shown in Table l. The table

shows results obtained with models derived from all data and results

obtained through a 4-fold CV for both species.

-10-
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Mouse whole set Mouse CV Hl&nnrwholaset HwnC]\T

threshold Sensitivity Specificity threshold Sensitivity Specificity threshold SensitiviW Specificity threshold Sensitivity Specificity

-2.50 100.m% 45.45% 2.50 95.lOYo 45.O7% -2.50 100.00% M.77% -2.50 95.36% 44.5L%

-2.00 99.99% 45.95% 2.00 96.07% 45.s5% -2.00 100.00% M.97% -2.00 95.35% 44.74%

-1.50 99.9L% 55.03% 1.50 95.72% 54.82% -1.50 99.98% 49.47% -1.50 96.20% 49.34%

-1.00 99.22% 8L.75% 1.00 94.30% 74.40% -1.00 99.53% 78.45% 1.00 94.62% 73.73%

-0.50 97.47% 92.Ot% -0,50 92.49% 89.16% -0.50 97.59% 89.92% -0.50 92.46% 86.71%

-0.25 96.50% 94.05% -0.25 91.47% 92.10% -0.25 96.42% 91.96% -0.25 91.47% 89.69%

0.00 95.44% 95.63% 0.00 90.2r% 94.LL% 0.00 95.33% 93.58% 0.00 90.29% 91.91%

0.25 94.33% 96.86% 0.25 88.80% 95.52% 0.25 94.23% 94.94% 0.25 88.91% 93.47%

0.50 92.98% 97.8t% 0.s0 86,98% 96.68% 0.50 92.98% 96.77% 0.50 87.72% 94.74%

o.75 91.50% 98.51% 0.75 84.52% 97.66% 0.75 91.46% 97.29% 0.7s 83.42% 95.91%

1.00 u.76% 99.16% 1.00 77.36% 98.40"/. 1.00 80.74% 98.83% 1.00 70.95% 97.22%

t.2s 47.12% 99.65% 1.25 46.08% 99,O9% 7.25 34.57% 99.75% L.25 33.19% 98.91%

Table 1: Sensitivity and speciflcity values for mouse and human test and tralnlng cases

For the identification of TID, the performance of the algorithm at very high

sensitivity levels (100%) is most relevant. This is because only when the

false-negative rate is equal to or very near 0%o one can 6saningfully speak

of the areas that were recognised as unlikely to initiate transcription as being

'ffanscription initiation deserts'.

Comparison with existing promoter prediction programmes

If the ideal TSS predictor exists (sensitivity : l00Yo, specificity = lO}Yo),

determination of TID will be tivial. However, such TSS predictors do not

exist as yet, although many good tools for TSS prediction are available.

Albeit, none of these tools has a performance that can solve the problem that
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was investigated here (TID estimation). This will be shown later by a

comparison analysis.

The novel question that was investigated here, and which has never been

attempted before, is the estimation of TID regions. The knowledge of these

regions makes as much sense as much as the knowledge of TSSs. If it is

agreed that it is useful to have knowledge of regions that can initiate

transcription, then it is equally useful to have knowledge about regions that

cannot initiate transcription, if for no other reason than for localising the

search for promoters/TSSs. One can argue that the task of predicting TIDs

cannot be understood to be equivalent to the task of accurately predicting

TSSs. To support this notion, consider a TSS predictor that predicts TSSs at

80% sensitivity. This means that 20o/o of TSSs still remain in TID. This is

why it is claimed here that the estimation of TID is not simply the negation

of TSS prediction. The best one can currently have is a TSS predictor that is

capable of predicting TSS with close to 100% sensitivity, since only then

does it makes sense to talk about TID (and estimates of TID) at locations

where predictions are not made. In fact it can be argued that TSS predictions

and TID predictions are two tasks directly opposite with regard to their aim.

While the prediction of TSS concentrates on predicting TSSs with the

highest possible accuracy, the aim of predicting hanscription initiation

deserts endeavours to achieve the opposite, namely to identify regions, as

accurately as possible, that do not initiate transcription. While this seems to

be the same thing at first glance, the distinct difference in aim has wide-

ranging implications on a system's design and its eventual use. Therefore

estimating TID is not simply the negation of predicting TSSs. Truly a TID

predictor was developed implicitly as a TSS predictor, or as a promoter

prediction system. However, in order to have as accurate a prediction as

possible of TID locations, the TSS predictor has to operate at a sensitivity

level of or very near 100%o in order to avoid false-negative TSS predictions.

Such false negative prediction would have the effect that the estimated TID

still contains a certain amount of genuine TSSs. In such cases one cannot

rightly label the locations as belonging to TID.
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Many existing promoter prediction progtunmes (PPPs) have been

developed with the general aim to predict TSSs with certain levels of

precision and positional accuracy [24]. These tools are designed to forecast

the existence of transcription start sites or more generally promoter regions.

However, none of these programmes was desigued to identifu TIDs. The

goal that the designers of these prograrnmes had in mind was a rather

different one 124,25). These existing prograrnmes intend to reach the best

possible trade-off between sensitivity and false-positive rate. DDM, on the

contary, is designed in such a way that it allows the recognition of all or

very nearly all tnre TSS locations (i.e. -100% sensitivity). Moreover, in

many cases the positional accuracy of the predictions of TSSs by existing

PPPs is poor, which in itself makes the identification of TIDs complicated.

DDM, on the contrary, annotates genomic locations as likely or unlikely to

initiate transcription with the highest possible positional accuracy of no

mismatch between the prediction and the real TSS. Consequently, DDM

appears to be the only tool available that is specifically designed to

demarcate regions unlikely to initiate transcription.

Having asserted the above claims, it can be argued that a comparison of
DDM with existing PPPs is dispensable. Such a comparison would compare

systems that have distinctly different basic design goals and thus this

comparison is questionable. However one could also argue that the same

goal that DDM is designed for can, in principle, be achieved with the

existing promoter predictors. In principle, any promoter predictor that

provides a very high sensitivity level (close to 100%) of predicting TSS

locations at a one nucleotide resolution can serve the purpose of estimating

TID. To test if this is possible with the currently available promoter

predictors, a comparison between the abilities of several such predictors and

DDM to accurately predict TID was made. It should be highlighted that the

aim of this comparison is not to evaluate how well promoter predictors

perform in predicting TSSs (though this aspect is implicitly involved), but

rather how capable they are in accurately estimating TID. This comparison
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analysis will show that DDM is superior for this task and achieves accuracy

that is much better than other systems can achieve.

In order to make a comparison of how well PPPs and DDM perfomr in

identiflrcation of TIDs, prograrnmes from 124,251were evaluated. For this

purpose the datasets HTSS"o.pur" and RNDM"ompare w€r€ created. For details

about the creation and content of these datasets please see the 'Methods'

section of this chapter. To make this comparison as fair as possible, a test

set was created that contains 1000 randomly selected TSSs (HTSS"o-pu,")

from the original human TSS set, and 1000 randomly selected human DNA

sequences, RNDI\4o.pa.e. DDM was then retained with the ls6aining

human TSS sequences and the random DNA sequences that did not contain

RNDI\[o-pur" (see the 'Methods' section of this chapter). Consequently, the

test set data is completely independent of the training set for DDM for this

comparison.

The datasets HTSS.o.r*" and RNDlvlomparc w€r€ analysed with Promoter2.O

[26], NNPPz.z1271, First Exon Finder [28], Eponine 129) and Fprom [30].

N-SCAN [31] and McPromoter 132) do unfortunately only allow very

limited online submission and thus were not tested with HTSScompare orld

RNDI\4o.p-". Instead only the performance as it is given by the authors of

the respective studies could be reported. CpGProD [33], Dragon Promoter

Finder [34,35] and Dragon Gene Start Finder 136,371have specific design

constraints that make them unsuitable for this comparison. The constraints

of these three PPPs are further elucidated in the 'Discussion' section of this

chapter.

The URLs of the PPPs used in this comparison can be found nTable 2.
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Promoter2.0 http://www.cbs.dtu.d k/services/Promoter/

NNPP2.2 http://www.fruitfly.orglseq_tools/promoter.html

First Exon Finder http://ru la i.csh l.org,/tools/Fi rstEF/

Eponine http ://servlet.sanger.ac. uk:8080/eponine/

Fprom
http://www.soft berry. ru/berry.phtml?topic=fprom&group=progr

a ms&su bgrou p=promoter

N-SCAN http://mbla b.wustl.ed u/nsca n/su bmit/

McPromoter
http://tools.genome.duke.edu/generegu lation/McPromoter/Mc

Promoter.html

Table 2: URLs of promoter predictlon tools used ln comparlson

Two tests were conducted wherever possible. For the first test (test A), a

mismatch of +100 nucleotides was allowed for a prediction of a TSS to be

counted as correct. For the second test (test B), only those predictions were

counted as correct that predict the known true TSS with no mismarch. A

negative prediction was regarded as correct if there was no prediction yithin

100 nucleotides of position 801 for each sequence in RNDM"'.*" (for test

A) or if there was no prediction at 801 exacfly (for test B). The results of

these experiments are described below.

The tests were conducted using trvo data sets, a set of 1000 sequences from

human covering [-800, +800] relative to a known true TSS (HTSSro-p.")

and a set of randomly chosen human sequences of length 1600 nt

(RNDI\4ompa,e). Sensitivity was determined on HTSScompore as the portion of
sequences in HTSS"o.p"." that were correctly recognised as TSSs by the

respective tool, either with (test A) or without positional mismatch (test B).

Accordingly, specificity was determined on RNDM"o-p,," as the portion of
those sequences in RNDI\,[o.p"," that were correctly recognised as not being
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a TSS by the respective tool, either with (test A) or without positional

mismatch (test B). It is in this way, that DDM achieves a sensitivity of

99.8% and a specificity of 40.1% at threshold -2.0 with no mismatch (test

B) and 100.0% and ll.lo/o for sensitivity and specifrcity respectively at

threshold -1.0 (test A).

Consider for example a PPP that achieves a performance of 85% sensitivity

and 80% specificity in identifring TSSs. While this is a respectable

performance for TSS prediction, this tool can still not be used for the

identification of TID. This is because a sensitivity of 85%o means that lioh

of tnre TSSs are not recognised as TSSs by this tool. The consequence of

this is that areas labelled as devoid of TSS by this tool would in fact still

contain 15% of tnre TSSs. This would disqualiff these areas as

'transcription initiation deserts'.

Promoter2.0

Promoter 2.0 does not allow the setting of any threshold. For test A, a

sensitivity of 22.5% and a specificity of 86.6% were achieved on

HTsscompare and RNDlrrl"ompare rospoctively. Promoter2.0 does not provide

predictions with no positional mismatch, so test B was omitted for this tool.

NNPP2.2

For test A the threshold for which NNPP2.2 achieves 100% sensitivity on

HTSS"o.pu." was determined to be F0.12. For this value of t, a specificity of

4%o on RNDM"o-pur" in test A is observed. For test B, a sensitivity of 2I%o

and a specificity of 95% for the same value (F0.12) is seen.

First Exon Finder

The lowest available threshold F0.2 for all probabilities was used. This

selection of the threshold guarantees the highest possible sensitivity that this

tool can achieve. For test A, First Exon Finder achieves a sensitivity of

40.7% and a specificity of 98.6Yo on HTSS"ompare &nd RNDN4o-pa,"
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respectively. First Exon Finder does not provide predictions with one

nucleotide accuracy, so test B had to be omitted for this tool.

Eponine

The lowest available threshold F0.9 was used. This threshold selection

delivers the highest sensitivity possible for Eponine. For test A, Eponine

achieved a sensitivity of 34.3o/o and a specifrcity of 91.4% on HTSS"o-o-"

and RNDMcompare respectively. Eponine does not provide predictions with

one nucleotide accuracy, so test B had to be skipped for this tool.

Fprom

The thresholds for which the authors report a sensitivity of 100.0% for non-

TATA-box promoters and TATA-box promoters respectively (-9.496 and -

6.766) were used. For test A, Fprom achieves a sensitivity of 59.3%o and a

specificity of 99.4Yo on HTSS"o.pare otrd RNDMco-pur" respectively. For test

B, a sensitivity of 2.4% and a specificity of 100.0% was observed.

N-SCAN

N-SCAN does not allow the submission of multiple sequences

simultaneously, so meaningful tests could not be conducted. The authors of

this tool do however report the performance of this tool to be 2Io/o vs. 29o/o

for sensitivity and specificity respectively when predicting transcripts and

84Yo vs. 63%o when predicting exons.

McPromoter

McPromoter does not allow the submission of multiple sequences

simultaneously, so meaningful tests could not be conducted. The author of

this tool does however report the tool to have a sensitivity of 65% at the

highest available sensitivity level.

The perfomrance of all PPPs that were examined is summarised in Table 3.

The performance of DDM with no mismatch allowed is shown in Table 4

for comparison. For Table 4 threshold values were adjusted to match each
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sensitivity and specfficity value reported in Table 3 and the corresponding

perfonnance of DDM at this threshold is reported.

Table 3: Performances of promoter predlction tools

Tool SE SE SPSP threshold

Promote12.0 22.5% 86.6% nla nla nla

NNPP2.2 100.0% 4.O% 0.L2 2L.O% 9s.0%

First Exon Finder 40.7Yo 98.6% 0.2 nla n/a

Eponine 34.3Yo 91.40% 0.9 nla n/a

Fprom s9.3% 99.4% 0.0 2.4Yo LOo.O%
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2.4OYo 100.00%

4.O% 99.90%

2L.OOYo 99.50%

22.50% 99.20%

34.30Yo 99.LOYo

38.40% 98.6OYo

4O.7OYo 98.50Yo

53.3/o 98.2%

8s.s0% 95.00%

9L.20% 91-.40Yo

9230% 86.60%

95.20Yo 58.7OYo

99.80% 4.OO%

100.00% 4.OO%

Table 4: Performance of DDM on HTSSffip.rc and RNDM,TD.E wlth no mismatch (test B)

Based on the results obtained through this comparison, it can be concluded

that none of the PPPs described achieves a performance that is good enough

to identifu, with a high accuracy, locations that are not likely to initiate

transcription. Such locations must be guaranteed to be largely devoid of

TSS. DDM is the only tool prese,ntly available that manages to detect such

locations. However, it must however be remarked that the performance of

the programmes tested might improve if they were trained with the highly

accurate datasets rhat were used for DDM or if they could be tuned

specifically for sensitivity of 100% or close to it. Since in many cases the

promoter data sets that have been used in the configr,rration of the tested

PPPs have been limited by today's standards for knowledge about
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0anscription initiation, the performance of the PPPs examined must be seen

in the light of their age and the availability of data at the time of their

creation.

Application of DDM to identify TID

ln order to make any statement about how much of the mammalian genome

is able to support the initiation of transcription, the DDM algorithm needs to

be applied to the entirety of all chromosomal sequences. Each position

within the chromosomal sequences needs to be examined. To achieve this, a

sliding window of length 200 nucleotides is analysed by DDM. The

algorithm deterrnines the propensity of the nucleotide at position +l to be

the location of transcription initiation. After that, the window is moved by

one nucleotide and the analysis is repeated for the next nucleotide at

position +1.

The human chromosomes 21, 22 and 4 were selected as showcases for the

analysis of the whole genome. These chromosomes reflect an average, high,

and low GC-content with regard to the whole human genome. Since the

gene-richness and the amount of transcriptional activity on a certain

genomic region is often explained in terms of the GC-content of this region,

it is interesting to see how DDM behaves in GC and AT rich environments

respectively. As a matter of fact, the amount of known genes on

chromosomes 21, 22, and 4 is about average, and relatively high, and low in

comparison with the whole human genome as well, when nonnalised for the

size of the chromosomes. The DDM algorithm was applied to the forward

and reverse strand of the chromosomes in question. The results are shown in

Table 5. They reflect the average between positive and negative strand,

keeping in mind that the differences between the two strands are minimal to

start with.
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Threshold TID TIAR TID TIAR TID TIAR

0.0 97.53% 8.47% 78.!8Yo 2L.82% 95.87% 4.L3%

-2.5 41.1/o 72.8% 46.84Yo 53j6%s8.9% 27.2%

Table 5: TID and TIAR of three showcase human chromosomes

For the analysis of these chromosomes two different threshold settings (0.0

and -2.5) were used. The latter threshold allows a perfbnnance of 100%

sensitivity on the complete data sets. Sensitivity in this case refers to the

ability of DDM to correctly identiff a TSS location. For all chromosomes

examined, a certain level of masking was observed, which refers to the

proportion of the chromosome that is deemed very unlikely to harbour

TSSs. If a sequence is annotated with DDM a threshold of -2.5 should be

used to ensure that all or the vast majority of potential TSSs are recognised

correctly.

