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Abstract

The initiation of transcription in mammalian genomes predominatly occurs
at 5° promoter regions, however increasingly initiation events have been
observed within introns, coding exons and 3’ UTRs. Nevertheless there are
large segments of mammalian genomes that are not prone to transcription
initiation. These locations can be understood to be ‘transcription initiation
deserts’. It is challenging and useful to demarcate these segments or
locations of the genome. The availability of a huge number of transcript data
has provided an opportunity to develop a methodology to predict and

annotate these genomic segments.

A comprehensive collection of data for Homo sapiens and Mus musculus,
consisting of CAGE tags and other evidence for the existence of
transcription was used to develop a methodology that allows the annotation
of locations of mammalian genomes as those that are highly likely to initiate
transcription and those that are unlikely to harbour transcription start sites
(TSSs). The algorithm allows the recognition of TSSs with 100%
sensitivity, which makes it the superior choice over other existing

algorithms for promoter prediction for the task of annotating TSS deserts.

98,680 and 113,814 transcription start sites were accurately determined for
Mus musculus and Homo sapiens respectively. The properties of the regions
immediately surrounding these TSS locations were used to determine
features that distinguish genomic transcription initiation segments from
those that are not likely to initiate transcription. The algorithm utilises
various constraining properties of features identified in the upstream and
downstream regions around the TSSs, as well as statistical analyses of these
regions. The methodology thus developed was applied in order to analyse
the genomes of Mus musculus and Homo sapiens for areas unlikely to
initiate transcription. The analysis suggests that on average more than 40%
of the human and mouse genome can be regarded as ‘transcription initiation

desert’ and thus as highly unlikely to initiate transcription.
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The ‘transcription initiation desert’ regions that were determined with this
methodology were subsequently combined with other available evidence for
the existence of transcription to produce ‘transcriptional deserts’.
‘Transcriptional deserts’ are set apart from ‘transcription initiation deserts’
in so far as the latter comprise regions of mammalian genomes that do not
initiate transcription while the former consist of regions that are neither
themselves transcribed nor are they likely to initiate transcription.
‘Transcriptional deserts’ were examined for their compositional properties,
repeat content, occurrences of single nucleotide polymorphisms (SNPs),
evolutionary conservation and the presence or absence of binding sites for
transcription factors. The results of these analyses suggest that while these
regions are not transcriptionally active, they cannot be regarded as devoid of
function. The data shows that they have distinct characteristics, harbour a
high concentration of remote regulatory elements and are of importance to

understanding gene function.

The method introduced in this work represents the first one capable of
identifying large parts of mammalian genomes as ‘franscription initiation
deserts’. This methodology can significantly localise the search for TSS
locations and thus contribute to promoter and gene finding, to more
successful experimental designs, as well as to gene annotation. It can also
help in the assessment of 5° completeness of expressed sequences. The areas
identified in this work as ‘transcriptional deserts’ do play an important role

when investigating gene function.
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Preface

The research presented in this dissertation deals with three separable yet
connected issues. These three issues are dealt with in the three main
chapters of this dissertation and from them the overall structure of this piece
of work is derived. Chapter one deals with the initiation of transcription. It
establishes a reference dataset of transcription start sites and introduces a
methodology that allows the demarcation of locations in mammalian
genomes that are unlikely to initiate transcription. The research presented in
chapter one is currently being prepared for submission for publication in

Bioinformatics.

The subject of chapter two is the analysis of transcriptionally inactive
regions in the genome of mammals. The methodology that was introduced
in chapter one was combined with other existing data to locate regions in the
genome that are devoid of any transcripts. These regions are subsequently
examined under various aspects like sequence composition and the
occurrence of mutations. This analysis gives indications of their genetic
function and their role in molecular cell mechanisms. The research
presented in chapter two is currently being prepared for submission for

publication in BMC Genomics.

Chapter three explains the design and implementation of PROMEX, a tool
for promoter extraction that was utilised for data procurement in chapter one
and has contributed to several other projects that were conducted during my
years of doctoral studies. Each chapter is presented as an independent,
conclusive and self-sufficient piece of research. The dependencies and
interrelations of the chapters are briefly discussed in the final ‘Summary’

section at the end of this document.
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Chapter 1 - The identification of transcription
initiation desert regions

INTRODUCTION

Although the full sequence of the human genome as well as other
mammalian genomes has now been available for several years, the
annotation of these genomes is far from being complete. Especially the
variability of the transcriptome and the existence of numerous sometimes
hugely different transcripts for a single gene have posed great challenges to
the scientific community in deciphering the exact function of all parts of
mammalian genomes. A substantial portion of these difficulties arise from
the fact that a large number of genes possess many possible transcription
start sites. These can be located far upstream or downstream from the 5’ end

of the gene body.

The sequencing of full-length cDNA libraries, the generation of millions of
ESTs, and later tag approaches (CAGE, GIS, etc) [7-11] have provided the
scientific community with information on transcripts and the location of
their transcription start sites. This data illustrates that transcription in
mammalian genomes can initiate at various and unusual positions (e.g.
coding exons, 3’UTR) [12,13] and thus contribute to the complexity of
mammalian transcriptomes. However, mammalian transcription does not
initiate randomly. It is observed that large segments of the genome are not
prone to the initiation of transcription. All collections of transcriptional data
show that transcription initiation activity in mammalian genomes is
concentrated in specific regions. At the same time, the data allows us to
conclude that there are vast stretches of DNA where transcription initiation
is not observed to occur. A detailed analysis of the TSS neighbourhood [14]
shows that there are a lot of regularities in the regions immediately
surrounding the TSSs, making these regions more suitable environments for
transcription initiation events. The same behaviour can also be observed in

the prevalence of genes and their locations on the mammalian genome. It is
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known that many regions in these genomes are considered to be gene
deserts [15,16]. They constitute regions that contain very few genes. At the
same time, many other segments of the mammalian genome are rich with
genes, such as human chromosome 22 [17,18]. Traditionally these gene
dense and gene desert regions have been interpreted in the convenient terms

of GC-richness of isochores on the mammalian genomes [19].

Sometimes transcriptional activity in the form of CAGE tags and/or
transfrags [20] is observed within the genomic desert regions. In order to
experimentally confirm the existence of such novel and unexpected
transcripts, RACE [21] is the method of choice. If it is possible to obtain a
full length transcript from the observed tag, the existence of a transcript at
this location can be regarded as confirmed. However, the RACE primer
design is very difficult if no information on the transcribed regions is
available. On the other hand, if a TSS location is known and well-supported
by the existence of several CAGE tags or a combination of CAGE tag(s)
and other expressed sequences, then by designing primers close to this
known TSS, more than half of novel putative ESTs can be experimentally
confirmed through RACE. This brings into consideration the preparation of
experimental designs for confirming putative transcripts. It would be of
great value to computationally filter candidate transcripts before performing

RACE, to avoid wasted experiments.

Another issue is that it is difficult to ascertain that ESTs are 5° complete.
This problem is one of the burning issues in determining the accurate TSS
locations, which impacts follow-up studies on transcriptional regulation. It
is thus of practical importance to be able to determine, computationally and
in advance, which regions in genomic DNA are likely to be good
environments for transcription initiation and which ones are not. The
availability of such knowledge would lead to more precise experimental
designs and to the elimination of a vast number of false positive

transcription candidates. For example, if the 5’end of transcript falls into a
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region not likely to initiate transcription, this would signal its potential 5’

incompleteness.

The efforts of the scientific community have provided a vast amount of
transcript data that has allowed the very precise determination of a large
number of TSSs in mouse and human genomes [10,11,22,23]. Based on the
analysis of the properties of the upstream and downstream regions
immediately surrounding the TSS [14], it was observed that TSS locations
in both mouse and human follow certain rules that confine these TSSs to
particular genomic regions. This idea was utilised and extended with the
aim to develop the Dragon TSS Desert Masker (DDM). This tool can
demarcate in a strand specific manner, locations in mammalian (mouse and
human) genomes that are highly unlikely to contain sites of transcription
initiation. The collection of all these locations is referred to as transcription
initiation desert or TID. The Dragon TSS Desert Masker (DDM) is a tool
that is capable of annotating a significant portion of the TID. The non-
annotated part is likely to contain the vast majority of transcription initiation
sites. This non-annnotated part is being referred to as transcription initiation
active region or TIAR. DDM is able to perform the distinction between TID
and TIAR with high accuracy.

Using DDM, it is possible to mask a part of TID regions in mammalian
DNA. The non-masked regions indicate TIAR that is likely to harbour the
vast majority of genuine TSSs. The TIAR might possibly support a more
precise RACE primer design and can help in estimation of completeness of
the 5°-ends of ESTs. Consequently, they can help in annotation of promoter
regions in mammalian genomes and moreover, such information can
complement promoter and gene finding and help focus on those regions that

are of particular interest.
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RESULTS

TID is defined as the set of all strand-specific genomic locations that are
highly unlikely to initiate transcription. The remaining locations are called
TIAR and contain the vast majority of genuine TSSs as well as a remaining
portion of locations unable to initiate transcription that were not possible to
localise using the current TSS prediction algorithm introduced here.
Currently and unfortunately, it is impossible to determine whether the
majority of all genuine TSSs for any mammalian genome are known.
Therefore, as regrettable as it might be, only estimates of TID can be made.
This is because of the aforementioned non-determinability of whether or not
all genuine TSS locations are known for any mammalian genome. For the
sake of simplicity these estimates of TID are referred to as TID in the
further text. A number of key promoter features were determined. These
allow the separation of mammalian genomic sequences into active (TIAR)
and desert (TID) domains relative to transcription initiation. Due to the fact
that TID is only estimated, based on a computational algorithm that is not
perfect, TIAR are considered to be a set of genomic locations that contain
the vast majority of the known TSS locations, while TID are those genomic
locations that contain only a minimal fraction of known TSSs or contain no
TSSs at all. Thus the density of known TSS locations in TIAR is expected to
be considerably higher than in TID. In order to be able to make the
distinction between TID and TIAR regions, one needs to be in possession of
a tool that is able to distinguish between genomic positions that are likely to
initiate transcription and those that are unlikely, in such a way that no or
only very few false-negative statements about TSS locations are made. This
is equivalent to a TSS recognition system that operates at or very near 100%
sensitivity. Subject to the condition that the TSS set has sufficient coverage,
at this level of sensitivity it can be expected that the areas labelled as
unlikely to initiate transcription are indeed almost completely devoid of
TSSs, because all or nearly all non-TSS statements made by the predictor

will be true. In this context, TID are understood to be those locations that
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were determined to contain no, or almost no, known TSSs. On the contrary,
TIAR is composed of those locations that contain all, or almost all, known
TSSs, but it also contains all false positive TSS predictions. It is for this
reason that it is not claimed that all locations within TIAR are potential

TSSs.

Algorithm

The efforts of the Fantom3 consortium [12] constitute one for the most
comprehensive collections of transcription data available. Based on
Fantom3 CAGE data and at least one other piece of evidence for the
existence of a transcript, two highly accurate sets of TSS locations were
compiled. The exact methodology that was employed for the compilation of
these data sets is described below in the ‘Methods’ section of this chapter.
For each true TSS location, chromosome, strand and genomic position are
recorded. The TSS data set for Mus musculus consists of 98,682 accurately
determined TSSs, while the TSS data set for Homo sapiens contains
113,814 accurately determined transcription start sites. These data sets are

used as reference sets of positive samples for genuine true TSSs.

Using these mouse and human TSS data sets, the compositional properties
of single-stranded DNA segments covering [-100, +100] nt regions relative
to the TSS were analysed. Based on these properties, a system that utilises a
variety of different filtering methods in order to filter out those DNA
segments that are unlikely to represent genuine TSS positions was designed.
When presented with a previously unseen DNA segment, the system is able
to accurately determine whether this segment is likely to harbour a genuine
true TSS position. Each filtering method employed in the algorithm filters
out different fractions of the data by concentrating on different
characteristics of the compositional properties of the DNA segments

provided. These filtering methods were combined in a multi-staged daisy-
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chain algorithm that consists of four different classification phases. The
exact method of operation for the complete algorithm is described below in
the ‘Methods’ section of this chapter. On overview of the layout of the
algorithm is given in Figure 1.

Single strand DNA sequence

l

Boundary condition filtering method {SE: 100%, SP: 30%)

4

Position weight matrix filtering method (SE: 100%, SP: 35%)

I

Linear discriminant analysis filtering method [SE: 100%, SP: 45%)

1

Support vector machine filtering method [SE, SP: variable)

{

T5S classificationvalue

Figure 1: Layout of daisy-chain algorithm, performance estimates after each step in
parenthesis

The algorithm analyses nucleotide sequences of length 200 nt. For each
segment of DNA that the algorithm examines, it returns a classification
value. This output classification value reflects the algorithm’s prediction of
whether the segment contains a TSS at its centre or not. A threshold is
applied to this value in order to determine whether the examined sequence
contains a TSS or not. The centre (nucleotide at position +1) of the
examined [-100, +100] sequence is masked as a location unlikely to initiate
transcription if the classification value is below this threshold. If the
classification value is above this threshold, then the centre of the examined

sequence is marked as a potential transcription start site.
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While this algorithm can be regarded superficially as an ordinary promoter
predictor, one has to keep in mind that the accurate prediction of TSS (while
desirable) is not the intent or purpose of the presented algorithm. DDM is
specifically designed to detect TID, which means that the prediction of
TSSs is only implicitly the subject. The DDM algorithm is specifically
tuned to operate in such a way that is produces no or very few false-
negatives which is a necessary requirement for producing accurate estimates
of TID. For this reason DDM is not suitable to be used as a tool for the
accurate prediction of TSSs. This point is elucidated further later in the text
when DDM is compared to existing promoter predictors in the context of

predicting TID.

Performance

The algorithm was applied to data sets from Mus musculus and Homo
sapiens. All genuine TSSs from the reference data sets were used as positive
samples. An equal amount of random DNA was extracted from the genome
of the respective species. These random DNA sequences served as negative
samples. The algorithm was applied to all data and the resulting
classification values were collected. After that, a range of threshold values
was applied to the classification values and sensitivity and specificity values
were determined in order to assess the algorithm’s performance. The
performance is reported for two separate cases (see Figure 2). Firstly, a 4-
fold cross-validation, for which a quarter of the sequences was selected
randomly for testing, while three quarters were used for training. The
average sensitivity and specificity values for the four test sets are reported in
Figure 2 as case ‘test’ for mouse and human sequences. Secondly, the entire
available data sets were used. For this second case no separation between
test and training sets is undertaken. Sensitivity and specificity is reported for
the entire available data and shown in Figure 2 as case ‘training’ for mouse

and human sequences. The resulting models of the case ‘training’ are also
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used in the algorithm’s web implementation which is available at

http://apps.sanbi.ac.za/DDM/.

100.00%

90.00%

80.00%

70.00%

60.00%

f —a—mouse train p
———mouse test
§ %0.00% —m—human test ¢

& —e—human train

40.00%

30.00%

20.00%

10.00%

0.00% v —_ T '
0.00% 10.00% 20.00% 30.00% 4000% 50.00% 60.00% 7000% 8000% 00.00% 100.00%
Sensitivity

Figure 2: Sensitivity vs. specificity trade-off curve for human and mouse average CV
performance, and performance on the whole data sets.

One observes that, with the models that were derived from all available
data, which were also used in the implementation of the web server version
of DDM, at the level when no known TSSs are lost (which represents a
sensitivity of 100% in the system) about 45% of the mouse and human
random non-TSS DNA sequences are recognised correctly as those that
should not initiate transcription. The fact that DDM delivers this
performance at 100% sensitivity is essential to the algorithm’s ability to
recognise transcription initiation deserts. This is because the entirety of the
areas that are annotated by the algorithm as not likely to initiate
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transcription can only be regarded as TID if the remaining areas contain all
or nearly all genuine transcription start sites. This is only true when the
algorithm works at or very close to 100% sensitivity. At lower rates of
sensitivity the areas marked as not containing TSS will still contain a
portion of the true TSS that is too high to denote these areas as transcription
initiation desert regions. As the next section will show, DDM is the only
tool that is specifically designed with the intention of detecting TIDs and
therefore the only tool that can be used for such purpose.

At a lower sensitivity setting of 99.22% (99.53%), DDM is able to mask a
remarkable portion of 81.75% (78.45%) of the mouse (human) random non-
TSS DNA sequences. DDM sensitivity of 99.22% means that the system is
not able to recognise 0.78% of the real TSSs from the reference data set.
With a balanced sensitivity/specificity setting DDM was able to retain
95.44% (95.33%) of true TSSs while at the same time masking 95.63%
(93.58%) of the mouse (human) sequences as unlikely to initiate
transcription. When 99.16% (98.83%) of the random non-TSS mouse
(human) sequences are masked as unable to initiate transcription, a
significant portion of 84.76% (80.74%) of the true TSS is recognised as
positions likely to harbour a TSS. The performance of DDM at various
thresholds for human and mouse sequences is shown in Table 1. The table
shows results obtained with models derived from all data and results

obtained through a 4-fold CV for both species.

-10-

http://etd.uwc.ac.za/



Mouse whole set Mouse CV Human whole set ‘Human CV.
threshold | Sensitivity | Specificity | threshold | Sensitivity | Specificity | threshold | Sensitivity | Specificity | threshold Ser{si;i\;ity Specificity
-2.50 100.00% 45.45% -2.50 96.10% 45.01% -2.50 100.00% 44.77% -2.50 96.36% 44.51%
-2.00 99.99% 45.95% -2.00 96.07% 45.55% -2.00 100.00% 44.97% -2.00 96.36% 44.74%
-1.50 99.91% 55.03% -1.50 95.72% 54.82% -1.50 99.98% 49.47% -1.50 96.20% 49.34%
-1.00 99.22% 81.75% -1.00 94.30% 78.40% -1.00 99.53% 78.45% -1.00 94.62% 73.73%
-0.50 97.47% 92.03% -0.50 92.49% 89.16% -0.50 97.59% 89.92% -0.50 92.46% 86.71%
-0.25 96.50% 94.05% -0.25 91.41% 92.10% -0.25 96.42% 91.96% -0.25 91.47% 89.69%
0.00 95.44% 95.63% 0.00 90.21% 94.11% 0.00 95.33% 93.58% 0.00 90.29% 91.91%
0.25 94.33% 96.86% 0.25 88.80% 95.52% 0.25 94.23% 94.94% 0.25 88.91% 93.41%
0.50 92.98% 97.81% 0.50 86.98% 96.68% 0.50 92.98% 96.17% 0.50 87.12% 94.74%
0.75 91.50% 98.51% 0.75 84.52% 97.66% 0.75 91.46% 97.29% 0.75 83.42% 95.91%
1.00 84.76% 99.16% 1.00 77.36% 98.40% 1.00 80.74% 98.83% 1.00 70.95% 97.22%
1.25 47.32% 99.65% 1.25 46.08% 99.09% 1.25 34.57% 99.76% 1.25 33.19% 98.91%

Table 1: Sensitivity and specificity values for mouse and human test and training cases

For the identification of TID, the performance of the algorithm at very high

sensitivity levels (100%) is most relevant. This is because only when the

false-negative rate is equal to or very near 0% one can meaningfully speak

of the areas that were recognised as unlikely to initiate transcription as being

‘transcription initiation deserts’.

Comparison with existing promoter prediction programmes

If the ideal TSS predictor exists (sensitivity = 100%, specificity = 100%),

determination of TID will be trivial. However, such TSS predictors do not

exist as yet, although many good tools for TSS prediction are available.

Albeit, none of these tools has a performance that can solve the problem that
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was investigated here (TID estimation). This will be shown later by a

comparison analysis.

The novel question that was investigated here, and which has never been
attempted before, is the estimation of TID regions. The knowledge of these
regions makes as much sense as much as the knowledge of TSSs. If it is
agreed that it is useful to have knowledge of regions that can initiate
transcription, then it is equally useful to have knowledge about regions that
cannot initiate transcription, if for no other reason than for localising the
search for promoters/TSSs. One can argue that the task of predicting TIDs
cannot be understood to be equivalent to the task of accurately predicting
TSSs. To support this notion, consider a TSS predictor that predicts TSSs at
80% sensitivity. This means that 20% of TSSs still remain in TID. This is
why it is claimed here that the estimation of TID is not simply the negation
of TSS prediction. The best one can currently have is a TSS predictor that is
capable of predicting TSS with close to 100% sensitivity, since only then
does it makes sense to talk about TID (and estimates of TID) at locations
where predictions are not made. In fact it can be argued that TSS predictions
and TID predictions are two tasks directly opposite with regard to their aim.
While the prediction of TSS concentrates on predicting TSSs with the
highest possible accuracy, the aim of predicting transcription initiation
deserts endeavours to achieve the opposite, namely to identify regions, as
accurately as possible, that do not initiate transcription. While this seems to
be the same thing at first glance, the distinct difference in aim has wide-
ranging implications on a system’s design and its eventual use. Therefore
estimating TID is not simply the negation of predicting TSSs. Truly a TID
predictor was developed implicitly as a TSS predictor, or as a promoter
prediction system. However, in order to have as accurate a prediction as
possible of TID locations, the TSS predictor has to operate at a sensitivity
level of or very near 100% in order to avoid false-negative TSS predictions.
Such false negative prediction would have the effect that the estimated TID
still contains a certain amount of genuine TSSs. In such cases one cannot

rightly label the locations as belonging to TID.
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Many existing promoter prediction programmes (PPPs) have been
developed with the general aim to predict TSSs with certain levels of
precision and positional accuracy [24]. These tools are designed to forecast
the existence of transcription start sites or more generally promoter regions.
However, none of these programmes was designed to identify TIDs. The
goal that the designers of these programmes had in mind was a rather
different one [24,25]. These existing programmes intend to reach the best
possible trade-off between sensitivity and false-positive rate. DDM, on the
contrary, is designed in such a way that it allows the recognition of all or
very nearly all true TSS locations (i.e. ~100% sensitivity). Moreover, in
many cases the positional accuracy of the predictions of TSSs by existing
PPPs is poor, which in itself makes the identification of TIDs complicated.
DDM, on the contrary, annotates genomic locations as likely or unlikely to
initiate transcription with the highest possible positional accuracy of no
mismatch between the prediction and the real TSS. Consequently, DDM
appears to be the only tool available that is specifically designed to

demarcate regions unlikely to initiate transcription.

Having asserted the above claims, it can be argued that a comparison of
DDM with existing PPPs is dispensable. Such a comparison would compare
systems that have distinctly different basic design goals and thus this
comparison is questionable. However one could also argue that the same
goal that DDM is designed for can, in principle, be achieved with the
existing promoter predictors. In principle, any promoter predictor that
provides a very high sensitivity level (close to 100%) of predicting TSS
locations at a one nucleotide resolution can serve the purpose of estimating
TID. To test if this is possible with the currently available promoter
predictors, a comparison between the abilities of several such predictors and
DDM to accurately predict TID was made. It should be highlighted that the
aim of this comparison is not to evaluate how well promoter predictors
perform in predicting TSSs (though this aspect is implicitly involved), but

rather how capable they are in accurately estimating TID. This comparison
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analysis will show that DDM is superior for this task and achieves accuracy

that is much better than other systems can achieve.

In order to make a comparison of how well PPPs and DDM perform in
identification of TIDs, programmes from [24,25] were evaluated. For this
purpose the datasets HT'SScompare and RNDMcompare Were created. For details
about the creation and content of these datasets please see the ‘Methods’
section of this chapter. To make this comparison as fair as possible, a test
set was created that contains 1000 randomly selected TSSs (HTSScompare)
from the original human TSS set, and 1000 randomly selected human DNA
sequences, RNDMc;ompare. DDM was then retrained with the remaining
human TSS sequences and the random DNA sequences that did not contain
RNDMcompare (s€€ the “Methods’ section of this chapter). Consequently, the
test set data is completely independent of the training set for DDM for this

comparison.