One notices that this level of masking is in correlation with the GC-richness

of the chromosomes, as well as with the number of known genes [22] on

these chromosomes. This means that the higher the GC-content of (or gene

density on) a chromosome, the lower the observed level of masking, and

vice versa. ln so far the observations made regarding the level of masking

through DDM comply with the expectations that arise from information

about the GC-content of the examined chromosomes. However, in spite of

the observed correlation between level of masking and GC-richness, the

TIDs are not confined only to the GC-poor regions and can be found also

within the GC-rich areas. Chromosome 2l car, be regarded as a showcase

s;ample, because it has an approximately average GC-content in

comparison with the entire human genome. At a sensitivity of 96.36%o on

cross-validation, 4l.l%o of the chromosome is masked as TID. At a

sensitivity of 90.29o/o on CV, 9l 53% of human chromosome 21 is masked

2L

http://etd.uwc.ac.za/ 



as TID. If the locations of the genuine tnre TSS that are present in the data

set for human chromosome 2l are compared with the regions that were

marked as likely to initiate hanscription, it can be shown that the remaining

8.47% of chromosome 21 contain -92% of all TSSs on this chromosome.

This makes the density of TSS in the TIAR 132 fold higher than that in the

TIDs. This justifies the classification of the TID and TIAR domains as

active and desert regions relative to transcription initiation that was

introduced earlier in this chapter.

For human chromosome 22, which has a relatively high GC-content in

comparison with the whole human genome, 21.82% of the chromosomal

sequences are marked as TIAR. This portion of the chromosome contains

93.8% of all genuine tnre TSS for this chromosome. This makes the density

of TSS in TIAR 54-fold higher than in TIDs. For human chromosome 4,

which has a relatively low GC-content in comparison with the whole human

genome, 4.13% of the chromosomal sequences are obtained as TIAR. This

portion of the chromosome contains 83.6% of all genuine true TSS for this

chromosome. This makes the density of TSS in TIAR I 18-fold higher than

in TIDs.

Repeats and transcription initiation deserts

Repeat sequences are an abundant genomic element in vertebrates. In

mammals they often make up more than 40o/o of the entire genome [38].

Repeats can be roughly grouped into trvo categories, tandem repeats and

interspersed repeats. Tandem repeats are normally areas of low complexity

DNA where a certain motif is repeated a certain number of times. The

motifs are usually not longer than 60 nucleotides and often significantly

shorter. Interspersed repeats are longer sequences that fall within the larger

group of mobile genetic elements. These sequences possess the ability to

move from one location in the genome to another by multiplying

themselves. There are two basic mechanisms through which this is
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achieved: one directly employs an erzyme called 'transposase', which

directly transfers the genomic element, while the other one involves the

transcription of the interspersed repeat to an RNA intermediate and the

subsequent reverse transcription of the intermediate. There is evidence that

suggests that repeat elements play a role in evolution by helping to form

new genes. They might also play a role in genetic disorders [39-411.

Repeat elements were previously regarded to be of little significance for the

characteristics and behaviour of the cell. The opinion that these sequences

constituted 'genomic background noise', that had no function, was popular.

In fact, repeat sequences are regularly excluded from analyses that deal with

gene function, gene regulation and other issues revolving around the

functional annotation of eukaryotic genomes (e.9.la{). With this in mind,

it is interesting to examine in how far repeat sequences are able to initiate

transcription. The general expectation would be that extremely little to no

transcription is initiated from within repeat regions.

In order to facilitate this analysis, RepeatMasker

[http://www.repeatmasker.org] t43l was applied with all default settings for

Homo sapiens to a set of sequences spanning [-100,+100] around all known

genuine human TSSs. Of the total length of these sequences, 4.95Yo are

masked as repeats, predominantly as simple repeats and areas of low

complexity (Table 6). This means that -5% of all nucleotides that are less

than 100 nt from a known TSS are classified as belonging to a repeat

sequence. Of all known genuine TSSs, 18.48% possess a repeat within less

than 100 nucleotides upstream or downstream of the position of the TSS.

Therefore 81.52% of TSSs do not have a repeat within 100 nucleotides

around them. Of the genuine true TSSs themselves, 3.4Yo were masked by

RepeatMasker. It can therefore be concluded that it is incorrect to regard

repeats a priori as incapable of initiating transcription, since the analysis

shows that 1 in 30 TSS lies within arepeat.
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f il-e name:
sequences:
total length:
GC level:
bases masked:

human_tss_113814. fa
113 814
22762800 bp (22'762800 bp excl N/X-runs)
66.37 Z

1-\21416 bp ( 4.95 8)

number of
elements

length
occupied

percentage
of sequence

LTR elements: 198
MaLRs 46
ERVL '7 O

ERV_cl-assI 69
ERV cl-assIl I

SINEs:
ALUs
M]Rs

LINEs
LINEl
LTNE2
L3 /CR1

DNA elements:
MERl_type
MER2_type

SateIl-ites:
Simple repeats:
Low complexity:

150
89
69

12831 bp
6265 bp
6280 bp

136
49
13
13

2'7 489
6234
9982
95 55
1304

31
t6
72

0. 06 r
0.03 I
0.03 I

0.07 I
0.03 I
0.04 I
0. 01 I

L6253
671 9

8722
L298

3550 bp
1-625 bp
1011 bp

222Q bp
444794 bp
620166 bp

0. 00 I

0.26 *

207 bp 0.00 I

bp
bp
bp
bp

bp
bp
bp
bp
bp

0.1-2
0.03
0. 04
0. 04
0.01

0 .02
0.01
0. 00

I
I
I

Unclassified: obp

Total interspersed repeats: 60143 bp

Sma1l RNA 4

20
I 990

14 315

0. 01 t
1.95 I
2.73 Z

Table 5: Repeat analysis for human TSS sequences

The regions masked on human chromosome 2l by RepeaMasker (46.47%

masking) and the regions masked by DDM (91.53o/o masking) were

compared. Not all repeats are masked by DDM, which agrees with the fact

that a fraction of TSSs was observed to be located within repeat sequences.

In fact, only about half of the sequences marked as TID on human

chromosome 2l are repeat regions. The other half seems to consist of

sequences that are not repeats, but nevertheless not able to initiate
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ftanscription. To elucidate this further DDM (with balanced sensitivity and

specificity levels) and RepeatMasker were applied sequentially to human

chromosome 21. The area that was left unmasked by either tool corresponds

to TIAR that does not contain any repeat sequences. This area covered

7.43% of the chromosome, compared to 8.47o/o that was left as TIAR after

applyrng DDM alone. It turns out that the area demarcated as TIAR when

DDM and RepeaMasker are both applied to human chromosome 2l (i.e.

TIAR without repeats) contains 89.1yo of true TSS locations. This

corresponds to a TSS density that is 102-fold higher in the unmasked area

than in the TID region. This compares unfavourably to a density ratio of 132

when only DDM is used.

The observations made from these experiments suggest that the combination

of RepeaMasker and DDM is, at balanced sensitivity and specificity levels,

not beneficial to the overall perfonnance in masking TIDs. As was shown

above, 3.4Yo of TSSs are masked by RepeatMasker. When using DDM

alone, the threshold allows for a more favourable reduction in sensitivity. It

appears that the incorporation of repeat information into a system designed

to detect genomic regions unlikely to initiate transcription, is not the optimal

choice.
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Example: DDM masking explains failed amplification by 5'-
RACE

As was mentioned in the introduction to this chapter the DDM algorithm

can be useful in eliminating false positive evidence for transcription in tag

approaches to transcriptional analysis. To elaborate on this point an example

was chosen where CAGE tags were further examined for the actual

existence of a transcript by 5'-RACE experiments and the areas around

those CAGE tags were examined with DDM.

Firstly, the case of rwo CAGE tags between alternative TSSs in the gene

Oprml in mouse (opioid receptor, mu l; coordinates: chrlO, negative strand

3,308,332..3,557,942; EntrezGene ID: 18390) was considered. The area

around and immediately upstream of the 5' end of this gene is shown in

Figure 3. DDM demarcates two major TIAR in this genomic region. The

TIAR in this area consist of a large number of consecutive nucleotides that

are characterised by DDM as likely to initiate transcription. The larger of

the two major TIAR blocks is about 3000 nt in size and contains the 5' end

of the gene. This TIAR block can be understood to be the main promoter

region of the gene Oprml. A smaller TIAR block is found about 60,000

nucleotides upstream of the gene and suggests the existence of altemative

TSSs. DDM also marked ilrmerous other positions as potential TSSs. Due

to the resolution of the figure, tlese are not shown in Figure 3. A TSS at

position 3,557,930 is supported by one CAGE tag (Fantom3 representative

tag ID 1228A39P0901, undefined tissue library) and this TSS is not masked

as a position unlikely to initiate transcription by DDM. This TSS was

confirmed by 5'-RACE experiments in 4 out of 6 tissue samples supporting

this prediction. Details about the tissues used can be found in the online

supporting materials for the Fantom3 publication [12]. The primer identifier

for this TSS is T10F0065AF50. Thus the claim made by DDM is in
agreement with the result of the RACE experiment.
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Contrary to this, a false positive TSS at position 3,580,940 indicated by one

CAGE tag (Fantom3 representative tag ID 119BA53D1906, macrophage

tissue library) could not be confirmed by 5'-RACE in any of the 6 tissues

used. 5'-RACE experiments with two different primers (T10F006553E1 and

T10F006553F9) were conducted, but neither of them succeeded in

producing a viable transcript. This false-positive TSS is masked by DDM

suggesting it is not likely to promote transcription. As before, the claim

made by DDM regarding the location's ability to promote transcription is

supported by the 5'-RACE experiment. The masked sequences surrounding

these two CAGE tags are shown in Figure 4. Which positions are masked

and which positions are likely to initiate transcription in these surrounding

areas is also indicated in Figure 4.

lhjo TIlf, lbje TIln
KK K K

OFnl tr.rEiDt!
5' Dcitio ot

l.lr pitin ClCt t.g, RE
feilod. urlcd by DDI

"t-
1. :,-.-.:.[,,. :*;:8.. ::,--: ::.;":=--;;::I

.!tl 5' riti@ oI
tru rritiE CIGE t.s
olirrrd bv flCE,
rct r.dcd bt IDI

Flgure 3: True and false TSSs for mouse gene Oprml recognised by DDM
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>1 228439P0901 rffns chrl 0 - 3559800.. 3559350
TAG*gfrcTCTCtTccc

ACCCTCTCTGCAGCATCCCCGCITCTGCTCCCCCCCCCCCIACCCCAATT
TACACTC CETTACACGGEA TGCATAGAGACTGAGGAGGET GATTCTGAG
TTGCTTTGCTAC,AATCtACICCTTCTCTCTCCTCCCTCCCCTCTAGCCT
CT GGATC CCTCACAGCCCATGCTCCCTC CCTTC CACTCMOESEOC
I,!I!!ICOG}.TGCTAAGGn$ GCGCCT CC ET GTACITCTAAGCT GGGAGGGG
CTACAAGCAGAGGAGAAtrATCGGACGCT CAGAC GTTCCATT CT GCCTGC C

GCTCTTCTCT GCTTC CACTAGGGCTT CT CCTTGTAAGAAACTGACffirc
CTAGGGCAGCT GTGAGAreAAGAGGCTGGGGCrcCT GGArc CC GAACACT

>l 19845301906 nrn5 chrl0 - 3583000.. 3582500
t geaitgtsaa gtaargreettetotaeta aaa.t.ts-tir.rtsE.i teae
taeatggaet€atgtg ggt gt gtgEgEgtsga gagagagi g. ga gegegrg

ttst gttstst gtt E6€ts E gg t ttttggg gg gta t€ g€ts grEetsts gggtsts9ttt
ggttsttsEeaggaaaeEtaaegEEgtUttttt.tUtLrr.lUUlaa ggatstts
t gaa gee eet gga gea Eqgggagiatat ggt -aa EeEi tiEtEaaattta

eaaaae g€iet gt-a ts €ei tsiti getse€ata tatsitetaaet--etsetea
tsa tetse g eaEe aeegi aa gtseae € Et€a €aeea gtsaiatets gits ee tstia

CAGE tags are shou,n in bold and yellow highligtil, rnasked positions are shown
in lowercase leflers andstrikethrough, potentialTSS are shown incapitalletters

Flgure 4: DDM masking around CAGE tags Tl0Fq)65AF50 and T10F006553E

Because DDM operates with a resolution of a single nucleotide, TID and

TIAR locations or regions are somet''nes small and clustered. For reasons of
image resolution the complete TID and TIAR can therefore not be shown in

Figure 3. However the exact masking situation around the CAGE tags from

Figure 3 is shown in Figure 4. To illustrate TID and TIAR locations or

regions on a wider scale the complete sequence of human chromosome 2l

was annotated with DDM. The annotated sequence is shown in OSM to this

manuscript.

In addition to the above another 5 genomic positions where transcription is

indicated by the existence of a single CAGE tag (Fantom3 representative tag

IDs 1 20BA 49Kl 60 6, 08 1 AA66D 1203, 069 AE29ll0O2, 097 AA30J 23 0 5 and

ll2BA90K2006) were examined. These CAGE tags are derived from

adipose, liver, lr ng, macrophage, and embryonic tissues, respectively. They
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are not all located around the position of the Oprml gene, but come from

various other locations on the genome of Mus musculus. The existence of a

transcript could not be confirmed by 5'-RACE for any of these positions.

The experiments failed to produce a valid transcript in all of the six tissues

used. When checking the areas surrounding these tags with DDM, it is

observed that DDM masks all but one of these positions as unlikely to

initiate transcription. The unmasked location is the location of CAGE tag

1128A90K2006, which is marked as a potential TSS. This could either

indicate a false positive analysis by DDM (which is probably the case) or a

problem with the RACE experiment. For the other 4 cases, the claims made

by DDM are in accordance with the results of the RACE experiments.

This example illustrates that DDM can help to isolate false-positive

candidate-tags for further analysis by determining computationally whether

a tag falls into TID or TIAR. Consequently, DDM can contribute greatly to

the accuracy of transcriptional studies and, with that, also to the success of

follow up studies that look at gene finding or the functional aspects of

genomics.

DISCUSSION

This chapter describes the development of the Dragon TSS Desert Masker

(DDIO and its application to three showcase human chromosomes. With

DDM, a tool was developed that can very accurately identiff a portion of

DNA sequences that is highly unlikely to promote transcription initiation.

This region is set apart from the region of mammalian genomes which is

called transcription initiation active region (TIAR) and contains the vast

majority of genuine TSSs as well as a remaining portion of sequences

unlikely to initiate transcription.

This tool was applied to human chromosomes 4, 21, and 22 in order to

produce an initial estimate demarcation of the regions in the human genome
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where TSSs are only very sparsely present. The set of these regions was

called TID. The results obtained from the application of DDM to these

chromosomes suggest that over 40oh of mammalian genomes represent

TIDs, that is, they are highly unlikely to promote transcription initiation.

The algorithm was developed in such a way that it exploits the

compositional properties of those short regions of DNA that immediately

surround the TSS location. These locations were determined using at least

two distinct and independent pieces of experimental evidence that the TSS

is in fact positioned at the location in question. Therefore, the reference data

S€ts, containing as many genuine tnre TSSs for human and mouse as

currently possible, are extremely accurate. Moreover, since the TSS sets

contain 113,814 human and 98,682 mouse TSS location, these represent to

the best of the researcher's knowledge the most comprehensive sets of TSS

locations confirmed by at least two independent tlpes of experimental

evidence. These two sets contain many alternative TSSs for a large number

of genes. In spite of the richness of the TSS data sets, one must be aware

that they do not represent the complete TSS complement for human or

mouse. Many genuine TSS locations are not included, but there is no way to

assess which ones these are and how many there are.

The analysis and results demonstrate that a very large majority of locations

capable of initiating transcription in mammals are concentrated within a

small fraction of the mammalian genome. This is contrary to the prevalent

opinion that the initiation of transcription is a process that can occur at any

given place in the genome of mammals and is not restricted to a limited

number of dedicated locations. Based on the large collections of

transcription data available today, it was shown that transcription in

mammals does not initiate randomly over the entire genome. This claim is

backed up by the results that were obtained from the application of DDM to

the showcase chromosomes mentioned above. Instead of initiating randomly

over the entire genome, only a small portion of the genome is likely to

initiate transcription for a vast majority of transcripts. For Homo sapiens it

can be estimated that no more than lloh of the genome is responsible for
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more than 90% of transcription initiation. This high concentration of TSS in

a relatively small fraction of the genome justifies the separation of DNA

sequences into transcription initiation deserts (TID) and transcription

initiation active regions (TIAR). As a consequence, the results presented

here, and the DDM tool itself, can be used to demarcate, in advance, regions

of interest for studies of transcription in mammals. It will serve to eliminate

the vast majority of regions where transcription initiation cannot take place

and thus significantly enhance the accuracy of those studies and their

follow-ups.