The datasets HTSScompare and RNDM_ ompare Were analysed with Promoter2.0
[26], NNPP2.2 [27], First Exon Finder [28], Eponine [29] and Fprom [30].
N-SCAN [31] and McPromoter [32] do unfortunately only allow very
limited online submission and thus were not tested with HTSScompare and
RNDM_ ompare. Instead only the performance as it is given by the authors of
the respective studies could be reported. CpGProD [33], Dragon Promoter
Finder [34,35] and Dragon Gene Start Finder [36,37] have specific design
constraints that make them unsuitable for this comparison. The constraints
of these three PPPs are further elucidated in the ‘Discussion’ section of this

chapter.

The URLSs of the PPPs used in this comparison can be found in Table 2.
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Promoter2.0 http://www.cbs.dtu.dk/services/Promoter/

NNPP2.2 http://www. fruitfly.org/seq_tools/promoter.html|
First Exon Finder http://rulai.cshl.org/tools/FirstEF/
Eponine http://servlet.sanger.ac.uk:8080/eponine/

http://www.softberry.ru/berry.phtmi?topic=fprom&group=progr

Fprom
ams&subgroup=promoter
N-SCAN http://mblab.wustl.edu/nscan/submit/
http://tools.genome.duke.edu/generegulation/McPromoter/Mc
McPromoter

Promoter.html

Table 2: URLs of promoter prediction tools used in comparison

Two tests were conducted wherever possible. For the first test (test A), a
mismatch of £100 nucleotides was allowed for a prediction of a TSS to be
counted as correct. For the second test (test B), only those predictions were
counted as correct that predict the known true TSS with no mismatch. A
negative prediction was regarded as correct if there was no prediction within
100 nucleotides of position 801 for each sequence in RNDM_ ompare (for test
A) or if there was no prediction at 801 exactly (for test B). The results of

these experiments are described below.

The tests were conducted using two data sets, a set of 1000 sequences from
human covering [-800, +800] relative to a known true TSS (HTSScompare)
and a set of randomly chosen human sequences of length 1600 nt
(RNDMcompare). Sensitivity was determined on HTSScompare as the portion of
sequences in HTSS ompare that were correctly recognised as TSSs by the
respective tool, either with (test A) or without positional mismatch (test B).
Accordingly, specificity was determined on RNDM ompare as the portion of

those sequences in RNDM ompare that were correctly recognised as not being
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a TSS by the respective tool, either with (test A) or without positional
mismatch (test B). It is in this way, that DDM achieves a sensitivity of
99.8% and a specificity of 40.1% at threshold -2.0 with no mismatch (test
B) and 100.0% and 11.1% for sensitivity and specificity respectively at
threshold -1.0 (test A).

Consider for example a PPP that achieves a performance of 85% sensitivity
and 80% specificity in identifying TSSs. While this is a respectable
performance for TSS prediction, this tool can still not be used for the
identification of TID. This is because a sensitivity of 85% means that 15%
of true TSSs are not recognised as TSSs by this tool. The consequence of
this is that areas labelled as devoid of TSS by this tool would in fact still
contain 15% of true TSSs. This would disqualify these areas as

‘transcription initiation deserts’.
Promoter2.0

Promoter 2.0 does not allow the setting of any threshold. For test A, a
sensitivity of 22.5% and a specificity of 86.6% were achieved on
HTSS ompare and RNDMcompare respectively. Promoter2.0 does not provide

predictions with no positional mismatch, so test B was omitted for this tool.
NNPP2.2

For test A the threshold for which NNPP2.2 achieves 100% sensitivity on
HTSS compare Was determined to be t=0.12. For this value of t, a specificity of
4% on RNDMcompare in test A is observed. For test B, a sensitivity of 21%
and a specificity of 95% for the same value (t=0.12) is seen.

First Exon Finder

The lowest available threshold t=0.2 for all probabilities was used. This
selection of the threshold guarantees the highest possible sensitivity that this
tool can achieve. For test A, First Exon Finder achieves a sensitivity of

40.7% and a specificity of 98.6% on HTSScompare and RNDMcompare
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respectively. First Exon Finder does not provide predictions with one

nucleotide accuracy, so test B had to be omitted for this tool.
Eponine

The lowest available threshold t=0.9 was used. This threshold selection
delivers the highest sensitivity possible for Eponine. For test A, Eponine
achieved a sensitivity of 34.3% and a specificity of 91.4% on HTSS compare
and RNDM_ompare respectively. Eponine does not provide predictions with

one nucleotide accuracy, so test B had to be skipped for this tool.
Fprom

The thresholds for which the authors report a sensitivity of 100.0% for non-
TATA-box promoters and TATA-box promoters respectively (-9.496 and -
6.766) were used. For test A, Fprom achieves a sensitivity of 59.3% and a
specificity of 99.4% on HTSS ompare and RNDMcompare Tespectively. For test
B, a sensitivity of 2.4% and a specificity of 100.0% was observed.

N-SCAN

N-SCAN does not allow the submission of multiple sequences
simultaneously, so meaningful tests could not be conducted. The authors of
this tool do however report the performance of this tool to be 21% vs. 29%
for sensitivity and specificity respectively when predicting transcripts and

84% vs. 63% when predicting exons.
McPromoter

McPromoter does not allow the submission of multiple sequences
simultaneously, so meaningful tests could not be conducted. The author of
this tool does however report the tool to have a sensitivity of 65% at the

highest available sensitivity level.

The performance of all PPPs that were examined is summarised in Table 3.
The performance of DDM with no mismatch allowed is shown in Table 4

for comparison. For Table 4 threshold values were adjusted to match each
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sensitivity and specificity value reported in Table 3 and the corresponding

performance of DDM at this threshold is reported.

Tool SE SP threshold SE SP
Promoter2.0 22.5% | 86.6% n/a n/a n/a
NNPP2.2 100.0% | 4.0% 0.12 21.0% 95.0%
First Exon Finder | 40.7% | 98.6% 0.2 n/a n/a
Eponine 34.3% | 91.40% 0.9 n/a n/a
Fprom 59.3% 99.4% 0.0 2.4% 100.0%

Table 3: Performances of promoter prediction tools
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FRITS

S

240% | 100.00%
4.0% 99.90%
21.00% 99.50%
22.50% 99.20%
34.30% 99.10%
38.40% 98.60%
40.70% 98.50%
53.3% 98.2%

85.50% 95.00%
91.20% 91.40%
92.30% 86.60%
95.20% 58.70%
99.80% 4.00%

100.00% 4.00%

Table 4: Performance of DDM on HTSS ;mpare and RNDMompare With no mismatch (test 8)

Based on the results obtained through this comparison, it can be concluded
that none of the PPPs described achieves a performance that is good enough
to identify, with a high accuracy, locations that are not likely to initiate
transcription. Such locations must be guaranteed to be largely devoid of
TSS. DDM is the only tool presently available that manages to detect such
locations. However, it must however be remarked that the performance of
the programmes tested might improve if they were trained with the highly
accurate datasets that were used for DDM or if they could be tuned
specifically for sensitivity of 100% or close to it. Since in many cases the
promoter data sets that have been used in the configuration of the tested
PPPs have been limited by today’s standards for knowledge about
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transcription initiation, the performance of the PPPs examined must be seen
in the light of their age and the availability of data at the time of their

creation.

Application of DDM to identify TID

In order to make any statement about how much of the mammalian genome
is able to support the initiation of transcription, the DDM algorithm needs to
be applied to the entirety of all chromosomal sequences. Each position
within the chromosomal sequences needs to be examined. To achieve this, a
sliding window of length 200 nucleotides is analysed by DDM. The
algorithm determines the propensity of the nucleotide at position +1 to be
the location of transcription initiation. After that, the window is moved by
one nucleotide and the analysis is repeated for the next nucleotide at

position +1.

The human chromosomes 21, 22 and 4 were selected as showcases for the
analysis of the whole genome. These chromosomes reflect an average, high,
and low GC-content with regard to the whole human genome. Since the
gene-richness and the amount of transcriptional activity on a certain
genomic region is often explained in terms of the GC-content of this region,
it is interesting to see how DDM behaves in GC and AT rich environments
respectively. As a matter of fact, the amount of known genes on
chromosomes 21, 22, and 4 is about average, and relatively high, and low in
comparison with the whole human genome as well, when normalised for the
size of the chromosomes. The DDM algorithm was applied to the forward
and reverse strand of the chromosomes in question. The results are shown in
Table 5. They reflect the average between positive and negative strand,
keeping in mind that the differences between the two strands are minimal to

start with.
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Threshold | TID TIAR TID TIAR TID TIAR
0.0 91.53% 8.47% 78.18% 21.82% 95.87% 4.13%
-2.5 41.1% 58.9% 27.2% 72.8% 46.84% 53.16%

Table 5: TID and TIAR of three showcase human chromosomes

For the analysis of these chromosomes two different threshold settings (0.0
and -2.5) were used. The latter threshold allows a performance of 100%
sensitivity on the complete data sets. Sensitivity in this case refers to the
ability of DDM to correctly identify a TSS location. For all chromosomes
examined, a certain level of masking was observed, which refers to the
proportion of the chromosome that is deemed very unlikely to harbour
TSSs. If a sequence is annotated with DDM a threshold of -2.5 should be
used to ensure that all or the vast majority of potential TSSs are recognised

correctly.

One notices that this level of masking is in correlation with the GC-richness
of the chromosomes, as well as with the number of known genes [22] on
these chromosomes. This means that the higher the GC-content of (or gene
density on) a chromosome, the lower the observed level of masking, and
vice versa. In so far the observations made regarding the level of masking
through DDM comply with the expectations that arise from information
about the GC-content of the examined chromosomes. However, in spite of
the observed correlation between level of masking and GC-richness, the
TIDs are not confined only to the GC-poor regions and can be found also
within the GC-rich areas. Chromosome 21 can be regarded as a showcase
example, because it has an approximately average GC-content in
comparison with the entire human genome. At a sensitivity of 96.36% on
cross-validation, 41.1% of the chromosome is masked as TID. At a
sensitivity of 90.29% on CV, 91.53% of human chromosome 21 is masked

-21-

http://etd.uwc.ac.za/



as TID. If the locations of the genuine true TSS that are present in the data
set for human chromosome 21 are compared with the regions that were
marked as likely to initiate transcription, it can be shown that the remaining
8.47% of chromosome 21 contain ~92% of all TSSs on this chromosome.
This makes the density of TSS in the TIAR 132 fold higher than that in the
TIDs. This justifies the classification of the TID and TIAR domains as
active and desert regions relative to transcription initiation that was

introduced earlier in this chapter.

For human chromosome 22, which has a relatively high GC-content in
comparison with the whole human genome, 21.82% of the chromosomal
sequences are marked as TIAR. This portion of the chromosome contains
93.8% of all genuine true TSS for this chromosome. This makes the density
of TSS in TIAR 54-fold higher than in TIDs. For human chromosome 4,
which has a relatively low GC-content in comparison with the whole human
genome, 4.13% of the chromosomal sequences are obtained as TIAR. This
portion of the chromosome contains 83.6% of all genuine true TSS for this
chromosome. This makes the density of TSS in TIAR 118-fold higher than
in TIDs.

Repeats and transcription initiation deserts

Repeat sequences are an abundant genomic element in vertebrates. In
mammals they often make up more than 40% of the entire genome [38].
Repeats can be roughly grouped into two categories, tandem repeats and
interspersed repeats. Tandem repeats are normally areas of low complexity
DNA where a certain motif is repeated a certain number of times. The
motifs are usually not longer than 60 nucleotides and often significantly
shorter. Interspersed repeats are longer sequences that fall within the larger
group of mobile genetic elements. These sequences possess the ability to
move from one location in the genome to another by multiplying

themselves. There are two basic mechanisms through which this is
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achieved: one directly employs an enzyme called ‘transposase’, which
directly transfers the genomic element, while the other one involves the
transcription of the interspersed repeat to an RNA intermediate and the
subsequent reverse transcription of the intermediate. There is evidence that
suggests that repeat elements play a role in evolution by helping to form

new genes. They might also play a role in genetic disorders [39-41].

Repeat elements were previously regarded to be of little significance for the
characteristics and behaviour of the cell. The opinion that these sequences
constituted ‘genomic background noise’, that had no function, was popular.
In fact, repeat sequences are regularly excluded from analyses that deal with
gene function, gene regulation and other issues revolving around the
functional annotation of eukaryotic genomes (e.g. [42]). With this in mind,
it is interesting to examine in how far repeat sequences are able to initiate
transcription. The general expectation would be that extremely little to no

transcription is initiated from within repeat regions.

In order to facilitate this analysis, RepeatMasker
[http://www.repeatmasker.org] [43] was applied with all default settings for

Homo sapiens to a set of sequences spanning [-100,+100] around all known
genuine human TSSs. Of the total length of these sequences, 4.95% are
masked as repeats, predominantly as simple repeats and areas of low
complexity (Table 6). This means that ~5% of all nucleotides that are less
than 100 nt from a known TSS are classified as belonging to a repeat
sequence. Of all known genuine TSSs, 18.48% possess a repeat within less
than 100 nucleotides upstream or downstream of the position of the TSS.
Therefore 81.52% of TSSs do not have a repeat within 100 nucleotides
around them. Of the genuine true TSSs themselves, 3.4% were masked by
RepeatMasker. It can therefore be concluded that it is incorrect to regard
repeats a priori as incapable of initiating transcription, since the analysis

shows that 1 in 30 TSS lies within a repeat.
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file name: human_tss_113814.fa

seqguences: 113814
total length: 22762800 bp (22762800 bp excl N/X-runs)
GC level: 66.37 %

bases masked: 1127476 bp ( 4.95 %)

number of length percentage

elements occupied of sequence

SINEs: 160 12831 bp 0.06 %
ALUs 89 6265 bp 0.03 %

MIRs 69 6280 bp 0.03 %
LINEs: 136 16263 bp 0.07 %
LINE1 49 6179 bp 0.03 %

LINE2 73 8722 bp 0.04 %
L3/CR1 i) 1298 bp 0.01 %

LTR elements: 198 27489 bp 0.12 %
MaLRs 46 6234 bp 0.03 %

ERVL 70 9982 bp 0.04 %
ERV_classI 69 9565 bp 0.04 %
ERV_classII 8 1304 bp 0.01 %

DNA elements: 37 3560 bp 0.02 %
MER1 type 16 1625 bp 0.01 %
MERZ2_type 12 1011 bp 0.00 %
Unclassified: 0 0 bp 0.00 %
Total interspersed repeats: 60143 bp 0.26 %
Small RNA: 4 207 bp 0.00 %
Satellites: 20 2220 bp 0.01 %
Simple repeats: 8990 444194 bp 1.95 %
Low complexity: 14315 620766 bp 2.73 %

Table 6: Repeat analysis for human TSS sequences

The regions masked on human chromosome 21 by RepeatMasker (46.47%
masking) and the regions masked by DDM (91.53% masking) were
compared. Not all repeats are masked by DDM, which agrees with the fact
that a fraction of TSSs was observed to be located within repeat sequences.
In fact, only about half of the sequences marked as TID on human
chromosome 21 are repeat regions. The other half seems to consist of

sequences that are not repeats, but nevertheless not able to initiate
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transcription. To elucidate this further DDM (with balanced sensitivity and
specificity levels) and RepeatMasker were applied sequentially to human
chromosome 21. The area that was left unmasked by either tool corresponds
to TIAR that does not contain any repeat sequences. This area covered
7.43% of the chromosome, compared to 8.47% that was left as TIAR after
applying DDM alone. It turns out that the area demarcated as TIAR when
DDM and RepeatMasker are both applied to human chromosome 21 (i.e.
TIAR without repeats) contains 89.1% of true TSS locations. This
corresponds to a TSS density that is 102-fold higher in the unmasked area
than in the TID region. This compares unfavourably to a density ratio of 132
when only DDM is used.

The observations made from these experiments suggest that the combination
of RepeatMasker and DDM is, at balanced sensitivity and specificity levels,
not beneficial to the overall performance in masking TIDs. As was shown
above, 3.4% of TSSs are masked by RepeatMasker. When using DDM
alone, the threshold allows for a more favourable reduction in sensitivity. It
appears that the incorporation of repeat information into a system designed
to detect genomic regions unlikely to initiate transcription, is not the optimal

choice.
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Example: DDM masking explains failed amplification by 5'-
RACE

As was mentioned in the introduction to this chapter the DDM algorithm
can be useful in eliminating false positive evidence for transcription in tag
approaches to transcriptional analysis. To elaborate on this point an example
was chosen where CAGE tags were further examined for the actual
existence of a transcript by 5’-RACE experiments and the areas around

those CAGE tags were examined with DDM.

Firstly, the case of two CAGE tags between alternative TSSs in the gene
Oprm1 in mouse (opioid receptor, mu 1; coordinates: chr10, negative strand
3,308,332..3,557,942; EntrezGene ID: 18390) was considered. The area
around and immediately upstream of the 5° end of this gene is shown in
Figure 3. DDM demarcates two major TIAR in this genomic region. The
TIAR in this area consist of a large number of consecutive nucleotides that
are characterised by DDM as likely to initiate transcription. The larger of
the two major TIAR blocks is about 3000 nt in size and contains the 5 end
of the gene. This TIAR block can be understood to be the main promoter
region of the gene Oprml. A smaller TIAR block is found about 60,000
nucleotides upstream of the gene and suggests the existence of alternative
TSSs. DDM also marked numerous other positions as potential TSSs. Due
to the resolution of the figure, these are not shown in Figure 3. A TSS at
position 3,557,930 is supported by one CAGE tag (Fantom3 representative
tag ID 122BA39P0901, undefined tissue library) and this TSS is not masked
as a position unlikely to initiate transcription by DDM. This TSS was
confirmed by 5’-RACE experiments in 4 out of 6 tissue samples supporting
this prediction. Details about the tissues used can be found in the online
supporting materials for the Fantom3 publication [12]. The primer identifier
for this TSS is T10FO065AF50. Thus the claim made by DDM is in
agreement with the result of the RACE experiment.
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Contrary to this, a false positive TSS at position 3,580,940 indicated by one
CAGE tag (Fantom3 representative tag ID 119BAS53D1906, macrophage
tissue library) could not be confirmed by 5’-RACE in any of the 6 tissues
used. 5’-RACE experiments with two different primers (T10F006553E1 and
T10F006553F9) were conducted, but neither of them succeeded in
producing a viable transcript. This false-positive TSS is masked by DDM
suggesting it is not likely to promote transcription. As before, the claim
made by DDM regarding the location’s ability to promote transcription is
supported by the 5’-RACE experiment. The masked sequences surrounding
these two CAGE tags are shown in Figure 4. Which positions are masked
and which positions are likely to initiate transcription in these surrounding

areas is also indicated in Figure 4.

Major TIAR \ Y Major TIAR
3,590 K 3,550 K 3,600 K 3,650 K
1) T LM L] T : ! T ) : T o "'VT T ': A L] L]
Opral transcripts §* position of
I 2 JEF 0 IEY ) false positive CAGE tag. RACE
failed. nasked by
R R e
5 ition of
] | true gitiv. CAGE tag.
4—— confirmed bv RACE,
not masked by DDM

Figure 3: True and false TSSs for mouse gene Oprm1 recognised by DDM
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>122BA39P0901 mmS chr10 - 3559800.. 3559350

236663 LFEFFEEFEEI0392 53336 TTAGRETCTCTCSTCCC
ACCCTCTCTGCAGCATCCCCGCTTCTGCTCCCCCCCCCCCTACCCCAATT
TACACTCCTTTACACGGAAGTGCATAGAGACTGAGGAGGCTGATTCTGAG
TTGCTTTGCGCACAATCCACTCCTTCTCTCTCCTCCCTCCCCTCTAGCCT
CTGGATCCCTCACAGCCCATGCTCCCTCCCTTCCACTCAGAGAGTGGCGC
TTTGEGGGATGCTAAGGAT GCGCCTCCGTGTACTTCTAAGGTGGGAGGGGS
CTACAAGCAGAGGAGAATATCGGACGCTCAGACGTTCCATTCTGCCTGCC
GCTCTTCTCTGGTTCCACTAGGGCTTGTCCTTGTAAGAAACTGACGGAGC
CTAGGGCAGCTGTGAGAGGAAGAGGCTGGGGCGCCTGGAACCCGAACACT

>119BA53D1906 mm5 chr10 - 3583000.. 3582500

CAGE tags are shown in bold and yellow highlight, masked positions are shown
in lower case letters and strikethrough, potential TSS are shown in capital letters

Figure 4: DDM masking around CAGE tags T10FO065AF50 and T10F006553E

Because DDM operates with a resolution of a single nucleotide, TID and
TIAR locations or regions are sometimes small and clustered. For reasons of
image resolution the complete TID and TIAR can therefore not be shown in
Figure 3. However the exact masking situation around the CAGE tags from
Figure 3 is shown in Figure 4. To illustrate TID and TIAR locations or
regions on a wider scale the complete sequence of human chromosome 21
was annotated with DDM. The annotated sequence is shown in OSM to this

manuscript.

In addition to the above another 5 genomic positions where transcription is
indicated by the existence of a single CAGE tag (Fantom3 representative tag
IDs 120BA49K 1606, 081AA66D1203, 069AE2911002, 097AA30J2305 and
112BA90K2006) were examined. These CAGE tags are derived from

adipose, liver, lung, macrophage, and embryonic tissues, respectively. They
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are not all located around the position of the Oprm1 gene, but come from
various other locations on the genome of Mus musculus. The existence of a
transcript could not be confirmed by 5’-RACE for any of these positions.
The experiments failed to produce a valid transcript in all of the six tissues
used. When checking the areas surrounding these tags with DDM, it is
observed that DDM masks all but one of these positions as unlikely to
initiate transcription. The unmasked location is the location of CAGE tag
112BA90K2006, which is marked as a potential TSS. This could either
indicate a false positive analysis by DDM (which is probably the case) or a
problem with the RACE experiment. For the other 4 cases, the claims made

by DDM are in accordance with the results of the RACE experiments.

This example illustrates that DDM can help to isolate false-positive
candidate-tags for further analysis by determining computationally whether
a tag falls into TID or TIAR. Consequently, DDM can contribute greatly to
the accuracy of transcriptional studies and, with that, also to the success of
follow up studies that look at gene finding or the functional aspects of

genomics.

DISCUSSION

This chapter describes the development of the Dragon TSS Desert Masker
(DDM) and its application to three showcase human chromosomes. With
DDM, a tool was developed that can very accurately identify a portion of
DNA sequences that is highly unlikely to promote transcription initiation.
This region is set apart from the region of mammalian genomes which is
called transcription initiation active region (TIAR) and contains the vast
majority of genuine TSSs as well as a remaining portion of sequences

unlikely to initiate transcription.
This tool was applied to human chromosomes 4, 21, and 22 in order to
produce an initial estimate demarcation of the regions in the human genome
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where TSSs are only very sparsely present. The set of these regions was
called TID. The results obtained from the application of DDM to these
chromosomes suggest that over 40% of mammalian genomes represent
TIDs, that is, they are highly unlikely to promote transcription initiation.
The algorithm was developed in such a way that it exploits the
compositional properties of those short regions of DNA that immediately
surround the TSS location. These locations were determined using at least
two distinct and independent pieces of experimental evidence that the TSS
is in fact positioned at the location in question. Therefore, the reference data
sets, containing as many genuine true TSSs for human and mouse as
currently possible, are extremely accurate. Moreover, since the TSS sets
contain 113,814 human and 98,682 mouse TSS location, these represent to
the best of the researcher’s knowledge the most comprehensive sets of TSS
locations confirmed by at least two independent types of experimental
evidence. These two sets contain many alternative TSSs for a large number
of genes. In spite of the richness of the TSS data sets, one must be aware
that they do not represent the complete TSS complement for human or
mouse. Many genuine TSS locations are not included, but there is no way to

assess which ones these are and how many there are.

The analysis and results demonstrate that a very large majority of locations
capable of initiating transcription in mammals are concentrated within a
small fraction of the mammalian genome. This is contrary to the prevalent
opinion that the initiation of transcription is a process that can occur at any
given place in the genome of mammals and is not restricted to a limited
number of dedicated locations. Based on the large collections of
transcription data available today, it was shown that transcription in
mammals does not initiate randomly over the entire genome. This claim is
backed up by the results that were obtained from the application of DDM to
the showcase chromosomes mentioned above. Instead of initiating randomly
over the entire genome, only a small portion of the genome is likely to
initiate transcription for a vast majority of transcripts. For Homo sapiens it

can be estimated that no more than 10% of the genome is responsible for
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more than 90% of transcription initiation. This high concentration of TSS in
a relatively small fraction of the genome justifies the separation of DNA
sequences into transcription initiation deserts (TID) and transcription
initiation active regions (TIAR). As a consequence, the results presented
here, and the DDM tool itself, can be used to demarcate, in advance, regions
of interest for studies of transcription in mammals. It will serve to eliminate
the vast majority of regions where transcription initiation cannot take place
and thus significantly enhance the accuracy of those studies and their

follow-ups.

One can conclude from the results obtained here that over 40% of
mammalian genomes can be estimated to be part of TID, that is, they
contain no or almost no genuine TSSs. The remaining portion of the genome
should be understood to contain all or the vast majority of genuine TSS
locations. It also contains those locations that were incorrectly labelled by
DDM as TSSs. This is a consequence of the imprecision of DDM and the
incompleteness of the TSS data sets that were used for this study. It is
therefore not claimed that every location in the portion of the genome not
included in TID as predicted by DDM represents a possible TSS. Instead, it
is claimed that the part that constitutes TIAR includes (almost) all genuine
TSSs, but it also contains all locations that were falsely recognised as TSS

by DDM, according to the specificity level of the algorithm.

In the attempt to combine masking repeats and TIDs, it was found that at the
balanced sensitivity and specificity levels, the accuracy of DDM does not
benefit from masking repeat regions in TIAR. The performance of DDM
was shown in Figure 2 and Table 1 above. The algorithm allows for the
performance to be adjusted based on a threshold value. This adjustment
makes it possible to achieve a more favourable trade-off between sensitivity
and specificity than by combining masking repeat regions with TIDs. This is
due to the fact that repeat regions cannot be regarded as incapable of
initiating transcription. While it is true that only a minority of genuine TSSs

fall within a repetitive DNA sequence, the a-priori exclusion of repeats
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from studies of transcription initiation leads to inaccuracies. These

inaccuracies can be prevented through the usage of DDM.

The DDM programme would be useful for researchers working on several
types of problems. These problems include, but are not restricted to
promoter identification, gene annotation, data curation from high-
throughput experiments and wet-lab experiment designs. All these issues are
of broader interest. Promoter identification, although considerably advanced
[24,44], still suffers from positionally inaccurate prediction of the actual
TSS location. The problem is circular to the accuracy of the data set on
which these systems are trained, as well as the coverage of the real TSSs
within the data sets. In many cases the systems designed to predict TSS are
trained on data sets which determine the TSS position inaccurately, which
leads to shortcomings in the positional accuracy of predictions made with
those tools. Another problem that exists is the fact that the data sets used for
TSS prediction training are incomplete with regard to the reflection of all
real existing transcription start sites. This inevitably leads to the second
problem of a more accurate annotation of transcripts. The most frequently
used methods for full-length cDNAs are Cap-trapper [45,46] and Oligo-
capping [47]. Due to the specificity of sequences around mammalian TSSs
(generally high GC% and strong secondary structures), under optimal
conditions over 90% of full-length cDNA can be generated with the rest of
cDNAs being non-full-length [48]. The DDM system could assist in
cleaning this data from experimental artefacts and incorrect signals.
Bioinformatics approaches, microarray experiments, and other high-
throughput data are prone to false-positives. The genuine TSS locations
have to be confirmed through wet-lab experiments (Northern hybridization,
RACE, RT- or quantitative PCR) and possibly by multiple pieces of
evidence. Most low-throughput but high-confidence experimental
techniques require advance knowledge of specific genomic regions for
probe or oligonucleotide primer design. The design of more accurate probes
and oligonucleotide primers can be greatly simplified by the application of

DDM before experimental validation. This would benefit the experiments
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and the success of follow-up studies undertaken with the data derived from

these experiments.

In the attempt to show that the available PPPs are not suitable to predict
TIDs with an acceptable level of accuracy, the DDM system was compared
to several existing PPPs. These PPPs constitute the standard approaches for
promoter and gene start finding that are found in literature. Three of the
PPPs examined in [24,25] are by design unsuitable for a comparison with
DDM. These tools are CpGProD [33], Dragon Promoter Finder [34,35] and
Dragon Gene Start Finder [36,37]. CpgProD is restricted to prediction of
CpG-island related promoters, which make up only a subclass of all existing
promoters. Therefore a comparison is not feasible, because DDM
endeavours to predict all TSS, regardless of their specific structure. At the
same time, Dragon Promoter Finder and Dragon Gene Start Finder
determine TSSs based on averaging over a number of strong predictions.
This way, a TSS prediction is generated that is unlikely to represent the real
TSS with one nt accuracy, although it is likely to be very close to the real
TSS. Other promoter prediction systems have other types of restrictions, as

was discussed in the ‘Results’ section of this chapter.

The general comparison setup was based on the use of a test set that is
completely independent of the training set used to derive the DDM model
for the comparison tests. This introduces fairness into the comparison.
Furthermore, to be able to estimate TID, the promoter predictors should be
able to operate at sensitivities of ~100%. Not all promoter predictors have
the possibility to adjust their tuneable parameters to achieve a value close to
that sensitivity, and thus it must be concluded that they are not suitable for
this task. However, for those promoter predictors that allow the adjustment
of their parameters, to let them operate more closely to the high sensitivity
levels demanded in this context, such adjustments were made. It is
important to note that, after this intervention, such promoter predictors have

reached an ‘extreme setting’ relative to their typical mode of operation.
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The observed differences in performance comparison results come from
several factors. First, DDM is capable of separating TID and TIAR
predictions at the level of a single nucleotide, because the DDM algorithm is
trained to pinpoint the actual TSS location. Promoter predictors frequently
only indicate a region in which they expect a TSS to be present, thus
reducing the resolution of the tools dramatically. Only two of the promoter
predictors, NNPP2.2 and Fprom, are capable of pinpointing the TSS
location exactly. All other predictors that were used only give an interval in
which they claim the TSS location to be. The comparison with DDM when
the exact TSS location is to be predicted (test B), shows that both NNPP2.2
and Fprom are not recognising a significant portion of the real TSS
locations, making them unsuitable for TID estimation. Another issue is that
the design goals of promoter predictors could be different from the design
goal of DDM. DDM attempts to achieve 100% sensitivity in recognition of
real TSSs and to minimise the predictions of random genomic locations as
TSSs. Promoter predictors, on the other hand, generally aim at maximised
balanced sensitivity and specificity, usually sacrificing sensitivity in favour
of specificity. Systems tuned in such a way are not necessarily suitable for
determining TID, as one needs to have guarantees that all (or the vast
majority) of TSSs are included in the predicted locations. The current
promoter predictors unfortunately do not provide this characteristic. It is for
this reason that the settings of some of the promoter predictors had to be
changed to make them operate at a very high sensitivity. It should be
highlighted that the comparison results have to be interpreted with these

issues in mind.

Also, the set of random DNA that was used in the comparison of DDM with
other promoter predictors was assumed to contain no TSS locations. For the
purpose of comparing DDM with existing promoter predictors, DDM was
specifically retrained with a set of all human TSS sequences, excluding
those that were used in the comparison experiment (HTSScompare). This
means that all data used in the comparison was previously unknown to

DDM and no advantage for DDM through data selection was obtained. How
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the various data sets that were used in this study have been created is

explained in detail in the ‘Methods’ section of this chapter.

METHODS

Data: Transcription Start Sites

The creation of reference data sets is probably the most important step in
creating a computational recognition system. Any system can only be as
good as the data that was used to train it. It is therefore most essential to
obtain data that is as complete and as accurate as possible. Two highly
accurate sets of TSS for Mus musculus and Homo sapiens were compiled.
The reference genome builds that were used for these species are mm8 and
hg18. The respective surrounding sequences covering [-100,+100] relative
to these TSSs were compiled. The sequence was extracted from the same
strand that the TSS was reported to be residing on. A TSS was only
regarded as genuine and made part of the TSS data set if it was possible to
find two pieces of independent supporting evidence for the existence of a
TSS in a specific genomic location. The first piece of evidence required was
the presence of at least one FANTOM3 CAGE tag. This piece of evidence
was considered to be backed up by a second piece of evidence, if the first 5°
nucleotide of the CAGE tag coincided exactly with the first 5’nucleotide of
either at least one full-length cDNA or at least one mRNA. The cDNA
sequences used here are all cDNA sequences that are found either in
FANTOMS3 or in the UCSC browser [49]. The mRNA sequences used in
this process are taken only from the UCSC browser. All TSS locations
selected in this way are supported by at least two independent pieces of
evidence. A minimum distance between neighbouring TSSs was not
enforced as long as two pieces of evidence were present at a location. No

mismatch between the two pieces of supporting evidence was allowed. This
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means that TSSs which are only one nt apart are considered to be two

separate TSSs.

It has been established by [50] and [51] that within promoter regions there
exist many alternative TSSs that are often located within a few nucleotides
from each other. In the context of this manuscript, these TSSs are regarded
as separate, even if they are residing on neighbouring nucleotides. Although
TSSs that are located very close to one another are likely to transcribe the
same transcriptional unit, even the most minimal difference in the location
of the TSS leads to the production of a slightly different transcript. Since the
aim of DDM is to pinpoint the exact location of TSS and not only the
approximate location of a tag cluster, these transcription events are therefore
regarded as separate. Furthermore, even a small positional difference
between two TSSs causes the surrounding area of the TSSs to be different,
with features of this area residing at different location with regard to the
TSS. While in some cases this approach has the effect that TID and TIAR
appear in a clustered fashion on the chromosomal sequence (see
chromosome 21 in online supporting materials), the belief is held that this
could be a more true reflection of the actual biological situation with regard

to transcription initiation.

Since the two pieces of evidence that are required for all true TSSs are taken
from two completely independent and distinct experiments, the resulting set
of genuine true TSSs has an extremely high accuracy. Sequences that
contained ambiguous characters (‘N’) were excluded. In this way, a mouse
reference TSS set containing 98,682 sequences and a human reference TSS
set containing 113,814 sequences was compiled. These sets were called
MTSS and HTSS respectively. From the HTSS set, a subset of 1,000 TSS
locations was chosen randomly. For these TSS locations the sequences
covering [-800, +800] relative to the TSS location were extracted. These
1,000 sequences were called HTSScompare. These are used for the comparison
between DDM and existing promoter prediction programmes. The set of all

human TSS with all items in HTTS compare removed is called HTSS,..
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The best data available at present was utilised and a rigorous methodology
in establishing the reference TSS sets was applied, though it must be said
that this set is naturally only a subset of the set of all genuine TSSs in
mammals. While as many genuine TSSs were included in the reference data
set as possible, it cannot be claimed that the reference data set possesses a
complete set of all human and mouse TSSs. As a matter of fact being in
possession of only a part of the genuine TSSs raises the need for predicting
TID in the first place. Since it is demanded that all TSSs in the set have a
CAGE tag support, there are high dependencies on the accuracy of that data,
and this is one of the reasons why two independent pieces of evidence to

support the TSS location were used.

Data: Other sequences

As non-TSS sequences or ‘negative’ sequences, DNA sequences from
human and mouse were selected indiscriminately. These DNA sequences
were 200 nt in length and selected randomly from all human and mouse
chromosomes. In doing so it was ensured that the number of sequences
selected was proportional to the length of the chromosomes. Sequences that
contained ambiguous characters (‘N’) were discarded. If the 5° end of a
CAGE tag fell within [-10, +10] relative to the centre of the sequences, the
sequence was also discarded. In total 110,000 random human DNA
sequences and 100,000 random mouse DNA sequences were selected. In the
same manner, an additional 1,000 human DNA sequences 1600 nt in length
were extracted to be used as a negative set for the comparison with existing
PPPs. This set was called RNDMcompare- This means that RNDM_ompare and
the negative set (RNDM) used for training of DDM are disjoint sets.
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DDM training set for comparison with promoter predictors

To make the comparison of DDM with the other promoter predictors fair,
DDM had to be retrained on a training set that was completely independent
from the test set used in this comparison. The training set used for this
purpose contained HTSS,, as the positive data and RNDM as the negative
data. Please note that this training set was completely independent from the

test set used in the comparison experiment.

DDM test set for comparison with promoter predictors

The positive and negative data set HTSScompare and RNDMcompare
respectively formed a test set used to assess the performances of DDM and
other promoter predictors. This set is independent from the set used for the

training of DDM for the comparison with the promoter predictors.

Algorithm:

To achieve the highest possible accuracy, the presented algorithm utilises a
four-stage daisy-chained filtering method. The basic layout of the algorithm
was presented in Figure 1. Sequences of length 200 are examined and have
to be classified by all four stages as a potential TSS in order to be
recognised as part of a TIAR. The algorithm uses a different filtering
method at each stage. This way it is possible to exploit different
compositional features of the sequence under examination. Thus the overall
method achieves the very high discrimination between locations likely and

locations not likely to initiate transcription.

In a formal way, the algorithm presented here can be understood to be a
multi-classifier system, which is a common approach to classification

problems in machine learning. Normally, the same problem is presented to a
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number of individual classification modules and the overall statement is
derived in some way as a combination of the results of the individual
classification modules by some decision logic module. There are numerous
ways in which classifiers can be combined and numerous ways to design the
decision logic. DDM can be categorised as a parallel multi-classifier system,
in which the decision logic outputs a negative result as soon as one of the
inputs from the individual modules is negative. This is achieved indirectly
by applying the individual modules of the algorithm sequentially. A step is
only executed if all previous steps have deemed a sample to represent a

possible TSS.

All four steps of the algorithm are performed either on the entire available
data sets or on the training part of the data during the 4-fold CV.

Boundaries of k-mer distribution and frequencies of k-mers

A total number of 1,364 k-mers of length 1-5 was considered. The lengths
and number of these k-mers are summarised in Table 7. The number of
occurrences u of each k-mer K in the upstream segment [-100,-1] was
determined, as well the number of occurrences d of K in the downstream
segment [+1,+100]. These two numbers were recorded. Both values # and d
are from the interval [0, 100+1-k] where k& denotes the length of k-mer K.
For every sequence in MTSS and HTSS with an upstream occurrence u of
k-mer K, the minimum, min(d), and maximum, max(d), occurrence of K
downstream of TSS was determined. For every sequence in MTSS and
HTSS with an downstream occurrence d of k-mer K, the minimum, min(u),
and maximum, max(u), occurrence of K upstream of the TSS was
determined. This was done for all possible values » and d from [0, 100+1-k]

and for all possible k-mer lengths 1-5.
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1 4 4

2 16 20
3 64 84
4 256 340
5 1024 1364

Table 7: Statistics on k-mers used in development of the algorithm

For every k-mer K, the collection of all points defined by (min(d), u) and
(max(d), u), as well as (d, min(u)) and (d, max(u)), define boundaries of the
region that contains all TSS locations. To illustrate this point, please refer to
Figure 4 which shows an example for the 1-mer ‘C’. The region of all TSS

is shown in grey.

—— minima
—— maxima

Figure 5: Constraining boundaries for occurrences of 1-mer ‘C’
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A particular TSS characterized by (u1, dI) for k-mers K will be recognized,
if for ul min(d) < dl < max(d), and for dI min(u) <ul < max(u) is obtained.
A sequence is considered to contain a TSS on position +1 if for all 1,364 k-

mers it satisfies the constraining conditions above.

[-10,+10] PWM thresholding

For this step of the algorithm, the sets MTSS and HTSS are divided into 16
subsets characterised by different dinucleotides at positions [-1,+1]. All
sequences with dinucleotide ‘AA’ at positions [-1,+1] are put together in
one subset, etc. For each of these subsets, all sequences of length 20 nt
covering the region [-10,+10] were extracted, and for each of the 16 such
subsets, a position weight matrix (PWM) [52] was constructed. The PWM
of each subset has 20 columns in correspondence with the region it covers.
The PWM of a given subset is subsequently used to determine the PWM
scores §5 [52] of all [-10,+10] sequences in the subset. Out of these scores
the minimum score s,,;, is selected. A sample is considered to contain a TSS

on position +1 if its associated PWM score s = sm in the respective subset.

LDF 40

For this step of the algorithm, the sets MTSS and HTSS are again divided
into 16 subsets, as described above. The complete TSS region [-100,+100]
for all TSSs in a given subset is divided in 40 consecutive non-overlapping
sections of length S nt. For each of these 40 sections, a PWM as previously
described was determined, using all sequences from a given subset of HTSS
and MTSS respectively. For each of the sequences from all 16 subsets of
HTSS and MTSS, a feature vector comprising of 40 PWM scores was
determined. Each score was determined using all 40 sections of the

sequence and the corresponding PWM. In this way 16 sets of ‘positive’ data
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with one 40-element feature vector for each sample is produced. The
‘negative’ data was processed with the same PWMs derived from the MTSS
and HTSS subsets to create 16 sets of ‘negative’ data with one 40-element

feature vector for each sample.

Linear discriminant analysis [53] is used on these sets of ‘positive’ and
‘negative’ data to determine 16 linear discriminant functions (LDFs), one
for each of the 16 subsets. A linear discriminate function for a 40-element
feature vector possesses 40 coefficients, to be multiplied with the individual
features, and one constant. These 41 elements of the function are meant to
be summed up. The 16 LDFs that were determined as described above are
then used to calculate LDF values. An LDF value is calculated using the 40

coefficients ¢;, i=1,2,...,40, plus one constant cy.

All sequences in HTSS and MTSS are subjected to the LDF that
corresponds to the dinucleotide at positions [-1;+1] and the score sipr is
calculated for each sequence (sppr = C1X1 t ... + CapXap + Ceonst, Where X; are
the corresponding scores of the respective PWMs). A threshold value is
determined for each of the 16 subsets in MTSS and HTSS by selecting

LDFp, so as to preserve 100% sensitivity in the recognition of real TSSs.

A sample is considered to contain a TSS on position +1 if LDFgmple =
LDFyi, for the respective subset. Otherwise, the sample is classified as not

containing a TSS on +1.

SVM

For this step of the algorithm, the sets MTSS and HTSS and the ‘negative
sets’ are processed as described above to produce positive and negative data
containing 40 values for each sample. A support vector machine (SVM
light: http://svmlight.joachims.org/), with a radial basis kernel function, is
trained as a classifier. The radial basis gamma value 1.28 delivered the

highest accuracy for this data. The class for sequences containing a genuine
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TSS is labelled 1, the class for random non-TSS DNA sequences is labelled

-1. The two resulting models Mys and My are derived.

A threshold value tgyy is then applied. A sample is considered to contain a

TSS at position +1 if the SVM score sgym > tsym.

The threshold tsyy is the only adjustable input parameter to the tool

implemented on the web server (http://apps.sanbi.ac.za/DDM/). It can be

used to manipulate the sensitivity / specificity behaviour of the algorithm.
For details on the sensitivity / specificity behaviour of this algorithm please
refer back to the ‘Results’ and ‘Discussion’ sections of this chapter and in
particular to Table 1. All other parameters of the algorithm are fixed at a
level that experimentally provided maximum sensitivity. In particular, the
threshold values for [+10,-10] PWM and for LDF40 functions were fixed at
levels that allow the retention of 100% of the genuine true TSSs. Although
it is possible to use these thresholds to manipulate the sensitivity /
specificity behaviour of the algorithm, it was experimentally determined
that the SVM is the step that allows the most beneficial trade-offs, and
moreover, contribute to the simplicity of the parameter adjustment process.
Because the SVM classification of sequences is computationally the most
time consuming of all steps, it is also beneficial for the overall speed of the

algorithm to place it at the end of the daisy chain.

CONCLUSIONS

In this chapter a new algorithm for masking transcription initiation deserts
in mammalian genomes was presented. The algorithm has the ability to
mask a significant portion of the genome as containing a minimal fraction of
genuine TSS locations while retaining a vast majority of the genuine TSSs
in the non-masked regions. It was shown that it can be estimated that for
Homo sapiens, less than 10% of the genome are responsible for over 90% of

all transcription initiation. This enables the focusing of research attention to
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narrow segments of the genome. These segments could otherwise be
difficult to identify. The great advantage of the algorithm is that it can
identify transcription initiation deserts at the resolution of a single
nucleotide. The server with this algorithm is freely available at:
http://apps.sanbi.ac.za/DDM/. It is believed that this resource could be of

wide use to researchers in different fields of life sciences. The work
presented in this chapter is currently being prepared for submission for

publication in Bioinformatics.
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Chapter 2 - The analysis of transcriptional deserts

BACKGROUND

The transcription of DNA sequences into messenger RNA is the first
important step on the way from DNA to the production of proteins, which
determine the biological behaviour of the majority of cells. Vast collections
of transcription data that are now widely available have enabled researchers
to examine closely the mechanisms involved in transcription [7-12]. These
studies have shown that for a large number of genes there exist numerous
alternative transcription start sites which contribute greatly to the fact that a
single gene can produce multiple sometimes vastly different transcripts and
in turn different gene products [54]. It was also shown that a large number
of genes have the ability to produce various gene products by means of post
transcriptional modifications, such as alternative splicing [55,56]. Here, the
location of splice sites is crucial. It has been proposed that errors in the
selection of the correct transcription start site under specific circumstances,
disturbances in the process of transcription regulation, or erroneous splicing
activities, are involved in the development of diseases and genetic disorders
[57-59]. Much research attention has been given to regions that promote the
initiation of transcription and to regions that are themselves transcribed.
However, the exact control mechanisms that lead to the usage of one or
another alternative TSS remain elusive. It is suggested that a variable
number of different control elements work together to produce a specific
transcript under specific circumstances. It appears that in this process the
distances between the various control elements and the gene being regulated
can be large and that regulatory elements do not necessarily regulate genes
in their immediate neighbourhood [60]. The malfunctioning of one of those
control elements might have consequences for the entire transcription

procedure.
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While research attention is concentrated on transcriptionally active regions
of the genome, not much attention at all is given to regions of the genome
that are not transcriptionally active. In the last few years, it has been
accepted that ‘most’ of the mammalian genome is in fact transcribed [61-63]
and that only a minority of those transcripts are translated. In this context,
research attention is also concentrated on ‘non-coding regions’. There is,
however, a portion of the genome that is not transcribed and which has
hitherto been largely ignored. Researchers regularly do not consider those
regions to be important and ignore them in their studies. While this is a valid
and correct assumption in many cases, it does not contribute to the
elucidation of the specific functions of these regions. The genomes of all
organisms living today have evolved over several billions of years [64], so
the existence of regions in the genome that do not play an active role in
transcription, implies that they might have a function after all that has so far
escaped the grasp of the research community. This is especially interesting
considering that in many cases distal regulatory DNA elements have a direct
or indirect influence on gene transcription and expression. It seems
appropriate to assume there is indeed a reason for the existence of those
DNA stretches. It is also worth considering that the complexity of
transcription and the amount of protein interaction is thought to be mainly
responsible for the complexity of higher organisms such as mammals, and
not the size of their genomes or the number of genes contained within these
genomes [65,66]. Therefore, the role of regions that are not directly
transcriptionally active is worth investigating. The suggestion that genomic
regions, which are not immediately involved in transcription, have only
structural roles or are evolutionary leftovers might be an underestimation
and too simple a view-point considering the vastly complex process of

transcription regulation and gene expression.

Fully understanding the role that transcriptionally passive DNA has in the
genome, and trying to illuminate the connection between this DNA and
protein-coding genes, might help to understand the ways in which certain

types of genetic disorders originate and proliferate. Once the regular
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function of transcriptionally passive DNA is determined, it can be explored
what effects a malfunctioning of the processes involved has on the normal

operation of the cell.