One can conclude from the results obtained here that over 40o/o of

mammalian genomes can be estimated to be part of TID, that is, they

contain no or almost no genuine TSSs. The remaining portion of the genome

should be understood to contain all or the vast majority of genuine TSS

locations. It also contains those locations that were incorrectly labelled by

DDM as TSSs. This is a consequence of the imprecision of DDM and the

incompleteness of the TSS data sets that were used for this study. It is

therefore not claimed that every location in the portion of the genome not

included in TID as predicted by DDM represents a possible TSS. Instead, it

is claimed that the part that constitutes TIAR includes (almost) all genuine

TSSs, but it also contains all locations that were falsely recognised as TSS

by DDM, according to the specificity level of the algorithm.

ln the attempt to combine masking repeats and TIDs, it was found that at the

balanced sensitivity and specificity levels, the accuracy of DDM does not

benefit from masking repeat regions in TIAR. The performance of DDM

was shown in Figure 2 and Table I above. The algorithm allows for the

performance to be adjusted based on a tlreshold value. This adjustnent

makes it possible to achieve a more favourable trade-off between sensitivity

and specificity than by combining masking repeat regions with TIDs. This is

due to the fact that repeat regions cannot be regarded as incapable of

initiating transcription. While it is true that only a minority of genuine TSSs

fall within a repetitive DNA sequence, the a-priori exclusion of repeats
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from studies of tanscription initiation leads to inaccuracies. These

inaccuracies can be prevented through the usage of DDM.

The DDM programme would be useful for researchers working on several

types of problems. These problems include, but are not restricted to

promoter identification, gene annotation, data curation from high-

throughput experiments and wet-lab experiment designs. All these issues are

of broader interest. Promoter identification, although considerably advanced

124,44), still suffers from positionally inaccurate prediction of the actual

TSS location. The problem is circular to the accuracy of the data set on

which these systems are trained, as well as the coverage of the real TSSs

within the data sets. ln many cases the systems designed to predict TSS are

trained on data sets which determine the TSS position inaccurately, which

leads to shortcomings in the positional accuracy of predictions made with

those tools. Another problem that exists is the fact that the data sets used for

TSS prediction training are incomplete with regard to the reflection of all

real existing transcription start sites. This inevitably leads to the second

problem of a more accurate annotation of transcripts. The most frequently

used methods for full-length cDNAs are Cap-trapper 145,46f and Oligo-

capping [47]. Due to the specificity of sequences around mammalian TSSs

(generally high GC% and strong secondary stnrctures), under optimal

conditions over 90o/o of full-length cDNA can be generated with the rest of

cDNAs being non-full-length [48]. The DDM system could assist in

cleaning this data from experimental artefacts and incorrect signals.

Bioinformatics approaches, microarray experiments, and other high-

throughput data are prone to false-positives. The genuine TSS locations

have to be confirrned through wet-lab experiments (Northem hybridization,

RACE, RT- or quantitative PCR) and possibly by multiple pieces of

evidence. Most low-throughput but high-confidence experimental

techniques require advance knowledge of specific genomic regions for

probe or oligonucleotide primer design. The design of more accurate probes

and oligonucleotide primers can be greatly simplified by the application of

DDM before experimental validation. This would benefit the experiments

-32-

http://etd.uwc.ac.za/ 



and the success of follow-up studies undertaken with the data derived from

these experiments.

In the attempt to show that the available PPPs are not suitable to predict

TIDs with an acceptable level of accuracy, the DDM system was compared

to several existing PPPs. These PPPs constitute the standard approaches for

promoter and gene start finding that are found in literature. Three of the

PPPs examined in 124,25) are by design unsuitable for a comparison with

DDM. These tools are CpGProD [33], Dragon Promoter Finder [34,35] and

Dragon Gene Start Finder 136,37). CpgProD is restricted to prediction of

CpG-island related promoters, which make up only a subclass of all existing

promoters. Therefore a comparison is not feasible, because DDM

endeavours to predict all TSS, regardless of their specific structure. At the

same time, Dragon Promoter Finder and Dragon Gene Start Finder

determine TSSs based on averaging over a number of strong predictions.

This way, a TSS prediction is generated that is unlikely to represent the real

TSS with one nt accuracy, although it is likely to be very close to the real

TSS. Other promoter prediction systems have other types of restrictions, as

was discussed in the 'Results' section of this chapter.

The general comparison setup was based on the use of a test set that is

completely independent of the training set used to derive the DDM model

for the comparison tests. This introduces faimess into ttre comparison.

Furthermore, to be able to estimate TID, the promoter predictors should be

able to operate at sensitivities of -100o/o. Not all promoter predictors have

the possibility to adjust their tuneable parameters to achieve a value close to

that sensitivity, and thus it must be concluded that they are not suitable for

this task. However, for those promoter predictors that allow the adjustnent

of their parameters, to let them operate more closely to the high sensitivity

levels demanded in this context, such adjustrrents were made. It is

important to note that, after this intervention, such promoter predictors have

reached an 'extreme setting' relative to their typical mode of operation.
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The observed differences in performance comparison results come from

several factors. First, DDM is capable of separating TID and TIAR

predictions at the level of a single nucleotide, because the DDM algorithm is

hained to pinpoint the actual TSS location. Promoter predictors frequently

only indicate a region in which they expect a TSS to be present, thus

reducing the resolution of the tools dramatically. Only two of the promoter

predictors, NNPP2.2 and Fprom, are capable of pinpointing the TSS

location exactly. All other predictors that were used only give an interval in

which they claim the TSS location to be. The comparison with DDM when

the exact TSS location is to be predicted (test B), shows that both NNPP2.2

and Fprom are not recognising a significant portion of the real TSS

locations, making them unsuitable for TID estimation. Another issue is that

the design goals of promoter predictors could be different from the design

goal of DDM. DDM attempts to achieve 100% sensitivity in recognition of

real TSSs and to minimise the predictions of random genomic locations as

TSSs. Promoter predictors, on the other hand, generally aim at maximised

balanced sensitivity and specificity, usually sacrificing sensitivity in favour

of specificity. Systems tuned in such a way are not necessarily suitable for

determining TID, as one needs to have guarantees that all (or the vast

majority) of TSSs are included in the predicted locations. The cturent

promoter predictors unforhrnately do not provide this characteristic. It is for

this reason that the settings of some of the promoter predictors had to be

changed to make them operate at a very high sensitivity. It should be

highlighted that the comparison results have to be interpreted with these

issues in mind.

Also, the set of random DNA that was used in the comparison of DDM with

other promoter predictors was assumed to contain no TSS locations. For the

pupose of comparing DDM with existing promoter predictors, DDM was

specifically rehained with a set of all human TSS sequences, excluding

those that were used in the comparison experiment (HTSS"o-pu,"). This

means that all data used in the comparison was previously unknown to

DDM and no advantage for DDM through data selection was obtained. How
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the various data sets that were used in this study have been created is

explained in detail in the 'Methods' section of this chapter.

METHODS

Data: Transcription Start Sites

The creation of reference data sets is probably the most important step in

creating a computational recognition system. Any system can only be as

good as the data that was used to frain it. It is therefore most essential to

obtain data that is as complete and as accurate as possible. Two highly

accurate sets of TSS for Mus musculus and Homo sapiens were compiled.

The reference genome builds that were used for these species are mm8 and

hg18. The respective surroundi.g sequences covering [-100,+100] relative

to these TSSs were compiled. The sequence was extracted from the same

strand that the TSS was reported to be residing on. A TSS was only

regarded as genuine and made part of the TSS data set if it was possible to

find rwo pieces of independent supporting evidence for the existence of a

TSS in a specific genomic location. The first piece of evidence required was

the presence of at least one FANTOM3 CAGE tag. This piece of evidence

was considered to be backed up by a second piece ofevidence, ifthe first 5'

nucleotide of the CAGE tag coincided exactly with the first 5'nucleotide of

either at least one full-length cDNA or at least one mRNA. The cDNA

sequences used here are all oDNA sequences that are found either in

FANTOM3 or in the UCSC browser [a9]. The mRNA sequences used in

this process are taken only from the UCSC browser. All TSS locations

selected in this way are supported by at least two independent pieces of

evidence. A minimum distance between neighbouring TSSs was not

enforced as long as two pieces of evidence were present at a location. No

mismatch between the two pieces of supporting evidence was allowed. This
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means that TSSs which are only one nt apart are considered to be two

separate TSSs.

It has been established by [50] and [51] that within promoter regions there

exist many altemative TSSs that are often located within a few nucleotides

from each other. In the context of this manuscript, these TSSs are regarded

as separate, even if they are residing on neighbouring nucleotides. Although

TSSs that are located very close to one another are likely to tanscribe the

same transcriptional unit, even the most minimal difference in the location

of the TSS leads to the production of a slightly different transcript. Since the

aim of DDM is to pinpoint the exact location of TSS and not only the

approximate location of a tag cluster, these transcription events are therefore

regarded as separate. Furthermore, even a small positional difference

between two TSSs causes the surrounding area of the TSSs to be different,

with features of this area residing at different location with regard to the

TSS. While in some cases this approach has the effect that TID and TIAR

appear in a clustered fashion on the chromosomal sequence (see

chromosome 2l in online supporting materials), the belief is held that this

could be a more tnre reflection of the actual biological situation with regard

to transcription initiation.

Since the two pieces of evidence that are required for all true TSSs are taken

from two completely independent and distinct experiments, the resulting set

of genuine true TSSs has an extremely high accuracy. Sequences that

contained ambiguous characters ('N') were excluded. In this way, a mouse

reference TSS set containing 98,682 sequences and a human reference TSS

set containing 113,814 sequences was compiled. These sets were called

MTSS and HTSS respectively. From the HTSS set, a subset of 1,000 TSS

locations was chosen randomly. For these TSS locations the sequences

covering [-800, +800] relative to the TSS location were extracted. These

1,000 sequences were called HTSSco-po.". These are used for the comparison

between DDM and existing promoter prediction prograrnmes. The set of all

human TSS with all items in HTTS"o.pare r€rnov€d is called HTSSrc.
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The best data available at present was utilised and a rigorous methodology

in establishing the reference TSS sets was applied, though it must be said

that this set is nahually only a subset of the set of all genuine TSSs in

mammals. While as many genuine TSSs were included in the reference data

set as possible, it cannot be claimed that the reference data set possesses a

complete set of all human and mouse TSSs. As a matter of fact being in

possession of only a part of the genuine TSSs raises the need for predicting

TID in the first place. Since it is demanded that all TSSs in the set have a

CAGE tag support, there are high dependencies on the accuracy of that data,

and this is one of the reasons why two independent pieces of evidence to

support the TSS location were used.

Data: Other sequences

As non-TSS sequences or 'negative' sequences, DNA sequences from

human and mouse were selected indiscriminately. These DNA sequences

were 200 nt in length and selected randomly from all human and mouse

chromosomes. In doing so it was ensured that the number of sequences

selected was proportional to the length of the chromosomes. Sequences that

contained ambiguous characters ('N') were discarded. If the 5' end of a

CAGE tag fell within [-10, +10] relative to the centre of the sequences, the

sequence was also discarded. ln total 110,000 random human DNA

sequences and 100,000 random mouse DNA sequences were selected. In the

same manner, an additional 1,000 human DNA sequences 1600 nt in length

were extracted to be used as a negative set for the comparison with existing

PPPs. This set was called RNDM"o.p*". This means that RNDM"ompare slld

the negative set (RNDM) used for training of DDM are disjoint sets.
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DDM training set for comparison with promoter predictors

To make the comparison of DDM with the other promoter predictors fair,

DDM had to be retrained on a training set that was completely independent

from the test set used in this comparison. The training set used for this

purpose contained HTSStc as the positive data and RNDM as the negative

data. Please note that this training set was completely independent from the

test set used in the comparison experiment.

DDM test set for comparison with promoter predictors

The positive and negative data set HTSS.o.pur" and RNDI\4o.pur"

respectively forrred a test set used to assess the performances of DDM and

other promoter predictors. This set is independent from the set used for the

training of DDM for the comparison with the promoter predictors.

Algorithm:

To achieve the highest possible accuracy, the presented algorithm utilises a

four-stage daisy-chained filtering method. The basic layout of the algorithm

was presented in Figure 1. Sequences of length 200 are examined and have

to be classified by all four stages as a potential TSS in order to be

recognised as part of a TIAR. The algorithm uses a different frltering

method at each stage. This way it is possible to exploit different

compositional features of the sequence under examination. Thus the overall

method achieves the very high discrimination between locations likely and

locations not likely to initiate transcription.

In a formal way, the algorithm presented here can be understood to be a

multi-classifier system, which is a common approach to classification

problems in machine learning. Normally, the same problem is presented to a
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number of individual classification modules and the overall statement is

derived in some way as a combination of the results of the individual

classification modules by some decision logic module. There are numerous

ways in which classifiers can be combined and numerous ways to design the

decision logic. DDM can be categorised as a parallel multi-classifier system,

in which the decision logic outputs a negative result as soon as one of the

inputs from the individual modules is negative. This is achieved indirectly

by applyrng the individual modules of the algorithm sequentially. A step is

only executed if all previous steps have deemed a sample to represent a

possible TSS.

All four steps of the algorithm are performed either on the entire available

data sets or on the training part of the data during the 4-fold CV.

Boundaries of k-mer distribution and frequencies of k-mers

A total number of 1,364 k-mers of length l-5 was considered. The lengths

and number of these k-mers are summarised in Table 7. The number of

occulrences z of each k-mer K in the upstream seguent [-100,-1] was

determined, as well the number of occurrences d of K in the downstream

segment [+1,+100]. These two numbers were recorded. Both values u and d

are from the interval [0, 100+l-&] where fr denotes the length of k-mer K.

For every sequence in MTSS and HTSS with an upstream occurrence z of

k-mer K, the 11inimum, min(d), and maximum, mac(d), occurrence of r(
downstream of TSS was determined. For every sequence in MTSS and

HTSS with an downsteam occrurence d of k-mer K,the minimum, min(u),

and maximum, max(u), occrurence of K upsteam of the TSS was

determined. This was done for all possible values u and d from [0, 100+l-&]

and for all possible k-mer lengths l-5.
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1 44
2 15 20

3 64 84
4 255 340

5 7024 1364

Table 7: Statlstlcs on k-mers used ln development of the algorlthm

For every k-mer K the collection of all points defined by (min(d), u) and

Qnax(d), u), as well as (d, rnin(u)) and (d, max(u)), define boundaries of the

region that contains all TSS locations. To illustrate this point, please refer to

Figure 4 which shows an example for the l-mer'C'. The region of all TSS

is shown in grey.
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A particular TSS characteizedby (ul, dl) for k-mers K will be recognizsd,

if for ul min(d) < dl < max(d), and for dl min(u) < ul < mar(u) is obtained.

A sequence is considered to contain a TSS on position +l if for all 1,364 k-

mers it satisfies the constraining conditions above.

[-10,+10] PWM thresholding

For this step of the algorithm, the sets MTSS and HTSS are divided into 16

subsets characterised by different dinucleotides at positions [-1,+1]. All

sequences with dinucleotide 'AA' at positions [-1,+l] are put together in

one subset, etc. For each of these subsets, all sequences of length 20 nt

covering the region [-10,+10] were extracted, and for each of the 16 such

subsets, a position weight matrix (PWM) [52] was constructed. The PWM

of each subset has 20 columns in correspondence with the region it covers.

The PWM of a given subset is subsequently used to determine the PWM

scores s, [52] of all [-10,+10] sequences in the subset. Out of these scores

the minimum SCor€ Jrz is selected. A sample is considered to contain a TSS

on position +l if its associated PWM score.ss ) s^irin the respective subset.

LDF 40

For this step of the algorithm, the sets MTSS and HTSS are again divided

into 16 subsets, as described above. The complete TSS region [-100,+100]

for all TSSs in a given subset is divided in 40 consecutive non-overlapping

sections of length 5 nt. For each of these 40 sections, a PWM as previously

described was deterrnined, using all sequences from a given subset of HTSS

and MTSS respectively. For each of the sequences from all 16 subsets of

HTSS and MTSS, a feature vector comprising of 40 PWM scores was

detennined. Each score was deterrnined using all 40 sections of the

sequence and the corresponding PWM. ln this way 16 sets of 'positive' data
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with one 4O-element feature vector for each sample is produced. The

'negative' data was processed with the same PWMs derived from the MTSS

and HTSS subsets to create 16 sets of 'negative' data with one 4O-element

feature vector for each sample.

Linear discriminant analysis [53] is used on these sets of 'positive' and

'negative' data to determine 16 linear discriminant functions (LDFs), one

for each of the 16 subsets. A linear discriminate function for a 40-element

feature vector possesses 40 coeffrcients, to be multiplied with the individual

features, and one constant. These 41 elements of the function are meant to

be summed up. The 16 LDFs that were determined as described above are

then used to calculate LDF values. An LDF value is calculated using the 40

coefficients ci, i:1,2, ...,40, plus one constant cp.

All sequences in HTSS and MTSS are subjected to the LDF that

corresponds to the dinucleotide at positions [-1;+1] and the scor€ Slpp is

calculated for each sequence (sror: c1x1 * ... * casxao * cconsb where x; are

the corresponding scores of the respective PWMs). A threshold value is

determined for each of the 16 subsets in MTSS and HTSS by selecting

LDF-;' so as to preserve l00yo sensitivity in the recognition of real TSSs.

A sample is considered to contain a TSS on position +1 if LDFsa,,,o1" >

LDF-io for the respective subset. Otherwise, the sample is classified as not

containing a TSS on *1.

svM

For this step of the algorithm, the sets MTSS and HTSS and the 'negative

sets' are processed as described above to produce positive and negative data

containing 40 values for each sample. A support vector machine (SVM

light: http://svmlightjoachims.org/), with a radial basis kemel function, is

trained as a classifier. The radial basis gamma value 1.28 delivered the

highest accuracy for this data. The class for sequences containing a genuine
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TSS is labelled l, the class for random non-TSS DNA sequences is labelled

-1. The two resulting models MHs and Myy are derived.

A threshold value tsy1,a is then applied. A sample is considered to contain a

TSS at position +l if the SVM score ssvu > tsvu.

The threshold tsvM is the only adjustable input parameter to the tool

implemented on the web server (http://apps.sanbi.ac.zalDDMA. It can be

used to manipulate the sensitivity / specificity behaviour of the algorithm.

For details on the sensitivity / specificity behaviour of this algorithm please

refer back to the 'Results' and 'Discussion' sections of this chapter and in

particular to Table l. All other parameters of the algorithm are fixed at a

level that experimentally provided maximum sensitivity. In particular, the

threshold values for [+10,-10] PWM and for LDF40 fi,rnctions were fxed at

levels that allow the retention of 100% of the genuine true TSSs. Although

it is possible to use these thresholds to manipulate the sensitivity /

specificity behaviour of the algorithm, it was experimentally determined

that the SVM is the step that allows the most beneficial trade-offs, and

moreover, contribute to the 5implicity of the parameter adjushent process.

Because the SVM classifrcation of sequences is computationally the most

time consuming of all steps, it is also beneficial for the overall speed of the

algorithm to place it at the end of the daisy chain.

CONCLUSIONS

In this chapter a new algorithm for masking transcription initiation deserts

in mammalian genomes was presented. The algorithm has the ability to

mask a siguificant portion of the genome as containing a minimal fraction of

genuine TSS locations while retaining a vast majority of the genuine TSSs

in the non-masked regions. It was shown that it can be estimated that for

Homo sapiens,less than l0% of the genome are responsible for over 90% of

all transcription initiation. This enables the focusing of research attention to
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nturow segments of the genome. These segments could otherwise be

difficult to identify. The great advantage of the algorithm is that it can

identiff transcription initiation deserts at the resolution of a single

nucleotide. The server with this algorithm is freely available at:

http://apps.sanbi.ac.za./DDM/. It is believed that this resource could be of

wide use to researchers in different fields of life sciences. The work

presented in this chapter is currently being prepared for submission for

publication rn Bioinformatics.
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Chapter 2 - The analysis of Eanscriptional deserts

BACKGROUND

The transcription of DNA sequences into messenger RNA is the first

important step on the way from DNA to the production of proteins, which

determine the biological behaviour of the majority of cells. Vast collections

of transcription data that are now widely available have enabled researchers

to examine closely the mechanisms involved in transcriptiot [7-12]. These

studies have shown that for a large number of genes there exist numerous

altemative transcription start sites which contribute greatly to the fact that a

single gene can produce multiple sometimes vastly different hanscripts and

in turn different gene products [54]. It was also shown that a large number

of genes have the ability to produce various gene products by means of post

[anscriptional modifications, such as altemative splicing [55,56]. Here, the

location of splice sites is crucial. It has been proposed that erors in the

selection of the correct transcription start site under specific circumstances,

disturbances in the process of transcription regulation, or eroneous splicing

activities, are involved in the development of diseases and genetic disorders

157-591. Much research attention has been given to regions that promote the

initiation of transcription and to regions that are themselves transcribed.

However, the exact control mechanisms that lead to the usage of one or

another altemative TSS remain elusive. It is suggested that a variable

number of different control elements work together to produce a specific

tanscript under specific circumstances. It appears that in this process the

distances between the various contol elements and the gene being regulated

can be large and that regulatory elements do not necessarily regulate genes

in their immediate neighbourhood [60]. The malfuncfioning of one of those

control elements might have consequences for the entire transcription

procedure.
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While research attention is concenfiated on transcriptionally active regions

of the genome, not much attention at all is given to regions of the genome

that are not transcriptionally active. In the last few years, it has been

accepted that'most' of the mammalian genome is in fact transcribed [61-63]

and that only a minority of those transcripts are translated. In this context,

research attention is also concentrated on 'non-coding regions'. There is,

however, a portion of the genome that is not tanscribed and which has

hitherto been largely ignored. Researchers regularly do not consider those

regions to be important and ignore them in their studies. While this is a valid

and correct assumption in many cases, it does not contribute to the

elucidation of the specific functions of these regions. The genomes of all

organisms living today have evolved over several billions of years [64], so

the existence of regions in the genome that do not play an active role in

transcription, implies that they might have a function after all that has so far

escaped the grasp of the research community. This is especially interesting

considering that in many cases distal regulatory DNA elements have a direct

or indirect influence on gene transcription and expression. It seems

appropriate to assume there is indeed a reason for the existence of those

DNA stretches. It is also worth considering that the complexity of

tanscription and the amount of protein interaction is thought to be mainly

responsible for the complexity of higher organisms such as mammals, and

not the size of their genomes or the number of genes contained within these

genomes [65,66]. Therefore, the role of regions that are not directly

franscriptionally active is worth investigating. The suggestion that genomic

regions, which are not immediately involved in transcription, have only

stnrctural roles or are evolutionary leftovers might be an underestimation

and too simple a view-point considering the vastly complex process of

transcription regulation and gene expression.

Fully understanding the role that transcriptionally passive DNA has in the

genome, and trying to illuminate the connection between this DNA and

protein-coding genes, might help to understand the ways in which certain

types of genetic disorders originate and proliferate. Once the regular
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function of transcriptionally passive DNA is determined, it can be explored

what effects a malfunctioning of the processes involved has on the normal

operation of the cell.

This study contibutes an initial estimate towards an investigation of

potential roles that hanscriptionally inactive DNA might play in mammalian

genomes. 6 semprehensive methodology for accurately determining part of

those regions of the genome that are not directly involved in transcriptional

activity was developed. This methodology allows the relatively accurate

distinction of regions that are either evidently transcribed, or that might

promote the initiation of transcription from those regions that possess

neither property. The methodology was applied to the genomes of Mus

musculus and Homo sapiens and these regions were exfracted. These

regions are termed 'transcriptional deserts' (TDs) and they are studied in

this chapter.

ln previous studies that have examined 'gene deserts' the areas under

investigation were define simfly as intergenic regions. Results of these

studies have been contradictory with some suggesting that gene deserts have

no particular function and can be deleted without consequence for the

viability of the organism [67] while others come to the conclusion that these

regions contain remote control elements for gene expression [68-71]. In

conffast to the above approach, the present study is much stricter in its

definition of 'deserts' and analyses only those regions which are not directly

involved in tanscriptional activity. These regions are termed

'transcriptional deserts' (TDs), and contain sequences of genomic DNA that

are neither themselves transcribed nor represent the locations of TSSs.

Subsequently these hanscriptional deserts are subjected to various kinds of

analysis in order to investigate their specific characteristics. Special

attention is given to the way in which transcriptional deserts display distinct

properties that differentiate them from transcriptionally active genomic

regions. TDs are examined with respect to their compositional properties

and their GC content. GC-richness or AT-depletion is a property of DNA

-47-

http://etd.uwc.ac.za/ 



that is frequently employed by researchers to explain gene-richness and

gene-depletion of genomic regions. Here it is shown that, while it is known

that the GC-richness is correlated with the higher gene density in a DNA

region, GC-richness itself is not sufficient to fully explain the presence or

absence of transcriptional activity.

Furthermore, TDs are examined for the occurrence of single nucleotide

polymorphisms (SNPs) and their rate of evolutionary conservation. It is
generally accepted that the rate of evolutionary conservation gives an

indication of the level of function between different areas within the

genome. It is normally thought that regions that are evolutionarily conserved

are more functional rhan those that are not. While it does not necessarily

follow that regions that are not evolutionarily conserved are only of minor

significance, knowledge about the rate of evolutionary change in TDs, in

comparison with non-TDs, shows to what extent TDs are involved in

processes that are conserved over time in mammals.

Transcriptional deserts are also examined for the existence of transcription

factor binding sites (TFBSs) 1721, which could produce important insights

into the regulatory activity of TDs. Consequently, combining the knowledge

about the existence of TFBSs and SNPs, several candidate regions are

presented where a collection of mutations might cause differences in the

way in which the tanscription factors that bind to the region influence the

transcription of genes. Such disturbances might be involved in irregular

transcriptional activity and might, among other things, contribute to

explaining the origin of neoplasia.

METHODS

To identify tra:rscriptional deserts in the genomes of Homo sapiens and Mus

musculus, the genomic sequences of these species was subjected to a multi

staged analysis. The aim of this analysis was to extract genomic regions that
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have two distinct properties. Firstly, these regions must, with a very high

probability, be incapable of initiating transcription. This assures that TDs do

not contain any transcription start sites, which are supposed to be excluded

from the analysis. To do this, the Dragon TSS Desert Masker (DDM) was

applied to the forward and reverse strand of all chromosomes of human and

mouse.

The Dragon TSS Desert Masker (DDIO was introduced in Chapter 1 and

has the ability to determine very accurately those regions of mammalian

genomes that are highly unlikely to initiate transcription. A sensitivity level

of 99% was chosen and all TSS deserts in the forward and reverse stand of

all chromosomes of l/omo sapiens and Mus musculus were masked. At this

level, DDM has a specificity of 87o/o for mouse and 86Yo for human. This

means that regions recognised as 'transcription initiation deserts' (TID) at

these performance levels will contain only l% of genuine TSSs and will

cover 87Yo or 86% of all genomic locations in human and mouse genomes

respectively. At the same time regions recognised as 'transcription initiation

active regions' (TIAR) at the above mentioned performance levels will

contain 99o/o of all genuine TSS and will be localised within 13% and 14%

of all genomic locations in human and mouse respectively. Subsequently all

those regions recognised as TID were studied. Regions that were part of the

TIAR were eliminated from the chromosomal sequences. This was done for

the forward and reverse strand of each chromosome separately.

Secondly, it must be ensured that the transcriptional deserts are not

themselves franscribed. For this purpose a comprehensive collection of

hanscription data that is known to exist in humans or mice today (April

2008) was compiled. These compilations of transcript data are summarised

in Table 8.
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ESTs 5,564,306 4,O72,78L UCSC

I-SAGE ucsc275,O2L 527,L29
CAGE 2,808,513 t,776,667 FANTOM3

DBTSSflcDNA 1,118,025 476,489

mRNA 77t,372 195,600 ucsc
Table 8: Summary of all transcripts used in TD production

This compilation contains all known ESTs for human and mouse on the one

hand, as well as two different tJpes of fulI-length transcript data fl-SAGE

and flcDNA) on the other. The data in these collections is taken from three

different sources. For these two reasons, it can be assumed that these

compilations contain as ssmplete a collection of human and mouse

transcripts as can be obained at the time this analysls was performed (April

2008). Data that is published in the time since ftis analysis has been

performed (e.g. [61-63]) and data that will be published in the future are of

course more up-to-date than the data used.

The genomic coordinates, with start and end position, as well as

chromosome and strand, are extracted for every transcript shown in Table 8.

These positions are also eliminated from the chromosomal sequences, in

order to mask out all positions in the genome for which the existence of a

transcript can be shown. A position is eliminated as soon as there is one

transcript that occupies the position in question. This was done for the

forward and reverse strand of each cbromosome separately. From the

remainder of the chromosomal sequences, all those regions are exhacted

where 6s1s fhan 518 consecutive nucleotides are neither characterised as

likely to initiate transcription nor part of any known transcript. This

effectively makes 518 a required minimal length for transcriptional deserts.

Since a strong clustering behaviour is observed in the occurrence of

potential TSS, a minimum lengths for TDs needs to be enforced. The

threshold of 518 nucleotides was chosen, because 95% of all human full-
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length oDNA sequences are longer than 518 nucleotides. Therefore, the

shortest transcriptional desert can only accommodate the shortest 5%o of all

human flcDNA sequences.

The resulting regions exist for the forward and the reverse strand of each

chromosome separately. They constitute all those regions that are a) highly

unlikely to initiate transcription; b) for which no know transcript exist; and

c) which have a minimal length of 518 nucleotides.

Here, TDs are not considered to be strand-specific. Instead, in the context of

this study, a TD is defined as a region of the chromosome where a

hanscriptional desert exists on both stands. This means that corresponding

nucleotides on both stands are neither transcribed nor likely to initiate

fianscription. If this condition is satisfied, the chromosomal position in

question is considered part of a TD. Again, only those TDs that consist of at

least 518 consecutive nucleotides are considered. These non-strand-specific

TDs are extracted for all chromosomes in the genomes of mouse and human

and subsequently subjected to various qlpes of analysis.

In order to investigate in how far the application of a specific minimal

length affects the occurrence of TDs, the complete process of creating TDs

was repeated. This time a minimal length of only 259 nucleotides was

enforced. Statistics regarding the number of TDs identified, as well as the

chromosomal coverage of these shorter TDs, have been composed in order

to compare them with the original TDs of minimal length 518. It has to be

admi666 at this point that the selection of a specific minimal length for TDs

is, to some degree, arbitrary. Unless stated otherwise, all subsequent

analysis was conducted with the TDs of minimal length 518.

The occurence of all possible k-mers of length I to 8 (monomers to

octamers) was deterrnined in TDs. This yielded the GC-content as a by-

product by producing the proportion of l-mers 'G' and 'C'. In order to

investigate if there exists a specific k-mer composition in TD regions, the k-

mer composition of TD regions was compared with the k-mer composition
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of randomly exffacted DNA. For Homo sapiens, a number of DNA

sequences were randomly extracted from the genome, with the number of

sequences extacted from each chromosome proportional to the size of the

chromosome. Only random DNA sequences that had a similar (+1%) GC-

content to the TD regions in Homo sapiens were considered. The total

number of sequences extracted corresponds to the total number of TD

regions identified rn Homo sapiens. The length of each extracted sequence

corresponds to the average TD length in Homo sapiens. The same was done

for Mus musculus. Using the chi-square method, the p-values and

corresponding chi-square values were calculated for the distribution of all k-

mers between TDs and random DNA, assuming 4 categories of k-mers, k-

mer x in TD, non-x in TD, x in random DNA and non-x in random DNA. P-

values were calculated based on the null-assumption that no difference can

be observed between the k-mer disfibutions in TDs and random DNA. The

selection of random DNA of the same amount and with the same (average)

length and Gc-content as the TDs in the corresponding species makes it

unlikely that possible differences observed in k-mer composition caused by

sequence properties other than lack of transcriptional activity in TDs.

RepeatMasker [http://rvww.repeatmasker.orq] was used to analyse the

repeat content in human and mouse TDs, in comparison with the repeat

content in their entire genomes.

All known human and mouse single nucleotide polynorphisms were

extacted from dbSNP (NCBI built 129) and sepa:ated into SNPs lying

within TDs and those lying outside of TD regions. Rate matrices for SNPs

lying inside and outside of TDs were detennined. The proportion of SNPs

that fall within TDs was compared to the proportion that fall outside

transcriptional deserts. The proportion of SNPs that fall within TDs was

then set in relation to the proportion of the human and mouse genomes that,

according to this analysis, are covered with TDs.

The alignment between the human genome (version hg18) and the mouse

genome (version mm8) was downloaded from the University of Califomia
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in Santa Cruz (UCSC Genome Browser, http://senome.ucsc.edu/ [a9]). It is

estimated that a common ancestor for mice and humans lived during the

Cretaceous period [73]. This means that the mouse and human genomes

have been subjected to more than 70 million years of independent evolution.

For the context of this study, sequences that are conserved in the genomes

of both species are for this reason considered as evolutionarily conserved.

This alignment between the human and mouse genomes was used in this

study and was compiled with the tool BLASTZ 1741. The alignment data

comprises all sequences in the human genome that can be matched to

corresponding sequences in the mouse genome. The genomic locations, as

well as the sequences themselves, are contained in the downloaded data. For

each matched sequence, a similarity score is given. This similarity score is

specific to BLASTZ and explained in the corresponding publicationlT4).ln

order to investigate the extent to which TD regions are evolutionary

conserved, it was determined what portion of human TDs fall into regions

for which a match can be found in the mouse genome. This was done for

three different minimum BLASTZ similarity scores (0, 5000 and 10000),

which refer to a weak, a meditrm, and a strong conservation.