This study contributes an initial estimate towards an investigation of
potential roles that transcriptionally inactive DNA might play in mammalian
genomes. A comprehensive methodology for accurately determining part of
those regions of the genome that are not directly involved in transcriptional
activity was developed. This methodology allows the relatively accurate
distinction of regions that are either evidently transcribed, or that might
promote the initiation of transcription from those regions that possess
neither property. The methodology was applied to the genomes of Mus
musculus and Homo sapiens and these regions were extracted. These
regions are termed ‘transcriptional deserts’ (TDs) and they are studied in

this chapter.

In previous studies that have examined ‘gene deserts’ the areas under
investigation were define simply as intergenic regions. Results of these
studies have been contradictory with some suggesting that gene deserts have
no particular function and can be deleted without consequence for the
viability of the organism [67] while others come to the conclusion that these
regions contain remote control elements for gene expression [68-71]. In
contrast to the above approach, the present study is much stricter in its
definition of ‘deserts’ and analyses only those regions which are not directly
involved in transcriptional activity. These regions are termed
‘transcriptional deserts’ (TDs), and contain sequences of genomic DNA that

are neither themselves transcribed nor represent the locations of TSSs.

Subsequently these transcriptional deserts are subjected to various kinds of
analysis in order to investigate their specific characteristics. Special
attention is given to the way in which transcriptional deserts display distinct
properties that differentiate them from transcriptionally active genomic
regions. TDs are examined with respect to their compositional properties

and their GC content. GC-richness or AT-depletion is a property of DNA

-47 -

http://etd.uwc.ac.za/



that is frequently employed by researchers to explain gene-richness and
gene-depletion of genomic regions. Here it is shown that, while it is known
that the GC-richness is correlated with the higher gene density in a DNA
region, GC-richness itself is not sufficient to fully explain the presence or

absence of transcriptional activity.

Furthermore, TDs are examined for the occurrence of single nucleotide
polymorphisms (SNPs) and their rate of evolutionary conservation. It is
generally accepted that the rate of evolutionary conservation gives an
indication of the level of function between different areas within the
genome. It is normally thought that regions that are evolutionarily conserved
are more functional than those that are not. While it does not necessarily
follow that regions that are not evolutionarily conserved are only of minor
significance, knowledge about the rate of evolutionary change in TDs, in
comparison with non-TDs, shows to what extent TDs are involved in

processes that are conserved over time in mammals.

Transcriptional deserts are also examined for the existence of transcription
factor binding sites (TFBSs) [72], which could produce important insights
into the regulatory activity of TDs. Consequently, combining the knowledge
about the existence of TFBSs and SNPs, several candidate regions are
presented where a collection of mutations might cause differences in the
way in which the transcription factors that bind to the region influence the
transcription of genes. Such disturbances might be involved in irregular
transcriptional activity and might, among other things, contribute to

explaining the origin of neoplasia.

METHODS

To identify transcriptional deserts in the genomes of Homo sapiens and Mus
musculus, the genomic sequences of these species was subjected to a multi-

staged analysis. The aim of this analysis was to extract genomic regions that
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have two distinct properties. Firstly, these regions must, with a very high
probability, be incapable of initiating transcription. This assures that TDs do
not contain any transcription start sites, which are supposed to be excluded
from the analysis. To do this, the Dragon TSS Desert Masker (DDM) was
applied to the forward and reverse strand of all chromosomes of human and

mousc.

The Dragon TSS Desert Masker (DDM) was introduced in Chapter 1 and
has the ability to determine very accurately those regions of mammalian
genomes that are highly unlikely to initiate transcription. A sensitivity level
of 99% was chosen and all TSS deserts in the forward and reverse strand of
all chromosomes of Homo sapiens and Mus musculus were masked. At this
level, DDM has a specificity of 87% for mouse and 86% for human. This
means that regions recognised as ‘transcription initiation deserts’ (TID) at
these performance levels will contain only 1% of genuine TSSs and will
cover 87% or 86% of all genomic locations in human and mouse genomes
respectively. At the same time regions recognised as ‘transcription initiation
active regions’ (TIAR) at the above mentioned performance levels will
contain 99% of all genuine TSS and will be localised within 13% and 14%
of all genomic locations in human and mouse respectively. Subsequently all
those regions recognised as TID were studied. Regions that were part of the
TIAR were eliminated from the chromosomal sequences. This was done for

the forward and reverse strand of each chromosome separately.

Secondly, it must be ensured that the transcriptional deserts are not
themselves transcribed. For this purpose a comprehensive collection of
transcription data that is known to exist in humans or mice today (April
2008) was compiled. These compilations of transcript data are summarised

in Table 8.
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ESTs 6,564,306 4,072,781 UCSC
I-SAGE 275,021 527,129 UCSC
CAGE 2,808,513 1,776,667 FANTOM3
flcDNA 1,118,025 416,489 DBTSS
mRNA 171,372 195,600 UCSC

Table 8: Summary of all transcripts used in TD production

This compilation contains all known ESTs for human and mouse on the one
hand, as well as two different types of full-length transcript data (1-SAGE
and flcDNA) on the other. The data in these collections is taken from three
different sources. For these two reasons, it can be assumed that these
compilations contain as complete a collection of human and mouse
transcripts as can be obtained at the time this analysis was performed (April
2008). Data that is published in the time since this analysis has been
performed (e.g. [61-63]) and data that will be published in the future are of
course more up-to-date than the data used.

The genomic coordinates, with start and end position, as well as
chromosome and strand, are extracted for every transcript shown in Table 8.
These positions are also eliminated from the chromosomal sequences, in
order to mask out all positions in the genome for which the existence of a
transcript can be shown. A position is eliminated as soon as there is one
transcript that occupies the position in question. This was done for the
forward and reverse strand of each chromosome separately. From the
remainder of the chromosomal sequences, all those regions are extracted
where more than 518 consecutive nucleotides are neither characterised as
likely to initiate transcription nor part of any known transcript. This
effectively makes 518 a required minimal length for transcriptional deserts.
Since a strong clustering behaviour is observed in the occurrence of
potential TSS, a minimum lengths for TDs needs to be enforced. The
threshold of 518 nucleotides was chosen, because 95% of all human full-
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length ¢cDNA sequences are longer than 518 nucleotides. Therefore, the
shortest transcriptional desert can only accommodate the shortest 5% of all

human flcDNA sequences.

The resulting regions exist for the forward and the reverse strand of each
chromosome separately. They constitute all those regions that are a) highly
unlikely to initiate transcription; b) for which no know transcript exist; and

c) which have a minimal length of 518 nucleotides.

Here, TDs are not considered to be strand-specific. Instead, in the context of
this study, a TD is defined as a region of the chromosome where a
transcriptional desert exists on both strands. This means that corresponding
nucleotides on both strands are neither transcribed nor likely to initiate
transcription. If this condition is satisfied, the chromosomal position in
question is considered part of a TD. Again, only those TDs that consist of at
least 518 consecutive nucleotides are considered. These non-strand-specific
TDs are extracted for all chromosomes in the genomes of mouse and human

and subsequently subjected to various types of analysis.

In order to investigate in how far the application of a specific minimal
length affects the occurrence of TDs, the complete process of creating TDs
was repeated. This time a minimal length of only 259 nucleotides was
enforced. Statistics regarding the number of TDs identified, as well as the
chromosomal coverage of these shorter TDs, have been composed in order
to compare them with the original TDs of minimal length 518. It has to be
admitted at this point that the selection of a specific minimal length for TDs
is, to some degree, arbitrary. Unless stated otherwise, all subsequent

analysis was conducted with the TDs of minimal length 518.

The occurrence of all possible k-mers of length 1 to 8 (monomers to
octamers) was determined in TDs. This yielded the GC-content as a by-
product by producing the proportion of 1-mers ‘G’ and ‘C’. In order to
investigate if there exists a specific k-mer composition in TD regions, the k-

mer composition of TD regions was compared with the k-mer composition
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of randomly extracted DNA. For Homo sapiens, a number of DNA
sequences were randomly extracted from the genome, with the number of
sequences extracted from each chromosome proportional to the size of the
chromosome. Only random DNA sequences that had a similar (+1%) GC-
content to the TD regions in Homo sapiens were considered. The total
number of sequences extracted corresponds to the total number of TD
regions identified in Homo sapiens. The length of each extracted sequence
corresponds to the average TD length in Homo sapiens. The same was done
for Mus musculus. Using the chi-square method, the p-values and
corresponding chi-square values were calculated for the distribution of all k-
mers between TDs and random DNA, assuming 4 categories of k-mers, k-
mer x in TD, non-x in TD, x in random DNA and non-x in random DNA. P-
values were calculated based on the null-assumption that no difference can
be observed between the k-mer distributions in TDs and random DNA. The
selection of random DNA of the same amount and with the same (average)
length and GC-content as the TDs in the corresponding species makes it
unlikely that possible differences observed in k-mer composition caused by

sequence properties other than lack of transcriptional activity in TDs.

RepeatMasker [http://www.repeatmasker.org] was used to analyse the

repeat content in human and mouse TDs, in comparison with the repeat

content in their entire genomes.

All known human and mouse single nucleotide polymorphisms were
extracted from dbSNP (NCBI built 129) and separated into SNPs lying
within TDs and those lying outside of TD regions. Rate matrices for SNPs
lying inside and outside of TDs were determined. The proportion of SNPs
that fall within TDs was compared to the proportion that fall outside
transcriptional deserts. The proportion of SNPs that fall within TDs was
then set in relation to the proportion of the human and mouse genomes that,

according to this analysis, are covered with TDs.

The alignment between the human genome (version hgl8) and the mouse

genome (version mm8) was downloaded from the University of California
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in Santa Cruz (UCSC Genome Browser, http://genome.ucsc.edu/ [49]). It is

estimated that a common ancestor for mice and humans lived during the
Cretaceous period [73]. This means that the mouse and human genomes
have been subjected to more than 70 million years of independent evolution.
For the context of this study, sequences that are conserved in the genomes
of both species are for this reason considered as evolutionarily conserved.
This alignment between the human and mouse genomes was used in this
study and was compiled with the tool BLASTZ [74]. The alignment data
comprises all sequences in the human genome that can be matched to
corresponding sequences in the mouse genome. The genomic locations, as
well as the sequences themselves, are contained in the downloaded data. For
each matched sequence, a similarity score is given. This similarity score is
specific to BLASTZ and explained in the corresponding publication [74]. In
order to investigate the extent to which TD regions are evolutionary
conserved, it was determined what portion of human TDs fall into regions
for which a match can be found in the mouse genome. This was done for
three different minimum BLASTZ similarity scores (0, S000 and 10000),

which refer to a weak, a medium, and a strong conservation.

All TDs were analysed with ‘MATCH’ [75] (TRANSFAC 11.4 [76]), with
standard settings for vertebrate and optimised for the minimisation of false-
positive matches. This delivered the number and density of possible binding
sites for matrices derived from the binding sequences of a group of known
transcription factors (TFs). Only high quality matrices were used in this
analysis. For comparison, the same was done for the entire sequence of
human chromosome 21, the collection of human and mouse cDNAs as
shown in Table 8 above, as well as a sequence of randomly generated DNA
of length 1,000,000. The latter was created by randomly selecting and
concatenating one million, randomly selected, single letters out of A, C, G

and T.

In order to evaluate the extent to which TFBSs and SNPs coincide within
TD regions, the results of the analyses regarding SNP and TFBS were
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subsequently combined, thus determining how many binding sites harbour a
SNP in desert regions. As part of this analysis, the positions of SNPs and
TFBS in TD regions were matched and then discriminated between SNPs
located in the peripheral area of the TFBS or in the core area of this binding
motif. It was similarly examined how strongly clustered TFBSs appear in
TD regions. For this purpose the occurrences of all possible TFBS in a
sliding window of size 200 nt were counted. The sliding window was
moved by one nucleotide along all TD regions of the respective organism.
The mean value for TFBS occurrences in all sliding windows and the
standard deviation from this mean value was calculated. It was also
calculated to what extent there are significant outliers present from this
statistic. The results from these investigations were compared to the

respective characteristics in promoter regions.

RESULTS

DDM was applied to the human and mouse genome at a sensitivity level of
99%. This means that only 1% of true TSS from the test set is not correctly
recognised. At this level, 78.6% of human chromosome 21, 57.6% of human
chromosome 22 and 86.4% of human chromosome 4 are marked as
positions where transcription is very unlikely to initiate. A complete
overview of what portions of the individual chromosomes are recognised as
unlikely to initiate transcription at this level and what portions are likely to
be TSSs is presented in Table Al in the appendix. For the determination of
all of values in Table Al, only those positions have been taken into
consideration which do not possess a character other than ‘A’, °C’, G’ or
‘T’ (e.g. ‘N’) within 100 nucleotides upstream and downstream have been
taken into consideration. Any sequences of length 200 containing characters
other than ‘A’,’C’,’G’ or ‘T’ (e.g. ‘N’) have been left out of the calculation
of the portions likely and unlikely to initiate transcription.
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Desert size and coverage

Based on the results regarding regions unlikely to initiate transcription,
obtained through the application of DDM, all those regions that are neither
likely to initiate transcription nor are part of a known transcript were
determined. All DNA sequences from the genomes of human and mouse
that meet these criteria and were of a minimal length of 518 nucleotides
were extracted. These regions where termed ‘transcriptional deserts’ (TDs).
Details on the procedure that was followed to achieve this can be found in
the ‘Methods’ section of this chapter. Statistics on the TDs for all
chromosomes of the mouse and human genome can be seen below in Tables
9a. The actual TD regions for all chromosomes for mouse and human are

presented in the online supporting materials (OSM) to this study.
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speciesand chr nofdesarts: :tot. fength: long h g langth: di ngth: S of chr d: :shie 6C. 3
HS chri 6147 4775186 6435 518 776 582 193 247248713  29.21%
HS chr2 8815 5852882 4520 518 777 680 282 242951143  23.40%
HS chr3 | BEED 5177077 1947 518 717 685 2.60 199501837  28.92%
HS chré 12195 9538252 4657 513 7832 685 4995 191273063  28.58%
HS chrs 8153 5270066 3179 518 768 673 3.47 1BOBSTBEE  29.04%
HS chré 7109 5483736 4084 518 771 e 321 170899932  23.25%
HSchi7 4821 3775130, 3370 518 767 £79 238 158821424  29.35%
HS chr8 4794 3703951  SO61 518 772 £77 253 146274826  29.82%
HS chrd 3578 2703174 2834 518 785 667 193 140273252  29.63%
HSchr1D 3473 2699576 4292 518 7717 £76 199 135374737 30.36%
HS chr1l 4392 3367264 6891 518 756 673 2.50 134452384  23.61%
HS chr12 3373 2593040 4529 518 780 677 156 132349534  29.84%
HSchr13 7017 5536876 21313 518 789 £96 485 114142980  23.72%
HS chr14 2905 2284172 2934 513 772 679 211 106368585  29.29%
HS chr15 1130, 858415 3283 518 758 865 086 100338915 30.02%
HS chr16 1160 889421 5178 515 756 666 100, 88827254  31.55%
HS chr1? B04 503956 3335 518 751 656 077 78774742  30.16%
HS chr18 3515 2751064 3311 518 782 686 361 76117153  29.41%
HS chr19 267, 216084 3814 518 809 £70 034 63811851  35.37%
HS chr20 824 GIBITL. 3717 518 750 669 : 099 62435964  31.10%
HS chr21 2005 1532810 4396 518 767 679 328 46944323  29.37%
HS chr22 0 328 243684 2577 518 7420 €55 0.49 49691432  36.61%
HS chrX 10265 7955221 D966 518 778 678 5.14 154813754  30.15%
HS chrY 2774 2291630 25805 518 826 588 397 57772858 31.53%
HSwhole genome | 106554 82686838 25805 513 776 680 2,68 3080419480 30.27%
MM chrl » 7651 5388830 4600 518 704 648 273 197069962 32.07%
MM chr2 5282 3663748 6780 518 693 639 2.01 181976762  32.72%
MM che3 £939 4841853, 3300 518 £57 544 303 159872112  32.06%
MM chré 5342 3773523 12330 518 706 647 2.43 155029701  32.67%
MM chrS 4218 2341789 3771 18 §97 641 194 153003063  33.00%
MM chré 4214 3346059 4008 518 €95 640 226 149525685  32.74%
MM che? 2566 1739880 3521 518 §78 £33 1.20 145134098  33.93%
MM chrg 4145, 2849008 3355 518 687 £33 2.16; 132085098  33.14%
MM chrd 2989 2118938 21148 518 708 634 171 124000663  34.16%
MM chel0 4389] 3065051 3401 518 698 545 236 129959148  32.50%
MM chr1l 2257 1548624 2171 518 €85 634 127 121798632  33.48%
MM chr12 3938 2751254 4136 518 638 645 228 120463153  32.16%
MM chr13 2908 2038070 2561 s18 700 643 169 120614378  33.33%
MM chris 5431 3942343 11230 518 719 654 318 123978870  30.87%
MM chriS 3935 2787665 11194 518 708 645 268 103492577 31.78%
MM chri6 3578 2522850 2692 518 705 646 2.57 98252459  31.34%
MM chr17 2196 1545751 5144 518 703 645 162 951774200  33.01%
MM chrig 2831 1965569 7148 518 694 €37 2.17 90736837,  33.04%
MM chr12 1003. 700953 6885 518 698 635 114 613211900  34.32%
MM chrX B3BS. 600BIES 17543 518 716 es2 3.63 165556463  31.37%
MM chrY 33 74811 7375 519 804 629 057 16029404  31.52%
MMwholegenome 84936 59613575, 21148 518 701 644 225 2634077689 32.63%

Table 9a: Statistics on TDs for Homo sapiens and Mus musculus for minimal TD length

518

Table 9a shows, for each human and mouse chromosome, the number of TD
regions located on that chromosome, the total length of the chromosomal
sequence covered by TDs, as well as the percentage of the chromosomal
sequence that is covered by TDs. It also shows the longest and shortest TD
for each chromosome as well as the mean and median TD lengths. It is

observed that the minimum required length for TDs (518 nucleotides) was
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applied everywhere and makes up the shortest TDs in all cases. It is further
observed that for Homo sapiens a total of 106,554 distinct TD regions were
located, while for Mus musculus fewer regions (84,936 distinct TD regions)
were found. This is partly due to the smaller genome size of Mus musculus
in comparison with Homo sapiens. Looking at the proportions of the
genome that are occupied by TDs, one notices that the proportion of the
human genome that is covered by deserts (2.68%) is larger that of the mouse
chromosome (2.25%). This concordance is in fact artificial as will be shown

when the minimal TD length is reduced.

For comparison, statistics were also created for TDs of a minimal length of
259 nt. This constitutes half the minimal size that was originally applied
(518 nt). These statistics can be seen below in Table 9b.
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p o iy of 151 tot. length: avp. feng length: ;% of chr covered: size:
HS chrl 21842 10349685 6435 255 473 391 419, 247249718  34.96%
HSchr2 31923, 15053872  $520 253 §71 350 620! 242951149  34.64%
HE chr3 23733 11072909 1947 253 473 392 SE5 199501827  34.32%
HS chré 40S6Z 19670073 4657 259 4B6 402 1028 151273063 33.66%
HS chrS. 28734 13797013, 3178 253 871 394 7.63 180857866  38.38%
HS chr 24940 11849582° 4084 259 475 185 £83 170893532 34.41%
HS enr7 17813 B366937; 3370 259 363 350 5.27 158821424 34.89%
HS chrg 18054 8390458  50E1 259 264 384 5746 145374826  35.00%
HS chr 13820 6340563 2834 259 458 285 352 140273252 35.00%
HSchrlg 12754 5993437 4392 259 375 390 443 135374737 35.29%
HSchrll 16600 7712608 6881 259 464 388 576 134452386  34.92%
HSchrlZ 12726 5918566 4523 253 465 384 447, 132349534  35.22%
HE chr13 22413 11055662 21313 255 493 408 959 114142380  33.54%
HS chrls 10264 1 2334 359 471 380 5.60] 106368585 34.50%
HSchr1s 4713 2117113 3283 259 245 372 211 100338815  35.80%
HEchr16 4978 2224895 5178 258 496 370 2.50 SRE27258  36.66%
HS chl7 3420 1517511 3335 259 343 389 133 78774742 36.07%
HEchriB 13162 6181336 3311 269 269 388 812 76117153  3453%
HS chr1g 1121 513396 3314 259 457 368 080, 63811651 37.86%
HS chr20 3590 1686352F 3717 253 341 369 258 62435954 36.28%
HS che21 6810 3258438 4336 259 477 400 583 46944323  3401%
HS chr22 1273 576353 2577 259 452 380 116 49631432  38.39%
HS chiX 35031 16811220 9966 259 479 397 10.85 154913754  34.34%
HS chrY 9000 4519493 25805 259 502 %05 7.82 57772958 35.73%
HS whale g 379848 173968460 25305 253 373 332 584 3080419480 35.20%
MM chrl 37504 15761002 4500 259 420 380 8.00 197069962 26.41%
MM chr2 27167 11278364 6780 259 815 358 620 131976762  36.47%
MM chr3 33531 13083351 3300 259 420 260 2381 159872112 36.07%
MM chré 26286 11059780 12330 259 320 360 7143 155029701  36.53%
MM chrS 20396 8566437 3771 259 420 362 5.64 152003063  36.88%
MM chrE 24380° 101888611 4008 253 $15 360 679 143525685  36.46%
1M chr? 14898 5976614, 3521 259 401 349 412 145134094 37.65%
MM chrB 21434, 8840201, 3355 253 412 357 669 1320850898  36.73%
MM chrd 16044  £611084 21148 353 812 352 533 13400066%  37.35%
MM chri0 22056 9203304 3401 259 417 360 7.08 129959148  36.36%
MM chril 13128 5310275 2171 253 404 353 436 121798532 37.22%
MM chr12 19718 8239654 4136 253 417 360 686 120463159  36.27%
MM chrid 16091 6585115 2561 259 408 353 546 120615378  36.95%
MM chris 23381 10225085 11230 259 437 372 8.25 123978870  35.78%
MM chriS 18823 7386663 11194 259 424 364 7.72. 103432577  36.33%
MMchils 16522 7036822 2692 259 4325 384 716, 98252453  35.B6%
MM chri? 10743 45CBaD7. 5144 259 513 359 874 95177420  36.72%
MM chris 15533 6366836 7148 259 403 354 7.02 50736837 36.50%
MM chris 5820 2353703 6885 259 404 348 384 61321190 37.17%
MM chrX 38303 16408151 17549 259 428 363 9.31 165556469  35.78%
MM chr? 468 204213 7375 253 435 357 127 16023304 36.56%
MM whole 423218 176754599 21148 253 418 358 €68 2644077689,  36.56%

Table 9b: Statistics on TDs for Homo sapiens and Mus musculus for minimal TD length

259

Using the minimal TD length of 259, it is observed that the number of TDs

on the genomes of Homo sapiens and Mus musculus sharply increases to

379,848 distinct TD regions for human and 422,218 distinct TD regions for

mouse, while the average and median TD length fall below the previously

applied minimal length of 518. The portion of the genomes that are covered

by TDs increases accordingly to 5.82% for Homo sapiens and 6.68% for

Mus musculus. Evidently the portion of the genome that is covered by TDs
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is now larger in mouse than in human, while, when looking at larger TD
regions, the human genome is to a larger extent covered by TDs. It can
therefore be concluded that the minimal length that is applied in the creation
of the TD regions has a strong influence on the occurrence of TD regions on
the genomes of Homo sapiens and Mus musculus. It can also be concluded
that there are differences in TD occurrence between the two species under
investigation and that these differences are related to the minimal TD length

that is applied during the creation of the TD regions.

It is remarkable that for both mammalian species under examination the
chromosome that is most rich in TDs is chromosome X. While this can in
part be explained by the relative AT-richness and the relative gene-depletion
of the X chromosome in the two mammalian species under examination,
there are — for both species — chromosomes in their genome which are even
more AT-rich and have even fewer genes relative to their size in comparison
to the species’ X chromosome. It can therefore be speculated that the
relative richness in TDs in the X chromosome is connected to the distinct

characteristics of the sex chromosomes.