All TDs were analysed with'MATCH' [75] (TRANSFAC 11.4 [76]), with

standard settings for vertebrate and optimised for the minimisation of false-

positive matches. This delivered the number and density of possible binding

sites for matrices derived from the binding sequences of a group of known

transcription factors (TFs). Only high quality matrices were used in this

analysis. For comparison, the same was done for the entire sequence of

human chromosome 21, the collection of human and mouse cDNAs as

shown in Table 8 above, as well as a sequence of randomly generated DNA

of length 1,000,000. The latter was created by randomly selecting and

concatenating one million, randomly selected, single letters out of A, C, G

and T.

ln order to evaluate the extent to which TFBSs and SNPs coincide within

TD regions, the results of the analyses regarding SNP and TFBS were
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subsequently combined, thus determining how many binding sites harbour a

SNP in desert regions. As part of this analysis, the positions of SNPs and

TFBS in TD regions were matched and then discriminated between SNPs

located in the peripheral area of the TFBS or in the core area of this binding

motif. It was similarly examined how strongly clustered TFBSs appear in

TD regions. For this purpose the occurences of all possible TFBS in a

sliding window of size 200 nt were counted. The sliding window was

moved by one nucleotide along all TD regions of the respective organism.

The mean value for TFBS occrurences in all sliding windows and the

standard deviation from this mean value was calculated. It was also

calculated to what extent there are significant outliers present from this

statistic. The results from these investigations were s6mpared to the

respective characteristics in promoter regions.

RESULTS

DDM was applied to the human and mouse genome at a sensitivity level of

99%o. Tbts means that only 1% of tnre TSS from the test set is not correctly

recognised. At this level, 78.6Yo of human chromosome 2I, 57 .60/o of human

chromosome 22 and 86.4% of human chromosome 4 are marked as

positions where transcription is very unlikely to initiate. A complete

overview of what portions of the individual chromosomes are recognised as

unlikely to initiate transcription at this level and what portions are likely to

be TSSs is presented in Table Al in the appendix. For the determination of

all of values in Table A1, only those positions have been taken into

consideration which do not possess a character other than 'A','C', 'G'or

'T' (e.g. 'N') within 100 nucleotides upstream and downsheam have been

taken into consideration. Any sequences of length 200 containing characters

other than 'A','C','G' or 'T' (e.g. 'N') have been left out of the calculation

of the portions likely and unlikely to initiate transcription.
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Desert size and coverage

Based on the results regarding regions unlikely to initiate transcription,

obtained through the application of DDM, all those regions that are neither

likely to initiate transcription nor are part of a known transcript were

determined. All DNA sequences from the genomes of human and mouse

that meet these criteria and were of a minimal length of 518 nucleotides

were extacted. These regions where termed 'transcriptional deserts' (TDs).

Details on the procedure that was followed to achieve this can be found in

the 'Methods' section of this chapter. Satistics on the TDs for all

chromosomes of the mouse and human genome can be seen below in Tables

9a. The actual TD regions for all chromosomes for mouse and human are

presented in the online supporting materials (OSM) to this study.
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Table 9a: Statistics on TDs lor Homo sopiens and Mus musculus for minimal TD lenglh

518

Table 9a shows, for each human and mouse chromosome, the number of TD

regions located on that chromosome, the total length of the chromosomal

sequence covered by TDs, as well as the percentage of the chromosomal

sequence that is covered by TDs. It also shows the longest and shortest TD

for each chromosome as well as the mean and median TD lengths. It is

observed that the minimum required length for TDs (518 nucleotides) was
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applied everywhere and makes up the shortest TDs in all cases. It is further

observed that for Homo sapiens a total of 106,554 distinct TD regions were

located, while for Mus musculzs fewer regions (84,936 distinct TD regions)

were found. This is partly due to the smaller genome size of Mus musculus

in comparison with Homo sapiens. Looking at the proportions of the

genome that are occupied by TDs, one notices that the proportion of the

htrman genome that is covered by deserts (2.68%) is larger that of the mouse

chromosome (2.25%). This concordance is in fact artificial as will be shown

when the minimal TD length is reduced.

For comparison, statistics were also created for TDs of a minimal length of

259 nt. This constitutes half the minimal size that was originally applied

(518 nt). These statistics can be seen below in Table 9b.
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Table 9b: Statistics on TDs for Homo sapiens and Mus musculus for minimal TD length

259

Using the minimal TD length of 259, it is observed that the number of TDs

on the genomes of Homo sapiens and Mus musculus sharply increases to

379,848 distinct TD regions for human and 422,218 distinct TD regions for

mouse, while the average and median TD length fall below the previously

applied minimal length of 518. The portion of the genomes that are covered

by TDs increases accordingly to 5.82o/o for Homo sapiens and 6.68Yo for

Mus musculus. Evidently the portion of the genome that is covered by TDs
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is now larger in mouse than in human, while, when looking at larger TD

regions, the human genome is to a larger extent covered by TDs. It can

therefore be concluded that the minimal length that is applied in the creation

of the TD regions has a strong influence on the occrrrence of TD regions on

the genomes of Homo sapiens and Mus musculus.It can also be concluded

that there are differences in TD occlurence between the two species under

investigation and that these differences are related to the minimal TD length

that is applied during the creation of the TD regions.

It is remarkable that for both mammalian species under examination the

chromosome that is most rich in TDs is chromosome X. While this can in

part be explained by the relative AT-richness and the relative gene-depletion

of the X chromosome in the two mammalian species under examination,

there are - for both species - chromosomes in their genome which are even

more AT-rich and have even fewer genes relative to their size in comparison

to the species' X chromosome. It can therefore be speculated that the

relative richness in TDs in the X chromosome is connected to the distinct

characteristics of the sex chromosomes.

GC-content

Another value that is shown in Table 9a is the GC-content of the

transcriptional deserts on the individual chromosomes. Genome-wide, the

GC-content of the TDs is -30% for human and about 32Yo for mouse. The

GC-content increases to on average 35.2%o in human and 36.6%o in mouse

when smaller TDs are considered (Table 9b). This means that larger TD

regions are more likely to be AT-rich than smaller ones. Overall the GC-

content in TDs is significantly lower compared with the overall GC-content

of the human and mouse genomes. The overall GC-content of the human

genome is 41.5o/o while that of the mouse genome is 41.7%. While these

values only differ by 0.2o/o, the values for GC-content of the TDs on the
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respective genomes differ by 10 times as much. This means that while the

overall genomes are very similar with regard to their GC-content, there are

differences in the GC-content of the TDs on those genomes. The fact that

the transcriptional deserts in the mouse genome are richer in GC-content

than those of the human genome is therefore not a consequence of a high

GC-content in the whole mouse genome. The TDs on the mouse genome are

not richer in GC, because the mouse genome in general is richer in GC. It

seems more likely that there is a connection between the lower TD content

of the mouse genome and the GC-content of the TDs that can be identified

on the mouse genome. It can be speculated that the lower TD content of the

mouse genome signifies that transcriptional activity is denser in the mouse

genome compared to the human one. Similarly, as the GC-content of the

TDs in the mouse genome is higher than the GC-content in the TDs in

human genome, it can be speculated that GC-content plays a larger role for

hanscriptional activity in the human genome than it does in the mouse

genome. This is due to the observed positive correlation between GC-

content and transcriptional activity.

GC-content is normally used as a convenient way of explaining gene-

richness or the absence of genes in DNA of vertebrates. AT-rich regions are

understood as not likely to transcribe, while GC-rich regions are considered

to be regions of interest for studies of transcription. Our observation that the

GC-content of transcriptional deserts is, with around 31% when applying

518 nt minimal TD length, signifrcantly lower than that of the overall

mammalian chromosomes (human genome: 4l.5yo, mouse genome: 41.7%.)

is consistent with this well-established fact. However, if one looks closely at

the individual TD region, it becomes obvious that GC-richness is neither a

necessary nor a sufficient condition for a region of DNA to be

transcriptionally active. While GC-richness is in many cases a good

indication of fanscriptional activity, it cannot serve as anything more than

that. Many TDs can be identified that are very rich in GC nucleotides and

nevertheless not transcribed. On the other hand some AT-rich regions are

also part of transcriptionally active regions. Figure 6 plots the number of

-60-

http://etd.uwc.ac.za/ 



TDs in the human and mouse genome against their GC-content. The TDs

with a minimal length of 518 nt are used here.
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F[ure 5: GC-content in human and mouse TDs

It can be seen that most TDs have a GC-content lower than the genome-

wide average of about 4lo/o.However, there exist numerous TDs whose GC-

content is higher than the genome-wide average. Again there are differences

between mouse and human, with the significance of high GC-content TDs

in human being lower than in mouse, which is in agreement with the

observation that the GC-content of mouse TDs is in general higher than in

human. It is also consistent with the claim that GC-content is more relevant

for tanscriptional activity in humans than in mice. Figure 6 also shows that

the distribution of GC-content is unimodal for human and bimodal for

mouse. However, it must be said that this might be an artefact of applying a

minimal desert length of 518 nt.
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An example for a hanscriptional desert with a high GC-content is on human

chromosome 2l between nucleotides 14,280,730 and 14,281,941. The GC-

content in this region is 67%o.

K-mer composition

A comparison of k-mer composition in TD regions and randomly extracted

DNA was analysed. The random DNA that was used in this comparison was

chosen to have a similar GC-content to the TD regions of the corresponding

organism. For this analysis, the TD regions, for which a minimal length of

518 nt was enforced, were used. The GC-content of these regions is -30%

for human and32%o for mouse, so the GC-content of the randomly extracted

DNA was chosen to be between 29% and 3lo/o, and between 3l% ail 33%

respectively. As a consequence, the composition of l-mers ('A', 'C', 'G'

and 'T') is very similar between TDs and the random DNA. Tables with the

somplete analysis of k-mer composition for Homo sapiens and Mus

rnusculus, including their comparison with random DNA of the respective

organism, can be found in the online supporting materials to this dissertation

(OSM Tables 1 and 2). The enrichment of all k-mers between TDs and

random DNA sequences is also shown in these tables, along with p-values

that reflect the likelihood that these distributions could be obtained by

chance given the assumption that the k-mers distribution in TDs is equal to

the k-mer distribution in random DNA. If this hypothesis is to be rejected

for p<0.05, it can be determined that out of 87,380 evaluated k-mers the

distribution of 59,302 and 73,225 k-mers is statistically significantly

different between human and mouse TDs and random DNA respectively.

It was found that there are 89 k-mers that do not appear in human TDs, and

22 that appear neither in TDs nor in random DNA, which leaves 67 k-mers

that do not appear in TDs but do appear in random DNA. In no case,

however, is the non-appearance of these 67 k-mers deemed to be

statistically significant. 342 k-mers do not appear in mouse TDs and 56

appear neither in TDs nor in random DNA, which leaves 286 k-mers that do
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not appear in mouse TDs but do appear in random DNA. Out of these 286

k-mers only 38 are deemed to be statistically significarfi at p < 0.05.

For Homo sapiens, there are 108 k-mers that appear in TDs more than 10

times as often than in random DNA and 2026 k-mers that appears more than

twice as often. Similarly, there are 1049 k-mers that appear more than twice

as often in random DNA than in TD regions. For Mus musculus, there are

220 k-mers that appear in TDs more than 10 times as often than in random

DNA and 3035 k-mers that appear more than twice as often. Also, there are

7457 k-mers that appear more than twice as often in random DNA than in

TD regions. This means that the majority of k-mers (84,305 for human and

76,888 for mouse) are relatively evenly distributed between TD regions and

random DNA. Their relative enrichment in TDs compared to random DNA

is between 2.0 and 0.5. Bearing in mind that the k-mer composition of TDs

was compared with the k-mer composition of sequences with a similar GC-

content, it can be concluded that the k-mer composition is not extravagantly

special in TD regions beyond the differences that can simply be explained

with the TD regions' low GC-content.

Repeats

RepeatMasker was used to analyse the content of repetitive DNA in

transcriptional deserts. Repeats are generally not thought to be of high

significance to gene expression and cell activity. Their role was already

discussed in the 'Repeats and transcription initiation deserts' section in

Chapter 1. It is observed that for the human genome -56% of TDs consist of

repeats. For mice the repeat content of TDs is -50%. This means that

roughly half of the transcriptional deserts consist of sequences that cannot

be classified as repetitive DNA. Table 10 shows a comparison between the

repeat analysis of the TDs on human chromosome 2l and the entire

chromosomal sequence of this chromosome. This can serve as a showcase

for the repeat situation in the entire human genome and the related TDs.
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Table 10: Repeat analysis human chromosome 21 TDs and whole sequence

The repeat content of the TDs in human chromosome 21 is found to be

46.71%. The overall repeat content of the whole chromosome was

determined at 33.82Yo. However if one excludes un-sequenced nucleotides

(N/X nrns), which do not appear in TD regions, from consideration, the

repeat content of the entire sequence of human chromosome 21 can be

interpreted to be as high has 46.470/o.In the same way the repeat content of

human chromosomes 4 and 22 was determined to be 49.64oh and 48.5%

respectively. The repeat content of the transcriptional deserts on these

chromosomes was determined to be 45.5%o and 69.02o/o respectively. Since

human chromosomes 4, 21, and 22 can be regarded as showcases for

chromosomes of low, average, and high gene density and GC-content, this

can be interpreted 4s msaning that the overall repeat content is very similar

between the TDs on a chromosome and the entire chromosomal sequence.
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Only for chromosome 22, which is of very high density in terms of

transcriptional activity, is the repeat content of TDs significantly higher.

While it is observed that the overall content of repeats is not considerably

different when comparing the TDs and the entire chromosomal sequence,

the composition of repeat sequences displays some characteristic

differences. It can be seen that the type of repetitive DNA that make up

repeats in TD regions is distinctly unlike the overall repeat composition.

This can be seen above in Table 10. The role of Long Interspersed Nuclear

Elements G[NE) has gained particular importance in transcriptional deserts

in comparison to all other types of repetitive DNA. ln fact, LINEs do make

up almost 80% of all repetitive DNA in TDs, while overall their portion

does not exceed 40%o. Almost all interspersed repeats in transcriptional

deserts are LINEs. Short Interspersed Nuclear Elements (SINEs) and Long

Terminal Repeats (LTRs) have disappeared almost entirely. DNA elements

have also reduced their proportion, but not as considerably as SINEs and

LTRs. This applies equally to human and mouse. Satellite sequences, simple

repeats and regions of low complexity have gained importance in TDs in

relation to their occrurence in the entire chromosome, but still play only a

minor role in the composition of repeats in transcriptional deserts. They do,

however, occur more often in mouse TD sequences than in human TD

sequences.

Single nucleotide polymorphisms

A single nucleotide polynorphism (SNP) is a type of DNA sequence

variation. It consists of a discrepancy in the DNA sequence between the

individual members of one species, in which only a single nucleotide is

different from one individual to the other. SNPs have previously been

implicated in disrupting the process of gene regulation and the development

of genetic disorders. All known SNPs in the human and mouse genome

were collected and examined to see how many of them fall within the
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transcriptional desert regions. Tables 11 and 12 below show an analysis of

single genomic SNPs in Homo sapiens and Mus musculus with regard to

their location within or outside of TD regions.
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As can be seen in Tables 11 and 12, there are only minor variations in the

number of SNPs per kilonucleotide within and outside of TD regions on all

chromosomes of mouse and human. It is also true that the percentage of TD

coverage for each chromosome is only slightly different from the percentage

of SNPs that are located in the TD regions. It can therefore be concluded

that a statistically significant difference between SNPs occurring within and

outside deserts cannot be established. The data presented in Tables 11 and

12 show that the hypothesis that there is no correlation between occurrence

of a SNP and presence of a transcriptional desert at the same location cannot

be rejected. It has to be concluded that SNPs are equally distributed over TD

and non-TD regions of mammalian DNA. The above analysis is restricted to

single genomic SNPs. The same analysis was repeated for insertion and

deletion events with very similar results. The conclusion is that neither

single genomic SNPs nor insertion-deletion events occur in correlation with

transcriptional desert regions.

SNPs can be grouped into trvo classes, depending on the kind of substitution

that is observed between the bases A, C, G and T. Given their chemical

structure, A and G are characterised as purines, while C and T are

pyrimidine molecules. Substitutions that do not change the chemical

stucture of a nucleotide, that is, purine to purine or pyrimidine to

pyrimidine, are called transitions. Substitutions that change a purine into a

pyrimidine or vice versa are called tansversions. Overall, roughly two

thirds of all SNPs are transitions. Since tansversions change the chemical

stntcture of the molecules involved their effects are normally more severe

than those of tmnsitions.