GC-content

Another value that is shown in Table 9a is the GC-content of the
transcriptional deserts on the individual chromosomes. Genome-wide, the
GC-content of the TDs is ~30% for human and about 32% for mouse. The
GC-content increases to on average 35.2% in human and 36.6% in mouse
when smaller TDs are considered (Table 9b). This means that larger TD
regions are more likely to be AT-rich than smaller ones. Overall the GC-
content in TDs is significantly lower compared with the overall GC-content
of the human and mouse genomes. The overall GC-content of the human
genome is 41.5% while that of the mouse genome is 41.7%. While these
values only differ by 0.2%, the values for GC-content of the TDs on the
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respective genomes differ by 10 times as much. This means that while the
overall genomes are very similar with regard to their GC-content, there are
differences in the GC-content of the TDs on those genomes. The fact that
the transcriptional deserts in the mouse genome are richer in GC-content
than those of the human genome is therefore not a consequence of a high
GC-content in the whole mouse genome. The TDs on the mouse genome are
not richer in GC, because the mouse genome in general is richer in GC. It
seems more likely that there is a connection between the lower TD content
of the mouse genome and the GC-content of the TDs that can be identified
on the mouse genome. It can be speculated that the lower TD content of the
mouse genome signifies that transcriptional activity is denser in the mouse
genome compared to the human one. Similarly, as the GC-content of the
TDs in the mouse genome is higher than the GC-content in the TDs in
human genome, it can be speculated that GC-content plays a larger role for
transcriptional activity in the human genome than it does in the mouse
genome. This is due to the observed positive correlation between GC-

content and transcriptional activity.

GC-content is normally used as a convenient way of explaining gene-
richness or the absence of genes in DNA of vertebrates. AT-rich regions are
understood as not likely to transcribe, while GC-rich regions are considered
to be regions of interest for studies of transcription. Our observation that the
GC-content of transcriptional deserts is, with around 31% when applying
518 nt minimal TD length, significantly lower than that of the overall
mammalian chromosomes (human genome: 41.5%, mouse genome: 41.7%.)
is consistent with this well-established fact. However, if one looks closely at
the individual TD region, it becomes obvious that GC-richness is neither a
necessary nor a sufficient condition for a region of DNA to be
transcriptionally active. While GC-richness is in many cases a good
indication of transcriptional activity, it cannot serve as anything more than
that. Many TDs can be identified that are very rich in GC nucleotides and
nevertheless not transcribed. On the other hand some AT-rich regions are

also part of transcriptionally active regions. Figure 6 plots the number of
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TDs in the human and mouse genome against their GC-content. The TDs

with a minimal length of 518 nt are used here.

W Hymen
W Mouse

N u....blil " 'II““J“““. B & & R

1 6 11 16 L] n % L2 L 9 %

Figure 6: GC-content in human and mouse TDs

It can be seen that most TDs have a GC-content lower than the genome-
wide average of about 41%. Howeyver, there exist numerous TDs whose GC-
content is higher than the genome-wide average. Again there are differences
between mouse and human, with the significance of high GC-content TDs
in human being lower than in mouse, which is in agreement with the
observation that the GC-content of mouse TDs is in general higher than in
human. It is also consistent with the claim that GC-content is more relevant
for transcriptional activity in humans than in mice. Figure 6 also shows that
the distribution of GC-content is unimodal for human and bimodal for
mouse. However, it must be said that this might be an artefact of applying a
minimal desert length of 518 nt.
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An example for a transcriptional desert with a high GC-content is on human
chromosome 21 between nucleotides 14,280,730 and 14,281,941. The GC-

content in this region is 67%.

K-mer composition

A comparison of k-mer composition in TD regions and randomly extracted
DNA was analysed. The random DNA that was used in this comparison was
chosen to have a similar GC-content to the TD regions of the corresponding
organism. For this analysis, the TD regions, for which a minimal length of
518 nt was enforced, were used. The GC-content of these regions is ~30%
for human and 32% for mouse, so the GC-content of the randomly extracted
DNA was chosen to be between 29% and 31%, and between 31% and 33%
respectively. As a consequence, the composition of 1-mers (‘A’, ‘C’, ‘G’
and ‘T’) is very similar between TDs and the random DNA. Tables with the
complete analysis of k-mer composition for Homo sapiens and Mus
musculus, including their comparison with random DNA of the respective
organism, can be found in the online supporting materials to this dissertation
(OSM Tables 1 and 2). The enrichment of all k-mers between TDs and
random DNA sequences is also shown in these tables, along with p-values
that reflect the likelihood that these distributions could be obtained by
chance given the assumption that the k-mers distribution in TDs is equal to
the k-mer distribution in random DNA. If this hypothesis is to be rejected
for p<0.05, it can be determined that out of 87,380 evaluated k-mers the
distribution of 59,302 and 73,225 k-mers is statistically significantly

different between human and mouse TDs and random DNA respectively.

It was found that there are 89 k-mers that do not appear in human TDs, and
22 that appear neither in TDs nor in random DNA, which leaves 67 k-mers
that do not appear in TDs but do appear in random DNA. In no case,
however, is the non-appearance of these 67 k-mers deemed to be
statistically significant. 342 k-mers do not appear in mouse TDs and 56

appear neither in TDs nor in random DNA, which leaves 286 k-mers that do
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not appear in mouse TDs but do appear in random DNA. Out of these 286
k-mers only 38 are deemed to be statistically significant at p <0.05.

For Homo sapiens, there are 108 k-mers that appear in TDs more than 10
times as often than in random DNA and 2026 k-mers that appears more than
twice as often. Similarly, there are 1049 k-mers that appear more than twice
as often in random DNA than in TD regions. For Mus musculus, there are
220 k-mers that appear in TDs more than 10 times as often than in random
DNA and 3035 k-mers that appear more than twice as often. Also, there are
7457 k-mers that appear more than twice as often in random DNA than in
TD regions. This means that the majority of k-mers (84,305 for human and
76,888 for mouse) are relatively evenly distributed between TD regions and
random DNA. Their relative enrichment in TDs compared to random DNA
is between 2.0 and 0.5. Bearing in mind that the k-mer composition of TDs
was compared with the k-mer composition of sequences with a similar GC-
content, it can be concluded that the k-mer composition is not extravagantly
special in TD regions beyond the differences that can simply be explained

with the TD regions’ low GC-content.

Repeats

RepeatMasker was used to analyse the content of repetitive DNA in
transcriptional deserts. Repeats are generally not thought to be of high
significance to gene expression and cell activity. Their role was already
discussed in the ‘Repeats and transcription initiation deserts’ section in
Chapter 1. It is observed that for the human genome ~56% of TDs consist of
repeats. For mice the repeat content of TDs is ~50%. This means that
roughly half of the transcriptional deserts consist of sequences that cannot
be classified as repetitive DNA. Table 10 shows a comparison between the
repeat analysis of the TDs on human chromosome 21 and the entire
chromosomal sequence of this chromosome. This can serve as a showcase

for the repeat situation in the entire human genome and the related TDs.
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$ils name: human chromosome 21 file name: human chromesome 21 TDs

SETUSDERR: 1 sequences: 2005
%2tad length: 46344323 pp  (3417014€ kp excl K/X-runs) total length: 1538810 kp (13538810 pp excl N/X-rumaj
&0 leavel: 43.82 % & lmvel: 28.37 &
RAses masked: 15877801 Rp ( 33.82 %) bases masked: 718706 B { 46.71 &)
nuker of length percentage nuxber of length percentage
slsnennat acaupisd of sequence elements® occupied of seguence
.
T
SIREa: 16181 3983431 pp £.27 % SINEs: 241 24876 bp 1.62 %
ALUs 11338 3353853 kp 6.33 % AUs 172 16327 b» 1.05 &
MIRs 4211 624582 kp 1.33 % MIRs €9 8789 bp 0.57 %
LINEs: 9771 €258173 p 13.33 ¢ LINES: 1117 491307 hp 31.93 %
LINEL 6371 5372852 kp  11.23 % LINEL 1923 496242 bp 31.60 &
LINE2 2842 854712 bp 1.22 % LIRE2 32 4772 &g 2.31 %
L3/CR1 39§ 84766 p 0.12 & L3/CRY 4 Qbp 0.00 %
LIR elaments: 7685 3798212 b 8.39 % LTR elemants: 177 253¢8% by 1.65 %
Yalks 4234 1853897 b 3.95 % M¥alRa 38 2247 by 0.54 %
IRV 1592 767625 bo 1.64 & ERVL 41 4424 bp 0.29 %
IR, clemsl 1815 1074433 bp = 2.29 & ERY_glagsl 45 12490 By 0.81 %
ERV. 288011 78 70033 bp 0,15 % ERV_slasall 2 141 kp 0.01 %
INR slamencs: 3716 1050750 kp 2.24 % DNA elemsnrs: 122 30091 mp 1.36 %
MERY type 2029 452969 bp 2.96 § MER1_type 37 7271 R ¢.46 %
MER2_type 6238 348296 0.74 % MER2 type 49 12694 kp 0.82 %
Onclassifisd: Té 40323 bp 5.03 % Unclassified: 1 757 kB 0.05 %
Total interspersed repeats: 15030949 kp 32.92 % Teotal interspersed repeats: 572400 pp 37.20 %
Zmall RNG: 102 9528 kp 0.02 % Swall RNA: 4 220 bp 0.01 %
Satellites: 113 208305 o 0.44 % Satellites: 7 57703 B 3.75 %
Simple repeats: 3276 414117 ke 9.82 % Simple repeats: 552 33077 bp 3.77 %
Low complexity: 5072 225798 o 0.48 % Low cesplexity: 217 0834 e 2.30 %
* Pgay repeats fragmented Dby insertions or deleticns + most repeats fragmented by insertions or deletions
bave been counted as cne element have been counted as cne element

Table 10: Repeat analysis human chromosome 21 TDs and whole sequence

The repeat content of the TDs in human chromosome 21 is found to be
46.71%. The overall repeat content of the whole chromosome was
determined at 33.82%. However if one excludes un-sequenced nucleotides
(N/X runs), which do not appear in TD regions, from consideration, the
repeat content of the entire sequence of human chromosome 21 can be
interpreted to be as high has 46.47%. In the same way the repeat content of
human chromosomes 4 and 22 was determined to be 49.64% and 48.5%
respectively. The repeat content of the transcriptional deserts on these
chromosomes was determined to be 45.5% and 69.02% respectively. Since
human chromosomes 4, 21, and 22 can be regarded as showcases for
chromosomes of low, average, and high gene density and GC-content, this
can be interpreted as meaning that the overall repeat content is very similar

between the TDs on a chromosome and the entire chromosomal sequence.
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Only for chromosome 22, which is of very high density in terms of
transcriptional activity, is the repeat content of TDs significantly higher.

While it is observed that the overall content of repeats is not considerably
different when comparing the TDs and the entire chromosomal sequence,
the composition of repeat sequences displays some characteristic
differences. It can be seen that the type of repetitive DNA that make up
repeats in TD regions is distinctly unlike the overall repeat composition.
This can be seen above in Table 10. The role of Long Interspersed Nuclear
Elements (LINE) has gained particular importance in transcriptional deserts
in comparison to all other types of repetitive DNA. In fact, LINEs do make
up almost 80% of all repetitive DNA in TDs, while overall their portion
does not exceed 40%. Almost all interspersed repeats in transcriptional
deserts are LINEs. Short Interspersed Nuclear Elements (SINEs) and Long
Terminal Repeats (LTRs) have disappeared almost entirely. DNA elements
have also reduced their proportion, but not as considerably as SINEs and
LTRs. This applies equally to human and mouse. Satellite sequences, simple
repeats and regions of low complexity have gained importance in TDs in
relation to their occurrence in the entire chromosome, but still play only a
minor role in the composition of repeats in transcriptional deserts. They do,
however, occur more often in mouse TD sequences than in human TD

sequences.

Single nucleotide polymorphisms

A single nucleotide polymorphism (SNP) is a type of DNA sequence
variation. It consists of a discrepancy in the DNA sequence between the
individual members of one species, in which only a single nucleotide is
different from one individual to the other. SNPs have previously been
implicated in disrupting the process of gene regulation and the development
of genetic disorders. All known SNPs in the human and mouse genome

were collected and examined to see how many of them fall within the
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transcriptional desert regions. Tables 11 and 12 below show an analysis of
single genomic SNPs in Homo sapiens and Mus musculus with regard to

their location within or outside of TD regions.

%ol che

hrom - total SN SNPsin % of SNPsin SNPsout % ofSNPsout . totallength itotienof coveredby chrsize :SNPL/Knu: ENPIXnuc . SHP3/Knut
: deserts  desmrty ofdeserts of deserss  ofdesers  nondeserts deser {dessrt}  {non-dexart} {al))
chrl 1005418 18855 15670 989563 88.0330 4776186 142473533 138317 247243713 41571 . 4.0811 4.0826
chr2 321727 25573 27745 B96154 97.2355 E8528B2. 13603B167 2.8207° 242951149 3.7317 3.7857 3.7939
<hr3 729150 18598 25506 710882 974484 5177077 134324750 2.5950: 199501827 3.5924 3.6585 3.6549
<hrd T68943 38268, 49767 730675 95.0233 9538252 181734811 49867 191273063 £.0121 4.0206 4.0201
<hrS 685532 23381 34048 662181 96.5552 6270066 174587300 34668 18CR57866 3.722¢6 37929 3.7904
chré 736709 23304 3.1882. 20740% 96.8108 5433736 165416256 3.2087: 1 £.2497 $.2785 4.2257
chr? 856470 15328 23351 641141 97.6648 3775130 155046254 23770 1588231434 40605 41352 41336
thrd 585312 14075 24047 571237 97.6953 3703851 142570875 25322 146274826 3.8000 4.0067 4.0015
<hrg TCTEIO 15352 2.1689: 552458 97.8311 2703174 1375T007E 19271 130273252 56792 5.0335 5.0459
£hr10 600193 14460 2.8092: 585733 §7.5908 26599576 132675161; 19942 135374737 53564  4.4148 4.4336

chril 572341 15785 27580 556556 97.2420 3367264 131085120 25044 134452334 46878 4.2458 4.2568

thri2 529824 10779 2.0344: 519045 87.9656 2532040 129757494 1.9585: 132349534 4.1585 4.0001 43032
<hr13 4D2675 23025 57183 379650 94,2820 5536876 108606104 4850B° 114142880 4.1585 3.4957 3.5278
<hrl4 355283 B785: 2.4727: 346498 975273 2344171 104128313;  2.1098° 106358585 3.8146 3.3277 3.3401
<hrlS 357766 3603 1.0071: 354163 38.9929 BSBALS. 99480500 0.8555° 100338915 4.1973 3.5601 3.5656
<hrl 411450 4159 1.0308. 407291 58.9892 835421 87937833 1.0013  8BB27254 4.6761 4.6318 46320
chrl? 320813 2338 ©0.7285: 318581 352715 03956 78170786 0.7667: 78774742 38711 #4754 40739
thri8 312005 12098 38775 299807 86.1225 2751064 73366089 36142 76117153 #.2878 40878 40930
chrid 256283 1202 04690 255091 99.5310 216084 7 03386, 63811651 5.5627 40111 4.0164
thr2D 306801 3712 12093 303089 98.7901 618171 61817753 09901 52435964 6.0038 24,9023 4.913%
thr2l 172588 9230 §.3880. 163358 94.6520 1528810 45308513 3.2779 56944323 5.9981 3.5973 36764
thr22 218189 2185 10014 216004 98.9986 243684 45547748 0.4904. 49691432 B.9665 4.3683 4.390%
<heX 421470 25956 6.1673: 335474 983.8321 7955221 1 5.1353' 154913754 3.2678 2.6911 27207
cheY 32858 18306 110874 82649 88.5129 1291630 55481324 39666 57772954 4.4572 14857 1.605¢
whole : 12125823 341358 2.2151:11784465 §7.1848° 22626838 2957732842 2.6843 3080419430 51283 39311 3.9364

Table 11: Human SNPs and TD analysis

SNPsin  SofSNPsin SWPsout MofSHPsout cotallength totlanof  Mofehr o SNPs/Mnuc SNPsfknuc  SPsfKmuc
deserts  dassrts ofdeserts ofdeserts  ofdeserts  nondeserts i Coverad by {desart}  {non-desert}i{all}

chri | 746295 15274 20466 731001  97.9534 5338830 191681132 27345 197069962 28344  3.8137] 37870
chr2  GBIESS 7720 11136 GBOI66  OBEGY 3663748 178313018, 20133 181976762 11696 3314 37801
chr3 | 575751 13576 23580 562175 97.6420 4841853 155030250 30286 159872112 28035 352620  3.6013
chd  £25225 9564 16296 615761 9BAI06 3773513 151256178 24341 155005701 25345, 40710 8033
chr§5 495364, 7403 14945 487961  9R5OS5 2951789 143061274 19353 152003063 25165 32736  3.2589
oh6 - 552038 B6SB 15321 543580 9R467% 3366055 146179626 22378 149525685 2577 37186 3.6919
ch? 507856 3779 07484 504077°  99.559 1739830 143396214 11983 145134094 21720 35153,  3.4992
chrB . 415589 7377, 17751 408212  98.214%  1B4DOCS. 129236080 21569 132085098 25893 31587 31464
chrd 348962 39B1 14540 340981  98.8450 2119934 121881735 17088 174000669 18788 27976 27819
chl0 | 254930 3940 15655 250950  ORAG4S 3065051 126894097 23585 12855 13779 13616
chrll 380675 2987 07847 377688, 992153 1548624 120250008 12715 19288 31409 31264
chri2 268072 4346 16212 263726 983788 1751256 117711905  2.2839 15796 22404 22153
chrid | 268026 2646 10022 261380  98.9978 2026070 118578308  1.6881 12996 22043 21880
chrl4 | 306878 3342 30442 297536,  96.9558 3961343 120036527 31799 123978870 23697 24787 2418
chrlS | 309001 6683 21628 302318 97.8372 2727665 10070s912 26936 103492577 23973 30020 29857
thri6 181623 3545 19540 178074  9B.0460 2522850 96729609 25677, 98252459 14067 18602, 18485
chri7 - 158826 1811 11402 157015 ORBSSE 1545791 93631625 16241 95177420 {1716 1576 18687
chri8 | 289405 4159 14371 285246  9B.5629. 1965563 BB77I268 21662 90736837 23158 32133 31895
chr19 224635 1560 06945 223075 993055 700953 60620237 11431 61321190 22255 36739 36633
chrX  30BS19. 10727 34763 297791 965131 159547500  3.6296 165556469 17852 18665 18635
ahr 32 14 4378 308 956522 76811 15954593,  0.2667 16029604 01871 00133 00201
whole | 7897387, 128505. 16321 7769082  DB.3675 53613575 25844641141 22546 2684077689 21623 3.0061  2.9870

chrom (total SNPs

Table 12: Mouse SNPs and TD analysis
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As can be seen in Tables 11 and 12, there are only minor variations in the
number of SNPs per kilonucleotide within and outside of TD regions on all
chromosomes of mouse and human. It is also true that the percentage of TD
coverage for each chromosome is only slightly different from the percentage
of SNPs that are located in the TD regions. It can therefore be concluded
that a statistically significant difference between SNPs occurring within and
outside deserts cannot be established. The data presented in Tables 11 and
12 show that the hypothesis that there is no correlation between occurrence
of a SNP and presence of a transcriptional desert at the same location cannot
be rejected. It has to be concluded that SNPs are equally distributed over TD
and non-TD regions of mammalian DNA. The above analysis is restricted to
single genomic SNPs. The same analysis was repeated for insertion and
deletion events with very similar results. The conclusion is that neither
single genomic SNPs nor insertion-deletion events occur in correlation with

transcriptional desert regions.

SNPs can be grouped into two classes, depending on the kind of substitution
that is observed between the bases A, C, G and T. Given their chemical
structure, A and G are characterised as purines, while C and T are
pyrimidine molecules. Substitutions that do not change the chemical
structure of a nucleotide, that is, purine to purine or pyrimidine to
pyrimidine, are called transitions. Substitutions that change a purine into a
pyrimidine or vice versa are called transversions. Overall, roughly two
thirds of all SNPs are transitions. Since transversions change the chemical
structure of the molecules involved their effects are normally more severe

than those of transitions.

The rates in which nucleotides change in the human and mouse genome
were determined and these changes were displayed as substitution rate

matrices. Table 13 shows these rate matrices.
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- H.Sapiens M.Musculus
SNPs rate per kNuc whole genome SNPs rate per kNuc whole genome
A C G T A C G T
A 0 0.15 0.47 615 A 0 0.12 047 012
C 0.15 0 0.17 0.6 C 0.13 0 0.1 0.52
G 0.6 0.17 0 0.15 G 0.53 0.1 0 0.13
T 0.15 0.46 0.15 o T 012 047 0.12 0
SNPs rate per kNuc deserts SNPs rate per kNuc deserts
A C G T A C G T
A 0 0.2 0.56 0.23 A 0 0.11 0.33 0.14
C 0.16 0 0.14 053 ¢ 01 0 0.07 0.31
G 0.54 0.14 0 0168 G 0.31 0.06 0 0.1
T 0.23 0.57 0.2 0 T 0.14 0.34 0.11 0
bold =transition
_regular =transversion
lines ->eolumns |

Table 13: SNP rate matrices in human and mouse TDs and whole genome

Transitions are shown in bold and transversions in regular font. The

matrices are to be interpreted in such a way that the nucleotides in lines turn

into the nucleotides in the respective column, with the rate given in

substitutions per kilonucleotide. As with the examination of all SNPs

presented above, the results are inconclusive. It cannot clearly be said that

transition or transversions appear predominantly in TD regions. Nor can any

single nucleotide be singled out that is predominantly substituted by another

nucleotide within or outside of transcriptional deserts. Overall, the SNP

analysis in transcriptional deserts implies that no strong relationship

between any kind of SNP and the existence of a TD region can be

established.

Transcription factor binding sites

TRANSFAC 11.4 [76] is a knowledge base and software system for the
purpose of analyses related to transcription factor (TF) binding sites in DNA
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sequences. The modules of TRANSFAC 11.4 that were used in the analysis
of transcriptional deserts are a collection of matrices that describe possible
binding sites for transcription factors (TFBS). Each matrix was constructed
from a number of experimentally proven binding sites for transcription
factors. Each binding site consists of a core section and sections flanking it,
possibly from both sides. Similar binding sites have been grouped together
to form one matrix. There are in total 834 distinct matrices. The
conformance between the individual binding sites that were used to
construct a matrix is very high in the core section of the matrix and less high

in the marginal section.

MATCH [75] is a program that scans DNA sequences and identifies
possible binding sites for transcription factors. For each possible TFBS, a
core and a marginal match score is reported. MATCH was used to analyse
transcriptional desert regions for possible TFBSs. It was decided to restrict
the search to those matrices that were constructed from binding sites that
have been proven to exist in vertebrates. Furthermore, a predefined
configuration for the exclusion of binding sites with low match scores was
chosen, so as to minimise the occurrence of false-positive binding site
predictions. This included restriction to the use of only high quality
matrices. There are 196 high quality matrices which represent binding sites
for 1251 different TFs. In order to compare the incidence of TFBS in TD
regions, the same analysis was conducted on the complete sequence of
human chromosome 21, the selection of human cDNA as shown in Table 8,

and a sequence of randomly generated DNA junk.