The rates in which nucleotides change in the human and mouse genome

were determined and these changes were displayed as substitution rate

matrices. Table 13 shows these rate matrices.
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Table 13: SNP rate matrices in human and mouse TDs and whole genome

Transitions are shown in bold and transversions in regular font. The

matrices are to be interpreted in such a way that the nucleotides in lines tum

into the nucleotides in the respective column, with the rate given in

substitutions per kilonucleotide. As with the examination of all SNPs

presented above, the results are inconclusive. It cannot clearly be said that

transition or transversions appear predominantly in TD regions. Nor can any

single nucleotide be singled out that is predominantly substituted by another

nucleotide within or outside of transcriptional deserts. Overall, the SNP

analysis in transcriptional deserts implies that no strong relationship

between any kind of SNP and the existence of a TD region can be

established.

Transcription factor binding sites

TRANSFAC ll.4 [76] is a knowledge base and software system for the

purpose of analyses related to transcription factor (TF) binding sites in DNA
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sequences. The modules of TRANSFAC 1 1.4 that were used in the analysis

of transcriptional deserts are a collection of matrices that describe possible

binding sites for hanscription factors (TFBS). Each matrix was constucted

from a number of experimentally proven binding sites for transcription

factors. Each binding site consists of a core section and sections flanking it,

possibly from both sides. Similar binding sites have been grouped together

to forrn one matrix. There are in total 834 distinct matrices. The

conforrnance between the individual binding sites that were used to

construct a matrix is very high in the core section of the matrix and less high

in the marginal section.

MATCH [75] is a program that scans DNA sequences and identifies

possible binding sites for transcription factors. For each possible TFBS, a

core and a marginal match score is reported. MATCH was used to analyse

transcriptional desert regions for possible TFBSs. It was decided to restrict

the search to those matrices that were constnrcted from binding sites that

have been proven to exist in vertebrates. Furthermore, a predefined

configuration for the exclusion of binding sites with low match scores was

chosen, so as to minimise the occgrrence of false-positive binding site

predictions. This included restriction to the use of only high quality

matrices. There are 196 high quality matrices which represent binding sites

for l25l different TFs. In order to compare the incidence of TFBS in TD

regions, the same analysis was conducted on the complete sequence of

foirmsn chromosome2l,the selection of human oDNA as shown in Table 8,

and a sequence of randomly generated DNA junk.

Table A2 in the appendix shows the occturence of binding sites for

individual matrices in these four types of data in matches per kilonucleotide.

It also shows the n-fold enrichment in the occlurences of each matrix

between TD regions and one of the data sets used for comparison. In total,

there are on average 27.39 potential binding sites for any of the total of 196

binding site matrices present per kilonucleotide in transcriptional desert

regions. For cDNA sequences, there are 21.44 suchbinding sites and for the
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entire sequence of hr''man chromosome 2l there are 24.87.61e1s5tingl/,

there are also 25.47 binding sites per kilonucleotide in randomly generated

junk DNA. There are, however, 13 matrices for which no binding site can

be found in randomly generated junk DNA, while there are only two that

cannot bind in oDNA sequences. TD regions and human chromosome 21

provide binding sites for all matrices with only one exception. There are five

matrices (for FOXPI, CARTI, POUlFl, HNF6 and POU6F1) which occur

more than ten times more often in TD regions than in cDNA. Four out of

these five also occur p61s rhan twice as often in TDs than in human

chromosome 21. and 6s1s than six times more often in TDs than in

randomly created junk DNA. FOXPI does not occur in randomly generated

junk DNA and occurs 1.6 times more often in TD regions than in human

chromosome 21. Figure 7 show the occurrence of matrix binding sites in the

various data sets used. The order of TF matices has been sorted according

to occurrence in TD regions (blue).
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The frequency with which individual transcription factors can bind to the

four types of DNA sequences used in this analysis was also examined. This

is distinctly different from investigating the binding frequencies of TF

matrices. One TF can have several binding domains, that is, several parts of

the TF can bind to different DNA sequences. The individual binding

domains of a single TF can be very different from each other, which means

that the same TF can bind to largely different DNA sequences, using one or

the other of its binding domains. Different binding domains were used in the

creation of different binding matrices. Therefore investigating which TFs

bind to a DNA sequence and which TF matrices bind to a DNA sequence is

not the same and might yield different insights from the previous analysis.

Table A3 in the appendix shows the frequency with which individual

transcription factors can bind in the four types of DNA sequences used in

this analysis. The 1251 TFs under examination can together bind in TDs,

oDNA, human chromosome 2l and randomly generated junk DNA 182.57,

166.97, 198.08 and 166.21 times per kilonucleotide respectively. The

individual transcription factors bind on average 0.15,0.13,0.16 and 0.13

times respectively per kilonucleotide. It is noticeable that these values are

very similar for oDNA and randomly generated junk DNA. On the other

hand binding frequencies for TFs are also similar between TD regions and

human chromosome 21. There are 48 TFs for which no binding site can be

located in randomly generated junk DNA, while there are only four that

cannot bind to the oDNA sequences and two that cannot bind to human

chromosom e 21. In transcriptional desert regions TFBSs for all transcription

factors can be identified.

Transcriptional deserts are rich in the occrrrence of TFBS when compared

with oDNA and randomly generated junk DNA. On average, binding sites

for an individual tanscription factor are found 1.48 times more often in TDs

than in cDNA and 1.91 times more often in TDs than in randomly generated

junk DNA. TFBS appear to be denser on human chromosome 21 than in

TDs. A binding site for an individual TF factor is found on average 0.75

7t
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times less often in TDs when compared to human chromosome 21.

However, this number only takes into consideration the portion of human

chromosome 2l that is not covered by unsequenced nucleotides ('Ns'). 'Ns'

make up 27%o of the chromosomal sequence of human chromosome 21.

There are 18 TFBSs which occur in TDs more than l0 times as often than in

oDNA, while at the same time there are 94 TFBSs for which less than one

tenth of possible binding sites in TDs than in oDNA are found. For human

chromosome 21, there are 28 TFBSs which occur more than twice as much

in TD regions than in this chromosome. There are also 60 TFBSs which

bind in TDs with less than one tenth of the frequency they bind within

human chromosome2l.

This serves to show that there are distinct differences between the landscape

of TFBSs in TDs and other types of DNA sequences. This implies that it can

be speculated that, although TDs are transcriptionally inactive, some TD

regions might play a distinct role in the regulatory process of genes.

Clusters of TFBSs in transcriptional desert regions

In order 16 sxamins further the possibility that transcriptional desert regions

play a role in remote regulatory processes, it was subsequently examined to

what extent TFBSs appear in TDs in a clustered fashion. For this purpose a

sliding window of length 200 nt was assumed. This window was moved

along the TDs in the mouse and human genome and it was deterrnined how

many TFBS are located in each window. The window was slid along by one

nucleotide at a time. The mean (m) and the standard deviation (o) of TFBS

occlurences across all windows were determined for each chromosome

separately in Homo sapiens and Mus musculus. The results of this analysis

are shown in Tables 14 and 15.
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The results show that on average there are between five and six TFBS per

200 nt predicted by MATCH in the TD regions of human and mouse. The

standard deviation from this mean value is on average three TFBS per

window. These values are consistent throughout the genomes of human and

mouse. Also shown in Tables 14 and 15 are values quantiffing the number

of siguificant outliers from these mean values. The numbers in columns 4 to

9 of Tables 14 and 15 give the number of 200 nt windows in TD regions

that harbour more than the mean plus a multiple of the standard deviation.

For the genome of Homo sapiens there are in total 2616 windows of size

200 nt that are located in TD regions and that harbour more than 35 TFBSs

(m + l0 * o : -35). For the whole genome of Mus musculus there are 1025

such enriched windows. The bottom row of Tables 14 and 15 shows how

many significant outliers there are per kilonucleotide in TD regions.

For comparison 10,000 promoter regions have been analysed with MATCH.

These promoter regions were obtained by randomly selecting 10,000 TSSs

from the set of 113,814 TSSs that were described in the 'Methods' section

of Chapter 1. Sequences covering the interval [-3000, 200] around these

TSSs were extracted and used in this comparison analysis. These promoter

regions can be regarded as the main contol regions for banscriptional

activity. Investigating the clustering of TFBSs in them and then comparing

the results of this investigation to the results obtained regarding the

clustering of TFBSs in TD regions, gives in indication as to how TD regions

might contribute to gene regulation as silencers or enhancers. The results of

this analysis are shown in Table 16.

+ , + >m+4tg m+6tc >tu+8'g >m+l0rs
7707 364

o-o1237 8et 10-404 2.447. o.242

Table 15: TFBS cluster in lOfiD randomly selected promoter regions
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As seen in Table 16, in 10,000 randomly selected promoters the mean (m)

frequency of TFBSs in a 200 nt sliding window is 5.27 and the standard

deviation (o) from this mean is 3.04. These values are very similar to the

values obtained in the respective analysis in TD regions. It is also observed

that the number of outliers per kilonucleotide is lower in TD regions for

weak outliers (> m * 2 * o,> m + 3* o and> m + 4* o) and higher in TD

regions for strong outliers (> m + 6* o, ) m * 8* o and > m * 10* o). This

allows the conclusion that a number of transcriptional desert regions might

in fact be active as transcriptional remote control elements because some

TD regions appear to be harbouring more TFBSs than evidently

hanscriptionally active promoter regions.

A p-value was calculated for the occurrence of more than m + 10* o TFBSs

in TDs in relation to the occurrence in promoters. This p-value is very small

(-S.S * 10-130) which means that the enrichment in TFBS in TDs can be

regarded as stistically significant.

Mutations and TFBS occurrence

The results regarding single nucleotide pollmorphisms (SNPs) and

transcription factor binding sites (TFBS) have been combined for this part

of the study to determine hanscriptional desert regions (TDs) in which SNPs

and TFBSs are strongly clustered. All SNPs that reside within a TD region

and fall within a TFBS as well have been reported. A distinction was made

between SNPs that fall within the marginal or peripheral region of the

binding motif and those SNPs that fall within the core region of the motif.

The preservation of the motif is many-fold stronger in the core region of the

binding site than in the marginal areas. Therefore, a SNP occurring in the

core region has a much stronger impact on the ability of the site to bind a

certain transcription factor. In fact it can be assumed that a mutation in the

core region of a TFBS is likely to hinder the further binding of a

transcription factor. At the same time, a mutation in the peripheral areas of
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the TFBS will have a much weaker influence on the ability of the motif in

question to bind its transcription factor.

The genome of Homo sapiens contains 106,554 TD regions with a total

length of 82,686,838 nucleotides (see Table 9a). 90,944 of those regions

harbour at least one SNP. ln 37,467 TD regions, the location of a SNP

coincides with the location of a TFBS. 28,473 TDs harbour at least one SNP

that falls in the peripheral region of a TFBS and 17,270 SNPs in TDs fall

within the core binding motif of a TFBS. [n total, there are 66,465 TFBSs in

TD regions that co-occur with a SNP (22,764 core and 43,70I peripheral).

This makes a density of TFBS-SNP co-occurrence in TDs of 0.804 per

kilonucleotide (0.275 core and 0.539 peripheral).

The genome of Mus musculus contains 84,936 TD regions with a total

length of 59,613,575 nucleotides (see Table 9a). 41,828 of those regions

harbour at least one SNP. ln 15,694 of these the location of a SNP coincides

with the location of a TFBS. 11,779 TDs harbour at least one SNP that falls

in the peripheral region of a TFBS and 7,033 SNPs in TDs fall within the

core binding motif of a TFBS. ln total, there are 25,293 TFBSs in TD

regions .hat 
co-occur with a SNP (8731 core and 16,561 peripheral). This

makes a density of TFBS-SNP co-occurrence in TDs of 0.424 per

kilonucleotide (0.146 core and 0.278 peripheral).

These results have to be seen in the context of the number of SNPs that are

available for Mus musculus in comparison with the number of SNPs

available for Homo sapiens (7,897,987 vs. 12,125,823) as well as the

percentage of these SNPs that fall within transcriptional desert regions

(1.6% vs. 2.8o/o see Tables 11 and 12). Nevertheless clusters of SNPs and

TFBS are more frequent in the human genome compared to the mouse

genome. The complete set of results showing in which TD region which TF

binding matrix is subjected to a mutation is shown in Tables 3 and 4 in the

online supporting materials to this manuscript.
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For comparison, all I129 promoter regions on human chromosome 2l have

been analysed. For this purpose, all TSSs that were described in the

'Methods' section of Chapter 1 and reside on human chromosome 21 where

identified and the sequences covering [-3000,200] relative to these 1129

TSSs where extracted. Subsequently it was investigated to what extent SNPs

and TFBSs coincide within these promoter regions. Since promoter regions

are the main control regions for gene expression, this analysis can show if
the co-occurrence of TFBSs and SNPs in TD regions is to be regarded as

notable.

1129 promoter regions on human chromosome 2l with a total length of

3,612,800 nt were investigated. In 883 promoter regions, a SNP co-

occtrrring with a TFBS could be identified. [a.728 promoter regions, a SNP

fell within the peripheral region of the binding motif and in 553 in the core

region. Furthermore, there are 2874 TFBSs within promoter regions on

human chromosome 2l that co-occur with a SNP (882 core and 1992

peripheral). This makes a density of TFBS-SNP co-occurrences in TDs of

0.796 per kilonucleotide (0.244 core and 0.551 peripheral).

The results of the analysis of co-occurrences of TFBSs and SNPs in

transcriptional desert regions and promoter regions is summarised in Table

17.
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Table 17: TFBS and SNP co-occurrence

It can be seen that the co-occrurence per kilonucleotide is very similar

between human TD regions and human promoters. It can be surmised that

the reasons for this are twofold. On the one hand, it was established in a

previous subsection that there is no significant difference between the

frequency of SNPs within and outside of TD regions. On the other hand, it
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was also previously established that the overall frequency of TFBSs is

similar between TDs and promoter regions. The similar frequency of co-

occlurences is therefore within the bounds of reasonable expectations.

Evolutionary conservation

The evolutionary conservation has been examined using the alignment of

hg18 with mm8. It was determined what portion of human TD regions fall

into areas that are conserved between the genomes of humans and mouse.

Only matched sequences that have a minimum BLASTZ similarity score

were taken into consideration. Three minimum scores were considered. The

results are shown per chromosome in Table 18. For comparison the overall

portions of the respective chromosomes that are conserved between mouse

and human are shown as well.
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similarity threshold
TD: hg,18 TPs hClE TDs hgl8 i

lkhr O O 5OOO SOCIO: lOfl)O lD0ff)
chrl i 20.21 37.02 lB.B5 33.64 15.84 a8.39l

34.61
35-08

Table 18: Portion of evolutionary conserved human TDs

It can be seen that just fewer than 20o/o of all TDs are evolutionary

conserved between humans and mice when only a weak similarity score is

requfued. When sticter requirements for sequence similarity are demanded,

this portion is reduced to about l4o/o when averaged over 24 human

chromosomes. Based on these numbers it can be estimated that between one

in five and one in seven TDs regions have been conserved in the genomes of

humans and mice. Compared to the overall conservation between human

and mouse, TDs are roughly half as often conserved.
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DISCUSSION

In this chapter a methodology for the identification of ffanscriptional desert

regions was presented. This methodology unifies the identification of

transcription initiation deserts through DDM, which was presented in

Chapter 1, and a comprehensive collection of known transcripts. The

regions thus identified are devoid of transcription start sites and are not part

of any known transcript. In total, 82.6 million nucleotides for Homo sapiens

fall into these franscriptional deserts. This corresponds to 2.7%o of the

human genome. For Mus musculus,59.6 million nucleotides or 2.3Yo of the

genome could be identified. These values increase when the minimum

length requirement for TDs is reduced. The longest consecutive stretch of

DNA that is not capable of initiating transcription and for which a franscript

is not known to exist is 25 kilonucleotides long.

It is generally accepted knowledge that almost half of human and other

mammalian genomes consist of repetitive DNA which is not assigned major

functionality. It is also generally accepted knowledge that only a minor

fraction of the human and other mammalian genomes consist of protein-

coding exons. Together, this creates the idea that large areas of mammalian

genomes do not have any function. Such thinking is only slowly overcome

in today's research approaches.

The existence of a tanscript and with it the initiation of transcription

implies that the DNA from which the transcript was produced is functional.

If a DNA sequence is turned into an RNA sequence that is present in the cell

at some point in time some function or other can be assumed to exist. Even

DNA that is not transcribed cannot a priori be regarded as non-functional.

It is nevertheless surprising to establish that only between 2 and 3%o of the

genomes of mouse and human constitute transcriptional desert regions. If
the notion were correct rhat only a fraction of mammalian DNA were

functional, the proportion that makes up transcriptional deserts would be

considerably higher. The analysis and results presented here do in this
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context suggest that the view that the human and other mammalian genomes

possess large stretches of DNA that are devoid of any frrnction needs to be

re-evaluated. There are previous studies that have already suggested that

almost all of the human genome is transcribed [77,78]. The results and

analysis presented here confirm this point of view and quantify the

propositions made.