Table A2 in the appendix shows the occurrence of binding sites for
individual matrices in these four types of data in matches per kilonucleotide.
It also shows the n-fold enrichment in the occurrences of each matrix
between TD regions and one of the data sets used for comparison. In total,
there are on average 27.39 potential binding sites for any of the total of 196
binding site matrices present per kilonucleotide in transcriptional desert

regions. For cDNA sequences, there are 21.44 such binding sites and for the
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entire sequence of human chromosome 21 there are 24.87. Interestingly,
there are also 25.47 binding sites per kilonucleotide in randomly generated
junk DNA. There are, however, 13 matrices for which no binding site can
be found in randomly generated junk DNA, while there are only two that
cannot bind in cDNA sequences. TD regions and human chromosome 21
provide binding sites for all matrices with only one exception. There are five
matrices (for FOXP1, CART1, POUIF1, HNF6 and POU6F1) which occur
more than ten times more often in TD regions than in cDNA. Four out of
these five also occur more than twice as often in TDs than in human
chromosome 21 and more than six times more often in TDs than in
randomly created junk DNA. FOXP1 does not occur in randomly generated
Junk DNA and occurs 1.6 times more often in TD regions than in human
chromosome 21. Figure 7 show the occurrence of matrix binding sites in the
various data sets used. The order of TF matrices has been sorted according

to occurrence in TD regions (blue).
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Figure 7: Occurrence of binding sites for TF matrices in 4 types of DNA data
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The frequency with which individual transcription factors can bind to the
four types of DNA sequences used in this analysis was also examined. This
is distinctly different from investigating the binding frequencies of TF
matrices. One TF can have several binding domains, that is, several parts of
the TF can bind to different DNA sequences. The individual binding
domains of a single TF can be very different from each other, which means
that the same TF can bind to largely different DNA sequences, using one or
the other of its binding domains. Different binding domains were used in the
creation of different binding matrices. Therefore investigating which TFs
bind to a DNA sequence and which TF matrices bind to a DNA sequence is

not the same and might yield different insights from the previous analysis.

Table A3 in the appendix shows the frequency with which individual
transcription factors can bind in the four types of DNA sequences used in
this analysis. The 1251 TFs under examination can together bind in TDs,
c¢DNA, human chromosome 21 and randomly generated junk DNA 182.57,
166.97, 198.08 and 166.27 times per kilonucleotide respectively. The
individual transcription factors bind on average 0.15, 0.13, 0.16 and 0.13
times respectively per kilonucleotide. It is noticeable that these values are
very similar for cDNA and randomly generated junk DNA. On the other
hand binding frequencies for TFs are also similar between TD regions and
human chromosome 21. There are 48 TFs for which no binding site can be
located in randomly generated junk DNA, while there are only four that
cannot bind to the cDNA sequences and two that cannot bind to human
chromosome 21. In transcriptional desert regions TFBSs for all transcription

factors can be identified.

Transcriptional deserts are rich in the occurrence of TFBS when compared
with ¢cDNA and randomly generated junk DNA. On average, binding sites
for an individual transcription factor are found 1.48 times more often in TDs
than in cDNA and 1.91 times more often in TDs than in randomly generated
junk DNA. TFBS appear to be denser on human chromosome 21 than in

TDs. A binding site for an individual TF factor is found on average 0.75
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times less often in TDs when compared to human chromosome 21.
However, this number only takes into consideration the portion of human
chromosome 21 that is not covered by unsequenced nucleotides (‘Ns’). ‘Ns’

make up 27% of the chromosomal sequence of human chromosome 21.

There are 18 TFBSs which occur in TDs more than 10 times as often than in
c¢DNA, while at the same time there are 94 TFBSs for which less than one
tenth of possible binding sites in TDs than in cDNA are found. For human
chromosome 21, there are 28 TFBSs which occur more than twice as much
in TD regions than in this chromosome. There are also 60 TFBSs which
bind in TDs with less than one tenth of the frequency they bind within

human chromosome?21.

This serves to show that there are distinct differences between the landscape
of TFBSs in TDs and other types of DNA sequences. This implies that it can
be speculated that, although TDs are transcriptionally inactive, some TD

regions might play a distinct role in the regulatory process of genes.

Clusters of TFBSs in transcriptional desert regions

In order to examine further the possibility that transcriptional desert regions
play a role in remote regulatory processes, it was subsequently examined to
what extent TFBSs appear in TDs in a clustered fashion. For this purpose a
sliding window of length 200 nt was assumed. This window was moved
along the TDs in the mouse and human genome and it was determined how
many TFBS are located in each window. The window was slid along by one
nucleotide at a time. The mean (m) and the standard deviation () of TFBS
occurrences across all windows were determined for each chromosome
separately in Homo sapiens and Mus musculus. The results of this analysis

are shown in Tables 14 and 15.
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fichr mean {m} stddiv{o) >m+ %o >m+3*% >m+4% >m+6*% >m+8% >m+10'
chri 5.73 254 136543 27586 7681 1094 114 K
chr2 5.65 3.00 179337 40035 14469 3675 1283 558
chr3 5.71 295 1369591 29835 8697 2624 1394 703
chra 5.76 292 263270 51239 12240 1717 409 67
cheS 572 294 169229 35537 10711 2326 368 154
chrs 567 253 143834 30764 §190 1762 358 25
chr? 5.67 2.96 103457 21249 5534 770 167 Y
chr8 5.67 3.04 104D45 26270 10393 2634 270 185
chrg 5.67 295 73657 16469 5226 1036 28 o
chrio 551 313 74818 19030 5496 1847 668 134
chril 5.64 298 90707 18837 5385 1807 709 i05
chr12 5.69 309 77467 20316 5881 2298 717 B8
chri3 5.84 293 155567 30891 8608 2106 276 o
chrig 569 293 59D44 11570 3408 340 19 Y]
chris 5.46 2.87 18576 3778 1336 158 Q [y
chris 575 357 23772 10710 4533 988 I
chri? 576 333 13106 4967 2517 733 143 K
chri8 5.73 305 88260 22572 5550 785 55 o
chel9 5.53% 350 &§739 1584 674 80 0 ]
chr2¢ 5.46 3.06 17720 3491 872 179 Q o
chr21 5.51 3.05 431408 9218 2531 267 48 )
chr22 5.04 3980 8452 1761 909 287 118 4]
chrX 5.53 299 209223 54066 17579 3745 1170 364
chrY 5.30 335 49932 16223 5882 1882 771 333
HS whale genome 5.61 310 2243494 507998 155802 35240 S086 2616
outliers/knt 27.132 6.144 1.885 0426 0.110 0032
Table 14: TFBS cluster in human TDs

ichr mean (m} stddivic) >m+2% >m+3% >m+4% >m+6* >m+8%c >m+10%
chrl 5.34 3.15 148877 42600 14090 2131 334 B2
chr2z 5.22 319 96558 26506 9958 1458 465 176
chr3 5.29 310 123175 32197 9520 1492 373 157
chrg 5.28 3.20 108841 33319 7811 1021 126 Q
chrS 5.30 3.42 64041 26036 12516 2385 289 0
chré 5.17 3.11 81217 22015 777% 1557 217 42
chr? 5.03 3.24 42580 14825 6584 1553 421 75
chr8 5.17 3.22 77126 24178 6379 897 87 e
chrg 5.18 317 53323 16151 5691 178 o] ¢}
chri0 5.24 3.20 86728 23763 6478 1114 144 0
chril 5.18 3.22 431868 11402 3470 937 160 0
chri2 5.37 3.21 82324 19891 6728 1030 0 o
chri3 5.16 341 54502 13229 5788, 2908 1379 403
chrid 5.56 3.19 128006 22248 6485 1201 272 5
chris 5.40 319 80755 23198 4641 483 89 0
chri6 5.40 314 71181 19199 5845 396 42 0
chr17 5.21 3.18 41332 12864 4547 487 142 0
chris 524 3.22 56302 16908 3206 605 187 e
chri9 503 3.36 15025 4630 2316 827 72 [+]
chex 5.40 2.95 1466508 35882 9620 1186 242 76
chry 5.43 3.68 2204 1180 363 87 (2] o
MM whole genome 5.27. 3.23. 1606573 442632 140005 23944 5641 1025
outliers/knt 26950 7.425 2.349 ©.402 0.085 0.017

Table 15: TFBS cluster in mouse TDs
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The results show that on average there are between five and six TFBS per
200 nt predicted by MATCH in the TD regions of human and mouse. The
standard deviation from this mean value is on average three TFBS per
window. These values are consistent throughout the genomes of human and
mouse. Also shown in Tables 14 and 15 are values quantifying the number
of significant outliers from these mean values. The numbers in columns 4 to
9 of Tables 14 and 15 give the number of 200 nt windows in TD regions
that harbour more than the mean plus a multiple of the standard deviation.
For the genome of Homo sapiens there are in total 2616 windows of size
200 nt that are located in TD regions and that harbour more than 35 TFBSs
(m + 10 * 6 = ~35). For the whole genome of Mus musculus there are 1025
such enriched windows. The bottom row of Tables 14 and 15 shows how

many significant outliers there are per kilonucleotide in TD regions.

For comparison 10,000 promoter regions have been analysed with MATCH.
These promoter regions were obtained by randomly selecting 10,000 TSSs
from the set of 113,814 TSSs that were described in the ‘Methods’ section
of Chapter 1. Sequences covering the interval [-3000, 200] around these
TSSs were extracted and used in this comparison analysis. These promoter
regions can be regarded as the main control regions for transcriptional
activity. Investigating the clustering of TFBSs in them and then comparing
the results of this investigation to the results obtained regarding the
clustering of TFBSs in TD regions, gives in indication as to how TD regions
might contribute to gene regulation as silencers or enhancers. The results of

this analysis are shown in Table 16.

mean {m) stddiw{c} >m+2*c >m+3*% >m+4*c >m+5%¢ >m+8%0 >m+10%
10000 promoters 5.27 304 1136852 312114 85256 7273 1707 364
outiiers/knt 37.895 10.404 2.842 0.242 0.057 0012

Table 16: TFBS cluster in 10,000 randomly selected promoter regions
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As seen in Table 16, in 10,000 randomly selected promoters the mean (m)
frequency of TFBSs in a 200 nt sliding window is 5.27 and the standard
deviation (c) from this mean is 3.04. These values are  very similar to the
values obtained in the respective analysis in TD regions. It is also observed
that the number of outliers per kilonucleotide is lower in TD regions for
weak outliers (> m + 2 * g,> m + 3* ¢ and > m + 4* c) and higher in TD
regions for strong outliers (> m + 6* 6, > m + 8* ¢ and > m + 10* 5). This
allows the conclusion that a number of transcriptional desert regions might
in fact be active as transcriptional remote control elements because some
TD regions appear to be harbouring more TFBSs than evidently

transcriptionally active promoter regions.

A p-value was calculated for the occurrence of more than m + 10* ¢ TFBSs
in TDs in relation to the occurrence in promoters. This p-value is very small
(~5.5 * 10'%) which means that the enrichment in TFBS in TDs can be
regarded as stistically significant.

Mutations and TFBS occurrence

The results regarding single nucleotide polymorphisms (SNPs) and
transcription factor binding sites (TFBS) have been combined for this part
of the study to determine transcriptional desert regions (TDs) in which SNPs
and TFBSs are strongly clustered. All SNPs that reside within a TD region
and fall within a TFBS as well have been reported. A distinction was made
between SNPs that fall within the marginal or peripheral region of the
binding motif and those SNPs that fall within the core region of the motif.
The preservation of the motif is many-fold stronger in the core region of the
binding site than in the marginal areas. Therefore, a SNP occurring in the
core region has a much stronger impact on the ability of the site to bind a
certain transcription factor. In fact it can be assumed that a mutation in the
core region of a TFBS is likely to hinder the further binding of a

transcription factor. At the same time, a mutation in the peripheral areas of
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the TFBS will have a much weaker influence on the ability of the motif in

question to bind its transcription factor.

The genome of Homo sapiens contains 106,554 TD regions with a total
length of 82,686,838 nucleotides (see Table 9a). 90,944 of those regions
harbour at least one SNP. In 37,467 TD regions, the location of a SNP
coincides with the location of a TFBS. 28,473 TDs harbour at least one SNP
that falls in the peripheral region of a TFBS and 17,270 SNPs in TDs fall
within the core binding motif of a TFBS. In total, there are 66,465 TFBSs in
TD regions that co-occur with a SNP (22,764 core and 43,701 peripheral).
This makes a density of TFBS-SNP co-occurrence in TDs of 0.804 per
kilonucleotide (0.275 core and 0.539 peripheral).

The genome of Mus musculus contains 84,936 TD regions with a total
length of 59,613,575 nucleotides (see Table 9a). 41,828 of those regions
harbour at least one SNP. In 15,694 of these the location of a SNP coincides
with the location of a TFBS. 11,779 TDs harbour at least one SNP that falls
in the peripheral region of a TFBS and 7,033 SNPs in TDs fall within the
core binding motif of a TFBS. In total, there are 25,293 TFBSs in TD
regions that co-occur with a SNP (8731 core and 16,561 peripheral). This
makes a density of TFBS-SNP co-occurrence in TDs of 0.424 per
kilonucleotide (0.146 core and 0.278 peripheral).

These results have to be seen in the context of the number of SNPs that are
available for Mus musculus in comparison with the number of SNPs
available for Homo sapiens (7,897,987 vs. 12,125,823) as well as the
percentage of these SNPs that fall within transcriptional desert regions
(1.6% vs. 2.8% see Tables 11 and 12). Nevertheless clusters of SNPs and
TFBS are more frequent in the human genome compared to the mouse
genome. The complete set of results showing in which TD region which TF
binding matrix is subjected to a mutation is shown in Tables 3 and 4 in the

online supporting materials to this manuscript.
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For comparison, all 1129 promoter regions on human chromosome 21 have
been analysed. For this purpose, all TSSs that were described in the
‘Methods’ section of Chapter 1 and reside on human chromosome 21 where
identified and the sequences covering [-3000, 200] relative to these 1129
TSSs where extracted. Subsequently it was investigated to what extent SNPs
and TFBSs coincide within these promoter regions. Since promoter regions
are the main control regions for gene expression, this analysis can show if
the co-occurrence of TFBSs and SNPs in TD regions is to be regarded as

notable.

1129 promoter regions on human chromosome 21 with a total length of
3,612,800 nt were investigated. In 883 promoter regions, a SNP co-
occurring with a TFBS could be identified. In 728 promoter regions, a SNP
fell within the peripheral region of the binding motif and in 553 in the core
region. Furthermore, there are 2874 TFBSs within promoter regions on
human chromosome 21 that co-occur with a SNP (882 core and 1992
peripheral). This makes a density of TFBS-SNP co-occurrences in TDs of
0.796 per kilonucleotide (0.244 core and 0.551 peripheral).

The results of the analysis of co-occurrences of TFBSs and SNPs in
transcriptional desert regions and promoter regions is summarised in Table

17.

nOf nOf core co- nCf paripheral i nCfco- core co- peripharal co- [ total co-

ragions tot. langth occurence | CO-DECUrance DCCUrBNCe Dccurance /knt loccursnca /knt occurence fiknt
HSTDs 106554 2686838 22764 43701 86465 €.275 0.53% 0.804
MM TOs 84936 59613575 8731 16561 25293 0.146 0.278 G424
HEchr2l p 1129 3612800 282 1992 2874 0.244 8,551 0.796

Table 17: TFBS and SNP co-occurrence

It can be seen that the co-occurrence per kilonucleotide is very similar
between human TD regions and human promoters. It can be surmised that
the reasons for this are twofold. On the one hand, it was established in a
previous subsection that there is no significant difference between the

frequency of SNPs within and outside of TD regions. On the other hand, it
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was also previously established that the overall frequency of TFBSs is
similar between TDs and promoter regions. The similar frequency of co-

occurrences is therefore within the bounds of reasonable expectations.

Evolutionary conservation

The evolutionary conservation has been examined using the alignment of
hg18 with mm8. It was determined what portion of human TD regions fall
into areas that are conserved between the genomes of humans and mouse.
Only matched sequences that have a minimum BLASTZ similarity score
were taken into consideration. Three minimum scores were considered. The
results are shown per chromosome in Table 18. For comparison the overall
portions of the respective chromosomes that are conserved between mouse

and human are shown as well.
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similarity threshold

3 TDs  hgis TDs hgig TDs hgls

#chr o O 5000 5000 10000 10000
chrl 20.21 37.02 18.85 33.64 15.84 28.39
chr2 1897 39.68 17.60 36.05 1481 30.29

chr3 20.8% 40.31 19.40 36.83 16.60 31.04
chrd 21.70 3621 20.10 3279 1711 27.13

chrs 2171 3986 20.13 36.43 17.13 30.83
chr6 21.47 38.27 1991 34.63 16.84 28.64
chr? 21.19 37.51 1954 34.08 16.29 2857
chrg 1921 37.17 18.02 3361 1491 27.72

chr9 1933 3407 1760 3093 1490 2601
chrt0. 1725 3971 1568 3571 1277 29.44
chril 1550 3990 1382 3658 1133 31.28
chrl2. 2056/ 3693 1886 3314 1585 27.32
chrl3 2260 3032 2093 27219 1741 22.30
chri4 2049 3387 1913 3073 16.25 25.98
chrl5 1823 3461 1711 3152 1533 2655
chri6 2199 3508 2039 3104 1709 2539
chrl7? 2049 4150 1894 3705 1544 3100
chri8 1951 3818 1796 3446 1493 28.41

chrls 1407 2144 1143 1854 9.48 15.19
chr20, 1988 3918 1876 3550 1560  29.63
chr21 1825 2423 1696 2131 1369 17.00
chr22 1206 2453 1128 2143 813 17.25
chrX 896  29.67 843  27.40 7.30 23.50
chr¥ 5.86 473 5.17 4.05 3.67 2.97
avg 1835 3392 15692 3061 1411 2549

Table 18: Portion of evolutionary conserved human TDs

It can be seen that just fewer than 20% of all TDs are evolutionary
conserved between humans and mice when only a weak similarity score is
required. When stricter requirements for sequence similarity are demanded,
this portion is reduced to about 14% when averaged over 24 human
chromosomes. Based on these numbers it can be estimated that between one
in five and one in seven TDs regions have been conserved in the genomes of
humans and mice. Compared to the overall conservation between human

and mouse, TDs are roughly half as often conserved.

-79-

http://etd.uwc.ac.za/



DISCUSSION

In this chapter a methodology for the identification of transcriptional desert
regions was presented. This methodology unifies the identification of
transcription initiation deserts through DDM, which was presented in
Chapter 1, and a comprehensive collection of known transcripts. The
regions thus identified are devoid of transcription start sites and are not part
of any known transcript. In total, 82.6 million nucleotides for Homo sapiens
fall into these transcriptional deserts. This corresponds to 2.7% of the
human genome. For Mus musculus, 59.6 million nucleotides or 2.3% of the
genome could be identified. These values increase when the minimum
length requirement for TDs is reduced. The longest consecutive stretch of
DNA that is not capable of initiating transcription and for which a transcript

is not known to exist is 25 kilonucleotides long.

It is generally accepted knowledge that almost half of human and other
mammalian genomes consist of repetitive DNA which is not assigned major
functionality. It is also generally accepted knowledge that only a minor
fraction of the human and other mammalian genomes consist of protein-
coding exons. Together, this creates the idea that large areas of mammalian
genomes do not have any function. Such thinking is only slowly overcome

in today’s research approaches.

The existence of a transcript and with it the initiation of transcription
implies that the DNA from which the transcript was produced is functional.
If a DNA sequence is turned into an RNA sequence that is present in the cell
at some point in time some function or other can be assumed to exist. Even

DNA that is not transcribed cannot a priori be regarded as non-functional.

It is nevertheless surprising to establish that only between 2 and 3% of the
genomes of mouse and human constitute transcriptional desert regions. If
the notion were correct that only a fraction of mammalian DNA were
functional, the proportion that makes up transcriptional deserts would be

considerably higher. The analysis and results presented here do in this
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context suggest that the view that the human and other mammalian genomes
possess large stretches of DNA that are devoid of any function needs to be
re-evaluated. There are previous studies that have already suggested that
almost all of the human genome is transcribed [77,78]. The results and
analysis presented here confirm this point of view and quantify the

propositions made.

The GC-content is usually used as a convenient way to interpret and explain
the gene-richness or depletion of genes of a DNA sequence [79]. A low GC-
content or AT-richness of a region is normally associated with a low rate of
expressional activity, while a high GC-content or AT-depletion is associated
with a high rate of activity. The observation made regarding GC-content in
TD regions does therefore match the expectation that one would derive from
the common knowledge between GC-richness and transcription. It was
observed that the GC-content in transcriptional deserts (on average 31%) is
roughly 10% lower than the overall GC-content of mammalian genomes.
However, simply employing the GC-content to detect or explain the
presence or absence of transcriptional activity is insufficient. The analysis
and results presented here indicate that while there is certainly a strong
correlation between the GC-content and the presence of transcription, a high
GC-content is neither a necessary nor a sufficient condition for a DNA
sequence to be transcribed in a mammalian genome. It is not necessary
because there are numerous AT-rich DNA sequences for which the
existence of a transcript can be shown and it is not sufficient because a
number of GC-rich sequences were identified as TDs. This means that other
factors must exist that work in conjunction with GC-content that determine
whether a sequence of DNA is transcribed of not. While the GC-content
gives a clue as to the possible existence of a transcript it is not the sole

determining factor.

It was seen that the average GC-content of TD regions in the mouse genome
is 2% higher than in the human genome. It was also seen that TD regions

are slightly rarer in mouse than in human, and that TD regions with a high
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GC-content play a slightly larger role in mice than in humans. All this
suggests that there are subtle differences in the interrelationships between
GC-content and transcriptional activity between mice and humans. The data
presented here can be interpreted in such a way that the GC-content has, to
some extent, a larger impact on a sequence ability to transcribe in human

than it would have in mice.

The composition of k-mers observed in transcriptional deserts in
comparison with randomly extracted DNA of similar GC-content reveals
that the k-mer composition of TD regions can to a large extent be explained
by the low GC-content of these region. When the k-mer composition of TDs
is compared to random DNA of similar GC-content, the differences
observed are relatively modest. It is not too far-fetched to speculate that a
comparison with random DNA of a GC-content that is ‘average’ for the
respective genome would yield the observation that TDs are significantly
enriched in many AT-rich k-mers. This observation, however, could be
explained solely with the different GC-content of the compared sequences
and would not be caused by other compositional characteristics that are
typical for TD regions. This can be concluded from the analysis performed
here, in which TDs were compared with random DNA of very similar GC-
content. The fact that this analysis does not yield any prominently enriched
or depleted k-mers in TD regions shows that relative AT-richness is

sufficient to explain the k-mer composition of transcriptional desert regions.

When studies of transcription and gene expression are conducted repetitive
DNA is often a priori excluded. It is assumed that repeats do not play a
significant role in these processes. Several studies (for example [42]) have
restricted their analysis to genomic sequences in which repeats were
masked. Such an approach might be correct in many cases. Genes
containing protein-coding exons are certainly very unlikely to be located
within a repeated DNA sequence. However, suggesting that repetitive DNA
is deprived of function might be inaccurate, as the results and analysis

presented here imply. The repeat content of transcriptional deserts was
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determined to be of a similar magnitude than the repeat content of the
overall genome for human and mouse. In both cases the repeat content can
be determined to be roughly around 50%. On the one hand, this entails that
half of the regions that are neither capable of initiating transcription nor part
of a known transcript are composed of non-repetitive DNA. Repeats can
therefore not serve as an explanation for the transcriptional passivity of the
examined TDs. On the other hand, this implies that the relationship between
repetitive DNA and transcriptional DNA is weak at best. If it were true that
repetitive DNA is transcriptionally less active than the genome on average,
the repeat content of a TD region would be much higher than that of the
overall chromosome. As a matter of fact, most repeat regions are transcribed
in some way and, as was shown in Chapter 1, might even be the location of
transcription initiation. The results and analysis shown in this suggest that
the role of repeats in the process of gene expression might be
underestimated. While a number of studies propose an evolutionary role for
repetitive DNA and transposable elements especially [80-83], an influence

on regulatory processes cannot be a priory excluded.

While the overall repeat content of the TD regions is very similar to the
overall repeat content of the respective genomes, it was seen that the
composition of repetitive DNA is distinctly different in transcription deserts
and in the genome in general. It was shown that long interspersed nuclear
elements (LINEs) play a much more important role in TDs in comparison to
their overall role in the genome. There are two families of LINE elements in
the human and mouse genome: LINE2 which is an older family and has
been lying inactive since before the evolutionary split of mammals; and
LINE1 which is still active at the present time. LINEs are a subgroup of
retrotransposons, which again are a subgroup of transposons or all
transposable DNA elements. The distinct characteristic of retrotransposons
is the mechanism that is employed by them in order to gain mobility within
the genome. Retrotransposons use an RNA intermediate and a reverse
transcriptase (RT) to do so. In many cases the retrotransposons carry the
DNA sequence that encodes for the RT itself. In contrast to that, other types
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of transposons do not utilise an RNA intermediate and instead copy
themselves directly from one genomic position to another. The role of
retrotransposons in mammalian transcription was investigated in one recent
study [84] which concluded that “retrotransposon transcription has a key

influence upon the transcriptional output of the mammalian genome”.

Since LINEs replicate themselves through a RNA intermediate and are thus
transcribed, it is at first glance not clear why they should appear in such
proportion in transcriptional desert regions. It is true, however, that most
retrotransposons have become inactive through accumulated mutations and
do not transpose anymore. The fact that LINE elements, and especially
LINEI elements, make up the majority of repetitive DNA in transcriptional
deserts does nevertheless constitute an interesting observation that deserves

further inquiry.

It was also observed that satellites, simple repeats and areas of low
complexity have gained importance in TD regions in comparison to the
overall genome. Unlike the observation made for LINE elements, an
explanation for this can be found in a straight forward way. Mini- and
micro-satellites have an extremely low propensity to be either transcribed or
to initiate transcription by themselves, whereas they might well be part of
larger primary transcripts (in introns, UTRs, etc.). They therefore appear

more frequently in TD regions, although not all of them appear there.

Transcriptional desert regions have also been analysed for the presence of
absence of Single Nucleotide Polymorphisms (SNPs). SNPs are sequence
variations in corresponding locations between two DNA sequences. They
consist of single nucleotide differences and the vast majority of SNPs do
only produce two alleles [85]. In principle they can occur at any genomic
location. Due to redundancies in the genetic code, a SNP that falls within a
coding exon does not necessarily lead to the production of a different amino
acid, but instead constitutes a ‘silent’ mutation. However, it is possible that
SNPs in coding regions introduce a premature stop codon into the reading

frame and with that, constitute a mutation that renders a gene or part of a
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gene non-functional. While SNPs that fall within coding exons are surely
the most interesting to look at, because they might have a direct influence
on the type of amino acid and protein being produced by a gene, it is also
interesting to look at SNPs that fall elsewhere on the genomic sequence.
These SNPs might have different effects. SNPs that lie within the promoter
region of a gene especially might have influence on the transcriptional
activity of a gene [86,87]. In the most extreme case a sequence variation in
the promoter region of a gene can lead to the silencing of the complete gene.
But SNPs that are located distally from any gene location might also have
influence in activities of enhancers or silencers including processes such as

transcription factor binding and control of remote genes.

It was observed that there exists no significant correlation between the
occurrence of SNPs and the existence of a transcriptional desert in the same
region. Currently, the occurance of SNPs are understood to be random
events. They are mutations that are introduced during the replication of the
DNA before mitosis. It is sufficiently proven that environmental factors
such as radiation or the presence of toxins have an influence on the
development of mutations [88,89]. However, this makes them appear
irrespective of the function of the DNA sequence they appear in. Given the
fact that all DNA sequences are subjected to selective pressures in the
context of evolution, it can be assumed that fewer mutations are observed in
functional regions. Since we observe here that SNPs appears with equal
frequency in TDs and transcriptionally active regions, it can be concluded

that at least the occurance of SNPs suggests a functionality of TDs.

Recent studies have connected SNPs with susceptibility to disease and to
responses to medication and vaccines [90-92]. However, most of the studies
conducted in this field concentrate on SNPs that are located in coding
regions and that directly modify gene products. The effects of these SNPs
are most easily detected. It is equally likely that SNPs that fall within
intergenic regions have an influence on gene expression by disrupting gene

regulation. This influence can be more subtle than a change in the produced
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amino acid, but nevertheless important for the overall cell function. The
effect of the disruption of remote activators or repressors could be important
for the regulation of a number of genes. Which of the SNPs that were
identified in transcriptional deserts are candidates for this, depends on their
co-occurrence with transcription factor binding sites (TFBSs). In fact, a
recent study [93] showed SNPs occurring distally from any gene location
that disrupt the expression regulation of the gene PTGER4 (Entrez Gene ID
5734) and thus contributes to the development of Crohn’s disease.

The results and analysis presented here show that the concentration of
TFBSs in transcriptions desert regions is slightly elevated when compared
to other types of DNA sequences, which allows the conclusion that TDs
might be active in terms of remote gene regulation by harbouring remote
activator or repressor elements. More importantly, there exists a group of
TFs that can be found in TD regions in a much higher concentration than in
other DNA sequences. To be more precise, five TF binding matrices and 18
TFBSs were identified that occur in TDs 10 times more frequently than in
other types of DNA sequences. This suggests that TD regions, more than
other DNA sequences, constitute areas that provide the ground for a certain
types of remote regulatory processes. The fact that it was shown - that some
TD regions are significantly elevated with regard to the density with which
TFBSs occur - can also be seen as an indication that some TD regions could
play a role in remote regulatory processes. A comparison with the

occurrence of TFBSs in promoter regions supports this hypothesis.

Desert377 on human chromosome 3 can be taken as an example, to illustrate
the occurrence of TFBS clusters in TD regions. This TD region is 1222 nt
long and located between nucleotide positions 20,872,124 and 20,873,345.
The nearest known gene (ZNF385D, Entrez Gene ID 79750) to this location
is located on the reverse strand more than 400 knt upstream. Nevertheless,
this TD region harbours 58 windows of size 200 nt that each contain more
than 35 possible binding sites for transcription factors. In total, there are 19

different TFBS matrices that can be identified to be located in this TD
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region. Based on the relatively dense clustering of different TFBS in this TD
region, it can be hypothesised that this region might have a regulatory

function, despite its relative remoteness from any known genes.

To determine possible locations where the interaction of SNPs and TFBSs
leads to changes in the behaviour of regulatory processes, the location of
TFBSs and SNPs in transcriptional desert regions were matched. Table 3
and 4, of the online supporting materials show that SNPs overlap frequently
with TFBS throughout the TD regions. In fact, the majority of TDs possess
both SNPs and TFBSs, which is to be explained by the abundance with
which both of these appear. It is open to speculation whether the occurrence
of a single SNP in a potential binding site of a transcription factor will have
a noticeable influence on cell behaviour, irrespective of whether such a SNP
appears in the peripheral or the core area of the binding site. It seems clear,
however, that the likelihood of the influence of such SNPs on cell behaviour
drastically increases when the number of SNPs that appear in TFBS
increases. Therefore TDs that harbour multiple TFBSs that are also the
location of multiple SNPs, constitute areas of interest when it comes to
irregularities in remote gene regulation processes. A comparison with
promoter regions shows that the co-occurrence of TFBSs and SNPs is of a
similar magnitude in promoter regions and TDs. Many studies have
examined the effects of SNPs on transcription factor binding in promoter
regions [94-96]. It can be assumed that for those transcription events whose
control is contributed to by remote elements, the co-occurrence of a SNP
and a TFBS in those remote elements could potentially have a similar effect

to those described in these studies.

For example, a number of human TD regions that harbour a noteworthy

number of TFBSs, with overlap between SNPs and TFBSs were selected.

TD region no. 3456 on human chromosome 10 is 4,292 nt long and is
located between position 134,798,853 and 134,803,144. This area is located
29,817 nt upstream of gene KNDC1 (Gene ID: 85442) and 3684 nt
downstream of gene GPR123 (Gene ID: 84435). Within this area there are
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151 TFBSs, mainly for matrices CACD1, HAND1E47 and SPZ1. Within
this area, there are also 38 SNPs that coincide with predicted TFBSs
HANDI1E47 and SPZ1 (14 core and 24 peripheral). TFs binding to those
sites are suspected to have an important role in spermatogenesis and

embryonic development [97,98].

Another example is TD region no. 820 on human chromosome 20. This area
is 2899 nt long and located between position 62,226,987 and 62,229,885. It
1s located 18359 nt upstream of gene NPBWR2 (Gene ID: 2832) and 36386
nt upstream of gene MYT1 (Gene ID: 4661). Both neighbouring genes
NPBWR2 and MYT]1 play a role in the central nervous system development
[99]. Within this area there are 181 TFBSs predicted, mainly for matrices
TBP, OCT1 and PEBP. There are also 20 SNPs that coincide with TFBS
matrix PEBP (11 core and 9 peripheral) and two SNPs that coincided with
binding sites of OCT1 (1 core and 1 peripheral). Proteins potentially binding
to PEBP binding site also belong to the AML family and are involved in the

course of acute myeloid leukaemia [100,101].

There is also TD region no. 1142 on human chromosome 16. This area is
1489 nt in size, located between positions 87,015,823 and 87,017,311, and
30,204 nt upstream of gene ZFPM1 (Gene ID: 161882). In this region, there
were 107 TFBSs detected, mainly by matrices PBX, PAX8, PAX6 and
SPZ1. In this area, there are 17 SNPs that interfere with binding sites for
TFBS matrix PBX (5 core and 12 peripheral). There are also five SNPs (1
core and 4 peripheral) that interfere with TFBS matrix SPZ1 (see above).

Also of interest is TD region no. 1713 on human chromosome 18, which is
1694 nt in size and resides between positions 37,182,312 and 37,184,005.
Within this region there are 107 potential TFBSs, mainly for CART1 and
POU3F2 binding matrices. Within this region, there are 12 SNPs that
overlap with the location of TFBS matrix CART1 (7 core and 5 peripheral)
and seven SNPs that interfere with the binding sites for POU3F2 (6 core).
POU family TFs are brought into connection with mammalian brain

development [102]. The region is located distally from any known-protein
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coding gene. However the nearest gene is PIK3C3 (Gene ID: 5289).
Irregularities in the transcription regulation of this gene are implicated in

mental disorders [103,104].

These examples serve to illustrate the type of data that could be extracted
from the analysis of TFBSs in conjunction with SNPs in TD regions of
mammalian genomes. While it is by no means guaranteed that these
mutations have any influence on gene expression or on the development of
disturbances, they form candidate locations where a closer investigation
might yield discoveries regarding transcriptional regulation or the deviation
from normal gene expression regulatory patterns. The fact that these areas
constitute regions of the genome for which no existing transcript can be
found, and that transcription is also not likely to initiate in these locations,
does not make them less likely to exhibit characteristics that have a potential
influence on the regulation of gene expression. Two things should be kept in
mind when investigating these regions for transcriptional remote control
elements. Firstly, remote regulation seems to be an abundant feature in
controlling gene expression [105] and secondly, disruption of TF activity is

known to be linked to the genetic component of carcinogenesis [106].

Another important aspect is the evolutionary status of transcriptional desert
regions. It was determined to what extent these regions have been conserved
between the mouse and the human genome, which describes more than
70,000,000 years of independent development of those genomes. The fact
that sequences are conserved during evolution has been linked to functions,
such as long-range enhancing of flanking genes, regulating splicing, and
transcriptional co-activation [107-109].

This study shows that the majority of TD regions that were determined are
not conserved between the mouse and human genome. It also shows that
conservation of TDs is about half as strong as the overall conservation
between mouse and human. However, between one in five and one on seven
TDs is in fact conserved, depending on the requirements for sequence

similarity. Studies such as [42] have suggested that non-coding regions can,
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in principle, be divided into those regions that display an inherent function
and those that do not. If evolutionary conservation is taken as an indication
of the existence of a function of a region with regard to gene expression, the
fact that an estimated one in seven TD regions are strongly conserved
between Homo sapiens and Mus musculus can be interpreted in such way
that the existence of a function can be assumed for these non-transcribing

elements.

All main findings for the various types of analyses performed on TDs are

summarised in Table 19.
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Desert size and coverage

Roughly between 2% and 7% TD coverage
in human and mouse genomes, depending
on TD creation parameters

GC-content

On average, significantly lower than whole
genome, but high GC TDs as well as high AT
transcriptionally active regions are frequent

K-mer composition

Specific k-mer composition of TDs can be
sufficiently explained with low GC-content

Repeats

Similar repeat content to whole genome,
but distinctly different repeat composition
with special emphasis on LINEs

Single nucleotide polymorphisms

No correlation between SNPs and TD
occurance found (suggesting function)

Transcription factor binding sites

Differences in TFBS composition between
TDs and other types of DNA sequences can
be identified. Some TFBSs appear
predominantly in TDs.

Mutations and transcription factor binding
sites

Co-occurrence of SNPs and TFBSs is
frequently observed.

Transcription factor binding site clusters

Some TDs display a dense clustering of
TFBSs that is significantly above average.

Evolutionary conservation

Between 1in5and 1in 7 TDs are
evolutionary conserved between human
and mouse.

Table 19: Summary of main TD findings
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CONCLUSIONS

In this chapter a method was introduced that, based on the results of DDM
and a comprehensive set of transcription data, identifies areas in mammalian
genomes that are neither likely to initiate transcription nor are they part of
any known transcript. These areas were named transcriptional deserts (TDs).
It was shown that, using a minimal TD length as an artificial parameter, the
area of mammalian genomes covered by TDs is relatively small, with more
than 93% of genomes transcriptionally active in some way. The
transcriptionally active area decreases if the minimal length requirement for
transcriptional deserts is reduced. It was further shown that TD regions
display a pattern of composition that is aligned with expectations derived
from knowledge about GC and repeat content. It was nevertheless also
shown that existing knowledge about repeat and GC-content is not sufficient
to explain transcriptional activity in mammals. Analyses regarding SNPs
and TFBSs demonstrated that TDs are heavily involved in remote regulation
of gene activity and that some are candidates for examination regarding
disease development, because they represent potential locations in which
DNA sequence variations disturb remote gene regulation activity. The areas
that were identified as transcriptional desert for Homo sapiens and Mus
musculus are available from the online supporting materials to this
dissertation  (http://apps.sanbi.ac.za/dissertations/ulf/). ~ The  research
presented in this chapter is currently being prepared for submission for

publication in BMC Genomics.
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Chapter 3 - Promoter extraction

INTRODUCTION

Every study performed in any field of science can only be as informative
and insightful as the data it was performed on. Analyses performed on
erroneous or incomplete data will always be deficient, no matter how robust
the methodology. For all studies of transcription initiation, it is for this
important reason to be able to extract promoters with high accuracy and
precision, and to achieve the greatest possible coverage of promoters
relevant for the study. For the context of this manuscript, a promoter is
defined as a strand-specific DNA sequence that is located around an existing
transcription start site (TSS). Therefore, a promoter has a certain length
while a TSS always refers to a single nucleotide position on either the

forward or the reverse strand of any chromosome.

The extraction of promoters is paramount to various kinds of studies.
Firstly, there are studies of transcription in general, which rely on the
determination of all existing promoters and/or TSSs with high accuracy and
precision. For these types of studies, all existing TSSs need to be identified
and added to the pool of data that is analysed. Missing genuine promoters
and/or TSSs from the data or inaccurately determining them would impact
negatively on the results of those kinds of analyses. The analysis that was
described in Chapter one and the development of the DDM tool is an
example for this kind of study. None of the claims made in Chapter one
would have any validity if there was any doubt about the soundness with

which the reference TSS set was established.

Closely related to this type of study are two types of analyses of
transcription initiation that deal with specific subsets of promoters. One is
the case in which only promoters for a certain group of genes are meant to

be examined. In such cases, it is demanded that promoters for all genes in
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this group are identified and allocated to their respective genes. Examples of
such gene groups can be genes that share a common property, that are over-
or under-expressed in a certain kind of stress situation or tissue type, or that
are found to be associated with a certain type of disease. Once such a group
of genes has been identified, it is the role of promoter extraction to identify
TSSs for all genes in the group and to retrieve promoters for analysis. For
example we studied features of ovarian cancer promoters [3]. Again,
incomplete or erroneous determination of these promoters would impact

very negatively on the results of the study.

Another type of analysis is the examination of promoters in a gene-
independent yet tissue specific manner. For this purpose, the process of
promoter extraction must be able to identify all TSSs that are reported
within a certain tissue type. For this purpose it is necessary to assign tissue

specific information to TSSs.

This chapter introduces PROMEX, a promoter extraction tool that achieves
of the above mentioned requirements. PROMEX is a web-based promoter
extraction tool that allows for the extraction of general, gene-specific or
tissue-specific promoters. This tool was used to identify promoters for
analysis in Chapter one as well as in [3-5]. A screenshot of the PROMEX

tool can be seen in Figure 8.
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Figure 8: Screenshot of PROMEX tool

METHOD

PROMEX provides promoter extraction capabilities for the species Homo

sapiens and Mus musculus. Following the above definition, the
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identification of a promoter is primarily dependent on the identification of a
TSS. Once a TSS has been identified, the extraction of the corresponding
promoter is trivial. Starting from a given TSS location, a promoter is merely
a sequence of DNA covering a certain number of nucleotides upstream and
downstream of the TSS in question. PROMEX provides the means by which
the user can specify this upstream and downstream length. If nothing is

specified, it uses 3000 nt upstream and 200 nt downstream of each TSS.

CAGE

The identification of TSSs is, as mentioned above, an essential step when
extracting promoters. PROMEX primarily uses cap analysis of gene
expression (CAGE) data that was published in [12]. This data consists of a
collection of several million DNA sequence tags that are between 18 and 25
nucleotides in length. These tags constitute the basic data that was obtained
experimentally and they each represent the 5’ end of a primary transcript.
By mapping the tags back to the genome, the genomic origin of these
transcripts could be identified. In this sense, each CAGE tags represents one
piece of experimental evidence for the existence of a TSS at its

corresponding chromosomal location.

However, the analysis performed as part of the CAGE effort goes further. In
order to establish a measure of how strongly represented each single TSS is
in the data, CAGE tags have been clustered together (for details on this
clustering please refer to [12]). Eventually each TSS in the data is
represented by two important characteristics. These are the total number of
tags that were grouped together in this cluster, on the one hand, and, on the
other hand, the number of tags that support the ‘representative tag’. The
‘representative tag’ can be understood to be the strongest CAGE tag, in the
cluster and the number of tags in the representative tag tells us how many
tags are found at the location of this representative tag. The exact location of

the 5’ end of the representative tag of each tag cluster is interpreted to be the
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location of the TSS. There are a lot of tag clusters that consist only of one
tag. In this case, the only tag present is naturally at the same time the

representative tag for this cluster.

PROMEX uses these two measures - the overall number of tags in the tag
cluster and the number of tags in the representative tags - to let the user
specify how strongly supported the TSS is, and with that how strongly
supported the corresponding promoters are supposed to be. If the user does
not change the default setting of the system, PROMEX applies a threshold
of at least five tags in the overall tag cluster and at least three tags in the

representative tag.

In addition to the exact location in the genome, each CAGE tags is also
associated with the tissue library from which it was experimentally
extracted. This allows for the extraction of promoters in a tissue specific
manner. When determining how strong the support for a given TSS is, it is
possible, with the help of this tissue information, to disregard all tags that
did not originate from a certain type of tissue. This way, only promoters that

are found in a certain environment can be extracted.

Other evidence for transcription

Since it is not optimal to depend on only one type of data, which was
extracted in a specific experimental way, PROMEX introduces other types
of evidence for the existence of a transcript in a specific location. These
types of evidence are completely independent from the data that was
obtained as part of the CAGE experiments. Any type of information that is
based on two independent pieces of evidence can be regarded as much more
accurate and much less error prone than information that is backed up only
by only one piece of evidence. The data would only be incorrect in the
extremely unlikely event that exactly the same error was repeated at two

different points in time by two different types of data retrieval.
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For the purpose of supporting TSSs, PROMEX utilises a collection of
mRNA sequences extracted from the University of California in Santa Cruz
(UCSC Genome Browser, http://genome.ucsc.edu/ [49]) and a collection of
full-length cDNA sequences obtained from DBTSS [23] (both downloaded

in April 2008). The exact location of all 5’ ends of these sequences has been
recorded, using the mappings provided by UCSC for genome build hgl8.
Each 5’ end is interpreted as a TSS location. In addition to support by
CAGE tags, the user of PROMEX has the option of selecting additional
support by mRNA, or ¢cDNA, or support by both. Currently PROMEX
retains the locations of 1,615,187 ¢cDNA sequences and 199,681 mRNA
sequences for Homo sapiens and 458,321 ¢cDNA sequences and 225,807

mRNA sequences for Mus musculus.

A TSS is considered to be supported by an additional piece of evidence if
the 5° end of one of those sequences coincides exactly with the 5’end of the
representative tag of the corresponding tag cluster. A mismatch is not

allowed.

Assignment of gene identifiers

In order to be able to extract promoters for given user-specified genes, the
system must retain gene information and allocate TSSs to as many genes as
possible. PROMEX understands a TSS to be associated with a specific gene
if the TSS is located on the gene body of this gene or within 50 knt
upstream of the 5° end of the gene body. The distance of 50 knt is shortened
accordingly if there is another gene located within this distance. As a
consequence one gene can have no TSSs, one or more than one TSS, while
a TSS always belongs to no gene at all or exactly one gene. There are a
minor number of exceptions in cases of overlapping gene bodies, but they
do not play a significant role in the system. The distance between the 5’end
of the gene body and the TSS is reported as part of the promoter delivery. A
TSS located downstream of the 5° end of the gene body (that is, on the gene
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body) will be reported to have a negative distance to the 5’ end of the gene
body. The user can select to have only those promoters delivered that have a
maximum distance from the gene. However, no distances greater than 50

knt will be reported.

PROMEX was equipped with the gene locations for three types of gene
identifiers. A user can select any of these three to specify which gene
promoters are desired. These types of identifiers are Entrez Gene ID, gene
symbol, and Unigene cluster ID. PROMEX holds a list of these identifiers
together with the chromosomal locations of the gene body for each gene in
each of the three lists. Currently PROMEX retains the locations (including
chromosome, strand, start, and end position) of 28,876 Entrez Gene IDs,
18,445 gene symbols and 22,873 Unigene cluster IDs for Homo sapiens,
and 28,583 Entrez Gene Ids and 23,764 gene symbols for Mus musculus.

Depending on the number of gene identifiers submitted, the results are
either returned immediately (“promoters while-u-wait”) or are extracted
offline and delivered to the user by email after extraction is finished. The
latter is also employed if promoters are extracted in a gene independent

manncr.

DISCUSSION

The system described here provides several options for the extraction of
promoters. The location of these promoters is based on the location of their
corresponding TSS, which is determined on the basis of CAGE data. In
addition to the CAGE data, other independent evidence for the existence of
a transcript has also been added to the system. That makes the TSS locations
determined by PROMEX highly reliable.

PROMEX offers a number of options for the user, to make the selection of

promoters as flexible as possible and to cater for a number of types of
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analysis for which promoters are required. Firstly, the user can choose how
strongly the TSSs that correspond to the extracted promoters are represented
by the data. Secondly, the user can specify how large the sections should be
that are extracted as promoters around each TSS. Thirdly, the user can
restrict the CAGE data that is supporting the desired TSS to a number of
tissue libraries, thus enabling the user to extract promoters in a tissue-
specific manner. Fourthly, the user can choose to extract promoters that
have been allocated to one or more than one gene. These genes can be
specified by one of three different gene identifiers. Alternatively the user
can choose to extract the promoters in a gene independent manner. The

following examples will illustrate the use of PROMEX.

Examples

A) Extract all promoters from Homo sapiens that have at least 1 CAGE
tag in the overall tag cluster (and thus 1 CAGE tag in the
representative cluster) and have af least one additional piece of
independent evidence, either mRNA or cDNA. Extract 100 nt
upstream and downstream of all TSSs and include all possible tissue
libraries. This requests to PROMEX returns 113,814 promoters,
exactly those that were used as the reference TSS set for humans in

Chapter 1.