The GC-content is usually used as a convenient way to interpret and explain

the gene-richness or depletion of genes of a DNA sequence [79]. A low GC-

content or AT-richness of a region is norrnally associated with a low rate of

expressional activity, while a high GC-content or AT-depletion is associated

with a high rate of activity. The observation made regarding GC-content in

TD regions does therefore match the expectation that one would derive from

the common knowledge between GC-richness and transcription. It was

observed that the GC-content in transcriptional deserts (on average 31%) is

roughly l0% lower than the overall GC-content of mammalian genomes.

However, simply employing the GC-content to detect or explain the

presence or absence of transcriptional activity is insuffrcient. The analysis

and results presented here indicate that while there is certainly a strong

correlation between the GC-content and the presence of transcription, a high

GC-content is neither a necessary nor a sufficient condition for a DNA

sequence to be transcribed in a mammalian genome. It is not necessary

because there are numerous AT-rich DNA sequences for which the

existence of a transcript can be shown and it is not sufficient because a

number of GC-rich sequences were identified as TDs. This means that other

factors must exist that work in conjunction with GC-content that detennine

whether a sequence of DNA is transcribed of not. While the GC-content

gives a clue as to the possible existence of a transcript it is not the sole

defsrmining factor.

It was seen that the average GC-content of TD regions in the mouse genome

is 2o/o higher than in the human genome. It was also seen that TD regions

are slightly rarer in mouse than in human, and that TD regions with a high
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GC-content play a slightly larger role in mice than in humans. All this

suggests that there are subtle differences in the interrelationships between

GC-content and hanscriptional activity between mice and humans. The data

presented here can be interpreted in such a way that the GC-content has, to

some extent, a larger impact on a sequence ability to hanscribe in human

than it would have in mice.

The composition of k-mers observed in tanscriptional deserts in

comparison with randomly extracted DNA of similar GC-content reveals

that the k-mer composition of TD regions can to alarge extent be explained

by the low GC-content of these region. When the k-mer composition of TDs

is compared to random DNA of similar GC-content, the differences

observed are relatively modest. It is not too far-fetched to speculate that a

comparison with random DNA of a GC-content that is 'average' for the

respective genome would yield the observation that TDs are significantly

enriched in many AT-rich k-mers. This observation, however, could be

explained solely with the different GC-content of the compared sequences

and would not be caused by other compositional characteristics that are

typical for TD regions. This can be concluded from the analysis performed

here, in which TDs were ssmpared with random DNA of very similar GC-

content. The fact that this analysis does not yield any prominently enriched

or depleted k-mers in TD regions shows that relative AT-richness is

suffrcient to explain the k-mer composition of transcriptional desert regions.

When studies of tanscription and gene expression are conducted repetitive

DNA is often a priori excluded. It is assumed that repeats do not play a

signifrcant role in these processes. Several studies (for example l42l) have

restricted their analysis to genomic sequences in which repeats were

masked. Such an approach might be correct in many cases. Genes

containing protein-coding exons are certainly yery unlikely to be located

within a repeated DNA sequence. However, suggesting that repetitive DNA

is deprived of function might be inaccurate, as the results and analysis

presented here imply. The repeat content of transcriptional deserts was
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determined to be of a similar magnitude than the repeat content of the

overall genome for human and mouse. In both cases the repeat content can

be determined to be roughly around 50%. On the one hand, this entails that

half of the regions that are neither capable of initiating tanscription nor part

of a known transcript are composed of non-repetitive DNA. Repeats can

therefore not serve as an explanation for the fianscriptional passivity of the

examined TDs. On the other hand, this implies that the relationship between

repetitive DNA and transcriptional DNA is weak at best. If it were true that

repetitive DNA is transcriptionally less active than the genome on average,

the repeat content of a TD region would be much higher than that of the

overall chromosome. As a matter of fact, most repeat regions are transcribed

in some way and, as was shown in Chapter 1, might even be the location of

transcription initiation. The results and analysis shown in this suggest that

the role of repeats in the process of gene expression might be

underestimated. While a number of studies propose an evolutionary role for

repetitive DNA and tansposable elements especially [80-83], an influence

on regulatory processes cannot be a priory excluded.

While the overall repeat content of the TD regions is very similar to the

overall repeat content of the respective genomes, it was seen that the

composition of repetitive DNA is distinctly different in transcription deserts

and in the genome in general. It was shown that long interspersed nuclear

elements (LINEs) play a much more important role in TDs in comparison to

their overall role in the genome. There are two families of LINE elements in

the human and mouse genome: LINE2 which is an older family and has

been lying inactive since before the evolutionary split of mammals; and

LINE1 which is still active at the present time. LNEs are a subgroup of

retrotransposons, which again ate a subgroup of transposons or all

transposable DNA elements. The distinct characteristic of retrotransposons

is the mechanism that is employed by them in order to gain mobility within

the genome. Retrotransposons use an RNA intermediate and a reverse

transcriptase (RT) to do so. In many cases the refrofiansposons carry the

DNA sequence that encodes for the RT itself. In contrast to that, other types
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of transposons do not utilise an RNA intermediate and instead copy

themselves directly from one genomic position to another. The role of

retrotransposons in mamm4ll4l transcription was investigated in one recent

study [84] which concluded that "retrotransposon transcription has a key

influence upon the transcriptional output of the mammalian genome".

Since LINEs replicate themselves through a RNA intermediate and are thus

transcribed, it is at fust glance not clear why they should appear in such

proportion in transcriptional desert regions. It is tue, however, that most

retrotransposons have become inactive through accumulated mutations and

do not transpose anymore. The fact that LINE elements, and especially

LINEI elements, make up the majority of repetitive DNA in transcriptional

deserts does nevertheless constitute an interesting observation that deserves

further inqurry.

It was also observed that satellites, simple repeats and areas of low

complexity have gained importance in TD regions in comparison to the

overall genome. Unlike the observation made for LINE elements, an

explanation for this can be found in a shaight forward way. Mini- and

micro-satellites have an extremely low propensity to be either transcribed or

to initiate transcription by themselves, whereas they might well be part of

larger primary transcripts (in introns, UTRs, etc.). They therefore appear

more frequently in TD regions, although not all of them appear there.

Transcriptional desert regions have also been analysed for the presence of

absence of Single Nucleotide Polynorphisms (SNPs). SNPs are sequence

variations in corresponding locations between two DNA sequences. They

consist of single nucleotide differences and the vast majority of SNPs do

only produce two alleles [85]. In principle they can occur at any genomic

location. Due to redundancies in the genetic code, a SNP that falls within a

coding exon does not necessarily lead to the production of a different amino

acid, but instead constitutes a 'silent' mutation. However, it is possible that

SNPs in coding regions introduce a premature stop codon into the readirg

frame and with that, constitute a mutation that renders a gene or part of a
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gene non-functional. While SNPs that fall within coding exons are surely

the most interesting to look a! because they might have a direct influence

on the type of amino acid and protein being produced by a gene, it is also

interesting to look at SNPs that fall elsewhere on the genomic sequence.

These SNPs might have different effects. SNPs that lie within the promoter

region of a gene especially might have influence on the transcriptional

activity of a gene [86,87]. In the most extreme case a sequence variation in

the promoter region of a gene can lead to the silencing of the complete gene.

But SNPs that are located distally from any gene location might also have

influence in activities of enhancers or silencers including processes such as

transcription factor binding and control of remote genes.

lt was observed rhat there exists no significant correlation between the

occurrence of SNPs and the existence of a banscriptional desert in the same

region. Currently, the occurance of SNPs are understood to be random

events. They are mutations that are intoduced during the replication of the

DNA before mitosis. It is sufficiently proven that environmental factors

such as radiation or the presence of toxins have an influence on the

development of mutations [88,89]. However, this makes them appear

irrespective of the fi.rnction of the DNA sequence they appear in. Given the

fact that all DNA sequences are subjected to selective pressures in the

context of evolution, it can be assumed that fewer mutations are observed in

functional regions. Since we observe here that SNPs appears with equal

frequency in TDs and transcriptionally active regions, it can be concluded

that at least the occurance of SNPs suggests a functionality of TDs.

Recent studies have connected SNPs with susceptibility to disease and to

responses to medication and vaccines [90-92]. However, most of the studies

conducted in this field concentrate on SNPs that are located in coding

regions and that directly modiff gene products. The effects of these SNPs

are most easily detected. It is equally likely that SNPs that fall within

intergenic regions have an influence on gene expression by disrupting gene

regulation. This influence can be more subtle than a change in the produced
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amino acid, but nevertheless important for the overall cell function. The

effect of the disruption of remote activators or repressors could be important

for the regulation of a number of genes. Which of the SNPs that were

identified in transcriptional deserts are candidates for this, depends on their

co-occurrence with hanscription factor binding sites (TFBSs). In fact, a

recent study [93] showed SNPs occurring distally from any gene location

that disrupt the expression regulation of the gene PTGER4 (Entrez Gene [D

5734) and thus contributes to the development of Crohn's disease.

The results and analysis presented here show that the concenhation of

TFBSs in transcriptions desert regions is slightly elevated when compared

to other types of DNA sequences, which allows the conclusion that TDs

might be active in terms of remote gene regulation by harbouring remote

activator or repressor elements. More importantly, there exists a group of

TFs that can be found in TD regions in a much higher concentration than in

other DNA sequences. To be more precise, frve TF binding matrices and 18

TFBSs were identified that occur in TDs 10 times more frequently than in

other types of DNA sequences. This suggests that TD regions, more than

other DNA sequences, constitute areas that provide the ground for a certain

types of remote regulatory processes. The fact that it was shown - that some

TD regions are significantly elevated with regard to the density with which

TFBSs occur - can also be seen as an indication that some TD regions could

play a role in remote regulatory processes. A comparison with the

occurrence of TFBSs in promoter regions supports this hypothesis.

Desert377 on human chromosome 3 can be taken as an example, to illustrate

the occurrence of TFBS clusters in TD regions. This TD region is 1222 nt

long and located between nucleotide positions 20,872,124 and 20,873,345.

The nearest known gene (ZNF385D, Entrez Gene ID 79750) to this location

is located on the reverse shand more than 400 knt upstream. Nevertheless,

this TD region harbours 58 windows of size 200 nt that each contain more

than 35 possible binding sites for transcription factors. In total, there are 19

different TFBS matrices that can be identifred to be located in this TD
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region. Based on the relatively dense clustering of different TFBS in this TD

region, it can be hypothesised that this region might have a regulatory

function, despite its relative remoteness from any known genes.

To determine possible locations where the interaction of SNPs and TFBSs

leads to changes in the behaviour of regulatory processes, the location of

TFBSs and SNPs in tanscriptional desert regions were matched. Table 3

and 4, of the online supporting materials show that SNPs overlap frequently

with TFBS throughout the TD regions. In fact, the majority of TDs possess

both SNPs and TFBSs, which is to be explained by the abundance with

which both of these appear. It is open to speculation whether the occtrrence

of a single SNP in a potential binding site of a transcription factor will have

a noticeable influence on cell behaviour, irespective of whether such a SNP

appears in the peripheral or the core area of the binding site. It seems clear,

however, that the likelihood of the influence of such SNPs on cell behaviour

drastically increases when the number of SNPs that appear in TFBS

increases. Therefore TDs that harbour multiple TFBSs that are also the

location of multiple SNPs, constitute areas of interest when it comes to

irregularities in remote gene regulation processes. A comparison with

promoter regions shows that the co-occrurence of TFBSs and SNPs is of a

similar magnitude in promoter regions and TDs. Many studies have

examined the effects of SNPs on transcription factor binding in promoter

regions 194-96).It can be assumed that for those transcription events whose

control is contributed to by remote elements, the co-occurrence of a SNP

and a TFBS in those remote elements could potentially have a similar effect

to those described in these studies.

For example, a number of human TD regions that harbour a noteworthy

number of TFBSs, with overlap between SNPs and TFBSs were selected.

TD region no. 3456 on human chromosome l0 is 4,292 nt long and is

located between position 134,798,853 and 134,803,144. This area is located

29,817 nt upstream of gene KNDC1 (Gene ID: 85442) and 3684 nt

downstream of gene GPR123 (Gene ID: 84435). Within this area there are
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l5l TFBSs, mainly for matrices CACDI, HANDIE4T and SPZI. Within

this area, there are also 38 SNPs that coincide with predicted TFBSs

HANDIE4T and SPZ1 (14 core and 24 peipheral). TFs binding to those

sites are suspected to have an important role in spermatogenesis and

embryonic development 197,981.

Another example is TD region no. 820 on human chromosome 20. This area

is 2899 nt long and located between position 62,226,987 and 62,229,885. It

is located 18359 nt upstream of gene NPBWR2 (Gene lD:2832) and 36386

nt upstream of gene MYT1 (Gene ID: 4661). Both neighbouring genes

NPBWR2 and MYT1 play a role in the central nervous system development

[99]. Within this area there are 181 TFBSs predicted, mainly for matrices

TBP, OCTI and PEBP. There are also 20 SNPs that coincide with TFBS

matrix PEBP (11 core and 9 peripheral) and two SNPs that coincided with

binding sites of OCT1 (1 core and I peripheral). Proteins potentially binding

to PEBP binding site also belong to the AML family and are involved in the

course of acute myeloid leukaemia [00,101].

There is also TD region no. ll42 on human chromosome 16. This area is

1489 nt in size, located between positions 87,015,823 and 87,017,311, and

30,204 nt upstream of gene ZFPMI (Gene ID: 161882). In this region, there

were 107 TFBSs detected, mainly by matrices PBX, PAX8, PAX6 and

SPZI. In this area, there are 17 SNPs that interfere with binding sites for

TFBS matrix PBX (5 core and 12 peripheral). There are also five SNPs (1

core and 4 peripheral) that interfere with TFBS matrix SPZI (see above).

Also of interest is TD region no. 1713 on human chromosome 18, which is

1694 nt in size and resides between positions 37,182,312 and 37,184,005.

Within this region there are 107 potential TFBSs, mainly for CART1 and

POU3F2 binding matrices. Within this region, there are 12 SNPs that

overlap with the location of TFBS matrix CARTI (7 core and 5 peripheral)

and seven SNPs that interfere with the binding sites for POU3F2 (6 core).

POU family TFs are brought into connection with mammalian brain

development [02]. The region is located distally from any known-protein
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coding gene. However the nearest gene is PIK3C3 (Gene ID: 5289).

Irregularities in the hanscription regulation of this gene are implicated in

mental disorders [ 103, 104].

These exarrples serve to illustrate the type of data that could be exfacted

from the analysis of TFBSs in conjunction with SNPs in TD regions of

mammalian genomes. While it is by no means guaranteed that these

mutations have any influence on gene expression or on the development of

disturbances, they form candidate locations where a closer investigation

might yield discoveries regarding hanscriptional regulation or the deviation

from norrnal gene expression regulatory patterns. The fact that these areas

constitute regions of the genome for which no existing transcript can be

found, and that transcription is also not likely to initiate in these locations,

does not make them less likely to exhibit characteristics that have a potential

influence on the regulation of gene expression. Two things should be kept in

mind when investigating these regions for transcriptional remote control

elements. Fintly, remote regulation seems to be an abundant feature in

controlling gene expression [05] and secondly, disruption of TF activity is

known to be linked to the genetic component of carcinogenesis [106].

Another important aspect is the evolutionary status of trarscriptional desert

regions. It was determined to what extent these regions have been conserved

between the mouse and the human genome, which describes more than

70,000,000 years of independent development of those genomes. The fact

that sequences are conserved during evolution has been linked to functions,

such as long-range enhancing of flanking genes, regulating splicing, and

transcriptional co-activation I I 07- 1 09].

This study shows that the majority of TD regions that were determined are

not conserved between the mouse and human genome. It also shows that

conservation of TDs is about half as strong as the overall conservation

between mouse and human. However, between one in five and one on seven

TDs is in fact consenred, depending on the requirements for sequence

similarity. Studies such as 142)have suggested that non-coding regions can,
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in principle, be divided into those regions that display an inherent function

and those that do not. If evolutionary conservation is taken as an indication

of the existence of a function of a region with regard to gene expression, the

fact that an estimated one in seven TD regions are skongly conserved

between Homo sapiens and Mus musculus can be interpreted in such way

that the existence of a fi.rnction can be assumed for these non-transcribing

elements.

All main findings for the various types of analyses performed on TDs are

summarised in Table 19.
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Desert size and coverage
Roughly between 2%and 7% TD coverage
in human and mouse genomes, depending
on TD creation parameters

GC-content
On average, significantly lower than whole
genome, but high GC TDs as well as high AT

transcriptionally active regions are frequent

K-mer composition
Specific k-mer composition of TDs can be
sufficiently explained with low GC-content

Repeats
Similar repeat content to whole genome,

but distinctly different repeat composition
with special emphasis on LINEs

Single nucleotide polymorphisms No correlation between SNPs and TD

occurance found (suggesting function)

Transcription factor binding sites

Differences in TFBS composition between
TDs and other types of DNA sequences can
be identified. Some TFBSs appear
predominantly in TDs.