B) Extract all promoters from Mus musculus that are evident in liver
tissue and have at least 2 tags in the overall tag cluster as well as 2
tags in the representative tag. Select only those promoters that also
have at least one other piece of evidence of transcription. Extract
promoters of length 3200 nt, 3000 nt upstream and 200 nt
downstream of each reported TSS. This request to PROMEX returns
4825 promoters.
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C) Extract all promoters for human gene FOXP2 (chromosome 7;
location 7q31; 113,842,228 — 114,118,328) that have at least 5 tags
in the overall tag cluster and at least 3 tags in the representative tags
as well as either mRNA or cDNA support. Include all tissue libraries
and extract 3000 nt upstream and 200 nt downstream of the TSS.
This request to PROMEX returns 1 promoter. The corresponding
TSSS for this promoter is located at 113,842,354. It has 14 CAGE
tags in the overall tag cluster and 4 tags in the representative tag.
This promoter is also supported by a full-length cDNA whose 5° end
is located at 113,842,354. This kind of promoter extraction was done
for [3], where a set of 379 identifiers for genes associated with
ovarian cancer was submitted to PROMEX and the resulting
promoters have been included in the analysis published as part of
this study. The same applies for [4], where a group of 529 genes
associated with oesophageal cancer was examined. For [5], a
specially customised version of PROMEX was used to extract

regulatory regions not for genes but for the transcription of miRNAs.

CONCLUSION

This chapter introduces PROMEX, a web-based promoter extraction tool.
Since obtaining accurate data is paramount to the success of each study,
PROMEX applies a rigorous methodology to determine the location of
TSSs and extract the corresponding promoters. The location of TSS is
mainly based on the location of CAGE tags, but is also optionally supported
by other pieces of independent evidence. This technique makes the location

of promoters highly reliable.

PROMEX offers high flexibility through a number of user-adjustable
options. These include species selection between Homo sapiens and Mus
musculus, promoter size upstream and downstream of TSS, strength of TSS

support, tissue library information, and gene-specific promoter extraction.
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Promoters extracted with PROMEX are highly flexible and reliable and
have benefitted a number of studies including the study described in Chapter

one, as well as several others [3-5].
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Overall summary

The main subject of this dissertation is transcription initiation deserts and
transcriptional deserts. The first chapter dealt with the detection of
transcription initiation deserts (TID) and introduced a method for doing that.
This method constitutes the only method available that is able to detect TID.
It was shown how this method performs on a number of showcase
chromosomes and it can be concluded that only a small fraction of the
mammalian genomes is capable of initiating transcription. It was
highlighted that this method is useful for researchers in a wide spectrum of
life science research. The study presented in this chapter is currently in

preparation for submission for publication in Bioinformatics.

The second chapter revolves around areas that include TID, but they are
extended to include all known transcripts to make transcriptional deserts
(TDs). The TD regions were analysed for a variety of aspects and their
properties and potential functions have been highlighted. It was shown that
these regions only cover a small fraction of mammalian genomes and that
the GC-content of these regions is not sufficient to explain why they are
transcriptionally silent. It was also shown that they possess a number of
interesting characteristics that make them candidates for studies in remote
gene regulation. The content presented in Chapter two can be seen as the
direct consequence of the system proposed in Chapter one. In fact, Chapter
two is the continuation and application of the design ideas from Chapter one
on a whole-genome scale. The research presented in this chapter is currently

in preparation for submission for publication in BMC Genomics.

The third and final chapter describes the process of promoter extraction and
the tool that was developed for this purpose. It explains how the extraction
of promoters is performed. The numerous options that are associated with
the selection of promoters and the reasoning behind the methodologies

applied were elucidated. It was also described how the data that was
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obtained with the promoter extraction tool contributed to a number of

analyses that were conducted during the time of my doctoral studies [1-6].
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ONLINE SUPPORTING MATERIALS

o FASTA files: TID on human chromosome 21 (forward strand) at 3
different levels of sensitivity (OSMCD:/TID on human chr21/)

o FASTA files: TD regions for Mus musculus with 518 and 259
minimal length (OSMCD:/MM TD regions/)

o FASTA files: TD regions for Homo sapiens with 518 and 259
minimal length (OSMCD:/HS TD regions/)

e Table 1: k-mer analysis Homo sapiens
(OSMCD:/Tables/OSM _tablel kmerPVal hs.xlsx)

e Table 2: k-mer analysis Mus musculus
(OSMCD:/Tables/OSM_table2 kmerPVal mm.xlsx)

e Table 3: SNP TFBS cluster Homo sapiens
(OSMCD:/Tables/OSM_table3 snptfbsClusters_hs.xlsx)

e Table 4: SNP TFBS cluster Mus musculus
(OSMCD:/Tables/OSM _table4_snptfbsClusters_mm.xlsx)

e Table 5: Binding frequency for TFs in TD, cDNA, chr21 and
random DNA (OSMCD:/Tables/OSM_table5_tf bind_freq.xlsx)
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APPENDIX

A) Table Al: DDM Masking at 99% SE for all human and mouse

chromosomes
spacies chromosome 96 of valid positions | % o.f valid positions
likely to be TSS urlikely to be TSS

Homo sapiens chrl 23.02 76.88
Homo sapiens chr2 18.38 81.02
Homo sapiens chr3 17.21 82.79
Homgo sapiens chrd 13.54 86.46
Homo sapians chrS 16.87 83.13
Homo sapiens chré 1703 82957
Homo sapiens chr? 20.07 7993
Homo sapiens chr8 18.35 81.65
Homo sapiens chrg 21.65 78.31
Homo sapiens chrlQ 22.5% 77.41
Homo sapiens chrll 22.80 77.20
Homao sapiens chri2 19,95 B80.C04
Homo sapiens chrl3 1477 B85.23
Homo sapiens chrlg 20.52 7348
Homo sapiens chrls 24.34 75.66
Homaosapiens chrle 3101 £8.99
Homosapiens chrl? 34,11 ©85.89
Homosapiens chri8 ) 17.68 8232
Homosapiens chrlg 40.73 59.27
Homo sapiens chr20 3002 69,91
Homo sapiens chr2l 21.40 78.60
Homo sapiens chr22 4240 57.680
Homo sapiens chrX 15.86 84.14
Homo sapiens chrY 1g11 83.89
Mus musculus chrl ; 17.56 82.44
Mus musculus chr2 2109 7881
Mus musculus chr3 15.62 84.38
Mus musculus chré 22.07 77.583
Mus musculus chrS 22.68 77.32
Mus musculus chré i 18.46 81.54
Mus musculus chr? 23.343 g 76.66
Mus musculus chr8 21.80 78.20
Mus musculus chrg 22.28 77.72
Mus musculus chri0 18.64 B81.36
Mus musculus chril 26.69 7331
Mus musculus chrl2 13 83 80.17
Mus musculus chri3 18.45 B 8155
Mus musculus chrid o 17.63 82.37
Musmusculus  chri5 ’ 2104 78.96
- Mus musculus chrlé 17.54 82.46
Mus musculus chri? 23.26 76.74
Mus musculus chri8 18.11 8189
Mus musculus chrl9 22,57 77.43
Mus musculus chrX 12.40 87.60
Mus musculus. chrY 12.18 87.84

- 106 -

http://etd.uwc.ac.za/



B) Table A2: Occurrences of TF binding matrices in TD, cDNA, chr21
and random DNA

http://etd.uwc.ac.za/

[_AHRARNT 01 0.001 0.008 0.114 0.006 0.142 0.043 0.020
| AHRHIF Q6 0.001 0.013 0,070 0.005 0196 | 0041 0,023
| AIRE 02 0341 0103 3,324 0.174 1,963 0.056 6,087
AP1 Q2 01 0.043 0053 0.806 0.081 0.530 0.053 0.810
0.033 0.035 0.961 0.039 0.863 0,048 10606 |
AP2 Q6 0.002 0.144 0,017 0.049 0049 | 0098 0.025
AP2 Q6 01 0.004 0.155 0.026 0074 0054 | 0,066 0.061
AP2ALPHA 01 0.000 0089 | 0003 0,021 0,013 0034 10008 |
AP4 01 0.005 0.076 0.067 0.044 0116 0.027 0.187
AR Q2 0 0,046 1.061 0.058 0.844 0.037 1.330
| AREB6 02 0.021 0.028 0.734 0.039 0,532 0028 0.742
ARNT 01 0.013 0.035 0.354 0.050 0249 | 0096 0.130
ATF6 01 0,015 0.071 0.213 0,042 0,357 0177 0.085
[ BACH2 01 0,001 0.002 0.360 0.005 0.179 0.012 0.071
| BRACH 01 0.000 0.000 NaN 0.000 1.222 0.000 NaN
| BRCA 01 0,652 0.320 2,040 0,457 1,427 0.324 2012
CACD 01 0.031 0.188 [ 0.164 0.267 0.115 0.114 0.270
CART1 01 0.651 0.062 10,478 0.264 2464 | 0,068 9,568
| CRF 02 0.003 0.011 0317 0.008 0.440 0.053 0,065
CDP 02 0734 0.215 3.414 0.348 2110 0,324 2,266
CDPCR1 01 0121 0102 1.189 0.107 1.125 0.389 0,311
CDPCR3 01 0.633 0.252 2.508 0.422 1.500 0.513 1.234
CDXA 02 1,990 0.267 7,457 0.822 2.421 0.248 8025
| CEBP 03 0.561 0.294 1,906 0.419 1,340 0215 2.609
0.174 1.700 0.223 1,326 0171 1,728
| CEBPDELTA Q6 0,066 0.033 2,003 0.065 1.013 0.034 1.935
| CEBPGAMMA Q6 | 0.547 0123 4,444 0317 1722 0.057 9,588
| CETSIPS4 01 | 0,038 0.194 0.195 0.106 0.357 0218 0.174
| 0,083 0.129 0.649 0,095 0.879 0.139 0,600
CETS1P54 03 0043 0.442 0,097 0.151 0.284 0.824 0,052
CHX10 01 0.006 0.001 6.550 0.004 1.424 0.010 0,579
ol 0,035 0.013 2627 0018 1.938 0.009 3,900
[ CMAF 01 0.063 0.178 0.352 0.118 0.529 0.097 0.646
| COUP DR1 Q6 0.023 0.052 0.445 0.044 0,527 0.048 0.479
CP2 02 0,045 0.195 0.229 0.129 0.346 0.141 0.317
| CREB 02 0.011 0.085 0.125 0.039 0276 0,208 0051
| CREB Q4 01 0.014 0.041 | 0.338 0.032 0.435 0,163 0,085
| CRX Q4 0.052 0,026 1,969 0.070 0.735 0,037 1.397
| DRP Q6 0.187 0.124 1.503 0,183 1.023 0.126 1,484
DEAF1 02 0.001 0.016 0.083 0.006 0.233 0.042 0.031
DEC Q1 0.006 0.021 0.291 0.023 0271 0.022 0.279
DR1 Q3 0.015 0.020 0.746 0,023 0,656 0017 0,899
| DR3 Q4 0.072 0.256 0.282 0.174 0416 0.231 0,313
| DR4 Q2 0,006 0.028 0.232 0057 0.113 0.019 0,338
E2 01 0.000 0.004 0.028 0,001 0091 0.015 0.006
E2 Q6 01 0.000 0.004 0.112 0.002 0.262 0.017 0.026
E2A Q2 0,000 0.000 0.397 0.000 0.081 0.001 0.012
E2F 03 0.001 0.015 0.058 0.003 0.252 0.078 0.011
E2F Q6 01 0.001 0.026 0,053 0.006 0.229 0.136 0.010
E4BP4 01 0.003 0.001 4,461 0,002 1.091 0,002 1.361
| FRE Q6 0.001 0.004 0179 0.002 0,283 0.001 0.689
| FBOX Q6 01 0.010 0,082 0.127 0.098 0.106 0057 0.182
| EGR1 01 0.003 0059 0,055 0,024 0.137 0.097 0.034
ER Q6 0.044 0,112 0.391 0.118 0373 0.113 0.388
ETE Q6 0.002 0.380 [ 0.004 0029 0,056 0.128 0.012
ETS 06 0,050 0.128 0.389 0.100 0496 0.061 0.814
EVIl 03 0.006 0.001 5.499 0.003 1,952 0.000 NaN
| FAC1 01 0.659 0261 2.528 0.527 1,250 0.241 2.735
| FOX Q2 0.245 0.030 8.053 0,145 1.696 | 0.009 27.235
,_EQXPI 01 0.004 0.000 23.925 0,003 1,621 0.000 NaN
EXR Q3 0.129 0.100 1,298 0.115 1.129 0125 1.035
| GATA C 0215 0,133 1.620 0.180 1.197 0.168 1.281
| GaTA4 Q3 0.355 0.147 2.421 0.248 1.435 0.075 4,738
| GATAG 01 0.006 0.002 3270 0.004 1,582 0.007 0.812
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GCNF 01 0.002 0.019 0.121 0.006 0.360 0.001 2.286
GFI1 Q6 0,049 0.031 1.588 0,049 1.011 0,039 1.267
GLl Q2 0,001 0.006 0,151 0,007 0,140 0,011 0.082
GRE C 0.213 0.216 6 0.253 0.842 0,203 1.051
GZF1 01 0,000 0.000 NaN 0.000 NaN 0.000 NaN
| HAND]E47 Q1 0.200 0.419 0.477 0.368 0.543 0.322 0.620
HEN1 01 0.000 0,000 0.000 0,000 0.000 0.000 NaN
HIC1 02 0.000 0.06e1 0.005 0,014 0,022 0,025 0.013
HIF1 Q3 0,001 0,018 0.030 0.006 0.084 0,022 0.025
HLF 01 0.026 0.009 3.077 0,018 1,452 0.043 0.615
HMGIY Q6 0,340 0,229 1,483 0,242 1,407 0,126 2.701
HNF1 Q6 0,127 0,031 4,099 0,065 1.958 0.024 5,297
| HNF3ALPHA Q6 0.361 0.063 S.724 0,235 1538 0,028 12881 |
| HNF3B 01 0,356 0,049 7.249 0170 2.094 0.029 12,281
| HNF4 Q6 01 0.015 0,017 0.856 0,017 0.898 0,018 0,831
| HNFAALPHA Q6 | 0.080 0.113 0,708 0,098 0.815 0,071 1.129
| HNE6 Q6 0173 0.017 10,252 0,063 2727 0,018 9.288
HOXAZ 01 0.089 0111 0,796 0.106 0,836 0,128 0.692
HSF1 Q1 0,017 0.020 0,832 0,018 0,929 0,013 1.292
| HSF1 Q6 0.001 0.001 1,225 0,002 0.823 0.000 NaN
IPE1 Q4 0174 0.075 2.304 0127 1,364 0130 1337
IRE Q6 0,024 0.007 3551 0,013 1,836 0.000 NaN
IRF2 01 0,014 0,008 1.683 0.013 1.032 0.001 13.811
ISRE 01 0.014 0.005 3,068 0.010 1.380 0,001 13,847
KAISQ_01 0,010 0.013 0.721 0.014 0.664 0,011 0.875
KROX Q6 0.001 0,016 0.052 0,011 0.072 0.005 0,162
LEF1 Q2 01 0.036 0.046 0,776 0,038 0.947 0,038 0,944
LEF1TCF1 Q4 0.177 0.146 1.210 0.149 1.186 | 0,097 1.823
LHX3 01 0.039 0.004 9.470 0.022 1.799 0.001 38930 |
| LMO2COM 01 0.002 0,039 0.054 0.018 0.115 0.007 0.301
LRE Q2 0.003 Q117 0,023 0.063 0,043 0.074 0.037
LUN1 01 0.000 0.001 0216 0.007 0,044 0.000 NaN
LXR Q3 0.000 0.001 0,294 0.002 0,107 0,000 NaN
LYELl 01 0,011 0,013 0,807 0,025 0,433 0.006 1.814
i_MAF Q6 01 0,091 0,112 0.816 0,151 0,606 0.143 0,639
| MAZ Q6 0,024 0.067 0.366 0110 0,222 0,025 0,978
MEF2 03 0,058 0.012 4,961 0.040 1.459 0,015 3.873
| MEIS1 01 0,002 0.004 0.379 0.007 0.245 0,007 0.230
| MEISIBHOXAS 02 | 0,216 0,090 2.395 0,164 1319 0,092 2,346
| MINI1O B 0.006 0.094 0.063 0.057 0,105 0,054 0.110
MRE2 01 0513 0,131 3.925 0.309 1,661 0176 2916
| MTF1 Q4 0.000 0,001 0,035 0.002 0,022 0.003 0,012
| MYB Q3 0.149 0,273 0,547 0.242 0.617 0,325 0.460
MYCMAX 03 0.000 0.001 0244 0.001 0.172 0.004 0.048
|_MYQD Q6 01 0.002 0,029 0,067 0,026 0,073 0.019 0102
| MYOGNF1 01 0.242 0,839 0,288 0,632 0,383 0.691 0,330
NF1 Q6 01 0,021 0,086 0,246 0,054 0,392 0.067 0317
NFAT Q4 01 0.065 0,062 1.058 0,050 1.301 0,012 5.424
NFKB Q6 01 0.004 0,014 0,294 0,014 0,286 0,010 0,404
| NFY 01 0.006 0,009 0,606 0.016 0.366 0.009 0.634
| NFY Q6 01 = | 0.008 0,012 0.697 0,013 0637 0,009 0.895
i NKX22 Q1 0,019 0.006 3.022 0.014 1,358 0,004 4,747
NKX25 QS 0.071 0.078 0.916 0.092 0.770 0,064 1.111
| NKX3A 01 0.049 0.005 9.950 0.018 2.793 0.007 7.023
NRSF Q4 0.002 0.030 0,079 0.014 0.173 0012 0.197
OCT Q6 0.410 0.069 5,931 0.207 1.976 0,060 6.828
OCT1 02 0.584 0.167 3,494 0.328 1.784 0172 3.398
OCT1 03 0,996 0.286 3.488 0573 1.739 0.446 2.233
OCT1 07 0.219 0.035 6.205 0.115 1.914 0.053
OCT1 Q5 01 0.156 0.017 9.367 0.071 2.204 0.017 9.139
OCT4 01 0,288 0,066 4,338 0.151 1.906 0031 9.282
PS3 02 0.012 0,031 0,401 0,029 0,437 0,022 0.567
PAX Q6 0.176 0,320 0.552 0312 0.566 0,249 0.708
PAX2 01 0,383 0,396 0.966 0,405 0,946 0.554 0,691
PAX3 B 0.060 0,323 0,185 0,156 0,384 0.833 0.072
PAX4 04 0,637 0173 3.676 0,553 1,153 0124 5,137
PAXS 01 0.040 0,357 0,113 0.213 0.190 0,307 0,132
PAXS 02 0.084 0,454 0,185 0277 0.302 1,159 0.072
PAX6 Q1 1548 0914 1.693 1,238 1.250 1534 1.009
PAX6 Q2 0.005 0.020 0,225 0,025 0,184 0007 0,648
PAXS 01 0,380 0,581 0,654 0.615 0,618 0736 0,516
PBX Q3 0,121 0,041 2.963 0.075 1.619 0,058 2,080
PBX1 03 0,093 0.040 2.336 0.062 1.493 0043 2.165
PEBP Q6 0,050 0.043 1172 0.056 0.893 0,044 1.139
PLZF 02 1,806 0,359 5.031 0.904 1.997 0,209 8.641
POU]IF1 Q6 0.077 0.008 10,271 0.032 2.427 0.008 9,672
PQU3F2 02 2.051 0.371 5.532 1.010 2.030 0486 4,219
POUGF] 01 0.073 0.007 10.168 0,034 2,166 0.013 5.653
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PPAR DR1 Q2 0.019 0.032 0.597 0.036 0.536 0.019 1.016
PPARA 01 0.241 0257 0,941 0,300 0,806 0,225 1.072
PPARA 02 0,052 0,146 0,359 0.140 0372 0,135 0,387
PPARG 01 0.012 0.022 0.547 0,019 0.656 0.020 0.613
PPARG 02 0,983 1.047 0938 1173 0.838 1.094 0.898
PR 01 0.001 0.001 0.500 0,001 0.554 0.001 0.641
R 01 0.000 0.002 0.011 0.001 0,019 0,002 0,012
|-RBPJK Q4 0.002 0.016 0.119 0,013 0,141 0,031 0.060
| REX Q6 0,086 0.292 0.293 0.246 0.347 0.419 0,204
REX1 02 0,089 0.177 0,503 0,142 0,625 0,208 0,428
RORA]L 01 0.011 0.007 1.598 0.011 1.028 0,004 2.839
RP58 01 0.000 0.000 1,190 0.000 0713 0.000 NaNN
RSRFC4 Q2 0.002 0.000 6.305 0.001 1542 0,000 NaN
RUSHI1A 02 0.118 0.061 1.950 0.087 1.360 0,103 1,147
S8 01 0.079 0.014 5,797 0.054 1.449 0,016 4,906
SF1 Q6 0,025 0,052 0.480 0.063 0,394 0,021 1,185
SMAD3 Q6 0.040 0.050 5 0,051 0,779 0,026 1.54]1
SOX9 Bl 0,209 0,080 2,817 0,152 1381 0.089 2.352
SP1 Q2 01 0,002 0.024 0,064 0.018 0,084 0,004 0.384
3 Q3 0.009 0.065 0,143 0.076 0123 0,048 0194
SPZ1 01 0.073 0,204 0.360 0,205 0357 0,270 0272
SREBP Q3 0,055 0,085 0.649 0,135 0.408 0,104 0,530
SREBP1 01 0.038 0.044 _0.860 0,173 0.221 0.069 0.534
SREBP1 Q6 0.049 0.170 0.287 0.180 0.271 0,107 0.457
SRE C 0.006 0.005 1.222 0.008 0.709 0.006 0.919
SRF Q4 0.003 0.002 1.846 0.005 0,646 0.000 NaN
SRE Q6 0.006 0.005 1,326 0.010 0,621 0,006 1.078
STAF 02 0.003 0.012 0.230 0.011 0.252 0.005 0,539
STAT Q6 0.120 0.194 0619 0.144 0.831 0.063 1905
STAT1 01 0.053 0.107 0.494 0.079 0,674 0.078 0.680
STRA13 01 0,000 0.000 0.198 0.000 0,081 0.003 0.004
SZF11 01 0.052 0.296 0,174 0,263 0,196 0,176 0,293
TALIBETAE47 01 | 0,125 0,208 0,601 0,170 0.735 0.114 1.098
TAXCREB 01 0.004 0.043 0.096 0,028 0,149 0.114 0,037
TAXCREB 02 0.074 0.243 0.307 0.201 0.370 0,483 0.154
TBP Q6 0.384 0.085 4,493 0,193 1.992 0.133 2.887
TBXS 01 0,125 0.186 0,672 0.231 0.542 0173 0,722
ICF11 01 0.188 0,158 1.185 0.177 1.061 0.143 1311
TEL2 Q6 0.036 0.114 0318 0,079 0,456 0.075 0.483
TFE Q6 0,041 0.021 1.969 0.049 0.830 0,023 1.780
TIGIF 01 0,013 0.021 0,593 0.021 0.586 0,020 0,626
Q6 01 0,011 0.038 0,296 0.043 0,259 0,080 0,139
VDR Q3 0.045 0.161 0.281 0.180 0,251 0,104 0.435
VIUN 01 0.004 0.015 0274 0.009 0.448 0.026 0,158
YMYB 02 0.122 0,507 0,240 0,230 0.530 1717 0,071
WT1 Q6 0.007 0,037 0,198 0.040 0,182 0.006 1,211
YY1 Q6 0,076 0.118 0.643 0116 0,652 0.049 1,545
Q6 02 0,070 0,127 0.555 0.092 0.765 0.048 1,464
ZBRK1 01 0.001 0.002 0.357 0,003 0.259 0,000 NaN
ZEC 01 0.000 0,000 0,297 0.000 1222 0,001 0,073
ZFS B 0,023 0,708 0,033 0,199 0116 1337 0.017
ZID 01 0.001 0,006 0,166 0,005 0,214 0,011 0.089
ZNF219 01 0.000 0.002 0.061 0.001 0.109 0.001 0,133
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