Mutations and transcription factor binding
sites

Co-occurrence of SNPs and TFBSs is

frequently observed.

Transcription factor binding site clusters
Some TDs display a dense clustering of
TFBSS that is significantly above average.

Evolutionary conservation
Between 1 in 5 and 1 in 7 TDs are
evolutionary conserved between human
and mouse.

Table 19: Summary of maln TD flndings
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CONCLUSIONS

In this chapter a method was introduced that, based on the results of DDM

and a comprehensive set of transcription data, identifies areas in mammalian

genomes that are neither likely to initiate transcription nor are they part of

any known transcript. These areas were named transcriptional deserts (TDs).

It was shown that, using a minimal TD length as an artificial parameter, the

area of marnmalian genomes covered by TDs is relatively small, with more

than 93% of genomes tanscriptionally active in some way. The

tanscriptionally active area decreases if the minimal length requirement for

transcriptional deserts is reduced. It was further shown that TD regions

display a pattem of composition that is aligned with expectations derived

from knowledge about GC and repeat content. It was nevertheless also

shown that existing knowledge about repeat and GC-content is not suflicient

to explain transcriptional activity in mammals. Analyses regarding SNPs

and TFBSs demonstrated that TDs are heavily involved in remote regulation

of gene activity and that some are candidates for examination regarding

disease development, because they represent potential locations in which

DNA sequence variations disturb remote gene regulation activity. The areas

that were identified as franscriptional desert for Homo sapiens and Mus

musculus are available from the online supporting materials to this

dissertation (nttrt:llapps.sanUi. . The research

presented in this chapter is currently being prepared for submission for

publication n BMC Genomics.
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Chapter 3 - Promoter extaction

INTRODUCTION

Every study performed in any field of science can only be as informative

and insightful as the data it was performed on. Analyses performed on

elroneous or incomplete data will always be deficient, no matter how robust

the methodology. For all studies of transcription initiation, it is for this

important reason to be able to extract promoters with high accuracy and

precision, and to achieve the greatest possible coverage of promoters

relevant for the study. For the context of this manuscript, a promoter is

defined as a strand-specific DNA sequence that is located around an existing

transcription start site (TSS). Therefore, a promoter has a certain length

while a TSS always refers to a single nucleotide position on either the

forward or the reverse strand of any chromosome.

The extraction of promoters is paramount to various kinds of studies.

Firstly, there are studies of transcription in general, which rely on the

determination of all existing promoters and/or TSSs with high accuracy and

precision. For these types of studies, all existing TSSs need to be identified

and added to the pool of data that is analysed. Missing genuine promoters

and/or TSSs from the data or inaccurately deterrnining them would impact

negatively on the results of those kinds of analyses. The analysis that was

described in Chapter one and the development of the DDM tool is an

example for this kind of study. None of the claims made in Chapter one

would have any validity if there was any doubt about the soundness with

which the reference TSS set was established.

Closely related to this type of study are two tlpes of analyses of

transcription initiation that deal with specific subsets of promoters. One is

the case in which only promoters for a certain group of genes are meant to

be examined. In such cases, it is demanded that promoters for all genes in
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this group are identified and allocated to their respective genes. Examples of

such gene groups can be genes that share a common property, that are over-

or under-expressed in a certain kind of stress situation or tissue type, or that

are found to be associated with a certain type of disease. Once such a group

of genes has been identified, it is the role of promoter extraction to identiff

TSSs for all genes in the group and to retrieve promoters for analysis. For

example we studied features of ovarian cancer promoters [3]. Again,

incomplete or erroneous determination of these promoters would impact

very negatively on the results of the study.

Another type of analysis is the examination of promoters in a gene-

independent yet tissue specific manner. For this purpose, the process of

promoter extraction must be able to identify all TSSs that are reported

within a certain tissue type. For this purpose it is necessary to assign tissue

specific infomration to TSSs.

This chapter introduces PROMEX, a promoter extraction tool that achieves

of the above mentioned requirements. PROMEX is a web-based promoter

extaction tool that allows for the extaction of general, gene-specific or

tissue-specific promoters. This tool was used to identiff promoters for

analysis in Chapter one as well as in [3-5]. A screenshot of the PROMEX

tool can be seen in Figure 8.
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PROMEX provides promoter extraction capabilities for the species Homo

sapiens and Mus musculus. Following the above definition, the
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identification of a promoter is primarily dependent on the identification of a

TSS. Once a TSS has been identified, the extraction of the corresponding

promoter is trivial. Starting from a given TSS location, a promoter is merely

a sequence of DNA covering a certain number of nucleotides upstream and

downstream of the TSS in question. PROMEX provides the means by which

the user can speciff this upstream and downstream length. If nothing is

specified, it uses 3000 nt upstream and 200 nt downstream of each TSS.

CAGE

The identification of TSSs is, as mentioned above, an essential step when

extracting promoters. PROMEX primarily uses cap analysis of gene

expression (CAGE) data that was published in [12]. This data consists of a

collection of several million DNA sequence tags that are between 18 and 25

nucleotides in length. These tags constitute the basic data that was obtained

experimentally and they each represent the 5' end of a primary transcript.

By mapping the tags back to the genome, the genomic origin of these

transcripts could be identified. In this sense, each CAGE tags represents one

piece of experimental evidence for the existence of a TSS at its
corresponding chromosomal location.

However, the analysis performed as part of the CAGE effort goes further. In

order to establish a measure of how strongly represented each single TSS is

in the data, CAGE tags have been clustered together (for details on this

clustering please refer to [12]). Eventually each TSS in the data is

represented by two important characteristics. These are the total number of

tags that were grouped together in this cluster, on the one hand, and, on the

other hand, the number of tags that support the 'representative tag'. The

'representative tag' can be understood to be the strongest CAGE tag, in the

cluster and the number of tags in the representative tag tells us how many

tags are found at the location of this representative tag. The exact location of

the 5' end ofthe representative tag ofeach tag cluster is interpreted to be the
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location of the TSS. There are a lot of tag clusters that consist only of one

tag. In this case, the only tag present is naturally at the same time the

representative tag for this cluster.

PROMEX uses these two measures - the overall number of tags in the tag

cluster and the number of tags in the representative tags - to let the user

specify how sfongly supported the TSS is, and with that how strongly

supported the corresponding promoters are supposed to be. If the user does

not change the default setting of the system, PROMEX applies a threshold

of at least five tags in the overall tag cluster and at least three tags in the

representative tag.

In addition to the exact location in the genome, each CAGE tags is also

associated with the tissue library from which it was experimentally

extracted. This allows for the extraction of promoters in a tissue specific

manner. When deterrnining how strong the support for a given TSS is, it is

possible, with the help of this tissue infomration, to disregard all tags that

did not originate from a certain type of tissue. This way, only promoters that

are found in a certain environment can be exfracted.

Other evidence for transcription

Since it is not optimal to depend on only one type of data, which was

extracted in a specific experimental way, PROMEX introduces other types

of evidence for the existence of a ffanscript in a specific location. These

types of evidence are completely independent from the data that was

obtained as part of the CAGE experiments. Any bpe of information that is

based on two independent pieces of evidence can be regarded as much more

accurate and much less error prone than information that is backed up only

by only one piece of evidence. The data would only be incorrect in the

extremely unlikely event that exactly the same eror was repeated at two

different points in time by two different types of data retrieval.
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For the purpose of supporting TSSs, PROMEX utilises a collection of

mRNA sequences extracted from the University of California in Santa Cruz

(UCSC Genome Browser, http://senome.ucsc.edu/ [a9]) and a collection of

fuIl-length oDNA sequences obtained from DBTSS [23] (both downloaded

in April 2008). The exact location of all 5' ends of these sequences has been

recorded, using the mappings provided by UCSC for genome build hg18.

Each 5' end is interpreted as a TSS location. In addition to support by

CAGE tags, the user of PROMEX has the option of selecting additional

support by mRNA, or cDNA, or support by both. Currently PROMEX

retains the locations of 1,615,187 cDNA sequences and 199,681 mRNA

sequences for Homo sapiens and 458,321 oDNA sequences and 225,807

mRNA sequences for Mus musculus.

A TSS is considered to be supported by an additional piece of evidence if
the 5' end of one of those sequences coincides exactly with the 5'end of the

representative tag of the corresponding tag cluster. A mismatch is not

allowed.

Assignment of gene identifiers

In order to be able to extract promoters for given user-specified genes, the

system must retain gene information and allocate TSSs to as many genes as

possible. PROMEX understands a TSS to be associated with a specific gene

if the TSS is located on the gene body of this gene or within 50 knt

upstream of the 5' end of the gene body. The distance of 50 knt is shortened

accordingly if there is another gene located within this distance. As a

consequence one gene can have no TSSs, one or more than one TSS, while

a TSS always belongs to no gene at all or exactly one gene. There are a

minor number of exceptions in cases of overlapping gene bodies, but they

do not play a significant role in the system. The distance between the 5'end

of the gene body and the TSS is reported as part of the promoter delivery. A

TSS located downstream of the 5' end of the gene body (that is, on the gene
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body) will be reported to have a negative distance to the 5' end of the gene

body. The user can select to have only those promoters delivered that have a

maximum distance from the gene. However, no distances greater than 50

knt will be reported.

PROMEX was equipped with the gene locations for three types of gene

identifiers. A user can select any of these three to speciff which gene

promoters are desired. These types of identifiers are Entrez Gene ID, gene

symbol, and Unigene cluster ID. PROMEX holds a list of these identifiers

together with the chromosomal locations of the gene body for each gene in

each of the three lists. Currently PROMEX retains the locations (including

chromosome, stand, start, and end position) of 28,876 Entez Gene IDs,

18,445 gene symbols and 22,873 Unigene cluster IDs for Homo sapiens,

and 28,583 Entez Gene Ids and23,764 gene symbols for Mus musculus.

Depending on the number of gene identifiers submitted, the results are

either returned immediately ("promoters while-u-wait") or are extracted

offline and delivered to the user by email after extraction is finished. The

latter is also employed if promoters are extracted in a gene independent

manner.

DISCUSSION

The system described here provides several options for the extraction of

promoters. The location of these promoters is based on the location of their

corresponding TSS, which is determined on the basis of CAGE data. In

addition to the CAGE data, other independent evidence for the existence of

a tanscript has also been added to the system. That makes the TSS locations

detemrined by PROMEX highly reliable.

PROMEX offers a number of options for the user, to make the selection of

promoters as flexible as possible and to cater for a number of types of
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analysis for which promoters are required. Firstly, the user can choose how

strongly the TSSs that correspond to the exhacted promoters are represented

by the data. Secondly, the user can specify how large the sections should be

that are extracted as promoters around each TSS. Thirdly, the user can

restrict the CAGE data that is supporting the desired TSS to a number of

tissue libraries, thus enabling the user to extract promoters in a tissue-

specific manner. Fourthly, the user can choose to extact promoters that

have been allocated to one or more than one gene. These genes can be

specified by one of three different gene identifiers. Alternatively the user

can choose to extract the promoters in a gene independent manner. The

following examples will illusfiate the use of PROMEX.

Examples

A) Extract all promoters from Homo sapiens that have at least I CAGE

tag in the overall tag cluster (and thus 1 CAGE tag in the

representative cluster) and have at least one additional piece of

independent evidence, either mRNA or cDNA. Extract 100 nt

upstream and downstream of a1l TSSs and include all possible tissue

libraries. This requests to PROMEX retums 113,814 promoters,

exactly those that were used as the reference TSS set for humans in

Chapter l.

B) Extract all promoters from Mus musculus that are evident in liver

tissue and have at least 2 tags in the overall tag cluster as well as 2

tags in the representative tag. Select only those promoters that also

have at least one other piece of evidence of tanscription. Extract

promoters of length 3200 nt, 3000 nt upsteam and 200 nt

downstream of each reported TSS. This request to PROMEX returns

4825 promoters.
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C) Exfract all promoters for human gene FOXP2 (chromosome 7;

location 7q3l1' 1I3,842,228 - 114,118,328) that have at least 5 tags

in the overall tag cluster and at least 3 tags in the representative tags

as well as either mRNA or oDNA support. Include all tissue libraries

and extact 3000 nt upstream and 200 nt downstream of the TSS.

This request to PROMEX returns I promoter. The corresponding

TSSS for this promoter is located at I13,842,354. It has 14 CAGE

tags in the overall tag cluster ard 4 tags in the representative tag.

This promoter is also supported by a fulI-length cDNA whose 5' end

is located at 113,842,354. This kind of promoter extraction was done

for [3], where a set of 379 identifrers for genes associated with

ovarian cancer was submitted to PROMEX and the resulting

promoters have been included in the analysis published as part of

this study. The same applies for [4], where a group of 529 genes

associated with oesophageal cancer was examined. For [5], a

specially customised version of PROMEX was used to extract

regulatory regions not for genes but for the tanscription of miRNAs.

CONCLUSION

This chapter introduces PROMEX, a web-based promoter extraction tool.

Since obtaining accurate data is paramount to the success of each study,

PROMEX applies a rigorous methodology to determine the location of

TSSs and extract the corresponding promoters. The location of TSS is

mainly based on the location of CAGE tags, but is also optionally supported

by other pieces of independent evidence. This technique makes the location

of promoters highly reliable.

PROMEX offers high flexibility tbrough a number of user-adjustable

options. These include species selection between Homo sapiens and Mus

musculus, promoter size upstream and downstream of TSS, strength of TSS

support, tissue library information, and gene-specific promoter extraction.
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Promoters extracted with PROMEX are highly flexible and reliable and

have benefitted a number of studies including the study described in Chapter

one, as well as several others [3-5].
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Overall summary

The main subject of this dissertation is transcription initiation deserts and

hanscriptional deserts. The fust chapter dealt with the detection of

transcription initiation deserts (TID) and introduced a method for doing that.

This method constitutes the only method available that is able to detect TID.

It was shown how this method perfonns on a number of showcase

chromosomes and it can be concluded that only a small faction of the

mammalian genomes is capable of initiating transcription. It was

highlighted that this method is usefrrl for researchers in a wide spectrum of

life science research. The study presented in this chapter is currently in

preparation for submission for publication rn Bioinformatics.

The second chapter revolves around areas that include TID, but they are

extended to include all known transcripts to make hanscriptional deserts

(TDs). The TD regions were analysed for a variety of aspects and their

properties and potential functions have been highlighted. It was shown that

these regions only cover a small fraction of mammalian genomes and that

the GC-content of these regions is not sufficient to explain why they are

transcriptionally silent. It was also shown that they possess a number of

interesting cha:acteristics that make them candidates for studies in remote

gene regulation. The content presented in Chapter two can be seen as the

direct consequence of the system proposed in Chapter one. In fact, Chapter

two is the continuation and application of the design ideas from Chapter one

on a whole-genome scale. The research presented in this chapter is currently

in preparation for submission for publicationtn BMC Genomics.

The third and final chapter describes the process of promoter extraction and

the tool that was developed for this purpose. It explains how the extraction

of promoters is perfonned. The numerous options that are associated with

the selection of promoters and the reasoning behind the methodologies

applied were elucidated. It was also described how the data that was
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obtained with the promoter exhaction tool contributed to a number of

analyses that were conducted during the time of my doctoral studies [1-6].
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ONLINE SUPPORTING MATERIALS

. FASTA files: TID on human chromosome 2l (forward strand) at 3

different levels of sensitivity (OSMCD:ITID on human cfu2l)

o FASTA files: TD regions for Mus musculus with 518 and259

minimal length (OSMCD:/IvIM TD regions/)

o FASTA files: TD regions for Homo sapiens with 518 and 259

minimal length (OSMCD:/HS TD regions/)

o Table 1: k-mer analysis Homo sapiens

(OSMCD:lTables/OSM_table 1_kmerPVal-hs.xlsx)

o Table 2: k-mer analysis Mus muscalus

(O SMCD :/Tables/OSM_table2_kmerPVal_mm. xlsx)

o Table 3: SNP TFBS cluster Homo sapiens

(O SMCD :/Tables/O SM_table3 snptfbsClusters_hs. xlsx)

o Table 4: SNP TFBS cfuster Mus muscalus

(O S MCD : lTableVO S M_table4_snptfbsClusters_mm. xlsx)

o Table 5: Binding frequency for TFs in TD, oDNA, chr21 and

random DNA (OSMCD :/Tables/OSM_table5_tlbind_freq.xlsx)
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APPENDIX

A) Table A1: DDM Masking at99o/o SE for all human and mouse

cbromosomes
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B) Table A2: Occurrences of TF binding matrices in TD, cDNA, chr21

and random DNA
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